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Abstract

Mark Stanley Everitt, “Construction, Theory and Simulation of Cavity QED Systems”, Ph.D.
thesis, University of Leeds, September 2009,

The microscopically pumped maser, or micromaser is a cavity QED experiment intended to be a
physical realisation of the Jaynes-Cummings model of a single two-level atom interacting with
a single mode electromagnetic field. This is the simplest model that describes the interaction
between light and matter, yet it predicts behaviour unexpected from semiclassical models, such
as the revival of Rabi oscillations of an atom interacting with an initially coherent field and
non-monotonic linewidth as a function of pumping.

The micromaser at the University of Leeds consists of a high quality superconducting
microwave cavity designed to be resonant with the transition between two specific Rydberg states
of rubidium. These two states behave like an ideal two level atom, and couple strongly to the
cavity field due to a large dipole moment. These Rydberg atoms are passed through the cavity
in a rarified beam such that in most instances when there is an atom in the cavity, there will
only be one, closely approximating the Jaynes-Cummings model. I present experimental work
on the build phase of the micromaser. Specifically I routed all of the wiring and microwave lines
in the cryostat that contains the micromaser, and designed mounts for various components. I
also designed several testing methods for probing high quality microwave cavity resonances and
quality factors which are presented. |

Using the Jaynes-Cummings model as a prototype, I demonstrate how extensions to the
model can be used to construct universal quantum logic gates that operate on photonic qubits in a
multi-mode cavity. This could be realised in a micromaser with a multi-mode cavity. Conversely,
I demonstrate that by using atoms as qubits, detuned cavities can be used to generate entangled
resources such as the Greenberger-Horne-Zeilinger state, the W state, and graph states of atoms.
I show that single qubit rotations on Rydberg atom qubits have already been experimentally

demonstrated so that in combination these entangled resources are useful for quantum metrology,
quantum computation and even tests of quantum gravity.
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Introduction

In 1963 Edwin Jaynes and Frederick Cummings wrote a paper titled Comparison of Quantum and
Semiclassical Radiation Theory with Application to the Beam Maser [1]. This paper contained
what became known as the Jaynes-Cummings model (JCM) of a single two level atom in a
single mode (frequency) field [2]. The model used this idealised atom and field to construct
an exactly solvable evolution of the joint atom-field system, and hence model a beam maser in
a fully quantum mechanical framework. This JCM largely inherited from the Dicke model, a
predecessor that modelled the collective effects of a gas of atoms in a field [3]. A successor to
the JCM, the Tavis-Cummings model, generalised the JCM to many atoms, refining the Dicke
model [4].

The micromaser, a portmanteau of the first and last words of the phrase microscopically
pumped maser, also known as the one-atom maser, is an experimental attempt to construct a
maser which is as closely modelled as possible by the JCM. A micromaser is thus a testbed for
the predictions made by the JCM [5]. Example predictions are vacuum Rabi oscillations [6], the
Purcell effect [7] and the revival of Rabi oscillations of an atom in a field initially in a coherent
state [8]. Beyond the Jaynes-Cummings model, predictions made by a master equation with the
Jaynes-Cummings Hamiltonian as a component can be compared with a laboratory micromaser to
test our understanding of dissipative systems and decoherence as well as maser linewidth [9-18].

Laboratory micromasers have been used to observe entanglement between atoms leaving
a cavity [19], and number states of the cavity field [20-26]. Micromaser technology can be
adapted to manufacture large entangled resources for quantum metrology, tests of non-locality and
quantum gravity, and quantum computation [27-57], which has been the focus of my research.

Practical advancements made by the micromaser at the University of Leeds include a novel
approach to producing Rydberg states of $3Rb [58-61] using a three step infrared laser excitation
system locked to vapour cells [62, 63], oven design refinements for producing atomic beams [64]
and squeezing cavities in cryogenic conditions {62, 63, 65]. Current research in the laboratory
is concentrated on microwave transmission within a cryostat [66-69], the construction and
characterisation of superconducting microwave resonators [70-74] and the enhancement of
state-selective field ionisation detectors for determining the state of a Rydberg atom [75].
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This thesis covers a range of topics with the micromaser in common. My mandate was
to assist in building the new micromaser system, and to study the micromaser as a source of
entangled atoms. In the laboratory my responsibilities were to select and route the wiring for
components in the cryostat, route microwave lines in the cryostat and tend to vacuum systems in
general. I was also responsible for running the cryostat, most of the programming and developing
cavity testing experiments. QOutside the laboratory I worked on the micromaser and related
technology for entangling Rydberg atoms, quantum computation and even in experimental tests
of quantum gravity.

This thesis is split into three parts. Part I, Background, contains background micromaser
theory. It is intended as a foundation for new graduate students and to unify the notation and
conventions used in micromaser literature. Parts II and III are on theory and experimental work
that I have done. These two parts form the majority of this thesis, and contain my own work.
All material is my own unless otherwise stated.

Chapter 2 explores an option for performing universal quantum logic using multi-mode fields
[76] and multi-level atoms [28]. The aim of this was to encode qubits on pairs of field modes
and use the interaction with an atom to shuffle photons around between modes, whilst returning
the atom to its original state to avoid loss of quantum information. This is being considered
for publication in a paper written in collaboration with Dr. Barry Garraway at the University of
Sussex.

Chapter 3 begins with a controlled phase gate for atoms in crossed atomic beams. I based my
work in this chapter on a controlled phase gate that uses two atoms interacting with a detuned
field [35]. I show how to produce N-atom Greenberger-Horne-Zeilinger (GHZ) states of atoms
using these controlled phase gates, and more complex graph states. I also show how to produce
W states [77] using a generalised form of the controlled phase gate, and that it can produce up
to four atom W states. I produced a paper on detecting the decoherence due to quantum gravity
of entangled states, and this work is presented in this chapter.

Chapter 4 has some details on the components of the micromaser experiment at Leeds
University. For completeness I include a little detail on all parts of the experiment. My
contribution was the majority of the mounting assembly in the cryostat, cables to send and return
microwaves from the cryostat and wiring for the detector box and cavity squeezer. Most of the
purpose coded software used by the experiment was written by me.

Chapter 5 presents my work on a variety of tests 1 produced to measure the resonant
frequencies and quality factor of pillbox electromagnetic cavities. These tests were designed to
be portable and simple to use with software I coded to automate the bulk of the task. The testing
equipment can be transported to a chemistry lab and a non-specialist can test a cavity between

etches to see if the resonance is correct. The equipment is also suitable for testing a cavity in
the cryostat.
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Background



Chapter 1

Micromaser Theory

... We never experiment with just one electron or atom or (small) molecule. In thought-
experiments we sometimes assume that we do; this invariably entails ridiculous consequences. . .

Are There Quantum Jumps? Part Il [78]
Erwin Schrodinger

This chapter was written to serve as a foundation for the formalism used in later chapters, and I
hope that it is a useful text for my successors when they start learning the theory behind the
micromaser. There is a large leap from undergraduate quantum mechanics to an understanding
of micromaser theory, and there are a few conventions by different key researchers that clash and
lead to confusion. There is considerable freedom to choose interaction pictures, which are of
course completely correct provided that one is consistent. The notation is also ambiguous in the
literature. For example, the “Rabi frequency” is used to mean the frequency of the oscillations
of population inversion, and the oscillations in probability amplitude. For the sake of simplicity
I define things in this chapter, and avoid ambiguous terms when possible. To clear up the issue
of Rabi frequency I refer to a term g as simply a dipole coupling constant whenever possible.

This chapter culminates in the theory behind micromaser phase diffusion, which is the process
our micromaser is designed to test.

1.1 The Jaynes-Cummings Model

The micromaser is designed to be the closest possible approximation to the JCM. The JCM deals
with the evolution of a system consisting of a single two state atom in a single mode field in a

fully quantum mechanical way [1]. A recent summary of the JCM may be found in the review
article by Shore and Knight [2].
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1.1.1 The Atom

The atom considered is idealised as a two state system, ground |g) and excited |e). To model its
interaction with a field, we first need the dipole operator

p=p*e" +us, (1.1)
where 6+ = |e) {g| and 6~ = |g) (e|. This simply moves |g) to |e) and vice versa. This requires

a parity change, as implied by the name of the operator. The Hamiltonian for a free atom is

@&&3 ’ (12)

H atom —

where fiw, is the transition energy of the atom from state |g) to state |e). The energy is referenced
from half way between the levels and 63 = |e) (e| — |g) {g|.

A two state atom may seem like an absurdity, but with a careful choice of atomic levels so

that there is a single pair of states with an energy gap close to resonance with the single-mode
field then other transitions are suppressed. This is simply a statement of the Purcell effect [7].

1.1.2 The Electromagnetic Field

A field can be decomposed into superposition of modes of different frequencies. In a cavity, we
assume that only a single mode is present, and all others destructively interfere. A mode of the
field is a quantum harmonic oscillator, and so the creation and annihilation (ladder) operators

apply.

aln) = vajn— 1)
&' ny =vn+1n+1)
ala|n) = N |n) = n|n)

[a, a\‘] =1,

(1.3)

where n is the number of photons present in the mode. The free Hamiltonian for a mode of the
electromagnetic field is

Hegelq = hw (&T& + %) . (1.4)
Using the Heisenberg equation of motion
d A i - 8 ~
—A) = 2 [H,Aw)| + 5,40), (1.5)
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where A is an arbitrary operator, the solutions for the time dependent creation and annihilation
operators in the Heisenberg picture are

a(t) = ae™ W

at(t) = atet (.1'6)

The electric field operator at position r for a plane wave mode in a mode volume V with
wavevector k and frequency w and with linear polarization e is

1

R 2 : : : :
B(r, 1) = i (Qf:V) . [ae—-wtﬂk-r_ a’retwt—zk-r] | (1.7)

The single mode assumption requires that the micromaser must use a cavity with a very high

quality factor, or (. This high quality factor reduces the linewidth of the cavity so that for an

extremely good microwave cavity the linewidth may be as small as 1 Hz at a resonant frequency
of 21 GHz.

1.1.3 The Electric Dipole Hamiltonian

The electric dipole Hamiltonian describes an atom in an electromagnetic field,

N

H=2

o3 — - E(r,t). (1.8)

If the dipole moment is much smaller than the wavelength of the mode of the field, then the
dipole approximation can be made and spatial dependence can be dropped,

Nwa

H=2

63— p-E(t). (1.9)

1.1.4 The Jaynes-Cummings Hamiltonian

If B from Equation (1.9) is substituted with the electric field operator in the dipole approximation,
then the fully quantum mechanical atom-light Hamiltonian is

ﬁ‘;“&g — ihg (&e""“”t ~ a*eﬁ”*) (6% +67), (1.10)

H atom—light =

1
where g = L - € (2—5“’517) * can be interpreted later as a coupling constant and p is assumed to

be real without loss of generality. Transforming into the Schrodinger picture, the Hamiltonian



CHAPTER 1. MICROMASER THEORY

becomes
o I sta + 2V —ina (a—at) (6% + 6-
atom field interaction

recovering the free field term. The vacuum term in the free field part that has emerged can be
neglected as a global phase. Expanding out the interaction term yields four new terms:

a6t The atom absorbs a photon from the field.
a6~ The atom loses its excitation to the field.

ao The atom decays and the field loses a photon.
a'6+ The atom becomes excited and the field gains a photon.

The second two terms are not energy conserving and are thus heavily suppressed. A more
mathematically complete explanation takes us via another transformation into an interaction
picture with a time-dependent Hamiltonian.,

hA b (atotwt oA o—iwtY [ A —dwt At dwt
H1=7a3-zhg(cr e +oe ) ae —a'e ) (1.12)
This transformation is shown in Appendix D as a demonstration. Expanding the brackets, two
terms have no time dependence and two do. The latter are considered to be fast rotating and
are substituted for zero. This is called the rotating wave approximation [S]. Finally we have the
Jaynes-Cummings Hamiltonian

A
Hjc = %—-5'3 —~ thg (5‘+a — 5-51) \ (1.13)
where A is the detuning between the energy of a photon in the mode and the transition energy
of the atom, A = w, — w. This is useful for showing the dependence of the dynamics of
the interaction on detuning, but not as instructive for showing how photon number affects the
dynamics. The reverse transformation back to the frame of (1.11) and disregarding a vacuum

field term (which only contributes a global phase) gives

Hje = h;da’ 03+ hwa'a — ihg (&"‘& —_ 5"'&*) : (1.14)
et N gt m————p———
atom field interaction

Strangely, a version of the Hamiltonian that I think is more intuitive has been rarely (if ever)
noted. Another transformation can give the following alternative Hamiltonian

Hic = —hAats — ihg (a+a ~ a*a’f) . (1.15)
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This version does not track the energy dependent rotation of the field as (1.14) does. This may
be particularly useful when considering a system with multiple interactions with the field where
phase may be interesting. I make extensive use of this form in Chapter 2. I conclude that the

reason that this form of the Hamiltonian is not seen is that its analytic solution is more difficult
to derive.

1.1.5 The Jaynes-Cummings Model

Figure 1.1: The JCM can be visualised with this energy level diagram. The difference between

the transition energy between the two atomic states and the frequency of the field
is the detuning A. By convention in this thesis w + A = w,.

The Hamiltonian in Equation (1.13) conserves energy’, i.e. ata 4+ 676~ commutes with Hjc.
This means that for an atom and field initialized to particular states, only one other state of the

system is accessible, corresponding to an excitation (decay) of the atom and the loss (gain) of a
photon.

e) In) < 1) In +1)

1.16
) ) o [¢) n— 1) (19

From this point I will refer to the state of the system in the composite form |atom) [field) =
latom, field) so

le,n) « |g,n+1)

(1.17)
lg,n) - le,n — 1) '

This highlights the entanglement produced between the atom and the field during interaction. The

JCM is analytically soluble, allowing for intricate study of its dynamics. Solving the Schrodinger
equation in the form

d i H
20y = -2 |9), (1.18)

'As do those in Equation (1.14) and Equation (1.15) since these are the Hamiltonian in Equation (1.13) after
unitary transformations.
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is as simple as solving a second order ordinary differential equation with constant coefficients. If
the initial state of the system is

IWO) = Ie: n) + /BO Ig:n + 1) 3 (1-19)

then the state of the system after interaction time £ is

Qt) tap A + Qﬁog\/n + 1 i ( )]
2

a(t) = [ao COS ( 5
B(t) = ;50008( 5 ) wﬂﬂ ( > )] .

() is called the Rabi frequency, and is a function of the number of photons in the field mode,

O =+1A%2+4g9%(n+1). (1.21)

Some important behaviour can be derived from Equation (1.20) and Equation (1.21). If
the field is in a number state (also known as a Fock state) then an excited atom will oscillate

between the ground and excited levels, and a corresponding photon is created and annihilated
in the field, preserving energy. Even if the field is in the vacuum state these oscillations are

(1.20)

still expected. This particular phenomenon is referred to as vacuum Rabi oscillations [6]. If
the system is resonant, then the probability of finding the atom in the ground or excited state
oscillates between zero and one. If the field is detuned, then the probability of finding that an
atom that was initially in the excited state has decayed never reaches one. Equation 1.21 leads
to an increase in the oscillations between the states of the system if the detuning is increased.
These characteristics are shown in Figure 1.2 for the n = 10 Fock state, Figure 1.3 shows that
detuning leads to a Lorentzian profile for the maximum transition probability.
When the atomic transition is resonant with the field mode, the interaction reduces to

a(t) — ag cos (gtvn + 1) — Bosin (gtvn + 1)
B(t) — By cos (gt\/n + 1) + o sin (gt\/n +1).

Using these, the evolution operator for resonance can be constructed.

U(tint) = coS (gtim\/ N +1 ' 66~ + cos (gtmv N ) 6-o6+
sin (gtint\/ N+1 ) oy sin (gtim\/ N ' : (1.23)

— ————00 ' + = a'o
N+1 VN

These are useful if the atom is incoming in a superposition state and the system can have two

(1.22)

10
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Figure 1.2: As detuning is raised, the probability of measuring the atom in the excited (initial)
state has a increasing minimum. As the detuning is increased the frequency of the
oscillations in state increases as shown in Equation (1.21). gt is the atom-cavity
coupling constant multiplied by the interaction time. In the resonant case g is
twice the Rabi frequency (2. In this plot I have set n = 10.

possible numbers of excitations, whereas the resonant interaction equations (1.22) describe a
system with a single number of excitations.

1.2 The Master Equation

The Jaynes-Cummings model describes the evolution of a system composed of a single two
state atom and a single mode field. The micromaser is slightly more complex. The cavity sits
at the centre of the experiment, and atoms are sent through in a beam, as shown in Figure
1.4. The beam is Poisson distributed so that when an atom is present in the cavity, only one
is present in most events. In fact this is so diffuse that for the majority of the time no atom is
present. In addition, no cavity is perfect. Some radiation may leak into or out of the cavity.
This arrangement is a type of beam maser, with an extremely high quality factor cavity, and
an extremely low pump rate. The intention is to use this limit to see if the Jaynes-Cummings
model predicts what we see in masers. This is best modelled by a master equation. A master
equation can handle the situation of a quantum harmonic oscillator damped by a thermal bath.
This situation may lead to systems that are neither completely quantum mechanical nor classical,

11
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Figure 1.3: As detuning is raised, the maximum probability of transition is reduced. This
results in a Lorentzian resonance shape as would be expected. In this plot I
set n = 0, demonstrating that vacuum Rabi oscillations are responsible for the
transition.

leading to the need for the density operator p (sometimes called the statistical operator).
The Markovian master equation can be stated as below [9, 10],

p(t) = Llp(t)] + RF (tint) [p(t))]. (1.24)

where R is the average rate of atomic injection in a particular state, L is the Liouville superoperator
for cavity damping (see Section 1.2.1) and F is the Jaynes-Cummings superoperator. Using
Equation (1.23) the Jaynes-Cummings superoperator is

F(p] = U(tint)pU" (tint) — P (1.25)

In order to be modelled as a Markovian process the atomic arrivals must be uncorrelated, i.e.
the atomic beam must be Poisson distributed. In the general non-Markovian case the last term in
Equation (1.24) is more complex, reflecting the non-random arrival statistics. Recent advances
in the mathematics of master equations may allow for the analytic handling of non-Markovian
master equations describing more general micromasers [11, 12]. We know that the type of
rubidium dispenser we use as a source of atoms [79] does not have Poisson statistics, and cannot

12
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detector

atoms

Figure 1.4: The conceptual micromaser. A source provides two state atoms in the excited
state. The cavity field is close to resonance with the atomic transition, so that the
excitation of the atom can be transterred to the field and back again. A detector
detects the atom in the ground or excited state.

strictly be modelled as a Markovian process.

1.2.1 The Liouville Superoperator

On its own, the Liouville superoperator describes a system in thermal equilibrium with the
environment, and may describe an unpumped micromaser cavity, as shown in Section 1.3. A
superoperator is an operator that acts on operators. The simplest way to grasp this is to think
about a time evolution operator. When state vectors are used, the evolution of a system goes as

W (t)) = U |Wo) - (1.26)

Consider the extension of this to the density operator. The density operator of a pure state is just
the outer product of that state with itself, so it is simple to see that the density operator will
need the evolution operator to act on both sides of a density operator. The same is true of other
operators. To apply the creation operator, it must be applied on the left and the annihilation
operator on the right of the density operator which can seem counterintuitive.

p(t) = UpoUT . (1.27)

It can be cumbersome writing operators out on both sides of a density operator, and it can even
obfuscate a calculation, so it is common to invent a superoperator to replace them. In this case I

can define the evolution superoperator S, such that

S[A] = UAU'. (1.28)

13
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The Liouville superoperator simulates a damped fiecld mode as a field mode with successive
weakly coupled atoms interacting with it [13]. In the interaction picture

0

where rex and 7, are the rates of the incoming ground and excited states, and the subscripted ¢
denotes the density operator at some time. For an atom arriving in the excited state the change
in the field part of the density operator is:

Aexpt®? = cos (gtint VN +1) pf cos (gtint VN +1)

(R R (1.30)
il G ) LI GO L) B
VN VN

Assuming that the coupling is very weak, a small angle approximation can be made?.

+

. . 1, 1 A
Aexpi® ~ g*tin, (a"p?e‘da ~ 5aalpp® - -z-p?"“aat) - (1.31)

Exactly the same procedure can be applied to an incoming atom in the ground state.

) 4 1.4 1 .4
Agr piield ~ g2ti2nt ( & pi‘ield a‘l‘ _ § t b P?eld _ _é_ p?e'ld a‘l’ G) (1.32)

The rate of change of pfi€'d due to damping is now

e p{leld = — Pey g2t?m (§ aal pgield 4 > piield oot — gt pgeld a)

X , (133)
- T gt (E&*&pf‘e‘d + 5piecata ~ &p?e’d&*) '

As these weakly coupled atoms are used to simulate the damping of the cavity field, the rates
must be related via Maxwell-Boltzmann statistics [{13]

Tex Fuw vV
cexp -2 = Y 1.34

where v is shown in Section 1.3.1 to be the mean thermal photon number. The factor of g?¢2, can

be hidden inside a rate parameter A which gives the Liouville superoperator for the interaction

The first order cosines taken together cancel with p. Only one second order cosine term at & time is considered
which is valid for the approximation. The sine terms are considered only in the first order.

14
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picture.
A ]. n ...1- A A .-..1- A
Llp| =~ -2-Au (aa p + paa' —2a pa)
1 (1.35)
— SA+1) (afap + pata — 2apaf)
A is related to cavity quality factor (Q) by
W
A= — 36
27 Q) (1.36)

1.3 Steady States of the Field

1.3.1 The Unpumped State

The Liouville superoperator (1.35) alone is enough to describe an unpumped, high @ cavity in a
thermal bath. When the cavity is in the steady state, p = L[p] = 0. It is easy to show using
cyclic relations of the trace and its linear mapping properties that

d,. At A 1 . 1, ..
= (at)y =Tr (a'Ller)) = -54 - Tr (ater) = =5 Ala")e (1.37)
and similarly
d.. 1,
—{@)e = —5A(a) (1.33a)
d . .
E(Nh —_—A ((N)t - y) (1.38b)
The solutions to which are
(at)e = (a)oe™4/? (1.39a)
(@) = (&)oe™ 4 (1.39b)
(N)e=v+ ((N )o — V) e~ At (1.39¢)

The constant A is thus a decay constant, as expected. At long times these solutions lead to

(at)t—rm — 0 (1.40a)
()4—00 — O (1.40b)
(N o0 = V (1.40c)

15
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As the ladder operators have no effect in the long time limit so that the expectation of the number
operator reaches a constant, the system reaches a sready state. The steady state implies that
Pi—oo commutes with the number operator N and therefore can be expressed as a function of N
[13]. Functions of N also have the following property:

afata — f&ata (1.413)
&' faat = farad (1.41b)
Combining these facts
: ! Av (a3t sat — 28t £.0-4
L[fz5] =0=~ §AV (fm fata + faraaa’ — 2a fafaa)
1 (1.42)

a EA (V + 1) (&T& ata + f&faata - 2afafaat)

Using (1.41a) terms cancel to leave [14]

(F+1) [0+ Dfgs - vhn| = N |0+ Dfy - vy (1.43)

By picking a particular eigenvalue of N3 then this reduces further to

v+ 1fy=vfy_, (1.44)
and this can be solved to give _.
, \N
fi=1Jo (U+ 1) (1.45)
Finally, as the sum over all eigenvalues must be normalised
> v \" 1
=% (1) =R 146
1 % N
= 5 (25)

By referring back to (1.34), the interpretation of v is now as the mean thermal photon number
in the thermal bath, as the unpumped state takes the form of a thermal state. This is a special

case of the steady state, which in general includes pumping with excited atoms. An example of a
thermal state at 2K for a 21.456 GHz field is shown in Figure 1.3.

3N = 0 is simplest, and then using Equation (1.44) it can be shown that any value of N will give the same result.

16
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Figure 1.5: This plot shows a thermal field with an average of five photons. This corresponds
to a temperature of approximately 2 K for a 21.456 GHz field. As the thermal state
is completely classical only the diagonal elements of the density matrix for the

field are non-zero, i.e. the probability of a particular number of photons, so this
plot fully describes this thermal state.

1.3.2 The Steady State

The steady state of a micromaser pumped with an atomic beam with Poisson statistics is the
generalisation of the unpumped state. This is only a steady state on average. The field is pumped
in the relatively very short time of the interaction with an atom, and then decays in the time it
takes for the next atom to arrive. Like the unpumped state, the steady state when the system is

pumped with atoms only in the excited state is also fully mixed. The steady state is thus diagonal
in the number state basis [14]

lim P(n)=C ( 2 )n ﬁ (1 + _I..Z_f’.l.{.l.g_(?_}____ \M) ‘ (1.48)

t—00 14v i YV

where C normalises the probability distribution, y~! is the cavity lifetime and © = gtint\/ﬁﬁ
is the micromaser pump parameter. This equation comes from a generalised form of the recursion
relation for the unpumped state, and reduces to the unpumped state in the limit of no atomic
injection. When R = 0 the field is unpumped, and Equation (1.48) reduces to Equation (1.47).

17
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Figure 1.6 is an example probability distribution of a micromaser unpumped and pumped with

atoms. Figure 1.7 shows a plot of how the pump parameter affects the number distribution,
revealing some important characteristics of the micromaser. Unusual blips appearing at low

1
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Figure 1.6: This plot shows three steady states of the field. Each distribution corresponds to a
different pump rate at 30 mK with a field resonant at 21.456 GHz to simulate our
micromaser. The blue is for a thermal distribution, which is mainly in the zero

photon state for this temperature. The green is a field pumped close to threshold.
The red is a field pumped above threshold. These are all vertical slices of Figure
18 2

photon numbers are frapping states. These are states for which the field has built up until it has
hit a particular number state for which that pump parameter prohibits the emission of a photon,
halting the gain in photon number. The distribution of these trapping states is close to a number
state, which is how number states were achieved in a micromaser [20-24].

1.4 Phase Diffusion and Linewidth

Phase diffusion of the field in an cavity is the term used to describe the loss of coherence due
to interactions between the field and the environment [15]. Figure 1.9 shows this behaviour for

the extreme of a coherent state that has fully dephased into a mixed state. Measuring the phase
diffusion and linewidth of a micromaser field is yet to be done. The ultimate purpose of the
micromaser at Leeds (initially at Sussex University) is to measure these quantities. Previous

18
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Figure 1.7: This plot shows the effect that increasing the pump parameter has on the photon
number distribution. The colour bar corresponds to probability. For this plot

R /v = 25 and the temperature is 30mK. Contrast this with Figure 1.8 which is
at S00mK. Much of the interesting character becomes washed out. Vertical slices
taken at © = 0,2.2, 11 correspond to the distributions shown in Figure 1.6.

generations of micromaser were incapable of this measurement due to heating issues. This
new micromaser is designed to run in a prototype VeriCold helium dilution cryostat, which can
achieve lower temperatures (down to 30 mK) than any other micromaser to date. As the new
micromaser is designed with phase diffusion measurements in mind, this section occasionally
digresses into experimental details of our system.

The linewidth of the maser field happens to be proportional to the phase diffusion constant
(like a decay constant) [15]. The scaled linewidth of the micromaser is given as

D 4R £ 2 1
— = — gin* (4gt t ) -+ -—-———( 1% ) , (1.49)
)7(

Y v (n) 4(n)

For a cavity with large average photon number, or if the interaction time between the field and
atoms passing through is small, this reduces to the Schawlow-Townes linewidth of a maser (or
laser) due to purely quantum noise [15],

y 4(n)

/

D ©‘+2+1

(1.50)
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Figure 1.8: This plot is identical to 1.7, except that the temperature is now 500 mK, washing
out some of the character of the previous plot. Trapping states in particular are no
longer visible.

The linewidth D is also the the decay constant associated with phase diffusion, thus producing a
link between the linewidth of an ideal laser and the decoherence of a cavity field [16, 17].

1.4.1 Measuring Phase Diffusion

Measuring the linewidth of a micromaser is particularly challenging. The quality of the cavity is
so high that no direct measurement of the linewidth can be made. The procedure to measure
this has been published [16], but the experiment is so difficult that it remains to be performed.
The off diagonal elements of the density operator in the number basis decay with a decay rate
proportional to the linewidth of the micromaser. The steady state of the field is completely mixed.
If a steady state is found that has identical photon number expectations to a coherent field as in
Equation (1.51), then this can be exploited [15, 16].

P = Pn (1.51)
A possible procedure is as follows

* A cavity 18 initially pumped from the unpumped state close to O K with a coherent field.
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In the laboratory this is done by firing resonant microwaves from a microwave synthesiser

(a coherent source) at one of the openings into the cavity. The use of an external field in
this manner is explored in a paper by Agarwal er al. [18]

* Atoms are sent through the cavity so that the pump parameter corresponds to a steady
state with diagonal elements of the density operator in the number basis identical to the
prepared coherent state, as in (1.51). The lifetime of the cavity is long enough that many
atoms can interact before the coherences in the field decay. The constant measurement of

atoms after leaving the field and the energy decay from the cavity leads to the decay of
off-diagonal elements (mixing) as the field loses its coherence.

» After some time, the field can be displaced back by altering the amplitude and detuning
of the original external field and applying it again [18], and measurements of the atoms
exiting the system can be used to reveal some information about how diffuse the field
state became. In the case of no diffusing, the coherent state is simply returned to the
vacuum and atoms sent through in the ground state will all exit in the ground state. If
some diffusion has occurred then the reverse displacement will not return the field to the
vacuum state, and some atoms will be detected in the excited state.

Figure 1.9 shows plots of the Husimi quasi-probability distributions of the cavity field at each
stage of such an experiment. The Husimi distribution is

Q(e) = = (alpla) , (1.52)

where |a) is a coherent state defined by the equation [26],
I
) = e71ol*23™ |y . (1.53)

The Husimi distribution at a point « is like the overlap between a density operator and a coherent
state |a). In the case of these plots the field has become fully dephased, but in a real experiment
the time between the second and third plot would be varied to measure the process of dephasing.

An alternative, and potentially more easily performed, experiment for measuring the phase
diffusion is with a modified Ramsey type experiment [15]. In this set up incoming atoms are
exposed to resonant microwave radiation to place them in a superposition of the ground and
excited states. This in turn introduces coherence to a cavity field. Atoms emerging are rotated
by a second field prior to measurement. This is a modified phase sensitive micromaser. After
some time the resonant microwave radiation is switched off, and the statistics of outgoing atoms
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Figure 1.9: These four Husimi (Q(«)) distributions of the simulated cavity field demonstrate
the various stages of an experiment to measure phase diffusion. (a) The cavity is
cooled to the zero photon state. (b) The field is displaced using a coherent source
[18]. (c) The atomic beam of excited atoms is switched on to maintain the average
photon number. (d) The reverse displacement is performed [18]. The photon
number expectation depends on how mixed the state of the field has become. The
initial displacement in these plots is to (n) = 25. The final state is (n) ~ 24.

used to infer the decay of the off diagonal elements of the cavity field. From Scully et al. [15]

the probability of detecting atoms in the excited state is

1
P, = = 4+ ¢ Dt/2 Z(ros (¢ — B) cos (gtv/n + 2) sin (gtv/n + 1) pani1 s (1.54)
n

2

where ¢ is the phase of the second rotation field, and 3 is the initial phase of the micromaser
field. Both experiments would require many repetitions to develop the probability against time
to calculate D. In a micromaser such as the one at Leeds this kind of repetition is simply a
programming problem that is easily solved to automate the entire process. A diagram of the

phase-sensitive micromaser concept [19] is given in Figure 1.10.
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source detector

Rotation 1 Rotation 2

Figure 1.10: The phase sensitive micromaser. This arrangement allows for Ramsey spectroscopy
of the cavity field to measure coherences. The two smaller cavities are pumped
externally, and simply rotate the state of the atom between |e) and |g). In a
laboratory these may be pumped cavities, or waveguide with holes in to allow
atoms to pass. The rotations performed by these cavities can be adjusted to
measure phase diffusion by injecting coherence initially, and later adjusting again
to measure coherence remaining.

1.5 Summary

Current work on the micromaser is towards building a phase sensitive micromaser as shown in
Figure 1.10, in order to measure phase diffusion. This figure belies the difficulty in manufacturing
such an experiment. The most extreme constraint is the low temperatures required. The
micromaser we are building is designed to operate at a constant 30 mK, which requires a recently
acquired helium dilution cryostat, which is expensive to acquire and requires skilled operators.
Another major constraint is the cavity. High quality factor cavities in the microwave regime
are typically machined out of niobium, which requires specialist knowledge and equipment. In
addition, the cavity must be etched and baked, and there are no set methods for doing this.
Producing atoms that approximate a two state system is also very difficult. These are pumped
using a set of three lasers which are elaborately locked. Measuring the atoms has also proven to
be a difficult problem [75]. These issues are explored in greater depth in Part III of this thesis.
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Chapter 2

Multi-mode Quantum Optical Logic

In collaboration with Dr. Barry Garraway at the University of Sussex I did some work on a cavity
quantum electrodynamics (QED) based implementation of a universal quantum gate set. Our
motivation was to use the relatively long life time of a cavity field to store all information in
the system. The interaction with an atom should simply allow quantum logic gates [31] to be
applied to the photonic register, and the atom should exit the cavity in a state separable from the
photonic register. Preliminary work was published in conference proceedings [28], and the full
architecture has been submitted for publication.

This approach enjoys several advantages. Qubits are stored as a single photon in two modes
like the dual-rail qubits developed by Knill, Laflamme and Milburn [76]. If the photon is in
the first mode, then the qubit is a |1) and if the photon is in the second then the qubit is in a
|0). Table 2.1 shows these two mode qubits. If the photon escapes from the system then the

Modes Qubit

1,0) 1)
0,1)  |0)

Table 2.1: A qubit is encoded as a single excitation shared between two modes of the field,
In1,n2). A logical one maps to the excitation being in the first mode, and the
logical zero maps to the excitation being in the second mode.

resulting state of the field does not encode a qubit and the error may be detected. This sort
of encoding may be extended to the qudit case which encodes information in a system with d
orthogonal states, as shown in table 2.2. In order to process quantum information you have to
be able to initialise the qubits to the right values, process the qubits, and read out the result.
As the qubit consists of two fields in number states, we can use a standard Jaynes-Cummings
interaction to initialise the system. Readout can be done in a similar fashion. The challenge here
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Modes Qubit

[n, 0) [n)
n—1,1) |n-1)

Ln-1) |1
0,m)  |0)

Table 2.2: Similarly to Table 2.1, qudits can be encoded on a pair of field modes. In this
generalisation the number of photons remains constant.

was constructing gates to operate on these qubits.
In this chapter I have used the convention for atomic operators given by the equation

bap = o) (B . (2.1)

I made this choice to keep the equations more compact and readable. Sometimes I will use

a comma to separate the two states i.e. &g1,10 = |01) (10|. Throughout this thesis I use
03 = Oee — Tgq for two level atoms.

2.1 Theory of Effective Hamiltonians

This work relies heavily on the theory of constructing an effective Hamiltonian and specifically
the work of Bruce Shore [29]. To a lesser extent the work of Cook and Shore [30] was also useful
for working with N-level Hamiltonians. The phrase adiabatic elimination is also commonly
used.

The theory in [29] is shown only for an effective two level system, but the method also works
for an effective multi-level system. If the Hamiltonian is formulated as a matrix with the states
of interest in the top left, and those that should be eliminated by special conditions of the system
in the bottom right, then the matrix may be divided into parts,

_(H, B
H= ( Bt A) , (2.2)

where part Hy contains those states that should dominate. In practice this occurs when other
states are detuned from resonance, or the couplings to states that are important are relatively
large. Mathematically both cases occur when the eigenvalues of A are much larger than the
eigenvalues of Hp. The Schrodinger equation is (in natural units)

d,o
i—|¥) = H|¥). (2.3)
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A solution can be expressed as

1

w2zt (., —1
— [ €% (= H)™' dz|1(0)) . (2.4)

[¥(2)) =

Projection operators can be defined to select out the components of the Hamiltonian of interest.

P+Q=1
PP =P
(2.5)
QQ=Q |
PQ=QP=0.

I choose P to simply be a matrix with ones on the diagonal corresponding to Hy, and Q) to be
a matrix with ones on the remaining diagonals, trivially satisfying the above relations. As P
selects out the states of interest it can be placed either side of the kernel of Equation (2.4). The
blockwise nature of the kernel allows its inversion in terms of these blocks, and as the only block
of interest is the one describing the motion of the relevant states, the projection operator P is
used to select out the top left element of the resultant blockwise matrix. It is anticipated that

other states of the system are so far from resonance that the block couplings between the top left
and the lower right blocks of the resultant Hamiltonian will be weak and can be approximated to
ZEero

— Hy— B(z— A)~1BH)™*
P(z—-H)™1P = ((z ) (2 )7 B') 0) . (2.6)
0 0
The top left element can be substituted back into Equation (2.4),
(&) = o— [ & (2~ Ho— B - B! —ldz [%(0)) (2.7)
27i z— A ’ '

where ()} contains only the states of interest. In the limit of large eigenvalues of A compared
with those of Hj, i.e. these states are detuned, the approximation z — A ~ —A is valid [29].
Comparing Equation (2.7) with (2.4) in this approximation leads to the effective Hamiltonian,

H.e = Hy— BA~'B'. (2.8)

In this chapter I use this matrix formalism because the systems I have developed all have closed
Hilbert spaces, and inverting a matrix is relatively simple. For the case of large or infinite Hilbert
spaces using operator formalism is often most efficient. An example of this is in Chapter 3,
where the evolution operator for a system is designed to produce generalised W states.
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2.2 Single Qubit Rotations

For a universal gate set I needed a multi-qubit entangling gate and two rotations on the Bloch

sphere of each single qubit [31]. For the two rotations on the Bloch sphere, I chose rotations
about the x and z axes.

2.2.1 Rotations about the z-axis

Rotations about the z-axis are very simple. If a ground state atom passing through the cavity has
a transition closer to the frequency of one mode of the qubit than the second (but still detuned
from both), then this mode undergoes faster phase evolution than the second effectively forming
a rotation about z.

Figure 2.1: The detuned Jaynes-Cummings model is used to produce z-axis rotations. If no
photon is present, then no interaction occurs. If a photon is present then (in
the detuned case) the phase of the system evolves due to virtual exchange of the
excitation between the atom and the field.

In [19] the phase evolution of a detuned Jaynes-Cummings model is given by two formulae

9, m) > 7% |g,m) | (2.9)
where ®(n) is given by
L 2
&(n) = % 1+n (292’)) ~1/| dz, (2.10)
0

where v is the velocity of atoms passing though. I am only interested in the states of the field
with zero or one photon. In the case of zero photons ® reduces to zero, and for one photon a
non-zero quantity dependent on the profile of the field mode. This is an exact solution, so there
is no need to use adiabatic elimination.

For the phase gate we use an atom detuned from one mode of the qubit, and very far detuned
from the other. If the photon is in one mode i.e. qubit state |0) the atom sees the closer tuned
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Figure 2.2: The lambda atom has two transitions which couple to the two cavity modes that

make up a qubit. Ay, Az > 91,92, to adiabatically eliminate levels |b) and |c)
from the interaction and Az is chosen to ensure resonance, As noted at the end of
Section 2.2.2 the external pump ignores selection rules, which will be remedied in
the future by adding a further transition or pumping with a two photon transition.

field with zero photons and the system undergoes no accelerated evolution because (0) = 0. In
the case of the photon in the other mode, i.e. qubit basis state |1) then the added photon in the
closer mode causes faster evolution given by the non-zero ®(1).

2.2.2 Rotations about the x-axis

Rotations about the z-axis happened to be far more difficult, and require the atom to couple to
both transitions in a lambda configuration, and the ground states to be coupled by a classical
field. Chronologically this gate was the final step in developing the universal gate set.

The idea for this system was to introduce an atom in the state |a), see Figure 2.2. If the field
is in the configuration |1, 0), which is a |1) qubit state, then the atom may make a transition up
to state |b) by absorbing the photon, decay to state |c), emitting a photon into mode two, |0, 1)
and a classical field drives the atom back into state |a), acting as a bit flip with the atom returned
to the initial state. For a |0) to |1) the reverse process applies. To realise a rotation about z
it must be possible to form a superposition of bit flipped and unflipped states. To do this the
atom may be only virtually excited, demanding that states |b) and |c) are detuned from resonance
with the modes and classical field, but that the overall resonance is not detuned, leaving only
two states of the system |1,0,a) and |0, 1, a). This satisfies the requirement that the atom is not
entangled with the system and that measurement of the atom does not affect the gate.

The level diagram in Figure 2.2 is a lambda scheme with two transitions detuned from the
two modes that comprise a qubit. By coupling the ground states together with a classical field,
and choosing A3z to allow a multi-photon resonance so that the atom is returned to |a), the
system will oscillate between the |0) and |1) qubit states without changing the state of the atom.
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The choice for A3 is not clear, as level shifts may cause it to deviate from zero. Once again the
theory of effective Hamiltonians is employed [29]. From the level diagram in 2.2 the Hamiltonian
is

3
H= 3 Faboa+ ) wilei+ [018}6w + 0260 + galoca+he|, @11
a=a,b,c =1
where h.c. stands for ‘Hermitian conjugate’. I am assuming a classical field for the transition
between |a) and |c¢), so I extract the part of the Hamiltonian describing this quantum field

Hoare = wsdls + g5 (8300 + 836ca) - 2.12)

Since the remaining parts of the Hamiltonian commute with a3 I can perform transformations

that are a function of a3z and a;f, without the need to consider those parts. A transformation is

defined by

H =THT! - if’%f"f (2.13)

A complete description of unitary transformations is provided in appendix D. For the transformation
I choose T' = exp(iwsajzast). This yields

pace = 93 (67433000 + 62%a130, ) . (2.14)

The result of the transformation is to remove the explicit reference to the energy of the field
and replace it with a time dependence. As this field is going to be classical and not quantum, I
model it as a coherent state |a). The coherent state is the right-eigenstate of the annihilation
operator, which allows me to remove the creation and annihilation operators.

HCI&SS — F (e_wat&ac + etwat&ca) s (2.15)

where I' = g3a, assuming that « is real without loss of generality, All states of the system will
have the same coherent state for the classical field, so it can be factored out and omitted from the
wavefunction. This equation can now be substituted back into the full Hamiltonian of the system

H= Y Eafaa+ > witlti+ [18]00 + g28}00 + Te"00 +he| . (216)

a=a,b,c 1=1,2

The explicit dependence on the absolute energy of the atom is ugly, so I want to transform the
Hamiltonian into a form without the first term. In order to do this, it is worth redrawing the
level diagram. Figure 2.2 shows cumulative detunings, useful for dealing with multi-photon
resonances, but at this stage I need to know the detuning between particular transitions and field
modes as shown in Figure 2.3. These detunings are labelled with lower case 4 to distinguish
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b)

01

\ L2 c)

Figure 2.3: This is an alternate representation of the level system depicted in Figure 2.2. The
detunings shown in this diagram are between particular transitions and field modes,
rather than cumulative multi-transition detunings in the previous diagram.

them from the cumulative detunings which are in upper case. The two labellings are related by
the equations

A1 =0y
Ay = 6, — & 2.17)
A3z = 01 — 09 + 03.

Using these detunings there is a simple relationship between the transition energies and the mode
frequencies,

Ey — Ee = ws + 43 (2.18)
Ea"'Ec=wa+(53.

Creating a whole new diagram may at first glance seem like wasted effort, but it makes handling
the Hamiltonian much neater and less prone to error, especially when calculating transformations.
The transformation I used on the Hamiltonian used T' = exp(i©t) where © was

O= Y Enbaat+ Y &]a;(wi+8) (2.19)

a=a,b,c t=1,2

Using © helps to produce useful operators because the equation for a transformed Hamiltonian
reduces to

H' = ¢®tHe Ot _ 0, (2.20)

I found that the subtraction of © in this equation can give clues about useful forms of © to
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subtract undesirable parts of the Hamiltonian. Care must be taken with time dependence howeyver,
so that if the initial Hamiltonian has no time dependence then the only way to avoid introducing
time dependence is if © commutes with the initial Hamiltonian, i.e. THTt = H.

My choice of © leaves a residue in the Hamiltonian, in the form of detunings. I will
show that this leads to a very natural way of viewing the Hamiltonian which is useful when
working with effective Hamiltonians. In Chapter 1 Equation (1.15) I noted the same form for the

Jaynes-Cummings Hamiltonian which is strikingly absent from the literature.
After the transformation the Hamiltonian is

M

H' = -3 8161 + |0:18]00s + 28]0cs + D600 + hic.| (2:21)

The final stage of preparing the Hamiltonian is removing the remaining time dependence. This
requires another transformation. The two transformations could have been done in a single step,
but the stepwise approach is more manageable. The next transformation is defined by

1 n oata o )
o = = (a{al — &bag + 6o — am) 53 — &1 . (2.22)

This transformation removes time dependence in the resultant Hamiltonian. The §; may seem
out of place, but this leads to a zero in the upper left corner of the matrix describing the system.
This often avoids A becoming singular, which stops an effective Hamiltonian being constructed.
In addition it also tends to lead to more physically appealing Hamiltonian matrices in which the
detunings appear in sequence when the states are ordered in the state vector, i.e. adjacent states
are coupled. The Hamiltonian is now
H" = by~ (8141 — 8} + Bee — Bua) 83— 3 8i6fas+ (116 + 028}6 + Toca + hc]
(2.23)
I chose the initial state of the atom to be |a), so with the computational basis in mind, the two pos-
sible starting states of the system are |1,0,a) and |0, 1, a), in the order [mode 1, mode 2, atom).
There are two other possible states that may evolve from these two; |0,0,b) and |0, 1, c). Arran-
ging these in the order |¥) = ¢; [1,0,a) + ¢2[0,0,b) + ¢3[0,1,¢c) + ¢4 |0, 1, a) and substituting
in Equations (2.17) the Hamiltonian matrix is given as

0, a1 0 0 Ci

= |9 & o 0 oy = | . (2.24)
0 g0 Ay T C3
0 0 I' Asj C4

The detunings on the diagonal are a direct consequence of my choice of © for the first trans-
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formation. It is simple to see from this that those states that are highly detuned will have large
eigenvalues which will reduce the transition probability to these states.

The next step is to form a two state effective Hamiltonian from this, in the limit of large
detuning. Naively this can be done simply by choosing A3 = 0 and A;, As > g1, g2, however
level shifts mean that the choice of A3 may be incorrect. By properly formulating the effective
Hamiltonian, the actual condition for the multi-photon resonance will be derived at the same
time. First the Hamiltonian is rearranged to put the two states of interest in the top left,

0 0 a1 0 Ci
0 A3 0 T
H" = : oy = | (2.25)
g1 0 A1 g C2
0 T g A C3

Using the formula for producing an effective Hamiltonian (2.8) requires that the Hamiltonian is
split into parts

0 O Ay 92 g O
Hp = . A= ) B = . 2.26

By equation (2.8) the resultant effective Hamiltonian is

1 AV g192T €1
He—m — : off) = . 2.27
Ny ( 91927 Az(A182 — g5) — AyT? et C4 2D

This can be reduced further because I have already made the assumption that A;, Az > g1, 92,

_%i 1g2T
Heg =~ , gi" As L ?,rg . (2.28)
%IFEQ 2

The difference in the diagonal elements is the effective detuning

Aeﬁ' ~ A3 —_——_——t == (229)

The effective detuning is a large modification to the expected detuning. Considering that

A1, A2 > g1, g9, T, the extra terms in the effective detuning are relatively large when compared

to the effective detuning
Guft A g1921
eff A1A2 *

(2.30)
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The solution is the z-rotation gate in the interaction picture,

Rz (geit) = coS(gestt)00 — @ Sin(gegt)oz , (2.31)

when the resonance condition A.g = 0 is satisfied. By performing the reverse transformations
on this evolution operator the evolution operator in the Schrodinger picture (neglecting a global
phase) is

R = cos(gegt)00 — i sin(gegt) [eﬁ”3t&10,01 + e":“’3t&01,10] : (2.32)

numeric oy
numeric o
effective oy
effective o
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ettt/ T

Figure 2.4: This plot shows the numerical prediction based upon the full Hamiltonian, and
the prediction of the effective Hamiltonian. Numbers for the coupling constants
and detunings were chosen with arbitrary units to be g; = 1.5, go = 1.0, I' = 0.9,
A = 25, Ao = 15. A3 was chosen using the resonance condition which gave
-0.0360 in order to counter level shifting. This plot shows that in the appropriate
limits the solution of the effective Hamiltonian agrees with the numerical predictions
from the full Hamiltonian. The effective coupling constant for this choice of
parameters is 0.0036, an order of magnitude lower than Az, demonstrating that
the effective Hamiltonian is needed to make predictions.

An error in the z-rotation gate in this system will result in the atom exiting in a state other
than |a). This can be measured using state-selective field ionisation, forming a rudimentary error
check. The fidelity of the gate with and without this check is shown in Figure 2.5.
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An issue with the z-rotation as it stands is that the external transition pumps a transition that

is against selection rules. This can be remedied by adding a further transition or swapping it for
a two mode transition.

I

'*r'fv"" T == T

0.9

0.8
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0.6

0.5

Gate Fidelity
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i |

0.1 Fidelity 1

Conditioned Fidelity

TRIGDY e e Ok R R T
Coupling Factor

Figure 2.5: This plot uses the numbers from Figure 2.4, but the coupling constants are all
multiplied by a ‘coupling factor’, on the z-axis of this plot. The fidelity is the
fidelity of the numerical system with the prediction derived from the effective
Hamiltonian for a —io, gate. The ‘conditioned fidelity’ is the fidelity of the gate
conditioned on measuring the outgoing atom in state |a). The gate time for each

point is t = 7/2ge.s Where geg is from equation (2.30). As ¢1,92 < A1, A
becomes a worse assumption, the approximations made in deriving g.g break down
leading to loss of gate fidelity.

2.3 Entangling Multi-Qubit Gates

2.3.1 The Fredkin Gate

The Fredkin, or controlled swap gate, is a three qubit entangling gate which is universal for
classical computation [31]. This was the first gate encoded on this system. The most obvious
candidates for a multi-qubit entangling gate are the controlled NOT gate or the controlled phase
gate, however I wanted to avoid using classical fields when possible and geometric arguments
rule out level diagrams for these two gates without a classical field. The first case which could
be done without this operation was the three qubit Fredkin gate. The swap gate was relatively
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Input  Output
0,0,0) |0,0,0)
10,0,1) 0,0,1)
0,1,0) 10,1,0)
0,1,1) |0,1,1)
11,0,0) |1,0,0)
11,0,1) |1,1,0)
11,1,0) |1,0,1)
1,11 |1L,1,1)

Table 2.3: The truth table for the Fredkin (controlled swap) gate. This is a three qubit entangling

gate, which when complemented with the single qubit rotations forms a universal
set of gates for quantum computation.,

simple to encode, and by adding another energy level it was possible to add in the control qubit.
Figure 2.6 shows the arrangement of levels and field modes that transitions couple to.

Figure 2.6: This level diagram is what is required to simulate a Fredkin gate. Note that mode

one couples to two transitions. To simplify the derivation of the Hamiltonian in a
particular interaction picture mode four does not feature in this diagram. In reality

this diagram would be folded up for dipole allowed transitions; this layout is meant
for aid in calculation.

2.3.1.1 The Hamiltonian

It is probably simpler to retroactively justify my choice of level system, so I will show how I
derived the Hamiltonian and how it can be used as a Fredkin gate in the hope that the reader
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gains an understanding through my working. The Hamiltonian in the Schrddinger picture is

H = ZEaam + Zwifif&,,

< (2.33)
+ [gla'baal + 926 e} + 9354083 + 946 edd] + 950 seds + godasiy + hec. ] !

where o runs over the energy levels in the diagram. The first transformation I make on this
Hamiltonian produces a Hamiltonian in the form of Equation (1.15). This puts the Hamiltonian

in the correct form but with some additional time dependence. The transformation is given by

5
O =Y FEobaa+ Y alai(wi+s). (2.34)
o =

Once again I am using the lower case deltas defined by

Ey—E;=w; + 6 A =6

Ey— E; = wy + 62 Ay = 01 — 2

Ej—FE.= w3+ 3 Az =081 — 9+ 83 (2.35)
Ej— E. = w; + 64 Ay =06y — 02 + 03 — 04

E; — B, = ws + & As = 61 — b2 + 63 — 84 + s

E; - E, = we + & Ag = 81 — 6 + 83 — 54 + 85 — b6

The frequency coloured in red is coloured to highlight that it is the second transition with w;
when an w4 would be expected. As this system is supposed to include three qubits it appears that
it is one mode short. The missing mode four is partnered with mode one to form a qubit, and it
does not appear on the diagram because it is not close to resonance to any of the transitions.
When the photon is in mode one, this system can make transitions around the loop of states.
When the photon is in mode four, and for the appropriate detunings, the system cannot make any
transitions. This is the mechanism that allows this pair of modes to form the control qubit.
The Hamiltonian after this transformation is

H=— Z §;ala; + [gwbaal + 920cb09 + 9304ca3
i=1 (2.36)

5(51"64)’50.6(;&1]: 4 g5o-fca5 + gﬁaafat + h C] .

The second term with mode one has gained a time dependency which I remove with the next
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transformation, which is defined by

6’ = (alar + ajas + alas + afids — Gaa — Gec) (64— 81) — 83 — 64 — 5. (2.37)

This second transformation yields a Hamiltonian which will later produce Hamiltonian matrices

with a zero in the top left corner and ascending detunings for the right ordering of states, just as
in Equation (2.25) for the z-rotation gate. This leaves the Hamiltonian in the final form

5
H = (&1&1 + &;ag + &3&3 + &;&5 — Oag — 5'cc) (01 — d4) + 03 + 04 + 05 — Z 5i&;[&z'
i=1 (2.38)

-1

+ [915'baal + §20cbQs + 9304003 + §40edQq + G50 fels5 + g60, fag + h.c.| .

This system has six modes. As I was to choose how I paired these modes up to make qubits, I
used the arrangement

“ha‘h:%) p— ‘n1n4,n2n3:n5n6> : (2.39)

As the Fredkin gate is simply a controlled swap operation, I eventually wanted to get

1,0,1) |a) < [1,1,0) |a) , (2.40)

with all other states of the system remaining at, or returning to, their initial state at some time ¢.
A list of the states of the system is given in table 2.4. The states in red in the table are the same

Qubits  Field Modes

0,0,0) [0,1;0,1;0,1)
0,0.1). 10.1:0,.): 1,0
0,1,0) 10,1;1,0;0,1)
0.1,1) 10,1:1.0:1.0)
1,0,0) ]1,0;0,1;0,1)
10,1 11,0:0,1;1,0)
1,1,0) [1,0:1,0;0,1)

‘1:111> |1&0;130§ ]-10>

Table 2.4: Encoding of three qubits in the multi-mode Fredkin gate system. The order the
modes are listed in is given in Equation (2.39). The states in red are swapped when
the Fredkin gate acts upon them. The other states should remain unchanged.

ones in Equation 2.40. I need to check that I can make these two states swap at some time ¢, and
that at the same time and under the same conditions (detunings) the other states are unchanged.

Now I can justify my choice of level system. Translating the left hand side of Equation 2.40
into which modes have an excitation by using Equation 2.39, yields modes one, three and five

38



CHAPTER 2. MULTI-MODE QUANTUM OPTICAL LOGIC

with a single photon, and modes two, four and six with zero. Referring to the level diagram in
Figure 2.6, the accessible states of the system are simple to find and are given in table 2.5. If

Qubits  Field Modes  Atom

11,01} 11;0:0,1;1,0) la)
0,0;0,1;1,0) b)
0,0;1,1;1,0) C)
0,0;1,0;1,0) d)

1,1,1)  [1,0:1,0;1,0) |e)
1,0:1.0:0.0) ' )

1,1,0) [1,0;1,0;0,1) |a)
0,0;1,0;0,1) b)
0,0;2,0;0,1) c)

Table 2.5: A list of the states of the system that may evolve from [1,0,1)|a). Blanks in the
qubits column are when a state of the field does not map to qubits.

the intermediate states of the system, shown in black in Table 2.5, are all detuned but retain the
multi-photon resonance between the two states of the field with the atom in state |a), shown in
red in Table 2.5, then the system will Rabi flop between the two states I want. This trivially
works for all the other states of the qubits because they cannot form a chain between two states
of the system that begin and end with the atom in state |a).

2.3.1.2 Effective Two-Level Case

Now that the list of accessible states is known | can construct a matrix version of the Hamiltonian

Uy ' 0 0 0
R S I | SR | el |
g A2 g3 0 O

(2.41)

@ & & G W &
o O QO O @ O

0

0 0 g6 Ae g1

0 0 0 g1 As+Ar gV2
0 0 0 0 g¢gvV2 Ag+ A

OO & @ W &
& @ & @ & &
= & B & &

The most obvious next step is to make an effective two state Hamiltonian. This is not, however,
necessary as three or four state Hamiltonians are also possible. The two state system is the
simplest to handle so I will show this first. Rearranging the Hamiltonian so that the first and sixth
states are in the top left, and splitting it into the components needed to construct the effective
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0 0
Hn =
) (0 Aﬁ)

B g 00 0 0 0 o
O 0 0 0 g6 g1 O

Hamiltonian

A g0 0 0 O 0 0
g Az g3 0 O 0 0 (2.42)
0 g3 Az g4 O 0 0
A= 0 0 [#7.] A4 ags 0 0
0 0 0 gds As 0 0
0 0 0 0 0 As+Ar gvV2
0 0 0 0 0 @gvV2 Asg+A,

At this point I resorted to using a computer algebra system [80] to do the matrix inversion of A
and matrix multiplication to generate the effective Hamiltonian according to Equation (2.8).

0 9192339409536
Hoo ( ﬂ%) | (2.43)

2
19293949596 __ 95
% As Asx
The resonance condition is the difference in the diagonal elements and the effective coupling is
the off-diagonal elements,

92
At = Dg — = (2.44)
S
919293949596

geff = “m Ads (2.45)

The discrepancy between the effective detuning and Ag is relatively large when compared to
the effective coupling constant, highlighting the importance of adiabatic elimination to predict
the level shifts. The Jaynes-Cummings coupling constant in a laboratory micromaser is between
10kHz and 100kHz [25], and for a well behaved system the detunings should be an order of
magnitude greater than a transitional coupling strength, which by Equation (2.45) gives a ¢ of up
to a second, beyond the lifetime of a current micromaser cavity which is approximately 0.3 s
[25].

The other states of the field that correspond to qubits all lack at least one photon required for
a multi-photon resonance, so that the atom is incapable of making any transitions, trapping the
system in its initial state. This satisfies the truth table for the Fredkin gate in Table 2.3 when
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gefil = 77/2!

1,0,1,a) — cos (gegt) |1,0,1,a) — isin (gegt) |1, 1,0, a)

(2.46)
1,1,0,a) — cos (gegt) |1,1,0,a) — isin (gegt) |1,0, 1, a) .

Remarkably this evolution is the same in the Schrodinger picture up to a global phase.

2.3.1.3 Effective Three-Level Case

In order to increase the effective coupling constant and decrease the gate time, it was sufficient
to allow another resonance in the system. This increases the number of effective states in the
system from two to three. It replaces the six photon resonance in the two state case into a pair
of three photon transitions. These states are shown in table 2.6. The starting point for this was

Qubits  Field Modes Atom

1,0,1) |1,0;0,1;1,0) |a)
0,0;0,1;1,0)  |b)
0,0;1,1;1,0) c)

¢)  10,0;1,0:1,0) |d)

1,1,1) [1,0;1,0;1,0) e
1,0;1,0;0,0) |f)

1,1,0) [1,0;1,0;0,1) |a)
0,0;1,0;0,1) b)
0,0;2,0;0,1) |c)

Table 2.6: This table contains the same states of the system as in table 2.5. The highlighted
states are the states accessible to the effective three level Fredkin gate, which allows
the additional state of the system in exchange for a much shortened gate time. |¢)
is a convenient short hand for the intermediate state of the field.

the full Hamiltonian of the system as given in Equation (2.41). The division of this matrix
into matrices Hy, A and B now requires that the diagonal elements associated the the states

11,0,1,a), |1,1,0,a) and |¢, a) are moved to the upper left corner of the Hamiltonian. After
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this the matrix is split into the parts

0 O 0 Al g2 0 0 0 0
Ho= |0 A; O g2 Ay 0 O 0 0

0 O Aﬁ A = 0 0 A4 gs 0 0

g1 0 0 0 00O 0 0 g5 ABs 0 0
B=|0 g3 g6 0 0 0 0 0 0 0 As+A1 gV2

0 0 0 g6 g1 O 0 0 0 0 gv2 As+A;

(2.47)

The inversion of A is much simpler than in the effective two level system since it is composed
of 2 x 2 block diagonals. The effective Hamiltonian using these matrices is

0 g ;
2 2 2
Heg~ | 9928 A+ L -2 -2 ﬂggégf? . (2.48)
R

There are now two resonance conditions. The first is the required multi-photon resonance between
the two desired states of the system,

92
Ao = Ag — -5-6;- . (2.49)

The second condition is enforced to bring the intermediate state of the system into resonance,

2 2 2
_ 91 _ 9 _ 94
Ay = A3+ AT A, T AL (2.50)

2 2 3
When A3 > %‘i— + %3,_; - %‘1- this resonance condition is broken and the effective three state
system reduces to the effective two state system. Like the two state case, only two initial states
evolve and the others are static. These states evolve according to the equations

1,1,0,a) — [g5+ g2 cos (g't)] 11, 1,0, a)
+ igq sin (g't) |¢) (2.51)
+ gaga [cos (g't) — 1] ]1,0,1,a) ,

where

ga A1A2 ’ gﬁ A4A5 ’ g ga + gﬁ ’ Qa,ﬁ g; . ( ¢ )
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The effective couplings of the three state system are g, g, and g, g and g’ are for convenience.
For complete population transfer g, = g3 = v/2ges, reducing Equation (2.51) to

11,1,0,a) — R (gesrt) |1, 1,0, a)
+ z—\}_é sin (2geqt) |¢) (2.53)

~ sin® (gegt) [1,0,1,a) ,

and the gate action is completed when g.gt = 7/2,

1,0,1,a) — —|1,1,0,a)

(2.54)
1,1,0,a) — —1,0,1,a) .

There is freedom to adjust g, and gg by altering the detunings associated with them. As with the
two-level case the states of interest are the same up to a global phase in the Schrodinger picture.
This is a powerful tool when working with effective Hamiltonians; in exact Hamiltonians in
cavity QED, such as the JCM when applied to the micromaser, there is little freedom to choose
the coupling constant, but the effective coupling constants are composed of detuning parameters,
which may easily be adjusted, as well as coupling constants which are defined by the properties
of the cavity and are difficult to alter after manufacture.

Contrasting this with the effective two level system with similar detunings and coupling
constants, the gate time for the effective three level case is on the order of 1000 times faster,
well within the lifetime of current micromaser cavities.

2.3.2 Controlled Phase Gate

The controlled'phase gate is equivalent under single qubit rotations to the controlled NOT gate,
sO it may also form a universal set with the single qubit rotation gates, i.e. R, R, and controlled
phase are universal for quantum computation.

Input Output

0,0) 10,0)
“3:1) 30,1)
1,0)  {1,0)

I111> -11$1>

Table 2,7: The truth table for the Controlled Phase gate. This is a two qubit entangling gate,
which forms a universal set of logic for quantum computation when complemented
with single qubit rotations.
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Figure 2.7: This plot demonstrates the fidelity of the numerically simulated Fredkin gate using
values from the effective three state model. g is a typical coupling constant and A

a typical detuning. For this plot all coupling strengths were set to be equal, as were
the detunings A,, As, A4 and As, however this plot holds for small variations in

all these parameters. The values for A3 and Ag were derived from the three level

model, Equations (2.49) and (2.50). The conditional fidelity applies if the atom is
measured in |a).

This gate is a two photon version of the phase gate. A three level atomic system couples to
two modes of the cavity. These modes belong to two different qubits (to be interacted). A photon
in mode one corresponds to the first qubit in state |1), and a photon in mode two corresponds to
the second qubit in state |1) as well. When both qubits are in the state |1) modes one and two
both have a photon and the effective two state system can be excited up to the atomic state |c).
Detuning this state by A, < A leads to phase evolution of the system without excitation up to
state |c) only when both modes have a photon. In the case of one or both qubits in the state |0),
at least one of the two modes has no photon to allow virtual excitation up to level |¢), leading
to no phase evolution for these terms. As only the two qubit state |1, 1) evolves, a time can be

chosen to agree with the truth table for the controlled phase gate in table 2.7.
The Hamiltonian of this system is

H= Y Eabaa+ Y widlai+ g (0160 +a}ow) + 02 (0200 +are) . (255)

a=a,b,c §=1,2
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Figure 2.8: Using a ladder of three states, so that the upper and lower are near a multi-photon
resonance with modes one and two, and far detuned from the intermediate level,
this system enhances the phase evolution when there is a photon in each of the
modes. If a photon is missing from one or both of the modes, phase evolution
is suppressed. This can be used to construct a controlled phase gate. This is a
multi-photon generalisation of the phase gate in Figure 2.1.

Equation (2.20) is used with

o= Z Eabaa + Z (wi + 6;) ala; + (2.56)

to transform this Hamiltonian into a more useful form, where By — FE, = w1 +6; and E,— Ep =
wa + 02. The detunings A; and §; are related by A; = 41 and As = §; + §2. The initial state
of the system is |1,1,a) and there are two other accessible states of the system, |0, 1, b) and
10,0, c). The Hamiltonian matrix for this system is

0 [751 0
H=|g A1 ¢ (2.57)
0 g2 A

This matrix is rearranged and split into components for constructing the effective Hamiltonian

0 O g1
Hn = , A=A, B = : 2.58
0 (0 Az) 1 (gz) (2.58)

This leads to the effective Hamiltonian in the limit of &; > A, 91, 92

0 4o
Heg = ( an A+ Ja_gz ) . (2.59)
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This is the Hamiltonian for the effective two level system, which has an effective coupling constant
and effective detuning given by

a192

2 _ .2
QEﬁ.:_A ’ Aeﬁ:A2+gl 92‘
1

AN

(2.60)

In order for the controlled phase gate to work, I repeated the procedure, this time simply reusing
the result for the phase gate. In the limit of A; > Ajs and A.g > geg this is the detuned limit
of the effective two level system, leading to the evolution of the state |1, 1, a)

.
11,1,a) — exp (deﬁt) 11,1, a) (2.61)
Aeﬂ'

Choosing t = 1A/ g% completes the truth table for the controlled phase gate in table 2.7.

2.4 Implementation

My background in micromaser physics leads me to use the micromaser as a prototype for

implementing this form of quantum logic. In this section I list these requirements and justify the
micromaser as a good host system for them.

2.4.1 Atoms on Demand

Atoms are required on demand in a particular state. As with the micromaser, Rydberg atoms are
appealing due to the strong coupling to microwave cavities and the useful spectrum of energy
levels. Multi-step laser excitation systems like those used in the laboratory are suitable for
creating many different Rydberg states. Hawri Majeed, Bruno Sanguinetti and Luke Johnson
used this fact to resolve the $5Rb Py, states between n = 36 and n = 63 [62].

Production of atoms is described in detail in Chapter 4. A Rubidium dispenser emits
Rubidium atoms which are collimated. The multi-step laser excitation uses infrared lasers to
excite atoms up to a Rydberg state. The velocity of these excited atoms can be controlled by
placing the first step laser at an angle, and detuning the laser. Only atoms with a velocity which
Doppler shifts the first step light back into resonance with the 5S,/; to 5P3/, transition are
excited up to 5P3/o; slower atoms will see a frequency lower than the this first step transition
and faster atoms with see a higher frequency. The remaining steps, 5P3/2 to 5D5/2 and 5Ds5 /2
to nP3/9, are perpendicular and the third step is tuned to choose a particular Rydberg state.

The remaining issue is producing a single atom at a well determined time. Suggestions
include using a micromaser as a single atom source, a kind of optical lattice conveyor/accelerator
[81] and the use of dipole blockade with a strobed first step laser.
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2.4.2 Cavities

This architecture clearly requires elaborate cavities in order to function. Several options are worth
pursuing. One possibility is a cavity engineered to have more than one useful mode. This is
beyond the scope of current manufacturing techniques, but certainly a possibility in the future. A
proof-of-principle would require only two useable modes to test the R, R, and controlled phase
set. Another possibility is a network of overlapping open cavities. Again only two cavities are
needed to demonstrate the universal set of gates.

An alternative system that may be worth investigating in the future is stripline resonators

[82, 83], or any system that can be approximated to the Jaynes-Cummings model extended to
multiple modes.

2.5 Summary

I have shown that multi-mode cavities provide an interesting platform for quantum information
processing. At present it is not possible to realise a large scale machine based upon it, but it is
my hope that this work will become useful in the future as cavity manufacture becomes more
advanced. The next steps for multi-mode quantum optical logic are a study of the dissipative
dynamics of the system due to a leaky cavity by using a master equation. Another possible
extension is to consider a pair of field modes as a qudit using more than just single excitations
of field modes, as shown in Figure 2.2, rather than simply a qubit.
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Chapter 3

Atom-Atom Entanglement

It is still possible that quantum theory does not absolutely guarantee that gravity has to be

quantized. ...In this spirit I would like to suggest that it is possible that quantum mechanics fails
at large distances and for large objects. Now, mind you, I do not say that I think that quantum
mechanics does fail at large distances, I only say that it is not inconsistent with what we know.

Feynman Lectures on Gravitation [52]
Richard Feynman

Cavity QED schemes offer a broad range of methods for producing entangled states of atoms.
This could be particularly useful for quantum information processing and even testing quantum
gravity as shown in Section 3.5. One state of particular interest is the GHZ state. It can be used
to test quantum mechanics at a fundamental level, by testing a Mermin-Klyshko inequality for
nonlocality [32], and for quantum information purposes. In this chapter I show a method for
producing entangled states. I start off with a phase gate for atoms, and use this to build up GHZ
states by chaining phase gates together. I also demonstrate how this phase gate generalises to an
interaction that can produce N-atom W states {77].

I came to view this as almost the opposite of what I did in Chapter 2. In that chapter, 1
specifically avoided storing any information on an atom by using dispersive interactions. In this
chapter I use dispersive interactions again, but this time to avoid storing information in the cavity
field. In addition, the work in this chapter leads up to a possible architecture for a graph state
quantum computer [33, 34], which uses a multipartite entangled resource and measurements to
drive the computation. In contrast the work in Chapter 2 uses the unitary model of quantum

computation so that logic gates are reversible and measurements are usually used for readout
rather than processing.

48



CHAPTER 3. ATOM-ATOM ENTANGLEMENT

3.1 Controlled Phase Gates for Atoms

Zheng and Guo proposed a scheme using a detuned two atom Tavis-Cummings model to perform
a controlled phase interaction between two atoms passing through a cavity [35]. Haroche et
al. tested this interaction by using it to produce and test for Einstein-Podolsky-Rosen (EPR)
states, but in a suboptimal system with one atom travelling colinear to the other and at a greater
velocity [36]. The results from this experiment was consistent with the prediction for Zheng
and Guo. Recent advances in micromaser technology and a purpose built system will provide a
complete controlled phase gate to good fidelity, which we plan to produce in the near future in
the laboratory at the University of Leeds. The paper by Zheng and Guo was published in Physical
Review Letters, and the four page limitation has led to gaps in the derivation. In addition it was
at a time when the controlled NOT gate was considered more important than the controlled phase
gate, so they included rotations to transform the system into a controlled NOT which detracted
from the main derivation. In Section 3.1.1 I give a more complete derivation than that available
in the paper by Zheng and Guo [35].

3.1.1 The Tavis-Cummings Hamiltonian

The Tavis-Cummings model generalises the Jaynes-Cummings model to the case of a single mode
field interacting with /N atoms. The derivation is very similar to that of the Jaynes-Cummings
model, and eventually leads to the Tavis-Cummings Hamiltonian in the interaction picture [4]

2

L
———n

N ThA
j

This follows the same conventions I used to derive the Jaynes-Cummings model in Chapter 1,
with the addition of subscripts and superscripts (j) to denote the j-th atom. It shares with the
Jaynes-Cummings Hamiltonian one important feature; it preserves the number of excitations in
the system. In the dispersive regime the detuning is large, so the movement of excitations from
the atoms to the field, and vice versa, is not energy conserving and is suppressed. This does
not limit the movement of excitation between atoms via virtual excitation of the field, as this
conserves energy. Intuitively this provides an interesting way of interacting atoms together in a
field without entangling them with it.

Zheng and Guo use the limit of large detuning to produce an effective Hamiltonian. By
doing this they remove the ficld as a degree of freedom, eliminating atom-field entanglement, but
allowing virtual excitation of the field to pass excitations between atoms. Zheng and Guo use
two atoms so N = 2. Adiabatic elimination [29] can be used to derive an effective Hamiltonian
from the original if some eigenvalues are very large (these correspond to the detuned states of
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the system when an excitation from an atom has been transferred to the ficld). The theory of
effective Hamiltonians is explored in greater depth in Chapter 2. A more rigorous alternative
derivation can be found in appendix A.1. The essential part is the equation

Hgeg=Hy—-B-A"!.Bt, (3.2)

Projection operators are used to produce Hy, A and B. Hy corresponds to the states of interest,
i.e. those that are not detuned. A corresponds to the rest of the states of the system, and B
is (viewed in a block-wise matrix) the upper right matrix. If the states of the system Hg are
gathered to the top right of the Hamiltonian, then the block-wise matrix for the Hamiltonian is

given as
Hy B
H = 3.3
(o ) 03

The only assumption made is that the eigenvalues of A are large (i.e. large detuning for particular
states). If we can assemble any Hamiltonian in this way then an effective Hamiltonian may be
produced to simplify modelling with good approximation. For the purposes of the Zheng and
Guo controlled phase gate only the cases of two ground state atoms entering, or a ground and an
excited state entering need be considered. One would expect to need the case of two excited
atoms, but an auxiliary state will be used instead, which is so far from resonance with the field
that it may be assumed to be not present, reducing the system to a detuned Jaynes-Cummings
model. A level diagram is provided in Figure 3.1. This case will be handled later. First I consider

9)

Figure 3.1: This level scheme shows the three levels used for atom-atom entanglement with the
Zheng and Guo interaction. The cavity field mode has a frequency of w;, which
is detuned from resonance with the |e) to |g) transition to provide a dispersive
interaction. A classical field can be used to shift the atom from [g) to |¢) and back
to remove it from interaction with the cavity field. This is used so that at most
one atom of the pair is in the excited state.
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the two atoms in ground states. This is rather simple, as neither atom has any excitation and
the field is not resonant with the atomic transition, SO no interaction occurs. When one and
only one atom is excited there are several possible states of the system; |e,g,n), |e,e,n — 1),
lg,g,n+ 1) and |g,e,n). We expect the states |e,e,n — 1) and |g, g,n + 1) to be suppressed
due to detuning, so these belong to matrix A and the resonant two to Hy. Constructing the
matrix using the template from Equation (3.3) yields

0 0 —igv/n+1 igyn
H 0 0 —igvn+1 igy/n o Hy B (3.4)
h igvn+1 igyn+1 ~A 0 A\Bt A)’ '

—igyn  —igy/n 0 A

where |¥) is in the order (le, g,n), |g,e,n),]g,g9.,n+ 1), |e,e,n — 1)) . By Equation (3.2) this
reduces to the effective Hamiltonian,

hg? (1 1
Heg = ———

hg® . . . 5
s ¥ A (Uﬂg,eg : 2 0 ge,ge  n Oeg,ge * Uge,eg) :

(3.5)

Solving the Schrodinger equation for this produces time dependent evolution. When we make

the mapping |e) — [1) and |g) — |0), the substitution A = g*/A and a transformation back to
the Schrodinger picture, the time evolution is

1,0,n) — A=t [cog(At) |1,0,n) + isin(At) |0, 1, n)]

| (3.6)
0,1, n) > A9t [eo5(At) |0, 1, n) + isin(At) |1,0,n)] .

This seems to be a different approach to that taken by Zheng and Guo. The results are consistent
though, and my familiarity with effective Hamiltonians means that 1 favour this method. A more
rigorous version can be found in Appendix A. These equations are useful for At = 7 and n = 0,
which returns the state of the system unchanged. When n = 0 the cavity must be in the vacuum
state, which may be achieved by cooling. The importance of this is not seen by these equations
due to the interaction picture, but a general state of the field will lead to a phase spread in the
gate. The cavity is in a thermal state, and the only state for which the thermal state and number
states converge is the n = 0 state. This eliminates the spread in phase.

[ now consider the state |0,0), which corresponds to the system initially in the state |g, g,0).
No excitations are present in this state of the system, so there is no phase evolution.

9,9,0) — |g,9,0) (3.7)
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So far we have a working scheme that returns |0,0), |0,1) and |1,0) unchanged. The
remaining state to deal with is |1, 1). For this Zheng and Guo put a rotation zone before and after
the cavity for one of the atomic beams. This rotates the atoms in the excited state in one stream
only to |7), and back again on the other side of the cavity. This breaks part of the symmetry and
changes one of the two equations above. This will change one initial state to look like |g, %),
which like |g, ¢) will not interact with the field, retaining the parts already solved. The final
possible state to input is altered from |e, e) to |e,?) before interaction, which is effectively a
detuned Jaynes-Cummings model on the first atom as the second is so far from resonance, It is
simple to derive the detuned JCM from the method used above, resulting in the evolution

e,3,n) > €7 e, 4, n)

| (3.8)
9,4, n) > €7 g, 4, n) !

Selecting A\t = 7w and n = 0 reduces this to a parity operation |e,?) — — |e, i) and |g, ) — |g,1%).
The truth table for before and after the interaction inclusive of all rotations is given by table 3.1.

Input Output

10,0) |0, 0)
0,1) [0,1)
1,0) |1,0)
|1& 1) 'lla 1)

Table 3.1: The truth table for the collisional phase gate introduced in [35]. This is inclusive of
a pair of rotations performed before and after the cavity on one beam. I have used
the mapping |e) — |1) and |g) — |0).

The physical realisation of this gate is rather simple in principle. The cavity is a pair of
mirrors forming a high-Q resonator in the microwave regime, near 21.456GHz. The atomic
transition can be chosen to be the same as that used by the micromaser, between 63P and 61D
states of rubidium 85. The rotation zones may be microwave waveguide with microwaves of an
appropriate frequency. Atoms pass through a hole in the side of the guide which is just a tube of
copper of rectangular cross section. Alternatively a lower Q cavity may be used for each rotation
zone. A diagram of the arrangement for the phase gate is in Figure 3.2.

'Dr. Martin Jones insisted that I include |¢t, o, n, i, ¢).
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Figure 3.2: A diagram demonstrating the collisional phase gate with two atoms as the qubits.
The atom sources produce synchronized atoms with equal speed. The dashed
arrows indicate the trajectory of individual atoms, the solid arrows are used to
label components. This arrangement is a controlled phase gate on atoms input in

(1 ]g) + B1le)) ® (a2 |g) + B2 e)) with arbitrary a1,2 and Gy o.

3.2 Making Greenberger-Horne-Zeilinger States

In this section I show how the Zheng and Guo collisional phase gate can be used to construct N
atom GHZ states [37]. The N atom GHZ state is defined as [57]

QN + le>®N
V2

This method was developed for a paper 1 wrote entitled ‘Dephasing of entangled atoms as an

GHZy) = & (3.9)

improved test of quantum gravity’ |27].

Using one cavity and changing the interaction time so that A\t = 7 /4, two atoms may be
interacted to produce an EPR state [38]. This may be done by removing the rotation zones
in Figure 3.2 and sending in one atom in |e) and the other in |g) so that Equations (3.6) are
sufficient to describe the interaction, resulting in the state (|eg) — |ge))/V/2.

Returning to the original interaction time At = 7 and by fixing the system so that only atoms
in the state |[+) = (|g) + |e))/V/2 enter, the result of the interaction with an additional rotation
is the Bell state (|gg) + |ee))/+/2. This arrangement is shown in Figure 3.3. In the N atom
generalisation of a GHZ state in Equation (3.9) this produces the N = 2 state, one of the Bell

o3



CHAPTER 3. ATOM-ATOM ENTANGLEMENT

Figure 3.3: This diagram shows a more specific arrangement than the simple phase gate in
Figure 3.2. Atoms are produced in the excited state by the sources and are rotated

into the state |[+) = (|g) + |€))/V/2. The phase gate is then applied to these pairs
of |+) state atoms. After the final rotation on each atom this produces an EPR

state to be measured. The smaller circles here represent the rotation zones shown
in Figure 3.2.

states.

This system can be adapted to make larger GHZ states. By considering the graph state
notation for an N-atom GHZ state the route to doing this becomes more obvious. This graph
consists of a single qubit in the centre, with edges (controlled phase gates) to the rest of the
qubits®. This is shown in Figure 3.4. It is clear from this that one atom needs to interact with
the rest of the atoms, but none of the other atoms need interact with each other. What the graph
does not make clear is what single qubit rotations must be applied, since the graph depicts all
states with equivalent entanglement to the GHZ state. This was simple enough to guess based
upon the existing two atom case. The process for the atom travelling vertically in Figure 3.3 is
simply repeated before the final rotation of the horizontally travelling atom. This is shown in

Figure 3.5 The equivalent circuit for the state produced with the arrangement in Figure 3.5 is
shown in Figure 3.6.

*That is not to say that a graph describing a particular state is unique. The ‘central’ atom may obviously be
permuted and other graphs that have a different number of edges may also be possible [39].
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O\Lo
P,

O\O

Figure 3.4: This is the graph representation of an N = 6 GHZ state. Each vertex represents a
qubit initially in the |+) state, and each edge is a controlled phase gate between
qubits. The order in which the controlled phase gates are performed does not
matter since they commute. Additional single qubit rotations after entanglement
are not described in this notation.

3.3 Making W States

The EPR state can be viewed as the degenerate case of an N-atom GHZ state and an N-atom W
state containing a single one and (/N — 1) zeros, although it is not commonly thought of in this
way. This hints at the possibility of using the dispersive interaction that Zheng and Guo used
[35] with more atoms to form a W state. By sending (N — 1) atoms into a cavity in the ground
state with one atom in the excited state, a superposition of the excitation being present in every
possible configuration of the N qubits could be seen after the interaction. This was my initial
guess based upon conservation of energy.

Learning from the two atom case, 1 assumed that I had to work with an n = 0 field for W
state production in this manner. In the interaction picture the Tavis-Cummings Hamiltonian (3.1)
leads to the Hamiltonian matrix

U U . 00 —=tg
Bl 8 D —in
B R e T (3.10)
0 0 ... 0 —ig
ig 19 ... g —A

where the lower right corner corresponds to the state of the system with n = 1 and all ground
state atoms, which is to be eliminated. Adiabatic elimination is trivial for this system3 and results

’I choose A = —A, B is the rightmost column except for the —A term, and H| is the remaining (N —1) x (N —1)
square matrix of zeros.
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Figure 3.5: This diagram is an extension of Figure 3.3 to a 5-atom GHZ state. This demonstrates
that for a GHZ state of size N, N — 1 cavities are needed. From the point of
view of quantum circuits, five |+) states are manufactured, then one of them has
a controlled phase interaction with each of the others in sequence. After a final
rotation on each atom (except the first) of 7/2 a GHZ state is made.

in the effective Hamiltonian

1 1 1
P g s A |

Heff=—5 R (3.11)
R R |

where the matrix is of size (N — 1) x (N — 1). If the system starts in the state |e, g, ..., g) then
it will evolve as (neglecting a global phase factor)

e) |g)®(N_1) — | cos (M) — z'N e sin (M)] le) \g)®N

2 N 2
N-1 (3.12)
2 (Nt oM S(N—M—1)
ridsin (250 > 0 oo

where A\ = ¢?/A. The amplitudes of the first term and the last term need to be equal in
magnitude, which occurs at

2 N
= X arctan (m) : (3.13)

As t must be real, this result is only valid for N < 4. If N =3,t =27/9A. f N =2 or N = 4,
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g |=

Figure 3.6: This is the equivalent circuit to an experiment involving four cavities and five
atomic beams to produce an N = 5 GHZ state. |e) and |g) map to |1) and |0)
respectively. The Hadamard operations are performed by a single Ramsey field to

place atoms in |g) into the state |e) + |g) / V2. The four controlled phase gates
are performed by the cavities in the experiment.

t = m/4A. The N = 2 case is of course the EPR state. I found this a surprising result, but in
agreement with numerical simulations. Before looking closely at this method of producing W
state, I expected it to work for any number of input atoms, rather than a maximum of four.

In addition to this interaction time the amplitudes of each state need to have the same phase,
which is true of this system due to symmetry except for the amplitude of the initial state. The
necessary phase adjustment can be done by simply Stark shifting the atom that was initially in

the excited state after it exits the cavity. This is a form of phase gate, which is discussed in
Section 3.4.2.

3.4 Graph State Quantum Computation

Using atom-atom controlled phase gates it is possible to produce more general entangled states
than GHZ states. One elaborate extreme is the production of hexagonal lattice graph states, as

shown by Simon Benjamin [40]. As this work is unpublished I will give a brief description in
this section.

3.4.1 Graph States

Graph state quantum computation [33] is a relative newcomer to the field of quantum information.
Prior to it, quantum algorithms used mainly unitary evolution to do computations. The graph
state approach is also known as measurement based quantum computation due to the reliance on
projective measurements to drive computations. This approach assumes that a large entangled
resource can be manufactured, and then measurements on component qubits in particular bases
to encode, drive and read out the computation are used. As the operations are measurements they
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cannot be undone, in contrast to the unitary approach which is reversible by definition. Thus the
original name one-way quantum computation.

A recent paper by Blythe and Varcoe [41] proposes a cluster state computer using crossed
atomic beams. This can be achieved using arrays of the atom-atom controlled phase gate already
described. Provided that timed single atom sources can be produced then this offers a potentially
scalable way of producing two dimensional graph states. Time sources of atoms are briefly
discussed in Section 2.4.1.

Two arrangements are particularly appealing. One is a minimalist approach, which uses the
least resources possible to produce a hexagonal graph state. This is minimalist because each qubit
has three edges (in graph notation), the minimum required to form a regular two dimensional
lattice. It is important that the lattice is two dimensional, as a one dimensional graph state
quantum computer can be efficiently simulated on a classical computer, meaning that there is no
‘quantum speedup’ [34]. An example of a hexagonal graph state is shown in Figure 3.7. The
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Figure 3.7: The hexagonal lattice graph state is in a sense the minimum useful resource for

quantum computation with a quantum speed up. Edges have been added to the left
and right sides to indicate that the horizontal extent of the cluster state is arbitrary.

experimental arrangement for a hexagonal graph state is given in Figure 3.8. The enclosed region
can be repeated to widen the graph state. One particularly interesting feature of this manner
of producing graph states is continuous production. Only a small portion of the graph state
exists at any given time, sO a computation runs in one direction along the state. An advantage
of this is that only the parts of the states being operated on need to exist. The rest of the state
can be manufactured just in rime for the next step in the computation. This avoids decoherence
creeping in to computations as much as possible. Another advantage is that the graph state can
be infinitely long. If the entangled resource was produced all at once, then the extent must be
finite and state is prone to decoherence.

The second arrangement requires more resources, but scales in the same way. This arrangement
entangles each atom with four others to produce a square lattice, or cluster state, as first proposed
by Raussendorf and Briegel [33]. The apparatus to construct the state is shown in Figure 3.9.
Literature on graph state quantum computation centres around the cluster state. Another proposal
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Figure 3.8: This arrangement of cavities constructs a hexagonal graph state. Ovens along the
top (bottom) fire simultaneously so that they become entangled where the green
(red) dashed lines cross over. The ovens along the top fire out of time with the
ovens at the bottom so that atoms from the top and the bottom cross over where
the green and red lines cross to become entangled. The enclosed region is the unit
cell. Rotation zones are not shown as they are taken to be part of the apparatus of
the ovens and the detectors. By inserting multiples of this cell side-by-side in the
place of the one in this figure, the size of the graph state will increase.

that uses continuously generated cluster states is the photonic module quantum computer presented
in a paper by Stephens et al. [42].

3.4.2 Rotations on the Bloch Sphere for Atomic Qubits

As the surface of the Bloch sphere represents all pure states of a qubit, only two rotations on the
sphere (about different axes) are required to access any qubit state. Conventionally the rotations
on the Bloch sphere are R, R, and R, which are the rotations about the x, y and z axes of the
sphere. It is sufficient to pick rotations about two non-coincident axes on the Bloch sphere to
produce any rotation. In this section I show that the principles behind rotations in z and z have
already been experimentally demonstrated and presented in a beautiful paper by Ryabtsev et al.
[43]. These atomic rotations are designed to operate on Rydberg atoms in atomic beams, making
them a perfect complement to the Zheng and Guo collisional phase gate [35] for building graph
state quantum computers.

Two processes are used which produce a rotation R, and a rotation R,. Firstly, irradiating
the atom with resonant electromagnetic radiation will drive the transition between the upper and
lower levels in the atom, acting as a rotation about the z-axis of the Bloch sphere. This accounts
for one of the two needed rotations, and this is fully described using the semiclassical theory of
atom-light interactions. Equation 1.9 in Chapter 1 with a classical electric field can be solved to
show that resonant radiation simply drives the population between the upper and lower states
sinusoidally. The Hamiltonian for a two level atom in a resonant classical field in the interaction
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Figure 3.9: This arrangement of cavities constructs a cluster state. Ovens all fire at every
time step. The enclosed region is the unit cell. By inserting multiples of this
cell diagonally (and reversed to align ovens with detectors) in the place of the
one in this Figure, the size of the cluster state will increase. With one this exact
arrangement the state produced is a two qubit wide ribbon. This version was
developed by Neil Lovett in collaboration with Ben Varcoe and myself.

picture is
)

2

where /2 is the coupling strength of the atom with the field*. The amplitudes of the atom
given as «(t) |g) + B(t) |e) evolve according to the equations

H; (67 +067), (3.14)

a(t) = agcos(§2t/2) — ifp sin(£2t/2)

(3.15)
B(t) = Po cos(§2t/2) — 1ag sin(2t/2),

which is equivalent to R,. The simplest implementation of a second rotation is by applying an
electric field to the atom. This effectively increases the transition energy between the levels of
the atom. In the interaction picture this leads to an increased rate of phase evolution compared
with an unshifted atom. This additional phase is equivalent to a rotation about the z-axis of
the Bloch sphere.. This technique was shown to work by Ryabtsev ef al. [43]. They applied a
resonant microwave pulse to drive the transition between two sodium Rydberg states. This is the
same interaction that I detailed above, tuned to place the atom in an equal superposition of the
two states. The Stark shift is next applied followed by an identical microwave pulse to the first.
The combination of interactions allows Ramsey interferometry of the R, operation applied by

the Stark shift. The measurements in [43] demonstrate that the phase operation R, is indeed
applied and is coherent.

Q2 is the Rabi frequency.
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Rydberg S and P states are particularly good to use. P is more susceptible to external fields
than S states of the same principal quantum number n, so by applying an electric field to an
atomic qubit with a lower level as an S state and a higher level as a P state, the upper level will
shift away from the lower level in a predictable way. For Rydberg states of alkali metals the
Stark shift varies approximately quadratically with the electric field amplitude.

§ x —aE?, (3.16)

where o is the polarizability of a particular state of the atom and E is the amplitude of the
electric field. The polarizability of two states will be different, so the relative phase shift will be
given by

O = e(ay — o.)E?, (3.17)

where ¢ is a factor related to the pulse shape of the electric field. Applying an electric field for
some time ¢, the phase of the atom in the interaction picture evolves as

ale) +Blg) — e *tale) + Blg) (3.18)

which is a phase shift gate R,. The factor € is calculated using an integral over the pulse shape
of the electric field.

It is important to note that Rydberg atoms have complicated ‘Stark maps’. As the electric
field is increased, some energy levels converge and for an adiabatic change in the field there will
be avoided crossings. The approximation that the level shifts are quadratic with field is only true
for relatively weak fields where avoided crossings do not occur, i.e. below the Inglis-Teller limit
[75]. This necessarily means that the field will always be too weak to ionise the Rydberg atoms.

3.5 Probing Quantum Gravity

In a recent meeting at the Rutherford Appleton Laboratory 1 was involved in a discussion
about matter-interferometer experiments that may be sensitive to conformal fluctuations; local
perturbations in the spacetime metric equal in all directions. In recent papers conformal
fluctuations are expected to be a hallmark of the mesoscopic domain of a quantum theory
of gravity [53, 55, 56]. The vacuum graviton fluctuations of quantum gravity are coupled to
conformal fluctuations that are near the Planck scale, which on the mesoscopic scale leads to
anomalous proper times. The authors draw an analogy with Brownian motion, in that the origin
of this effect is at a much smaller scale than the measured effect. In an atom interferometer
this will lead to a dephasing and reduction in visibility of interference fringes. In this section 1
demonstrate how GHZ states of atoms provide a more sensitive measurement of dephasing than
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atom interferometers.

Theories of quantum gravity are not created equal. Each has a unique background parameter
A. This A is associated with a rate of dephasing. Of course, in the laboratory there are num<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>