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Abstract 

The negative health impacts of particulate matter (PM) air pollution are associated with 

long-term exposure, most commonly quantified by the annual average PM10 or PM2.5 

concentrations. The Thai government has set air quality standards to protect public health 

based on these. This study explores the relative importance of local to regional emission 

sources in determining annual average of PM concentrations across Thailand using both 

measurement and modelling approaches. 

Firstly, a chemical climatology approach is used to explore the contribution of biomass 

burning episodes to the annual average PM10 concentrations between 2011 and 2015. In 

Northern Thailand, biomass-burning events result in short-term peak PM10 concentrations 

that influence annual PM10 concentrations and lead to exceedance of standards. The 

highest hourly PM10 concentrations occurred predominantly in March contributing 15-20% 

to the annual mean. In contrast, in Southern Thailand results show that biomass burning 

events can result in elevated hourly PM10 concentrations with a very small effect on 

annual PM10 concentrations (<5%). 

Secondly, different types of location in Bangkok and central Thailand were analysed to 

understand how these contribute to PM concentrations. There was greater variation in 

annual average PM10 concentrations at Bangkok roadside sites (26 to 63 µg m-3) compared 

to between at general sites in Bangkok (24 to 48 µg m-3). At sites exceeding the Thai 

national standard of 50 µg m-3, large local emission sources are important in causing 

exceedance of the annual PM10 standard.  

Lastly, to understand how future emissions will influence PM2.5 concentrations and 

human health, the study develops an emission inventory of all relevant pollutants for 2010 

and future scenarios to estimate how these emissions will change up to 2030. The findings 

show that the expected increases in annual PM2.5 concentrations can be avoided if current 

government plans are fully implemented, but additional actions are needed as well. 
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Chapter 1: Introduction 

1.1 Air quality and its impact  

Air pollution, defined as contamination of the indoor or outdoor air by a range of gases 

and solid particles that modify its natural characteristics, has been identified as a global 

health priority by the World Health Organisation (WHO, 2016). The risk of air pollution 

in terms of environment and human health impacts has been identified as a priority in 

recent decades in many countries across the world (Kuklinska, Wolska, and Namiesnik, 

2015). The air pollution from both outdoor (ambient) and indoor (household) sources 

represents the largest environmental risk factor to human health, according to the WHO 

accounting for 7 million premature deaths around the world every year from respiratory 

and cardiovascular diseases, and lung cancer (WHO, 2016). Air pollution also causes a 

range of other negative health impacts. In addition to the health impacts, there are many 

other negative impacts of air pollution, including decreasing agricultural crop yields, 

reducing biomass growth of forests and other natural vegetation, reducing ecosystem 

biodiversity and degrading national heritage (Ashmore, 2005).   

The negative impacts of air pollution are reflected in the UN Sustainable Development 

Goals (SDGs), although air pollution itself does not have its own specific goal (UN, 

2019). Efforts to combat air pollution contribute to SDG 3 (good health and well-being), 

SDG target 7.2 (access to clean energy in the home), SDG target 11.6 (air quality in cities), 

SDG target 11.2 (access to sustainable transport) and SDG 13 on climate action. In addition, 

actions to mitigation air pollution have also been shown to make a contribution to meeting 

the goals of the Paris Agreement on climate change, through the simultaneous reduction of 

greenhouse gases that occur when action is taken on key air pollution and greenhouse gas 

sources (e.g. industry of electricity generation) (UN, 2015).  

Air pollution is not a single substance. There are many chemicals that are released into 

the atmosphere that have been categorised as air pollutants. The United Nations Economic 

Commission for Europe (UNECE) Convention on Long-Range Transboundary Air 

Pollution (CLRTAP) considers 25 substances as air pollutants that are to be reported by 

signatories to the Convention. These include substances categorised as i) ‘Main Pollutants’ 
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which includes nitrogen oxides (NOx), non-methane volatile organic compounds 

(NMVOC), sulphur oxides (SO2) and ammonia (NH3), ii) Particulate Matter (PM), iii) 

carbon monoxide (CO), iv) Heavy metals, and v) persistent organic pollutants (POPs) 

(UNECE, 2003).  

This thesis focusses exclusively on particulate matter air pollution (abbreviated to PM). PM 

is the pollutant that is most strongly associated with negative health impacts (REVIHAAP, 

2013). In addition, in Thailand (the geographic focus of this thesis), particulate matter 

substantially exceeds World Health Organisation (WHO) guidelines for PM concentrations 

for the protection of human health, and in some areas exceeds Thai National Air Quality 

standards (PCD, 2015). The overall aim of this thesis is to understand how atmospheric 

emission sources influence the variation in PM concentrations across Thailand that 

contribute to the annual average PM concentrations in different locations. The annual 

average PM concentration is suitable for estimating long-term exposure of populations to 

PM, and is the metric for quantifying PM concentrations that is most associated with 

negative health outcomes (REVIHAAP, 2013). In addition, this thesis aims to understand 

the drivers of the variation in annual PM concentrations across Thailand, and to identify 

key strategies to reduce PM, to protect human health.  

This Chapter aims to provide the necessary background information on PM and its role 

in damaging human health, its source and strategies for mitigation globally to inform on 

the research presented in Chapters 3, 4 and 5. It also reviews the current state of 

knowledge on PM in Thailand, what gaps remain, and how they inform the research 

questions answered in this thesis. Section 1.2 therefore describes particulate matter, and 

the different substances that contribute to its formation. Section 1.3 describes the major 

sources of air pollution globally, including major source sectors, as well as geographic 

sources and the contribution from the long-range transport of emissions. Section 1.4 then 

reviews the health impacts of particulate matter and the key metrics that use to estimate 

the severity of PM exposure relevant for human health. Section 1.5 summarises how to 

quantify the annual average PM concentrations. Section 1.6 describes the study area of 

Thailand. Section 1.7 then outlines the state of knowledge of PM in Thailand. Section 1.8 

describes current gaps in knowledge and the research questions that will be explored in 

this thesis, and finally Section 1.9 Chapter Outline. 
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1.2 Particulate matter  

Particulate matter (PM) may be considered as a solid or liquid or a mixture of both phases 

and can be primary or secondary particles (AQEG, 2005). Primary PM is directly emitted 

as solid or liquid particulates into the atmosphere, while secondary PM are solid or liquid 

particles formed in the atmosphere through chemical reactions involving primary 

pollutants emitted as gases. PM is not just one substance, but is made up of a variety of 

different chemicals in solid and liquid phase. There are two broad modes of formation of 

particulate matter. The first is particles that are directly emitted into the atmosphere. 

These ‘primary particles’ are emitted directly into the atmosphere from different sources 

such as road dust, wind-blown dust, sea salt, and combustion-generated particles such as 

fly ash and soot, also includes particles formed during combustion. Primary particles may 

themselves be different substances, including black or elemental carbon, organic carbon, 

or soil dust.  ‘Secondary particles’ are formed by ‘chemical reaction involving gas-phase 

precursors in the atmosphere or by other processes involving chemical reactions of free, 

adsorbed, or dissolved gases’ (U.S. EPA, 1996), The gas phase pollutants that contribute 

to secondary formation of particulate matter include nitrogen oxides (NOx), sulphur 

dioxide (SO2) and ammonia (NH3), which react and combine to form ‘secondary 

inorganic aerosol’, and volatile organic compounds (VOCs), which react in the 

atmosphere to form secondary organic aerosol. These various sources of primary and 

secondary pollutants are shown in Figure 1.1. 

 

Figure 1.1: Sources of primary and secondary pollutants (SEPA, 2019) 
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Particulate matter is made up of particles of different sizes. To categorise PM of different 

sizes, for measurement of PM in the atmosphere, and for assessment of health effects, 

various different metrics to quantify PM concentrations have been used. PM for this study 

focuses on PM10 and PM2.5 (Particulate Matter with an aerodynamic diameter of less than 

10 and 2.5 microns respectively). Figure 1.2 shows a size comparison between human 

hair and PM particles, a single hair on average is 50-70 micrometers in diameter (U.S. 

EPA, 2018), that means it is 20-28 times wider than PM2.5, and 5-7 times wider than PM10. 

The following sub-sections describe in more detail these different components of PM, 

their properties and key characteristics. This study notes that other metrics quantifying 

PM have been defined, including total suspended particulates (TSP), which encompasses 

all size fractions of PM in the atmosphere, as well as ultrafine particles (with a diameter 

less than 100 nanometres). These other size fractions of PM are not considered in detail 

in this study because i) of a lack of in-situ monitoring of particles in these size fractions 

in Thailand, and ii) because of the greater evidence of negative health impacts associated with 

the PM2.5 and PM10 metrics compared to TSP and ultrafine particles (REVIHAAP, 2013). 

 

 

Figure 1.2: A size comparison between human hair and PM particles (U.S. EPA, 2018) 
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1.2.1  Primary particulate matter 

1) Black Carbon 

Black or elemental Carbon (BC) is a primary pollutant contributing to PM concentrations. 

In Europe, it contributes up to 20% of particulate matter composition at urban traffic sites, 

but in many locations its contribution is much smaller (Putaud et al., 2010). There is 

evidence that black carbon is a particle with toxicity that is associated with health effects 

that are distinct from the total mass of PM2.5. The WHO concluded that exposures to black 

carbon for both short-term (24 hours) and long-term (annual) are linked with 

cardiovascular disease and premature mortality (WHO, 2013). According to the 

Intergovernmental Panel on Climate Change, BC is the third largest contributor to global 

temperature increases, due to direct absorption of incoming solar radiation, in addition to 

indirect climate effects such as interaction with clouds, and deposition on snow and ice 

(U.S. EPA, 2012a). Black carbon is formed by the incomplete combustion of fossil fuels, 

biofuels, and biomass, in particular through diesel vehicles (WHO, 2011).   

2) Organic Carbon 

Organic Carbon (OC) is a major source of PM and is also a primary pollutant emitted 

from various sources through incomplete combustion. Organic carbon is therefore 

emitted from many of the same sources on black carbon. In addition, organic carbon can 

also be a secondary pollutant formed form a variety of precursor emissions (Seinfeld and 

Pandis, 1998). Organic carbon generally refers to the mix of compounds containing 

carbon bound with other elements like hydrogen or oxygen. Organic carbon may be a 

product of incomplete combustion, or formed through the oxidation of VOCs in the 

atmosphere. Both primary and secondary OC possess radiative properties that fall along 

a continuum from light-absorbing to light-scattering (U.S. EPA, 2012a).  
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1.2.2  Other primary particulate matter 

Other pollutants also contribute to PM. These include heavy metals and polycyclic 

aromatic hydrocarbons (PAHs). However, these other substances make a small 

contribution to the total mass of PM in the atmosphere. As shown in Section 1.3, from 

previous studies, it is the mass of PM that is the primary determinant/metric for its impact 

on human health, and therefore these substances are not considered as individual 

components of PM in this thesis.  

1.2.3  Secondary particulate matter 

In addition to primary emissions of PM, secondary PM is formed through chemical 

reactions of gaseous precursors that are directly emitted. The formation of secondary PM 

can be grouped into two main categories, the formation of secondary inorganic aerosol 

and the formation of secondary organic aerosol.  

1.2.3.1 Secondary inorganic aerosol 

Secondary inorganic aerosol is formed through the chemical reaction of inorganic 

gaseous emissions in the atmosphere to form inorganic ions in the particulate phase. Both 

anthropogenic and natural emissions contribute to the formation of secondary inorganic 

aerosol. Natural sources of inorganic aerosol include ‘sea salt’, i.e. sodium chloride, as 

well as natural sources of NOx (e.g. lightning), SO2 (e.g. volcanic eruptions), and NH3 

(wild animals). Anthropogenic sources of inorganic aerosol result from anthropogenic 

sources of NOx, SO2 and NH3. In the atmosphere, secondary inorganic aerosol is formed 

through the reaction of these three gases to form ammonium nitrate (NH3 and NOx) and 

ammonium sulphate (NH3 and SO2). The formation of ammonium nitrate is controlled by 

the rate of conversion of NO2 to nitric acid (HNO3) through reaction with the hydroxyl 

radical (Jenkin and Clemitshaw, 2000). The availability of NH3 to react with nitric acid 

(formed from NOx emissions) and sulphuric acid (formed in the atmosphere from SO2 

emissions) to form ammonium nitrate and ammonium sulphate, respectively, can control 

the rate of formation of secondary inorganic aerosol, respectively (Fuzzi et al., 2015). The 

conversion of gaseous ammonia to ammonium is strongly influenced by temperature, 

with lower temperature favouring the formation of secondary inorganic aerosol, and 
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higher temperatures resulting in a shift in the equilibrium towards the gaseous phase 

(Koziel, 2006; Meng et al., 2018). Further detail on the individual anthropogenic 

precursors of secondary inorganic aerosol are provided in the following sub-sections.  

1) Ammonia 

Ammonia (NH3) makes a significant contribution to the formation of secondary inorganic 

aerosols (SIA) (Li et al., 2016; Kirkby et al., 2011). The SIA e.g. ammonium sulfate 

((NH4)2SO4) and ammonium nitrate (NH4NO3) plays an increasingly important role in 

PM2.5 pollution because NH3 is a precursor gas for SIA, especially during severe haze 

episodes (Huang et al., 2014; Tao et al., 2014). Previous studies that assessed the major 

factors controlling levels of PM10 and PM2.5 in the regional background from  Montseny, 

Finokalia (Greece) and Erdemli (Turkey) for the period 2001 to 2008 found that 

ammonium concentrations represents 2–4% of PM10 and 9–12% of PM2.5 (Querol et al., 

2009) as shown in Figure 1.3 (a). Another study showed that the fertilizer application and 

manure management from the agricultural sector are the largest sources of NH3 emissions 

as presented in Figure 1.3 (b) (Carnell et al., 2017; Xu et al.; 2015, Yan et al., 2003), the 

emissions mainly come from agricultural source contributing to PM2.5 concentrations 

(Zhao et al., 2017; Wu et al., 2016).   
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(a) 

 

(b) 

 

Figure 1.3: (a) The mean annual levels of PM10 and PM2.5 data captures measured at rural-regional 

background sites (Querol et al., 2009) (b) NH3 emissions from agricultural source (Xu et al., 2015) 

2)  Nitrogen oxides 

Nitrogen oxides (NOx) refers to a group of pollutants, made up of nitrogen oxide (NO) 

and nitrogen dioxide (NO2). NOx is a major precursor of fine secondary PM that 

contributes to the formation of secondary inorganic aerosol, through formation of 

ammonia nitrate (see above for ammonia) (U.S. EPA, 1996). While NOx as a gas is an air 

pollutant with effects on respiratory health, its role in the formation of PM also contributes 

to its negative human health effects (WHO, 2016).  Sources of NOx, mainly come from 

road traffic and electricity generation. During fuel combustion, nitrogen in fuels is 

converted to oxides of nitrogen in the combustion process with high-temperature 

combustion to form oxides of nitrogen (WHO, 2006). A study in Thailand investigated 
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the emission inventory of on-road transport in Bangkok Metropolitan Region (BMR) 

during the period from 2007 to 2015 found that truck is identified as a major contributor 

of NOX, SO2 and PM (Cheewaphongphan et al., 2017). 

3)  Sulphur dioxide   

Sulphur dioxide (SO2) also is a major precursor of fine secondary PM (U.S. EPA, 1996), 

and is a primary air pollutant. The major source of SO2 is from the fossil fuel (coal and 

oil) combustion, which contains varying amounts of sulphur, unabated burning of coal 

and the use of fuel oils and automotive diesel with a higher sulphur content (WHO, 2006). 

The SO2 emission of on-road transport in the Bangkok Metropolitan Region (BMR), 

Thailand mainly comes from trucks (Cheewaphongphan et al., 2017).   

1.2.3.2  Secondary organic aerosol 

In addition to the secondary inorganic aerosol described in the previous section, the other 

mechanism for the formation of particulate matter from gaseous precursors is the 

formation of secondary organic aerosol from volatile organic compounds and 

intermediate volatility organic compounds (IVOCs). Sources of VOCs and IVOCs 

include both natural and anthropogenic sources. Natural sources of VOCs include 

emissions from vegetation, while anthropogenic sources include a range of combustion 

activities, including in the transport, residential, industrial and other sectors. Recent 

reviews have highlighted the greater uncertainty of the atmospheric processing involved 

in the formation of secondary organic aerosol compared to secondary inorganic aerosol 

(Fuzzi et al., 2015). This uncertainty results from the large number of organic compounds 

that make up the organic aerosol fraction, only a small fraction of which have been 

characterised and quantified (Fuzzi et al., 2015), and therefore the large number of 

chemical reactions governing the formation of secondary organic aerosol from gaseous 

precursors. It also results from uncertainty in the emission levels of volatile organic 

compounds, and intermediately-volatile organic compounds from different sources. This 

results in challenges in atmospheric models accurately representing the levels of organic 

aerosol observed in different regions, and therefore designing effective strategies to 

control organic aerosol, which can comprise up to 40% of the total PM concentration in 

some locations.    



   

 

23 
 

1.3 Source of particulate matter 

1.3.1 Source sectors 

PM, and PM precursor emissions are emitted from a range of human activities, as well as 

from natural sources, and the sources of different air pollutants very between countries 

depending on major economic activities in each country. The International Energy 

Agency (IEA) reported that, globally, the energy sector has the largest sources of   

anthropogenic emissions of a range of air pollutants, as shown in Figure 1.4. Figure 1.4 

shows 85% of primary PM comes from the energy sector (approximately 50% from 

buildings: cooking, heating and lighting, 20% from industry: fuel combustion and process 

emissions, 10% from transport combustion: exhaust, brake and tyre and road wear and 

fuel evaporation, 3% from power plant: combustion of coal, oil, gas, bioenergy and waste, 

2% from fuel supply: extraction, storage, transport and transformation of fossil fuels, and 

15% from non-energy: agriculture, solvents and waste). Moreover, air pollution 

emissions from different sectors show that the main source of SO2 emissions are the 

power plant and industry sectors, NOx emissions are predominantly from transport and 

NH3 emissions mainly comes from the non-energy sector (agriculture) (IEA, 2016).  

 

Figure 1.4: Primary air pollutants and their sources (IEA, 2016) 
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In addition to the multiple anthropogenic sources of PM and PM precursor emissions, the 

natural emission sources include wind-blown desert dust, sea spray aerosols, volcanoes 

and seismic activities, fires are caused by burning forests and other vegetation, excluding 

agricultural burning of stubbles etc. (EEA, 2012).  In Thailand, the main sources of these 

pollutants were identified as activities that required energy consumption, such as land 

transportation, electricity generation and industry (PCD, 2015). A recent study by 

Thepnuan et al. (2019) identified that biomass burning from forest and agricultural waste 

burning in Chiang Mai province, Thailand (the Northern part of Southeast Asia) was also 

the major source (37%) of organic compounds in the PM2.5 aerosols during  smoke haze 

period in 2016.  

1.3.2 Geographic sources of emissions  

In addition to the specific source sectors that emit air pollutants, air pollution levels in a 

particular location are also determined by emissions that occur on local, national, regional 

and hemispheric scales through long-range transport (LRT). Determining the spatial scale 

on which emissions affect air pollution in particular locations is important to determine 

the most effective methods of mitigation. A useful example that demonstrates the 

importance of considering emissions at different scales and their effect on PM 

concentrations in a location is provided by a modelling study conducted for Delhi, India 

(Amann et al., 2017). This study shows that, even for a polluted megacity of over 10 

million inhabitants, approximately 60% of population-weighted PM2.5 concentrations in 

Delhi were determined by emissions occurring outside the city. The major sources of 

emissions contributing to PM2.5 concentrations in Delhi at these different scales are also 

different. Diesel vehicles and cookstove emissions were the largest source of PM2.5 

emitted in Delhi itself, while secondary inorganic aerosol made a larger contribution to 

PM2.5 in Delhi formed from emissions emitted outside of Delhi. This underlies the 

importance of considering contributions to PM on different geographic scales when 

considering i) how PM concentrations in a particular location are determined from 

different sources, and ii) the most effective methods to reduce PM concentrations.   

In Southeast Asia, the issue of long-range transport of PM emissions is particularly 

important in the context of emissions from biomass burning. For example, studies have 

reported that Southeast Asian countries and beyond had air quality and visibility problems 
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from emission and haze related to forest fires in Indonesia due to the transport of PM 

emissions thousands of miles from where they were originally emitted (Koe et al., 2001; 

Thompson et al., 2001). During the peak of the smoke-haze episode in June, 2013, there 

was over 160,000 ha of burned land in Sumatra with over 80% being deforested peatlands 

(Gaveau et al., 2014). Another study found that the smoke-haze in June 2013 across 

Sumatra island in Indonesia was the worst air pollution episode recorded in Singapore, 

the highest 24-hr moving average PM2.5 concentration reached 310 µg m−3 (Velasco and 

Rastan, 2015). Exposure to smoke from wildfires, forest fires, and open-field burning 

related to agricultural practices is a serious problem in many parts of the world. There is 

evidence that fires can increase short-term air pollution concentrations not only in those 

locations where the biomass burning takes place, but in locations distant from the source of 

emissions (Liu et al., 2015), but the impact of long-range transport of biomass burning 

emissions on long-term air pollution exposure has been less studied due to the periodic nature 

of biomass burning episodes (which generally occur during specific times of the year). The 

long-range transport of emissions from biomass burning also has substantial health impacts 

associated with it. The annual global mortality attributable to landscape fire smoke was 

estimated to be 339,000 premature deaths, in sensitivity analyses the interquartile range of all 

tested estimates was 260,000–600,000 and sub-Saharan Africa (157,000) and Southeast Asia 

(110,000) were the most affected region (Johnston et al., 2012). 

In addition, UNECE (2015) reported that the composition and mass concentrations of 

PM2.5 in Europe are substantially affected by long-range transport (LRT). During LRT 

episodes, particles can cause adverse health effects far from their emission sources 

(WHO, 2006). For example, the study for sources of PM2.5 from LRT episodes in southern 

Finland during 1999–2007 using air quality monitoring results, backward air mass 

trajectories, remote sensing of fire hot spots, transport and dispersion modelling of smoke 

found that open biomass burning in Eastern Europe causes high fine particle 

concentration peaks in large areas of Europe almost every year and the highest particle 

concentrations (maximum 1 hour, mean 163 µg m-3) and the longest episodes (9 days) were 

mainly caused by the emissions from open biomass burning (Niemi et al., 2009). 
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1.4 Health effects of particulate matter 

There is widespread evidence for the negative effects of particulate matter on human 

health, particularly cardiovascular and respiratory diseases. There have been multiple 

efforts to quantify the overall global burden of disease attributable to particulate matter. 

These studies have all concluded that air pollution across the world has a significant effect 

on public health. Exposure to air pollutants has been associated with several adverse 

health effects and lead to increasing mortality and morbidity (WHO, 2006). In 2016, 

WHO reported that approximately 3 million people were killed by ambient air pollution 

annually in all regions across the world (WHO, 2016). However, Western Pacific and 

South East Asia were the most affected, about 90% of people breathed air that did not 

comply with the WHO Air Quality Guidelines and more epidemiological studies of the 

long-term effects of exposure to air pollution in low-income where air pollution reaches 

unacceptable levels, are urgently needed (WHO, 2016).   

The evidence for the negative impacts of air pollution on human health derive from 

controlled laboratory studies on animals (e.g. Wang et al., 2019) and humans (e.g. 

Navarro et al., 2019), where decreases in lung function and cardiovascular activity have 

been reported during exposure to PM (U.S. EPA, 2019a). At a population-scale, 

epidemiological studies provide comprehensive evidence for the effect of PM on a wide 

range of different health outcomes (WHO, 2013). Exposure to PM has been shown to be 

a major cause of increase in hospital admissions for respiratory and cardiovascular 

diseases (Chang et al., 2005). In North American and Western European countries, many 

studies investigated the effects of PM for particularly respiratory and cardiovascular 

diseases on daily mortality, hospital admissions, and emergency department visits (Xiao 

et al., 2016). The morbidity and mortality from cardiovascular and respiratory diseases 

might be caused by exposure to air pollutants (Brunekreef and Holgate, 2002). Fewer 

studies have been conducted in other regions of the world to assess the effect of air 

pollution on human health, but those epidemiological studies that have been conducted 

have shown a consistent association between PM exposure and negative respiratory and 

cardiovascular health impacts (Atkinson et al., 2012).   

Many diseases have been associated with exposure to these air pollutants, especially long-

term exposure to particulate matter has negative impacts on human health (Kiesewetter 

et al., 2015). Exposure to PM2.5 and PM10 has been associated with negative health 
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effects, including those caused by impacts on respiratory and cardiovascular systems 

(Chang et al., 2005). Outdoor PM exposure from anthropogenic activities is an important 

global cause of premature death (Anenberg et al., 2010). Anenberg et al. (2018) estimated 

that in 2015, 5–10 million annual asthma emergency room visits globally could be 

attributable to PM2.5 (4–9% of the annual number of global visits) and the magnitude of 

the global asthma burden that could be avoided by reducing ambient air pollution of PM2.5 

and  O3 from anthropogenic emissions ∼73% and 37%, respectively. A similar study from 

Stockholm reported that PM10 and PM2.5 are associated with daily mortality (Meister, 

Johansson and Forsberg, 2012).  

Where the evidence for the effect of PM has been comprehensively reviewed, e.g. by the 

United States Environmental Protection Agency, World Health Organisation or UK 

Committee on the Medical Effects of Air Pollution, there have been consistent 

conclusions that exposure to PM is associated with a range of negative health outcomes. 

The UK Committee on the Medical Effects of Air Pollutants reported the effects of long-

term exposures to particulate air pollution was likely to affect cardiovascular morbidity 

in the UK (COMEAP, 2018). The British Heart Foundation reported that the mortality by 

cause from all heart and circulatory diseases in 2017 was 168,472 people in the UK, and 

for global mortality from cardiovascular disease in 2017 was estimated to 17,790,949 

people (BHF, 2019). Additional studies indicated coherence between long-term PM 

exposure and the risk of premature mortality (Vodonos, Awad, and Schwartz, 2018; 

Pinault et al., 2017; COMEAP, 2009). Another study in China between 2000 and 2010 

found that PM2.5 induced premature mortality up to 1,255,400 premature deaths in 2010, 

42% higher than the level in 2000 (Xie, R. et al., 2016). 

The WHO Review of the Evidence of the Health Aspects of Air Pollution (REVIHAAP)  

conducted in 2013, concluded that, since the previous review, conducted by WHO in 2005 

had been completed, a substantially larger number of studies had been conducted which 

provide support for ‘the effects of short-term exposure to PM2.5 on both mortality and 

morbidity, based on several multicity epidemiological studies’, and ‘the effects of long-

term exposures to PM2.5 on mortality and morbidity’. Key plausible biological 

mechanisms proposed for the effect of PM on human health include oxidative stress 

leading to inflammation (Kelly, 2003). When considering the effects of PM on human 

health, key questions include the role of different components of PM in driving the 

negative health outcomes, and the relative influence on repeated exposure to short-term 
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high concentration episodes. The WHO REVIHAAP review concludes that there is some 

evidence for a differential effect of different PM components on human health. 

REVIHAAP, 2013 concludes ‘Epidemiological and toxicological studies have shown PM 

mass (PM2.5 and PM10) comprises fractions with varying types and degrees of health 

effects, suggesting a role for both the chemical composition (such as transition metals and 

combustion-derived primary and secondary organic particles) and physical properties 

(size, particle number and surface area’, but concludes that the evidence is insufficient 

and the total PM mass is the most appropriate metric to evaluate health risks from PM. In 

addition, on the averaging period, REVIHAAP, 2013 concludes that there is a 

substantially larger health burden from long-term exposure (characterised by annual 

average concentrations) that is not simply the sum of short-term exposure (e.g. 24-hour 

average concentrations), and therefore that the annual average concentration represents 

the most important metric for evaluating health risks from PM exposure.    

Thailand has only a few studies on human health impacts, a summary of Thai air quality 

literatures on health effects as shown in Table 1.1. Recent studies in Thailand from Phosri 

et al. (2019) reported that ambient air pollution from O3, NO2, SO2, PM10, and CO was 

associated with increasing risk of hospital admissions for cardiovascular and respiratory 

diseases in Bangkok, Thailand, the elderly people age ≥ 65 years seemed to be the most 

vulnerable group to the effect of these air pollutants. Another study from Pothirat et al. 

(2017) confirmed that the effects of seasonal smog associated with an increased PM10 

level on emergency visits for asthma and chronic obstructive pulmonary disease 

exacerbations in Chiang Mai, Thailand. Naksen et al. (2017) also showed the evidence 

that urinary 1- Hydroxypyrene level (a predominant biomarker of exposure to polycyclic 

aromatic hydrocarbons) during haze episode in northern Thailand among school children 

is higher than the previous report in other region of Thailand and other countries. Guo et 

al. (2014) studied the effects of exposure to PM10, SO2, and O3 and the increased risk of 

mortality risks associated with an increase of 10  µg m-3 in PM10, 10 ppb in O3, 1 ppb in 

SO2 in three seasons during 1999–2008 in 18 provinces across Thailand. This study 

showed that PM10 was significantly related to respiratory mortality, while O3 was 

significantly associated with cardiovascular mortality and the effects of all pollutants 

were higher in summer and winter than in the rainy season on all mortality, for example, 

an increase of 10  µg m-3 in PM10 was associated with a 0.6%, 0.2% and 0.3% increase 

of respiratory mortality in summer, rainy season and winter, respectively. Whereas, 
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Buadong et al. (2009) reported that a short-term association between increased daily 

levels of PM10 and O3 and the number of daily emergency hospital visits for 

cardiovascular diseases, particularly among aged ≥ 65 years was observed in Bangkok, 

Thailand. A further study from Vichit-vadakan, Vajanapoom and Ostro (2008) on the 

mortality risk from air pollution in Bangkok, Thailand suggested strong associations 

between several different mortality outcomes and PM10. Thus, from the previous studies 

mentioned above, the relationship between the conditions producing air pollutant 

concentrations in the atmosphere and the resultant health effects needs further investigation. 

Table 1.1: Summarising the Thai air quality on health effects 

Health effects Pollutants Averaging 

period  

Reference 

Increasing risk of hospital 

admissions for 

cardiovascular and 

respiratory diseases on the 

elderly people age ≥ 65 years 

O3, NO2, SO2, 

PM10, CO 

Long-term 

exposure 

(2006-2014) 

Phosri et al. (2019) 

Increasing risk of emergency 

room visits for asthma and 

chronic obstructive 

pulmonary disease 

exacerbations 

PM10 Long-term 

exposure 

(2006-2009) 

Pothirat et al. (2017) 

Increasing risk of  all-cause 

mortality 

PM10, SO2, O3 Long-term 

exposure 

(1999–2008) 

Guo et al. (2014) 

Increasing risk of daily 

emergency hospital visits for 

cardiovascular diseases, 

particularly among aged ≥ 65 

years 

PM10, O3 Long-term 

exposure 

(2002-2006) 

Buadong et al. (2009) 

Increasing risk of all-cause 

mortality 

PM10 Long-term 

exposure 

(1999-2003 

Vichit-vadakan, 

Vajanapoom and 

Ostro (2008) 
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In terms of the effect that PM has on human health, as stated above, there are different 

components of PM. The latest review of the evidence on health effects of air pollution 

conducted by the WHO in 2013 concluded that there is some evidence for different 

toxicity of some components of PM compared to others (WHO, 2013). However, they 

concluded that this evidence was not strong enough to differentiate effects on health 

between different PM components. Therefore, it was recommended that human health-

relevant PM concentrations were quantified as the total PM mass. For this reason, total 

PM mass (both PM10 and PM2.5) are used here to quantify PM concentrations relevant for 

human health (WHO, 2013).  

Annual average metrics 

In addition to the quantification of PM as the total mass concentration, another key 

consideration is what time-averaged metric to use when quantifying PM relevant for 

human health. Studies have shown associations between short-term (e.g. hourly) variation 

in PM concentrations and impacts on human health (e.g. decreased lung function in 

laboratory studies, increases in premature mortality in time series epidemiological 

studies). In addition, cohort studies that assess changes in health impacts across 

populations have shown strong associations between long-term exposure (quantified as 

the annual average metric) and negative health outcomes such as premature mortality. 

The WHO REVIHAAP (REVIHAAP, 2013) review concluded that acute and long-term 

effects are partly interrelated, the effects of long-term exposure are much greater than 

short-term exposure. However, the long-term effects are not the sum of all short-term effects.  

As a result, the metrics used to quantify of long-term health-relevant PM from various 

studies are the annual average PM10 and PM2.5 concentrations (Anenberg et al., 2018; 

Malley et al., 2016; WHO, 2006). Advantages of using the annual average concentrations 

is that focusing on long-term exposure allows a more complete accounting for the effects 

of PM exposure on human health. WHO (2013) states that the health impacts from long-

term exposure to PM are not simply the sum of the health impacts from short-term 

exposure, and therefore that long-term exposure to PM has an additional burden on human 

health. Therefore, by using annual average PM as the metric to quantify health impacts, 

a larger fraction of the totality of the burden of disease attributable to PM exposure can 

be quantified, compared to using short-term exposure metrics (e.g. daily PM 

concentrations).    
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The challenge for governments around the world is to improve air quality in their cities 

in order to protect human's health. Therefore, many countries have established their own 

national standards to control the emissions of pollutants following the Air Quality 

Guidelines from World Health Organization (WHO). For example, for PM in Thailand, 

standards were set at 50 µg m−3 as an annual average concentration for PM10 by the 

Pollution Control Department (PCD) (PCD, 2004) and 25 µg m-3 as an annual average 

concentration for PM2.5 (PCD, 2010a). The WHO Guidelines values are even more 

stringent, with annual mean PM10 concentrations of 20 µg m-3 and annual mean PM2.5 set 

at 10 µg m-3 (WHO, 2006) as presented in Table 1.2.  

Table 1.2: Air quality guidelines by WHO and air quality standards in Thailand by PCD 

Air quality 

guidelines/Standards 
 

WHO (2006) PCD (2010a) PCD (2004) 

PM2.5 PM10 PM2.5 PM10 

Annual mean (µg m-3) 10 20 25 50 

Due to the larger effect that long-term exposure has on human health, this thesis focusses 

on how annual average PM is derived from variation in short-term (i.e. hourly) PM 

variations. The interrelation between short-term peak PM concentrations, and long-term 

annual average concentrations is explored in Chapters 3 and 4 through analysis of PM 

monitoring data in Thailand.  

  



   

 

32 
 

1.5 Quantifying particulate matter 

1.5.1 In situ measurements 

Ground-based monitoring of PM at measurement stations allows accurate concentration 

of PM to be measured in-situ. A variety of measurement methods for monitoring at 

ground stations have been developed, including high-quality ‘reference’ monitors, to ‘low 

cost’ sensors that can be carried as a person undertakes daily activities (Lung et al., 2018). 

The key advantage of ground-based measurement of PM is that sites can be located in 

different parts of a city, and outside the city to understand how PM varies in different 

locations. Long-term monitoring at a single site allows long-term trends to be assessed 

over time, e.g. to assess the effect of implementing policies to reduce PM (or to assess 

increasing trends due to socioeconomic development in the absence of policies to control 

emissions). Key considerations when developing a monitoring network are to ensure that 

the sites where PM is monitored are assessed in terms of their representativeness, and that 

gaps in the monitoring network for which the monitoring stations are not representative 

are identified.  

Commonly, ground based monitoring networks are used to assess compliance with air 

quality standards, and to analyse long-term trends in PM concentrations. However, 

studies (Punsompong and Chantara, 2018; Field et al., 2016; PCD, 2015; Kim Oahn and 

Leelasakultum, 2011) have shown that in those regions where PM concentrations are 

highest, and therefore where risks to human health are most serious (i.e. in Africa and 

parts of south and south-east Asia), the number of PM measurement sites to monitor and 

quantify PM levels is lowest.  

1.5.2 Remote sensing data  

Remote sensing is a technology of observing the earth surface or the atmosphere by using 

electromagnetic spectrum/radiation without being in direct contact with the objects or 

areas (Bakker, et al., 2009; Blaschke, 2005; Dyring, 1973). This technique has been 

widely applied in mapping PM concentrations (Hua et al., 2019; Li, Yang and Wang, 

2015; Kloog et al., 2014; Kloog et al., 2011; Niemi et al., 2009) because the ground 

measurement networks still have a limitation to evaluate the spatial distribution and the 
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regional transport of PM (Engel-Cox et al., 2004) , especially in the areas with inadequate 

air quality monitoring stations, the remote sensing, for example using satellite is an 

effective method to estimate air quality on a large scale (Li, Yang and Wang, 2015).  

1.5.3 Modelling of air pollution 

Modelling of air pollution concentrations involves first quantifying the strength of 

emissions that contribute to PM concentrations, and distributing those emissions based 

on where they are emitted. Next, the atmospheric transport and chemical reactions that 

different pollutants undergo in the atmosphere have to be modelled, to convert the 

emissions of a pollutant into the resulting PM concentrations in the geographic location 

that is of interest. As stated above, this process needs to take into account emissions 

emitted close to the area of interest, but also emissions emitted distant from this area, due 

to the effect that long-range transport can have on PM concentrations distant from the 

emission source. The modelling of air pollution concentrations can be undertaken with 

varying levels of complexity and completeness in terms of the representation of 

atmospheric processing on PM and PM precursor emissions. There are several different 

types of air quality models with different purposes such as dispersion models, 

photochemical models and receptor air quality models (U.S. EPA, 2019b). Dispersion 

models are used to estimate the concentration of pollutants surrounding emission sources 

at ground-level receptors (U.S. EPA, 2019b). Photochemical models are used to simulate 

the impacts from all sources by estimating pollutant concentrations and deposition of both 

inert and chemically reactive pollutants over a variety of spatial scales that range from 

urban to continental (U.S. EPA, 2010). Receptor models are observational techniques 

which use the chemical and physical characteristics of gases and particles measured at 

source and receptor to both identify the presence of and to quantify source contributions 

to receptor concentrations (U.S. EPA, 2019b) as shown in Table 1.3.  
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Table 1.3: Type of models for air pollution forecasting 

Type Method Reference 

Dispersion  

modelling 

- American Meteorological 
Society/Environmental Protection Agency 
Regulatory Model (AERMOD) 
- CALPUFF 

U.S. EPA (2019b) 

(https://www.epa.gov/scram/air-

quality-dispersion-modeling-

preferred-and-recommended-

models) 

Photochemical 

modelling 

- Community Multiscale Air Quality (CMAQ):  

To simulate the numerous physical and chemical 

processes involved in the formation, transport, 

and destruction of particulate matter, ozone, and 

other air pollutants (U.S. EPA, 2010) 

- Comprehensive Air Quality Model with 

Extensions (CAMx) Modelling 

Receptor 
modelling 

- Chemical Mass Balance (CMB) Model 

- Positive Matrix Factorization (PMF) 

 

The advantage of modelling PM concentrations is that the magnitude of PM concentrations 

in a location can be directly linked to the emissions that produce this level of PM 

concentrations. This allows the major sources of PM concentrations to be identified, 

including the contribution from major source sectors, and different geographic regions. 

Finally, modelling of PM concentrations also facilitates assessment of how PM 

concentrations are likely to change into the future for different projections of emissions 

(driven, e.g. by different assumptions of socioeconomic development and/or implementation 

of different sets of policies and measures). This facilitates planning on how PM 

concentrations can be produced as the implementation of different policies and mitigation 

measures can be evaluated in terms of i) their effect on reducing PM and PM precursor 

emissions and ii) their effect on PM concentrations and impact on human health.  

The air pollution modelling techniques listed above which model the emission, transport 

and chemical reaction of pollutants in the atmosphere typically require a supercomputer to 

run. The time and computational power required to run these models limits their 

application. One such atmospheric chemistry transport model is the GEOS-Chem model. 

GEOS-Chem is a 3D atmospheric chemistry transport model with 27 vertical layers in the 

atmosphere that accounts for the atmospheric transport and chemical reaction of pollutants 

in the atmosphere. It is a global model that can be run at various grid resolutions ranging 



   

 

35 
 

from 4x5o to smaller scale applications (0.25x0.31o), and has also been applied regionally 

(Bey, 2001). The traditional running of the GEOS-Chem model is similar to other 

atmospheric chemistry transport models, which require substantial computing power to run. 

However, an additional application of GEOS-Chem, called the GEOS-Chem Adjoint 

model, provide the ability to more rapidly assess the consequences of changes in emissions 

on air quality in a particular location. The GEOS-Chem Adjoint model quantifies the 

sensitivity of changes in a particular metric (e.g. annual average PM2.5 concentrations across 

Thailand) to changes in emissions of precursors in grid squares globally. The sensitivities 

can be combined with gridded emission estimates for different scenarios to estimate the 

effect of a particular emission changes on PM2.5 exposure and health impacts. This GEOS-

Chem Adjoint model can rapidly evaluate the effect of different changes in emissions, and 

was therefore used in this thesis to assess the effectiveness of different scenarios at reducing 

PM2.5, as described in Chapter 2 and Chapter 5.      

To effectively plans to reduce PM concentrations, a combination of monitoring networks 

measuring PM and modelling to assess sources and emission contributions have been 

utilised in different regions. The monitoring of PM allows historical and current PM 

concentrations to be determined (Punsompong and Chantara, 2018; Malley et al., 2016; 

Querol et al., 2009), and through statistical analysis, the different determinants of PM 

concentrations (e.g. long-range transport, source sectors etc.) to be explored. Long-term 

trends in PM data can be analysed using a fixed site monitoring network. Complementing 

monitoring network data with modelling of PM emissions and concentrations allows 

future changes in PM emissions to be explored, and the effect of different policies and 

measures to be analysed in terms of their effect on PM concentrations. This combination 

of monitoring and modelling has been used in different countries to plan for reductions 

in PM concentrations (and improvements in human health), particularly in Europe and 

North America, but also recently in China, and other developing countries. Moreover,  the 

combination of statistical analysis of PM monitoring data and modelling of PM emissions 

and concentrations in Thailand can increase understanding of the drivers of PM 

concentrations in Thailand, and the most effective strategies for mitigation.   
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1.5.4 Emissions 

Atmospheric emissions are one of the most important contaminants emitted into the 

atmosphere from the diffuse pollution (Matthias et al., 2018). Estimates of air pollutant 

emissions are essential to understand the contribution of different sources to PM2.5 

concentrations, and to use as input into atmospheric chemistry transport modelling. The 

general approach and terminology associated with estimating emissions is shown in Table 1.4. 

In general terms, the estimation of emissions can be based on the equation (U.S. EPA, 2017): 

E = A x EF x (1-ER/100) 

Where: 

E  =  Emissions 

A   =  Activity Rate 

EF   =  Emission Factor 

ER  = Overall emission reduction efficiency (%) 

Comprehensive guidance has been developed for estimating air pollutant emissions from 

different sources (EMEP/EEA 2019). These guidance documents provide methods by 

which the general equation above is translated into specific methodologies to estimate 

emissions from major air pollution emitting source sectors. For example, the EMEP/EEA 

(2019) air pollution emission inventory guidebook describes the activity data that can be 

used to quantify the emissions from each source sector. This varies the from the fuel 

consumed in energy industries, to the total number of vehicle-km travelled by a particular 

type of vehicle (the activity data used to quantify emissions for each sector are further 

described in Chapter 5 of this thesis). The EMEP/EEA (2019) emission inventory 

guidebook also provides default emission factors (in units of kg pollutant per unit of 

activity) that can be used in combination with the activity data to estimate emissions from 

a particular source.  

Key to the development of emission inventories is the concept of ‘tiers’ of methodologies. 

Within the EMEP/EEA (2019) emission inventory guidebook, three tiers of 

methodologies are outlined that provide the basis for quantifying emissions from 

particular sources. ‘Tier 1’ approaches are the simplest methods that can be used to 
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quantify emissions using only default data and assumptions. ‘Tier 2’ approaches are more 

detailed, and may require some country-specific data to be able to estimate emissions, 

while the most complex methods, ‘Tier 3’, are based solely on country-specific data. The 

ability to quantify emissions using methods with different levels of complexity, data 

requires and specificity has the advantages of i) allowing countries that have limited data 

to still estimate air pollutant emissions, ii) allowing prioritisation of key sources using the 

more complex methods, while still being comprehensive by estimating emissions from 

minor sources using Tier 1 approaches, and iii) allowing emission inventories to be 

gradually improved a new data becomes available. In this thesis (Chapter 5), a range of 

methods are used to quantify emissions from different sources in Thailand.  
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Table 1.4: Components of emission models 

Terminology Definition Reference 

Emissions Flux of a substance X entering the 
atmosphere/ An emission rate is an 
amount of emission per unit time (e.g., 
kilograms of PM per year). 

Matthias et al. (2018), 
NARSTO (2005) 

Emission inventory  A database that lists, by source, the 
amount of air pollutants discharged into 
the atmosphere during a year or other 
time period (units of weight, volume, 
distance and etc.)/ A critical foundation 
of air quality management activities. 

U.S. EPA (2019b),  
NARSTO (2005) 

Activity Rate A measure of the driving force for the 
operation that produces emissions (e.g., 
kilograms of fuel burned per month or 
time period of interest)/Quantity 
describing the activity relevant for the 
emissions of a certain source ( e.g., 
amount of fuel used, distance travelled, or 
amount of energy converted) 

Matthias et al. (2018), 
NARSTO (2005) 

Emission Factor A numerical value that attempts to relate 
to the quantity of a pollutant emitted to 

the atmosphere with an activity 
associated with the release of that 

pollutant (weight of pollutant emitted 
divided by a unit weight, volume, 

distance, or duration of the activity 
emitting the pollutant) 

U.S. EPA (1997),  
U.S. EPA (2007) 

 

ER The product of the control device 
destruction or removal efficiency and the 
capture efficiency of the control system. 

U.S. EPA, 1997 

GEOS-CHEM ‘A global 3-D model of atmospheric 
chemistry driven by meteorological input 

from the Goddard Earth Observing 
System (GEOS) of the NASA Global 
Modelling and Assimilation Office’ 

http://www.geos-chem.org 

 

 

   



   

 

39 
 

1.6 Background of Thailand 

The Kingdom of Thailand (Thailand) is located at the heart of the Southeast Asian 

mainland, covering an area of 513,115 square kilometres; 1,620 kilometres from North to 

South and 775 kilometres from East to West. With a population of 69.4 million, it is the 

world's 20th largest country, and the fourth largest nation in ASEAN (Association of 

Southeast Asian Nations) after Indonesia, the Philippines and Vietnam (World Bank, 

2019) as shown in Figure 1.5.  

 

 

Figure 1.5: Map of Thailand (Nations online, 2019) 
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Bangkok is the capital city of Thailand. The population in Bangkok in 2018 was 5.7 

million people (Department of Provincial Administration, 2018). Major cities are Chiang 

Mai (North), Songkhla (South), Ayutthaya and Chonburi (Central Plains), Nakhon 

Ratchasima and Khon Kaen (Northeast). Thailand has a tropical climate, with a hot and 

humid climate throughout the year. The climate of Thailand is also under the influence of 

monsoon winds of seasonal character such as the Southwest monsoon and Northeast 

monsoon. The Southwest monsoon which starts in May brings a stream of warm moist 

air from the Indian Ocean towards Thailand causing abundant rain over the country. The 

Northeast monsoon starts in October brings the cold and dry air from the anticyclone in 

China mainland over major parts of Thailand, especially the Northern and Northeastern 

Parts. In the Southern Part, this monsoon causes mild weather and abundant rain along 

the eastern coast (Meteorological Department, Thailand, 2016). The seasonal weather 

patterns affect concentrations and dispersions of ambient air pollution, with 

concentrations and dispersion of air pollutants in the wet season being less than in the dry 

season (PCD, 2015). 

 

1.7 State of air quality in Thailand 

The Pollution Control Department (PCD) under the Ministry of Natural Resources and 

Environment, Thailand, has the responsibility for preventing and controlling air pollution 

under the Enhancement and Conservation of National Environmental Quality Act (1992). 

The PCD has reported the state of air quality in Thailand for 2018, which has improved 

over the last few years as a result of the success of pollution management by the relevant 

Thailand government agencies. However, ambient air quality from 63 general monitoring 

stations across Thailand stills exceeded the standard for  PM2.5 and PM10 as shown in 

Table 1.5  and Figure 1.6 (PCD, 2019).  

Table 1.5: The national 24 hours and annual average PM concentrations all sites across  
                  Thailand 

PM Standard (µg m-3) Air quality in 2018 (µg m-3) 

Standard PM2.5 PM10 PM2.5 PM10 

24 hours average 50 120 3 - 133 2 - 303 

Annual average 25 50 9 - 41 23 - 120 
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Figure 1.6 (a) shows the percentage of days from all pollutants were not exceeded the 24-

hours average standards in 7 provinces in Thailand mainly occurred in Southern Thailand 

(Blue colour). However, the highest percentage of days exceed the standards occurred 

more than 20% in central sites (Including Bangkok) from 4 provinces (Red colour). 

Figure 1.6 (b) shows the trends of annual average from different air pollutants from 2008 

to 2018 were steady except PM2.5, Ozone, and PM10 still exceed the standards. 

 

   

 

Figure 1.6: The state of air quality across Thailand in 2018 (a) The percentage of days 

exceeded the 24-hours average standards (b) The trends of annual average from different 

air pollutants from 2008 to 2018 compared to the standards (PCD, 2019) 

 

 

(a) The percentage of days exceeded the 24-hours average standard 

Year 

(b) The trends of annual average from different air  
      pollutants from 2008 to 2018  

% 
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The state of air pollution in critical areas of Thailand in 2018 (PCD, 2019) was 1) In 

Northern Thailand there was a haze problem caused by open burnings and forest fires. 

The situation has improved by decreasing the number of days with particulate matter and 

the hotspots accumulation that exceeded the standards. 2) Bangkok Metropolitan Region 

(BMR) (including the capital city and five adjacent provinces), the main source is from 

the vehicles, PM2.5 concentrations were also accumulated in the atmosphere due to the 

meteorological conditions with no wind and air circulation, and 3) In the Na Phra Lan 

Subdistrict, Saraburi province, the major sources are a diffusion of particulate matter from 

cement plants, lime plants, stone crushing plants, quarries in the area and nearby as well 

as traffic congestion transportation and logistics activity in the area where roads are 

damaged). The Thailand PCD has stated that all these problems need to be solved with 

intensive mitigation measures (PCD, 2019).  

In 2019, PCD reorganised its air quality management plans by cooperating with the Asian 

Institute of Technology (AIT) to study and update the sources of PM2.5, PM10, CO, SO2, 

NOx, HC, CO2 from transportation, industry, residences, commercial buildings, open-

burning, forest fires, waste, agriculture, as well as fugitive emission sources. AIT was 

then tasked to develop a PM2.5 source database, including activities and pollution 

emissions in BMR during November and February, because this period tends to have high 

PM2.5 concentrations every year. With this new project the PCD was able to make plans 

to deal with the smog and dust problems each year (PCD, 2019).  

The PCD, Department of Health and EHT under the leadership of the Chulabhorn 

Research Institute and the United Nations Environment Programme (UNEP) have 

established a project on Air Quality Assessment for Health and Environment Policies in 

Thailand (UNEP supported the budget) in order to evaluate the situation and collect 

academic data for policy recommendations on air quality management and health 

impacts. The plan was that the project would be beneficial to the operation, preparation 

and improvement of air quality management measures / standards in Thailand by linking 

to the health impact data, economy and society. The results showed that the rate of illness 

caused by the relationship between air pollution concentration of PM2.5, PM10, O3 in the 

study areas (namely, Hat Yai District, Songkhla Province, Na Phralan Subdistrict, 

Chaloem Phra Kiat District, Saraburi Province and Muang District, Chiang Mai Province) 

correlates with the number of patients with respiratory diseases, lung cancer and coronary 

artery disease. The study looked at the relationship between numbers of citizens and air 
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pollution impacts, and determined that each province has a different risk rate of exposure 

to air pollution. The project also showed the risks for different age groups, for example,  

populations older than 6 0  years should be aware of the impact on air pollution more than 

the normal population, etc. (PCD, 2019).  

Another cooperation on air quality management and health impacts, is that the PCD has 

signed a memorandum of cooperation on environmental health and toxicology with the 

Department of Health, Ministry of Public Health and Center of Excellence on 

Environmental Health and Toxicology (EHT) (August 15, 2019). The objectives were to 

support research studies, develop and increase the capability of personnel and operators, 

develop policies/measures and exchange information on health, toxicology and 

environmental operations, including promoting the role of Thailand in the international 

cooperation forum for hygiene toxicology and environment (PCD, 2019). 

Research on PM from Thailand 

Several studies in Thailand have demonstrated various sources of air pollutants. In 

Bangkok, the major contributor to PM10 and PM2.5 was from traffic (mobile sources and 

road dust) in both wet and dry seasons (Kim Oanh et al., 2006; Loetkamonwit, 2000). 

During the intensive burning season (November-April) smoke plumes from rice straw 

burning in Pathumthani (the intensive burning area of the Bangkok Metropolitan Region 

(BMR)) can be transported to Bangkok following the Northeast monsoon while higher 

numbers of hotspots were observed during the rice straw burning period (from November 

to April next year) (Tipayarom and Kim Oanh, 2007). Air pollution levels during the dry 

months in Bangkok are much higher than the wet months (Kim Oahn et al., 2006). 

Chuersuwan et al. (2008) studied the major sources of PM10 and PM2.5 in BMR at four 

monitoring stations. The major source of PM10 and PM2.5 at traffic sites indicated the 

importance of automobile emissions and biomass burning as sources of PM. However, 

biomass burning was the major source of PM2.5 at residential sites as well. Other studies 

of PM concentrations at three Bangkok mass transit system (BTS) stations showed the 

PM concentrations were increasing with the traffic volume under BTS stations whilst 

with increasing height, PM levels were decreased (Lertphuthipisut, 2004).  

Emissions from biomass burning (from forest fires and from the burning of agricultural 

crop residues) are major sources of PM in Thailand, and contribute to regional/long-range 
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transport. Studies (Field et al., 2016; Betha, Behera and Balasubramanian, 2014; Kim 

Oahn and Leelasakultum, 2011) have also reported the impact on short-term peaks in PM 

concentrations in Thailand and the contribution from neighbouring countries to these 

‘haze’ episodes resulting from intense biomass burning episodes. For example, in 

Northern Thailand, most areas are mountainous, which are largely covered by forest and 

agricultural lands, and biomass open burning is a very important seasonal source of air 

pollution there. This is especially the case in Chiang Mai province, with frequent forest 

fires during the dry season, 78% of the area is covered by forest and the burned forest 

area for the whole Northern region during 2004–2008 was the highest in 2004 (107 km2) 

(MONRE, 2007). Haze episodes in Northern Thailand typically occur from forest fires 

and agricultural open burning both locally (i.e. within Thailand) and through 

transboundary transport from neighbouring countries, which only occurs during the 

beginning of the year between January and April (PCD, 2015). Kim Oahn and 

Leelasakultum (2011), identified the highest 24-hr PM10 concentrations and 95th percentile 

value were 396 μg m-3 and 234 μg m-3 in Chiang Mai occurred during March in 2007, and 

air mass back trajectories on haze episode days had passed over regions of dense biomass 

fire hotspots before arriving in Chiang Mai.  

Other research (Punsompong and Chantara, 2018; Phayungwiwatthanakoon, 2013; 

Ruanngern, 2012; Kim Oahn and Leelasakultum, 2011) on open burning emissions in 

Northern Thailand, estimate that the annual emission averages are as follows: annual 

emission estimation for 2010 from open burning in Prayao, Northern Thailand was 21,554 

ton for PM2.5, and 43,577 ton for PM10. Open burning is mostly found in forest (93%) and 

biomass is frequently burnt in March, April and February (Ruanngern, 2012). In southern 

Thailand, PM10 concentration tends to increase during July to October due to forest fires 

in Sumatra (PCD, 2015). Borneo and Indonesia also faces the least pollution problems 

(Field et al., 2016). Moreover, during the rainy season when compared to other regions in 

Thailand, air flows and air pressure circulated the air into the higher atmosphere, resulting 

in pollutants being less concentrated at the source (Field et al., 2016; PCD, 2015).  

Punsompong and Chantara (2018) showed for one monitoring site in Chiang Mai in 

northern Thailand between 2010 and 2015 that high PM10 concentrations mainly occurred 

in dry season during February to April. Based on potential source contribution function 

analysis of air mass back trajectories, they estimated that during this period the 

contribution to hourly PM10 concentrations from Myanmar was 73% and from Thailand 



   

 

45 
 

was 27%. In Myanmar, the major high-potential sources were open agricultural burning, 

followed by forest burning, and in Thailand, the major contribution was from agricultural 

burning. Other previous studies have also highlighted the role of biomass burning in 

northern Thailand, Myanmar, and other Southeast Asian countries to short-term peaks in 

PM10 concentrations (Kim Oahn and Leelasakultum, 2011; Phayungwiwatthanakoon, 

2013; PCD, 2010b; PCD, 2012).  

In summary, previous research has shown that biomass burning makes a substantial 

contribution to high PM concentrations in Northern Thailand during specific parts of the 

year, i.e. it contributes to short-term peak PM concentrations. However, none of these 

studies have assessed the effect that these episodes have on overall annual average PM 

concentrations across Thailand.  

Several studies in Thailand have demonstrated that exposure to PM is associated with an 

increased risk of adverse health effects. Premature deaths in Thailand related to air 

pollution were estimated to have increased by 74% from 21,651 to 37,577 between 1995 

and 2015 (GBD, 2015). Studies on health effects of PM10 on the lung function of a 

policemen group from a heavy traffic area in Bangkok and a control group from 

Ayutthaya province, found that the 24-hr average concentration of PM10 in Bangkok was 

three times higher than the rural area control (Boudoung, 1999). Lung function of the 

group in Bangkok was significantly lower than the control group (P<0.05) (Boudoung, 

1999). Health effects of indoor respirable particulates have also been reported among 

housewives and children in the inner Bangkok area, suburban area, and Amphoe Phimai 

Nakornratchasima province (Subsuk, 2000). The study revealed that the symptoms of 

respiratory disease, of non-specific respiratory disease and persistent cough and phlegm 

indicated that suburban area was better for health than the Amphoe Phimai 

Nakornratchasima and the inner Bangkok area (Subsuk, 2000). The exposure levels of 

drivers to PM2.5 and PM10–2.5 (Particulate Matter with an aerodynamic diameter of wider 

than 2.5 and less than 10 microns) on four bus routes in Bangkok found that the PM 

exposure level was higher than in the general environment and it varied with the seasons 

and vehicle type. The major component of PM was carbon, derived from different vehicle 

types exhausts; air-conditioned bus, non-air-conditioned bus, tuk-tuk and taxi. The 

implication was that exposure to PM2.5 in public transportation vehicles could have 

harmful health effects on both drivers and commuters, where air pollution from vehicle 

exhaust is a serious problem (Jinsart et al., 2012). 
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1.8 Thailand research gaps  

There is a considerable gap in knowledge of air pollution variation based on previous 

studies conducted in Thailand. Many research studies have focused on the contribution 

of PM into the atmosphere from different sources and periods. However, as summarised 

above, the studies that have been conducted on PM concentrations in Thailand have not 

explicitly assessed the contribution of biomass burning, and other seasonal sources of air 

pollution to the magnitude of the annual average PM concentration. This is important 

because it is the annual average concentration that is most strongly associated with 

negative health effects, as a proxy for long-term exposure to PM (as opposed to hourly or 

daily PM concentrations, which characterise short-term exposure). Thailand has an 

annual average standard for PM10 and PM2.5 concentrations, against which monitored PM 

concentrations are assessed for compliance with these standards in different regions. 

However, the Pollution Control Department only assesses compliance with these 

standards. There is substantial potential to utilise the monitoring data collected by PCD 

through additional statistical analysis to identify the variation in hourly PM 

concentrations that produce a particular magnitude of annual PM concentrations at a 

particular site, and through this analysis to gain insight into the drivers (including the 

contribution of long-range transport vs local emission sources and the contribution of 

different emission source sectors) that produce annual PM concentrations at different 

monitoring sites.   

A statistical framework for analysing air pollution monitoring data, called chemical 

climatology, has been applied in the UK, and to assess PM concentrations in other 

European cities (Malley et al., 2016; Malley, Braban, and Heal, 2014). The ‘chemical 

climatology’ framework consists of three components that defines as ‘the impact, ‘the 

state’, and ‘the drivers’. The ‘impact’ is an identified effect of atmospheric composition 

from sources and processes which are associated with different chemical climates. The 

‘state’ represents ‘what’, ‘when’ and ‘where’ of atmospheric composition producing the 

identified impact. The ‘drivers’ are the sources and influences on the atmospheric 

composition that determine the state, and the impact (Malley, Braban, and Heal, 2014), 

for more details are shown in Chapter 2. This framework has not been applied in other 

regions, and not in areas where variation in PM concentrations, and their drivers, may be 

substantially different than in Europe, such as in south east Asia. Therefore, the 
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monitoring network data collected by PCD provides an opportunity to i) assess the utility 

of applying this framework in a south-Asian country, and ii) to investigate how PM 

concentrations most relevant for human health impacts (characterised by annual average 

concentrations) are produced in Thailand.  

Therefore, an aim of this thesis is to apply this chemical climatology framework to 

Thailand’s PM monitoring network. This involves development and consistently 

calculating a standard set of statistics at all sites in the network. The aim in calculating 

these statistics is to assess i) spatial variation in the magnitude of annual average PM 

across Thailand, ii) how variation in hourly PM concentrations (e.g. contribution from 

high, moderate and low hourly PM concentrations, and hourly PM concentrations 

occurring in different times of the year and day) contribute to annual PM concentrations 

and iii) to link this to the contribution of specific drivers of variation in PM 

concentrations, such as the contribution of different emission source sectors, and the 

contribution from local vs long-range transport.  

The second major research gap is a lack of technical capacity within the Thai government 

to model the effect of different policies and measures on PM concentrations across 

Thailand. Studies (PCD, 2019; DLT, 2010-2017; DEDE, 2010-2017) have shown the 

effect of implementing particular policies in one sector, e.g. the effect of policies on the 

transport sector in Bangkok and assessed the magnitude of emissions coming from 

different sources. However, Thailand and its government have numerous programmes, 

plans, strategies and policies in different sectors that will affect the progression of PM 

and PM precursor emissions into the future (PCD, 2019; DLT, 2010-2017; DEDE, 2010-

2017). These includes plans for climate change mitigation, to achieve the sustainable 

development goals, on renewable energy and energy efficiency, as well as those plans 

specifically designed to combat air pollution. The overall effect of Thailand’s current 

plans to reduce air pollution have not been evaluated in terms of their likely effect on 

reducing PM and PM precursor emissions, and PM concentrations. This limits Thailand’s 

ability to understand whether proposed actions are sufficient to achieve its air quality 

goals (e.g. compliance with the Thai national standard and/or WHO air quality 

guidelines), and to identify what additional actions would be needed to improve air 

quality further. Therefore, to address this second research gap, an integrated assessment 

modelling approach was used to model i) current emissions of PM and PM precursor 

emissions in Thailand, ii) projections of emissions into the future, and iii) changes in 
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annual average PM2.5 concentrations across Thailand resulting from emission projections 

representing Thailand implementing its existing policies and additional actions taken to 

improve air quality.  

The aim of this modelling component of this thesis is to assess how the current levels of 

annual average PM, captured by analysis of the monitoring data, are likely to change into 

the future, and to show where actions needs to be focussed in terms of specific source 

sectors, mitigation measures, countries (i.e. Thailand vs neighbouring countries) in order 

to reduce annual average PM concentrations below those levels that are currently measured.  

1.9 Chapter Outline 

This study is organised as a series of chapters (1 to 6), the content of each is described 

briefly below in relation to the aims of the study.  

Chapter 2:  Methodology 

Following the introduction of Chapter 1, this chapter describes the methodology that was 

used to assess the conditions producing the annual average PM10 concentrations at 

monitoring stations (general and roadside sites) across Thailand. This method uses a 

‘chemical climatology’ framework which applies the HYSPLIT model to simulate air 

mass back trajectories. This chapter also describes a tool called the Long-Range Energy 

Alternatives Planning-Integrated Benefits Calculator (LEAP-IBC) which is used in 

Chapter 5 to evaluate emission inventories, PM2.5 concentrations and associated health 

impacts both for the current day and 2030.  

Chapter 3: Assessment of the contribution of long-range transport to annual PM10 

concentrations in Thailand 

The third chapter focuses on the conditions producing annual average PM10 

concentrations at general monitoring sites in Northern and Southern Thailand, by 

applying the ‘chemical climatology’ framework to access the contribution of hourly PM10 

concentrations to the annual average and using back trajectory analysis to: assess the 

proportion of time air masses spend over different countries; when different hourly PM10 

concentrations occur; and to explore the relative contribution of long-range transport and 

local emission sources from biomass burning to annual PM10 concentrations at these sites.  
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Chapter 4: Assessment of conditions producing annual average PM10 concentrations at 

general and roadside sites in Bangkok and central Thailand 

The fourth chapter focuses on the conditions producing annual average PM10 

concentrations at general and roadside monitoring sites in Bangkok and general sites in 

central Thailand, by applying the same methods as in Chapter 3 as mentioned above. The 

aim of this analysis is to understand the variation of hourly PM10 concentrations, and their 

effect on annual average PM10 concentrations as determined by local emission sources 

such as transport, industry, and long-range transport. 

Chapter 5: Sources of PM2.5 relevant emissions, atmospheric concentrations and strategies 

for the mitigation of health impacts in Thailand: A modelling study for 2010 to 2030 

The fifth chapter applies the LEAP-IBC tool in Thailand to develop an emission inventory 

of all relevant air pollutants contributing to PM2.5 concentrations and the potential health 

impact in historical years (2010-2017), and to estimate a baseline scenario 

projection towards 2030. LEAP-IBC is used to develop mitigation scenarios that model 

the implementation of different mitigation measures to improve air quality in Thailand 

projected into the future to 2030 in order to protect human health. 

Chapter 6: Concluding Discussion and Implications for Thailand’s Air Quality Policy  

The final chapter summarises key results and implications from this thesis to understand 

the influence of emissions and associated meteorology on PM concentrations for a variety 

of geographical scales (i.e. from specific types of location, though national to transboundary 

scales to understand what influences air pollution from within and outside of Thailand. The 

existing mitigation and additional mitigation are assessed to see how effectively they meet 

the air quality standards and recommendations for future work are made. 

 
 

 

 
 

 

 



   

 

50 
 

Chapter 2: Methodology 

Chapter 1 outlined the research aims of this study as being to assess the conditions that 

are producing the annual average PM10 concentrations across Thailand, historically, and 

into the future. This aim will be achieved through the statistical analysis of ground-based 

PM10 measurements, and through modelling of current and future PM2.5 concentrations. 

As stated in Chapter 1, the use of measurement and modelling aims to identify the 

contribution of key drivers of PM in Thailand, including long-range transport vs local 

emissions sources, and key source sectors such as biomass burning. The modelling 

approach allows the impact of the implementation of mitigation measures in the future to 

be assessed, as well as identifying the sources and drivers of annual PM concentrations 

that is also assessed through the measurement analysis.  

The aim of this Chapter is to provide detailed description of the measurement and 

modelling approaches used to investigate the research aims of this thesis. This includes 

the measurement and data analysis approach used, and the overarching modelling 

methodology used. Specific information about the data and methods used are then 

expanded upon in the Methodology sections of Chapters 3, 4, and 5. 

The two sub-sections of this chapter describe the process that was used to assess the 

conditions producing the annual average PM10 concentrations at 64 monitoring stations 

across Thailand, i.e. the statistical analysis undertaken to quantify the impact, state, and 

drivers producing health-relevant PM in Thailand, and the modelling of emissions and 

impacts of PM2.5 in historical years and into the future. Specifically, Section 2.1 describes 

PM10 monitoring data that was used for data analysis and the criteria used to select the 

monitoring sites with the greatest data capture, and therefore where analysis was 

predominantly focussed (the application of the HYSPLIT model to simulate air mass back 

trajectories and statistics that were calculated at each site from the hourly PM10 

measurements and air mass back trajectory data), including describes the chemical 

climatology framework. Finally, Section 2.2 describes emissions, transport and impact 

scenario tool use of PM Modelling Framework (LEAP-IBC model).  
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2.1 PM Monitoring Data 

To understand the magnitude of human health-relevant PM concentrations across 

Thailand, their variation and their drivers in historical year, the primary data used to 

assess this was hourly measured PM10 concentrations measured between 2011 and 2015 

at 64 locations across Thailand. The measurements made at these sites form part of the 

Thailand’s official national air quality monitoring network, that was established, run and 

maintained by the Thai Pollution Control Department. The network was established in 

1996 with 38 sites (PCD, 1995), and has gradually expanding to increase coverage in 

terms of regional representative across Thailand, as well as the types of locations where 

air pollutants are monitored (general, roadside, industrial etc.). The primary purpose of 

the monitoring network is to assess compliance with the Thailand National Air Quality 

Standards (PCD, 1995; PCD, 2004; PCD, 2007; PCD, 2009; PCD, 2010a). Therefore, in 

addition to monitoring PM10, a range of other ‘criteria’ air pollutants are measured at the 

sites to compare against the Thai air quality standards. In this thesis, hourly PM10 data 

were analysed because it is the metric for particulate matter that is most widely monitored 

across Thailand’s national air quality network (in comparison to PM2.5), and because 

particulate matter is the pollutant most closely associated with negative human health 

impacts. Data was analysed for 2011-2015 as they were the most recent years for which 

data was available, and selecting 5 years allowed inter-annual variability to be assessed. 

The following sub-sections provide further information regarding the composition of 

Thailand Air Quality Monitoring Network, and the measurement instruments and data 

processing undertaken to produce the raw hourly measurement data used in this thesis.  

2.1.1 PM Measurement Network 

Thailand has established an ambient air quality monitoring network to monitor main 

atmospheric pollutants in 1996. As of 2015, there were 64 monitoring sites operating 

across the network, measuring a range of air pollutants for which Thailand has established 

ambient air quality standards (PCD, 2015). These pollutants include PM2.5, PM10, TSP, 

NO2, SO2, CO, O3, Lead (Pb) and VOCs across the country as shown in Table 2.1 (PCD, 

2019). Under the Enhancement and Conservation of National Environmental Quality Act 

of 1992, the Pollution Control Department (PCD) is responsible for monitoring air quality 

in Thailand and preparing an annual report on the state of air quality of the country and 
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relevant report (PCD, 1995). The air quality monitoring network set up by the PCD aims 

to prevent and solve the air pollution problems in the country, and to reduce the negative 

effect on the public health and the economy. Table 2.1 shows, for each province in Thailand, 

the number of monitoring sites and the pollutants measured at each site (PCD, 2015).  

Table 2.1: Measurement air pollutants by PCD in different regions across Thailand (PCD, 2015) 

Region 

Number of  
Monitoring sites  

in 2015  
(latest year considered 

in this study) 

Pollutant Measurement in 2015 

Bangkok 17 PM2.5, PM10, TSP, NO2, SO2, CO, O3 and Pb  

Central 14 PM2.5, PM10, TSP, NO2, SO2, CO, O3 and Pb  

North 14 PM2.5, PM10, NO2, SO2, CO and O3 

Northeast 3 PM2.5, PM10, NO2, SO2, CO and O3 

East 11 PM2.5, PM10, NO2, SO2, CO, O3 and VOCs  

South 5 PM2.5, PM10, NO2, SO2, CO and O3 

Total   64  

Remark: There are 63 Monitoring sites in 2019 (PCD, 2019) 

2.1.1.1 History of ambient air quality monitoring network in Thailand 

A history and timeline for national ambient air quality monitoring network are shown in 

Figure 2.1 (PCD, 2019). In 1981, the National Primary Ambient Air Quality Standards 

were promulgated and subsequently revised in 1995, 2001, 2004, 2007 and 2010a). Then, 

in 1983, the first air quality monitoring system was installed 8 stations in Bangkok (not 

online system), after that in 1987, the first online and realtime continuous air quality 

monitoring system was installed 5 stations in Samut Prakarn, central Thailand with 

support from Japan International Cooperation Agency (JICA). In 1991, the third 

monitoring system (an online and realtime continuous system) 4 stations on the roadsides 

of streets in Bangkok. In 1992, PCD with the technical assistance from the Swedish 

Government started preparing the design of a nationwide ambient air quality monitoring 

network and a meteorological monitoring network. Finally, from 1996 onwards to 

present, the networks are gradually put in several phases through the upgrade of the 

existing air quality monitoring stations and the installation of new monitoring stations. 

The monitoring network currently consists of 63 monitoring sites across the country from 

33 provinces (PCD, 2019) (see Table 2.1). 
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Figure 2.1: History and timeline of ambient air quality monitoring in Thailand (PCD, 2019) 

 

2.1.1.2 Measurement instruments and methods  

Monitoring and measuring air quality by PCD are carried out by a variety of different 

methods with continuous analysers and instruments as shown in Table 2.2 (PCD, 1995; 

PCD, 2004; PCD, 2007; PCD, 2009; PCD, 2010a). Monitoring methods used to measure 

particulate matter (PM2.5, PM10, TSP) concentrations follow the United State EPA 

reference methods or equivalent. PM2.5, and PM10 are measured using Beta Ray Attenuation 

principle (PCD, 2010a; PCD, 2004). NO2 is measured using chemiluminescence detection, 

SO2 is measured using UV Fluorescence/Pararosaniline, CO is measured using non- 

dispersive infrared detection, O3 is measured using Chemiluminescence reaction, VOCs 

is measured using U.S. EPA Compendium Method TO-15, and Pb is measured using 

Atomic Absorption Spectrophotometry.  
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Table 2.2: Measurement methods of air pollutants 

Pollutants 
Measurement Method at Thai 

National Air Quality Monitoring 
Network 

Source 

PM2.5 Beta Ray Attenuation PCD (2010a) 

PM10 Beta Ray Attenuation PCD (2004) 

TSP Gravimetric High volume PCD (1995), PCD (2004) 
NO2 Chemiluminescence PCD (1995), PCD (2007),   

 PCD (2009) 
SO2 UV Fluorescence/Pararosaniline PCD (1995), PCD (2004) 

CO Non-dispersive IR PCD (1995) 
O3 Chemiluminescence PCD (1995), PCD (2007) 

VOCs U.S. EPA Compendium Method TO-15 PCD (2009) 
Pb Atomic Absorption Spectrophotometry PCD (1995) 

 

At each monitoring site, the inlet of instruments for gas analysers is placed at least 3 

metres above ground level but not more than 6 meters, but for PM is placed at least 1.5 

metres above ground level but not more than 6 meters (PCD, 1995; PCD, 2010a). In 

addition to monitoring atmospheric composition at each monitoring site, meteorological 

parameters including wind speed (WS) and wind direction (WD) are measured at 10 

metres above ground level by cup propeller and potentiometer wind vanes; temperature 

(T), Barometric Pressure (BP) and relative humidity (RH) are measured at 2 metres above 

ground level (PCD, 1995; PCD, 2004; PCD, 2007; PCD, 2009; PCD, 2010a).  

A diagram of monitoring station and data transmission system is shown in Figure 2.2. In 

general, the monitoring network in Thailand consists of the air quality monitoring stations 

located across Thailand and the monitoring stations comprises automatic air quality 

monitoring analysers/instruments. For each remote monitoring station, these analysers are 

connected to a data logger that records the hourly average PM data, which is then 

transferred by modem to the central computer station (at PCD) through the 

communication system. At the PCD, the monitoring data is processed, validated and 

reported to public. The PCD has developed a reporting and warning system with up-to-

date information for national air quality in order to communicate information to Thai 

people and all relevant organizations to protect public health through the 

Air4Thai.pcd.go.th website and Air4Thai application (PCD, 2019) 
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Figure 2.2: Diagram of ambient air quality monitoring station and data transmission system  

2.1.1.3. PM10 Monitoring 

The measurements from each of the monitoring sites that were used in this thesis were 

the measurements of PM10 made at each site between 2011 and 2015. Measurement of 

PM10 is carried out using the principle of beta ray attenuation mass monitor automatically 

to measure and record ambient particulate mass concentration levels in mg m-3 or μg m-3 

with a constant source of beta rays 14C (carbon 14) element as shown in Figure 2.3 (Met 

One Instruments, Inc., 2018; PCD, 2004) Details of PM10 measurement and analyser are 

shown in Table 2.3.  

 

Source: Met One Instruments, Inc. (2018) 

Figure 2.3: Beta detector, beta source and filter tape use in the instrument (Model BAM 1020) 
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Table 2.3: Summarising of PM10 measurement (Model BAM 1020) 

Parameter Specification 

Measurement Principle PM concentration by Beta Attenuation 

Standard Range 0 - 1.000 mg m-3 (0 - 1000 μg m-3) 

Optional Ranges 0 - 0.100, 0.200, 0.250, 0.500, 2.000, 
5.000, 10.000 mg m-3  

Accuracy Exceeds US-EPA Class III PM2.5 FEM 
standards for additive and multiplicative 
bias Lower Detection Limit: (2σ)  

(1 hour) 
< 4.8 μg m-3 (< 4.0 μg m-3 typical)  
(8-minute count time) 

Lower Detection Limit: (2σ)  
(24 hour) 

< 1.0 μg m-3 
  

Resolution  ±1 μg m-3 

Precision ± 2 μg m-3  

Measurement Cycle Time:  1 hour 

Span Check: Nominally 800 μg cm-2 

Beta Source: C-14 (carbon-14), 60 µCi ±15 µCi (< 2.22 
X 106 Beq), Half-Life 5730 years 

Flow Rate: 16.70 liters/minute 

Source: Met One Instruments, Inc. (2018) 

The measurement and timing cycle of the PM10 instrument is configured to operate on 1 

hour per cycles as a US-EPA designed equivalent method for PM10 and the concentration 

is always an hourly average. The count time for PM10 measurement on the instrument is 

generally set to 4 minutes. At the beginning and the end of each hour of measurement use 

an 8-minute beta measurement, with a 42-minute air sample period in between, for a total 

of 58 minutes. The other 2 minutes of the hour are used for tape and nozzle movements 

during the cycle (Met One Instruments, Inc., 2018). The summarise of the timing cycle is 

shown in Table 2.4.  
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Table 2.4: Timing of a measurement cycle information taken from Met One Instruments 

(Model BAM 1020) 

Minute Activity 

00 The instrument advances the filter tape forward one “window” to the next fresh, 

unused spot on the tape. This takes a few seconds. The new spot is positioned 

between the beta source and the detector, and the equipment begins counting beta 

particles through this clean spot for exactly eight minutes. (I0) 

~ 08 The instrument stops counting beta particles through the clean spot (I0), and moves 

the tape exactly four windows forward, positioning that same spot directly under 

the nozzle. This takes a few seconds. The instrument then lowers the nozzle onto 

the filter tape and turns the vacuum pump on, pulling particulate-laden air through 

the filter tape on which I0 was just measured, for 42 minutes at 16.70 liters per 

minute. 

~ 50 The instrument turns the vacuum pump off, raises the nozzle, and moves the filter 

tape backwards exactly four windows. This takes a few seconds, and puts the spot 

that was just loaded with particulate back between the beta source and the detector. 

The instrument begins counting beta particles through the now dirty spot of tape for 

exactly eight minutes (I3). 

~ 58 The instrument stops counting beta particles through the dirty spot (I3). The 

instrument uses the I0 and I3 counts to calculate the mass of the deposited 

particulate on the spot, and uses the total volume of air sampled to calculate the 

concentration of the particulate in milligrams or micrograms per cubic meter of air. 

The instrument then sits idle until the top of the next hour. 

60 The beginning of the next hour. The instrument records the just calculated 

concentration value to memory and sets the analog output voltage to represent the 

previous hour’s concentration. The instrument advances a new fresh spot of tape to 

the beta measurement area and the measurement cycle starts again. 

 

Source: Met One Instruments, Inc. (2018) 

 
During the measurement, automatic span checks will perform. ‘The cycle while the 

vacuum pump is on and pulling air through the filter tape as described above the 

instrument performs a span check. The user may set up the instrument to perform the span 

check hourly, once per day, or not at all. The instrument also performs a stability test as 

shown in Table 2.5. 
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Table 2.5: Automatic span checks during the cycle of measurement information taken 

from Met One Instruments (Model BAM 1020) 

Minute Activity 
08 The instrument has just finished moving the clean spot to the nozzle and turned 

the pump on. There is another clean spot of filter tape upstream four windows, 

between the beta source and the detector. This same spot will stay there for the 

entire time the pump is on. The instrument begins counting the beta particles 

through this spot for exactly eight minutes. The measured value is recorded as I1. 

16 The instrument stops counting beta particles and extends the reference membrane 

between the beta source and the detector, directly above the spot of filter tape that 

was just measured. The reference membrane is an extremely thin film of clear 

Mylar held in a metal tongue. The membrane is of known mass density (mg/cm2). 

The instrument starts counting beta particles for eight minutes again, this time 

through the membrane and the filter tape spot at the same time. This value is 

recorded as I2. 

24 The instrument stops counting beta particles through the membrane withdraws the 

membrane assembly, and calculates the mass density of the membrane. 

42 (Eight minutes before the pump stops) The instrument counts the beta particles 

through the same spot again (without the membrane) for another eight minutes. 

This value is recorded as I11. 

Source: Met One Instruments, Inc. (2018) 

A regular maintenance for the PM10 instrument is necessary and carried out by PCD 

technicians. Monthly, the maintenance completed includes 1) nozzle and vane cleaning, 

especially, the sample nozzle system needs periodic inspection in order to prevent flow 

leaks, 2) cleaning PM10 inlet particle trap. Every two months, the filter tape rolls are 

replaced. Quarterly maintenance includes a complete flow system calibration and 

disassemble and clean PM10 inlet. Six monthly maintenance includes testing filter RH, 

filter temperature sensors, and smart heater function. Twelve months includes cleaning 

internal debris filter, removing and checking membrane span foil, beta detector count rate 

and dark count test, cleaning vertical inlet tube, replacing lithium battery if necessary.  

Finally, every two years maintenance such as rebuilding vacuum pump, replacing nozzle 

O-ring and pump tubing are undertaken, if necessary (Met One Instruments, Inc., 2018). 
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Moreover, at the stations at least every 15 days, the air flow rate for PM10/PM2.5 is checked 

and calibrated the accuracy of the mass flow at least every 15 days (PCD, 2004; PCD, 

2010a). As shown in Table 2.3, the lower limit of detection of the instrument for an 8-

minute count cycle is < 4.8 μg m-3 for a 1-hour measurement cycle. At the sites where 

hourly PM10 data was analysed between 2011 and 2015 (Presented in Chapters 3 and 4), 

there were a small number of hours during which hourly PM10 concentrations were below 

this limit of detection. Across all sites, on averages, only 2.1% of hours were below the 

limit of detection (see Appendix, Table S2) for a breakdown for each site). During hours 

when hourly PM10 was measured as below the limit of detection, the Pollution Control 

Department record the PM10 concentration value that is measured by the instrument over 

the one hour cycle. However, the data is also flagged as being below the limit of detection. 

In this analysis, the measured hourly PM10 concentration values during hours when PM10 

concentrations were below the limit of detection were used, alongside hourly PM10 

concentrations above the limit of detection. While the measurements below the limit of 

detection have greater uncertainty, they were retained in this study to avoid the 

introduction of systematic bias when calculating the annual average concentration and 

chemical climatology statistics described in Section 2.1.1 (e.g. as compared to other 

methods of dealing with detection limits (such as replacing with the limit of detection, or 

half the limit of detection, or removing entirely). 

Table 2.3 also lists the precision of the instrument as being ±2 µg m-3. The random 

uncertainty in the measured hourly PM10 concentration is associated with 1) the physical 

nature of the process leading to the emission of beta particles from the decay of 14C, 2) 

the filter area position during the measurement need to fix in the same position, 3) 

controlling of the flow rate and, 4) the relative error due to the uncertainly in the 

absorption cross section (a variation as a function of the chemical composition) (Met One 

Instruments, Inc., 2018). 

 

 

 



   

 

60 
 

2.1.1.4 PM Measurement Data Analysis  

In line with the research aims of this thesis, the hourly PM10 measurement data described 

above were analysed to provide information to assess i) spatial variation in the magnitude 

of annual average PM across Thailand, ii) how variation in hourly PM concentrations 

(e.g. contribution from high, moderate and low hourly PM concentrations, and hourly PM 

concentrations occurring in different times of the year and day) contribute to annual PM 

concentrations and iii) to link this to the contribution of specific drivers of variation in 

PM concentrations, such as the contribution of different emission source sectors, and the 

contribution from local vs long-range transport. 

To do this required a framework for the statistical analysis of the hourly PM10 data, that 

could be consistently applied across all monitoring sites. A framework, the ‘chemical 

climatology’ framework, for the analysis of atmospheric composition data, in relation to 

specific impacts of atmospheric composition, has been developed and applied to air 

pollutant measurements in the UK (Malley et al., 2016), and was applied for the first time 

in this thesis to a national air pollution monitoring network in a south east Asian country.     

To link specific impacts of atmospheric composition to the conditions producing them 

using measurement data, a ‘chemical climatology’ framework has been developed, that has 

been applied to quantify the ‘impact’, ‘state’ and ‘drivers’ of the chemical climate specific 

to a particular impact, e.g. the long-term human health impact of PM (Malley, Braban and 

Heal, 2014). The definition of three elements are (1) ‘Impact’ is an identified effect or 

metric of atmospheric composition, to determine the contributing sources and processes. 

(2) ‘State’ is the description of the ‘what’, ‘when’ and ‘where’ of atmospheric composition 

producing the identified impact including consideration of atmospheric constituents and 

their temporal and spatial variations relevant to the impact (metric). (3) ‘Drivers’ are the 

sources and influences on the atmospheric composition that determine the state, and hence 

the impact (metric) (Malley, Braban and Heal, 2014). The recent study in U.K. applied the 

chemical climatology framework to quantify the contributions to long-term health-relevant 

PM (i.e. annual average PM10 and PM2.5 concentrations) from different months, chemical 

constituents and air mass pathways using data from the two UK European Monitoring and 

Evaluation Programme (EMEP) ‘supersites’ (Malley et al., 2016). This analysis of the 

conditions producing annual average PM at these sites showed that frequent, moderate 

hourly PM10 and PM2.5 concentrations determined the magnitude of annual average PM10 
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and PM2.5 to a greater extent than the relatively infrequent high, episodic PM10 and PM2.5 

concentrations. These moderate PM10 and PM2.5 concentrations were derived across the 

range of chemical data captures, seasons and air-mass pathways, in contrast to the highest 

PM concentrations which tended to associate with specific conditions. For example, the 

largest contribution to moderate PM10 and PM2.5 concentrations were accumulated during 

the arrival of trajectories over marine, UK, and continental Europe areas. 

An aim of this study is to apply the ‘chemical climatology’ framework that has previously 

only been applied in the UK (Malley et al., 2016; Malley, Braban, and Heal, 2014) to 

demonstrate the additional information gained from Thailand monitoring network data 

when a consistent set of statistics are calculated across a set of monitoring sites. The goal 

in calculating these statistics is to quantify the impact, state, and drivers producing annual 

average PM10 concentrations and to evaluate the influence of long-range transport at 

different locations across Thailand to understand how conditions associated with timing 

(both diurnal and seasonal) and spatial trajectory (in relation to neighbouring countries)  

(Punsompong and Chantara, 2018; Phayungwiwatthanakoon, 2013; Kim Oahn and 

Leelasakultum, 2011; Niemi et al., 2009) of pollution contribute to health relevant PM 

concentrations in Thailand, and to understand how these conditions are changing and how 

they are likely to change in the future see for example Malley et al. (2016).  

The overall process for deriving the ‘chemical climatology’ statistics from the raw hourly 

PM10 data are shown in Figure 2.4 below, and described in more detail in the following 

sub-sections.  
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Figure 2.4: Flowchart showing how raw hourly PM10 timeseries for one year is used to 

derive set of chemical climatology statistics to characterise impact, state and drivers of 

annual average PM10 at a monitoring site in Thailand.  

1) PM measurements data  

Hourly measurements of total PM10 between 2011 and 2015 from the 64 automatic 

ambient air quality monitoring stations of the Thailand Pollution Control Department 

(PCD) in 29 provinces across Thailand were used in this analysis. These data were 

obtained from the PCD (PCD, 2015), and encompassed all continuous hourly PM10 

measurements made in Thailand between 2011 and 2015. The location of these sites 

where hourly PM10 data were used is shown in Figure 2.5, and the number of sites in 

different regions in Table 2.6. For the purposes of this analyses, this study grouped the 

monitoring sites into the following classifications based on the region where the site was 

located in (e.g. central, Northern, Northeastern, Eastern and Southern Thailand) and its 

PCD site classification (i.e. whether it was classified as a general or roadside site).  

The definition of a ‘general’ site, as specified by the PCD is a measurement site in a 

residential area and located more than 50 meters from the main road, and ‘roadside’ sites 
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are sites located in roadside areas, within 10 meters from the main road. In 2015, there 

were 48 general sites and 5 roadside sites measuring PM10, and 10 general sites and 1 

roadside site measuring PM2.5 across Thailand. Hence, there were substantially fewer 

monitoring sites measuring PM2.5, and only one roadside site for the whole of Thailand 

(located in Bangkok). The number of sites monitoring PM10 and/or PM2.5 across Thailand 

has increased substantially since monitoring began in 1983.  From the beginning in 1983 

the first air quality monitoring system had only 8 stations located in Bangkok (not on-line 

system), in 1996 monitoring network (on-line and real-time continuous system) had 38 

sites (11 sites in Bangkok and 27 sites in other provinces) then increased to 59 sites in 

2010 (17 sites in Bangkok and 42 sites in other provinces) and increased up to 64 stations 

in 2015 (17 sites in Bangkok and 47 sites in other provinces).  

The data from 2011-2015 was chosen to characterise PM10 variation for the most recent 

period for which data was available from across the monitoring network. A time period 

of 5 years was chosen to allow interannual variability during this period to be assessed. 

The first step in analysing the data from each monitoring site was to calculate the overall 

data capture (the percentage of hours in a given time period with a valid hourly PM10 

concentration measurement). The data capture was calculated across all hours in the year 

(DCaa, Equation 1), as well as for individual months (DCmonth, Equation 2) and hours of 

the day (DChourx, Equation 3). The data capture during these time periods for each of the 

sites included in the analysis is shown in Appendix, Tables S3 and S4. 

DCaa = Number of hours with valid PM10 measurements  

Number of hours in the year 

Equation 1 

 

DCmonth = Number of hours with valid PM10 measurements in month 

Number of hours in the month 

Equation 2 

 

DChourx = Number of hours with valid PM10 measurements during hour x 

Number of hours in year 

24 

Equation 3 
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Figure 2.5: Map of PM10 monitoring site locations in Thailand  
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Table 2.6: Number of automatic ambient air quality monitoring stations in Thailand (PCD, 2015) 

Region Province 
Number of 

Stations 

PM10 sites PM2.5 sites 

General Roadside General Roadside 

Central 

Thailand 
Bangkok 17 9 5 2 1 

Samut Prakan 5 5 - - - 

Pathum Thani 1 1 - - - 

Samut Sakhon 2 1 - 1 - 

Nonthaburi 2 2 - - - 

Phra Nakhon Si Ayutthaya 1 1 - - - 

Saraburi 2 1 - 1 - 

Ratchaburi 1 - - 1 - 

Total  31 20 5 5 1 

Northern 

Thailand 
Chiang Mai 2 1 - 1 - 

Chiang Rai 2 2 - - - 

Lampang 4 4 - - - 

Lamphun 1 1 - - - 

Nakhon Sawan 1 1 - - - 

Mae Hong Son 1 1 - - - 

Nan 1 1 - - - 

Phrae 1 1 - - - 

Phayao 1 1 - - - 

Total  14 13 - 1 - 

Northeastern 

Thailand 
Khon Kaen 1 - - 1 - 

Nakhon Ratchasima 1 1 - - - 

Loei 1 1 - - - 

Total 3 2 - 1 - 

Eastern 

Thailand 
Rayong 5 4 - 1 - 

Chon Buri 4 3 - 1 - 

Chachoengsao 1 1 - - - 

Sa Kaeo 1 1 - - - 

Total 11 9 - 2 - 

Southern 

Thailand 
Surat Thani 1 1 - - - 

Phuket 1 1 - - - 

Songkhla 1 - - 1 - 

Narathiwat 1 1 - - - 

Yala 1 1 - - - 

Total 5 4 - 1 - 

Total 64 48 5 10 1 
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2) Selection of sites to calculate ‘chemical climatology’ statistics 

This study considered an annual average PM10 concentration to be valid if there were at 

least 75% of hourly observations present during the particular year at the site. However, 

to perform detailed analysis of the conditions producing annual average PM10 

concentrations at each site requires not only sufficient observations across the year, but 

also in each individual month and hour of day. Hence sites were categorised as having 

sufficient data capture for this further analysis based on three data capture criteria, i.e. 

above 75% of hourly observations across the year, for each month, and for each hour of the day.  

The sites with the most complete PM10 data capture were selected to analyse and compare 

with other sites in each category to assess the consistency of the observations at the most 

complete site, with others in the same category. The sites which met the data capture 

criteria described above were grouped into categories based on the region and the location 

of sites. In Bangkok, the capital city, this study selected both general and roadside sites 

to analyse data. However, the other regions such as central, Northern, Northeastern, 

Eastern and Southern Thailand there were only general sites available to analyse. This 

study first assessed PM concentrations between 2011 and 2015 to understand the most 

recent PM annual average concentrations, and to account for interannual variability. The 

annual average between 2011 and 2015 PM10 concentration was calculated at all sites that 

met the annual 75% data capture criteria in at least 3 of the 5 years. The differences 

between sites in Bangkok (general and roadside site) and across Thailand (general site) 

were assessed to analyse and compare the conditions producing annual average PM 

concentrations, including the contribution from different m onths, hours of the day, and 

during the arrival of air masses that traverse different regions using the air mass back 

trajectory data for each site.  

3) Statistical analysis and data analysis 

Statistical analysis was focussed on using the combination of measurement data and air 

mass back trajectories to give insight into how the health-relevant PM metric, i.e. annual 

mean concentration, was derived. As shown in Figure 2.4 above, and Table 2.7, the 

statistics calculated in this analysis, grouped into the different components of the 

‘chemical climatology framework’, are consistent with previous applications of this 

‘chemical climatology’ framework to analyse health-relevant PM10 and PM2.5 
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concentrations in the UK and this framework showed hourly PM10 and PM2.5 

concentrations determined the magnitude of annual average PM10 and PM2.5 (Malley et 

al., 2016). The ‘state’ of the chemical climate for annual average PM concentrations 

incorporates the variation in atmospheric composition that produce the annual average 

PM concentration. In this case the ‘state’ statistics were derived by first grouping hourly 

PM concentrations into 1 µg m-3 bins. These 1 µg m-3 concentration bins group hourly 

PM concentrations in 1 µg m-3 ranges (i.e. hourly concentrations between 0 and 1 µg m-3, 1 

and 2 µg m-3, 99 and 100 µg m-3 are grouped into the same bin). Next, for each bin, the 

percentage contribution of those concentrations to the annual average was calculated, as 

well as the proportion of concentrations in each 1 µg m-3 bin that occurred in each month, 

and during each hour of the day. ‘Drivers’ of the chemical climate describe the factors 

that contribute to the ‘state’, i.e. the atmospheric composition variation that produces the 

impact metric. In this case the back trajectory data was used to calculate, for hours during 

which PM concentrations were assigned to each 1 µg m-3 bin, the proportion of time air 

masses spent over different countries (and the ocean) during the 96 hours prior to arrival 

at the site.   

Table 2.7: Chemical climate components, and statistics that will be calculated from 

monitoring data 

Chemical climate component Statistic 

Impact Annual average PM10 (μg m−3) 

State - Contribution from hourly PM10 concentrations 

assigned to 1 µg m-3 bins 

- Proportion of hours with PM concentrations in 

1 µg m-3 bins that occur during each month 

- Proportion of hours with PM concentrations in 

1 µg m-3 bins that occur during each hour of  

the day  

Drivers Air mass back trajectories 

- Proportion of time air masses spent over 

different countries (and the ocean) during the 

96 hours prior to arrival at the site for different 

PM10 concentrations 
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Finally, a key aspect of this analysis was to identify i) those hourly concentrations that 

make the largest contribution to annual average, and ii) the conditions producing those 

concentrations. To make a consistent comparison of concentration ranges between sites, 

and to account for different hourly PM distributions at different types of sites, this study 

used percentiles to denote different concentration ranges. These percentile ranges, and their 

names, are shown in Table 2.8 (very low, low, moderate, high and very high 

concentrations), and were used for example to assess the percentage contribution of 

different hourly PM10 across the range of hourly concentrations experienced at a site to 

the annual average concentration.  

Table 2.8: Percentile groupings and terminology used to explain contribution of different 

hourly PM10 concentrations to annual average values 

PM concentration category 

at a specific site 
Percentiles 

Very low concentrations < 5th Percentile 

Low concentrations < 25 th Percentile 

Moderate concentrations 25 th -75 th Percentile 

High concentrations > 75 th Percentile 

Very high concentrations > 95 th Percentile 

2.1.2 Air Mass Back Trajectories 

An air mass back trajectory estimates the path taken by an air mass prior to the arrival of 

this air mass at a particular location, based on the meteorological conditions during the 

time that the air mass travels to the site. In this case, the calculation of an air mass back 

trajectories provided an indication of the path travelled, and regions traversed by an air 

mass before it arrived at the monitoring sites across Thailand. Air mass back trajectories 

have been extensively used to analyse air pollution monitoring data, to identify likely 

source regions during air pollution episodes, as well as characterised those regions most 

frequently traversed that may make the largest contribution to long-term air pollution 

concentrations (Fleming et al. 2012). Air mass back trajectories have the advantage of 

being relatively easy to calculate using meteorological data as input, and identifying the 

locations that have the largest influence on the air masses arriving at the site. However, 
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their limitation is that they provide only a linear representation of the path taken by an air 

mass before it arrives at the site, in contrast to more computationally intensive methods, 

such as dispersion models that model the broader area which air masses arriving at a site 

are influenced by (Fleming et al. 2012).  

Back trajectories were calculated by running the HYSPLIT model through code written 

as part of the Openair project (Carslaw and Ropkins, 2012) in the R statistical software 

(Core Team, 2014). The Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model (Draxler and Rolph, 2013) requires as input meteorological data, and 

in this analysis the NCEP/NCAR (Kistler et al., 2001) reanalysis meteorological data was 

used, and obtained from the National Oceanic and Atmospheric Administration 

(NOAA), Air Resources Laboratory (http://www.arl.noaa.gov/contact.php). 

HYSPLIT was run to calculate the latitude, longitude and height of air masses at each 

hour for four days (i.e. 96 hours) prior to its arrival at the measurement station. These 96-

hour back trajectories were calculated for each site for all years with monitoring data 

available from PCD (http://air4thai.pcd.go.th/webV2/download.php). The selection of 4-

day back trajectories, as opposed to longer, or shorter time periods, was a semi-arbitrary 

choice that reflects the balance between computational efficiency (i.e. the need to 

calculate back trajectories for 63 sites for 5 years at hourly time steps) and the ability of 

the back trajectories that are calculated to contrast between the major pathways followed 

by air masses that are arriving at different monitoring sites in Thailand. 4-day back 

trajectories have been previously shown to be effective in contrasting between these 

pathways, both in the UK (Malley, Braban and Heal, 2014). Previous studies in Thailand 

have estimated back trajectories ranging from 4 to 10 days (Chuang et al., 2016; Kim 

Oanh and Leelasakultum, 2011; Pongkiatkul and Kim Oanh, 2007), and have shown 

comparable results in determining the major pathways taken by air masses prior to arrival 

at a monitoring site.  

In this work, the results from the air mass back trajectories were summarised as the 

percentage of time that air masses spent over different countries and regions (e.g. marine 

areas) prior to arrival at the monitoring site when a particular hourly PM2.5 concentration 

was measured. This allowed the different pathways taken by air masses to be contrasted 

between hourly PM10 concentrations that were relatively low, and relatively high. We 

specifically do not interpret the percentage of time spent over different countries as 

reflecting the percentage contribution of those countries to the measured hourly PM10 
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concentrations, as the back trajectory analysis does not allow for the identification of the 

geographic location of the emission sources along the back trajectory path taken by air 

masses. Therefore, in Chapter 3 and 4, the interpretation of the percentage of time spent 

over different countries by air masses prior to the measurement of different hourly PM10 

concentrations are used to only contrast between different regions and pathways taken by 

air masses when different hourly PM10 concentrations were measured. When calculating 

the percent of time spent over different countries/regions for 4-day back trajectories, it 

was possible to identify differences between different hourly PM10 concentrations (see 

Chapter 3 and 4). However, due to the location of Thailand, when the back trajectory time 

was increased, e.g. to 10 days, the number of hours back trajectories spent over large areas 

such as the ocean, or large countries such as China, increased, reducing the proportion of 

time spent over Thailand, and neighbouring countries. This reduced the amount of useful 

information gained from the back trajectories, by reducing the contrast in time spent 

countries relatively close to the monitoring site when using 10 vs 4-day back trajectories.  

2.2 PM emissions, transport and impact scenario tool use 

This study applies a tool called the Long-Range Energy Alternatives Planning-Integrated 

Benefits Calculator (LEAP-IBC) (Heaps, 2017; Heaps, 2016) at the national scale in 

Thailand to estimate the contribution of different pollutants from different source sectors 

to national annual average PM2.5 concentrations and to estimate the contribution that 

emission sources in the country, from the rest of the world and from natural sources make 

to this metric.  The tool then calculates the benefits of emission reductions of pollutants 

for human health in order to allow policy-makers to estimate the benefits of actions for 

health and mitigation measures. Therefore, the aims of this study with this tool were 1) 

to investigate the link between important emission source sectors within and outside 

Thailand to PM2.5 concentration and the potential health impact in Thailand and 2) to 

develop mitigation scenarios that model the implementation of different mitigation 

measure to improve air quality in Thailand.  

The overall modelling framework is summarised in Figure 2.6. An emission inventory is 

developed by using the LEAP-IBC tool for all relevant air pollutants (PM2.5 and PM2.5 

precursors) contributing to PM2.5 concentrations divided into three parts: 1) in historical 

years (2010-2017); 2) projection for a baseline scenario from 2018 to 2030; 3) modelling 
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mitigation measures included in current plans and strategies in Thailand and then 

modelling additional mitigation measures in key source sectors. The base data is the 

national energy balance (DEDE, 2010 - 2017), number of vehicles (DLT, 2010 - 2017) 

and data of livestock, crop production and vegetation fires (FAO, 2018). More detail on 

the specific data used to apply this framework to Thailand is described in Chapter 5. 

The following sections describe the methodology used to estimate emissions for each 

sector for the historic and baseline scenarios, including the activity data and emission 

factors used, and the mitigation measures that were modelled, including the assumptions 

that were used to represent them.  

 

Figure 2.6: LEAP-IBC model pathway followed to estimate i) emissions, ii) PM2.5 

concentrations and iii) PM2.5-attributable health impacts for Thailand from 2010 to 2030.  

2.2.1 Emission calculations 

Emissions were calculated for three different broad source sector categories: energy 

demand (which was subdivided into residential, industry, commercial and public services, 

agriculture, forestry and fishing, and transportation), energy transformation (electricity 

generation and oil and gas production, processing and distribution), and non-energy 

(industrial processes, agriculture and waste) sectors using the LEAP tool. LEAP 

incorporates an energy planning tool, and therefore the energy demand and energy 

transformation sectors are linked. The domestic demand for energy from different types 

of fuels (e.g. electricity, oil products such as gasoline and diesel) determines how much 

of these fuels are produced to meet this demand by the relevant sectors in energy 
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transformation (e.g. electricity generation, oil refining), as well as the imports and exports 

of these fuels. The consumption of fuels under energy demand, and the conversion of 

fuels from primary feedstock fuels into secondary fuels under energy transformation, all 

have emissions associated with them. The link between demand and transformation is 

important in scenario analysis, as it allows the effect of a policy on the whole energy 

sector to be modelled (e.g. an energy efficiency policy under an energy demand sector 

may reduce emission directly from that sector, but may also reduce emission associated 

with the production of that fuel under the transformation sector, if less fuel is required). 

The non-energy sector emissions were also estimated to provide a complete 

characterization of emissions from all source sectors, but they are not explicitly linked to the 

energy sectors as demand and transformation sectors are.  Estimation emissions were 

calculated by multiplying an activity variable for a particular source sector with pollutant 

specific emission factors. For example, emissions from the residential sector were estimated 

based on the annual fuel consumption in this sector (the activity variable), taken from official 

Thai government statistics, multiplied by emission factors expressed as the mass unit of 

pollutant emitted per unit of energy consumed. In 2010, in the residential sector across 

Thailand, 68,996 terajoules of liquified petroleum gas (LPG) was consumed. For a particular 

pollutant, e.g. NOx, an emission factor of 18.7 kilogrammes NOx per terajoule LPG 

consumed was used, as a default emission factor recommended by the EMEP/EEA (2019) 

emission inventory guidebook. Multiplying these two values results in an annual emission of 

NOx from LPG consumption in the Thai residential sector in 2010 of 1,290 tonnes.  

The same methods were applied to estimate emissions from all energy and non-energy 

source sectors, with the only difference being the specific activity variable used to 

characterise a particular sector, and the specific emission factors associated with that 

particular activity. The specific activity variables for each source, and the values used in 

this study are described in Chapter 5. In brief, this study used activity data from Thai official 

government statistics (DEDE, 2010 - 2017; DLT, 2010 - 2017) on energy consumption and 

generation, and data from the FAOSTAT database to represent activity in industrial 

processes, agriculture and vegetation fires (FAO, 2018), and used default emission factors 

from international organisations (IPCC, 2006; EMEP/EEA,2016; EMEP/EEA, 2013) and 

from previous studies (Bond et al., 2004; Reddy and Venkataraman, 2002; Andeae and 

Merlet, 2001; TIFAC, 1991; Tyagi, 1989; Battye et al., 1994). A comprehensive description 

of the specific data used to estimate emissions from each sector is provided in Chapter 5.  
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2.2.2 Population-weighted Annual Average PM2.5 Concentration 

and health impact assessment modelling 

Emissions of PM2.5 and PM2.5-precursor emissions (black carbon, organic carbon, 

ammonia, sulphur dioxide and nitrogen oxides) estimated for 2010-2030 using the LEAP 

tool were then converted into population-weighted annual average PM2.5 concentrations 

across Thailand. The population-weighted annual average PM2.5 concentrations was then 

used to estimate the associated impacts on health (premature mortality) attributable to this 

level of annual PM2.5 exposure. The PM2.5 components and PM2.5-precursors for which 

emissions were estimated were chosen because i) they are pollutants for which a robust 

method of quantifying the sensitivity of changes in their emissions and PM2.5 

concentrations have been developed using the GEOS-Chem Adjoint model (see below, 

other pollutants such as VOCs which contribute to secondary organic aerosol formation 

have not been integrated into the GEOS-Chem Adjoint modelling scheme, and ii) these 

pollutants make a large contribution to the total mass of PM in the atmosphere, as 

compared with other pollutants such as heavy metals or persistent organic pollutants 

which make a minor contribution to the mass of PM (Carnell et al., 2017; 

Cheewaphongphan et al., 2017; Huang et al., 2014; Putaud et al., 2010; Querol et al., 

2009; Hodan and Barnard, 2004; U.S. EPA, 1996).  

Emissions for Thailand estimated using the LEAP tool as described above in Section 2.2.1 

were combined with gridded emission estimates for all countries outside Thailand from 

the IIASA GAINS ECLIPSE emission dataset (http://gains.iiasa.ac.at). The ECLIPSE 

emission dataset contains emission estimates for air pollutants in 0.5 x 0.5 degree grids 

globally, that are derived from the Greenhouse Gas Air Pollutant Interactions and 

Synergies model (GAINS) (Amann et al., 2011; Amann et al., 2008). GAINS is an 

emission inventory and scenario analysis tool that estimates emissions of PM2.5 and PM2.5 

precursor emissions globally from 1990 to 2050 in 5-year timesteps. The methodologies 

used in the GAINS model to estimate emissions from each source sector are based on 

international default methods for emission inventory development (IPCC, 2006; 

EMEP/EEA, 2019), and consistent with those described in Section 2.2.1. The activity 

variables for each sector in the GAINS model are based on energy consumption and 

generation data produced by the International Energy Agency (IEA, 2010-2015; 

https://www.iea.org/data-and-statistics), and agricultural variables provided by Food and 
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Agriculture Organization (FAO, 2018). The ECLIPSE emission dataset methodology and 

emission estimates are comprehensively detailed in Stohl et al. (2015). 

The national total emissions for Thailand estimated in LEAP were distributed across 

Thailand based on the spatial distribution of Thai emissions within the ECLIPSE gridded 

emission dataset, automatically within the LEAP software. The ECLIPSE emission 

dataset was aggregated from the native 0.5 x 0.5 degree resolution to 2 x 2.5 degree 

resolution (the resolution of the atmospheric modelling described below). The grids that 

covered Thailand and that did not cover Thailand were also identified. For those grids 

covering Thailand, the proportion of emissions assigned to Thailand, and to neighbouring 

countries, was determined based on the fraction of the population in the grid square living 

in Thailand vs neighbouring countries (according to the population count in grids at 2.5 

arc-minute resolution estimated in the Gridded Population of the World Version 3 

dataset). Those ECLIPSE emissions assigned to Thailand were then replaced by the 

LEAP emissions, with the national total LEAP emissions for each pollutant assigned to 

the grids covering Thailand based on the fraction of total Thailand ECLIPSE emissions 

assigned in each grid. This resulted in the ECLIPSE emissions representing emissions in 

all countries outside Thailand, and the LEAP-derived emissions representing emissions 

within Thailand. The combination of LEAP-derived emissions for Thailand, gridded 

across the country, and ECLIPSE gridded emissions for the rest of the world produced a 

global gridded estimate of emissions for all years between 2010 and 2030 for all scenarios.  

These gridded emissions are then combined with the output from the adjoint of the GEOS-

Chem global atmospheric chemistry transport model (Bey et al., 2001; Henze et al., 

2007). The ‘coefficients’ produced from the GEOS-Chem Adjoint model quantify the 

relationship between emissions of a particular pollutant that contribute to PM2.5 (BC, OC, 

other primary PM, NOx, SO2 and NH3) in any location and the change in annual average 

PM2.5 in Thailand. GEOS-Chem simulates the formation and fate of pollutants globally 

at a grid resolution of 2° × 2.5°, with 47 vertical levels. Emissions of aerosols and aerosol 

precursors include natural (i.e., ocean, volcanic, lightning, soil, biomass burning, biogenic 

and dust) and anthropogenic (transportation, energy, residential, agricultural, etc.) 

sources. The model accounts for the transport and hydrophilic aging and removal of 

primary carbonaceous aerosols (BC and OC) (Park et al., 2003) along with the 

heterogeneous surface chemistry (Evans et al., 2004), aerosol feedbacks on photolysis 

rates (Martin et al., 2003), and the partitioning of secondary inorganic aerosols (Park et 
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al., 2004). The GEOS-Chem Adjoint model calculates the sensitivity of annual average 

population-weighted PM2.5 to an emission change in any 2° × 2.5° grid cells globally 

(Henze et al., 2007), accounting for all of the mechanisms related to aerosol formation 

and fate. These sensitivities are output from the GEOS-Chem adjoint as gridded 

‘coefficients’, which are then multiplied by emission estimates in IBC to estimate the 

change in annual average PM2.5 for each year and emission scenario. Previous 

applications of GEOS-Chem adjoint coefficients for estimating responses to emissions 

changes include (Lacey et al., 2017; Lapina et al., 2015; Paulot et al., 2013) (e.g., Henze et al., 

2012; Paulot et al., 2013; Lapina et al., 2015; Lacey and Henze 2015; Lacey et al., 2017).  

Adjoint coefficients were produced for each pollutant that contributes to population-

weighted PM2.5 concentration, specifically, BC, OC, NOx, SO2, NH3 and other PM (in 

this case, predominantly mineral dust), reflecting their different reactivity and formation 

pathways in the atmosphere. Coefficients were not estimated for other pollutants that 

contribute to PM2.5 formation, such as VOCs (forming secondary organic aerosols), heavy 

metals, polycyclic aromatic hydrocarbons (PAHs), due to the lack of parameterisation of 

those pollutants within the GEOS-Chem Adjoint model (in the case of VOCs and 

secondary organic aerosol formation), and due to the small (<1%) contribution that the 

other pollutants make to the overall PM2.5 mass, which is the metric used to quantify the 

health impacts of PM2.5 in this study. The Adjoint coefficients are applied by multiplying, 

in each grid and for each pollutant, the coefficient by emissions, and summing across all 

grids to estimate the change in population-weighted annual average PM2.5 across Thailand 

for a particular year for a particular scenario. A limitation of application of the adjoint 

coefficients is they provide a linear representation of the response of population-weighted 

annual average PM2.5 across Thailand to emissions perturbations, which leads to 

uncertainty when emission perturbations are large (considered to be approximately >50% 

for NOx, SO2, and NH3 impacts on PM2.5 (Henze et al., 2012; Lee et al., 2015). However, 

as shown in Chapter 5, the emission changes modelled across Thailand were within this 

range for all pollutants (Chapter 5).  

In 2010, population-weighted PM2.5 concentrations across Thailand were set to the value 

derived from a satellite-based measurement of PM2.5 across Thailand, i.e. 28.5 µg m-3 

(van Donkelaar et al., 2016). The population-weighted PM2.5 concentration in 2010 was 

disaggregated into contributions from emissions of each pollutant from within the 

country, from outside the country, as well as the contribution from natural background 



   

 

76 
 

emissions (mainly sea salt and desert dust). Gridded (2° × 2.5°) PM2.5 concentrations in 

2010 from natural background emissions were calculated from directly from GEOS-

Chem forward model runs, and combined with population count data from the Gridded 

Population of the World v3 Dataset to determine the natural component of population-

weighted PM2.5 concentrations across Thailand in 2010. The natural component was 

assumed to stay constant in future years for all scenarios.  

The anthropogenic contribution to population-weighted PM2.5 concentrations across 

Thailand was further disaggregated into contributions from emissions of each primary 

PM2.5 or PM2.5 precursor pollutant, and the contribution from Thailand emissions, and 

from emissions from grid squares outside of Thailand. For each pollutant, for Bangladesh 

and rest of the world emissions separately, the contribution to population-weighted PM2.5 

concentrations was calculated by multiplying the adjoint coefficients parameterised for 

that pollutant by the pollutant emissions in the grids covering Thailand or rest of the world 

emissions. The sum of these calculations across all grids covering Thailand gave the 

anthropogenic component of population-weighted PM2.5 concentrations across Thailand 

in 2010, scaled so that the total matched the van donkelaar et al. (2016) population-

weighted PM2.5 concentration derived from satellite observations.  

The impact of scenarios on population-weighted PM2.5 concentrations across Thailand in 

future years were calculated by multiplying the adjoint coefficients for each grid, for each 

pollutant, by the difference in emissions between 2010 and the future year in a particular 

scenario. The change in emission in the grids covering the rest of the world, in the baseline 

scenario, were estimated from the ECLIPSE current legislation scenario (Stohl et al., 

2015). The change in emissions in the grid covering Thailand were calculated by 

subtracting the emissions of each pollutant in the future year from the values in 2010. The 

sum of the coefficient × change in emission for each pollutant for each grid then provided 

the estimate of the change in population-weighted PM2.5 concentrations in the future year 

due to changes in emissions of each pollutant for a particular scenario compared to 2010. 

The uncertainties associated with estimating future population-weighted PM2.5 

concentrations based on the application of these linearised GEOS-Chem Adjoint 

coefficients is that non-linear atmospheric chemical processes that result in changes in 

PM2.5 concentrations resulting from future changes in emissions of PM2.5 and PM2.5 

precursors are not taken into account. These uncertainties are largest for secondary 

inorganic aerosol formation (compared to primary PM2.5 emissions), but previous studies 
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have shown that significant differences to forward model results only occur for emission 

perturbations above 50% (Henze et al., 2012; Lee et al., 2015).  

Health impacts attributable to exposure to PM2.5 across Thailand were estimated using 

standard health impact assessment methods applied by the World Health Organisation 

and Global Burden of Disease project to estimate the number of premature deaths 

attributable to PM2.5 exposure in Thailand. There are many calculation methods that have 

been used to quantify the change in premature deaths for a particular level of exposure in 

excess of a minimum risk exposure level (Burnett et al. 2014; Anenberg et al., 2010). 

These methods vary in terms of the air pollution exposure metric used (e.g. 24-hour 

average, annual average), and the concentration-response function used to quantify the 

increased risk of premature mortality from a particular level of exposure. The change in 

premature mortality estimated from exposure to PM2.5 in Thailand was estimated using 

the equation below, for consistency with the methodologies used in the most recent global 

assessments of air pollution impacts on human health by Global Burden of Disease and WHO: 

ΔMort = y0(RRIER–1/RRIER)Pop. 

Where:          (Equation 4) 

ΔMort is the change in mortality attributable to a change in air pollution 

concentrations 

y0 is the baseline mortality rate for the particular cause of death associated with 

air pollution exposure 

Pop. is the population exposed to the population-weighted PM2.5 concentrations 

RRIER is Integrated Exposure Response functions that quantify the RR for mortality 

for PM2.5 exposures up to very high levels (10,000 µg m-3) 

Equation 4 is based on the equation used to estimate PM2.5-attributable mortality in the 

Global Burden of Disease studies of mortality causes and risks (Cohen et al. 2017). The 

PM2.5 exposure estimate was derived as described above as the population-weighted 

annual average PM2.5 concentration across Thailand. The exposed population and 

baseline mortality rate for each age group and disease category were obtained from the 

UN Population Division statistics, and Global Burden of Disease project 2017 (Global 

Burden of Disease Study 2017-See Appendix, Table S1) and http://ghdx.healthdata.org/gbd-
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2017). The Integrated Exposure Response function, described in Burnett et al. (2014) was 

used to derive the relative risk, the increased risk of premature death for a particular 

exposure level, for each disease category. The IER functions are derived by integrating 

the result from epidemiological studies on the effect of exposure to ambient air pollution, 

household air pollution, second hand smoke and active smoking on premature mortality 

from ischaemic heart disease, cerebrovascular disease, lung cancer, chronic obstructive 

pulmonary disease and acute lower respiratory infection (in children, other diseases are 

adults (>30 years old). This provides a continuous function that quantifies the relative 

risk of premature deaths from very low concentrations (~5 µg m-3) to very high PM2.5 

concentrations (10,000 µg m-3). The IER functions were developed because the majority 

of epidemiological studies that have been conducted to quantify the associated between 

ambient air pollution exposure and health effects have been conducted in Europe and 

North America, where annual PM2.5 concentrations are substantially lower than in many 

parts of the world, including in Thailand (see Chapter 3). Therefore, by integrating 

available ambient air pollution epidemiological studies with those developed for sources 

of much higher PM exposure, such as household air pollution and smoking, a function is 

developed that quantifies the relationship between PM exposure and risk of premature 

mortality at ambient PM2.5 exposures commonly experienced in Asia, Africa and other 

parts of the world that lack direct epidemiological relationships. Limitations and 

uncertainties with this approach is that it assumes that populations outside North America 

and Europe (where studies have been conducted) respond similarly to a given level of 

PM2.5 exposure, which may not be the case due to differences in the underlying health 

status of the population. It also assumes that the total mass of PM2.5 is the most significant 

indicator of the toxicity of exposure across the sources of PM2.5 exposure that are 

integrated together (i.e. ambient, household and smoking), and that the different 

composition of PM2.5 from these sources does not have an impact.  Equation 1 was applied 

for populations in five year age groups separately, for the five disease categories, and then 

summed to estimate the total health burden from a particular population-weighted PM2.5 

concentration resulting from a particular set of emissions for a particular year/scenario. 

This methodology was chosen because i) it utilises the annual average PM2.5 

concentration as the exposure metric, i.e. a metric quantifying long-term exposure to 

PM2.5 which has been shown to capture a greater proportion of the totality of the air 

pollution health impact than short-term (e.g. daily) average exposure metrics 
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(REVIHAAP, 2013), ii) it utilises a concentration-response function that characterises the 

relative risk of air pollution exposures up to the levels of PM2.5 concentrations that are 

experienced in Thailand. Other concentration-response functions derived solely from 

studies conducted in Europe and North America characterise the relative risk for a small 

range and lower PM2.5 concentrations that are typical in those regions, but which are lower 

than those experienced in Thailand. In addition, it focusses on quantifying the number of 

premature deaths attributable to PM2.5, which have been shown to contribute the largest 

fraction of the overall burden of disease (e.g. when quantified as the number of disability 

adjusted life years (DALYs) compared to non-fatal health outcomes. However, it is noted 

that exposure to PM2.5 has been associated with a range of non-fatal morbidity impacts, 

including asthma exacerbation, preterm birth, and diabetes, which have not been 

quantified here.   
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Chapter 3: Assessment of the 
contribution of long-range transport 

to annual PM10 concentrations  
in Thailand 

3.1 Introduction 

This chapter focuses on the conditions producing annual average PM10 concentrations at 

general air monitoring sites in Northern and Southern Thailand between 2011 and 2015. 

Sites in Northern and Southern Thailand were assessed together in this chapter because 

in both regions biomass burning has been shown to produce short-term peaks in PM 

concentrations (Punsompong and Chantara, 2018; Phayungwiwatthanakoon, 2013; Kim 

Oahn and Leelasakultum, 2011). However, the contribution of these short-term episodes 

to the annual average PM concentrations that are relevant for human health impacts from 

long-term PM exposure has not been investigated.  

To understand the conditions producing annual PM concentrations in Northern and 

Southern Thailand, this chapter applies the ‘chemical climatology’ framework which has 

previously been developed and applied at sites in the United Kingdom (Malley et al., 

2016; Malley, Braban and Heal, 2014) to assess the contribution of hourly PM10 

concentrations from short-term biomass burning episodes to the annual average PM10 

concentrations including the contribution from different months of the year, and hours of 

the day. A back trajectory analysis is used to evaluate the influence of long-range transport 

and biomass burning in producing short-term peak PM10 episodes across Thailand, by 

assessing the proportion of time air masses spend over different countries, when different 

hourly PM10 concentrations occur. The aim of this analysis is to assess whether these 

‘chemical climatology’ statistics can increase the information derived from a compliance 

monitoring network in Thailand and effectively link the magnitude of annual PM10 

concentrations with the variation in hourly PM10 concentrations that produce it. 

Recently, the study from Chandra et al. (2017) reported that the major sources of biomass 

burning emission in the Indo-China Peninsula region (the mainland in Southeast Asia 



   

 

81 
 

such as Myanmar, Thailand, Laos, Cambodia, Vietnam and etc.) were burning of 

agricultural crop residues, forest burning associated with land clearing and deforestation, 

and domestic burning of biofuels. Another study also showed that the majority sources of 

air pollutant emissions in the upper northern, lower northern and northeast Thailand were 

associated with the ambient PM concentration from open biomass burning from crop 

residue and forest fires which linked to the status of air pollution in Thailand (Phairuang, 

Hata and Furuuchi, 2017). Boonman, Junpen and Garivait (2014) found that during dry 

season (December to March) between 2009 and 2011 in Northern Thailand, the critical 

haze situation was mainly associated with open biomass burning, forest fires and 

agricultural burning and the most critical burning occurred in 2010. Junpen et al. (2018) 

showed that agricultural burning activities result in the higher level of PM10 concentration 

in Thailand.   

In southern Thailand, high short-term peaks in PM10 concentrations are mostly associated 

with regional haze episodes, the timing of these transboundary episodes from biomass 

burning vary. For example, the PCD reported a haze episode in southern Thailand in 2015 

that occurred between June, 1st  and October, 30th,  during which PM10 levels at the air 

quality monitoring stations in this region exceeded the Thai 24 – hour average PM10 

standard of 120 µg m-3 for 10 days (7% of the monitoring period) (PCD, 2015). This period 

coincided with forest and agricultural burning in the forests of Sumatra and Borneo islands, 

Indonesia and elevated air pollution levels were recorded across Southeast Asia in 

Thailand, Malaysia and Singapore (Field et al., 2016). In 2014, the PM10 level did not 

exceed the standard in Thailand (PCD, 2015), however, in June 2013, the peak period for 

transboundary haze occurred at this time (Betha, Behera and Balasubramanian, 2014).  

The consequences of these high, short-term PM10 concentrations associated with the 

biomass burning periods in northern and southern Thailand for the magnitude of the PM10 

impact metric that is most associated with human health impacts (i.e. the annual average 

PM10 concentrations) has not been evaluated in previous studies assessing air pollution in 

northern and southern Thailand. Therefore, this analysis applies a common ‘chemical 

climatology’ framework to evaluate the variation in hourly PM10 concentrations that 

determines the magnitude of annual PM10 concentrations in each region. This framework 

is important because it can assess how biomass burning events influence annual average 

concentrations and how they contribute to long-term PM exposure relevant for human 

health. The specific focus is on how a standard set of statistics calculated for each 
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monitoring site can be used to assess the relative contribution of high hourly PM10 

concentrations that occur during biomass burning periods in northern and southern 

Thailand to determining the magnitude of annual PM10 concentrations, and exceedance 

of national air quality standards. This study therefore: i) assesses the potential 

effectiveness of reducing biomass burning PM emissions on achieving national and 

international air quality targets and guidelines related to annual PM10 concentrations; and 

ii) provides a methodology that could be extended to monitored or modelled PM 

concentrations in other locations to effectively link the drivers of elevated PM10 

concentrations during particular periods to regulatory/impact metrics.   

3.2 Methods 

The chemical climatology approach outlined in the main methods chapter (Chapter 2) 

was applied to the monitoring data at sites in Northern and Southern Thailand to 

understand the influence of long-range transport in determining annual PM10 

concentrations in these regions. At each general site for each year, the annual average 

PM10 concentration was calculated from the hourly time series. In addition, the 

contribution to annual PM10 from hourly PM10 concentrations divided into 1 µg m-3 bins 

was calculated, and the proportion of hourly concentrations in each bin occurring in each 

month of the year and hour of the day were also calculated. Four-day air mass back 

trajectories arriving at the site at each hour during the year were calculated (See Section 

2.1.2 in Chapter 2 for a description of how these back trajectories were calculated), and 

the country over which the trajectory was located at each hour prior to arrival at the site 

was determined. Hence, the proportion of time which trajectories spent over Thailand, 

the ocean and neighbouring countries in the 4 days prior to arrival at the sites for hours 

with hourly PM10 concentrations in each 1µg m-3 bin was calculated. Moreover, 

meteorological conditions, such as wind speed, wind direction and temperature, were 

analysed with meteorological data to consider how they vary with hourly PM10 

concentrations (https://www.esrl.noaa.gov/). Those years between 2011 and 2015 were 

analysed by using these statistics at sites that had sufficient data capture which was more 

than 75% of the hourly observations across the year, as well as more than 75% of hourly 

observations in each months of the year, and for each hour of the day (for additional 

details, see Chapter 2). The screening of data using these criteria yielded 14 sites in 

Northern Thailand and 3 sites in Southern Thailand that could be used for the analysis.  
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For the PM10 measurement results, values are reported to one decimal place due to the 

uncertainty in the hourly PM10 measurement (See section 2.1 for discussion of 

measurement uncertainty), and to zero decimal place for percentage values. 

3.3 Results 

3.3.1 Annual average concentrations 

Thailand has an annual average standard for PM10 of 50 µg m-3. Variation of the annual 

average PM10 concentrations for individual years between 2011 and 2015 at these 

monitoring sites are shown in Figures 3.1 and 3.3. In 2011 (Figures 3.1 (a) and 3.3 (a)), 

the main difference compared to the 2011-2015 average annual PM10 concentrations 

(Figure 3.2) was that across all sites in Northern Thailand, annual concentrations were 

much lower than the average. Across all sites in Northern Thailand, annual PM10 

concentrations were on average 8.6 µg m-3 (19%) lower than the 2011-2015 annual PM10 

concentrations and ranged between 5.3 µg m-3 lower and 14.3 µg m-3 lower. These reduced 

annual PM10 concentrations were observed at all sites in the Northern Thailand region, 

from sites in urban centres such as Chiang Mai as well as sites in smaller cities. This meant 

that in Northern Thailand, the 2011-2015 average annual PM10 concentrations exceeded 

Thailand’s annual standard at 4 sites in Northern Thailand, but no sites exceeded the 

standard in 2011. In contrast, in southern Thailand, the three sites showed a consistent 

range of annual PM10 concentrations between 2011 and 2015, with no exceedances of the 

PM10 standard in any year at these sites.   
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(a) Annual Average PM10: 2011 

 
(b) Annual Average PM10: 2012 
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(c) Annual Average PM10: 2013 

 
 

 (d) Annual Average PM10: 2014 
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(e) Annual Average PM10: 2015 

 

Figure 3.1: The annual average PM10 concentrations for individual years between 2011 and 2015  

  

0

10

20

30

40

50

60

70

80

90

100

B
an

gk
ok

B
an

gk
ok

B
an

gk
ok

B
an

gk
ok

B
an

gk
ok

B
an

gk
ok

B
an

gk
ok

C
en

tra
l

C
en

tra
l

C
en

tra
l

C
en

tra
l

C
en

tra
l

C
en

tra
l

C
en

tra
l

C
en

tra
l

C
en

tra
l

C
en

tra
l

Ea
st

Ea
st

Ea
st

Ea
st

Ea
st

Ea
st

N
or

th
ea

st
N

or
th

ea
st

So
ut

h
So

ut
h

So
ut

h
N

or
th

N
or

th
N

or
th

N
or

th
N

or
th

N
or

th
N

or
th

N
or

th
N

or
th

N
or

th
N

or
th

N
or

th

A
nn

ua
l A

ve
ra

ge
 (µ

g 
m

-3
) 

Thai annual standard      = 50 µg m-3 

WHO annual guideline  = 20 µg m-3 
 



   

 

87 
 

Annual Average PM10: 2011-2015 

 

Figure 3.2: The comparison of annual average PM10 concentrations across Thailand   
 between 2011 and 2015 
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(a) 2011 (b) 2012 

 
 

 

 
(c) 2013 (d) 2014 
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(e) 2015 

 
 
 

 

Figure 3.3: Maps of study area in Thailand for an individual year between 2011 and 2015 

showed annual average PM10 concentrations 

The 2011-2015 average annual PM10 concentration exceeded the Thai National  standard 

at 12 sites across Thailand (Figures 3.2 and 3.4). The annual average was generally higher 

in central and northern Thailand compared to southern Thailand. For example, in southern 

Thailand, annual PM10 concentrations ranged from 20 – 40 µg m-3. In contrast, annual 

PM10 concentrations in northern Thailand were between 30 up to 60 µg m-3. In central 

Thailand and Bangkok, annual PM10 concentrations had a much wider range across all 

sites, from 10 up to 100 µg m-3 as shown in Figure 3.1 and Figure 3.2. Across all sites 

that met data capture criteria, the median annual PM10 across Northeast sites (3 sites) was 

higher than the North (14 sites) and East (8 sites), and sites in South of Thailand (3 sites) 

had the lowest concentrations (Figure 3.5). In addition, the annual PM10 concentrations 

across central Thailand at roadside sites had a much wider range compared to general 

sites in the same region (Figure 3.5). 
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Figure 3.4: Map of study area in Thailand between 2011 and 2015 showing the annual 
average PM10 concentrations 
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Figure 3.5: Comparison of annual average PM10 concentrations between general and 

roadside sites across Thailand between 2011 and 2015. The bottom of the box is 25th 

percentile, the top of the box is 75th percentile, the whiskers show the 5th and 95th 

percentile, the line is the median and the dot is the mean across all sites in each region 
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3.3.2 Conditions producing annual average concentrations  

3.3.2.1 Northern Thailand 

The conditions producing annual average PM10 concentrations were analysed using a 

combination of measurement data and air mass back trajectories at different locations 

focused on sites with the most complete data capture in each of the site categories (see 

methods for selection criteria as shown in appendix, Tables S3 and S4). In Northern 

Thailand, Chiang Mai (ID 32 and ID 33), Chiang Rai (ID 30) and Lamphun (ID 46) have 

the monitoring sites which met data capture criteria in different years between 2011 and 

2015. Chiang Mai is a major city, and has the monitoring site (Site ID 32) which met data 

capture criteria in every year between 2011 and 2015. This site is a general site located in 

an urban, residential area. Site 32, located in Chiang Mai, Northern Thailand, had 

sufficient data capture in the largest number of years (5 years), and was therefore the 

primary site used to explore the conditions that resulted in lower annual PM10 

concentrations in this region in 2011 compared to 2012-2015. Figure 3.6 contrasts the 

contribution to annual average concentrations from different hourly PM10 concentrations, 

months of the year, hours of the day, and air mass pathways in 2011 and 2012. Data for 

2012 is representative of the period 2012 to 2015 that have the similar contributions of 

hourly PM10 concentrations to annual average PM10 observed at Site 32 (See Table 3.1). 

For example, the 95th percentile PM10 concentrations varied between 109 and 123 µg m-3 

between 2012 and 2015, and hourly PM10 concentrations above the 95th percentile 

contributed 16-18% of annual average PM10. In contrast, in 2011, the 95th percentile 

concentration was 77 µg m-3 and hourly PM10 concentrations above this contributed 13% 

to the annual average (Table 3.1). 
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Figure 3.6: (a) The contribution of each hourly 1 µg m-3 PM10 concentration bin to the annual average PM10 concentration, (b) The proportion of concentrations in 

each 1 µg m-3 hourly PM10 concentration bin that occurred in each month of the year, (c) The proportion of concentrations in each 1 µg m-3 bin that occurred during 

each hour of the day and (d) The proportion of time back trajectories spent over different countries in the 4 days prior to arrival at site 32, Chiang Mai in 2012
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Hourly PM10 concentrations measured at site 32 were divided into 1 µg m-3 bins, and the 

contribution of each hourly PM10 concentration bin to the annual average PM10 

concentration was calculated (Figure 3.6a). In 2012, hourly PM10 concentrations were as 

high as 300 µg m-3 and the ‘very high’ PM10 concentrations above the 95th percentile (119 

µg m-3) contributed 17% to the PM10 annual average. These very high PM10 concentrations 

occurred primarily in March (79% of the very high hourly PM10 concentrations occurred 

in March), and almost exclusively during the summer season (100% occurred between 

February and April) (Figure 3.6b). There was a less distinct pattern of when hourly PM10 

concentrations in each bin occurred throughout the day, but the lowest hourly PM10 

concentrations generally occurred at night time (Figure 3.6c). Finally, in 2012, the 4-day 

back trajectory air masses that arrived during the very high concentrations spent on 

average 42% of the time over Myanmar before they arrived at this site, and most of the 

rest of the time over Thailand (32%) and the ocean (25%). Figure 3.7 shows that in March, 

air masses from the North were associated with the highest hourly PM10 concentrations 

during this month. The colour of each line is the hourly PM10 concentration during the 

hour when the trajectory arrives (grey lines represent back trajectories associated with 

hours when no data was measured that site). 
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Table 3.1: Comparison of the main conditions producing annual average concentrations at monitoring sites in Northern Thailand in the 

years between 2011 and 2015 when data capture was sufficient at each site (see methods section for data capture criteria) 

Site 
ID Province Year 

Very high PM10 concentration site conditions Month (%) Country (%) 

95th Percentile 
concentrations 

(µg m-3) 

Contribution of hourly 
PM10 concentrations above 

95th Percentile to annual 
average PM10  

(%) 

Feb Mar Apr Myanmar Thailand Marine 

32 Chiang 
Mai 

2011 77 13 30 26 18 29 40 24 
2012 119 17 20 79 1 42 32 25 
2013 109 16 3 76 20 31 27 42 
2014 123 16 4 75 17 25 47 25 
2015 119 18 8 81 8 36 43 17 

33 Chiang 
Mai 

2011 80 12 22 32 25 30 41 26 
2013 131 16 3 69 27 28 27 44 
2015 124 16 4 88 6 36 44 17 

30 Chiang 
Rai 

2011 86 12 15 22 37 13 55 12 
2012 177 19 20 80 0 45 31 21 
2014 124 17 0 76 21 25 47 17 

46 Lamphun 2011 89 13 39 21 9 24 41 20 
2012 141 17 53 45 1 41 40 15 
2013 116 15 5 82 6 31 36 31 
2014 115 14 7 66 15 20 52 24 
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Figure 3.7: Air mass back trajectories arriving at Chiang Mai site (ID 32) for each day in March 

2012. The colour of each line is the hourly PM10 concentration during the hour when the trajectory 

arrives (grey lines represent back trajectories associated with hours when no data was measured 

that site). 

In contrast, in 2011, the very high hourly PM10 concentrations at the 95th percentile were 

much lower than 2012, only 77 µg m-3 (compared to 119 µg m-3 in 2012) and contributed 

less to the annual average, only 13% (compared to 17%) (Figure 3.8). The maximum 

concentrations peaked at approximately 180 µg m-3, rather than 300 µg m-3 in 2012. The 

very high concentrations at the 95th percentile in 2011 also did not just occur in March 

(26% of PM10 concentrations above the 95th percentile compared to 79% in 2012) but 

occurred in other months across the year as shown in Table 3.1 and Figure 3.8. The back 

trajectories showed that during very high hourly PM10 concentrations in 2011, air masses 

still spent a substantial amount of time over Myanmar prior to arrival at the site (29% of 

the time), but less time than in 2012 (Figure 3.9).  In 2011 these air masses also spent 

time over Thailand (40%), the ocean (24%), as well as Laos (3%), Bangladesh (1%), 

Vietnam (1%), China (0.9%), India (0.3%) and Cambodia (0.1%) as shown in Table 3.1, 

Figure 3.8 and Figure 3.9. 
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Figure 3.8: (a) The contribution of each hourly PM10 concentration bin to the annual average PM10 concentration, (b) The proportion of concentrations in each 

1 µg m-3 hourly PM10 concentration bin that occurred in each month of the year, (c) The proportion of concentrations in each 1 µg m-3 bin that occurred during 

each hour of the day and (d) The proportion of time back trajectories spent over different countries in  the 4 days prior to arrival at site 32, Chiang Mai in 2011 
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Figure 3.9: Air mass back trajectories arriving at Chiang Mai site (ID 32) in March 2011. The 

colour of each line is the hourly PM10 concentration during the hour when the trajectory arrives 

(grey lines represent back trajectories associated with hours when no data was measured that site). 

In summary, in 2012 at an urban general site in Chiang Mai, Northern Thailand annual 

average PM10 resulted from a relatively large contribution (17%) from highest 5% of 

hourly PM10 concentrations (above 119 µg m-3). These highest hourly PM10 concentrations 

generally occurred in one month (March). During these highest concentrations in March, 

air masses spent a substantial fraction of time over Myanmar and Thailand before arriving 

at the site. In contrast, the very different conditions producing annual average PM10 

concentrations in 2011 compared to the other years include lower values of the highest 

PM10 concentrations in 2011, which make a smaller contribution to the annual average, 

and do not occur during a specific month. The highest hourly PM10 concentrations during 

2011 also spent less time over Myanmar compared to other years. Other sites in Northern 

Thailand with sufficient data capture to assess differences in the conditions producing 

annual PM10 concentrations in 2011 and other years showed similar patterns to those at 

the general site in Chiang Mai (Site 32). For other sites in Northern Thailand, 2011, 2012 

and 2015, the similarity of patterns identified to those at Site 32 are highlighted in Table 

3.1, and in supplementary information (Appendix; Tables S5 – S7). This includes Site 33, 

in Chiang Mai (which had sufficient data capture in 2011, 2013 and 2015), Site 30, in 

Chiang Rai (2011, 2012 and 2014), and Site 46, Lamphun 2011, 2012, 2013 and 2014). 
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3.3.2.2 Southern Thailand 
The conditions producing annual average PM10 concentrations at the three locations 

meeting the data selection criteria (see methods) in Southern Thailand were as follows. 

Site 72, in Narathiwat, is a general site located in an urban area. The conditions producing 

annual average PM10 concentrations in 2015 varied as shown in Figure 3.10 and Table 3.2. 

At Site 72, the very high concentrations above the 95th percentile (70 µg m-3) contributed 

13% to the PM10 annual average in 2015, a lower percentage than at all the sites in 

northern Thailand. The very high concentrations occurred mainly during October (52%), 

September (15%) and December (14%). The moderate concentrations occurred in 

multiple months across the year as shown in Table 3.2. However, there was less variation 

across the hours of the day for very high and moderate PM10 concentrations. The 4-day 

back trajectory analysis showed that the moderate concentrations spent most of the time 

(66%) over the ocean before arriving at this site followed by Malaysia (21%) and Thailand 

(10%). In contrast, the very high concentrations spent more time over Malaysia (41%) and 

Thailand (14%), but less time over the ocean (36%) (see Appendix, Tables S8 – S10). The 

substantial time spent over the ocean for moderate hourly PM10 concentrations indicates 

that natural emissions, such as sea salt, or anthropogenic shipping emissions may make a 

contribution to these moderate concentrations, while for higher hourly PM10 

concentrations, the less time spent over the ocean indicates a greater contribution from 

anthropogenic, land-based emissions (which may also include other natural sources on 

land, such as natural secondary organic aerosol formation). The composition of PM10 was 

not measured at the measurement sites, which could provide substantially greater insight 

into the sources of hourly PM10 in different concentrations bin (see for example Malley 

et al. 2016), by providing the contribution of, chloride and sodium ions to overall PM10 

concentrations to indicate the contribution of sea salt.    
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Figure 3.10: The different conditions producing annual average PM10 concentrations at site 72, Narathiwat in 2015  

(a) 

(b) 

(c) 

(d) 

Hourly PM10 Concentration (µg m-3) 
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Table 3.2: Comparison of the main conditions producing annual average concentrations at monitoring sites in Southern Thailand in different years and months 

Province Category Year 

Contribution of hourly PM10 concentrations to  
annual average PM10 

Contribution of hourly 
PM10 concentrations at 
different percentiles to 
annual average PM10 

(%) 

Monthly Contribution (%) 

Concentration 
Level Percentile Concentration  

(µg m-3) Jun Jul Aug Sep Oct Nov Dec 

Narathiwat 
(Site 72) 

General site 2015 Very Low <5th Percentile 9 1 4 11 13 17 17 16 0.5 
Low <25th Percentile 18 8 5 13 16 13 13 16 2 

Moderate 25th -75th Percentile 18-40 37 8 8 7 6 5 7 8 

High >75th Percentile 40 41 7 1 2 14 41 1 14 

Very High >95th Percentile 70 13 5 0.2 1 15 52 0.2 14 

2010 Very Low <5th Percentile 13 1 19 7 3 8 5 20 11 

Low <25th Percentile 20 12 16 10 7 9 6 17 10 

Moderate 25th -75th Percentile 20-33 40 8 8 9 10 10 6 6 

High >75th Percentile 33 37 4 4 6 4 9 3 20 

Very High >95th Percentile 49 10 3 3 5 4 9 2 23 

Phuket 
(Site 73) 

General site 2013 Very Low <5th Percentile 8 1 14 2 3 19 11 14 - 
Low <25th Percentile 15 9 11 4 6 16 14 14 1 

Moderate 25th -75th Percentile 15-30 40 6 10 12 10 8 7 5 
High >75th Percentile 30 39 26 4 3 0.3 8 2 18 

Very High >95th Percentile 46 11 31 2 2 - 11 2 17 
2008 Very Low <5th Percentile 11 1 5 6 7 8 23 41 1 

Low <25th Percentile 19 10 7 8 8 10 16 27 1 
Moderate 25th -75th Percentile 19-35 41 7 9 9 9 6 6 7 

High >75th Percentile 35 37 5 5 7 2 20 17 16 
Very High >95th Percentile 52 10 5 3 5 1 25 21 14 
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Province Category Year 

Contribution of hourly PM10 concentrations to  
annual average PM10 

Contribution of hourly 
PM10 concentrations at 
different percentiles to 
annual average PM10 

(%) 

Monthly Contribution (%) 

Concentration 
Level Percentile Concentration  

(µg m-3) Jun Jul Aug Sep Oct Nov Dec 

Songkhla  
(Site 75) 

General site 2014 Very Low <5th Percentile 20 2 1 1 10 22 16 21 11 
Low <25th Percentile 32 12 2 2 11 18 15 18 12 

Moderate 25th -75th Percentile 32-52 41 6 9 7 7 8 4 10 
High >75th Percentile 52 36 22 24 7 4 3 3 5 

Very High >95th Percentile 75 10 25 30 6 3 3 3 6 
2010 Very Low <5th Percentile 15 1 30 5 9 2 1 8 13 

Low <25th Percentile 23 10 23 6 7 3 3 11 12 
Moderate 25th -75th Percentile 23-40 41 6 8 8 10 8 7 8 

High >75th Percentile 40 37 5 10 13 8 3 2 13 
Very High >95th Percentile 59 10 4 10 12 8 1 2 14 
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Table 3.3: Comparison of the main conditions producing annual average concentrations at monitoring sites in Southern Thailand in different years and countries 

Province Category Year 

Contribution of hourly PM10 concentrations to annual average 
PM10 

Contribution of 
hourly PM10 

concentrations 
at different 

percentiles to 
annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Marine Malaysia Thailand Indonesia Vietnam Cambodia Laos 

Narathiwat  
(Site 72) 

General site 2015 Very Low <5th Percentile 9 1 59 25 13 1 0.3 1 - 

Low <25th Percentile 18 8 58 26 14 1 0.5 1 - 

Moderate 25th -75th Percentile 18-40 37 66 21 10 1 1 1 0.2 

High >75th Percentile 40 41 50 35 13 1 1 1 0.1 

Very High >95th Percentile 70 13 43 41 14 1 0.5 0.3 0.1 

2010 Very Low <5th Percentile 13 1 62 21 12 1 3 0.3 0.1 

Low <25th Percentile 20 12 58 23 14 1 3 1 0.1 

Moderate 25th -75th Percentile 20-33 40 61 20 15 1 1 1 0.1 

High >75th Percentile 33 37 58 17 16 0.4 4 2 1 

Very High >95th Percentile 49 10 53 20 17 0.3 4 3 1 

Phuket 
(Site 73) 

General site 2013 Very Low <5th Percentile 8 1 86 1 10 0.5 1 2 0.2 

Low <25th Percentile 15 9 85 1 10 1 1 2 0.3 

Moderate 25th -75th Percentile 15-30 40 83 1 10 2 2 2 0.3 

High >75th Percentile 30 39 74 0.1 18 0.4 3 3 1 

Very High >95th Percentile 46 11 74 0.1 18 0.2 2 2 2 

2008 Very Low <5th Percentile 11 1 76 - 9 1 8 4 1 

Low <25th Percentile 19 10 79 0.1 10 1 5 3 1 

Moderate 25th -75th Percentile 19-35 41 81 0.1 12 2 1 2 1 

High >75th Percentile 35 37 71 - 19 2 2 3 2 

Very High >95th Percentile 52 10 70 - 19 1 2 3 2 
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Province Category Year 

Contribution of hourly PM10 concentrations to annual average 
PM10 

Contribution of 
hourly PM10 

concentrations 
at different 

percentiles to 
annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Marine Malaysia Thailand Indonesia Vietnam Cambodia Laos 

Songkhla 
(Site 75) 

General site 2014 Very Low <5th Percentile 20 2 69 2 20 1 4 2 0.4 

Low <25th Percentile 32 12 69 4 18 1 3 2 1 

Moderate 25th -75th Percentile 32-52 41 69 7 16 1 3 2 1 

High >75th Percentile 52 36 52 23 18 1 2 2 1 

Very High >95th Percentile 75 10 48 28 18 1 2 2 1 

2010 Very Low <5th Percentile 15 1 70 6 18 1 2 1 0.2 

Low <25th Percentile 23 10 71 5 17 1 3 2 0.3 

Moderate 25th -75th Percentile 23-40 41 74 4 16 1 2 2 0.2 

High >75th Percentile 40 37 60 9 22 1 4 2 1 

Very High >95th Percentile 59 10 58 9 23 1 5 3 1 
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Other sites in Southern Thailand with sufficient data capture were: Site 73 (Phuket) which 

is a general site located in an urban area. The very high concentrations at the 95th 

percentile (46 µg m-3) contributed 11% to the annual average concentrations in 2013 at 

Site 73 (Figure 3.11), while the moderate concentrations contributed 40% (Table 3.3). 

The moderate concentrations occurred across all months of the year, but the very high 

concentrations occurred disproportionately in June (31%), and December (17%), which 

are associated with biomass burning events in Malaysia and Indonesia (Field et al., 2016; 

PCD, 2015). Similarly, moderate concentrations occurred across the whole day while 

very high concentrations mainly occurred in the morning and evening. The majority of 

time was spent over the ocean prior to arrival at the site for both moderate (83%) and very 

high (74%) concentrations (Figure 3.12).    

In summary, the effect of long-range pollution transport at this site in Phuket is lower than 

other sites in Southern Thailand and other regions. Air masses spend the majority of time over 

the ocean and less time spent over Thailand and other countries in comparison to Site 73 in 

southern Thailand, and the northern Thailand sites. The lower proportion of time spent over 

land, where emissions sources are likely to be greater, means that the 95th percentile value was 

lower at this site than others, contributed a smaller proportion of annual average PM10 

concentrations, and that the annual PM10 concentration was lower compared with other sites.  
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Figure 3.11: The different conditions producing annual average PM10 concentrations at site 73, Phuket in 2013  
Hourly PM10 Concentration (µg m-3) 
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Figure 3.12: Air mass back trajectories arriving at Phuket site (ID 73) in June, 2013. Each 

line represents a back trajectory arriving at 12 pm on each day in June, and are coloured 

according to the hourly PM10 concentration recorded during this hour (The colour of each 

line is the hourly PM10 concentration during the hour when the trajectory arrives (grey lines 

represent back trajectories associated with hours when no data was measured that site). 

The last site with sufficient data capture in Southern Thailand is Songkhla site (ID 75) 

which is a general site located in an urban area as well. In 2014, the very high 

concentrations (above 95th percentile (75 µg m-3)) contributed 10% to annual average 

PM10 (Figure 3.13). These highest hourly PM10 concentrations occurred mostly in July 

(30%) and June (25%), and at night and in the evening. The air masses associated with 

these highest hourly PM10 concentrations spent less time over marine 48%, and more time 

over Malaysia 28% and Thailand 18% compared to lower hourly PM10 concentrations. In 

contrast, the moderate concentrations contributed 41% to the annual average and occurred 

in multiple months across the year, across the whole day, and air masses spent most of 

time over marine (69%), Thailand (16%) and Malaysia (7%) as shown in Table 3.2, Table 

3.3 and Figure 3.14. 

In summary, the effect of long rang transport at site 75, in Songkhla is similar to site 72, 

Narathiwat. Air masses spent the majority of time over the ocean and Malaysia and spent 

less time over land, contributed a smaller proportion of annual average PM10 concentrations, 

and that the annual PM10 concentration was also lower compared with other sites. 
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Figure 3.13: The different conditions producing annual average PM10 concentrations at site 75, Songkhla in 2014  

Hourly PM10 Concentration (µg m-3) 
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(b) 
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 (a) June 

 
(b) July 

 

Figure 3.14: Backward air masses trajectory plots at Songkhla site (ID 75) in (a) June 

and (b) July, 2014 
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In June (a) and July (b) in 2014, the back trajectories showed air masses transport from 

southerly directions, covering from Malaysia, Singapore, Indonesia,  Thailand and the 

ocean as shown in Figure 3.14. 

In 2010, the very high concentrations at the 95th percentile (59 µg m-3) contributed 10% to 

the annual average as shown in Table 3.2 and Table 3.3. The moderate concentrations 

contributed 41% to the annual average. The very high concentrations mainly occurred in 

January (17%) and December (14%). In contrast, the moderate concentrations occurred 

across the whole year which is the same pattern as observed at Site 73 in  Phuket in 2008. 

The moderate concentrations of air masses spent most of the time over marine 74% and 

Thailand 17%. However, the very high concentrations spent less time over marine 58%, 

and more time over Thailand (23%). 

In summary, across the three sites in southern Thailand there was variation in contribution 

from long-range transport in producing annual average PM10 concentrations, but at all 

sites this contribution was lower than at sites in northern Thailand. At Site 72, Narathiwat, 

that appeared to have the largest contribution from long-range transport, very high hourly 

PM10 concentrations were associated with specific months, and the transport of southerly 

air masses to the site, traversing Malaysia and Indonesia prior to their arrival. However, 

the magnitude of the very high hourly PM10 concentrations associated with these 

conditions were lower than at sites in northern Thailand, and also made a smaller 

contribution to annual PM10 concentrations at this site compared to sites in northern 

Thailand. Other sites in southern Thailand were further from neighbouring countries, and 

surrounded by ocean, and the very high hourly PM10 concentrations at these sites were 

less associated with increases in the time trajectories spent over neighbouring countries, 

and made even smaller contributions to the annual average PM10 concentration.  
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3.4. Discussion 

3.4.1 Implications for annual PM10 concentrations in Northern and Southern Thailand 

In this study, data from the Thailand national air pollution monitoring network has been 

used to investigate the contribution of biomass burning periods to determining the 

magnitude of annual average PM10 concentrations in northern and southern Thailand. The 

key findings from this study are that between 2012 and 2015 (non-La Nina years), in 

northern Thailand, the average 2012-2015 annual PM10 concentration consistently exceeded 

the 50 µg m-3 standard at multiple sites. While the majority of annual average PM10 was 

determined by relatively frequent, moderate hourly PM10 concentrations (20-80 µg m-3), 

relatively high hourly PM10 concentrations also made a substantial contribution (15-20% 

> 120 µg m-3), and these mainly occurred during March. In 2011, a La Nina year, the 

number of high hourly PM10 concentrations that occurred in March was substantially 

lower than between 2012 and 2015, and consequently the annual PM10 concentrations at 

all sites in northern Thailand did not exceed the 50 µg m-3 national standard. In southern 

Thailand, there were substantially fewer monitoring sites, but for those sites that were 

available, the results showed that the annual average PM10 concentrations for individual 

years between 2011 and 2015 did not exceed the 50 µg m-3 annual PM10 standard at any 

site. The frequency of high hourly PM10 concentrations (i.e. > 120 µg m-3), was much less 

than for sites in northern Thailand. The peak concentrations at sites in southern Thailand 

generally occurred in October and were associated with transport of southerly air masses 

towards Thailand. However, in terms of the WHO guideline annual average of 20 µg m-3 for 

PM10 there was widespread exceedance of this value in most years in southern and northern 

Thailand. This result is in line with the fact that in 2016, 91% of the world population was 

living in places where the WHO air quality guidelines levels were not met (WHO, 2018). 

The PCD has highlighted previously the role of long-range transport and biomass burning 

in producing short-term peak PM10 episodes across Thailand (PCD, 2015; PCD, 2018). 

In addition to the trapping of locally emitted pollutants due to weather conditions such as 

temperature inversions, the PCD (2016) noted that elevated air pollution in northern 

Thailand originates from forest fires and agricultural open burning both locally (i.e. 

within Thailand) and through transboundary transport from neighbouring countries 

between January and April. This is consistent with the results presented in this Chapter 
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that show the trajectory of air masses with highest hourly PM10 concentrations occurring 

in dry season and also related to biomass burning in Thailand and in neighbouring 

countries. High PM10 concentrations were previously linked with biomass burning 

activities in pre-monsoon season (March - April) (Janjai et al., 2009). In contrast, in 

southern Thailand, high peak PM10 concentrations typically occur between June and 

October. This is consistent with the timing of agricultural and deforestation burning 

practices in Indonesia that have been shown to produce transboundary haze affecting 

Thailand and other south-east Asian countries (Field et al., 2016; PCD, 2016; Koe et al., 

2001; Thompson et al., 2001). Other potential emission sources that could contribute to 

the highest hourly PM10 concentrations in southern Thailand, such as shipping emissions, 

or local activities do not display the same seasonality in emission source strengths.  

Other recent studies also identified biomass burning as a major source of high hourly 

PM10 concentrations. Punsompong and Chantara (2018) showed for one monitoring site 

in Chiang Mai in northern Thailand between 2010 and 2015 that high PM10 

concentrations mainly occurred in dry season during February to April. Based on 

potential source contribution function analysis of air mass back trajectories, they 

estimated that during this period the contribution to hourly PM10 concentrations from 

Myanmar was 73% and from Thailand was 27%. In Myanmar, the major high-potential 

sources were open agricultural burning, followed by forest burning, and in Thailand, the 

major contribution was from agricultural burning. Kim Oahn and Leelasakultum (2011) 

identified that the highest 24-hr PM10 concentrations in Chiang Mai occurred during 

March in 2007, and air mass back trajectories on haze episode days had passed over 

regions of dense biomass fire hotspots before arriving in Chiang Mai. Other previous 

studies have also highlighted the role of biomass burning in northern Thailand, Myanmar, 

and other Southeast Asian countries to short-term peaks in PM10 concentrations 

(Phayungwiwatthanakoon, 2013; PCD, 2010b; PCD 2012).  

The results in this study are consistent with those presented previously on the major 

contribution of biomass burning emissions to the highest hourly PM10 concentrations in 

Northern Thailand. However, this study extends the analyses to show that this source not 

only contributes to short-term peak PM10 concentrations in northern Thailand, but that 

these high hourly PM10 concentrations that occur during the relatively short biomass 

burning period in northern Thailand, make a substantial contribution, in the order of  

15-20%, to annual PM10 concentrations in this region. 
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In addition, the analysis here indicates that reduction of the high hourly PM10 

concentrations that occur during the biomass burning period in northern Thailand could 

lead to all sites in northern Thailand meeting the Thai ambient air quality standard for 

annual PM10 concentrations. For example, in 2011, there was a consistent decrease in 

annual average PM10 concentrations compared to normal years at all sites across northern 

Thailand. Huang et al. (2016) investigated biomass burning using satellite observations 

over Myanmar and northern Thailand. The result showed that the amount of biomass 

burned in 2011 was less than a quarter of the biomass burning in 2012, 2013, 2014 and 

2015, due to the La Nina conditions in 2011. Therefore, biomass burning was 

substantially lower in Myanmar and northern Thailand in 2011. This was attributed to 

anomalously high premonsoon rainfall in the region in March 2011 (Hunag et al, 2016). 

The results presented here show that this resulted in fewer very high PM10 concentrations 

during Thailand’s summer period, and consequently much lower annual average PM10 

concentrations across all sites in northern Thailand in 2011, and no exceedances of the 

Thailand PM10 standard. Another study showed the absence of haze episodes during 

January to April 2011 and indicated that this was related to the reduction in number of 

fire hotspots, the amount of precipitation, and the wind circulation, all of which 

contributed to the lower PM10 concentrations in 2011 in northern Thailand (Sooktawee, 

Mongkut and Tho, 2015).  

The results presented here emphasise the substantial benefits that could result from 

reducing the extent of crop residue and forest fire burning both in Thailand and Myanmar 

in terms of reducing long-term (annual average) exposure to PM in northern Thailand, in 

addition to reducing short-term peak episodes. As stated in the introduction, annual 

average exposure to PM10 (and PM2.5, which is highly correlated) has a substantially 

higher impact on human health than short-term peak exposures (WHO, 2013). Therefore, 

this suggests that human health benefits from reductions in air pollution can be enhanced 

by strategically reducing the pollution sources causing long-term (i.e. annual) PM 

concentrations. This study shows that in northern Thailand, a key strategy for achieving 

this is focusing on the minimisation of emissions from crop residue and forest fire burning 

during a particular time of the year. During the year of this analysis in which emissions 

from biomass burning in northern Thailand were shown previously to have been 

substantially lower (2011), no monitoring sites in northern Thailand exceeded the Thai 
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national standard for annual average PM10. This was not achieved in any other year where 

biomass burning emissions were elevated during March.  

In southern Thailand, in common with northern Thailand sites, the analysis presented here 

indicates that a main source of high peak PM10 concentrations was long-range transport 

from biomass burning, but that the frequency of high hourly PM10 concentrations from 

this source was substantially less than in northern Thailand. This is consistent with 

previous work that showed PM10 concentrations tended to increase in southern Thailand 

during June to October due to forest fires in Sumatra and Borneo in Indonesia (PCD, 

2015). While the number of years available for analysis at sites in southern Thailand was 

lower than in northern Thailand, PM10 episodes have been shown to occur in other years 

(Tangang, 2010). Haze in Southeast Asia region has been mainly attributed to the long-

range transport of pollutants from biomass fires in Sumatra and the Kalimantan on Borneo 

Island, Indonesia (Radojevic and Hassan, 1999). However, the results from this study 

show that although reducing the high hourly PM10 concentrations in southern Thailand, 

that occur during the biomass burning period could, reduce short-term peak PM10 

concentrations, it would have a very limited effect in reducing the annual average PM10 

concentration in this region, e.g. to achieve the WHO air quality guidelines of 20 μg m-3 

annual mean. 

In 2014, there were no days recorded where the PM10 level exceeded the standard in 

southern Thailand (PCD, 2015), but in 2013, the peak period for transboundary haze 

occurred in June (Betha, Behera and Balasubramanian, 2014).  Previous studies have also 

highlighted the strong control of El Niño conditions that can also have a strong control 

on the magnitude of the fire activity resulting from anthropogenic practices such as forest 

degradation, clearance activities and human-caused ignitions occurring annually across 

Borneo, Indonesia (Wooster et al., 2012). In October 2006, under El Niño conditions the 

severest fire incidents for whole Kalimantan occurred under the driest conditions in both 

Palangkaraya and Pontianak but only occurred in Palangkaraya in late September 2009 (Yulianti 

and Hayasaka, 2013). In Singapore, between August and October 2009, tropical burning, 

particularly in peatlands were enhanced by a moderate El Niño event (Atwood et al., 2013). 
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Finally, the results of this study have been obtained through the consistent calculation of 

a standard set of ‘chemical climatology’ statistics at all available sites in northern and 

southern Thailand. The aim of these statistics, and the chemical climatology framework, 

is to increase the information derived from monitoring networks beyond the assessment 

of the magnitude of a particular regulatory metric, and whether the monitoring sites are 

in compliance with national ambient air quality standards or international air quality 

guidelines. This has been achieved by calculating additional statistics that were 

specifically defined to determine how variation in hourly PM10 concentrations determines 

a specific impact metric (annual PM10 concentrations). These additional statistics 

highlighted the contrasting situations in northern and southern Thailand, where relatively 

high hourly PM10 concentrations occur during biomass burning periods in both regions. 

However, the implications for the annual PM10 ‘impact’ metric at sites in both regions is 

very different. Reduction of the high hourly PM10 concentrations during biomass burning 

periods in northern Thailand could be effective in reducing annual PM10 below the Thai 

national standard in this region, which is equivalent to  Interim Target - 2 (IT-2) of 50 µg m-3 

annual mean concentrations from WHO guidelines. In contrast, in southern Thailand,  

reductions in the highest hourly PM10 concentrations would have little effect on annual 

PM10 concentrations. The future application of these chemical climatology statistics to 

other monitoring sites in Thailand, south-east Asia, or other regions could facilitate a 

consistent comparison of the conditions producing annual PM10 concentrations in 

different areas, and to identifying the most effective mitigation strategies to reduce them 

(i.e. the hours, months of the year where biomass burning makes a largest contribution to 

the annual PM10 concentrations, and therefore the time period when mitigation needs to 

be focused and to the back trajectory analysis the geographic regions where that 

mitigation needs to occur). This approach can also be used to evaluate atmospheric 

chemistry transport models that are able to access specific mitigation measure targeting 

specific sources e.g. evaluated complete band on biomass burning or crop residue burning.  
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3.4.2 Uncertainties 

Key limitations for this study are the small number of sites and years in southern 

Thailand. The results that are presented here are consistent with previous studies in this 

region on the contribution of long-range transport during biomass burning periods to peak 

PM10 concentrations. However, as more measurements are collected at southern Thailand 

sites, there will be the opportunity to assess inter-annual variability, and the consistency 

of the results presented here in additional years. However, the number of sites do not 

seem to affect our results, as many previous studies have looked at the peak 

concentrations and the long-range transport for this region and have shown similar results 

(Field et al., 2016; Betha, Behera and Balasubramanian, 2014).  

For uncertainties and error in HYSPLIT trajectory calculations normal to the direction of 

flow are 10-30% of the distance travelled after 24 h (Draxler and Hess, 1998). A trajectory 

is not representative of the path of an air parcel within the planetary boundary layer 

because the parcel quickly loses its identity through turbulent mixing processes (Stohl, 

1998). However, the HYSPLIT model is adequate to classify regional-scale air mass 

motions in which local scale winds are embedded, which is consistent with their 

application in this study (Dotse et al., 2016). In applying the back trajectories in this study 

to assess the pathway taken by air masses prior to their arrival at measurements sites, the 

proportion of time spent over different countries (and the ocean) was calculated to provide 

a summary of the where the air mass travelled. This has been used to assess associations 

between time spent by air masses over different countries, and changes in hourly PM10 

concentrations. It is not possible to state definitively, based on this analysis, the 

contribution, e.g. of biomass burning in Myanmar vs Thailand to hourly PM10 sites in 

Northern Thailand. This would require additional atmospheric chemistry transport 

modelling to investigate further. This study shows that measured hourly PM10 

concentrations were elevated when air masses traversed both Myanmar and northern 

Thailand during specific periods when previous studies have shown biomass burning to 

take place in both regions.  

As summarised in Chapter 2, the measurement uncertainty of each hourly PM10 

concentration is ±1 µg m-3. Based on the annual average PM10 concentrations measured 

at each site, which varied from ~20 µg m-3 in southern Thailand, to over 60 µg m-3 in 

northern Thailand, the percentage uncertainty in each of these annual average PM10 
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values ranges from ±5% for the lower value, to ±2% for the higher value. A key part of 

this study was the assignment of hourly PM10 concentrations to 1 µg m-3 bins, from which 

different statistics (e.g. % contribution to annual PM10, % occurring in different months 

and hours of the day) were calculated. The measurement uncertainty indicates that some 

hourly PM10 concentrations may have been assigned to a bin higher or lower than the 

actual PM10 concentration for that hour, but, assuming that the measurement uncertainty 

is randomly distributed, this would not be expected to lead to a systematic error in the 

chemical climatology statistics calculated at each site. The limit of detection of the 

instrument could potentially result in a systematic error in the statistics calculated at low 

concentrations, but in practise the effect of the limit of detection was negligible in the 

analysis at all sites across northern and southern Thailand. Across all sites in northern Thailand 

between 2011 and 2015, there were a small number, on averages, only 2.1%  of hours during 

which hourly PM10 concentrations were below the limit of detection (< 4.8 μg m-3 for a 1-hour 

measurement cycle).  

3.5. Conclusion 
The above results refer to the fact that particulate matter is the most influential air 

pollutant emitted from biomass burning in agricultural activities and forest fires, and it 

has a significant effect on air quality in Thailand, especially in the case of forest fires. 

Measurements from the Thailand air pollution monitoring network were used to 

investigate the monthly, hour of day and country contributions to annual average PM10 

concentrations at different locations across Thailand. On average between 2011 and 2015, 

annual PM10 concentrations were highest at sites in Northern and central Thailand, and 

lowest in Southern Thailand. This analysis also showed that in 2011, a >75% reduction 

in the extent of biomass burning in Northern Thailand and Myanmar resulted in a 

substantial reduction not only in the magnitude and frequency of peak PM10 

concentrations, but also in annual average PM10 concentrations at sites across Northern 

Thailand. This reduction in emissions from biomass burning was sufficient to lead to no 

sites in northern Thailand exceeding the Thai national standard for annual PM10 in 2011, 

in contrast to the widespread exceedance of the annual PM10 standard in every other year 

considered in this analysis (2012-2015). The influence of long-range transport of smoke 

particles from other countries is clearly demonstrated in Southern Thailand. Air masses 



   

 

118 
 

also spend a substantial amount of time over the sea prior to their arrival at the monitoring 

sites but these areas still experiences haze episodes.  

This study informs mitigation scenarios and action plans for reducing annual average 

PM10 concentrations, and ensuring compliance with Thailand air quality standards. 

Specifically, to achieve this standard, minimisation of emissions from open burning areas 

in Northern Thailand during summer season (February-May), especially in March should 

be focussed on. Hence, reducing emission from biomass burning and forest fires can 

reduce annual PM10 concentrations in Northern and Southern Thailand, which comply 

with annual PM10 standards. Emissions reductions from biomass burning requires action 

on national and international scales, in both Thailand and neighbouring countries such as 

Myanmar, Indonesia, Malaysia and etc.  

Finally, this study has shown that the ‘chemical climatology’ framework approach to 

analysing air pollution monitoring data can be used in a country like Thailand to derive 

policy-relevant conclusions on the link between air pollution impact metrics, and their 

causal drivers.   
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Chapter 4: Assessment of conditions producing 

annual average PM10 concentrations at general 

and roadside sites in Bangkok  
and central Thailand 

4.1 Introduction 

In Bangkok (a mega city) and central Thailand, air pollution from particulate matter in 

some areas still exceed the Thailand’s national ambient air quality annual average 

standard. This chapter applies the same methodology applied in Chapter 3 to assess the 

contribution of biomass burning in northern and southern Thailand, to assess the more 

varied condition producing exceedance of the Thai national standard for annual average 

PM10 in Bangkok and across central Thailand. The ‘chemical climatology’ analysis in 

Bangkok and central Thailand has been developed separately from the analysis in 

northern and southern Thailand due to the different and distinct characteristics of this 

region of Thailand, which are likely to result in different conditions driving exceedance 

of Thailand’s annual PM10 standard. Specifically, Bangkok is the only megacity in 

Thailand with a population of 5.8 million (within the main city itself). The next largest 

city in Thailand has a population of 270,000. Secondly, central Thailand contains much 

of Thailand’s heavy industry, including cement manufacture in addition to other 

industrial processes. Finally, the air quality monitoring networks in Bangkok and central 

Thailand contain not only general sites but also roadside sites. This allows for the 

assessment of differences in the conditions producing annual PM10 concentrations 

between different types of sites, which was not possible in other regions of Thailand.  

The monitoring data from 34 monitoring sites, located across 8 provinces, for 2011 and 

2015 were analysed. The variation in hourly PM10 concentrations is combined with analysis 

of air mass back trajectories and meteorological measurements (temperature, wind speed, 

wind direction), to understand the contribution of different hourly PM10 concentrations 

occurring during different months, hours of the day, geographic source regions and 

meteorological conditions to annual PM10 concentrations at these sites. The analysis shows 
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how this approach can be used to explore the influence of local emissions (e.g. 

transportation, industrial productions) on annual average PM10 concentration and the 

difference in air pollution conditions between general and roadside sites in Bangkok and 

central Thailand. 

The aim of this analysis of variation of hourly PM10 concentrations, and their effect on 

annual average PM10 concentrations, is to explore the relative contribution of local 

emission sources and long- range transport to annual PM10 at different sites, and to 

compare conclusions from analysis of sites in Bangkok with data obtained from other 

cities in Thailand.  

4.2 Methods 

A detailed explanation of the analysis of monitoring data used in this Chapter is given in 

Chapter 2. Basically, in the ‘chemical climatology' framework was used to quantify the 

impact, state, and drivers producing annual average PM10 concentrations at sites in Bangkok 

and central Thailand. Specifically, this involved calculating the contribution of hourly PM10 

concentrations in 1 µg m-3 bins to the annual average PM10 concentration at the site. Then, 

the percent of hourly PM10 concentrations in each 1 µg m-3 bins occurring in each month of 

the year and hour of the day were calculated. Finally, the proportion of time 4-day air mass 

back trajectories spent over Thailand, the ocean and neighbouring countries prior to arrival 

at the site was calculated for hourly PM10 concentrations in each 1 µg m-3  bin. These statistics 

were calculated for 34 sites across central Thailand (7 roadside sites and 11 general sites in 

Bangkok, and 16 general sites in the rest of central Thailand) for selected sites which had 

sufficient data capture above 75% of hourly observations across the year, for each month, 

and for each hour of the day between 2011 and 2015. Twenty four sites and 39 years were 

selected from 8 provinces (4 roadside sites and 7 general sites in Bangkok, and 13 general 

sites in the rest of central Thailand). For calculating annual average PM10 concentrations 

between 2011 and 2015, there were only 7 general sites and 3 roadside sites in Bangkok and 

13 general sites in central Thailand that met the data capture criteria in at least 3 of the 5 

years as shown in Appendix, Table S11. 

To present results in a concise way, example sites were selected for general sites in 

Bangkok, roadside sites in Bangkok, and general sites in central Thailand. In Bangkok, 

sites 6 and 9 (general site), sites 15 and 16 (roadside site) were selected, in central 
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Thailand, sites 49 and 24 (general site) were selected. These sites had the most years with 

sufficient data capture to assess the conditions producing annual PM10 concentrations. 

Other sites of the same classification were then compared to these example sites, and 

finally, similarities and differences between roadside and general sites in Bangkok, general 

sites between Bangkok and central Thailand, and the rest of central Thailand were analysed.  

In Bangkok, the classification of sites was divided into two types, general sites that are 

located in residential areas and roadside sites that are located next to roads as shown in 

red (general site) and green (roadside site) colour in Figure 4.1 (a). However, in central 

Thailand outside of Bangkok, there were only general monitoring sites and no roadside 

sites as shown in Figure 4.1 (b). Figures 4.1 (c) and (d) show the surrounded areas of 

Bangkok general and roadside sites. 

(a) Bangkok (b) Across Thailand 

  

(c) Bangkok general site (d) Bangkok roadside site  

  

Figure 4.1: Map of monitoring site locations and classification in (a) Bangkok (b) across 

Thailand (c) Bangkok general site and (d) Bangkok roadside site  
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4.3 Results 

The following sections describe the contributions of hourly PM10 concentrations to 

annual average PM10 concentrations at sites across Bangkok and central Thailand. Firstly, 

spatial variation in the annual average PM10 concentration is summarised in Section 4.3.1 

for sites across Bangkok and central Thailand because this is the key impact/regulatory 

metric related to human health effects, and the Thai PM10 standard for protection of 

human health. Secondly, the conditions producing annual average PM10 concentrations 

are summarised in Section 4.3.2. Assessment of the contributions of hourly PM10 

concentrations to the annual PM10 concentrations are then presented first for those sites 

with the highest annual PM10 concentrations (Section 4 .3 .2 .1 ), followed by sites with 

more moderate values (Section 4.3.2.2), followed by those sites with the lowest annual 

PM10 concentrations (Section 4.3.2.3).  

4.3.1 Annual average PM10 concentrations in Bangkok and central Thailand 

The annual average PM10 concentrations between 2011 and 2015 in Bangkok and central 

Thailand were analysed and compared with the annual average PM10 standard value of 50 µg m-3. 

The results show that the annual average PM10 concentrations for individual years at 

Bangkok and central Thailand between 2011 and 2015 were over the standard at 5, 3, 8, 9 

and 3 sites in 2011, 2012, 2013, 2014 and 2015, respectively, as shown in Figure 4.2 (a-e). 

The annual average PM10 concentrations for 2011 to 2015 in Bangkok were below the 

standard at 7 general and 1 roadside sites, and only 2 sites were over the standard at 

roadside sites but no general sites, as shown in Figures 4.3 and 4.4. Moreover, in central 

Thailand, there were 10 sites below and 3 sites over the standard, as shown in Figures 4.3 

and 4.4. Figures 4.3 and 4.4 show the variation in annual average PM10 concentrations at 

i) general sites in Bangkok, ii) roadside sites in Bangkok, and iii) general sites in the rest 

of central Thailand. The aim of these groupings is to compare the similarities and 

differences in annual average PM10 concentrations, and the conditions producing them, 

between sites within and outside Bangkok in central Thailand, and between general and 

roadside sites in Bangkok, where the proximity of different source sectors may alter the 

pattern of PM10 variation. At roadside sites in Bangkok, there was a much greater range 

of variation in annual average PM10 concentrations compared with Bangkok and central 

general sites. Comparing general sites, in central Thailand, the annual average PM10 
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concentrations were generally higher than general sites in Bangkok. The aim in assessing 

the variation in hourly PM10 concentrations producing the annual average concentrations 

is to identify the reasons for these differences. Specifically, the aim is to identify what 

variation in hourly PM10 concentration results in i) the higher annual PM10 concentrations 

at central general sites outside of Bangkok, compared to in Bangkok, and ii) the 

substantially larger variation in annual PM10 concentration across roadside sites.  

 (a) Annual Average PM10 Concentration 2011 
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 (b) Annual Average PM10 Concentration 2012 

 

 (c) Annual Average PM10 Concentration 2013 
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(d) Annual Average PM10 Concentration 2014 

 

(e) Annual Average PM10 Concentration 2015 

 
Figure 4.2: The annual average PM10 concentrations for individual years at Bangkok 

and central Thailand for 2011 (a), 2012 (b), 2013 (c), 2014 (d) and 2015 (e). 
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Annual Average PM10 Concentration 2011 – 2015 

 

Figure 4.3: The comparison of annual average PM10 concentrations across Thailand 

averaged for 2011 to 2015 
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Figure 4.4: Box and whisker plots of the annual average PM10 concentrations at general 

and roadside sites in Bangkok and central Thailand averaged for 2011 to 2015. The 

bottom of the box is 25th percentile, the top of the box is 75th percentile, the whiskers 

show the 5th and 95th percentile, the line is the median, the dot is the mean across all sites 

in each region and the red line is the annual average PM10 standard 

 

The variation in the 2011-2015 annual average PM10 concentrations in Bangkok and 

central Thailand are shown in Figure 4.5 (a and b). There were two Bangkok roadside sites, 

and 3 central general sites exceeded the Thailand PM10 standard of 50 µg m-3. The largest 

annual PM10 concentration that exceeded the standard in Bangkok was 64 µg m -3 a t  a 

roadside site (site 12) and the lowest was 19.3 µg m-3 at a general site (site 9). By contrast, 

in central Thailand, the highest value was 98.6 µg m-3 at Saraburi site (site 49, general) and 

the lowest was 27.4 µg m-3 at a different site in Saraburi province (site 50, general) as well. 

 
 

 

Annual average PM 10 standard = 50 µg m-3   

7 sites 3 sites 13 sites 
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(a) Bangkok: 2011 - 2015 (b) Central: 2011 - 2015 

  
(c)  Bangkok: 2011  (d) Bangkok: 2012 
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(e) Bangkok: 2013 (f) Bangkok: 2014 

 
(g) Bangkok: 2015 

 

 
 

Figure 4.5: Annual average PM10 concentrations for the monitoring sites averaged 

between 2011 and 2015 in (a) Bangkok (b) across central Thailand (including Bangkok) 

and for individual years in Bangkok (c) 2011 (d) 2012 (e) 2013 (f) 2014 and (g) 2015 
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The annual average PM10 concentrations in Bangkok between 2011 and 2015 showed a 

much wider range compared to other regions of Thailand, varying from 10 up to 70 µg 

m-3 (Figure 4.5a). This variation was mainly due to large variation across the roadside 

sites (Figure 4.4). Roadside monitoring sites are only located in Bangkok, and not in other 

Thai cities. Monitoring of roadside PM10 (and PM2.5) concentrations in other cities in 

Thailand would allow assessment of whether similar large variation in PM10 

concentrations occur at roadside locations across Thailand, and whether there is greater 

variation in roadside PM10 compared to general site PM10 in other Thai cities.  

The majority of sites in Bangkok and central Thailand had annual average PM10 

concentrations between 2011 and 2015, that ranged from 10 up to 80 µg m-3 (Figure 4.5). 

The annual average PM10 concentrations at roadside sites exceeded the standard for site 

12 and site 16 in 2011, 2012, 2013, and 2014. Moreover, there were two general sites 

exceeding the standard at site 2 in 2013 and 2014 and at site 18 in 2015. However, in 

central Thailand, the patterns were different in annual average PM10 concentrations. A 

general site in Saraburi province (site 49) was over the standard for every year during 2011 

to 2015 (see Appendix, Figure S1). Across central Thailand, 2014 showed the highest number 

of sites over the standard (10 sites) (see Appendix, Figure S1). The patterns for the variation 

of annual average PM10 concentrations across the different years between 2011 and 2015 

in central Thailand varied from 10 up to over 100 µg m-3 (see Appendix, Figure S1). 

In summary, the highest annual PM10 concentration in central Thailand occurred at 

general sites outside Bangkok, but there was large variation among these sites. The 

majority of sites in central Thailand exceeding the Thai annual PM10 standard were 

roadside sites in Bangkok, while the lowest annual average PM10 concentrations occurred 

at Bangkok general sites, which also had the lowest variability between sites.  
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4.3.2 Conditions producing annual average PM10 concentrations 

Analysis of conditions producing annual average PM10 concentrations are separated into 

three sections in i) high concentrations of annual average PM10 (Section 4.3.2.1), ii) 

moderate concentrations of annual average PM10 (Section 4.3.2.2), and iii) low 

concentrations of annual average PM10 (Section 4.3.2.3). The aim of this section is to 

investigate the reasons for differences and similarities in annual average PM10 

concentrations between sites. Specifically, this includes understanding the reasons for the 

larger variability in annual PM10 concentrations at roadside sites in Bangkok, compared 

to general sites, and the reason why annual PM10 concentrations at general sites in central 

Thailand are generally higher than general sites in Bangkok.  

A summary of hourly PM10 concentrations contributions to the annual average across 

different central Thailand and Bangkok sites in 2015 is shown in Figure 4.6 and other 

years in Figure S2 (see Appendix). This plot shows the percentage contribution of hourly 

PM10 concentrations to the annual average from low concentrations (site 14, roadside site 

in Bangkok) which had a low frequency of the highest concentrations to high 

concentrations (site 49, general site in central Thailand) which had a high frequency of 

the highest concentrations in a heavily industrialised area that contributed 60 to 70% of 

the annual average. This plot demonstrates that the reason for the large variation in annual 

average PM10 concentrations across Bangkok and central Thailand is due to differences 

in the hourly PM10 frequency distribution at different sites. At Site 49 in central Thailand, 

more than 60% of hourly PM10 concentrations are above 100 µg m-3, while these make 

up 20% or less at all other sites in this region.   

Similar findings from previous studies in these areas associated with PM10 have been 

reported at different monitoring sites in Bangkok and central Thailand. For example, 

Chuersuwan et al. (2008) studied on PM10 concentration at four sites in Bangkok area 

which air quality was influenced by automobile emissions and biomass burning. This 

study found that the 24-hour averages of PM10 concentrations were high at roadside sites 

contributed 33% from both automobile emissions and biomass burning. However, at two 

residential (general) sites, automobiles contributed 39 and 22% while biomass burning 

contributed 36 and 28%. In central Thailand, the PCD declared that Na Phra Lan 

subdistrict is a pollution control zone in Saraburi province (same area as site 49) (PCD, 

2014). The 24 - hour average of PM10 in this area frequency exceeded the standard, 
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especially during dry season (from October - March of each year) which mainly from 

cement productions, stone crushing and lime plants, quarries in the area and nearby, as 

well as transportation and logistics activities (PCD, 2018). Pimonsree, Wongwises and 

Pan-aram (2008) studied on dispersions of PM10 during winter and rainy seasons in 

Saraburi. The result showed that the main sources of PM10 came from mineral products 

industrial area (76% of PM10 was emitted from resuspended road dust and crushed stone 

plants).The distributions of PM10 concentrations during winter were influenced by the 

northeast monsoon (prevailing wind was northeasterly wind) and under the influence of 

the southwest monsoon in rainy season (prevailing winds were southwesterly and 

southerly winds) (Pimonsree et al., 2009). Phetrawech and Thepanondh (2017) studied 

on evaluation of PM10 emissions from a road network at the Na Phra Lan site in Saraburi 

province. The result showed that 71% contribution of the highest predicted PM10 

concentration came from mobile source emissions (re-suspended road dust). 

 

Figure 4.6: Summary of hourly PM10 concentrations contribution to annual average 

across central Thailand and Bangkok sites in 2015  
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Figure 4.7 shows a summary of hourly PM10 concentrations contribution to annual 

average from monthly, hourly and country contribution across central Thailand sites in 

2015 (see Appendix, Figure S3 for 2011, 2012, 2013 and 2014). Each of the panels shows 

how hourly PM10 concentrations between 0 to 10 and greater than 100 µg m-3 occurred. 

The top plot shows the months when those hourly concentrations occurred in these sites. 

The lowest concentrations occurred during the rainy season across the majority of sites. 

The highest concentrations occurred during the dry season. However, high concentrations 

also occurred during the rainy season months. This suggesting that these sites still get the 

effect from the local emission sources contributing to higher PM10 concentrations. The 

second plot shows the hourly contributions, with the highest concentrations occurring 

during the evening and some in the morning rush hour. The last plot shows a large 

proportion of time spent over Thailand for the highest concentrations. In the rainy season 

the air mass comes from the sea, in the dry season comes from neighbouring countries 

and over Thailand.  
 

 

Figure 4.7: Summary of hourly PM10 concentrations contribution to annual average 

from monthly, hourly and country contribution across central Thailand sites in 2015 
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4.3.2.1 High concentrations of annual average PM10  

The sites with highest annual average PM10 concentrations (> 50 µg m-3) between 2011 

and 2015 in central Thailand and Bangkok were roadside sites in Bangkok, and general 

sites in central Thailand located in heavily industrialised areas. Analysis of the 

distributions of hourly concentrations contributing to annual PM10 concentrations at these 

sites indicates that large local emission sources determine the elevated annual PM10 

concentrations. This is shown for two example sites (out of 5 sites above 50 µg m-3, see 

Appendix, Table S12), one a roadside site in Bangkok (Site 16), and one a general site in central 

Thailand (Site 49), where 2011-2015 annual average PM10 concentrations were 54.2 µg m-3 

and 98.6 µg m-3, respectively, 9% and 13% above the average across all sites in Bangkok and 

central Thailand with sufficient data capture as shown in Table 4.1 and Table S12 (Appendix).  

Table 4.1: Annual average PM10 concentrations (µg m-3) at monitoring sites across central Thailand 

that exceeded the Thai National standard for annual PM10 concentrations between 2011 and 2015 

Site Category Province Region 2011 2012 2013 2014 2015 2011-2015 Level 

12 Roadside Bangkok Central 57.3 56.8 67.2 74.5 - 64.0 High 

16 Roadside Bangkok Central 54.6 56.4 57.8 54.8 47.6 54.2 High 

25 General Samut Prakan Central 58.7 48.8 64.2 62.1 54.9 57.7 High 

28 General Samut Sakhon Central - - 88.5 51.8 44.3 61.6 High 

49 General Saraburi Central 94.7 107.0 98.6 95.4 97.3 98.6 High 

The conditions producing annual average PM10 concentrations at an example roadside site 

in Bangkok for the year 2015 are shown in Figures 4.8 and 4.9, Table 4.2 and Tables S13-

S15 (See Appendix). This site, National Housing Authority Dindaeng site (site 16), had 

sufficient data capture in the largest number of years, and was therefore the primary site 

used to evaluate how variation in hourly PM10 concentrations contributed to the annual 

average for roadside sites in Bangkok. At this site in 2015, the ‘very high’ hourly PM10 

concentrations above the 95th percentile (110 µg m-3) were as high as 250 µg m-3 and 

contributed 12% to the PM10 annual average (Figure 4.8a and Table 4.2). These very high 

PM10 concentrations occurred mainly during winter season (mid-October to mid-

February), in particular in January (27% of all very high concentrations), in December (23%) 

and February (16%), while the lowest hourly PM10 concentrations occurred in June (Figure 

4.8b). This reflects the higher PM10 concentrations that occur during the dry season 

(winter (mid-October to mid-February) vs summer seasons (mid- February to mid-May)) 

compared to the rainy season (mid-May to mid-October).  
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Figure 4.8: The different conditions producing annual average PM10 concentrations at site 16, roadside sites in Bangkok, 2015 

Hourly PM10 Concentration (µg m-3) 

(a) 

(b) 

(c) 

(d) 
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Table 4.2: Comparison of the main conditions producing annual average PM10 concentrations at site 16, roadside sites in Bangkok 

Province Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly 

PM10 
concentrations 

at different 
percentiles to 

annual 
average PM10 

(%) 

Monthly contribution (%) Country contribution (%) 

Concentration 
Level Percentile Concentration  

(µg m-3) Jan Feb Jun Oct Nov Dec Cambodia Laos Marine Thailand Vietnam 

Bangkok 
(Site 16) 

Roadside 
site 

2015 
Very Low <5th Percentile <8 0 1 7 23 5 0 1 - 0 80 14 0 

Low <25th Percentile <23 6 1 6 15 5 1 1 0 0 78 16 0 

Moderate 25th-75th Percentile 23-65 38 9 7 8 9 8 8 1 3 57 31 2 

High >75th Percentile >65 43 22 14 1 15 14 21 4 6 26 57 3 

Very High >95th Percentile >110 12 27 16 - 16 13 23 4 6 23 61 3 

2013 
Very Low <5th Percentile <13 1 0 1 12 4 1 3 1 1 74 18 1 

Low <25th Percentile <31 7 2 3 11 3 3 2 1 1 74 18 1 

Moderate 25th-75th Percentile 31-78 39 8 6 9 9 11 6 1 3 56 32 3 

High >75th Percentile >78 41 22 23 2 10 4 25 2 6 22 64 3 

Very High >95th Percentile >120 12 25 31 1 7 1 26 2 6 18 69 3 
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(a) 2015

 

 (b) 2013 

 

Figure 4.9: The percentage of hourly PM10 concentrations in different ranges (‘very high’ 

PM10 concentrations above the 95th percentile; ‘high’ above 75th percentile, ‘moderate 

between 25 and 75th percentile, ‘low’ below the 25th percentile, and ‘very low’ below the 

5th percentile) that occurred during different hours of the day at Site 16, a roadside site in 

Bangkok in (a) 2015 and (b) 2013 
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The influence of local emissions is reflected in the diurnal variation in hourly PM10 

concentrations at site 16. For example,  Figure 4.9 shows the percentage of hourly PM10 

concentrations in different ranges, the ‘very high’ concentrations occurred most frequently 

during the morning and evening rush hour periods. The different lines in Figure 4.9 show the 

diurnal variation in different levels of concentrations at the same site but they do not show 

diurnal cycles at different sites. The red and yellow lines show the variation across the day in 

high concentrations at one site, and the other lines show the variation across the day in lower 

concentrations, at the same site. The diurnal variability of PM10 levels in different years in 

2013 (Figure 4.9a) and 2015 (Figure 4.9b) shows the similar trends. The morning rush hour 

is between 6:00 a.m. and 9:00 a.m. and the evening rush hour is between 4:00 p.m. and 7:00 p.m. 

(Ministry of Transport, 2015). In 2015, during the evening rush hour, 26% of the very high 

concentrations occurred (the red line, concentration above 110 µg m-3), with 20% 

occurring during the morning rush hour. The lowest hourly PM10 concentrations (the blue 

line, concentration below 8 µg m-3) occurred during the night, and the moderate concentrations 

(the grey line, concentration between 23 -65 µg m-3) occurred more evenly throughout the day 

(Figures 4.8c and 4.9a), and 2013 (Figure 4.9b) also shows the similar trends. This is consistent 

with this roadside site being closer to, and therefore hourly PM10 concentrations being 

determined to a greater extent by, a large local road transport emission source.  

The 4-day back trajectory air masses showed the largest differences between winter 

(northeast monsoon season) and rainy (southwest monsoon season) seasons. During 

winter season (mid-October to mid-February), the dominant trajectory pathway was 

northeast (Figure 4.10a), compared to southwest during rainy season (mid-May to mid-

October) (Figure 4.10b). Hence the very high concentrations, occurring predominantly in 

winter, occurred during the arrival of air masses that spent a large portion of time over 

Thailand (61% on average), the ocean (23%), but also Cambodia (4%), Laos (6%) and 

Vietnam (3%) as shown in Figure 4.8d and Table 4.2. However, there is also variation in 

the proportion of very high hourly PM10 concentrations that occur during different months 

in winter, without substantial differences in the air mass pathway traversed prior to arrival 

at the site. This suggests that regional transport of air pollution may make a smaller 

contribution to annual PM10 concentrations at this site compared with local emission 

sources, especially when compared with the stronger association between air mass origin 

and hourly PM10 concentration observed in other regions of Thailand (i.e. northern and 

southern Thailand), discussed in Chapter 3.  
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(a) January (b) June 
 

Figure 4.10: Comparison the differences of 4-day backward air masses trajectory plots 

at site 16 in Bangkok 2015 between (a) January (winter) and (b) June (rainy) seasons. 

Each line represents the air mass back trajectory arriving at the site at 12 pm during each 

day in the month, and is coloured according to the hourly PM10 concentration measured 

during its arrival.  

Finally, analysis of the hourly PM10 concentrations coinciding with different 

meteorological conditions also suggests that local emission sources dominate at roadside 

site 16. There was little association between hourly PM10 concentrations and hourly 

temperature and wind direction. This indicates that temperature-sensitive chemical 

processing of pollutants in the atmosphere (e.g. gas-aerosol phase partitioning) that 

determine PM10 concentrations may not have sufficient time to proceed between emission 

and arrival at the receptor site for site 16. However, in winter, there was a propensity for 

higher hourly PM10 concentrations to occur when wind speed were relatively low 

(generally below 1 ms-1), with lower concentrations occurring when wind speed was 

elevated. This indicates that dispersion of emissions from local traffic emissions may be 

an important meteorological parameter in determining hourly PM10 concentrations.  
 

Similar patterns were also seen for 2013 at site 16.   

 

 

Southwest monsoon 

 

Northeast monsoon 
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The second example site with the highest annual average PM10 concentrations in central 

Thailand is site 49 at Na Phra Lan Subdistrict, Saraburi. This site is a critical air quality 

area which had the largest number of years with sufficient data capture, and had the 

largest annual PM10 concentration in central Thailand, consistently exceeding the Thai 

national PM10 standard. The statistics summarising the contributions of hourly PM10 

concentrations to the annual average PM10 at this site, for 2015, are shown in Figure 4.11, 

Table 4.3 and Tables S13-S15 (See Appendix), and also indicate that local emission sources 

play a major role in determining the elevated annual PM10 concentration at this site.
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Figure 4.11:  The different conditions producing annual average PM10 concentrations at site 49, general site in Saraburi province in central Thailand, 2015  
Hourly PM10 Concentration (µg m-3) 

(a) 

(b) 

(c) 

(d) 
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Table 4.3: Comparison of the main conditions producing annual average PM10 concentrations at site 49 in Saraburi province 

Province Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Jan Feb Oct Nov Dec Laos Marine Myanmar Thailand Vietnam 

Saraburi General site 2015 Very Low <5th Percentile <23 1 - 0 10 1 0 0 64 5 30 0 
Low <25th Percentile <45 7 0 2 6 1 1 0 63 5 30 0 

Moderate 25th - 75th Percentile 45-124 34 9 9 8 8 8 5 44 3 41 3 
High >75th Percentile >124 45 26 11 12 15 19 7 20 3 63 3 

Very High >95th Percentile >256 14 34 10 10 15 21 6 17 5 66 3 
2014 Very Low <5th Percentile <19 1 - 1 1 1 1 0 59 7 32 0 

Low <25th Percentile <44 6 0 1 2 1 2 1 61 6 31 1 
Moderate 25th - 75th Percentile 44-124 36 8 10 9 8 11 4 44 3 41 4 

High >75th Percentile >124 43 36 9 14 15 7 7 19 1 63 5 
Very High >95th Percentile >234 14 47 10 13 14 3 8 16 1 67 4 

2012 Very Low <5th Percentile <22 1 2 1 1 2 - 0 64 5 30 0 
Low <25th Percentile <48 6 4 3 1 2 1 1 64 5 29 1 

Moderate 25th - 75th Percentile 48-145 36 11 8 9 8 8 3 42 3 47 2 
High >75th Percentile >145 45 9 14 14 14 26 5 17 1 71 2 

Very High >95th Percentile >268 13 11 17 10 13 34 5 14 1 75 2 
2011 Very Low <5th Percentile <21 1 - 1 13 0 1 1 56 5 34 1 

Low <25th Percentile <47 7 0 3 9 2 2 1 58 5 32 1 
Moderate 25th - 75th Percentile 47-124 37 10 7 11 10 12 6 36 3 44 4 

High >75th Percentile >124 42 18 26 6 11 5 7 25 3 56 4 
Very High >95th Percentile >218 13 20 33 4 11 2 8 23 2 59 4 
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Hourly PM10 concentrations in 2015 at site 49 were as high as 700 µg m-3 and the ‘very 

high’ PM10 concentrations above the 95th percentile (256 µg m-3) contributed 14% to the 

PM10 annual average (Figure 4.11a and Table 4.3) and were higher than at the roadside 

site 16 (compared to 110.0 µg m-3 and contributed 12%) in Bangkok. These ‘very high’ 

PM10 concentrations occurred across the winter months, for example, in January (34%), 

December (21%), and November (15%) while the lowest hourly PM10 concentrations 

occurred in September (Figure 4.11b). Diurnal variation showed the ‘very high’ (the red 

line, concentration above 256 µg m-3) PM10 concentrations to occur mainly during the 

morning rush hour (33% of the very high concentration occurred during these hours) and 

to a lesser extent during the evening rush hour (20%). The lowest hourly PM10 

concentrations ((the blue line, concentration below 23 µg m-3)) tended to occur both at 

night and in the middle of the day and the moderate concentrations (the grey line, 

concentration between 45 -124 µg m-3)) occurred more evenly throughout the day (Figure 

4.11c and 4.12). The local emission sources of the particulate matter are specific in this 

industrial area (PCD, 2015). The emissions were often released from the vents of 

industrial factories and spread out from the crushing processes in stone mills (PCD, 

2015), including local transportation.  

 

Figure 4.12: The percentage of hourly PM10 concentrations in different ranges (‘very high’ 

PM10 concentrations above the 95th percentile; ‘high’ above 75th percentile, ‘moderate 

between 25 and 75th percentile, ‘low’ below the 25th percentile, and ‘very low’ below the 5th 

percentile) that occurred during different hours of the day at Site 49,  central Thailand in 2015 
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Figure 4.13 shows the 4-day back trajectory air masses had a similar pattern as at site 16, 

with trajectories during winter months arriving from the north east, and from the south 

west during rainy months. 

  

(a) January (b) September 

Figure 4.13: Comparison the different of 4-day backward air masses trajectory plots at 

site 49, Saraburi in 2015 between (a) winter and (b) rainy seasons 

The meteorological conditions were also similar to site 16 described above. There was little 

relationship between hourly temperature and hourly PM10 concentrations, but the highest 

hourly PM10 concentrations occurred when the wind speed was relatively low, and hourly 

PM10 concentrations were lower at higher wind speeds. In contrast to Site 49, there was an 

association between a specific wind direction, and elevated hourly PM10 concentrations. 

Elevated hourly PM10 concentrations occurred when the wind direction was between 100 and 

150 degrees (i.e. approximately south easterly wind direction). When the wind direction was 

between 90 and 180 degrees, the average PM10 concentration was 131 µg m-3 (95% 

variability: 27-365). Average PM10 concentrations were much lower when wind direction 

was between 0-90 (115.6 µg m-3 (95% variability: 36-258)), 180-270 (51.5 µg m-3 (95% 

variability: 16-141)) and 270-360 (66.5 µg m-3 (95% variability: 11-147)) degrees. This 

major road directly adjacent to the monitoring site is south east of the monitoring station location, 

as are cement factories, approximately 3 - 30 km away from the monitoring site location.  

 

 

Southwest monsoon 

 

Northeast monsoon 
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For other 3 years at this site in 2014, 2012 and 2011 that also had sufficient data capture, the 

contribution patterns were similar to 2015 as shown in supplementary Tables S13-S15 (See 

Appendix). In general, these years showed a consistent pattern compared to 2015 at this site, 

but the winter months during which the highest concentrations occurred varied between 

years. However, in all years the patterns of variation in hourly PM10 indicated that local 

emission sources made a large contribution to determining elevated annual PM10 

concentrations, exceeding the annual Thai PM10 standard.   

4.3.2.2 Moderate concentrations of annual average PM10  

The sites with moderate annual average PM10 concentrations (30-50 µg m-3) between 

2011 and 2015 were 15 general sites, 6 sites in Bangkok and 9 sites in central Thailand. 

Two example sites are site 6 at National Housing Authority Klongchan in Bangkok and 

site 24 at Residence for Department of Primary Industries and Mines in Samut Prakan, 

central Thailand. At these sites, 2011-2015 annual average PM10 concentrations were 

35.2 µg m-3 and 41.4 µg m-3, respectively. This was 26% and 39% of sites in Bangkok 

and central Thailand with moderate annual average PM10 concentrations as shown in 

Table 4.4 and Table S12 (See Appendix).  
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Table 4.4: Moderate annual average PM10 concentrations across central Thailand (µg m-3) 

Site Category Province Region 2011 2012 2013 2014 2015 2011-2015 Level 

1 General Bangkok Central - 37.2 41.3 36.8 - 38.4 Moderate 

2 General Bangkok Central - - 52.7 51.4 42.0 48.7 Moderate 

6 General Bangkok Central 28.0 25.8   47.0 39.8 35.2 Moderate 

7 General Bangkok Central 40.4 43.9 42.1 40.4 33.7 40.1 Moderate 

8 General Bangkok Central - - 49.7 48.2 44.7 47.5 Moderate 

18 General Bangkok Central - - 42.3 39.2 50.2 43.9 Moderate 

19 General Nonthaburi Central 45.2 44.8 47.6 50.3 46.3 46.8 Moderate 

20 General Nonthaburi Central 29.1 29.3 41.5 40.5 - 35.1 Moderate 

22 General Samut Prakan Central 52.7 32.8 22.1 - - 35.9 Moderate 

23 General Samut Prakan Central - 45.3 48.1 54.8 47.2 48.9 Moderate 

24 General Samut Prakan Central 47.0 43.0 40.2 40.8 35.8 41.4 Moderate 

26 General Samut Prakan Central 44.1 39.8 42.8 45.3 39.5 42.3 Moderate 

27 General Samut Sakhon Central 25.6 - 53.7 57.4 45.2 45.5 Moderate 

48 General Ratchaburi Central 41.1 31.3 24.5 - - 32.3 Moderate 

51 General Phra Nakhon Si Ayutthaya Central 40.0 - 55.7 55.1 49.1 50.0 Moderate 
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The conditions producing annual average PM10 concentrations at site 6 in Bangkok for 

the year 2015 are shown in Figure 4.14 and Table 4.5. Hourly PM10 concentrations in 2015 

at site 6 were as high as 250 µg m-3 and the ‘very high’ PM10 concentrations above the 95th 

percentile (90 µg m-3) contributed 13% to the PM10 annual average (Figure 4.14a). These 

very high PM10 concentrations mainly occurred in January (60%) and February (26%), 

while the lowest hourly PM10 concentrations occurred in September (Figure 4.14b). In 

terms of daily variation, the morning rush hour period (36%) had a larger proportion of 

‘very high’ concentrations above 90 µg m-3 compared to the evening rush hour (6%). The 

lowest hourly PM10 concentrations generally occurred at night time (Figure 4.14c). The 

4-day back trajectory air masses that arrived during the ‘very high’ concentrations spent 

most of the time on average 58% over Thailand before they arrived at this site, and most 

of the rest of the time over the ocean (22%). The back trajectories spent small proportions 

of this time over Cambodia (5%), Laos (8%) and Vietnam (4%) as shown in Figure  4.14d. 

This indicates that the highest hourly PM10 concentrations tended to occur when air 

masses travelled from the east and over Thailand prior to arrival at this site. In contrast, 

lower hourly PM10 concentrations spent more time over the ocean, less time over 

Thailand, but more time over Myanmar (although the proportion of time was still 

relatively small) prior to arrival at the site. This indicates that low hourly PM10 

concentrations tend to occur when trajectories travel from the west prior to arrival at the site 

as same as the high concentrations of annual average PM10. 
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Figure 4.14: The different conditions producing annual average PM10 concentrations at general site in Bangkok (site 6) in 2015 

Hourly PM10 Concentration (µg m-3) 

(a) 

(b) 

(c) 

(d) 
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Table 4.5: Comparison of the main conditions producing medium annual average PM10 concentrations 

Province Category Year 

Contribution of hourly PM10 concentrations 
to annual average PM10 

Contribution 
of hourly PM10 
concentrations 

at different 
percentiles to 

annual 
average PM10 

(%) 

Monthly Contribution (%) Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Jan Feb Oct Nov Dec Cambodia Laos Marine Thailand Vietnam 

Bangkok  
(site 6) 

General site 2015 Very Low <5th Percentile <12 1 - - 5 2 2 0 1 75 17 0 

Low <25th Percentile <22 8 - 0 7 4 1 0 1 73 19 0 

Moderate 25th - 75th Percentile 22-50 37 4 7 9 10 8 2 3 60 28 2 

High >75th Percentile >50 41 48 22 1 4 14 4 7 26 55 4 

Very High >95th Percentile >90 13 60 26 0 1 11 5 8 22 58 4 

Samut Prakan 
(Site 24) 

General site 2015 Very Low <5th Percentile <10 1 - 0 9 0 1 0 0 75 18 0 

Low <25th Percentile <20 7 0 1 8 2 1 0 0 75 17 0 

Moderate 25th - 75th Percentile 20-45 38 5 7 9 10 8 2 3 62 27 2 

High >75th Percentile >45 42 36 26 4 5 19 5 7 24 58 3 

Very High >95th Percentile >79 12 40 31 3 3 19 5 7 20 62 3 
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Similar patterns were also seen for 2014 at site 6. However, 2012 was different from these 

two years. The lowest concentrations occurred across the day and there were small peaks in 

the morning rush hour and large peaks in the afternoon and evening rush hour. The very high 

concentrations did not occur mainly in January but occurred across many months for the 

whole year (See Appendix, Tables S13-S15). In summary, these 3 years at site 6 with 

substantially different frequencies of high PM10 concentrations indicates that it was local 

emission sources that determined hourly PM10 concentrations rather longer-range 

transport. 

Another site is Samut Prakan (site 24) in 2015, situated in central Thailand. Hourly PM10 

concentrations in this year were as high as 300 µg m-3 and the ‘very high’ PM10 

concentrations above the 95th percentile (79 µg m-3) contributed 12% to the PM10 annual 

average (Figure 4.15a). These very high concentrations also occurred in many months as 

was the case for site 6 (Figure 4.15b and Table 4.5), but the concentrations in January 

(40%) were smaller than site 6 (60%) in Bangkok, while the lowest concentrations 

occurred in September. In terms of daily variation, the morning rush hour (20%) had a 

larger proportion of ‘very high’ concentrations above 79 µg m-3 compared to the evening 

rush hour (9%) (Figure 4.15c). The 4-day back trajectory air masses during the ‘very high’ 

concentrations that arrived this site spent most of the time on average 62% over Thailand 

before they arrived at this site, and most of the rest of the time over the ocean (20%). The 

back trajectories also spent small proportions of this time over neighbouring countries in 

Cambodia, Laos and Vietnam as shown in Figure 4.18d. However, lower hourly PM10 

concentrations spent more time over the ocean, less time over Thailand (Figure 4.15d).  
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Figure 4.15: The different conditions producing annual average PM10 concentrations at general site in Samut Prakan (site 24), central Thailand in 2015 

Hourly PM10 Concentration (µg m-3) 

(a) 

(b) 

(c) 

(d) 
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In 2013 and 2014 similar patterns were seen at this site (See Appendix, Tables S13-S15) 

but in 2012 the very high concentrations occurred mainly in several months with highest 

amount in March (23%). These very high concentrations occurred more often during the 

day and showed high peaks in the evening rush hour. 

In summary, the differences between sites with moderate and high concentrations of annual 

average PM10 from the results described above show the levels of PM10 concentrations at 95th 

percentile contributed to annual average are lower than high concentrations and the locations 

are also further from main road. However, high concentrations at Dingdaeng roadside site 

(site 16) located across one of the busy roads with high traffic density and congestions in 

inner Bangkok city, and for central Thailand, a representative site (site 49) located in a 

heavily industrialised area, result in more high concentrations level than moderate sites. 

The similarities of the diurnal variation patterns are almost the same in monitored sites with 

peaks occurring during the morning rush hour period of a day that mainly occur during the 

dry season (mid-October to mid-May). 
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4.3.2.3 Low concentrations of annual average PM10  
The sites with low annual average PM10 concentrations (<30 µg m-3) for period 2011 to 

2015, were two general sites in central Thailand and Bangkok and one roadside site in 

Bangkok as shown in Table 4.6.  

Table 4.6: Low annual average PM10 concentrations across central Thailand 
Site Category Province Region 2011 2012 2013 2014 2015 2011-2015 Level 

9 General Bangkok Central - - 20.2 17.0 20.8 19.3 Low 

15 Roadside Bangkok Central 24.1 - 22.4 21.3 - 22.6 Low 

50 General Saraburi Central 38.9 24.2 21.2 18.4 34.1 27.4 Low 

The lowest concentration of annual average PM10 between 2011 and 2015 across central 

Thailand was 19.3 µg m-3 at site 9. Figure 4.16 shows hourly PM10 concentrations in 2013 

were as high as 120 µg m-3 and the ‘very high’ PM10 concentrations above the 95th percentile 

(44 µg m-3) contributed 13% to the PM10 annual average (Figure 4.16a and Table 4.7) and were 

lower than at the roadside site 15 (compared to 51 µg m-3 and contributed 14%) in 2014 (Figure 

4.17a and Table 4.8). These ‘very high’ PM10 concentrations tended to occur across the winter 

months at both sites during mid-October to mid-February but at site 15 also occurred in May 

(23%). Diurnal variation showed the ‘very high’ PM10 concentrations to occur mainly during 

the morning rush hour (23% at site 9 and 25% at site 15) and to a lesser extent during the 

evening rush hour (4% at site 9 and 11% at site 15), and occurred more during night time. 

The 4-day back trajectory air masses at site 9 show that during hours when very high 

hourly PM10 concentrations are measured, air masses spent a large portion of time over 

Thailand (69% on average), the ocean (18%), but also over Laos, Myanmar, and Vietnam 

prior to arrival at the site, as shown in Figure 4.16d and Table 4.7. In contrast, at site 15, 

air masses at spent a large portion of time over the ocean (50%) but less time over 

Thailand (42% on average) and some time over neighbouring countries as shown in 

Figure 4.17d and Table 4.8.  
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Figure 4.16: The different conditions producing annual average PM10 concentrations at general site in Bangkok (site 9) in 2013  

Hourly PM10 Concentration (µg m-3) 

(a) 

(b) 

(c) 

(d) 
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Table 4.7: Comparison of the main conditions producing low annual average PM10 concentrations 

Province Category Year 

Contribution of hourly PM10 
concentrations to annual average PM10 

Contribution of 
hourly PM10 

concentrations at 
different 

percentiles to 
annual average 

PM10 (%) 

Monthly Contribution (%) Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Jan Feb Mar Oct Dec Laos Marine Myanmar Thailand Vietnam 

Bangkok 
(site 9) 

General 
site 

2013 
Very Low 

<5th 
Percentile <5 1 0 1 1 2 -    0 78 5 15 0 

Low 
<25th 

Percentile <11 6 2 3 8 6 1 1 75 5 17 1 

Moderate 
25th - 75th 
Percentile 11-26 38 5 6 10 9 4 2 60 4 29 2 

High 
>75th 

Percentile >26 43 27 26 7 9 20 6 21 2 65 3 

Very High 
>95th 

Percentile >44 13 31 30 7 8 17 6 18 2 69 3 
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Table 4.8: Comparison of the main conditions producing low annual average PM10 concentrations 

Province Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Jan Feb Mar Apr May Cambodia Laos Marine Thailand Vietnam 

Bangkok 
(site 15) 

Roadside 
site 

2014 Very Low <5th Percentile <3 
0 0 10 9 22 30 1 0 75 20 1 

Low <25th Percentile <10 
5 1 6 7 11 13 1 1 68 25 1 

Moderate 25th - 75th Percentile 10-28 
36 7 8 8 6 6 1 3 54 34 2 

High >75th Percentile >28 
44 33 8 12 13 19 3 3 49 41 2 

Very High >95th Percentile >51 
14 37 7 13 13 23 3 2 50 42 1 
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Figure 4.17: The different conditions producing annual average PM10 concentrations at roadside site in Bangkok (site 15) in 2014
Hourly PM10 Concentration (µg m-3) 

(a) 

(b) 

(c) 

(d) 
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4.4 Discussion 

This study used the Thailand air pollution monitoring network to investigate the 

conditions producing annual average PM10 concentrations in different areas of Thailand. 

For central Thailand, including Bangkok, the variation of annual average PM10 

concentrations shown in this study had a much wider range across all sites between 2011 

and 2015 compared to variation in PM10 concentrations at sites in other regions (Northern 

and southern Thailand, as described in Chapter 3). This wider range of annual average 

PM10 concentrations results from sites that have substantial local emission sources that 

contribute to a greater frequency of high hourly PM10 concentrations at specific sites. The 

predominant emission sources that contributed to sites with the highest annual PM10 

concentrations in Bangkok and central Thailand were heavy industry and road transport. 

In Bangkok and central Thailand, annual PM10 concentrations were lower at general sites 

located further from roadside sites and away from large industrial facilities.  

Previous studies identified that during the intensive burning season (November-April) 

smoke plumes from rice straw burning in Pathumthani (the intensive burning area of the 

Bangkok Metropolitan Region (BMR)) can be transported to Bangkok following the 

Northeast monsoon while higher numbers of hotspots were observed during the rice straw 

burning period (from November to April next year) (Tipayarom and Kim Oanh, 2007). 

Air pollution levels during the dry months in Bangkok are much higher than the wet 

months (Kim Oahn et al., 2006). At roadside sites, between 2011 and 2015 the annual PM10 

concentrations had a much wider range compared to general sites in Bangkok (the only 

region with roadside sites). In Bangkok, the major contributor to PM10 and PM2.5 was from 

traffic (mobile sources and road dust) in both wet and dry seasons (Kim Oanh et al., 2006; 

Loetkamonwit, 2000). In addition, PM concentrations at three Bangkok mass transit 

system (BTS) stations showed that the PM concentrations were increasing with the traffic 

volume under BTS stations whilst with increasing height the PM levels were decreased 

(Lertphuthipisut, 2004). In addition, Kim Oanh et al. (2013) measured PM2.5 at fixed road 

sites, and with mobile monitors along transport routes that included congested urban areas 

and less congested sub-urban areas. The results showed that PM2.5 levels at the fixed 

roadside sites were twice as high during the dry season compared to wet season and PM2.5 

concentrations measured in the urban area during the dry season were 3 times higher than 

in suburban areas. 
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These previous studies are consistent with the observations of the conditions producing 

annual PM10 concentrations observed in this study. This study also shows that the 

majority of high and very high hourly PM10 concentrations occur during the dry season, 

and particularly during rush hour periods, indicating a large contribution from traffic 

sources in Bangkok at the sites exceeding the Thai national standard.   

There are differences when comparing the results obtained in this Chapter to those 

obtained in Chapter 3. The sites in Bangkok and central Thailand showed less association 

between air mass back trajectory pathway and hourly PM10 concentrations, and high 

hourly PM10 concentrations occurred less during specific parts of the year. It is more local 

sources in the Bangkok Metropolitan Region (BMR) airshed, such as traffic, industry, 

and rice straw burning in Pathumthani (the intensive burning area of the BMR that can 

be transported to Bangkok, that become important. There was also less evidence for the 

short-term peaks in PM10 concentrations than occurred in southern Thailand due to long-

range transport occurring at sites in Bangkok and central Thailand.  

However, the conditions producing the highest annual PM10 concentrations at sites in 

Bangkok and central Thailand result from a larger contribution of local emission sources, 

road transport, and industrial facilities such as cement factories. The Thailand air quality 

monitoring network does not operate any monitoring stations at roadside locations 

outside of Bangkok and central Thailand, and therefore i) the increase in annual PM10 

concentrations, and ii) conditions producing annual PM10 (e.g. contribution from hourly 

concentrations occurring during rush hour) at road side locations in other parts of 

Thailand cannot be directly compared with the increase in annual PM10 concentrations at 

roadside sites in Bangkok. However, previous studies have shown that the majority of 

vehicles in Thailand are registered and used in Bangkok, suggesting that the contribution 

of road transport emissions to annual PM10 concentrations in Bangkok may be larger than 

in other regions of Thailand.  In addition, the other site in central Thailand with elevated 

annual PM10 concentrations was shown to be substantially influenced by local 

meteorology, consistent with its proximity to local large industrial facilities. The majority 

of large industrial facilities in Thailand are located in central Thailand, and therefore the 

conditions resulting in this exceedance of the Thai national standard in central Thailand 

are likely to be less common than in other regions. However, the lack of sites located in 

close proximity to industrial facilities in Northern or Southern Thailand prevents an in 

depth assessment of the contribution of industrial emissions to annual PM10 
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concentrations (and potential exceedance of national air quality standards) in other 

regions of Thailand.  

When taken together, Chapters 3 and 4 show the variety of conditions that contribute to 

the exceedance of national air quality standards to protect human health in Thailand. The 

variety of sources, both the source sectors, including biomass burning, road transport and 

industry, and geographic sources (local and long-range transport) that differ between sites 

and by region emphasise the need for the development of tailored mitigation strategies to 

effectively reduce annual PM10 concentrations across the whole of Thailand. A mitigation 

strategy developed for Bangkok is unlikely to have the same effect in Chiang Mai, due to 

the larger contribution from local emission sources in Bangkok, compared to the large 

regional contribution of biomass burning emissions to annual PM10 in Chiang Mai. The 

analysis of PM10 measurement data in this thesis has shown the value of applying a 

standard set of statistics to investigate the conditions producing annual PM10 

concentrations across a country. It has also shown the suitability of the ‘chemical 

climatology’ statistics selected for this analysis in disentangling the key contributors of 

annual PM10 concentrations in different parts of Thailand where annual PM10 is 

determined to a different extent by different sources.    

4.5 Conclusion 

On average between 2011 and 2015, in Bangkok, which had both general and roadside 

sites, there was greater variation in PM10 concentrations across roadside sites compared 

with general sites. The highest annual PM10 concentrations were at roadside site in 

Bangkok and general site in central Thailand. Across sites between 2011 and 2015, 5 

sites, located at roadsides in Bangkok and general sites in central Thailand, exceeded the 

national annual PM10 standard of 50 µ g  m - 3 . While concentrations were lower at other 

sites, all sites in Bangkok and central Thailand exceeded the WHO ambient annual PM10 

guideline of 20 µ g  m - 3 . Across different types of sites, there was greater variation in 

annual average PM10 concentrations at Bangkok roadside sites compared with across 

general sites in Bangkok and central general sites. At sites exceeding the national 

standard, variation in hourly PM10 concentrations indicate that large local emission 

sources result in the elevated annual PM10 concentrations, specifically from roadside 

emissions and/or large industrial sources. At these sites, highest hourly PM10 
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concentrations contributed a substantial percentage to annual average concentrations, and 

mainly occurred in morning and evening rush hour periods in dry season.  

When results from this study are compared to previous studies conducted in Thailand at 

the same area in Saraburi province, Phetrawech and Thepanondh (2017) assessed the 

contribution of different sources to PM10 concentrations in Saraburi province, the same 

province that contains Site 49. In the locations where PM10 was monitored in Phetrawech 

and Thepanondh (2017), emissions from mobile sources, in particular road dust 

resuspension contributed 71% during peak hourly PM10 concentrations. This is consistent 

with local traffic emissions being a large contributor to PM10 concentrations at the sites 

in central Thailand and Bangkok assessed here. In Bangkok area, Kim Oanh et al. (2006) 

reported that traffic emission, especially from diesel vehicles, biomass open burning 

during dry season transported from surrounding areas and secondary inorganic particles 

were the major contributors to PM2.5. Another study conducted in the Bangkok 

Metropolitan Region by comparing two sites representing an urban residential area in 

Bangkok, and a suburban/background residential area in Pathumthani province. The 

results showed that PM2.5 and PM2.5–10 concentrations in Bangkok were significantly 

higher than the in Pathumthani (suburb/background) and the major sources for PM2.5 were 

traffic and biomass burning (50–70% of total fine particles), and dust soil and construction 

soil (60–70% of total coarse particles) for PM2.5–10 Wimolwattanapun et al. (2011).  

In contrast, sites with low concentrations had a lower frequency of these highest hourly 

concentrations. The local emission sources therefore play a major role in determining the 

elevated annual PM10 concentration. Therefore, to reduce annual average PM10 from sites 

exceeding the national PM10 standard, should focus on reducing peak hourly concentrations 

from local emissions sources for road transport at Bangkok roadside sites and industrial 

plants (crushing processes in stone mills, mining, cement etc.) at central general sites. The 

local maps of site, for example, at Bangkok roadside site and central general site are shown 

in Figure 4.18. 
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(a) Bangkok roadside site (Site 12) 

  

 

https://www.google.com/maps/place/Chulalongkorn+Hospital/@13.7294571,100.5365399,3a,43.5y,3.16h,93.46t/data=!3m6!1e1!3m4!1
s4gS5rqWesO7cj21C4eh4Lg!2e0!7i16384!8i8192!4m8!1m2!2m1!1sChulalongkorn+Hospital!3m4!1s0x30e29f290f32d35d:0x79a9957
99ed40d64!8m2!3d13.730981!4d100.5370084 

(b) Central general site (Site 49: Saraburi) 

 
https://www.google.com/maps/place/Na+Phralan+Police+Station/@14.685947,100.8720319,3a,75y,195.78h,92.39t/data=!3m6!1e1!3m4!1s

EzqSe094miJIAQIPFPqDKA!2e0!7i16384!8i8192!4m12!1m6!3m5!1s0x311de3f25f95a597:0xf80ee3413818ea92!2sNa+Phralan+Police+

Station!8m2!3d14.6863407!4d100.8711145!3m4!1s0x311de3f25f95a597:0xf80ee3413818ea92!8m2!3d14.6863407!4d100.8711145 

Figure 4.18: Local maps in (a) Bangkok roadside site (Site 12) (b) Central general site (Site 49) 
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Chapter 5: 
Sources of PM2.5 relevant emissions, atmospheric 
concentrations and strategies for the mitigation 

of health impacts in Thailand:  
A modelling study for 2010 to 2030 

5.1 Introduction 

The monitoring of air pollutant concentrations across Thailand, as described in Chapters 

3 and 4, has shown that the Thai National Ambient Air Quality Standards for the 

protection of human health are exceeded in some locations, and there is exceedance of 

the World Health Organization Guidelines (WHO) for air pollution concentrations across 

the whole country. The measurement of PM10 concentrations allows for the identification 

of major sources (which included road transport, industry and biomass burning in 

different parts of Thailand), exceedance of standards (which is widespread in northern 

Thailand for annual PM10 and also occurred at sites in central Thailand between 2011 and 

2015) and assessment of long-term trends.  

However, the assessment of monitoring data is limited to understanding the current 

contribution of sources to current levels of air pollutant concentrations. It does not allow 

for the assessment of how future changes in emissions are likely to impact future 

concentrations of air pollutants, including annual average PM concentrations. Therefore, 

while the analysis of PM10 measurement data across Thailand has provided valuable 

insights into the strategies and sources that need to be targeted to reduce annual PM 

concentrations, the picture is incomplete because of changes that are expected to occur in 

Thailand that have the potential to affect PM and PM-precursor emissions, and therefore 

PM concentrations. Firstly, the UN Population Division estimates that between 2010 and 

2030, the population of Thailand is expected to increase by 3 million people (5%). Since 

2010, Thailand’s GDP has grown between 1 and 8% per year. If this continues, without 

the implementation of policies to shift away from fossil fuel consumption, then the 

increased population and socioeconomic development of Thailand has the potential to 



   

 

164 
 

substantially increase emissions in Thailand. Therefore, to assess how the annual PM 

concentrations assessed in Chapters 3 and 4 using measurement data can be reduced in 

the future, it is necessary to use appropriate modelling methodologies to assess how 

emissions are expected to change in response to these socio-economic trends, and also to 

evaluate the effect of implementing different policies, regulations and mitigation 

measures that are designed to reduce emissions to assess what strategies would be most 

effective to achieve Thailand’s air quality goals. Therefore, measurement for the 

assessment of current and historical air pollution levels is often complemented by air 

pollution modelling to assess how these levels are likely to change into the future (U.S. 

EPA, 2012b).  

Many different types of air pollution modelling have been developed to achieve specific 

tasks in assessing future projections of air pollution levels within a country (Garaga, 

Kumar Sahu and Harsha Kota, 2018; Leelőssy, et al., 2014; El-Harbawi, 2013). 

Modelling of the intensity of emissions from different sources within an emission 

inventory allows projections to be made of how emissions are likely to change in the 

future from their current intensity (Vongmahadlek et al., 2009). Modelling the 

atmospheric transport and chemical transformation of pollutants in the atmosphere allows 

the effect of these emissions on air pollutant concentrations to be estimated, and the 

change in concentrations in response to changes in emissions (or other drivers such as 

climate) to be evaluated (Leelőssy, et al., 2014). The different models and tools used to 

model emissions and air pollution concentrations vary in complexity. Emission inventory 

methodologies, such as those documented by the IPCC, have three tiers of complexity. 

‘Tier 1’ methods are the simplest and require the least amount of data, while ‘Tier 3’ 

methods give the most accurate estimate of emissions but require much more specific 

data to be used (EMEP/EEA, 2016/IPCC, 2006) as shown in Table 5.1. Atmospheric 

chemistry transport models vary in how explicitly they represented atmospheric chemical 

and physical processes (Leelőssy, et al., 2014; Anenberg, et al., 2016; Stohl, et al., 2015).  
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Table 5.1: Overview of emission inventory methodologies 

Emission inventory 
methodologies Description 

Tier 1 ‘The default method’ 

- Using default emission factors compiled from scientific 

literature 

- Using readily available statistical data on the intensity of 

processes (activity rates) 

- Emission factors is a linear relation between the intensity 

of the process and the resulting emissions 

- The ‘simple’ method that is not suitable for estimating 

emissions for key categories and has the highest level of 

uncertainty 

Tier 2 ‘Tier 2 is similar to Tier 1’ 

- More complex method 

- Using more specific emission factors developed on the 

basis of knowledge of the types of processes and specific 

process conditions that apply in the country for which the 

inventory is being developed 

- Reducing the level of uncertainty 

- Adequate for estimating emissions for key categories 

- Country-specific or technology-specific emission factors 

required to apply Tier 2 approach 

Tier 3 ‘The most detailed method’ 

- There is a wide range of Tier 3 methodologies 

- Activity data x emission factor are similar to Tier 2 with a 

greater disaggregation of activity data and emission 

factors  

- Using the latest scientific knowledge 

Source: EMEP/EEA (2019), EMEP/EEA (2016), IPCC (2006) 
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Thailand is a country with a more limited amount of data to assess changes in air pollution 

emissions and concentrations than is available in North America and Europe. However, 

air pollution levels are worse than in many North American and European cities, and 

therefore it is necessary to be able to evaluate the opportunities to reduce air pollution 

concentrations and health impacts from implementing different mitigation measures in 

Thailand.  

Studies conducted in the region to date include using the GAINS (Greenhouse Gas Air 

Pollutant Interactions and Synergies) model (http://gains.iiasa.ac.at) to estimate the 

emission inventory of PM2.5, PM10, BC, and OC from on-road transport in Bangkok 

Metropolitan Region (BMR), Thailand between 2007 and 2015. The result showed that 

PM2.5, PM10, BC, and OC emissions from transport sector mainly came from heavy duty 

trucks (Cheewaphongphan et al., 2017). The Weather Research and Forecasting (WRF) 

(https://www2.mmm.ucar.edu/wrf/users/download/get_source.html); a meteorology model 

and Community Multiscale Air Quality (CMAQ); a chemical transport model 

(https://www.epa.gov/cmaq) modeling systems were used to evaluate the emission 

control measures from biomass burning of PM2.5 and PM10 during a smog episode in 

Phayao, northern Thailand, 2012 (Pimonsree and Vongruang, 2018). The result showed 

that biomass burning outside of the city increased PM10 and PM2.5 concentrations within the 

city 85% and 89% respectively. Junpen,  Garivait and Bonnet (2013) estimated emissions 

from forest fires in Thailand using MODIS active fire product. The WRF–CHIMERE 

(CHIMERE is a chemical transport model; https://www.lmd.polytechnique.fr/chimere/) 

model was used to estimate the emissions of BC, PM2.5 and PM10 from biomass open 

burning in big SEA cities including Thailand.  (Permadi, Oanh and Vautard, 2018). The 

result showed that biomass open burning influenced PM10 and PM2.5 emissions while 

urban activities in big SEA cities influenced BC emission. Vongruang, Wongwises and 

Pimonsree (2017) used WRF-CMAQ (the two-way coupled meteorology and air quality 

model; https://www.epa.gov/cmaq/wrf-cmaq-two-way-coupled-model) to assess of fire 

emission inventories for simulating particulate matter in upper Southeast Asia. The result 

showed that biomass burning is a major source of PM in Upper Southeast Asia.  

The modelling studies above have assessed specific source sectors, or particular areas of 

Thailand. However, to date there has been no application of a model that estimates 

emissions for historical and future years across the whole of Thailand covering all major 

source sectors, to evaluate the most effective ways to improve air quality across the whole 
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country. A comprehensive model covering all source sectors is needed so that mitigation 

options in different sectors can be assessed in the context of emissions from all source 

sectors in the country. This comprehensive modelling approach also allows mitigation 

options in different source sectors to be evaluated against other relevant mitigation 

options implemented in other source sectors. Finally, the health impacts of air pollution 

result from the total exposure to pollutants (e.g. PM2.5) which results from a whole range 

of natural and anthropogenic emissions. It is therefore necessary to quantify the emissions 

from all these source sectors if the impacts of air pollution on health and the health 

benefits from the implementation of different mitigation options are to be quantified.  

This work develops this comprehensive modelling approach to estimate emissions of all 

pollutants contributing to annual PM concentrations for historical and future years for the 

first time. This chapter applies a tool called the Long-Range Energy Alternatives 

Planning-Integrated Benefits Calculator (LEAP-IBC) (Nakarmi, et al., 2020) at the 

national scale in Thailand to: 1) investigate the importance of different emission source 

sectors within and outside Thailand to annual average PM2.5 concentration and the 

potential health impact in Thailand; and 2) develop mitigation scenarios that model the 

implementation of different mitigation measures to improve air quality in Thailand. The 

LEAP-IBC tool is used to develop an emission inventory of all relevant air pollutants 

contributing to PM2.5 concentrations in historical years (2010-2017), and projected for a 

baseline scenario to 2030. Mitigation measures included in current plans and strategies in 

Thailand are modelled in terms of their potential to reduce emissions of PM2.5 and PM2.5 

precursors. Additional mitigation measures in key source sectors are then modelled to 

show the additional reduction in emissions that could result from taking these additional 

actions. The results from this analysis build on the assessment of current and historical 

air pollution concentrations across Thailand described in Chapters 3 and 4 by evaluating 

how the concentrations of particulate matter across Thailand are likely to change in the 

future, and how they can be reduced to protect human health.  

The key differences between this analysis and the previous modelling studies conducted 

in Thailand described above are that: 1) it considers the whole of Thailand and how 

annual PM2.5 concentration will change into the future, compared to previous studies 

which focused on specific region, e.g. Bangkok; and 2) it characterises the link from the 

drivers of emissions (e.g. energy consumption, agriculture activities), through to the 

impact they have on population-weighted annual average PM2.5 concentration, allowing 
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the effect of policies and actions implemented in different source sectors to be evaluated. 

The key advantage of using LEAP-IBC for this purpose is that it has low initial data 

requirements with simple accounting principles. At its simplest, emissions can be 

quantified in LEAP for energy demand and supply sectors by multiplying the total fuel 

consumption in particular economic sectors (i.e. electricity generation, residential, 

industry, agriculture, commercial and public services, transport, oil and gas production, 

processing and distribution) by fuel and sector specific emission factors. Data on fuel 

consumption in different sectors can be obtained from a national energy balance, which 

are routinely developed by Ministries of Energy (including in Thailand). Default fuel and 

sector-specific emission factor databases are maintained by international organisations 

including IPCC (2006) and EMEP/EEA (2016). In addition, it is possible to increase the 

complexity of the quantification of emissions if more detail data is available. Greater 

complexity means that i) sectors are disaggregated into a larger number of sub-sectors, 

ii) technology and activity-based quantification of emissions is undertaken (e.g. 

quantifying emissions in the road transport sector in which the vehicle fleet is 

disaggregated by type, and vehicle technology standard). In contrast, many modelling 

tools tend to use specific and complex data, requiring relatively high levels of expertise 

(https://www.energycommunity.org). Thus, the LEAP-IBC tool could be used to help the 

Thai government to estimate air pollution emissions, build mitigation scenarios, and 

understand how emission reductions benefit climate and health. The results of this chapter 

could also provide different emission reduction measures of PM2.5 to policy makers for 

improving air quality and mitigating health impacts in Thailand.  
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5.2 Methods 

To investigate the importance of different source sectors to air pollution concentrations 

in Thailand, and the key mitigation measures that could reduce them, the analysis first 

developed a historical emission inventory of air pollutants in Thailand covering the years 

2010-2017. The pollutants included in this analysis were Particulate Matter with 

aerodynamic diameter less than 2.5 microns (PM2.5), Particulate Matter with aerodynamic 

diameter less than 10 microns (PM10), Black Carbon (BC), Organic Carbon (OC), 

Ammonia (NH3), Nitrogen Oxides (NOx), Nitrous Oxide (N2O), Sulphur Dioxide (SO2), 

Carbon Dioxide (CO2), Carbon Monoxide (CO), Methane (CH4) and Non Methane 

Volatile Organic Compounds (NMVOC). However, only six pollutants namely, PM2.5, 

BC, OC, NOx, SO2 and NH3 were focused on in this study, as they are the main pollutants 

contributing to annual average PM2.5 concentrations in Thailand. All major energy and 

non-energy source sectors were included in the analysis. Sources were disaggregated 

based on activity in each sector. Having developed a historical emission inventory as 

described below in detail in the following section, a baseline projection was then made 

from 2018-2030 to estimate future emissions based on the continuation of current 

socioeconomic development in Thailand. Finally, alternative future scenarios were 

created that reflect the implementation of different mitigation measures, including those 

in existing plans and strategies in Thailand, and additional mitigation measures not 

currently being considered, but which target the major source sectors.  

The following sections describe the methodology used to estimate emissions for each 

sector for the historic and baseline scenarios (Section 5.2.1), including the activity data 

and emission factors used, and the mitigation measures that were modelled (Section 

5.2.2), including the assumptions that were used to represent them.  
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5.2.1 Emission calculations 

Emissions were calculated for three different broad source sector categories, energy 

demand, energy transformation, and non-energy sectors using the LEAP tool (see Chapter 

2). The activity data needed to characterize each source sector differs, as do the 

assumptions about how the source sector will develop into the future. The sub-sections 

below describe the methodology used to calculate emissions for each source sector, as 

well as the source of data, and the assumptions used to develop the baseline scenario. 

These are summarized in Tables 5.2, 5.3 and Appendix (Table S22 – S36). 

Table 5.2: Activity data 
Sector Activity data (2010-2017) Reference 
Transport 1.   Number of vehicle-km2   1 

 

 Number of vehicle-km2  = Average distance travelled x Number of vehicles 
 
Split by: 

1) Vehicle type: Road transport (Passenger cars, pickup, van, taxi, three 
wheelers, motorcycles, truck and bus 

2) Fuel:  Gasoline, diesel, LPG, CNG, electric, hybrid and other 
3) Emission standard:  Euro I - Euro VI 

2.   Total fuel consumption1 

Split by: 
1) Vehicle type: Rail, domestic aviation, domestic shipping, pipelines, other 

or non-specified 
2) Fuel: Gas diesel oil, electricity, aviation gasoline, heavy fuel oil 

1 Department of 
Land Transport 
(DLT);  
(DLT, 2010-2017) 
 

Residential Total fuel consumption2 
1.   Cooking 

- LPG 
- Traditional Stove Charcoal 
- Traditional Stove Wood 
- Traditional Stove Vegetal Wastes 

2.   Lighting 
- Electricity 

3. Other 

2 Department of 
Alternative Energy 
Development and 
Efficiency (DEDE); 
(DEDE, 2010-2017) 

  
 

Industry Total fuel consumption2 2 Department of 
Alternative Energy 
Development and 
Efficiency (DEDE); 
(DEDE, 2010-2017) 

Commercial and 

Public Services 

Total fuel consumption2 2 Department of 
Alternative Energy 
Development and 
Efficiency (DEDE); 
(DEDE, 2010-2017) 

Agriculture, Forestry 

and Fishing 

Total fuel consumption2 2 Department of 
Alternative Energy 
Development and 
Efficiency (DEDE); 
(DEDE, 2010-2017) 

Energy Industry-Own 

Use 

Total fuel consumption2 2 Department of 
Alternative Energy 
Development and 
Efficiency (DEDE); 
(DEDE, 2010-2017) 

Electricity generation 1.   Total electricity generated 2 

2.   Process share  

2 Department of 
Alternative Energy 
Development and 
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Sector Activity data (2010-2017) Reference 
  Process share = % electricity generated using by different type of power stations  

3.   Process efficiency  

      Process efficiency = % fuel needs to generate electricity 

4. Domestic electricity demand + exports –imports 2 

1) Diesel 

- Gas diesel oil and heavy fuel oil 

2.  Hydro  

3.  Steam Thermal 

-  Bituminous coal and anthracite, BKB brown coal briquettes, lignite, 

natural gas, heavy fuel oil, gas diesel oil, biomass, municipal waste, gas 

and liquids from biomass and wastes 

4.  Gas Turbine 

-   Natural gas and gas diesel oil 

5.  Combined cycle 

-   Natural gas and gas diesel oil 

6.  Cogeneration 

-   Bituminous coal and anthracite, BKB brown coal briquettes, natural gas, 

heavy fuel oil, biomass, municipal waste, gas and liquids from biomass 

and wastes 

7.  Gas Engine 

-   Natural gas, biomass, gas and liquids from biomass and wastes 

8.  Renewables 

Efficiency (DEDE); 
(DEDE, 2010-2017) 

Oil and Gas 

Production 

-   Domestic demand for oil and gas products and imports and exports 2 

-   Fugitive emissions from oil and gas production and distribution 2 

-   How much oil and gas are produced 

2 Department of 
Alternative Energy 
Development and 

Efficiency (DEDE); 
(DEDE, 2010-2017) 

Vegetation fires Biomass consumed 3, 4 3 The Royal Forest 
Department (RFD) 

(RFD, 2018) 
 

4 Food and 
Agriculture 

Organization (FAO) 
(FAO, 2018) 

Agriculture 1.   Livestock Enteric Fermentation and Manure Management 5 

-   The activity variable is the number of animals split by dairy cattle, buffalo 

etc. 

2.   Fertilizer Application 5 

-   The activity variable is the total fertiliser consumption in tonnes of N  

3.   Agricultural Residue Burning 5 

-   The activity variable is the total residue burned 

5 Food and 
Agriculture 

Organization (FAO) 
(FAO, 2018) 

Waste Total amount of waste burned 6 

Municipal 

-   Modern waste incineration plant 

-   Open Burning 

Industrial and Commercial 

-   Plant with emission controls 

 

6 Pollution Control 
Department (PCD) 

(PCD, 2018) 
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Table 5.3: Baseline scenario assumptions 

Sector 
Activity Level Projection 

(2018-2030) 

Energy Intensity 

Projection 2018-2030 

(%/year) 2 

Reference 

Transport Activity grows proportional to the number 

of vehicles sold and retirement rates  

-0.3 Cheewaphongphan et al. (2017) 

Residential Activity grows proportional to Population 0.1 Koe et al. (2001) 
 

 

Industry Activity grows proportional to GDP 

(3.9% per year1) 

 

Continuation of 2000-2014 

trend 

 (-1.6) 

 World Bank (2018) 

 https://wec-

indicators.enerdata.net/energy-

intensity.html 

Commercial and 

Public Services 

Activity grows proportional to GDP 

(3.9% per year1) 

0.8  World Bank (2018) 

 https://wec-

indicators.enerdata.net/energy-

intensity.html 

Agriculture, Forestry 

and Fishing 

Activity grows proportional to GDP 

(3.9% per year1) 

-1.3 World Bank (2018) 

 https://wec-

indicators.enerdata.net/energy-

intensity.html 

Energy Industry - 

Own Use 

Activity grows proportional to GDP 

(3.9% per year1) 

-  World Bank (2018) 

 https://wec-

indicators.enerdata.net/energy-

intensity.html 

Electricity generation Activity grows proportional to domestic 

electricity demand 

-  

Oil and Gas 

Production 
 

Activity grows proportional to demand for 

oil products and natural gas 

-  

Vegetation fires Activity grows proportional to annual 

average area burned between 2010 and 

2017  

-  

Agriculture 1. Livestock Enteric Fermentation and 

Manure Management  

- Activity grows proportional to the 

growth in number of animals (1.4% 

per year) 

2. Fertilizer Application 

- Activity grows proportional to annual 

fertiliser consumption (0.8% per 

year) 

3. Agricultural Residue Burning 

- Activity grows proportional to annual 

crop production (1.1% per year) 

- FAO analysis 

(Alexandratos and Bruinsma, 

2012) 

Waste Activity grows proportional to population -  
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5.2.1.1 Energy Demand sectors 

1) Transport 

The transport sector was disaggregated into six sub-sector; (1) road transport (2) rail (3) 

domestic aviation (4) domestic shipping (5) pipelines and (6) other transport. Road 

transport emissions were calculated from  the number of vehicles multiplied by an 

average distance travelled for different types of vehicles that were split by vehicle 

category (passenger cars, pickup, van, taxi, three wheelers, motorcycles, truck and bus ), 

fuel used and vehicle emission control technology (European standards: Euro I - Euro VI) 

– specific emission factors for the 6 pollutants. For rail, shipping and domestic aviation, 

emissions were calculated by multiplying total fuel consumption in each category by 

source specific emission factors. The historical number of vehicle kilometres and fuel 

consumption (2010-2017) in the transport sector in Thailand was obtained from the 

department of Land Transport, Ministry of transport, Thailand (DLT, 2010-2017). The 

energy intensity in the transport sector rail and aviation was projected to decrease by 0.3% 

a year based on the continuation of historical (2010-2017) trends (World Energy Council, 

2010-2014). Emission factors for 6 air pollutants were taken from default international 

guidelines which are the international standard that recommended by the 

Intergovernmental Panel on Climate Change (IPCC) for National Greenhouse Gas 

Inventories (IPCC, 2006) or European Monitoring and Evaluation Programme 

(EMEP)/European Environment Agency (EEA) (EMEP/EEA, 2016) for air pollutant 

emission inventory guidebook as shown in Appendix, Tables S22 and S23. 

2) Residential  

The residential sector was disaggregated into three activities; cooking, lighting and other. 

The emissions were estimated by each fuel for cooking (LPG, traditional stove charcoal, 

traditional stove wood and traditional stove vegetal wastes), lighting (electricity) and 

other (electricity) including technology into the proportion of people who cook using each 

type of fuel and technology. Then multiplying total fuel consumption from different type 

of fuels with the specific emission factors for the 6 air pollutants. The historical fuel 

consumption (2010-2017) in the residential sector was obtained from the energy balance 

of Thailand (DEDE, 2010-2017). Baseline projections to fuel consumption in the 
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residential sector were made assuming that activity in this sector links to the population 

of Thailand (Table 5.3). The energy intensity in the residential sector was projected to 

increase by 0.1% a year based on the continuation of historical (2010-2017) trends (World 

Energy Council, 2010-2014). Emission factors were taken from default international 

guidelines that recommended by IPCC (2006) or EMEP/EEA (2016) for 6 air pollutants 

as shown in Appendix, Table S24. 

3) Industry 

Industry emissions were estimated for the total industry sector with no disaggregation. 

Emissions were calculated by multiplying total fuel consumption for each fuel by fuel – 

specific emission factors for the 6 pollutants. Historical fuel consumption (2010-2017) in 

the industrial sector in Thailand was obtained from the national energy balance (DEDE, 

2010-2017). Baseline projections for fuel consumption in the industry sector were made 

assuming that activity in industry grows proportional to GDP (Table 5.3). The GDP was 

estimated to grow at 3.9% a year from 2018 to 2030 based on Thai national official 

projection of GDP growth (World Bank, 2018). The energy intensity in the industry sector 

was projected to decrease by 1.6% a year based on the continuation of historical (2010-

2017) trends (World Energy Council, 2010-2014). Emission factors for 6 air pollutants 

were taken from default international guidelines that recommended by IPCC (2006) or 

EMEP/EEA (2016) as shown in Appendix, Tables S25 – S26. 

4) Commercial and Public Services 

Commercial and public services emissions were estimated for the total commercial 

buildings and institutional buildings. Emissions were calculated by multiplying total fuel 

consumption for each fuel by fuel – specific emission factors for the 6 pollutants. 

Historical fuel consumption (2010-2017) in the commercial and public services sector in 

Thailand was obtained from the national energy balance (DEDE, 2010-2017). Baseline 

projections to fuel consumption in the commercial and public services sector were made 

assuming that activity in commercial and public services grows proportional to GDP 

(3.9% a year) (Table 5.3). The energy intensity in the commercial and public services 

sector was projected to increase by 0.8% a year based on the continuation of historical 

(2010-2017) trends (World Energy Council, 2010-2014). Emission factors for 6 air 
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pollutants were taken from default international guidelines that recommended by IPCC 

(2006) or EMEP/EEA (2016) as shown in Appendix, Table S27. 

5) Agriculture, Forestry and Fishing 

Emissions were estimated for the total agriculture, forestry and fishing sectors with no 

disaggregation. Emissions were calculated by multiplying total fuel consumption for each 

fuel with fuel specific emission factors for the 6 pollutants. Historical fuel consumption 

(2010-2017) in the agriculture forestry and fishing sector in Thailand was obtained from 

the national energy balance (DEDE, 2010-2017). Baseline projections to fuel 

consumption in the agriculture, forestry and fishing sectors were made assuming that 

activity in agriculture forestry and fishing grows proportional to GDP (3.9% a year) 

(Table 5.3). The energy intensity in the agriculture forestry and fishing sector was 

projected to decrease by 1.3% a year based on the continuation of historical (2010-2017) 

trends (World Energy Council, 2010-2014). Emission factors for 6 air pollutants were 

taken from default international guidelines that recommended by IPCC (2006) or 

EMEP/EEA (2016) as shown in Appendix, Table S28. 

6) Energy Industry - Own Use 

Energy emissions from the energy industry itself were estimated for the petroleum 

refining (Natural gas LPG and electricity). Emissions were calculated by multiplying total 

fuel consumption for each fuel with fuel – specific emission factors for the 6 pollutants. 

Historical fuel consumption (2010-2017) in the energy industry own use sector in 

Thailand was obtained from the national energy balance (DEDE, 2010-2017). Baseline 

projections to fuel consumption in the energy industry own use sector were made 

assuming that activity in industry grows proportional to GDP (3.9% a year) (Table 5.2). 

The energy intensity in the energy industry own use sector was projected to decrease by 

1.6% a year based on the continuation of historical (2010-2017) trends (World Energy 

Council, 2010-2014). Emission factors for 11 air pollutants were taken from default 

international guidelines that recommended by IPCC (2006) or EMEP/EEA (2016) as 

shown in Appendix, Table S29. 
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5.2.1.2  Energy Transformation Sectors 

In energy transformation sectors, electricity generation and oil and gas production in 

this sector were analysed.  

7) Electricity Generation 

Electricity generation emissions were estimated from the different processes that 

generated electricity. Emissions were calculated by multiplying domestic electricity 

demand, exports and imports from each process (diesel, hydro, steam thermal, gas 

turbine, combined cycle, cogeneration, gas engine and renewables) with specific 

emission factors for the 6 pollutants. Historical fuel consumption (2010-2017) in the 

electricity generation in Thailand was obtained from the national energy balance (DEDE, 

2010-2017). Baseline projections to electricity generated in the electricity generation 

were made assuming that activity in electricity generation grows proportional to domestic 

electricity demand (Table 5.3). Emission factors for 6 air pollutants were taken from 

default international guidelines that recommended by IPCC (2006) or EMEP/EEA (2016) 

as shown in Appendix, Table S30. 

8) Oil and Gas Production 

Oil and gas emissions were estimated covering fugitive emissions from oil and gas 

production and distribution. Emissions were calculated by multiplying domestic demand 

for oil and gas products and imports and exports with specific emission factors for the 6 

pollutants. Historical fuel consumption (2010-2017) in oil and gas production in Thailand 

was obtained from the national energy balance (DEDE, 2010-2017). Baseline projections 

to product produced in this sector were made assuming that activity in oil and gas 

production grows proportional to demand for oil products and natural gas in the demand 

sector, and the imports and exports (Table 5.3). Emission factors for 6 air pollutants were 

taken from default international guidelines that recommended by IPCC (2006) or 

EMEP/EEA (2016) as shown in Appendix, Table S31. 
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5.2.1.3  Non-Energy sectors 

9) Vegetation fires 

Vegetation fire emissions were estimated for onsite burning of forest and grassland 

disaggregated into three groups: 1) secondary tropical and subtropical forest; 2) tropical 

subtropical grasslands excluding savanna burning; and 3) general shrubland. Emissions 

were calculated by multiplying the total biomass burned (calculated by multiplying the 

annual area burned (ha/year) by the biomass consumed (kg/ha)) by an emission factor for 

each pollutant. Historical fuel consumption (2010-2017) in the vegetation fires sector in 

Thailand was obtained from the Forest Protection and Fire Control Bureau, Royal Forest 

Department (2010-2017) and FAOSTAT (FAO, 2018). Baseline projections of forest area 

burned in the vegetation fires assumed that the future burned area was the 2010-2017 

average area burned (Table 5.3). Emission factors for 6 air pollutants were taken from 

default international guidelines that recommended by IPCC (2006) or EMEP/EEA (2016) 

as shown in Appendix, Table S32. 

10) Agriculture 

The agriculture sector was disaggregated into three activities: 1) livestock enteric 

fermentation and manure management; 2) fertilizer application; and 3) agricultural 

residue burning. The emissions were estimated for each activity and calculated by 

multiplying: 1) the number of animals split by dairy cattle, buffalo etc.; 2) the total 

fertiliser consumption in tonnes of N per year; and 3) the total residue burned (based on 

annual crop production values and residue to crop ratio default factors from EMEP EEA, 

2016), respectively with specific emission factors. The historical consumption (2010-

2017) in the agriculture sector was obtained from the agricultural statistics of Thailand 

(Office of Agricultural Economics, 2010-2017) and the Food and Agricultural 

Organization FAO (FAO, 2018). Baseline projections to livestock enteric fermentation 

and manure management, fertilizer application, and agricultural residue burning were 

made assuming that activity in this sector grows proportional to the growth in the number 

of animals by increase 1.4% per year, annual fertiliser consumption animals by increase 

0.8% per year and annual crop production animals by increase 1.1% per year, respectively 

(Table 5.3) (Alexandratos and Bruinsma, 2012). Emission factors for 6 air pollutants were 
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taken from default international guidelines that recommended by IPCC (2006), 

EMEP/EEA (2013) and EMEP/EEA (2016) as shown in Appendix, Tables S33-S35. 

11) Waste  

Waste emissions were estimated from burning the municipal solid waste and industrial 

commercial waste sector. Emissions were calculated by multiplying total amount of waste 

burned from municipal (modern waste incineration plant and open burning) and industrial 

and commercial (plant with emission controls) with specific emission factors for 6 

different pollutants. Historical waste generation (2010-2017) in the waste sector in 

Thailand was obtained from the Thailand Pollution Control Department, Department of 

Health and Department of Industrial Works (2010-2017). Baseline projections of the total 

amount waste generated were made assuming that activity in this sector grows 

proportional to population (Table 5.3). Emission factors for 6 air pollutants were taken 

from default international guidelines that recommended by IPCC (2006) or EMEP/EEA 

(2016) as shown in Appendix, Table S36. 

5.2.2 Mitigation scenarios 

Mitigation scenarios were developed that represent the implementation of different 

policies and measures to reduce air pollutant emissions in Thailand. The emissions and 

air pollution impacts in the mitigation scenarios were then compared against the 

emissions and impacts in the baseline scenario to evaluate the extent to which the 

policies and measures could be effective in improving air quality in Thailand. Two 

mitigation scenarios were developed. The first represents policies and measures that 

have already been included in nationally endorsed plans and strategies in Thailand. The 

second scenario includes additional policies and measures that are not included in 

national plans, but which target major air pollution source sectors not controlled by 

existing policies and measures. The 11 mitigation measures included in these two 

scenarios are described in Table 5.4. 
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Table 5.4: Description of mitigation measures modelled in LEAP analysis to quantify 

air pollution reductions from their implementation 

Number Sector 
Name of  

mitigation measures 
Target and Timeline 

Source of  

mitigation measure 

Existing plans  

Measure 1 Transport § Increasing Euro 5 

and 6 vehicles 

standards  

 

§ In 2023 all new HDV 

vehicles added to the 

vehicle fleet will meet 

Euro 5 standard 

§ In 2023 all new LDV 

vehicles added to the 

vehicle fleet meet Euro 

6 standard  

- Adapted from Thai roadmap 

for Euro 5/6 standards (Thai 

Sub-Committee on Emission 

Standards for Motor Vehicles 

under Thailand’s Pollution 

Control Board, PCD (2016)) 

Measure 9 Vegetation fires Reducing the number 

of forest burned areas 

§ By 2030 the number of 

hectares of forest burned 

annually will be reduced 

to 48,000 hectares 

compared to 216,000 

hectares in 2018 

- National Master Plan for 

Open Burning Control (PCD, 

2010c) 

Measure 11 Electricity generation Increasing renewable 

energy  

§ By 2030, 20% of all 

electricity generated 

will come from 

renewable sources 

- Thai Existing Policy on 

Power Development Plan 

(PDP2015: 2015-2036)  

- Energy plan 

(Ministry of Energy, 2015) 

Additional plans  

Measure 2 

 

 

Residential § Replacing traditional 

charcoal stove with 

clean fuel for 

cooking 

§ By 2030, 100% of 

households currently 

cooking using charcoal 

will switch to cooking 

using LPG  

- Additional measure from key 

source analysis in this study 

Measure 3 Residential § Replacing traditional 

wood stove with 

clean fuel for 

cooking 

§ By 2030, 100% of 

households currently 

cooking using wood 

will switch to cook 

using LPG 

- Additional measure from key 

source analysis in this study 

Measure 4 Residential § Replacing traditional 

vegetal wastes stove 

with clean fuel for 

cooking 

§ By 2030, 100% of 

households currently 

cooking using vegetal 

wastes will switch to 

cook using LPG  

- Additional measure from key 

source analysis in this study 

Measure 5 

 

 

Industry § Reducing brown coal 

briquettes use in 

industry 

§ By 2030 the use of 

brown coal briquettes 

in industry will be 

reduced by 50% 

compared to the 

baseline scenario  

- Additional measure from key 

source analysis in this study 

Measure 6 Industry § Reducing primary 

solid biomass use in 

industry 

§ By 2030 the use of 

primary solid biomass 

in industry will be 

- Additional measure from key 

source analysis in this study 
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Number Sector 
Name of  

mitigation measures 
Target and Timeline 

Source of  

mitigation measure 

reduced by 50% 

compared to the 

baseline scenario 

Measure 7 Agriculture: 

Agricultural residue 

burning 

§ Banning crop residue 

burning 

§ By 2030, all crop 

residue will be 

removed from fields 

and used for productive 

purposes, and there will 

be zero open burning of 

crop residue in fields  

- Additional measure from key 

source analysis in this study  

Measure 8 Agriculture:  

Fertilizer application 

§ Replacing urea with 

the other complex 

NK and NPK 

fertilizers use in 

agriculture 

§ By 2030 the use of urea 

fertilizer will be 100% 

replaced with other 

complex NK and NPK 

fertilizers with reduced 

ammonia emissions 

- Additional measure from key 
source analysis in this study  

Measure 10 Waste § Banning open waste 

burning 

§ By 2030, there will be 

no open burning of 

waste at dumpsites or 

in residential homes 

- Additional measure from key 

source analysis in this study 

 

1) Transport 

Vehicle emissions were the main source of PM in Bangkok Metropolitan Region and the 

effects of reducing the emissions by controlling of fuel and engine standards, the shift in 

the fuel type used are necessary (Cheewaphongphan et al., 2017). Thailand’s Pollution 

Control Board has developed the roadmap for Euro 5 and 6 fuel quality standards 

(gasoline and diesel), by increasing all new LDV vehicles meet Euro 5 standard in 2023 

and Euro 6 standard in 2029, and increasing all new HDV vehicles meet Euro 5 standard 

in 2026 and Euro 6 standard in 2032. These are the existing plans that were taken from 

Thai roadmap for Euro 5 and 6 standards and used to develop the mitigation scenario in 

the transport sector (Thai Sub-Committee on Emission Standards for Motor Vehicles 

under Thailand’s Pollution Control Board, PCD (2016)). A mitigation measure for this 

study (Measure 1) was developed that increases the number of all new HDV vehicles 

added to the vehicle fleet will meet Euro 5 standard by 2023 and all new LDV vehicles added 

to the vehicle fleet meet Euro 6 standard by 2023, starting in 2018 and completed in 2030.  
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2) Residential  

In Thailand, traditional biomass including fuel wood, charcoal, paddy husk and 

agricultural waste is mainly used as energy because of the unavailability of natural gas in 

some rural areas. This practise results in substantial air pollutant emissions and exposure 

both indoors and outdoors. The mitigation measures were therefore developed to replace 

traditional stove using charcoal (Measure 2), wood (Measure 3), and vegetal wastes 

(Measure 4) with clean fuel for cooking such as LPG. The targets are by 2030 the number 

of households cooking with traditional stoves (charcoal, wood and vegetal wastes) will 

be reduced to zero and replaced with LPG starting in 2018 and completed in 2030, 

assuming a linear decrease. This is an additional measure that is not included in existing plans 

in Thailand but which targets a key source sector for primary particulate matter emissions.  

Many developed countries have demonstrated that a complete transition away from 

cooking using solid biomass is feasible, both in urban and rural areas (Bonjour et al., 

2013). Globally, the proportion of households cooking using solid fuels decreased from 

60% in 1980 to 42% in 2010, showing that it is feasible for large numbers of people to 

transition from solid biomass to cleaners forms of energy for cooking (Bonjour et al. 

2013). This transition has also been shown to be effective at reducing air pollution 

emissions from residential cooking, including in South Asia. For example, measurement 

of PM2.5 concentrations in household kitchens in Nepal, using four different cooking fuels 

showed that kitchen PM2.5 concentrations when using biomass fuel stoves (656 mg m-3) 

were the most significant sources of PM2.5, followed by kerosene (169 mg m-3), LPG (101 

mg m-3) and then electric (80 mg m-3) stoves and when compared with electric stoves, use 

of LPG, kerosene and biomass stoves were associated with increased indoor PM2.5 

concentrations of 65%, 146% and 733%, respectively (Pokhrel et al., 2015).  

3) Industry 

The industry has been reported for one of the large contributors of PM emissions in areas 

surrounding Bangkok, including the central and eastern Thailand (Vongmahadlek et al., 

2009; Pham, Manomaiphiboon and Vongmahadlek, 2008). The emissions from fuel 

consumption for industrial processes consisted of NOx, SO2, NMVOC, CO, NH3, OC, 

and BC that affected air quality in Thailand (Pham, Manomaiphiboon and 

Vongmahadlek, 2008).  
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Based on the national energy balance for Thailand in 2017, 36% and 53% of total energy 

consumed in industry was using brown coal briquettes and primary solid biomass (wood), 

respectively (DEDE, 2017). There are currently no plans or strategies in Thailand to 

reduce consumption of these dirty fuels, therefore, a new scenario modelled the effect of 

reducing their use in industry by 50% (Measure 5 and 6) by 2030, assuming a linear 

decrease compared to the baseline scenario. Their use was replaced with natural gas to 

access the effect of action in this sector starting in 2018 and completed in 2030. This is 

consistent with the changes in the industrial energy consumption that the IEA have 

identified as being achievable (IEA, 2018). 

4) Agriculture 

The banning of crop residue burning on agricultural fields can be effective at improving 

air quality because it makes a large contribution to air pollution emissions. Previous 

studies showed that agricultural burning from crop residues correlated to ambient PM 

emissions (Phairuang, Hata and Furuuch, 2017; Chandra et al., 2017). The study from 

Awasthi, et al. (2011) found that reducing PM10, PM2.5 and PM10-2.5 concentrations when 

no crop residue burning period months (background concentrations) were 97 ± 21, 57 ± 15 

and 4 ± 6 µg m-3, respectively. In contrast, the PM10, PM2.5 and PM10-2.5 levels increased 

up to 66, 78 and 71% during rice crop residue burning, and 51, 43 and 61% during wheat 

crop residue burning, respectively. Another study from Amit Dhir (2015) showed that 

during paddy harvesting period (stubble burning), there was an increase of 87% and 53% 

in PM10 and PM2.5 concentrations, respectively when compared to pre-harvesting period 

(less stubble burning). However, for post-harvesting period, there was an increase in PM10 

(67%) and PM2.5 (6%) concentrations respectively when compared to pre- harvesting 

period (a reduction in PM10 (11%) and PM2.5 (31%) concentration). Thus, from the 

previous studies mentioned above, one of the feasible mitigation measures for reducing 

PM emissions in agricultural areas is banning crop residue burning in agricultural fields. 

Therefore, mitigation measures were developed to ban crop burning (Measure 7) that 

reduces the fraction burned in field of agricultural residue burning from 25% starting in 2018 

and by 2030, all crop residue will be removed from fields and used for productive purposes, 

and there will be zero open burning of crop residue in fields, assuming a linear decrease.  
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Ammonia is a precursor gas for secondary inorganic aerosols and plays an increasingly 

important role in PM2.5 concentration (Huang et al., 2014; Tao et al., 2014). The fertilizer 

application from the agricultural sector shows the largest source of NH3 emissions 

(Carnell et al., 2017; Xu et al., 2015; Yan et al., 2003) and consequently contributes to 

PM2.5 concentrations (Zhao et al., 2017; Wu et al., 2016) with represents 2–4% of PM10 

and 9–12% of PM2.5 in southern Europe (Querol et al., 2009). Previous studies from 

Meng, et al. (2018) also found that applying urea fertiliser caused extremely high NH3 

and NH4
+ concentrations in the North China Plain. A guide to replace urea fertiliser with 

another nitrogen form could reduce ammonia emissions typically around 20% of total N 

applied for urea (Newell Price et al., 2011). Thus, from the previous studies mentioned 

above, the feasible mitigation measure (Measure 8) is to replace urea with the other 

complex NK and NPK fertilizers for reducing NH3 emission in 2030 (Measure 8) starting 

in 2018 and by 2030 the use of urea fertilizer will be 100% replaced with other complex 

NK and NPK fertilizers with reduced ammonia emissions, assuming a linear decrease.  

These two measures above are additional measures that are not included in existing plan 

in Thailand but targets a key source of primary PM emissions, especially during particular 

times of the year. Alternatives to open burning of crop residues have been demonstrated, 

such as using the residue for productive purposes like electricity generation, which can 

be cost-effective, making the transition to no open burning of crop residue feasible 

(Bhuvaneshwari, Hettiarachchi, and Meegoda, 2019).   

5) Vegetation fires 

This scenario is based on the government target to reduce forest burning outlined in the 

National Master Plan for Open Burning Control (PCD, 2010c). A mitigation measure 

(Measure 9) was developed that by 2030 the number of hectares of forest burned will be 

reduced to 48,000 hectares per year starting in 2018 and completed in 2030, assuming a 

linear decrease (24% reduction in forest burning).  

 

 

 

 



   

 

184 
 

6) Waste  

The uncontrolled burning of waste and ineffective management is a global issue occurring 

in many countries and it has been identified as a significant source of PM (Sharma, et al., 

2019; Wiedinmyer, Yokelson and Gullett, 2014; Hodzic, et al., 2012), including the 

contribution health and environmental impacts from open burning of waste (U.S. EPA, 

2012a). The previous studies showed that he emissions of PM10 from open waste burning 

are equivalent to 22% of the total anthropogenic emissions for China (Wiedinmyer, 

Yokelson and Gullett, 2014). Another study found that in Mexico, 92% of households in 

rural areas disposed of waste by uncontrolled burning in unofficial dumps (Reyna-

Bensusan, Wilson and Smith, 2018). A study in East Delhi, India on an assessment of the 

MSW Management found that PM10 emissions from waste burning increased sharply from 

52 MT PM10 in 2000 to 1,254 MT PM10 in 2044, and drops to zero in 2045 after the expected 

closure of the disposal site (no open burning is expected on a closed dumpsite) (TERI, 2018). In 

Thailand, the mitigation efforts on zero waste and zero landfilling have been focussed 

(PCD, 2019) due to the management of municipal solid waste (MSW) is one of the key 

problems for urban areas like Bangkok (Sukholthaman, Shirahada and Sharp, 2017).  

Thus, a mitigation measure to ban open waste burning (Measure 10) was developed that 

the amount of open waste burning by 2030, there will be no open burning of waste at 

dumpsites or in residential homes (reduced to zero from 8,730,000 tonnes per year 

starting in 2018), assuming a linear decrease. This is additional measure that is not 

included in existing plan in Thailand. Alternatives to the open burning of waste include 

implementing improved waste separation, to facilitate recycling, and composting of 

organic waste, as well as waste to energy schemes to increase electricity generation 

capacity. These have been demonstrated as being effective at reducing the amount of 

waste that is openly burned, when combined with expansion of formal waste collection 

systems (CCAC, 2015).   

 

 

 

 



   

 

185 
 

7) Electricity Generation 

Electricity generation from natural gas, oil and renewable energy sources has increased 

in Thailand recently. The shares of final energy consumption by fuels from electricity, 

renewable energy and traditional renewable energy in Thailand were 20%, 9% and 6%, 

respectively (Ministry of Energy, 2018). Therefore, based on the Thai official 

government existing plan on Power Development Plan (PDP2015) between 2015 and 

2036 (Ministry of Energy, 2015), one of the key objectives in this plan is to develop 

renewable energy up to 20%. The mitigation measure to increase renewable energy 

(Measure 11) was developed to increase renewable energy.  The target is increasing 20% 

of generating capacity from renewable energy sources by 2030, starting in 2018 and 

completed in 2030, assuming a linear decrease. This is an existing measure that is 

included in existing plans in Thailand (PDP2015).  

5.2.3 PM2.5 Concentration and health impact assessment modelling 

As stated in Chapter 2 (Section 2.3), the LEAP tool was used to estimate emissions of 

PM2.5 and PM2.5-precursor emissions for 2010-2030 then converted into population-

weighted annual average PM2.5 concentrations across Thailand, and associated impacts 

on premature mortality. In 2010, the difference between emissions of each pollutant, and 

the future year (2018 – 2030) was calculated. The estimation for number of premature 

deaths attributable to PM2.5 exposure in Thailand was calculated as well. The increased 

risk of premature mortality for the five disease categories of ischaemic heart disease, 

cerebrovascular disease, lung cancer, chronic obstructive pulmonary disease and acute 

lower respiratory infection (in children, other diseases are adults (>30 years old)) were 

estimated. An exposure level was then estimated for very low concentrations (~5 µg m-3) 

to very high PM2.5 concentrations (10,000 µg m-3) and then the total health burden from 

a particular population-weighted PM2.5 concentration, resulting from a particular set of 

emissions for a particular year or scenario, estimated.   
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5.3 Results 

The results of the emissions of PM2.5 and PM2.5 precursors (BC, OC, NH3, NOx, and SO2) 

from different key source sectors averaged between 2010 and 2017 in the energy demand 

sector, transformation sector and non-energy sector are shown in Table 5.5. The main 

sources of PM2.5 and OC emissions were vegetation fires that emitted 102.7 kt yr-1 and 

56.9 kt yr-1, respectively. The transport sector as the largest source of NOx (625.2 kt yr-1), 

and BC (27.7 kt yr-1) emissions. The agricultural sector was the largest source of NH3 

(574.1 kt yr-1) emissions and electricity generation emitted SO2 (377.7 kt yr-1).  

Table 5.5: The averages of annual emissions between 2010 and 2017 from different 

source sectors across Thailand. The highlighted values represent the largest individual 

emission source of each pollutant between 2010 and 2017.  

Sectors 
Emissions (kt yr-1) 

 PM2.5   BC   OC   NH3   NOx   SO2  

Agriculture 61.8 5.7 37.1 574.1 101.3 3.7 

Agriculture Forestry and Fishing 14.0 5.8 4.1 0.02 137.7 67.4 

Charcoal Making 53.8 3.9 26.7 7.7 3.7 11.9 

Coke Production 3.7 0.7 0.5 0.001 0.001 0.001 

Commercial and Public Services 0.03 0.001 0.01 0.1 2.6 0.04 

Electricity generation 26.4 0.8 3.1 0.1 174.6 377.7 

Energy Industry Own Use 0.3 0.03 0.2 0.5 22.2 - 

Industry 71.8 15.3 29.1 48.9 169.1 343.2 

Oil refining - - - - 2.6 40.3 

Residential 66.5 12.0 28.6 11.8 27.0 10.0 

Transport 47.2 27.7 11.1 5.5 625.2 0.1 

Vegetation Fires 102.7 7.5 56.9 13.5 37.1 6.7 

Waste 76.3 5.1 41.0 8.8 44.6 4.3 

Total 524.5 84.5 238.4 670.7 1,347.8 865.3 
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The details of the emissions are divided into 4 parts in different scenarios: 5.3.1 Historical 

emissions, 5.3.2 Baseline emissions 5.3.3 Mitigation scenarios, and 5.3.4 PM2.5 

concentration and health impacts as described below. 

5.3.1 Historical emissions 

The historical emissions are estimated based on the actual measured statistical 

information on each source sector collected for 2010 - 2017 in Thailand (as opposed to 

the emission estimates from 2018 to 2030 which are based on projections in activity data). 

PM2.5 emissions are classified as both primary emissions emitted directly from sources 

into the atmosphere, such as on-road vehicles, and secondary emissions that formed from 

chemical reactions of SO2, NOx, VOCs and NH3 in the atmosphere. BC and OC are 

primary emissions that comprise a significant proportion of PM2.5 and are formed by 

incomplete combustion associated with fossil fuels, diesel engines, biomass fuels etc. 

Therefore, this study focused on the main emission sources with the following details: 

1) PM2.5 

The result in Figure 5.1 (see Appendix, Table S16) shows that during the years 2010 to 

2017 many major sources contributed to PM2.5 emissions. Vegetation fires were the main 

source of PM2.5 emission (except 2011) that contributed with the largest average 

percentage contribution (20%), followed by the waste sector (15%), industry (14%), 

residential cooking (13%), agriculture residue burning (12%) and other source sectors from 

electricity generation, motor vehicles in transport sector and etc. In 2011, the reduction in 

emission of air pollutants from vegetation fires is consistent with the analysis of 

monitoring data in northern Thailand which showed substantial (~20%) reductions in 

annual average PM10 concentrations associated with reductions in biomass burning 

emissions (Chapter 3). 
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Figure 5.1: PM2.5 emission from different sources between 2010 and 2017 

2) BC 

BC emission from diesel engine vehicles such as pickup and truck in transport sector led 

to the largest BC source that contributed 33%, followed by the industry sector (18%), 

residential (14% - using traditional stove from wood, charcoal, and vegetal wastes for 

cooking), vegetation fires (9%), agriculture forestry and fishing (7%), agriculture (7%), 

waste (6%) etc., as shown in Figure 5.2 (see Appendix, Table S17).  

 
Figure 5.2: BC emission from different sources between 2010 and 2017 
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3) OC 

OC emission showed similar sources to PM2.5 emission, emitted from vegetation fires 

(averaged 24% - on-site burning of forests and grassland and savanna burning), followed by 

waste sector (17%), agriculture residue burning (16%), industry (12%), cooking in residential 

sector (12%), charcoal making (11%) etc., as shown in Figure 5.3 (see Appendix, Table S18).  

 
Figure 5.3: OC emission from different sources between 2010 and 2017 

4) NH3 

Agricultural activities such as livestock enteric fermentation and manure management 

and fertilizer application were the biggest source of NH3 emissions (86%), followed by 

industrial activity (7%), as shown in Figure 5.4 (see Appendix, Table S19). 

 
Figure 5.4: NH3 emission from different sources between 2010 and 2017 
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5) NOX 

The combustion of fossil fuel in the transport sector (46%) was the biggest source of NOx 

emission, followed by electricity generation (13%), industry (12%), agriculture forestry 

and fishing (10%) etc. A trend of the emission from transport sector was steady as shown 

in Figure 5.5 (see Appendix, Table S20). 

 
Figure 5.5: NOX emission from different sources between 2010 and 2017 

6) SO2 

SO2 emissions also play a significant role in PM2.5 formation as a precursor. Electricity generation 

was the main source of SO2 emissions (44%), followed by industry (40%), agriculture forestry 

and fishing (8%) and oil refining (5%), as shown in Figure 5.6 (see Appendix, Table S21). 

 
Figure 5.6: SO2 emission from different sources between 2010 and 2017 
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In summary, there were various potential sources from different sectors that could emit 

PM2.5, BC, OC, NH3, NOx and SO2 to the atmosphere. Therefore, to reduce the emissions 

in all relevant sectors, actions are needed across multiple pollutants emitted from a wide 

range of source sectors. 

5.3.2 Baseline emissions 

Baseline emissions were estimated for future years from 2018 to 2030 compared to the 

base year level in 2010 at national level.  

A business as usual (BAU) scenario, to project the emissions of PM2.5, BC, OC, NH3, 
NOx and SO2 from different sources from 2018 to 2030, was developed for each pollutant 

as described below. 

1) PM2.5 

Under the baseline scenario, the total PM2.5 emissions are expected to increase between 

2018 and 2030 from 480 kt yr-1 in 2018 up to 532 kt yr-1 in 2030 (Figure 5.7). However, 

the changes of the total emissions during 2010 to 2017 fluctuated between 471 and 562 kt yr-1. 

The main reason for this fluctuation was the variability in emissions from vegetation fires, 

which we projected into the future based on the 2010-2017 average annual average 

burned. The largest sources of PM2.5 emission in the baseline scenario are vegetation fires 

expected to emit 18% in 2030, then follow by industry (17%), residential (14%), agriculture 

(13%), electricity generation (14%), waste (9%) and charcoal making (7%) sectors. The 

vegetation fires sector is categorized into on-site burning of forests and grassland, and 

savanna burning. Forests and grassland burning are expected to continue to make a large 

contribution to total emissions, but the increase in emissions expected between 2018 and 

2030 are based on increases in activities in other sectors (as the annual area of forest and 

other vegetation burned was estimated to stay constant). The trends of the PM2.5 emissions 

show that agriculture, charcoal making, electricity generation and industry sectors tend to 

increase by the largest proportion. In contrast, the residential and transport sectors tend to 

decrease slightly.  

 



   

 

192 
 

 
Figure 5.7: The estimation of PM2.5 emissions from different sources under baseline scenario 

2) BC 

The baseline scenario of BC emissions shows the similar trends to PM2.5 emissions, which 

are expected to increase until 2030. A range of total emissions between 2010 and 2017 

were 80 -89 kt yr-1. The transport sector is still expected to be the largest source with 

consistent increasing pattern during 2018 to 2030. In 2030, the transport sector is 

estimated to emit 29% of total BC emissions, mainly by road transport from pickup 

vehicles that use diesel. The industry sector is expected to be the second main source with 

23% from gas diesel oil, then follow by residential sector (15%) by using traditional stove 

from wood, charcoal, and vegetal wastes as presented in Figure 5.8.  

 
Figure 5.8: The estimation of BC emissions from different sources under baseline scenario 



   

 

193 
 

3) OC 

The changes in OC emissions under the baseline scenario show that total OC emissions 

mainly come from on-site burning of forests and grassland, and agricultural residue 

burning as presented in Figure 5.9. The trends of the emissions in the baseline scenario 

in agriculture, agriculture forestry and fishing, charcoal making, electricity generation, 

industry, vegetation fires and waste sectors are estimated to increase steadily from 210 kt yr-1 

in 2018 to 225 kt yr-1 in 2030. However, the emissions in residential and transport sectors 

tend to decrease. The average of OC emissions in 2030 are expected to emit 23% from 

forest burning in vegetation fires, agriculture (18%), industry (16%), residential (15%), 

waste (10%), and charcoal making (9%).  

 
Figure 5.9: The estimation of OC emissions from different sources under baseline scenario 

4) NH3 

The increasing of NH3 emissions under the baseline scenario is shown in Figure 5.10. The 

total NH3 emissions increase from 618 kt yr-1 in 2010 to 813 kt yr-1 in 2030. The total 

emissions are expected to increase about 31% in 2030 when compared with the base year 

2010. The agriculture sector was the major source of the emissions in 2010 and still 

remains the major source in 2030. The baseline scenario projects that in 2030, 84% of the 

emissions in agriculture sector will come from livestock enteric fermentation and manure 

management (poultry, cattle, pig) and fertilizer application mainly from urea, industry 
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(10%) and from other sources such as residential, transport, vegetation fires sector and 

waste (6%).  

 

Figure 5.10: The estimation of NH3 emissions from different sources under baseline scenario 

5) NOX 

Overall, total NOX emissions are projected to increase steadily from 2010 to 2030 in each 

main source sector, transport sector was the biggest emission source of NOX emissions 

in 2010. The total emissions are expected to emit 47% and increase 35% in 2030 from 

1,305  kt yr-1 in the base year 2010 to 1761 kt yr-1 in 2030. On-road vehicles such as truck, 

pickup bus, motorcycles, passenger cars etc. that mainly use diesel fuel are the major 

sources of the emissions. Electricity generation is the second source of the emissions that 

is projected to increase 17% by 2030 from fuels used to generate the electricity, for 

example, bituminous coal and anthracite, gas diesel oil, LPG, BKB brown coal briquettes 

and etc., then followed by the industry process of iron and steel (13%), agriculture 

forestry and fishing (8%), agriculture (7%), waste (3%), vegetation fires (2%) and others 

(3%), as shown in Figure 5.11.  



   

 

195 
 

 

Figure 5.11: The estimation of NOx emissions from different sources under baseline scenario 

6) SO2 

The total SO2 emissions under the baseline scenario in base year 2010 was 881 kt yr-1 and 

are projected to increase to 1,169 kt yr-1 in 2030 (33%). Electricity generation is the main 

source of SO2 emissions and is projected to increase 70% from 353 kt yr-1 in the base 

year to 601 kt yr-1 in 2030. The second emission source comes from the iron and steel 

production in industry sector, which is expected to increase only 4% in 2030. In 

agriculture forestry and fishing, the emissions are projected to increase by 6% in 2030. 

However, the trends of SO2 emissions in oil refining, residential, transport, vegetation 

fires and waste sectors are projected to be stable as shown in Figure 5.12. 
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Figure 5.12: The estimation of SO2 emissions from different sources under baseline scenario 
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A comparison of the results from this study to emission inventories from different studies 

in Thailand at national level in different base years are shown in Table 5.6. The emission 

trends of this study show the consistent values compared to previous studies from all 

sources. When comparing sector by sector in the crop residue burning and forest fires 

sectors, the emissions also show the similar trends. However, the differences between 

emissions of NH3, NOx and PM10  in this study and previous studies differ, predominantly 

because of the differences in the major sources of these pollutants, and differences in the 

data and assumptions to characterise each sector in different studies. For example, in this 

study, PM10 emission comes from all sources 614.9 kt yr-1 (mostly comes from vegetation 

fires and residential sector (Table 5.6 and Figure 5.1 ) but in Vongmahadlek, et al. (2009), 

the national total PM10 emission were almost double this value. Both studies estimate the 

majority of PM10 emissions to come from biomass burning, which were substantially 

different in the years of each inventory (2010 vs 2005). In contrast, the emissions of NH3 

were substantially similar, because these emissions were mainly from livestock and 

fertiliser application. Livestock numbers of tonnes of fertiliser applied were similar in 

this study and Vongmahadlek, et al. (2009). However, the large increase in number of 

vehicles between 2010 and 2005 results in substantially higher NOx emissions in this 

study compared to Vongmahadlek, et al. (2009) 

Table 5.6: Comparison of emission inventories from different studies in different base 

years across Thailand (kt yr-1) 

Pollutants 

Thailand 

This 

study 

Vongmahadlek 

et al. (2009)  

This 

study 

Kim Oanh  

et al. (2018)  

Kanabkaew 

and Kim 

Oanh (2011)  

This 

study 

Kim Oanh 

et al. (2018)  

2010 2005 2010 2010 2007 2010 2010 

PM2.5 544.7 - 62.3 84 128 93.3 80 

PM10 614.9 1277.4 65.7 90 143 119.3 100 

BC 88.6 136.4 5.7 7.2 - 6.8 5 

OC 247.6 325.5 37.4 31 54 51.1 40 

NH3 618.5 439.2 27.2 38 59 11.9 24 

NOx 1304.8 790.3 26.9 29 42 37.1 22 

SO2 881.1 886 3.6 3 4 6.1 6 

Source All sources Crop residue burning Forest fires  
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In summary, under baseline scenarios based on existing activities, emissions of all PM 

and PM precursor emissions are projected to increase by 20-40% between 2018 and 2030. 

The most important source sectors are vegetation fires for PM2.5 and OC emissions, 

transport for BC and NOx emissions, agriculture for NH3 emissions, and electricity 

generation for SO2 emissions. The pollutants with the highest increase in emissions 

between 2018 and 2030), i.e. SO2 and NOx result from their emission deriving mainly 

from energy sector sources. The baseline projection estimates that there will be a 3.9% 

per year increase in GDP in Thailand, as well as increase in population from 67 million 

in 2010 to 70 million in 2030. Both of these trends are associated with increases in energy 

consumption (and therefore production), which, in the absence of the implementation of 

mitigation measures, will result in additional fuel consumption and associated emissions. 

Other pollutants, such as BC, OC, and PM2.5 also increase predominantly as a result of 

increases in energy consumption and production.  

The other major source sectors, such as vegetation fires, are not projected to increase 

substantially, in line with historical trends show little change over time, and due to a lack 

of information on the likely effect of other drivers (e.g. climate change) on the 

distribution, severity and frequency of vegetation fires.  

Therefore, the potential to reduce the emissions of these pollutants in all source sectors 

need to implement existing and additional mitigation measures in order to achieve the 

low emissions as described in the section below. 
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5.3.3 Mitigation scenarios 

The estimation of emissions under current activities from previous section are likely to 

increase in the future in the baseline scenario. Therefore, in order to mitigate the 

emissions from different sources, existing policies and additional mitigation measures 

were modelled. These focussed on the major emission sources in 2030 by considering 

mitigation measures in seven source sectors, i.e. transport, residential, industry, 

agriculture, vegetation fires, waste and electricity generation sectors with 11 measures as 

presented in Table 5.4. Two mitigation scenarios were evaluated, one which considered 

the full implementation of measure included in existing plans and strategies, and a 

scenario which considered the implementation of additional mitigation measures 

designed to reduce emissions further. The estimation of total emissions from key sectors 

for baseline scenarios, existing and additional measures across Thailand in 2030 are 

presented in Table 5.7.  

When compared to baseline scenarios (Avoided vs. Baseline), the results showed that the 

total emissions of PM2.5, BC, OC, NH3, NOX, and SO2 with implementation of existing 

measures are expected to reduce in 2030 by 33%, 25%, 37%, 5%, 12% and 17%, 

respectively. In contrast, when both existing and additional measures this could reduce 

more emissions of PM2.5, BC, OC, NH3, NOX, and SO2 by 70%, 58%, 78%, 32%, 23% and 

28%, respectively. The reductions for each pollutant are described in the sub-section below. 
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Table 5.7: Total emission inventories and key sector emissions for baseline, existing and additional scenarios in Thailand 2030 (kt yr-1)  

Sectors 

Emissions (kt y-1) 
PM2.5 BC OC NH3 NOX SO2 

Baseline 
Scenarios 

Existing 
measures  

Additional 
measures  

Baseline 
Scenario 

Existing 
measures  

Additional 
measures  

Baseline 
Scenario 

Existing 
measures  

Additional 
measures  

Baseline 
Scenario 

Existing 
measures  

Additional 
measures  

Baseline 
Scenario 

Existing 
measures  

Additional 
measures  

Baseline 
Scenario 

Existing 
measures  

Additional 
measures  

Agriculture forestry and fishing 14.7 14.7 14.7 6.1 6.1 6.1 4.3 4.3 4.3 - - - 143.7 143.7 143.7 70.4 70.4 70.4 

Commercial and public services 0.1 - - - - - - - - 0.1 0.1 0.1 4.5 3.6 3.6 - - - 

Energy industry own use 0.3 0.3 0.3 - - - 0.2 0.2 0.2 0.5 0.5 0.5 21.0 21.0 21.0 - - - 

Industry 89.5 89.5 50.1 19.5 19.5 11.3 36.2 36.2 18.9 83.9 83.9 84.4 233.4 233.4 217.8 401.5 401.5 295.4 

Residential 76.0 76.0 0.7 12.8 12.8 - 34.5 34.5 0.1 13.6 13.6 - 23.6 23.6 2.0 10.6 10.6 - 

Transport 32.8 22.6 20.6 24.7 15.5 14.2 4.7 4.0 3.7 12.3 9.3 9.2 822.6 778.3 645.7 0.2 0.2 0.2 

Agriculture 68.0 - - 6.3 - - 40.8 - - 679.4 649.7 453.3 120.8 91.6 91.6 4.1 - - 

Vegetation fires 95.2 30.8 30.8 6.9 2.3 2.3 52.8 16.0 16.0 12.6 3.4 3.4 34.2 16.9 16.9 6.2 2.1 2.1 

Waste 43.8 43.8 0.1 2.9 2.9 - 23.5 23.5 - 5.0 5.0 - 51.2 51.2 29.4 3.8 3.8 1.6 

Charcoal making 37.6 37.6 - 2.8 2.8 - 18.7 18.7 - 5.4 5.4 - 2.6 2.6 - 8.3 8.3 - 

Coke production 2.0 2.0 2.0 0.4 0.4 0.4 0.3 0.3 0.3 - - - - - - - - - 

Electricity generation 72.3 41.1 41.1 2.2 1.3 1.3 8.8 5.1 5.1 0.1 0.1 0.1 298.8 184.1 184.1 601.5 406.9 406.9 

Oil refining - - - - - - - - - - - - 4.1 4.1 4.1 62.5 62.2 63.2 

Total emission 532.1 358.3 160.3 84.5 63.4 35.6 224.8 142.7 48.7 812.8 770.9 550.9 1760.5 1554.1 1359.9 1168.9 966.0 839.7 

Avoided vs. Baseline - 173.9 371.8 - 21.1 48.9 - 82.0 176.1 - 41.9 262.0 - 206.5 400.6 - 203.0 329.2 

Reduction (%) - 32.7 69.9 - 24.9 57.9 - 36.5 78.4 - 5.2 32.2 - 11.7 22.8 - 17.4 28.2 
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1) PM2.5 

Based on the baseline emissions from previous section, vegetation fires are predicted to 

be the biggest source of PM2.5. Therefore, mitigation measures as presented in Table 5.3 

were implemented. Figure 5.13 shows the emissions after implementing existing 

measures (Figure 5.13a) and additional measures (Figure 5.13b). In 2030, the 

implementation of existing measures could reduce PM2.5 emissions by 33% (173.9 kt yr-1) 

from all source sectors compared to the baseline scenario, while the implementation of 

additional measures could reduce more emissions by 70% (371.8 kt yr-1) from all source 

sectors as shown in Table 5.7. In addition, the implementation of additional measures by 

sectors could reduce emissions from vegetation fires 68%, waste 100%, residential 99%, 

industry 44%, electricity generation 43%, transport 37%, and etc. 

(a) Existing measures 
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(b) Additional measures 
 

 

Figure 5.13: PM2.5 emissions reduction from (a) Existing measures and  

(b) Additional measures 

 
2) BC 

The main sources of BC emissions are transport, industry, and residential sectors. 

However, transport sector is expected to be the biggest source of BC emission. Figure 

5.14 shows the emissions after implementing existing measures (Figure 5.14a) and 

additional measures (Figure 5.14b). In 2030, the implementation of existing measures 

could reduce BC emissions by 25% (21.1 kt yr-1) from all source sectors compared to the 

baseline scenario, while the implementation of additional measures could reduce more 

emissions by 58%  (49 kt yr-1) from all source sectors as shown in Table 5.7. Moreover, 

the implementation of additional measures by sectors could reduce emissions from 

residential and waste sectors by 100%, vegetation fires 68%, industry, transport and 

electricity generation approximately 43%.  
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(a) Existing measures 

 
 

(b) Additional measures 

 

Figure 5.14: BC emissions reduction from (a) Existing measures and (b) Additional measures 
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3) OC 

OC emissions are expected to increase mainly from biomass burning in vegetation fires 

and agriculture sectors. Figure 5.15 shows the emissions after implementing existing 

measures (Figure 5.15a) and additional measures (Figure 5.15b). In 2030, the 

implementation of existing measures could reduce OC emissions by 36.5% (82.0 kt yr-1)  

from all source sectors compared to the baseline scenario, while the implementation of 

additional measures could reduce more emissions by 78.4% (176.1 kt yr-1) from all source 

sectors as shown in Table 5.7. The implementation of additional measures by  sectors 

could reduce emissions from residential sector by 99.6%, follows by vegetation fires 70%, 

industry 48%, transport 21%, electricity generation 42% and zero % from open waste burning. 

(a) Existing measures 
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(b) Additional measures 

 
 

Figure 5.15: OC emissions reduction from (a) Existing measures and (b) Additional measures 

4) NH3 

Agricultural fertilizer application is the biggest source of NH3 emissions. Figure 5.16 

shows the emissions after implementing existing measures (Figure 5.16a) and additional 

measures (Figure 5.16b). In 2030, the implementation of existing measures could reduce 

NH3 emissions by 5% (41.9 kt yr-1) compared to the baseline scenario, while the 

implementation of additional measures could reduce NH3 emissions by 32% (262 kt y-1) 

from all source sectors as shown in Table 5.7. In addition, the implementation of 

additional measures by sectors could reduce NH3 emissions from agricultural sector by 

33%, but in existing measures could reduce only 4%. For other sectors, there is not much 

difference for the changes of emissions. Table 5.7.  
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(a) Existing measures 

 
 

(b) Additional measures 

 

Figure 5.16: NH3 emissions reduction from (a) Existing measures and  

(b) Additional measures 
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5) NOX  

The transport sector is predicted to be the biggest emission source of NOX emissions by 

2030. Figure 5.17 shows the emissions after implementing existing measures (Figure 

5.17a) and additional measures (Figure 5.17b). In 2030, the implementation of existing 

measures could reduce NOX emissions by 22% (206.5 kt yr-1) from all source sectors 

compared to the baseline scenario, while the implementation of additional measures could 

reduce emissions by 23% (400.6 kt yr-1) from all source sectors as shown in Table 5.7. In 

addition, the implementation of additional measures by sectors could reduce NOx 

emissions towards the end of the period in 2030 from main sectors such as transport sector 

is expected to reduce 22%, residential 92%, vegetation fires 51%, waste 43%, electricity 

generation 38%, agriculture 24%, and others. 

 

(a) Existing measures 
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(b) Additional measures 

 
 

Figure 5.17: NOX emissions reduction from (a) Existing measures and (b) Additional measures 

6) SO2 

The industry and electricity generation sectors are the major sources of SO2 emissions. 

The projection of the emissions under the mitigation scenarios after implementing 

existing measures (Figure 5.18a) and additional measures (Figure 5.18b) shows that in 

2030, could reduce SO2 emissions from all source sectors by 17% (203 kt yr-1) and by 

28% (329.2 kt yr-1), respectively as shown in Table 5.7. The reduction of emissions by 

source sectors from additional measures could reduce SO2 emissions from electricity 

generation 32%, vegetation fires 65%, waste 58% and industry 26%.  
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(a) Existing measures (b) Additional measures 

  

Figure 5.18: SO2 emissions reduction from (a) Existing measures and (b) Additional measures 

5.3.4 PM2.5 concentration and health impacts 

Emissions of primary PM2.5, emissions as well as PM2.5 precursors were converted into 

estimates of annual average population-weighted PM2.5 concentrations across Thailand 

for each year and for each scenario using the LEAP-IBC tool (see Chapter 2 for details). 

Human exposure to PM2.5 is related to health impacts, and therefore a health impact 

assessment was used to estimate the implications for human health from a particular level 

of PM2.5 exposure estimated for each emission scenario.  Figure 5.19 shows annual 

average population-weighted PM2.5 concentrations across Thailand, split by the 

contribution of emissions of PM2.5 precursor (BC, OC, NH3, NOX and SO2) estimated for 

2010-2030 across Thailand. In 2010, the contribution to population-weighted annual 

PM2.5 concentrations from national emission sources was estimated to be 48%, from 

anthropogenic emission outside of Thailand was 35% with the remainder from natural 

background (Figure 5.19). The contribution of PM2.5 precursors to PM2.5 concentration 

levels showed that NH3 and NOx emissions made the largest contribution to annual 

population-weighted PM2.5, 5.7 µg m-3 and 4.6 µg m-3, respectively in 2010, followed by 

OC (2.5 µg m-3), SO2 (0.9 µg m-3), and BC (0.6 µg m-3) (Figure 5.19). Implementing the 

existing mitigation measures only was estimated to reduce annual PM2.5 concentrations 

across Thailand by 7% (2.4 µg m-3) in 2030 compared to the baseline scenarios in 2010 
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(Figure 5.19). Hence while the implementation of existing measures avoids future 

degradation of air quality compared to the baseline scenario, it does not improve air 

quality compared to current levels across Thailand. Therefore, to improve air quality, 

additional mitigation measures are needed. Figure 5.20 shows that the implementation of 

the additional mitigation measures considered in this study would reduce population-

weighted PM2.5 concentrations across Thailand by 23% (i.e. reduce 7.5 µg m-3) in 2030 

compared to the baseline scenario.  

 

Figure 5.19: Annual average population-weighted PM2.5 concentration across Thailand with 

contribution from natural background, national emissions and the rest of world emissions 

showing changes between 2010 and 2030 from implementation of existing measures 
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Figure 5.20: Annual average population-weighted PM2.5 concentration across Thailand with 

contribution from natural background, national emissions and the rest of world emissions 

showing changes between 2010 and 2030 from implementation of additional measures 

The comparison of PM2.5 concentration reduction when all scenarios were implemented 

are presented in Figure 5.21. PM2.5 concentrations from additional measures compared to 

the baseline scenarios in 2010 is expected to reduce 12% (reduce 3.5 µg m-3) in 2030. 

However, PM2.5 concentrations in existing measures and baseline scenarios are expected 

to increase.  
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Figure 5.21: Comparison of PM2.5 concentrations from different scenarios 

In Thailand, the population is at risk of exposure to PM2.5 concentration exceeding WHO 

air quality guideline (10 µg m-3). The health impact assessment for this study was focused 

on the premature deaths and the population being exposed to PM2.5 between 2010 and 

2030. Figure 5.22 shows the estimation of premature deaths from PM2.5 with different 

diseases. In the baseline scenario, in 2010, the number of premature deaths from acute 

lower respiratory infections (ALRI), chronic obstructive pulmonary disease (COPD), 

ischaemic heart disease lung cancer and stroke were 22,378 people and expected to 

increase to 39,113 people in 2030. This increase in premature deaths is a combination of 

increasing population-weighted PM2.5 concentrations across Thailand, but also a larger 

and older population in 2030 compared to 2010, that is more susceptible to health impacts 

from air pollution exposure. The number of people aged less than 5 years and between 30 

and 50 years were projected to decrease in 2030 by 47% and 35%, respectively. However, 

the population age 50 to 70 years and over 70 years are expected to increase 29% and 

120%, respectively. Therefore, due to an aging population that are sensitive to PM2.5 

exposure, additional measures need to apply. The implementation of both the existing 

and additional mitigation measures was estimated to reduce the air pollution health 

burden in 2030 by 7,300 people premature deaths from air pollution in 2030 (19% 

reduction) as shown in Figure 5.22. 

Additional measures 
Existing measures 
Baseline 
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Figure 5.22: The number of people avoided premature mortality with additional measures 
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5.4 Discussion  

In this study the LEAP-IBC tool was applied to develop the emission inventory of PM2.5 

and its precursors for Thailand between 2010 and 2030 at the national scale and to 

investigate the importance of different source sectors in determining air pollution 

concentrations and health effects. The study then considered the potential of existing and 

additional mitigation measures to reduce emissions by 2030. The findings from this study 

show that PM2.5 and its precursors emissions are expected to increase by 2030 without 

any implementation of mitigation measure (Baseline scenario) due to continued 

population and economic growth as shown in Table 5.8. Emissions are projected to 

increase, but at a reduced rate when existing policies and measures are implemented, 

while implementation of additional mitigation measures targeting key source sectors 

would reduce PM2.5 and PM2.5 -precursor emissions.  

The full implementation in different scenarios of Thailand’s existing plans would reduce 

on PM2.5, BC, OC, NH3, NOx and SO2 emissions by 33%, 25%, 37%, 5%, 12% and 17%, 

respectively in 2030 compared to a baseline scenario as shown in Table 5.9. The most 

effective of the existing individual mitigation measure was reducing the number of forest 

burned areas in the vegetation fires sector for reducing both PM2.5 and OC emissions by 

12% and 16%, respectively. However, changes in percentage emission reductions of 

additional measures have the largest potential to reduce PM2.5 and its precursors 

emissions. Implementation of the additional measures was estimated to reduce PM2.5, BC, 

OC, NH3, NOx and SO2 emissions by 70%, 58%, 78%, 32%, 23% and 28%, respectively 

in 2030 compared to a baseline scenario as shown in Table 5.9.  

Finally, the most efficient measures of emission reductions for PM2.5 and its precursors 

are from the additional scenarios which are achieved mostly through action in the 

residential sector for increasing use of clean fuels for cooking by replacing traditional 

stoves from charcoal, wood and vegetal. 
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Table 5.8: National total emissions (kt) of PM2.5 and its precursors in 2030 from implementing each mitigation scenario compared to the 2030 baseline 

scenario in Thailand 

Scenario Source Sector Measure PM2.5 BC OC NH3 NOx SO2 

Measure 1 Existing: HDV Euro 5 by 2023 Transport Increasing Euro 5 vehicles standard   529.7  
   

82.9  
 

224.5  
  

812.8  
 

1,622.2  
 

1,169.3  

Measure 1 Existing: LDV Euro 6 by 2023 Transport Increasing Euro 6 vehicles standard 
  522.3  

   
75.6  

 
224.0  

  
809.8  

 
1,722.0  

 
1,168.9  

Measure 9 Existing: Vegetation Fires Vegetation fires Reducing the number of forest burned areas   467.7  
   

79.8  
 

187.9  
  

803.6  
 

1,743.2  
 

1,164.9  

Measure 11 Existing: Power Development Plan Electricity 
generation Increasing renewable energy   506.9  

   
83.8  

 
221.8  

  
812.8  

 
1,672.9  

 
1,034.1  

Measure 2 Additional: Clean fuel for cooking Residential Replacing traditional charcoal stove with clean fuel for cooking   419.3  
   

69.0  
 

171.7  
  

793.8  
 

1,736.4  
 

1,150.6  

Measure 3 Additional: Clean fuel for cooking Residential Replacing traditional wood stove with clean fuel for cooking   419.3  
   

69.0  
 

171.7  
  

793.8  
 

1,736.4  
 

1,150.6  

Measure 4 Additional: Clean fuel for cooking Residential Replacing traditional vegetal stove with clean fuel for cooking 
  419.3  

   
69.0  

 
171.7  

  
793.8  

 
1,736.4  

 
1,150.6  

Measure 5 Additional: Clean fuel in industry Industry Reducing brown coal briquettes use in industry   492.7  
   

76.3  
 

207.5  
  

813.3  
 

1,744.9  
 

1,062.8  

Measure 6 Additional: Clean fuel in industry Industry Reducing primary solid biomass use in industry   492.7  
   

76.3  
 

207.5  
  

813.3  
 

1,744.9  
 

1,062.8  

Measure 7 Additional: Crop Burning Agriculture Banning crop residue burning   464.2  
   

78.2  
 

184.0  
  

783.2  
 

1,731.3  
 

1,164.9  
Measure 8 Additional: Reducing NH3 from 
Agriculture Agriculture Replacing urea with the other complex NK and NPK fertilizers use in 

agriculture   532.1  
   

84.5  
 

224.7  
  

616.4  
 

1,760.5  
 

1,168.9  

Measure 10 Additional: Ban Waste Burning Waste Banning open waste burning 
  488.4  

   
81.6  

 
201.3  

  
807.8  

 
1,738.7  

 
1,166.7  

Baseline   
  532.1  

   
84.5  

 
224.7  

  
812.8  

 
1,760.5  

 
1,168.9  

Existing plans (All measures)     
  358.3  

   
63.4  

 
142.7  

  
770.9  

 
1,554.1  

    
966.0  

Additional plans (Additional measures)     
  160.3  

   
35.6  

   
48.7  

  
550.9  

 
1,359.9  

    
839.7  
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Table 5.9:  Summary of percentage emission reductions from implementing mitigation measures modelled in different scenarios for Thailand compared 
to the 2030 baseline scenario 

Scenario Source Sector Measure PM2.5 
(%) 

BC 
(%) 

OC 
(%) 

NH3 
(%) 

NOx 
(%) 

SO2 
(%) 

Measure 1 Existing: HDV Euro 5 by 2023 Transport Increasing Euro 5 vehicles standard -0.4 -2 -0.1 - -8 - 

Measure 1 Existing: LDV Euro 6 by 2023 Transport Increasing Euro 6 vehicles standard -2 -11 -0.3 -0.4 -2 - 

Measure 9 Existing: Vegetation Fires Vegetation fires Reducing the number of forest burned areas -12 -6 -16 -1 -1 -0.3 

Measure 11 Existing: Power Development Plan Electricity generation Increasing renewable energy -5 -1 -1 - -5 -12 

Measure 2 Additional: Clean fuel for cooking Residential Replacing traditional charcoal stove with clean fuel for cooking -21 -18 -24 -2 -1 -2 

Measure 3 Additional: Clean fuel for cooking Residential Replacing traditional wood stove with clean fuel for cooking -21 -18 -24 -2 -1 -2 

Measure 4 Additional: Clean fuel for cooking Residential Replacing traditional vegetal stove with clean fuel for cooking -21 -18 -24 -2 -1 -2 

Measure 5 Additional: Clean fuel in industry Industry Reducing brown coal briquettes use in industry -7 -10 -8 0.1 -1 -9 

Measure 6 Additional: Clean fuel in industry Industry Reducing primary solid biomass use in industry -7 -10 -8 0.1 -1 -9 

Measure 7 Additional: Crop Burning Agriculture Banning crop residue burning -13 -7 -18 -4 -2 -0.3 

Measure 8 Additional: Reducing NH3 from Agriculture Agriculture Replacing urea with the other complex NK and NPK fertilizers use in agriculture - - - -24 - - 

Measure 10 Additional: Ban Waste Burning Waste Banning open waste burning -8 -3 -10 -1 -1 -0.2 

Existing plans (All measures)     -33 -25 -36 -5 -12 -17 

Additional plans (Additional measures)     -70 -58 -78 -32 -23 -28 
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Previous studies have developed emission inventories for different base years and 

different source sectors in Thailand. Vongmahadlek et al. (2009) estimated the national 

annual emissions of air pollutants from all sources across Thailand for the year 2005. The 

total emissions were generally consistent with this study as shown in Table 5.6. However, 

NOx emissions were different because of the number of vehicles increased from 196,557 

in 2005 to 219,105 in 2010 (12%) (DLT, 2005; DLT 2010). Other studies estimating 

national emissions in Thailand have focussed on a specific source sector.  Emission from 

crop residue open burning in Thailand for the year 2010 from Kim Oanh et al. (2018) 

found that the emissions were also consistent with this study in agricultural sector in 2010 

as shown in Table 5.6. However, NH3 emissions showed the largest difference in values 

because this study included estimates of emissions from fertilizer application, which were 

not quantified in the agricultural sector emissions in Kim Oanh et al. (2018).  

Kanabkaew and Kim Oanh (2011) reported that annual emissions of PM2.5, SO2, NOx, 

and NH3 in Thailand in the base year of 2007 from crop residue field burning in kt yr−1 

were 128, 4, 42, and 59, respectively (Table 5.6). All pollutants from Kanabkaew and 

Kim Oanh (2011) study were higher than this study because of the differences of base 

years (2007 and 2010, where there were different extents of biomass burned in northern 

Thailand, where the majority of crop residue burning occurs, as shown by remote sensing 

measurements (Huang et al., 2016), and assumptions about the fraction of crop residues 

burned in fields). Specifcially, in 2007, the base year for the Kanabkaew and Kim Oanh 

2011 study,  The influence of biomass burnings from agricultural waste and forest fires 

were identified for major sources of PM2.5 emissions (Vongruang, Wongwises and 

Pimonsree, 2017; Khamkaew, Chantara and Wiriya, 2016; Kim Oanh et al., 2011) which is 

consistent with this work that emitted 17% from agricultural sector and 11% from forest fires.  

This study PM2.5 concentration and PM2.5 precursors are emitted from natural 

background, as well as from anthropogenic sources in Thailand and in the rest of the 

world. The contribution of PM2.5 precursors to PM2.5 concentration levels from these 

sources after implemented the additional mitigation measures would reduce the largest 

proportion of PM2.5 concentrations in 2030 compared to the baseline scenarios in 2010. 

NH3 and NOx also make the largest contribution to national emissions, therefore measures 

that focus on major sources of NH3 (agriculture) and NOx (transport) should all be 

considered to reduce PM2.5 concentration. However, the emissions from outside Thailand 
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(rest of the world) showed the large proportion as well and still needed to target further. 

The emissions from natural background are also important but it could not control. In 

addition, the implementation of existing measures could avoid increasing of PM2.5 

emissions compared to the baseline scenario but with a small proportion compared to the 

additional mitigation measures. Overall, the PM2.5 concentration reduction when existing 

measures and baseline scenarios were implemented are expected to increase in 2030. 

However, PM2.5 concentrations from additional measures compared to the baseline 

scenarios in 2010 is expected to reduce in 2030.  

Previous studies also found that national emissions or anthropogenic sources showed the 

large contribution than the rest of world emissions (such as neighbouring countries 

emissions). NH3 and NOx were emitted from Thailand with the largest proportion, for 

example, NOx from biomass open burning (Cheewaphongphan and Garivait, 2013) and 

transport sector (Cheewaphongphan et al., 2017), NH3 and NOx from power plants and 

industrial facilities in Thailand (Pham, Manomaiphiboon and Vongmahadlek, 2008) that 

are consistent with this study. The reduction in PM2.5 concentrations and PM2.5 precursors 

from all sources are expected to reduce from national emissions when implementing the 

additional measures.  

Based on the health impacts from previous studies, exposure to PM2.5 from both short-

term and long-term are associated with mortality (for example Shi et al., 2016; Beelen, 

Andersen and Wolf, 2013; Anenberg et al., 2011). Few studies on mortality have been 

conducted in Thailand. Ostro, et al. (1999) reported the relationship between PM1 0  and 

daily mortality during 1992 – 1995 in Bangkok, Thailand. The results showed that a 10 µg m-3 

change in daily PM1 0  is associated with a 1–2% increase in natural mortality, a 1–2% 

increase in cardiovascular mortality, and a 3–6% increase in respiratory mortality.  The 

study from Vichit-vadakan, Vajanapoom, and Ostro (2008) also reported that the 

mortality risk due to long-term exposure to PM10 from 1999 to 2003 in Bangkok. The 

results showed that the excess risk for non-accidental mortality was 1.3% per 10 µg m-3 

of PM10, with higher excess risks for cardiovascular 1.9% and above age 65 mortality 

1.5%. A similar finding in Thailand during 1999–2008 from Guo et al. (2014) reported 

that an increase of 10 µg m-3 in PM10 was associated with a 0.4% increase of non-

accidental mortality. Whereas, the increase of respiratory mortality was 0.4% and the 

increase of cardiovascular was 0.1% (Guo et al., 2014). In this study there were estimated 

27,560 of premature deaths in Thailand associated with air pollution exposure in 2017. 
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This study is consistent with the Global Burden of Disease study. The Global Burden of 

Disease study 2017 estimated that 30,635 premature deaths were attributable to PM2.5 

exposure from air pollution in Thailand (GBD, 2017) which is consistent to this study in 

baseline scenarios in 2017 (27,560).  

In this study found that exposure to PM2.5 is associated with increased mortality in the 

sensitive groups age over 70 years that expected to increase in the future, additional 

measures are need to apply in order to reduce the risk of PM2.5 exposure.  

5.5 Uncertainties 

In this analysis, as in any integrated assessment modelling exercise, a large volume of 

data needs to be compiled in order to be able to estimate emissions of pollutants 

historically, to project these emissions into the future, and to assess the impact of these 

emissions on air pollution exposure and consequential health impacts. The data and 

methods used to undertake this analysis have different levels of confidence and 

uncertainty associated with them. There are multiple sources of uncertainty in this 

analysis, of which the key sources are highlighted and discussed below. In many cases 

official data specific to Thailand was used to estimate emissions, but where Thailand-

specific data was not available, data measured/obtained in other countries and other 

regions was applied to estimate emissions in Thailand. There is therefore uncertainty in 

the application of international data, such as emission factors, concentration-response 

functions etc. derived in studies conducted in other countries. Finally, there is uncertainty 

in the methodologies within which this data is applied. Most importantly, the methods for 

converting air pollutant emissions into the estimate exposure of the Thai population.  

The aim of this analysis was to explore the contribution of different source sectors to air 

pollutant emissions in Thailand, how this contribution is likely to change into the future 

and how the implementation of mitigation measures in key source sectors can help to 

reduce PM2.5 concentrations in Thailand. As shown above, the results obtained using the 

data and methods in this analysis are similar to those obtained in previous studies, and 

the future projections are based as far as possible on official data produced by the Thai 

government or international organisations (e.g. population and GDP projections which 

are key variables determining the trajectory of emissions into the future). Therefore, while 
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the improvement of data used as input to this analysis would increase the accuracy of the 

results, it is not expected that it would change the overall conclusions of this analysis in 

terms of the overall emission reductions and benefits expected from implementation of 

the mitigation measures evaluated in this study.  

The key uncertainties and limitations for this analysis, and how they could be reduced, 

are described in more detail in the subsection below. 

5.5.1 Emission factors (EFs) 

Due to limitation of country-specific EFs data that are needed to identify the major 

sources of emissions in Thailand, in this study EFs were taken from international sources 

as shown in Appendix (Table S22 – S36). These were predominantly from international 

guidebooks on emission inventory development, such as the EMEP/EEA 2016 emission 

inventory guidebook developed for Europe, and which is endorsed by the 

Intergovernmental Panel on Climate Change to estimate emissions from air pollutants 

globally in the absence of other data. The use of emission factors from studies conducted 

in Europe and other regions to Thailand may not reflect locally available equipment, or 

how it is used in Thailand which may mean that the emissions are different compared to 

comparable activities in Europe or other regions where the emission factors were 

measured.  

However, the lack of Thailand specific emission factors has been highlighted in other 

studies, which have also relied on international default emission factor data. For example, 

Cheewaphongphan et al. (2017) used EF from the GAINS-Asia database to estimate an 

emission inventory of on-road transport in Bangkok Metropolitan Region (BMR). 

Vongruang, Wongwises and Pimonsree (2017) also applied the EFs that reported from 

Kaiser et al., 2012 and Wiedinmyer et al., 2011 to assess fire emission inventories of 

PM10 in upper Southeast Asia (e.g. Thailand, Myanmar, Vietnam etc.). Another study 

from Junpen, Garivait and Bonnet (2013) estimated emissions from forest fires in 

Thailand using MODIS active fire product and country specific data with the EFs of 

tropical forests as reported by Andrea and Merlet (2001). As shown in the previous 

section, the results obtained in this study are comparable with those calculated previously 

using these alternative emission factor sources. In order to improve emission inventory 
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development in Thailand, more studies need to be undertaken in Thailand, or South East 

Asia to measure emissions from key sources. 

5.5.2 Activity data  

The activity data used to estimate emissions in this study was obtained as far as possible 

from official government statistics. This study used Thai official data for specific sectors 

in energy sector from the Department of Alternative Energy Development and Efficiency 

(DEDE), Ministry of Energy, waste management such as solid waste generated and 

disposed that reported by the Pollution Control Department (PCD), Ministry of Natural 

Resources and Environment and transport sector from Department of Land Transport, 

Ministry of Transport. In some cases, in the absence of official Thai data, Thailand data 

from international databases was used to estimate activity in specific sectors. This 

includes data from the FAOSTAT database to represent activity in agriculture (livestock, 

crop production) and vegetation fires (annual area burned). In these latter cases the 

activity data for Thailand from these international databases should be improved through 

the provision of nationally-derived data, and/or comparison with measurement data. For 

example, satellite data on vegetation fires and crop residue burning could be used to 

validate the bottom-up activity data derived for these sources, as has been done previously 

in other regions.  

5.5.3 Baseline scenario 

The progression of emissions between 2010 and 2030 without the implementation of 

mitigation measures was assumed to develop based on a variety of assumptions, including 

expected changes in demographics (population) and socioeconomic development (GDP), 

the continuation of historical trends in energy intensity reductions, and on regional trend 

projections. Uncertainties associated with the baseline scenario include the use of an 

average GDP growth rate. In reality GDP may fluctuate and be higher or lower than the 

expected estimates, affecting the total emissions from Thailand in the future. Regional 

projections for different variables (such as livestock numbers and crop production) may 

not reflect the specifics of these sectors in Thailand. These uncertainties in the baseline 

scenario assumptions would not affect the conclusions of this analysis in terms of the 
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most effective mitigation measures that could be taken by Thailand to improve air quality, 

given that all mitigation measures are evaluated from a common baseline scenario.  

5.5.4 Air pollution health impact assessment 

The conversion of emissions of different pollutants to concentrations of PM2.5 that people 

are exposed to in this study relied on a set of coefficients developed using the GEOS-

Chem Adjoint model. They are ‘linear coefficients, which means that a change in 

emissions results in a linear increase/decrease in PM2.5 concentrations in the target 

country. This means that non-linear atmospheric chemistry, such as formation of 

secondary inorganic aerosol formation, is represented by a linear relationship. For 

moderate changes in emissions, this approach has been shown to provide a reasonably 

accurate estimate of PM2.5 concentrations from emissions of different pollutants (Xu et 

al., 2013; Henze, Seinfeld and Shindell, 2009; Henze et al., 2007). 

In addition, the representation of atmospheric chemistry in the atmospheric coefficients 

is at the scale of 2x 2.5 degrees. This means that atmospheric chemical processing at 

scales smaller than this are not represented within the modelling approach used to 

calculate PM2.5 concentrations, and that emissions within each 2 x 2.5 degree grid are 

assumed to result in the same change in PM2.5 concentrations across Thailand. The effect 

of grid size on air pollution health impact estimates has been assessed previously, and has 

been shown to affect results up to approximately 6% when grid squares are varied from 

12 km estimate at > 250 km resolution (Punger and West, 2013). 

Finally, the concentration-response function used to convert PM2.5 into health impacts, 

the Integrated Exposure Response (IER) function (Burnett et al., 2014), was derived by 

integrating epidemiological studies that quantify the relationship between PM2.5 exposure 

and risk of premature deaths from ambient PM2.5, household air pollution, secondhand 

smoke, and active smoking. Almost all of the studies of ambient air pollution were 

conducted in North America and Europe (with one study conducted in China). In these 

locations PM2.5 concentrations are typically lower than in Thailand, and therefore an 

assumption in application of this health impact assessment approach is that the same 

concentration-response function for European and North Americans applies to people in 

Thailand. A further assumption in applying this approach is that it is the overall mass of 

PM2.5 that affects health, and that PM2.5 of different composition has the same effect on 
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health. While there is evidence that some components differ in their toxicity, the WHO 

concluded (WHO, 2013) that the evidence was insufficient to attribute the health impact 

to any one PM2.5  component and that the PM2.5 mass concentration was the best metric 

to use for assessing health risks.   

5.6 Implications for reducing air pollution in Thailand  

Based on the analysis in this study current (2010) emission of air pollutants resulted in a 

population-weighted PM2.5 concentrations across Thailand of 28.5 µg m-3. This level of 

exposure was estimated to be associated with 22,378 number of premature deaths in 2010. 

The first implication from this study is that without the implementation of additional 

policies and measures, the expected socioeconomic development of Thailand (IE growth 

in population and GDP) will increase emissions of air pollutants, the concentrations that 

people exposed to and the health impacts associated with them.  

Thailand has developed plans and strategies in many of the key sectors that emit air 

pollutants. These include the energy efficiency plan, the renewable energy plan, plans to 

reduce burning of forest fires, power development plan and Thai roadmap for Euro 5/6 

standards. This analysis shows that the full implementation of the measures that are 

included in these plans are effective in reducing air pollution emissions, and will 

contribute to avoiding the expected increase in air pollution concentrations. However, 

these measures alone will not substantially reduce air pollution concentrations on average 

across Thailand below 2010 level. This means that after the full implementation of current 

plans PM2.5 concentrations will still substantially exceed the WHO air quality guideline 

and have significant impacts on cardiovascular and respiratory mortality. In addition, the 

health impacts from the same level of air pollution exposures are projected to increase 

due to the larger population in Thailand being exposed and due to an aging population 

(older people are more sensitive to cardiovascular and respiratory diseases).  

Therefore, in order to reduce air pollution and its health impacts further, Thailand needs 

to implement additional measures in key source sectors. After the implementation of all 

current plans there are still large emissions from industry, residential, agriculture, 

transport and waste. Further actions in these sectors could substantially reduce emissions 

of pollutants contributing to PM2.5 concentrations. Therefore, Thailand should consider 
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how action to reduce NOX emission from transport, NH3 emission from agriculture, and 

particulate (BC, OC) emission from industry and residential can be included in current plans.  

However, the reduction in emissions in Thailand from the additional actions in these 

sectors will not be enough to reduce population-weighted PM2.5 across Thailand below 

the WHO air quality guideline. This is because not only do emissions in Thailand 

contribute to PM2.5 concentrations that people in Thailand are exposed to but emissions 

from neighbouring countries and natural sources also contribute. In 2010 the contribution 

to PM2.5 concentrations in Thailand from neighbouring countries emission was estimated 

to be approximately one-third. This analysis focused only on reducing emissions from 

sources within Thailand and not action to reduce emissions from other countries. 

However, a key implication from this study is that regional action to reduce emissions 

across all countries in SEA is necessary for PM2.5 concentrations across Thailand to meet 

WHO guideline to protect human health. 

5.7 Conclusion  

The aim of this study was to apply a modelling framework to understand the link between 

emissions from different source sectors and geographic region (Thailand and 

neighbouring countries) and annual average PM2.5 concentration across Thailand. This 

framework was applied for historical years (2010 – 2017) and for future years projected 

from 2018 to 2030. These projections accessed a business as usual progression based on 

GDP and population growth as well as projections accounting for implementation of 

current government plans and policies and the implementation of the additional actions 

in key emission source sectors in Thailand.  

The findings from this study show that PM2.5 and its precursors emissions are projected 

to decrease by 2030 when key mitigation scenarios from difference source sectors are 

implemented. To improve air quality and to achieve low emissions of PM2.5 and PM2.5 

precursors, this study suggests implementing the appropriate mitigation measures to 

reduce PM2.5 and precursors emissions so that policy-making and pollution control 

authorities can tackle the air pollution problems related to different source sectors. The 

health benefits will be significant when the suggested measures are fully implemented to 

reduce PM2.5 concentration associated with health risk. 
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Chapter 6: Conclusions and  
Implications for Policy 

6.1 Introduction 

In Thailand, several measurement and modelling studies have been conducted previously 

that have provided information on the sources and spatial distribution of particulate 

matter (PM) air pollution (Punsompong and Chantara, 2018; Phayungwiwatthanakoon, 

2013; Ruanngern, 2012; Kim Oahn and Leelasakultum, 2011). For example, the major 

sources of particulate matter in Thailand come from different source sectors. During the 

dry season the Bangkok metropolitan region (February) and the Northern region of 

Thailand (March) have a large accumulation of air pollution every year. Generally, high 

levels of particulate matter occur in large cities with heavy traffic, and are associated with 

open burning activities, agriculture, and industrial areas. (PCD, 2019). However, as 

outlined in Chapter 1, many of these studies have focussed on a specific sub-region of 

Thailand (e.g. Bangkok, or northern Thailand), or on a particular time of the year, i.e. 

during the time when the short-term peak PM concentrations occur.  

Based on these previous studies, there are several limitations to the knowledge of PM and 

its variation across the whole of Thailand that this thesis has attempted to overcome. The 

focus of this thesis has been on the determinants of the annual average PM concentration 

that occurs in different areas of Thailand. While many studies have focused on the 

geographic and sectoral sources of short-term peak in PM, few studies have investigated 

how the annual average PM concentration is determined across the whole of Thailand, 

and what can be done to reduce annual average PM concentrations. This is despite the 

annual average PM concentration being the PM concentration metric that is most 

associated with negative effects on human health (because it is a proxy for long-term 

exposure to PM, in contrast to hourly or daily averages which represent short-term exposure).  
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Therefore, the core aim of this thesis was to investigate annual average PM across the 

whole of Thailand using measurement and modelling approaches to analyse: 

i) the magnitude of annual PM10 concentrations across Thailand, identifying those 

locations where concentrations were highest; 

ii) the variation in hourly PM concentrations that produce annual PM 

concentrations, and the drivers of this variation including different geographic 

and sectoral sources; and 

iii) to assess the options and strategies that Thailand could pursue to reduce annual 

average PM concentrations, and the health impacts associated with them.  

 

6.2 Key conclusions from study 

The key conclusions that are most important to highlight from this thesis relate to the 

exceedance of the Thai annual average PM standard, and WHO air quality guideline for 

annual average PM, and which draw on the results from multiple Chapters. The key 

conclusions are that: i) while biomass burning increases hourly PM10 concentrations in 

northern Thailand, this also causes the exceedance of the Thai national standard for 

annual average PM10, especially in Northern Thailand; ii) Thailand cannot meet the 

annual PM WHO guidelines alone, and cooperation to reduce the contribution from 

transboundary transport is needed to reduce PM to below these levels; and iii) additional 

actions on top of those included in Thailand’s current plans are required to reduce annual 

PM2.5 concentrations in the future.  

6.2.1 Key Conclusion 1: Biomass burning periods contribute to 

exceedance of Annual Thai national standard 

Biomass burning, i.e. the burning of crop residues in preparation for the new crop growing 

season, occurs during specific periods of the year. In Northern Thailand (and 

neighbouring countries such as Myanmar), the biomass burning period is centred on 

March, while further south (in Thailand and neighbouring countries such as Malaysia), 

the biomass burning period occurs during October (PCD, 2016).  
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The key implication from this study is that, in northern Thailand, not only does the 

biomass burning period during March result in short-term peaks in hourly or daily average 

PM10 concentrations, as shown in previous studies (see Chapter 3), it also makes a 

substantial contribution in determining the magnitude of annual average PM10 

concentrations in this region. Importantly, the additional contribution of biomass burning 

to annual average PM10 concentrations was shown to result in a larger number of 

exceedances of the Thai National Standard for annual average PM10 concentrations than 

in other regions of Thailand. This additional contribution of biomass burning to annual 

average PM10 also made northern Thailand the region with the highest annual average 

PM10 concentrations and the greatest exceedance of the WHO air quality guideline (on 

average across sites in the region, isolated sites in central Thailand had higher annual 

PM10 concentrations).  

This implication that biomass burning contributes to the exceedance of the Thai national 

annual average PM10 standard demonstrates clearly how the chemical climatology 

framework contributes to increasing the information that is gained from analysis of an air 

quality monitoring network. The standard set of ‘chemical climatology’ statistics calculated, 

consistently across all sites in northern Thailand over a 5-year study period provided multiple 

indicators demonstrating the substantial contribution that biomass burning made to 

determining the level of annual PM10 concentrations at sites across northern Thailand. Firstly, 

calculating the contribution of different months to annual average PM10 showed that March, 

when biomass burning occurs made a disproportionate contribution. Secondly, the highest 

hourly PM10 concentrations (>95th percentile) at sites in Northern Thailand, a) contributed 

approximately 20% to annual average PM10 concentrations, and b) occurred almost 

exclusively during the biomass burning periods. Finally, the calculation of these statistics 

over multiple years showed that during years in which previous studies have shown emissions 

from biomass burning to be substantially lower (2011, due to the influence of La Nina), 

showed that i) the magnitude of very high concentrations were lower, ii) they occurred less 

during March, and iii) their contribution to the annual average PM10 concentration was less, 

indicating a lower contribution of biomass burning to determining the annual average PM10 

concentration during this year. This coincided with no sites exceeding the Thai national 

standard for PM10 under these conditions. Therefore, this thesis demonstrates that actions that 

can reduce the level of biomass burning in northern Thailand could avoid exceedance of the 

Thai national standard on annual average PM10.  
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6.2.2 Key Conclusion 2: Reducing transboundary transport necessary 

to meet WHO annual PM guideline 

The analysis of monitoring data between 2011 and 2015 showed that all sites in Thailand 

exceeded the WHO guideline value for annual average PM10. The air pollution modelling 

conducted in Chapter 5 estimates that, as a population-weighted value, annual average 

PM2.5 concentrations were 3 times higher than the WHO air quality guideline for annual 

average PM2.5. A key conclusion from this study is that both measurement and modelling 

analyses indicate that there is a substantial contribution to annual average PM 

concentrations in Thailand that is determined by transboundary transport and emission 

sources outside of Thailand.  

The analysis of monitoring data, coupled with air mass back trajectory analysis, show an 

increase in hourly PM10 concentrations associated with air masses that spend more time 

over Myanmar (as well as northern Thailand) in the 4 days prior to arrival at sites in 

northern Thailand. As stated above, the very high concentrations associated with these 

conditions make a substantial contribution to annual PM10 concentrations, and to the 

exceedance of the Thai national standard. In addition, in southern Thailand, air mass back 

trajectory analysis shows that during certain times of the year air masses traversing 

Malaysia and Indonesia result in very high hourly PM10 concentrations occurring at sites 

in southern Thailand. This provides regionally specific information based on an analysis 

of actual measured concentrations. However, the coincidence of air masses pathways with 

elevated PM concentrations at measurement sites does not allow the percentage 

contribution of emissions, e.g. from biomass burning in Myanmar vs northern Thailand, 

to be determined.  

The modelling of population-weighted annual average PM2.5 concentrations across 

Thailand provides more information on the specific contribution of Thailand’s emissions 

compared to emissions in the rest of the world. In 2010, it was estimated that 35% of 

population-weighted PM2.5 concentrations resulted from emissions occurring outside of 

Thailand. When accounting for the reductions in PM2.5 and PM2.5-precursor emission 

achievable in Thailand, the modelling in Chapter 5 also showed that (and a population-

weighted average) annual PM2.5 concentrations across Thailand could not reduce below 

the WHO air quality guideline without reductions in emissions in neighbouring countries. 

While further work is required to disaggregate the sources, strategies and measures 
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needed to reduce emissions from sources outside Thailand that would most effectively 

reduce Thailand’s annual PM2.5 concentrations, the chemical climatology analysis of 

Thailand’s monitoring network shows that biomass burning in Myanmar could be a key 

external source.  

To prevent and monitor transboundary haze pollution in ASEAN countries, the ASEAN 

Agreement on Transboundary Haze Pollution  (AATHP) was established in 2002 under 

ASEAN member states, aimed to prevent and monitor transboundary haze pollution from 

land and/or forest fire with international co-operation in this region. Then in 2016 the 

ASEAN Agreement on Transboundary Haze-Free Roadmap was created with the aim of 

Transboundary Haze Pollution problem solving in ASEAN, aiming for a Haze-free 

ASEAN by 2020, as well as a collaboration with neighbouring countries for sustainable 

haze solution. This study shows that implementation of the ASEAN agreement and the 

haze free road map is essential to reduce population-weighted PM2.5 concentration across 

Thailand to meet WHO air quality guidelines, based on the modelling Chapter 5, and to 

reduce PM10 concentrations at sites in northern Thailand to comply with the national air 

quality  standards, based on the analysis in Chapter 3.  

6.2.3 Key Conclusion 3: Additional actions required to reduce annual 

PM in the future 

Key implication 2 implies that additional action is required in countries outside of 

Thailand to reduce annual average PM concentrations within Thailand. The third key 

implication is that within Thailand, additional actions are needed, on top of what the 

Government has already planned, to be able to reduce annual PM concentrations below 

their current levels.  

The assessment of monitoring data, as stated above, shows that there is exceedance of the 

Thai national standards for annual PM10 concentrations, and widespread exceedance of 

the WHO ambient air quality guideline for annual PM. The modelling in Chapter 5 

projected that the annual PM concentrations are likely to deteriorate further in the future 

without intervention to control emission sources, due to expected growth in population 

and the Thai economy.  
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In addition, the Thai government has outlined a series of plans, and policies that will affect 

emissions compared to this ‘business as usual’ projection such as a 20-year master plan for 

air quality management (2018-2037) that has been developed, which aims to reduce and 

control pollution emissions such as elevating the standards of exhaust for new vehicles with 

launch zero emission regulations, improvement in fuel qualities, adopt an eco-industrial 

system and green industrial standards, promote burn-less agricultural activities and set up 

air quality monitoring stations to cover all provinces across the country (PCD, 2019).  

Moreover, the Ministry of Natural Resources and Environment of Lao PDR and Thailand 

had a cooperation on natural resources and environment with plan of action on pollution 

control and supporting of air quality monitoring station to Lao PDR, including 

mobilization of mobile unit of air quality monitoring for neighboring countries such as 

Lao PDR, Myanmar and Cambodia. 

However, this study shows that the implementation of the government plans, and 

achievements of targets already set will only be sufficient to avoid the projected increase 

in population-weighted annual PM concentrations, keeping annual PM at its current 

concentrations. However, further interventions, in addition to those in existing plans, are 

required, within Thailand and outside of Thailand, to reduce population-weighted annual 

PM2.5 concentrations below their current level. Based on the analysis in Chapter 5, the 

additional actions that are most effective in reducing population-weighted PM2.5 further 

are ban crop burning with zero fraction burned in field by 2030 in agriculture sector, 

follow by replace traditional stove wood with clean fuel for cooking with zero people 

cook with traditional stove wood and vegetal wastes by 2030 and in residential sector, 

and zero waste burning by 2030 in waste sector. 
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6.3 Next steps and future work 

This thesis has shown that further statistical analysis of available air quality monitoring 

data can increase the information obtained on the geographic and sectoral sources 

determined key air pollution metrics (i.e. annual average PM10) relevant for human health. 

It has also demonstrated how combining analysis of monitoring data with modelling 

future changes in emissions in response to the implementation of different policies can 

be used to assess how the PM concentrations monitored today can be reduced. However, 

as described in Chapters 3, 4 and 5, there are limitations and uncertainties associated with 

both the monitoring, and modelling components of this thesis. Based on these limitations, 

as well as the key implications of this work, there are two key areas where additional 

work would build on the results of this thesis and extend the ability to: i) monitor and 

analyse the conditions producing annual PM concentrations in Thailand, especially in 

those locations that may exceed Thai national air quality standards; and ii) model and 

evaluate the most effective strategies to reduce PM across Thailand.  

6.3.1 Expansion of the air quality monitoring network in Thailand 

As outlined in Section 6.2.1, the calculation of a standard set of chemical climatology 

statistics at all monitoring sites across Thailand has increased the information on the 

determinants of annual average PM10 concentrations across Thailand. The composition 

of Thailand’s air quality monitoring network has several advantages that have facilitated 

this assessment. Firstly, there are monitoring sites in diverse regions of Thailand, 

allowing comparison between northern, southern and central Thailand. Secondly, data is 

monitored and published at hourly time resolution allowing hourly variation across the 

day (e.g. during rush hour and non-rush hour periods) to be assessed. However, there are 

also several limitations to the current air quality monitoring network, and areas where, if 

addressed, could substantially enhance the ability to analyse the conditions (geographic 

and source sector contributions, meteorological conditions, local vs long-range transport) 

producing annual average PM concentrations. These areas include:  

• Expand monitoring of PM2.5: Currently monitoring of PM2.5 occurs at sites located 

in Bangkok and some provinces, with PM10 concentrations monitored more 

widely across Thailand. This has meant that in this analysis of PM across Thailand 
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using monitoring data we have relied on PM10 for a consistent representation of 

PM measurements across Thailand. In terms of effects on human health, PM2.5 is 

the metric that is more strongly associated with negative health impacts (WHO, 

2013), even though concentrations of PM10 and PM2.5 are strongly correlated. 

Therefore, monitoring PM2.5 concentrations more widely would allow for a 

characterisation of the drivers of variation in annual concentrations of this more 

health-relevant pollutant metric to be assessed. 

• Expand monitoring to other site locations: Currently all of the sites monitoring 

PM in Thailand are located in cities, and their classification is separated between 

General and Roadside sites. This means that sites have not been located in other 

areas which could provide additional information on how annual PM varies 

spatially across Thailand, and the contribution of different sources and geographic 

regions. Firstly, roadside sites are only located in Bangkok. Having a larger 

number of roadside sites in other Thai cities would allow the annual PM increment 

at roadside sites in other locations to be determined, as well as the contribution of 

road transport as a source in these regions. Secondly, studies in Europe and 

elsewhere have compared the concentrations measured outside a city to those 

measured at sites in a city to assess the contribution of emissions in the city, and 

outside the city, to annual PM concentrations at different sites. This is not possible 

in Thailand due to a lack of rural monitoring stations. Adopting a site 

classification system similar to those used in Europe, in which sites are classified 

according to a combination of their area (urban, suburban and rural), and type 

(traffic, industrial and background) would allow for a broader range of conditions 

to be monitored and assessed, providing a more comprehensive overview of 

spatial variation in annual PM10 concentrations across Thailand.  

• Expand assessment of co-emitted and precursor pollutants: At monitoring sites 

across Thailand, PM10, and at some sites PM2.5 is measured alongside other 

pollutants, including NO2, SO2, VOCs, and ozone. Assessment of the correlation 

in variation between PM measurements and these other pollutants would allow 

additional information about sources of PM to be identified. 
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6.3.2 Enhancing air pollution modelling assessments at sub-national scale 

As well as enhancing the monitoring network and data analysis described in Section 6.3.1, 

the other future work that could substantially enhance the work that has been completed 

in this thesis is the further development of the modelling. Uncertainties and limitations 

of the modelling framework are highlighted in Chapter 5, and not repeated here. The 

further work proposed here is based on assessment of the monitoring data, which shows 

that there are different drivers, in terms of the contribution of different source sectors, 

and from local vs long-range transport in different regions of Thailand. To summarise, 

the different regions of Thailand analysed using the monitoring data showed the 

following characteristics:  

• Northern Thailand: widespread exceedance of Thai national standard with a 

substantial contribution from long-range transport of emissions from biomass 

burning.  

• Central Thailand and Bangkok: Isolated exceedances of Thai national standard 

driven by local sources such as industry and/or road transport emissions. 

• Southern Thailand: Lower annual average PM concentrations that still exceed 

WHO air quality guideline. Short-term peak concentrations driven by long-range 

transport during biomass burning season. Annual average concentrations driven 

by local sources.  

Despite these differences in the determinants of annual average PM concentrations based 

on the measurement, the modelling was conducted at a national scale, with the emission 

inventory developed as a national scale analysis, and annual PM2.5 concentrations 

quantified as a national population-weighted average. This allowed the effectiveness of 

current and additional policies on annual PM2.5 in Thailand as a whole to be evaluated, 

providing a national roadmap for how annual PM2.5 concentrations could be reduced. 

However, it does not allow greater detail on where specific policies, or actions in specific 

source sectors would be more or less effective in reducing PM2.5 concentrations. This 

additional information would be important so that a national set of policies and measures 

to improve air quality can be implemented in those regions where they will deliver the 

largest benefit.  
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The development of a regionally disaggregated analysis of emissions and PM2.5 

concentrations would therefore enhance the ability of the modelling framework applied 

in Chapter 5 to assess where in Thailand different action needs to be taken to effectively 

reduce PM2.5 concentrations. It would allow differences in the policies and actions that 

need to be taken in different regions to be identified. To do this would require a substantial 

increase in the availability of data. Specifically, the data required to develop an emission 

inventory for each region would need to be generated (or identified in those places, e.g. 

Bangkok, where it may already be available). For example, this would require energy 

consumption and production to be disaggregated to a regional level, which is not currently 

officially reported by the Ministry of Energy.   
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Chapter 2  



 

Table S1: The exposed population and baseline mortality rate for each age group and disease 
category in 2010 (GBD, 2017) 

Variable: Population: Activity Level (Million People) 
Scenario: Baseline 
Branch: Key\Demographics\Population 
Region: Region 1 
Branch 2010 
Population 67 
  
Variable: Population Fraction: Activity Level (fraction) 
Scenario: Baseline 
Branch: Key\Demographics\Population Fraction 
Region: Region 1 
Branch 2010 
Less than 5 years 0.0601 
Age 30 to 34 years 0.0809 
Age 35 to 39 years 0.0850 
Age 40 to 44 years 0.0870 
Age 45 to 49 years 0.0802 
Age 50 to 54 years 0.0714 
Age 55 to 59 years 0.0554 
Age 60 to 64 years 0.0404 
Age 65 to 69 years 0.0307 
Age 70 to 74 years 0.0249 
Age 75 to 79 years 0.0171 
More than 80 years 0.0163 
  
Variable: Less than 5 years: Activity Level (rate) 
Scenario: Baseline 
Branch: Key\Disease Rates\ALRI Disease Rate 
Region: Region 1 
Branch 2010 
Less than 5 years 0.0002 
  
Variable: Lung Cancer Rate: Activity Level (rate) 
Scenario: Baseline 
Branch: Key\Disease Rates\Lung Cancer Rate 
Region: Region 1 
Branch 2010 
Age 30 to 34 years 0.00002 
Age 35 to 39 years 0.00004 
Age 40 to 44 years 0.00008 



 

Age 45 to 49 years 0.00016 
Age 50 to 54 years 0.00028 
Age 55 to 59 years 0.00045 
Age 60 to 64 years 0.00076 
Age 65 to 69 years 0.00117 
Age 70 to 74 years 0.00158 
Age 75 to 79 years 0.00222 
More than 80 years 0.00315 
 
Variable: Stroke Rate: Activity Level (rate) 
Scenario: Baseline 
Branch: Key\Disease Rates\Stroke Rate 
Region: Region 1 
Branch 2010 
Age 30 to 34 years 0.0001 
Age 35 to 39 years 0.0001 
Age 40 to 44 years 0.0002 
Age 45 to 49 years 0.0003 
Age 50 to 54 years 0.0005 
Age 55 to 59 years 0.0007 
Age 60 to 64 years 0.0010 
Age 65 to 69 years 0.0015 
Age 70 to 74 years 0.0024 
Age 75 to 79 years 0.0038 
More than 80 years 0.0091 
  
Variable: COPD Rate: Activity Level (rate) 
Scenario: Baseline 
Branch: Key\Disease Rates\COPD Rate 
Region: Region 1 
Branch 2010 
Age 30 to 34 years 0.00003 
Age 35 to 39 years 0.00005 
Age 40 to 44 years 0.00006 
Age 45 to 49 years 0.00009 
Age 50 to 54 years 0.00013 
Age 55 to 59 years 0.00023 
Age 60 to 64 years 0.00045 
Age 65 to 69 years 0.00082 
Age 70 to 74 years 0.00163 
Age 75 to 79 years 0.00278 
More than 80 years 0.00680 



 

Variable: Ischaemic Heart Disease Rate: Activity Level (rate) 
Scenario: Baseline 
Branch: Key\Disease Rates\Ischaemic Heart Disease Rate 
Region: Region 1 
Branch 2010 
Age 30 to 34 years 0.0001 
Age 35 to 39 years 0.0001 
Age 40 to 44 years 0.0002 
Age 45 to 49 years 0.0003 
Age 50 to 54 years 0.0005 
Age 55 to 59 years 0.0007 
Age 60 to 64 years 0.0011 
Age 65 to 69 years 0.0018 
Age 70 to 74 years 0.0031 
Age 75 to 79 years 0.0054 
More than 80 years 0.0133 

 

  



 

Table S2: Percentage of hours when hourly PM10 concentrations were below the limit of 

detection across all sites between 2011 and 2015 

Site Region Province Category 
% Lower detection limit of 
PM10 concentration in hour  

( < 4.8 μg m-3) 
1 Central Bangkok General Site 1.7 

2 Central Bangkok General Site 0.5 
3 Central Bangkok General Site 1.8 
4 Central Bangkok General Site 1.3 
5 Central Bangkok General Site 0.6 

6 Central Bangkok General Site 2.2 
7 Central Bangkok General Site 0.7 
8 Central Bangkok General Site 0.5 
9 Central Bangkok General Site 2.3 

17 Central Bangkok General Site 2.1 
18 Central Bangkok General Site 1.9 
10 Central Bangkok Roadside Site 0.1 
11 Central Bangkok Roadside Site 0.05 

12 Central Bangkok Roadside Site 0.01 
13 Central Bangkok Roadside Site 0 
14 Central Bangkok Roadside Site 1.6 
15 Central Bangkok Roadside Site 4.7 

16 Central Bangkok Roadside Site 0.9 
19 Central Nonthaburi General Site 1.6 
20 Central Nonthaburi General Site 3.8 
21 Central Pathumthani General Site 2.0 

22 Central Samut Prakan General Site 1.2 
23 Central Samut Prakan General Site 0.2 
24 Central Samut Prakan General Site 1.3 
25 Central Samut Prakan General Site 0.03 

26 Central Samut Prakan General Site 1.4 
27 Central Samut Sakhon General Site 3.0 
28 Central Samut Sakhon General Site 0.5 
29 Central Samut Sakhon General Site 5.0 

47 Central Ratchaburi General Site 1.1 
48 Central Ratchaburi General Site 6.8 
49 Central Saraburi General Site 0.1 
50 Central Saraburi General Site 2.8 

51 Central Phra Nakhon Si Ayutthaya General Site 0.8 
52 East Chachoengsao General Site 2.7 
53 East Chachoengsao General Site 5.0 
54 East Chon buri General Site 0.4 

55 East Chon buri General Site 0.2 
56 East Chon buri General Site 14.2 
57 East Chon buri General Site 1.2 
58 East Chon buri General Site 8.6 



 

Site Region Province Category 
% Lower detection limit of 
PM10 concentration in hour  

( < 4.8 μg m-3) 
59 East Rayong General Site 1.2 
60 East Rayong General Site 1.2 
61 East Rayong General Site 1.9 

62 East Rayong General Site 1.0 
64 East Rayong General Site 0.8 
65 East Rayong General Site 2.7 
66 East Sa Kaeo General Site 2.9 

67 Northeast Khon Kaen General Site 0.5 
68 Northeast Khon Kaen General Site 1.6 
69 Northeast Nakhon Ratchasima General Site 0.5 
71 Northeast Loei General Site 3.3 

72 South Narathiwat General Site 0.4 
73 South Phuket General Site 2.5 
74 South  Yala General Site 1.4 
75 South Songkhla General Site 0.2 

76 South Surat Thani General Site 0.2 
30 North Chiang Rai General Site 1.9 
31 North Chiang Rai General Site 3.9 
32 North Chiang Mai General Site 0.7 

33 North Chiang Mai General Site 0.9 
34 North Nakhon Sawan General Site 0.5 
35 North Nakhon Sawan General Site 5.2 
36 North Nan General Site 2.1 

37 North Nan General Site 4.4 
38 North  Phayao General Site 6.4 
39 North Phrae General Site 0.3 
40 North Maehongson General Site 5.4 

41 North Lampang General Site 1.4 
43 North Lampang General Site 3.8 
44 North Lampang General Site 6.7 
45 North Lampang General Site 0.6 

46 North Lamphun General Site 2.9    
% Average 2.1 



Table S3:  The PM10 data capture (%) from each monitoring site for annual average and individual months between 2011 and 2015 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Site 1 Central 

(Bangkok) 

General Site 2011 72 78 95 27 - - 96 91 98 98 95 96 92 

2012 91 58 95 93 88 92 94 94 96 95 97 96 93 

2013 91 90 90 89 84 91 94 89 93 94 93 93 87 

2014 75 99 69 84 95 92 92 94 95 63 83 37 - 

2015 71 - - - 70 100 100 100 99 99 88 88 98 

Site 2 Central 

(Bangkok) 

General Site 2011 36 95 74 98 96 65 8 - - - - - - 

2012 23 - 63 81 73 62 - - - - - - - 

2013 88 40 96 99 93 97 71 91 96 100 81 97 94 

2014 95 99 100 95 100 75 100 81 100 97 90 100 100 

2015 89 99 94 100 68 98 54 98 96 69 98 100 89 

Site 3 Central 

(

B

a

n

g

k

o

k

) 

General Site 2015 72 - - - 68 94 97 99 100 98 100 100 99 

Site 4 Central  

(Bangkok) 

General Site 2011 28 69 - 9 - - - 32 57 86 85 - - 

2012 62 - 36 27 - 9 84 94 100 100 96 98 99 

2013 81 91 93 60 100 99 90 78 91 73 88 60 49 

2014 78 29 44 91 93 86 99 88 58 59 85 97 99 

2015 55 33 - - - 17 47 63 99 99 100 100 99 

Site 5 Central  

(Bangkok) 

General Site 2011 37 100 98 97 76 77 - - - - - - - 

2012 37 - - - - - - - 44 100 100 99 95 

2013 92 99 65 83 99 97 98 98 70 98 99 100 99 

2014 81 99 86 30 100 100 100 100 90 100 100 71 - 

Site 6 Central  General Site 2011 96 100 99 100 100 100 99 99 98 99 99 65 100 

2012 99 99 100 99 99 99 100 99 100 100 100 100 97 

2013 50 100 100 100 100 21 - - - - - 81 100 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
(Bangkok) 2014 93 97 81 99 92 95 81 100 100 78 98 100 100 

2015 98 100 97 100 100 100 98 94 99 100 88 99 100 

Site 7 Central  

(Bangkok) 

General Site 2011 88 100 100 90 93 96 11 79 99 99 97 100 86 

2012 95 82 90 99 98 96 98 98 98 97 100 100 82 

2013 95 94 91 100 100 100 100 100 97 100 100 100 58 

2014 93 93 98 93 91 98 99 100 100 100 98 96 52 

2015 80 30 38 100 99 96 49 60 98 99 86 100 99 

Site 8 Central  

(Bangkok) 

General Site 2011 27 100 100 32 99 4 - - - - - - - 

2013 92 40 96 92 97 100 100 97 100 93 100 90 100 

2014 98 96 100 95 100 97 99 100 97 98 97 100 97 

2015 86 100 100 72 100 89 100 71 100 100 100 52 56 

Site 9 Central  

(Bangkok) 

General Site 2011 68 100 100 100 100 99 100 98 63 47 13 - - 

2012 54 19 - 57 68 53 - - 48 100 99 100 100 

2013 99 89 100 100 99 99 99 100 100 100 100 100 100 

2014 81 3 15 100 100 100 67 100 100 100 100 83 97 

2015 91 100 100 100 99 100 100 100 100 100 100 98 - 

Site 10 Central  

(Bangkok) 

Roadside Site 2011 78 81 98 65 64 32 82 97 99 97 91 98 37 

2012 67 81 78 51 - - 56 99 94 92 82 83 81 

2013 61 80 97 67 61 83 70 34 27 59 26 97 35 

2014 85 - 78 83 94 99 87 100 86 99 94 99 99 

2015 19 96 99 38 - - - - - - - - - 

Site 11 Central  

(Bangkok) 

Roadside Site 2011 70 88 95 90 43 65 78 74 99 52 98 26 31 

2012 50 43 100 38 31 32 - - 22 85 99 74 79 

2013 71 99 99 95 70 67 32 94 80 91 98 32 - 

2014 72 - 28 

 
 
  

53 74 67 98 97 86 99 75 99 82 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2015 69 30 74 96 38 96 75 99 99 84 99 36 - 

Site 12 Central  

(Bangkok) 

Roadside Site 2011 97 100 98 100 100 100 100 100 85 100 89 99 99 

2012 88 81 100 73 94 45 75 100 100 100 100 93 100 

2013 93 99 100 100 78 99 89 100 96 76 83 100 99 

2014 87 50 79 100 85 99 93 100 100 100 98 85 60 

2015 41 82 98 68 100 74 72 - - - - - - 

Site 13 Central 

(

B

a

n

g

k

o

k

) 

Roadside Site 2012 67 54 77 - - 78 76 92 90 92 67 89 92 

Site 14 Central  

(Bangkok) 

Roadside Site 2011 77 100 100 100 100 100 100 100 100 100 13 2 8 

2012 75 99 5 73 18 40 100 92 81 91 93 98 100 

2013 70 99 97 99 91 88 99 56 98 67 - 19 36 

2014 74 14 27 88 98 85 86 100 100 98 78 62 54 

2015 98 82 100 100 100 100 100 99 100 100 100 100 100 

Site 15 Central 

 (Bangkok) 

Roadside Site 2011 85 100 100 92 64 100 100 87 100 100 57 18 100 

2012 71 84 97 95 82 14 - - 77 100 100 100 100 

2013 95 100 90 100 100 100 100 100 100 88 99 100 66 

2014 94 99 99 99 99 79 88 100 88 100 100 98 85 

2015 58 100 99 100 100 100 100 37 - - - 68 - 

Site 16 Central  

(Bangkok) 

Roadside Site 2011 83 37 100 99 100 99 61 50 99 90 72 96 97 

2012 94 100 91 99 75 98 99 100 69 99 99 97 99 

2013 98 96 92 100 99 97 100 99 100 99 100 100 97 

2014 93 40 100 98 99 98 95 100 94 100 100 99 99 

2015 99 100 99 100 100 100 98 88 100 100 99 100 100 

Site 17 Central  General Site 2011 25 95 41 46 - - - 49 - 48 23 - - 

2012 63 - - - - 72 93 100 91 100 100 100 96 

2013 87 98 89 89 99 88 77 86 96 83 97 74 70 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
(Bangkok) 2014 51 100 80 - - - - - 48 100 94 94 100 

2015 99 98 100 100 96 100 100 100 99 99 100 100 100 

Site 18 Central  

(Bangkok) 

General Site 2011 48 99 99 99 97 98 91 - - - - - - 

2012 47 - - - - - - 90 83 97 95 100 100 

2013 95 100 100 100 100 99 100 88 94 77 99 91 99 

2014 97 99 98 89 99 98 98 98 99 82 100 100 100 

2015 89 99 92 100 4 NA NA NA NA NA NA NA NA 

Site 19 Central General Site 2011 86 100 98 100 99 100 100 100 100 100 40 1 96 

2012 96 100 100 100 100 99 99 98 82 99 99 100 76 

2013 91 79 100 100 99 98 98 99 97 52 90 87 99 

2014 91 76 85 90 94 91 93 94 94 96 97 98 81 

2015 86 99 98 97 83 42 88 94 54 87 97 96 99 

Site 20 Central General Site 2011 99 100 99 98 98 99 98 100 100 99 98 100 99 

2012 85 99 90 97 98 94 97 70 95 93 97 88 - 

2013 91 42 93 100 99 91 96 89 97 93 94 97 100 

2014 87 99 89 91 100 77 77 71 50 93 96 99 99 

2015 45 81 100 89 95 61 21 - - - - - 92 

Site 21 Central General Site 2011 75 94 100 86 95 99 99 93 99 98 35 - - 

2012 41 - - - - - - - 98 98 98 99 96 

2013 94 99 94 99 96 94 88 96 95 88 91 100 92 

2014 94 88 95 94 89 97 98 86 96 96 94 99 94 

2015 73 93 100 99 68 90 88 64 59 91 96 36 - 

Site 22 Central General Site 2011 86 63 67 96 99 92 92 90 87 99 97 44 100 

2012 91 86 79 93 99 79 100 99 88 95 89 95 94 

2013 79 91 79 

 
 
  

75 77 68 97 70 29 99 91 72 98 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2014 72 97 94 48 67 97 100 93 78 99 79 14 - 

Site 23 Central General Site 2011 75 100 38 42 78 100 94 91 93 100 33 31 94 

2012 91 100 83 87 64 97 100 100 91 84 99 96 88 

2013 92 85 100 100 83 100 99 100 75 93 80 91 100 

2014 97 95 100 91 100 90 87 100 100 100 100 100 100 

2015 84 94 98 92 88 94 77 100 100 95 91 78 - 

Site 24 Central General Site 2011 86 100 99 99 99 98 98 98 95 96 35 19 100 

2012 98 98 96 95 94 97 98 100 100 100 100 99 99 

2013 98 90 95 100 100 99 99 99 99 100 100 100 100 

2014 99 100 100 100 100 95 100 100 100 100 100 100 100 

2015 100 100 100 100 99 100 100 100 100 99 100 99 100 

Site 25 Central General Site 2011 85 100 100 100 84 92 90 100 97 100 40 28 91 

2012 96 84 77 100 100 99 100 100 100 96 100 95 100 

2013 95 86 100 98 97 99 87 97 94 95 93 99 90 

2014 93 92 99 99 100 86 99 92 100 100 88 100 64 

2015 95 100 99 99 100 69 100 96 79 100 100 100 100 

Site 26 Central General Site 2011 87 100 100 99 98 99 97 95 92 99 40 24 100 

2012 96 99 99 70 95 99 98 99 98 98 100 99 100 

2013 96 93 99 87 88 98 99 95 100 99 99 100 100 

2014 99 100 99 98 100 98 98 99 99 99 100 99 99 

2015 78 100 98 95 49 78 100 99 99 98 93 - 30 

Site 27 Central General Site 2011 84 96 99 100 98 100 99 100 97 97 73 - 49 

2012 51 98 100 99 98 98 99 27 - - - - - 

2013 89 42 100 91 79 91 98 95 90 93 97 97 98 

2014 93 85 100 96 100 80 84 99 86 95 94 100 100 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2015 82 100 100 80 100 100 97 76 62 84 77 76 33 

Site 28 Central General Site 2013 99 NA NA NA NA NA NA NA NA NA 99 100 99 

2014 97 99 100 96 96 100 96 99 100 96 100 88 99 

2015 91 98 87 100 95 100 100 93 100 99 96 92 36 

Site 29 Central General Site 2011 90 99 99 99 99 97 97 95 96 94 80 21 100 

2012 85 99 99 98 99 99 99 100 100 32 36 63 96 

2013 61 100 98 31 99 100 100 27 - - NA NA NA 

Site 30 North General Site 2011 99 100 100 100 99 100 100 99 98 99 88 100 100 

2012 98 100 100 99 100 99 99 80 99 99 99 99 100 

2013 94 99 95 98 100 61 98 99 100 91 87 98 99 

2014 96 100 99 96 90 93 99 92 94 96 100 98 90 

2015 91 100 100 99 98 95 99 97 97 80 65 69 97 

Site 31 North General Site 2011 43 - - - - - - 40 91 98 96 95 97 

2012 81 99 100 98 98 95 85 79 84 55 - 90 96 

2013 85 81 78 81 91 100 95 27 75 95 100 98 99 

2014 92 100 100 100 100 85 84 88 79 84 95 96 96 

2015 68 89 100 99 98 93 46 24 - 4 65 100 99 

Site 32 North General Site 2011 95 95 91 94 84 99 100 81 95 100 100 100 100 

2012 96 99 83 92 86 99 99 100 100 100 90 100 99 

2013 99 100 93 99 98 99 100 100 100 99 100 100 100 

2014 98 100 99 97 91 100 100 100 99 100 100 100 92 

2015 99 100 100 100 100 99 99 97 100 100 100 100 96 

Site 33 North General Site 2011 97 100 100 99 98 86 99 100 100 100 100 83 100 

2012 95 100 100 99 100 67 100 99 99 99 100 89 93 

2013 98 98 100 98 93 99 98 100 99 99 99 100 86 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2014 92 100 100 96 98 98 99 92 38 90 97 100 100 

2015 98 100 100 100 98 97 93 99 97 100 99 99 98 

Site 34 North General Site 2013 91 42 95 96 99 99 96 99 90 81 98 96 98 

2014 96 99 99 92 97 93 99 91 99 99 100 93 92 

2015 91 99 99 100 99 81 95 97 94 71 99 54 100 

Site 35 North General Site 2011 79 76 100 54 99 98 97 93 99 98 34 3 100 

2012 85 93 90 95 90 90 91 92 97 96 96 93 - 

Site 36 North General Site 2011 96 100 100 100 55 99 99 99 99 99 99 100 99 

2012 99 100 99 100 100 99 99 98 99 99 99 100 100 

2013 90 100 78 97 98 98 99 99 93 89 94 100 35 

2014 95 54 96 100 99 100 100 99 98 99 99 100 99 

2015 98 99 99 99 100 100 88 100 99 98 100 99 99 

Site 37 North General Site 2015 98 NA NA NA NA NA 100 97 98 99 99 99 98 

Site 38 North General Site 2011 92 95 90 87 96 75 95 99 76 89 100 100 100 

2012 78 100 100 91 75 100 93 100 82 - 61 72 64 

2013 91 97 94 98 89 100 91 98 100 41 90 90 98 

2014 96 100 86 100 99 98 85 97 100 100 100 100 86 

2015 98 100 100 99 100 100 100 100 85 98 100 100 94 

Site 39 North General Site 2011 95 89 99 85 93 100 100 99 93 91 99 96 98 

2012 77 98 92 95 86 94 73 45 43 62 42 100 98 

2013 99 94 98 100 100 100 100 96 100 100 100 95 100 

2014 91 59 99 98 99 98 88 79 98 100 100 100 76 

2015 88 86 97 98 99 99 92 100 89 100 100 67 29 

Site 40 North General Site 2011 99 100 100 100 98 99 99 98 97 97 99 99 100 

2012 94 100 100 98 72 81 97 97 94 94 98 93 99 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2013 89 99 99 95 90 77 92 94 82 69 82 97 99 

2014 98 100 96 99 95 99 96 98 99 96 95 96 100 

2015 72 100 95 95 96 81 95 68 87 - 13 93 42 

Site 41 North General Site 2013 91 38 95 96 89 97 97 100 99 94 100 95 98 

2014 93 99 99 99 90 79 97 97 98 97 91 78 97 

2015 96 97 100 97 97 96 97 96 81 99 100 100 99 

Site 43 North General Site 2011 85 99 90 95 90 75 8 77 99 98 95 98 99 

2012 91 99 88 95 78 93 90 88 92 91 93 90 93 

2013 80 92 93 94 94 50 88 81 78 75 70 83 65 

2014 93 94 99 93 83 95 95 93 93 83 94 97 98 

2015 90 98 94 97 96 91 91 94 92 43 96 98 91 

Site 44 North General Site 2011 87 99 35 81 98 95 93 92 90 92 83 97 91 

2012 83 82 100 91 98 99 99 99 55 5 80 96 92 

2013 86 98 75 100 94 86 20 91 91 87 97 94 98 

2014 49 68 - - - - - 23 99 97 100 99 100 

2015 98 100 100 100 100 96 98 99 94 97 96 98 96 

Site 45 North General Site 2011 89 85 43 100 99 97 89 75 97 89 98 94 96 

2012 94 95 99 100 98 99 99 90 93 72 96 85 98 

2013 54 98 99 91 99 84 24 - - - - 76 85 

2014 94 97 90 96 97 98 97 99 87 80 98 96 97 

2015 93 84 99 98 85 71 96 99 99 98 92 96 97 

Site 46 North General Site 2011 99 99 100 100 100 99 99 98 99 99 98 100 99 

2012 97 100 100 100 100 99 99 96 98 97 94 84 100 

2013 98 100 100 98 100 98 95 97 98 98 99 100 100 

2014 99 100 93 100 98 99 99 99 99 98 98 100 100 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2015 87 100 98 99 98 99 95 98 56 - 97 100 99 

Site 47 Central General Site 2014 99 NA NA NA NA NA NA NA 95 100 100 99 99 

2015 96 82 100 97 99 100 99 96 99 99 89 98 98 

Site 48 Central General Site 2011 95 95 74 100 99 98 96 96 92 90 93 100 100 

2012 90 97 98 97 98 94 84 94 74 51 99 99 100 

2013 79 83 99 98 96 97 61 70 49 97 46 60 100 

2014 63 100 58 45 99 53 100 33 - NA NA NA NA 

Site 49 Central General Site 2011 95 100 100 79 99 100 99 93 77 99 100 100 100 

2012 98 100 99 99 88 99 99 100 100 100 99 99 100 

2013 94 100 56 99 100 100 99 96 100 99 99 83 100 

2014 98 100 100 95 95 99 99 97 89 100 100 100 99 

2015 96 99 98 97 100 100 84 100 94 97 97 96 94 

Site 50 Central General Site 2011 85 87 54 47 78 84 87 83 100 100 99 100 99 

2012 89 100 93 100 77 11 92 98 94 100 100 100 100 

2013 96 62 100 100 100 100 100 97 100 100 100 100 100 

2014 93 100 100 100 82 98 96 100 100 100 100 75 62 

2015 95 100 99 88 71 99 93 100 100 100 100 100 95 

Site 51 Central General Site 2011 76 100 100 100 99 100 98 97 98 97 23 - - 

2013 93 42 98 100 97 99 99 88 99 100 100 96 95 

2014 98 99 100 100 97 97 91 98 99 98 100 96 98 

2015 87 98 100 96 100 99 68 33 98 91 99 59 99 

Site 52 East General Site 2014 100 NA NA NA NA NA NA NA NA 99 100 100 100 

2015 95 100 100 100 100 98 85 97 92 95 100 86 90 

Site 53 East General Site 2011 93 100 99 99 96 62 89 94 94 88 92 99 100 

2012 89 98 99 98 88 90 100 96 90 91 68 51 96 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2013 78 97 97 94 83 91 58 80 36 90 99 59 55 

2014 89 100 75 96 100 98 98 98 59 - NA NA NA 

Site 54 East General Site 2011 87 75 41 97 100 100 99 94 90 97 64 86 99 

2012 84 75 26 95 94 100 88 98 98 97 74 84 80 

2013 71 82 60 35 7 85 34 91 100 100 100 100 51 

2014 79 35 88 92 99 100 86 99 100 98 91 59 2 

2015 70 - - - 71 94 91 100 99 93 97 98 96 

Site 55 East General Site 2013 98 NA NA NA NA NA NA NA NA 100 98 99 97 

2014 98 93 95 98 99 99 98 99 97 100 100 100 100 

2015 99 98 99 99 99 97 100 99 99 100 100 94 99 

Site 56 East General Site 2011 92 98 100 54 99 92 98 90 96 90 99 100 91 

2012 91 84 61 91 84 88 95 98 98 97 97 98 97 

2013 82 97 97 97 78 95 95 88 91 - NA NA NA 

Site 57 East General Site 2015 96 NA NA NA 70 100 99 100 99 98 100 100 99 

Site 58 East General Site 2011 94 100 92 66 100 100 98 100 100 98 89 98 93 

2012 93 100 100 64 100 100 98 99 99 97 99 83 81 

2013 78 95 72 81 96 100 96 92 97 82 45 61 26 

2014 79 12 30 81 84 78 84 88 99 100 97 94 99 

2015 71 100 100 39 - NA NA NA NA NA NA NA NA 

Site 59 East General Site 2014 100 NA NA NA NA NA NA 100 100 100 100 100 100 

2015 99 100 100 100 100 96 100 94 96 98 100 100 100 

Site 60 East General Site 2011 94 88 100 99 89 81 79 97 97 98 99 99 100 

2012 81 46 55 42 71 82 99 98 99 100 93 91 98 

2013 85 79 86 76 98 94 92 97 99 98 95 69 43 

2014 72 92 97 63 72 47 68 67 NA NA NA NA NA 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Site 61 East General Site 2011 88 100 100 100 100 74 89 96 90 93 80 83 55 

2012 88 99 89 82 93 100 100 86 69 82 75 96 80 

2013 74 76 90 100 76 91 85 70 83 46 87 47 41 

2014 97 100 99 99 92 99 89 100 99 97 100 100 84 

2015 96 100 96 99 100 96 97 100 100 99 96 92 72 

Site 62 East General Site 2011 43 - - - - - - 72 100 95 98 94 56 

2012 97 78 99 100 98 100 99 98 99 99 99 97 98 

2013 95 100 91 99 99 99 97 99 98 100 100 99 65 

2014 90 5 100 100 97 94 100 100 97 99 96 99 100 

2015 87 98 100 98 98 97 98 93 92 80 92 72 23 

Site 64 East General Site 2011 75 49 58 78 93 71 75 46 91 98 62 100 80 

2012 89 99 68 100 79 92 92 100 100 78 72 86 100 

2013 87 80 100 97 94 76 72 92 77 68 96 92 99 

2014 88 100 80 58 60 86 81 100 98 99 97 100 99 

2015 86 99 99 100 84 95 81 92 97 92 98 81 15 

Site 65 East General Site 2011 15 - - - - - - - - - - 76 100 

2012 98 99 97 99 99 94 93 99 98 99 99 99 99 

2013 98 99 99 95 97 99 99 99 98 96 98 98 99 

2014 94 98 99 98 92 94 96 97 98 96 82 95 80 

2015 86 99 90 97 94 92 88 93 89 68 63 57 96 

Site 66 East General Site 2011 42 - - - - - 9 60 76 72 88 99 100 

2012 80 65 84 97 77 61 44 85 83 72 95 99 99 

2013 84 95 99 48 25 82 77 94 96 96 99 100 100 

2014 98 91 91 100 99 100 99 99 99 100 100 100 100 

2015 97 100 100 100 100 99 100 100 98 95 94 99 78 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Site 67 Northeast General Site 2013 89 NA NA NA NA NA NA NA NA NA 96 95 77 

2014 93 89 100 100 81 100 99 100 100 100 51 99 100 

2015 95 100 100 99 100 100 99 100 95 95 93 93 66 

Site 68 Northeast General Site 2011 86 88 31 99 44 99 100 99 99 91 76 100 100 

2012 91 81 100 100 83 94 99 99 99 97 77 59 100 

2013 78 98 100 99 67 25 97 93 34 88 NA NA NA 

Site 69 Northeast General Site 2011 97 93 100 100 99 77 100 100 100 100 100 100 99 

2012 98 99 98 99 100 99 96 85 99 100 100 100 100 

2013 62 100 100 100 21 28 94 47 30 40 28 82 72 

2014 89 69 100 100 99 100 99 92 100 99 100 100 17 

2015 81 34 81 20 73 99 99 99 66 99 100 100 100 

Site 71 Northeast General Site 2011 39 - - - - - - 53 87 35 86 99 100 

2012 74 75 96 78 99 99 48 61 88 88 96 55 1 

2013 66 100 67 6 83 64 52 85 88 35 89 98 27 

2014 52 - - 31 29 - 53 99 99 90 81 31 99 

2015 88 80 57 21 99 100 99 100 99 100 100 100 100 

Site 72 South General Site 2011 86 82 100 99 52 71 79 99 100 81 98 67 100 

2012 87 82 96 89 84 76 83 98 99 46 100 100 92 

2013 92 100 82 95 71 98 100 99 85 100 83 99 92 

2014 94 56 98 98 96 98 96 98 99 98 99 99 97 

2015 99 99 100 100 99 99 99 99 99 98 99 98 98 

Site 73 South General Site 2011 86 100 79 52 99 94 100 98 97 98 84 98 39 

2012 92 96 70 72 99 99 99 98 93 81 99 96 99 

2013 96 96 99 83 95 99 99 100 100 99 98 91 90 

2014 90 46 87 100 100 99 100 99 97 87 94 89 84 



 

Site Region Category Year Annual Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2015 72 98 74 66 47 96 13 70 98 94 97 57 51 

Site 74 South General Site 2011 81 61 44 74 78 95 91 88 64 89 97 100 85 

2012 81 79 47 31 85 96 100 89 97 86 97 90 77 

2013 91 84 92 100 82 99 90 89 100 96 100 99 67 

2014 80 - 48 86 98 100 85 99 96 87 58 99 99 

2015 94 100 93 100 91 91 100 90 99 97 96 97 71 

Site 75 South General Site 2011 88 69 70 83 100 99 100 100 93 94 83 71 92 

2012 93 97 70 69 100 98 99 97 99 98 96 90 98 

2013 88 89 97 28 94 100 97 100 89 93 95 97 73 

2014 94 81 97 99 80 100 100 100 97 99 96 75 100 

2015 78 91 99 91 40 7 93 98 75 99 97 84 66 

Site 76 South General Site 2013 88 42 99 85 100 96 97 89 80 100 87 100 90 

2014 89 100 100 100 99 98 97 70 43 83 97 78 99 

2015 62 66 100 67 69 25 82 84 36 100 96 - 25 

 
  



 

Table S4:  The PM10 data capture (%) from each monitoring site for annual average and each hour between 2011 and 2015 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Site 1 Central 
(Bangkok) 

General 
Site 2011 72 70 72 71 71 73 74 73 74 71 71 71 70 69 71 70 72 73 73 72 73 73 73 73 73 

2012 91 92 92 91 90 92 93 95 93 89 85 87 88 89 89 88 88 89 91 93 92 94 94 92 95 

2013 91 90 94 88 90 93 96 92 91 92 74 82 90 91 92 88 89 93 92 92 93 91 95 93 93 

2014 75 74 77 78 77 78 76 75 73 74 69 74 74 74 77 77 73 73 77 74 76 77 72 78 78 

2015 71 72 72 73 73 73 73 73 73 72 60 60 65 70 71 71 71 71 71 72 72 73 72 71 72 

Site 2 Central 
(Bangkok) 

General 
Site 2011 36 36 37 37 36 36 37 36 36 35 35 35 35 36 36 36 36 35 35 36 36 36 36 36 36 

2012 23 23 23 23 23 23 23 23 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 

2013 88 88 87 88 87 87 87 87 87 87 88 87 88 88 88 88 87 87 87 88 88 88 89 88 88 

2014 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 94 95 95 94 95 95 95 95 95 95 

2015 89 90 89 89 88 89 89 89 89 89 89 89 89 90 88 87 86 88 89 90 90 90 90 90 90 

Site 3 Central 
(Bangkok) 

General 
Site 2015 72 72 72 72 71 70 71 72 72 72 72 70 71 72 72 72 72 72 72 72 72 72 72 72 72 

Site 4 Central 
(Bangkok) 

General 
Site 2011 28 28 29 28 28 28 26 24 25 29 30 30 30 30 30 30 30 30 29 28 28 28 28 28 28 

2012 62 62 61 62 62 62 62 62 61 62 62 61 61 61 61 62 62 62 62 62 62 62 62 62 62 

2013 81 81 80 80 80 81 82 82 81 81 81 81 82 81 80 82 81 82 82 81 81 81 80 79 80 

2014 78 78 76 77 78 79 78 79 79 78 76 76 74 75 76 76 78 78 78 78 79 79 79 79 78 

2015 55 56 56 55 55 55 56 56 55 53 53 55 55 55 56 55 55 55 56 56 56 56 56 56 56 

Site 5 Central 
(Bangkok) 

General 
Site 2011 37 37 36 37 38 38 37 38 38 37 38 37 37 37 37 37 37 37 37 37 37 36 36 36 36 

2012 37 37 37 36 37 37 37 36 37 37 36 36 37 36 36 37 36 36 37 37 37 37 37 37 37 

2013 92 92 92 92 92 93 93 92 93 93 93 93 93 93 92 93 92 91 92 91 92 93 93 93 92 

2014 81 81 82 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 

Site 6 2011 96 97 97 97 96 96 97 97 96 95 96 96 96 96 96 96 96 95 96 97 96 97 97 97 97 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Central 
(Bangkok) 

General 
Site 2012 99 99 99 99 99 100 100 100 99 100 99 99 98 98 98 99 99 99 100 99 100 99 99 99 100 

2013 50 50 50 49 50 50 50 50 50 50 50 50 50 49 49 50 50 50 50 50 50 50 50 50 50 

2014 93 94 94 93 93 94 94 93 93 93 93 93 93 92 93 93 94 94 94 94 94 94 94 94 94 

2015 98 98 98 98 98 98 98 98 98 98 98 98 97 97 98 98 98 98 98 99 99 99 99 99 98 

Site 7 Central 
(Bangkok) 

General 
Site 2011 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 87 88 88 86 85 87 87 87 86 86 

2012 95 95 95 95 95 95 95 95 95 95 94 94 94 94 94 95 95 96 95 95 95 96 95 96 96 

2013 95 95 95 95 95 95 95 95 95 96 95 96 96 96 96 95 94 95 94 94 95 95 95 95 95 

2014 93 91 91 92 92 94 93 93 93 92 93 92 92 93 93 93 93 93 94 94 95 95 94 93 92 

2015 80 80 78 77 77 79 79 79 80 81 79 79 78 78 79 80 81 81 81 81 81 81 81 81 80 

Site 8 Central 
(Bangkok) 

General 
Site 2011 27 27 28 28 28 28 28 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 

2013 92 92 92 92 92 92 92 92 92 92 92 91 91 92 92 92 92 92 93 92 92 92 92 92 92 

2014 98 98 98 98 98 98 98 98 98 98 98 98 98 97 98 98 98 98 98 98 98 98 98 98 98 

2015 86 87 86 86 86 86 86 86 86 86 86 86 85 86 87 87 87 87 87 87 87 87 87 87 87 

Site 9 Central 
(Bangkok) 

General 
Site 2011 68 69 69 68 69 68 68 69 68 68 67 67 66 66 66 68 68 68 68 68 69 69 68 69 68 

2012 54 54 54 54 54 54 54 54 54 54 53 53 53 53 53 53 53 54 54 54 54 54 54 54 54 

2013 99 99 99 99 99 99 99 99 99 99 99 97 98 99 99 99 99 99 99 99 99 99 99 99 99 

2014 81 81 81 81 80 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 

2015 91 92 92 92 92 91 91 92 92 91 90 91 91 91 91 91 91 91 91 91 91 91 91 91 91 

Site 10 Central 
(Bangkok) 

Roadside 2011 78 79 79 78 79 78 77 78 77 77 77 78 78 78 79 79 79 80 80 79 79 78 77 78 78 

2012 67 68 67 67 67 67 68 68 67 67 65 64 64 66 67 66 66 66 65 65 66 68 67 67 67 

2013 61 59 59 59 61 61 61 61 61 61 59 59 61 62 62 63 63 64 64 62 61 62 61 61 58 

2014 85 85 85 85 84 84 85 85 85 85 85 85 84 84 85 84 85 85 85 85 86 85 85 85 85 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

2015 19 19 19 19 19 19 19 19 19 19 19 18 18 18 19 19 19 19 19 19 19 19 19 19 19 

Site 11 Central 
(Bangkok) 

Roadside 
Site 2011 70 70 70 70 70 70 69 67 66 68 70 69 70 70 71 71 71 71 71 71 70 70 71 70 70 

2012 50 51 51 51 50 50 50 49 49 49 49 49 49 49 49 50 50 51 51 51 51 51 51 51 51 

2013 71 73 72 71 72 72 72 71 72 72 71 71 70 71 71 70 70 71 72 72 73 72 72 71 71 

2014 72 72 72 72 72 72 72 73 73 73 72 72 71 72 72 71 70 70 71 72 72 72 72 72 72 

2015 69 69 69 69 69 69 69 69 69 69 69 69 68 68 69 68 69 68 68 68 68 69 68 70 70 

Site 12 Central 
(Bangkok) 

Roadside 
Site 2011 97 98 98 98 98 98 98 97 97 97 96 97 97 98 97 98 97 98 98 98 98 98 97 98 97 

2012 88 89 89 88 88 88 88 89 89 89 88 88 88 88 88 88 88 89 89 89 89 88 89 89 88 

2013 93 94 94 94 93 93 93 93 93 93 93 93 93 93 94 93 93 93 94 94 95 94 93 94 94 

2014 87 87 87 87 87 87 88 87 87 87 87 87 87 87 88 88 88 87 87 88 88 88 88 88 87 

2015 41 41 41 41 41 40 41 41 40 41 40 40 40 41 41 41 41 41 41 41 41 41 41 41 41 

Site 13 Central 
(Bangkok) 

Roadside 
Site 2012 67 72 72 72 72 72 72 71 53 41 45 59 66 70 71 71 71 71 68 68 70 72 72 72 72 

Site 14 Central 
(Bangkok) 

Roadside 
Site 2011 77 77 77 77 77 77 77 77 76 77 76 76 76 77 76 76 77 77 77 77 77 77 77 77 77 

2012 75 75 75 75 75 74 75 74 75 75 74 74 73 73 73 73 74 75 75 75 75 75 75 75 75 

2013 70 72 72 71 72 72 71 71 71 71 70 68 66 67 67 69 69 69 72 72 72 73 73 72 72 

2014 74 75 75 75 75 75 75 74 74 74 74 74 73 73 74 74 75 75 75 74 75 75 75 75 75 

2015 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 99 99 99 99 98 99 99 99 99 99 

Site 15 Central 
(Bangkok) 

Roadside 
Site 2011 85 85 85 85 85 85 85 85 85 85 84 84 84 84 84 84 84 85 85 85 85 85 85 85 85 

2012 71 71 71 71 71 71 71 71 71 71 70 70 71 70 70 70 68 67 70 71 71 71 70 71 71 

2013 95 96 96 95 95 95 95 96 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 

2014 94 94 94 95 95 95 93 93 94 93 94 93 94 95 96 96 95 95 95 95 96 95 94 95 94 

2015 58 58 58 58 58 58 58 59 59 58 58 57 57 58 58 58 58 58 58 58 58 58 58 58 58 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Site 16 Central 
(Bangkok) 

Roadside 2011 83 82 82 83 83 83 81 83 83 83 82 84 84 83 84 84 85 85 84 83 85 83 82 83 82 

2012 94 91 93 92 92 93 93 94 94 93 93 93 94 93 94 94 95 95 95 95 95 95 95 94 93 

2013 98 98 98 98 98 99 99 98 99 99 99 98 98 98 98 98 98 98 98 99 99 99 99 98 99 

2014 93 90 93 92 92 93 93 93 93 94 94 93 94 93 94 93 94 95 94 94 94 94 94 93 92 

2015 99 98 98 99 99 99 98 99 99 99 99 98 98 98 99 98 99 99 99 98 98 99 99 99 98 

Site 17 Central 
(Bangkok) 

General 
Site 2011 25 25 25 26 26 26 25 25 25 25 25 24 24 24 25 25 25 25 26 26 26 26 26 26 25 

2012 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 

2013 87 80 86 86 87 87 87 88 88 86 85 84 87 88 87 88 89 89 89 90 89 89 87 88 88 

2014 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 52 51 52 51 51 51 51 51 51 51 

2015 99 99 99 99 99 99 99 99 98 99 99 99 98 99 99 99 100 100 100 100 99 99 99 100 99 

Site 18 Central 
(Bangkok) 

General 
Site 2011 48 48 48 48 49 48 48 48 48 49 48 48 48 48 49 48 48 48 48 48 49 48 48 48 47 

2012 47 46 48 48 47 48 48 48 48 47 47 48 48 48 47 47 47 47 47 48 48 48 48 47 47 

2013 95 93 96 97 96 97 97 97 95 96 96 92 96 97 96 93 93 93 95 95 97 96 96 95 93 

2014 97 98 97 97 98 98 98 98 97 97 95 92 97 96 96 95 95 96 96 97 97 98 97 96 97 

2015 89 88 89 89 89 89 89 89 89 89 89 88 88 88 87 88 88 88 89 89 89 89 89 89 89 

Site 19 Central General 
Site 2011 86 86 86 86 86 86 86 86 86 85 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 

2012 96 98 98 97 97 97 98 98 97 96 96 94 94 94 94 95 94 94 95 95 95 95 96 97 96 

2013 91 92 91 90 92 92 92 92 92 86 87 90 91 92 92 92 93 92 93 93 92 92 92 92 92 

2014 91 90 93 92 93 93 94 94 89 70 83 92 91 93 93 93 91 92 91 95 94 93 91 92 89 

2015 86 87 87 88 86 88 88 88 88 71 78 84 86 88 87 87 87 86 87 86 86 86 87 89 87 

Site 20 Central General 
Site 2011 99 100 100 100 100 99 100 100 99 92 95 98 96 99 99 99 100 99 100 99 99 100 100 100 100 

2012 85 87 86 88 88 88 87 87 82 69 70 81 84 85 87 85 86 86 86 87 87 87 87 87 87 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

2013 91 89 88 89 89 88 89 91 91 92 92 91 91 90 90 89 90 92 92 92 93 93 92 91 90 

2014 87 85 86 87 85 85 85 87 88 88 87 87 87 87 86 84 86 87 88 88 87 86 88 87 87 

2015 45 43 45 42 41 43 42 44 45 45 44 44 45 45 46 46 46 46 46 47 46 45 45 45 44 

Site 21 Central General 
Site 2011 75 75 75 75 75 76 76 76 76 75 75 74 75 75 74 74 74 74 73 74 74 74 74 74 75 

2012 41 42 42 42 42 42 42 42 41 41 41 41 41 41 40 40 39 40 41 40 40 41 41 41 41 

2013 94 95 96 95 95 95 94 95 96 96 95 95 93 93 89 95 94 94 95 93 95 95 95 95 96 

2014 94 95 93 96 96 96 96 96 96 96 94 93 90 92 88 89 89 94 93 94 93 96 96 96 95 

2015 73 74 74 75 73 74 74 75 74 75 75 74 73 75 69 68 71 74 72 72 72 73 74 74 74 

Site 22 Central General 
Site 2011 86 86 86 87 87 86 86 86 84 85 86 84 84 84 83 84 86 86 87 87 87 87 87 87 87 

2012 91 92 90 92 92 92 92 92 88 90 90 89 88 90 91 90 92 93 93 93 92 92 92 92 92 

2013 79 78 80 81 80 77 80 80 75 77 76 74 75 77 77 79 79 80 81 81 81 81 80 81 81 

2014 72 72 73 69 72 70 73 73 73 73 73 72 72 70 70 64 71 72 73 74 75 74 74 74 74 

Site 23 Central General 
Site 2011 75 76 75 75 75 75 75 75 74 75 74 74 73 73 73 75 75 75 75 75 75 75 75 75 75 

2012 91 91 91 91 91 91 91 91 91 91 91 90 90 90 90 90 91 91 91 91 91 91 91 91 91 

2013 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 93 93 93 93 93 93 93 93 92 

2014 97 97 97 97 96 96 96 96 96 96 96 97 97 97 97 97 97 97 98 98 98 98 98 97 97 

2015 84 84 84 83 84 84 85 85 85 85 85 84 83 84 85 84 84 84 82 84 83 84 83 82 82 

Site 24 Central General 
Site 2011 86 87 88 88 88 88 88 88 87 82 81 85 83 84 85 87 88 88 87 87 87 87 87 87 87 

2012 98 100 100 98 99 99 100 100 98 90 93 96 98 97 97 97 98 100 99 99 99 98 99 99 98 

2013 98 99 99 99 98 99 99 99 99 99 98 98 98 98 98 99 99 98 97 97 97 98 99 99 99 

2014 99 100 100 100 100 100 100 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 100 100 

2015 100 99 99 100 100 100 100 99 99 100 100 100 100 100 100 99 99 100 100 100 100 100 100 100 100 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Site 25 Central General 
Site 2011 85 85 85 85 85 85 85 85 85 85 85 84 84 85 85 85 85 85 85 85 85 85 85 85 85 

2012 96 96 96 96 96 96 96 96 96 96 96 95 95 95 95 96 96 96 96 96 96 96 96 96 96 

2013 95 95 95 95 95 95 95 95 95 95 95 94 94 93 94 94 94 94 95 96 96 96 95 95 95 

2014 93 93 93 93 93 93 93 93 93 93 93 92 92 93 93 94 94 94 94 93 91 92 94 93 93 

2015 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 96 95 96 95 95 95 95 95 95 95 

Site 26 Central General 
Site 2011 87 86 87 86 85 88 88 88 87 88 87 87 86 85 86 85 86 87 88 88 88 87 87 88 88 

2012 96 96 93 95 95 96 95 96 98 98 96 96 96 98 96 97 97 96 97 96 97 97 97 95 96 

2013 96 97 95 96 97 96 96 96 97 97 97 96 96 96 96 96 97 96 97 97 97 97 97 97 97 

2014 99 99 99 99 99 99 98 99 98 99 98 98 98 99 100 100 99 100 100 99 99 100 100 99 99 

2015 78 78 77 77 79 79 78 79 78 78 77 77 76 77 77 78 79 79 80 80 80 80 79 79 79 

Site 27 Central General 
Site 2011 84 84 85 84 84 84 84 85 85 83 82 83 83 84 83 84 84 85 85 85 85 85 85 84 83 

2012 51 51 52 52 52 52 52 52 52 49 47 49 51 52 52 52 51 51 51 52 52 51 52 52 52 

2013 89 89 87 88 87 88 89 89 89 90 90 89 89 88 88 89 89 90 90 90 91 90 90 89 89 

2014 93 94 92 93 92 92 94 94 94 94 94 92 92 90 90 93 92 93 94 94 94 94 94 94 93 

2015 82 82 80 81 81 81 82 83 82 82 82 82 81 78 78 78 80 82 85 85 85 85 84 83 83 

Site 28 Central General 
Site 2013 99 100 99 100 100 100 100 100 99 100 98 99 98 97 97 99 100 100 100 100 100 100 100 99 100 

2014 97 98 98 98 98 97 97 97 97 96 97 97 96 96 97 96 97 98 98 98 98 98 98 98 98 

2015 91 92 91 92 91 91 91 91 91 90 91 90 90 90 92 91 92 92 92 92 92 92 92 92 92 

Site 29 Central General 
Site 2011 90 88 91 91 90 91 91 90 92 91 88 86 88 86 89 90 91 91 90 91 92 91 90 89 89 

2012 85 85 85 85 86 85 85 85 85 85 84 85 85 86 85 84 86 86 84 85 86 85 86 85 84 

2013 61 60 60 62 62 62 61 61 62 62 60 61 61 62 61 62 62 62 62 61 61 61 61 60 61 

Site 30 North 2011 99 99 98 99 99 99 99 99 99 98 98 98 98 98 98 98 98 98 99 99 99 99 99 99 99 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

General 
Site 2012 98 98 98 98 98 98 98 98 98 97 97 96 97 97 97 96 97 96 98 97 98 98 98 98 98 

2013 94 95 94 94 94 94 94 94 94 93 90 92 94 93 93 93 93 94 94 95 95 95 95 95 95 

2014 96 96 96 96 96 96 96 96 95 92 95 96 95 95 96 96 95 97 96 96 97 96 95 96 95 

2015 91 92 92 91 92 92 92 92 92 90 90 91 90 91 90 90 90 90 91 91 92 91 92 92 92 

Site 31 North General 
Site 2011 43 42 44 43 42 41 41 42 44 45 44 44 44 45 44 43 45 45 44 44 43 44 43 43 44 

2012 81 82 82 83 77 75 72 81 82 84 83 84 84 84 82 81 81 81 84 84 84 84 81 80 81 

2013 85 84 85 85 83 82 82 86 86 86 87 85 85 85 86 87 84 83 84 87 86 88 86 84 83 

2014 92 88 87 92 93 92 86 85 85 94 96 97 95 95 93 95 96 95 92 90 93 95 95 95 90 

2015 68 68 68 66 66 64 65 67 67 68 68 68 69 69 69 69 67 67 68 68 68 69 68 69 69 

Site 32 North General 
Site 2011 95 95 95 95 95 95 95 95 95 95 94 95 95 96 95 96 95 95 95 95 95 95 96 95 95 

2012 96 96 96 96 96 96 96 96 96 96 96 95 96 96 95 93 93 93 94 96 96 96 96 96 96 

2013 99 99 99 99 99 99 99 99 99 99 98 98 99 99 99 99 99 99 99 99 99 99 99 99 99 

2014 98 98 98 98 98 98 98 98 98 98 97 97 98 98 98 98 98 98 98 98 98 98 98 98 98 

2015 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 

Site 33 North General 
Site 2011 97 96 97 97 96 96 97 97 98 97 96 96 96 97 98 98 97 97 97 97 98 98 98 98 96 

2012 95 95 96 96 95 96 96 96 96 96 94 94 95 95 96 95 95 96 95 95 96 96 96 96 96 

2013 98 98 98 98 98 98 98 98 98 98 98 97 96 96 96 97 97 97 97 98 98 98 98 98 98 

2014 92 93 93 93 93 93 92 92 92 89 90 91 90 92 92 92 93 92 93 93 93 93 93 93 93 

2015 98 99 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 99 99 99 99 99 99 99 

Site 34 North General 
Site 2013 91 91 91 90 90 89 90 90 90 90 90 90 91 90 90 90 90 91 92 92 92 92 92 92 92 

2014 96 96 96 96 96 96 96 95 96 96 96 96 96 97 96 97 96 97 97 96 96 96 95 96 96 

2015 91 90 90 92 92 91 91 91 91 90 91 90 91 90 90 90 89 90 92 92 92 92 92 91 91 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Site 35 North General 
Site 2011 79 79 79 80 80 80 80 80 79 79 79 79 79 78 79 78 78 78 78 79 79 80 80 80 80 

2012 85 89 89 89 89 90 90 90 88 79 69 71 79 84 86 83 83 84 86 88 87 88 89 89 88 

Site 36 North General 
Site 2011 96 96 96 96 96 96 96 96 96 95 95 95 95 95 95 95 95 96 96 96 95 96 96 96 96 

2012 99 99 100 100 100 100 100 100 100 98 99 98 99 99 99 99 99 99 100 99 99 99 99 99 99 

2013 90 91 91 91 91 92 91 91 90 89 88 88 88 88 88 89 89 90 89 90 91 91 91 91 90 

2014 95 96 96 96 96 96 96 96 96 94 95 94 94 95 95 94 96 96 95 95 96 95 96 96 96 

2015 98 99 99 99 99 99 99 99 99 97 97 98 97 99 98 98 98 98 98 98 99 99 99 99 99 

Site 37 North General 
Site 2015 98 100 99 99 99 98 99 99 99 98 98 96 95 97 97 98 97 97 97 99 98 98 99 99 100 

Site 38 North General 
Site 2011 92 93 93 93 93 93 93 93 93 92 90 91 91 91 91 90 90 91 91 92 93 91 92 93 93 

2012 78 78 79 79 79 79 80 80 81 80 78 77 76 77 77 77 77 78 78 77 78 77 77 77 78 

2013 91 91 91 90 90 90 90 90 90 90 90 90 90 91 91 91 90 91 91 92 92 91 90 90 90 

2014 96 95 95 95 95 95 95 95 95 96 96 96 96 97 97 97 97 97 97 97 96 96 96 96 95 

2015 98 98 98 97 98 98 98 98 98 98 98 97 98 98 98 98 98 98 98 98 98 98 98 98 98 

Site 39 North General 
Site 2011 95 96 97 97 97 97 97 97 97 97 95 94 93 94 93 92 92 93 93 94 94 95 96 97 97 

2012 77 78 78 78 78 78 78 78 79 78 75 75 73 75 76 77 77 78 78 76 76 77 77 77 78 

2013 99 99 99 98 99 98 99 98 98 98 99 99 99 99 98 98 98 99 99 98 99 98 98 99 98 

2014 91 92 92 92 92 93 93 93 93 92 90 91 90 91 91 90 89 88 88 89 89 90 91 92 92 

2015 88 88 88 88 88 88 88 88 88 88 87 87 88 88 87 88 87 88 87 88 88 88 89 89 89 

Site 40 North General 
Site 2011 99 100 100 100 100 100 100 100 100 98 95 98 99 99 98 97 98 98 99 99 99 99 99 99 99 

2012 94 94 94 94 95 95 95 96 95 92 90 92 92 94 94 91 93 93 94 95 94 93 93 95 94 

2013 89 91 91 91 91 92 92 90 88 88 87 88 90 90 88 87 88 88 90 90 88 89 89 90 90 

2014 98 99 99 98 98 98 98 98 98 97 96 96 96 97 97 97 97 98 95 96 97 98 98 99 99 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

2015 72 71 73 74 74 73 74 75 75 73 73 73 73 73 72 73 72 70 71 70 70 67 68 68 71 

Site 41 North General 
Site 2013 91 92 92 91 92 92 92 92 92 92 91 91 92 92 91 92 91 91 90 90 91 92 92 92 92 

2014 93 94 93 95 94 94 94 94 95 95 95 94 93 93 93 92 92 92 92 92 92 93 93 95 94 

2015 96 97 95 95 97 96 97 98 98 98 96 95 96 96 97 96 97 96 97 96 97 97 97 96 96 

Site 43 North General 
Site 2011 85 86 86 86 86 86 86 86 86 84 84 86 86 85 86 86 85 84 83 84 86 86 85 86 85 

2012 91 92 92 92 89 91 91 91 91 92 93 89 89 85 87 89 91 89 91 92 94 95 94 92 92 

2013 80 84 82 81 78 81 83 81 84 82 75 68 70 72 74 76 78 80 82 85 86 85 85 86 85 

2014 93 95 94 95 94 95 96 96 95 93 92 89 90 90 90 92 90 91 90 92 95 96 96 95 95 

2015 90 90 89 91 92 92 92 92 91 93 90 88 90 89 89 90 88 89 89 91 90 90 91 91 91 

Site 44 North General 
Site 2011 87 91 90 90 90 90 89 90 90 90 89 84 84 84 80 81 81 84 85 88 89 90 90 90 90 

2012 83 84 84 84 84 84 84 84 84 84 83 84 82 81 80 81 81 81 82 82 83 84 85 85 84 

2013 86 89 90 90 90 90 89 90 89 90 88 85 81 79 79 78 79 80 81 84 88 89 90 89 90 

2014 49 50 49 49 49 49 50 50 50 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 

2015 98 98 98 98 99 99 99 98 98 99 98 98 98 97 97 97 97 98 98 98 97 96 98 98 96 

Site 45 North General 
Site 2011 89 89 92 93 92 93 93 92 90 86 86 85 84 83 84 84 83 85 88 91 93 93 92 90 88 

2012 94 96 96 96 94 94 95 95 95 95 91 92 90 90 90 90 92 92 94 95 94 96 96 96 96 

2013 54 55 56 56 55 55 55 55 55 53 51 52 53 53 54 54 54 54 54 55 55 55 55 56 56 

2014 94 95 95 95 96 96 96 94 95 96 96 95 95 94 93 92 93 93 92 93 92 94 94 94 95 

2015 93 94 94 94 94 93 93 94 92 93 92 92 91 92 93 93 93 93 92 92 93 93 93 93 94 

Site 46 North General 
Site 2011 99 99 100 99 99 99 99 99 99 99 99 98 99 99 99 99 99 98 99 99 99 99 99 100 99 

2012 97 98 98 98 98 98 98 98 98 97 96 96 96 96 96 96 96 96 97 97 97 98 98 98 98 

2013 98 99 99 99 99 99 99 99 98 98 99 97 99 99 98 98 96 98 98 99 99 98 98 98 99 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

2014 99 99 99 99 99 99 99 99 99 97 98 98 99 99 98 98 98 97 98 98 99 99 98 99 99 

2015 87 87 87 87 87 87 87 87 87 86 86 86 87 87 87 87 87 87 86 87 86 85 85 86 87 

Site 47 Central General 
Site 2014 99 98 100 100 100 100 100 100 100 99 100 99 99 98 100 100 98 99 99 98 98 98 98 98 98 

2015 96 97 97 96 97 97 96 96 96 97 97 96 95 96 95 95 96 96 97 97 97 96 97 98 98 

Site 48 Central General 
Site 2011 95 94 96 96 95 94 96 96 95 93 94 91 91 95 95 95 94 93 95 96 95 96 96 94 94 

2012 90 92 92 92 92 92 93 93 91 86 79 89 88 90 91 90 90 90 91 93 93 93 90 90 92 

2013 79 76 80 79 80 80 80 82 80 79 77 77 79 78 78 78 78 78 81 81 80 81 82 81 81 

2014 63 64 63 64 64 64 62 63 63 63 63 62 63 63 63 64 64 63 64 64 64 64 64 64 63 

Site 49 Central General 
Site 2011 95 96 95 95 96 95 95 96 96 95 95 95 95 94 95 95 95 96 96 95 95 95 96 95 96 

2012 98 99 98 99 99 99 99 99 99 99 98 98 98 98 97 98 98 98 99 98 98 98 99 99 99 

2013 94 95 95 95 95 95 95 95 95 95 95 94 94 93 94 94 94 95 95 94 94 95 95 95 95 

2014 98 98 98 98 97 98 99 98 97 98 98 97 97 97 96 97 98 98 98 98 98 98 98 98 98 

2015 96 96 96 96 96 96 96 96 95 96 96 96 97 97 96 96 96 97 97 97 97 97 97 97 97 

Site 50 Central General 
Site 2011 85 86 85 86 86 87 87 83 82 81 83 84 84 85 86 87 86 86 85 84 84 86 85 87 86 

2012 89 89 89 89 89 89 89 89 89 89 89 88 88 88 88 88 88 89 89 89 88 89 89 89 89 

2013 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 97 96 96 96 

2014 93 93 93 93 93 92 93 93 93 92 91 92 92 92 92 92 92 93 93 94 94 94 93 93 93 

2015 95 95 96 96 96 96 96 96 96 95 95 95 95 95 95 95 95 95 94 95 95 96 96 96 95 

Site 51 Central General 
Site 2011 76 76 76 75 76 76 76 77 76 76 75 76 76 76 75 75 75 76 76 75 75 76 75 75 75 

2013 93 93 93 93 93 93 93 93 93 93 92 92 92 92 92 93 92 93 93 93 93 93 93 93 93 

2014 98 99 97 98 98 98 98 99 98 99 98 98 98 98 98 96 97 98 98 98 98 99 98 98 98 

2015 87 87 86 87 86 86 87 87 86 86 86 85 86 85 86 87 87 87 88 88 88 87 87 87 87 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Site 52 East General 
Site 2014 100 100 100 100 100 100 100 100 100 100 100 99 99 99 100 99 100 100 100 99 99 98 100 100 100 

2015 95 96 96 96 96 96 96 96 96 96 96 93 94 93 93 93 94 95 95 95 96 96 96 96 96 

Site 53 East General 
Site 2011 93 97 96 96 95 95 94 96 94 83 74 86 88 93 93 92 93 95 95 95 96 94 95 93 90 

2012 89 92 92 92 91 93 91 90 81 76 73 80 89 90 90 90 91 92 91 92 91 91 91 92 92 

2013 78 84 84 84 84 83 84 82 74 61 54 58 70 75 74 77 79 82 85 85 84 85 85 84 82 

2014 89 89 89 89 89 90 90 88 88 89 87 88 87 88 88 88 89 89 89 90 88 89 90 90 90 

Site 54 East General 
Site 2011 87 87 88 87 87 87 87 87 87 86 85 85 86 86 87 87 88 88 87 87 88 88 88 88 88 

2012 84 85 85 85 85 85 85 85 84 84 83 83 83 83 84 83 83 84 84 84 85 85 85 85 85 

2013 71 72 72 72 71 71 71 71 71 70 69 69 68 69 69 69 70 71 71 71 71 72 72 72 72 

2014 79 80 80 80 80 79 79 79 79 80 78 78 77 76 75 77 78 79 79 80 80 80 80 80 80 

2015 70 71 71 71 71 71 71 71 71 71 70 69 69 69 70 68 69 70 70 70 71 71 71 71 71 

Site 55 East General 
Site 2013 98 100 99 99 98 98 98 99 98 99 97 98 98 98 97 95 97 98 97 98 99 99 99 99 99 

2014 98 99 99 98 98 98 99 98 98 98 98 98 98 98 98 98 97 98 98 99 99 99 99 98 98 

2015 99 99 99 99 99 99 99 99 99 99 99 98 98 97 97 98 99 99 99 99 99 99 99 99 99 

Site 56 East General 
Site 2011 92 93 91 92 92 91 92 92 92 93 89 88 87 89 89 92 92 94 94 95 95 96 95 95 95 

2012 91 93 92 92 93 93 94 94 93 92 91 84 82 89 92 92 92 92 89 89 88 88 91 93 93 

2013 82 84 84 85 85 83 83 83 81 81 82 80 80 79 81 82 84 83 81 80 80 81 82 84 82 

Site 57 East General 
Site 2015 96 97 96 96 96 97 96 97 96 96 95 96 96 95 93 96 95 96 96 97 97 97 97 96 97 

Site 58 East General 
Site 2011 94 95 95 95 95 95 95 95 94 95 94 94 94 94 94 95 95 95 95 95 94 94 95 94 94 

2012 93 93 94 93 94 94 94 94 94 94 92 92 91 92 92 92 93 94 94 93 94 94 94 94 93 

2013 78 79 77 79 78 77 77 78 77 76 77 76 77 78 78 80 80 80 81 81 81 80 80 79 79 

2014 79 79 79 79 79 79 79 79 78 78 76 76 76 76 77 79 81 80 81 81 81 81 81 81 80 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

2015 71 72 71 72 73 73 72 73 73 72 72 69 71 71 71 72 72 72 72 72 72 72 72 70 71 

Site 59 East General 
Site 2014 100 100 100 100 100 100 100 100 100 99 100 100 100 100 99 99 100 100 100 100 100 100 100 100 100 

2015 99 99 99 99 99 99 99 98 99 99 99 99 98 98 98 98 98 99 99 99 99 99 99 99 99 

Site 60 East General 
Site 2011 94 94 95 94 94 95 93 95 94 94 94 95 93 93 92 93 92 93 94 93 94 94 94 94 95 

2012 81 81 81 82 82 83 83 83 78 79 79 78 80 81 80 80 80 81 82 83 83 83 82 82 81 

2013 85 87 87 87 86 87 87 86 85 85 85 84 83 84 84 85 84 85 86 85 86 85 86 86 85 

2014 72 74 74 74 73 73 70 72 71 72 67 68 70 71 72 73 73 73 73 72 72 72 72 72 73 

Site 61 East General 
Site 2011 88 87 87 88 86 85 85 87 90 90 90 89 89 88 88 88 88 89 89 90 90 89 89 88 87 

2012 88 86 87 87 88 88 88 87 89 87 87 86 87 87 87 87 88 87 87 89 88 89 89 89 88 

2013 74 75 74 74 75 73 74 75 75 74 74 74 74 73 74 73 74 74 74 75 75 76 76 75 75 

2014 97 97 97 97 97 96 96 96 96 96 96 96 96 96 96 96 97 97 96 97 97 97 97 97 97 

2015 96 96 96 96 96 96 96 95 95 96 95 95 95 94 94 95 95 95 96 96 96 96 96 96 96 

Site 62 East General 
Site 2011 43 43 43 43 43 43 43 44 44 44 44 44 45 44 44 44 44 44 42 41 42 42 42 42 42 

2012 97 98 98 98 98 98 97 96 96 96 96 96 96 96 96 96 96 96 96 96 97 98 98 98 98 

2013 95 96 95 95 95 96 96 96 96 94 96 96 96 96 96 96 96 96 95 95 96 96 96 95 96 

2014 90 91 90 90 90 90 90 90 90 90 90 89 89 90 90 91 91 91 91 91 91 91 91 91 91 

2015 87 86 85 86 89 85 77 89 84 87 89 90 86 90 88 89 89 89 85 90 85 87 90 87 78 

Site 64 East General 
Site 2011 75 75 75 75 76 76 75 75 75 73 73 74 75 74 74 76 76 76 76 77 76 74 74 75 75 

2012 89 89 89 89 89 89 89 89 89 88 89 89 89 88 87 88 89 89 88 90 90 90 89 90 90 

2013 87 88 88 88 88 88 87 86 86 84 84 84 84 84 85 86 87 88 88 88 88 89 89 88 88 

2014 88 89 89 89 89 88 89 89 89 89 87 87 87 86 87 87 87 87 88 89 88 89 89 89 89 

2015 86 87 87 87 87 86 86 87 87 87 84 84 84 82 83 85 84 86 86 87 87 87 87 87 88 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Site 65 East General 
Site 2011 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 

2012 98 99 99 98 98 98 98 99 99 98 97 96 92 96 99 97 96 96 99 99 99 99 99 99 99 

2013 98 99 97 98 98 98 97 98 99 99 98 98 99 99 98 98 98 98 91 98 99 99 99 99 98 

2014 94 94 90 92 92 93 95 95 93 96 95 93 95 94 93 95 95 95 95 93 93 94 94 93 94 

2015 86 81 84 84 86 86 84 85 87 87 87 88 88 87 84 86 87 86 85 87 85 87 87 84 82 

Site 66 East General 
Site 2011 42 42 43 39 41 38 42 44 43 43 42 44 43 43 44 44 44 43 43 42 42 42 43 41 42 

2012 80 81 84 85 75 66 66 83 86 86 84 79 80 84 85 86 84 79 81 85 85 84 77 71 69 

2013 84 84 84 80 82 81 79 86 87 85 81 81 82 85 86 86 85 85 85 86 87 85 86 86 85 

2014 98 98 98 97 98 98 98 98 99 99 98 98 98 98 98 98 98 98 99 99 98 98 98 98 98 

2015 97 96 95 96 95 95 95 96 98 98 98 98 98 98 97 97 98 98 97 97 96 97 97 96 96 

Site 67 Northeast General 
Site 2013 89 89 92 91 89 87 89 89 88 86 88 88 90 89 92 89 89 89 90 92 89 91 87 87 88 

2014 93 94 94 94 94 93 93 93 93 93 93 93 92 92 93 92 93 92 93 93 94 94 94 93 93 

2015 95 96 96 96 96 96 96 95 96 95 95 95 96 94 93 94 93 93 95 95 95 95 95 95 95 

Site 68 Northeast General 
Site 2011 86 86 85 86 86 85 86 86 86 85 85 85 86 85 85 86 86 86 87 87 86 86 85 85 86 

2012 91 92 91 92 92 93 91 91 92 92 89 89 89 88 87 89 90 92 90 90 91 93 92 92 92 

2013 78 79 78 78 78 79 79 79 77 77 77 76 75 75 76 78 77 76 77 77 79 78 79 78 78 

Site 69 Northeast General 
Site 2011 97 98 98 98 98 98 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97 97 98 97 97 

2012 98 99 98 99 99 98 96 95 97 97 98 98 98 98 99 98 98 98 98 98 98 98 99 99 99 

2013 62 61 62 62 62 62 62 62 62 62 60 61 61 61 61 61 61 62 62 61 62 62 62 62 62 

2014 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 90 89 90 90 90 89 90 89 

2015 81 81 81 81 81 81 81 81 81 79 80 81 81 81 81 81 80 81 80 81 81 81 81 81 81 

Site 71 Northeast 2011 39 38 39 40 39 39 40 37 39 39 39 38 39 36 37 36 39 38 39 38 37 39 41 39 41 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

General 
Site 2012 74 74 74 74 73 74 74 74 75 74 72 72 73 72 73 73 72 73 73 73 74 74 74 74 74 

2013 66 68 67 66 67 65 65 65 65 67 65 63 64 66 66 65 64 64 66 67 67 69 69 69 68 

2014 52 53 53 53 52 53 52 52 52 53 53 53 51 50 48 47 48 49 50 52 52 53 52 53 53 

2015 88 88 88 88 88 88 87 88 88 88 88 87 88 87 88 88 88 88 88 88 88 88 88 88 88 

Site 72 South General 
Site 2011 86 87 88 87 87 87 86 86 84 84 85 84 85 84 84 85 85 85 86 86 85 86 86 86 87 

2012 87 86 86 85 86 86 87 88 87 86 86 86 87 88 88 89 89 89 89 89 89 89 87 87 85 

2013 92 93 93 93 93 92 92 92 92 91 91 91 92 91 91 91 92 92 91 92 92 93 93 93 93 

2014 94 95 95 96 95 95 95 94 93 93 93 93 93 93 93 94 94 94 94 94 95 96 96 95 95 

2015 99 99 99 99 99 100 100 99 99 99 97 98 98 98 99 99 99 98 98 99 99 99 99 99 99 

Site 73 South General 
Site 2011 86 87 88 87 87 88 87 87 87 86 85 85 84 83 84 84 84 86 87 87 88 88 88 88 88 

2012 92 92 91 92 92 92 92 92 92 92 91 90 90 92 91 92 92 92 93 93 92 93 93 93 92 

2013 96 97 97 97 97 97 97 97 97 96 95 95 94 95 94 94 94 94 95 97 97 96 96 97 97 

2014 90 91 92 91 91 89 88 88 91 90 90 90 91 89 90 90 90 90 91 90 90 90 90 92 91 

2015 72 75 74 74 72 72 73 71 71 70 69 68 70 70 70 73 71 71 70 73 75 75 71 75 75 

Site 74 South General 
Site 2011 81 79 79 79 79 79 79 79 78 78 78 80 83 83 82 82 83 82 83 83 82 82 82 81 80 

2012 81 82 82 81 81 81 81 81 81 81 81 81 80 80 80 81 81 82 82 82 82 82 82 81 82 

2013 91 92 92 92 92 92 92 92 92 91 92 92 92 92 91 91 91 90 91 91 91 91 91 92 92 

2014 80 80 79 79 79 79 79 79 79 81 80 80 81 80 80 80 81 80 81 80 78 79 79 80 80 

2015 94 93 93 93 94 93 94 93 94 94 94 94 94 93 93 94 94 93 94 93 93 94 93 94 93 

Site 75 South General 
Site 2011 88 88 88 88 88 88 88 88 88 88 88 87 88 88 87 87 87 87 87 87 88 88 88 88 88 

2012 93 92 93 92 92 93 92 92 92 92 91 91 92 93 93 93 93 93 93 94 92 93 93 94 93 

2013 88 89 89 89 88 89 89 89 88 89 88 86 85 86 86 87 86 87 87 86 87 88 89 88 88 



 

Site Region Category Year Annual 
Average H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

2014 94 94 94 94 94 94 93 93 94 93 93 93 93 93 94 94 94 93 93 94 94 94 93 94 94 

2015 78 79 78 78 78 78 78 78 78 78 78 78 77 78 79 78 77 77 78 79 79 78 79 79 79 

Site 76 South General 
Site 2013 88 87 88 89 89 88 89 88 88 88 87 88 89 89 89 89 89 89 89 88 89 89 88 88 88 

2014 89 89 88 89 88 88 88 87 88 88 88 88 89 89 89 88 89 88 88 88 88 89 89 90 90 

2015 62 62 62 62 62 61 62 61 61 62 61 61 63 62 61 62 62 63 64 62 63 63 62 62 63 
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Table S5: Monthly contribution concentrations at monitoring sites across Northern Thailand in different years  
 

Site Region Category Year 

Contribution of hourly PM10 concentrations  
to annual average PM10 

Contribution of hourly 
PM10 concentrations at 
different percentiles to 
annual average PM10 

(%) 

Monthly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Site 32 North  
(Chiang Mai) 

General 
Site 

2011 Very Low <5th Percentile 9 1 1 1 10 3 12 26 21 16 8 1 1 0.5 

Low <25th Percentile 18 8 1 1 6 3 13 20 17 16 13 5 4 0.5 

Moderate 25th-75th Percentile 18-43 36 10 6 6 7 10 8 6 8 8 11 11 10 

High >75th Percentile 43 43 17 25 24 16 1 1 1 0.1 0.1 2 3 11 

Very High >95th Percentile 77 13 18 30 26 18 0.1 - 1 - - - 1 7 
2012 Very Low <5th Percentile 12 1 2 - 1 3 23 15 11 11 28 4 3 1 

Low <25th Percentile 20 6 3 0.1 1 2 16 13 14 14 23 5 7 3 

Moderate 25th-75th Percentile 20-48 31 11 3 2 5 12 10 8 8 7 11 10 12 

High >75th Percentile 48 44 4 22 61 8 1 0.3 0.1 0.1 0.1 1 0.4 2 

Very High >95th Percentile 119 17 0.3 20 79 1 - - - - - - - 0.1 
2013 Very Low <5th Percentile 8 0.4 - 3 1 - 2 18 10 19 16 15 10 6 

Low <25th Percentile 17 5 0.2 2 1 0.4 4 17 16 17 18 11 11 4 

Moderate 25th-75th Percentile 17-52 32 12 7 4 5 13 8 6 8 6 12 9 11 

High >75th Percentile 52 46 6 8 57 22 1 0.1 - - - 1 0.2 4 

Very High >95th Percentile 109 16 1 3 76 - 0.4 - - - - 0.1 - 0.1 
2014 Very Low <5th Percentile 10 1 0.2 1 - - 4 18 22 22 20 5 7 1 

Low <25th Percentile 20 6 0.2 2 - - 5 17 20 21 18 7 8 2 

Moderate 25th-75th Percentile 20-56 32 12 8 2 6 12 8 7 6 7 11 10 12 

High >75th Percentile 56 46 8 8 60 19 1 - - - 0.1 1 1 3 

Very High >95th Percentile 123 16 4 4 75 17 - - - - - - 0.3 0.4 
2015 Very Low <5th Percentile 9 0.5 27 - 1 0.4 10 8 6 10 8 18 9 3 

Low <25th Percentile 18 6 14 - 0.5 1 7 11 11 13 11 15 12 4 

Moderate 25th-75th Percentile 18-52 29 11 5 5 8 10 8 8 8 9 9 8 12 

High >75th Percentile 52 47 5 13 63 12 4 0.2 0.1 0.1 0.1 0.2 0.4 1 

Very High >95th Percentile 119 18 1 8 81 8 2 - - 0.1 - - 0.1 0.2 
Site 33 North  

(Chiang Mai) 
General 
Sitesite 

2011 Very Low <5th Percentile 10 1 0.2 1 20 2 8 21 19 10 12 4 1 1 

Low <25th Percentile 20 8 1 1 12 2 7 19 18 12 14 7 6 2 

Moderate 25th-75th Percentile 20-46 38 9 6 7 7 8 7 7 9 8 11 8 12 

High >75th Percentile 46 41 16 21 27 22 6 1 0.4 1 0.2 2 1 4 

Very High >95th Percentile 80 12 15 22 32 25 5 0.1 - - - 0.1 0.1 2 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations  
to annual average PM10 

Contribution of hourly 
PM10 concentrations at 
different percentiles to 
annual average PM10 

(%) 

Monthly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2013 Very Low <5th Percentile 9 0.4 0.3 - 1 1 2 16 15 17 29 15 3 - 

Low <25th Percentile 20 6 0.4 0.3 1 1 6 16 18 16 23 11 6 0.3 

Moderate 25th-75th Percentile 20-59 32 12 7 5 5 11 6 6 7 6 12 11 12 

High >75th Percentile 59 46 6 10 51 26 1 0.3 0.1 - 0.3 1 1 3 

Very High >95th Percentile 131 16 1 3 69 27 - - - - 0.3 - 0.2 0.1 
2015 Very Low <5th Percentile 12 1 6 - - 5 15 22 13 11 12 8 5 4 

Low <25th Percentile 23 6 5 - 0.3 5 11 20 14 12 11 10 7 4 

Moderate 25th-75th Percentile 23-61 32 10 5 5 6 10 5 8 8 10 9 10 13 

High >75th Percentile 61 45 4 11 68 10 3 - 0.1 0.3 0.1 1 1 2 

Very High >95th Percentile 124 16 0.4 4 88 6 1 - - 0.1 - 0.2 1 0.3 
Site 30 North 

(Chiang Rai) 
General 

site 
2011 Very Low <5th Percentile 12 1 1 - 6 - 7 12 11 28 21 9 5 0.4 

Low <25th Percentile 22 8 1 0.1 5 1 7 13 14 25 19 9 5 1 

Moderate 25th-75th Percentile 22-52 39 11 8 5 8 11 9 8 5 7 9 10 10 

High >75th Percentile 52 41 10 16 22 30 4 0.3 0.2 0.1 0.2 1 6 10 

Very High >95th Percentile 86 12 9 15 22 37 3 - 0.1 - 0.1 0.2 5 8 
2012 Very Low <5th Percentile 11 0.5 1 - - 1 9 7 16 24 23 10 7 2 

Low <25th Percentile 22 5 2 - - 1 8 10 17 22 20 9 9 3 

Moderate 25th-75th Percentile 22-60 28 14 5 2 6 12 9 4 6 6 10 10 14 

High >75th Percentile 60 48 3 25 58 10 1 0.2 - - 0.1 1 1 2 

Very High >95th Percentile 177 19 - 20 80 - - - - - - - - - 
2014 Very Low <5th Percentile 7 0.4 1 0.4 - 1 6 16 18 34 14 4 6 1 

Low <25th Percentile 18 5 1 1 - 1 10 16 19 26 14 5 8 1 

Moderate 25th-75th Percentile 18-55 32 9 10 2 7 10 8 6 4 8 12 11 13 

High >75th Percentile 55 46 10 4 61 20 0.4 0.2 0.1 0.1 0.2 2 0.2 2 

Very High >95th Percentile 124 17 3 0.1 76 21 - - - - - - - - 
Site 46 North 

(Lamphun) 
General 

Site 
2011 Very Low <5th Percentile 7 0.5 - 0.2 8 0.2 13 20 18 16 18 5 0.3 - 

Low <25th Percentile 17 6 0.2 0.2 5 2 14 19 19 16 19 6 1 0.1 

Moderate 25th-75th Percentile 17-50 36 10 6 8 10 8 6 6 8 6 12 13 8 

High >75th Percentile 50 44 9 33 20 10 1 0.1 0.1 0.3 0.1 1 7 19 

Very High >95th Percentile 89 13 5 39 21 9 - - - 0.3 - 1 7 18 
2012 Very Low <5th Percentile 7 0.3 - - - - 7 18 21 23 24 3 2 2 

Low <25th Percentile 18 5 0.2 - 0.1 1 9 16 20 20 19 5 6 2 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations  
to annual average PM10 

Contribution of hourly 
PM10 concentrations at 
different percentiles to 
annual average PM10 

(%) 

Monthly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Moderate 25th-75th Percentile 18-57 30 11 3 3 11 11 8 5 6 6 12 9 14 

High >75th Percentile 57 48 8 43 39 6 0.2 0.2 - - 0.1 0.4 0.3 3 

Very High >95th Percentile 141 17 1 53 45 1 - - - - - - - 0.2 
2013 Very Low <5th Percentile 6 0.3 - - 2 1 4 16 21 16 29 9 1 1 

Low <25th Percentile 18 5 0.5 0.3 1 1 8 17 22 16 20 8 5 1 

Moderate 25th-75th Percentile 18-58 34 11 7 4 7 10 6 5 8 6 11 12 11 

High >75th Percentile 58 46 8 11 60 12 1 0.2 - 0.2 0.2 1 0.3 6 

Very High >95th Percentile 116 15 4 5 82 6 0.1 0.2 - - - 0.2 - 2 
2014 Very Low <5th Percentile 7 0.3 - 0.2 - - 11 20 22 19 21 4 3 - 

Low <25th Percentile 18 5 0.1 0.3 - 0.3 11 20 21 18 19 5 4 - 

Moderate 25th-75th Percentile 18-60 35 8 6 2 11 9 6 6 6 6 13 12 14 

High >75th Percentile 60 46 12 12 52 14 0.3 0.1 - - - 1 4 5 

Very High >95th Percentile 115 14 6 7 66 15 - - - - - 0.5 4 2 

 
 
  



 

Table S6: Country contribution concentrations at monitoring sites across Northern Thailand in different years 

Site Region Category Year 

Contribution of hourly PM10 concentrations to 
annual average PM10 

Contribution of 
hourly PM10 

concentrations at 
different percentiles 
to annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Bangladesh Cambodia China India Laos Marine Myanmar Thailand Vietnam 

Site 32 North  
(Chiang Mai) 

General 
Site 

2011 Very Low <5th Percentile 9 1 - - 4 0.2 3 34 12 46 1 

Low <25th Percentile 18 8 - - 3 0.2 5 30 12 47 2 

Moderate 25th-75th Percentile 18-43 36 0.2 - 3 0.1 12 17 12 52 4 

High >75th Percentile 43 43 1 - 2 0.2 7 21 24 43 2 

Very High >95th Percentile 77 13 1 0.1 1 0.3 3 24 29 40 1 

2012 Very Low <5th Percentile 12 1 - 1 3 0.3 8 27 10 49 2 

Low <25th Percentile 20 6 0.1 0.3 1 0.2 6 29 13 48 2 

Moderate 25th-75th Percentile 20-48 31 0.2 - - - 6 21 17 54 1 

High >75th Percentile 48 44 1 - - - 1 24 35 39 0.3 

Very High >95th Percentile 119 17 1 - - - - 25 42 32 - 

2013 Very Low <5th Percentile 8 0.4 - - 8 0.1 10 20 13 43 6 

Low <25th Percentile 17 5 - - 5 0.1 10 23 13 44 4 

Moderate 25th-75th Percentile 17-52 32 - - 3 0.1 11 16 14 52 4 

High >75th Percentile 52 46 0.1 0.1 - - 2 36 27 34 1 

Very High >95th Percentile 109 16 - 0.1 - - - 42 31 27 - 

2014 Very Low <5th Percentile 10 1 0.1 - - - 2 31 21 47 - 

Low <25th Percentile 20 6 0.2 - - - 3 30 20 46 0.2 

Moderate 25th-75th Percentile 20-56 32 0.4 - 2 0.1 11 16 16 51 4 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to 
annual average PM10 

Contribution of 
hourly PM10 

concentrations at 
different percentiles 
to annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Bangladesh Cambodia China India Laos Marine Myanmar Thailand Vietnam 

High >75th Percentile 56 46 1 - 2 0.1 3 24 23 45 2 

Very High >95th Percentile 123 16 1 - 1 - 1 25 25 47 0.5 

2015 Very Low <5th Percentile 9 0.5 - - 12 0.1 15 15 11 38 8 

Low <25th Percentile 18 6 - - 7 0.1 14 19 14 41 5 

Moderate 25th-75th Percentile 18-52 29 - 0.1 2 0.1 13 16 16 48 4 

High >75th Percentile 52 47 2 - - - 2 17 32 46 0.4 

Very High >95th Percentile 119 18 2 - - - 1 17 36 43 0.2 

Site 33 North  
(Chiang Mai) 

General 
Site 

2011 Very Low <5th Percentile 10 1 0.1 - 8 0.2 6 27 11 46 3 

Low <25th Percentile 20 8 0.1 - 5 0.2 7 27 12 46 3 

Moderate 25th-75th Percentile 20-46 38 0.2 - 2 0.1 12 18 11 52 4 

High >75th Percentile 46 41 1 - 1 0.1 4 23 25 46 1 

Very High >95th Percentile 80 12 1 - - - 1 26 30 41 0.2 

2013 Very Low <5th Percentile 9 0.4 - - 5 0.1 8 24 12 47 3 

Low <25th Percentile 20 6 - - 3 0.1 8 26 13 47 3 

Moderate 25th-75th Percentile 20-59 32 - - 3 0.1 13 15 13 52 5 

High >75th Percentile 59 46 0.1 0.1 - - 2 37 25 35 1 

Very High >95th Percentile 131 16 - 0.2 - - 0.1 44 28 27 0.1 

2015 Very Low <5th Percentile 12 1 - - 5 0.3 11 26 16 39 3 

Low <25th Percentile 23 6 - - 4 0.2 11 25 16 41 3 

Moderate 25th-75th Percentile 23-61 32 - 0.1 2 0.1 13 16 16 48 4 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to 
annual average PM10 

Contribution of 
hourly PM10 

concentrations at 
different percentiles 
to annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Bangladesh Cambodia China India Laos Marine Myanmar Thailand Vietnam 

High >75th Percentile 61 45 1 - - - 2 17 32 47 1 

Very High >95th Percentile 124 16 2 - - - 0.1 17 36 44 0.1 

Site 30 North  
(Chiang Rai) 

General 
site 

2011 Very Low <5th Percentile 12 1 - 0.2 7 0.1 13 15 13 46 5 

Low <25th Percentile 22 8 - 0.1 6 0.1 13 16 13 46 5 

Moderate 25th-75th Percentile 22-52 39 - - 7 - 22 9 12 41 9 

High >75th Percentile 52 41 0.2 - 5 0.1 13 11 13 51 6 

Very High >95th Percentile 86 12 0.1 - 4 0.1 11 12 13 55 5 

2012 Very Low <5th Percentile 11 0.5 - - 2 0.1 18 18 13 45 4 

Low <25th Percentile 22 5 - - 1 0.1 15 19 14 46 3 

Moderate 25th-75th Percentile 22-60 28 0.1 - 2 - 14 11 15 54 4 

High >75th Percentile 60 48 1 - 1 0.2 5 16 34 42 1 

Very High >95th Percentile 177 19 1 - - - 2 21 45 31 - 

2014 Very Low <5th Percentile 7 0.4 - - - - 8 19 19 53 1 

Low <25th Percentile 18 5 - - - - 9 18 19 52 1 

Moderate 25th-75th Percentile 18-55 32 0.3 - 3 0.1 19 9 16 47 5 

High >75th Percentile 55 46 1 - 2 0.1 10 16 23 45 4 

Very High >95th Percentile 124 17 0.2 - 1 - 8 17 25 47 2 

Site 46 North 
(Lamphun) 

General 
Site 

2011 Very Low <5th Percentile 7 0.5 - - 5 0.2 3 32 12 45 2 

Low <25th Percentile 17 6 - - 3 0.2 3 33 13 45 2 

Moderate 25th-75th Percentile 17-50 36 0.1 - 3 0.1 12 16 10 54 4 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to 
annual average PM10 

Contribution of 
hourly PM10 

concentrations at 
different percentiles 
to annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Bangladesh Cambodia China India Laos Marine Myanmar Thailand Vietnam 

High >75th Percentile 50 44 1 - 2 0.2 10 18 21 44 4 

Very High >95th Percentile 89 13 1 - 1 0.2 9 20 24 41 3 

2012 Very Low <5th Percentile 7 0.3 - 0.1 - - 4 42 14 38 1 

Low <25th Percentile 18 5 - 0.1 - - 3 39 14 42 1 

Moderate 25th-75th Percentile 18-57 30 0.1 - - - 7 18 14 58 1 

High >75th Percentile 57 48 2 - - - 1 17 35 44 0.3 

Very High >95th Percentile 141 17 3 - - 1 0.1 15 41 40 - 

2013 Very Low <5th Percentile 6 0.3 - - 2 0.1 5 32 14 45 1 

Low <25th Percentile 18 5 - - 2 0.1 6 30 14 45 2 

Moderate 25th-75th Percentile 18-58 34 - - 3 - 12 16 12 52 5 

High >75th Percentile 58 46 - - - - 3 29 26 40 1 

Very High >95th Percentile 116 15 - 0.1 - - 1 31 31 36 1 

2014 Very Low <5th Percentile 7 0.3 - - - - 2 34 17 46 - 

Low <25th Percentile 18 5 - - - - 2 34 18 46 0.1 

Moderate 25th-75th Percentile 18-60 35 0.3 - 2 0.1 11 16 14 53 4 

High >75th Percentile 60 46 1 0.1 2 - 5 23 19 48 2 

Very High >95th Percentile 115 14 1 0.2 1 - 2 24 20 52 1 

 

 
 



 

Table S7: Hourly contribution concentrations at monitoring sites across Northern Thailand in different years 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly 

PM10 
concentrations 

at different 
percentiles to 

annual 
average PM10 

(%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Site 
32 

North  
(Chiang Mai) 

General 
Site 

2011 Very Low <5th Percentile 9 1 9 8 7 6 5 3 3 1 1 3 5 5 7 5 5 5 4 2 1 1 1 1 4 9 

Low <25th Percentile 18 8 7 7 6 6 5 4 2 1 2 4 5 5 6 5 5 5 4 2 2 1 2 2 4 6 

Moderate 25th-75th Percentile 18-43 36 4 4 4 4 5 5 5 4 4 4 4 4 4 4 4 5 4 3 3 3 4 4 4 4 

High >75th Percentile 43 43 1 1 2 1 1 1 4 7 9 4 4 2 2 2 2 3 3 7 15 12 9 5 2 1 

Very High >95th Percentile 77 13 0.4 1 2 1 1 0.2 4 6 10 5 4 2 1 1 2 2 2 7 19 14 10 5 2 1 

2012 Very Low <5th Percentile 12 1 9 10 6 9 6 4 2 0.2 2 3 2 4 4 5 4 5 4 2 1 1 4 6 3 5 

Low <25th Percentile 20 6 8 9 7 8 7 5 2 1 2 3 3 3 4 5 4 5 4 2 2 2 3 4 3 6 

Moderate 25th-75th Percentile 20-48 31 3 3 3 3 3 4 5 6 4 5 5 5 4 4 4 5 5 4 4 4 4 4 4 4 

High >75th Percentile 48 44 3 2 2 3 3 4 5 5 8 6 7 5 6 4 3 3 2 4 5 6 4 4 3 3 

Very High >95th Percentile 119 17 3 2 2 3 2 4 5 5 8 7 9 6 7 5 2 2 2 3 4 5 4 3 3 2 

2013 Very Low <5th Percentile 8 0.4 8 12 8 10 5 3 2 1 1 2 3 2 3 4 8 4 3 1 1 1 1 2 4 11 

Low <25th Percentile 17 5 7 9 7 8 6 4 2 2 2 3 3 3 4 4 6 4 3 2 1 2 2 3 4 8 

Moderate 25th-75th Percentile 17-52 32 4 4 4 3 3 4 5 4 4 4 4 4 4 4 5 4 5 5 5 4 4 4 4 4 

High >75th Percentile 52 46 2 2 3 3 4 4 6 7 9 7 8 6 4 3 2 2 2 4 4 4 5 4 4 2 

Very High >95th Percentile 109 16 2 2 3 3 4 5 7 8 10 9 10 8 5 3 1 2 1 3 2 2 3 3 3 2 

2014 Very Low <5th Percentile 10 1 7 8 10 12 4 3 1 1 1 2 8 4 3 4 5 6 4 1 3 3 1 2 2 5 

Low <25th Percentile 20 6 7 7 8 9 6 4 2 2 2 3 6 4 3 4 4 5 3 2 3 2 2 3 4 6 

Moderate 25th-75th Percentile 20-56 32 4 4 4 3 4 4 5 5 4 4 4 5 4 4 4 4 5 4 4 4 3 4 4 4 

High >75th Percentile 56 46 2 2 2 2 2 3 5 8 11 8 6 7 4 4 3 2 4 4 5 4 5 4 2 2 

Very High >95th Percentile 123 16 2 2 2 2 2 3 5 9 14 9 8 8 5 4 2 1 3 4 4 3 3 3 2 2 

2015 Very Low <5th Percentile 9 0.5 9 9 8 10 8 6 3 1 2 1 1 2 3 3 3 7 4 3 2 2 1 2 3 5 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly 

PM10 
concentrations 

at different 
percentiles to 

annual 
average PM10 

(%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Low <25th Percentile 18 6 7 8 8 8 8 7 3 2 2 2 3 3 4 4 4 5 3 3 2 2 2 2 3 5 

Moderate 25th-75th Percentile 18-52 29 4 3 3 3 3 3 4 5 5 4 4 4 4 4 4 5 5 5 5 5 5 5 4 4 

High >75th Percentile 52 47 2 2 2 2 3 3 5 8 9 8 6 7 5 4 3 2 2 4 4 5 4 4 3 2 

Very High >95th Percentile 119 18 1 2 1 2 3 4 6 10 11 9 7 8 6 4 3 2 2 3 3 5 4 3 2 2 

Site 
33 

North  
(Chiang Mai) 

General 
Site 

2011 Very Low <5th Percentile 10 1 10 8 10 8 9 3 2 1 1 1 3 4 8 6 4 5 2 1 1 1 1 2 4 7 

Low <25th Percentile 20 8 7 7 8 7 8 5 2 1 2 3 4 5 6 7 5 5 3 1 1 1 2 2 4 5 

Moderate 25th-75th Percentile 20-46 38 4 4 4 4 4 4 5 4 5 4 4 4 4 4 4 4 5 5 4 3 3 4 4 4 

High >75th Percentile 46 41 4 3 2 1 3 1 2 6 9 5 3 2 1 1 1 2 1 3 5 8 14 12 7 5 

Very High >95th Percentile 80 12 4 2 1 0.3 3 1 2 5 10 6 3 1 0.4 1 1 2 1 2 4 8 17 15 8 5 

2013 Very Low <5th Percentile 9 0.4 11 9 11 13 9 7 2 1 1 1 2 2 2 4 2 3 2 1 0.2 1 0.3 2 5 9 

Low <25th Percentile 20 6 7 7 8 9 8 7 3 2 2 2 3 4 4 4 4 4 2 2 1 2 2 3 4 6 

Moderate 25th-75th Percentile 20-59 32 4 4 4 3 3 3 5 5 5 5 4 4 4 4 4 5 5 5 5 4 4 4 4 4 

High >75th Percentile 59 46 3 4 3 3 3 4 4 6 7 7 6 5 4 2 2 2 2 3 4 7 6 5 5 4 

Very High >95th Percentile 131 16 3 4 3 3 4 5 5 8 9 9 8 5 3 1 1 1 0.5 1 2 6 5 4 4 4 

2015 Very Low <5th Percentile 12 1 12 5 5 17 11 6 4 4 7 3 2 1 2 1 4 2 4 1 0.2 0.4 1 2 1 3 

Low <25th Percentile 23 6 8 5 6 12 9 7 5 5 6 4 3 2 3 3 4 3 3 1 1 1 1 2 2 4 

Moderate 25th-75th Percentile 23-61 32 4 4 3 3 3 3 4 4 3 3 4 4 4 5 5 5 6 6 5 5 4 4 4 4 

High >75th Percentile 61 45 4 3 4 3 4 4 5 4 6 8 7 6 4 3 3 2 2 2 3 4 5 5 5 4 

Very High >95th Percentile 124 16 3 3 4 3 5 4 5 5 8 10 8 7 5 4 3 2 1 2 2 3 3 3 5 3 

Site 
30 

North  
(Chiang Rai) 

General 
Site 

2011 Very Low <5th Percentile 12 1 1 2 2 2 1 1 2 2 17 13 10 8 9 9 8 6 2 0.4 0.3 0.4 1 1 1 1 

Low <25th Percentile 22 8 3 3 4 4 3 3 3 4 11 9 7 6 7 7 6 6 3 1 1 1 1 2 2 2 

Moderate 25th-75th Percentile 22-52 39 4 4 5 4 4 5 5 4 3 3 4 4 4 4 4 4 5 4 4 4 4 4 4 4 

High >75th Percentile 52 41 2 2 2 2 2 2 3 3 4 4 3 3 3 2 2 2 3 6 14 15 8 6 4 3 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly 

PM10 
concentrations 

at different 
percentiles to 

annual 
average PM10 

(%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Very High >95th Percentile 86 12 2 2 2 2 2 2 3 4 4 5 2 2 2 2 2 1 2 4 17 20 9 5 4 3 

2012 Very Low <5th Percentile 11 0.5 2 2 2 2 1 3 1 3 17 16 11 5 4 5 5 6 4 1 0.3 1 1 2 3 2 

Low <25th Percentile 22 5 4 4 4 4 4 4 3 4 11 11 8 4 4 4 5 5 3 1 1 1 2 3 3 3 

Moderate 25th-75th Percentile 22-60 28 4 4 4 4 3 4 4 4 3 3 4 5 5 5 5 4 5 5 4 4 5 4 5 5 

High >75th Percentile 60 48 4 3 4 4 3 3 3 4 5 4 4 6 4 5 4 3 3 5 6 6 5 5 4 4 

Very High >95th Percentile 177 19 5 4 3 3 3 3 3 3 4 3 3 3 4 2 5 4 4 4 6 8 8 7 5 4 

2014 Very Low <5th Percentile 7 0.4 7 6 4 4 3 3 2 3 9 7 4 3 6 2 5 5 3 3 3 3 4 5 4 4 

Low <25th Percentile 18 5 6 6 5 5 5 4 4 4 7 6 4 3 4 2 4 4 3 2 3 3 4 4 4 5 

Moderate 25th-75th Percentile 18-55 32 4 4 4 4 4 4 5 4 3 4 5 4 4 5 4 4 5 5 4 4 3 4 4 4 

High >75th Percentile 55 46 3 5 4 4 3 3 5 4 4 4 4 5 5 4 3 3 3 3 7 6 5 5 4 3 

Very High >95th Percentile 124 17 3 5 5 4 4 4 6 5 4 5 5 5 5 3 2 3 2 2 6 5 4 5 4 3 

Site 
46 

North 
(Lamphun) 

General 
Site 

2011 Very Low <5th Percentile 7 0.5 5 3 5 4 3 3 2 2 6 7 7 6 4 6 6 3 4 3 3 2 3 4 4 4 

Low <25th Percentile 17 6 4 4 5 4 4 4 3 4 5 5 6 5 5 5 6 4 4 3 3 3 3 4 4 4 

Moderate 25th-75th Percentile 17-50 36 4 4 4 4 4 5 5 4 3 4 4 4 5 5 4 5 5 5 3 3 3 4 4 4 

High >75th Percentile 50 44 3 3 3 2 2 2 2 3 4 4 3 2 2 1 2 2 3 2 11 17 14 5 5 3 

Very High >95th Percentile 89 13 2 2 2 1 1 1 2 3 4 4 3 1 1 1 1 2 3 0.5 13 22 19 5 5 1 

2012 Very Low <5th Percentile 7 0.3 5 4 5 4 5 2 2 4 5 4 6 4 4 8 7 7 4 2 0.4 1 3 5 4 6 

Low <25th Percentile 18 5 4 4 4 5 5 4 4 4 5 5 5 5 4 6 6 5 4 3 1 2 3 3 4 5 

Moderate 25th-75th Percentile 18-57 30 4 4 4 4 4 4 4 4 3 4 5 4 5 4 4 4 4 6 4 4 4 4 4 4 

High >75th Percentile 57 48 4 5 5 4 4 4 4 5 6 6 6 4 4 2 2 2 2 2 5 6 5 5 4 4 

Very High >95th Percentile 141 17 4 6 5 4 4 3 3 5 7 8 8 5 5 3 1 2 1 2 3 6 5 5 3 3 

2013 Very Low <5th Percentile 6 0.3 7 3 5 5 5 2 3 4 8 6 5 4 4 6 5 3 4 3 1 3 1 3 3 6 

Low <25th Percentile 18 5 5 4 5 5 5 4 3 4 6 5 4 4 4 5 5 4 4 3 2 3 3 4 4 5 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly 

PM10 
concentrations 

at different 
percentiles to 

annual 
average PM10 

(%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Moderate 25th-75th Percentile 18-58 34 4 4 4 4 4 4 5 4 4 4 5 5 5 5 5 5 5 5 4 4 4 4 4 4 

High >75th Percentile 58 46 5 4 5 5 4 4 5 6 5 6 6 4 3 2 2 1 1 2 4 7 6 5 4 4 

Very High >95th Percentile 116 15 5 3 6 6 5 4 5 7 7 7 8 4 2 2 1 1 0.2 1 2 7 5 5 3 4 

2014 Very Low <5th Percentile 7 0.3 5 3 4 4 3 3 2 4 12 7 6 3 4 3 3 4 2 3 1 2 4 6 7 8 

Low <25th Percentile 18 5 4 4 5 4 4 4 3 4 8 6 5 3 3 4 4 4 3 3 3 3 4 5 5 6 

Moderate 25th-75th Percentile 18-60 35 7 7 7 7 7 6 6 6 5 5 5 5 4 4 3 3 3 2 2 1 1 1 1 0.3 

High >75th Percentile 60 46 8 8 8 7 7 7 6 6 6 5 4 4 3 3 3 3 3 3 3 2 1 1 0.5 0.2 

Very High >95th Percentile 115 14 9 8 8 8 7 7 7 6 6 5 4 4 3 3 2 2 2 2 2 2 1 1 0.2 0.1 

 
 
  



 

Table S8: Monthly contribution concentrations at monitoring sites across Southern Thailand in different years  

Site Region Category Year 

Contribution of hourly PM10 concentrations  
to annual average PM10 

Contribution of 
hourly PM10 

concentrations at 
different percentiles 
to annual average 

PM10 (%) 

Monthly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

72 South 
(Narathiwat) 

General 
Site 

2015 Very Low <5th Percentile 9 1 4 - - 6 12 4 11 13 17 17 16 0.4 
Low <25th Percentile 18 8 3 1 1 5 11 5 13 16 13 13 16 2 

Moderate 25th-75th Percentile 18-40 37 9 10 11 12 9 8 8 7 6 5 7 8 
High >75th Percentile 40 41 6 4 4 2 6 7 1 2 14 41 1 14 

Very High >95th Percentile 70 13 2 2 2 1 6 5 0.2 1 15 52 0.2 14 
73 South 

(Phuket) 
General 

Site 
2013 Very Low <5th Percentile 8 1 0.2 1 3 22 12 14 2 3 19 11 14 - 

Low <25th Percentile 15 9 2 2 3 16 13 11 4 6 16 14 14 1 
Moderate 25th-75th Percentile 15-30 40 9 9 6 8 10 6 10 12 10 8 7 5 

High >75th Percentile 30 39 9 14 11 3 1 26 4 3 0.3 8 2 18 
Very High >95th Percentile 45 11 8 15 11 1 0.1 31 2 2 - 11 2 17 

75 South 
(Songkhla) 

General 
Site 

2014 Very Low <5th Percentile 20 2 - - 1 15 3 1 1 10 22 16 21 11 
Low <25th Percentile 32 12 0.5 1 3 10 6 2 2 11 18 15 18 12 

Moderate 25th-75th Percentile 32-52 41 8 10 12 8 9 6 9 7 7 8 4 10 
High >75th Percentile 52 36 9 8 3 5 5 22 24 7 4 3 3 5 

Very High >95th Percentile 75 10 7 9 1 4 4 25 30 6 3 3 3 6 

 
 
 
  



 

Table S9: Country contribution concentrations at monitoring sites across Southern Thailand in different years 

 
  

Site Region Category Year 

Contribution of hourly PM10 concentrations  
to annual average PM10 

Contribution of hourly 
PM10 concentrations at 
different percentiles to 
annual average PM10 

(%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Cambodia China India Indonesia Laos Malaysia Marine Myanmar Philippines Taiwan Thailand Vietnam 

72 South 
(Narathiwat) 

General Site 2015 Very Low <5th Percentile 9 1 1 - - 1 - 26 59 - 0.3 - 13 0.3 

Low <25th Percentile 18 8 1 0.1 - 1 - 26 57 - 0.2 - 14 0.4 

Moderate 25th-75th Percentile 18-40 37 0.4 0.2 - 1 0.1 22 64 - 0.1 0.1 11 1 

High >75th Percentile 40 41 0.4 0.1 - 1 0.1 39 43 - 0.2 - 15 1 

Very High >95th Percentile 70 13 0.2 - - 1 - 46 36 - 0.1 0.1 16 0.5 

73 South 
(Phuket) 

General Site 2013 Very Low <5th Percentile 8 1 2 0.1 0.2 0.5 0.2 1 86 - - - 10 1 

Low <25th Percentile 15 9 2 0.2 0.1 1 0.3 1 85 - - - 10 1 

Moderate 25th-75th Percentile 15-30 40 2 0.2 0.1 2 0.3 1 83 0.4 - - 10 2 

High >75th Percentile 30 39 3 1 0.1 0.4 1 0.1 74 0.2 - - 18 3 

Very High >95th Percentile 45 11 2 0.5 - 0.2 2 0.1 74 0.1 - - 18 2 

75 South 
(Songkhla) 

General Site 2014 Very Low <5th Percentile 20 2 2 1 0.1 1 0.4 2 69 - - - 20 4 

Low <25th Percentile 32 12 2 1 0.1 1 1 4 69 - - - 18 3 

Moderate 25th-75th Percentile 32-52 41 2 1 - 1 1 7 69 - - - 16 3 

High >75th Percentile 52 36 2 0.3 - 1 1 23 52 - - - 18 2 

Very High >95th Percentile 75 10 2 0.2 - 1 1 28 48 - - - 18 2 



 

Table S10: Hourly contribution concentrations at monitoring sites across Southern Thailand in different years 

Site Region Category Year 

Contribution of hourly PM10 concentrations 
 to annual average PM10 

Contribution of 
hourly PM10 

concentrations at 
different 

percentiles to 
annual average 

PM10 (%) 

Hourly Contribution (%) 

Concentration 
Level 

Percentile 
Concentration 

(µg m-3) 
H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

72 South 
(Narathiwat) 

General 
Site 

2015 Very Low <5th Percentile 9 1 8 6 7 7 7 5 4 5 4 1 3 2 3 6 5 5 3 4 1 1 1 4 3 4 

Low <25th Percentile 18 8 6 6 6 7 7 6 5 4 3 2 3 2 3 5 5 5 4 4 2 2 2 3 3 4 

Moderate 25th-75th Percentile 18-40 37 4 4 4 4 4 4 4 4 5 4 4 5 4 4 4 4 4 4 4 4 5 4 4 4 

High >75th Percentile 40 41 4 5 4 5 2 2 2 3 5 6 5 5 4 4 3 4 3 5 4 4 4 6 5 4 

Very High >95th Percentile 70 13 4 6 4 6 2 2 2 3 5 6 4 5 4 4 3 4 3 5 4 3 4 6 5 4 

73 South 
(Phuket) 

General 
Site 

2013 Very Low <5th Percentile 8 1 2 3 5 10 8 6 4 6 4 3 3 1 2 4 8 10 9 2 1 1 2 2 3 2 

Low <25th Percentile 15 9 2 4 5 8 7 6 4 4 3 3 4 2 3 4 7 8 7 3 2 2 2 3 3 2 

Moderate 25th-75th Percentile 15-30 40 5 5 4 4 4 4 4 5 4 4 4 5 4 4 4 3 4 4 4 4 4 4 4 4 

High >75th Percentile 30 39 3 4 3 2 2 1 9 4 6 5 5 5 5 4 4 2 2 3 4 5 7 6 6 4 

Very High >95th Percentile 45 11 2 5 3 2 2 1 11 3 6 4 5 6 6 4 5 1 2 2 4 5 7 7 6 3 

75 South 
(Songkhla) 

General 
Site 

2014 Very Low <5th Percentile 20 2 3 3 3 4 7 1 1 1 1 2 2 2 3 9 7 6 7 11 4 5 11 1 4 2 

Low <25th Percentile 32 12 3 3 4 4 6 3 2 2 1 2 2 3 4 8 6 6 7 9 5 4 7 2 3 3 

Moderate 25th-75th Percentile 32-52 41 4 4 4 4 4 4 4 4 3 3 4 5 4 4 4 4 4 4 4 5 5 4 5 4 

High >75th Percentile 52 36 5 7 5 4 4 5 4 6 12 9 4 2 2 1 2 2 2 1 1 3 4 5 4 4 

Very High >95th Percentile 75 10 6 8 5 5 4 6 4 6 14 9 4 1 1 1 2 2 1 1 1 3 4 5 4 3 

 
 
  



 

 
 
 
 
 

Chapter 4 
 



 

Table S11: Number of sites and years across central Thailand with sufficient data capture above 
75% of hourly observations across the year, for each month, and for each hour of the 
day between 2011 and 2015 

Category Region Province Site Year 
Roadside site Central Bangkok Site 12 2011 

2013 
Site 14 2015 
Site 15 2014 
Site 16 2013 

2015 
Total 4 6 

General Site Central Bangkok Site 2 2014 
Site 6 2012 

2014 
2015 

Site 7 2012 
Site 8 2014 
Site 9 2013 
Site 17 2015 
Site 18 2013 

2014 
Total 7 10 

Nonthaburi Site 19 2012 
Site 20 2011 

Pathumthani Site 21 2013 
2014 

Samut Prakan Site 22 2012 
Site 23 2013 

2014 
Site 24 2012 

2013 
2014 
2015 

Site 25 2012 
2013 

Site 26 2013 
2014 

Samut Sakhon Site 27 2014 
Site 28 2014 

Ratchaburi Site 47 2015 
Saraburi Site 49 2011 

2012 
2014 
2015 

Phra Nakhon Si Ayutthaya Site 51 2014 
Total 13 23 

Total 8 provinces 24  39 



 

Table S12: Annual average PM10 concentrations (µg m-3) at monitoring sites across central 
Thailand for annual PM10 concentrations between 2011 and 2015 

Site Category Region Province 2011 2012 2013 2014 2015 
Annual average PM10 

concentrations 
(µg m-3) 

Level 

1 General Site Central Bangkok - 37.2 41.3 36.8 - 38.4 Moderate 

2 General Site Central Bangkok - - 52.7 51.4 42.0 48.7 Moderate 

6 General Site Central Bangkok 28.0 25.8 - 47.0 39.8 35.2 Moderate 

7 General Site Central Bangkok 40.4 43.9 42.1 40.4 33.7 40.1 Moderate 

8 General Site Central Bangkok - - 49.7 48.2 44.7 47.5 Moderate 

9 General Site Central Bangkok - - 20.2 17.0 20.8 19.3 Low 

18 General Site Central Bangkok - - 42.3 39.2 50.2 43.9 Moderate 

12 Roadside Site Central Bangkok 57.3 56.8 67.2 74.5 - 64.0 High 

15 Roadside Site Central Bangkok 24.1 - 22.4 21.3 - 22.6 Low 

16 Roadside Site Central Bangkok 54.6 56.4 57.8 54.8 47.6 54.2 High 

19 General Site Central Nonthaburi 45.2 44.8 47.6 50.3 46.3 46.8 Moderate 

20 General Site Central Nonthaburi 29.1 29.3 41.5 40.5 - 35.1 Moderate 

22 General Site Central Samut Prakan 52.7 32.8 22.1 - - 35.9 Moderate 

23 General Site Central Samut Prakan - 45.3 48.1 54.8 47.2 48.9 Moderate 

24 General Site Central Samut Prakan 47.0 43.0 40.2 40.8 35.8 41.4 Moderate 

25 General Site Central Samut Prakan 58.7 48.8 64.2 62.1 54.9 57.7 High 

26 General Site Central Samut Prakan 44.1 39.8 42.8 45.3 39.5 42.3 Moderate 

27 General Site Central Samut Sakhon 25.6 - 53.7 57.4 45.2 45.5 Moderate 

28 General Site Central Samut Sakhon - - 88.5 51.8 44.3 61.6 High 

48 General Site Central Ratchaburi 41.1 31.3 24.5 - - 32.3 Moderate 

49 General Site Central Saraburi 94.7 107.0 98.6 95.4 97.3 98.6 High 

50 General Site Central Saraburi 38.9 24.2 21.2 18.4 34.1 27.4 Low 

51 General Site Central Phra Nakhon Si Ayutthaya 40.0 - 55.7 55.1 49.1 50.0 Moderate 



 

Table S13: Monthly contribution concentrations at monitoring sites across central Thailand in different years  

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 

different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Site 2 Central 

(Bangkok) 

General site 2014 Very Low <5th Percentile < 20 1 - - - 5 5 7 12 24 20 13 9 6 

Low <25th Percentile < 31 10 - - 1 6 7 10 13 22 19 11 6 5 

Moderate 25th-75th Percentile 31-62 36 1 11 13 10 7 8 6 7 8 8 10 10 

High >75th Percentile > 62 40 73 5 2 4 0.3 1 0.3 0.3 0.1 4 5 5 

Very High >95th Percentile > 109 13 93 3 - 2 - - - - - 1 1 1 

Site 6 Central 

(Bangkok) 

General site 2012 Very Low <5th Percentile < 5 0.5 6 3 8 11 16 14 13 5 9 9 5 1 

Low <25th Percentile < 14 6 5 4 6 8 12 9 12 13 14 7 6 2 

Moderate 25th-75th Percentile 14-34 39 8 8 6 8 9 10 9 9 8 9 9 7 

High >75th Percentile > 34 42 14 16 17 10 4 5 1 1 2 8 10 12 

Very High >95th Percentile > 56 12 15 19 19 11 3 5 0.4 1 1 7 10 10 

2014 Very Low <5th Percentile < 16 1 - - 0.4 1 11 29 11 29 10 8 1 0.3 

Low <25th Percentile < 26 8 - 0.1 1 3 13 21 13 24 12 9 3 1 

Moderate 25th-75th Percentile 26-57 36 3 8 15 9 8 7 9 8 6 9 9 9 

High >75th Percentile > 57 41 66 6 2 3 0.5 1 0.2 0.5 0.1 4 7 10 

Very High >95th Percentile > 108 13 85 3 0.3 1 - - 0.1 - - 1 3 6 

2015 Very Low <5th Percentile < 12 1 - - - - 5 8 15 17 46 5 2 2 

Low <25th Percentile < 22 8 - 0.2 0.1 1 10 13 12 20 31 7 4 1 

Moderate 25th-75th Percentile 22-50 37 4 7 13 11 10 7 9 6 5 9 10 8 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

High >75th Percentile > 50 41 48 22 5 5  0.2 1 0.1 1 1 4 14 

Very High >95th Percentile > 90 13 60 26 2 1 - - - - - 0.1 1 11 

Site 7 Central 

(Bangkok) 

General site 2012 Very Low <5th Percentile < 17 1 4 1 0.2 6 2 7 10 26 38 2 1 1 

Low <25th Percentile < 27 9 4 2 1 7 4 8 12 23 31 4 3 1 

Moderate 25th-75th Percentile 27-55 40 7 8 7 7 12 11 9 7 5 11 10 5 

High >75th Percentile > 55 39 6 8 26 24 1 1 2 0.2 1 5 7 20 

Very High >95th Percentile > 91 11 1 4 33 33 - 1 1 - - 3 4 20 

Site 8 Central 

(Bangkok) 

General site 2014 Very Low <5th Percentile < 14 1 2 - 0.1 1 10 7 22 13 36 8 1 0.1 

Low <25th Percentile < 27 8 1 0.3 1 4 12 10 19 14 26 8 2 1 

Moderate 25th-75th Percentile 27-59 36 2 10 14 9 8 8 8 8 7 9 11 9 

High >75th Percentile > 59 41 72 6 1 4 1 1 0.4 1 0.2 3 3 7 

Very High >95th Percentile > 109 13 92 3 0.1 1 0.3 - - 0.1 - 0.3 1 2 

Site 9 Central 

(Bangkok) 

General site 2013 Very Low <5th Percentile < 5 1 0.2 1 1 17 36 10 19 4 9 2 1 - 

Low <25th Percentile < 11 6 2 3 8 11 14 12 12 12 15 6 5 1 

Moderate 25th-75th Percentile 11-26 38 5 6 10 8 7 9 9 10 9 9 11 4 

High >75th Percentile > 26 43 27 26 7 2 1 1 2 2 1 9 3 20 

Very High >95th Percentile > 44 13 31 30 7 1 0.3 0.2 2 1 0.1 8 1 17 

Site 12 Central 

(Bangkok) 

Roadside site 2011 Very Low <5th Percentile < 24 1 - 0.1 1 1 10 13 35 23 12 5 0.1 0.2 

Low <25th Percentile < 39 11 0.1 0.5 2 4 11 13 26 19 14 6 2 2 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Moderate 25th-75th Percentile 39-72 41 8 11 8 9 8 9 7 6 7 10 11 6 

High >75th Percentile > 72 36 32 8 21 11 2 1 1 0.4 1 2 3 18 

Very High >95th Percentile > 106 10 38 7 23 13 1 0.1 0.2 - 0.1 0.4 1 16 

2013 Very Low <5th Percentile < 28 1 - - - 15 31 18 11 5 10 4 6 - 

Low <25th Percentile < 43 11 2 0.1 2 13 26 17 14 9 8 3 5 0.3 

Moderate 25th-75th Percentile 43-84 40 10 9 14 7 6 7 8 9 9 7 10 5 

High >75th Percentile > 84 38 12 20 4 2 0.1 0.2 0.2 0.2 2 19 6 34 

Very High >95th Percentile > 134 11 12 22 3 1 - - - - 1 21 3 38 

Site 14 Central 

(Bangkok) 

Roadside site 2015 Very Low <5th Percentile < 8 1 - 2 1 2 26 31 11 10 9 8 1 0.2 

Low <25th Percentile < 12 9 0.1 2 2 3 23 25 12 13 11 6 1 1 

Moderate 25th-75th Percentile 12-23 41 5 7 12 10 7 8 9 8 9 9 9 8 

High >75th Percentile > 23 38 38 16 3 3 1 0.4 2 0.1 2 7 9 19 

Very High >95th Percentile > 36 11 44 17 2 1 0.1 0.1 1 - 1 6 8 20 

Site 15 Central 

(Bangkok) 

Roadside site 2014 Very Low <5th Percentile < 3 0.4 0.4 10 9 22 30 5 6 7 2 2 5 0.3 

Low <25th Percentile < 10 5 1 6 7 11 13 10 12 11 13 7 7 2 

Moderate 25th-75th Percentile 10-28 36 7 8 8 6 6 8 9 8 9 11 8 10 

High >75th Percentile > 28 44 33 8 12 13 19 2 2 3 0.5 2 4 3 

Very High >95th Percentile > 51 14 37 7 13 13 23 1 1 3 0.4 0.3 2 2 

Site 16 Roadside site 2013 Very Low <5th Percentile < 13 1 0.5 1 4 8 12 12 23 15 17 4 1 3 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Central 

(Bangkok) 

Low <25th Percentile < 31 7 2 3 7 10 13 11 17 15 13 3 3 2 

Moderate 25th-75th Percentile 31-78 39 8 6 10 9 8 9 8 8 8 9 11 6 

High >75th Percentile > 78 41 22 23 5 4 1 2 1 1 2 10 4 25 

Very High >95th Percentile > 130 12 25 31 5 4 0.2 1 0.2 0.4 1 7 1 26 

2015 Very Low <5th Percentile < 8 0.4 1 7 10 5 13 23 9 10 19 5 0.3 1 

Low <25th Percentile < 23 6 1 6 15 7 13 15 9 13 12 5 1 1 

Moderate 25th-75th Percentile 23-65 38 9 7 7 10 9 8 8 9 9 9 8 8 

High >75th Percentile > 65 43 22 14 3 3 1 1 1 0.5 3 15 14 21 

Very High >95th Percentile > 110 12 27 16 2 1 1 - 0.1 - 1 16 13 23 

Site 17 Central 

(Bangkok) 

General site 2015 Very Low <5th Percentile < 13 1 - - 0.1 0.4 12 6 30 22 24 4 1 0.1 

Low <25th Percentile < 24 9 - 0.3 1 2 16 10 23 20 19 5 2 1 

Moderate 25th-75th Percentile 24-50 37 3 7 14 10 7 9 8 6 7 11 10 8 

High >75th Percentile > 50 41 43 25 3 4 0.1 0.1 1 0.4 1 3 6 13 

Very High >95th Percentile > 91 12 53 30 1 2 - 0.1 - 0.2 0.1 1 3 10 

Site 18 Central 

(Bangkok) 

General site 2013 Very Low <5th Percentile < 10 1 0.2 - 2 11 12 7 29 18 15 6 1 - 

Low <25th Percentile < 23 8 2 1 6 12 15 11 17 16 13 5 3 1 

Moderate 25th-75th Percentile 23-56 38 8 8 11 8 8 10 8 9 6 8 11 5 

High >75th Percentile > 56 42 25 24 4 3 1 0.5 2 0.4 1 10 3 27 

Very High >95th Percentile > 95 13 29 29 3 2 - - - - - 8 1 27 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2014 Very Low <5th Percentile < 8 0.5 - 2 3 8 21 18 14 15 12 3 1 2 

Low <25th Percentile < 20 6 0.1 2 4 9 17 14 15 16 13 5 2 2 

Moderate 25th-75th Percentile 20-51 37 3 11 11 9 8 8 8 8 7 10 9 8 

High >75th Percentile > 51 42 63 3 1 3 1 1 0.4 1 0.2 7 6 14 

Very High >95th Percentile > 92 14 80 1 0.2 1 0.1 - - - - 4 2 10 

Site 19 Central General site 2012 Very Low <5th Percentile < 11 1 2 2 3 10 12 5 14 14 27 7 3 - 

Low <25th Percentile < 25 8 3 4 5 11 11 6 14 13 21 7 4 0.1 

Moderate 25th-75th Percentile 25-58 37 8 7 7 8 11 12 9 8 7 9 9 6 

High >75th Percentile > 58 42 24 16 13 8 1 1 1 0.3 1 7 11 17 

Very High >95th Percentile > 101 12 30 17 11 9 - 0.2 - 0.1 - 6 10 18 

Site 20 Central General site 2011 Very Low <5th Percentile < 5 0.4 4 3 4 6 10 10 17 17 16 9 3 1 

Low <25th Percentile < 16 7 4 3 5 6 9 11 16 15 14 11 4 2 

Moderate 25th-75th Percentile 16-39 39 6 8 8 8 9 8 8 8 8 10 11 8 

High >75th Percentile > 39 42 21 15 14 11 10 4 2 1 1 2 9 8 

Very High >95th Percentile > 63 12 22 18 15 11 12 4 2 1 0.3 1 10 4 

Site 21 Central General site 2013 Very Low <5th Percentile < 9 0.4 0.2 1 3 4 14 13 19 16 20 6 4 0.5 

Low <25th Percentile < 26 7 1 1 4 7 14 12 17 14 16 6 6 1 

Moderate 25th-75th Percentile 26-69 38 6 5 11 9 8 8 8 9 7 9 12 7 

High >75th Percentile > 69 43 32 29 9 7 1 1 0.4 1 1 4 1 13 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Very High >95th Percentile > 118 12 38 37 8 6 - - - 0.1 0.1 1 0.4 9 

2014 Very Low <5th Percentile < 8 0.4 - - - 5 13 10 20 15 16 13 4 3 

Low <25th Percentile < 23 6 0.2 1 1 5 13 13 17 14 16 10 6 3 

Moderate 25th-75th Percentile 23-65 37 4 9 8 8 9 9 7 9 7 9 11 10 

High >75th Percentile > 65 44 39 9 22 12 1 1 0.4 1 1 2 3 9 

Very High >95th Percentile > 115 13 46 7 24 12 0.5 0.2 0.2 1 0.5 0.1 1 7 

Site 22 Central General site 2012 Very Low <5th Percentile < 10 1 1 0.4 0.5 21 17 36 17 3 3 0.3 0.1 - 

Low <25th Percentile < 18 8 2 2 5 19 18 27 16 5 4 1 1 - 

Moderate 25th-75th Percentile 18-42 38 9 8 8 7 5 7 10 11 11 9 8 6 

High >75th Percentile > 42 41 7 6 5 1 - 0.3 1 2 3 22 20 33 

Very High >95th Percentile > 75 12 4 5 2 0.1 - - - 1 2 26 22 39 

Site 23 Central General site 2013 Very Low <5th Percentile < 14 1 - - 1 10 26 12 20 25 4 2 0.3 - 

Low <25th Percentile < 25 8 0.4 0.1 4 10 22 12 19 18 9 3 2 - 

Moderate 25th-75th Percentile 25-58 34 7 8 12 8 7 11 8 8 9 9 11 2 

High >75th Percentile > 58 44 22 19 4 1 0.3 1 0.3 0.3 1 4 4 44 

Very High >95th Percentile > 125 14 24 19 2 - - - - 0.1 - 1 1 53 

2014 Very Low <5th Percentile < 20 1 0.2 0.1 4 6 28 28 6 6 16 4 1 - 

Low <25th Percentile < 32 9 0.1 1 4 10 23 22 9 9 15 4 2 0.4 

Moderate 25th-75th Percentile 32-66 36 2 12 11 7 5 8 10 10 9 10 9 8 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

High >75th Percentile > 66 40 64 2 1 2 1 1 0.4 1 0.4 7 8 13 

Very High >95th Percentile > 124 13 83 1 - - 1 - - - - 3 3 8 

Site 24 Central General site 2012 Very Low <5th Percentile < 10 1 12 11 11 20 13 6 5 7 9 2 2 1 

Low <25th Percentile < 23 7 7 6 7 13 12 7 11 13 14 4 4 2 

Moderate 25th-75th Percentile 23-56 38 8 7 7 7 9 11 9 8 8 10 8 8 

High >75th Percentile > 56 42 13 16 20 13 2 1 1 0.2 1 11 9 12 

Very High >95th Percentile > 99 13 13 19 23 15 1 0.2 1 - 0.1 11 8 9 

2013 Very Low <5th Percentile < 11 1 1 1 0.3 15 11 9 15 12 21 9 5 1 

Low <25th Percentile < 22 8 1 1 3 13 14 10 15 12 17 7 5 1 

Moderate 25th-75th Percentile 22-51 36 6 8 12 8 8 10 9 9 8 8 12 4 

High >75th Percentile > 51 42 31 17 4 3 1 1 0.2 1 1 11 3 30 

Very High >95th Percentile > 96 13 39 18 2 1 - - - - 0.1 8 1 30 

2014 Very Low <5th Percentile < 12 1 - - 3 14 14 13 18 18 11 7 1 1 

Low <25th Percentile < 23 8 0.1 0.4 4 13 14 12 16 17 13 7 2 2 

Moderate 25th-75th Percentile 23-49 36 3 12 12 7 8 8 8 8 8 8 9 8 

High >75th Percentile > 49 42 65 3 1 3 1 1 1 1 0.5 6 7 11 

Very High >95th Percentile > 94 14 82 1 - 2 1 0.1 0.1 - 0.2 3 4 7 

2015 Very Low <5th Percentile < 10 1 - 0.4 1 0.4 18 23 8 17 23 9 0.5 1 

Low <25th Percentile < 20 7 0.1 1 2 2 18 20 10 17 19 8 2 1 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Moderate 25th-75th Percentile 20-45 38 5 7 12 10 8 7 9 7 7 9 10 8 

High >75th Percentile > 45 42 36 26 2 4 0.3 0.1 1 0.1 2 4 5 19 

Very High >95th Percentile > 79 12 40 31 1 2 - - 0.1 - 2 3 3 19 

Site 25 Central General site 2012 Very Low <5th Percentile < 15 1 15 0.3 2 13 16 8 20 5 19 2 0.3 - 

Low <25th Percentile < 27 8 10 1 4 10 15 14 18 8 15 4 1 0.2 

Moderate 25th-75th Percentile 27-63 37 7 8 8 8 9 7 8 11 9 11 8 8 

High >75th Percentile > 63 42 7 7 13 13 1 0.2 0.3 1 2 6 22 29 

Very High >95th Percentile > 110 12 4 5 11 14 0.1 - - - - 4 25 36 

2013 Very Low <5th Percentile < 22 1 - - 1 15 54 12 1 2 9 5 2 - 

Low <25th Percentile < 39 9 1 0.3 3 16 39 11 6 5 11 4 3 0.1 

Moderate 25th-75th Percentile 39-81 38 8 8 12 7 3 9 10 11 9 8 11 4 

High >75th Percentile > 81 39 11 24 4 1 0.4 1 1 2 2 12 6 35 

Very High >95th Percentile > 137 12 9 29 4 0.2 0.1 - 1 1 1 11 5 40 

Site 26 Central General site 2013 Very Low <5th Percentile < 8 0.4 - 0.4 2 9 14 12 14 14 22 8 4 1 

Low <25th Percentile < 20 6 1 2 5 8 16 13 13 14 17 6 5 1 

Moderate 25th-75th Percentile 20-56 34 8 7 9 9 8 9 9 9 8 9 11 4 

High >75th Percentile > 56 45 19 19 5 2 1 1 1 0.2 1 13 5 35 

Very High >95th Percentile > 110 14 20 21 5 0.5 0.2 - 0.1 - - 12 3 38 

2014 Very Low <5th Percentile < 9 0.5 0.3 4 1 8 20 23 17 7 12 2 1 4 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Low <25th Percentile < 23 6 1 4 3 9 17 17 16 12 13 5 2 3 

Moderate 25th-75th Percentile 23-57 35 4 10 13 8 8 7 8 8 8 9 10 8 

High >75th Percentile > 57 44 55 5 2 4 1 1 1 1 1 8 10 11 

Very High >95th Percentile > 109 14 70 4 1 1 - 0.2 1 0.1 - 7 9 8 

Site 27 Central 
 

2014 Very Low <5th Percentile < 13 0.5 - 1 - - 2 1 2 34 38 22 - - 

Low <25th Percentile < 33 8 - 2 4 4 6 7 9 22 27 16 3 1 

Moderate 25th-75th Percentile 33-73 39 2 12 13 11 9 8 10 6 5 7 10 6 

High >75th Percentile > 73 41 58 4 1 4 1 2 2 1 0.3 4 9 15 

Very High >95th Percentile > 127 13 75 3 - 2 - 0.3 0.3 0.1 - 2 8 10 

Site 28 Central General site 2014 Very Low <5th Percentile < 9 0.4 - - 1 5 12 30 13 15 16 5 3 - 

Low <25th Percentile < 21 5 - 0.3 2 10 17 19 13 15 15 4 2 0.2 

Moderate 25th-75th Percentile 21-66 31 3 12 12 8 7 8 9 8 8 10 9 6 

High >75th Percentile > 66 47 52 2 0.2 1 1 1 1 1 0.4 9 10 22 

Very High >95th Percentile > 146 16 67 2 - - 0.1 - 0.3 - - 7 6 18 

Site 47 Central General site 2015 Very Low <5th Percentile < 8 0.4 - - - - 4 13 10 42 18 3 - 10 

Low <25th Percentile < 19 6 0.1 - - 1 10 19 10 31 20 7 - 4 

Moderate 25th-75th Percentile 19-57 37 3 7 14 13 11 6 11 4 5 7 10 7 

High >75th Percentile > 57 44 30 37 4 4 0.1 - 0.2 0.2 0.4 4 6 14 

Very High >95th Percentile > 105 13 34 51 1 2 - - - 0.3 - 1 1 9 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Site 49 Central General site 2011 Very Low <5th Percentile < 21 1 - 1 8 1 7 13 16 12 27 13 0.2 1 

Low <25th Percentile < 47 7 0.4 3 5 4 11 14 17 12 22 9 2 2 

Moderate 25th-75th Percentile 47-124 37 10 7 7 9 8 8 6 6 6 11 10 12 

High >75th Percentile > 124 42 18 26 13 12 4 1 1 2 2 6 11 5 

Very High >95th Percentile > 218 13 20 33 13 12 1 1 0.3 2 1 4 11 2 

2012 Very Low <5th Percentile < 22 1 2 1 1 10 9 6 31 25 13 1 2 - 

Low <25th Percentile < 48 6 4 3 4 8 11 11 23 20 10 1 2 1 

Moderate 25th-75th Percentile 48-145 36 11 8 10 8 8 8 6 7 8 9 8 8 

High >75th Percentile > 145 45 9 14 9 4 1 1 1 1 6 14 14 26 

Very High >95th Percentile > 268 13 11 17 8 4 0.1 - 0.1 0.1 3 10 13 34 

2014 Very Low <5th Percentile < 19 1 - 1 0.2 4 6 13 25 34 12 1 1 1 

Low <25th Percentile < 44 6 0.3 1 2 7 12 15 22 24 12 2 1 2 

Moderate 25th-75th Percentile 44-124 36 8 10 11 10 8 8 6 5 7 9 8 11 

High >75th Percentile > 124 43 36 9 4 3 3 1 0.3 1 7 14 15 7 

Very High >95th Percentile > 234 14 47 10 2 2 1 0.4 - 1 7 13 14 3 

2015 Very Low <5th Percentile < 23 1 - 0.2 1 2 12 10 22 11 31 10 1 0.3 

Low <25th Percentile < 45 7 0.5 2 2 3 15 14 20 15 20 6 1 1 

Moderate 25th-75th Percentile 45-124 34 9 9 13 12 8 5 7 6 7 8 8 8 

High >75th Percentile > 124 45 26 11 3 5 1 1 1 1 5 12 15 19 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 

average PM10 
Contribution of hourly 

PM10 concentrations at 
different percentiles to 

annual average PM10 (%) 

Monthly Contribution (%) 

Concentration 

Level 
Percentile 

Concentration 

(µg m-3) 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Very High >95th Percentile > 256 14 34 10 3 3 1 0.1 - 0.4 4 10 15 21 

Site 51 Central 
 

2014 Very Low <5th Percentile < 14 1 - - - 16 20 5 15 19 21 4 1 - 

Low <25th Percentile < 28 7 - - 0.3 11 17 9 16 19 18 7 2 0.4 

Moderate 25th-75th Percentile 28-72 37 3 11 13 8 8 8 7 7 7 10 11 7 

High >75th Percentile > 72 42 60 6 4 4 0.4 0.3 - 0.2 0.3 3 3 17 

Very High >95th Percentile > 131 13 77 3 1 3 - - - - - 1 1 14 

 

 
  



 

Table S14: Country contribution concentrations at monitoring sites across central Thailand in different years 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly PM10 

concentrations 
at different 

percentiles to 
annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Cambodia China India Indonesia Laos Marine Myanmar Thailand Vietnam 

Site 2 Central 
(Bangkok) 

General 
site 

2014 Very Low <5th Percentile < 20 1 2 0.1 0.1 - 1 64 4 26 2 

Low <25th Percentile < 31 10 2 0.2 0.2 - 1 66 5 25 1 

Moderate 25th-75th Percentile 31-62 36 1 1 0.1 - 2 61 3 30 2 

High >75th Percentile > 62 40 3 6 - - 6 21 1 60 4 

Very High >95th Percentile > 109 13 3 7 - - 5 16 0.3 65 3 
Site 6 Central 

(Bangkok) 
General 

site 
2012 Very Low <5th Percentile < 5 0.5 2 - 0.1 - 0.4 72 4 22 0.3 

Low <25th Percentile < 14 6 1 0.1 0.2 - 1 69 4 24 0.5 

Moderate 25th-75th Percentile 14-34 39 2 1 0.1 - 2 60 3 32 1 

High >75th Percentile > 34 42 4 1 0.1 - 3 38 2 50 1 

Very High >95th Percentile > 56 12 5 1 0.1 - 3 36 2 52 1 
2014 Very Low <5th Percentile < 16 1 0.2 0.3 0.3 - 1 73 6 19 1 

Low <25th Percentile < 26 8 0.3 0.4 0.2 - 1 70 6 22 1 

Moderate 25th-75th Percentile 26-57 36 1 2 0.1 - 2 61 3 30 2 

High >75th Percentile > 57 41 2 5 - - 7 18 0.5 63 4 

Very High >95th Percentile > 108 13 3 5 - - 7 13 0.1 69 3 
2015 Very Low <5th Percentile < 12 1 0.1 0.1 0.3 0.1 1 75 6 17 0.2 

Low <25th Percentile < 22 8 0.2 0.3 0.2 0.1 1 73 6 19 0.3 

Moderate 25th-75th Percentile 22-50 37 2 1 - - 3 60 4 28 2 

High >75th Percentile > 50 41 4 2 - - 7 26 1 55 4 

Very High >95th Percentile > 90 13 5 2 - - 8 22 1 58 4 
Site 7 Central 

(Bangkok) 
General 

site 
2012 Very Low <5th Percentile < 17 1 1 - 0.2 - 0.4 75 6 18 0.2 

Low <25th Percentile < 27 9 1 - 0.2 - 0.3 75 5 19 0.2 

Moderate 25th-75th Percentile 27-55 40 2 0.2 0.1 - 2 60 3 32 1 

High >75th Percentile > 55 39 3 1 0.1 - 3 35 3 54 1 

Very High >95th Percentile > 91 11 3 1 0.1 - 3 32 4 56 1 
Site 8 Central 

(Bangkok) 
General 

site 
2014 Very Low <5th Percentile < 14 1 0.3 0.4 0.2 - 0.4 74 6 18 0.4 

Low <25th Percentile < 27 8 0.2 0.3 0.2 - 1 72 6 21 0.5 

Moderate 25th-75th Percentile 27-59 36 0.5 1 0.1 - 2 62 3 30 2 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly PM10 

concentrations 
at different 

percentiles to 
annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Cambodia China India Indonesia Laos Marine Myanmar Thailand Vietnam 

High >75th Percentile > 59 41 3 5 - - 6 36 2 43 6 

Very High >95th Percentile > 109 13 4 5 - - 5 17 0.2 66 3 
Site 9 Central 

(Bangkok) 
General 

site 
2013 Very Low <5th Percentile < 5 1 1 0.1 0.1 0.1 0.2 78 5 15 0.5 

Low <25th Percentile < 11 6 1 1 0.1 0.1 1 75 5 17 1 

Moderate 25th-75th Percentile 11-26 38 1 1 0.1 0.1 2 60 4 29 2 

High >75th Percentile > 26 43 2 1 - - 6 21 2 65 3 

Very High >95th Percentile > 44 13 2 1 - - 6 18 2 69 3 
Site 12 Central 

(Bangkok) 
Roadside 

site 
2011 Very Low <5th Percentile < 24 1 - 0.4 0.3 - 1 77 5 17 0.2 

Low <25th Percentile < 39 11 0.1 1 0.2 - 1 74 5 18 1 

Moderate 25th-75th Percentile 39-72 41 0.2 4 0.1 - 4 53 4 33 2 

High >75th Percentile > 72 36 0.5 4 - - 8 25 1 57 4 

Very High >95th Percentile > 106 10 1 3 - - 9 22 0.2 60 4 
2013 Very Low <5th Percentile < 28 1 0.1 0.1 - - 3 72 5 19 2 

Low <25th Percentile < 43 11 0.2 0.4 0.1 0.1 2 73 5 18 1 

Moderate 25th-75th Percentile 43-84 40 1 2 0.1 0.1 3 59 4 29 2 

High >75th Percentile > 84 38 1 1 - - 7 16 1 70 4 

Very High >95th Percentile > 134 11 1 1 - - 7 12 1 76 3 
Site 14 Central 

(Bangkok) 
Roadside 

site 
2015 Very Low <5th Percentile < 8 1 0.1 - 0.1 - 0.4 75 6 18 0.1 

Low <25th Percentile < 12 9 0.2 0.1 0.2 - 0.4 75 6 18 0.1 

Moderate 25th-75th Percentile 12-23 41 1 1 0.1 - 3 61 4 28 2 

High >75th Percentile > 23 38 7 1 - - 6 22 1 60 3 

Very High >95th Percentile > 36 11 8 1 - - 7 20 1 62 2 
Site 15 Central 

(Bangkok) 
Roadside 

site 
2014 Very Low <5th Percentile < 3 0.4 1 - 0.1 - 0.3 75 3 20 1 

Low <25th Percentile < 10 5 1 1 0.1 - 1 68 4 25 1 

Moderate 25th-75th Percentile 10-28 36 1 2 0.1 - 3 54 3 34 2 

High >75th Percentile > 28 44 3 1 - - 3 49 2 41 2 

Very High >95th Percentile > 51 14 3 0.3 - - 2 50 2 42 1 
Site 16 Central 

(Bangkok) 
Roadside 

site 
2013 Very Low <5th Percentile < 13 1 1 0.1 0.1 0.1 1 74 5 18 1 

Low <25th Percentile < 31 7 1 0.4 0.1 0.1 1 74 5 18 1 

Moderate 25th-75th Percentile 31-78 39 1 2 0.1 0.1 3 56 4 32 3 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly PM10 

concentrations 
at different 

percentiles to 
annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Cambodia China India Indonesia Laos Marine Myanmar Thailand Vietnam 

High >75th Percentile > 78 41 2 1 - - 6 22 2 64 3 

Very High >95th Percentile > 130 12 2 1 - - 6 18 1 69 3 
2015 Very Low <5th Percentile < 8 0.4 - - 0.2 0.1 0.1 80 5 14 0.1 

Low <25th Percentile < 23 6 0.4 0.1 0.1 - 0.4 78 5 16 0.3 

Moderate 25th-75th Percentile 23-65 38 1 2 0.1 - 3 57 4 31 2 

High >75th Percentile > 65 43 4 1 - - 6 26 2 57 3 

Very High >95th Percentile > 110 12 4 1 - - 6 23 2 61 3 
Site 17 Central 

(Bangkok) 
General 

site 
2015 Very Low <5th Percentile < 13 1 - - 0.2 - 0.3 79 5 16 0.1 

Low <25th Percentile < 24 9 0.2 0.1 0.2 - 1 76 5 17 0.2 

Moderate 25th-75th Percentile 24-50 37 2 1 0.1 - 3 60 4 29 1 

High >75th Percentile > 50 41 4 2 - - 7 25 1 57 4 

Very High >95th Percentile > 91 12 5 2 - - 8 23 1 59 4 
Site 18 Central 

(Bangkok) 
General 

site 
2013 Very Low <5th Percentile < 10 1 1 0.1 0.1 0.2 0.4 77 5 15 1 

Low <25th Percentile < 23 8 1 1 0.1 0.1 1 76 5 16 1 

Moderate 25th-75th Percentile 23-56 38 1 2 0.1 0.1 2 59 4 29 2 

High >75th Percentile > 56 42 1 1 - - 7 17 1 69 4 

Very High >95th Percentile > 95 13 1 1 - - 7 12 1 75 4 
2014 Very Low <5th Percentile < 8 0.5 0.3 0.1 0.3 - 0.3 77 6 16 0.4 

Low <25th Percentile < 20 6 0.3 0.2 0.2 - 1 75 5 18 1 

Moderate 25th-75th Percentile 20-51 37 1 1 0.1 - 2 62 3 29 2 

High >75th Percentile > 51 42 2 5 - - 6 19 1 63 5 

Very High >95th Percentile > 92 14 2 5 - - 7 15 0.2 68 4 
Site 19 Central General 

site 
2012 Very Low <5th Percentile < 11 1 0.2 - 0.3 - 0.2 71 6 22 0.1 

Low <25th Percentile < 25 8 0.5 - 0.2 - 0.3 73 5 21 0.2 

Moderate 25th-75th Percentile 25-58 37 2 0.3 0.2 - 1 61 4 31 1 

High >75th Percentile > 58 42 5 1 - - 4 28 1 60 1 

Very High >95th Percentile > 101 12 6 0.5 - - 4 24 1 64 1 
Site 20 Central General 

site 
2011 Very Low <5th Percentile < 5 0.4 - 1 0.2 - 2 64 5 27 1 

Low <25th Percentile < 16 7 0.1 2 0.2 - 2 61 5 28 1 

Moderate 25th-75th Percentile 16-39 39 0.2 4 0.1 - 4 50 4 35 3 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly PM10 

concentrations 
at different 

percentiles to 
annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Cambodia China India Indonesia Laos Marine Myanmar Thailand Vietnam 

High >75th Percentile > 39 42 1 4 0.1 - 5 35 3 48 3 

Very High >95th Percentile > 63 12 1 3 0.1 - 5 34 3 50 3 
Site 21 Central General 

site 
2013 Very Low <5th Percentile < 9 0.4 0.5 1 0.1 0.1 1 67 5 24 1 

Low <25th Percentile < 26 7 1 1 0.1 0.1 1 65 5 26 1 

Moderate 25th-75th Percentile 26-69 38 1 2 0.1 0.1 3 51 4 35 3 

High >75th Percentile > 69 43 2 1 - - 5 29 1 58 3 

Very High >95th Percentile > 118 12 2 1 - - 5 27 1 62 2 
2014 Very Low <5th Percentile < 8 0.4 0.3 0.2 0.2 0.1 1 59 5 33 1 

Low <25th Percentile < 23 6 0.3 0.3 0.2 - 1 60 5 32 1 

Moderate 25th-75th Percentile 23-65 37 0.5 2 0.1 - 3 53 3 37 2 

High >75th Percentile > 65 44 1 3 - - 5 42 1 44 4 

Very High >95th Percentile > 115 13 1 3 - - 4 42 1 46 3 
Site 22 Central General 

site 
2012 Very Low <5th Percentile < 10 1 0.2 - 0.2 - - 84 5 11 0.2 

Low <25th Percentile < 18 8 0.4 - 0.2 - 0.1 82 4 12 0.3 

Moderate 25th-75th Percentile 18-42 38 2 0.4 0.2 - 1 62 4 29 1 

High >75th Percentile > 42 41 5 1 - - 3 18 1 71 2 

Very High >95th Percentile > 75 12 4 1 - - 3 11 0.3 79 2 
Site 23 Central General 

site 
2013 Very Low <5th Percentile < 14 1 0.2 - - 0.1 0.1 84 4 11 0.3 

Low <25th Percentile < 25 8 1 0.4 0.1 0.1 0.3 81 4 13 1 

Moderate 25th-75th Percentile 25-58 34 1 1 0.1 0.1 2 64 4 25 2 

High >75th Percentile > 58 44 1 2 - - 8 14 0.4 68 5 

Very High >95th Percentile > 125 14 1 1 - - 9 9 0.1 74 5 
2014 Very Low <5th Percentile < 20 1 0.4 - 0.2 - 0.2 79 5 14 0.5 

Low <25th Percentile < 32 9 0.4 0.1 0.2 - 0.3 79 5 14 0.4 

Moderate 25th-75th Percentile 32-66 36 1 1 0.1 - 2 63 3 28 2 

High >75th Percentile > 66 40 3 7 - - 6 19 0.4 61 5 

Very High >95th Percentile > 124 13 2 7 - - 6 17 0.1 63 4 
Site 24 Central General 

site 
2012 Very Low <5th Percentile < 10 1 1 - 0.1 - 0.3 80 3 15 0.4 

Low <25th Percentile < 23 7 1 - 0.2 - 0.5 76 4 18 0.4 

Moderate 25th-75th Percentile 23-56 38 2 1 0.1 - 2 62 3 30 1 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly PM10 

concentrations 
at different 

percentiles to 
annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Cambodia China India Indonesia Laos Marine Myanmar Thailand Vietnam 

High >75th Percentile > 56 42 5 2 - - 3 31 2 55 1 

Very High >95th Percentile > 99 13 6 2 - - 3 27 3 59 1 
2013 Very Low <5th Percentile < 11 1 3 0.5 0.1 0.4 1 69 4 20 1 

Low <25th Percentile < 22 8 2 1 0.1 0.2 1 72 4 18 1 

Moderate 25th-75th Percentile 22-51 36 1 2 0.1 0.1 2 61 4 28 2 

High >75th Percentile > 51 42 1 1 - - 7 16 1 70 4 

Very High >95th Percentile > 96 13 0.4 1 - - 7 10 0.4 78 3 
2014 Very Low <5th Percentile < 12 1 0.2 - 0.4 - 0.5 76 6 17 0.3 

Low <25th Percentile < 23 8 0.2 0.1 0.3 - 1 75 5 18 0.4 

Moderate 25th-75th Percentile 23-49 36 1 1 0.1 - 2 63 3 28 2 

High >75th Percentile > 49 42 3 5 - - 5 22 1 60 4 

Very High >95th Percentile > 94 14 3 5 - - 5 19 0.3 65 3 
2015 Very Low <5th Percentile < 10 1 0.1 - 0.3 - 0.1 75 7 18 - 

Low <25th Percentile < 20 7 0.3 0.1 0.2 - 0.4 75 6 17 0.2 

Moderate 25th-75th Percentile 20-45 38 2 1 0.1 - 3 62 4 27 2 

High >75th Percentile > 45 42 5 1 - - 7 24 2 58 3 

Very High >95th Percentile > 79 12 5 1 - - 7 20 2 62 3 
Site 25 Central General 

site 
2012 Very Low <5th Percentile < 15 1 0.3 - 0.2 - - 84 4 11 0.1 

Low <25th Percentile < 27 8 0.3 - 0.2 - - 83 5 12 0.1 

Moderate 25th-75th Percentile 27-63 37 2 0.4 0.2 - 1 64 3 28 1 

High >75th Percentile > 63 42 7 1 - - 4 25 1 61 2 

Very High >95th Percentile > 110 12 7 1 - - 4 17 1 68 2 
2013 Very Low <5th Percentile < 22 1 1 0.3 - 0.1 1 79 4 13 0.5 

Low <25th Percentile < 39 9 1 1 0.1 0.1 1 78 4 14 1 

Moderate 25th-75th Percentile 39-81 38 1 2 0.1 0.1 2 63 4 26 2 

High >75th Percentile > 81 39 1 2 - - 8 18 1 66 4 

Very High >95th Percentile > 137 12 1 1 - - 9 12 0.2 72 5 
Site 26 Central General 

site 
2013 Very Low <5th Percentile < 8 0.4 1 1 0.1 - 1 77 5 14 1 

Low <25th Percentile < 20 6 1 1 0.1 0.1 1 77 5 15 1 

Moderate 25th-75th Percentile 20-56 34 2 2 0.1 0.1 3 61 4 27 2 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly PM10 

concentrations 
at different 

percentiles to 
annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Cambodia China India Indonesia Laos Marine Myanmar Thailand Vietnam 

High >75th Percentile > 56 45 1 2 - - 8 15 0.5 68 5 

Very High >95th Percentile > 110 14 1 2 - - 8 10 0.1 75 4 
2014 Very Low <5th Percentile < 9 0.5 1 0.2 0.2 - 1 80 5 13 1 

Low <25th Percentile < 23 6 1 0.2 0.2 - 1 77 5 16 1 

Moderate 25th-75th Percentile 23-57 35 1 2 0.1 - 2 63 3 27 2 

High >75th Percentile > 57 44 5 6 - - 6 23 1 54 5 

Very High >95th Percentile > 109 14 6 7 - - 6 18 0.1 58 5 
Site 27 Central 

 
2014 Very Low <5th Percentile < 13 0.5 1 - 0.2 - 1 62 6 30 0.4 

Low <25th Percentile < 33 8 0.5 0.1 0.1 - 1 64 6 29 0.4 

Moderate 25th-75th Percentile 33-73 39 1 1 0.1 - 2 63 4 29 2 

High >75th Percentile > 73 41 4 5 - - 6 23 1 58 4 

Very High >95th Percentile > 127 13 5 5 - - 6 19 1 62 3 
Site 28 Central General 

site 
2014 Very Low <5th Percentile < 9 0.4 1 - 0.2 - 1 77 7 13 0.4 

Low <25th Percentile < 21 5 1 - 0.2 - 0.4 78 6 14 0.3 

Moderate 25th-75th Percentile 21-66 31 1 1 0.1 - 1 63 4 28 1 

High >75th Percentile > 66 47 3 6 - - 7 17 0.5 62 5 

Very High >95th Percentile > 146 16 3 6 - - 7 15 - 64 5 
Site 47 Central General 

site 
2015 Very Low <5th Percentile < 8 0.4 1 - 0.3 - 1 79 5 14 0.2 

Low <25th Percentile < 19 6 1 - 0.3 - 0.3 80 7 13 0.1 

Moderate 25th-75th Percentile 19-57 37 1 0.4 0.1 - 2 60 6 30 1 

High >75th Percentile > 57 44 5 2 - - 7 21 2 60 3 

Very High >95th Percentile > 105 13 6 2 - - 8 19 2 61 3 
Site 49 Central General 

site 
2011 Very Low <5th Percentile < 21 1 3 0.2 0.1 - 1 56 5 34 1 

Low <25th Percentile < 47 7 2 1 0.1 - 1 58 5 32 1 

Moderate 25th-75th Percentile 47-124 37 0.3 7 0.1 - 6 36 3 44 4 

High >75th Percentile > 124 42 1 4 - - 7 25 3 56 4 

Very High >95th Percentile > 218 13 1 3 - - 8 23 2 59 4 
2012 Very Low <5th Percentile < 22 1 0.1 0.2 0.1 - 0.2 64 5 30 0.4 

Low <25th Percentile < 48 6 0.2 1 0.1 - 1 64 5 29 1 

Moderate 25th-75th Percentile 48-145 36 1 2 0.1 - 3 42 3 47 2 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution 
of hourly PM10 

concentrations 
at different 

percentiles to 
annual average 

PM10 (%) 

Country Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) Cambodia China India Indonesia Laos Marine Myanmar Thailand Vietnam 

High >75th Percentile > 145 45 3 1 - - 5 17 1 71 2 

Very High >95th Percentile > 268 13 3 1 - - 5 14 1 75 2 
2014 Very Low <5th Percentile < 19 1 - 0.5 0.1 - 0.3 59 7 32 0.3 

Low <25th Percentile < 44 6 0.1 1 0.1 - 1 61 6 31 1 

Moderate 25th-75th Percentile 44-124 36 1 4 0.1 - 4 44 3 41 4 

High >75th Percentile > 124 43 1 4 - - 7 19 1 63 5 

Very High >95th Percentile > 234 14 1 3 - - 8 16 1 67 4 
2015 Very Low <5th Percentile < 23 1 - - 0.1 - 0.1 64 5 30 - 

Low <25th Percentile < 45 7 - 0.2 0.2 - 0.3 63 5 30 0.2 

Moderate 25th-75th Percentile 45-124 34 1 3 0.1 - 5 44 3 41 3 

High >75th Percentile > 124 45 2 2 - - 7 20 3 63 3 

Very High >95th Percentile > 256 14 2 2 - - 6 17 5 66 3 
Site 51 Central 

 
2014 Very Low <5th Percentile < 14 1 1 0.3 0.1 - 0.3 64 6 29 0.4 

Low <25th Percentile < 28 7 0.4 0.2 0.1 - 1 63 6 30 0.4 

Moderate 25th-75th Percentile 28-72 37 0.4 2 0.1 - 3 51 3 38 2 

High >75th Percentile > 72 42 0.4 6 - - 9 17 1 60 6 

Very High >95th Percentile > 131 13 0.3 5 - - 10 12 1 67 6 

 
 
  



 

Table S15: Hourly contribution concentrations at monitoring sites across central Thailand in different years 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution of 
hourly PM10 

concentrations at 
different 

percentiles to 
annual average 

PM10 (%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Site 2 Central 

(Bangkok) 

General 

site 

2014 Very Low <5th Percentile < 20 1 10 7 8 15 12 5 1 0.5 1 0.2 2 2 1 1 1 3 8 8 1 1 4 2 2 5 

Low <25th Percentile < 31 10 8 6 7 11 9 5 2 1 1 1 2 3 2 2 2 4 7 6 2 2 4 4 4 5 

Moderate 25th-75th Percentile 31-62 36 3 4 4 4 4 4 4 5 5 5 4 4 4 5 4 4 4 4 5 4 4 4 4 4 

High >75th Percentile > 62 40 4 4 3 4 4 5 5 6 6 6 5 4 3 2 2 2 3 3 3 4 4 5 5 5 

Very High >95th Percentile > 109 13 4 4 4 4 5 5 6 6 7 6 5 4 3 2 1 2 2 2 3 3 4 6 6 6 

Site 6 Central 
(Bangkok) 

General 
site 

2012 Very Low <5th Percentile < 5 0.5 2 1 3 3 3 1 0.3 0.5 7 17 22 13 12 5 5 1 0.3 - - 1 1 1 2 1 

Low <25th Percentile < 14 6 3 3 4 4 4 3 2 2 5 11 12 11 9 6 4 2 1 1 1 1 2 2 3 2 

Moderate 25th-75th Percentile 14-34 39 4 5 4 4 5 5 5 5 4 3 3 3 4 4 5 5 5 5 4 4 4 4 4 5 

High >75th Percentile > 34 42 5 4 4 2 3 5 4 5 3 1 0.5 0.5 1 3 2 7 6 3 10 8 6 7 6 5 

Very High >95th Percentile > 56 12 5 4 4 2 3 6 3 4 2 1 0.3 0.2 0.5 3 1 8 6 3 10 9 6 8 7 5 

2014 Very Low <5th Percentile < 16 1 8 10 10 20 14 5 2 0.2 3 2 3 0.4 2 1 2 5 3 1 1 1 1 1 3 4 

Low <25th Percentile < 26 8 6 8 8 13 10 5 2 1 2 2 4 2 3 3 4 5 4 2 2 2 2 2 4 4 

Moderate 25th-75th Percentile 26-57 36 4 3 3 4 4 4 5 4 4 4 4 4 4 4 4 5 5 5 5 5 4 4 4 4 

High >75th Percentile > 57 41 5 4 4 4 4 6 6 7 7 7 5 2 2 1 1 1 1 2 2 5 5 6 6 6 

Very High >95th Percentile > 108 13 6 4 5 5 4 7 7 7 7 8 6 2 1 1 0.4 0.1 0.1 1 1 4 4 7 7 6 

2015 Very Low <5th Percentile < 12 1 6 15 12 11 17 7 2 1 0.5 1 1 1 2 2 3 1 1 0.4 2 3 2 1 2 5 

Low <25th Percentile < 22 8 5 10 8 8 10 6 3 2 2 2 3 3 3 4 4 3 3 2 3 3 3 3 3 5 

Moderate 25th-75th Percentile 22-50 37 4 4 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 4 4 4 4 

High >75th Percentile > 50 41 4 4 4 3 3 4 5 9 9 8 4 2 2 2 2 2 2 2 2 3 5 8 6 5 

Very High >95th Percentile > 90 13 3 3 4 3 3 4 5 11 10 10 4 2 1 1 1 1 1 2 1 2 5 10 7 5 

Site 7 Central 

(Bangkok) 

General 

site 

2012 Very Low <5th Percentile < 17 1 4 10 10 9 8 6 4 1 0.3 1 1 3 2 2 3 2 3 9 8 2 2 3 6 3 

Low <25th Percentile < 27 9 4 8 8 8 7 6 5 2 1 2 2 3 3 3 3 3 3 7 6 2 2 3 5 3 

Moderate 25th-75th Percentile 27-55 40 4 4 4 3 3 3 4 5 4 4 4 4 4 4 5 5 5 5 4 4 4 4 4 4 

High >75th Percentile > 55 39 4 4 4 4 4 3 3 4 5 5 5 4 3 3 3 3 3 3 4 6 7 7 7 5 

Very High >95th Percentile > 91 11 4 4 4 5 5 3 3 5 5 5 5 4 2 2 3 3 2 2 3 6 7 7 7 4 

Site 8 Central 
(Bangkok) 

General 
site 

2014 Very Low <5th Percentile < 14 1 8 11 14 9 10 6 2 1 1 1 0.5 1 1 6 6 2 3 0.5 1 2 2 3 2 6 

Low <25th Percentile < 27 8 6 8 10 7 8 5 3 2 2 2 2 2 3 5 5 3 3 2 2 3 3 4 3 5 

Moderate 25th-75th Percentile 27-59 36 4 4 4 4 4 4 3 4 4 4 4 4 5 5 5 5 5 5 5 4 4 4 4 4 

High >75th Percentile > 59 41 5 4 5 4 4 5 8 5 6 6 5 4 3 3 2 2 2 2 3 4 3 5 6 5 

Very High >95th Percentile > 109 13 5 5 6 5 5 5 9 5 7 6 5 3 2 2 1 1 1 2 2 4 3 5 7 5 

Site 9 Central 

(Bangkok) 

General 

site 

2013 Very Low <5th Percentile < 5 1 1 1 8 8 4 2 3 1 2 1 8 6 - 1 2 9 4 1 10 8 4 1 5 8 

Low <25th Percentile < 11 6 1 1 5 6 5 4 3 2 4 5 6 5 1 1 3 6 5 4 6 6 5 5 5 5 

Moderate 25th-75th Percentile 11-26 38 4 4 4 4 4 5 4 4 4 4 4 5 4 5 4 4 4 4 4 4 4 3 4 4 

High >75th Percentile > 26 43 11 9 5 3 4 3 8 6 4 4 2 1 3 4 3 2 1 1 2 3 4 7 6 5 

Very High >95th Percentile > 44 13 12 10 5 2 4 3 9 6 3 4 2 1 2 2 1 2 1 0.2 1 2 5 9 8 6 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution of 
hourly PM10 

concentrations at 
different 

percentiles to 
annual average 

PM10 (%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Site 
12 

Central 
(Bangkok) 

Roadside 
site 

2011 Very Low <5th Percentile < 24 1 7 6 7 15 20 8 9 2 1 1 1 1 1 6 1 1 1 0.5 2 1 2 2 3 2 

Low <25th Percentile < 39 11 6 6 7 11 14 7 7 3 1 1 2 2 2 6 2 2 2 2 3 3 3 3 4 4 

Moderate 25th-75th Percentile 39-72 41 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 

High >75th Percentile > 72 36 5 4 3 2 2 5 7 9 7 5 5 3 2 2 2 2 3 3 3 4 4 5 7 7 

Very High >95th Percentile > 106 10 5 3 2 2 1 5 8 10 8 5 5 3 2 2 1 2 2 2 2 3 3 4 9 9 

2013 Very Low <5th Percentile < 28 1 7 10 18 11 9 5 5 1 0.5 1 1 1 1 2 2 4 2 7 1 2 1 2 2 4 

Low <25th Percentile < 43 11 6 8 12 9 8 5 4 1 1 2 2 2 2 3 3 4 3 6 3 3 2 3 3 5 

Moderate 25th-75th Percentile 43-84 40 4 4 4 4 3 4 4 5 5 5 4 5 5 4 4 5 4 4 4 4 4 4 4 4 

High >75th Percentile > 84 38 4 4 3 3 2 5 6 7 10 7 4 3 2 2 2 2 2 3 3 3 5 5 6 6 

Very High >95th Percentile > 134 11 5 4 3 3 2 6 7 8 12 8 4 1 1 1 0.4 1 1 2 2 2 6 5 7 7 

Site 

14 

Central 

(Bangkok) 

Roadside 

site 

2015 Very Low <5th Percentile < 8 1 4 8 8 7 11 8 4 3 2 1 2 2 2 4 7 4 4 3 2 2 2 3 3 3 

Low <25th Percentile < 12 9 5 7 7 7 9 8 5 4 2 1 2 2 2 3 5 4 5 3 2 3 2 3 4 4 

Moderate 25th-75th Percentile 12-23 41 4 4 4 3 3 4 4 4 4 4 5 5 5 5 5 4 4 5 5 4 4 4 4 4 

High >75th Percentile > 23 38 5 3 7 3 4 3 4 7 12 8 5 2 1 1 2 1 1 2 2 2 4 5 9 6 

Very High >95th Percentile > 36 11 5 3 8 3 4 3 4 8 14 8 4 1 1 0.3 1 1 1 1 1 2 4 6 10 7 

Site 

15 

Central 

(Bangkok) 

Roadside 

site 

2014 Very Low <5th Percentile < 3 0.4 2 4 11 5 7 1 3 1 10 21 14 9 2 1 1 0.4 0.1 1 3 1 4 0.1 1 2 

Low <25th Percentile < 10 5 3 2 8 7 5 3 2 3 6 9 11 9 5 2 2 1 2 2 4 4 3 2 2 3 

Moderate 25th-75th Percentile 10-28 36 4 4 3 3 4 4 4 4 4 3 2 3 5 4 6 6 6 5 5 4 4 4 4 4 

High >75th Percentile > 28 44 7 8 7 3 3 5 7 9 5 1 1 1 1 3 2 1 3 2 2 4 4 5 8 7 

Very High >95th Percentile > 51 14 7 9 8 3 3 4 7 11 6 1 0.3 1 0.3 1 1 1 4 2 2 4 3 5 9 7 

Site 
16 

Central 
(Bangkok) 

Roadside 
site 

2013 Very Low <5th Percentile < 13 1 16 19 14 10 1 2 - 0.2 0.3 1 1 2 4 3 4 3 2 1 0.4 0.4 0.4 2 4 11 

Low <25th Percentile < 31 7 11 12 10 8 3 3 1 1 1 2 3 4 5 5 5 4 3 2 1 1 1 3 5 9 

Moderate 25th-75th Percentile 31-78 39 2 2 3 3 4 4 4 5 5 5 5 5 5 5 5 4 5 5 5 4 4 4 3 3 

High >75th Percentile > 78 41 2 3 2 3 4 7 8 8 7 3 2 1 1 1 1 2 2 4 7 9 9 7 5 4 

Very High >95th Percentile > 130 12 2 3 2 2 4 8 9 8 7 2 2 1 0.3 0.2 0.2 1 1 3 7 10 11 9 6 4 

2015 Very Low <5th Percentile < 8 0.4 23 24 15 5 2 - - 0.4 0.3 - 1 3 4 4 2 1 0.2 - - - 0.2 1 4 12 

Low <25th Percentile < 23 6 12 12 11 6 3 1 1 1 1 2 3 4 5 5 4 4 2 1 1 1 1 3 6 9 

Moderate 25th-75th Percentile 23-65 38 2 2 2 4 5 5 4 5 5 5 5 5 5 5 5 5 6 5 4 3 4 4 3 2 

High >75th Percentile > 65 43 3 2 1 2 4 6 8 6 4 3 1 1 1 1 1 1 2 5 9 11 10 9 6 4 

Very High >95th Percentile > 110 12 2 1 1 1 3 6 9 6 3 2 1 0.1 0.2 1 0.1 1 1 3 9 12 13 12 8 4 

Site 

17 

Central 

(Bangkok) 

General 

site 

2015 Very Low <5th Percentile < 13 1 9 18 9 14 13 8 4 1 1 1 1 1 1 1 2 1 1 0.3 0.4 1 2 2 3 6 

Low <25th Percentile < 24 9 7 12 7 10 9 7 4 2 2 2 3 2 3 3 3 2 2 1 2 2 3 3 4 6 

Moderate 25th-75th Percentile 24-50 37 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 4 4 4 3 3 

High >75th Percentile > 50 41 4 4 3 5 4 4 5 8 8 6 4 3 2 2 2 2 2 2 3 4 5 7 6 6 

Very High >95th Percentile > 91 12 3 3 2 5 4 5 5 9 9 7 4 2 2 1 1 1 1 2 3 4 5 8 7 6 

Site 

18 

Central 

(Bangkok) 

General 

site 

2013 Very Low <5th Percentile < 10 1 6 8 8 7 4 2 3 3 4 2 1 1 3 5 9 6 5 3 2 2 2 2 4 7 

Low <25th Percentile < 23 8 5 7 7 6 5 4 3 2 4 3 2 3 4 5 6 5 5 3 2 3 3 3 4 6 

Moderate 25th-75th Percentile 23-56 38 4 4 4 4 4 5 5 4 4 4 5 4 4 4 4 4 4 5 5 4 4 4 4 3 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution of 
hourly PM10 

concentrations at 
different 

percentiles to 
annual average 

PM10 (%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

High >75th Percentile > 56 42 6 5 4 3 3 3 5 9 8 7 3 3 2 2 2 2 2 2 2 3 5 6 8 6 

Very High >95th Percentile > 95 13 7 6 4 3 3 2 5 11 10 8 3 1 1 0.5 2 0.3 1 1 1 2 5 7 10 7 

2014 Very Low <5th Percentile < 8 0.5 7 10 11 7 5 4 5 0.4 1 3 4 3 4 2 2 1 1 0.4 1 2 4 9 9 4 

Low <25th Percentile < 20 6 6 7 8 7 6 5 4 2 2 4 5 4 4 3 2 1 1 1 2 3 4 6 7 5 

Moderate 25th-75th Percentile 20-51 37 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 4 4 5 5 5 4 3 4 

High >75th Percentile > 51 42 6 4 4 4 4 3 5 10 8 7 4 3 3 2 2 2 3 3 3 2 3 4 7 5 

Very High >95th Percentile > 92 14 6 4 5 4 4 4 6 12 9 8 5 3 2 2 1 1 2 2 1 1 2 4 8 5 

Site 

19 

Central General 

site 

2012 Very Low <5th Percentile < 11 1 5 8 7 8 3 2 0.4 0.4 18 8 3 2 1 1 2 1 3 1 2 2 5 5 7 5 

Low <25th Percentile < 25 8 6 7 7 7 5 4 2 2 10 6 4 3 2 2 3 2 3 2 2 3 4 5 6 5 

Moderate 25th-75th Percentile 25-58 37 4 3 3 4 4 4 5 4 3 4 4 5 5 5 5 5 5 5 4 4 4 4 4 4 

High >75th Percentile > 58 42 3 4 5 3 3 4 5 10 6 4 2 2 2 2 3 3 3 2 4 6 7 6 6 5 

Very High >95th Percentile > 101 12 3 5 6 4 3 5 5 12 6 4 2 1 1 1 2 2 2 2 3 6 8 7 7 5 

Site 
20 

Central General 
site 

2011 Very Low <5th Percentile < 5 0.4 2 1 1 2 1 0.2 - 6 19 26 12 14 8 2 3 1 0.2 - - 0.2 - 0.2 1 2 

Low <25th Percentile < 16 7 4 3 4 5 4 3 3 6 9 12 9 10 7 3 3 2 1 1 0.4 1 1 2 3 5 

Moderate 25th-75th Percentile 16-39 39 4 3 5 4 4 5 5 4 3 2 4 3 4 4 5 6 5 5 4 4 4 5 5 4 

High >75th Percentile > 39 42 3 8 2 2 2 2 2 8 7 2 2 1 1 5 2 2 3 5 9 11 9 6 4 2 

Very High >95th Percentile > 63 12 2 9 2 1 1 2 2 10 9 2 2 1 1 5 2 2 2 3 8 13 10 7 4 2 

Site 

21 

Central General 

site 

2013 Very Low <5th Percentile < 9 0.4 3 3 4 4 6 6 4 1 0.3 0.5 2 8 9 12 5 3 1 2 5 5 4 7 4 3 

Low <25th Percentile < 26 7 4 3 4 5 6 6 4 1 1 1 4 6 7 7 5 3 3 3 5 4 4 5 4 4 

Moderate 25th-75th Percentile 26-69 38 4 4 4 4 4 4 5 5 5 5 4 4 4 4 4 5 5 5 4 4 4 4 4 4 

High >75th Percentile > 69 43 6 6 6 3 4 2 2 6 6 6 4 1 1 1 2 2 2 3 4 6 7 6 6 6 

Very High >95th Percentile > 118 12 7 7 7 3 4 2 1 5 7 7 4 1 0.3 1 1 2 1 3 4 6 9 8 6 7 

2014 Very Low <5th Percentile < 8 0.4 3 4 5 6 4 3 1 1 0.4 2 5 5 7 13 9 6 4 4 4 5 2 1 2 3 

Low <25th Percentile < 23 6 4 4 5 5 5 5 4 2 2 2 4 5 6 7 6 5 6 5 4 4 3 3 3 3 

Moderate 25th-75th Percentile 23-65 37 5 4 4 4 4 4 4 4 5 5 5 4 4 3 3 4 4 5 5 4 4 4 5 4 

High >75th Percentile > 65 44 5 6 6 6 4 5 6 6 4 3 2 1 1 2 3 2 1 1 3 4 7 8 5 6 

Very High >95th Percentile > 115 13 6 7 7 6 4 5 7 7 2 2 2 1 0.4 1 3 2 1 0.4 2 4 7 10 6 7 

Site 

22 

Central General 

site 

2012 Very Low <5th Percentile < 10 1 4 6 10 9 5 2 1 - 2 4 8 5 4 8 6 4 4 1 3 1 5 3 2 3 

Low <25th Percentile < 18 8 4 6 8 8 5 3 2 1 1 4 6 5 4 7 5 4 4 3 4 2 4 3 2 3 

Moderate 25th-75th Percentile 18-42 38 4 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 4 4 4 4 4 4 

High >75th Percentile > 42 41 6 4 5 4 4 3 4 5 8 5 3 2 2 1 1 2 2 3 3 4 6 7 8 8 

Very High >95th Percentile > 75 12 7 3 6 5 4 3 4 5 9 4 2 1 2 1 1 1 1 3 1 4 6 8 9 10 

Site 
23 

Central General 
site 

2013 Very Low <5th Percentile < 14 1 3 2 3 3 1 2 1 1 3 2 2 1 4 15 5 14 3 5 14 2 1 4 5 4 

Low <25th Percentile < 25 8 4 3 4 4 3 3 2 2 2 2 3 3 4 10 5 9 4 5 10 3 3 4 5 4 

Moderate 25th-75th Percentile 25-58 34 4 4 4 4 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 

High >75th Percentile > 58 44 6 4 4 4 3 4 5 5 7 7 5 3 2 2 2 2 2 2 3 4 5 6 6 5 

Very High >95th Percentile > 125 14 7 4 4 4 3 4 6 6 8 9 6 2 1 0.4 1 1 1 2 2 3 5 7 8 7 

2014 Very Low <5th Percentile < 20 1 3 3 3 8 4 1 1 0.2 1 1 3 3 2 7 3 2 3 9 6 4 9 13 5 3 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution of 
hourly PM10 

concentrations at 
different 

percentiles to 
annual average 

PM10 (%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Low <25th Percentile < 32 9 4 4 4 7 4 2 2 1 2 2 3 4 3 6 4 3 4 7 5 4 7 9 5 4 

Moderate 25th-75th Percentile 32-66 36 4 4 4 4 4 4 4 4 5 5 5 4 4 4 5 5 4 4 4 4 4 4 4 4 

High >75th Percentile > 66 40 5 5 5 4 4 5 5 7 7 6 5 4 2 2 2 2 2 2 2 3 4 6 5 6 

Very High >95th Percentile > 124 13 5 5 5 5 4 6 6 7 8 6 5 3 2 1 1 1 1 1 1 3 4 7 5 7 

Site 
24 

Central General 
site 

2012 Very Low <5th Percentile < 10 1 2 0.3 4 5 4 2 1 5 9 14 15 8 4 5 5 5 2 1 1 1 1 3 1 2 

Low <25th Percentile < 23 7 3 3 4 5 4 3 2 4 7 9 9 7 4 5 6 6 4 2 2 2 3 3 2 3 

Moderate 25th-75th Percentile 23-56 38 4 5 4 4 4 5 5 4 3 3 3 4 5 4 4 4 5 5 4 5 4 4 4 4 

High >75th Percentile > 56 42 6 5 5 5 4 4 5 4 3 2 2 1 2 2 2 2 2 4 9 8 5 5 6 7 

Very High >95th Percentile > 99 13 7 5 5 6 3 4 5 3 3 2 2 1 1 2 1 1 1 4 9 9 5 5 7 8 

2013 Very Low <5th Percentile < 11 1 5 4 7 4 3 2 2 9 10 9 4 1 2 3 3 4 2 1 2 1 5 6 4 5 

Low <25th Percentile < 22 8 5 4 6 4 4 3 2 6 8 7 4 2 2 4 4 4 3 3 3 3 5 6 4 5 

Moderate 25th-75th Percentile 22-51 36 4 4 4 4 5 5 5 5 3 4 4 4 5 5 4 4 4 4 4 4 4 4 4 4 

High >75th Percentile > 51 42 4 4 4 4 4 5 5 5 5 4 4 4 2 1 1 2 4 3 3 5 5 8 7 6 

Very High >95th Percentile > 96 13 5 4 4 4 4 5 5 5 6 4 4 3 2 0.1 0.3 1 3 2 2 5 5 11 9 7 

2014 Very Low <5th Percentile < 12 1 10 8 6 4 3 0.4 1 6 6 6 5 2 2 4 2 1 1 1 7 7 4 4 4 6 

Low <25th Percentile < 23 8 7 7 5 4 4 3 2 5 5 5 5 3 3 5 2 2 2 2 5 6 5 4 4 5 

Moderate 25th-75th Percentile 23-49 36 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 4 5 4 4 4 4 4 4 

High >75th Percentile > 49 42 5 5 4 5 5 4 5 6 5 4 3 3 2 1 2 3 4 4 4 4 6 6 6 5 

Very High >95th Percentile > 94 14 5 5 4 6 5 4 5 7 5 4 3 3 1 0.4 1 2 3 4 3 4 6 6 6 6 

2015 Very Low <5th Percentile < 10 1 9 8 4 6 6 4 3 13 7 5 5 0.4 1 1 0.4 1 1 2 3 2 3 3 6 6 

Low <25th Percentile < 20 7 7 6 5 5 6 4 3 9 6 5 5 1 2 2 1 2 3 3 4 4 4 4 6 6 

Moderate 25th-75th Percentile 20-45 38 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 4 4 4 4 4 4 4 

High >75th Percentile > 45 42 6 5 4 4 6 5 6 6 4 3 3 2 2 2 3 2 1 2 4 5 7 7 6 6 

Very High >95th Percentile > 79 12 7 5 4 4 7 5 7 7 4 3 2 1 0.3 1 2 2 1 1 3 4 8 9 7 6 

Site 
25 

Central General 
site 

2012 Very Low <5th Percentile < 15 1 5 6 10 13 8 9 1 0.4 4 0.2 1 2 3 3 4 4 9 2 1 0.5 1 5 5 6 

Low <25th Percentile < 27 8 5 6 8 10 7 6 1 1 3 1 2 3 4 4 4 5 7 3 2 2 2 4 5 6 

Moderate 25th-75th Percentile 27-63 37 4 3 3 3 4 5 5 4 4 4 4 5 4 5 5 4 4 5 5 5 4 4 4 4 

High >75th Percentile > 63 42 4 4 3 3 3 4 9 12 11 5 3 2 2 2 2 1 2 2 2 3 7 6 6 4 

Very High >95th Percentile > 110 12 4 4 3 3 3 4 11 16 13 4 2 1 1 1 1 1 0.1 1 1 2 8 7 7 4 

2013 Very Low <5th Percentile < 22 1 9 9 8 12 6 2 1 1 0.3 0.3 1 2 2 2 12 7 3 2 2 1 7 2 3 6 

Low <25th Percentile < 39 9 8 8 7 9 6 3 1 1 1 1 2 3 3 3 8 6 4 3 2 2 6 3 4 6 

Moderate 25th-75th Percentile 39-81 38 3 3 3 3 4 4 5 4 4 5 5 5 5 4 4 4 5 5 5 4 4 4 4 4 

High >75th Percentile > 81 39 4 4 3 3 3 4 8 9 8 5 3 3 2 1 2 1 1 2 3 5 5 7 7 5 

Very High >95th Percentile > 137 12 5 5 3 3 4 5 8 10 9 5 2 2 1 0.4 1 0.2 0.4 1 1 5 6 8 8 6 

Site 

26 

Central General 

site 

2013 Very Low <5th Percentile < 8 0.4 4 11 12 12 5 4 1 1 0.3 2 3 6 6 8 8 6 4 2 1 1 1 1 1 2 

Low <25th Percentile < 20 6 5 7 8 8 6 4 2 1 1 3 4 5 6 6 7 5 4 3 2 2 1 2 2 4 

Moderate 25th-75th Percentile 20-56 34 4 3 3 4 4 4 4 4 4 5 5 5 4 4 4 4 4 4 4 4 5 5 5 4 

High >75th Percentile > 56 45 5 4 2 2 3 3 6 9 6 4 3 1 1 1 1 2 2 3 5 7 9 8 7 6 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution of 
hourly PM10 

concentrations at 
different 

percentiles to 
annual average 

PM10 (%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Very High >95th Percentile > 110 14 5 5 2 1 2 3 7 10 5 3 2 1 0.3 0.1 0.1 1 1 1 4 8 11 10 9 8 

2014 Very Low <5th Percentile < 9 0.5 12 13 11 7 5 1 0.4 1 2 3 3 4 5 7 5 3 1 0.3 - 0.4 1 2 4 9 

Low <25th Percentile < 23 6 8 9 8 6 5 3 1 1 2 3 4 5 7 7 5 4 3 2 1 2 2 3 4 6 

Moderate 25th-75th Percentile 23-57 35 3 3 3 4 4 4 4 4 5 5 5 4 4 4 4 4 5 5 4 4 4 4 4 4 

High >75th Percentile > 57 44 3 3 3 3 3 5 7 10 5 3 2 1 1 1 2 2 2 4 7 9 9 8 5 3 

Very High >95th Percentile > 109 14 3 2 2 3 3 5 7 11 6 3 1 0.3 1 0.4 1 1 1 3 7 11 11 9 6 3 

Site 

27 

Central 
 

2014 Very Low <5th Percentile < 13 0.5 5 3 4 5 4 4 4 3 1 4 4 5 7 6 7 8 7 3 2 2 2 2 2 4 

Low <25th Percentile < 33 8 5 5 6 5 5 4 4 2 2 3 4 6 6 6 7 6 5 4 3 2 2 2 3 4 

Moderate 25th-75th Percentile 33-73 39 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 5 5 5 5 4 4 4 4 

High >75th Percentile > 73 41 6 4 4 3 4 4 4 6 8 6 3 2 1 1 1 1 1 2 3 6 8 9 7 7 

Very High >95th Percentile > 127 13 6 4 4 3 4 4 4 6 7 6 4 1 1 1 1 0.1 1 1 2 6 8 10 9 7 

Site 

28 

Central General 

site 

2014 Very Low <5th Percentile < 9 0.4 6 6 5 3 2 2 1 0.2 - 1 5 6 6 5 9 11 9 5 2 1 3 2 4 5 

Low <25th Percentile < 21 5 5 4 4 3 3 3 2 1 1 2 4 5 6 6 7 8 7 5 5 4 4 4 4 5 

Moderate 25th-75th Percentile 21-66 31 4 4 4 4 4 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 

High >75th Percentile > 66 47 5 5 4 4 4 6 6 7 8 6 3 2 2 1 1 1 1 2 2 3 6 7 8 6 

Very High >95th Percentile > 146 16 5 5 4 4 4 7 7 7 9 7 3 2 1 1 1 0.5 0.3 0.4 0.2 2 7 9 10 7 

Site 
47 

Central General 
site 

2015 Very Low <5th Percentile < 8 0.4 5 6 5 4 3 1 2 1 0.2 1 4 4 7 10 8 6 8 6 5 4 2 2 2 3 

Low <25th Percentile < 19 6 4 5 4 4 4 4 3 2 1 3 4 4 6 7 7 6 6 5 5 4 3 3 3 3 

Moderate 25th-75th Percentile 19-57 37 4 4 4 4 4 4 5 5 4 4 4 4 4 4 4 4 5 5 4 4 4 4 4 4 

High >75th Percentile > 57 44 5 4 5 5 5 4 3 4 7 7 4 3 2 2 1 1 1 2 2 4 6 8 8 6 

Very High >95th Percentile > 105 13 6 4 5 6 6 4 3 4 8 9 4 3 1 0.4 0.1 0.2 - 1 1 3 7 9 9 6 

Site 

49 

Central General 

site 

2011 Very Low <5th Percentile < 21 1 10 8 10 7 4 4 0.2 0.1 1 3 4 9 7 6 5 3 3 1 0.5 1 1 1 4 8 

Low <25th Percentile < 47 7 7 6 7 6 4 3 1 1 2 4 6 8 8 7 6 5 3 2 1 1 2 2 4 6 

Moderate 25th-75th Percentile 47-124 37 4 4 4 4 5 5 4 4 5 4 4 4 4 4 4 4 5 5 4 4 4 3 4 4 

High >75th Percentile > 124 42 4 3 2 2 2 3 9 9 4 2 1 0.4 0.3 0.4 1 1 1 3 6 9 12 11 7 6 

Very High >95th Percentile > 218 13 5 4 2 1 2 2 10 10 4 1 0.1 - 0.1 0.1 0.5 0.4 0.3 2 5 9 14 13 8 7 

2012 Very Low <5th Percentile < 22 1 6 13 6 2 2 1 0.2 0.3 5 6 6 7 7 10 4 2 2 1 1 0.5 2 6 3 8 

Low <25th Percentile < 48 6 5 8 5 3 2 1 1 1 4 7 7 7 8 8 6 5 3 1 1 1 2 4 3 5 

Moderate 25th-75th Percentile 48-145 36 4 4 4 4 5 5 4 4 4 4 4 4 3 4 4 5 5 5 5 4 4 4 4 4 

High >75th Percentile > 145 45 4 3 3 3 3 4 8 11 5 1 1 0.2 0.2 0.2 0.4 1 1 3 6 9 9 9 8 5 

Very High >95th Percentile > 268 13 4 3 3 2 1 2 8 15 5 1 0.1 - - - - - 0.3 2 6 10 11 12 10 5 

2014 Very Low <5th Percentile < 19 1 5 8 8 3 2 1 - 0.2 1 4 8 6 12 7 7 9 3 1 2 1 1 2 4 5 

Low <25th Percentile < 44 6 5 6 6 5 3 2 1 1 2 5 7 6 9 7 7 7 4 2 2 2 2 2 4 4 

Moderate 25th-75th Percentile 44-124 36 4 4 5 4 4 4 3 3 4 4 4 5 4 4 4 5 4 4 4 4 4 4 4 4 

High >75th Percentile > 124 43 5 2 2 2 3 4 10 11 5 2 1 0.5 0.2 0.2 1 1 2 4 6 8 8 8 7 6 

Very High >95th Percentile > 234 14 6 2 2 2 2 3 10 13 5 1 1 0.1 - 0.1 0.1 1 2 4 6 8 8 9 9 7 

2015 Very Low <5th Percentile < 23 1 8 9 7 5 5 3 0.5 1 3 4 4 6 6 4 5 4 1 0.1 0.4 1 3 4 5 12 

Low <25th Percentile < 45 7 6 7 6 5 4 3 1 1 4 5 5 6 6 5 6 5 3 2 1 1 3 3 4 8 



 

Site Region Category Year 

Contribution of hourly PM10 concentrations to annual 
average PM10 

Contribution of 
hourly PM10 

concentrations at 
different 

percentiles to 
annual average 

PM10 (%) 

Hourly Contribution (%) 

Concentration 
Level Percentile Concentration 

(µg m-3) H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Moderate 25th-75th Percentile 45-124 34 4 4 4 4 4 5 3 4 4 4 4 5 4 5 4 4 5 5 4 4 4 4 4 4 

High >75th Percentile > 124 45 4 2 2 2 4 6 11 11 5 2 1 0.4 0.2 0.5 1 2 2 4 7 9 9 7 5 5 

Very High >95th Percentile > 256 14 4 2 1 1 3 6 13 15 5 1 - 0.2 0.2 0.3 0.2 1 1 2 6 10 10 8 5 5 

Site 

51 

Central 
 

2014 Very Low <5th Percentile < 14 1 8 8 7 10 12 6 3 1 1 1 2 4 4 4 3 1 2 2 3 1 4 2 4 4 

Low <25th Percentile < 28 7 6 7 7 8 9 6 4 2 2 3 4 4 5 4 4 3 3 2 2 1 3 3 4 5 

Moderate 25th-75th Percentile 28-72 37 3 4 4 4 4 4 4 5 5 4 4 4 4 5 4 5 5 5 5 4 3 4 4 4 

High >75th Percentile > 72 42 5 5 4 3 3 3 3 5 7 6 5 3 2 2 1 1 1 2 3 6 9 9 8 6 

Very High >95th Percentile > 131 13 6 5 4 3 4 2 4 5 8 7 6 2 1 1 0.5 1 0.4 0.5 1 6 10 10 9 6 
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Figure S1: Annual average PM10 concentrations for an individual year in central Thailand between 2011 and 2015 
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Figure S2: Summary of hourly PM10 concentrations contribution to annual average for an individual 
year across central Thailand between 2011 and 2015 
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Figure S3: Summary of hourly PM10 concentrations contribution to annual average for an individual 
year across central Thailand from monthly, hourly and country contribution between 2011 and 2015  
 

 

 

 

 



 
 

 
 
 
 

 
 

Chapter 5 
  



 
 

 

Table S16: Historical emissions of PM2.5 between 2010-2017 from different source sectors across Thailand 

Sectors 
PM2.5 (kt) 

2010 2011 2012 2013 2014 2015 2016 2017 Average 
2010-2017 

Agriculture 62.3 68.1 68.1 66.4 59.2 53.0 58.4 58.9 61.8 

Agriculture Forestry and Fishing 13.8 14.5 14.9 15.4 15.7 15.5 11.8 10.6 14.0 

Charcoal Making 64.9 59.4 48.1 62.3 59.0 58.5 42.2 36.3 53.8 

Coke Production 7.0 4.3 5.3 1.0 4.8 4.3 1.7 1.5 3.7 

Electricity Generation 13.2 15.5 14.1 20.4 23.1 23.5 53.7 47.4 26.4 

Energy Industry Own Use 0.2 0.3 0.3 0.4 0.4 0.4 0.3 0.2 0.3 

Industry 79.7 69.4 77.4 73.1 72.5 67.2 67.7 67.1 71.8 

Residential 68.5 68.3 51.1 66.3 64.1 68.9 71.1 73.3 66.5 

Transport 56.3 53.0 50.1 47.6 45.3 43.4 41.7 40.2 47.2 

Vegetation Fires 93.3 26.0 104.4 62.6 136.9 109.2 144.4 144.4 102.6 

Waste 85.6 91.8 80.1 83.1 79.3 79.8 68.7 42.3 76.3 

Total 544.7 470.7 514.1 498.7 560.4 523.6 561.7 522.3 524.5 

 

Table S17: Historical emissions of BC between 2010-2017 from different source sectors across Thailand 

Sectors 
BC (kt) 

2010 2011 2012 2013 2014 2015 2016 2017 Average 
2010-2017 

Agriculture 5.7 6.3 6.3 6.1 5.5 4.9 5.4 5.4 5.7 

Agriculture Forestry and Fishing 5.7 6.1 6.2 6.4 6.5 6.4 4.9 4.4 5.8 

Charcoal Making 4.7 4.3 3.5 4.6 4.3 4.3 3.1 2.7 3.9 

Coke Production 1.3 0.8 1.0 0.2 0.9 0.8 0.3 0.3 0.7 

Electricity Generation 0.3 0.4 0.4 0.6 0.7 0.7 1.7 1.5 0.8 

Industry 14.7 13.4 15.9 15.6 17.0 15.7 15.1 14.6 15.3 

Residential 12.8 12.5 9.5 12.4 11.9 12.5 12.4 12.3 12.0 

Transport 30.7 29.6 28.5 27.7 27.0 26.4 25.9 25.5 27.7 

Vegetation Fires 6.8 1.9 7.6 4.6 9.9 7.9 10.5 10.5 7.5 

Waste 5.7 6.1 5.3 5.5 5.3 5.3 4.6 2.8 5.1 

Total 88.6 81.5 84.4 83.8 89.0 84.9 83.9 79.9 84.5 
 

  



 
 

Table S18: Historical emissions of OC between 2010-2017 from different source sectors across Thailand 

Sectors 
OC (kt) 

2010 2011 2012 2013 2014 2015 2016 2017 Average 
2010-2017 

Agriculture 37.4 40.9 40.9 39.9 35.5 31.8 35.0 35.4 37.1 
Agriculture Forestry and 
Fishing 4.0 4.2 4.3 4.5 4.6 4.5 3.4 3.1 4.1 

Charcoal Making 32.2 29.5 23.9 30.9 29.3 29.0 20.9 18.0 26.7 

Coke Production 1.0 0.6 0.7 0.1 0.6 0.6 0.2 0.2 0.5 

Electricity Generation 1.3 1.7 1.6 2.3 2.6 2.6 6.8 5.8 3.1 

Energy Industry Own Use 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2 

Industry 31.1 27.9 31.6 29.8 30.9 28.3 26.0 27.2 29.1 

Residential 28.9 28.9 21.5 27.9 27.0 29.1 32.2 33.3 28.6 

Transport 14.6 13.4 12.3 11.3 10.4 9.6 8.9 8.3 11.1 

Vegetation Fires 51.1 13.9 57.3 34.4 76.0 60.4 80.9 80.9 56.9 

Waste 46.0 49.4 43.1 44.7 42.7 42.9 36.9 22.7 41.0 
Total 247.6 210.5 237.5 226.1 259.9 239.1 251.6 235.0 238.4 

 

Table S19: Historical emissions of NH3 between 2010-2017 from different source sectors across Thailand 

Sectors 
NH3 (kt) 

2010 2011 2012 2013 2014 2015 2016 2017 Average 
2010-2017 

Agriculture 570.4 562.8 591.7 585.2 568.1 560.7 567.6 586.0 574.1 

Charcoal Making 9.2 8.5 6.9 8.9 8.4 8.3 6.0 5.2 7.7 
Commercial and Public 
Services 0.1 0.1 0.1 0.1 - - - - 0.1 

Electricity Generation 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Energy Industry Own Use 0.4 0.4 0.5 0.6 0.6 0.6 0.5 0.3 0.5 

Industry 0.3 47.9 50.4 49.1 72.2 49.2 58.9 63.0 48.9 

Residential 12.1 11.9 9.0 11.7 11.2 11.8 13.0 13.1 11.8 

Transport 4.3 4.5 5.0 5.5 5.6 6.0 6.3 6.6 5.5 

Vegetation Fires 11.9 3.1 13.4 8.1 18.1 14.3 19.6 19.6 13.5 

Waste 9.8 10.5 9.2 9.5 9.1 9.1 7.9 4.8 8.7 
Total 618.5 649.8 686.3 678.8 693.5 660.2 679.9 698.8 670.7 

 

  



 
 

Table S20: Historical emissions of NOx between 2010-2017 from different source sectors across Thailand 

Sectors 
NOx (kt) 

2010 2011 2012 2013 2014 2015 2016 2017 Average 
2010-2017 

Agriculture     92.6      93.4      98.1    101.9    103.4    105.4    107.7    107.9       101.3  
Agriculture Forestry and 
Fishing   135.4    142.9    146.7    151.5    153.9    151.7    115.8    103.6       137.7  

Charcoal Making       4.5        4.1        3.3        4.3        4.1        4.0        2.9        2.5           3.7  
Commercial and Public 
Services       3.7        3.4        3.6        2.8        1.3        1.9        1.9        2.4           2.6  

Electricity Generation   157.1    171.1    162.1    166.2    175.9    169.3    198.9    195.9       174.6  

Energy Industry Own Use     16.5      18.9      23.4      28.3      28.0      25.2      21.7      15.7         22.2  

Industry   136.3    128.1    155.4    176.0    193.1    184.9    204.1    175.1       169.1  

Oil Refining       2.3        2.4        2.5        2.6        2.8        2.8        2.9        2.8           2.6  

Residential     30.1      29.3      23.2      29.3      28.5      29.8      23.1      22.7         27.0  

Transport   643.5    631.8    622.9    622.1    616.2    618.6    621.6    624.9       625.2  

Vegetation Fires     37.1      12.9      39.7      24.1      48.3      39.7      47.4      47.4         37.1  

Waste     45.7      49.0      44.3      44.5      42.1      43.0      37.5      50.5         44.6  
Total 1,304.8 1,287.4 1,325.3 1,353.7 1,397.7 1,376.4 1,385.5 1,351.4 1,347.8 

 

Table S21: Historical emissions of SO2 between 2010-2017 from different source sectors across Thailand 

Sectors 
SO2 (kt) 

2010 2011 2012 2013 2014 2015 2016 2017 Average 
2010-2017 

Agriculture 3.6 4.0 4.0 3.9 3.6 3.2 3.5 3.5 3.7 

Agriculture Forestry and Fishing 66.3 69.9 71.8 74.1 75.7 74.2 56.5 50.7 67.4 

Charcoal Making 14.4 13.2 10.7 13.8 13.1 12.9 9.3 8.0 11.9 

Commercial and Public Services 0.1 0.1 0.1 - 0.1 - - - 0.1 

Electricity Generation 353.3 384.1 362.7 393.2 394.7 357.4 381.9 394.3 377.7 

Industry 386.9 365.2 363.3 371.2 342.9 298.3 316.5 301.1 343.2 

Oil Refining 35.2 36.2 38.4 39.9 42.9 43.4 44.2 42.4 40.3 

Residential 10.7 10.4 7.9 10.3 9.9 10.5 10.2 10.2 10.0 

Transport 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Vegetation Fires 6.1 1.8 6.8 4.1 8.8 7.1 9.2 9.2 6.6 

Waste 4.5 4.9 4.3 4.4 4.2 4.3 3.7 3.8 4.3 
Total 881.1 889.8 870.0 915.1 896.0 811.5 835.2 823.4 865.3 



 
 

 
 

I. Energy sector 
  



 
 

Table S22: Simple transport emission factors use in LEAP-IBC analysis 

Demand\Transport Emission factor Units Per… Reference source and assumptions 
Domestic Aviation Simple\Aviation Gasoline 

Nitrogen Oxides NOx 4 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Derived from EMEP/EEA (2016) Tier 1 emission factors (Aviation Table 3-3) 
c) Bond et al. (2004) value for aviation fuel, Table 7                                                                              
d) Assume = factor for gasoline in road transport (simple method) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.14 ?c Kilogramme Metric Tonne 
Particulates PM2.5 0.14 ?c Kilogramme Metric Tonne 
Black Carbon 0.1 ?c Kilogramme Metric Tonne 
Organic Carbon 0.03 ?c Kilogramme Metric Tonne 
Ammonia 1.44 ?d Kilogramme Metric Tonne 
Domestic Aviation Simple\Gasoline Type Jetfuel 
Nitrogen Oxides NOx 4 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) Derived from EMEP/EEA (2016) Tier 1 emission factors (Aviation Table 3-3) 
c) Bond et al. (2004) value for aviation fuel, Table 7                                                                              
d) Assume = factor for gasoline in road transport (simple method) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.14 ?c Kilogramme Metric Tonne 
Particulates PM2.5 0.14 ?c Kilogramme Metric Tonne 
Black Carbon 0.1 ?c Kilogramme Metric Tonne 
Organic Carbon 0.03 ?c Kilogramme Metric Tonne 
Ammonia 1.44 ?d Kilogramme Metric Tonne 

Domestic Aviation Simple\Kerosene Type Jetfuel 
Nitrogen Oxides NOx 9.4 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) Derived from EMEP/EEA (2013) Tier 1 cruise emission factors for old fleet (Aviation 
Table 3-3) 
c) Bond et al. (2004) value for aviation fuel, Table 7                                                                              
d) Assume = factor for gasoline in road transport (simple method) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.14 ?c Kilogramme Metric Tonne 
Particulates PM2.5 0.14 ?c Kilogramme Metric Tonne 
Black Carbon 0.1 ?c Kilogramme Metric Tonne 
Organic Carbon 0.03 ?c Kilogramme Metric Tonne 
Ammonia 1.44 ?d Kilogramme Metric Tonne 
Road Transport Simple 
Road Transport Simple\Natural Gas 
Nitrogen Oxides NOx 30 ?b Kilogramme Metric Tonne 



 
 

Demand\Transport Emission factor Units Per… Reference source and assumptions 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Derived from EMEP/EEA (2016) Tier 1 emission factor (Tables 3-5 to 3-7: maximum 
values correspond to uncontrolled CNG Buses) 
c) Assume BC is 5.4% of PM2.5 EMEP/EEA (2016) Tier 1 emission factor, small 
combustion (1.A.4 , Table 3-4) 
d) Asume OC = 8.33xBC (Bond et al, 2004; Table 5) 

Particulates PM10 0.04 ?b Kilogramme Metric Tonne 
Particulates PM2.5 0.04 ?b Kilogramme Metric Tonne 
Black Carbon 0.002 ?c Kilogramme Metric Tonne 
Organic Carbon 0.018 ?d Kilogramme Metric Tonne 
Ammonia 0.000 ?b Kilogramme Terajoule 
Road Transport Simple\Motor Gasoline 
Nitrogen Oxides NOx 29.89 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs  

b) EMEP/EEA (2016) Tier 1 emission factors (Tables 3-5 to 3-7: maximum values 
correspond to uncontrolled passenger cars) 
c) BC and OC values are from Bond et al, 2004 (Tables 9 and 10 - from which central 
values are used for the technology/emission control mix for  India in the mid 1990s (i.e. if 
a range is given by Bond et al., then upper value taken). The values assumes that 52% of 
gasoline vehicles are 'unimproved', 35%  are 2-stroke (high emissions) and 13% are 'super-
emitters'.) If 2-strokes and super-emitters are a small part of the gasoline-powered vehicle 
fleet, then use  0.14 (BC) and 0.15 (OC) for 'standards beginning' or 0.043 (BC) and 0.046 
(OC)  for 'standards in place' (Bond et al, 2004, Table 7) and re-calculate PM values using 
the formula in (d) below. 
d) PM values calculated as BC+(1.3xOC). 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 7.5 ?d Kilogramme Metric Tonne 
Particulates PM2.5 7.5 ?d Kilogramme Metric Tonne 
Black Carbon 0.43 ?c Kilogramme Metric Tonne 
Organic Carbon 5.4 ?c Kilogramme Metric Tonne 

Ammonia 1.44 ?b Kilogramme Metric Tonne 

Road Transport Simple\Gas Diesel Oil 
Nitrogen Oxides NOx 38.29 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs  

b) Derived from EMEP/EEA (2016) Tier 1 emission factors, (Tables 3-5 to 3-7: maximum 
values correspond to uncontrolled HDVs)  
c) From Bond et al. (2004; Table 5 and Table 9) from which central values are used for the 
technology/emission control mix for  India in the mid 1990s (i.e. if a range is given by 
Bond et al., then upper value taken). PM values assumed to equal the total for BC + OM 
(ie. = BC+(1.3xOC)) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 5.0 ?c Kilogramme Metric Tonne 
Particulates PM2.5 5.0 ?c Kilogramme Metric Tonne 
Black Carbon 3.6 ?c Kilogramme Metric Tonne 
Organic Carbon 1.1 ?c Kilogramme Metric Tonne 
Ammonia 0.018 ?b Kilogramme Metric Tonne 
Road Transport Simple\LPG Liquefied Petroleum Gas 
Nitrogen Oxides NOx 34.3 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs  

b) Derived from EMEP/EEA (2016) Tier 1 emission factor for uncontrolled passenger cars                                                                                                                                                    
c) ARIA (2008) value for LPG cars in India  
d) Assume BC is 5.4% of PM2.5 EMEP/EEA (2016) Tier 1 emission factor, small 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.035 ?c Kilogramme Metric Tonne 
Particulates PM2.5 0.035 ?c Kilogramme Metric Tonne 



 
 

Demand\Transport Emission factor Units Per… Reference source and assumptions 

Black Carbon 0.002 ?d Kilogramme Metric Tonne combustion (1.A.4 , Table 3-4) 
e) Assume OC = BC/1.3 (Bond et al, 2004; Table 5, ratio for residential LPG)) 

Organic Carbon 0.0015 ?d Kilogramme Metric Tonne 
Ammonia 0.108 ?b Kilogramme Metric Tonne 
Road Transport Simple\Gas and Liquids from Biomass and Wastes 
Nitrogen Oxides NOx 51 ?b Kilogramme Terajoule Note: We need emission factors for biogasoline (= ethanol?) and biodiesel here 

a) IPCC 2006 Guidelines - Tier 1 default EFs: CO2 and N2O as for 'Other liquid biofuels' 
in residential use; CH4 as for ethanol cars in Brazil. 
b) EMEP/EEA (2016) Tier 1 defaults for small combustion  (Section 1.A.4, Table 3-5) 
c) Emission factors needed 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 1.9 ?b Kilogramme Terajoule 
Particulates PM2.5 1.9 ?b Kilogramme Terajoule 
Black Carbon 0.16 ?b Kilogramme Terajoule 
Organic Carbon 0 ?c Kilogramme Terajoule 
Ammonia 0 ?c Kilogramme Terajoule 
Railways 
Railways\Other Bituminous Coal and Anthracite 
Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs  

b) Assume = EMEP/EEA (2016) Tier 1 emission factor for coal combustion in 
manufacturing industry (Section 1.A.2 Table 3-2) 
c) Bond et al (2004): Hard coal factors for rail from Tables 9 and 10 

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 3.43 ?b Kilogramme Metric Tonne 
Particulates PM2.5 3.17 ?b Kilogramme Metric Tonne 
Black Carbon 3 ?c Kilogramme Metric Tonne 
Organic Carbon 0.1 ?c Kilogramme Metric Tonne 
Ammonia 0.00028 ?b Kilogramme Metric Tonne 
Railways\Gas Diesel Oil 
Nitrogen Oxides NOx 52.4 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs  

b) EMEP/EEA (2016) Tier 1 emission factor (1.A.3.c Railways, Table 3-1) 
c) Bond et al (2004) Table 7, diesel railroad. 
d) Bond et al (2004): Diesel fuel factors for rail from Table 7 (BC-f = 0.65; OC = 0.21) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 2.7 ?c Kilogramme Metric Tonne 
Particulates PM2.5 2.7 ?c Kilogramme Metric Tonne 
Black Carbon 1.53 ?d Kilogramme Metric Tonne 
Organic Carbon 0.49 ?d Kilogramme Metric Tonne 
Ammonia 0.007 ?b Kilogramme Metric Tonne 



 
 

Demand\Transport Emission factor Units Per… Reference source and assumptions 
Domestic Shipping 
Domestic Shipping\Motor Gasoline 
Nitrogen Oxides NOx 9.4 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs  

b) Derived from EMEP/EEA (2016) Tier 1 emission factor (Section 1.A.3, Table 3-3) 
c) Bond et al (2004): Assuming BC/OC ratio as for gasoline/vehicles from Tables 9 and 10 
d) EMEP/EEA (2013) Tier 1 emission factor for gasoline passenger cars Sulfur Dioxide 

SulfurContent*(1-
SulfurRetention)*(SO2/S) 

* ((100 - Em 
Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 9.5 ?b Kilogramme Metric Tonne 
Particulates PM2.5 9.5 ?b Kilogramme Metric Tonne 
Black Carbon 0.48 ?b Kilogramme Metric Tonne 
Organic Carbon 5.97 ?c Kilogramme Metric Tonne 
Ammonia 1.44 ?d Kilogramme Metric Tonne 
Domestic Shipping\Gas Diesel Oil 
Nitrogen Oxides NOx 78.5 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs  

b) Derived from EMEP/EEA (2016) Tier 1 emission factor for marine diesel/marine gas 
oil (MDO/MGO)  (Section 1.A.3, Table 3-2) 
c) Assuming all PM2.5 is composed of BC and OC 
d) EMEP/EEA (2013) Tier 1 emission factor for diesel HDV road transport 

Sulfur Dioxide 

SulfurContent*(1-
SulfurRetention)*(SO2/S) 

* ((100 - Em 
Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 1.5 ?b Kilogramme Metric Tonne 
Particulates PM2.5 1.4 ?b Kilogramme Metric Tonne 
Black Carbon 0.43 ?b Kilogramme Metric Tonne 
Organic Carbon 0.75 ?c Kilogramme Metric Tonne 
Ammonia 0.018 ?d Kilogramme Metric Tonne 
Domestic Shipping\Heavy Fuel Oil 
Nitrogen Oxides NOx 79.3 ?b Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs  

b) Derived from EMEP/EEA (2016) Tier 1 emission factor for bunker fuel oil  used in 
ocean-going ships (as for international navigation). (Section 1.A.3, Table 3-1)  
c) Bond et al (2004): Assuming BC/OC ratio as for heavy fuel oil/ships from Tables 9 and 
10 

Sulfur Dioxide 

SulfurContent*(1-
SulfurRetention)*(SO2/S) 

* ((100 - Em 
Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 6.2 ?b Kilogramme Metric Tonne 
Particulates PM2.5 5.6 ?b Kilogramme Metric Tonne 
Black Carbon 0.67 ?b Kilogramme Metric Tonne 



 
 

Demand\Transport Emission factor Units Per… Reference source and assumptions 

Organic Carbon 2.17 ?c Kilogramme Metric Tonne 
Ammonia 0.101 Kilogramme Metric Tonne 
Pipelines 
Pipelines\Natural Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2013) Tier 1 emission factor, non-residential, small combustion (1.A.4, 
Table 3-8) 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Battye et al. (1994) defaults (no NOx controls). 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 
Particulates PM2.5 0.78 ?b Kilogramme Terajoule 
Black Carbon 0.03 ?b Kilogramme Terajoule 
Organic Carbon 0.26 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 
Other or Non Specified Transport 
Other or Non Specified Transport\Natural Gas 
Nitrogen Oxides NOx 30 ?b Kilogramme Metric Tonne Assume all emission factors are as for Road Transport Simple 

a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Derived from EMEP/EEA (2016) Tier 1 emission factor (Tables 3-5 to 3-7: maximum 
values correspond to uncontrolled CNG Buses) 
c) Assume BC is 5.4% of PM2.5 EMEP/EEA (2016) Tier 1 emission factor, small 
combustion (1.A.4 , Table 3-4) 
d) Asume OC = 8.33xBC (Bond et al, 2004; Table 5)  

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.04 ?b Kilogramme Metric Tonne 
Particulates PM2.5 0.04 ?b Kilogramme Metric Tonne 
Black Carbon 0.002 ?c Kilogramme Metric Tonne 
Organic Carbon 0.018 ?d Kilogramme Metric Tonne 
Ammonia 0.000 ?b Kilogramme Terajoule 
Other or Non Specified Transport\Motor Gasoline 
Nitrogen Oxides NOx 29.89 ?b Kilogramme Metric Tonne Assume all emission factors are as for Road Transport Simple 

a) IPCC 2006 Guidelines - Tier 1 default EFs  
b) EMEP/EEA (2016) Tier 1 emission factors (Tables 3-5 to 3-7: maximum values 
correspond to uncontrolled passenger cars) 
c) From Bond et al, 2004 (Table 7) for gasoline, all vehicles, 'standards beginning'. 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 7.5 ?c Kilogramme Metric Tonne 
Particulates PM2.5 7.5 ?c Kilogramme Metric Tonne 
Black Carbon 0.43 ?c Kilogramme Metric Tonne 
Organic Carbon 5.4 ?c Kilogramme Metric Tonne 
Ammonia 1.44 ?b Kilogramme Metric Tonne 



 
 

Demand\Transport Emission factor Units Per… Reference source and assumptions 
Other or Non Specified Transport\Gas Diesel Oil 
Nitrogen Oxides NOx 38.29 ?b Kilogramme Metric Tonne Assume all emission factors are as for Road Transport Simple 

a) IPCC 2006 Guidelines - Tier 1 default EFs  
b) Derived from EMEP/EEA (2016) Tier 1 emission factor for HDV (uncontrolled) 
c) From Bond et al. (2004; Table 5 and Table 9) from which central values are used for the 
technology/emission control mix for  India in the mid 1990s (i.e. if a range is given by 
Bond et al., then upper value taken) 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) Kilogramme Kilogramme 

Particulates PM10 5.2 ?c Kilogramme Metric Tonne 
Particulates PM2.5 5.2 ?c Kilogramme Metric Tonne 
Black Carbon 3.6 ?c Kilogramme Metric Tonne 
Organic Carbon 1.1 ?c Kilogramme Metric Tonne 
Ammonia 0.018?b Kilogramme Metric Tonne 
Other or Non Specified Transport\LPG Liquefied Petroleum Gas 
Nitrogen Oxides NOx 34.3 ?b Kilogramme Metric Tonne Assume all emission factors are as for Road Transport Simple 

a) IPCC 2006 Guidelines - Tier 1 default EFs  
b) Derived from EMEP/EEA (2016) Tier 1 emission factor for uncontrolled passenger cars                                                                                                                                                    
c) ARIA (2008) value for LPG cars in India  
d) Assume BC is 5.4% of PM2.5 EMEP/EEA (2016) Tier 1 emission factor, small 
combustion (1.A.4 , Table 3-4) 
e) Assume OC = BC/1.3 (Bond et al, 2004; Table 5, ratio for residential LPG)) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.035 ?c Kilogramme Metric Tonne 
Particulates PM2.5 0.035 ?c Kilogramme Metric Tonne 
Black Carbon 0.002 ?d Kilogramme Metric Tonne 
Organic Carbon 0.0015 ?d Kilogramme Metric Tonne 
Ammonia 0.108 ?b Kilogramme Metric Tonne 
Other or Non Specified Transport\Gas and Liquids from Biomass and Wastes 
Nitrogen Oxides NOx 51 ?b Kilogramme Terajoule Note: We need emission factors for biogasoline (= ethanol?) and biodiesel here 

a) IPCC 2006 Guidelines - Tier 1 default EFs: CO2 and N2O as for 'Other liquid biofuels' 
in residential use; CH4 as for ethanol cars in Brazil. 
b) EMEP/EEA (2016) Tier 1 defaults for small combustion  (Section 1.A.4, Table 3-5) 
c) Emission factrors needed 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 1.9 ?b Kilogramme Terajoule 
Particulates PM2.5 1.9 ?b Kilogramme Terajoule 
Black Carbon 0.16 ?b Kilogramme Terajoule 
Organic Carbon 0 ?c Kilogramme Metric Tonne 
Ammonia 0 ?c Kilogramme Terajoule 

 
References:  ARIA (2008) Emission Factor development for Indian Vehicles, The Automotive Research Association of India, Pune, India,  

Revision-4 March 10 2008 [http://www.cpcb.nic.in/Emission_Factors_Vehicles.pdf]  Accessed 21 Jan 2014. 
 
 



 
 

Table S23: Detailed transport emission factors use in LEAP-IBC analysis 

Fuel Vehicle class 

NOX emission 
factor (g/km) 

NH3 
emission 

factor 
(g/km) 

Exhaust PM10 
emission 

factor (g/km) 

Exhaust PM2.5 
emission factor 

(g/km) 
Unpaved road 

dust (PM10) 
emission factor 
in dry weather 

(g/km) 

Unpaved 
road (PM2.5) 

emissions 
factor (g/km) 

BC 
emission 

factor                    
(% of 
PM2.5) 

OC 
emission 

factor                    
(OC/BC 

ratio) 

(Assume = 
PM10 emission 

factors) 

Default* Default* Default* Default* l Default m Default n Default o Default o 

Gasoline Passenger cars (Uncontrolled) a 2.09a 0.10a 0.0029a 0.0029a 126 12.6 2 35 

Gasoline Passenger cars (Moderate control) d 1.29 0.002 0.0022 0.0022 126 12.6 30 1.66 

Gasoline Passenger cars (Euro I) e 0.485 0.0922 0.0022 0.0022 126 12.6 25 1.79 

Gasoline Passenger cars (Euro 2) e 0.255 0.1043 0.0022 0.0022 126 12.6 25 1.79 

Gasoline Passenger cars (Euro 3) e 0.097 0.0342 0.0011 0.0011 126 12.6 15 2.14 

Gasoline Passenger cars (Euro 4) e 0.061 0.0342 0.0011 0.0011 126 12.6 15 2.14 

Gasoline Passenger cars (Euro 5) e 0.061 0.0123 0.0014 0.0014 126 12.6 15 2.14 

Gasoline Passenger cars (Euro 6) e 0.061 0.0123 0.0014 0.0014 126 12.6 15 2.14 

Gasoline Light-commercial vehicles (Conventional) i 3.09 0.0025 0.0023 0.0023 225 22.5 30 1.66 

Gasoline Light-commercial vehicles (Euro 1) i 0.563 0.0758 0.0023 0.0023 225 22.5 25 1.79 

Gasoline Light-commercial vehicles (Euro 2) i 0.23 0.091 0.0023 0.0023 225 22.5 25 1.79 

Gasoline Light-commercial vehicles (Euro 3) i 0.129 0.0302 0.0011 0.0011 225 22.5 15 2.14 

Gasoline Light-commercial vehicles (Euro 4) i 0.064 0.0302 0.0011 0.0011 225 22.5 15 2.14 

Gasoline Light-commercial vehicles (Euro 5) i 0.064 0.0123 0.0014 0.0014 225 22.5 15 2.14 

Gasoline Light-commercial vehicles (Euro 6) i 0.064 0.0123 0.0012 0.0012 225 22.5 15 2.14 

Gasoline Heavy duty (Conventional) c 6.6 0.0019 0.0023 0.0023 450 45.0 30 H 1.66 H 

Gasoline Motorcycles  (2-stroke) (Uncontrolled)a 0.375a 0.0023a 0.21a 0.21a 36 3.6 10 6.43 

Gasoline Motorcycles  (2-stroke) (Moderate control) f 0.067 0.0019 0.16 0.16 36 3.6 10 6.43 

Gasoline Motorcycles  (2-stroke) (Mot-Euro 1) 0.028 0.0019 0.064 0.064 36 3.6 20 2.86 

Gasoline Motorcycles  (2-stroke) (Mot-Euro 2) 0.104 0.0019 0.032 0.032 36 3.6 20 2.86 



 
 

Fuel Vehicle class 

NOX emission 
factor (g/km) 

NH3 
emission 

factor 
(g/km) 

Exhaust PM10 
emission 

factor (g/km) 

Exhaust PM2.5 
emission factor 

(g/km) 
Unpaved road 

dust (PM10) 
emission factor 
in dry weather 

(g/km) 

Unpaved 
road (PM2.5) 

emissions 
factor (g/km) 

BC 
emission 

factor                    
(% of 
PM2.5) 

OC 
emission 

factor                    
(OC/BC 

ratio) 

(Assume = 
PM10 emission 

factors) 

Default* Default* Default* Default* l Default m Default n Default o Default o 

Gasoline Motorcycles  (2-stroke) (Mot-Euro 3) 0.280 0.0019 0.0096 0.0096 36 3.6 20 2.86 

Gasoline Motorcycles (4-stroke) (Uncontrolled)a 0.375a 0.0023a 0.21a 0.21a 36 3.6 15 4.00 

Gasoline Motorcycles (4-stroke) (Moderate control) g 0.233 0.0019 0.014 0.014 36 3.6 15 4.00 

Gasoline Motorcycles  (4-stroke) (Mot-Euro 1) 0.477 0.0019 0.014 0.014 36 3.6 25 2.14 

Gasoline Motorcycles  (4-stroke) (Mot-Euro 2) 0.317 0.0019 0.0035 0.0035 36 3.6 25 2.14 

Gasoline Motorcycles  (4-stroke) (Mot-Euro 3) 0.194 0.0019 0.0035 0.0035 36 3.6 25 1.79 

Gasoline 3-Wheelers (2-stroke) (uncontrolled) 0.375b 0.0023b 0.21b 0.21b 90 9.0 10 6.43 

Gasoline 3-Wheelers (2-stroke) (Medium control) 0.30 A 0.0023a 0.11A 0.11A 90 9.0 10 6.43 

Gasoline 3-Wheelers (2-stroke) (Bharat 1 = Euro 1) 0.20 B 0.0023a 0.045 B 0.045 B 90 9.0 20 2.86 

Gasoline 3-Wheelers (2-stroke) (Bharat 2 = Euro 2) 0.16 C 0.0023a 0.043 C 0.043 C 90 9.0 20 2.86 

Gasoline 3-Wheelers (4-stroke) (Bharat 1 = Euro 1) 0.61 B 0.0023a 0.011B 0.011B 90 9.0 25 2.14 

Gasoline 3-Wheelers (4-stroke) (Bharat 2 = Euro 2) 0.53 C 0.0023a 0.015 C 0.015 C 90 9.0 25 2.14 

Diesel 3-Wheelers (Moderate control) 0.93 A 0.001 0.782 A 0.782 A 90 9.0 55 0.5 

Diesel 3-Wheelers  (Bharat 1 = Euro 1) 0.69 B 0.001 0.347 B 0.347 B 90 9.0 70 0.29 

Diesel 3-Wheelers (Bharat 2 = Euro 2) 0.51 C 0.001 0.091 C 0.091 C 90 9.0 80 0.16 

Diesel Passenger cars (Conventional) h 0.546 0.001 0.2209 0.2209 126 12.6 55 0.5 

Diesel Passenger cars (Euro 1) h 0.690 0.001 0.0842 0.0842 126 12.6 70 0.29 

Diesel Passenger cars (Euro 2) h 0.716 0.001 0.0548 0.0548 126 12.6 80 0.16 

Diesel Passenger cars (Euro 3) h 0.773 0.001 0.0391 0.0391 126 12.6 85 0.11 

Diesel Passenger cars (Euro 4) h 0.58 0.001 0.0314 0.0314 126 12.6 87 0.09 

Diesel Passenger cars (Euro 5) h 0.55 0.0019 0.0021 0.0021 126 12.6 10 1.43 



 
 

Fuel Vehicle class 

NOX emission 
factor (g/km) 

NH3 
emission 

factor 
(g/km) 

Exhaust PM10 
emission 

factor (g/km) 

Exhaust PM2.5 
emission factor 

(g/km) 
Unpaved road 

dust (PM10) 
emission factor 
in dry weather 

(g/km) 

Unpaved 
road (PM2.5) 

emissions 
factor (g/km) 

BC 
emission 

factor                    
(% of 
PM2.5) 

OC 
emission 

factor                    
(OC/BC 

ratio) 

(Assume = 
PM10 emission 

factors) 

Default* Default* Default* Default* l Default m Default n Default o Default o 

Diesel Passenger cars (Euro 6) h 0.45 0.0019 0.0015 0.0015 126 12.6 20 1.43 

Diesel Light-commercial vehicles (Conventional) i 1.66 0.0012 0.356 0.356 225 22.5 55 0.5 

Diesel Light-commercial vehicles (Euro 1) i 1.22 0.0012 0.117 0.117 225 22.5 70 0.29 

Diesel Light-commercial vehicles (Euro 2) i 1.22 0.0012 0.117 0.117 225 22.5 80 0.16 

Diesel Light-commercial vehicles (Euro 3) i 1.03 0.0012 0.0783 0.0783 225 22.5 85 0.11 

Diesel Light-commercial vehicles (Euro 4) i 0.831 0.0012 0.0409 0.0409 225 22.5 87 0.09 

Diesel Light-commercial vehicles (Euro 5) i 1.15 0.0019 0.001 0.001 225 22.5 10 1.43 

Diesel Light-commercial vehicles (Euro 6) i 0.96 0.0019 0.0009 0.0009 225 22.5 20 1.43 

Diesel Heavy-duty vehicles (Conventional) j 8.92 0.0029 0.333 0.3344 450 45.0 50 0.57 

Diesel Heavy-duty vehicles (HD Euro I) j 5.31 0.0029 0.129 0.201 450 45.0 65 0.29 

Diesel Heavy-duty vehicles (HD Euro II) j 5.5 0.0029 0.061 0.104 450 45.0 65 0.29 

Diesel Heavy-duty vehicles (HD Euro III) j 4.3 0.0029 0.0566 0.0881 450 45.0 70 0.21 

Diesel Heavy-duty vehicles (HD Euro IV) j 2.65 0.0029 0.0106 0.0161 450 45.0 75 0.14 

Diesel Heavy-duty vehicles (HD Euro V) j 1.51 0.011 0.0106 0.0161 450 45.0 75 0.14 

Diesel Heavy-duty vehicles (HD Euro VI) j 0.291 0.011 0.0005 0.0008 450 45.0 15 2.14 

Diesel Urban Buses (Conventional) j 16.5 0.0029 0.909 0.909 450 45.0 50 0.57 

Diesel Urban buses (HD Euro I) k 10.1 0.0029 0.479 0.479 450 45.0 65 0.57 

Diesel Urban buses (HD Euro II) k 10.7 0.0029 0.22 0.22 450 45.0 65 0.29 

Diesel Urban buses (HD Euro III) k 9.38 0.0029 0.207 0.207 450 45.0 70 0.21 

Diesel Urban buses (HD Euro IV) k 5.42 0.0029 0.0462 0.0462 450 45.0 75 0.14 

Diesel Urban buses (HD Euro V) k 3.09 0.0029 0.0462 0.0462 450 45.0 75 0.14 

Diesel Urban buses (HD Euro VI) k 0.597 0.0029 0.0023 0.0023 450 45.0 15 2.14 



 
 

Fuel Vehicle class 

NOX emission 
factor (g/km) 

NH3 
emission 

factor 
(g/km) 

Exhaust PM10 
emission 

factor (g/km) 

Exhaust PM2.5 
emission factor 

(g/km) 
Unpaved road 

dust (PM10) 
emission factor 
in dry weather 

(g/km) 

Unpaved 
road (PM2.5) 

emissions 
factor (g/km) 

BC 
emission 

factor                    
(% of 
PM2.5) 

OC 
emission 

factor                    
(OC/BC 

ratio) 

(Assume = 
PM10 emission 

factors) 

Default* Default* Default* Default* l Default m Default n Default o Default o 

CNG 3-wheeler (Bharat 1 = Euro 1) 0.50 B 0.034 0.015 B 0.015 B 90 9.0   

CNG 3-wheeler Retrofit (Bharat 1 = Euro 1) 0.19 B 0.034 0.118 B 0.118 B 90 9.0   

CNG Passenger car retrofit (moderate control) 0.53 A 0.034 0.001 A 0.001 A 126 12.6   

CNG Passenger car retrofit (Bharat 1 = Euro 1) 0.01 B 0.034 0.002 B 0.002 B 126 12.6   

CNG Passenger car (Euro 4 and later) 0.056 0.034 0.0011 0.0011 126 12.6   

CNG Urban Bus (HD Euro I) 16.5 n.a. 0.02 0.02 450 45.0   

CNG Urban Bus (HD Euro II) 15 n.a. 0.01 0.01 450 45.0   

CNG Urban Bus (HD Euro III) 10 n.a. 0.01 0.01 450 45.0   

LPG 3-wheeler Retrofit (Moderate control) A 0.05 A 0.002 E 0.171 A 0.171 A 90 9.0   

LPG 3-wheeler Retrofit (Bharat 1 = Euro 1) 0.04 B 0.088 E 0.130 B 0.130 B 90 9.0   

LPG Passenger cars (Conventional) 2.36 0.0020 0.0022 0.0022 126 12.6   

LPG Passenger cars (Euro 1) 0.414 0.0880 0.0022 0.0022 126 12.6   

LPG Passenger cars (Euro 2) 0.18 0.1007 0.0022 0.0022 126 12.6   

LPG Passenger cars (Euro 3) 0.09 0.0338 0.0011 0.0011 126 12.6   

LPG Passenger cars (Euro 4) 0.056 0.0338 0.0011 0.0011 126 12.6   

LPG Passenger cars (Euro 5) 0.056 0.0338 0.0011 0.0011 126 12.6   

LPG Passenger cars (Euro 6) 0.056 0.0338 0.0011 0.0011 126 12.6   

LPG Light-duty vehicles (Uncontrolled) 2.1 F 0.002 E 0.0022 E 0.0022 E 225 22.5   

LPG Light-duty vehicles (Good control - Euro-I) 0.05 F 0.088 E 0.0022 E 0.0022 E 225 22.5   

LPG Heavy-duty vehicles (Uncontrolled) 5.7 G 0.004 E 0.0044 E 0.0044 E 450 45.0   

LPG Heavy-duty vehicles (Good contro) 2.6 G 0.176 E 0.0044 E 0.0044 E 450 45.0   



 
 

 
Remark:  

* Emission factors are Tier 2 exhaust emission factors from EMEP/EEA (2016), Tables 3-17 to 3-26, unless otherwise indicated.  
a Uncontrolled EFs = Tier 1 maximum value from EMEP/EEA (2016) converted assuming fuel economy from Table 3-15, EMEP/EEA, 2016 

b Assume = Motorcycle 2-stroke (uncontrolled) 
c Heavy duty vehicle, Gasoline, >3.5 t weight.  
d Emission factors for Petrol Medium passenger cars (1.4 - 2.0 L engine capacity), Open loop technology (from EMEP/EEA (2016), Tables 3-17 and 3-18) 
e Emission factors for Petrol Medium passenger cars (1.4 - 2.0 L engine capacity) from EMEP/EEA (2016) Tier 2 exhaust emission factors, Tables 3-17 and 3-18. 
f Emission factors for 2-stroke motorcycles (>50 cm3), 'Conventional’ technology (from EMEP/EEA (2016), Tables 3-24 and 3-25)  
g Emission factors for 4-stroke motorcycles (250 - 750 cm3), 'Conventional’ technology (from EMEP/EEA (2016), Tables 3-24 and 3-25) 
h Emission factors for Diesel Medium passenger cars (1.4 - 2.0 L engine capacity) from EMEP/EEA (2016) Tier 2 exhaust emission factors, Tables 3-17 and 3-18. 
i Emission factors for Light Commercial Vehicles (<3.5 t weight) from EMEP/EEA (2016) Tier 2 exhaust emission factors, Tables 3-19 and 3-20. 
j Emission factors for Heavy Duty Vehicles (7.5 - 16 t weight) from EMEP/EEA (2016) Tier 2 exhaust emission factors, Tables 3-21 and 3-22 
k Urban buses standard - vehicles used for the carriage of passengers and comprising more than eight seats in addition to the driver's seat 
l Assume PM2.5 EF = PM10 EF 
m Derived from Gillies et.al. (2005) for unpaved rural roads in dry weather (roadbed moisture content <0.5%; assume = to days when precipitation is < 0.25 mm; silt content range 
4% - 7%). Emission factor = 3 x W x S g/km where S is the average speed in km/hr and W is the average vehicle wieght in tonnes. Factors suggested assume 30 km average speed 
for all vehicles and average weights of 0.4 t for 2-wheelers, 1 t for 3-wheelers, 1.4 t for passenger cars, 2.5 t for light commercial vehicles and 5 t for heavy duty vehicles (trucks 
and buses). If the average weight or average speed for a vehicle class differ from these assumptions then the formula should be used to calculate revised factors.   
n Assume PM2.5 factor is 10% of PM10 factor (USEPA, 2006) 
o EMEP/EEA (2016) Tier 3 fraction BC (%) and Organic matter (OM) to BC ratio (Table 3-91 in July 2018 update) assuming OM = 1.4xOC   
A ARAI (2008) value for Indian fleet 1996-2000 
B ARAI (2008) value for Indian fleet post 2000 (Bharat 1 = Euro 1) 
C ARAI (2008) value for Indian fleet post 2005 (Bharat 2 = Euro 2) 
D IPCC (2006) default EF for European vehicles  
E Assume LDV = passenger car; HDV = 2 x passenger car 
F  IPCC (1996) default  EF for US LPG passenger cars  
G IPCC (1996) default  EF for US LPG uncontrolled heavy duty vehicles with stoichiometric engine 
H  Assume = LCV (Conventional)  



 
 

 
Table S24: Residential emission factors for use in LEAP-IBC analysis 

Demand\Residential Emission factor Units Per… Reference source and assumptions 

Demand\Residential\Cooking 
Cooking\Natural Gas 
Nitrogen Oxides NOx 51 ?a Kilogramme Terajoule a) EMEP/EEA (2016) Tier 1 emission factor (1.A.4 Small combustion, 

Table 3.4) 
b) EMEP/EEA (2016) Tier 1 emission factor - 5.4% of PM2.5 
c) Assume OC = 8.33 x BC (Bond et al., 2004) 
d) IPCC 2006 Guidelines - Tier 1 default Efs                                                                                                                      
e) Battye et al. (1994) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 1.2  ?a Kilogramme Terajoule 
Particulates PM2.5 1.2 ?a Kilogramme Terajoule 
Black Carbon 0.065 ?b Kilogramme Terajoule 
Organic Carbon 0.54 ?c Kilogramme Terajoule 
Ammonia 0.01 ?e Kilogramme Metric Tonne 
Cooking\Kerosene 
Nitrogen Oxides NOx 1.10 ?a Kilogramme Metric Tonne a) Zhang et al. (2000) Average EF for household stoves in China.  

b) Assume a PM2.5/PM ratio of 0.964 for kerosene. Reddy and 
Venkataraman (2002a)  
c) Assume 13% of PM10 - Bond et al (2004) Table 5 
d) Assume 10% of PM10 - Bond et al (2004) Table 5 
e) IPCC 2006 Guidelines - Tier 1 default EFs                                                                                                                           
f) Assume as for industry 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.134  ?a Kilogramme Metric Tonne 
Particulates PM2.5 0.129  ?b Kilogramme Metric Tonne 
Black Carbon 0.017 ?c Kilogramme Metric Tonne 
Organic Carbon 0.013 ?d Kilogramme Metric Tonne 
Ammonia 0.005 ?f Kilogramme Terajoule 
Cooking\LPG 
Nitrogen Oxides NOx 51 ?d Kilogramme Terajoule a) For LPG Indian stove. Venkataraman et al (2010) 

b) Assume a PM2.5/PM ratio 0.964 for LPG. Reddy and Venkataraman 
(2002a) 
c) IPCC 2006 Guidelines - Tier 1 default EFs  
d) EMEP/EEA (2016) Tier 1 emission factor   (1.A.4 Small combustion, 
Table 3.4)                                                                                                                         
e) Assume as for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.32 ?a Kilogramme Metric Tonne 
Particulates PM2.5 0.31 ?b Kilogramme Metric Tonne 
Black Carbon 0.01 ?a Kilogramme Metric Tonne 
Organic Carbon 0.06 ?a Kilogramme Metric Tonne 
Ammonia 0.01 ?e Kilogramme Terajoule 
Cooking\Traditional Stove Charcoal 



 
 

Demand\Residential Emission factor Units Per… Reference source and assumptions 
Nitrogen Oxides NOx 2.16 ?b Kilogramme Metric Tonne a) Akagi et al (2011) 

b) Bertschi et al. (2003) for charcoal cooking fires (in Zambia).)  
c) Smith et al (2000) - For PM assume = TSP value   
d) Assume 50% of PM is BC and 50% POM (i.e. OCx1.4) Bond et al. 
(2004) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 2.38 ?c Kilogramme Metric Tonne 
Particulates PM2.5 2.38 ?c Kilogramme Metric Tonne 
Black Carbon 1.19 ?d Kilogramme Metric Tonne 
Organic Carbon 0.85 ?d Kilogramme Metric Tonne 
Ammonia 0.97 ?b Kilogramme Metric Tonne 
Cooking\Traditional Stove Wood 
Nitrogen Oxides NOx 2.18 ?c Kilogramme Metric Tonne a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) Bertschi et al (2003)  
c) Akagi et al (2011) (For NOx converted from 'as NO' to as 'NO2') 
d) Assume PM2.5 = 80% of PM10 as reported for wood and crop waste 
by Reddy and Venkataraman (2002b) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 8.3  ?d Kilogramme Metric Tonne 
Particulates PM2.5 6.64 ?c Kilogramme Metric Tonne 
Black Carbon 0.83 ?c Kilogramme Metric Tonne 
Organic Carbon 2.89 ?c Kilogramme Metric Tonne 
Ammonia 0.87 ?c Kilogramme Metric Tonne 
Cooking\Traditional Stove Vegetal Wastes 
Nitrogen Oxides NOx 47 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) Zhang et al. (2000) Average EF for household stoves in China. (For 
'vegetal materials and waste', EF = average for wheat and maize 
residues) 
c)  EMEP/EEA (2016) Tier 1 emission factor (1.A.4 Small combustion, 
Table 3.6) 
d) Assuming PM2.5/PM ratio of 0.8 as reported for wood and crop 
waste  (Reddy and Venkataraman, 2002b)  
e) From Bond et al. (2004) Tables 9 and 10  
f) Bertschi et al. (2003) [Zambian open fires] 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 8.05 ?b Kilogramme Metric Tonne 
Particulates PM2.5 6.44 ?d Kilogramme Metric Tonne 
Black Carbon 1.0 ?e Kilogramme Metric Tonne 
Organic Carbon 3.3 ?e Kilogramme Metric Tonne 
Ammonia 1.29 ?f Kilogramme Metric Tonne 

Cooking\Improved Biomass Stove with Chimney 
Nitrogen Oxides NOx 50 ?b Kilogramme Terajoule a) Akagi et al (2011) mean for Patsari stoves with chimney 

b)  EMEP/EEA (2016) Tier 1 emission factor (1.A.4 Small combustion, 
Table 3.6) 
c) Johnson et al (2008) mean values for 5 different types of Patsari 
cookstoves with chimney (N=30) 
d) Calculated as BC + (OC x 1.3) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 4.05 ?g Kilogramme Metric Tonne 
Particulates PM2.5 3.24 ?d Kilogramme Metric Tonne 
Black Carbon 0.74 ?c Kilogramme Metric Tonne 



 
 

Demand\Residential Emission factor Units Per… Reference source and assumptions 
Organic Carbon 1.92 ?c Kilogramme Metric Tonne e) NH3 value for Patsari cooking stove (Christian et al. 2010)                                                                                                                                                                                            

f) IPCC 2006 Guidelines - Tier 1 default EFs                                                                                                                                                                                                                                 
g) Assume PM2.5 = 80% of PM10 as reported for wood and crop waste 
by Reddy and Venkataraman (2002) 

Ammonia 0.03 ?e Kilogramme Metric Tonne 

Cooking\Traditional Stove Animal Wastes 
Nitrogen Oxides NOx 0.77 ?b Kilogramme Metric Tonne a) For Dung fuel in Indian stove. Venkataraman et al (2010) 

b)  Keene et al (2006) 
c) Akagi et al (2011) Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 3.0  ?a Kilogramme Metric Tonne 
Particulates PM2.5 3.0  ?a Kilogramme Metric Tonne 
Black Carbon 0.12 ?a Kilogramme Metric Tonne 
Organic Carbon 1.8 ?a Kilogramme Metric Tonne 
Ammonia 4.75 ?c Kilogramme Metric Tonne 
Cooking\Fan Assisted Biomass Stove 
Nitrogen Oxides NOx 50 ?e Kilogramme Terajoule a) Mean of high and low values given for Philips HD4012 (Made by 

African Clean Energy PTY Ltd., $89) details from 
http://catalog.cleancookstoves.org/#/stoves/47 
b) Assume x 1.25 of PM2.5 value (i.e. PM2.5/PM ratio of 0.8 as 
reported for wood and crop waste by Reddy and Venkataraman 
(2002b))  
c) Assume BC:OC ratio same as for traditional woodstove 
d) IPCC (2006) Tier 1                                                                                          
e) EMEP/EEA (2016) Tier 1 emission factor (1.A.4 Small combustion, 
Table 3.6) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 0.75 ?b Kilogramme Metric Tonne 
Particulates PM2.5 0.60 ?a Kilogramme Metric Tonne 
Black Carbon 0.12 ?c Kilogramme Metric Tonne 
Organic Carbon 0.34 ?c Kilogramme Metric Tonne 
Ammonia 0 Kilogramme Terajoule 

Demand\Residential\Lighting 

Lighting\Simple Wick Kerosene Lamps 
Nitrogen Oxides NOx 25 ?c Kilogramme Terajoule a) Lam et al (2012) Simple wick kersosene lamp - typical field use 

b) IPCC Guidelines (IPCC, 1996), Reference Manual, Tier 1 
c) Zhang et al. (2000) Average EF for household stoves in China. 
d) IPCC (2006) Tier 1 default 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 93 ?a Kilogramme Metric Tonne 
Particulates PM2.5 93 ?a Kilogramme Metric Tonne 
Black Carbon 90 ?a Kilogramme Metric Tonne 
Organic Carbon 0.4 ?a Kilogramme Metric Tonne 
Ammonia 0 Kilogramme Terajoule 



 
 

Demand\Residential Emission factor Units Per… Reference source and assumptions 
Lighting\Hurricane Kerosene Lamps 
Nitrogen Oxides NOx 25 ?c Kilogramme Terajoule a) Lam et al (2012) Hurricane kersosene lamp - typical field use 

b) IPCC Guidelines (IPCC, 1996), Reference Manual, Tier 1 
c) Zhang et al. (2000) Average EF for household stoves in China.  
d) IPCC (2006) Tier 1 default 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 13 ?a Kilogramme Metric Tonne 
Particulates PM2.5 13 ?a Kilogramme Metric Tonne 
Black Carbon 9 ?a Kilogramme Metric Tonne 
Organic Carbon 0.5 ?a Kilogramme Metric Tonne 
Ammonia 0 Kilogramme Terajoule 
Lighting\LPG 
Nitrogen Oxides NOx 51?b Kilogramme Terajoule a) IPCC (2006) Tier 1 default 

b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assume OC = 6xBC as for LPG Indian stove. Venkataraman et al 
(2010) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 1.9 ?b Kilogramme Metric Tonne 
Particulates PM2.5 1.9 ?b Kilogramme Metric Tonne 
Black Carbon 0.16 ?b Kilogramme Metric Tonne 
Organic Carbon 0.97 ?c Kilogramme Metric Tonne 
Ammonia 0 Kilogramme Terajoule 

Demand\Residential\Other 
Residential\Other\Other Bituminous Coal and Anthracite 
Nitrogen Oxides NOx 1.5 ?a Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) Zhang et al. (2000) Average EF for household stoves in China. 
c) EMEP/EEA (2016) Tier 1 emission factor  (1.A.4 Small combustion, 
Table 3.3) 
d) Zhi et al. (2008) value for bituminous coal burnt in a high efficiency 
chunk (HEC) stove.  
e) Assume a PM2.5/PM ratio of 0.9 for coal. Reddy and Venkataraman 
(2002a)  
f) Zhi et al. (2008) value for bituminous coal burnt in a high efficiency 
chunk (HEC) stove. Calculated from EC factor of 3.81 (from Table 1) 
times OC/EC ratio of 0.58 (from Table 3)  
g) From Li et al (2016) - Value of 1.17 is for bituminous chunk coal in 
traditional stove (use 0.10 for advanced stove).  For anthracite chunk 
use 0.20 

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) 

Kilogramme Kilogramme 

Particulates PM10 14.8 ?d Kilogramme Metric Tonne 
Particulates PM2.5 13.3 ?e Kilogramme Metric Tonne 
Black Carbon 2.2 ?f Kilogramme Metric Tonne 
Organic Carbon 5.93 ?d Kilogramme Metric Tonne 

Ammonia 1.17 ?g Kilogramme Metric Tonne 



 
 

Demand\Residential Emission factor Units Per… Reference source and assumptions 
Residential\Other\BKB Brown coal briquettes 
Nitrogen Oxides NOx 1.5 ?a Kilogramme Terajoule Assume all emission factors are as for Honeycomb Briquettes 
Nitrous Oxide 34 ?b Kilogramme Terajoule 
Particulates PM10 7.33 ?d Kilogramme Metric Tonne 
Particulates PM2.5 6.6 ?e Kilogramme Metric Tonne 
Black Carbon 0.137 ?f Kilogramme Metric Tonne 
Organic Carbon 4.16 ?d Kilogramme Metric Tonne 
Ammonia 0.70 ?g Kilogramme Metric Tonne 
Residential\Other\Honeycomb briquettes 
Nitrogen Oxides NOx 1.5 ?a Kilogramme Terajoule a), b) and c)  Assume as for Other Bituminous Coal and Anthracite 

d) Zhi et al. (2008) value for honeycomb-coal-briquette burnt in a high 
efficiency briquette (HEB) stove.  
e) Assume a PM2.5/PM ratio of 0.9 for coal. Reddy and Venkataraman 
(2002a)  
f) Zhi et al. (2008) value for honeycomb-coal-briquette burnt in a high 
efficiency briquette (HEB) stove. Calculated from EC factor of 0.082 
(from Table 1) times OC/EC ratio of 1.67 (from Table 3)                                                                                                    
g) From Li et al (2016) - NH3 Value of 0.70 is for anthracite briquette 
in traditional stove (use 0.06 for advanced stove). 

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) 

Kilogramme Kilogramme 

Particulates PM10 7.33 ?d Kilogramme Metric Tonne 
Particulates PM2.5 6.6 ?e Kilogramme Metric Tonne 
Black Carbon 0.137 ?f Kilogramme Metric Tonne 
Organic Carbon 4.16 ?d Kilogramme Metric Tonne 
Ammonia 0.70 ?g Kilogramme Metric Tonne 
Residential\Other\Coke Oven Gas 

Nitrogen Oxides NOx 51 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.4 Small combustion, 
Table 3.4)  
c)  Assume OC = 8.33 x BC as for natural gas in Bond et al, (2004) 
Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 1.2 ?b Kilogramme Terajoule 
Particulates PM2.5 1.2 ?b Kilogramme Terajoule 
Black Carbon 0.065 ?b Kilogramme Terajoule 
Organic Carbon 0.54 ?c Kilogramme Terajoule 
Ammonia 0.01 ?d Kilogramme Metric Tonne 
Residential\Other\Gas Works Gas 

 

Nitrogen Oxides NOx 51 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.4 Small combustion, 
Table 3.4)  
c)  Assume OC = 8.33 x BC as for natural gas in Bond et al, (2004) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 1.2 ?b Kilogramme Terajoule 



 
 

Demand\Residential Emission factor Units Per… Reference source and assumptions 
Particulates PM2.5 1.2 ?b Kilogramme Terajoule Table 5 

d) Assume = factor for natural gas Black Carbon 0.065 ?b Kilogramme Terajoule 
Organic Carbon 0.54 ?c Kilogramme Terajoule 
Ammonia 0.01 ?d Kilogramme Metric Tonne 

Residential\Other\Natural Gas 

Nitrogen Oxides NOx 51 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.4 Small combustion, 
Table 3.4)  
c) Assume OC = 8.33 x BC (Bond et al., 2004, Table 5) 
d) Battye et al. (1994) defaults (no NOx controls) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 1.2 ?b Kilogramme Terajoule 
Particulates PM2.5 1.2 ?b Kilogramme Terajoule 
Black Carbon 0.065 ?b Kilogramme Terajoule 
Organic Carbon 0.54 ?c Kilogramme Terajoule 
Ammonia 0.01 ?d Kilogramme Metric Tonne 
Residential\Other\LPG 
Nitrogen Oxides NOx 51 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor (1.A.4 Small combustion, 
Table 3.4)  
c) Venkataraman et al (2010) for Indian LPG Cookstove 
d) Assume a PM2.5/PM ratio 0.964 for LPG. Reddy and Venkataraman 
(2002a)  
e) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.32 ?c Kilogramme Metric Tonne 
Particulates PM2.5 0.31 ?d Kilogramme Metric Tonne 
Black Carbon 0.001 ?c Kilogramme Metric Tonne 
Organic Carbon 0.06 ?c Kilogramme Metric Tonne 
Ammonia 0.01 ?e Kilogramme Metric Tonne 

Residential\Other\Motor Gasoline 
Nitrogen Oxides NOx 306 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) Assume = EMEP/EEA (2016) Tier 1 emission factor for 
commercial/institutional liquid fuels (1.A.4, Table 3.9) 
c) Assume OC = BC/3.5 (Bond et al., 2004 Tables 9 and 10)                                                                                                                            
d) Assume as for industry 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 21 ?b Kilogramme Terajoule 
Particulates PM2.5 18 ?b Kilogramme Terajoule 
Black Carbon 10.1 ?b Kilogramme Terajoule 
Organic Carbon 2.89 ?c Kilogramme Terajoule 
Ammonia 0.005 ?d Kilogramme Metric Tonne 



 
 

Demand\Residential Emission factor Units Per… Reference source and assumptions 

Residential\Other\Kerosene 
Nitrogen Oxides NOx 306 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) Assume = EMEP/EEA (2016) Tier 1 emission factor for 
commercial/institutional, liquid fuels (1.A.4, Table 3.9) 
 
c) Assume OC = BC/3.5 (Bond et al., 2004 Tables 9 and 10)      d) 
Assume = gasoline 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 21 ?b Kilogramme Terajoule 
Particulates PM2.5 18 ?b Kilogramme Terajoule 
Black Carbon 10.1 ?b Kilogramme Terajoule 
Organic Carbon 2.89 ?c Kilogramme Terajoule 
Ammonia 0.005 ?d Kilogramme Metric Tonne 

Residential\Other\Gas Diesel Oil 
Nitrogen Oxides NOx 942 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 2 emission factors for reciprocating engines 
(Table 3-31) 
c) From Klimont et al (2017) (Table S3.1) GAINS emission factors for 
diesel generators (no control)                                            d) Assume as 
for industry 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 96 ?c Kilogramme Terajoule 
Particulates PM2.5 96 ?c Kilogramme Terajoule 
Black Carbon 40 ?c Kilogramme Terajoule 
Organic Carbon 28 ?c Kilogramme Terajoule 
Ammonia 0.007 ?d Kilogramme Metric Tonne 
Residential\Other\Wood 
Nitrogen Oxides NOx 2.18 ?c Kilogramme Metric Tonne Assume same as for Cooking/Traditional Stove Wood                                                                                                                                                  

a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Bertschi et al (2003)  
c) Akagi et al (2011) (For NOx converted from 'as NO' to as 'NO2') 
d) Assume PM2.5 = 80% of PM10 as reported for wood and crop waste 
by Reddy and Venkataraman (2002) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 8.3  ?d Kilogramme Metric Tonne 
Particulates PM2.5 6.64 ?c Kilogramme Metric Tonne 
Black Carbon 0.83 ?c Kilogramme Metric Tonne 
Organic Carbon 2.89 ?c Kilogramme Metric Tonne 
Ammonia 0.87 ?c Kilogramme Metric Tonne 
Residential\Other\Vegetal Wastes 

Nitrogen Oxides NOx 47 ?b Kilogramme Terajoule Assume same as for Cooking/Traditional Stove Vegetal Wastes  
a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Zhang et al. (2000) Average EF for household stoves in China. (For 
'vegetal materials and waste', EF = average for wheat and maize 

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) 

Kilogramme Kilogramme 

Particulates PM10 8.05 ?b Kilogramme Metric Tonne 



 
 

Demand\Residential Emission factor Units Per… Reference source and assumptions 
Particulates PM2.5 6.44 ?d Kilogramme Metric Tonne residues) 

c)  EMEP/EEA (2013) Tier 1 emission factor  (1.A.4 Small combustion, 
Table 3.6)  
d) Assuming PM2.5/PM ratio of 0.8 as reported for wood and crop 
waste  (Reddy and Venkataraman, 2002b)  
e) From Bond et al. (2004) Tables 9 and 10  
f) From Li et al (2016) - Value of 0.91 is the mean for three types of 
biomass briquette in traditional stove (use 0.17 for advanced stove). 

Black Carbon 1.0 ?e Kilogramme Metric Tonne 
Organic Carbon 3.3 ?e Kilogramme Metric Tonne 
Ammonia 0.91 ?f Kilogramme Metric Tonne 

Residential\Other\Animal Wastes 
Nitrogen Oxides NOx 0.77 ?b Kilogramme Metric Tonne Assume same as for Cooking/Traditional Stove Animal Wastes  

a) For Dung fuel in Indian stove. Venkataraman et al (2010) 
b)  Keene et al (2006) 
c) Akagi et al (2011) 

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) 

Kilogramme Kilogramme 

Particulates PM10 3.0  ?a Kilogramme Metric Tonne 
Particulates PM2.5 3.0  ?a Kilogramme Metric Tonne 
Black Carbon 0.12 ?a Kilogramme Metric Tonne 
Organic Carbon 1.8 ?a Kilogramme Metric Tonne 
Ammonia 4.75 ?c Kilogramme Metric Tonne 
Residential\Other\Unspecified Primary Solid Biomass 

Nitrogen Oxides NOx 2.18 ?c Kilogramme Metric Tonne Assume same as for Cooking/Traditional Stove Wood                                                                                                                                                  
a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Bertschi et al (2003)  
c) Akagi et al (2011) (For NOx converted from 'as NO' to as 'NO2') 
d) Assume PM2.5 = 80% of PM10 as reported for wood and crop waste 
by Reddy and Venkataraman (2002) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 8.3  ?d Kilogramme Metric Tonne 
Particulates PM2.5 6.64 ?c Kilogramme Metric Tonne 
Black Carbon 0.83 ?c Kilogramme Metric Tonne 
Organic Carbon 2.89 ?c Kilogramme Metric Tonne 
Ammonia 0.87 ?c Kilogramme Metric Tonne 
Residential\Other\Biogas 
Nitrogen Oxides NOx 51 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor (1.A.4 Small combustion, 
Table 3.4)   
c) Assume = TSP value given by Smith, Kirk R. et al, (2000) for biogas.  
d) Assume BC and OC fractions are as for natural gas in Bond et al 
(2004): Table 5 
e) Assume as for natural gas, Battye et al. (1994) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.53 ?c Kilogramme Metric Tonne 
Particulates PM2.5 0.53 ?c Kilogramme Metric Tonne 
Black Carbon 0.031 ?d Kilogramme Metric Tonne 



 
 

Demand\Residential Emission factor Units Per… Reference source and assumptions 
Organic Carbon 0.26 ?d Kilogramme Metric Tonne 
Ammonia 0.01 ?e Kilogramme Metric Tonne 
Residential\Other\Charcoal 
Nitrogen Oxides NOx 2.16 ?b Kilogramme Metric Tonne Assume same as for Cooking/Traditional Stove Charcoal  

a) Akagi et al (2011) 
b) Bertschi et al. (2003) for charcoal cooking fires (in Zambia).)  
c) Smith et al (2000) - For PM assume = TSP value   
d) Assume 50% of PM is BC and 50% POM (i.e. OCx1.4) Bond et al. 
(2004) 

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) 

Kilogramme Kilogramme 

Particulates PM10 2.38 ?c Kilogramme Metric Tonne 
Particulates PM2.5 2.38 ?c Kilogramme Metric Tonne 
Black Carbon 1.19 ?d Kilogramme Metric Tonne 
Organic Carbon 0.85 ?d Kilogramme Metric Tonne 
Ammonia 0.97 ?b Kilogramme Metric Tonne 

 
 
  



 
 

Table S25:  Brick Kilns emission factors use in LEAP-IBC analysis 

Demand\Brick Kilns Emission factor Units Per… Reference source and assumptions 
Traditional kilns\Other Bituminous Coal and Anthracite 
Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 

b) Derived from EMEP/EEA (2016) Tier 1 emission factors for combustion  
(1.A.2, Table 3-2)   
c) Value for 100% coal-fueled Bull's trench brick kiln from Weyant et al. (2014) 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 4.1 ?c Kilogramme Metric Tonne 
Particulates PM2.5 3.7 ?c Kilogramme Metric Tonne 
Black Carbon 2.7 ?c Kilogramme Metric Tonne 
Organic Carbon 0.11 ?c Kilogramme Metric Tonne 
Ammonia 0.00028 ?d Kilogramme Metric Tonne 
Traditional kilns\Natural Gas 
Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-3)   
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.78 ?b Kilogramme Terajoule 
Particulates PM2.5 0.78 ?b Kilogramme Terajoule 
Black Carbon 0.03 ?b Kilogramme Terajoule 
Organic Carbon 0.26 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 
Traditional kilns\Gas Diesel Oil 
Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-4) 
c) Assuming BC/OC ratio as for industry/diesel fuel (high end of range) in 
Bond et al (2004): Tables 9 & 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 20 ?b Kilogramme Terajoule 
Particulates PM2.5 20 ?b Kilogramme Terajoule 
Black Carbon 11.2 ?b Kilogramme Terajoule 
Organic Carbon 3.6 ?c Kilogramme Terajoule 
Ammonia 0.007 ?d Kilogramme Metric Tonne 
Traditional kilns\Heavy Fuel Oil 
Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-4) Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 



 
 

Demand\Brick Kilns Emission factor Units Per… Reference source and assumptions 
Particulates PM10 20 ?b Kilogramme Terajoule c) Assuming BC/OC ratio as for industry/diesel fuel (high end of range) in 

Bond et al (2004): Tables 9 & 10 
d) EMEP/Corinair  (1996) Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 
Organic Carbon 4.2 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Metric Tonne 
Traditional kilns\Primary solid biomass 
Nitrogen Oxides NOx 91 ?b Kilogramme Terajoule a) Mean of range given by Christian et al (2010) for wood waste (90% sawdust) 

in "traditional-fixed" kilns in Mexico 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.2, Table 3-5) 
c) IPCC 2006 Guidelines - Tier 1 default EFs  
d) Assume PM10 = PM2.5 factor 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 1.6 ?d Kilogramme Metric tonne 
Particulates PM2.5 1.6 ?a Kilogramme Metric tonne 
Black Carbon 1.05 ?a Kilogramme Metric tonne 
Organic Carbon 0.356 ?a Kilogramme Metric tonne 
Ammonia 37 ?b Kilogramme Terajoule 
Traditional kilns\Industrial waste 
Nitrogen Oxides NOx 91 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 

Assume the rest are the same as for Primary solid biomass:  
b) EMEP/EEA (2016) Tier 1 emission factors for combustion  (1.A.2, Table 3-
5) 
c) Assuming all PM2.5 is either BC or OC  
d) Not known - emission factor needed 

Sulfur Dioxide 11 ?b Kilogramme Terajoule 
Particulates PM10 143 ?b Kilogramme Terajoule 
Particulates PM2.5 140 ?b Kilogramme Terajoule 
Black Carbon 39.2 ?b Kilogramme Terajoule 
Organic Carbon 72 ?c Kilogramme Terajoule 
Ammonia 37 ?b Kilogramme Terajoule 

Improved Kilns_Zigzag_Hoffman_VSBK 

Improved Kilns_Zigzag_Hoffman_VSBK\Other Bituminous Coal and Anthracite 
Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 

b) Derived from EMEP/EEA (2016) Tier 1 emission factors for combustion  
(1.A.2, Table 3-2) 
c) Mean of 3 values for Forced Draft Zig-Zag (FDZ) kiln reported by Weyant et 
al., 2014. For VSBK use 96.7 t/TJ for CO2, 2969 kg/TJ for CO, 1.3 kg/t for 
PM2.5, 0.06 kg/t for BC and 0.69 kg/t for OC.  
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 
* ((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 1.03 ?c Kilogramme Metric Tonne 
Particulates PM2.5 0.93 ?c Kilogramme Metric Tonne 
Black Carbon 0.223 ?c Kilogramme Metric Tonne 



 
 

Demand\Brick Kilns Emission factor Units Per… Reference source and assumptions 
Organic Carbon 0.11?c Kilogramme Metric Tonne 
Ammonia 0.00028 ?d Kilogramme Metric Tonne 
Improved Kilns_Zigzag_Hoffman_VSBK\Natural Gas 
Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-3) 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 0.78 ?b Kilogramme Terajoule 
Particulates PM2.5 0.78 ?b Kilogramme Terajoule 
Black Carbon 0.03 ?b Kilogramme Terajoule 
Organic Carbon 0.26 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 
Improved Kilns_Zigzag_Hoffman_VSBK\Gas Diesel Oil 
Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-4) 
c) Assuming BC/OC ratio as for industry/diesel fuel (high end of range) in 
Bond et al (2004): Tables 9 & 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 20 ?b Kilogramme Terajoule 
Particulates PM2.5 20 ?b Kilogramme Terajoule 
Black Carbon 11.2 ?b Kilogramme Terajoule 
Organic Carbon 3.6 ?c Kilogramme Terajoule 
Ammonia 0.007 ?d Kilogramme Metric Tonne 
Improved Kilns_Zigzag_Hoffman_VSBK\Heavy Fuel Oil 
Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-4) 
c) Assuming BC/OC ratio as for industry/heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 
Particulates PM10 20 ?b Kilogramme Terajoule 
Particulates PM2.5 20 ?b Kilogramme Terajoule 
Black Carbon 11.2 ?b Kilogramme Terajoule 
Organic Carbon 4.2 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Metric Tonne 
Improved Kilns_Zigzag_Hoffman_VSBK\Primary solid biomass 
Nitrogen Oxides NOx 91 ?b Kilogramme Terajoule 



 
 

Demand\Brick Kilns Emission factor Units Per… Reference source and assumptions 
Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme Primary solid biomass = wood, vegetal materials/wastes, animal 

prodcuts/wastes, and charcoal 
a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion  (1.A.2, Table 3-
5) 
c) EFs for MK2 improved biomass kiln from 2013 SLCF Field Campaign,  
Mexico 

Particulates PM10 1.94 ?c Kilogramme Metric Tonne 
Particulates PM2.5 1.94 ?c Kilogramme Metric Tonne 
Black Carbon 0.15 ?c Kilogramme Metric Tonne 
Organic Carbon 0.03 ?c Kilogramme Metric Tonne 
Ammonia 37 ?b Kilogramme Terajoule 
Improved Kilns_Zigzag_Hoffman_VSBK\Industrial waste 
Nitrogen Oxides NOx 91 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 

Assume the rest are the same as for Primary solid biomass:  
b) EMEP/EEA (2013) Tier 1 emission factors for combustion   (1.A.2, Table 3-
5) 
c) Assuming all PM2.5 is either BC or OC  

Sulfur Dioxide 11 ?b Kilogramme Terajoule 
Particulates PM10 143 ?b Kilogramme Terajoule 
Particulates PM2.5 140 ?b Kilogramme Terajoule 
Black Carbon 39.2 ?b Kilogramme Terajoule 
Organic Carbon 72 ?c Kilogramme Terajoule 
Ammonia 37 ?b Kilogramme Terajoule 

 
  



 
 

Table S26: Manufacturing and Construction emission factors use in LEAP-IBC analysis 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Iron and Steel\Coke Oven Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-3) 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Iron and Steel\Blast Furnace Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-3) 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Iron and Steel\Gas Works Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-3) 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Particulates PM10 0.78 ?b Kilogramme Terajoule c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Iron and Steel\Natural Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-3) 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Iron and Steel\LPG Liquefied Petroleum gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-3) 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Iron and Steel\Gas Diesel Oil 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-4) 
c) Assuming BC/OC ratio as for industry/diesel fuel (high end of range) in 
Bond et al (2004): Tables 9 & 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 3.6 ?c Kilogramme Terajoule 

Ammonia 0.007 ?d Kilogramme Metric Tonne 

Iron and Steel\Heavy Fuel Oil 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-4) 
c) Assuming BC/OC ratio as for industry/heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 4.2 ?c Kilogramme Terajoule 

Ammonia 0.101 ?d Kilogramme Metric Tonne 

Iron and Steel\Petroleum Coke 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-4) 
c) Assuming BC/OC ratio as for industry/heavy fuel oil (high end of range) Sulfur Dioxide SulfurContent*(SO2/S) * 

((100 - Em Control)/100) 
Kilogramme Kilogramme 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Particulates PM10 20 ?b Kilogramme Terajoule in Bond et al (2004): Tables 9 & 10 
d) Assume as for coal  

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 4.2 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Iron and Steel\Non_specified petroleum products 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule Assume as for Gas Diesel 
 
a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-4) 
c) Assuming BC/OC ratio as for industry/diesel fuel (high end of range) in 
Bond et al (2004): Tables 9 & 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 3.6 ?c Kilogramme Terajoule 

Ammonia 0.007 ?d Kilogramme Metric Tonne 

Iron and Steel\Charcoal 

Nitrogen Oxides NOx 91 ?b Kilogramme Terajoule Primary solid biomass = wood, vegetal materials/wastes, animal 
prodcuts/wastes, and charcoal 
a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.2, Table 
3-5)  
c) Assuming all PM2.5 is either BC or OC  

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 143 ?b Kilogramme Terajoule 

Particulates PM2.5 140 ?b Kilogramme Terajoule 

Black Carbon 39.2 ?b Kilogramme Terajoule 

Organic Carbon 72 ?c Kilogramme Terajoule 

Ammonia 37 ?b Kilogramme Terajoule 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Demand\Manufacturing and Construction\Combustion Other Industries_Excludes Brick Kilns 

Combustion Other Industries_Excludes Brick Kilns\Coking Coal 

Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.2, Table 
3-2)  
c) Assuming BC/OC ratio for industry/hard coal (upper end of range) in 
Bond et al (2004): Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) * 
((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 117 ?b Kilogramme Terajoule 

Particulates PM2.5 108 ?b Kilogramme Terajoule 

Black Carbon 6.9 ?b Kilogramme Terajoule 

Organic Carbon 5.2 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Other Bituminous Coal and Anthracite 

Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) Derived from EMEP/EEA (2016) Tier 1 emission factors for combustion 
(1.A.2, Table 3-2)  
c) Assuming BC/OC ratio for industry/hard coal (upper end of range) in 
Bond et al (2004): Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) * 
((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 117 ?b Kilogramme Terajoule 

Particulates PM2.5 108 ?b Kilogramme Terajoule 

Black Carbon 6.9 ?b Kilogramme Terajoule 

Organic Carbon 5.2 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Sub Bituminous Coal 

Nitrogen Oxides NOx 173 * (100 - Em Control)/100 
?b 

Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.2, Table 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) * 
((100 - Em Control[%])/100) 

Kilogramme Kilogramme 3-2)  
c) Assuming BC/OC ratio as in Bond et al (2004) Tables 9 and 10 - upper 
end of range for Industry/brown coal 
d) Battye et al. (1994) defaults (no NOx controls).  

Particulates PM10 117 ?b Kilogramme Terajoule 

Particulates PM2.5 108 ?b Kilogramme Terajoule 

Black Carbon 6.9 ?b Kilogramme Terajoule 

Organic Carbon 31.3 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Lignite 

Nitrogen Oxides NOx 173 * (100 - Em Control)/100 
?b 

Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.2, Table 
3-2)  
c) Assuming BC/OC ratio as in Bond et al (2004) Tables 9 and 10 - upper 
end of range for Industry for brown coal 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) * 
((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 117 ?b Kilogramme Terajoule 

Particulates PM2.5 108 ?b Kilogramme Terajoule 

Black Carbon 6.9 ?b Kilogramme Terajoule 

Organic Carbon 31.3 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Patent fuel 

Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) Derived from EMEP/EEA (2016) Tier 1 emission factors for combustion 
(1.A.2, Table 3-2)  
c) Assuming BC/OC ratio as in Bond et al (2004) Tables 9 and 10 - upper 

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) * 
((100 - Em Control[%])/100) 

Kilogramme Kilogramme 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Particulates PM10 117 ?b Kilogramme Terajoule end of range for Industry for hard coal 
d) Battye et al. (1994) defaults (no NOx controls).  

Particulates PM2.5 108 ?b Kilogramme Terajoule 

Black Carbon 6.9 ?b Kilogramme Terajoule 

Organic Carbon 5.2 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Coke Oven Coke 

Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.2, Table 
3-2)  
c) Assuming BC/OC ratio as in Bond et al (2004) Tables 9 and 10 - for 
Industry 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) * 
((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 117 * (100 - Em Control)/100 
?b 

Kilogramme Terajoule 

Particulates PM2.5 108 * (100 - Em Control)/100 
?b 

Kilogramme Terajoule 

Black Carbon 6.91 ?b Kilogramme Terajoule 

Organic Carbon 11.1 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\BKB Brown Coal Briquettes 

Nitrogen Oxides NOx 173 * (100 - Em Control)/100 
?b 

Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.2, Table 
3-2)  
c) Assuming BC/OC ratio as in Bond et al (2004) Tables 9 and 10 - upper 
end of range for Industry 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) * 
((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 117 * (100 - Em Control)/100 
?b 

Kilogramme Terajoule 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Particulates PM2.5 108 * (100 - Em Control)/100 
?b 

Kilogramme Terajoule 

Black Carbon 6.9 ?c Kilogramme Terajoule 

Organic Carbon 31.3 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Coke Oven Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-3)  
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Blast Furnace Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-3)  
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Combustion Other Industries_Excludes Brick Kilns\Gas Works Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-3)  
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Natural Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.2, Table 3-3)  
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Battye et al. (1994) defaults (no NOx controls) 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Crude Oil 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-4)  
c) Assuming BC/OC ratio as for Heavy Fuel Oil from Bond et al (2004): 
Tables 9 & 10 
d) Assume as for Heavy Fuel Oil 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 4.2 ?c Kilogramme Terajoule 

Ammonia 0.101 ?d Kilogramme Terajoule 

Combustion Other Industries_Excludes Brick Kilns\Refinery Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-3)  
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\LPG Liquefied Petroleum gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-3)  
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Combustion Other Industries_Excludes Brick Kilns\Motor Gasoline 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-4)  
c) Assuming BC/OC ratio as for industry/gasoline in Bond et al (2004): 
Tables 9 & 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 3.2 ?c Kilogramme Terajoule 

Ammonia 0.005 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Kerosene 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-4)  
c) Assuming BC/OC ratio as for industry/kerosene in Bond et al (2004): 
Tables 9 & 10 
d) Assume as for motor gasoline 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 3.2 ?c Kilogramme Terajoule 

Ammonia 0.005 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Gas Diesel Oil 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-4)  
c) Assuming BC/OC ratio as for industry/diesel fuel (high end of range) in 
Bond et al (2004): Tables 9 & 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 3.6 ?c Kilogramme Terajoule 

Ammonia 0.007 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Heavy Fuel Oil 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-4)  
c) Assuming BC/OC ratio as for industry/heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 4.2 ?c Kilogramme Terajoule 

Ammonia 0.101 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Petroleum Coke 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-4)  
c) Assuming BC/OC ratio as for industry/heavy fuel oil (high end of range) 
in Bond et al (2004): Tables 9 & 10 
d) Assume as for coal  

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 4.2 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Combustion Other Industries_Excludes Brick Kilns\Non_specified petroleum products 

Nitrogen Oxides NOx 513 ?b Kilogramme Terajoule Assume as for Gas Diesel 
 
a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.2, Table 3-4)  
c) Assuming BC/OC ratio as for industry/diesel fuel (high end of range) in 
Bond et al (2004): Tables 9 & 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * 
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 20 ?b Kilogramme Terajoule 

Particulates PM2.5 20 ?b Kilogramme Terajoule 

Black Carbon 11.2 ?b Kilogramme Terajoule 

Organic Carbon 3.6 ?c Kilogramme Terajoule 

Ammonia 0.007 ?d Kilogramme Metric Tonne 

Combustion Other Industries_Excludes Brick Kilns\Primary solid biomass 

Nitrogen Oxides NOx 91 ?b Kilogramme Terajoule Primary solid biomass = wood, vegetal materials/wastes, animal 
prodcuts/wastes, and charcoal 
a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.2, Table 
3-5)   
c) Assuming all PM2.5 is either BC or OC  

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 143 ?b Kilogramme Terajoule 

Particulates PM2.5 140 ?b Kilogramme Terajoule 

Black Carbon 39.2 ?b Kilogramme Terajoule 

Organic Carbon 72 ?c Kilogramme Terajoule 

Ammonia 37 ?b Kilogramme Terajoule 

Combustion Other Industries_Excludes Brick Kilns\Industrial waste 

Nitrogen Oxides NOx 91 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
Assume the rest are the same as for Primary solid biomass:  
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.2, Table 
3-5)   
c) Assuming all PM2.5 is either BC or OC  

Sulfur Dioxide 11 ?b Kilogramme Terajoule 

Particulates PM10 143 ?b Kilogramme Terajoule 

Particulates PM2.5 140 ?b Kilogramme Terajoule 



 
 

Demand\Manufacturing  
and Construction Emission factor Units Per... Reference source and assumptions 

Black Carbon 39.2 ?b Kilogramme Terajoule 

Organic Carbon 72 ?c Kilogramme Terajoule 

Ammonia 37 ?b Kilogramme Terajoule 

 
 
 

  



 
 

Table S27: Services emission factors use in LEAP-IBC analysis 

Demand\Services Emission Factor Units Per... Reference source and assumptions 

Services\Other Bituminous Coal and Anthracite 

Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors (1.A.4 Small combustion, 
Table 3.7)  
c) Assuming BC/OC ratio for industry/hard coal (upper end of range) in 
Bond et al (2004): Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-
SulfurRetention)*(SO2/S) * 
((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 117 ?b Kilogramme Terajoule 

Particulates PM2.5 108 ?b Kilogramme Terajoule 

Black Carbon 6.9 ?b Kilogramme Terajoule 

Organic Carbon 5.2 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Terajoule 

Services\Coke Oven Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.4 Small combustion, 
Table 3.8) 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Services\Gas Works Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.4 Small combustion, 
Table 3.8)  Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 



 
 

Demand\Services Emission Factor Units Per... Reference source and assumptions 

Particulates PM10 0.78 ?b Kilogramme Terajoule c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Services\Natural Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor (1.A.4 Small combustion, 
Table 3.8) 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Services\LPG Liquefied Petroleum gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.4 Small combustion, 
Table 3.8) 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Services\Motor Gasoline 



 
 

Demand\Services Emission Factor Units Per... Reference source and assumptions 

Nitrogen Oxides NOx 306 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Assume = EMEP/EEA (2016) Tier 1 emission factor for 
commercial/institutional (1.A.4 Small combustion, Table 3.9)  
c) Assume OC = BC/3.5 (Bond et al., 2004 Tables 9 and 10)                                                                                                                            
d) Assume as for industry 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 21 ?b Kilogramme Terajoule 

Particulates PM2.5 18 ?b Kilogramme Terajoule 

Black Carbon 10.1 ?b Kilogramme Terajoule 

Organic Carbon 2.89 ?c Kilogramme Terajoule 

Ammonia 0.005 ?d Kilogramme Metric Tonne 

Services\Kerosene 

Nitrogen Oxides NOx 306 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Assume = EMEP/EEA (2016) Tier 1 emission factor for 
commercial/institutional (1.A.4 Small combustion, Table 3.9)  
c) Assume OC = BC/3.5 (Bond et al., 2004 Tables 9 and 10)      d) Assume 
= gasoline 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 21 ?b Kilogramme Terajoule 

Particulates PM2.5 18 ?b Kilogramme Terajoule 

Black Carbon 10.1 ?b Kilogramme Terajoule 

Organic Carbon 2.89 ?c Kilogramme Terajoule 

Ammonia 0.005 ?d Kilogramme Metric Tonne 

Services\Gas Diesel Oil 

Nitrogen Oxides NOx 942 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 2 emission factors for reciprocating engines 
(Table 3-31) 
c) From Klimont et al (2016) (Table S3.1) GAINS emission factors for 
diesel generators (no control) 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 96 ?c Kilogramme Terajoule 

Particulates PM2.5 96 ?c Kilogramme Terajoule 

Black Carbon 40 ?c Kilogramme Terajoule 

Organic Carbon 28 ?c Kilogramme Terajoule 



 
 

Demand\Services Emission Factor Units Per... Reference source and assumptions 

Ammonia 0.007 ?d Kilogramme Metric Tonne 

Services\Heavy Fuel Oil 

Nitrogen Oxides NOx 306 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor  (1.A.4 Small combustion, 
Table 3.9) 
c) Assuming BC/OC ratio as for industry/heavy fuel oil in Bond et al 
(2004): Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 21 ?b Kilogramme Terajoule 

Particulates PM2.5 18 ?b Kilogramme Terajoule 

Black Carbon 10.1 ?b Kilogramme Terajoule 

Organic Carbon 3.8 ?c Kilogramme Terajoule 

Ammonia 0.005 ?d Kilogramme Metric Tonne 

Services\Non_specified petroleum products 

Nitrogen Oxides NOx 942 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 2 emission factors for reciprocating engines 
(Table 3-31) 
c) From Klimont et al (2016) (Table S3.1) GAINS emission factors for 
diesel generators (no control) 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 96 ?c Kilogramme Terajoule 

Particulates PM2.5 96 ?c Kilogramme Terajoule 

Black Carbon 40 ?c Kilogramme Terajoule 

Organic Carbon 28 ?c Kilogramme Terajoule 

Ammonia 0.007 ?d Kilogramme Metric Tonne 

Services\Primary solid biomass 

Nitrogen Oxides NOx 91 ?b Kilogramme Terajoule Primary solid biomass = wood, vegetal materials/wastes, animal 
prodcuts/wastes, and charcoal 
a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion (1.A.4 Small 
combustion, Table 3.10) 
c) Assuming all PM2.5 is either BC or OC  

Sulfur Dioxide 11 ?b Kilogramme Terajoule 

Particulates PM10 143 ?b Kilogramme Terajoule 

Particulates PM2.5 140 ?b Kilogramme Terajoule 



 
 

Demand\Services Emission Factor Units Per... Reference source and assumptions 

Black Carbon 39.2 ?b Kilogramme Terajoule 

Organic Carbon 72 ?c Kilogramme Terajoule 

Ammonia 37 ?b Kilogramme Terajoule 

 

  



 
 

Table S28: Agriculture, Forestry and Fishing emission factors use in LEAP-IBC analysis 

Demand\Agriculture 
Forestry and Fishing Emission factor Units Per... Reference source and assumptions 

Other Bituminous Coal and Anthracite 

Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2013) Tier 1 emission factors  
c) Assuming BC/OC ratio for industry/hard coal (upper end of range) in 
Bond et al (2004): Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) * 
((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 117 ?b Kilogramme Terajoule 

Particulates PM2.5 108 ?b Kilogramme Terajoule 

Black Carbon 6.9 ?b Kilogramme Terajoule 

Organic Carbon 5.2 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Coke Oven Coke 

Nitrogen Oxides NOx 173 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2013) Tier 1 emission factors for combustion 
c) Assuming BC/OC ratio as in Bond et al (2004) Tables 9 and 10 - for 
Industry 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 117 ?b Kilogramme Terajoule 

Particulates PM2.5 108 ?b Kilogramme Terajoule 

Black Carbon 6.91 ?b Kilogramme Terajoule 

Organic Carbon 11.1 ?c Kilogramme Terajoule 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Natural Gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule 



 
 

Demand\Agriculture 
Forestry and Fishing Emission factor Units Per... Reference source and assumptions 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - Em 
Control)/100) 

Kilogramme Kilogramme a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2013) Tier 1 emission factor 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 
5 
d) Battye et al. (1994) defaults (no NOx controls).  

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.01 ?d Kilogramme Metric Tonne 

LPG Liquefied Petroleum gas 

Nitrogen Oxides NOx 74 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2013) Tier 1 emission factor 
c) Assuming BC/OC ratio as for natural gas in Bond et al (2004): Table 
5 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - Em 
Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.78 ?b Kilogramme Terajoule 

Particulates PM2.5 0.78 ?b Kilogramme Terajoule 

Black Carbon 0.03 ?b Kilogramme Terajoule 

Organic Carbon 0.26 ?c Kilogramme Terajoule 

Ammonia 0.01 ?d Kilogramme Metric Tonne 

Motor Gasoline 

Nitrogen Oxides NOx 306 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Assume = EMEP/EEA (2016) Tier 1 emission factor for 
commercial/institutional 
c) Assume OC = BC/3.5 (Bond et al., 2004 Tables 9 and 10)                                                                                                                            
d) Assume as for industry 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 21 ?b Kilogramme Terajoule 

Particulates PM2.5 18 ?b Kilogramme Terajoule 

Black Carbon 10.1 ?b Kilogramme Terajoule 



 
 

Demand\Agriculture 
Forestry and Fishing Emission factor Units Per... Reference source and assumptions 

Organic Carbon 2.89 ?c Kilogramme Terajoule 

Ammonia 0.005 ?d Kilogramme Metric Tonne 

Kerosene 

Nitrogen Oxides NOx 306 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) Assume = EMEP/EEA (2016) Tier 1 emission factor for 
commercial/institutional 
c) Assume OC = BC/3.5 (Bond et al., 2004 Tables 9 and 10)      d) 
Assume = gasoline 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 21 ?b Kilogramme Terajoule 

Particulates PM2.5 18 ?b Kilogramme Terajoule 

Black Carbon 10.1 ?b Kilogramme Terajoule 

Organic Carbon 2.89 ?c Kilogramme Terajoule 

Ammonia 0.005 ?d Kilogramme Metric Tonne 

Gas Diesel Oil 

Nitrogen Oxides NOx 942 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 2 emission factors for reciprocating engines 
(Table 3-31) 
c) From Klimont et al (2017) (Table S3.1) GAINS emission factors for 
diesel generators (no control) 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 96 ?c Kilogramme Terajoule 

Particulates PM2.5 96 ?c Kilogramme Terajoule 

Black Carbon 40 ?c Kilogramme Terajoule 

Organic Carbon 28 ?c Kilogramme Terajoule 

Ammonia 0.007 ?d Kilogramme Metric Tonne 

Heavy Fuel Oil 

Nitrogen Oxides NOx 306 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for industry/heavy fuel oil in Bond et al Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 



 
 

Demand\Agriculture 
Forestry and Fishing Emission factor Units Per... Reference source and assumptions 

Particulates PM10 21 ?b Kilogramme Terajoule (2004): Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Particulates PM2.5 18 ?b Kilogramme Terajoule 

Black Carbon 10.1 ?b Kilogramme Terajoule 

Organic Carbon 3.8 ?c Kilogramme Terajoule 

Ammonia 0.005 ?d Kilogramme Metric Tonne 

Non_specified petroleum products 

Nitrogen Oxides NOx 942 ?b Kilogramme Terajoule Assume as for gas diesel                                                                 
a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 2 emission factors for reciprocating engines 
(Table 3-31) 
c) From Klimont et al (2017) (Table S3.1) GAINS emission factors for 
diesel generators (no control) 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) Kilogramme Kilogramme 

Particulates PM10 96 ?c Kilogramme Terajoule 

Particulates PM2.5 96 ?c Kilogramme Terajoule 

Black Carbon 40 ?c Kilogramme Terajoule 

Organic Carbon 28 ?c Kilogramme Terajoule 

Ammonia 0.007 ?d Kilogramme Metric Tonne 

Primary solid biomass 

Nitrogen Oxides NOx 91 ?b Kilogramme Terajoule Primary solid biomass = wood, vegetal materials/wastes, animal 
prodcuts/wastes, and charcoal 
a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2013) Tier 1 emission factors for combustion 
c) Assuming all PM2.5 is either BC or OC  

Sulfur Dioxide 11 ?b Kilogramme Terajoule 

Particulates PM10 143 ?b Kilogramme Terajoule 

Particulates PM2.5 140 ?b Kilogramme Terajoule 

Black Carbon 39.2 ?b Kilogramme Terajoule 

Organic Carbon 72 ?c Kilogramme Terajoule 

Ammonia 37 ?b Kilogramme Terajoule 

  



 
 

 

Table S29: Energy Industry - Own Use emission factors use in LEAP-IBC analysis 

Demand\Energy 
Industry Own Use Emission factor Units Per... Reference source and assumptions 

Petroleum Refining\Natural Gas 
Nitrogen Oxides NOx 63*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 2 emission factors (1.A.1, Table 4-6) 
c) Assume OC:BC ratio as indicated by Bond et al 2004 (Table 5) for natural gas 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) *  
((100 - Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.89 ?b Kilogramme Terajoule 
Particulates PM2.5 0.89 ?b Kilogramme Terajoule 
Black Carbon 0.077 ?b Kilogramme Terajoule 
Organic Carbon 0.64 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 

Petroleum Refining\Crude oil 
Nitrogen Oxides NOx 142*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) Assume = EMEP/EEA (2016) Tier 1 emission factor for Heavy Fuel Oil 
(1.A.1, Table 4-4) 
c) Values for Heavy Fuel Oil from Bond et al (2004): Tables 9 & 10 
d) Assume as for Heavy Fuel Oil 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 15 ?b Kilogramme Terajoule 
Particulates PM2.5 9.0 ?b Kilogramme Terajoule 
Black Carbon 0.504 ?c Kilogramme Terajoule 
Organic Carbon 0.19 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Metric Tonne 

Petroleum Refining\Refinery gas 
Nitrogen Oxides NOx 63*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factors (1.A.1, Table 4-2) 
c) Assume OC fraction is 0.5 of fine PM as indicated by Bond et al 2004 (Table 
5) for natural gas 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.89 ?b Kilogramme Terajoule 
Particulates PM2.5 0.89 ?b Kilogramme Terajoule 
Black Carbon 0.164 ?b Kilogramme Terajoule 



 
 

Demand\Energy 
Industry Own Use Emission factor Units Per... Reference source and assumptions 

Organic Carbon 0.44 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 

Petroleum Refining\LPG Liquefied Petroleum gas 
Nitrogen Oxides NOx 89*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factors  
c) Assume OC factor is 8.3 x BC (derived from EMEP/EEA (2016) Tier 1) as 
indicated by Bond et al 2004 (Tables 5) for natural gas 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.89 ?b Kilogramme Terajoule 
Particulates PM2.5 0.89 ?b Kilogramme Terajoule 
Black Carbon 0.022 ?b Kilogramme Terajoule 
Organic Carbon 0.19 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 

Petroleum Refining\Motor gasoline 
Nitrogen Oxides NOx 65*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for industry/gasoline in Bond et al (2004): Tables 9 
& 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 3.2 ?b Kilogramme Terajoule 
Particulates PM2.5 0.8 ?b Kilogramme Terajoule 
Black Carbon 0.268 ?b Kilogramme Terajoule 
Organic Carbon 0.077 ?c Kilogramme Terajoule 
Ammonia 0.005 ?d Kilogramme Metric Tonne 

Petroleum Refining\Kerosene 
Nitrogen Oxides NOx 65*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for industry/kerosene in Bond et al (2004): Tables 9 
& 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 3.2 ?b Kilogramme Terajoule 
Particulates PM2.5 0.8 ?b Kilogramme Terajoule 
Black Carbon 0.268 ?b Kilogramme Terajoule 
Organic Carbon 0.077 ?c Kilogramme Terajoule 



 
 

Demand\Energy 
Industry Own Use Emission factor Units Per... Reference source and assumptions 

Ammonia 0.005 ?d Kilogramme Metric Tonne 

Petroleum Refining\Gas diesel 
Nitrogen Oxides NOx 65*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 2 emission factor 
c) Assuming BC/OC ratio as for industry/diesel fuel in Bond et al (2004): Tables 
9 & 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 3.23 ?b Kilogramme Terajoule 
Particulates PM2.5 0.81 ?b Kilogramme Terajoule 
Black Carbon 0.271 ?b Kilogramme Terajoule 
Organic Carbon 0.090 ?c Kilogramme Terajoule 
Ammonia 0.005 ?d Kilogramme Metric Tonne 
Petroleum Refining\Heavy fuel oil 
Nitrogen Oxides NOx 142*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 2 emission factor 
c) Assuming BC/OC ratio as for Power/Heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 15*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Particulates PM2.5 9.0*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Black Carbon 0.50*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Organic Carbon 0.19*(100 - Em Control)/100 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Metric Tonne 

Petroleum Refining\Petroleum coke 
Nitrogen Oxides NOx 142*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for Power/heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls). 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 25.2*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Particulates PM2.5 19.3*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Black Carbon 1.08*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Organic Carbon 0.41*(100 - Em Control)/100 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Metric Tonne 



 
 

Demand\Energy 
Industry Own Use Emission factor Units Per... Reference source and assumptions 

Petroleum Refining\Non-specified and other petroleum products 
Nitrogen Oxides NOx 142*(100 - Em Control)/100 ?b Kilogramme Terajoule Assume as for Heavy Fuel Oil 

a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for Power/heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S)  Kilogramme Kilogramme 
Particulates PM10 25.2*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Particulates PM2.5 19.3*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Black Carbon 1.08*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Organic Carbon 0.41*(100 - Em Control)/100 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Terajoule 

Other Own use_Excludes Charcoal Kilns 
Other Own use_Excludes Charcoal Kilns\All Coal and Coke 
Nitrogen Oxides NOx 21*(100 - Em Control)/100 ?b Kilogramme Terajoule a)  IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factors for combustion 
c) Derived from Bond et al (2004; Table 5) assuming 95%:5% ratio of captured 
versus uncaptured technology as for India in the mid 1990s (Bond et al, 2004: 
Table 8). 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide 91 ?b Kilogramme Kilogramme 
Particulates PM10 79*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Particulates PM2.5 55*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Black Carbon 0.54*(100 - Em Control)/100 ?c Kilogramme Terajoule 
Organic Carbon 0.39*(100 - Em Control)/100 ?c Kilogramme Terajoule 
Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Coke oven gas 
Nitrogen Oxides NOx 89*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factors  
c) Assume OC factor  is 10 fold higher value than BC (derived from EMEP/EEA 
(2016) Tier 1)  as indicated by Bond et al 2004 (Table 5) for natural gas 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.89 ?b Kilogramme Terajoule 
Particulates PM2.5 0.89 ?b Kilogramme Terajoule 
Black Carbon 0.0223 ?b Kilogramme Terajoule 
Organic Carbon 0.223 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Blast Furnace Gas 
Nitrogen Oxides NOx 89*(100 - Em Control)/100 ?b Kilogramme Terajoule 



 
 

Demand\Energy 
Industry Own Use Emission factor Units Per... Reference source and assumptions 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors  
c) Assume OC factor  is 10 fold higher value than BC (derived from EMEP/EEA 
(2016) Tier 1)  as indicated by Bond et al 2004 (Table 5) for natural gas 
d) Assume = factor for natural gas 

Particulates PM10 0.89 ?b Kilogramme Terajoule 
Particulates PM2.5 0.89 ?b Kilogramme Terajoule 
Black Carbon 0.0223 ?b Kilogramme Terajoule 
Organic Carbon 0.223 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Natural Gas 
Nitrogen Oxides NOx 89*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factors  
c) Assume OC factor  is 10 fold higher value than BC (derived from EMEP/EEA 
(2016) Tier 1)  as indicated by Bond et al 2004 (Table 5) 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.89 ?b Kilogramme Terajoule 
Particulates PM2.5 0.89 ?b Kilogramme Terajoule 
Black Carbon 0.0223 ?b Kilogramme Terajoule 
Organic Carbon 0.223 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 
Other Own use_Excludes Charcoal Kilns\Crude Oil 
Nitrogen Oxides NOx 142*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) Assume = EMEP/EEA (2016) Tier 1 emission factor for Heavy Fuel Oil 
c) Assuming BC/OC ratio as for Power/Heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Assume as for Heavy Fuel Oil 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 25.2 ?b Kilogramme Terajoule 
Particulates PM2.5 19.3 ?b Kilogramme Terajoule 
Black Carbon 1.08 ?c Kilogramme Terajoule 
Organic Carbon 0.40 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Refinery gas 
Nitrogen Oxides NOx 89*(100 - Em Control)/100 ?b Kilogramme Terajoule 



 
 

Demand\Energy 
Industry Own Use Emission factor Units Per... Reference source and assumptions 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors  
c) Assume OC factor  is 10 fold higher value than BC (derived from EMEP/EEA 
(2016) Tier 1)  as indicated by Bond et al 2004 (Table 5) for natural gas 
d) Assume = factor for natural gas 

Particulates PM10 0.89 ?b Kilogramme Terajoule 
Particulates PM2.5 0.89 ?b Kilogramme Terajoule 
Black Carbon 0.0223 ?b Kilogramme Terajoule 
Organic Carbon 0.223 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\LPG Liquefied Petroleum Gas 
Nitrogen Oxides NOx 89*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factors  
c) Assume OC factor  is 10 fold higher value than BC (derived from EMEP/EEA 
(2016) Tier 1)  as indicated by Bond et al 2004 (Table 5) for natural gas 
d) Assume = factor for natural gas 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 0.89 ?b Kilogramme Terajoule 
Particulates PM2.5 0.89 ?b Kilogramme Terajoule 
Black Carbon 0.0223 ?b Kilogramme Terajoule 
Organic Carbon 0.223 ?c Kilogramme Terajoule 
Ammonia 0.067 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Motor Gasoline 
Nitrogen Oxides NOx 65*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for industry/gasoline in Bond et al (2004): Tables 9 
& 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 3.2 ?b Kilogramme Terajoule 
Particulates PM2.5 0.8 ?b Kilogramme Terajoule 
Black Carbon 0.268 ?b Kilogramme Terajoule 
Organic Carbon 0.077 ?c Kilogramme Terajoule 
Ammonia 0.005 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Kerosene 
Nitrogen Oxides NOx 65*(100 - Em Control)/100 ?b Kilogramme Terajoule 



 
 

Demand\Energy 
Industry Own Use Emission factor Units Per... Reference source and assumptions 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for industry/gasoline in Bond et al (2004): Tables 9 
& 10 
d) EMEP/Corinair  (1996) 

Particulates PM10 3.2 ?b Kilogramme Terajoule 
Particulates PM2.5 0.8 ?b Kilogramme Terajoule 
Black Carbon 0.268 ?b Kilogramme Terajoule 
Organic Carbon 0.077 ?c Kilogramme Terajoule 
Ammonia 0.005 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Gas Diesel Oil 
Nitrogen Oxides NOx 65*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for industry/gasoline in Bond et al (2004): Tables 9 
& 10 
d) EMEP/Corinair  (1996) 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 3.2 ?b Kilogramme Terajoule 
Particulates PM2.5 0.8 ?b Kilogramme Terajoule 
Black Carbon 0.268 ?b Kilogramme Terajoule 
Organic Carbon 0.077 ?c Kilogramme Terajoule 
Ammonia 0.005 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Heavy Fuel Oil 
Nitrogen Oxides NOx 142*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs 

b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for Power/heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 25.2*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Particulates PM2.5 19.3*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Black Carbon 1.08*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Organic Carbon 0.41*(100 - Em Control)/100 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Petroleum Coke 
Nitrogen Oxides NOx 142*(100 - Em Control)/100 ?b Kilogramme Terajoule 



 
 

Demand\Energy 
Industry Own Use Emission factor Units Per... Reference source and assumptions 

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for Power/heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Particulates PM10 25.2*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Particulates PM2.5 19.3*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Black Carbon 1.08*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Organic Carbon 0.41*(100 - Em Control)/100 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Terajoule 

Other Own use_Excludes Charcoal Kilns\Non_specified petroleum products 
Nitrogen Oxides NOx 142*(100 - Em Control)/100 ?b Kilogramme Terajoule Assume as for Heavy Fuel Oil 

a) IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factor 
c) Assuming BC/OC ratio as for Power/heavy fuel oil in Bond et al (2004): 
Tables 9 & 10 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(SO2/S) * ((100 - 
Em Control)/100) 

Kilogramme Kilogramme 

Particulates PM10 25.2*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Particulates PM2.5 19.3*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Black Carbon 1.08*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Organic Carbon 0.41*(100 - Em Control)/100 ?c Kilogramme Terajoule 
Ammonia 0.101 ?d Kilogramme Metric Tonne 

Other Own use_Excludes Charcoal Kilns\Primary Solid Biomass 
Nitrogen Oxides NOx 81*(100 - Em Control)/100 ?b Kilogramme Terajoule Primary solid biomass = wood, vegetal materials/wastes, animal prodcuts/wastes, 

and charcoal 
a)  IPCC 2006 Guidelines - Tier 1 default EFs 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion 
c) Assuming BC/OC ratio as for Power/Wood in Bond et al (2004): Tables 9 & 
10  
d) Not known - emission factor needed 

Sulfur Dioxide 11 ?b Kilogramme Terajoule 
Particulates PM10 155*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Particulates PM2.5 133*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Black Carbon 4.4*(100 - Em Control)/100 ?b Kilogramme Terajoule 
Organic Carbon 18*(100 - Em Control)/100 ?c Kilogramme Terajoule 
Ammonia 0 ?d Kilogramme Terajoule 
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II. Energy Transformation Sector 
 

  



 
 

Table S30: Transformation emission factors use in LEAP-IBC analysis 

Transformation Emission factor Units Per... Reference source and assumptions 

Transformation\Electricity Generation\Processes 

Electricity generation\Other Bituminous Coal and Anthracite 

Nitrogen Oxides NOx 209*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs (Vol 2, Table 2.2) 
b) Derived from EMEP/EEA (2016) Tier 1 emission factors (1.A.1, Table 3-2) 
c) Bond et al. (2004), Tables 9 & 10 from which central values are used for 
the technology/emission control mix for India in the mid 1990s (i.e. if a range 
is given by Bond et al., then upper value taken) 
d) Battye et al. (1994) defaults (no NOx controls) 

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 
* ((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 7.7* (100 - Em Control)/100 ?b Kilogramme Terajoule 

Particulates PM2.5 3.4* (100 - Em Control)/100 ?b Kilogramme Terajoule 

Black Carbon 0.009*(100 - Em Control)/100  ?c Kilogramme Metric Tonne 

Organic Carbon 0.001* (100 - Em Control)/100 ?c Kilogramme Metric Tonne 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Electricity generation\Sub Bituminous Coal 

Nitrogen Oxides NOx 247*(100 - Em Control)/100 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs  (Vol 2, Table 2.2) 
b) Derived from EMEP/EEA (2016) Tier 1 emission factors (1.A.1, Table 3-3) 
c) Bond et al. (2004), Tables 9 & 10 from which central values are used for 
the technology/emission control mix for India in the mid 1990s (i.e. if a range 
is given by Bond et al., then upper value taken) 
d) Battye et al. (1994) defaults (no NOx controls) 

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 
* ((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 7.9* (100 - Em Control)/100 ?b Kilogramme Terajoule 

Particulates PM2.5 3.2* (100 - Em Control)/100 ?b Kilogramme Terajoule 

Black Carbon 0.002*(100 - Em Control)/100  ?c Kilogramme Metric Tonne 

Organic Carbon 0.004* (100 - Em Control)/100 ?c Kilogramme Metric Tonne 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Electricity generation\Lignite 

Nitrogen Oxides NOx 247*(100 - Em Control)/100 ?b Kilogramme Terajoule 



 
 

Transformation Emission factor Units Per... Reference source and assumptions 

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 
* ((100 - Em Control[%])/100) 

Kilogramme Kilogramme a) IPCC 2006 Guidelines - Tier 1 default EFs (Vol 2, Table 2.2) 
b) Derived from EMEP/EEA (2016) Tier 1 emission factors (1.A.1, Table 3-3) 
c) Bond et al. (2004), Tables 9 & 10 from which central values are used for 
the technology/emission control mix for India in the mid 1990s (i.e. if a range 
is given by Bond et al., then upper value taken) 
d) Battye et al. (1994) defaults (no NOx controls) 

Particulates PM10 7.9* (100 - Em Control)/100 ?b Kilogramme Terajoule 

Particulates PM2.5 3.2* (100 - Em Control)/100 ?b Kilogramme Terajoule 

Black Carbon 0.002*(100 - Em Control)/100  ?c Kilogramme Metric Tonne 

Organic Carbon 0.004* (100 - Em Control)/100 ?c Kilogramme Metric Tonne 

Ammonia 0.00028 ?d Kilogramme Metric Tonne 

Electricity Generation\Natural Gas 

Nitrogen Oxides NOx 89 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs (Vol 2, Table 2.2) 
b) EMEP/EEA (2016) Tier 1 emission factors (1.A.1, Table 3-4) 
c) Assume OC factor  is 10 fold higher value than BC (derived from 
EMEP/EEA (2016) Tier 1)  as indicated by Bond et al 2004 (Table 5) 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 
* ((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 0.89 ?b Kilogramme Terajoule 

Particulates PM2.5 0.89 ?b Kilogramme Terajoule 

Black Carbon 0.0223 ?b Kilogramme Terajoule 

Organic Carbon 0.223 ?c Kilogramme Terajoule 

Ammonia 0.067 ?d Kilogramme Metric Tonne 

Electricity Generation\Heavy Fuel Oil 

Nitrogen Oxides NOx 142 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs (Vol 2, Table 2.2) 
b) EMEP/EEA (2016) Tier 1 emission factors for combustion in 'Public 
Electricity and heat production' (1.A.1, Table 3-5) 
c) Bond et al. (2004), Tables 9 & 10 from which central values are used for 
the technology/emission control mix for India in the mid 1990s (i.e. if a range 
is given by Bond et al., then upper value taken) 
d) Battye et al. (1994) defaults (no NOx controls).  

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 
* ((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 25.2 ?b Kilogramme Terajoule 

Particulates PM2.5 19.3 ?b Kilogramme Terajoule 

Black Carbon 0.04 ?c Kilogramme Metric Tonne 



 
 

Transformation Emission factor Units Per... Reference source and assumptions 

Organic Carbon 0.015 ?c Kilogramme Metric Tonne 

Ammonia 0.101 ?d Kilogramme Metric Tonne 

Electricity Generation\Diesel 

Nitrogen Oxides NOx 65 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs (Vol 2, Table 2.2) 
b) EMEP/EEA (2016) Tier 1 emission factors (1.A.1, Table 3-6) 
c) Assume OC = BC/3.33 (Bond et al., 2004 Table 5, OC:BC ratio for Middle 
dist oil in industry/power) 
d) Battye et al. (1994) defaults (no NOx controls).   

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 
* ((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 3.2 ?b Kilogramme Terajoule 

Particulates PM2.5 0.8 ?b Kilogramme Terajoule 

Black Carbon 0.268 ?b Kilogramme Terajoule 

Organic Carbon 0.0035 ?c Kilogramme Metric Tonne 

Ammonia 0.101 ?d Kilogramme Metric Tonne 

Electricity Generation\Wood 

Nitrogen Oxides NOx 81 ?b Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default Efs (Vol 2, Table 2.2) 
b) EMEP/EEA (2016) Tier 1 emission factors (1.A.1, Table 3-7) 
c) Assume OC factor  is 4 fold higher value than BC as indicated by Bond et 
al 2004 (Tables 9 and 10)  
d) US-EPA (2004) Emission Inventory Improvement Program: Estimating 
Ammonia Emissions from Anthropogenic 
Non-agricultural Sources - Draft Final Report, Table III-1, page32. 

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 
* ((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 155 ?b Kilogramme Terajoule 

Particulates PM2.5 133 ?b Kilogramme Terajoule 

Black Carbon 4.4 ?b Kilogramme Terajoule 

Organic Carbon 17.6 ?c Kilogramme Terajoule 

Ammonia 0.043 ?d Kilogramme Terajoule 

Electricity Generation\Industrial Waste 

Nitrogen Oxides NOx 81 ?a Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs (Vol 2, Table 2.2) 
b) Assume = EMEP/EEA (2016) Tier 1 emission factors for biomass 
combustion in Public Electricity and Heat Production. (1.A.1, Table 3-7) Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 

* ((100 - Em Control[%])/100) 
Kilogramme Kilogramme 



 
 

Transformation Emission factor Units Per... Reference source and assumptions 

Particulates PM10 155 ?b Kilogramme Terajoule c) Bond et al 2004  BC and OC values for Waste (Tables 9 and 10)  
d)  Assume as for wood waste. US-EPA (2004) Emission Inventory 
Improvement Program: Estimating Ammonia Emissions from Anthropogenic 
Non-agricultural Sources - Draft Final Report, Table III-1, page32.. 

Particulates PM2.5 133 ?b Kilogramme Terajoule 

Black Carbon 0.013 ?c Kilogramme Metric Tonne 

Organic Carbon 0.002 ?c Kilogramme Metric Tonne 

Ammonia 0.043 ?d Kilogramme Terajoule 

Electricity Generation\Municipal Waste 

Nitrogen Oxides NOx 81 ?a Kilogramme Terajoule a) IPCC 2006 Guidelines - Tier 1 default EFs (Vol 2, Table 2.2) 
b) Assume = EMEP/EEA (2016) Tier 1 emission factors for biomass 
combustion in Public Electricity and Heat Production. (1.A.1, Table 3-7) 
c) Bond et al 2004 BC and OC values for Waste (Tables 9 and 10)  
d) US-EPA (2004) Emission Inventory Improvement Program: Estimating 
Ammonia Emissions from Anthropogenic 
Non-agricultural Sources - Draft Final Report, Table III-1, page32... 

Sulfur Dioxide SulfurContent*(1-SulfurRetention)*(SO2/S) 
* ((100 - Em Control[%])/100) 

Kilogramme Kilogramme 

Particulates PM10 155 ?b Kilogramme Terajoule 

Particulates PM2.5 133 ?b Kilogramme Terajoule 

Black Carbon 0.013 ?c Kilogramme Metric Tonne 

Organic Carbon 0.002 ?c Kilogramme Metric Tonne 

Ammonia 0.6 ?d Kilogramme Terajoule 

Transformation\Traditional Charcoal Making\Wood 

Nitrogen Oxides NOx 0.18 ?a Kilogramme Metric Tonne All factors are on a per tonne of wood feedstock basis 
a) Bertschi et al. (2003) Table 3, For earthen charcoal-making kilns (in 
Zambia). 
b) Bond et al (2004) Section 5.6.5 Charcoal: para 144                                                                                                  
c) Assume 100% of S is retained in the charcoal (1 kg wood makes 0.28 kg 
charcoal, Bertschi et al (2003)) and wood at 0.015% S produces charcoal  at 
0.06% S (Smith et al 2000)  

Sulfur Dioxide 0 ?c Kilogramme Kilogramme 

Particulates PM10 2.6 ?b Kilogramme Metric Tonne 

Particulates PM2.5 2.6 ?b Kilogramme Metric Tonne 

Black Carbon 0.19 ?b Kilogramme Metric Tonne 

Organic Carbon 1.29 ?b Kilogramme Metric Tonne 

Ammonia 0.37 ?a Kilogramme Metric Tonne 

 



 
 

Table S31: Fugitive emission factors use in LEAP-IBC analysis 

Non-energy\Fugitives Emission factor Units Per... Reference source and assumptions 

Coke production 
Traditional (uncontrolled) oven 
Sulfur Dioxide 0.0035 ?a Kilogramme Metric Tonne Coke a) EMEP/EEA (2016)  Tier 1 defaults for 'Solid fuel transformation' 

(Uncontrolled = upper end of range) (1.B.1.b, Fugitive emissions from 
solid fuels. Table 3-1) 
b) EFs are from Bond et al. (2004) Table 5 - then adjusted assuming 1 
tonne coal makes 0.7 tonnes coke. (Assume Bond et al 'Uncaptured' = 
Uncontrolled conventional oven.) 
c) IPCC 2006 Tier 1 default for coke production (Vol 3, Table 4.1) 

Nitrogen Oxides NOx 0.0046 ?a Kilogramme Metric Tonne Coke 
Ammonia 0.01 ?a Kilogramme Metric Tonne Coke 
Particulates PM10 29 ?b Kilogramme Metric Tonne Coke 
Particulates PM2.5 15 ?b Kilogramme Metric Tonne Coke 
Black Carbon 6.9 ?b Kilogramme Metric Tonne Coke 
Organic Carbon 4.9?b Kilogramme Metric Tonne Coke 
Improved (controlled) oven 
Sulfur Dioxide 0.0008 ?a Kilogramme Metric Tonne Coke a) EMEP/EEA (2016)  Tier 1 defaults for 'Solid fuel transformation' for 

Controlled oven: default value (geometric mean)) (1.B.1.b, Fugitive 
emissions from solid fuels. Table 3-1) 
b) EFs are from Bond et al. (2004) - then adjusted assuming 1 tonne coal 
makes 0.7 tonnes coke. 
c) IPCC 2006 Tier 1 default for coke production (Vol 3, Table 4.1) 

Nitrogen Oxides NOx 0.0009 ?a Kilogramme Metric Tonne Coke 
Ammonia 0.0037 ?a Kilogramme Metric Tonne Coke 
Particulates PM10 5.6 ?b Kilogramme Metric Tonne Coke 
Particulates PM2.5 1.9 ?b Kilogramme Metric Tonne Coke 
Black Carbon 0.93 ?b Kilogramme Metric Tonne Coke 
Organic Carbon 0.66?b Kilogramme Metric Tonne Coke 

Oil Refining Processes 
Sulfur Dioxide 0.62?a Kilogramme Tonne crude oil a) EMEP/EEA (2016)  Tier 1 defaults for 'Fugitive emissions oil: 

Rfining/storgae' (1.B.2.a.iv, Refining, storage, Table 3-1) 
b) IPCC (2019) Refinement Tier 1 default (Table 4.2.4C (NEW)). 
Converted from original units assuming a crude oil densisty of 874 
kg/m3. 

Nitrogen Oxides 0.24?a Kilogramme Tonne crude oil 

 
References: 
Schwarz, J. P., Holloway, J. S., Katich, J. M., Mckeen, S., Kort, E. A., Smith, M. L., Peischl, J. (2015). Black Carbon Emissions from the Bakken Oil and Gas Development Region. 
Environmental Science and Technology Letters, 2:281–285. https://doi.org/10.1021/acs.estlett.5b00225 
 
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Schöpp, W. (2017). Global anthropogenic emissions of particulate matter including black carbon. Atmospheric 
Chemistry and Physics Discussions, 17, pp 8681-8723.   



 
 

 
 

III. Non-Energy sector 
  



 
 

Table S32: Forest and Grassland burning emission factors use in LEAP-IBC analysis 

Non Energy\On Site Burning 
of Forests and Grassland 

Emission 
Factor Units Reference source and assumptions 

Secondary Tropical and Subtropical Forest 
Biomass Consumed 42 ?ab Tonnes/hectare a) All biomass is expressed on a dry weight basis. 

b) IPCC (2006) default values (Vol 4, Chapter 2, Table 2.4). Use locally relevant factors if possible e.g 
from FAO State of the World's Forests (2009) ftp://ftp.fao.org/docrep/fao/011/i0350e/i0350e04c.pdf. 
c) For Calluna heath, use 11.5; for sagebrush use 5.7 and for Fynbos use 12.9 t/ha 
d) The amount of carbon released as CO relative to the total amount of carbon released due to burning. 
e) Factor to convert to full molecular weight 
f) The amount of nitrogen released as NOx relative to the total amount of nitrogen released due to 
burning. 
g) Assume = TSP value from Andreae and Merlet (2001) 
h) Assume equal to default for grassland 
i) From Andreae and Merlet (2001) unless otherwise stated 
j) Assume = factor for 'Savanna and grassland' category of Andreae and Merlet (2001)    
h) Annual area burnt for forests: see FAO State of the worlds forests 2009 
(http://www.fao.org/docrep/011/i0350e/i0350e00.htm)  Annex 2: Table 2.  Assume total forest area 
burnt = Mean annual forest cover change (if negative in sign). Also, Annex 2:Table 3 gives biomass 
before burning (tonnes/ha) by country. If this value is to be chosen then it must then be multiplied by 
the combustion factor (i.e. proportion of prefire fuel biomass consumed) for which IPCC (2006) 
default values are 0.36 for primary tropical forest, 0.55 for secondary tropical forest, 0.63 for 
Eucalyptus forest 0.45 for temperate forest and 0.59 for boreal forest. For example, if the biomass 
value in Annex 2:Table 3 is 179 tonnes/ha (and the forest is primary tropical), the actual amount burnt 
(i.e. 'Biomass consumption' to go in column B in this worksheet)  will be 179 x 0.36 = 64.4 tonnes/ha.  

Sulfur Dioxide 0.57 ?i kg/tonne biomass consumed 
Nitrogen Oxides 2.45 ?i kg/tonne biomass consumed 
Particulates PM10 10.5 ?g kg/tonne biomass consumed 
Particulates PM2.5 9.1 ?i kg/tonne biomass consumed 
Ammonia 1.3 ?i kg/tonne biomass consumed 
Black Carbon 0.66 ?i kg/tonne biomass consumed 
Organic Carbon 5.2 ?i kg/tonne biomass consumed 

Tropical Subtropical Grasslands Ex Savanna Burn 
Biomass Consumed 5.2 ?ab Tonnes/hectare a) All biomass is expressed on a dry weight basis. 

b) IPCC (2006) default values (Vol 4, Chapter 2, Table 2.4). Use locally relevant factors if possible e.g 
from FAO State of the World's Forests (2009) ftp://ftp.fao.org/docrep/fao/011/i0350e/i0350e04c.pdf. 
c) For Calluna heath, use 11.5; for sagebrush use 5.7 and for Fynbos use 12.9 t/ha 
d) The amount of carbon released as CO relative to the total amount of carbon released due to burning. 
e) Factor to convert to full molecular weight 
f) The amount of nitrogen released as NOx relative to the total amount of nitrogen released due to 
burning. 
g) Assume = TSP value from Andreae and Merlet (2001) 
h) Assume equal to default for grassland 
i) From Andreae and Merlet (2001) unless otherwise stated 
j) Assume = factor for 'Savanna and grassland' category of Andreae and Merlet (2001)    
h) Annual area burnt for forests: see FAO State of the worlds forests 2009 

Sulfur Dioxide 0.35 ?i kg/tonne biomass consumed 
Nitrogen Oxides 6 ?i kg/tonne biomass consumed 
Particulates PM10 8.3 ?g kg/tonne biomass consumed 
Particulates PM2.5 5.4 ?i kg/tonne biomass consumed 
Ammonia 1.05 ?j kg/tonne biomass consumed 
Black Carbon 0.48 ?j kg/tonne biomass consumed 
Organic Carbon 3.4 ?j kg/tonne biomass consumed 



 
 

Non Energy\On Site Burning 
of Forests and Grassland 

Emission 
Factor Units Reference source and assumptions 

(http://www.fao.org/docrep/011/i0350e/i0350e00.htm)  Annex 2: Table 2.  Assume total forest area 
burnt = Mean annual forest cover change (if negative in sign). Also, Annex 2:Table 3 gives biomass 
before burning (tonnes/ha) by country. If this value is to be chosen then it must then be multiplied by 
the combustion factor (i.e. proportion of prefire fuel biomass consumed) for which IPCC (2006) 
default values are 0.36 for primary tropical forest, 0.55 for secondary tropical forest, 0.63 for 
Eucalyptus forest 0.45 for temperate forest and 0.59 for boreal forest. For example, if the biomass 
value in Annex 2:Table 3 is 179 tonnes/ha (and the forest is primary tropical), the actual amount burnt 
(i.e. 'Biomass consumption' to go in column B in this worksheet)  will be 179 x 0.36 = 64.4 tonnes/ha.  

General Shrubland 
Biomass Consumed 27 ?ac Tonnes/hectare a) All biomass is expressed on a dry weight basis. 

b) IPCC (2006) default values (Vol 4, Chapter 2, Table 2.4). Use locally relevant factors if possible e.g 
from FAO State of the World's Forests (2009) ftp://ftp.fao.org/docrep/fao/011/i0350e/i0350e04c.pdf. 
c) For Calluna heath, use 11.5; for sagebrush use 5.7 and for Fynbos use 12.9 t/ha 
d) The amount of carbon released as CO relative to the total amount of carbon released due to burning. 
e) Factor to convert to full molecular weight 
f) The amount of nitrogen released as NOx relative to the total amount of nitrogen released due to 
burning. 
g) Assume = TSP value from Andreae and Merlet (2001) 
h) Assume equal to default for grassland 
i) From Andreae and Merlet (2001) unless otherwise stated 
j) Assume = factor for 'Savanna and grassland' category of Andreae and Merlet (2001)    
h) Annual area burnt for forests: see FAO State of the worlds forests 2009 
(http://www.fao.org/docrep/011/i0350e/i0350e00.htm)  Annex 2: Table 2.  Assume total forest area 
burnt = Mean annual forest cover change (if negative in sign). Also, Annex 2:Table 3 gives biomass 
before burning (tonnes/ha) by country. If this value is to be chosen then it must then be multiplied by 
the combustion factor (i.e. proportion of prefire fuel biomass consumed) for which IPCC (2006) 
default values are 0.36 for primary tropical forest, 0.55 for secondary tropical forest, 0.63 for 
Eucalyptus forest 0.45 for temperate forest and 0.59 for boreal forest. For example, if the biomass 
value in Annex 2:Table 3 is 179 tonnes/ha (and the forest is primary tropical), the actual amount burnt 
(i.e. 'Biomass consumption' to go in column B in this worksheet)  will be 179 x 0.36 = 64.4 tonnes/ha.  

Sulfur Dioxide 0.35 ?h kg/tonne biomass consumed 
Nitrogen Oxides 6 ?h kg/tonne biomass consumed 
Particulates PM10 8.3 ?h kg/tonne biomass consumed 
Particulates PM2.5 5.4 ?h kg/tonne biomass consumed 
Ammonia 0.26 ?j kg/tonne biomass consumed 
Black Carbon 0.48 ?j kg/tonne biomass consumed 
Organic Carbon 3.4 ?j kg/tonne biomass consumed 

 
 
 
 
 
  



 
 

Table S33: Livestock Enteric Fermentation and Manure Management emission factors use in LEAP-IBC analysis 

Non Energy\Agriculture\Livestock 
Enteric Fermentation and  

Manure Management 

Emission 
factor Units Reference source and assumptions 

All categories of animal 
  

a) Tier 1 default emission factors from EMEP/EEA (2016) (Setion 3.B Manure management, Table 3.2)                     
b) IPCC manure management CH4 default for indian subcontinent assuming 26 °C annual average temp. For 
other Asia (>25 °C) use  28 for dairy cows, 1 for other cattle; 2 for buffalo and 6 for pigs; For Africa use  1 for 
dairy cows, other cattle and pigs; for Middle East , use 2 for dairy cows, 1 for other cattle and 5 for buffallo and 
pigs; for L. America use 1 for dairy cows,  other cattle, buffallo and pigs. For other regions (Europe, N. 
America, Oceana) and countries with annual average temp < 26 °C, user should consult IPCC 2006 (Vol 4, 
Chapt 10,Tables 10.14 and 10.15) go to http://www.ipcc-
nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf                    

Dairy Cattle 
Ammonia from Manure Management 28.7 ?a kg/animal a) Tier 1 default emission factors from EMEP/EEA (2016). NH3 emission factor for dairy cattle assume 'solid' 

rather than 'slurry' system (use 39.3 kg/animal for slurry).                                                                                c) 
IPCC enteric fermentation CH4 default for cattle in the Indian subcontinent. For other Asia use  68 (dairy) and 47 
(other cattle); For Africa and Middle East use  46 (dairy) and 31 (other cattle) and for L. America use  72 (dairy) 
and 56 (other cattle). For  enteric fermentation EFs for cattle in other regions (Europe, N. America, Oceana) 
consult IPCC 2006 (Vol 4, Chapt 10, Table 10.11). http://www.ipcc-
nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf   

Other Cattle  
Ammonia from Manure Management 9.2 ?a kg/animal a) Tier 1 default emission factors from EMEP/EEA (2016). Factor for other cattle assume 'solid' rather than 

'slurry' system (use 13.4 kg/animal for slurry).                                                                                                                                                
c) IPCC enteric fermentation CH4 default for cattle in the Indian subcontinent. For other Asia use  68 (dairy) and 
47 (other cattle); For Africa and Middle East use  46 (dairy) and 31 (other cattle) and for L. America use  72 
(dairy) and 56 (other cattle). For enteric fermentation EFs for cattle in other regions (Europe, N. America, 
Oceana) consult IPCC 2006 (Vol 4, Chapt 10, Table 10.11). http://www.ipcc-
nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf                                   

Buffalo  
Ammonia from Manure Management 9.0 ?a kg/animal c) IPCC (2006) Tier 1 default values (Vol 4, Chapter 10, Table 10.10)  

Pigs  
Ammonia from Manure Management 6.5 ?a kg/animal c) IPCC (2006) Tier 1 default values for developing countries only (Vol 4, Chapter 10, Table 10.10). For 

developed countries use value 1.5 for pigs (swine).  
Sheep  
Ammonia from Manure Management 1.4 ?a kg/animal c) IPCC (2006) Tier 1 default values for developing countries only (Vol 4, Chapter 10, Table 10.10). For 

developed countries use value of 8 for sheep.    
Goats  
Ammonia from Manure Management 1.4 ?a kg/animal c) IPCC (2006) Tier 1 default values (Vol 4, Chapter 10, Table 10.10). 



 
 

Non Energy\Agriculture\Livestock 
Enteric Fermentation and  

Manure Management 

Emission 
factor Units Reference source and assumptions 

Horses  
Ammonia from Manure Management 14.8 ?a kg/animal c) IPCC (2006) Tier 1 default values (Vol 4, Chapter 10, Table 10.10). 

Mules and Asses  
Ammonia from Manure Management 14.8 ?a kg/animal c) IPCC (2006) Tier 1 default values (Vol 4, Chapter 10, Table 10.10) . 

Poultry  
Ammonia from Manure Management 0.48 ?a kg/animal a) Tier 1 default emission factors from EMEP/EEA (2016), (3.B Manure management, Table 3.2). Emission 

factor of 0.48 is for laying hens. Use 0.22 for chicken broilers, 0.95 for turkeys, 0.68 for ducks and 0.35 for geese. 
Fur animals  
Ammonia from Manure Management 0.02 ?a kg/animal 

 

Camels  
Ammonia from Housing Management 10.5 ?a kg/animal c) IPCC (2006) Tier 1 default values (Vol 4, Chapter 10, Table 10.10) . 

 
 
  



 
 

Table S34: Fertilizer application emission factors use in LEAP-IBC analysis 

Non Energy\Agriculture\ 
Fertilizer application Emission factor Units Reference source and assumptions 

For all fertilizers listed below 
  

Ammonia emission factors are EMEP/EEA (2016) Tier 2 defaults for temperate countries (annual 
temp 15-25 oC): Section 3.D Crop production and agricultural soils, Table 3.2. For cool (< 15 oC) or 
warm (>25 oC) countries see alterantive values given in the same table. 
- Nitrogen oxide emission factors (as NO) are derived EMEP/EEA (2016) Tier 1 defaults (as NO2)  (3.D 
Crop production and agricultural soils, Table 3.2) 
- Fertilizer use must be in tonnes as nutrient (i.e. "as nitrogen (N)"): National level data can be found 
from FAOSTAT (http://faostat3.fao.org/download/R/*/E): This link should take you to the 'Download 
data' section and the domain 'Inputs'. Select 'Fertilizers'. Select 'countries', 'items' (e.g. Ammonium 
sulphate, Ammonium nitrate) and 'element' ('Consumption' not 'Consumption in nutrients' which does not 
work!). Warning: as data they are not expressed as tonnes product, they must first be converted into "as 
nutrient N"  by dividing by appropriate factor (e.g.  4.76 for ammonium sulphate, 2.99 ammonium nitrate, 
3.70 calcium ammonium nitrate, 1.22 anhydrous ammonia, 2.17 for urea, 5.56 for di-ammonium 
phosphate, 5.00 for other complex NK, NPK fertilizers, 2.52 for nitrogen solutions).   To get data before 
2002 select 'Fertlizers archive' instead of 'Fertlizers' - data are expressed here "as N" so no need to 
convert.                                                                                                                       
Indirect N2O emissions calculated as:                                                                                                                                                                 
0.01*Fertilizer Use[Tonnes/Year] *(Ammonia emission factor[kg/kg N]*14/17)+Fertilizer 
Use[Tonnes/Year] * (NO Emission factor[kg/kg N])*14/46)*44/14  [IPCC, 2006, Tier 1 default method] 

Ammonium Sulphate Low soil pH 
Ammonia  0.092 kg/kg N Normal soil pH = pH less than 7.0 

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
Ammonium Sulphate High soil pH 
Ammonia  0.17 kg/kg N High soil pH = pH greater than 7.0 

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
Ammonium Nitrate 
Ammonia  0.016 kg/kg N Value for normal soil pH (less than 7.0), for high pH use 0.033 

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
Calcium Ammonium Nitrate 
Ammonia  0.008 kg/kg N Value for normal soil pH (less than 7.0), for high pH use 0.017 

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
Anhydrous Ammonia 
Ammonia  0.02 kg/kg N Value for normal soil pH (less than 7.0), for high pH use 0.036 

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
Urea 
Ammonia  0.159 kg/kg N For normal soil pH (less than 7.0), for high pH use 0.168 



 
 

Non Energy\Agriculture\ 
Fertilizer application Emission factor Units Reference source and assumptions 

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
Combined Ammonium Phosphates Low soil pH 
Ammonia  0.051 kg/kg N Normal soil pH = pH less than 7.0  

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
Combined Ammonium Phosphates High soil pH 
Ammonia  0.094 kg/kg N High soil pH = pH greater than 7.0  

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
Ammonium Solutions 
Ammonia  0.1 kg/kg N Assume = EMEP/EEA catergory 'N solutions'. For normal soil pH (less than 7.0), for high pH use 0.097 

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
Other Complex NK and NPK Fertilizers 
Ammonia  0.067 kg/kg N Value for normal soil pH (less than 7.0), for high pH use 0.094 

IPCC (2006) Tier 1 default (Vol 4, Table 11.1) 
 
 

  



 
 

Table S35: Crop residue burning emission factors use in LEAP-IBC analysis 

Non-energy\Agricultural 
Residue Burning 

Emission 
Factor Units Reference source and assumptions 

Rice 
Residue to Crop Ratio 1.4 ?a ratio a) EMEP/EEA (2016) default values. Use locally determined factors where available. 

b) The average between 0% (none) and 100% (all) of the residue burned in the fields.  
c) Tier 1 emision factor from EMEP/EEA (2016) unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016) (3.F Field burning of agricultural wastes, Table 3-6).  
e) Value given by Andreae and Merlet (2001) for agricultural residues  

Dry Matter Fraction 85 ?a % 
Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.4 ? d kg/tonne residue burned 
Sulfur Dioxide 0.3 ?d kg/tonne residue burned 
Ammonia 2.4 ?d kg/tonne residue burned 
Particulates PM10 5.8 ?d kg/tonne residue burned 
Particulates PM2.5 5.5 ?d kg/tonne residue burned 
Black Carbon 0.5 ?d kg/tonne residue burned 
Organic Carbon 3.3 ?e kg/tonne residue burned 
Wheat 
Residue to Crop Ratio 1.5 ?f ratio a) EMEP/EEA (2016) default values. Use locally determined factors where available. 

b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016)  (3.F Field burning of agricultural wastes, Table 3-3). 
e) Value given by Andreae and Merlet (2001) for agricultural residues  
f)  TIFAC (1991) 

Dry Matter Fraction 85 ?a % 
Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.3 ?d kg/tonne residue burned 
Sulfur Dioxide 0.5 ?d kg/tonne residue burned 
Ammonia 2.4 ?d kg/tonne residue burned 
Particulates PM10 5.7 ?d kg/tonne residue burned 
Particulates PM2.5 5.4 ?d kg/tonne residue burned 
Black Carbon 0.5 ?d kg/tonne residue burned 
Organic Carbon 3.3 ?e kg/tonne residue burned 
Millet 
Residue to Crop Ratio 1.2 ?f ratio 



 
 

Non-energy\Agricultural 
Residue Burning 

Emission 
Factor Units Reference source and assumptions 

Dry Matter Fraction 85 ?a % a) EMEP/EEA (2016) default values . Use locally determined factors where available. 
b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) (3.F Field burning of agricultural wastes, Table 3-1) 
unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016) 
e) Value given by Andreae and Merlet (2001) for agricultural residues  
f)  TIFAC (1991) 
g) Tyagi (1989) 
h) Reddy and Venkataraman (2002b) unless otherwise indicated 

Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.3 ?c kg/tonne residue burned 
Sulfur Dioxide 0.48 ?h kg/tonne residue burned 
Ammonia 2.4 ?c kg/tonne residue burned 
Particulates PM10 5.7 ?c kg/tonne residue burned 
Particulates PM2.5 5.4 ?c kg/tonne residue burned 
Black Carbon 0.5 ?c kg/tonne residue burned 
Organic Carbon 3.3 ?e kg/tonne residue burned 
Soya 
Residue to Crop Ratio 2.1 ?a ratio a) EMEP/EEA (2016) default values (3.F Field burning of agricultural wastes, Table ). Use locally 

determined factors where available. 
b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) (3.F Field burning of agricultural wastes, Table 3-1) 
unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016) 
e) Value given by Andreae and Merlet (2001) for agricultural residues  
f)  TIFAC (1991) 
g) Tyagi (1989) 
h) Reddy and Venkataraman (2002b) unless otherwise indicated 

Dry Matter Fraction 85 ?a % 
Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.3 ?c kg/tonne residue burned 
Sulfur Dioxide 0.48 ?h kg/tonne residue burned 
Ammonia 2.4 ?c kg/tonne residue burned 
Particulates PM10 5.7 ?c kg/tonne residue burned 
Particulates PM2.5 5.4 ?c kg/tonne residue burned 
Black Carbon 0.5 ?c kg/tonne residue burned 
Organic Carbon 3.3 ?e kg/tonne residue burned 
Maize 
Residue to Crop Ratio 0.33 ?f ratio a) EMEP/EEA (2016) default values (3.F Field burning of agricultural wastes, Table ). Use locally 

determined factors where available. 
b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016) (section 3.F Field burning of agricultural wastes, 
Table 3-5) 
e) Value given by Andreae and Merlet (2001) for agricultural residues  

Dry Matter Fraction 85 ?a % 
Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 1.8 ? d kg/tonne residue burned 



 
 

Non-energy\Agricultural 
Residue Burning 

Emission 
Factor Units Reference source and assumptions 

Sulfur Dioxide 0.2 ?d kg/tonne residue burned f)  TIFAC (1991) 
g) Tyagi (1989) 
h) Reddy and Venkataraman (2002b) unless otherwise indicated Ammonia 2.4 ?d kg/tonne residue burned 

Particulates PM10 6.2 ?d kg/tonne residue burned 
Particulates PM2.5 6.0 ?d kg/tonne residue burned 
Black Carbon 0.75 ?d kg/tonne residue burned 
Organic Carbon 3.3 ?e kg/tonne residue burned 
Jute 
Residue to Crop Ratio 2.15 ?f ratio a) EMEP/EEA (2016) default values (3.F Field burning of agricultural wastes, Table 3-1). Use locally 

determined factors where available. 
b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) (3.F Field burning of agricultural wastes, Table 3-1) 
unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016)  
e) Value given by Andreae and Merlet (2001) for agricultural residues  
f)  TIFAC (1991) 
g) Tyagi (1989) 
h) Reddy and Venkataraman (2002b) unless otherwise indicated 

Dry Matter Fraction 85 ?a % 
Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.3 ?c kg/tonne residue burned 
Sulfur Dioxide 0.48 ?h kg/tonne residue burned 
Ammonia 2.4 ?c kg/tonne residue burned 
Particulates PM10 5.7 ?c kg/tonne residue burned 
Particulates PM2.5 5.4 ?c kg/tonne residue burned 
Black Carbon 0.5 ?c kg/tonne residue burned 
Organic Carbon 3.3 ?e kg/tonne residue burned 
Cotton 
Residue to Crop Ratio 3.0 ?f ratio a) EMEP/EEA (2016) default values (3.F Field burning of agricultural wastes, Table ). Use locally 

determined factors where available. 
b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) (3.F Field burning of agricultural wastes, Table 3-1) 
unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016) 
e) Value given by Andreae and Merlet (2001) for agricultural residues  
f)  TIFAC (1991) 
g) Tyagi (1989) 
h) Reddy and Venkataraman (2002b) unless otherwise indicated 

Dry Matter Fraction 85 ?a % 
Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.3 ?c kg/tonne residue burned 
Sulfur Dioxide 0.48 ? h kg/tonne residue burned 
Ammonia 2.4 ?c kg/tonne residue burned 
Particulates PM10 5.7 ?c kg/tonne residue burned 
Particulates PM2.5 5.4 ?c kg/tonne residue burned 



 
 

Non-energy\Agricultural 
Residue Burning 

Emission 
Factor Units Reference source and assumptions 

Black Carbon 0.5 ?c kg/tonne residue burned 
Organic Carbon 3.3 ? e kg/tonne residue burned 
Groundnut 
Residue to Crop Ratio 2.0 ?f ratio a) EMEP/EEA (2016) default values (Section 3.F Field burning of agricultural wastes, Table ). Use 

locally determined factors where available. 
b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) (Section 3.F Field burning of agricultural wastes, 
Table 3-1) unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016) 
e) Value given by Andreae and Merlet (2001) for agricultural residues  
f)  TIFAC (1991) 
g) Tyagi (1989) 
h) Reddy and Venkataraman (2002b) unless otherwise indicated 

Dry Matter Fraction 85 ?a % 
Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.3 ?c kg/tonne residue burned 
Sulfur Dioxide 0.48 ?h kg/tonne residue burned 
Ammonia 2.4 ?c kg/tonne residue burned 
Particulates PM10 5.7 ?c kg/tonne residue burned 
Particulates PM2.5 5.4 ?c kg/tonne residue burned 
Black Carbon 0.5 ?c kg/tonne residue burned 
Organic Carbon 3.3 ? e kg/tonne residue burned 
Sugarcane 
Residue to Crop Ratio 0.1 ?g ratio a) EMEP/EEA (2016) default values. Use locally determined factors where available. 

b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) (Section 3.F Field burning of agricultural wastes, 
Table 3-1) unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016) 
e) Value given by Andreae and Merlet (2001) for agricultural residues  
f)  TIFAC (1991) 
g) Tyagi (1989) 
h) Reddy and Venkataraman (2002b) unless otherwise indicated 

Dry Matter Fraction 85 ?a % 
Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.3 ?c kg/tonne residue burned 
Sulfur Dioxide 0.48 ? h kg/tonne residue burned 
Ammonia 2.4 ?c kg/tonne residue burned 
Particulates PM10 5.7 ?c kg/tonne residue burned 
Particulates PM2.5 5.4 ?c kg/tonne residue burned 
Black Carbon 0.5 ?c kg/tonne residue burned 
Organic Carbon 3.3 ? e kg/tonne residue burned 
Rapeseed and Mustard 
Residue to Crop Ratio 1.8 ?g ratio 



 
 

Non-energy\Agricultural 
Residue Burning 

Emission 
Factor Units Reference source and assumptions 

Dry Matter Fraction 85 ?a % a) EMEP/EEA (2016) default values. Use locally determined factors where available. 
b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) (Section 3.F Field burning of agricultural wastes, 
Table 3-1) unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016) 
e) Value given by Andreae and Merlet (2001) for agricultural residues  
f)  TIFAC (1991) 
g) Tyagi (1989) 
h) Reddy and Venkataraman (2002b) unless otherwise indicated 

Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.3 ?c kg/tonne residue burned 
Sulfur Dioxide 0.48 ? h kg/tonne residue burned 
Ammonia 2.4 ?c kg/tonne residue burned 
Particulates PM10 5.7 ?c kg/tonne residue burned 
Particulates PM2.5 5.4 ?c kg/tonne residue burned 
Black Carbon 0.5 ?c kg/tonne residue burned 
Organic Carbon 3.3 ? e kg/tonne residue burned 
Other crop 
Residue to Crop Ratio 0 ratio a) EMEP/EEA (2016) default values. Use locally determined factors where available. 

b) The average between 0% (none) and 100% (all) of the residue burned in the fields.    
c) Tier 1 emision factor from EMEP/EEA (2016) (Section 3.F Field burning of agricultural wastes, 
Table 3-1) unless otherwise stated 
d) Tier 2 emision factor from EMEP/EEA (2016) 
e) Value given by Andreae and Merlet (2001) for agricultural residues  
f)  TIFAC (1991) 
g) Tyagi (1989) 
h) Reddy and Venkataraman (2002b) unless otherwise indicated 

Dry Matter Fraction 85 ?a % 
Fraction Burned in Fields 25 ?b % 
Fraction Oxidized 90 ?a % 
Nitrogen Oxides 2.3 ?c kg/tonne residue burned 
Sulfur Dioxide 0.48 ? h kg/tonne residue burned 
Ammonia 2.4 ?c kg/tonne residue burned 
Particulates PM10 5.7  ?c kg/tonne residue burned 
Particulates PM2.5 5.4 ?c kg/tonne residue burned 
Black Carbon 0.5 ?c kg/tonne residue burned 
Organic Carbon 3.3 ? e kg/tonne residue burned 

 
Reference 
Andreae, M.O. and Merlet, P. (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15:955-966. 

EMEP/EEA (2016) Air pollutant emission inventory guidebook.  EEA Technical report No 21/2016. European Environment Agency https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 

Reddy, M.S. and Venkattaraman, C. (2002b) Inventory of aerosol and sulphur dioxide emissions from India. Part II - biomass combustion. Atmospheric Environment 36:699-712. 

TIFAC (1991) Techno market survey on utilization of agriculture residue (farms and processes). Technology Information Forcasting and Assessment Council, Department of Science and Technology, New Delhi. 

Tyagi, P.D. (1998). Fuel from wastes and weeds. Batra Book Service, New Delhi. 



 
 

 
Table S36: Waste incineration emission factors use in LEAP-IBC analysis 

Non-energy\Waste Incineration Emission Factor Units Reference source and assumptions 

Municiple waste 

Modern waste incineration plant 

Sulfur Dioxide 0.087 ?a kg/tonne waste a) EMEP/EEA (2016)  - Tier 1 default (5.C.1.a Municipal waste incineration, Table 3-1) 
b) IPCC (2006) 

Nitrogen Oxides 1.07 ?a kg/tonne waste 

Ammonia 0.003 ?a kg/tonne waste 

Particulates PM10 0.003 ?a kg/tonne waste 

Particulates PM2.5 0.003 ?a kg/tonne waste 

Black Carbon 0.00011 ?a kg/tonne waste 

Organic Carbon 0 kg/tonne waste 

Uncontrolled waste incineration plant 

Sulfur Dioxide 1.7 ?a kg/tonne waste a) EMEP/EEA (2016)  - Uncontrolled Tier 2 default (5.C.1.a Municipal waste incineration, Table 3-2) 
b) IPCC (2006) 

Nitrogen Oxides 1.8 ?a kg/tonne waste 

Ammonia 0 kg/tonne waste 

Particulates PM10 13.7 ?a kg/tonne waste 

Particulates PM2.5 9.2 ?a kg/tonne waste 

Black Carbon 0.322 ?a kg/tonne waste 

Organic Carbon 0 kg/tonne waste 

Open Burning 

Sulfur Dioxide 0.5 ?a kg/tonne waste 



 
 

Non-energy\Waste Incineration Emission Factor Units Reference source and assumptions 

Nitrogen Oxides 4.9 ?b kg/tonne waste a) US EPA (1995)   
b) Mean of NO2 values from Yokelson et al (2011) [6.87] and US EPA (1995) [3.0] 
c) Akagi et al (2011)  
d) Akagi et al (2011) value for identified NMVOC (use 22.6 gk/t for identified plus unidentfied 
NMVOC). 
e) Woodall et al (2012) 

Ammonia 1.12 ?c kg/tonne waste 

Particulates PM10 11.9 ?e kg/tonne waste 

Particulates PM2.5 9.8 ?c kg/tonne waste 

Black Carbon 0.65 ?c kg/tonne waste 

Organic Carbon 5.27 ?c kg/tonne waste 

Industrial waste 

Uncontrolled 

Sulfur Dioxide 1.25 ?a kg/tonne waste a) US EPA (1995) uncontrolled defaults for multiple chamber unless otherwise indicated  
b) Expressed as methane 
c) Factors for PM10 not given by US EPA (1995); For default assume = TSP factor  
d) Assume same PM2.5/PM10 ratio as for Uncontrolled waste incineration plant                                                                                                                                                           
e)  IPCC (2006), Vol 5, Chapter 5, Table  5.3: Assume uncontrolled = Batch type-stoker 

Nitrogen Oxides 1.5 ?a kg/tonne waste 

Ammonia 0 kg/tonne waste 

Particulates PM10 3.5 ?c kg/tonne waste 

Particulates PM2.5 2.8 ?d kg/tonne waste 

Black Carbon 0 kg/tonne waste 

Organic Carbon 0 kg/tonne waste 

Modern plant with emission controls 

Sulfur Dioxide 0.047 ?a kg/tonne waste a) EMEP/EEA (2016)  - Tier 1 default 
b) IPCC (2006), Vol 5, Chapter 5, Table  5.3: Assume Modern plant = Continuous-stoker   
c) not known Nitrogen Oxides 0.87 ?a kg/tonne waste 

Ammonia 0 kg/tonne waste 

Particulates PM10 0.007 ?a kg/tonne waste 

Particulates PM2.5 0.004 ?a kg/tonne waste 



 
 

Non-energy\Waste Incineration Emission Factor Units Reference source and assumptions 

Black Carbon 0.00014 ?a kg/tonne waste 

Organic Carbon 0 ?c kg/tonne waste 
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