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Abstract 

Mark Stanley Everitt, "Construction, Theory and Simulation of Cavity QED Systems", Ph. D. 

thesis, University of Leeds, September 2009. 

The microscopically pumped maser, or micromaser is a cavity QED experiment intended to be a 

physical realisation of the Jaynes-Cummings model of a single two-level atom interacting with 
a single mode electromagnetic field. This is the simplest model that describes the interaction 
between light and matter, yet it predicts behaviour unexpected from semiclassical models, such 
as the revival of Rabi oscillations of an atom interacting with an initially coherent field and 
non-monotonic linewidth as a function of pumping. 

The micromaser at the University of Leeds consists of a high quality superconducting 
microwave cavity designed to be resonant with the transition between two specific Rydberg states 
of rubidium. These two states behave like an ideal two level atom, and couple strongly to the 

cavity field due to a large dipole moment. These Rydberg atoms are passed through the cavity 
in a rarified beam such that in most instances when there is an atom in the cavity, there will 
only be one, closely approximating the Jaynes-Cummings model. I present experimental work 
on the build phase of the micromaser. Specifically I routed all of the wiring and microwave lines 

in the cryostat that contains the micromaser, and designed mounts for various components. I 

also designed several testing methods for probing high quality microwave cavity resonances and 

quality factors which are presented. 
Using the Jaynes-Cummings model as a prototype, I demonstrate how extensions to the 

model can be used to construct universal quantum logic gates that operate on photonic qubits in a 

multi-mode cavity. This could be realised in a micromaser with a multi-mode cavity. Conversely, 
I demonstrate that by using atoms as qubits, detuned cavities can be used to generate entangled 
resources such as the Greenberger-Horne-Zeilinger state, the W state, and graph states of atoms. 
I show that single qubit rotations on Rydberg atom qubits have already been experimentally 
demonstrated so that in combination these entangled resources are useful for quantum metrology, 
quantum computation and even tests of quantum gravity. 
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Introduction 

In 1963 Edwin Jaynes and Frederick Cummings wrote a paper titled Comparison of Quantum and 
Semiclassical Radiation Theory with Application to the Beam Maser [1]. This paper contained 

what became known as the Jaynes-Cummings model (JCM) of a single two level atom in a 

single mode (frequency) field [2]. The model used this idealised atom and field to construct 

an exactly solvable evolution of the joint atom-field system, and hence model a beam maser in 

a fully quantum mechanical framework. This JCM largely inherited from the Dicke model, a 

predecessor that modelled the collective effects of a gas of atoms in a field [3]. A successor to 

the JCM, the Tavis-Cummings model, generalised the JCM to many atoms, refining the Dicke 

model [4]. 

The micromaser, a portmanteau of the first and last words of the phrase microscopically 

pumped maser, also known as the one-atom maser, is an experimental attempt to construct a 

maser which is as closely modelled as possible by the JCM. A micromaser is thus a testbed for 

the predictions made by the JCM [5]. Example predictions are vacuum Rabi oscillations [6], the 
Purcell effect [7] and the revival of Rabi oscillations of an atom in a field initially in a coherent 

state [8]. Beyond the Jaynes-Cummings model, predictions made by a master equation with the 
Jaynes-Cummings Hamiltonian as a component can be compared with a laboratory micromaser to 

test our understanding of dissipative systems and decoherence as well as maser linewidth [9-18]. 

Laboratory micromasers have been used to observe entanglement between atoms leaving 

a cavity [19], and number states of the cavity field [20-26]. Micromaser technology can be 

adapted to manufacture large entangled resources for quantum metrology, tests of non-locality and 
quantum gravity, and quantum computation [27-57], which has been the focus of my research. 

Practical advancements made by the micromaser at the University of Leeds include a novel 

approach to producing Rydberg states of 85Rb [58-61] using a three step infrared laser excitation 

system locked to vapour cells [62,631, oven design refinements for producing atomic beams [64] 

and squeezing cavities in cryogenic conditions [62,63,65]. Current research in the laboratory 

is concentrated on microwave transmission within a cryostat [66-69], the construction and 

characterisation of superconducting microwave resonators [70-74] and the enhancement of 

state-selective field ionisation detectors for determining the state of a Rydberg atom [75]. 
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INTRODUCTION 

This thesis covers a range of topics with the micromaser in common. My mandate was 
to assist in building the new micromaser system, and to study the micromaser as a source of 
entangled atoms. In the laboratory my responsibilities were to select and route the wiring for 

components in the cryostat, route microwave lines in the cryostat and tend to vacuum systems in 

general. I was also responsible for running the cryostat, most of the programming and developing 

cavity testing experiments. Outside the laboratory I worked on the micromaser and related 
technology for entangling Rydberg atoms, quantum computation and even in experimental tests 

of quantum gravity. 
This thesis is split into three parts. Part I, Background, contains background micromaser 

theory. It is intended as a foundation for new graduate students and to unify the notation and 
conventions used in micromaser literature. Parts II and III are on theory and experimental work 
that I have done. These two parts form the majority of this thesis, and contain my own work. 
All material is my own unless otherwise stated. 

Chapter 2 explores an option for performing universal quantum logic using multi-mode fields 
[76] and multi-level atoms [28]. The aim of this was to encode qubits on pairs of field modes 
and use the interaction with an atom to shuffle photons around between modes, whilst returning 
the atom to its original state to avoid loss of quantum information. This is being considered 
for publication in a paper written in collaboration with Dr. Barry Garraway at the University of 
Sussex. 

Chapter 3 begins with a controlled phase gate for atoms in crossed atomic beams. I based my 

work in this chapter on a controlled phase gate that uses two atoms interacting with a detuned 
field [35]. I show how to produce N-atom Greenberger-Horne-Zeilinger (GHZ) states of atoms 
using these controlled phase gates, and more complex graph states. I also show how to produce 
W states [77] using a generalised form of the controlled phase gate, and that it can produce up 
to four atom W states. I produced a paper on detecting the decoherence due to quantum gravity 
of entangled states, and this work is presented in this chapter. 

Chapter 4 has some details on the components of the micromaser experiment at Leeds 

University. For completeness I include a little detail on all parts of the experiment. My 

contribution was the majority of the mounting assembly in the cryostat, cables to send and return 
microwaves from the cryostat and wiring for the detector box and cavity squeezer. Most of the 

purpose coded software used by the experiment was written by me. 
Chapter 5 presents my work on a variety of tests I produced to measure the resonant 

frequencies and quality factor of pillbox electromagnetic cavities. These tests were designed to 
be portable and simple to use with software I coded to automate the bulk of the task. The testing 

equipment can be transported to a chemistry lab and a non-specialist can test a cavity between 

etches to see if the resonance is correct. The equipment is also suitable for testing a cavity in 

the cryostat. 
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Background 



Chapter 1 

Micromaser Theory 

... we never experiment with just one electron or atom or (small) molecule. In thought- 
experiments we sometimes assume that we do; this invariably entails ridiculous consequences... 

Are There Quantum Jumps? Part 11 [78] 
Erwin Schrödinger 

This chapter was written to serve as a foundation for the formalism used in later chapters, and I 
hope that it is a useful text for my successors when they start learning the theory behind the 
micromaser. There is a large leap from undergraduate quantum mechanics to an understanding 
of micromaser theory, and there are a few conventions by different key researchers that clash and 
lead to confusion. There is considerable freedom to choose interaction pictures, which are of 
course completely correct provided that one is consistent. The notation is also ambiguous in the 
literature. For example, the "Rabi frequency" is used to mean the frequency of the oscillations 
of population inversion, and the oscillations in probability amplitude. For the sake of simplicity 
I define things in this chapter, and avoid ambiguous terms when possible. To clear up the issue 

of Rabi frequency I refer to a term g as simply a dipole coupling constant whenever possible. 
This chapter culminates in the theory behind micromaser phase diffusion, which is the process 
our micromaser is designed to test. 

1.1 The Jaynes-Cummings Model 

The micromaser is designed to be the closest possible approximation to the JCM. The JCM deals 
with the evolution of a system consisting of a single two state atom in a single mode field in a 
fully quantum mechanical way [1]. A recent summary of the JCM may be found in the review 
article by Shore and Knight [2]. 



CHAPTER 1. MICROMASER THEORY 

1.1.1 The Atom 

The atom considered is idealised as a two state system, ground Ig) and excited le). To model its 
interaction with a field, we first need the dipole operator 

µ=, L*0++, 40, , (1.1) 

where Q+ = le) (gl and &- = fig) (el. This simply moves Ig) to le) and vice versa. This requires 

a parity change, as implied by the name of the operator. The Hamiltonian for a free atom is 

Hatom ý 
hw, 

ý1,2) 

where hwe, is the transition energy of the atom from state Ig) to state le). The energy is referenced 
from half way between the levels and &3 = le) (e) - fig) (gl. 

A two state atom may seem like an absurdity, but with a careful choice of atomic levels so 
that there is a single pair of states with an energy gap close to resonance with the single-mode 
field then other transitions are suppressed. This is simply a statement of the Purcell effect [7]. 

1.1.2 The Electromagnetic Field 

A field can be decomposed into superposition of modes of different frequencies. In a cavity, we 

assume that only a single mode is present, and all others destructively interfere. A mode of the 
field is a quantum harmonic oscillator, and so the creation and annihilation (ladder) operators 

apply. 

ä In)=vIn -1) 
a In) = n+1in+1) 

ätä In)=NIn)=nin) (1.3) 

[ä, 
dt} =1, 

where n is the number of photons present in the mode. The free Hamiltonian for a mode of the 

electromagnetic field is 

Hfield=hwlätä+2 (1.4) 

Using the Heisenberg equation of motion 

4 
A(t) _ 

[H, Ä(t)] + 
ýtÄ(t) 

, (1.5) 

6 



CHAPTER 1. MICROMASER THEORY 

where A is an arbitrary operator, the solutions for the time dependent creation and annihilation 

operators in the Heisenberg picture are 

ä(t) = äe-u"'t 

ät(t) = äte""rt 
. 

(1.6) 

The electric field operator at position r for a plane wave mode in a mode volume V with 
wavevector k and frequency w and with linear polarization e is 

iwt+ik"r 
_ -t ißt-ik"r E(r, t) =i 2EOV e 

[äe 
ae] (1.7) 

The single mode assumption requires that the micromaser must use a cavity with a very high 

qualityfactor, or Q. This high quality factor reduces the linewidth of the cavity so that for an 

extremely good microwave cavity the linewidth may be as small as 1 Hz at a resonant frequency 

of 21 GHz. 

1.1.3 The Electric Dipole Hamiltonian 

The electric dipole Hamiltonian describes an atom in an electromagnetic field, 

. (1.8) H=6.3 -µ. E (r, t) 

If the dipole moment is much smaller than the wavelength of the mode of the field, then the 
dipole approximation can be made and spatial dependence can be dropped, 

2 0,3 

1.1.4 The Jaynes-Cummings Hamiltonian 

If E from Equation (1.9) is substituted with the electric field operator in the dipole approximation, 
then the fully quantum mechanical atom-light Hamiltonian is 

Hatom-light =2a Q3 -2iy 
(äe-"t 

- ätet"t) 

where g=p"e 
(2v) 

can be interpreted later as a coupling constant and µ is assumed to 
be real without loss of generality. Transforming into the Schrödinger picture, the Hamiltonian 

7 



CHAPTER 1. MICROMASER THEORY 

becomes 

Hatom-light = 
hwa 

(h + hw 
(ätä 

+2I- ing (a 
- ät) ýQ+ + Q-ý , (1.11) 

atom field interaction 

recovering the free field term. The vacuum term in the free field part that has emerged can be 

neglected as a global phase. Expanding out the interaction term yields four new terms: 

&&+ The atom absorbs a photon from the field. 
ät&- The atom loses its excitation to the field. 
ä&- The atom decays and the field loses a photon. 
äta+ The atom becomes excited and the field gains a photon. 

The second two terms are not energy conserving and are thus heavily suppressed. A more 

mathematically complete explanation takes us via another transformation into an interaction 

picture with a time-dependent Hamiltonian. 

HI = 2Q3 - iltg (o e "t + &-e-ißt)- äte"tl (1.12) 

This transformation is shown in Appendix D as a demonstration. Expanding the brackets, two 

terms have no time dependence and two do. The latter are considered to be fast rotating and 
are substituted for zero. This is called the rotating wave approximation [5]. Finally we have the 
Jaynes-Cummings Hamiltonian 

(1.13) Hic = 
h0&3 

- ihg (&+ä 
- &-ät 

1 

where A is the detuning between the energy of a photon in the mode and the transition energy 
of the atom, 0= ws, - w. This is useful for showing the dependence of the dynamics of 
the interaction on detuning, but not as instructive for showing how photon number affects the 
dynamics. The reverse transformation back to the frame of (1.11) and disregarding a vacuum 
field term (which only contributes a global phase) gives 

HIC= 
203+! 

wätä-ing(&+a-v`ät) . (1.14) 

atom field interaction 

Strangely, a version of the Hamiltonian that I think is more intuitive has been rarely (if ever) 

noted. Another transformation can give the following alternative Hamiltonian 

Hic = -hAat& - irrig (&4a 
- &-ät) 

. (1.15) 

8 



CHAPTER 1. MICROMASER THEORY 

This version does not track the energy dependent rotation of the field as (1.14) does. This may 
be particularly useful when considering a system with multiple interactions with the field where 

phase may be interesting. I make extensive use of this form in Chapter 2. I conclude that the 

reason that this form of the Hamiltonian is not seen is that its analytic solution is more difficult 

to derive. 

1.1.5 The Jaynes-Cummings Model 

je) 

w 

I9) 

Figure 1.1: The JCM can be visualised with this energy level diagram. The difference between 
the transition energy between the two atomic states and the frequency of the field 
is the detuning A. By convention in this thesis w+A= wa. 

The Hamiltonian in Equation (1.13) conserves energy', i. e. ätä + &+&- commutes with Hic. 

This means that for an atom and field initialized to particular states, only one other state of the 

system is accessible, corresponding to an excitation (decay) of the atom and the loss (gain) of a 

photon. 

je) In) 4-º i9) In + 1) 
19) In) F-' le) in - 1) 

(1.16) 

From this point I will refer to the state of the system in the composite form latom) afield) _ 
atom, field) so 

Ie, n) +-' lg, n+1) 
(1.17) 

lg, n) F-º fie, n- 1) . 

This highlights the entanglement produced between the atom and the field during interaction. The 

JCM is analytically soluble, allowing for intricate study of its dynamics. Solving the Schrödinger 

equation in the form 
dtR)Zh 

R) (1.18) 

'As do those in Equation (1.14) and Equation (1.15) since these are the Hamiltonian in Equation (1.13) after 
unitary transformations. 
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CHAPTER 1. MICROMASER THEORY 

is as simple as solving a second order ordinary differential equation with constant coefficients. If 

the initial state of the system is 

1To)=aoje, n)+QoI9, n+1) , 

then the state of the system after interaction time t is 

a(t) = 
[ocosý_) t- 

+ , 
Q(t) = 

[ßOCOS 
I 

Zt 
I 

iaoA + 2, ßog n+1 

i, 3o. +2aog n+1 
S2 

(1.19) 

sin () 
\\\1 

t 
(1.20) 

sin 
(12 ) 

1 is called the Rabi frequency, and is a function of the number of photons in the field mode, 

S2 = 42 + 4g2(n + 1). (1.21) 

Some important behaviour can be derived from Equation (1.20) and Equation (1.21). If 

the field is in a number state (also known as a Fock state) then an excited atom will oscillate 
between the ground and excited levels, and a corresponding photon is created and annihilated 
in the field, preserving energy. Even if the field is in the vacuum state these oscillations are 

still expected. This particular phenomenon is referred to as vacuum Rabi oscillations [6]. If 

the system is resonant, then the probability of finding the atom in the ground or excited state 

oscillates between zero and one. If the field is detuned, then the probability of finding that an 

atom that was initially in the excited state has decayed never reaches one. Equation 1.21 leads 

to an increase in the oscillations between the states of the system if the detuning is increased. 

These characteristics are shown in Figure 1.2 for the n= 10 Fock state. Figure 1.3 shows that 
detuning leads to a Lorentzian profile for the maximum transition probability. 

When the atomic transition is resonant with the field mode, the interaction reduces to 

a(t) ý-+ ao cos (gt n+ 1) -, 3o sin (gt n -+1 
(1.22) 

ß(t) H Po cos (gt n -} 1+ ao sin (gt nT1. 

Using these, the evolution operator for resonance can be constructed. 

U(tint) = COS 
(9tint 

1V -F 1 &+v- + Cos 
(gtintTh) &-&+ 

sin 
(gtVi 

+1A^ sin 
(9t1v') 

^ 

(1.23) 

- aQ + atQ- 
N+1 A/N 

These are useful if the atom is incoming in a superposition state and the system can have two 
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Figure 1.2: As detuning is raised, the probability of measuring the atom in the excited (initial) 
state has a increasing minimum. As the detuning is increased the frequency of the 
oscillations in state increases as shown in Equation (1.21). gt is the atom-cavity 
coupling constant multiplied by the interaction time. In the resonant case g is 
twice the Rabi frequency Q. In this plot I have set n= 10. 

possible numbers of excitations, whereas the resonant interaction equations (1.22) describe a 

system with a single number of excitations. 

1.2 The Master Equation 

The Jaynes-Cummings model describes the evolution of a system composed of a single two 

state atom and a single mode field. The micromaser is slightly more complex. The cavity sits 

at the centre of the experiment, and atoms are sent through in a beam, as shown in Figure 

1.4. The beam is Poisson distributed so that when an atom is present in the cavity, only one 
is present in most events. In fact this is so diffuse that for the majority of the time no atom is 

present. In addition, no cavity is perfect. Some radiation may leak into or out of the cavity. 
This arrangement is a type of beam maser, with an extremely high quality factor cavity, and 

an extremely low pump rate. The intention is to use this limit to see if the Jaynes-Cummings 

model predicts what we see in masers. This is best modelled by a master equation. A master 

equation can handle the situation of a quantum harmonic oscillator damped by a thermal bath. 

This situation may lead to systems that are neither completely quantum mechanical nor classical, 

ýQ=ö 
0=3 
A=6 
0=9 
D=1 

11 



CHAPTER 1. MICROMASER THEORY 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 
0- 
-10 -K 64202468 10 

0/9 

Figure 1.3: As detuning is raised, the maximum probability of transition is reduced. This 
results in a Lorentzian resonance shape as would be expected. In this plot I 
set n=0, demonstrating that vacuum Rabi oscillations are responsible for the 
transition. 

leading to the need for the density operator p (sometimes called the statistical operator). 
The Markovian master equation can be stated as below [9,101, 

P(t) = G[A(t)] + RF (tint [P(t)] 
, (1.24) 

where R is the average rate of atomic injection in a particular state, G is the Liouville superoperator 
for cavity damping (see Section 1.2.1) and P is the Jaynes-Cummings superoperator. Using 

Equation (1.23) the Jaynes-Cummings superoperator is 

F' [p] = 6, (tint)PUt(tint) -P" (1.25) 

In order to be modelled as a Markovian process the atomic arrivals must be uncorrelated, i. e. 

the atomic beam must be Poisson distributed. In the general non-Markovian case the last term in 

Equation (1.24) is more complex, reflecting the non-random arrival statistics. Recent advances 
in the mathematics of master equations may allow for the analytic handling of non-Markovian 

master equations describing more general micromasers [11,121. We know that the type of 

rubidium dispenser we use as a source of atoms [79] does not have Poisson statistics, and cannot 
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at 1115 
source (ý) ---ý 

cavity 

detector 

Figure 1.4: The conceptual micromaser. A source provides two state atoms in the excited 
state. The cavity field is close to resonance with the atomic transition, so that the 
excitation of the atom can be transferred to the field and back again. A detector 
detects the atom in the ground or excited state. 

strictly be modelled as a Markovian process. 

1.2.1 The Liouville Superoperator 

On its own, the Liouville superoperator describes a system in thermal equilibrium with the 

environment, and may describe an unpumped micromaser cavity, as shown in Section 1.3. A 

superoperator is an operator that acts on operators. The simplest way to grasp this is to think 

about a time evolution operator. When state vectors are used, the evolution of a system goes as 

'D (t)) =U I`I'o) (1.26) 

Consider the extension of this to the density operator. The density operator of a pure state is just 

the outer product of that state with itself, so it is simple to see that the density operator will 

need the evolution operator to act on both sides of a density operator. The same is true of other 

operators. To apply the creation operator, it must be applied on the left and the annihilation 

operator on the right of the density operator which can seem counterintuitive. 

p(t) = ÜpoÜt (1.27) 

It can be cumbersome writing operators out on both sides of a density operator, and it can even 

obfuscate a calculation, so it is common to invent a superoperator to replace them. In this case I 

can define the evolution Superoperator S, such that 

S[A] = UAUt . 
(1.28) 
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The Liouville superoperator simulates a damped field mode as a field mode with successive 
weakly coupled atoms interacting with it [13]. In the interaction picture 

5i 
Pfield = rexAePt eld + rgrOgrpt eld 

, (1.29) 

where r,, and rgr are the rates of the incoming ground and excited states, and the subscripted t 
denotes the density operator at some time. For an atom arriving in the excited state the change 
in the field part of the density operator is: 

exPt 
field 

-COS 
(9tint 

N -ý 
V1)4, 

'ld cos I gtint +_1 

+ 
sin 

(9t1vW) 
ätp eld . 

sin 
(gtV') 

pf eld 

(1.30) 

Va %IN 

Assuming that the coupling is very weak, a small angle approximation can be made2. 

AeXPt eld 92t, nt 1 atilt eldä - aat field 
_2 pt eldäätý (1.31) 

Exactly the same procedure can be applied to an incoming atom in the ground state. 

AgrPt field g 2t nt 
(pt 

eich t-2a api etd -ý pseiaa a) (1.32) 

The rate of change of pt end due to damping is now 

at pt end _- rex92tmt 
(aat1d 

pt eidicät _ ýttpt elda/ 

\ 
(1.33) 

- rgr92t nt (! 
ata1d + 

! 
paeidätä - äpte1dät I. 

As these weakly coupled atoms are used to simulate the damping of the cavity field, the rates 
must be related via Maxwell-Boltzmann statistics [13] 

rex / hiw 
_v 

rgr 
= exp I- 

kBT v+1' 
(1.34) 

where v is shown in Section 1.3.1 to be the mean thermal photon number. The factor of get nt can 
be hidden inside a rate parameter A which gives the Liouville superoperator for the interaction 

2The first order cosines taken together cancel with p. Only one second order cosine term at a time is considered 
which is valid for the approximation. The sine terms are considered only in the first order. 
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picture. 

L[p] Av (aatp + päät - 2ätpa) 2 
(1.35) 

21 
A (v+1) (atap + pýý - 2apat) 

A is related to cavity quality factor (Q) by 

A=2 Q (1.36) 

1.3 Steady States of the Field 

1.3.1 The Unpumped State 

The Liouville superoperator (1.35) alone is enough to describe an unpumped, high Q cavity in a 

thermal bath. When the cavity is in the steady state, p= t[p] = 0. It is easy to show using 

cyclic relations of the trace and its linear mapping properties that 

T (ät)t = Tr' (&t{pt]) 
= -ZA-Tr 

(ätpt) 
_ -2A(ät)t (1.37) 

and similarly 

d (ä)t = -2A(ä)t (1.38a) 

dt (9)t = -A 
((N)t 

- v) (1.38b) 

The solutions to which are 

(at)t _ (at)oe At/2 (1.39a) 

(ä)t = (ä)oe-At/2 (1.39b) 

(N)t =v+ 
((')o 

- v) e4t (1.39c) 

The constant A is thus a decay constant, as expected. At long times these solutions lead to 

(ät}týý -º 0 (1.40a) 

(ä)týý -º 0 (1.40b) 

(1V)týý -+ v (1.40c) 
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As the ladder operators have no effect in the long time limit so that the expectation of the number 
operator reaches a constant, the system reaches a steady state. The steady state implies that 
pt--.. commutes with the number operator N and therefore can be expressed as a function of N 

[13]. Functions of 9 also have the following property: 

ä. fätä = . 
faatC (1.41a) 

atfaat = fatabt (1.41b) 

Combining these facts 

G[fataJ =0=-1 Av I äätfätä + fätääät - 2ätfataa ) 
2 
1\ 

(1.42) 

2A (v + 1) (ataf. + fataätä - 2a fatäät) 

Using (1.41a) terms cancel to leave [14] 

(9 + 1) [(v + 1) fN+i - vfN] =1V 
[(v + I) f* -vf f_1] (1.43) 

By picking a particular eigenvalue of g3 then this reduces further to 

(U + 1) fN = vfN_i (1.44) 

and this can be solved to give 
N 

fN = fo 
(v v+ 

1) 
(1.45) 

Finally, as the sum over all eigenvalues must be normalised 

1=foE(v+l)ný. fo= 
v+l 

(1.46) 

n=o 

=1p 
v+ 1(1.47) t*O° v+1 

(v' 

By referring back to (1.34), the interpretation of v is now as the mean thermal photon number 
in the thermal bath, as the unpumped state takes the form of a thermal state. This is a special 

case of the steady state, which in general includes pumping with excited atoms. An example of a 

thermal state at 2K for a 21.456 GHz field is shown in Figure I. S. 

31V =0 is simplest, and then using Equation (1.44) it can be shown that any value of 9 will give the same result. 
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Figure 1.5: This plot shows a thermal field with an average of five photons. This corresponds 
to a temperature of approximately 2K for a 21.456 GHz field. As the thermal state 
is completely classical only the diagonal elements of the density matrix for the 
field are non-zero, i. e. the probability of a particular number of photons, so this 
plot fully describes this thermal state. 

1.3.2 The Steady State 

The steady state of a micromaser pumped with an atomic beam with Poisson statistics is the 

generalisation of the unpumped state. This is only a steady state on average. The field is pumped 
in the relatively very short time of the interaction with an atom, and then decays in the time it 

takes for the next atom to arrive. Like the unpumped state, the steady state when the system is 

pumped with atoms only in the excited state is also fully mixed. The steady state is thus diagonal 

in the number state basis [14] 

t moo P(n) C 
(1 

+ v) 

n 
1-} 

R sine(© kyl R) 
(1.48) 

k=1 y 

where C normalises the probability distribution, ry-1 is the cavity lifetime and ®= gtint R/7 

is the micromaser pump parameter. This equation comes from a generalised form of the recursion 

relation for the unpumped state, and reduces to the unpumped state in the limit of no atomic 
injection. When R=0 the field is unpumped, and Equation (1.48) reduces to Equation (1.47). 
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Figure 1.6 is an example probability distribution of a micromaser unpumped and pumped with 
atoms. Figure 1.7 shows a plot of how the pump parameter affects the number distribution, 

revealing some important characteristics of the micromaser. Unusual blips appearing at low 

0.9 
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Figure 1.6: This plot shows three steady states of the field. Each distribution corresponds to a 
different pump rate at 30 mK with a field resonant at 21.456GHz to simulate our 
micromaser. The blue is for a thermal distribution, which is mainly in the zero 
photon state for this temperature. The green is a field pumped close to threshold. 
The red is a field pumped above threshold. These are all vertical slices of Figure 
1.7. 

photon numbers are trapping states. These are states for which the field has built up until it has 
hit a particular number state for which that pump parameter prohibits the emission of a photon, 
halting the gain in photon number. The distribution of these trapping states is close to a number 
state, which is how number states were achieved in a micromaser [20-24]. 

1.4 Phase Diffusion and Linewidth 

Phase diffusion of the field in an cavity is the term used to describe the loss of coherence due 

to interactions between the field and the environment [151. Figure 1.9 shows this behaviour for 

the extreme of a coherent state that has fully dephased into a mixed state. Measuring the phase 
diffusion and linewidth of a micromaser field is yet to be done. The ultimate purpose of the 

micromaser at Leeds (initially at Sussex University) is to measure these quantities. Previous 

o=o 
E) 11 
E)= 2.2 
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Figure 1.7: This plot shows the effect that increasing the pump parameter has on the photon 
number distribution. The colour bar corresponds to probability. For this plot 
R/ry = 25 and the temperature is 30mK. Contrast this with Figure 1.8 which is 
at 500 mK. Much of the interesting character becomes washed out. Vertical slices 
taken at O=0,2.2,11 correspond to the distributions shown in Figure 1.6. 

generations of micromaser were incapable of this measurement due to heating issues. This 

new micromaser is designed to run in a prototype VeriCold helium dilution cryostat, which can 
achieve lower temperatures (down to 30 mK) than any other micromaser to date. As the new 
micromaser is designed with phase diffusion measurements in mind, this section occasionally 
digresses into experimental details of our system. 

The linewidth of the maser field happens to be proportional to the phase diffusion constant 
(like a decay constant) [151. The scaled linewidth of the micromaser is given as 

D_ 4R 
sin2 

Ant 
+ 

(2v + 1) 
(1.49) 

'Y 4 (n) 4(n) 

For a cavity with large average photon number, or if the interaction time between the field and 
atoms passing through is small, this reduces to the Schawlow-Townes linewidth of a maser (or 
laser) due to purely quantum noise [15], 

D_ 02+2v+1 
(1.50) 

-y 4(n) 
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Figure 1.8: This plot is identical to 1.7, except that the temperature is now 500 mK, washing 
out some of the character of the previous plot. Trapping states in particular are no 
longer visible. 

The linewidth D is also the the decay constant associated with phase diffusion, thus producing a 
link between the linewidth of an ideal laser and the decoherence of a cavity field [16,171. 

1.4.1 Measuring Phase Diffusion 

Measuring the linewidth of a micromaser is particularly challenging. The quality of the cavity is 

so high that no direct measurement of the linewidth can be made. The procedure to measure 
this has been published 116], but the experiment is so difficult that it remains to be performed. 
The off diagonal elements of the density operator in the number basis decay with a decay rate 
proportional to the linewidth of the micromaser. The steady state of the field is completely mixed. 
If a steady state is found that has identical photon number expectations to a coherent field as in 
Equation (1.51), then this can be exploited [ 15,16]. 

a SS 
pn - pn 

A possible procedure is as follows 

(1.51) 

"A cavity is initially pumped from the unpumped state close to 0K with a coherent field. 
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In the laboratory this is done by firing resonant microwaves from a microwave synthesiser 
(a coherent source) at one of the openings into the cavity. The use of an external field in 
this manner is explored in a paper by Agarwal et al. [18] 

" Atoms are sent through the cavity so that the pump parameter corresponds to a steady 

state with diagonal elements of the density operator in the number basis identical to the 

prepared coherent state, as in (1.51). The lifetime of the cavity is long enough that many 

atoms can interact before the coherences in the field decay. The constant measurement of 

atoms after leaving the field and the energy decay from the cavity leads to the decay of 

off-diagonal elements (mixing) as the field loses its coherence. 

" After some time, the field can be displaced back by altering the amplitude and detuning 

of the original external field and applying it again [18], and measurements of the atoms 
exiting the system can be used to reveal some information about how diffuse the field 

state became. In the case of no diffusing, the coherent state is simply returned to the 
vacuum and atoms sent through in the ground state will all exit in the ground state. If 

some diffusion has occurred then the reverse displacement will not return the field to the 
vacuum state, and some atoms will be detected in the excited state. 

Figure 1.9 shows plots of the Husimi quasi-probability distributions of the cavity field at each 
stage of such an experiment. The Husimi distribution is 

Q(a) _1 (a(p la) 
, (1.52) 

where la) is a coherent state defined by the equation [26], 

lala/2 
00 

E an Ia)=e 
o n! 

In). (1.53) 

The Husimi distribution at a point a is like the overlap between a density operator and a coherent 

state 1a). In the case of these plots the field has become fully dephased, but in a real experiment 
the time between the second and third plot would be varied to measure the process of dephasing. 

An alternative, and potentially more easily performed, experiment for measuring the phase 
diffusion is with a modified Ramsey type experiment [15]. In this set up incoming atoms are 

exposed to resonant microwave radiation to place them in a superposition of the ground and 

excited states. This in turn introduces coherence to a cavity field. Atoms emerging are rotated 
by a second field prior to measurement. This is a modified phase sensitive micromaser. After 

some time the resonant microwave radiation is switched off, and the statistics of outgoing atoms 
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Figure 1.9: These four Husimi (Q(a)) distributions of the simulated cavity field demonstrate 
the various stages of an experiment to measure phase diffusion. (a) The cavity is 
cooled to the zero photon state. (b) The field is displaced using a coherent source 
[ 181. (c) The atomic beam of excited atoms is switched on to maintain the average 
photon number. (d) The reverse displacement is performed [181. The photon 
number expectation depends on how mixed the state of the field has become. The 
initial displacement in these plots is to (n) = 25. The final state is (n) ,: 24. 

used to infer the decay of the off diagonal elements of the cavity field. From Scully et al. [151 

the probability of detecting atoms in the excited state is 

Pe =2+ e-Dt/2 
1` 

cos (ý - ß) cos (gt n+ 2) sin (gt n+ 1) pn, 1z+l , 
(1.54) 

n 

where 0 is the phase of the second rotation field, and ý3 is the initial phase of the micromaser 
field. Both experiments would require many repetitions to develop the probability against time 

to calculate D. In a micromaser such as the one at Leeds this kind of repetition is simply a 

programming problem that is easily solved to automate the entire process. A diagram of the 

phase-sensitive micromaser concept 1191 is given in Figure 1.10. 
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Figure 1.10: The phase sensitive micromaser. This arrangement allows for Ramsey spectroscopy 
of the cavity field to measure coherences. The two smaller cavities are pumped 
externally, and simply rotate the state of the atom between le) and 1g). In a 
laboratory these may be pumped cavities, or waveguide with holes in to allow 
atoms to pass. The rotations performed by these cavities can be adjusted to 
measure phase diffusion by injecting coherence initially, and later adjusting again 
to measure coherence remaining. 

1.5 Summary 

Current work on the micromaser is towards building a phase sensitive micromaser as shown in 

Figure 1.10, in order to measure phase diffusion. This figure belies the difficulty in manufacturing 

such an experiment. The most extreme constraint is the low temperatures required. The 

micromaser we are building is designed to operate at a constant 30 mK, which requires a recently 

acquired helium dilution cryostat, which is expensive to acquire and requires skilled operators. 
Another major constraint is the cavity. High quality factor cavities in the microwave regime 

are typically machined out of niobium, which requires specialist knowledge and equipment. In 

addition, the cavity must be etched and baked, and there are no set methods for doing this. 
Producing atoms that approximate a two state system is also very difficult. These are pumped 

using a set of three lasers which are elaborately locked. Measuring the atoms has also proven to 
be a difficult problem (75). These issues are explored in greater depth in Part III of this thesis. 
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Chapter 2 

Multi-mode Quantum Optical Logic 

In collaboration with Dr. Barry Garraway at the University of Sussex I did some work on a cavity 

quantum electrodynamics (QED) based implementation of a universal quantum gate set. Our 

motivation was to use the relatively long life time of a cavity field to store all information in 

the system. The interaction with an atom should simply allow quantum logic gates [31] to be 

applied to the photonic register, and the atom should exit the cavity in a state separable from the 

photonic register. Preliminary work was published in conference proceedings [28], and the full 

architecture has been submitted for publication. 
This approach enjoys several advantages. Qubits are stored as a single photon in two modes 

like the dual-rail qubits developed by Knill, Laflamme and Milburn [76]. If the photon is in 

the first mode, then the qubit is a 11) and if the photon is in the second then the qubit is in a 
10). Table 2.1 shows these two mode qubits. If the photon escapes from the system then the 

Modes Qubit 

110) 
10,1) 

11) 
10) 

Table 2.1: A qubit is encoded as a single excitation shared between two modes of the field, 
in,, n2). A logical one maps to the excitation being in the first mode, and the 
logical zero maps to the excitation being in the second mode. 

resulting state of the field does not encode a qubit and the error may be detected. This sort 

of encoding may be extended to the qudit case which encodes information in a system with d 

orthogonal states, as shown in table 2.2. In order to process quantum information you have to 
be able to initialise the qubits to the right values, process the qubits, and read out the result. 
As the qubit consists of two fields in number states, we can use a standard Jaynes-Cummings 

interaction to initialise the system. Readout can be done in a similar fashion. The challenge here 

25 



CHAPTER 2. MULTI-MODE QUANTUM OPTICAL LOGIC 

Modes Qubit 

In, 0) In) 
In-1,1) In-1) 

11, n - 1) 11) 
Io, n) 10) 

Table 2.2: Similarly to Table 2.1, qudits can be encoded on a pair of field modes. In this 
generalisation the number of photons remains constant. 

was constructing gates to operate on these qubits. 
In this chapter I have used the convention for atomic operators given by the equation 

öaß = la) (01 
" 

ý2.1) 

I made this choice to keep the equations more compact and readable. Sometimes I will use 
a comma to separate the two states i. e. &ol, lo = 101) (101. Throughout this thesis I use 

Q3 = Qee - Qgg for two level atoms. 

2.1 Theory of Effective Hamiltonians 

This work relies heavily on the theory of constructing an effective Hamiltonian and specifically 
the work of Bruce Shore [29]. To a lesser extent the work of Cook and Shore [30] was also useful 
for working with N-level Hamiltonians. The phrase adiabatic elimination is also commonly 

used. 
The theory in [29] is shown only for an effective two level system, but the method also works 

for an effective multi-level system. If the Hamiltonian is formulated as a matrix with the states 
of interest in the top left, and those that should be eliminated by special conditions of the system 
in the bottom right, then the matrix may be divided into parts, 

H= 
Bt Ä, 

(2.2) 

where part Ho contains those states that should dominate. In practice this occurs when other 
states are detuned from resonance, or the couplings to states that are important are relatively 
large. Mathematically both cases occur when the eigenvalues of A are much larger than the 

eigenvalues of Ho. The Schrödinger equation is (in natural units) 

41W)=HIW). 
(2.3) 
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A solution can be expressed as 

1 W(t)) = 27ri 
1 az. (2.4) 

Projection operators can be defined to select out the components of the Hamiltonian of interest. 

P+Q=1 

PP=P 

QQ =Q 
(2.5) 

PQ=QP=O. 

I choose P to simply be a matrix with ones on the diagonal corresponding to Ho, and Q to be 

a matrix with ones on the remaining diagonals, trivially satisfying the above relations. As P 

selects out the states of interest it can be placed either side of the kernel of Equation (2.4). The 
blockwise nature of the kernel allows its inversion in terms of these blocks, and as the only block 

of interest is the one describing the motion of the relevant states, the projection operator P is 

used to select out the top left element of the resultant blockwise matrix. It is anticipated that 

other states of the system are so far from resonance that the block couplings between the top left 

and the lower right blocks of the resultant Hamiltonian will be weak and can be approximated to 

zero 
(z - Ho - B(z - A)-1Bt)-1 0 

00 

The top left element can be substituted back into Equation (2.4), 

ýýt)) -22 eixt 
(z 

- Ho - Bz 1 
ABt)idz 

IO(O)) 
, (2.7) 

where «(t)) contains only the states of interest. In the limit of large eigenvalues of A compared 

with those of Ho, i. e. these states are detuned, the approximation z-A -A is valid [29]. 

Comparing Equation (2.7) with (2.4) in this approximation leads to the effective Hamiltonian, 

Heff = Hp - BA-'Bt . (2.8) 

In this chapter I use this matrix formalism because the systems I have developed all have closed 
Hilbert spaces, and inverting a matrix is relatively simple. For the case of large or infinite Hilbert 

spaces using operator formalism is often most efficient. An example of this is in Chapter 3, 

where the evolution operator for a system is designed to produce generalised W states. 
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2.2 Single Qubit Rotations 

For a universal gate set I needed a multi-qubit entangling gate and two rotations on the Bloch 

sphere of each single qubit [31]. For the two rotations on the Bloch sphere, I chose rotations 
about the x and z axes. 

2.2.1 Rotations about the z-axis 

Rotations about the z-axis are very simple. If a ground state atom passing through the cavity has 

a transition closer to the frequency of one mode of the qubit than the second (but still detuned 
from both), then this mode undergoes faster phase evolution than the second effectively forming 

a rotation about z. 

fie) 

y 

w 

I9) 
Figure 2.1: The detuned Jaynes-Cummings model is used to produce z-axis rotations. If no 

photon is present, then no interaction occurs. If a photon is present then (in 
the detuned case) the phase of the system evolves due to virtual exchange of the 
excitation between the atom and the field. 

In [19] the phase evolution of a detuned Jaynes-Cummings model is given by two formulae 

I9, n) '-' e gi(n) I g, n) ' (2.9) 

where '(n) is given by 

fi(n)= 
f 

[1ýg(2-1 
dx, (2.10) 

�Jo 

where v is the velocity of atoms passing though. I am only interested in the states of the field 

with zero or one photon. In the case of zero photons (D reduces to zero, and for one photon a 
non-zero quantity dependent on the profile of the field mode. This is an exact solution, so there 
is no need to use adiabatic elimination. 

For the phase gate we use an atom detuned from one mode of the qubit, and very far detuned 

from the other. If the photon is in one mode i. e. qubit state 10) the atom sees the closer tuned 
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fib) 

al 

wl 

ja) Wa 
a3 

Ic) 
w3 a2 

Figure 2.2: The lambda atom has two transitions which couple to the two cavity modes that 
make up a qubit. A1, A2 » 919 92, I to adiabatically eliminate levels fib) and Ic) 
from the interaction and 03 is chosen to ensure resonance. As noted at the end of 
Section 2.2.2 the external pump ignores selection rules, which will be remedied in 
the future by adding a further transition or pumping with a two photon transition. 

field with zero photons and the system undergoes no accelerated evolution because 4(0) = 0. In 

the case of the photon in the other mode, i. e. qubit basis state 11) then the added photon in the 

closer mode causes faster evolution given by the non-zero -P(1). 

2.2.2 Rotations about the x-axis 

Rotations about the x-axis happened to be far more difficult, and require the atom to couple to 
both transitions in a lambda configuration, and the ground states to be coupled by a classical 
field. Chronologically this gate was the final step in developing the universal gate set. 

The idea for this system was to introduce an atom in the state 1a), see Figure 2.2. If the field 

is in the configuration 11,0), which is a 1) qubit state, then the atom may make a transition up 
to state Ib) by absorbing the photon, decay to state Ic), emitting a photon into mode two, X0,1) 

and a classical field drives the atom back into state 1a), acting as a bit flip with the atom returned 
to the initial state. For a 10) to 11) the reverse process applies. To realise a rotation about x 
it must be possible to form a superposition of bit flipped and unflipped states. To do this the 

atom may be only virtually excited, demanding that states Ib) and 1c) are detuned from resonance 

with the modes and classical field, but that the overall resonance is not detuned, leaving only 
two states of the system 1,0, a) and 10,1, a). This satisfies the requirement that the atom is not 

entangled with the system and that measurement of the atom does not affect the gate. 
The level diagram in Figure 2.2 is a lambda scheme with two transitions detuned from the 

two modes that comprise a qubit. By coupling the ground states together with a classical field, 

and choosing 03 to allow a multi-photon resonance so that the atom is returned to 1a), the 

system will oscillate between the 10) and 11) qubit states without changing the state of the atom. 
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The choice for 03 is not clear, as level shifts may cause it to deviate from zero. Once again the 
theory of effective Hamiltonians is employed [29]. From the level diagram in 2.2 the Hamiltonian 
is 

3 
H= EaQaa + wzQtiäi + 

191ati&ab 
+ 92ä2Qcb + g3& 

&a + h. c. 
] (2.11) 

a=a, b, c i=1 

where h. c. stands for `Hermitian conjugate'. I am assuming a classical field for the transition 
between 1a) and 1c), so I extract the part of the Hamiltonian describing this quantum field 

Hpart = w3aga3 + 93 
(ä3Qac 

+ ä3Q ). 
2.12) 

Since the remaining parts of the Hamiltonian commute with ä3 I can perform transformations 
that are a function of a3 and ä3 without the need to consider those parts. A transformation is 
defined by 

H' = THTt 
- iT-ýV (2.13) 

A complete description of unitary transformations is provided in appendix D. For the transformation 
I choose t= exp(iw3ä3 3t). This yields 

Hpazt 
- 93 

(e_3tý3ýac 
+ e"stb3U.. 

) 
. 

(2.14) 

The result of the transformation is to remove the explicit reference to the energy of the field 

and replace it with a time dependence. As this field is going to be classical and not quantum, I 

model it as a coherent state ja). The coherent state is the right-eigenstate of the annihilation 
operator, which allows me to remove the creation and annihilation operators. 

Hclasa = I' ýe ß"3t& + Ci13%a) , (2.15) 

where r= 93a, assuming that a is real without loss of generality. All states of the system will 
have the same coherent state for the classical field, so it can be factored out and omitted from the 

wavefunction. This equation can now be substituted back into the full Hamiltonian of the system 

H= E«Qa« +E wiai ai + 
[91äi&a6 

+ 92ä2frc6 + rei)3t& + h. c. 
] (2.16) 

a=a, b, c i=1,2 

The explicit dependence on the absolute energy of the atom is ugly, so I want to transform the 
Hamiltonian into a form without the first term. In order to do this, it is worth redrawing the 
level diagram. Figure 2.2 shows cumulative detunings, useful for dealing with multi-photon 
resonances, but at this stage I need to know the detuning between particular transitions and field 

modes as shown in Figure 2.3. These detunings are labelled with lower case 8 to distinguish 
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lb) 
S1 

wl 
w2 

lad 
63 

W3 
IC) 

Figure 2.3: This is an alternate representation of the level system depicted in Figure 2.2. The 
detunings shown in this diagram are between particular transitions and field modes, 
rather than cumulative multi-transition detunings in the previous diagram. 

them from the cumulative detunings which are in upper case. The two labellings are related by 

the equations 

Di=bi 
A2=d1-ö2 

A3=b1-62+53. 

(2.17) 

Using these detunings there is a simple relationship between the transition energies and the mode 
frequencies, 

Eb-Ea=w1+Si 

Eb=Ec=W2+S2 

Ea-Ec=W3+d3. 

(2.18) 

Creating a whole new diagram may at first glance seem like wasted effort, but it makes handling 

the Hamiltonian much neater and less prone to error, especially when calculating transformations. 
The transformation I used on the Hamiltonian used T= exp(i®t) where O was 

O=E,, r + äzäi (wi + di) (2.19) 

a=a, b, c i=1,2 

Using O helps to produce useful operators because the equation for a transformed Hamiltonian 

reduces to 
H, _ ezotHe-aec -19. (2.20) 

I found that the subtraction of © in this equation can give clues about useful forms of 0 to 
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subtract undesirable parts of the Hamiltonian. Care must be taken with time dependence however, 

so that if the initial Hamiltonian has no time dependence then the only way to avoid introducing 
time dependence is if O commutes with the initial Hamiltonian, i. e. THTt = H. 

My choice of 0 leaves a residue in the Hamiltonian, in the form of detunings. I will 
show that this leads to a very natural way of viewing the Hamiltonian which is useful when 
working with effective Hamiltonians. In Chapter 1 Equation (1.15) I noted the same form for the 
Jaynes-Cummings Hamiltonian which is strikingly absent from the literature. 

After the transformation the Hamiltonian is 

Hý _- Siäiäi + [9iäiýob + g2ä2&cb + I'e Z33t&, 
a+ h. c. 

] (2.21) 

The final stage of preparing the Hamiltonian is removing the remaining time dependence. This 

requires another transformation. The two transformations could have been done in a single step, 
but the stepwise approach is more manageable. The next transformation is defined by 

-al. 4'= 2 (altal-ä2ä2+ &cc -äaa) 83 (2.22) 

This transformation removes time dependence in the resultant Hamiltonian. The öl may seem 
out of place, but this leads to a zero in the upper left corner of the matrix describing the system. 
This often avoids A becoming singular, which stops an effective Hamiltonian being constructed. 
In addition it also tends to lead to more physically appealing Hamiltonian matrices in which the 
detunings appear in sequence when the states are ordered in the state vector, i. e. adjacent states 
are coupled. The Hamiltonian is now 

H" = Si- 2 
(ät 

.- ä2ä2 + &c - &aa) 53-E azäsäa+ [91ý1&ab + glä2&cb + r&, + h. c., 
(2.23) 

I chose the initial state of the atom to be 1a), so with the computational basis in mind, the two pos- 
sible starting states of the system are 11,0, a) and X0,1, a), in the order Umode 1, mode 2, atom). 
There are two other possible states that may evolve from these two; 10,0, b) and 10,1, c). Arran- 

ging these in the order IT) = cl 11,0, a) + c2 10,0, b) + c3 10,1, c) + c410,1, a) and substituting 
in Equations (2.17) the Hamiltonian matrix is given as 

0 gl 00 cl 

H" = 
91 Al 92 0 

ýqv) = 
C2 

. 
(2.24) 

0 92 A2 r C3 
00r A3 C4 

The detunings on the diagonal are a direct consequence of my choice of O for the first trans- 
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formation. It is simple to see from this that those states that are highly detuned will have large 

eigenvalues which will reduce the transition probability to these states. 
The next step is to form a two state effective Hamiltonian from this, in the limit of large 

detuning. Naively this can be done simply by choosing 03 =0 and Al, L2 » gl, 92, however 
level shifts mean that the choice of 03 may be incorrect. By properly formulating the effective 
Hamiltonian, the actual condition for the multi-photon resonance will be derived at the same 
time. First the Hamiltonian is rearranged to put the two states of interest in the top left, 

009,0 cl 

H� 
0 13 0r iw = 

C4 (2.25) 
91 0 Al 92 c2 

0 I' 92 A2 C3 

Using the formula for producing an effective Hamiltonian (2.8) requires that the Hamiltonian is 

split into parts 

Ho 0 = o Og 

By equation (2.8) the re 

1 Hell = 0102 - 92 

A_ 
(') 

1 92 B_ 91 0 
(2.26) 

92 ý2 0t 

sultant effective Hamiltonian is 

A292 9192I' 10eff) ° 
Cl (2.27) 

9192r A3(01A2 - 92) - A1I2 C4 

This can be reduced further because I have already made the assumption that Al, L2 » 91,929 

_ýj 
2r 

2) 

Heff 
i, 

1 I'ý (2.28) 
r 03 

The difference in the diagonal elements is the effective detuning 

Deff A3 Y2 -i- 
Q1 

. 
(2.29) 

The effective detuning is a large modification to the expected detuning. Considering that 
Ai, 02 » 91,92, r, the extra terms in the effective detuning are relatively large when compared 
to the effective detuning 

9eff 9i92r (2.30) 0102 
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The solution is the x-rotation gate in the interaction picture, 

Rx(9efft) = cos(gefft)&O -i sin(9efft)vx , (2.31) 

when the resonance condition Deff =0 is satisfied. By performing the reverse transformations 

on this evolution operator the evolution operator in the Schrödinger picture (neglecting a global 

phase) is 
R, Sch 

= cos(gefft)&o -i sin(gefft) [e"ý'st&io, oi +e tý 3t&oi, ioI . 
(2.32) 

t 
0.9- 

0.8- 
0.7- 

0.6- 

0.5 
0.4 

0.3 

0.2 

0.1 

0 
0 0.2 0.4 0.6 0.8 1 

gefftl1r 

Figure 2.4: This plot shows the numerical prediction based upon the full Hamiltonian, and 
the prediction of the effective Hamiltonian. Numbers for the coupling constants 
and detunings were chosen with arbitrary units to be gl = 1.5,92 = 1.0, F=0.9, 
O1 = 25, O2 = 15.03 was chosen using the resonance condition which gave 

-0.0360 in order to counter level shifting. This plot shows that in the appropriate 
limits the solution of the effective Hamiltonian agrees with the numerical predictions 
from the full Hamiltonian. The effective coupling constant for this choice of 
parameters is 0.0036, an order of magnitude lower than 03, demonstrating that 
the effective Hamiltonian is needed to make predictions. 

An error in the x-rotation gate in this system will result in the atom exiting in a state other 

than Ia). This can be measured using state-selective field ionisation, forming a rudimentary error 

check. The fidelity of the gate with and without this check is shown in Figure 2.5. 

numeric 0o 
numeric vx 
effective vo 
effective a,, 
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An issue with the x-rotation as it stands is that the external transition pumps a transition that 
is against selection rules. This can be remedied by adding a further transition or swapping it for 

a two mode transition. 

0.9 

0.8 
0.7 - 

0.6 - 
E 

0.5 

C7 0.4 - 

0.3 

0.2 - 

0 1 ' E::: 0 
0 23456789 10 

Coupling Factor 

Figure 2.5: This plot uses the numbers from Figure 2.4, but the coupling constants are all 
multiplied by a `coupling factor', on the x-axis of this plot. The fidelity is the 
fidelity of the numerical system with the prediction derived from the effective 
Hamiltonian for a -iQs gate. The `conditioned fidelity' is the fidelity of the gate 
conditioned on measuring the outgoing atom in state 1a). The gate time for each 
point is t= 7r/2g, ff where gell is from equation (2.30). As gl, g2 < D1, O2 
becomes a worse assumption, the approximations made in deriving geff break down 
leading to loss of gate fidelity. 

2.3 Entangling Multi-Qubit Gates 

2.3.1 The Fredkin Gate 

The Fredkin, or controlled swap gate, is a three qubit entangling gate which is universal for 

classical computation 131]. This was the first gate encoded on this system. The most obvious 

candidates for a multi-qubit entangling gate are the controlled NOT gate or the controlled phase 

gate, however I wanted to avoid using classical fields when possible and geometric arguments 

rule out level diagrams for these two gates without a classical field. The first case which could 
be done without this operation was the three qubit Fredkin gate. The swap gate was relatively 
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Input Output 

10,0,0) 10,0,0) 
10,0,1) 10,0,1) 
)0,1,0) )0,1,0) 
10,1,1) 10,1,1) 
11,0,0) 11,0,0) 

X1,1,0) X1,0,1) 

Table 2.3: The truth table for the Fredkin (controlled swap) gate. This is a three qubit entangling 
gate, which when complemented with the single qubit rotations forms a universal 
set of gates for quantum computation. 

simple to encode, and by adding another energy level it was possible to add in the control qubit. 
Figure 2.6 shows the arrangement of levels and field modes that transitions couple to. 

Id) 
lb) 
Al 

A3 if) 
A5 

W3 VCWI)4 
W2 

W1 

D2 Iýý Ws 

la) As 
Figure 2.6: This level diagram is what is required to simulate a Fredkin gate. Note that mode 

one couples to two transitions. To simplify the derivation of the Hamiltonian in a 
particular interaction picture mode four does not feature in this diagram. In reality 
this diagram would be folded up for dipole allowed transitions; this layout is meant 
for aid in calculation. 

2.3.1.1 The Hamiltonian 

It is probably simpler to retroactively justify my choice of level system, so I will show how I 
derived the Hamiltonian and how it can be used as a Fredkin gate in the hope that the reader 
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gains an understanding through my working. The Hamiltonian in the Schrödinger picture is 

5 

H= EaQaa +E wi. äi 

a s-1 (2.33) 
+ 

[91&ba&1 
+ 92&eba2 + 93&dca3 + 94Qedai + 95Qfea5 + 96Qaf86 + h. c. ] , 

where a runs over the energy levels in the diagram. The first transformation I make on this 
Hamiltonian produces a Hamiltonian in the form of Equation (1.15). This puts the Hamiltonian 
in the correct form but with some additional time dependence. The transformation is given by 

5 

O= E«ý«« + ý, äj äi (w1 + Si) (2.34) 
a i=1 

Once again I am using the lower case deltas defined by 

Eb-Ea=wl+b1 

Eb-Ec=W2+62 

Ed-Ec=W3+b3 

Ed-Ee=wl+b4 

Ef-Ee=w5+b5 

Ef-Eo, =w6+bs 

Al = b1 
A2=81-d2 
03=S1-ö2+53 

04=51-52+53-J4 
(2.35) 

05=61-62+53-84+85 

L6=Ö1-52+53-54+85-S6. 

The frequency coloured in red is coloured to highlight that it is the second transition with wl 
when an w4 would be expected. As this system is supposed to include three qubits it appears that 
it is one mode short. The missing mode four is partnered with mode one to form a qubit, and it 
does not appear on the diagram because it is not close to resonance to any of the transitions. 
When the photon is in mode one, this system can make transitions around the loop of states. 
When the photon is in mode four, and for the appropriate detunings, the system cannot make any 
transitions. This is the mechanism that allows this pair of modes to form the control qubit. 

The Hamiltonian after this transformation is 

5 

H=- biäitäs + [g1oa1 + 92&c &+ 93& &3 
$-1 (2.36) 

+94'01-64)t&edäi + 95&feä5 + 967afäs + h. c. 
] 

The second term with mode one has gained a time dependency which I remove with the next 
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transformation, which is defined by 

O' = 
(äiä1 

+ 4ä2 + 4ä3 + ä6ä6 - &Qa - &") (64 - 6l) - 63 - 64 - 65. (2.37) 

This second transformation yields a Hamiltonian which will later produce Hamiltonian matrices 

with a zero in the top left corner and ascending detunings for the right ordering of states, just as 
in Equation (2.25) for the x-rotation gate. This leaves the Hamiltonian in the final form 

5 
H= 

(äiä1 
+ et2t&2 + 6'3t&3 + 6'6t&6 - Uaa - Qcc ) (61 

- 
64) + 53 + S4 + S5 Sid äi 

i-1 (2.38) 
+ 

[gi&ai 
+ 92Qc6a2 + 93&dca3 + 94Qedai + 95Qfea5 + 966af ag + h. c. ] 

This system has six modes. As I was to choose how I paired these modes up to make qubits, I 

used the arrangement 

ql, 9'2, q3) =I nin4, n2n3, nsns) - (2.39) 

As the Fredkin gate is simply a controlled swap operation, I eventually wanted to get 

11,0,1) ja) -' 11,1,0) ja) 
, (2.40) 

with all other states of the system remaining at, or returning to, their initial state at some time t. 
A list of the states of the system is given in table 2.4. The states in red in the table are the same 

Qubits Field Modes 

10,0,0) 10,1; 0,1; 0,1) 
10,0,1) 10,1; 0,1; 1,0) 
10,1,0) 10,1; 1,0; 0,1) 

10,1,1) 10,1; 1,0; 1,0) 
11,0,0) 11,0; 0,1; 0,1) 
X1.0.1) 11.0: 0.1: 1.0) 
X1,1.0) X1.0: 1.0: 0.1) 
11,1,1) I1,0; 1,0; 1,0) 

Table 2.4: Encoding of three qubits in the multi-mode Fredkin gate system. The order the 
modes are listed in is given in Equation (2.39). The states in red are swapped when 
the Fredkin gate acts upon them. The other states should remain unchanged. 

ones in Equation 2.40. I need to check that I can make these two states swap at some time t, and 
that at the same time and under the same conditions (detunings) the other states are unchanged. 

Now I can justify my choice of level system. Translating the left hand side of Equation 2.40 

into which modes have an excitation by using Equation 2.39, yields modes one, three and five 
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with a single photon, and modes two, four and six with zero. Referring to the level diagram in 

Figure 2.6, the accessible states of the system are simple to find and are given in table 2.5. If 

Qubits Field Modes Atom 

1. U. 1) 11. U: ft 1: 1. O) ja) 
10,0; 0,1; 1,0) jb) 
10,0; 1,1; 1,0) Ic) 

10,0; 1,0; 1,0) Id) 
1,1,1) 11,0; 1,0; 1,0) le) 

X1,0; 1,0; 0,0) If) 
I1,1, ()) 11. O: 1.0: O. l) 10) 

10,0; 1,0; 0,1) fib) 
10,0; 2,0; 0,1) Ic) 

Table 2.5: A list of the states of the system that may ev olve from 11,0,1) 1 a). Blanks in the 
qubits column are when a state of the field does not map to qubits. 

the intermediate states of the system, shown in black in Table 2.5, are all detuned but retain the 

multi-photon resonance between the two states of the field with the atom in state 1a), shown in 

red in Table 2.5, then the system will Rabi flop between the two states I want. This trivially 

works for all the other states of the qubits because they cannot form a chain between two states 

of the system that begin and end with the atom in state 1a). 

2.3.1.2 Effective Two-Level Case 

Now that the list of accessible states is known I can construct a matrix version of the Hamiltonian 

0 gl 0 0 0 0 0 0 0 

91 1l 92 0 0 0 0 0 0 

0 92 02 93 0 0 0 0 0 

0 0 93 03 94 0 0 0 0 
H= 0 0 0 94 04 95 0 0 0 (2.41) 

0 0 0 0 95 05 96 0 0 

0 0 0 0 0 gs Os 91 0 

0 0 0 0 0 0 gl O6+01 92f 
0 0 0 0 0 0 0 92 \ O6 + 02 

The most obvious next step is to make an effective two state Hamiltonian. This is not, however, 

necessary as three or tour state Hamiltonians are also possible. The two state system is the 

simplest to handle so I will show this first. Rearranging the Hamiltonian so that the first and sixth 

states are in the top left, and splitting it into the components needed to construct the effective 
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Hamiltonian 

0 0 Ho = 0 O6 

B_ gl 00 0 00 
0 00 0 g6 91 
Al 92 0 0 
92 IA2 93 0 

0 93 A3 94 
A= 0 0 94 04 

0 0 0 95 
0 0 0 0 
0 0 0 0 

0 
0 

o 0 0 
0 0 0 
o 0 0 
95 0 0 
05 0 0 
0 O6+Al 92V2- 

0 92V' O6 + 02 

(2.42) 

At this point I resorted to using a computer algebra system [80] to do the matrix inversion of A 
and matrix multiplication to generate the effective Hamiltonian according to Equation (2.8). 

O_23456 

Heff= 
-1-2-23-456 

12 324 5 (2.43) 
3 

The resonance condition is the difference in the diagonal elements and the effective coupling is 
the off-diagonal elements, 

2 
Deff = 06 - 

99 
(2.44) 

9eff =- 
919293949596 

(2.45) 
0102A304A5 

The discrepancy between the effective detuning and A6 is relatively large when compared to 
the effective coupling constant, highlighting the importance of adiabatic elimination to predict 
the level shifts. The Jaynes-Cummings coupling constant in a laboratory micromaser is between 
10 kHz and 100 kHz [25], and for a well behaved system the detunings should be an order of 
magnitude greater than a transitional coupling strength, which by Equation (2.45) gives at of up 
to a second, beyond the lifetime of a current micromaser cavity which is approximately 0.3 s 
[25]. 

The other states of the field that correspond to qubits all lack at least one photon required for 

a multi-photon resonance, so that the atom is incapable of making any transitions, trapping the 
system in its initial state. This satisfies the truth table for the Fredkin gate in Table 2.3 when 
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9efft = 7r /2, 

1,0,1 , a) H cos (gefft) 1,0,1, a) -i sin (gefft) 1,1,0, a) 
(2.46) 

1,1,0, a) ý--* cos (gefft) 1,1,0, a) -i sin (geft) I1,0,1, a) 

Remarkably this evolution is the same in the Schrödinger picture up to a global phase. 

2.3.1.3 Effective Three-Level Case 

In order to increase the effective coupling constant and decrease the gate time, it was sufficient 
to allow another resonance in the system. This increases the number of effective states in the 

system from two to three. It replaces the six photon resonance in the two state case into a pair 

of three photon transitions. These states are shown in table 2.6. The starting point for this was 

Qubits Field Modes Atom 

1,0. I) ýI. 0: 0.1: 1. O) la) 
X0,0; 0,1; 1,0) fib) 
10,0; 1,1; 1,0) Ic) 

¢) 10.0: 1.0: 1.0) Id) 
1,1,1) 11,0; 1,0; 1,0) je) 

11,0; 1,0; 0,0) jf) 
1.1.0) 1.0: 1.0: 0.1) ýa) 

0,0; 1,0; 0,1) fib) 
10,0; 2,0; 0,1) je) 

Table 2.6: This table contains the same states of the system as in table 2.5. The highlighted 
states are the states accessible to the effective three level Fredkin gate, which allows 
the additional state of the system in exchange for a much shortened gate time. 10) 
is a convenient short hand for the intermediate state of the field. 

the full Hamiltonian of the system as given in Equation (2.41). The division of this matrix 
into matrices Ho, A and B now requires that the diagonal elements associated the the states 
11,0,1, a), 1,1,0, a) and 10, a) are moved to the upper left corner of the Hamiltonian. After 
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this the matrix is split into the parts 

0 00 Al 92 0 0 0 0 
HO =0 i3 0 92 02 0 0 0 0 

0 0 Leg 
A 

0 0 A4 95 0 0 

91 00000 0 0 95 05 0 0 
B= 0 93 4000 0 0 0 0 ' 6+' 1 92\/ 

0 00 96 gl 0 0 0 0 0 g2 Ds + D2 

(2.47) 

The inversion of A is much simpler than in the effective two level system since it is composed 
of 2x2 block diagonals. The effective Hamiltonian using these matrices is 

O1230 

ia 
Heff 123 Q3 + 9a 9g,. 9 575 B (2.48) 

12 ý2 443 
456 9a 0 O6 - Ll4a5 

) 

There are now two resonance conditions. The first is the required multi-photon resonance between 
the two desired states of the system, 

2 
Deg=A6-Q 

. AS (2.49) 

The second condition is enforced to bring the intermediate state of the system into resonance, 

222 
0ý 

- 
Og -} Al 

1 93 94 
02 04 (2.50) 

222 

When A3 » 999+- this resonance condition is broken and the effective three state 
system reduces to the effective two state system. Like the two state case, only two initial states 
evolve and the others are static. These states evolve according to the equations 

1,1,0, a) " [gQ+gäcos (g't)] 1,1,0, a) 

+ ig"a sin (g't) 10) 

+ gaga [cos (g't) - 1] 11,0,1, a) 

where 

9a = 
919293 

9a = 
949596 

9=[; n2 + 9Q 0102 0405 

(2.51) 

9a, ß (2.52) 
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The effective couplings of the three state system are ga, p, and gq, Q and g' are for convenience. 
For complete population transfer go, = gp = \geff, reducing Equation (2.51) to 

11,1,0, a) I -' cost (gegt) 11,1,0, a) 

+i sin (2gefft)10) (2.53) 

- sine (gellt) 11,0,1, a) 

and the gate action is completed when gefft = 7r/2, 

1,0,1, a) I--' - I1,1,0, a) 
(2.54) 

1,1,0, a) 1-º -11,0,1, a) . 

There is freedom to adjust ga and gp by altering the detunings associated with them. As with the 
two-level case the states of interest are the same up to a global phase in the Schrödinger picture. 
This is a powerful tool when working with effective Hamiltonians; in exact Hamiltonians in 
cavity QED, such as the JCM when applied to the micromaser, there is little freedom to choose 
the coupling constant, but the effective coupling constants are composed of detuning parameters, 
which may easily be adjusted, as well as coupling constants which are defined by the properties 
of the cavity and are difficult to alter after manufacture. 

Contrasting this with the effective two level system with similar detunings and coupling 
constants, the gate time for the effective three level case is on the order of 1000 times faster, 

well within the lifetime of current micromaser cavities. 

2.3.2 Controlled Phase Gate 

The controlled phase gate is equivalent under single qubit rotations to the controlled NOT gate, 
so it may also form a universal set with the single qubit rotation gates, i. e. R, R, and controlled 
phase are universal for quantum computation. 

Input Output 

10,0) 10,0) 
l0,1) 10,1) 
(1,0) 11,0) 
11,1) -11,1) 

Table 2.7: The truth table for the Controlled Phase gate. This is a two qubit entangling gate, 
which forms a universal set of logic for quantum computation when complemented 
with single qubit rotations. 
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Figure 2.7: This plot demonstrates the fidelity of the numerically simulated Fredkin gate using 
values from the effective three state model. g is a typical coupling constant and A 
a typical detuning. For this plot all coupling strengths were set to be equal, as were 
the detunings A1,02, A4 and O5, however this plot holds for small variations in 
all these parameters. The values for 03 and O6 were derived from the three level 
model, Equations (2.49) and (2.50). The conditional fidelity applies if the atom is 
measured in 1a). 

This gate is a two photon version of the phase gate. A three level atomic system couples to 
two modes of the cavity. These modes belong to two different qubits (to be interacted). A photon 
in mode one corresponds to the first qubit in state 11), and a photon in mode two corresponds to 

the second qubit in state 11) as well. When both qubits are in the state I1) modes one and two 
both have a photon and the effective two state system can be excited up to the atomic state Ic). 

Detuning this state by 02 « Al leads to phase evolution of the system without excitation up to 

state 1c) only when both modes have a photon. In the case of one or both qubits in the state 10), 

at least one of the two modes has no photon to allow virtual excitation up to level ýc), leading 

to no phase evolution for these terms. As only the two qubit state 11,1) evolves, a time can be 

chosen to agree with the truth table for the controlled phase gate in table 2.7. 
The Hamiltonian of this system is 

H= Ea&aa + Wiäi äi + gl 
(a1ýba + ä1Qab) + 92 

(ý2th + ä2&ý) (2.55) 
a=a, b, c i=1,2 
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O1ý 
fib) 
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Figure 2.8: Using a ladder of three states, so that the upper and lower are near a multi-photon 
resonance with modes one and two, and far detuned from the intermediate level, 
this system enhances the phase evolution when there is a photon in each of the 
modes. If a photon is missing from one or both of the modes, phase evolution 
is suppressed. This can be used to construct a controlled phase gate. This is a 
multi-photon generalisation of the phase gate in Figure 2.1. 

Equation (2.20) is used with 

E EaQaa + (wi + öj) aa+ ai 

a 

(2.56) 

to transform this Hamiltonian into a more useful form, where Eb - Ea = wl + 61 and E. - Eb = 
w2 + S2. The detunings Di and Si are related by Al = 51 and L2 = 81 + ö2. The initial state 
of the system is 11,1, a) and there are two other accessible states of the system, 10,1, b) and 
10,0, c). The Hamiltonian matrix for this system is 

0 gl 0 
H= 9i Al 92 (2.57) 

0 92 I2 

This matrix is rearranged and split into components for constructing the effective Hamiltonian 

Ho =00, A= Al, B= 9i (2.58) 
0 A2 92 

This leads to the effective Hamiltonian in the limit of Di, »'2,91,92 

(2.59) Hell - A2-+ 
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This is the Hamiltonian for the effecti'e two level system, which has an effective coupling constant 

and effective detuning given by 

2_ 2 

9eff = 
9192 

I 
Reff = A2 + 910182. (2.60) 

In order for the controlled phase gate to work, I repeated the procedure, this time simply reusing 
the result for the phase gate. In the limit of Al »'2 and Leff » geff this is the detuned limit 

of the effective two level system, leading to the evolution of the state 1,1, a) 

\ 
1,1, a) H exp 

(ý9eff2t 
i I1,1, a) (2.61) 

Reff /// 

Choosing t= ir0eff/g ff completes the truth table for the controlled phase gate in table 2.7. 

2.4 Implementation 

My background in micromaser physics leads me to use the micromaser as a prototype for 
implementing this form of quantum logic. In this section I list these requirements and justify the 
micromaser as a good host system for them. 

2.4.1 Atoms on Demand 

Atoms are required on demand in a particular state. As with the micromaser, Rydberg atoms are 
appealing due to the strong coupling to microwave cavities and the useful spectrum of energy 
levels. Multi-step laser excitation systems like those used in the laboratory are suitable for 

creating many different Rydberg states. Hawri Majeed, Bruno Sanguinetti and Luke Johnson 

used this fact to resolve the 37Rb P3/2 states between n= 36 and n= 63 [62]. 

Production of atoms is described in detail in Chapter 4. A Rubidium dispenser emits 
Rubidium atoms which are collimated. The multi-step laser excitation uses infrared lasers to 

excite atoms up to a Rydberg state. The velocity of these excited atoms can be controlled by 

placing the first step laser at an angle, and detuning the laser. Only atoms with a velocity which 
Doppler shifts the first step light back into resonance with the 5S1/2 to 5P3/2 transition are 

excited up to 5P3/2; slower atoms will see a frequency lower than the this first step transition 

and faster atoms with see a higher frequency. The remaining steps, 5P3/2 to 5D5/2 and 5D5/2 

to nP3/2, are perpendicular and the third step is tuned to choose a particular Rydberg state. 
The remaining issue is producing a single atom at a well determined time. Suggestions 

include using a micromaser as a single atom source, a kind of optical lattice conveyor/accelerator 
[81] and the use of dipole blockade with a strobed first step laser. 
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2.4.2 Cavities 

This architecture clearly requires elaborate cavities in order to function. Several options are worth 

pursuing. One possibility is a cavity engineered to have more than one useful mode. This is 

beyond the scope of current manufacturing techniques, but certainly a possibility in the future. A 

proof-of-principle would require only two useable modes to test the R., Rz and controlled phase 

set. Another possibility is a network of overlapping open cavities. Again only two cavities are 

needed to demonstrate the universal set of gates. 
An alternative system that may be worth investigating in the future is stripline resonators 

[82,83], or any system that can be approximated to the Jaynes-Cummings model extended to 

multiple modes. 

2.5 Summary 

I have shown that multi-mode cavities provide an interesting platform for quantum information 

processing. At present it is not possible to realise a large scale machine based upon it, but it is 

my hope that this work will become useful in the future as cavity manufacture becomes more 

advanced. The next steps for multi-mode quantum optical logic are a study of the dissipative 

dynamics of the system due to a leaky cavity by using a master equation. Another possible 

extension is to consider a pair of field modes as a qudit using more than just single excitations 

of field modes, as shown in Figure 2.2, rather than simply a qubit. 
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Chapter 3 

Atom-Atom Entanglement 

It is still possible that quantum theory does not absolutely guarantee that gravity has to be 

quantized. ... In this spirit I would like to suggest that it is possible that quantum mechanics fails 

at large distances and for large objects. Now, mind you, I do not say that I think that quantum 
mechanics does fail at large distances, I only say that it is not inconsistent with what we know. 

Feynman Lectures on Gravitation (521 
Richard Feynman 

Cavity QED schemes offer a broad range of methods for producing entangled states of atoms. 
This could be particularly useful for quantum information processing and even testing quantum 

gravity as shown in Section 3.5. One state of particular interest is the GHZ state. It can be used 
to test quantum mechanics at a fundamental level, by testing a Mermin-Klyshko inequality for 

nonlocality [32], and for quantum information purposes. In this chapter I show a method for 

producing entangled states. I start off with a phase gate for atoms, and use this to build up GHZ 

states by chaining phase gates together. I also demonstrate how this phase gate generalises to an 
interaction that can produce N-atom W states [77]. 

I came to view this as almost the opposite of what I did in Chapter 2. In that chapter, I 

specifically avoided storing any information on an atom by using dispersive interactions. In this 

chapter I use dispersive interactions again, but this time to avoid storing information in the cavity 
field. In addition, the work in this chapter leads up to a possible architecture for a graph state 

quantum computer [33,34], which uses a multipartite entangled resource and measurements to 
drive the computation. In contrast the work in Chapter 2 uses the unitary model of quantum 

computation so that logic gates are reversible and measurements are usually used for readout 

rather than processing. 
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3.1 Controlled Phase Gates for Atoms 

Zheng and Guo proposed a scheme using a detuned two atom Tavis-Cummings model to perform 

a controlled phase interaction between two atoms passing through a cavity [35]. Haroche et 

al. tested this interaction by using it to produce and test for Einstein-Podolsky-Rosen (EPR) 

states, but in a suboptimal system with one atom travelling colinear to the other and at a greater 
velocity [36]. The results from this experiment was consistent with the prediction for Zheng 

and Guo. Recent advances in micromaser technology and a purpose built system will provide a 

complete controlled phase gate to good fidelity, which we plan to produce in the near future in 

the laboratory at the University of Leeds. The paper by Zheng and Guo was published in Physical 

Review Letters, and the four page limitation has led to gaps in the derivation. In addition it was 

at a time when the controlled NOT gate was considered more important than the controlled phase 

gate, so they included rotations to transform the system into a controlled NOT which detracted 

from the main derivation. In Section 3.1.1 1 give a more complete derivation than that available 
in the paper by Zheng and Guo [35]. 

3.1.1 The Tavis-Cummings Hamiltonian 

The Tavis-Cummings model generalises the Jaynes-Cummings model to the case of a single mode 
field interacting with N atoms. The derivation is very similar to that of the Jaynes-Cummings 

model, and eventually leads to the Tavis-Cummings Hamiltonian in the interaction picture [4] 

N 

HTC =Er 
i0&3) 

- ihg (Q(ß)ä 

jl 

This follows the same conventions I used to derive the Jaynes-Cummings model in Chapter 1, 

with the addition of subscripts and superscripts (j) to denote the j-th atom. It shares with the 
Jaynes-Cummings Hamiltonian one important feature; it preserves the number of excitations in 

the system. In the dispersive regime the detuning is large, so the movement of excitations from 

the atoms to the field, and vice versa, is not energy conserving and is suppressed. This does 

not limit the movement of excitation between atoms via virtual excitation of the field, as this 

conserves energy. Intuitively this provides an interesting way of interacting atoms together in a 
field without entangling them with it. 

Zheng and Guo use the limit of large detuning to produce an effective Hamiltonian. By 
doing this they remove the field as a degree of freedom, eliminating atom-field entanglement, but 

allowing virtual excitation of the field to pass excitations between atoms. Zheng and Guo use 
two atoms so N=2. Adiabatic elimination [29] can be used to derive an effective Hamiltonian 
from the original if some eigenvalues are very large (these correspond to the detuned states of 
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the system when an excitation from an atom has been transferred to the field). The theory of 

effective Hamiltonians is explored in greater depth in Chapter 2. A more rigorous alternative 
derivation can be found in appendix A. I. The essential part is the equation 

Heff=Hp-B"A-' Bt. (3.2) 

Projection operators are used to produce Ho, A and B. Ho corresponds to the states of interest, 
i. e. those that are not detuned. A corresponds to the rest of the states of the system, and B 
is (viewed in a block wise matrix) the upper right matrix. If the states of the system Ho are 
gathered to the top right of the Hamiltonian, then the block wise matrix for the Hamiltonian is 

given as 

H= 
Bi° 

Ä 
(3.3) 

The only assumption made is that the eigenvalues of A are large (i. e. large detuning for particular 

states). If we can assemble any Hamiltonian in this way then an effective Hamiltonian may be 

produced to simplify modelling with good approximation. For the purposes of the Zheng and 
Guo controlled phase gate only the cases of two ground state atoms entering, or a ground and an 

excited state entering need be considered. One would expect to need the case of two excited 
atoms, but an auxiliary state will be used instead, which is so far from resonance with the field 

that it may be assumed to be not present, reducing the system to a detuned Jaynes-Cummings 

model. A level diagram is provided in Figure 3.1. This case will be handled later. First I consider 

fie) 

Ii) 

wz 
1W2 

19) 

Figure 3.1: This level scheme shows the three levels used for atom-atom entanglement with the 
Zheng and Guo interaction. The cavity field mode has a frequency of wl, which 
is detuned from resonance with the le) to Ig) transition to provide a dispersive 
interaction. A classical field can be used to shift the atom from 19) to ji) and back 
to remove it from interaction with the cavity field. This is used so that at most 
one atom of the pair is in the excited state. 
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the two atoms in ground states. This is rather simple, as neither atom has any excitation and 
the field is not resonant with the atomic transition, so no interaction occurs. When one and 

only one atom is excited there are several possible states of the system; fie, g, n), I e, e, n- 1), 
I g, g, n+ 1) and fig, e, n). We expect the states fie, e, n- 1) and I g, g, n+ 1) to be suppressed 
due to detuning, so these belong to matrix A and the resonant two to Ho. Constructing the 

matrix using the template from Equation (3.3) yields 

UO -ig \/n +1 ig/ 

H00 -ig n+ 1 ig n1 
(Il(, B 

(3.4) 
ig n+ 1 ig n+ 1 -0 0h Bt A 

-ig f -ig/ 0O 

where I'Y) is in the order ( fie, g, n) ,1g, e, n) ,Ig, g, n+ 1) , 
Ie, e, n- 1))T . By Equation (3.2) this 

reduces to the effective Hamiltonian, 

hg2 (1 1 
Heff 

011 
(3.5) 

ßg2 

-Q 
(&eg, 

eg + &ge, ge + Qeg, ge + &ge, 
eg) 

Solving the Schrödinger equation for this produces time dependent evolution. When we make 
the mapping fie) - 11) and fig) - 10), the substitution A= g2/0 and a transformation back to 

the Schrüdinger picture, the time evolution is 

1,0, n) ei(a-wn)t [cos(At) 11,0, n) +i sin(. At) 10,1, n)] 
i(a-wn)t 

(3.6) 
0,1, n) ý-> e [cos(, \t) 10,1, n) +i sin(At) 11,0, n)] 

This seems to be a different approach to that taken by Zheng and Guo. The results are consistent 
though, and my familiarity with effective Hamiltonians means that I favour this method. A more 

rigorous version can be found in Appendix A. These equations are useful for At = it and n=0, 

which returns the state of the system unchanged. When n=0 the cavity must be in the vacuum 

state, which may be achieved by cooling. The importance of this is not seen by these equations 
due to the interaction picture, but a general state of the field will lead to a phase spread in the 

gate. The cavity is in a thermal state, and the only state for which the thermal state and number 

states converge is the n=0 state. This eliminates the spread in phase. 
I now consider the state 10,0), which corresponds to the system initially in the state Ig, g, 0). 

No excitations are present in this state of the system, so there is no phase evolution. 

1 9,9, O) '-' 1 9,9,0) (3.7) 
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So far we have a working scheme that returns 10,0), X0,1) and 11,0) unchanged. The 

remaining state to deal with is X1,1). For this Zheng and Guo put a rotation zone before and after 

the cavity for one of the atomic beams. This rotates the atoms in the excited state in one stream 

only to ji), and back again on the other side of the cavity. This breaks part of the symmetry and 

changes one of the two equations above. This will change one initial state to look like Ig, i), 

which like 1g, g) will not interact with the field, retaining the parts already solved. The final 

possible state to input is altered from le, e) to fie, i) before interaction, which is effectively a 
detuned Jaynes-Cummings model on the first atom as the second is so far from resonance. It is 

simple to derive the detuned JCM from the method used above, resulting in the evolution 

fie, i, n) H e-za(n+1)t fie, i, n) (3.8) 
l9, i, n) t-º e-iant l9, i, n) 1 

Selecting At = it and n=0 reduces this to a parity operation fie, i) '-º - le, i) and Ig, i) H 1g, i). 
The truth table for before and after the interaction inclusive of all rotations is given by table 3.1. 

Input Output 

10,0) 10,0) 
10,1) 10,1) 
11,0) 11,0) 
11,1) -11,1) 

Table 3.1: The truth table for the collisional phase gate introduced in [35]. This is inclusive of 
a pair of rotations performed before and after the cavity on one beam. I have used 
the mapping le) H 11) and fig) 1-4 10). 

The physical realisation of this gate is rather simple in principle. The cavity is a pair of 

mirrors forming a high-Q resonator in the microwave regime, near 21.456GHz. The atomic 

transition can be chosen to be the same as that used by the micromaser, between 63P and 61D 

states of rubidium 85. The rotation zones may be microwave waveguide with microwaves of an 

appropriate frequency. Atoms pass through a hole in the side of the guide which is just a tube of 

copper of rectangular cross section. Alternatively a lower Q cavity may be used for each rotation 

zone. A diagram of the arrangement for the phase gate is in Figure 3.2. 

'Dr. Martin Jones insisted that I include It, o, n, i, c). 
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A& detectors 
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rotation zone 
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Figure 3.2: A diagram demonstrating the collisional phase gate with two atoms as the qubits. 
The atom sources produce synchronized atoms with equal speed. The dashed 
arrows indicate the trajectory of individual atoms, the solid arrows are used to 
label components. This arrangement is a controlled phase gate on atoms input in 
(ai 19) + ßl le)) (9 (a2 19) + /32 le)) with arbitrary a1,2 and /31,2. 

3.2 Making Greenberger-Horne-Zeilinger States 

In this section I show how the Zheng and Guo collisional phase gate can be used to construct N 

atom GHZ states [37]. The N atom GHZ state is defined as [57] 

GHZN) - 
I9)ON+I e)®N (3.9) 

This method was developed for a paper I wrote entitled `Dephasing of entangled atoms as an 
improved test of quantum gravity' [27]. 

Using one cavity and changing the interaction time so that At = 7r/4, two atoms may be 

interacted to produce an EPR state [38]. This may be done by removing the rotation zones 
in Figure 3.2 and sending in one atom in fie) and the other in fig) so that Equations (3.6) are 

sufficient to describe the interaction, resulting in the state (leg) - age))/v. 

Returning to the original interaction time At = 7r and by fixing the system so that only atoms 

enter, the result of the interaction with an additional rotation in the state 1+) = (1g) + le))/v/'2- 

is the Bell state (Igg) + lee))/\. This arrangement is shown in Figure 3.3. In the N atom 

generalisation of a GHZ state in Equation (3.9) this produces the N=2 state, one of the Bell 
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cavity . -- ýe)(iý "----->, 

A 

3ýr/2 

w 
Figure 3.3: This diagram shows a more specific arrangement than the simple phase gate in 

Figure 3.2. Atoms are produced in the excited state by the sources and are rotated 
into the state 1+) = (1g) + le))//. The phase gate is then applied to these pairs 
of 1+) state atoms. After the final rotation on each atom this produces an EPR 
state to be measured. The smaller circles here represent the rotation zones shown 
in Figure 3.2. 

states. 
This system can be adapted to make larger GHZ states. By considering the graph state 

notation for an N-atom GHZ state the route to doing this becomes more obvious. This graph 
consists of a single qubit in the centre, with edges (controlled phase gates) to the rest of the 

qubits2. This is shown in Figure 3.4. It is clear from this that one atom needs to interact with 
the rest of the atoms, but none of the other atoms need interact with each other. What the graph 
does not make clear is what single qubit rotations must be applied, since the graph depicts all 
states with equivalent entanglement to the GHZ state. This was simple enough to guess based 

upon the existing two atom case. The process for the atom travelling vertically in Figure 3.3 is 

simply repeated before the final rotation of the horizontally travelling atom. This is shown in 
Figure 3.5 The equivalent circuit for the state produced with the arrangement in Figure 3.5 is 

shown in Figure 3.6. 

2That is not to say that a graph describing a particular state is unique. The `central' atom may obviously be 
permuted and other graphs that have a different number of edges may also be possible [39]. 

54 



CHAPTER 3. ATOM-ATOM ENTANGLEMENT 

0 

Figure 3.4: This is the graph representation of an N=6 GHZ state. Each vertex represents a 
qubit initially in the 1+) state, and each edge is a controlled phase gate between 
qubits. The order in which the controlled phase gates are performed does not 
matter since they commute. Additional single qubit rotations after entanglement 
are not described in this notation. 

3.3 Making W States 

The EPR state can be viewed as the degenerate case of an N-atom GHZ state and an N-atom W 

state containing a single one and (N - 1) zeros, although it is not commonly thought of in this 

way. This hints at the possibility of using the dispersive interaction that Zheng and Guo used 
[35] with more atoms to form aW state. By sending (N - 1) atoms into a cavity in the ground 
state with one atom in the excited state, a superposition of the excitation being present in every 
possible configuration of the N qubits could be seen after the interaction. This was my initial 

guess based upon conservation of energy. 
Learning from the two atom case, I assumed that I had to work with an n=0 field for W 

state production in this manner. In the interaction picture the Tavis-Cummings Hamiltonian (3.1) 
leads to the Hamiltonian matrix 

00... 0 -ig 
00... 0 -ig 

H= (3.10) 

00... 0 -ig 
ig ig 

... 
ig -L 

where the lower right corner corresponds to the state of the system with n=1 and all ground 
state atoms, which is to be eliminated. Adiabatic elimination is trivial for this system3 and results 

;I choose A= -0, B is the rightmost column except for the -0 term, and Ho is the remaining (N-1) x (N-1) 

square matrix of zeros. 
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Figure 3.5: This diagram is an extension of Figure 3.3 to a 5-atom GHZ state. This demonstrates 
that for a GHZ state of size N, N-1 cavities are needed. From the point of 
view of quantum circuits, five 1+) states are manufactured, then one of them has 
a controlled phase interaction with each of the others in sequence. After a final 
rotation on each atom (except the first) of 7r/2 a GHZ state is made. 

in the effective Hamiltonian 
11... 1 

y2 111 
Heff =0 (3.11) 

11... 1 

where the matrix is of size (N - 1) x (N - 1). If the system starts in the state fie, g, ... , g) then 
it will evolve as (neglecting a global phase factor) 

®(N_1 f (NAt) 
-N-2 

(N, \t)] l ®N e) I9) --> Lcos 2liN sin 2 
Ie I9) 

2 (N)t) N-1 (3.12) 
+iN sin 2 

I9)®M le) I9)®(N-M-1) 
N 

M=i 

where A= g2/0. The amplitudes of the first term and the last term need to be equal in 

magnitude, which occurs at 

t= 
NA 

arctan I 
4N - N2 

) 
(3.13) 

As t must be real, this result is only valid for N<4. If N=3, t= 27r/9A. If N=2 or N=4, 
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Figure 3.6: This is the equivalent circuit to an experiment involving four cavities and five 
atomic beams to produce an N=5 GHZ state. le) and Ig) map to 11) and 10) 
respectively. The Hadamard operations are performed by a single Ramsey field to 
place atoms in Ig) into the state fie) + Ig) /v"2-. The four controlled phase gates 
are performed by the cavities in the experiment. 

t= ir/4A. The N=2 case is of course the EPR state. I found this a surprising result, but in 

agreement with numerical simulations. Before looking closely at this method of producing W 

state, I expected it to work for any number of input atoms, rather than a maximum of four. 
In addition to this interaction time the amplitudes of each state need to have the same phase, 

which is true of this system due to symmetry except for the amplitude of the initial state. The 

necessary phase adjustment can be done by simply Stark shifting the atom that was initially in 
the excited state after it exits the cavity. This is a form of phase gate, which is discussed in 
Section 3.4.2. 

3.4 Graph State Quantum Computation 

Using atom-atom controlled phase gates it is possible to produce more general entangled states 
than GHZ states. One elaborate extreme is the production of hexagonal lattice graph states, as 
shown by Simon Benjamin 1401. As this work is unpublished I will give a brief description in 

this section. 

3.4.1 Graph States 

Graph state quantum computation [331 is a relative newcomer to the field of quantum information. 
Prior to it, quantum algorithms used mainly unitary evolution to do computations. The graph 
state approach is also known as measurement based quantum computation due to the reliance on 
projective measurements to drive computations. This approach assumes that a large entangled 
resource can be manufactured, and then measurements on component qubits in particular bases 

to encode, drive and read out the computation are used. As the operations are measurements they 
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cannot be undone, in contrast to the unitary approach which is reversible by definition. Thus the 

original name one-way quantum computation. 

A recent paper by Blythe and Varcoe [411 proposes a cluster state computer using crossed 

atomic beams. This can be achieved using arrays of the atom-atom controlled phase gate already 
described. Provided that timed single atom sources can be produced then this offers a potentially 

scalable way of producing two dimensional graph states. Time sources of atoms are briefly 

discussed in Section 2.4.1. 

Two arrangements are particularly appealing. One is a minimalist approach, which uses the 
least resources possible to produce a hexagonal graph state. This is minimalist because each qubit 
has three edges (in graph notation), the minimum required to form a regular two dimensional 

lattice. It is important that the lattice is two dimensional, as a one dimensional graph state 

quantum computer can be efficiently simulated on a classical computer, meaning that there is no 
`quantum speedup' [34]. An example of a hexagonal graph state is shown in Figure 3.7. The 

II II II II 

II II II 

Figure 3.7: The hexagonal lattice graph state is in a sense the minimum useful resource for 
quantum computation with a quantum speed up. Edges have been added to the left 
and right sides to indicate that the horizontal extent of the cluster state is arbitrary. 

experimental arrangement for a hexagonal graph state is given in Figure 3.8. The enclosed region 

can be repeated to widen the graph state. One particularly interesting feature of this manner 

of producing graph states is continuous production. Only a small portion of the graph state 

exists at any given time, so a computation runs in one direction along the state. An advantage 

of this is that only the parts of the states being operated on need to exist. The rest of the state 

can be manufactured just in time for the next step in the computation. This avoids decoherence 

creeping in to computations as much as possible. Another advantage is that the graph state can 
be infinitely long. If the entangled resource was produced all at once, then the extent must be 

finite and state is prone to decoherence. 

The second arrangement requires more resources, but scales in the same way. This arrangement 

entangles each atom with four others to produce a square lattice, or cluster state, as first proposed 
by Raussendorf and Briegel [33]. The apparatus to construct the state is shown in Figure 3.9. 

Literature on graph state quantum computation centres around the cluster state. Another proposal 
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Figure 3.8: This arrangement of cavities constructs a hexagonal graph state. Ovens along the 
top (bottom) fire simultaneously so that they become entangled where the green 
(red) dashed lines cross over. The ovens along the top fire out of time with the 
ovens at the bottom so that atoms from the top and the bottom cross over where 
the green and red lines cross to become entangled. The enclosed region is the unit 
cell. Rotation zones are not shown as they are taken to be part of the apparatus of 
the ovens and the detectors. By inserting multiples of this cell side-by-side in the 
place of the one in this figure, the size of the graph state will increase. 

that uses continuously generated cluster states is the photonic module quantum computer presented 
in a paper by Stephens et al. [421. 

3.4.2 Rotations on the Bloch Sphere for Atomic Qubits 

As the surface of the Bloch sphere represents all pure states of a qubit, only two rotations on the 

sphere (about different axes) are required to access any qubit state. Conventionally the rotations 

on the Bloch sphere are R, It. and R, which are the rotations about the x, y and z axes of the 

sphere. It is sufficient to pick rotations about two non-coincident axes on the Bloch sphere to 

produce any rotation. In this section I show that the principles behind rotations in x and z have 

already been experimentally demonstrated and presented in a beautiful paper by Ryabtsev et al. 
143]. These atomic rotations are designed to operate on Rydberg atoms in atomic beams, making 

them a perfect complement to the Zheng and Guo collisional phase gate (35] for building graph 

state quantum computers. 
Two processes are used which produce a rotation Rx and a rotation R. Firstly, irradiating 

the atom with resonant electromagnetic radiation will drive the transition between the upper and 
lower levels in the atom, acting as a rotation about the x-axis of the Bloch sphere. This accounts 
for one of the two needed rotations, and this is fully described using the semiclassical theory of 

atom-light interactions. Equation 1.9 in Chapter 1 with a classical electric field can be solved to 

show that resonant radiation simply drives the population between the upper and lower states 

sinusoidally. The Hamiltonian for a two level atom in a resonant classical field in the interaction 
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_ _ _ _ \ 6 .6 

Figure 3.9: This arrangement of cavities constructs a cluster state. Ovens all fire at every 
time step. The enclosed region is the unit cell. By inserting multiples of this 
cell diagonally (and reversed to align ovens with detectors) in the place of the 
one in this Figure, the size of the cluster state will increase. With one this exact 
arrangement the state produced is a two qubit wide ribbon. This version was 
developed by Neil Lovett in collaboration with Ben Varcoe and myself. 

picture is 

HI =2 (Q+ + Q-ý (3.14) 

where 12/2 is the coupling strength of the atom with the field4. The amplitudes of the atom 

given as a(t) Ig) +, 3(t) le) evolve according to the equations 

a(t) = ao cos(Stt/2) - i/3o sin(52t/2) 
(3.15) 

ß(t) = /3o cos(Slt/2) - iao sin(Qt/2) , 

which is equivalent to Rte. The simplest implementation of a second rotation is by applying an 

electric field to the atom. This effectively increases the transition energy between the levels of 
the atom. In the interaction picture this leads to an increased rate of phase evolution compared 

with an unshifted atom. This additional phase is equivalent to a rotation about the z-axis of 
the Bloch sphere.. This technique was shown to work by Ryabtsev et al. [43]. They applied a 

resonant microwave pulse to drive the transition between two sodium Rydberg states. This is the 

same interaction that I detailed above, tuned to place the atom in an equal superposition of the 

two states. The Stark shift is next applied followed by an identical microwave pulse to the first. 

The combination of interactions allows Ramsey interferometry of the Rz operation applied by 

the Stark shift. The measurements in [43] demonstrate that the phase operation R, z is indeed 

applied and is coherent. 
°S2 is the Rabi frequency. 
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Rydberg S and P states are particularly good to use. P is more susceptible to external fields 

than S states of the same principal quantum number n, so by applying an electric field to an 
atomic qubit with a lower level as an S state and a higher level as aP state, the upper level will 
shift away from the lower level in a predictable way. For Rydberg states of alkali metals the 
Stark shift varies approximately quadratically with the electric field amplitude. 

Ja -aE2 , (3.16) 

where a is the polarizability of a particular state of the atom and E is the amplitude of the 
electric field. The polarizability of two states will be different, so the relative phase shift will be 

given by 
0= E(a9 - ae)E2 , (3.17) 

where e is a factor related to the pulse shape of the electric field. Applying an electric field for 

some time t, the phase of the atom in the interaction picture evolves as 

a je) +A I9) e seta je) +0 I9) 
, (3.18) 

which is a phase shift gate R.. The factor e is calculated using an integral over the pulse shape 
of the electric field. 

It is important to note that Rydberg atoms have complicated `Stark maps'. As the electric 
field is increased, some energy levels converge and for an adiabatic change in the field there will 
be avoided crossings. The approximation that the level shifts are quadratic with field is only true 
for relatively weak fields where avoided crossings do not occur, i. e. below the Inglis-Teller limit 

[75]. This necessarily means that the field will always be too weak to ionise the Rydberg atoms. 

3.5 Probing Quantum Gravity 

In a recent meeting at the Rutherford Appleton Laboratory I was involved in a discussion 

about matter-interferometer experiments that may be sensitive to conformal fluctuations; local 

perturbations in the spacetime metric equal in all directions. In recent papers conformal 
fluctuations are expected to be a hallmark of the mesoscopic domain of a quantum theory 

of gravity [53,55,56]. The vacuum graviton fluctuations of quantum gravity are coupled to 

conformal fluctuations that are near the Planck scale, which on the mesoscopic scale leads to 

anomalous proper times. The authors draw an analogy with Brownian motion, in that the origin 

of this effect is at a much smaller scale than the measured effect. In an atom interferometer 

this will lead to a dephasing and reduction in visibility of interference fringes. In this section I 

demonstrate how GHZ states of atoms provide a more sensitive measurement of dephasing than 
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atom interferometers. 
Theories of quantum gravity are not created equal. Each has a unique background parameter 

A. This A is associated with a rate of dephasing. Of course, in the laboratory there are numerous 

sources of dephasing which are likely to overwhelm the dephasing due to gravity. However, if an 

experiment is refined to the point where it passes the A associated with a particular theory of 

quantum gravity then this theory is effectively ruled out. Interferometric measures of dephasing 

thus form a small scale laboratory test that rules out theories of gravity. The background 

parameter is defined and discussed in Section 3.5.2. 

3.5.1 Quantum Gravity and Conformal Fluctuations 

Work on conformal fluctuations in this context started with a paper by Power and Percival [53]. 
This was a first step which had some notable flaws, but the key concepts and mathematical 
foundation was used to update the theory and correct it in a paper by Wang et al. [55]. A 

conformal wave is a fluctuation in the spacetime metric in all directions. In the laboratory this 
can be considered in the low gravity limit 

gap = (1 + A)Zr7ap 
, (3.19) 

where g is the metric resulting from the wave, A is the amplitude of the wave and 17 is the 
Minkowski metric. This kind of wave was originally chosen because of the relative simplicity 

of it. Power and Percival went on to consider the effect of quantising conformal waves so that 

the conformal field is subject to vacuum fluctuations. They showed that the vacuum conformal 
fluctuations couple to matter. If an atom is split over two paths in an interferometer, then 
the random interactions with the conformal field will manifest as an anomalous proper time, 
dephasing the atom and reducing the visibility of interference fringes. It is important to note that 

the quantisation considered is in the weak field, low velocity limit. In these limits time can be 

considered separately from space, and gravitational waves can be quantised. This is expected 
to be a valid approximation at the mesoscopic scale but not the Planck scale, where an actual 
theory of quantum gravity is required. 

Using the dephasing p of a two state system which will be defined in Equation (3.24) with 
the two states representing the two paths, Power and Percival showed that dephasing due to 

conformal fluctuations is given by 

F M2c4A4TTO 
(3.20) 7ý_v h2 

where M is the mass of the atom, T is the time the atom travels along the arms of the 
interferometer, ro is the Planck time and AO is the amplitude of the conformal field. 
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The major criticism of Power and Percival's work is that the conformal field is constrained, 
and not a good candidate for quantisation. Gravitational waves, in analogy to electromagnetic 
waves, are the natural candidate for quantisation as they are the only necessary dynamical degree 

of freedom. Wang developed conformal geometrodynamics [54] which would later address this 
problem [55]. Wang showed that the conformal waves and gravitational waves are bound together 
by a Hamiltonian constraint, 

H=f 
{fl(cF)+ 

l(GW)] d3x (3.21) 
Js 

where H(CF) is the Hamiltonian of the conformal field and ? -l(GW) is the Hamiltonian of the 

gravitational waves. This equation is in the limit of slow motion and weak fields to decouple the 

spatial components of the Minokowski metric as a Euclidean 3-metric appropriate to a laboratory 

experiment. In the limit of no gravitational or conformal waves, the vacuum gravitons dominate 

and amount to a surprisingly large energy. For the range of A expected, vacuum graviton energy 
density is expected to be huge; at least 1074 kg/m3. This is clearly not what we see. Fortunately 

the derivation of Equation (3.21) showed that the conformal field has a negative energy density. 

Putting this together, the vacuum graviton energy must be balanced by conformal fluctuations to 

give H=0. Thus there are expected to be conformal fluctuations, a fact that rescues much of 
the mathematics and reasoning by Power and Percival [53]. 

3.5.2 The Background Parameter 

The background parameter A was introduced by Power and Percival [53]. It is a dimensionless 

scale factor that relates the mesoscopic scale to the Planck scale by the relation 

lcutoff = "lPlanck (3.22) 

This is the cutoff scale at which spacetime starts to look `bumpy'. At the Planck scale, it is 

expected that a theory should generate the background metric without the need for the background 

metric to be explicitly added, so by the correspondence principle, moving from the classical limit 

towards the quantum limit should show the beginning of a quantum theory of gravitation as this 
bumpiness on otherwise flat space (in a laboratory). Of course, it is not known which theory (if 

any at present) is correct, so A depends entirely on the theory. This way the length scale of the 
beginning of the breakdown of general relativity can be used as an indicator of the underlying 
theory. 

5This is satisfied in the laboratory because the experiment that exploits this is an atom interferometer, in which the 
atoms are travelling slowly compared to the speed of light in the laboratory frame. The laboratory is also assumed to 
be a very weak gravitational field, which is the case for on Earth. 
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The background parameter A is like a mean free path for an atom. As an atom travels through 

spacetime, it will be `jogged' by conformal fluctuations, leading to the analogy with Brownian 

motion. When Brownian motion was first interpreted in 1905 [50] individual atoms were beyond 

the capability of the instruments of the time to measure, yet the effect atoms had on a much 
larger mass scale was apparent, and could be used to infer the presence of atoms and molecules. 
The mesoscopic scale at which dephasing can be measured can be used to indirectly measure 
physics at the Planck scale. The larger A is, the longer the atom travels on average between jogs. 
Each jog leads to a phase shift on the atom, as the conformal fluctuation leads to an anomalous 
proper time. This effect needs a phase reference to be detected, and this is achieved through 

atom interferometry which effectively references the atom to itself over two different paths. Over 

many atoms this effect should average out as a loss of visibility in interference fringes. The 

updated result in [55] gives the link between the dephasing seen and .\ as 

A_ 
8c4-r0 27r5 M2T 

113 

9h2 P 
(3.23) 

The background parameter is expected to be in the 102 -106 range [53]. Throughout this literature 

[53,55] the experimental result quoted is the high precision Caesium atom interferometry of 
Peters et al. [44], which puts a lower bound on the background parameter of A> 103. This is 

already within the range predicted by Bingham [45]. This is promising, as refinements to an 
interferometer to reduce other environmental causes of dephasing should raise the lower bound 

even more. 
Unfortunately atom interferometers are difficult to refine. The obvious route to improving 

an experiment is to use more massive particles, such as carbon-60 or larger organic molecules. 
However these introduce more decoherence channels. For example, for a single atom heat has 
little meaning, but for a molecule it can have a serious impact on the visibility of interference 
fringes [46]. The scope for improving matter interferometers to the extent needed to cover the 

rest of the range of ). is limited. 

3.5.3 GHZ Measurements of Dephasing 

The type of decoherence due to the gravitational fluctuations discussed in [53,55,56] is dephasing. 
N-qubit GHZ states are known to be extremely sensitive to decoherence, and may be the ideal 

multipartite state to measure gravitationally induced dephasing [47]. Dephasing of a single two 

state system is given by 

lal2 0* JaJ2 00 ap* 

a*Q 1012 -4 
0 11312 

+ (1- p) 
(a*, 

3 0 
(3.24) 
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where p ranges between zero for completely pure and one for completely dephased. Atom 

interferometers are sensitive to (1 - p) by measuring the visibility of interference fringes. For N 

parties in a GHZ state, the expectation of the system in the o basis of all parties is related to 

the expectation of the dephasing. A general measurement basis is defined as [48] 

B; = [o cos (0z) + o, sin (0j)] sin (61) +o cos (B$) . (3.25) 

The angles Bi and Oi correspond to angles on the Bloch sphere. The correlation for an N-particle 
GHZ state with observables in arbitrary bases Bi is 

(B1B2 
... 

Brr) = 
1-i- (2 1)N jj 

cos (Bi) + (1-p)N COS 
E Oi H 

sin (Bi) 
. 

(3.26) 

ti=1 i=1 i=1 

If the basis angles for all particles in the GHZ state are set to 0= it/4 and =0 then this 

equation reduces to 
(Q®N) p)N . (3.27) 

This demonstrates that the measurement of the correlation of the atoms comprising the GHZ state 
is more sensitive to dephasing than the measurement of any one atom alone. If this measurement 
is close to unity, then this can be approximated with the binomial expansion 

(Q®N) 1- Np , (3.28) 

so this measure is at least N times more sensitive than the corresponding atom interferometer. 

Using this it may be possible to produce an enhanced test of quantum gravity using the same 

micromaser technology that can produce GHZ states. 

3.5.4 Augmented Tests with GHZ States 

After some thought about gravitationally induced dephasing I surmised that it should also apply 

to distributed entangled states of atoms. The jump in logic here is from using an atom in a 

positional superposition as applies to the atom interferometry approach to using an atom in a 

superposition of electronic states. The first instinct is a reflex. The atom is in the same position 

whatever the electronic state. This is not true however, as electronic states of Rydberg atoms can 
have very different wavefunctions. It should be noted that this is an experiment on the electronic 

states of atoms, so the mass that must be considered is the mass of an electron which reduces the 

effectiveness of the interferometer. However, the scaling may be better than atom interferometers 

as I will show in Equation (3.30). 
Plugging the dephasing of a GHZ state into Equation (3.23) is a naive approach, but a 
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reasonable first attempt at showing how micromaser technology may be used to measure quantum 

gravity. This is currently available as a preprint and has been submitted for publication [27]. The 

resulting equation is 
8c4T0 2lr5 M2T 

1/3 

(3.29) 
9h2 1- (Q®N)1/N 

This is an exciting result. It shows that by using GHZ states there is another free parameter to 
improve the experiment, escaping the limitations of atom interferometry. If Equation (3.28) is 

substituted in instead for the case of measurements close to unity, an Equation which is simpler 
to interpret is derived 

A 8c-ro 275 NM2T 
1/3 

(3.30) : 
9h2 1_ (o N) 

This equation shows that N does not scale as well as mass in principle. However, as I have 

already noted, mass is a difficult quantity to increase and making the jump to molecules allows 

other dephasing channels. The number of particles may be more practical to increase. 

3.5.5 Discussion 

If a very large GHZ state is considered, then from Equation (3.27) I assume that the dephasing 

becomes extremely fast. This offers a possible explanation for the emergence of the classical 

world from the quantum world. It is intriguing that quantum gravity may simply rule out the 

possibility of very large long lived entangled states due to dephasing. This may be an issue 

for quantum computers in the future. Some quantum computer architectures may rely on very 
large entangled states of massive particles to operate. Gravitational dephasing may mean that 

architectures have to be optimised to produce entanglement just-in-time such as the machine in 

Section 3.4.1. This effect is only predicted for GHZ states as the dephasing of a GHZ state as 

given in [48] does not generalise to other types of entangled state. 
It is fairly simple to show that for an N party W state the dephasing of each atom enters the 

off-diagonal elements of the density matrix as a factor of (1 - p)2, for any value of N. This 
indicates no gain in sensitivity for W states. For a GHZ state this factor is (1- p)N, leading to 
the chosen measure which appears to be maximally sensitive. 

3.5.6 Alternatives 

Another option for an enhanced measure of gravitational dephasing I have speculated is using 
NOON states of atoms in optical lattice where a NOON state is defined as [49] 

I'L'NOON) = IN, 0) + euI 10, N) (3.31) 
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where IN, 0) is N atoms in one position and 10, N) another, i. e. two different wells in an optical 
lattice. This is essentially a quantum metrology experiment. 

In this type of experiment the atoms are in a spatial superposition. This makes it directly 

compatible with the work of Wang et al. [55] with no modification. Another positive point is 
that this a NOON state is effectively a single particle with N times the mass of a single atom. 

Atoms are loaded into a lattice potential. The potential barrier between this lattice point 

and a neighbouring one is lowered, producing a NOON state at the two lattice points and raised 
to preserve it [51]. After some time to evolve and interact with the conformal field the barrier 

is lowered again and atoms measured on either side. If perfect coherence is maintained all 

atoms should be measured in one potential well. If there is some dephasing then atoms will be 

measured on either side. Equation (3.23) in this situation is changed to include the factor of N. 

(8c4-ro 27r5 (NM)2T 113 
(3.32) 

9h2 p 

This is clearly an improvement over straightforward atom interferometry and the scheme I 

presented for GHZ states. Sadly this idea is not yet mature enough to be properly presented in 

this thesis. 
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Chapter 4 

Experimental Set Up 

4.1 The Cryostat 

As explained in Chapter 1, the maser cavity must be kept cold. This is not only to superconduct 
to reduce resistive losses to the walls of the cavity, but to reduce the thermal photon count in the 

cavity field which would affect the dynamics of the system. It is essential that the maser cavity 
be kept as cold as possible. To that end we decided to use a dry helium dilution cryostat. Dry in 

this instance means that all cryogens are contained in closed cycles, eliminating the need for a 
helium bath. In principle it should require less maintenance and be able to run continuously. In 

addition the design of the cryostat allows fast turnaround. The entire chamber and heat shields 
can be built up in less than an hour by two people. 

The machine is a prototype, and had software and hardware faults which we addressed. These 
include a malfunctioning compressor on the helium dilution cycle which was ultimately replaced 
for a different model, software upgrades, replacement of the rotary valve component of the pulse 
tube cryocooler, broken helium lines inside the cryostat which I soldered back together and most 
recently a broken turbomolecular pump controller for the pump in the helium line. Another 

problem was a large contamination of the helium cycle with dirty helium. I recently completed 
the clean of the helium, and the cryostat is ready to run again. 

It is important to consider the power of the dilution cycle. At 100 mK the cooling power is 

rated at 100 µW. Fortunately the only component that needs to be this cold is the cavity and a 
device to tune it. 

Figure 4.1 is a simplified cross-section of the VeriCold helium dilution cryostat that we use. 
The experimental region is in the large white space in the lower part of the diagram. The white 
spaces above 4K are dominated by the pulse tube cooler. In the most modern design I have fed 

all cables in from the top of the chamber, using each stage to cool the cables in steps. Martin 
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Jones had already fed in the optical fibres from the top when the system was at Sussex. I fed 

through electrical cables, and eventually the microwave lines this way. 

Figure 4.1: A simplified cross-section of the VeriCold helium dilution refrigerator. The cryostat 
is a single vacuum chamber with ports for feedthroughs at the top, a reconfigurable 
plate at the bottom and five KF40 ports for connecting vacuum equipment and 
other apparatus (three shown). The 77 K and 4K stages are cooled by a pulse tube 
cryocooler (not shown). The mK stage is cooled using the helium dilution cycle. 
Most equipment is mounted on rods attached to the bottom of the 4K stage to hold 
it in the experimental region (the large white space beneath the mK stage). The 
cavity is mounted on the mK stage in a similar manner. All wiring (microwave, 
high voltage, low voltage and fibres) enter from the top and are cooled at each 
stage. All white areas within the chamber are under vacuum. 

I have provided a plot of a model cool-down in Figure 4.2. This plot was produced when the 

cryostat was first delivered to us at Sussex. Recently I used this as a benchmark to check the 
health of the cryostat. We have made significant changes to the original device. The changes 
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include a new rotary valve for the pulse tube cryocooler, new software and a new compressor for 

the dilution cycle. This prototype version of the cryostat is completely manual, and the software 

only performs measurements. This prototype lacks the automation of the newer models and there 
is a complex procedure for turning it on and tending to it. The changes we have made led me to 

update the instructions for the cryostat. The revised instructions can be found in Appendix C. 
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Figure 4.2: This data was taken when the VeriCold cryostat was first delivered to our lab at 
Sussex University in 2005. For testing purposes it was run with no extra apparatus 
inside. This is the ideal, unloaded, cooldown of the VeriCold cryostat. At t 
200 min the pulse-tube cooler was turned on, actively cooling the 77 K and 4K 
stages. Shortly after this precooling was turned on to cool mK stage to 4 K. At 
t 1700 min precooling was evacuated, and after evacuation at t 2000 min 
helium was loaded into the mK stage. After a critical amount of 4He is condensed 
into the mixing chamber the dilution stage begins to cool. The mixing chamber 
cools the mK stage through the movement of 3He from a concentrated phase to 
a dilute phase with 4He. The concentric tubes act as a heat exchanger, cooling 
3He incoming to the mixing chamber with mixture from the chamber before the 
mixture enters the still, where it is pumped to remove 3He for recirculation. 

4.2 Rydberg Atoms 

Rydberg states of an atom are attractive for experimental quantum optics for three reasons [58] 

" The highly excited electron in a Rydberg state leads to a very large dipole moment, which 
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couples strongly with the electromagnetic field; 

" Some transitions between a Rydberg state and neighbouring Rydberg states are in the 
K bands of microwaves, on the order of a centimetre in length. This allows cavities with 
low order modes that are still large enough for long interaction times [58]; 

" Rydberg atoms have long lifetimes that scale as n3 [59]. The Paris group uses circular 
Rydberg states [60,611, that have a very high orbital angular momentum. This high angular 
momentum increases the lifetime by making the decay path consist of many low energy 
decays. This scales as n5 [59]. 

Whether low-l or circular, the decay time of a Rydberg atom can be long enough that the 
interaction with a correctly prepared and tuned cavity dominates over decay from either the 
atom or the cavity field over the time of the interaction. This is known as the strong coupling 
regime. When the system is strongly coupled, the dynamics become approximately the same as 
the Jaynes-Cummings model. 

4.2.1 Rubidium Dispensers 

We use chemically bound rubidium in dispensers [79] to generate the atoms for the experiment. 
We refer to these simply as ovens, although the name is not strictly true. By passing a current 
between the legs of the dispenser, rubidium is liberated, and can be crudely collimated into a 
beam by pinholes in the heat shields of the cryostat. This is much safer than handling unbound 
rubidium and much less apparatus is needed than a traditional oven. This oven is shown in 
Figure 4.3. The one drawback of these ovens is that they need to be changed at least daily when 
experiments are running. 

An alternative that I have helped to build is a version of a candlestick oven [64]. This uses 
a cylinder heated to about 70 °C to maintain a pool of liquid rubidium. Inside this cylinder is 

another cylinder. This one is heated from 70 °C up to 200 °C, so that the lower end is submerged 
in the pool of rubidium at 70 °C. There is an opening in the lower part of this cylinder, exposing 
the interior to the rubidium pool. The the smaller cylinder is stuffed with a `wick'. Early designs 

used gold plated stainless steel to wet the surface of the wick. Later designs, and the one that 

our oven is being built with, use glass fibre as the wick, which is a less expensive material and 

simpler to prepare. As the name suggests, this wick draws the liquid rubidium up inside the inner 

cylinder. There is a pinhole close to the top where the cylinder is hottest, and this is aligned 

with a pinhole in the outer cylinder. The hot rubidium sprays out of these holes to be collimated 
into a beam. The outer cylinder has a layer of mesh on the inside to return rubidium which hits 

it to the pool. The assembly is temperature controlled and heated using thermocouples with the 

'IEEE K-band is 18 GHz to 27 GHz 
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Figure 4.3: The rubidium dispenser. This is a very simple device. The two cables seen fed 
through a KF40 flange. The wires continue as steel rods which are clamped 
onto the rubidium dispenser at the very tip. When a current is passed across the 
dispenser rubidium is liberated. 

sheath closed and conductors welded at one end [64], and there is a water cooled rod which the 

assembly is mounted to. An image of this oven can be found in Figure 4.4. 
The benefit of this method is that it will operate as a stable rubidium source for a very long 

time, requiring a refill approximately once a year. This design is related to the recirculating oven 
used at the University of Manchester [84]. The dispensers in contrast need to be replaced after 
only a day of use. The drawbacks include the need for its own small vacuum chamber to be 

mounted in, and handling rubidium when the oven needs to be refilled. Earlier models which 
used gold plated stainless steel wicks often failed to draw rubidium, and required changes of 
wick [641. The replacement with glass fibre should be more successful and will be tested soon. 

4.2.2 Exciting Rubidium up to Rydberg states 

The two Rydberg states of interest to us are 63P3/2 and 61D5/2 of g5Rb. The ground state of 
the Rubidium is raised to 63P3/2 by a three step laser excitation system. This three step system 
uses three infrared diode lasers, which are much less expensive to purchase and maintain than 
the frequency doubled dye laser used in the predecessor to our micromaser [25]. This system 
was perfected by Hawri Majeed, Luke Johnson, Bruno Sanguinetti and Gary Wilkes working in 

our lab 162,63]. The system uses three infrared lasers locked to two rubidium cells. Recently 

they successfully locked all three steps to cells, which is a difficult problem to solve. Prior to 
this the third step had to be locked by using an auxiliary atomic beam line and counting Rydberg 

states using a channel electron multiplier (CEM) with an ionising electric field or by locking to 

an optical frequency comb. 
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Figure 4.4: The candlestick oven. These diagrams show the components of the oven. On the 
right, the outside of the oven can be seen with a thermocouple for heating (a) 
which is coiled under the steel collar. Another thermocouple measures temperature 
at the base (b). A thinner steel tube (c) slots into the outer tube and is fixed into 
place with a bolt with a knife edge to seal the assembly. This also has a collar 
with a thermocouple to heat it. Both heating thermocouples are type-K sheathed 
in stainless steel. Inside will be a `wick' which draws liquid rubidium from the 
base to the hotter top. The nozzle in the outer cylinder can be clearly seen through 
a window in the outer collar (d). 

4.3 Microwave Transmission 

Microwave transmission to and from room temperature to base temperature is important for cavity 

resonance tests and Ramsey fields needed for the phase sensitive micromaser. The cooling power 

of the cryostat is limited, so choosing a method for microwave transmission that transmits the 

minimum power with low attenuation is very important. If heat conduction was not a concern, 
then rectangular waveguide would be a natural choice. Unfortunately, it is made of copper and 
the heat conduction would be far too great. 

4.3.1 Coaxial Cable 

The best choice was Astrolab astro-cobra-flex 31086 [85]. This semi-rigid coaxial cable uses 

copper clad steel for the core and silver coated copper clad stainless steel for the shield, with 

a polytetrafluoroethylene (PTFE) insulator which minimises thermal conductivity. The shield 
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is corrugated so that after cooling and heating many times the insulator will not migrate. The 

complex design of the cable makes it hard to model, so I calculated thermal conduction using 
a very rough model of half stainless steel and half copper (rough thermal conductivity of 
200 W K-1 m-1) cable with a cross sectional area of 8.4 x 10-6 m2 (which is approximately the 
area of the cable cross-section minus the insulator) and a temperature difference of 300 K. The 
length of cable needed is approximately 2 m. This is a pessimistic estimate as the corrugations 
in the shield increase the length of the cable and the thermal conductivity will certainly be lower. 
The estimate is approximately 250 mW per cable, which is acceptable for mounting to the 4K 

stage provided it is also cooled by the 77 K stage first. Subsequent tests of the cryostat showed 
that the cryostat saw practically no thermal load due to these cables. A cross section of this 
cable is shown in Figure 4.5. 

PTFE 

2.2 mm 
copper 

steel 

Figure 4.5: A cross section of the astro-cobra-flex cable used for microwave transmission into 
the cryostat. The lumps are to stop the migration of the PTFE insulator after many 
cool-downs. The cable is semi-rigid, and can be flexed enough to fix inside the 
cryostat. 

4.3.2 Goubau Lines 

Another interesting option is a Goubau line [66-68]. This is a method of projecting a microwave 
signal as a surface wave over an insulated conducting wire. The wire can be made extremely fine 

and out of a superconductor, lowering thermal conductivity, as it is not the transmission medium 
in the usual sense. Using a relatively simple arrangement a microwave signal travelling through 

a coaxial waveguide can be converted into a surface wave along a single cable, which manifests 
as compression waves in the electrons of the conductor. The energy of these waves is in the 
electric and magnetic fields around the conductor. The dielectric coating of the cable draws in 

the radial extent of the field. This allows for low loss microwave transmission in a manner that 

minimises the cross sectional area of a conductor. The basic design uses a launcher which is 

simply a conducting cone attached to the end of a coaxial cable, as shown in Figure 4.6. Where 
D is the diameter of the aperture and L is side of the cone, D=0.6L is approximately the right 
shape, and the side is related to the wavelength of the signal sent by L< 3A. The catcher, which 
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puts the signal back into a coaxial cable, is identical to the launcher. 

ýý 
cone transmission line 

coax 

Figure 4.6: This diagram shows the basic design of a Goubau launcher and catcher, with 
a coaxial cable attached at either end. The launcher and catcher are the same, 
but the one on the right is a cross section to show how the conductor from the 
coaxial cable emerges from the insulator of the coax into the catcher cone, where 
it becomes the transmission line. This line has a thin coating of insulator to lower 
the radial extent of the surface wave. 

The relationship of the cone to the wavelength is the limiting factor of Goubau lines. At 
the frequencies we use the cone would need to be approximately 4.5 cm wide, which is rather 
large. It is also unknown how badly radiation would couple into other components in the cryostat, 
or how close together two Goubau lines could be placed with an acceptable level of crosstalk. 
However, a short length may be sufficient to allow direct connection between a microwave line 

and the cavity. At present a piece of waveguide is suspended approximately a millimetre from 

the cavity to eliminate thermal load from the microwave line. 

4.4 High Quality Microwave Resonators 

The chosen resonant frequency of our cavities is 21.456 GHz, or A=1.40 cm to coincide with the 
transition frequency between the 63P3/2 to 61D5/2 states of g5Rb. This lies in the IEEE K-Band 
(18 GHz to 27 GHz) to microwave engineers, and super high frequency (SHF) or centimetre band 

to the telecommunications industry (3 GHz to 30 GHz or 10 cm to 1 cm). 

4.4.1 Geometry 

The design we used for micromaser cavities has remained largely unchanged for 20 years and is 
described in a paper by Klein et al. [70]. The design inherits from particle accelerator cavities, 
and it commonly referred to in that community as a pillbox cavity. Very simply it is modelled on 
a section of cylindrical waveguide shorted at either end. Particle physicists use electromagnetic 
cavities to accelerate particles, which requires a non-zero electric field along the axis of the 
cavity corresponding to a transverse magnetic (TM) mode of the cavity. In contrast micromaser 
cavities use a transverse electric (TE) mode of the cavity, and these modes have no electric field 

component in the axis of the cavity. The mode of a cylindrical cavity is characterised using three 
indices, m, n and p. 2m gives the order of rotational symmetry of the field about the axis of the 
cavity, n is related to the number of nodes between the inner surface of the cavity and the axis, 
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and p is related to the number of nodes along the length of the cavity. The chosen mode for 

the micromaser cavity is TE121, as the TE modes have better unloaded quality factors [70], and 
low values of m, n and p allow better tuning of the cavity by mechanically squeezing it, the 

apparatus for which is shown in Figure 4.8. The frequency of a cylindrical cavity TE mode in a 

vacuum is given by [71, p. 421 

2r 
l2 c 

where j.,, is the nth root of the differential of the Bessel function Jm. For the TE121 mode 
jig : 5.331 is a good approximation. To optimise the quality, the length of the cavity L should 
be twice the radius R [71], which leads to a cavity with L=2.47 cm. 

4.4.2 Material 

4.4.2.1 Copper 

The first cavity manufactured by the group is still a good test model. It features coupling holes 

that are a much lower quality factor than the body, so that measurements on this cavity are easily 

performed. Copper was chosen for its mechanical properties, which at room temperature are 
close to those of niobium at cryogenic temperatures. This similarity allowed us to check the 

effectiveness of the cavity squeezer described in section 4.4.3. This cavity is good for trialling 

new resonance testing experiments and software. 

4.4.2.2 Aluminium 

Aluminium was chosen as an alternative material to niobium. It is simpler to machine and 

costs less. Although aluminium has a critical temperature of 1.2 K, which would not have been 

acceptable in previous micromasers which ran on liquid helium, this is perfectly acceptable for a 
helium dilution cryostat which easily reaches temperatures below this. Problems with preparation 

such as bad etches leading to pitting, and failed bakes in the oven stopped tests of an aluminium 

cavity in the cryostat. Details on cavity preparation were not part of my study and are outside of 
the scope of this thesis. 

4.4.2.3 Niobium 

Niobium is the material used in accelerator cavities, which our cavity technology is largely drawn 

from. This cavity is very close to the original pillbox design by Klein et al. [70], and the copper 

and niobium cavities inherit their geometry from it. Niobium cavities can be produced with 
impressive quality factors of at least Q= 1011 [70]. 
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(c) Aluminium 

Figure 4.7: Three materials used for test cavities. The copper cavity is good for testing 
resonance sweeps due to good coupling, and it has similar mechanical properties 
to niobium in cryogenic conditions which is good for testing the cavity squeezer, 
shown in Figure 4.8, at room temperature. Some domain boundaries can be seen 
on the niobium cavity from a failed bake from when the oven was not receiving a 
large enough flow of coolant. The aluminium cavity is pitted from one students 
over-zealous chemical etch. Aluminium superconducts and may provide a more 
cost effective cavity than niobium. Welds can be seen where the cap of each cavity 
joins the body near the top. We left one aluminium cavity with three unwelded 
lids with different Q holes in order to test cavity scans. 

4.4.2.4 Niobium Coated Copper Open Cavities 

A completely different design which we are working on at present uses a copper Fabry-Perot 

resonator coated with niobium. This design is explored in a paper by Clarke and Rosenberg [721. 

It is harder to produce the same quality factors as in a pillbox cavity with an open cavity, but as 

we intend to use it for dispersive atom-atom interactions (see Chapter 3) the quality factor is less 

important. 

4.4.3 Mount and Cables 

The cavity will need tuning into resonance with the atomic transition, so a squeezer is integrated 

into the cavity mount. Compressing the walls of the cavity will alter the mode shape of the cavity 

and with it the resonant frequencies. These parts were designed by Bruno Sanguinetti prior to 

the start of my studentship [65]. the squeezer uses a squiggle motor, which moves and rotates a 
threaded rod up and down using the piezoelectric effect. This pushes on a lever which compresses 
the cavity to alter the resonant frequencies for tuning [65]. A piezo stack presses on the other 

side of the cavity for fine tuning. The squeezer is powered using five niobium titanium cables. 
The mK stage is extremely sensitive to thermal load, so cables needed to be selected carefully. 
The cables are 1(x) sm in diameter each, with a thermal conductivity of 0.1 W K-' m-1 1731. 
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Using pessimistic estimates of a gap of 10 K over 2m these five cables deliver approximately 
19 nW, which is well within the tolerance of the dilution stage. 

Figure 4.8: The cavity mount and squeezing apparatus. In the tore round (d) is the mount for 

the detector box suspended from two posts, and immediately behind are two more 
posts. Behind these the cavity (b) can be seen mounted with the squeezer around 
it. The squiggle motor is housed in a copper enclosure (a), which pushes up on a 
lever to compress the wall of the cavity. On the other side of the cavity is a piezo 
stack for fine tuning (c). The mount of the cavity is attached to the mK stage. 

In Figure 4.9 the mount for the cavity can be seen attached to the mK stage. In Figure 4.9 

the wiring has been mocked up. The wiring changed little after this image. The 4K part of the 

pulse tube cooler can clearly be seen in this diagram, with cables attached to the colder part of it. 

4.5 State-selective Detection 

As the upper state is closer to ionisation than the lower state, it will ionise first in a ramped 

electric field. As these Rydberg states are already so excited the electric field to ionise them is 

about 25 V cm-1. The electron produced by ionising an atom follows field lines into a channel 

electron multiplier (CEM). These are commonly found in mass spectrometers and consist of a 
hollow continuous dynode spiral which multiplies an electron or ion through secondary emission 

up to an avalanche of electrons that can be more easily detected. A second CEM collects 

electrons from the ionised lower state, which is ionised (on average) after the excited state due 
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Figure 4.9: Wiring has been mocked up between the 77 K and the 4K plates (c and d) before 
the move to the new lab. In the centre in the foreground, a, is the 4K part of the 
pulse tube cryocooler. Behind the outlet of the dilution cycle can be seen, b. On 
the far right, some high voltage cables for both CEM can be seen unconnected. 
These later turned out to be too large a heat load and were removed. Just beneath 
label c the microwave cables can be seen, which pass over the pulse tube cooler 
before progressing to the 4K plate. In yellow, optical fibres can also be seen. 
Running along the 77 K plate is the NbTi woven loom used to power the squiggle 
motor and field plates of the detector box. Above label aa coil can be seen. This 
cools helium for the precooling and dilution cycles. 

to the ramped field. The detector box needs two high voltage (for the collector and bias) and 

one low voltage line (for the cone) per CEM, which introduces a significant heat load on the 

cryostat. Until recently we had cables that were relatively fine delivering high voltage, but the 
insulator began to break down so these need replacing. We are now examining the possibility of 

electron optics to channel the electrons up to a detector box mounted at 70 K. A CEM is not 

very efficient at very low temperatures, so this alteration would improve efficiency. Other cables 

are needed to provide voltage for field plates in the detector box. These cables are fed down 

with the cables for the cavity squeezer in a Nomex woven loom of niobium titanium alloy wire. 
Figure 4.10 shows the inside of the detector box, with the two CEMs and field plates. 

This box was designed by Bruno Sanguinetti and Gary Wilkes. Martin Jones is currently 

working on an updated version that optimises the field profile. This work can be found in his 

thesis 1751. 
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Figure 4.10: Interior of the detector box. Two CEM are mounted to a stainless steel plate. The 

one on the left is intended to detect upper states through field ionisation provided 
by the copper field plates below. The upper and lower plates provide a voltage, 
and the two middle plates mask the field to produce a ramp, causing upper states 
to ionise before lower states. The steel plate is attached to the field plates by 
MACOR rods. These in turn attach to a copper shell that is grounded and covers 
the assembly. This shell also allows mounting. 

4.6 The Experimental Region 

Below the mK stage in the cryostat is where the experiment is mounted. Figure 4.11 is a cross 

section through the cryostat showing the approximate positioning of the components that make 

up the micromaser. Figure 4.12 shows all the parts in position, except for the microwave line to 

the cavity. Most of these components are actually mounted to the 4K stage. They are a relatively 
large heat load, and even one of the microwave cables would overwhelm the mK stage. The only 

components on the mK stage are the cavity and mount with the squeezer, which is powered by 

superconducting niobium titanium alloy cables, which are very fine to reduce heat load. At room 

temperature, clamped onto the outside of the cryostat, is the oven which is described in Section 

4.2.1. The atomic beam is collimated by the heat shields at 77 K and 4 K. The first component 

at 4K encountered by the atoms is the laser excitation region, which is described in Section 

4.2.2. The three optical fibres are fed to this component from above, and are cooled by each 

stage successively. Next are the Ramsey fields. These are made of rectangular copper microwave 

waveguide, fed from one end by the coaxial cable described in section 4.3.1 and terminated at the 

other end. I designed the mounting for these. The cavity is between the Ramsey zones, mounted 
to the mK stage with the squeezer. After the second Ramsey zone is the state selective field 
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u Figure 4.11: The experiment. This diagram neglects the mounts for components except for 
the cavity. Red parts are anchored to 4K and green parts (with the grey cavity 
embedded in them) are anchored to 30 mK. In the order that an atom encounters 
each component; a is the oven, b is the laser excitation zone which elevates atoms 
to a Rydberg state, c are microwave waveguides for Ramsey spectroscopy, d is 
the cavity with mount and cap, e is the state selective field ionisation detector 
and f is a microwave waveguide for running scans of the cavity. 

ionisation detector. Referring back to Chapter 1 Figure 1.10 this layout has all the components 

necessary to be a phase sensitive micromaser. 
An image of the cryostat and supporting equipment I have worked with in my time is in 

Figure 4.13 and specifically the cryostat is shown in Figure 4.14. 

4.7 Software 

One of my largest contributions to the laboratory is software. Most of the custom software 

used in the lab has been written by me. Contributions include all of the software for running 

resonance scans of cavities, most of the software for sweeping the third step laser to find Rydberg 

states, receiving counts from each CEM and obtaining time of arrival data from Fiberbyte (now 

ChronoLogic) equipment. The Fiberbyte devices allow for sub-nanosecond timed data acquisition 

using devices synchronised over universal serial bus (USB) with USB-inSync, a technology 

which they developed. The Fiberbyte devices will ultimately be used to time pulses and acquire 
time of arrival data from CEMs. This will also allow us to determine the time resolution of the 
detector box. I've also written little UNIX utilities to convert data from proprietary formats into 

tiles that can be read by data analysis software and our own software. An example of some of 
the code I have written is shown in Appendix B. Since software in a laboratory is a means to an 
end, and not intrinsically interesting, I will not dwell on it in this thesis. 
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(ä) Back (b) Side 

Figure 4.12: The core of the micromaser. At the back the detector box (a) can be seen mounted 
and inside a copper housing. At the side two lengths of rectangular waveguide 
(b) can be seen attached to a mount (c) that goes around the cavity mount (d), 
which can be seen nestled in the centre. On the right hand side of the side view 
the laser excitation zone (e) can be seen with yellow fibres emerging from it. 
Alignment of this system can be particularly tricky. An invaluable tool was a 
surveyors laser. Most of the mounting equipment seen was developed by me. 
The detector box was developed by Bruno Sanguinetti and Gary Wilkes and laser 
excitation zone was developed by Martin Jones. The cavity mount and squeezer 
was developed by Bruno Sanguinetti. All microwave components and wiring (not 
seen here) were developed by me. 
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Figure 4.13: This picture shows the cryostat (a) with some support equipment. The closest rack 
(b) contains control valves, vacuum gauges, pump controllers and temperature 
measurement equipment for the cryostat. The next rack contains the computer for 
the experiment, oscilloscopes, some more vacuum controllers and high voltage 
equipment. The final rack is for the testing of Martin Jones' new detector box. 
In the corner of the room, obscured by a hose, is the compressor for the pulse 
tube cryocooler (c). In the lower left of the image is the blue compressor for the 
dilution cycle (d). 
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Figure 4.14: A front view of the cryostat. In the top left of the image two blue cables (a) 
can be seen attached to the microwave feedthrough. Beneath, yellow plastic clad 
fibres for the laser excitation zone are taped to the black support frame. These 
come from a laser table via underfloor trunking. These can be seen connected 
to a feedthrough in the upper right of the image (b). Most of the equipment 
seen above the cryostat is valves and a turbomolecular pump for the dilution and 
precooling cycles. Below the chamber a large turbomolecular pump (c) is placed 
to evacuate the chamber, and this is backed with an oil free scroll pump (d) at 
the bottom of the image. 
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Chapter 5 

Microwave Cavity Resonance Scans 

Arguably the most important component of a micromaser is the electromagnetic cavity at the 

centre of the system. If it has no resonance close to the transition frequency between the two 

atomic levels of choice, or the quality is too low, then the experiment will produce no new results. 
Two types of cavity are used. Most prevalent in the laboratory at the time of writing is the 
`pillbox' or closed cavity. The other type which is becoming increasingly important, the open 
cavity, is a pair of mirrors forming a confocal cavity. These are significantly different designs 

from a measurement perspective. The closed cavity is designed with two holes in to allow atoms 
to pass through the field, and these can also be used to make measurements of the field. The 

open cavity needs no holes, so probes are used to measure the properties of these cavities. 
These methods were developed to be low power, suitable for use with a cryogenically cooled 

cavity below 1 K. For fast measurement an alternative set of tests can be produced using high 

power large linewidth oscillators in a transmission arrangement. The microwaves transmitted 
through the cavity will be filtered to allow only frequencies close to a resonance. 

5.1 Quality Factor 

Before doing spectroscopy on a cavity, it is important to know whether or not it is possible. 
There are methods to determine the quality of a cavity, and methods to determine the resonant 
frequency of a cavity. For low qualities which return an obvious Lorentzian when swept with 

microwave frequencies close to resonance, the position of the peak can be used to estimate the 

resonant frequency, and the width of the peak can be used to estimate the quality factor. However, 

coupling radiation into cavities to probe them is difficult when they are very high quality. This 

makes measuring the resonant frequency and quality factor of our cavities difficult tests to design. 
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The quality factor of a microwave cavity is given by 

wE 
(dE 

Qo\ 
dt 

) 
(5.1) 

where wo is the resonant angular frequency and E is energy. A high Q cavity will have a small 
decay constant when compared with the resonant frequency. Equivalently the Q factor can be 
defined by the decay equation for the cavity field 

E(t) = Eo exp 
(_ 

Q t) (5.2) 

i. e. the decay constant A= wo/Q. Different parts of the cavity will dissipate at different rates. 
This can be modelled as each part having different Q factors. The Q is inversely proportional to 
power loss, so adding the Q factors of parts of a cavity is reciprocal too. The cavity can be split 
into two Q factors; the body of the cavity and the holes. These correspond to the loss due to 
microwaves coupling out through the holes and absorption of microwaves by the body of the 
cavity. The composite Q factor is thus given by 

111 

QH + Rs (5.3) 

Equation (5.3) means that if the quality of the holes is significantly higher than the quality of the 
body, then the preferential route for power to be lost is by the body. Roughly speaking, the hole 

of a cavity needs to have aQ of the same order of magnitude as the body to be able to load it 

and see a signal from the cavity as it unloads. 
The simplest type of cavity test involves a sweep of a driving microwave field over the 

resonant frequencies, and looking at the returned power. The results are Lorentzian resonance 
peaks if the scan is sensitive enough to detect them. When the full-width-half-maximum of the 
resonance peaks is known, the quality of the cavity may be derived. 

wo fo 
Q 

Ow Af, (5.4) 

where wo is the resonant frequency and Ow is the FWHM linewidth. 

5.2 Transmission or Reflection? 

There are three basic methods that I used to probe cavities 
1. Power reflection measurement. 

2. Power transmission measurement. 
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3. Ring-down measurement. 

The first tests how much radiation is reflected from a cavity for a range of microwave frequencies 

provided by a microwave synthesiser step by step as demonstrated in Section 5.3. When the 

microwaves are resonant with the cavity, the reflected power should be lower than when off 

resonance. 
The second is very similar to the first, but measures the power output from another hole in 

the cavity. When the microwave source is not resonant with the cavity, no radiation couples into 
the cavity. When the source is resonant, some radiation will couple in, and some portion will 
decay through the hole that is being measured. An advantage of this approach is that the cavity 
acts as a filter, reducing noise from the synthesiser side of the experiment. A disadvantage is 
that typically only one of the holes is low quality enough to measure radiation decaying from the 
cavity field. 

The third uses a synthesiser over a range of frequencies, again step by step, this time pulsed. 
During the pulse, if the cavity field is resonant then it will be loaded. When the pulse stops, 
the field amplitude will decay, and this `ringing' can be measured by taking traces from an 
oscilloscope. The rate of decay of the signal is used to determine the quality of the cavity. 
This type of test is extremely labour intensive. There are no oscilloscopes available that have a 
frequency response capable of measuring 21.4 GHz, so the ringing must be mixed with a nearby 
frequency generated by another synthesiser. The difference in frequencies is observable on an 
oscilloscope. 

In the subsections that follow I note some experimental results that use these types of 
methods and comment on the equipment used. I present data that concentrates on reflection 
and ring-down based measurements as these are the best suited to the pillbox cavities available. 
These experiments were developed with portability in mind. Future production of cavities will 
require that measurement equipment can be moved to and from a chemistry laboratory so that 
Niobium cavities can be measured between incremental chemical etches to bring them close 
enough to the right resonant frequency for the squeezing apparatus to tune it into resonance with 
the micromaser frequency. Etches also improve the finish of the cavity surface, enhancing the Q 

factor. Typically these experiments use a USB to general purpose interface bus (GPIB) converter 
box to communicate with instruments, and when possible acquire data, so that no specialised 
data acquisition cards are needed and a laptop can be used. 

5.3 Simple scans with a Schottky diode 

This is the most basic test that I have performed on microwave cavities. The data presented in 
this section was taken by me. All code used was solely my work. A diagram of this experiment 
is shown in figure 5.1. For this type of measurement I programmed a computer to communicate 
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GPIB Circ Cavity 
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Figure 5.1: The straight forward cavity resonance sweep, suitable for cavities with Q< 105. 
A Schottky diode is used as a microwave sensor to measure microwaves reflected 
from the cavity. When the microwave signal is tuned into resonance a dip in 
intensity is seen. A circulator routes the incoming microwaves to the cavity and 
the reflected microwaves to the Schottky diode. Laptop graphic courtesy of the 
Open Clipart Library. 

with a Giga-tronics model 2400B microwave synthesiser. The current generation of software 
is coded in LabVIEW 8.20. The first generation of software was built in C. After a number 

of iterations of this C code I made the transition to LabVIEW, as its helper functions greatly 

simplified the code. This program takes a start frequency, a stop frequency and a step frequency 

with an optional time delay. Data is saved into a tab delimited file, which is automatically labelled 

by date. The Schottky diode measures the microwaves reflected from the cavity and this data is 

acquired using a National Instruments data acquisition card. Several different data acquisition 

cards were used and they were roughly equivalent. The model used for data acquisition of 

resonance sweeps was a National Instruments PCI-6034E with 16 bit analogue inputs. 
The microwave frequencies that are not close to the resonance reflect from the cavity, whereas 

those that are resonant can enter the cavity and be dissipated, so the diode will read a reduction 
in intensity when the synthesiser is close to resonance with the cavity. Figure 5.2 shows this 
kind of scan on a copper cavity, and Figure 5.3 is a scan of an aluminium cavity with a low 

quality lid. 

5.4 Simple scans using a power meter 

The Schottky diode measurements are only efficient for cavities with relatively lossy holes. When 

the overall quality of the cavity is increased, or the quality factor of the hole being probed 

approaches or surpasses that of the body of the cavity, other methods of measuring the resonant 
frequencies and quality factor of a cavity must be used. 

The first improvement that can be made is on the measurement device. A Schottky diode 

can be replaced with a microwave power meter for more precise measurements over a much 
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Figure 5.2: This is a plot of data taken using a Schottky diode measuring the reflection of 
a resonance sweep over the copper cavity with the low Q coupling hole. Since 
the Q of the body is significantly higher than that of the coupling hole, this kind 
of sweep easily detects the resonance peaks. The y-scale is proportional to the 
power, on a negative scale. The blue dots are the raw data points, and the red 
line is Lorentzian fits to the two resonances. This fit places the widths of the first 
and second peaks at 1.25 MHz and 2.11 MHz, corresponding to Q 104. The 
different resonance peaks are from the short and long axis of the cavity, which 
has an slightly oval cross section. These two modes also have a different quality 
factor, although these are close. 171]. 

larger range. The device I used was a Giga-tronics 8540C power meter. This device was coaxed 
into giving fast measurements over GPIB to perform as a direct replacement for the diode, 

eliminating the need for an analogue measurement channel for this experiment. This also makes 
the experiment more portable, since the power meter is always used for diagnostic tests of the 

microwave components and a data acquisition box is no longer necessary. An example scan of a 
low quality aluminium cavity is in Figure 5.4. 

5.5 Ring-Down Spectroscopy 

Ring-down spectroscopy is a high precision method of determining the resonant frequencies 

and quality factor of a cavity. It is often used in the optical domain to study gas samples in a 
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Figure 5.3: This plot was produced in exactly the same way as that in figure 5.2. This was 
done using the unwelded aluminium cavity with cap 5 (see Figure 4.7), which 
has the lowest Q hole of the set of caps for this cavity and thus is most easily 
measured. This is at the limit of the resolution of the Schottky diode. Resolving 
smaller peaks requires extensive filtering and averaging, and using a power meter 
becomes a more appealing option. The fit places the linewidths of this cavity at 
1.93 MHz and 1.24 MHz placing the quality factor at Q ztý 1.1 x 104. 

cavity [74], but it is equally valid for measuring properties of a cavity in the microwave domain. 

This form of test relies on the principle that when a cavity is pumped by a resonant field it will 

resonate, and when the driving field is turned off a decay of radiation from the cavity can be 

measured. If the driving field is not close to resonance with the cavity field, the cavity will not 
be pumped and there will be little decay to detect. When a decay is detected, the quality factor 

of the cavity is derived from equation 5.1. For a decay constant given by A 

Q= (5.5) 

Several factors make this a difficult test to use. For very high quality cavities the linewidth is 

extremely small compared with the range of frequencies that a resonance may be found within. 
This means that the test is slow to perform as the sweep over relevant frequencies must be slow in 

order to spot the decay. The cavities we manufacture have resonant frequencies around 21.4 GHz, 

which was far beyond the frequency response of any available oscilloscopes. The signal from a 
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Figure 5.4: This plot is a scan of the same cavity and cap as in figure 5.3, using a power meter 
in the place of the Schottky diode. This data is so clean that it did not require any 
filtering. As with figure 5.3 the Q factor of the resonances is Q .: - 1.1 x 104. The 
shift in frequency of the peaks is likely due to this scan being performed in an air 
conditioned environment, with a cooler cavity. 

cavity decay must hence be mixed with microwaves from a second synthesiser to see the decay 

on an oscilloscope. This is particularly difficult because if the synthesisers are not kept at a 

steady Ow separation then the change in the frequency response of a mixer may be mistaken for 

a resonance. Finally, this task cannot be automated. The quantity of data generated is too large to 

process in real time, so an oscilloscope must be manned and the synthesisers controlled by hand 

to allow the movement back and forth over a resonance. Observing a resonance is something of 

an art form, and it is impossible to know if a resonance can even be observed in a cavity before 

an observation has been made. Needless to say, this was my least favourite test and it consumed 

countless hours of my time. 
One small refinement I made was a small utility that can set the frequency of one synthesiser 

or grab it from the device, and with a user defined step size move the frequency up or down with 
the second synthesiser at a set frequency difference Af from the first. Keeping Af constant 

stops it from moving outside of the oscilloscope frequency range, and allows narrow filters to be 

applied to remove noise. 
I have included two figures to show the output of this kind of measurement. Figure 5.5 shows 

---" : """�---.. : 1: 
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an aluminium cavity ring-down. Figure 5.6 is a curiosity that occurred because the linewidths of 
two resonant frequencies and the separation between the resonance peaks is similar. This led to 

a beat between the two decaying frequencies. 
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Figure 5.5: This plot shows the ring-down seen from a relatively low quality cavity, with a fit 
used to calculate the decay constant. Using this the quality factor was calculated to 
be Q= 4600. Note that this is actually the measurement of the ring-down signal 
multiplied by another microwave signal 20 MHz different from it. This results in a 
decaying oscillation that appears to be oscillating at 20 MHz, which is within the 
frequency response of the LeCroy Waverunner Xi that I used to take the data for 
this plot. 

5.6 Using a Lock-In Amplifier for High Quality Resonators 

Very high quality cavities return a signal that will be so weak that it will be overwhelmed by 

noise. This is due to high Q holes leading to very long filling times, so very little radiation is 

coupled into the cavity 1711. A lock-in amplifier can be used to recover enough signal to find a 

resonance. This test is based upon the simple sweep with a Schottky diode. The sythesiser has a 
frequency modulation driven by a signal generator. This signal is fed to the lock-in amplifier as a 

reference signal. When the synthesiser is over a resonance of a cavity the additional modulation 

will cross the resonance leading to a periodic signal from the Schottky diode which the amplifier 

can lock to. The locking signal gives the position of the resonant frequency. For this test I used 
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Figure 5.6: For this plot a synthesiser was tuned to half way between the resonant frequencies 
of the aluminium cavity with the low quality lid at 21.471 GHz. The resonant 
frequencies are close enough together that the synthesiser loads both modes at 
the same time, so that the decay from the cavity is at both frequencies. This was 
an unexpected effect. A loose analogy for each mode is that a pendulum can be 
driven at a frequency close to (but not at) resonance, and when the driving stops 
the pendulum will oscillate at its natural frequency. The fit gives the resonant 
frequencies with a separation of 3.44 MHz which is the frequency of the envelope. 

a SIGNAL RECOVERY 7265 dual phase DSP lock-in amplifier in addition to the equipment in 

section 5.3. This device was controlled by GPIB and a data acquisition card used to measure the 
locking signal from a terminal on the back of the device. 

This method can be very difficult to implement. The lock-in amplifier is set to detect signals 

at the second harmonic of the reference frequency. As the modulated synthesiser frequency is 

centred on a resonance, a Fourier transform of the idealised signal from the Schottky diode would 
show a peak at the second harmonic of the reference frequency. The fact that a component of the 

signal from the Schottky diode will be at the second harmonic close to resonance is used by the 
lock-in amplifier. This modulation frequency must be chosen to maximise the second harmonic 

component in the return signal. If the modulation is too large, then the Lorentzian peaks will be 

so far separated that the second harmonic component is reduced. If the modulation is chosen 
to be close to twice the full-width-half-maximum of the resonance then the second harmonic 
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component will be maximised for detection. Therefore in order to see a resonance in this test an 
educated guess at the linewidth of the cavity must be made. 

To verify this assumption I derived the signal that the Schottky diode should produce 

S= So 
r2 

4(aF sin(Et) - wo)2 + T2 
(5.6) 

where F is the line width, 2c F is the window of frequencies modulated over (the frequency 

varies between wo ±c F), So is a scale factor and f is the modulation frequency. This equation 
for several values of ce is plotted in Figure 5.7. 
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Figure 5.7: If the modulation (a is a multiple of the linewidth) on the synthesiser is chosen 
to be large (blue curve) with respect to the linewidth of the resonance peak then 
the resulting signal has a small sinusoidal component at twice the modulation 
frequency. If the modulation is chosen to be approximately the linewidth, then the 
sinusoidal component is maximised (green). If the modulation is too small then 
there is still a sinusoidal component, but the amplitude is reduced. 

To maximise the signal that the lock in amplifier is sensitive to, the second harmonic 

component needed to maximised. The second harmonic component of equation 5.6 was found 
by deriving the second cosine component of the Fourier series of S and differentiating it with 
respect to a. The solution to the resulting equation places the optimal value at a=1, i. e. the 

assumption that the modulation amplitude should be approximately the linewidth was accurate. 
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To test this assumption the aluminium cavity with cap number five was used again as a benchmark. 

The result of this scan is shown in Figure 5.9. Figure 5.8 shows an equivalent scan using the 
first harmonic. 

5 

4 

3 

2 
el 
X1 
C 

C0 
4. 

ý -1 

-2 

_3 

-4 

-5- 21468 21470 21472 21474 21476 21478 21480 

Frequency (MHz) 

Figure 5.8: This is a scan of the aluminium cavity with cap number 5. As the linewidth of 
this cavity is already known to be about 2 MHz, this was used as the modulation 
amplitude on the microwave synthesiser to maximise the signal from a lock-in 
amplifier. The amplifier was programmed to take the frequency of modulation 
as a reference, and output a locking signal corresponding to frequency of this 
reference. This is locking to the first harmonic, which was not the ultimate goal. 
It works well on Al-05 because it already responded well to the Schottky diode 
with a relatively low noise. The signal from the Schottky is out of phase with the 
reference as the synthesiser moves over the start of a resonance, and as it passes 
the centre of the resonance it moves into phase, leading the plot to look like some 
multiple of the derivative of the resonance peaks. 

Unfortunately, whilst locking to the second harmonic did produce a signal with a better signal 
to noise ratio than a raw scan output of the Schottky diode, it is not a particularly impressive 
improvement. Using the first harmonic, the amplifier is sensitive to the edges of the resonance, 
where the gradient is larger than the background. 

5.6.1 Discussion 

A lock-in amplifier can be used to dramatically improve the signal from a cavity resonance. 
Both first and second harmonic scans have been successfully attempted, and the first harmonic 
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Figure 5.9: Using the second harmonic, the lock-in amplifier is sensitive to the peak of a 
resonance, as modulating the synthesiser with frequency f when it is centred on 
the resonance will produce a signal with frequency 2f, as in figure 5.7. 

scans have proven to be extremely sensitive. These scans are only effective for locating resonant 
frequencies of a cavity, and other methods are better suited to resolving the linewidth. If these 

can be improved further, then it will be possible to write a program that will acquire a resonant 
frequency of a cavity and follow it as the cavity is cooled in the cryostat. This will be particularly 

useful for gathering data on how the cavities change with temperature, and at what temperature 

the superconducting transition occurs. We are interested in using aluminium in the place of 

niobium for making cavities, and the precise behaviour of aluminium and aluminium oxide at 

very low temperatures needs research. 

5.7 Using a Lock-In Amplifier with Ring-Down Measurements. 

It is possible to eliminate many of the issues with ring-down measurements. By using a Splitter 
to bleed a small amount of the microwave power from the synthesiser, microwaves decaying 

from the cavity can be beat against the bled off power. A mixer allows the beat to be measured. 
If the synthesiser is modulated fast, and by a similar frequency to that of the lock-in amplifier 

oscillator, then the decaying microwaves from the cavity will be detected by the lock-in amplifier 

-5 
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around the resonant frequencies. 

This method will produce a signal for relatively low quality cavities, but it is more appropriate 

to use on higher quality cavities. This is due to the limit on the lock-in oscillator frequency at 
250 kHz, and as the frequency modulation of the synthesiser should be close to this frequency 

too, the most effective results will be seen when the linewidth of a resonance is less than 250 kHz. 

Longer lifetimes will lead to slower modulation, so for high quality cavities the modulation 
frequency will go down. This is also in line with the shrinking linewidth with rising quality factor. 

As such this type of test will become more useful when higher quality cavities are available to 

test. 
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Figure 5.10: By modulating the synthesiser, the decaying microwaves from a cavity are beat 

against a range of frequencies. When the synthesiser is modulating over a resonant 
frequency the decay is much larger since the resonant field can be loaded. The 
two dips seen in this plot are two resonant frequencies from an aluminium cavity. 

A further improvement uses two synthesisers. This was a problem before because they needed 

to be dialled by hand, but now both synthesisers can be controlled programmatically, and kept 

separated by the reference frequency. This test can only be performed using the transmission 

arrangement, and is effectively just an enhanced resonance sweep. The expected signal is much 
like that seen for the first harmonic lock-in measurement of the aluminium low quality cavity in 

figure 5.8. 
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5.8 Summary 

Several types of experiment have been shown in this chapter. The recent success of the new 

microwave lines means that the next step will be to trial these on a cavity inside the cryostat. 
These scanning methods are available and portable for when the production of new cavities starts. 
Furthermore, the tests all have programs to run them with a simple user interface so that the 

person etching a cavity will need no particular expertise to test it. These tests were all performed 

with a retort stand to hold the cavity and microwave components. To assist with mobile testing a 
harness will be constructed that a cavity can simply be clipped into for testing. 

The new Fabry-Perot (open) cavities will also be tested using these methods. The sweeps 

should be done for these cavities using a transmission arrangement rather than a reflection 

arrangement for the frequency sweep tests, but essentially there is no change in how the tests are 

performed. The radiation can be coupled into and out of the field using small microwave aerials 

which are placed at the edge of the cavity field in order to avoid perturbation of the resonant 
frequency and lowering of the quality. 
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Summary of Results 

Cavities may be used to hold quantum information. I showed in Chapter 2 that this can be 

extended so that operations may be performed on qubits stored in a multi-mode cavity field 

without entangling the atoms with the system. The passage of an atom is analogous to a clock 
pulse. I demonstrated that a universal gate set is possible, and there is significant flexibility for 

constructing more gates. This theory may also be applicable to other systems that use the JCM. 
Circuit QED, quantum dots and ion traps may be interesting in this context. 

In Chapter 3I showed how to use a controlled phase gate consisting of a cavity and two atomic 

qubits to construct graph states, including N-atom GHZ states, cluster states and hexagonal graph 

states. The generation of these states is continuous, so that a graph state can have effectively 
infinite depth. This avoids the decoherence that a large preprepared graph state will be subject to, 

as the parts of the state to be operated on are generated dynamically. Single qubit rotations have 

already been performed, satisfying the requirements for universal one-way quantum computation. 
I also demonstrated that the controlled phase interaction equipment can be used to build three 

and four atom W states. 
GHZ states are a type of graph state that are interesting in their own right. Tests of non- 

locality that can be performed in a single shot are possible with them, in contrast with Bell tests, 

which require many runs to resolve an answer. GHZ states are also known to be very sensitive 
to dephasing. I showed that this sensitivity can be leveraged to construct an improved test of 

quantum gravity with a better scaling in sensitivity than atom-interferometers which are currently 

used. These tests cannot single out a particular theory of quantum gravity, but by showing that a 
GHZ state dephases more slowly than a particular theory predicts, then that theory can be ruled 

out. 
Chapter 4 contains details on the micromaser experiment at Leeds university. I was responsible 

for the day-to-day running of the cryostat, the routing of high and low voltage cables, microwave 
lines and optical fibres and the mounting of components in the experimental region. In particular 
the new microwave lines and superconducting low voltage lines have been very successful. 

Chapter 5 showcases methods I have used to probe cavities. Using these, the resonant 
frequencies and quality factors of high quality cavities can determined inside the cryostat. I 
designed the tests to be portable and simple to use with custom programs that set up the equipment 
and automate scans for a user who may have no expertise in physics. This will allow a person 
etching cavities in a chemistry laboratory to perform tests. 

101 



CONCLUSION 

Future Work 

The work on multi-mode quantum optical logic will be continued with the extension of the theory 
into dissipative systems. This will allow quantum gates to be modelled under realistic conditions. 
Extensions of the optical qubits into qudits will be explored as an option. Other host systems 

will be explored to see if analogues of this type of gate exist, and if they have benefits over 

cavity QED. 

In Chapter 3 most of the work has been done for producing graph states, and is waiting for an 

experimental realisation in the laboratory. The cavities involved are rather large, so research into 

alternative interactions and cavity geometries should be done to see if this can be improved. For 

the entanglement enhanced tests of quantum gravity NOON states of atoms will be considered in 

optical lattices, and perhaps Bose-Einstein condensates in a superposition of two positions. Both 

of these ideas increase the mass of the effective particle in superposition. Continued research 

will lead to an experiment that will place a new minimum value on the background parameter 
discussed in Section 3.5.2. 

The candlestick oven in Section 4.2.1 is near completion. When an order of glass fibre 

arrives, this can be inserted into the oven to act as a wick and the oven can be tested. With 

the candlestick oven running, long term operation becomes possible. With the current rubidium 
dispensers the life of the dispenser is typically less than a day, limiting the duration of future 

experiments. 
The dilution cycle of the cryostat was recently cleaned after a large contamination of the 

cycle occurred. Now that the cryostat is operational it is possible to cool a cavity down to 30 mK. 
The first test that should be done is with a low quality factor aluminium cavity. Observation of 
the superconducting transition and the contraction of the cavity made of aluminium will allow us 
to determine the usefulness of aluminium as an alternative cavity material to niobium. Cavities 

that superconduct have more reflective surfaces due to the reduction in resistive losses in the 

cavity walls, leading to higher Q factors. The final components that need routing in the cryostat 

are high voltage lines to the detector box that minimise heat conduction. An alternative option 
is to use electron optics to deliver electrons from ionised Rydberg atoms up to a detector box 

mounted at a higher temperature, avoiding the problem of the high voltage lines conducting more 
heat than the cryostat can handle. This will save valuable space in the experimental region and 
keep the CEMs warmer, and thus more efficient. The next student to join the micromaser team 

will be assigned to constructing high quality microwave resonators. With a high quality cavity, 

the system will be ready to perform experiments. 
The new cavity resonance scans and tests to measure quality factors showcased in Chapter 5 

will be used in the production of new cavities at the correct frequency. To aide in this, a harness 

will be constructed to clip a cavity into for testing, and this will bolt directly onto the waveguide 
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circuit used. With a cycle of baking and etching the cavity to eliminate impurities, very high 

quality factors on the order of Q= 1011 are attainable [70]. These scanning techniques will also 
be used in the cryogenic tests of new cavities. 
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Appendix A 

Extended Derivations 

This part of the appendix contains expanded derivations. 

A. 1 Zheng and Guo's Controlled Phase Gate 

This section contains an extended derivation. The derivation presented in [351 appears to simply 
jump to the second order process for the effective Hamiltonian. This approach may be too 
simplistic, so I have opted for adiabatic elimination for a more rigourous route. I start with the 
two atom Tavis-Cummings Hamiltonian. 

HTC 
(ßi0&3) 

-i hg ( )a - Qýj)at)] (A. 1) 

This interaction involves two atoms and the field, with the field detuned into the dispersive regime 
to adiabatically eliminate it. A transformation can be made using 4= JA (&3 + &3) to get to an 
interaction picture similar to that used by Zheng and Guo 

2 

Hc= -ing 
feint&+ 

-e %ot&- at] (A. 2) 
j=1L 

I will continue by using HTC rather than HTC 

Once again the theory of effective Hamiltonians is used. The projection operators are chosen 
to be 

P=4Q2&iQi +Q2&2&tbj 
(A. 3) 

Q=&2a2 
I al +40'2U1&1 
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to satisfy PP = P, QQ = Q, PQ = QP = 0, and P+Q=1. Note that these only operate on 
the atoms. The effective Hamiltonian is built using the equation 

Heff = PHP - PHQ(QHQ)-'QHP 

=Ho-BA-'Bt. 
(A. 4) 

Using HTC yields the parts 

Ho=O 

A= .O 
(& & t&i - &2 &2+& &j+ 

+ý t -+ý ýt 
(A. 5) B= -i hg (&at&a 

1-& &PT a+ &T61 a- &16i &2 ä) 

Bt =ih g(&&t&jat - &ýa + ýtýiota) 

Consider that A spans the states fie, e) and fig, g), which are to be eliminated. This is perhaps 
more clear in the block wise notation. The inverse of A should thus result in AA-1 -- 
le, e, n) (e, e, nI +Ig, g, n) (g, g, nI, i. e. identity over these states. With this in mind, the inverse 

of A is simply 
A-1 

ßi0 
(&2 a2 a1 a1 - &2 &2 Pi Qi) (A. 6) 

Finally these parts are multiplied together to get 

Heff =Ö (&j o1 & Q2 + Qi Q2 + &T&2+ + äý Qi &2 ý2) 
la' at] 

hg2 
(A. 7) 

-A (&9e)9e + &ge, eg + &e9,9e + Qe9, e9) 
[a, at, 

The commutator has been left in as an explicit reference to identity for the field. This Hamiltonian 
is the same for these states as Zheng and Guo's Hamiltonian, albeit rather different in appearance. 
From the eliminated terms it is clear that the states I e, e, n) and fig, g, n) do not couple to other 
states and are subject only to phase evolution. 

The effective Hamiltonian for the 1g, g, n) component is still important. To avoid phase 
related problems the state of the field is chosen to be n=0. This is where it becomes important 
that the cavity is as cold as possible. In this limit HTC reduces to HTC = -0 for the state 
Ig, g). It is a good idea to chose n=0 anyway, since any field state except for a number state 
will lead to some phase spread in the resulting gate. The only state for which the number states 
and the thermal states converge is the n=0 state. 

The effective Hamiltonian for fie, e) is unimportant. The makeup of the gate is such that this 

state never exists in the cavity. 
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Code 

This appendix contains samples of code I have written in my time as a graduate student, in the 
hope that it may be useful for those following me. 

B. 1 Log File Converter 

I wrote a small script called Iog2ascii to turn the Vericold cryostat binary log files into ASCII 

tab delimited files. This was used to extract the cryostat data plotted in chapter 4. These log 
files are atypical, as the first 12288 bytes are in ASCII with some binary junk, and everything 
after is in binary. Programmes like Matlab could not handle these log files easily so I wrote this 
script to allow batch conversion at the command line. This script converts the Vericold files to 
comma delimited text files with column headers. 

The string portion of the log files is partially garbled, with random binary mess between 

useful strings. Sorting this is beyond my ability to code in a reasonable time, so I resorted to 

standard Unix command line programs. My colleagues and I in the laboratory predominantly use 
Linux and Macs which inherit from Unix, and those who don't have easy access to a machine that 

also does or Cygwin on Windows which ports these utilities. The shell script makes extensive 
use of pipes, which send the output of one program to the input of the next. This can be viewed 
as a series of transformations on the input to get the desired output. 

The script begins by determining the name of the input file, and creating a new filename 

which is identical except for the csv suffix. This stands for comma separated values and is 

recognised by most statistics software or spreadsheet packages. The next thing the script has to 
do is determine the number of columns in the file. Earlier log files had 53 columns and later 

ones 51. This may change again so hard coding is a bad idea. Fortunately the first column 
of data in the file is filled with the number of bytes on each line. The script gives the file to 
hexdump, which skips the first 12288 bytes and reads the following 8 bytes, i. e. the first double 
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precision floating point number in the file, which is the number of bytes in the first row. Bash is 
then used to return this number divided by eight, which is the number of columns in the first 
(and thus every) row. 

Next the script finds the column headers by reading the first 12288 characters of the input 

file using the command head. This is then handed to strings which extracts the useful strings 
from the binary mess, placing each string on its own line. The number of columns determines 

how many lines tail takes off of the end for column headers, and this is sent to tr to swap the 

newline characters for commas. Finally sed cleans a comma off the end of the line and the 

comma separated column headers are written to the output file. 

The final stage uses hexdump again; this time to decode the entire binary block of the file. 

The contents are decoded into comma separated values in the appropriate number of columns, 

and then sed is used to remove the comma on the end of every line. 

This approach was extremely fast to code. Remarkably the ASCII file that results from this 
is considerably smaller than the Vericold log file, voiding any advantage the bizarre format could 
possibly have, save for obfuscating data. 

I #! /bin/sh 
2 
3# log2ascii: Convert Vericold log files to a human readable format. 
4# This is useful for importing data into Matlab/Octave or a spreadsheet. 
5 
6 for file in $* 
7 do 
8# Work out the output filename. 
9 newfile-${file%. *}. csv 

10 # Work out number of columns. 
11 columns-$(('hexdump -s 12288 -n 8 -e ""/. g"' ${file}ý / 8)) 
12 # Create output file and place column headers. 
13 head -c 12288 ${file} ( strings I tail -n $columns I tr '\n' ', ' I sed 's/, $ 

//' > $newfile 
14 # Decode binary data and place in output file. 
15 echo $coiumns/8 \1. g, \O1\n'\"'\\n'\" > format. temp 

16 hexdump -s 12288 -v -f format. temp ${file} I sed 's/, $//' » $newfile 
17 rm format. temp 
18 echo "created $newfile" 
19 done 
20 exit 0 

Listing B. 1: log2ascii. sh 

B. 2 Power Meter Cavity Resonance Sweep 

I have included figure B. 1 as an example of LabVIEW code. It is a relatively small programme, 

and some of the detail is hidden as only one event in the event structure can be viewed at a time. 
This is simply supplied as a code sample. LabVIEW has many possible coding styles, but here I 
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have followed conventions. It is my hope that students following me will learn a few tricks from 
this. 
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Appendix C 

Revised Cryostat Operation 

The Vericold dilution refrigerator used in the laboratory has had some modifications since the 

group acquired it. In particular the precooling/dilution stage compressor has been replaced with 
a model less prone to the valves becoming stuck closed. The software for the cryostat has also 
been updated, which introduced new problems. In particular the compressor for the pulse tube 
cooler must now be started manually. The original instructions are also contradictory in places, 
so I felt it necessary to place a revised version of the instructions in this appendix. An original 
version can be found in Bruno Sanguinetti's thesis [63]. 

C. 1 Preparation 

After any major work has been done close to internal helium lines, a sniffer test should be done 

to check that no pipe has become ruptured. To do this the helium lines must be pressurised 
to slightly above an atmosphere with Helium, so that any leaks can be identified by the jets 

of helium they produce. Helium from a gas bottle should be used, and the lines thoroughly 

pumped out again before use to avoid contamination by water and nitrogen. Pumping these lines 

overnight produces good results. 
Internal shields should be put together using two people to avoid contact with sensitive parts. 

Make sure before starting that you have a 2.5 mm ball driver, a 2.5 mm Allen key, a3 mm ball 
driver and two 6mm ball drivers before starting. The 2.5 mm ball driver can be used for most of 
the screws, but the ones facing down on the 70 plate will need an Allen key to fit. If thermal 
connection between the shields is a problem then Apiezon N grease can be used. 

The vacuum chamber should be put together with care to clean every seal that has been 

opened. Metallic surfaces with no Viton seal ring should be cleaned using a lint-free wipe and 
methanol (use gloves). Surfaces with a Viton ring should be wiped clean with a dry lint-free 

wipe, and a small amount of vacuum grease reapplied to the ring. This should be a thin layer, 
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enough to make the Viton look wet without any streaks or globs. Use gloves throughout this 

procedure. 
The vacuum chamber needs at least two people to put together. For the upper shield, there 

are two bolts in the top plate in place to guide the shield in. Take care, since these bolts could 

easily scratch the seal. Once the shield is in place one person can hold the shield in place whilst 
the other fastens the bolts. The lower shield is a similar process, but will need lining up as 
there are no guide bolts. The bottom plate uses the 3 mm hex key. If the plate with the large 

turbomolecular pump is to be attached then one person must pinch it in place whilst the other 
fastens the bolts due to the weight. When the chamber is closed it is worth performing a leak 

test. The chamber Penning gauge will need to be turned on before the pressure is too low to 

operate properly. Do this when the pressure is -1x 10-3 mbar. This gauge must be turned on 
for the software to allow the cooler to operate. 

C. 2 Pulse Tube Cooling 

This is the first stage in starting the cryostat. The pulse tube actively cools the 77 K and 4K 

stages in a simple to use closed cycle. Originally this was fully automatic, but issues with the 
software mean that the compressor must be started manually. Before starting the pulse tube 
cooler, check that 

1. The vacuum in the chamber is <1x 10-3 mbar. If the chamber is stable at this pressure 
then you probably have a leak. Ideally the pressure should be <1x 10-4 mbar. 

2. All lines are connected. 

3. Coolant water is flowing to the compressor. If you are using a large turbomolecular pump 

make sure water is flowing to this too. 

4. The Penning gauge is turned on and working properly. 

Once this list has been checked it is safe to start the pulse tube cooler as follows: 

1. Using the software, turn on the rotary valve. 

2. Once the valve is working, press the on button on the compressor. The pressure on the 

compressor should be flickering around the red bar. 

3. Use the software to start a new log file and display a plot of the temperatures in the 
cryostat. 
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C. 3 Pre-cooling 

As the 77 K and 4K stages are cooling, a thermal connection between the mK stage and the 4K 

stage must be make to cool the mK stage. This connection is referred to as precooling. Put 

simply, a small amount of the helium mixture is pumped through the precooling line to produce 
a thermal contact between the mK stage and the 4K stage. This is a necessary step before the 
mixing cycle. 

1. Close all valves, except for VI, V2, V20, V22, V281 and V32 which should be opened 
after the rest have been closed if they are not already open. 

2. Open V 11. M4 should measure some mixture. 

3. Open V29. M3 should measure 0.8 bar. 

4. Open V 10 to equalise M3 and M4 measurements. 

5. Check that the backing pump works by toggling the "fore-pump" switch. 

6. Open V7 to complete the pre-cooling line. 

7. Start the compressor. 

8. Open V12 slowly to raise the pressure readings from M1 and M2 slightly. M1 should 
register a much higher pressure than M2 if the compressor is operating properly. A good 
pressure to keep on M1 is 1 bar2. Previous revisions state a maximum of 6 bar, but with 
the new compressor this is not recommended and will ultimately lead to ice buildup on 
the outlet line. 

9. Close V 10. 

Take care that the outlet pipe from the cryostat does not ice up. If this happens then the flow is 
too high and the cooling suboptimal. This may also compromise the helium lines by breaking 

seals. In this event reduce the flow by allowing some of the helium back into the holding tank 

via V6. 
'If the helium lines are over-pressured then OPV1 returns excess mixture to the holding drum, but V28 must be 

open to allow this. It is extremely important that this is open when the cryostat is in operation. OPV1 activates when 
the pressure exceeds 8 bar 

2Remember that the gauges are 1 bar off as they have a vacuum around them, so 1 bar looks like 0 bar on the 
gauge. 
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C. 4 Mixing Cycle 

The mixing cycle is the final stage of cooling. This stage may only be started when all the sub-4 K 

thermometers measure less than 20 K, but above 10 K to ensure that the helium vapour pressure 
is high for better flow and cooling power. The chamber pressure should be -, 3x 10-7 mbar. 
This process assumes that the precooling cycle is running. First pre-cooling must be evacuated. 

1. Some of the Helium can be let back into the holding drum through V6 with the compressor. 
Do this and then close V6. 

2. Make sure that V24 is closed and that V 10 and V 11 are open. 

3. Turn on the fore-pump. 

4. Open V31. 

5. Open V5. 

6. After the bulk of the Helium is in the holding drum, the turbomolecular pump can be used 
to help evacuate one side of precooling. Close V23 and Vi, and open V35 and V24. Turn 

on the turbomolecular pump. 

7. V4 and V21 may also be opened if there is some concern of pressure in the mixing cycle. 
The compressor must remain on to allow the flow of helium through it. 

8. Leave pumping for between one to four hours. 

With pre-cooling evacuated, the mixing cycle must be filled. In this stage the cycle is filled and 
topped-up as helium condenses. Assuming that all the steps above have been followed the next 
sequence of instructions should start the mixing cycle. Ideally the pre-cooled parts of the cryostat 

should be below 6 K. 

1. Close V35, V2, V4, V5 and V10. Make sure that V8 is also closed. Leave the fore-pump 
and turbomolecular pump on. 

2. Open V3, V21 and V12. The mixing cycle should now be open. 

3. Bleed Helium into the cycle through V9 slowly. Do not exceed 3 mbar on M22, or 6 bar 

on MI. 

4. Maintain the pressure in the cycle by adding helium through V9. Do not allow the 
temperature to exceed 6K by adding too much. 

5. The still temperature should eventually reach 500 mK. By activating the heater at about 
35% the still should approach 750mK. This will maximise flow. 

114 



APPENDIX C. REVISED CRYOSTAT OPERATION 

C. 5 Stopping the Cryostat 

If neither the pre-cooling nor the mixing cycle have started, then turn off the compressor manually, 
and then stop the rotary valve in the software. If only precooling has been started, then follow 
the steps in section C. 4 to pump it out. If a blockage due to contaminant by water or nitrogen 
etc. formed make sure that all the Helium is out of the system, and them close off the holding 
tank before starting the cleaning procedure in Section C. 6. If the full mixing cycle was operating, 
then follow the procedure below with the assumption that the turbomolecular pump is running. 

1. close V2 and V7 to keep a little Helium around the compressor. The compressor can now 
be turned of 

2. High pressure helium should be routed to the holding tank through V28, making sure that 
V6 is closed afterward. The remaining helium should be pumped into the tank through 
V11, V10 and V29. 

3. Open V5 slowly. M22 should not go above 1 mbar. Pre-cooling may be evacuated again 
by opening V35. 

4. After evacuation close V31, VI 1, and V 10. 

5. Making sure that all helium is secure follow the cleaning procedure in Section C. 6 before 

moving on to the next step. 

6. To turn off the 4K and 77 K stages, first turn off the compressor manually from its front 

panel using the OFF button. Following this, turn of the rotary valve from the software. If 

you have been successful, the small white box with a red LED readout on the back of the 

cryostat rack will read 0.0. 

C. 6 Cleaning the Helium Lines 

Historically I have had the most success running the cryostat after at least a day of cleaning 
the helium lines. For this basic cleaning all parts of the cryostat are pumped using a small 
turbomolecular pump through V27. When the pressure is very low the integrated turbomolecular 

pump can be used to extract more dirt. This should be started below 77 K so that helium is 

removed before other gases are liberated. The cryostat acts as an impedance, so a pressure 
difference of three orders of magnitude can be sustained across the internal helium lines. This 

should be kept in mind when using the integrated turbomolecular pump. 
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Performing Transformations 

Transforming a Hamiltonian into another frame is a powerful tool for understanding quantum 
mechanical systems. The most trivial example of a transformation is setting the lowest energy 
state of a system to zero, and referencing all states from it. The transformation procedure here is 

general, so that operators can be used in the transformation, leading to less trivial results. 
This procedure is certainly not new. It is used by many academics. I have found that amongst 

young researchers such as myself there is often confusion around the topic, so I have included a 

simple derivation in the hope that it is useful to my successors. 

D. 1 Derivation 

A unitary transformation operator T is a general transformation to be performed on a system to 
take it from the Schrödinger to an interaction picture (or between interaction pictures). For the 
sake of simplicity I have omitted factors of h. The transformation operates on the wavefunction 
10) to yield the transformed wavefunction 10'). 

10') =T 
Io = Tt I ýiF) 

(D. 1) 

The Schrödinger equation is 
H ýb) =zd IV)) (D. 2) 

The transformed wavefunction is then subsituted into the Schrödinger equation. 

HTtIv')=zdt(Ttl , )) (D. 3) 
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The right hand side is expanded using the product rule. 

HTt 10') = iit dt 
(l'') +idt Iz, b" (D. 4) 

Multiplying both sides by t gives 

THTt IVY) = Zdt IV') +ZT tI 
tk') (D. 5) 

By rearrangement this can be made to look like the Schrödinger equation 

(Ht 
-iT 

dt ýý'ý)=id k'). (D. 6) 

The part in brackets is the transformed Hamiltonian 

t H' = THTt - iT-t . (D. 7) 

The solution to the Schrödinger equation for this transformed system needs to be used now to get 
the solution for the wavefunction in the Schrödinger picture. 

I iPt) =e iH't I 1ö) = Ut 1, 'ö) (D. 8) 

where UI is the time evolution operator in the chosen interaction picture. Applying the reverse 
transformation returns the desired wavefunction and also demonstrates the transformation of a 
time evolution operator. 

lot) =t tut t 100) (D. 9) 

A unitary operator can be constructed with an Hermitian operator by the relation T' = exp 
(iOt). 

Equation (D. 7) can now be rewritten in terms of 

Hr _ ez®tHe-iöt - 
Ö. (D. 10) 

The subtraction of © is a useful feature. It can sometimes suggest useful forms of Ö based upon 

what parts of a Hamiltonian need to be removed or introduced. In the most trivial case Ö will 

commute with the Hamiltonian. When this is true 

e'®tHe-'6t =H iff [H, ÖJ =0 (D. 11) 
H'=H-Ö 
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Such a situation arrises when the reference energy of a system is changed. The transformation 

simplifies to a subtraction or addition of an energy to every state level. 

D. 2 A Simple Example 

In Part II used a transformation to go between equations (1.11) and (1.12). In this section I 

demonstrate how this transformation was performed as an example. I started with equation (1.11) 

ýaý 
Hatom-light = 0'3 + hW 

(&ta 
+ 

21 
ihg (a 

- at) ýQ + Q-) , (D. 12) 

atom field interaction 

and the transformation resulted in equation (1.12) 

--HI 
= &3 - ing (Q+eiwt + &-e-w') (äe ``'t - äte"''tl (D. 13) 

Ho interaction 

First I had to select aÖ to do this transformation. The clue is that I want to get rid of the atom 

and field parts, and introduce a new factor in their place h0v3/2. 

Ö=w2+ ätä + 
2ý 

(D. 14) 

Different parts of Ö operate on different operators in the Hamiltonian. Firstly, © commutes with 

the atom and light parts of the initial Hamiltonian and 0= w4 - w, so the transformation looks 

like 
HI = 

--ä3 
- ihge2et (ä 

- ät) (&+ + &-) e iät 
. (D. 15) 

Since t= exp(iOt) is unitary, T1't = Tt1' =1 can be inserted between the brackets, allowing 

operations on individual operators for simplicity, i. e. 

-i igez®t 
(ä 

- ät) e-Betei®t (6r+ + Q-) e-t®t. (D. 16) HI = 
hA 

63 

The first operator to handle is the annihilation operator. The operator needs to be on one side of 
both the transformation operators. The only term in Ö of concern is the ätä term. The others 
lead to a zero in the exponential and thus identity operators which can be neglected 

ezetäe_a®t = exp 
(atat) ä exp 

(_atat) 
. 

(D. 17) 
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The exponential of the number operator ätä is composed of increasing powers of ätä. If there is 

an annihilation operator on the left of exp (-ihwätät) then it can be tacked onto the front of 
every component in the expansion of the exponential, and an annihilation operator removed from 

the end so that 
ä exp 

(_atat) 
= exp 

(-iwaatt) ä. (D. 18) 

Inserting this into equation (D. 17) 

ezetäe-aet = exp 
(atat) 

exp 
(-iwaatt) ä 

_ 
(D. 19) 

e-iwtä 

Similarly, for the creation operator 

eietäte-iet _ äte"t (D. 20) 

which eliminates the operators in the exponential, leaving a time dependent phase. These 

exponential factors are simply numbers, so they can go on either side of the creation and 
annihilation operators. Next are the atomic raising and lowering operators. The relevant term in 
6 is now the term with Q3. 

ei®tiý+e iöt = exp 
(i 

2 &3t) &+ exp 
(-i 

j ht) (D. 21) 

Again, the exponential of v3 is treated as increasing powers of Q3 = &+&- - ä-ö+. Keeping in 

mind that &-Q- = ä+Q+ = 0, 

eietQ+e-i®t = exp 
(iý. 

3t) Q+ exp 
(-i 

2ä3t) 

= exp 
(i&&t) 2 &+ exp 

(_i&_ýt) 2 
(D. 22) 

= exp 
(it) &+Q &+v Q+ exp 

(it) 

= eia, tQ+ 

Similarly for the lowering operator 

ezetý-e yet = e-u., tQ- 
. (D. 23) 

Inserting these results back into equation (D. 16) completes the transformation 

HI = &3 - ihg (ä+e'n"t + &-e-: ,, tl (ýe_it 
- äte0 )tl (D. 24) 
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