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Abstract

Modular robotic systems consist of a set of reconfigurable units, called modules, which
can be combined in a multitude of ways to produce robots of different shaps . One of the
challenges in the design of these system is to enable them to perform precise movements
in their environment. Control strategies that are centralised or rely on external sensing can
limit the robustness and scalability of the system. This thesis focuses on the development
of control strategies that allow the position and orientation (pose) of a modular robot to be
controlled in a fully decentralised and reactive manner. The strategies are designed for the
Modular Hydraulic Propulsion (MHP) system, wich operates in a liquid environment. An
MHP robot is made of cubic modules, which create a fluid network when connected together.
To move, the robot routes through this network fluid from the environment. A physical
implementation of the MHP concept is designed, built and validated. An MHP robot’s
ability to translate efficiently towards a goal is tested using occlusion based controllers, both
with and without communication between modules. The robot is shown to reach the goal
using either of the controllers. When using communication, an average of 70% of energy is
saved, at the cost of a longer completion time. This thesis proposes multiple minimalistic
controllers to control the pose of MHP robots. The robot is required to reach a goal in a
preferred orientation. All of the controllers use binary sensing and actuation, with each
module using only two bits of sensory information per face. The controllers are proposed
for robots moving in 2D and 3D space, and use up to five bits of communication between
modules. We prove that robots of convex shape are guaranteed to complete the task. Using
computer simulations, the controllers are tested in different environments, using multiple
module sizes and under the effect of noise. Additionally, their performance is compared
against a centralised controller from the literature. Given the simplicity of the solutions,
modules could potentially be realised at scales below a millimetre-cube, where robots of high
spatial resolution could perform accurate movements in liquid environments.
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Chapter 1

Introduction

Robotics is a research field with vast potential for improving living standards. Day by day,
the presence and impact that robots have in our lives are increasing. By allowing automation
of tasks, robots can reduce some of the workloads and risks humans are subject to in their
daily routines. Additionally, the use of robots to perform repetitive tasks in a reliable manner
allows for the completion of these tasks in a faster and more efficient way. From automated
vacuum cleaners to manufacturing processes, the range of the tasks robots are able to perform
is broadening. With the increase of areas where robots become essential commodities,
research into new robotic systems and control strategies that can complete more varied tasks
in an efficient manner has gained more relevance.

With the increased need of efficiency in the completion of tasks, traditional robotic sys-
tems tend to become more specialised. Traditional robotic systems have a fixed morphology.
This allows them to perform a single or small set of tasks, in well defined environments,
efficiently. However, a fixed morphology limits their adaptability changes in the tasks or
environment. Additionally, traditional robotic systems usually contain a single point of
failure. Therefore a fault in a single component of the system can lead to failure in the
completion of the task. To overcome these challenges, research has been performed to
increase the adaptability of robotic systems, as well as their robustness to failure, even though
this may come at a cost of efficiency.

A concept that has the potential to lead to increased adaptability and robustness is
modularity [1, 2]. Modularity is widely observed in nature, and at different levels. Societies
are composed of living being, living being are comprised of organs, organs are comprised
of cells and even cells are comprised of organelles. Applied to robotics, the concept of



2 Introduction

modularity involves using groups of robots, rather than a single robot, to complete tasks.
As a result, the failure of a single robot does not compromise the completion of the task.
Additionally, through the use of multiple robots, cooperative behaviours can be used, which
have the potential of completing a larger range of tasks or function in a larger range of
environments.

One possible implementation of the modularity concept is swarm robotics. In swarm
robotics [3], a group of simple robots work together to complete tasks. The inspiration for
these systems comes from swarms present in nature, such as colonies of insect or flocks
of birds, which are able to solve collectively tasks that can be too complex for a single
individual [4].

Modular robotics is another implementation of the modularity concept [5–7]. Modular
robots consist of groups of units, denominated modules, connected into a single structure [8–
10]. Each module in the system tends to have limited capabilities. However, by arranging the
modules in different configurations, a modular robot could be able to demonstrate capabilities
that go beyond a single module [11]. In modular systems, a module can be considered
as the equivalent of a cell in a multicellular organism [5, 12]. In multicellular organisms,
groups of cells can form organs, that are responsible for specific roles in the survival of the
organism. Similarly, modular robots can be assembled into different morphologies, allowing
for different capabilities of the system [13, 14]. This potentially allows modular robots to
tackle a wider range of tasks than traditional robots. It can also provide robustness to the
system, as the failure of a single module does not necessarily cause the failure of the robot.
Additionally, in the same way a living organism can replace malfunctioning or dying cells,
broken and/or malfunctioning modules can be replaced without having to replace the whole
system [8, 9, 15].

1.1 Motivation

The use of robots in environments that are not easily accessible to humans can be beneficial.
The benefits can be in terms of safety (e.g. toxic or structurally unstable environments) or
cost (e.g environments to which access requires structural changes to the surroundings). As
a result, research into robotic systems able to operate environments that present challenges
to human presence is gaining relevance [16]. Liquid environments are an example where
human presence might be constrained. For instance, the exploration of deep water environ-
ments involves the use of breathing apparatus or submersibles capable of withstanding high
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pressures. Another example are water pipelines, which can be too narrow for a human to
access or navigate. The use of robots can improve the ease of access and completion of
tasks in these environments [17–20]. However, it is not feasible to predict the full extent
of tasks a robot might need to deal with in these situations. Adaptability can therefore
be required to solve tasks these environments. The versatility of modular robots makes
them potentially better suited for these situations. Modular robots are able to change their
shape. As a result, modular systems have the potential to deal with a variety of situations.
Additionally, some systems are capable of rearranging their structure independently, which
further increases their adaptability. For example, the modules of the robot could disassemble
and travel independently through a narrow passageway and then reassemble to restore the
robot’s original form.

In some applications, the ability of modular robots to move in an efficient manner as
a unit might be crucial. For example, a robot may need to navigate a passage without
colliding with the walls, or reorient itself to inspect or manipulate objects [21]. These tasks
require precise control of the robot’s pose (position and orientation). Moreover, the remote
operation of the robots might not be viable in certain tasks or environments [17, 22]. As a
result, the control of the robot’s pose should be performed in an autonomous manner. Even
though the capability to control a robot’s pose has been demonstrated with traditional robots,
realising them at the level of a large ensemble of modules remains a challenge. Due to their
reconfiguration capabilities, modular robots can present multiple actuator configurations.
Moreover, in aquatic environments, some additional challenges exist. For example, in the
presence of turbulent flow, the controllers need to be able to react the fast changing conditions
of the environments [22]. As a result, the controllers might also need to demonstrate some
level of adaptability, to cope with these situations.

The miniaturisation of modular systems can be advantageous. For example, in some
environments might only be accessed by small sized robots. Additionally, the miniaturisation
of the modules allows for robots with a higher modular resolution. Increased modular resolu-
tion gives rise to the potential for fine grain response from the robot, which could increase
the precision of robot’s movement. The miniaturisation of modular systems could pave the
way for new applications, such as micro-medicine [23–25]. However, the miniaturisation
of modular systems poses some challenges. For example, miniaturised modules impose
restrictions on the hardware resources available to each module. In turn, the restricted
hardware resources limit the complexity of the controllers that can be applied. As a result, a
minimalist approach to the development of the control strategies used by these systems might
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be required. Decentralised reactive control solutions can be advantageous in these situations.
Not only do these solutions allow for independent action from each module, they also require
little computation resources from each module. Additionally, the minimalistic approach can
lead to low energy consumption. Since in small scale robots the energy available is limited,
this allows for extending the operation time of the modules, which can be advantageous.

The Modular Hydraulic Propulsion (MHP) robot was proposed by Doyle et al. [26]. It
is a modular system, where movement is generated by routing fluid through and between
modules. Each module uses only binary actuation and sensing. Hence, the miniaturisation
potential of the system is high. Additionally, a robot comprised of a large number of modules
presents the potential for precise movement, due to the high number of unique actuation
states it is capable of.

1.2 Problem definition

The main focus of this thesis is the study of the MHP system and, in particular, its movement
capabilities. Each MHP module is actuated by pumps that move fluid between the modules
and the environment. The large reconfiguration space potential of the system can allow a large
variety of robot configurations. The scalability potential and limited hardware capabilities of
the system present advantages for system miniaturisation. An initial hardware prototype of
the MHP robot was built in [26], capable of moving on the water surface. However, only the
translation capabilities of the system were demonstrated, through the use of an occlusion-
based controller. Additionally, the control policy used, and due to limited capabilities of
the developed hardware allowed some active actuators to have no impact on the robot’s
movement. This leads to energy being consumed with no benefit to the robot’s movement.
As a result, to allow for a more efficient control of the robot’s movement, the design of a new
system is required.

To achieve precise movement of a robot, control of both position and orientation is
required. This thesis investigates the problem of controlling the pose of an MHP robot.
In particular, we focus on the development of control strategies that allow an MHP robot
to move towards a goal with a desired orientation. This task is to be solved in a liquid
environment, containing a goal and a robot. The control strategies to be developed should
allow for the pose of both 2D and 3D robots to be controlled.
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We are interested in decentralised and reactive control strategies. Centralised control
strategies can either introduce a single point of failure in the system, or require all modules
to have the computational capabilities required to control the system, so that any module
can take control of the system in case of control unit failure. Additionally, control strategies
that require external sensing can be impractical for modular systems, as they might not
scale easily with the number of modules used in the robot. The control strategies to be
developed should generate efficient movement from the robot, while taking into account
the modules’ limited resources, particularly in terms of sensing and actuation. As a result,
reactive control strategies, that is strategies where no deliberation is required, as the sensing
state gets directly mapped onto the actuation state, are an attractive solution, as they require
no run-time memory and perform little arithmetic computation.

Starting from the problem of translating towards a goal, irrespective of orientation, we
build on the existing knowledge of the system to investigate what are the required resources
in order to control the robot’s orientation. For robots moving in 2D, developed control
strategies should be able to control the robot’s 3 degrees of freedom. For robots moving
in 3D, developed control strategies should be able to control 5 degrees of freedom of the
robot. While in the literature there are some works that look into the precise movement of
modular robots [27], they are centralised and require the use of complex sensing capabilities
and significant computational resources. Additionally, as we are interested in miniaturisation,
an analysis between the trade-offs between performance and complexity of controllers (even
if requiring little computational resources) could prove useful when designing a system for a
particular application.

1.3 Aims and objectives

In light of the aforementioned problem definition, this thesis main aim is twofold: to design
and build a physical MHP system, and to develop decentralised reactive control strategies for
the effective pose control of an MHP robot.

The detailed objectives of this thesis are:

• To develop a fully revised physical implementation of the MHP concept. This will
require an analysis of the original hardware prototype. The new MHP implementation
should allow modules to communicate and improve the reliability of the modules. The
hardware will be designed, built and validated.
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• To study the impact communication has on the performance of physical MHP robots.
In particular, the differences in energy consumption and power usage will be studied.

• To develop decentralised pose control strategies for MHP robots. The control strategies
will use different amounts of information sharing between modules, to account for
different possible hardware limitations. They will be formally analysed for MHP
robots of different shapes. Possible limitations will be highlighted.

• To validate and compare the performance of the control strategies developed using
multiple environment conditions and scenarios, including physical experimentation.
The results of the comparisons between the different controllers, for each environment
and scenario tested will allow for an analysis of the trade-offs between the performance
and resources required for each controller.

1.4 Preview of contributions

This thesis presents the following contributions:

• A hardware implementation of the MHP concept (MHP 2), with improved reliability
and capabilities. This implementation includes a complete redesign of the module’s
chassis and circuitry. The extended capabilities include range sensing, communication
between modules, capability to receive external messages and determine each module’s
orientation. Additionally, the mass and volume of each module are reduced by 73%
and 63%, respectively.

• An average reduction of 70% of the energy consumed by the MHP 2 robot, in a
translation task when using communication. This reduction comes at the expense of a
95% increase in average task completion time.

• An analysis of the range of unique total forces and net torques that can be produced by
a 3D convex MHP robot, based on different actuation states. The analysis considers
forces and torques along one or more of the robot’s reference frame axes.

• A set of decentralised reactive controllers for pose control of 2D and 3D convex
MHP robots. The controllers allow the modules to exchange between 0 to 5 bits of
information via shared power lines.
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• A formal analysis of all of the proposed pose controllers for 2D and 3D convex MHP
robots. The controllers that share information are proven to complete the task in finite
time, if in their initial position they are able to rotate in place without colliding with
the goal. The controllers that do not share information are shown to require a larger
initial distance to the goal in order to complete the task.

• A formal analysis of the pose controllers for MHP robots of generic shape. A set of
counter-examples is used to show the limitations of the controllers when applied to
non-convex robots. The controllers are shown to be correct for orthogonally convex
robots, without requiring adaptation.

• Validation of the pose controllers in physical simulations, using 3D convex MHP robots.
Studies evaluating the performance of the controllers for different environments, initial
positions, robot modular resolution and noise levels in actuation and sensing, between
others, demonstrate the usability and limitations of each controller, with the trade-offs
between performance and resources described.

• Validation of the pose controllers in physical experiments, using a 2D convex MHP
robot. The results are discussed in light of the results obtained for simulations in 3D
environments.

1.5 Publications

This thesis includes original contributions to scientific knowledge. The work presented has
led to the following publications:

• J. V. A. Marques, A. Özdemir, M. J. Doyle, D. Rus and R. Groß. “Decentralized Pose
Control of Modular Reconfigurable Robots Operating in Liquid Environments”, in
Proceedings, 2019 IEEE International Conference on Intelligent Robots and Systems,

IEEE, in press

• M. J. Doyle, J. V. A. Marques, I. Vandermeulen, C. Parrott, Y. Gu, X. Xu, A. Kolling
and R. Groß. “Modular Fluidic Propulsion Robots”, conditionally accepted in IEEE

Transactions on Robotics
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1.6 Thesis outline

The remainder of this thesis is organised as follows:

• Chapter 2 provides a review of the relevant literature to place the work in this thesis in
context. This starts with a review of modular robotics concepts and existing systems in
Section 2.1, with a focus on systems that work in fluid environments. Section 2.2 covers
the current control algorithms that allow a modular robot to control its movement.

• Chapter 3 presents the development process of the MHP 2 and a study on the impact of
the addition of communication to an occlusion based controller. Section 3.1 introduces
the MHP concept. In Section 3.2 the list of requirements for a physical implementation
of the MHP are presented. Section 3.3 presents an analysis of the initial hardware
prototype is performed, with the limitations and main areas of improvement being
presented. Section 3.4 covers the revisions made to the system. Both the circuit and
chassis designs are described in detail. Section 3.5 details the experiments conducted
with the MHP 2, the implementation of the controllers used and the results obtained.
Section 3.6 summarises the chapter.

• Chapter 4 develops the new control strategies for pose control of an MHP robot.
Section 4.1 introduces the chapter. An analysis of the number of actuation states that
generate unique total forces and net torques for a 3D convex MHP robot is conducted
in Section 4.2, for robot translation and rotation. Section 4.3 defines the problem to
be solved, including the objective. Controller solutions for the problem described are
presented in Section 4.4, both for 2D and 3D convex robots. The mathematical analysis
of the proposed controllers for convex robots is performed in Section 4.5, and extended
for robots of generic shapes in Section 4.6. Section 4.7 summarises the chapter.

• Chapter 5 validates the controllers, for robots moving in 3D, through the use of physics
simulations. Section 5.1 introduces the chapter. Section 5.2 describes the simulation
studies performed, including simulator, controller implementation, default simulation
set up and results for 3D robots. Section 5.3 presents the validation performed through
physical experiments, describing experimental setup, controller implementation and
results. Section 5.4 summarises the chapter.

• Chapter 6 summarises and discusses the contributions of the thesis, and proposes
potential avenues for future research in Section 6.1.



Chapter 2

Background and Related Work

This chapter reviews the current literature relevant for the work presented in this thesis. In
Section 2.1, a review of relevant modular robotics concepts and modular systems is presented.
The focus is on systems that work in fluid environments, as they have the potential to move
in 3D, controlling up to 6 degrees of freedom (DoF). While our main interest lies in systems
that work in liquid environments, aerial systems operate in fluidic environments and present
the same number of controllable DoF. Some of the most relevant land based systems are
covered for contrast. Section 2.2 presents a review of relevant control strategies for modular
systems. The focus is on control strategies that allow for the control of the movements of
modular robots as a unit. Some multi-robot control strategies, which aim to generate object
transportation behaviours, are also presented.

2.1 Modular robotics

Over the last decades various modular systems have been developed [5]. However, modular
robotics as a research field still faces various challenges [8, 12]. Although this thesis is
concerned with modular systems that work in liquid environments, the analysis of systems
that operate in other environments can provide insight into the trade-offs required in the
development process. For example, land based systems are able to prioritise mobility (as
units or as a robot), scalability or reconfiguration space. However, due to limitations of
the environment, it is uncommon for all of these characteristics to be prioritised in a single
system. Additionally, the movement these systems can perform is often constrained to 2D.
On the other hand, aerial systems are able to move in 3D. However, they are usually limited
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on their reconfiguration space. Systems for liquid environments have the potential for 3D
movement without compromising their reconfiguration space.

Modular robotic systems can be classified in different architecture types, based on the
type of structures the modules are able to form [6, 10]. The most common architecture types
are:

• Chain architecture: the modules are only able to form linear or branching struc-
tures [28]. This is a result of the position and number of connections each module
is able to establish. Systems of this architecture are versatile, being potentially able
to reach any point and orientation, due to their large number of controllable DoF.
However, while the kinematics of these systems is well understood, on-line control is
challenging. The large number of controllable DoF leads to computationally expensive
control strategies. Additionally, hardware inaccuracies can accumulate through the
chain.

• Lattice architecture: the modules are able to form 2D or 3D grids, by allowing each
module to connect to multiple modules at the same time [29]. For example, in 2D,
square and hexagonal lattice structures are possible. In 3D, multiple cubic lattices
exist: simple (modules are the cube vertices), body-centred (one module in placed at
the center of the cube) and face-centred (modules can be placed either in the vertices
or aces of the cubic structure). The regularity of the grids these modules can form
represents an advantage in reconfiguration processes, as the positions each module can
occupy are discrete.

• Mobile architecture: the modules are capable of efficient self-locomotion [30]. This
allows them to either work individually, in groups of individual units, much like a
swarm, or as a single, more complex structure. While the individual movements of the
modules allows for more versatile reconfiguration, it is also more complex in terms of
control.

If more than one of the above architecture types is present in a system, it is denominated as
an hybrid architecture [15].

Additionally, modular systems can be divided into self-reconfigurable and manually
reconfigurable systems [1]. Self-reconfigurable systems are able to perform changes in the
robot’s configuration without the intervention of outside help. The reconfiguration process
can either be deterministic or stochastic [8]. In deterministic reconfiguration processes each
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module is given a specific position it should occupy. Based on the module’s initial and final
position, a trajectory is planned. As a result, the position of all modules is either known at
all times, or it can be computed. On the other hand, in stochastic reconfiguration the robot
only has information about the positions of the modules when attached to the main structure.
The movements of the modules, once disconnected, use stochastic processes (e.g., Brownian
motion) and are unknown to the robot. While the reconfiguration times can be guaranteed
using deterministic reconfiguration, the process does not scale well, as an increased number
of modules requires increased computational power.

2.1.1 Modular land based systems

In recent years many modular and reconfigurable systems have developed. Arguably the first
modular system to be developed was the CEBOT in 1988 [31]. The system was designed
with industrial applications in mind. Each module is capable of independent movement
and connection to the structure. The initial system envisioned modules self-organising in a
container, with the structure being dependent of the task at hand. Approximation, alignment
and connection between two modules was experimentally demonstrated by the authors in [32].
Additionally, an algorithm for determining optimal structure based on task was developed
and tested [23, 33].

The Polypod system [37, 38] was developed by Yim et al., and is capable of forming
long chains. The system is comprised of two module types: nodes and segments. Node
modules are rigid cubic structures and are passive modules, housing the system’s power
source. They are able to establish up to six connections with other modules. The segment
modules are actuated, with 2 DoF, that are able to perform both rotation and translation
(through compression and expansion). They only allow for two connections with other
modules. Robots are formed by connecting chains of segment modules to node modules.
This allows for multiple configurations to arise. One such configuration is the rolling track,
that in later works was shown to be a viable method of locomotion [39]. The Polypod system
was later followed by the Polybot system [28, 40]. This system exchanged the Polypod’s
ability of compressing and expanding for an increased rotation range (Figure 2.1a).

The M-TRAN system [15] is a hybrid system, that has become highly influential in the
modular robotics field. This modular system has had three iterations in its development,
making it one of the most well developed modular systems [34, 41, 42]. Each module in
this system was composed of two connected cube-like blocks. The blocks are connected
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(a) (b)

(c) (d)

Fig. 2.1 Examples of modular systems. (a) PolyBot robot configured in a rolling chain. (b)
MTRAN-III performing quadruped walk. (c) Two Molecubes modules joined together. (d) A
pair of 3D M-Blocks modules. Images reprinted from [28], [34], [35] and [36], respectively.

by a rigid bar that acts as a rotational joint at the points of connection. Each cube is able
to connect with up to three other modules. The design of the system allows it to form both
chain and lattice configurations. The last iteration of the system, M-TRAN III, demonstrated
quadruped walking (Figure 2.1b), crawling of snake configurations and self-reconfiguration
between the two configurations. [34].

The SMORES system [43] is another interesting hybrid system, as it can form both chain
and lattice structures, with the modules being able to move independently. Each module is a
cube and possesses 4 DoF. Provided a surface that a connected structure can attach to, the
system is able to move in 2.5D.

A Molecube [35] module consists of a cube that is divided in two halves along its longest
diagonal. Each unit contains a single actuator that allows rotation between the halves to occur.
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The initial design featured only two connections, meaning only chain structures could be
formed. The connections between modules were active, allowing for self-reconfiguration. In
later versions [44, 45], the two active connections were replaced with six passive connections.
As a result, the system traded its reconfiguration capability with a larger reconfiguration
space(Figure 2.1c).

The Roombot [46] is a system based in a similar design, where two split cubes are
permanently connected together by a rotation joint. The system was envisioned to be able to
create adaptive furniture that would change based on the needs of the user [47, 48]. Later
work demonstrated the movement and reconfiguration capabilities of the system [49].

M-Blocks [50] are cubes able to form lattice structures. The modules are able to move
and reconfigure based on a novel motion system that uses flywheels to build up angular
momentum. To generate movement, the flywheels undergo rapid braking to create a high
torque that flips the module. This can be used both to move the module in the environment
or to move the position of the module in the robot’s configuration. A version capable of
generating 3D structures is presented in [36](Figure 2.1d)

The ATRON system [29, 51] is also able to form lattice structures in 3D. A module
is made up of two hemispheres, connected by a rotational joint. While the system has
minimalistic actuation, it is highly reconfigurable. Movement of the robot can be performed
by using the modules as wheels or by self-reconfiguration.

The HyMOD [52] is another example of a system able to form 3D lattice structures. Each
module is able to connect up to four modules, by making used of one HiGen connector [53]
per face. The modules consist of two symmetrical halves, connected by a rotation joint. Each
module has 3 rotational DoF, which allows the modules to rotate in place, while performing
reconfiguration. Additionally, the modules are able to move in an environment individually,
through the use of two connectors able to rotate as differential drive wheels. Multiple
extensions for the system were developed, where each extension is considered a different
type of module [54].

A Swarm-bot [30, 55] consists of multiple robots (s-bots) connected together in a single
structure. Each unit can move by using differential drive wheels and tracks. This allows for
both accurate movements and rough terrain navigation. Each s-bot is equipped with a gripper
that allows connections between the units to be formed. Both self-assembly and cooperation
between s-bots has been demonstrated [56, 57].
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(a) (b) (c)

Fig. 2.2 Examples of aerial modular systems. (a) Distributed Flight Array in flight, in a
configuration with 10 modules. (b) ModQuad system in flight, in two different configurations.
(c) Group of GridDrones in coodinated flight. Images reprinted from [63], [64] and [65],
respectively.

Calytronics [58] is a system of modules, designated as catoms (claytronic atoms), that
is inspired by the concept of programmable matter [59]. A group of catoms is able to
self-organise into multiple shapes. An initial prototype was developed, consisting of circular
centimetre sized modules able to reconfigure in 2D. In [60] a set of 1 mm catoms, that are
able to roll over each other in order to reconfigure was developed. A new, quasi-spherical
catom design was proposed in [61], capable of efficient movement between grid positions.

The Robot Pebbles [62] are cubic modules, with 1 cm side length. While being impres-
sively small, the modules are able to include a connection mechanism, communication and
power sharing with connected modules in each face. On the other hand, the modules are
unable to propel themselves and reconfiguration capabilities are limited to passive subtractive
reconfiguration.

2.1.2 Modular aerial systems

Aerial systems are able to move in 3D, and generally possess 6 DoF. However, compared to
systems for other environments, they have a limited reconfiguration space, generally only
being able to form 2D structures. In this section, we describe some of the most relevant aerial
systems developed.

The Distributed Flight Array (DFA) [66, 67] is a reconfigurable modular system, with
hexagonal modules, capable of forming 2D structures. Each module has a set of omnidi-
rectional wheels that allow it to move on the ground to connect with other modules. The
modules use permanent magnets to form connections. The magnets ensure the robot stays
connected in flight, but allow for modules to disconnect by pulling away from each other on
the ground. Every module contains a rotor, that spins either in a clockwise direction (CW
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module) or in a counter-clockwise direction (CCW module). In order for a robot to be able
to take flight it needs to be composed of two pairs of modules of each type (CW and CCW
modules). In [63], structures with a higher number of modules were shown to be able to take
flight (Figure 2.2a).

The ModQuad system [64] uses cubic modules that are able to form 2D structures while
flying. Each module is a quadrotor encased in a cuboid frame (Figure 2.2b). The sides of the
vertical faces of the modules have four permanent magnets that allow the modules to form
connections. As each module is a functioning quadrotor, they are able to fly as individual
units. As a result, a structure capable of flight has no required minimum number of modules.
A later version of the system [68] makes use of vision-based docking methods to reconfigure
in outdoors environments during flight.

Naldi et al. [69] propose a modular aerial robot that uses ducted-fans (fans surrounded
by tubes) as modules. The lift of the modules is controlled through a set of actuated vanes
placed on the ducted fans. In contrast with other systems, the design of this system allows
for reconfiguration in 3D, while maintaining the ability to fly. While no specific connection
mechanism was proposed, it was assumed to be rigid for the analysis of the system. In [70],
experiments using two horizontally connected modules were conducted.

The GridDrones system [65] aims to implement the programmable matter concept in an
aerial environment. Each unit is composed of a nanocopter surrounded by a cubic structure.
The system is designed to form 2.5D relief maps. While the units do not connect with
each other, topological relationships between the nanocopters can be assigned on the fly.
This allows the maps to be altered by the operators through physical interaction with the
nanocopters.

2.1.3 Modular systems in liquid environments

When compared to land-based and aerial systems, systems operating in liquid environments
have the potential to show versatile 3D movements, coupled with a 3D reconfiguration space.
However, while developing modular systems for these environments present advantages,
there are also challenges that need to be tackled. Examples of these challenges are the
waterproofing of the systems, and potential difficulties liquids can cause in communication.

In this section, we cover modular systems that are designed to operate in liquid environ-
ments. These systems are divided into two groups: self- and externally-propelled systems.
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Self-propelled systems are able to move, without the intervention of external elements. On
the other hand, externally-propelled systems use external intervention to generate their move-
ments, for example fluid mixing. In this thesis we are interested in self-propelled systems,
due to their ability of controlling their own movement. Externally-propelled systems are
presented for comparison.

2.1.3.1 Externally propelled systems

White et al. [71] propose a modular self-reconfigurable system, based on an initial concept
presented in [72]. The modules are neutrally buoyant, unpowered cubes that are immersed
in an oil tank, and form connections through the use of passive magnets, along with an
electromagnet. A substrate that acts as a base for self-reconfiguration is placed on the bottom
of the oil tank. Additionally, it is able to power connected modules. Each module has a pipe
network connecting the module faces that allows fluid to move through the module. Each
module face has valve that allows or prevents the fluid flow through that face.

Tolley et al. [77] presented a system of smaller size, based on the the same concept
(Figure 2.3a). The modules are completely passive, and move in response to the fluid
movements of the oil tank. A substrate placed in the bottom of the tank pumps the oil,
generating a pressure gradient. As the fluid moves through the modules and substrate, the
pressure differences act as a connection mechanism between modules and between the
modules and the substrate. In later works [73], the modules have valves that can be closed or
opened to selectively form connections between modules and with the substrate. The valves
in the modules are powered by the substrate, when connected to a structure.

Neubert et al. [74] present yet another self-reconfiguring system based on the same
concept (Figure 2.3b). In this system, instead of a substrate, there is a powered seed module,
capable of computation, from which the structure is formed. The modules are brought close
to the seed by the movement of the fluid flow. If modules are correctly aligned with the seed
(face-to-face), a connection can be formed by soldering the modules together, on the fly. As
the only element in the system capable of computation, the seed is responsible for accepting
or rejecting connections.

The Tribolon [75] is yet another system incapable of predefined motion. These modules
move in a motion close to Brownian motion, from the action of a vibrating motor, placed
on top of each module. The modules are externally powered and are brought together by a
magnet placed at the bottom of each module. Each module has two electrodes: a cathode
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(a) (b)

(c)

(d)

Fig. 2.3 Examples of externally-propelled aquatic modular systems. (a) Configuration of
10 passive modules proposed by Tolley et al. (b) Passive module of Neubert et al. (c)
Six Tribolon modules. (d) Lily module. Images reprinted from [73], [74], [75] and [76],
respectively.
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(a) (b) (c)

Fig. 2.4 Examples of self-propelled aquatic modular systems. (a) AMOUR system, with
four thrusters. (b) TEMP robot with a group of modules acting as a landing platform. (c)
Rendering of ANGELS modules in a chain configuration. Images reprinted from [79], [80]
and [81], respectively.

and an anode. The cathode is placed under the module, fully submersed in water (salted to
become conductive). The anode is placed on the top of the module, making contact with
an aluminium ceiling. Power is provided to the modules by applying a potential difference
between the ceiling and the water. A new version of the modules(Figure 2.3c) is presented in
[78], with a new mechanism to connect the modules: a peltier based freezing connector.

The Lily modules [76] (Figure 2.3d) are passive and float on the surface of water. The en-
vironment is agitated, by fluid pumps, generating semi-random movement from the modules.
Each module is cubic in shape, and can connect to other modules using electro-permanent
magnets (EMPs) placed on their faces. This allows them to form 2D structures. Induc-
tive communication between connected modules is facilitated by the EMPs. Each module
contains a light sensor and communicates with a centralised computer.

2.1.3.2 Self-propelled systems

The AMOUR (Autonomous Modular Optical Underwater Robot) system was introduced by
Vasilescu et al. [82] . The system was initially designed as a modular robot, and is composed
of heterogeneous modules of cylindrical shape. Each type of module was responsible for
different tasks, such as propulsion, power source, buoyancy, sensing and computation. A
single robot could contain one or more of each module type. The heterogeneity of the
modules presented both advantages and disadvantages. On one hand, each robot could be
built for the specific task at hand. This greatly simplified the system while making it more
specialized for the task. On the other hand, the system became limited in the ability to repair
itself in operation, as a broken module had to be replaced by the exact type of module. In
a situation where the number of modules of a specific type is limited, this could present
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a problem. In later works the system was changed in into a single cylindrical hull, with
reconfigurable thrusters [79](Figure 2.4a). The system is capable of both horizontal and
vertical motion as well as hoovering underwater.

The Tactically Expendable Modular Platform (TEMP) system [80, 83], consists of a
group of autonomous boats, based in the concept of Modular Sea Bases (Figure 2.4b), that
can self-assemble on water surface. Each boat is able to move on its own by using thrusters
placed on each corner, and a group of boats can be assembled to form floating structures.
These structures are then able to work as temporary bridges or landing points. In order to
avoid significant tipping or capsizing, each module makes use of a bulb keel. The connections
between modules are ensured by a hook and loop connection system. This system presents
a certain lack of flexibility in the connections and shapes it can assemble into. Its ability
to form complex structures becomes limited in environments with restricted manoeuvring
space, mainly because a staggered pattern was needed when the connections are made. The
reconfiguration of the structures and the modules movements are planned and controlled via
a central computer.

The Roboat [84] is a modular system comprised of large boats (4 m× 2 m) that function
as modules. Due to their large size, the prototypes are built at an approximate scale of 1:4.
As with TEMP, this system is designed for self-reconfiguration on the water surface. The
movement of the boats is performed by four thrusters, placed in a cross-shaped configuration,
able to generate efficient movement. Each boat uses a multitude of sensors, such as GPS,
IMU and a 3D laser scanner. The system was tested both indoors and outdoors, with docking
experiments between modules, in environments with turbulent flow, being reported in [85].

The ANGELS system (ANGuilliform robot with ELectric Sense) [81] is a modular
system inspired by the sensing capabilities of fish (Figure 2.4c). Each module of the robot is
able move on its own through the use of propellers. These propellers allow for the control
of 3 DoF: forward and backward translation and pitch and yaw angles. Connected modules
move using the relative motion of the modules, like an eel. The system was designed in such
a way that the assembled robot is able to travel long distances and each module is responsible
for more accurate movements. The modules were designed to be neutrally buoyant and to be
able to reach a depth of 3 m, without losing water tightness. The depth control is achieved
through a dedicated buoyancy control system, that by displacing the lower part of the shell of
the module, alters its volume. An electric field is created by electrodes placed on the chassis
of each module. The measurements of the disturbances in the electric field can be used for
navigation.
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The Hydron system [86] was designed to study distributed self-assembly. The modules
are close to spherical in shape and are suspended in water. Horizontal movement is guaranteed
by four nozzles on the module’s sides, that push water drawn from the environment by an
impeller at the bottom of the module. To perform vertical movement, a syringe draws or
expels water to control the module’s buoyancy. The modules are equipped with optical
sensors and transmitters that are used for communication between modules and the alignment
and docking process. While no explicit connection mechanism is used, the modules are
considered docked to each other if the optical sensors are closer than a threshold value.
As individual modules are unable to rotate, situations can arise where it is not possible to
correctly align the modules for docking.

The Neubots system [87] consists of modules in the shape of faceted spheres, able to
perform six connections with other modules. Two connected modules form a rotational joint
and groups of modules are able to create 3D structures. While each module is unable to move
on its own, a group of connected modules can move by generating bio-inspired swimming
motions. The control strategies for the system, as well as the robot’s morphology, are evolved
to ensure the resulting robot is capable of efficient movement.

The REMORA project [88] explores the use of modular Underwater Autonomous Ve-
hicles (UAVs) for inspection and maintenance of offshore structures. In concept, this is a
system with multiple UAV types, with different capabilities. Each UAV is able to move
independently. Reconfiguration is possible in 3D, in principle, and is used to solve task that
require multiple UAV types. Furno et al. [89] designed and built a prototype version of the
system. Additionally, a control strategy for reconfiguration that minimises energy consumed
in the reconfiguration process was proposed.

The Modular Hydraulic Propulsion (MHP) system [26] (Figure 2.5a) is comprised of
cubic shaped modules that move on the water surface. Each module uses four small pumps,
one in each face for movement. The modules contain an internal fluid reservoir and move
by exchanging water between the environment (or connected module) and their internal
reservoir, through the use of the pumps (Figure 2.5b). The modules are connected using
permanent magnets (two per face) and are incapable of self-reconfiguration. The system has
limited sensing capabilities: magnetic and light sensing. A physical implementation of the
system was built, using only binary sensors and actuators, and tested. The work presented on
this thesis is focused on the MHP system; further details regarding this system are given in
Chapter 3.
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(a) (b)

Fig. 2.5 Modular Hydraulic Propulsion (MHP) modules. (a) Six modules in arbitrary
configuration on the water surface. (b) Fluid path when two modules are connected. Active
pumps are shown in green, inactive pumps are shown. Arrows show the path of the fluid.
Images reprinted from [26]

2.2 Control strategies for movement of modular systems

To control modular systems, the behaviour of each module, whether physically connected in
a single structure or as individual units, need to be coordinated. One of the most researched
control problems in the field of modular robotics is self-reconfiguration, and how the modules
should move during this process [90–99]. However, there research has been performed in
the control of the movement of modular robots as a unit. Some of the strategies developed
control the robot’s movement by reconfiguration of the system [58] or by generating crawling,
inchworm or rolling-track motion [37]. In this section, we review control strategies developed
to control the movement of modular systems as well as control strategies for multi-robot
system transportation, as they can be adapted for modular robots. We restrict multi-robot
control strategies to those that do not make use of changes in the relative position of the
modules, either by reconfiguration or joint actuation, to generate movement.

The design of the control strategies can be strongly linked to the capabilities of each unit.
Control strategies for modular robotics can be broadly divided in two categories: centralised
or decentralised. In centralised control, each module receives instructions from a single
control unit, which can be a specific module or external to the robot. Centralised control
strategies can be advantageous in implementing algorithms that require global knowledge of
the sensing and actuation states of the system, as well as the robot configuration. Traditional
centralised control had the disadvantage of there being a single point of failure, that is
failure from the control unit/module leads to the failure of the whole system. More robust
implementations of centralised control can be performed, that allow control unit/modules
to fail, by changing the unit/module responsible by controlling the system. However, this
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requires that every module has the resources required to control the system (computational or
otherwise). Additionally reliable communication between the control unit and the modules is
required.

On the other hand, decentralised control strategies allow each module to control its own
actions. This requires every module to be able to determine its own behaviour, based on its
sensing state. As a result, every module is required to have the computational capabilities
required to run the controller. Additionally, communication between neighbouring modules
might be required, in order to enable collective behaviours. In general, decentralised control
strategies do not require knowledge of the global state and configuration of the robot. This
can be advantageous, as the the performance of the robot is not significantly impacted by
the failure of one module. On the other hand, producing complex behaviours when using
decentralised control strategies can be more challenging, as to the lack of global information
might limit the behaviours the modules are able to produce.

2.2.1 Control of modular systems

Doniec et al. [27] proposed a centralised motion control for the AMOUR system. The
proposed controller supports an arbitrary number and position of thrusters, although it
requires the robot to have knowledge of these variables and to be able to determine its own
pose (position and orientation). The controller allows for simultaneous control of rotation
and translation movements in 3D. It uses the current states of the robot as inputs, and
outputs speed commands for each of the thrusters. The errors between current and desired
position and orientation are computed and used as inputs for two separate proportional-
integral-derivative (PID) controllers, for each thruster. The two controllers compute the
thrust required for rotation and translation of the robot separately. The use of the two PID
controllers, allows for a good approximation of the robot’s dynamics, which are not otherwise
considered in the controller.

In later works [100], the requirement of knowledge of the number and position of the
thrusters is relaxed. The controller is extended to allow the robot to estimate its current
thruster configuration. This is performed by evaluating the impact that activating each thruster
has on the pose of the robot. From that information, the controller is able to approximate
the configuration of thrusters. From experimental results, this controller was shown to be
able to estimate the robot’s thruster configuration within 40 s, with performance similar to
the results obtained when the thruster configuration was manually tuned.
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When the Roboat system was proposed, the control of the position of each boat was
performed using nonlinear model predictive control (NMPC) [84]. In later works [101],
structures comprised of multiple boats use a feedback control system to control the pose of
the robot. The robot is given a reference trajectory that it is required to follow. A coordinator
module is elected by the controller to determine both the next position of the robot and the
outputs for each thruster. The feedback loop is divided in two components: coordination and
robust control. The robust control component is responsible for determining the total force
and torque required to be applied on the robots center of mass (CM), so that the reference
trajectory is followed. This is performed by a proportional-derivative controller (PD). The
coordination component of the controller is responsible for computing the actuation state of
each propeller to obtain the desired force and torque acting on the CM.

The controller proposed for the ModQuad system is able to control 4 DoF: three transla-
tions, and yaw rotation [64]. The controller requires each module to know the geometry of
the robot and its own position in the structure, and that all modules share a common reference
frame. In order minimise the force of each rotor has to exert, the total thrust force and robot
moments is evenly distributed along all thrusters. The total force acting on the robot, as well
as desired attitude, are determined by a central trajectory planner, that sends this information
to the robot. As every module has knowledge of the robot’s configuration, as well as, its
position on it, they compute their own control inputs independently, based on their position.
The modules are able to determine their attitude, which is compared to the desired attitude.
Each module then computes the difference between its current and desired orientation and
feeds it to a PD controller, which gives the control inputs for each rotor.

The controller developed for the DFA is able to control the system’s 6 DoF [63]. The
modules are able to sense their current altitude and attitude, as well as, angular velocities.
The horizontal position of the robot, as well as, linear velocities, are determined by external
sensors that send the information to each module. The system uses a decentralised feedback
control strategy, adapted for vertical take-off and landing (VTOL) vehicles. This allows for
stable hovering of the assembled robot. The control strategy used, allows for each DoF to be
decoupled. The close-loop response of each DoF is then forced to behave as a second-order
mass-spring-damper. The parameters for each DoF are optimised externally due to the limited
computational capabilities of each module. Previous to flight, the optimised parameters
are stored in each module. While a single set of parameters can be used for multiple robot
configurations, the optimal performance for each configuration requires a different set of
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parameters. However, for configurations with a large number of modules, the differences in
performance are negligible.

2.2.2 Control of multi-robot systems

In addition to strategies developed specifically for modular systems, control strategies
developed for multi-robot systems can be relevant, and applicable, to modular robots. In
particular, strategies that require a group of robots to move or manipulate objects in a
cooperative manner can be applicable to controlling the movements of modular robots.
In these tasks, the transported object can be seen as the modular robot, and the robots
transporting the object as the actuators. In this analogy, the sensing information each robot
obtains from the environment corresponds to the sensing information collected by each
module.

In general, transportation of objects by a multi-robot system can be divided in two phases:
the approximation phase, where the group of robots searches and approaches the object, and
the transportation phase, where the robots cooperatively move the object. When adapting
control strategies for multi-robot systems to modular systems, the focus is the transportation
phase, as the actuator positions are defined by the robot’s structure. However, the approach
phase can give insight on rules for actuator activation, particularly if the positions of the
group of robots are predefined.

Nicholson et al. [102] propose a decentralised control strategy to manipulate the orien-
tation of large objects. The movements of the objects are performed by a swarm of robots
moving on the water surface. Each robot has information about the object’s orientation, the
desired orientation, their own position in relation to the CM of the object and their orientation
in relation to the object. However, they have no information about the number and position of
the remaining robots. Each robot computes the force it needs to exert on the object boundary
in order to rotate it towards the desired orientation. This controller uses a feedback loop,
based on the dynamics of the system, position of the robot, in relation to the CM of the object,
and error between current and desired orientation.

Braganza et al. [103] present a controller solution for a similar problem. A group of
tugboats is required to manipulate a disabled vessel into a predefined position and orientation.
To control the vessel’s 3 DoF, a minimum of six robots is required, positioned in aligned
symmetrical positions. Each robot is unable to communicate with other robots, and only
has information about the vessel’s current position and orientation, and its own position and
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orientation in relation to the vessel. The controller uses of a feedback loop to allow each
robot to compute its required thrust, based on a desired trajectory, and is shown to perform
well when the position of the robots along the vessel is not know to each robot. The controller
assumes that the positions and orientations of the tugboats with respect to the vessel are
always constant.

Esposito et al. [104] expand the previous controller [103], to more flexible distributions
of the robots along the vessel’s boundaries and remove the requirement of the number of
robots in the swarm. The net thrust required to move the vessel along the desired trajectory is
determined and used to compute each robot’s thrust value, through an optimisation process.
The optimisation is performed in order to minimise the difference between the summed thrust
of all robots and the net thrust for the desired trajectory. However, this requires the number
of tugboats in the swarm to be known. In [105] the work is further extended to allow optimal
placement of the tugboats around the object.

Sartoretti et al. [106] propose another control strategy for the transport of an object by a
group of robots. The object needs to reach to a goal point, with a predetermined orientation.
The proposed controller is decentralised, and based on the concept of conditional caging [107],
where the robots distribute themselves around the object, in order to manipulate it. The control
strategy is divided in two separate phases: approach and grasp, and manipulation. In the first
stage, the robots approach and surround the object to be moved. Each robot is given a specific
point of the object boundary as a goal, that they are required to reach simultaneously. In the
manipulation stage, the robots cooperatively move the object. The controller is developed
for robots possessing two actuators (left and right), that can be controlled independently,
to generate 2D movement. The output of each actuator is determined based on the robots
position and orientation in relation to the target point and desired orientation. The control
laws for each actuator generate spiral trajectories. It is shown that by using a maximum
of two consecutive spiral arcs for each stage, the robots are always able to correctly grasp
the object, and transport it to its destination point, with the predefined orientation. The
parameters for each arc are determined by the robots at the beginning of each stage. In the
manipulation stage, the object’s orientation and position are constantly changing.

Hu et al. [108] propose a control strategy for moving an elongated box underwater. A
group of autonomous fish robots, capable of sharing sensory information, is used to solve
the task. The fish move through the use of three fins, with one rotational degree of freedom
each. Each robot is able to detect the object and the target location through the use of a
camera mounted on the front of the robot. The robots identify the object and target location
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through colour markings placed on them. While the target location has a single colour, the
object uses two different color markings positioned on the center of one face and on the
ends of the opposite face. Simple image processing algorithms are used to determine the
position and orientation of the object and target location, with respect to the robot. This
control strategy requires a minimum of three robotic fish: one observer and two pushers (left
and right, one for each side). The sub-task of each robot is dynamically allocated. Once the
allocation is complete, the robots move in circular trajectories to locate the object or the goal,
depending on their sub-task. As each robot’s target is located, the robot’s movement changes
to approach the object/target location. Upon reaching the target, the observer robot searches
for the object by performing circular trajectories with small radius. From a position close
to the target, in which the object is detectable, the observer determines the object’s position
and orientation, sharing this information with the pusher robots. The pusher robots, upon
reaching the target and with the information from the observer, determine the velocity they
need to reach to push the object into the target location.

Chen et al. [109] proposed a cooperative transportation controller for miniature mobile
robots. The task that the robots have to solve involves transporting an object towards a goal,
irrespective of orientation. Each robot is able to detect and differentiate the goal and the
object, using its forward facing camera. The camera image is processed to to determine if the
robot detects the object and/or the goal, and their position(s) relative to the robot’s current
heading [110]. The proposed controller uses occlusion as a key element in determining the
behaviour of the robots. Each robot starts by moving randomly, while searching for the object
to be transported, moving towards it once it is found. Once the object has been reached, the
robot searches for the goal, by rotating on the spot. If the goal is not detectable, it is assumed
to be occluded by the object. In this scenario, the robot pushes the object. While in contact
with the object or the goal is not detectable, the robot keeps pushing the object. The process
starts from the beginning once the goal is detectable or the robot loses contact with the object.
The controller can be implemented as a finite state machine, where the processing of the
camera image is the most computationally expensive process. It is shown that, when using
this strategy for objects of convex shape, the distance between the object’s CM and the goal
monotonically decreases. This controller requires no communication between the robots.

An adapted version of the previous controller [109] was used by Doyle et al. [26], to
control the translation movement of an MHP robot. Using the same occlusion principle, an
actuator is active if its respective sensor does not detect the goal. This emulates the actions
of multiple robots pushing an object, if the goal is not perceived.
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2.3 Summary

In this chapter, a review of relevant literature on modular robotic systems was performed.
Systems that move in fluid environments are of particular interest as, in general, they possess
a larger number of controllable DoF. Additionally, a review of relevant control strategies that
can be applied to control the movement of modular robots was performed. This includes
some control strategies for multi-robot systems.

Land-based systems correspond to the larger fraction of modular systems developed
to date. However, even though they present a large theoretical potential, the evidence
of their successful use in field applications is limited. Additionally, land-based systems,
while potentially able to reconfigure in 3D, are generally limited to 2D movement. Air
based systems on the other hand, can perform movements in 3D, but are usually limited to
reconfigurations in 2D. Liquid environments present the potential of 3D movement coupled
with a high reconfiguration space.

There is a growing interest in modular systems that can be deployed in liquid environ-
ments. However, fewer systems have been developed for this environment. Additionally,
a significant number of systems developed for liquid environments are incapable of self-
propulsion, as individual units or as a connected structure. This means that their movement
needs to be assured by external elements.

The majority of control strategies developed for modular systems deal with the self-
reconfiguration problem, while only a small amount of control strategies deal with the
movement of the robot as a whole. However, some control strategies used for multi-robot
systems that solve object transportation tasks can be adapted for the control of the movement
of modular robots. This can be performed by creating a parallel between the modular robot
and the object, where the multi-robot system acts as the modular robot actuators.

Centralised control strategies [27], or strategies that assign sub-tasks to a single mod-
ule [108], present a single point of failure, which can compromise the completion of the
task. Systems and control strategies that require the use of external sensing [63, 84] are
not easily scalable. Additionally, controllers that require either complex sensing and com-
munication [104, 106], or high computational power, might not be feasible in systems that
have limited capabilities. Similarly, previously proposed decentralised controllers that make
use of the robot’s geometry and/or the module’s position within the robot’s geometry [64],
require either some level of computation or that information to be manually introduced in
the controller. On the other hand, while there are some controllers capable of generating
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movement in systems with limited capabilities [26, 109], they are unable to control the
orientation of the robot. The aim if this thesis is to fill this gap, through the investigation
of control strategies that are able to efficiently move the robot using minimal computation,
without requiring external or complex sensing.



Chapter 3

MHP 2: Hardware Revision and
Communication Study

This chapter is based and extends on the author’s original contributions to the publication
[111].

3.1 Introduction

As we have described in Chapter 2, one of the advantages of modular robotic systems comes
from their ability to be fault tolerant and that they can easily replace malfunctioning units
[8, 16]. However, it is still expected that each unit functions in a reliable manner, without
human intervention, to guarantee successful completion of tasks.

Doyle et. al [111] introduced the concept of Modular Fluidic Propulsion (MFP). An MFP
robot consists of a set of connected modules that work in fluid environments. Each module is
a square (or a cube in 3D), with a set of magnets on each face, used to form connections with
other modules. Each module contains an internal fluid reservoir that forms a fluid network
when connected to other modules. The modules propel themselves by moving fluid between
the environment and their internal reservoir. There are two possible implementations of
the concept [111]: the Modular Hydraulic Propulsion (MHP) and the Modular Pneumatic
Propulsion (MPP). In this thesis, we are interested in the MHP concept.

The MHP is a hardware implementation of the MFP concept for liquid environments,
and was first introduced in [26]. Each module is actuated by pumps, where each pump is



30 MHP 2: Hardware Revision and Communication Study

connected to a port positioned at the center of each module’s face. When active, a pump
extracts water from the reservoir and discharges it through the corresponding port into the
environment (or a neighbouring module). Similarly, fluid is drawn into the reservoir from the
environment (or a neighbouring module) via ports connected to inactive pumps. This fluid
routing process provides the motive force for the module.

In [26], an initial hardware prototype of the MHP concept was build. However, the
prototype presents some limitations. In this chapter, we design, build and test a new im-
plementation of the MHP concept—the MHP 2. In this implementation, the modules are
designed for movement in the 2D space. We use the term faces to refer to the 4 vertical faces
of the module only. Additionally, we use the robot to complete a translation task, where the
robot needs to move towards a goal.

The remainder of this chapter starts by listing the requirements of the MHP 2 system, in
Section 3.2. Section 3.3 details the limitations of the initial hardware prototype that need to
be overcome in the new design. Section 3.4 describes the design and build process of the
electrical and mechanical components of the MHP 2. Section 3.5 presents an evaluation of the
performance of the MHP 2, performing the translation task, using two different controllers.
Section 3.6 concludes the chapter.

3.2 Requirements for the MHP 2

In [26], an MHP prototype was shown to be able to move towards a target. However, it does
not allow for control of the orientation of the robot. One of the aims of this work is to develop
effective pose control strategies, which can require coordination between the modules, and
additional information. Additionally, in [111], variants of the occlusion controller were
proposed, which require additional capabilities from the modules. As a result, the purpose of
building the MHP 2 is not only to overcome any issues of the initial hardware prototype had,
but also increase the module’s capabilities. The desired increased capabilities consist of the
ability to:

• Communicate with connected modules;

• Detect obstacles within a certain range;

• Sense the module’s orientation.
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Joining the capabilities listed above with the ones already present in the initial hardware
prototype, we are able to create a list of requirements for the design of the MHP 2 modules:

1. Reliable module connection detection: connections only detected if the modules are
separated less than 0.5 cm (i.e. sufficiently close to attract each other);

2. Goal detection: modules capable of detecting changes in light conditions from light
sources up to 120 cm away;

3. Obstacle detection: modules capable of detecting obstacles from 10 cm away;

4. Communication between connected modules: modules capable of exchanging 1 bit of
information every 10 ms;

5. Sensors and actuators accessible in 90 s of disassembly;

6. Rechargeable batteries;

7. External port to allow charging the batteries without requiring the disassemble the
module;

8. Ease of replacement of malfunctioning sensors and actuators;

9. Ease of access to the modules batteries;

10. Simultaneous operation start for all modules;

In addition to the aforementioned requirements, and to keep in line with the minimalistic
concept, we aim to reduce the size of the modules. However, this decrease in size needs to
be balanced with the robot being able to float on water.

3.3 Limitations of the original MHP modules

To ensure the MHP 2 represents a significant improvement over the original version a detailed
analysis of the initial hardware prototype is required. This will help to identify its main
limitations and areas of improvement. Figure 3.1 shows the initial hardware prototype
presented in [26].

The unreliability of the modules is the problem that has the most noticeable impact on the
robot’s performance. One of the most relevant factors in decreasing the module’s reliability is
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(a)

(b)

(c)

Fig. 3.1 Initial hardware prototype of an MHP module. (a) Assembled view. (b) Module’s
internal circuitry. (c) Module’s internal reservoir and pumps. Reprinted from [26].

the electrical connections. The use of cables, as seen in Figure 3.1b, increases the likelihood
of an incorrect or unreliable connection between different electrical components—increased
possibility of human error. Loose connections in the modules lead to a need for frequent
maintenance. The presence of the cables also has the negative effect of increasing the
complexity of the maintenance of the modules.

The connection sensor is a second contributor to the unreliability of the initial hardware
prototype. As part of an autonomous modular robot, each module is expected to reliably detect
connections with other modules. The initial prototype used magnetic switches as connection
sensors. These were unreliable, and led to the need for hard-coding the connections in the
control strategy when the robot configuration changes.

Another limitation of the system is the permanent placement of the sensors and actuators.
To ensure that the sensors are kept in place and no water gets in contact with the electronics
during the robot’s operation, they are permanently attached to the chassis of the robot. As a
consequence, it is not possible to replace malfunctioning sensors or broken actuators. This
limits the modules long term usability, particularly regarding the actuators, as they have a
higher fail rate.

The utilisation of a non-rechargeable battery provides an additional cause for the module’s
maintenance. Ideally, the modules should only be disassembled when replacing defective
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components or performing other type of maintenance. As the battery is placed under the
electrical circuit, every time it needs to be replaced a partial disassembly of the module
is required. This, as a consequence, has the increased possibility of electrical component
failure.

The last, although minor, limitation we identified in the system is the incapability of
having all the modules start operating at the same time. The system uses a magnetic switch
to allow the batteries to power the modules. As a result, a magnet needs to be placed in each
module for it to activate and start operation, leading to different starting times. While the
differences in starting time do not seem to have a significant impact on the usability of the
modules, correcting this issue can improve the overall performance of the robot.

3.4 Design of the MHP 2

The design of the MHP 2 involves the design of a new version of the electronics and chassis
of the modules. This section details the design and build process of the MHP 2.

3.4.1 Redesigning the circuit

In order to fulfil the given list of requirements for the circuitry of the system, appropriate
components need to be chosen. For the detection of connections between modules we use
a Hall-effect sensor. This sensor is capable of detecting changes in magnetic field in its
proximity. A magnet–sensor pair is placed in each of the module’s faces to provide the
ability to detect neighbouring modules. The chosen sensor has a range of 1 cm. This is an
appropriate range as we only want to detect established connections.

As we use a light source as a goal, we use a phototrasinstor as a goal sensor. A total
of four sensors are used per module, one on each of the module’s faces. Each sensor has a
detection beam of 120 º. In order to maximise the range of the sensor, we use an operational
amplifier. The amplification was determined so that the sensor gets saturated if the goal is
closer than 3 cm and to be able to reliably detect changes in the environment lighting up to
90 cm.

As we have limited space, we use a single sensor for both the communication and obstacle
sensing. We use four infra-red (IR) transceivers per module, one per face. The functionality
of the transceiver—communication or obstacle detection—is determined by the presence of
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a neighbouring module for each face. If a module’s face is connected to another module,
the transceiver can be used for communication, allowing one bit of information to be shared
between connected modules. If the face is free of connections, the transceiver can be used
as an IR range sensor to detect obstacles. Each transceiver has a detection beam of 45 º. In
order to obtain an adequate obstacle detection range we use an operational amplifier. The
amplification was determined so that the sensor can detect obstacles in a range of 5 cm to
10 cm.

To determine the orientation of each module we use an electronic compass. The compass
returns the angular offset of the module, relative to the orientation of the module when
powered on.

We power each module with two rechargeable 3.7 V lithium polymer batteries. These
batteries can be charged via a set of battery charging pins, when the robot is turned off.
Each module has a mechanical switch to change the connections of the batteries between the
charging pins and the circuit. In addition, we use an infra-red receiver to receive external
information. This allows the modules to receive information from an external source such as
a conventional television remote control.

The combination of the infra-red receiver and the power switch allows for three op-
erating modes: the Off/Charging mode, the Standby mode and the Active mode. In
the Off/Charging mode the batteries are disconnected from the rest of the circuit. In the
Standby mode the batteries are connected to the circuit allowing the sensors and LEDs to be
active, but the actuators do not respond to sensor readings. In the Active mode the actuators
respond to the sensor readings in accordance to the controller implemented.

Each module is actuated by four micropumps (TCS micropumps, model M200-Sub).
Each pump has dimensions of 29 mm × 16 mm × 16 mm, and is capable of a maximum flow
rate of 11 ml/s. To drive each pump we use an H-bridge motor driver.

Each module is controlled by an ATMega 324P processor. The processor was chosen
by taking into account the number of analog-to-digital converter (ADC), digital, pulse-
width modulation (PWM) and serial ports required for all the components above described.
Additionally, we use multiple light emitting diodes (LEDs) to signal active pumps, non-
connected faces and for debugging purposes.

In order to ensure the reliability of the system we placed all components into printed
circuit boards (PCBs). This not only eliminates the need for easily detached cabling, and all
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(a)

(b)

(c) (d)

Fig. 3.2 Final circuit design. (a) Simplified schematic of the main PCB, containing all of the
components with the exception of face sensors. (b) Simplified schematic of the daughter
PCB, containing the sensors for each face. (c) Relative positions of all the boards for a single
MHP module. (d) Produced PCBs; one main board and four daughter boards.

the aforementioned problems associated with it (unreliable, incorrect or loose connections),
but also ensures a more reliable connection between the components of the circuit.

Each module uses a total of five PCBs: one main board and four daughter boards. The
main board contains all of the electrical components with the exception of the sensors for
each face. The four daughter boards are identical and contain the sensors used in each face—
phototransistor, IR transceiver and Hall-effect sensor. By separating the sensors and the rest
of the components into different boards, easy replacement in case of sensor failure is obtained.
The four daughter boards connect perpendicularly with the main board and are placed at the
centre of each face. Figure 3.2 shows a simplified version of the PCBs (Figures 3.2a and
3.2b), their relative position (Figure 3.2c) and their implementation (Figure 3.2d).

The final size of the PCBs was determined concurrently with the design of the module’s
body. The final shape and size of the main board is a square with 58 mm side length. The
final daughter PCBs shape is close to a rectangle with a width of 21.75 mm and a height
of 15.25 mm. We made the design of the two PCBs using a software developed by RS
Components—Design Spark. Different versions of the circuit were implemented and tested
to obtain the final version used on the modules.
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(a) (b)

Fig. 3.3 Computer Aided Design (CAD) representation of the lower hull of the chassis. (a)
Isometric view. (b) Top view.

3.4.2 Redesigning the chassis

Placing all the components in PCBs not only increases the reliability of the system but also
reduces the footprint of the electronics. As a consequence, the module’s size is more easily
decreased. The body of the modules (chassis) was redesigned using Autodesk Inventor
Professional 2016 and obtained through 3D printing.

The module’s chassis redesign involves the redesign of two different components: the
lower hull and the upper hull. The lower hull houses the actuators and the internal water
reservoir. The upper hull houses the electronics and power of the module. In addition, we
need to ensure that no liquid moves from the lower hull into the upper hull, under the risk of
damaging the electronic components of the module.

As we need to place four pumps in each module, the size of the actuators becomes the
biggest limiting factor in the module’s size reduction. At the time of development, to the
best of our knowledge, the micropumps we use were the smallest, fully submersible pumps
commercially available.

In both implementations of the MHP, the lower hull has a square cross-section and has
four ports, one per face, that connect the internal reservoir and the environment. In the
original configuration, the pumps were placed in the center of the water reservoir, pointing
towards the faces (Figure 3.1c) and directly connected to the ports of each face. In order to
save space, each pump is placed on an internal wall of the lower hull. Each pump outlet is
then connected via a pipe to the port in its respective face. Eight cut-outs (two per face) were
made to house the magnets that connect the modules. By rearranging the placement of the
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(a) (b)

Fig. 3.4 CAD representation of the upper hull of the chassis. (a) Isometric view. (b) Bottom
view.

pumps, we are able to reduce the module’s side length close to 20%—from 80 mm to 65 mm.
Taking into account requirements from other components, the final side length of the module
in 67.5 mm. This corresponds to a reduction in side length of approximately 15%. The final
height of the lower hull is 35 mm, with a 4 mm bottom wall. A complementary tab and notch
per face help to align connected modules. Figure 3.3 shows two different perspectives of the
design of the lower hull.

The design of the upper hull required careful calculation of where all the sensors will be
placed. Three openings per face were made for the phototransistor, IR sensor and magnet.
A cut-out was made in the internal side of each face for the Hall-effect sensor. On the
internal walls of each face, a support for the daughter boards was created; the daughter
boards latch into these supports. The main board is then supported by the four daughter
boards. Four rectangular cut-out were made in the center of each face. These cut-outs
are covered with a layer of transparent polyethylene. This allows the sensors to retrieve
information, while preventing water from entering. Four openings were made in the bottom
of the section to allow cables form the pumps to go from the internal reservoir into the upper

hull. Complementary pieces (hereby designated pump links) to these openings are glued to
the cables of the pumps. By using these links, we are able to replace malfunctioning pumps
when necessary, without having to replace larger components of the chassis. Four triangular
legs make the connection with the lower hull. The two hulls and the pump links are hold in
place by friction. Figure 3.4 shows two different perspectives of the design of the lower hull.

To protect the top of the electronics from any water that might overflow during operation,
we designed a lid to the module. It consists of a thin layer of plastic, with openings for the
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Table 3.1 Waterline level for different module heights.

Robot Submerged Distance between water
height height and top of the robot

65 mm 61.4 mm 3.6 mm

75 mm 58.1 mm 16.9 mm

80 mm 57.1 mm 22.9 mm

mechanical switch, programming pins and IR receiver. The pump and connection LEDs are
visible through the closed module lid, allowing the status of the module to be ascertained
during operation.

To determine the final height of the module we need to take into account requirement 13,
that is, that the module should float on the water surface. To do this we need to consider the
Archimedes’ principle:

ρob ject

ρ f luid
=

mob ject

mdisplaced f luid
, (3.1)

where ρ and m represent the density and mass, respectively, of the object and fluid.

We tested different dimensions for the height. Table 3.1 shows the level of the water
for the three heights tested. To avoid the water interfering with sensor readings, we need
the water line to be below the sensors. The water line was below the sensors only for
module heights of 75 mm and 80 mm. To avoid the risk of water getting into contact with the
electronics, the final module height was chosen to be 80 mm.

All of the parts of the chassis were 3D printed, using a Stratasys Mojo 3D printer, with
ABS (Acrylonitrile butadiene styrene) plastic. While ABS is waterproof, initial designs
indicated that, if the modules were on water for extended periods of time (more than two
hours), water was able to get in. The leak points were identified to be the small gaps between
the upper hull and the small piece used for passing pump cables (pump link), as well as
the small intervals between printed layers. As a result, in order to ensure that no water
gets in contact with the electronics, the upper hull receives a coating of resin, to ensure full
waterproofing.

Figure 3.5 shows the final version of the new implementation of the MHP module. A
total of six modules were built.
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(c) (d) (e)

Fig. 3.5 Physical implementation of the MHP 2. (a) Assembled module. (b) Side view. (c)
Top view. (d) Internal circuitry. (e) Internal reservoir and pumps. I: lid. II: upper hull. III:
lower hull. A: IR transceiver (communication and range sensing). B: Phototransistor (goal
detection). C: Magnet for connection detection. D: Hall-effect sensor. E: Pump input/output
port. F: Attachment magnets. G: Programming pins. H: Module switch and charging pins. J:
IR receiver (remote control). K: Alignment features. L: Microcontroller. M: Micropump. N:
Pump-port connecting pipe.

3.4.3 Comparison between the initial hardware prototype and MHP 2

With the new dimensions and component placement, the MHP 2 robot has 63.3% of the
volume and 73.2% of the mass of the initial hardware prototype. Table 3.2 summarises the
differences between the two implementations.
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Table 3.2 Comparison of characteristics between the two MHP module implementations.

Characteristics Initial hardware prototype MHP 2
Dimensions [mm] 80×80×90 67.5×67.5×80

Weight [g] 272 199
Processor ATMega 32U4 ATMega 324p

Actuator (pumps) TCS M200-sub TCS M200-sub

Light detection Photo resistor
Phototransistor

(Vishay VEMT4700)

Connection detection Magnetic switch
Hall-effect sensor

(Honeywell SL353HT)

Obstacle detection ✗ IR Transceiver
Communication ✗ (Vishay TCND5000)

Simultaneous start ✗
IR Recievere

(Vishay TSOP6438TR)

Rechargeable batteries ✗ ✓

3.5 The MHP 2 in action: Impact of communication

While we improved the capabilities of the MHP 2 modules, they are still fairy limited. As
a result simple control strategies are required to operate them. A study of the movement
capabilities of an MHP robot was conducted in [26]. The robot was shown to perform well
in a translational task with an occlusion-based controller. The robot achieved high success
rates and showed robustness to actuation noise [26]. However, the controller used allowed
some actuators to be active, with no impact on the robot’s movement.

In this section, we perform physical experiments to validate the MHP 2 robot and explore
the impact that the inclusion of communication in the controller can have on the performance
of the robot when completing a translation task. We are particularly interested in the effects
communication can have on energy consumption.

We compare the performance of the occlusion based controller used in [26] (adapted
from [109]), and a variant controller, with communication between modules. We denote
the occlusion based controller as dec and the variant presented in [111] as dec-com. Using
the dec controller, an external pump is active if its respective face does not detect the goal.
On the other hand, the dec-com controller only activates an external pump if the goal is not
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Fig. 3.6 Comparison of the forces acting on the robot for both controllers. The goal point
is represented by g. The arrows represent the actuation force caused by each active pump
(blue) and the net force acting on the robot (black). (a) Forces acting on the robot for the dec
controller. (b) Forces acting on the robot for the dec-com controller

detected by its respective face, while being detected by a paired (parallel) external face. This
would not be possible if the modules were not able to exchange information.

Figure 3.6 shows an example of the active pumps of a robot, using the dec (Figure 3.6a)
and dec-com (Figure 3.6b) controllers, in the same situation. For both controllers, the net
force acting on the robot is the same. This suggests that the velocity and trajectory of the
robot should not change, in a given situation, when changing the controllers. As the forces
acting on the robot are symmetric with respect to the center of mass, the robot is expected to
perform a purely translational movement.

3.5.1 Experimental setup

To evaluate the impact of the presence of communication we undertake physical experiments
with the MHP 2 system. We compare the performance of the occlusion based controller, both
with and without communication. For all trials undertaken we use a robot with four modules,
arranged in a 2×2 configuration.

Figure 3.7 shows an illustration of the experimental environment, a water tank of 115 cm
length and 55 cm width. The water level is deep enough such that the robot can float freely
without touching the bottom of the tank. The environment is unobstructed, containing only a
single robot. In the pre-trials performed, if the robot hit the glass boundaries of the water
tank, it stopped moving. We hypothesise that the friction between the robot and the glass
walls were higher than the thrust force the robot is capable of generating. To counteract this
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60cm

Fig. 3.7 Illustration of the experimental setup. A water tank of dimensions 115 cm and 55 cm
with a 2×2 robot shown on the right. The goal is represented as a lamp on the left, outside of
the tank. The dashed green and orange lines represent the start and finish lines, respectively.
Thick blue lines indicate the presence of an elastic-band boundary.

effect, elastic bands are attached to three sides of the tank—two large sides and small side
closer to the starting position.

At the beginning of each trial the robot starts at one end of the tank, approximately
equidistant to the tank’s long boundaries, as illustrated in Fig. 3.7. The robot’s starting
orientation is chosen randomly. The robot is tasked to move towards the goal, which is
represented by a white LED lamp (806 lumens) near the other end, but outside, of the tank.
All trials are recorded using an overhead camera.

Each trial lasts 120 s. A trial is considered successful if, before the time limits, the robot’s
centroid reaches the finish line. The finish line is placed 60 cm nearer to the goal than the
line where the robot started; the start and finish lines are determined by post-analysis of the
video recordings. We perform two sets of experiments, composed of 30 trials each. One set
of trials is performed for each controller.

3.5.2 Controller implementation

The two controllers we use are fully decentralised and reactive [111]. Each module runs
exactly the same controller. The controllers use binary sensor readings. For the goal detection,
this is realised by using pre-defined threshold values, which were calibrated experimentally
to suit the environmental setup. Every module face is numbered, from 1 to 4, in a counter-
clockwise manner.
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Table 3.3 Truth table for the dec controller. We use p to represent the pump activation state;
d and c represent the light and connection sensor readings of the face, respectively. Active
pumps and sensors are represented with a 1. Inactive pumps act as inlets.

c d p
0 0 1
0 1 0
1 0 0
1 1 0

As mentioned above, in this section, we are focussed on the differences in energy
consumption between controllers. As the vast majority of the literature on modular robotics is
focused on self-reconfiguration/self-assembly, no direct comparison with controllers from the
literature is performed. In [111], simulation results are used to compare the performance of
these controllers with a centralised controller from the literature. However, as this controller
requires global positioning and the modules do not have this capability, it would require the
robot to be tethered to a computer, performing the tracking of the robot, to determine the
pump outputs, which could impact the movement of the robot.

3.5.2.1 Occlusion based controller (dec controller)

The dec controller is an adaptation of the controller proposed in [109]. The controller is
designed to run on each face; the activation of the pump (p) for each face is independent of
the remaining faces. The controller uses only information from the light (d) and connection
(c) sensors. Table 3.3 shows the truth table of the controller for each face based on the sensor
readings. The dec controller can run on a face level and does not require run-time memory.
If a face is external (no connection, c = 0) and does not detect the goal (d = 0), the pump
connected to the output of that face fires (p = 1). In any other situation, the pump is inactive
(p = 0). As a result, occluded faces push the module, while faces detecting the target do
nothing.

The controller implementation is described in Algorithm 1. Lines 6–14 implement the
truth table of the controller. The sensor values of the current face are read, and used to
determine whether to activate the current face’s pump. Lines 15–19 ensure that a single
module will not fire all pumps simultaneously. Once the status of all pumps is set, if all
pumps are active, they are deactivated. If all pumps fire, there would be no water inlet,
creating a very low pressure in the water reservoir. This has the potential risk of damaging
the actuators. By adding this condition, we ensure that all pumps cannot fire simultaneously.
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Algorithm 1 dec controller implementation
1: ck, dk and pk be the states of the sensors and pump of face k
2: n f aces = 4
3: tcycle = 100 ◃ Time in milliseconds.
4: loop
5: t1← time
6: for k← 1,n f aces do ◃ Go through all faces.
7: ck← Connection sensor reading ◃ Get connection sensor readings.
8: dk← Goal sensor reading ◃ Get light sensor readings.
9: if ck = 0 and dk = 0 then ◃ If external face and occluded, activate pump.

10: pk← 1
11: else ◃ Otherwise, deactivate pump.
12: pk← 0
13: end if
14: end for
15: if p1 = p2 = p3 = p4 = 1 then ◃ If all pumps active, deactivate them.
16: for k← 1,n f aces do
17: pk← 0
18: end for
19: end if
20: t2← time
21: if t2− t1 < tcycle then ◃ If the loop was faster than the minimum cycle time, wait.
22: wait(tcycle− (t2− t1))
23: end if
24: end loop

Algorithm 1 is run on a continuous loop over time. Due to the limited response time of the
pumps, we ensure the pump states are only updated up to ten times per second (lines 21–23).

3.5.2.2 Occlusion based controller with communication (dec-com controller)

The dec-com controller variant uses the same information as the dec controller. Additionally,
it takes into account sensor information from the parallel face [111]. As a result, a pump of a
given face is only active (p = 0) if it is occluded (d = 0) and the parallel external face is not
occluded ( d′ = 1).

Table 3.4 shows the truth table of the controller for each face based on the sensor readings
and information from the paired face. When two modules are connected, the information is
propagated through the communication between the modules.
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Table 3.4 Truth table for the dec-com controller We use p to represent the pump activation
state; d and c represent the light and connection sensor readings of the face, respectively, and
d′ the sensor reading of the paired external face.

c d d′ p
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

The controller is implemented as described in Algorithm 2. For each face the controller
reacts not only based on its own sensor readings, but also based on the whether the paired
external face detects the goal or not. As with the previous controller, the dec-com can run
on a face level and requires no run-time memory. However, in our implementation we use
memory to store messages coming from neighbouring modules. As the controller cycles
through the faces, and a connected face receiving a message will not use it, the message need
to be stored until the paired face requires that information to assess its pump activation state.

Lines 7–19 implement the steps necessary for each module to react in accordance with
the presented in Table 3.4. If a connected module is detected by the current face, the module
starts by reading the message coming from the neighbouring module. The message is
received by the IR transceiver, and corresponds to a 1 or 0, for whether the parallel face of
the neighbouring module is able or not to detect the goal, respectively. The message is stored
in place of the current face’s light sensor reading. The module then sends the paired face
sensor reading to its neighbour. If the current face is not connected, the reading of the light
sensor is done as for the dec controller. Then, the module makes a decision on whether to
activate the pump based on the connection sensor and the light sensor of the current face, as
well as the light sensor of the paired face. For this controller, we also ensure the pump states
are only updated up to ten times per second (lines 22–24). In this case, is not only due to the
limited response time of the pumps, but also to minimise errors in the communication.
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Algorithm 2 dec-com controller implementation
1: Let k and l be the current and paired faces; ck, dk and pk are the states of the connection

and light sensors and pump of face k, respectively.
2: Le mk be the message sent by the module’s face k.
3: n f aces = 4
4: tcycle = 100 ◃ Time in milliseconds.
5: loop
6: t1← time
7: for k← 1,n f aces do ◃ Go through all faces.
8: ck← Connection sensor reading ◃ Get connection sensor readings.
9: if ck = 1 then ◃ If connected to another module.

10: dk←Message ◃ Read message from neighbouring module.
11: mk← dl ◃ Send paired face sensor reading to neighbouring module.
12: else
13: dk← Goal sensor reading ◃ Get light sensor readings.
14: end if
15: if ck = 0 and dk = 0 and dl = 1 then ◃ If external, occluded and paired.
16: pk← 1
17: else ◃ Otherwise, deactivate pump.
18: pk← 0
19: end if
20: end for
21: t2← time
22: if t2− t1 < tcycle then ◃ If the loop was faster than the minimum cycle time, wait.
23: wait(tcycle− (t2− t1))
24: end if
25: end loop

3.5.3 Results

In this section we present and discuss the results obtained in the physical experiments. We
compare the performance of the two controllers using three metrics—time taken, energy
consumed and power used. We also compare the trajectories the robots follow with the
trajectories predicted under our assumptions. The dec and dec-com controllers had a success
rate of 90% (27 out of 30 trials) and 100% (all 30 trials), respectively. Figure 3.8 shows a
series of snapshots from a typical trial using the dec controller.
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Fig. 3.8 Snapshots of a trial with a physical 2×2 MHP robot using the dec controller, taken
at (from top to bottom) t = 0s, t = 4s, t = 9s, t = 12s, t = 18s, and t = 22s. The green and
orange lines represent the start and finish lines respectively.
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Table 3.5 Summary of the results for time, energy and power for the two controllers.

Metric Controller Min. Max. Avg.

Time [s]
dec 12.0 32.0 19.5

dec-com 13.0 95.0 38.0

Energy [eu]
dec 53.0 214.0 118.9

dec-com 18.0 84.0 34.8

Power [pu]
dec 4.42 7.21 6.03

dec-com 0.37 2.06 1.09

3.5.3.1 Time, energy and power results

To obtain an estimate of the energy expenditure we define 1 energy unit (eu) as the amount
of energy expended by a single pump in a single frame (1 s)1. The energy E(t) (in energy
units) used by an MHP robot, comprised of N modules, at a given time frame t is given by:

E(t) =
N

∑
e=1

f

∑
j=1

pe j, (3.2)

where pe j corresponds to the activation state of the pump belonging to module e in face j,
and f to the number of faces of each module ( f = 4 for robots moving in 2D and f = 6 for
robots moving in 3D). The total energy ET used in a trial with T frames is given by:

ET =
T

∑
t=1

E(t), (3.3)

Additionally, we define 1 power unit (pu) as the number of energy units expended by the
MHP robot per frame. The power P (in power units) used by a 2×2 MHP robot in a trial is
given by:

P =
ET

T
. (3.4)

We calculate the performance metrics from the video footage obtained conducting the
experiments. Figure 3.9 compares the results of each controller for time taken (Figure 3.9a),
energy consumption (Figure 3.9b) and power usage (Figure 3.9c). Table 3.5 summarises the
results for each set of trials.

1As the modules do not have capabilities that allow them to measure the energy used by a pump, we
determine the amount of energy expended form the number of active pumps during the trial. Additionally, we
assume that all pumps use the same amount of energy



3.5 The MHP 2 in action: Impact of communication 49

(a)

(b)

(c)

Fig. 3.9 Time taken, energy consumed and power required for a physical 2×2 MHP robot to
move by 60 cm towards the goal using the dec and dec-com controllers. Successful trials
only; the boxes on the left and right represent 27 and 30 trials, respectively.
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The dec and dec-com controllers, while having a similar minimum completion time,
require an average time of 19.5 s and 38.0 s, respectively, across the successful trials. This
difference is significant, and corresponds to an increase in time taken of 94.9% when using the
dec-com controller. When the controllers were introduced, it was expected that completion
times for both controllers should be identical. The dec-com controller, when compared with
the dec controller, saves energy by not actuating pumps that have no impact on the net force
acting on the robot. While similar minimum completion times are in agreement with this, the
average and maximum completion times are not.

The robot uses significantly less energy at a significantly lower power rate when using the
dec-com controller over the dec controller. The successful trials of the dec controller use,
on average, 118.9 energy units per trial at a rate of 6.03 power units . The successful trials of
the dec-com controller use, on average, 34.8 energy units per trial at a rate of 1.09 power
units. This corresponds, on average, to an energy reduction of 70.7% and a power reduction
of 81.9% when using the dec-com controller, rather than the dec controller. Note that for
the energy comparison, the minimum energy consumed by the dec controller is similar to
the maximum energy spent by the dec-com controller, which agrees with what is expected
from the controller. However, the average energy reduction is, once more, higher than the
maximum expected value (66%).

From the definition of power units, it would be theoretically expected that the reduction
in power would be the same as the reduction in energy. However, as the completion times are
significantly different, the reduction in power usage is greater than the reduction in energy
consumption. This also justifies the differences in range o power units used. We expected
the dec controller to range between 4 and 6 power units used while the dec-com controller
should range between 2 and 4 power units used. Neither controller performed within the
expected ranges (Table 3.5). However, the discrepancy between the results and theory is
higher for the dec-com controller.

The differences between the results and the expected outcome will be discussed in the
next Section.

3.5.3.2 In-depth investigation

From the differences in the behaviours of controllers illustrated in Figure 3.6, and since the
force acting on the robot and the point of application remain the same, the theory suggests that
other than a reduction of the number of pumps active, there should be no differences, such
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Fig. 3.10 Number of active pumps of a physical 2×2 MHP robot during two successful trials
using the dec controller and dec-com controller, respectively. Shaded areas correspond to
the respective theoretically possible range (see Fig. 3.11).

as completion time and trajectory. However, we observed significant differences between
the experimental results and the expected results. However, when testing a robotic system in
reality some discrepancies are to be expected. This phenomenon is referred to as the reality
gap [112]. In order to understand how this reality gap manifests itself in our results, we
analyse two successful trials of similar length, one for each controller.

Figure 3.10 compares the number of pumps active throughout each trial. For the dec

controller between five and seven pump were active at all times. For the dec-com controller
between zero and two pumps were active. In both cases this represents a departure from
how each controller should work in theory. Figure 3.11 shows the possible actuator firing
configurations (excluding symmetric ones), under the assumptions of the model presented
in [111] . Either four or six pumps should be active for the dec controller, while either two
or four pumps should be active for the dec-com controller.

One explanation for this difference is the detection angle of the goal sensors. The
model, presented in [111], on how the robots behave when using the controllers, rests on
the assumption that the sensors have a hemispherical field-of-view. In reality, the field of
view is smaller than this. For this reason, false-negative readings (situations where even
though the robot is not able to detect the goal, the proposed model of the sensors presumes
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(a) (b)

Fig. 3.11 Possible actuator firing configurations for 2×2 MHP robots assuming hemispherical
sensors, a single point goal and a fault-free system. (a) Robots running the dec controllers.
(b) Robots running the dec-com controllers. Arrows indicate the forces caused by active
pumps. When using the dec-com controller, communication prevents paired faces to both
activate their pumps.

g
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Fig. 3.12 Example of a false negative sensor reading. The real sensing angle is represented in
yellow while the theoretical sensing angle is represented in blue. According to the theoretical
model, the goal should be detected (it is in the blue area). However, the sensors used are not
able to detect it (goal is outside yellow area), leading to a false negative reading.
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it is), can occur (see Figure 3.12). From the observation of the trials’ footage, while some
false positives were identified (due to light reflections on the water tank glass walls), the
predominant error observed was false-negative sensor readings.

From the sample trials it is apparent that the presence of false-negative readings affect
the two controllers in different ways. When using the dec controller, false-negative readings
cause an activation of pumps, resulting in a higher than expected number of pumps firing.
Conversely, when using the dec-com controller, false-negative reading cause a deactivation
of pumps, resulting in a lower than expected number of pumps firing. Indeed there are
periods of time when no pumps are firing; the robot then moves only due to inertia.

This can help justify the results obtained in Section 3.5.3.1. When using the dec-com

controller, false-negative readings cause the robot to undergo periods of time when no pumps
are firing, slowing its progress. This can be particularly significant if it happens at the start of
a trial, where inertial forces are minimal and the robot has to drift slowly into a position in
which a sensor detects the goal. Even after detecting the goal for the first time, the moments
when no pumps are firing impact the trial completion time greatly, for the dec-com controller,
as the movement speed of the robot is greatly diminished. The different reactions to false
negatives contribute to the energy consumption reduction being higher than expected (based
on hemispherical sensors). Not only can a robot using the dec-com controller use fewer
pumps than expected, a robot using dec controller can use more pumps than expected.

Another element that affects the experimental results is that the robot tends to undergo
rotational movements, whereas the theory predicts purely translational movement. This can
be attributed not only to the aforementioned false-negative readings, but also to noise and
inaccuracies in the actuators. When developing the controller, one of the assumptions used
was that each active pump produces the same constant force along the face normal. However,
the physical pumps produce forces of similar, but not identical, magnitudes, which can also
be slightly offset from the face normal. In addition, the internal fluid routing through the
robot, which is not considered by the controller, could have an effect. On the other hand,
while the presence of noise and inaccuracies in the actuators has an effect on performance, it
also helps to show the robustness of the controllers to these elements.

3.5.3.3 Trajectory analysis

As both controllers are expected to produce the same net force, it is expected that both
controllers produce similar trajectories. While the trajectory for each trial is dependent on the
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(a)

(b)

(c)

Fig. 3.13 Expected trajectories for a 2×2 MHP robot. The green and orange dashed lines
represent the start and finish line, respectively. The blue dashed line shows the robot trajectory
for each case. (a) Robot with a single face detecting the goal. (b) Robot at a 45 º angle; two
faces detecting the goal. (c) Robot at an angle, different from 45 º; two faces detecting the
goal. For (a) and (b) the robot moves in a straight line; for (c) the robot moves fist into a
position where a single face detects the goal, and then it moves in a straight line.

starting orientation, there are only two generic forms the trajectories should take, based on
the theoretical analysis of the controllers. The two trajectory forms are shown in Figure 3.13,
for a 2×2 robot . If in the initial orientation, the modules’ face normals are either parallel,
perpendicular or at 45 º angle to the shortest line connecting the centre of the robot and the
goal, the robot travels in a straight line (Figure 3.13a). The net force generated by the robot
in this situation is perpendicular to the faces detecting the goal, and does not change—the
robot’s sensing status does not change. In any other situation the robot trajectory is divided
in two segments (Figure 3.13c). The length and angle of the segments is dependent on the
initial orientation of the robot. Since two different robot faces detect the target, the net force
acting on the robot moves it in the direction of the corner formed by the two faces detecting
the goal. The robot will move in this fashion until the sensing status changes, so that a single
robot face detects the goal.

Figure 3.14 presents the experimental and expected trajectories of the robot when travel-
ling towards the goal for the dec and dec-com controllers. The initial position and orientation
of the robot, as well as its trajectory, for each trial was obtained by using tracking software
(using the OpenCV computer vision library [113]) on the footage of the trial. The expected
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(a) (b)

(c) (d)

Fig. 3.14 Trajectories of the robot when traveling towards the goal. (a) Experimental
trajectories for the dec controller. (b) Theoretical trajectories for the dec controller. (c)
Experimental trajectories for the dec-com controller. (d) Theoretical trajectories for the
dec-com controller. The theoretical trajectories were determined from the robot’s initial
orientation for each trial.
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trajectories are obtained by taking into account the robots initial orientation in each trial. All
of the initial positions were corrected so that the robot starts at the origin, for every trial.

From the analysis of Figure 3.14a we can see that the dec controller produces a widespread
set of trajectories, with the robots frequently reaching the walls of the water tank. On the
other hand, the trajectories of the robot, when using the dec-com controller (Figure 3.14c),
pass more frequently through the center of the water tank. This difference could, once again,
be related to the different reactions of each controller to the false-negative sensor readings.
As the dec controller has a higher number of pumps active, at the beginning of each trial, it
is faster at moving out of the expected trajectory. For the dec-com controller, as the number
of active pumps is low, and the robot is frequently moving in and out of situations where no
sensor detects light, the robot has fewer opportunities to leave the centre of the water tank.

While some of the experimental trajectories have similarities with the theoretical trajec-
tories, in terms of expected behaviour, the majority is different. The differences between
the theoretical and experimental trajectories can be largely attributed to the same reasons
previously stated in Section 3.5.3.2—false-negative sensor readings and actuation noise. As
stated before, false-negative readings lead to a different number of active pumps than the
theoretical expected. A different number of active pumps changes the net force acting on
the robot. The actuation noise adds to this as it causes fluctuations in the net force, even
with constant sensor readings. The rotation caused by these two factors also plays a role in
changing the trajectory, as changes in the orientation of the robot lead to a different net force.

Additionally, one other factor that contributes to different experimental and theoretical
trajectories is actuator failure. Even if the robot is in a state where no false negative occur, if
one or more actuators fail, the net force generated will differ.

3.6 Summary

This chapter presented a new implementation of the MHP concept, the MHP 2 robot. An
MHP robot consists in a group of modules, physically connected (forming a single structure)
that route fluid between each other. Each module is a square/cube, and contains an internal
fluid reservoir. The fluid routing is performed by micropumps, that connect ports at the
center of each module’s face and the internal reservoir. The robot’s motive force is generated
through the routing of fluid between the environment and the modules’ internal reservoirs.
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So that it would be possible to test any developed strategies in the real world, a physical
implementation of the MHP concept was required. While an initial hardware prototype of
the system existed, it presented some limitations that prevented further work with the system.
We described limitations of the original system and how to overcome them in the design
process. We built six modules, where each module is able to actuate on the horizontal plane,
detect a goal (i.e. light source), communicate with connected modules and detect obstacles
within a limited range.

While the MHP 2 represents an improvement over the initial hardware prototype, it is
not without its limitations. While the amplification of the sensor readings allowed to design
the detection range of the modules to the environment where the modules will be used, the
values obtained were prone to high frequency noise introduced by the power source. The
addition of capacitors to each amplifier was required, to filter the sensor readings. While
this proved to be effective, the addition of components to the modules after completion
introduces additional failure points. One additional limitation of the system is the number of
hardware serial ports available in the ATMega324P. The lack of additional hardware serial
ports introduces complexity in the communication between modules. While this does not
limit the functionality and applications of the MHP 2, it once more introduces additional
points of failure in the system.

We reported on a series of experiments examining the performance of the dec and
dec-com controllers, in order to evaluate how the inclusion of communication in the controller
impacts the performance of the robot. The two controllers completed the task in 90% and
100% of the experimental trials. When comparing the performance of the two controllers,
the dec-com controller saved on average 70.7% energy at the expense of increasing the time
taken to reach the target on average by 94.9%.

From the results of the experiments, the addition of communication, for sharing sensing
information between modules, has an impact on the performance of the robot in a translation
task. However, translation is a single component of the movement a robot can perform. In
the next chapter we will be looking into the rotation component of the movement, which
will allow a robot to control not only its position, but also its orientation. We will develop
rotation controllers and, in a similar fashion to what was performed in this chapter, evaluate
the impact information sharing between modules can have on performance.





Chapter 4

Decentralised and Reactive Pose Control
of an MHP Robot

This chapter is based and extends on the author’s original contributions to Sections 1–4 of
the publication [114].

4.1 Introduction

In the previous chapter we tested the performance of an occlusion-based controller in allowing
an MHP robot to reach a goal. Additionally, the impact communication has on the robot’s
performance was tested. Although the ability to reaching a goal can be relevant, some
applications require the control of orientation of the robot to successfully complete the
task. Potential applications include inspection of underwater environments [82], where
robots need to reorient themselves to collect information from different angles, construction
of temporary structures [80], where robots are only able to connect to the structure if in
the correct orientation, and navigation in narrow passages, where the robot needs to be
correctly oriented to prevent collisions. In this chapter we look into minimalistic strategies
for controlling the pose of MHP robots. Specifically, we are interested in fully reactive and
decentralised control strategies.

Multiple solutions for controlling the orientation of modular robots can be found in the
literature. However, these solutions often require either centralised control [79, 84], external
sensors [63] or a significant level of computational capabilities from the robot [64]. Such
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resources, when reducing the modules’ size, are impractical, leading the controller design to
be minimalistic.

In this chapter, we aim to develop controller solutions that allow for the control of an MHP
robot’s pose. The control strategies should be decentralised and fully reactive, not requiring
run-time memory or arithmetic computations. This will allow them to be implemented in
robots with limited computational power. We look into solutions with different levels of
complexity, in order to be able to evaluate the trade off between complexity of the solution
and performance.

The remainder of this chapter starts with an analysis of the range of unique total forces
and net torques that can be produced by a 3D MHP robot of convex shape in Section 4.2.
Section 4.3 presents the problem formulation and Section 4.4 details the controller solutions.
The controllers are formally analysed in Section 4.5 for convex shaped robots. Section 4.6
extends the analysis for non-convex shaped robots. Section 4.7 concludes the chapter.

4.2 Force and torque analysis of an MHP robot in 3D

We aim to develop controllers that allow for efficient movement. The knowledge of the range
of possible actuation states, and respective forces and torques, can give perspective on the
possible amount of solutions for this problem. Additionally, this knowledge could prove
relevant for the development of control strategies not considered in this work. In this section,
we make an analysis on the range of forces and torques an MHP robot can generate. That is to
say, we derive the number of actuation states that produce unique total forces and net torques,
acting on the robot’s center of mass, for an MHP robot. The analysis focuses on the possible
actuation states, independently of controller used. This analysis gives an understanding of
the type and degree of granularity of movements the robot can perform. The analysis of the
range of movement of a 2D convex (rectangular) MHP robot was performed in [115]. Here,
we extend the analysis for 3D convex robots.

The robot consists of n connected cubic modules, that form a structure of dimensions
a1ε × a2ε × a3ε , where ε is the module side length, and a1, a2 and a3 are the number of
modules in the robot along the X1, X2 and X3 axes, respectively. The vector xe describes the
position of module e with regard to the robot’s centre. For simplicity, we assume all modules
share a common reference frame, that is, the reference frame of each module is aligned with
the robot’s reference frame. For a robot moving in an N-dimensional space, the normals to
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X1

X2xe
re j

u j

cm

ε

Fig. 4.1 Illustration of an 3×3 robot introduced the notation used in Section 4.2. xe represents
the vector describing the position of module e (top left corner module) with regard to the
robot’s center of mass (cm) . u j represents the outward normal vector of face j. re j represent
the position of actuator pe j of module e in face j.

the modules’ faces are given by u j = (−1) jni where j = 2i−1 or j = 2i, ni is an unitary
vector aligned with the Xi axis, and i = 1, . . . ,N corresponds to the world dimension. The
actuator pe j of module e, face j is positioned at re j = xe +0.5εu j. Figure 4.1 illustrates the
relationship between these variables. For the remaining of this this chapter, to simplify the
analysis, we set ε = 1.

The actuator force model is based on the following assumptions:

• Only external actuators (actuators that belong to external module faces) can be active,

• An active actuator applies a force fp along u j, on the robot at re j,

• Forces generated by internal fluid flow through the robot are neglected.

In this section, we assume that the world and robot reference frames are identical, and
are henceforth referred as cardinal axes. The total force and net torque acting on a robot, due
to active actuators, are then given by:

f =−∑
e, j

pe j fpu j, (4.1)

τ =−∑
e, j

pe j fp(re j×u j) (4.2)

4.2.1 Range of unique total forces

Theorem 1. The number of unique total forces that a convex MHP robot, with a1,a2a3 ∈ Z+,

can generate is η total
f = (2a2a3 +1)(2a1a3 +1)(2a1a2 +1).
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a1a2

a3

X1X2

X3

Fig. 4.2 An a1×a2×a3 robot (all side lengths odd) with active actuator configuration that
achieves maximum force along X1. Green faces represent the faces with active actuators. No
actuators fire in the non-visible faces.

Proof. Consider a convex MHP robot, with a1,a2,a3 ∈ Z+. Along the X1 axis the minimum
and maximum forces occur when a2a3 actuators are active (see Figure 4.2);

f X1
min =−a2a3 fp, (4.3)

f X1
max = a2a3 fp. (4.4)

The robot can achieve any force that is an integer multiple of fp, between f X1
min and f X1

max,
including zero. As a result, the number of unique total forces the robot can produce along X1

is:
η

X1
f = 2a2a3 +1. (4.5)

Similarly, the number of unique total forces along the X2 and X3 axes are given by:

η
X2
f = 2a1a3 +1, (4.6)

η
X3
f = 2a1a2 +1. (4.7)

As the forces acting along each axis are independent (perpendicular axes), the total
number of possible forces that can be produced is :

η
total
f = η

X1
f η

X2
f η

X3
f = (2a2a3 +1)(2a1a3 +1)(2a1a2 +1). (4.8)

�
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a1a2

a3

X1X2

X3

Fig. 4.3 An a1× a2× a3 robot (all side lengths odd) with active actuator configuration
that achieves maximum torque along axis X3. Green faces represent the faces with active
actuators. The rotation axis is represented by the red line, going through the robot face. On
the non-visible faces the actuators in mirrored positions are firing.

4.2.2 Range of unique net torques

To cover all possible cases, we split the analysis of the number of unique torques into three
possible situations: torque acting along one, two or three of the axes defining the cardinal
axes. In other words, we consider separately the cases where the torque, when described in
the cardinal axes, contains one, two or three non-zero components.

Knowing the number of possible torques for each case, the total number of torques a
robot will be given by:

η
total
τ = η

single
τ +η

double
τ +η

triple
τ , (4.9)

where η
single
τ , ηdouble

τ and η
triple
τ are the number of unique torques with one, two or three

non-zero components, respectively.

4.2.2.1 Torque with a single non-zero component

Consider a convex robot, with a1,a2,a3 ∈ 2Z+−1 (all robot side lengths have an odd number
of modules). We first treat the case where the torque has a single non-zero component, applied
along either X1, X2, or X3.
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The maximum torque along X3 is obtained by:

pe j =

1, n⊤3 (xe×u j)< 0∧ ce j = 0;

0, otherwise,
(4.10)

where n⊤3 is the transpose of the vector defining axis X3 and ce j represents the connection
status of face j of module e and is defined by:

ce j =

{
1, face j of module e is connected with another module;

0, otherwise.
(4.11)

Figure 4.3 illustrates the actuator firing configuration described in Equation (4.10). Using
Equation (4.2) for this actuator firing configuration, we obtain a net torque of:

τ
X3
max(a1,a2,a3) = 2a3

[(
1+2+ · · ·+ a1−1

2

)
+

(
1+2+ · · ·+ a2−1

2

)]

= a3

(
(a1−1)(a1 +1)

4
+

(a2−1)(a2 +1)
4

)
=

a3(a2
1 +a2

2−2)
4

. (4.12)

Similarly, the minimum achievable torque is τ
X3
min(a1,a2,a3) = −τ

X3
max(a1,a2,a3). The

same analysis can be performed for axis X1 and X2, obtaining:

τ
X1
max(a1,a2,a3) =

a1(a2
2 +a2

3−2)
4

, (4.13)

τ
X2
max(a1,a2,a3) =

a2(a2
1 +a2

3−2)
4

. (4.14)

Remark. To ensure the rotation axis is constant, when torque is applied along X3, a pair of

actuators pe j placed at re j = (a1−1
2 ,x2,x3) and re j = (a1−1

2 ,x2,−x3), need to have the same

activation status, if x3 ̸= 0. Similarly, a pair of actuators pe j placed at re j = (x1,
a2−1

2 ,x3)

and re j = (x1,
a2−1

2 ,−x3) need to have the same activation status.

Lemma 1. For the case that a1,a2,a3 ∈ 2Z+−1, the robot can produce every integer torque

τX3 ∈ {−τ
X3
max(a1,a2,a3), . . . ,τ

X3
max(a1,a2,a3)}, along the X3 axis.

Proof. We prove Lemma 1 by induction.
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Base case: Consider the cases where a3 = 1. If a1 = 1 ∧ a2 = 1, the robot con-
sists of a single module; from Equation (4.2), no torque can be produced. If a1,a2 =

1,3, . . . ,k,∀k ∈ 2Z+ − 1, when the non-zero component of the torque is applied along
X3, this corresponds to the 2D case presented in [115] and every integer torque τX3 ∈
{−τ

X3
max(a1,a2,1), . . . ,τ

X3
max(a1,a2,1)} can be produced along X3 axis.

Inductive step: We assume that Lemma 1 is correct for a3 = 1,3, . . . ,k,∀k ∈ 2Z+− 1.
When a1×a2×1 modules are added along X3, symmetrically about the robot’s center of
mass, the position of the existing modules does not change. This means that if the robot was
able to produce a given torque for a3 = k, that same torque can be produced for a3 = k+2.
For this reason, all integer torque values τX3 ∈ {−τ

X3
max(a1,a2,k), . . . ,τ

X3
max(a1,a2,k)} can be

produced.

Consider now the situation where the maximum torque τ
X3
max(a1,a2,k+2)= (k+2)(a2

1+a2
2−2)

4

is produced. Each of the two layers of a1× a2× 1 added modules is capable of produc-
ing every integer torque τX3 ∈ {−τ

X3
max(a1,a2,1), . . . ,τ

X3
max(a1,a2,1)}. So that the rotation

axis does not change, the two sets of a1×a2×1 added modules are capable of producing
every even torque τX3 ∈ {0,2, . . . ,2τ

X3
max(a1,a2,1)−2,2τ

X3
max(a1,a2,1)}. The odd torque val-

ues τX3 ∈ {1,3, . . . ,2τ
X3
max(a1,a2,1)−1} can be produced by activating/deactivating pumps

pe j for which re j = (a1−1
2 ,1,0) or re j = (1, a2−1

2 ,0). As such all integer torque values
τX3 ∈ {0, . . . ,2τ

X3
max(a1,a2,1)} can be produced.

Given that τ
X3
max(a1,a2,k+2)−τ

X3
max(a1,a2,k) = 2a2

1+a2
2−2

4 = 2τ
X3
max(a1,a2,1), the robot is

able to produce every integer torque τX3 ∈ {τX3
max(a1,a2,k+2)− τ

X3
max(a1,a2,k), . . . ,τ

X3
max(a1,

a2,k+2)}. By symmetry, the robot is able to produce every integer torque τX3 ∈{−τ
X3
max(a1,a2,

k+ 2), . . . ,−τ
X3
max(a1,a2,k+ 2)+ τ

X3
max(a1,a2,k)}. Therefore, the robot can produce every

integer torque τX3 ∈ {−τ
X3
max(a1,a2,k+ 2), . . . ,τX3

max(a1,a2,k+ 2)} which concludes the in-
ductive step. �

Theorem 2. The number of unique net torques that a 3D convex MHP robot with a1,a2,a3 ∈
2Z+−1 is able to generate, with non-zero component along X3 is η

τ
X3 (a1,a2,a3)= a3

a2
1+a2

2−2
2

+1.

Proof. The minimum and maximum net torques the robot can generate are −τ
X3
max(a1,a2,a3)

and τ
X3
max(a1,a2,a3), respectively. From Lemma 1, the robot is able to produce all integer

torques between −τ
X3
max(a1,a2,a3) and τ

X3
max(a1,a2,a3). Since each actuator can only con-

tribute with an integer torque, the robot is not able to produce a non integer net torque value.
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Table 4.1 Number of unique torques for robots of different combinations of odd (2Z+−1)
and even (2Z+) side lengths.

Robot side lengths Axis
a1 ∈ a2 ∈ a3 ∈ X1 X2 X3

2Z+−1 2Z+−1 2Z+ a1(a2
2 +a2

3−1)+1 a2(a2
1 +a2

3−1)+1 a3
a2

1+a2
2−2

4 +1

2Z+−1 2Z+ 2Z+−1 a1(a2
2 +a2

3−1)+1 a2
a2

1+a2
3−2

4 +1 a3(a2
1 +a2

2−1)+1

2Z+−1 2Z+ 2Z+ a1(a2
2 +a2

3)+1 a2
a2

1+a2
3−1

2 +1 a3
a2

1+a2
2−1

2 +1

2Z+ 2Z+−1 2Z+−1 a1
a2

2+a2
3−2

4 +1 a2(a2
1 +a2

3−1)+1 a3(a2
1 +a2

2−1)+1

2Z+ 2Z+−1 2Z+ a1
a2

2+a2
3−1

2 +1 a2(a2
1 +a2

3)+1 a3
a2

1+a2
2−1

2 +1

2Z+ 2Z+ 2Z+−1 a1
a2

2+a2
3−1

2 +1 a2
a2

1+a2
3−1

2 +1 a3(a2
1 +a2

2)+1

2Z+ 2Z+ 2Z+ a1
a2

2+a2
3

2 +1 a2
a2

1+a2
3

2 +1 a3
a2

1+a2
2

2 +1

As a result, the number of unique net torques the robot is able to produce is given by:

η
τ

X3 (a1,a2,a3) = 2τ
X3
max(a1,a2,a3)+1 = a3

a2
1 +a2

2−2
2

+1. (4.15)

�

Using the same analysis, when the torque is applied along X1 or X2, the number of unique
possible torques is given by:

η
τX1 (a1,a2,a3) = 2τ

X1
max(a1,a2,a3)+1 = a1

a2
2 +a2

3−2
2

+1, (4.16)

η
τX2 (a1,a2,a3) = 2τ

X2
max(a1,a2,a3)+1 = a2

a2
1 +a2

3−2
2

+1. (4.17)

The expressions obtained for the number of unique torques are only valid for robots
with all side lengths odd. However, robots with all side lengths even, or a combination of
even and odd side lengths are possible. Through the use of a similar analysis (presented in
Appendix B) we can obtain the number of unique torques possible with a single non-zero
component along one of the cardinal axes (the resulting rotation is performed along one of
the three cardinal axis). The results are presented in Table 4.1. The total number of unique
torques, for a given robot, applied along a single cardinal axis, corresponds to the sum of the
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number of torques possible along each axis, excluding the zero torque for two of the axes;

η
single
τ = η

τX1 +η
τX2 +η

τ
X3 −2. (4.18)

4.2.2.2 Torques with two non-zero components

Due to the complexity of the problem, we restrict the analysis to robots that have a1 =

a2 = a3 = a. Consider a convex robot with ai ∈ 2Z+− 1 and a1,a2,a3 ≥ 2. We start by
considering torques with two non-zero components, applied along X2 and X3, with the same
magnitude and sign. In these conditions, the resulting torque is applied along a new axis X2,3,
defined by the vector n2,3 = (0,1,1)1. The maximum torque around this axis is generated
when:

pe j =

1, n⊤2,3(xe×u j)< 0∧ ce j = 0;

0, otherwise.
(4.19)

The actuator firing configuration described in Equation (4.19) is illustrated in Figure 4.4.
Using Equation (4.2) for this actuator firing configuration, we obtain a net torque of:

τ
X2
max(a) = 2

(
2×1+4×2+ · · ·+(a−1)× a−1

2

)
+2a

(
1+2+ · · ·+ a−1

2

)
=

=
a3−a

6
+

a(a2−1)
4

=
5(a3−a)

12
, (4.20)

τ
X3
max(a) = 2

(
2×1+4×2+ · · ·+(a−1)× a−1

2

)
+2a

(
1+2+ · · ·+ a−1

2

)
=

=
a3−a

6
+

a(a2−1)
4

=
5(a3−a)

12
. (4.21)

To keep the X2,3 axis constant, the components of the torque along X2 and X3 need to be
identical, that is, τX2 = τX3 . As such, the number of unique torques along axis X2,3 will be
same as the total number of torques along X2, that can also be produced along X3.2 From
Lemma 1, we know that a robot with odd side lengths can produce all integer torques between
−τ

Xi
max(a) and τ

Xi
max(a). As such, the number of unique torques torques along axis X2,3 is

1As the torques along each of the components have the same magnitude and sign, the vector defining the
axis along which the resulting torque is applied has the same characteristics, that is, same magnitude and sign
for components X2 and X3. For simplicity we use n2,3 = (0,1,1)

2As the robot is a cube η
τ

X2 = η
τ

X3 .
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X1X2

X3

Fig. 4.4 An a×a×a robot with active actuators (shown in green) that achieves maximum
torque for the X2 and X3 components, simultaneously. This effectively generates a new axis,
along which the resulting torque is applied. The new axis is represented by the red line, going
through two of the robot edges. On the non visible faces the actuators in mirrored positions
are firing.

given by:

η
τ

X2,3 (a) = 2τ
X2
max(a)+1 =

5(a3−a)
6

+1. (4.22)

For a robot with all side lengths with an even number of modules, and using Equa-
tion (4.19), the maximum torque is given by:

τ
X2
max(a) = 2

(
1× 1

2
+3× 3

2
+ · · ·+(a−1)× a−1

2

)
+2a

(
1
2
+

3
2
+ · · ·+ a−1

2

)
=

=
a3−a

6
+

a3

4
=

5a3−2a
12

. (4.23)
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As a robot with all side lengths even can produce every half-integer torque for each torque
component3, the number of unique torques is given by:

η
τ

X2,3 (a) = 4τ
X2
max(a)+1 =

5a3−2a
3

+1. (4.24)

The results obtained for the number of unique torques with two non-zero components in
Equations (4.22) and (4.24) only take into account a single case—same magnitude and sign
for both torque components. However, for each

τX2
τX3

value, the resulting torques is applied
along a different axis. As such, the number of torques that can be produced for each torque
component is independent of the other. For a robot with odd side lengths, the total number of
unique torques the robot can produce when the torque has non-zero components along X2

and X3 is given by:

η
τ

X2,3 = (η
τX2 −1)(η

τ
X3 −1)+1 =

(
5(a3−a)

6

)2

+1, (4.25)

where the cases removed correspond to situations where the torque along one of the axis
is zero, causing a rotation along a single axis. For a robot with even side lengths, the total
number of unique torques the robot can produce with non-zero X2 and X3 components is:

η
τ

X2,3 = (η
τX2 −1)(η

τ
X3 −1)+1 =

(
5a3−2a

6

)2

+1. (4.26)

As with the case of torques with a single non-zero component, the total number of unique
torques a robot can produce with two non-zero components corresponds to the sum of the
number of possible net torques for each of the possible components pairs, excluding the zero
torques for two of the pairs:

η
double
τ = η

τ
X1,2 +η

τ
X1,3 +η

τ
X2,3 −2. (4.27)

3As the torque has two non-zero components, and each components needs to have the same magnitude and
sign, producing half integer torques for each component is possible. If the components were independent of
each other, producing half-integer torques for one component would alter the torque for the other component.
In this case, we assume only integer torques could be produced.
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X1X2

X3

Fig. 4.5 An a×a×a robot with active actuators (shown in green) that achieves maximum
torque for all components simultaneously. This effectively generates a new axis, along which
the resulting torque is applied. The new rotation axis is represented by the red line, going
through two of the robot vertex. On the non-visible faces the actuators in mirrored positions
are firing.

4.2.2.3 Torque with three non-zero components

Due to the complexity of the problem, we restrict the analysis to robots that have a1 =

a2 = a3 = a. Consider a convex robot with ai ∈ 2Z+− 1 and a1,a2,a3 ≥ 2. We start by
considering torques with three non-zero components, applied along X1, X2 and X3, with the
same magnitude and sign. In these conditions, the resulting torque is applied along a new
axis X1,2,3, defined by the vector n1,2,3 = (1,1,1)4. The maximum torque around this axis is
generated when:

pe j =

1, n⊤1,2,3(xe×u j)< 0∧ ce j = 0;

0, otherwise.
(4.28)

The actuator firing configuration described in Equation (4.28) is illustrated in Figure 4.5.
Using Equation (4.2) for this actuator firing configuration, we obtain a net torque (for each

4Similarly to Section 4.2.2.2, for simplicity we use n1,2,3 = (1,1,1)
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of the components) of:

τ
Xi
max(a) = 4

(
2×1+4×2+ · · ·+(a−1)× a−1

2

)
=

a3−a
3

. (4.29)

To keep the X1,2,3 axis constant, the components of the torque along X1, X2 and X3 need
to be identical, that is, τX1 = τX2 = τX3 . As such, the number of unique torques along axis
X1,2,3 will be same as the total number of torques along X1, X2 or X3. From Lemma 1, we
know that a robot with odd side lengths can produce all integer torques between −τ

Xi
max(a)

and −τ
Xi
max(a). As such, the number of unique torques torques along axis X1,2,3 is given by:

η
τ

X1,2,3 (a) = 2τ
X1
max(a)+1 =

2(a3−a)
3

+1. (4.30)

A similar analysis can be made for all side lengths with an even number of modules. The
maximum torque for such a robot is given by:

τ
Xi
max(a) = 4

(
1× 1

2
+3× 3

2
+ · · ·+(a−1)× a−1

2

)
=

a3−a
3

(4.31)

As a robot with all side lengths even can produce every half-integer torque for each torque
component5, the number of unique torques along X1,2,3 is given by:

η
τ

X1,2,3 (a) = 4τ
X1
max(a)+1 =

4(a3−a)
3

+1. (4.32)

The results obtained for the number of unique torques with three non-zero components
in Equations (4.30) and (4.32) only take into account a single case—same intensity and
direction of rotation for torques in each axis. However, for each unique set of (

τX1
τX2

,
τX1
τX3

)

values, the resulting torque is applied along a different axis. As such, the number of torques
that can be produced for each torque component is independent of the other. For any cubic
robot, the total number of unique torques the robot can produce with non-zero X1, X2 and X3

5As the robot is rotating along three axis, and the torques need to be the same for each axis, producing half
integer torques is possible. If the torques were independent of each other, producing half-integer torques will
affect a torque along a different axis. In this case, we assume only integer torques could be produced.
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components is given by:

η
τ

X1,2,3 = (η
τX1 −1)(η

τX2 −1)(η
τ

X3 −1)+1 =

(
2(a3−a)

3

)3

+1, (4.33)

where the cases removed correspond to situations where at least one of the torque components
is zero, leading to the the cases with one or two non-zero components.

The aforementioned analysis gives us the control solution space for both translation
(forces) and rotation (torques) movements for an MHP robot and its relationship with robot
size. Having knowledge of the solution space benefits the development of control solutions,
where specific requirements, such as minimal energy consumption or movement efficiency
are required. In addition, having full knowledge of the solution space facilitates not only the
development of the control solutions presented in this work, but also future solutions.

4.3 Problem formulation

In the problem we aim to solve, the robot is required to reach the goal with a given orientation.
In this section, we formally define the problem. We describe the robot’s properties and
characteristics, as well as the environment.

Consider a liquid and unbound environment E = RN , N ∈ {2,3} of density ρ , which
contains a static goal at g ∈ E and a robot, but is otherwise obstacle-free. The robot’s body
has a rigid shape, A⊂ RN . Let ht(x) : RN → E denote a distance-preserving transformation
from the robot’s local reference frame to the global reference frame at time t. The robot then
occupies

ht(A) = {ht(x) ∈ E|x ∈A}. (4.34)

The robot is made of modules that are N-dimensional hyper-cubes of density ρ and
unit side length, that is, the modules are neutrally buoyant. Physical connections between
modules can be formed in each of the module’s 2N faces. This allows for robots of different
shapes (i.e. N-dimensional lattice configurations) to be built. In the following, we assume
the robot’s shape to be a hyper-rectangle, that is,

A= [−a1/2,a1/2]×·· ·× [−aN/2,aN/2]⊂ RN , (4.35)

where ai ∈ Z+. In these configurations, the robot comprises n = ∏
N
i=1 ai modules.
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Fig. 4.6 A 3×3 robot, exemplifying the rules to determine the face number in an MHP robot.

We assume that all modules of a robot are oriented in a consistent way, thereby having
a common sense of orientation within the robot’s own reference frame. Faces 2i− 1 and
2i, i = 1, . . . ,N, have their outward normal vectors anti-parallel and parallel to axis X local

i ,
respectively (see Figure 4.6).

Remark. In the previous section, we used two indexes to specify pumps and sensors of a

given module, in a given face. However, fro the remainder of this chapter, denoting the

module to which a pump or sensor belongs to is unnecessary, as every module uses an

identical controller. As such, we will only use the face index, and all definitions of sensors

and actuators are common to all modules.

Each module contains one binary contact sensor per face, which detects whether another
module is attached to that face:

c j =

{
1, face j is connected with another module;

0, otherwise.
(4.36)

Modules with ∃ j ∈ {1, . . . ,2N} : c j = 0 are referred to as boundary modules. All other
modules are referred to as interior modules.

Each module contains one binary goal sensor per face. The sensor detects whether the
goal is visible, that is, not occluded by the robot. It is mounted in the face center. Let
s j(t) ∈ E denote the position of goal sensor j at time t. Then,

d j =

1, ht(A)∩{αs j(t)+(1−α)g|α ∈ [0,1)}=∅;

0, otherwise.
(4.37)
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We assume a single goal in the environment, and that the robot cannot detect the goal from
faces with symmetrical normals simultaneously.

All modules of a given robot share M binary power lines, that allow information to be
shared between modules. Each power line transmits a single bit of information. The state of
the kth power line, bk, is

bk =

1, at least one module activates line k;

0, otherwise.
(4.38)

In other words, bk = 0 if and only if no module actives power line k.

The problem is formulated with an MHP robot in mind. As such, each module contains a
reservoir containing the same liquid as the environment. The reservoir is connected to all
of the module’s faces. Connected modules form a liquid network. Each face of a module
contains a binary pump. When turned on (p j = 1) the pump routes liquid from the reservoir
through the face into the adjacent module, if present, or the environment, otherwise. When
turned off (p j = 0) the liquid can freely move in either direction.

4.3.1 Objective

We assume that all modules are aware of a preferred orientation, O ∈ {1, . . . ,2N}, with
respect to the robot’s local reference frame, and that O = 1.6 The objective of the robot is
to reach the goal, in finite time, with orientation O. In particular, the face of the robot that
is oriented towards O (hereafter referred to as the preferred face) needs to make the initial
physical contact with the goal. Formally, let AO denote the set of points of the modules’
external faces that correspond to preferred orientation O (preferred face), AO = {−a1/2}×
[−a2/2,a2/2]×·· ·× [−aN/2,aN/2]⊂A. The condition that satisfies the objective is given
by:

∃T : (∀t < T : h−1
t (g) ̸∈A)∧ (h−1

T (g) ∈AO). (4.39)

We assume that at time t = 0, |h0(0)−g|>
√

(a1
2 )

2 + · · ·+(aN
2 )2. In other words, in the

initial position, the robot can freely rotate without touching the goal.

6The controllers can be adapted to any preference, or, alternatively, be generalized, if preference O is
provided as input.
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4.4 Controller solutions

The control of the pose of a robot can be divided into two components: position control and
orientation control [116]. In the previous chapter, we used occlusion based controllers to
move the robot towards a goal; the movement of the robot was dependent on which faces did
not detect the goal, rather than the ones that did. When controlling the position component
of the robot’s pose, in the proposed solutions, we use a similar approach. On the other hand,
for the control of the orientation component of the robot’s pose, the control is based on the
faces that are able to detect the goal.

When possible, we separate the components of the pose control strategies so that they
occur sequentially, rather than simultaneously. This allows the robot to first reach the desired
orientation, and then translate towards the desired position. By separating the rotation and
translation movements, the only requirement for the robot to complete the task is that the
robot is able to rotate without touching the goal, in its initial position—the initial distance
condition.

The controller solutions we propose are fully decentralised, with every module using an
identical controller. Each module sets the state of its pumps according to a control policy,
gp(c,d,b). This control policy is dependent on the state of the shared power lines. Each
shared power line acts as both an input and output, with each module reading it to determining
its actuation states, and/or changing the power line state in accordance with its activation
policy, gb,k(c,d).7 Both policies are reactive—they do not need run-time memory. While a
module can take into account its local connectivity (c), it is unaware of further positional
information within the modular robot.

4.4.1 Pose control for robots moving in 2D

The controller solutions we propose, for a robot moving in 2D, allow a robot to control its
pose in 3 degrees-of-freedom (DoFs): X1, X2 and θ . The differences between the controllers
are based on different levels of information shared between modules. We present solutions
for modules with access to two, one or no shared power lines. For a robot with no shared
power lines we present two control variations, with advantages and disadvantages. For the
remaining cases, a single solution is presented.

7Note that the activation policy does not take into account the state of actuators or of the power line itself.
This is to prevent the power line from serving as a form of memory.
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4.4.1.1 2-bits shared power line (2D-2SP controller)

We previously stated that the translation is occlusion based. For the robot to reach the goal
with the desired orientation, all faces but the preferred should be occluded. As such, ideally,
the robot needs to be correctly oriented before it can start translating. This means that, if
the rotation and translation components of the movement are done separately, there are
three different movements a robot should be able to perform: clockwise rotation, counter-
clockwise rotation and translation. To differentiate between these three movements, two bits
of information (i.e. M = 2), is the minimum amount of information required.

The activation policies of the shared power lines, gb,1(c,d) and gb,2(c,d), are given by:

b1 = d2∨d3, (4.40)

b2 = d4. (4.41)

The control policy, gp(c,d,b), is given by

p1 = b1b̄2c̄1c̄3∨b2c̄1c̄4, (4.42)

p2 = b1b̄2c̄2c̄4∨b2c̄2c̄3∨ b̄1b̄2c̄2, (4.43)

p3 = b1b̄2c̄3c̄2∨b2c̄3c̄1, (4.44)

p4 = b1b̄2c̄4c̄1∨b2c̄4c̄2, (4.45)

where p j corresponds to the pump in face j. The first two terms of p j are responsible for
the rotation of the robot. For each face, one "corner" pump (e.g., c̄1c̄3) is active. Which
corner pump should be active depends on the direction of rotation. As only corner modules
activate pumps, and for two parallel faces, the pumps activated are symmetric, no undesired
translation occurs. The last term of p2 is responsible for the translation of the robot. As the
modules have full information abut the preferred face, only modules belonging to face with
normal anti-parallel to the preferred face’s normal, need to activate their pumps. For convex
robots, this occlusion-based strategy causes pure translation towards the goal [26, 109].

This means that as long as any face, other than the preferred face, detects the goal, the
robot rotates, with the direction of rotation being determined by which faces detect the
goal—counter-clockwise rotation for b1b̄2 = 1, clockwise rotation for b2 = 1, and translation
for b̄1b̄2 = 1. This ensures that the robot undergoes the minimum rotation required to reach
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Fig. 4.7 Decentralised pose control with 2-bits of communication (2D-2SP controller). Shown
are eight scenarios of a robot that needs to touch the goal (orange point) with its preferred
face (face 1). The goal is visible from any module face marked with orange. The blue and
black arrows correspond to the forces cased by the active actuators, and direction of the
movement of the robot, for each scenario. If the robot is not correctly oriented, it rotates,
with the direction of rotation dependent on the faces detecting the goal. Only when the robot
is correctly oriented does it translate.

the preferred orientation. Figure 4.7 shows all the different possible sensing states that a
robot can be placed in, and their respective actuation states, for this controller.

We state that two bits of information is the minimum required to produce the shortest
rotation to the preferred orientation. However, by using additional information it might be
possible to improve the controller. Table 4.2 compares the behaviours that can be obtained
using 4-bit and 2-bit of information shared between the modules. The behaviours obtained,
for the two cases are identical. This means that the addition of extra bits of shared information
would only increases the complexity of the controller without changing its behaviour.

4.4.1.2 1-bit shared power line (2D-1SP controller)

While using two bits of information gives the best possible result—shorter rotation—it is
still possible to ensure the task is solved when using one bit of information (i.e. M = 1).
However, the robot is only able to rotate in one direction. As a result, the modules are able to
determine that the robot is in the incorrect orientation, but not what is the rotation direction
that ensures the minimum rotation.

The activation policy of the shared power line, gb,1(c,d), is given by:

b1 = d2∨d3∨d4. (4.46)
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Table 4.2 Behaviours obtained by using 4 and 2-bit of shared information in the controller.
For the 4-bit case, the value of the shared power lines is given by b j = d j. For the 2-bit case,
the value of the shared power lines is given by Equations (4.40) and (4.41).

4-bit shared power line 2-bit shared power line
b1 b2 b3 b4 Behaviour b1 b2 Behaviour
0 0 0 1 CW Rot 0 1 CW Rot
0 0 1 0 CCW Rot 1 0 CCW Rot
0 1 0 0 CCW Rot 1 0 CCW Rot
0 1 0 1 CW Rot 1 1 CW Rot
0 1 1 0 CCW Rot 1 0 CCW Rot
1 0 0 0 Trans 0 0 Trans
1 0 0 1 CW Rot 1 1 CW Rot
1 0 1 0 CCW Rot 0 0 CCW Rot

In other words, the power line is active if and only if the goal is perceived by a non-preferred
face. The control policy, gp(c,d,b), is given by:

p1 = b1c̄1c̄3, (4.47)

p2 = b1c̄2c̄4∨ b̄1c̄2, (4.48)

p3 = b1c̄3c̄2, (4.49)

p4 = b1c̄4c̄1. (4.50)

The first term of p j is responsible for the rotation of the robot. The second term f p2 is
responsible for translation. In other words, if the power line is active (b1 = 1), the robot
rotates, otherwise it translates. Once more, one corner module per robot face activates its
pump to generate the rotation.

The controller allows for only counter-clockwise rotation. As all corner modules con-
tribute to the torque that creates the rotation, no undesired translation is produced. Similarly
to the previous controller, during translation, only the modules that belong to the face op-
posite to the preferred face are active. Figure 4.8 shows all the different possible sensing
states that a robot can be placed in, and their respective actuation states, for this controller. A
symmetric version of this controller can be created, using clockwise rotation.
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Fig. 4.8 Decentralised pose control with 1 bit of communication (2D-2SP controller). Shown
are eight scenarios of a robot that needs to touch the goal (orange point) with its preferred
face (face 1). The goal is visible from any module face marked with orange. The blue and
black arrows correspond to the forces caused by the active actuators, and direction of the
movement of the robot, for each scenario. If the robot is not correctly oriented, it rotates,
always in the same direction. Only when the robot is correctly oriented does it translate.

4.4.1.3 No shared power line (2D-0SP-V1 and 2D-0SP-V2 controllers)

While the previous controllers share small amounts of information between modules, some
situations could exist where communication between the modules in any form is inviable.
With no communication, each module only has local information. As a result, only some
of the modules have information about the orientation of the robot. For this reason, it is
not possible to preform rotation and translation separately. Therefore, the assumption that
the robot can rotate without touching the goal—initial distance condition—is not enough
to guarantee the success of these controllers. However, it is possible to obtain controllers
that can complete the task, depending on a conjugation of the robots initial orientation and
distance to the goal. We propose two solutions, where each module uses only the information
it can obtain from the environment (i.e. M = 0).

The control policy gp(c,d) for the first controller solution (2D-0SP-V1) is given by:

p1 = c̄1d̄1 ∨ c̄1c̄3d3 ∨ c̄1c̄4d4, (4.51)

p2 = c̄2d̄2 ∨ c̄2c̄4d̄4, (4.52)

p3 = c̄3d̄3 ∨ c̄3c̄2d3, (4.53)

p4 = c̄4d̄4 ∨ c̄4c̄2d4. (4.54)
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Fig. 4.9 Decentralized pose control without communication (2D-0SP-V1 controller). Shown
are eight scenarios of a robot that needs to touch the goal (orange point) with its preferred
face (face 1). The goal is visible from any module face marked with orange. The pumps in
all other faces are active, causing the robot to translate towards the goal. Up to two additional
pumps are active, causing the robot to rotate.

The terms of the equations are aligned based on the behaviour that they generate in the robot,
that is, the first column generates translation, the second column generates counter-clockwise
rotation and the last column generates clockwise rotation.

The first term of p j is c̄ jd̄ j. In other words, a pump gets activated if it belongs to an
external module face (c̄ j) from which the goal is not visible (d̄ j), due being occluded by the
robot itself. As this behaviour produces pure translation, if the robot is correctly aligned
towards the goal (i.e. d2 = d3 = d4 = 0), it only translates (see Figure 4.9). Otherwise,
rotation is needed. As no communication is permitted, the modules contribute to rotation
only if they have sufficient local information about the robot’s orientation to guarantee that
their actions are in agreement. For this reason, only modules at the corner of a configuration,
that can detect the goal, contribute to rotation. Figure 4.9 depicts all eight possible robot
orientations (defined by the sensors that are able to detect the goal), and shows for each one
the subset of the corner modules that contribute to rotation.

The control policy gp(c,d) for the second controller solution (2D-0SP-V2) is given by:

p1 = c̄1c2c3c4d̄1 ∨ c̄1c̄3d3 ∨ c̄1c̄4d4, (4.55)

p2 = c1c̄2c3c4 ∨ c̄2c̄4d2d̄4, (4.56)

p3 = c1c2c̄3c4 ∨ c̄3c̄2d3 , (4.57)

p4 = c1c2c3c̄4 ∨ c̄4c̄2d4. (4.58)
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Fig. 4.10 Decentralized pose control without communication (2D-0SP-V2 controller). Shown
are eight scenarios of a robot that needs to touch the goal (orange point) with its preferred
face (face 1). The goal is visible from any module face marked with orange. The pumps in
all other faces are active, causing the robot to translate towards the goal. Up to two additional
pumps are active, causing the robot to rotate.

As before, the terms of the equations are aligned based on the behaviour that they generate in
the robot, in the same order.

As with the previous controller, the first term of each equation contributes to the robot’s
translation. However, for this controller, every face other than the preferred constantly
contributes to the translation. As a result, the robot only actively translates if the preferred
face detects the target (see Figure 4.10). Another difference, when compared with the
2D-0SP-V1 controller, is that the corners of each face only contribute to the rotation of the
robot. In terms of rotation, this controller behaves in the same way as the previous—the
rotation terms of Equations (4.55)–(4.58), are the same as of Equations (4.51)–(4.54).

Remark. It is possible to obtain a controller variant of the 2D-1SP controller, that allows

both counter-clockwise and clockwise rotation, by bringing together the terms responsible

for the rotation of the 2D-0SP-V1 controller and the term responsible for translation of

the 2D-1SP controller. For this variation, while there is some translation during rotation,

the robot always moves away from the target. As a result, the initial distance condition is

enough to guarantee that the task is successful. The control policy and formal analysis of

this controller variant is presented in Appendix C.

4.4.2 Pose control for robots moving in 3D

When changing from movement in 2D space into movement in 3D space, the complexity
of the problem increases, due to the increased number of DoFs. The controller solutions
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we propose, for a robot moving in 3D, allow a robot to control its pose in 5 DoFs. With
the increased number of DoFs, the robot will have to choose from multiple axes of rotation.
As such, the amount of required information shared between modules increases, in order to
complete the task. We propose solutions that use zero, two and five power lines. They are
extension of the 2D controllers presented in the previous section.

In 3D, the controllers make use of the robot’s edges (opposed to corners in 2D) to generate
the rotations. The translation is done by the modules belonging to the robot’s faces.

4.4.2.1 No shared power line (3D-0SP-V1 and 3D-0SP-V1 controllers)

We extend the two controllers, proposed for 2D, that do not share information (i.e. M = 0). As
in 2D, we are not able to separate translation and rotation, when using no shared information
between modules. However, it is still possible to complete the task, depending on the initial
position and orientation of the robot.

The control policy gp(c,d) for the 3D-0SP-V1 is given by:

p1 = c̄1d̄1 ∨ c̄1c̄3d3 ∨ c̄1c̄4d4 ∨ c̄1c̄5d5 ∨ c̄1c̄6d6, (4.59)

p2 = c̄2d̄2 ∨ c̄2c̄4d̄4, (4.60)

p3 = c̄3d̄3 ∨ c̄3c̄2d3, (4.61)

p4 = c̄4d̄4 ∨ c̄4c̄2d4, (4.62)

p5 = c̄5d̄5 ∨ c̄5c̄2d5, (4.63)

p6 = c̄6d̄6 ∨ c̄6c̄2d6. (4.64)

The policy allows for clockwise and counter-clockwise rotation along two axes—X local
2

and X local
3 . Rotations along the two axes can occur simultaneously, effectively generating

two further axes of rotation. For d5 = d6 = 0, the policy is identical to 2D-0SP-V1 [see
Equations (4.51)–(4.54)]. As before, the alignment of the terms of the equations is based on
their contribution for the robot’s movement. The first column relates to translation, the second
and third columns to counter-clockwise and clockwise rotation along X local

3 , respectively, and
the last two columns to counter-clockwise and clockwise rotation along X local

2 , respectively.
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The control policy gp(c,d) for the 3D-0SP-V2 is given by:

p1 = c̄1c2c3c4c5c6d̄1 ∨ c̄1c̄3d3 ∨ c̄1c̄4d4 ∨ c̄1c̄5d5 ∨ c̄1c̄6d6, (4.65)

p2 = c1c̄2c3c4c5c6 ∨ c̄2c̄4d̄4, (4.66)

p3 = c1c2c̄3c4c5c6 ∨ c̄3c̄2d3, (4.67)

p4 = c1c2c3c̄4c5c6 ∨ c̄4c̄2d4, (4.68)

p5 = c1c2c3c4c̄5c6 ∨ c̄5c̄2d5, (4.69)

p6 = c1c2c3c4c5c̄6 ∨ c̄6c̄2d6. (4.70)

This policy controls the robot’s rotation in the way as the 3D-0SP-V1 controller. However,
translation does not occur until the preferred face detects the target. For d5 = d6 = 0, the
policy is identical to 2D-0SP-V2 [see Equations (4.55)–(4.58)].

4.4.2.2 2-bits shared power line (3D-2SP controller)

Due to the multiple rotation axes, a single bit of shared information is not sufficient to guar-
antee the robot completes the task, with no simultaneous rotation and translation movements.
Using two shared power lines (i.e. M = 2), it becomes possible to distinguish between the
three main axis of rotation (X local

1 , X local
2 and X local

3 ) and translation. The activation policies
gb,1(c,d) and gb,2(c,d) are given by

b1 = d2∨d3∨d4, (4.71)

b2 = d5∨d6. (4.72)

Note that Equation (4.71) is the same as for 2D-1SP [Equation (4.46)].

The control policy, gp(c,d,b) is given by

p1 = b1b̄2c̄1c̄3 ∨ b̄1b2c̄1c̄6, (4.73)

p2 = b1b̄2c̄2c̄4 ∨ b̄1b2c̄2c̄5 ∨ b̄1b̄2c̄2, (4.74)

p3 = b1b̄2c̄3c̄2 ∨ b1b2c̄3c̄5, (4.75)

p4 = b1b̄2c̄4c̄1 ∨ b1b2c̄4c̄6, (4.76)

p5 = b̄1b2c̄5c̄1 ∨ b1b2c̄5c̄4, (4.77)

p6 = b̄1b2c̄6c̄2 ∨ b1b2c̄6c̄3. (4.78)
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Fig. 4.11 Finite state machine representing the possible transitions between rotations for the
3D-2SP controller. The state the robot starts in depends on its initial orientation. If it starts
in one of the rotations, it will change states, based on the shared power lines values, until it
reaches the desired orientation, at which point the robot translates towards the goal. If the
robot starts in the preferred orientation, it only translates.

Similarly to the 2D-1SP controller, this control policy allows only for counter-clockwise
rotation. The terms in the first, second and third columns are responsible for rotations around
X local

3 , X local
2 and X local

1 , respectively. The single term in the last column is responsible for the
robot’s translation. For d5 = d6 = 0 (implying b2 = 0), the policy is identical to 2D-1SP [see
Equations (4.47)–(4.50)]. Different versions of this controller can be obtained by changing
the directions of rotation along each of the axis. Including the version where the rotations
along all axis are in counter-clockwise, a total of eight similar controllers exist.

Figure 4.11 shows a finite state machine where the transitions between rotations and
translations are associated with the sensing status. If the goal is detected by a module’s face,
other than the preferred face, with normal parallel to X local

1 or X local
2 only (b1b̄2 = 1), the

robot rotates around X local
3 . If the goal is detected by a module’s face with normal parallel to

X local
3 only (b̄1b2 = 1), the robot rotates around X local

2 . If the goal is detected by faces, other
than the preferred face, with normal parallel to X local

2 and X local
3 or X local

1 and X local
3 (b̄1b̄2 = 1),

the robot rotates around X local
1 .

Remark. As in 2D, it is possible to obtain a controller, using a single shared power line (i.e.

M = 1), that allows both counter-clockwise and clockwise rotation, around the X local
3 and

X local
2 axis (similarly to 3D-0SP-V1). This control policy uses components of the 3D-0SP-V1

and 3D-2SP controllers. It is possible to prove that, while there is some translation during

rotation, the robot always moves away from the target. This means we can prove the robot

is guaranteed to complete the task, if the initial distance assumption is valid. The control

policy and formal analysis of this controller variant is presented in Appendix C.
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4.4.2.3 5-bits shared power line (3D-5SP-V1 and 3D-5SP-V2 controllers)

In 2D, the minimum amount of shared information required for the robot to perform the
shortest rotation to reach the preferred orientation is two bits. When considering the third
dimension, a minimum of two more bits of information are required to ensure the minimum
rotation. However, if only the robot face with normal anti-parallel to the normal of the
preferred face detects the goal, there are four possible directions of rotation that ensure
the robot undergoes minimum rotation to reach the preferred orientation. To break this
symmetric situation,we use one extra bit of information.8 As such, this controller requires
five shared power lines (i.e. M = 5). The activation policy, gb, j(c,d), is given by b j = d j,
though without any change in behaviour, b1 can be omitted.

We use two different approaches, leading to two different controllers. In the first approach
(3D-5SP-V1 controller), the robot rotates around the three coordinate axes, one axis at the
time. In the second approach (3D-5SP-V2 controller), the robot can rotate around multiple
axis simultaneously, requiring only rotations around X local

3 and X local
2 to reach the preferred

orientation.

The activation policy, gp(c,d,b), for the controller using the first approach (3D-5SP-V1
controller) is given by:

p1 = b̄3b4b̄5b̄6c̄1c̄4 ∨ b3b̄4b̄5b̄6c̄1c̄3 ∨ b2b̄3b̄4b̄5b̄6c̄1c̄3 ∨

b̄3b̄4b5b̄6c̄1c̄5 ∨ b̄3b̄4b̄5b6c̄1c̄6 ,
(4.79)

p2 = b̄3b4b̄5b̄6c̄2c̄3 ∨ b3b̄4b̄5b̄6c̄2c̄4 ∨ b2b̄3b̄4b̄5b̄6c̄2c̄4 ∨

b̄3b̄4b5b̄6c̄2c̄6 ∨ b̄3b̄4b̄5b6c̄2c̄5 ∨ b̄2b̄3b̄4b̄5b̄6c̄2 ,
(4.80)

p3 = b̄3b4b̄5b̄6c̄3c̄1 ∨ b3b̄4b̄5b̄6c̄3c̄2 ∨ b2b̄3b̄4b̄5b̄6c̄3c̄2 ∨

b3b̄4b5b̄6c̄3c̄6 ∨ b̄3b4b5b̄6c̄3c̄6 ∨ b3b̄4b̄5b6c̄3c̄6 ∨ b̄3b4b̄5b6c̄3c̄6 ,
(4.81)

p4 = b̄3b4b̄5b̄6c̄4c̄2 ∨ b3b̄4b̄5b̄6c̄4c̄1 ∨ b2b̄3b̄4b̄5b̄6c̄4c̄1 ∨

b3b̄4b5b̄6c̄4c̄5 ∨ b̄3b4b5b̄6c̄4c̄5 ∨ b̄4b̄5b6c̄4c̄1b5 ∨ b̄3b4b̄5b6c̄4c̄5 ,
(4.82)

p5 = b̄3b̄4b5b̄6c̄5c̄2 ∨ b̄3b̄5b̄4b6c̄5c̄1 ∨

b3b̄4b5b̄6c̄5c̄3 ∨ b̄3b4b5b̄6c̄5c̄3 ∨ b3b̄4b̄5b6c̄5c̄3 ∨ b̄3b4b̄5b6c̄5c̄3 ,
(4.83)

p6 = b̄3b̄4b5b̄6c̄6c̄1 ∨ b̄3b̄4b̄5b6c̄6c̄2 ∨

b3b̄4b5b̄6c̄6c̄6 ∨ b̄3b4b5b̄6c̄6c̄6 ∨ b3b̄4b̄5b6c̄6c̄6 ∨ b̄3b4b̄5b6c̄6c̄6 .
(4.84)

8This will be studied after the introduction of the controllers and the generated behaviours.
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Fig. 4.12 Finite state machine representing the possible transitions between rotations for the
3D-5SPV1 controller. The state the robot starts in depends on its initial orientation. If it starts
in one of the rotations, it will change states, based on the shared power lines values, until it
reaches the desired orientation, at which point the robot translates towards the goal. If the
robot starts in the preferred orientation, it only translates.

Due to the length of the control policy, each term is coloured, instead of aligned, based
on its impact on the robot movement— clockwise around X local

3 , counter-clockwise around
X local

3 , clockwise around X local
2 , counter-clockwise around X local

2 , clockwise around X local
1 ,

and translation9. The light green term corresponds to the case breaking the symmetry
(counter-clockwise rotation around X local

3 ). Each coloured term corresponds to one of the ten
possible distinct sensing status of the robot, when using five shared power lines.

Figure 4.12 shows a finite state machine where the transactions between rotations and
translations are associated with the sensing status. If the more than one power line is active

9The direction of rotation around X local
1 can be changed without change in performance.
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(other than b2), the robot rotates around X local
1 , in a clockwise manner. If a single power line

(other than b2) detects the goal, the robot performs the shortest rotation to reach the target,
around X local

3 (b3b̄4∨ b̄3b4 = 1) or X local
2 (b5b̄6∨ b̄5b6 = 1). In the symmetric case, where

b2b̄3b̄4b̄5b̄6 = 1, the robot rotates around X local
3 , in a counter-clockwise manner. A symmetric

version of this controller can be created, using a counter-clockwise rotation along X local
1 .

The activation policy, gp(c,d,b), for the controller using the second approach (3D-5SP-V2
controller) is given by:

p1 = b̄3b4b̄5b̄6c̄1c̄4 ∨ b3b̄4b̄5b̄6c̄1c̄3 ∨ b2b̄3b̄4b̄5b̄6c̄1c̄3 ∨

b̄3b̄4b5b̄6c̄1c̄5 ∨ b̄3b̄4b̄5b6c̄1c̄6 ∨ b3b̄4b5b̄6(c̄1c̄3∨ c̄1c̄5) ∨

b̄3b4b5b̄6(c̄1c̄4∨ c̄1c̄5) ∨ b3b̄4b̄5b6(c̄1c̄3∨ c̄1c̄6) ∨ b̄3b4b̄5b6(c̄1c̄4∨ c̄1c̄6) ,

(4.85)

p2 = b̄3b4b̄5b̄6c̄2c̄3 ∨ b3b̄4b̄5b̄6c̄2c̄4 ∨ b2b̄3b̄4b̄5b̄6c̄2c̄4 ∨

b̄3b̄4b5b̄6c̄2c̄6 ∨ b̄3b̄4b̄5b6c̄2c̄5 ∨ b3b̄4b5b̄6(c̄2c̄4∨ c̄2c̄6) ∨

b̄3b4b5b̄6(c̄2c̄3∨ c̄2c̄6) ∨ b3b̄4b̄5b6(c̄2c̄4∨ c̄2c̄5) ∨ b̄3b4b̄5b6(c̄2c̄3∨ c̄2c̄5) ∨

b̄2b̄3b̄4b̄5b̄6c̄2 ,

(4.86)

p3 = b̄3b4b̄5b̄6c̄3c̄1 ∨ b3b̄4b̄5b̄6c̄3c̄2 ∨ b2b̄3b̄4b̄5b̄6c̄3c̄2 ∨

b3b̄4b5b̄6c̄3c̄2 ∨ b̄3b4b5b̄6c̄3c̄1 ∨ b3b̄4b̄5b6c̄3c̄2 ∨

b̄3b4b̄5b6c̄3c̄1 ,

(4.87)

p4 = b̄3b4b̄5b̄6c̄4c̄2 ∨ b3b̄4b̄5b̄6c̄4c̄1 ∨ b2b̄3b̄4b̄5b̄6c̄4c̄1 ∨

b3b̄4b5b̄6c̄4c̄1 ∨ b̄3b4b5b̄6c̄4c̄2 ∨ b̄4b̄5b6c̄4c̄1b3 ∨

b̄3b4b̄5b6c̄4c̄2 ,

(4.88)

p5 = b̄3b̄4b5b̄6c̄5c̄2 ∨ b̄3b̄5b̄4b6c̄5c̄1 ∨ b3b̄4b5b̄6c̄5c̄2 ∨

b̄3b4b5b̄6c̄5c̄2 ∨ b3b̄4b̄5b6c̄5c̄1 ∨ b̄3b4b̄5b6c̄5c̄1 ,
(4.89)

p6 = b̄3b̄4b5b̄6c̄6c̄1 ∨ b̄3b̄4b̄5b6c̄6c̄2 ∨ b3b̄4b5b̄6c̄6c̄1 ∨

b̄3b4b5b̄6c̄6c̄1 ∨ b3b̄4b̄5b6c̄6c̄2 ∨ b̄3b4b̄5b6c̄6c̄2 .
(4.90)

As with the previous controller, each term is coloured, based on its impact on the robot
movement. The colour labelling is the same for the colours in common; the remaining
colours are associated with: clockwise around both X local

2 and X local
3 , counter-clockwise

around both X local
2 and X local

3 , clockwise around X local
3 and counter-clockwise around X local

2 ,
and counter-clockwise around X local

3 and clockwise around X local
2 . Given the assumptions that
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there is a single goal in the environment, and the robot cannot detect the goal from faces with
symmetrical normals simultaneously (b1b2 = 0∧b3b4 = 0∧b5b6 = 0), the control policy
can be simplified to:

p1 = b̄3b4c̄1c̄4 ∨ b3b̄4c̄1c̄3 ∨ b2b̄3b̄4b̄5b̄6c̄1c̄3 ∨ b5b̄6c̄1c̄5 ∨ b̄5b6c̄1c̄6 , (4.91)

p2 = b̄3b4c̄2c̄3 ∨ b3b̄4c̄2c̄4 ∨ b2b̄3b̄4b̄5b̄6c̄2c̄4 ∨ b5b̄6c̄2c̄6 ∨ b̄5b6c̄2c̄5 ∨ b̄2b̄3b̄4b̄5b̄6c̄2 ,

(4.92)

p3 = b̄3b4c̄3c̄1 ∨ b3b̄4c̄3c̄2 ∨ b2b̄3b̄4b̄5b̄6c̄3c̄2 , (4.93)

p4 = b̄3b4c̄4c̄2 ∨ b3b̄4c̄4c̄1 ∨ b2b̄3b̄4b̄5b̄6c̄4c̄1 , (4.94)

p5 = b5b̄6c̄5c̄2 ∨ b̄5b6c̄5c̄1 , (4.95)

p6 = b5b̄6c̄6c̄1 ∨ b̄5b6c̄6c̄2 , (4.96)

using the same colour scheme as before. The rotations around two simultaneous rotation axis
occur by combining simultaneous rotations around the X local

2 and X local
3 (e.g. both yellow and

blue terms).

We previously stated that to perform the shortest rotation possible, a minimum of five bits
of information is required. To rotate both clockwise and counter-clockwise along X local

2 and
X local

3 a minimum of four bits of communication is required. This is a result of the rotations
along each of the axis being independent, meaning a minimum of two bit is required for each
axis to allow for no rotation, clockwise rotation and counter-clockwise rotation. However, if
the goal is detected only by the face with outward normal parallel to X local

1 , all four possible
rotations considered lead to the shortest rotation. In 2D, this situation is solved by combining
the sensing states of two faces in a single shared power line, as there are only two possible
rotations. However, in 3D combining it with the sensing of another face into a single shared
power line generates a longer rotation than needed for another configuration.

Table 4.3 compares the behaviours generated by using four and five bits of information
for the 3D-5SP-V2 controller. It can be seen that by combining the sensing status of the
face with outward normal parallel to X local

1 with the sensing status of adjacent face changes
the behaviour of the controller. Similar results would be obtained if a different adjacent
face was used. For the3D-5SP-V1 controller, the effect would be similar. However, instead
of changing from rotating along a single axis to rotating along two axes simultaneously in
the affected sensing states, the controller would just change the rotation axis10. As it is not

10This is shown in Appendix D.
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Table 4.3 Behaviours obtained by using 5 and 4-bit of shared information in the 3D-5SP-V1
controller. For the 5-bit case, the value of the shared power lines is given by b j = d j. For
the 5-bit case, the value of the shared power lines is given by b3 = d2∨d3, b4 = d4, b5 = d5,
b6 = d6.

5-bit shared power line 4-bit shared power line
b2 b3 b4 b5 b6 Behaviour b3 b4 b5 b6 Behaviour
0 0 0 0 0 T 0 0 0 0 T
0 0 0 0 1 CCW X local

2 0 0 0 1 CCW X local
2

0 0 0 1 0 CW X local
2 0 0 1 0 CW X local

2
0 0 1 0 0 CW X local

3 0 1 0 0 CW X local
3

0 0 1 0 1 CW X local
3 CCW X local

2 0 1 0 1 CW X local
3 CCW X local

2
0 0 1 1 0 CW X local

3 CW X local
2 0 1 1 0 CW X local

3 CW X local
2

0 1 0 0 0 CCW X local
3 1 0 0 0 CCW X local

3
0 1 0 0 1 CCW X local

3 CCW X local
2 1 0 0 1 CCW X local

3 CCW X local
2

0 1 0 1 0 CCW X local
3 CW X local

2 1 0 1 0 CCW X local
3 CW X local

2
1 0 0 0 0 CCW X local

3 1 0 0 0 CCW X local
3

1 0 0 0 1 CCW X local
2 1 0 0 1 CCW X local

3 CCW X local
2

1 0 0 1 0 CW X local
2 1 0 1 0 CCW X local

3 CW X local
2

1 0 1 0 0 CW X local
3 1 1 0 0 CW X local

3
1 0 1 0 1 CW X local

3 CCW X local
2 1 1 0 1 CW X local

3 CCW X local
2

1 0 1 1 0 CW X local
3 CW X local

2 1 1 1 0 CW X local
3 CW X local

2
1 1 0 0 0 CCW X local

3 1 0 0 0 CCW X local
3

1 1 0 0 1 CCW X local
3 CCW X local

2 1 0 0 1 CCW X local
3 CCW X local

2
1 1 0 1 0 CCW X local

3 CW X local
2 1 0 1 0 CCW X local

3 CW X local
2

possible to obtain the best result with four bits of shared information, an extra shared power
line is required. As with the 2D case, adding an extra shared power line, would bring no
improvement to the controller, while increasing the complexity10.

4.5 Formal analysis of the proposed controllers

In this section, we provide an analysis of the decentralised controllers proposed in Sec-
tion 4.4, for convex robots. We make the following assumptions: (i) time t is continuous,
(ii) instantaneous information is obtained from sensors (c and d) and power lines (b)11, (iii)
changes in pump (p) and power line (b) activation take immediate effect and (iv) the robot is
subject to translational and rotational drag forces. It accelerates instantaneously, emulating
quasi-static motion. It is thus either at rest or moving with terminal velocity.

11Sensing information corresponds to information each module can connect independently form the envi-
ronment, while shared power lines inform each module of information collected by other modules.
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Theorem 3. A goal that has not been reached is detected by all goal sensors of at least one

of the robot’s faces.

Proof. We assume that the opposite was true, that is, ∃t : g ̸∈ ht(A)∧(@ j : c̄ j⇒ d j). Consider
the position of the goal at time t in the local coordinate system of the robot, glocal = h−1

t (g) ∈
RN . It follows that glocal ∈ RN \A = RN \ [−a1/2,a1/2]× ·· · × [−aN/2,aN/2] = ∪iHi,
where Hi = {(x1, . . . ,xN) ∈ RN |(xi < −ai/2)∨ (ai/2 < xi)}. Therefore, ∃i : glocal ∈ Hi.
There exists at least one module with goal sensor 2i−1 at slocal

2i−1[i] =−ai/2 and with c̄2i−1 = 1,
and at least one module with goal sensor 2i at slocal

2i [i] = ai/2 and with c̄2i = 1. Hence,
A∩{αslocal

2i−1 +(1−α)glocal|α ∈ [0,1)}=∅ or A∩{αslocal
2i +(1−α)glocal|α ∈ [0,1)}=∅

must hold true. As ht is bijective, it follows from Equation (4.37) that either d2i−1 = 1 or
d2i = 1, which violates our assumption. �

4.5.1 Pose control in 2D environments

Consider the controllers presented in Section 4.4.1. When executed on an interior module
(∀ j : c j = 1), it follows from the control policies of each controller [Equations (4.42)–(4.45),
Equations (4.47)–(4.50), Equations (4.51)–(4.54) and Equations (4.55)–(4.58)] that no pump
is activated, that is, p1 = p2 = p3 = p4 = 0; fluid can freely flow in any direction through the
module. When executed on a boundary module, pumps on faces connected to other modules
are not activated either. Therefore, the following analysis focuses on pumps on the robot’s
external faces. The robot has 2(a1 +a2) such pumps.

4.5.1.1 Controllers with shared power lines: 2D-1SP and 2D-2SP controllers

We start by performing the analysis for the 2D-2SP and 2D-1SP controllers. As the translation
and rotation do not occur simultaneously, the analysis of the controller becomes simpler. To
prove the controllers complete the task, we need to prove that when translating the robot
reaches the target, and when rotating it reaches the desired orientation, in finite time.

Lemma 2. An a1×a2 robot, using the 2D-1SP controller, that faces the goal with only the

preferred face, that is,
∨

j ̸=1 d j = 0, completes the task in finite time.

Proof. From
∨

j ̸=1 d j = 0 and Equation (4.46), it follows that b1 = 0. Using Equations (4.47)–
(4.50), we obtain p1 = p3 = p4 = 0 and p2 = c̄2. Hence all pumps belonging to a face with
normal parallel to X local

1 are active Each active pump produces a constant thrust force, fp > 0,
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Fig. 4.13 Illustration of a modular robot that is tasked to approach a goal (orange point)
with a preferred orientation (green face, using the 2D-1SP controller. In (a), the robot is
correctly oriented, and only needs to translate towards the goal. It does so by activating the
pumps (blue arrows) on the face that is opposite to the preferred face. In (b), the robot rotates
counter-clockwise, by activating four pumps (blue arrows) of its corner modules, until the
preferred orientation is reached.

which is anti-parallel to the preferred face’s normal. As all active pumps (and hence forces)
are arranged symmetrically, no torque is produced. The robot undergoes a pure translation
towards the goal (see Figure 4.13a.) The direction of movement is parallel to the two lines that
define, respectively, the half-plane sensing regions of goal sensors 3 and 4. As a consequence,∨

j ̸=1 d j = 0 as long as the robot does not touch the goal. The robot has a2 active pumps
giving a net force of a2 fp along the preferred face’s normal. This is a positive constant
and, from the quasi-static motion assumption, produces a positive constant velocity. As the
distance between the robot and goal is finite and decreasing at a constant rate, the goal is
reached in finite time. �

Lemma 2 is also valid for the 2D-2SP controller, as the force acting on the robot when
in the preferred orientation (

∨
j ̸=1 d j = 0) is the same; using Equations (4.40)–(4.41), the

control policy for the 2D-2SP controller [Equations (4.42)–(4.45)] has the same output.

Theorem 4. An a1×a2 robot (with ai≥ 2 for some i), using the 2D-1SP controller, completes

the task in finite time.

Proof. According to Lemma 2, we only need to consider the case
∨

j ̸=1 d j = 1. From
Equation (4.46), it follows that b1 = 1. As the second term (b̄1c̄2) in Equation (4.48)
disappears, Equations (4.47)–(4.50) assume a symmetric form, causing the corner modules
of the rectangular configuration to activate four pumps in total (see Figure 4.13b). As the
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Fig. 4.14 Visualization of the graph representing the 8 global sensing states (nodes) of a
convex-shaped 2D robot with respect to the goal. The robot is represented by the grey squares,
with the green line representing the preferred face. Each node represents a position of the
goal with respect to the robot (corner point, face without edges) with its name corresponding
to the robot’s feature that contains the closest point to the goal. Transitions between nodes,
that is movements of the goal, with respect to the robot (directed edges) are those chosen by
the (a) decentralised 2D-1SP and (b) decentralised 2D-2SP controllers, which have partial
and full information about the global state, respectively. For any given node, the controller
follows a unique path that is guaranteed to terminate with the goal in front of the preferred
face (node 0) after at most seven (a) and four (b) transitions.

activated pumps face in opposing directions, no translation occurs. The geometric center of
the robot coincides with the center of mass. The pumps firing with a direction parallel or
anti-parallel to X1 produce a torque of 2(a2

2 −
1
2) fp = (a2−1) fp, whereas the pumps firing

with a direction parallel or anti-parallel to X2 produce a torque of (a1−1) fp. The combined
torque is (a1 + a2− 2) fp ≥ fp, which is positive constant. As the moment of inertia of
the robot is constant, the torque results in a positive, constant angular velocity (assuming
quasi-static motion). The robot hence rotates counter-clockwise until

∨
j ̸=1 d j = 0, in which

case Lemma 2 applies. Figure 4.14a shows the direction of rotation of the robot, based on
the goal position. The time to rotate is bounded by the time for a full revolution; the latter is
constant, for a given robot size, as the angular velocity is constant. �

Theorem 5. An a1×a2 robot (with ai≥ 2 for some i), using the 2D-2SP controller, completes

the task in finite time.

Proof. As with Theorem 4, we only need to consider the case
∨

j ̸=1 d j = 1. From Equa-
tions (4.40) and (4.41), it follows that either b1 = 1∨ b2 = 1. As the second term (b̄1c̄2)
in Equation (4.43) disappears, Equations (4.42)–(4.45) assume a symmetric form, causing
the corner modules of the rectangular configuration to activate four pumps in total (see
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Table 4.4 Forces and torques generated for each distinct sensing status. Each sensing status
corresponds to a node on the graphs shown in Figure 4.14b. Positive and negative forces
acting on the robot move it towards and away form the goal, respectively. Positive and
negative torques correspond to counter-clockwise and clockwise rotation, respectively.

Node
2D-0SP-V1 controller 2D-0SP-V2 controller

f τ f τ

0 (0,a2) fp 0 (0,a2−2) fp 0
1 (a1−1,a2−1) fp

a1+a2−2
2 fp (a2−3,−1) fp

a1+a2−2
2 fp

2 (a1−1,0) fp
a1−1

2 fp (−1,−1) fp
a1+a2−2

2 fp

3 (a1−1,a2−1) fp
a1+a2−2

2 fp (0,−1) fp
a1+2a2−3

2 fp

4 (0,a2−1) fp
a2−1

2 fp (−1,0) fp
a2−1

2 fp

5 (a1−1,a2−1) fp −a1−1
2 fp (0,−1) fp −a1+a2−2

2 fp

6 (a1−1,0) fp −a1−1
2 fp (−1,−1) fp −a1+a2−2

2 fp

7 (a1−1,a2−1) fp −a1+a2−2
2 fp (−1,a2−3) fp −a1+a2−2

2 fp

Figure 4.7). As the activated pumps face in opposing directions, no translation occurs. The
geometric center of the robot coincides with the center of mass. The pumps firing produce
a torque of (a1 + a2− 2) fp ≥ fp or −(a1 + a2− 2) fp ≤ − fp, which is non-zero constant.
As the moment of inertia of the robot is constant, the torque results in a non-zero, constant
angular velocity (assuming quasi-static motion). The robot rotates either counter-clockwise
or clockwise, until

∨
j ̸=1 d j = 0, in which case Lemma 2 applies. Figure 4.14b shows the

robot’s direction of rotation, based on the robot’s sensing state. The rotation time is bounded
by the time of half revolution; the latter is constant, for a given robot size, as the angular
velocity is constant. �

Corollary 1. A 1×1 robot is not guaranteed to complete the task in finite time.

Proof. As can be seen from the proof of Theorems 4 and 5, a single module is unable to
rotate, as the torque is a1 + a2− 2 = 0. The reason for this is the rotation and reflection
symmetry of the module, where each pump’s force and position vectors are anti-parallel to
each other. �

4.5.1.2 Controllers without shared power lines: 2D-0SP-V1 and 2D-0SP-V2 controllers

Both versions of the controller without shared power lines travel the graph shown in Fig-
ure 4.14b. From Theorem 5, we know that, as long as the torque acting on the robot is
non-zero, the robot will rotate until reaching the desired orientation, in finite time. From
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Lemma 2, once the desired orientation is reached, if the force acting on the robot is a positive
constant and no torque is applied, it will reach the goal in finite time. Table 4.4 lists the forces
and torques acting on the robot for the two controllers that use no communication, for the
different sensing status. We can see that, for the 2D-0SP-V1 controller, as long as ak,al ≥ 2,
for some k ̸= l, the torque is non zero, unless in the preferred orientation (node zero). The
same is true for the 2D-0SP-V2, when ak ≥ 2∧al > 2, for some k ̸= l. When in the preferred
orientation, both controllers cause no rotation (torque is zero) and apply a constant positive
force to act on the robot. However, since rotation and translation occur simultaneously for
these controllers, these two components being bound in terms of time is not sufficient to
guarantee completion of the task. If the distance between the goal and the target is not large
enough, so that the robot has time to reach the desired orientation before reaching the target,
the robot is not able to complete the task using these controllers. As the behaviours of the
controllers are different, the distances required for ensuring task completion are different.

The forces acting on the robot are considered positive if the resulting translation moves
the robot towards the goal. Negative forces move the robot away from the goal. The
2D-0SP-V1 controller causes a positive force to act on the robot, regardless of the orientation.
To successfully complete the task, the robot’s translation time needs to be equal or larger
than the rotation time.

To obtain a bound for the minimum distance required to complete the task successfully,
we assume that the forces and torques acting on the robot are small and the robot moves in a
highly viscous fluid environment. In these environments, the drag forces acting on the robot
are proportional to the velocity. For this reason, the robot’s dynamics can be described by:

v = kf (4.97)

ω = kθ τ, (4.98)

where v and ω are the robot’s linear and angular velocities, f and τ are the force and torque
acting on the robot and k and kθ positive constants. Let ∆d be the initial distance between the
robot’s closest point to the goal, and the goal and ∆θ be the angle offset form the preferred
orientation, respectively. We have:

ttrans =
∆d
v

(4.99)

trot =
∆θ

ω
, (4.100)
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where ttrans and trot are the time it takes for the robot to reach the goal and desired orientation,
respectively. As the robot needs to reach the desired orientation before reaching the goal,

ttrans ≥ trot ⇔
∆d
v
≥ ∆θ

ω
⇔ ∆d ≥ ∆θv

ω
. (4.101)

Replacing v and ω for Equations (4.97) and (4.98), we have

∆d ≥ ∆θk f
kθ τ

. (4.102)

The maximum angle offset for this controller is ∆θ = π . From Table 4.4, we know
that f ≤ fp

√
(a1−1)2 +(a2−1)2 ≤ fp

√
a2

1 +a2
2 and τ ≥ a2−1

2 fp. Replacing in Equa-
tion (4.102),

∆d1 ≥ 2πkr

√
a2

1 +a2
2

a2−1
,with kr =

k
kθ

. (4.103)

If the condition obtained in Equation (4.103) is not met, the success of the controller is
not guaranteed, and the robot can reach the goal with the incorrect orientation.

The 2D-0SP-V2 controller causes a negative force to act on the robot if the preferred
face cannot detect the goal. This occurs because, all the modules with a single external face,
belonging to the all the faces except the preferred, activate their pumps regardless of their
sensing state, while the preferred face runs the occlusion based controller. In this situation,
the forces that cause the rotation of the robot, also cause a translation away from the goal.
When the preferred face detects the goal, the robot starts translating towards the goal.

Using the same dynamics model as before we can determine the necessary distance
between the robot and the goal, to ensure the success of the controller, when the robot starts
translating. This corresponds to the robot being in situation represented by nodes 1 and
7 in Table 4.4. The force and torque acting on the robot in those situations are given by
f = fp

√
(a2−3)2 +(−1)2 ≤ fp

√
a2

2 +1 and τ = a1+a2−2
2 fp (from Table 4.4). The angle

offset for these nodes is θ < π

2 . The distance condition becomes:

∆d2 ≥ πkr

√
a2

2 +1

(a1 +a2−2)
,with kr =

k
kθ

. (4.104)
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If the condition obtained in Equation (4.104) is not met, the success of the controller is
not guaranteed, and the robot can orbit around the goal without ever reaching it12.

Due to starting the active translation only after being closer to the desired orientation, the
minimum distance to guarantee the success of the 2D-0SP-V2 controller is smaller than for
the 2D-0SP-V1 controller.

4.5.2 Pose control in 3D environments

Consider the controllers presented in Section 4.4.2. As for the 2D pose control analysis, only
pumps in the robot’s external faces need to be considered. The robot has 2(a1a2 +a1a3 +

a2a3) such pumps.

4.5.2.1 Controllers with shared power lines: 3D-2SP, 3D-5SP-V1 and 3D-5SP-V2 con-
trollers

As for the 2D analysis, we start by performing the analysis of the controllers that require the
used of shared power lines. As the translation and rotation do not occur simultaneously, the
analysis of the controller becomes simpler. We can prove the controllers complete the task if
we prove that when translating the robot reaches the target, and when rotating it reaches the
desired orientation, in finite time.

Lemma 3. An a1× a2× a3 robot that faces the goal with only the preferred face, that is,∨
i ̸=1 di = 0, completes the task in finite time, independently of the controller used.

Proof. The proof is omitted, as a straight-forward extension of the proof of Lemma 2. �

Theorem 6. An a1 × a2 × a3 robot (with ak,al ≥ 2 for some k ̸= l), using the 3D-2SP

controller, completes the task in finite time.

Proof. According to Lemma 3, we need only to consider the case
∨

j ̸=1 d j = 1. From Equa-
tions (4.71) and (4.72), it follows that b1∨b2 = 1. As such, the third term of Equation (4.74)
disappears. Depending on the values of b1 and b2, two of Equations (4.73)–(4.78) return
0, whereas the remaining four equations assume a symmetric form, causing the modules
belonging to the robot’s edges that are parallel to X local

i to activate 4ai pumps in total. This

12More details about this behaviour will be discussed in Section 5.2.3.3
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Fig. 4.15 Visualization of the graph representing the 26 global sensing states (nodes) of
a convex-shaped 3D robot with respect to the goal. The robot is represented by the grey
cube, with the green face representing the preferred face. Each node represents a position
of the goal with respect to the robot (corner point, edge without corner points, face without
edges) with its name corresponding to the robot’s feature that contains the closest point
to the goal. Transitions between nodes, that is movements of the goal, with respect to the
robot(directed edges) are those chosen by the decentralised 3D-2SP controller, which has
only partial information about the global state. For any given node, the controller follows a
unique path that is guaranteed to terminate in the preferred state (node 12) after at most eight
transitions. In (a) the front, right and top of the graph are represented. In (b) the back, left
and bottom of the graph are represented.

generates a 2D rotation around axis X local
i . By applying the analysis for Theorem 4, one can

show that a new situation, with different values b1 or b2, is reached in finite time. The robot
can be in any of 26 global sensing states 13, which are depicted in Figure 4.15. The robot
transitions between these states by using 2D rotations along either of the robot’s reference
frame axes. Figure 4.15 shows the graph of transitions realized by the controller. The graph
is acyclic. Moreover, from any starting orientation (i.e. global sensing state) there is a unique
path to reach the desired orientation, which corresponds to global sensing state 12. As any
path can be completed by at most eight steps (i.e. 2D rotations), the overall task is completed
in finite time. �

Theorem 7. An a1× a2× a3 robot (with ak,al ≥ 2 for some k ̸= l), using the 3D-5SP-V1

controller, completes the task in finite time.
13We refer to these states as global, as the modules do not have access to complete state information.
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Fig. 4.16 Visualization of the graph representing the 26 global sensing states (nodes) of
a convex-shaped 3D robot with respect to the goal. The robot is represented by the grey
cube, with the green face representing the preferred face. Each node represents a position
of the goal with respect to the robot (corner point, edge without corner points, face without
edges) with its name corresponding to the robot’s feature that contains the closest point to
the goal. Transitions between nodes, that is movements of the goal, with respect to the robot
(directed edges) are those chosen by the decentralised 3D-5SP-V1 controller, which has full
information about the global state. For any given node, the controller follows a unique path
that is guaranteed to terminate in the preferred state (node 12) after at most four transitions.
In (a) the front, right and top of the graph are represented. In (b) the back, left and bottom of
the graph are represented.

Proof. As before, we need to consider only the case
∨

j ̸=1 d j = 1. From the definition of b j,
it follows that b2∨b3∨b4∨b5∨b6 = 1. As such, the last term of Equation (4.80) disappears.
Depending on the values of the power lines, two of Equations (4.79)–(4.84) return 0, whereas
the remaining four equations assume a symmetric form, causing the modules belonging to the
robot’s edges that are parallel to an axis, X local

i , to activate 4ai pumps in total. This generates
a 2D rotation around axis X local

i (direction of rotation depend on the power lines active). By
applying the analysis of Theorem 5, one can show that a new situation, with different values
for the power lines, is reached in finite time. Figure 4.16 shows the graph of transitions,
between the 26 possible global sensing states, realized by the controller. The graph is acyclic.
Moreover, from any starting orientation (i.e. global sensing state) there is a unique path to
reach the desired orientation, which corresponds to global sensing state 12. As any path can
be completed by at most four steps (i.e. 2D rotations), the overall task is completed in finite
time. �
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Fig. 4.17 Visualization of the graph representing the 26 global sensing states (nodes) of
a convex-shaped 3D robot with respect to the goal. The robot is represented by the grey
cube, with the green face representing the preferred face. Each node represents a position
of the goal with respect to the robot (corner point, edge without corner points, face without
edges) with its name corresponding to the robot’s feature that contains the closest point
to the goal. Transitions between nodes, that is movements of the goal with respect to the
robot(directed edges) are those chosen by the decentralised 3D-5SP-V2 controller, which
has full information about the global state. For any given node, the controller follows a
unique path that is guaranteed to terminate in the preferred state (node 12) after at most four
transitions. In (a) the front, right and top of the graph are represented. In (b) the back, left
and bottom of the graph are represented.

Theorem 8. An a1× a2× a3 robot (with ak,al ≥ 2 for some k ̸= l), using the 3D-5SP-V2

controller completes the task in finite time.

Proof. As before, we need to consider only the case
∨

j ̸=1 d j = 1. From the definition of
b j, it follows that b2 ∨ b3 ∨ b4 ∨ b5 ∨ b6 = 1. As such, the last term of Equation (4.80)
disappears. If b5b6 = 0, two of Equations (4.85)–(4.90) (p5 and p6) return 0, whereas the
remaining four equations assume a symmetric form, causing the modules belonging to the
robot’s edges that are parallel to X local

3 to activate 4a3 pumps in total. If b2b3b4 = 0, two of
Equations (4.85)–(4.90) (p3 and p4) return 0, whereas the remaining four equations assume
a symmetric form, causing the modules belonging to the robot’s edges that are parallel to
X local

2 to activate 4a2 pumps in total. By applying the analysis for Theorem 5, one can show
that a new situation, with different values for the power lines, is reached in finite time. If
b5b6 = 1∧b2b3b4 = 1, all of Equations (4.85)–(4.90) return 1, where p1 and p2 will have a
symmetric component to both p3 and p4, and p5 and p6. This causes the modules belonging
to the robot’s edges that are parallel to X local

2 and X local
3 to activate 4a2 and 4a3 pumps,
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respectively. This generates a rotation axis that is not one of the major axis. However, as
it still is a 2D rotation, the the analysis for Theorem 5 still holds, and a new situation, with
different values for the power lines, is reached in finite time. Figure 4.17 shows the graph
of transitions, between the 26 possible global sensing states, realized by the controller. The
graph is acyclic. Moreover, from any starting orientation (i.e. global sensing state) there is a
unique path to reach the desired orientation, which corresponds to global sensing state 12.
As any path can be completed by at most four steps (i.e. 2D rotations), the overall task is
completed in finite time. �

4.5.2.2 Controllers without shared power lines: 3D-0SP-V1 and 3D-0SP-V2 controllers

Both versions of the controller without shared power lines travel the graph shown in Fig-
ure 4.17. Theorem 8 and Lemma 3 are not sufficient to guarantee the success of the controllers
that do not use power lines. By using a similar analysis to the 2D case, we can determine a
minimum distance that guarantees the robot completes the task using these controllers.

For the 3D-0SP-V1 controller, the maximum force and minimum torque, respectively,
are:

f ≤
√

a2
2(a3−1)2 +a2

2(a1−1)2 +a2
3(a1−1)2 <

√
a2

2a2
3 +a2

2a2
1 +a2

3a2
1 (4.105)

τ ≥ a3(a1−1)
2

(4.106)

This controller allows for rotations along two axes simultaneously. However, the times
for the rotations along each of the axis is independent. As a result, to obtain a minimum
distance condition we can consider only the longest rotation. The maximum angle offset is
∆θ = π . When replacing in Equation (4.102) we obtain:

∆d1 ≥ 2πkr

√
a2

1a2
2 +a2

1a2
3 +a2

2a2
3

a3(a1−1)
, where kr =

k
kθ

(4.107)
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For the 3D-0SP-V2 controller, the maximum and minimum possible force and torque,
respectively, are:

f =
√

a2
2(a3−1)2 +a2

2 +a2
3 <

√
a2

2a2
3 +a2

2 +a2
3 (4.108)

τ = min
(
(a3−1)a2,

a3(a1 +a2−2)
2

)
(4.109)

The maximum angle offset, for which the robot translates towards the goal, is ∆θ = π

2 .
When replacing in Equation (4.102) we obtain:

∆d2 ≥


πkr

√
a2

2a2
3 +a2

2 +a2
3

2a2(a3−1)
, for 3≤ a1 ≤

a2a3−2a2 +2a3

a3
;

πkr

√
a2

2a2
3 +a2

2 +a2
3

a3(a1 +a2−2)
, for a1 >

a2a3−2a2 +2a3

a3
;

(4.110)

where, kr =
k

kθ
.14

As for the 2D controllers, if the conditions obtained in Equations (4.107) and (4.110) are
not met, the controllers are not guaranteed to succeed, and the robot can either reach the goal
with the incorrect orientation (3D-0SP-V1 controller), or orbit around the goal without ever
reaching it (3D-0SP-V2 controller).

As with the 2D case, due to starting the active translation only after being closer to
the desired orientation, the minimum distance to guarantee the success of the 3D-0SP-V2

controller is smaller than the one for the 3D-0SP-V1 controller.

4.6 Analysis for robots of generic shape

In all of the previous sections of this chapter, our focus has been on robots of convex
shape. However, modular robots, and the MHP robot in particular, can assume any lattice
configuration or shape. In this section we expand the analysis of the controllers to concave
shape robots. We will start with robots in the 2D space, and then expand to 3D.
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Fig. 4.18 Example of a robot of concave shape, with two symmetric faces detecting the
goal. The robot is facing the preferred direction. The orange circle represents the goal; the
illuminated faces of the robot can detect the goal.

4.6.1 Limitations of the current solutions

The design of our control solutions was made with the assumption that two faces with anti-
parallel normals could not detect the goal simultaneously. However, that possibility exists
for robots of generic shape. Figure 4.18 shows an example of a concave robot for which
two faces, with anti-parallel normals, detect the goal. For this specific example, assuming
the robot is oriented in the preferred orientation, only the controllers using no shared power
lines would be able to complete the task. For controllers that use shared power lines, but
have limited information about the robot’s global sensing status, the robot would rotate
indefinitely (there is always, at least, one power line active—see Equations (4.47)–(4.50)
and (4.73)–(4.78)). For controllers that use shared power lines, and have full information
about the global sensing status, the robot would not move (at least two power lines active, do
not allow the robot to translate, and no rotation is generated—see Equations (4.42)–(4.45)
and (4.79)–(4.90)). As such, the extension of the analysis to concave robots requires that we
adapt the controllers.

However, there is no guarantee that, using only the robot corner/edge modules to rotate
the robot, will generate a rotation, for a robot of generic shape. As such, before going through
the controller adaptation for generic shapes, we need to assess if a robot of generic shape can
rotate when using similar control strategies.
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(a) (b)

Fig. 4.19 Counter-example for non-convex robot rotation, for a robot with no empty closed
spaces. The center of mass and desired rotation direction are represented by the point and
arrow in the center of the robot. The arrows represent the forces that create a torque that
goes in favour (blue), against (red) or have no impact (black) on the desired rotation. (a)
Counter-clockwise desired rotation. The robot does not rotate as the final torque is zero. (b)
Clockwise desired rotation, the robot rotates in the desired rotation.

(a) (b)

Fig. 4.20 Counter-example for non-convex robot rotation, for a robot with empty closed
spaces. The center of mass and desired rotation direction are represented by the point and
arrow in the center of the robot. The arrows represent the forces that create a torque that
goes in favour (blue), against (red) or have no impact (black) on the desired rotation. (a)
Counter-clockwise desired rotation. The robot does not rotate as the final torque is zero. (b)
Clockwise desired rotation, the robot rotates in the desired rotation.
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(a) (b)

Fig. 4.21 Forces acting on a non-convex robot, symmetric along X local
2 , in a counter-clockwise

(a) and clockwise (b) rotation. The center of mass and desired rotation direction are repre-
sented by the point and arrow in the center of the robot. The blue and red arrows correspond
to the forces acting in favour and against the rotation, respectively. The forces acting on the
robot rotating on a clockwise direction are a mirror image to the forces acting on the robot
rotating on a counter-clockwise direction. The generated torque is the same for the robot
rotating on either direction.

4.6.2 Counter-Examples

In order to guarantee that the robot can rotate, the torque acting on the robot needs to be
non-zero. Figures 4.19 and 4.20 show examples of robots, of concave shapes, for which the
torque generated in one rotation direction, using only corner modules, is zero. However,
for both examples, the torque is only zero for one specific rotation direction (Figures 4.19a
and 4.20a); for the opposite rotation direction (Figures 4.19b and 4.20b) the robot is able to
rotate.

From the counter-examples given, we know that there are some robot configurations that
produce a zero torque when trying to rotate in one direction. As the zero torque occurs only
for one rotation direction, the controller adaptation could take that into account to determine
the chosen direction of rotation. However, that is only possible if there is no configuration
that produces a zero torque when trying to rotate in either direction.

Theorem 9. Robots that are symmetric along axis X local
2 produce the same torque when

rotating in a counter-clockwise direction as when rotating in a clockwise direction, that is,

τCCW =−τCW .
14Note that for this controller, we need a1,a2,a3 ≥ 3.
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Proof. Consider a non-convex robot that is symmetric along X local
2 —Figure 4.21. We can

define four corner module types: top-left (c̄1c̄3), top-right (c̄1c̄4), bottom-left (c̄2c̄3) and
bottom-right (c̄2c̄4). Due to the symmetry, every top-left corner module placed at (xlocal

1 ,
xlocal

2 ) has a corresponding top-right corner module placed at (−xlocal
1 , xlocal

2 ). Similarly, every
bottom-left corner module placed at (xlocal

1 , xlocal
2 ) has a corresponding bottom-right corner

module placed at (−xlocal
1 , xlocal

2 ). This means that the number of corners for xlocal
1 > 0 is that

same a s for xlocal
1 < 0.

From the control policies, when rotating counter clockwise, top-left and bottom-right
corner modules have forces acting along X local

1 , and top-right and bottom-left corner modules
have forces acting along X local

2 . For clockwise rotation, the opposite occurs; top-left and
bottom-right corner modules have forces acting along X local

2 , and top-right and bottom-left
corner modules have forces acting along X local

1 . As the number of corners on each side of the
symmetry axis is the same, and each corner module’s contribution to the total torque only
depends on its position, we can look to a single side of a symmetric robot to determine the
total torque acting on it.

From the above and from the symmetry, for xlocal
1 > 0 and for a counter-clockwise rotation,

each corner module generates a torque of:15

τ
CCW
c̄1c̄3

=−xlocal
1 + xlocal

2 , (4.111)

τ
CCW
c̄1c̄4

= xlocal
1 + xlocal

2 , (4.112)

τ
CCW
c̄2c̄3

=−xlocal
1 − xlocal

2 , (4.113)

τ
CCW
c̄2c̄4

= xlocal
1 − xlocal

2 , (4.114)

where, xlocal
1 and xlocal

2 are the coordinates of the corner module in question.

For a clockwise rotation, the contribution of each corner module pair is given by:

τ
CW
c̄1c̄3

= xlocal
1 − xlocal

2 , (4.115)

τ
CW
c̄1c̄4

=−xlocal
1 − xlocal

2 , (4.116)

τ
CW
c̄2c̄3

= xlocal
1 + xlocal

2 , (4.117)

τ
CW
c̄2c̄4

=−xlocal
1 + xlocal

2 . (4.118)

15We assume that a positive torque corresponds to a counter-clockwise rotation and a negative torque
corresponds to a clockwise rotation.
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(a) (b)

Fig. 4.22 Counter-example for non-convex robot rotation. The center of mass and desired
rotation direction are represented by the point and arrow in the center of the robot. The
blue and red arrows represent the forces that contribute in favour or against the direction of
rotation. (a) Robot trying to rotate counter-clockwise. (b) Robot trying to rotate clockwise.
Both rotation directions produce a zero torque

From Equations (4.111)–(4.118) we have that τCW
c̄k c̄l

=−τCCW
c̄k c̄l

, for k ∈ {1,2}∧ l ∈ {3,4}.
When summing over all the corners with xlocal

1 > 0, we obtain:

τ
CCW =−τ

CW (4.119)

�

A similar analysis can be made for robots that are symmetric along X local
1 . Since the

premise is valid for robots symmetric along X local
1 and X local

2 separately, it is also valid for a
robot that shows symmetry along both axis. When extended for 3D space, and rotating along
one of the three axis of the robot’s reference frame, the robot is required to be symmetric
along the remaining two, to ensure the same torque is produced, in counter-clockwise and
clockwise rotations.

Figure 4.22 shows a robot configuration, that is symmetric along one of the coordinate
axis, and produces a zero torque when trying to rotate in either clockwise or counter-clockwise
rotation. Therefore, using the local connectivity of the module to determine its contribution
to the rotation, robots of generic shape are not guaranteed to succeed.

The counter-examples presented can be extended for 3D, simply by stacking copies of
the presented geometries along the third axis. As, for at least one of the rotation axis, the
robot produces a zero torque, we cannot guarantee the desired orientation can be reached,
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(a) (b)

Fig. 4.23 Example of an orthogonally convex robot (a) and non orthogonally convex robot
(b). For a orthogonally convex robot, any vertical or horizontal line drawn between two
points of the robot is contained by the robot’s shape.

when using the 3D-2SP and 3D-5SP-V1 controllers, as they require rotation along all of the
robot’s reference frame axis to cover all possible initial orientations. Moreover, when using
the 3D-5SP-V2 controller, if the rotation axis along which the robot produces a zero torque
is not perpendicular to the desired direction, the desired orientation might not be reached as
well.

4.6.3 Orthogonally convex robots

In the previous section, we showed that our current strategy, of using the connectivity of
the corner modules to determine their contribution to the rotation, is not viable for robots of
generic shapes. However, we can still extend the controllers to specific classes of geometries.
In particular we analyse orthogonally convex robots.

Definition 1. A robot A is considered orthogonally convex if the line connecting any two

points (x0,y0),(x1,y1) ∈A, with x0 = x1∨ y0 = y1, is contained in A.

When analysing rectilinear objects, such as the geometries formed by the MHP robot,
the geometric property that can play the same role as standard convexity is orthogonal
convexity [111]. For an orthogonally convex robot, any vertical or horizontal line can
intersect the boundary of the robot a maximum of two times. An example of an orthogonally
convex robot is presented in Figure 4.23a. If a vertical or horizontal line intersects the
boundary more than two times the robot is not orthogonally convex (Figure 4.23b).

When considering orthogonally convex robots, the proposed controllers can be used,
without requiring adaptation, as by definition, an orthogonally convex robot cannot detect the
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Fig. 4.24 Counter-example for an orthogonally convex robot. The center of mass and desired
rotation direction are represented by the point and arrow in the center of the robot. The
blue and red arrows represent the forces that contribute in favour or against the direction of
rotation. The torque acting on the robot, when rotating counter-clockwise is zero. As such,
the robot is unable to rotate in a counter-clockwise rotation.

goal from two opposing directions, if there is a single goal in the environment. However, it is
not possible to ensure that no translation occurs, while rotating, if the robot is not symmetrical
along all of its reference frame axes.

As with the case of robots of generic shape, for the controllers to work, we need to
guarantee that exists no robot configuration that produces a zero torque. Figure 4.24 shows
one such configuration, where the torque generated for a counter-clockwise rotation is zero.
Similarly to the robots of generic shape, as the robot in Figure 4.24 is not symmetric along any
of the robot’s reference frame axis, the torque for the rotation in the opposite direction—in
this case, clockwise—is non zero.

Theorem 10. Robots, of dimension a1,a2 > 1, that are orthogonally convex and symmetric

along X local
2 produce a non zero torque when rotating, in any given direction.

Proof. We assume a counter-clockwise rotation, xlocal
1 ≥ 0 (calculations performed for left

corners) and that the center of mass of the robot is place at (0,0)16. We start with a convex
rectangular configuration where there are only four corners, one of each type. From the
orthogonal convexity and symmetry, the top-left and top-right corners have the same xlocal

2

coordinate, and symmetrical xlocal
1 coordinate. As a result, and from Equation (4.112), we

know that τtop = max(xlocal
1 )+max(xlocal

2 ). Similarly, the torque generated by the bottom-left

16For a robot to be orthogonally convex (but not convex) it is required that both dimensions are larger
than zero, that is max(xlocal

1 )−min(xlocal
1 )> 0∧max(xlocal

2 )−min(xlocal
2 )> 0. Additionally, due to symmetry

max(xlocal
1 ) =−min(xlocal

1 ).
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xlocal
1

xlocal
2

(a)

xlocal
1

xlocal
2

(b)

xlocal
1

xlocal
2

(c)

Fig. 4.25 Example of a convex robot (a) and symmetric orthogonally convex robots obtained
by the addition of top (b) and both top and bottom (c) corners to the convex robot. The center
of mass and desired rotation direction are represented by the point and arrow in the center
of the robot. Light green modules act as top corners, light orange modules act as bottom
corners and light purple corners act as top and bottom corners simultaneously.

and bottom-right corners is given by τbottom = max(xlocal
1 )−min(xlocal

2 ) (Equation (4.114)).
Both torques are positive (contribute to a counter clockwise rotation) as τtop occurs for
xlocal

2 > 0 and τbottom occurs for xlocal
2 < 0 (Figure 4.25a).

For the remaining corners, from the orthogonal convexity, three possibilities exist: ad-
dition of top corners, addition of bottom corners, and addition of both17. If only top
corners are added two cases are possible. If xlocal

1 ≥ −xlocal
2 , from Equation (4.112), the

contribution of the top corner is positive. If xlocal
1 < −xlocal

2 , the contribution of the added
corners is negative. In the worst case possible, where two modules18 are added on each
side of the robot at min(xlocal

2 ) (e.g. Figure 4.25b), the torque acting on the robot goes from
τ = 2max(xlocal

1 ) +max(xlocal
2 )−max(xlocal

2 ) to τ = 3max(xlocal
1 )− 1+max(xlocal

2 ). Since
max(xlocal

1 )> 0∧max(xlocal
2 )> 0, the torque acting on the robot is still positive.

As more top corners are added, to keep the symmetry and orthogonal convexity, max(xlocal
2 )

decreases, but remains max(xlocal
2 )> 0, while max(xlocal

1 ) will increase for each corner added.
As a result, the negative impact of every extra top corner decreases, up to the point where
xlocal

2 > 0 for new corners, guaranteeing the the torque is always positive.

Adding only bottom corners will lead to a symmetrical situation (rotation of 180 º of the
previous case).

17As the configuration is symmetrical, adding top-right corners requires the addition of top-left corners, in
order to not break symmetry. The same applies for bottom corners.

18We assume that the size of the modules is 1.



110 Decentralised and Reactive Pose Control of an MHP Robot

The last possibility is the addition of adding both top and bottom corners. If max(xlocal
1 )

happens for xlocal
2 = 0, the torques produced by the additional corners are positive if xlocal

2 > 0
for top corners and xlocal

2 < 0 for bottom corners. If max(xlocal
1 ) happens for xlocal

2 > 0
(Figure 4.25c, all top corners added contribute with a positive torque. In this case, bottom
corners can contribute with a negative torque, however, due to the orthogonal convexity,
the absolute value of the torque generated by bottom corners is smaller of equal to the
contribution of top corners. A similar result is obtained in situations in which max(xlocal

1 )

happens for xlocal
2 < 0. As a result, the addition of both top and bottom corners to a convex

robot can only increase the total torque acting on the robot, which leads to τ > 0, for any
orthogonally convex robot, symmetric along X local

2 . From the result of Theorem 9, since
τ = 0 is not possible for counter clockwise rotation, it is also not possible for clockwise
rotation.

�

A similar analysis can be made for robots that are symmetric along X local
1 . Since the

premise is valid for robots symmetric along X local
1 and X local

2 separately, it is also valid for a
robot that shows symmetry along both axes. When extended for 3D space, and rotating along
one of the three axes of the robot’s reference frame, the robot is required to be symmetric
along one of the remaining two, to ensure a non zero torque is produced, in counter-clockwise
and clockwise rotations.

From the analysis performed in this section, the control strategies proposed in this chapter
are guaranteed to complete the task for orthogonally convex robots, symmetric along one of
the axes perpendicular to the axis of rotation. Moreover, no controller adaptation is required
to extend the solutions to these shapes.

4.7 Summary

In this chapter, we begin with an analysis of the movement capabilities of an MHP robot,
when moving in 3D, both in terms of translation and rotation. The analysis of the rotation
was completed for rotations along a single or multiple axis of rotation. The high number of
unique total forces and net torques a robot can produce enables it to control its translation and
rotation velocities with precision. From the expressions obtained, if the modular resolution of
the robots is increased, while keeping the robot size constant, the number of unique torques
increases. This allows for increased precision in controlling the robot’s movement.
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We proposed a set of fully reactive and decentralised controllers for modular reconfig-
urable robots that perform pose control in liquid environments. The control strategies enable
a convex-shaped robot to reach the goal with a preferred face. The robot uses simple binary
sensors and pumps. Additionally, the strategy allows the modules to access up to 5 bits of
information through shared power lines.

We formally proved that the controllers that allow the modules to share information
through the use of shared power lines are guaranteed to succeed when moving in both 2D
and 3D environments. For the controllers that do not use shared power lines, we showed that
they require a minimum initial distance from the goal in order to be able to complete the
task, regardless of initial orientation. We extended the analysis of the controllers to generic
(non-convex) configurations. We presented a set of counter-examples showing that the control
strategy—using the local connectivity of each module to determine its contribution to the
rotation—would need to be changed in order to allow these robots to complete the task. We
were, however, able to extend the use of the controllers for orthogonally convex robots, that
present one or more symmetry axis. For this class of geometries, the controllers do not
require any adaptation. However, depending on the geometry of the robot, some translation
may be observed during the rotation phase of the movement.

All the results presented in this chapter are theoretical. As a result, the behaviours
expected from the controllers are based on assumptions that might not prove correct when
considering real-world environments. For this reason validation of the proposed controllers
is required to ascertain if the controllers produce the expected behaviour, and if increases in
the amount of information accessible to the modules through shared power lines translates to
better performance.





Chapter 5

MHP Pose Control Validation

This chapter is derived from author’s original contributions to Sections 5 and 6 of the
publication [114].

5.1 Introduction

In the previous chapter we presented multiple reactive and decentralised strategies for
controlling the pose of an MHP robot moving in 2D or 3D. The strategies differed based
on the amount of information shared between the modules, through shared power lines.
While the controllers were shown to be able to complete the task, the analysis relies on
strict assumptions, such as quasi-static motion, that might not be applicable when used in
real-world applications. For this reason, the validation of the controllers is required.

To validate the controllers we first simulate the movement of MHP robots in 3D when
using the proposed controllers. The robots are required to reach a goal point with a specified
orientation in an unbound environment. To better understand the advantages and limitation
of each controller, we study their performance in different environments and conditions.
Additionally, we perform physical experiments, using the hardware developed in Chapter 3,
to test the performance of the controllers in 2D.

The remainder of this chapter starts by presenting the details regarding the simula-
tion studies in Section 5.2. This includes details of the simulator and simulation setup in
Section 5.2.1. Section 5.2.2 describes the implementation of the multiple controllers and
Section 5.2.3 presents an analysis of the robot’s movement for each controller and the results
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for the multiple studies performed. The simulations are followed by physical experiments in
Section 5.3. Details of the experiments set up and controller implementation are described in
Section 5.3.1 and 5.3.2. The results are presented and discussed in Section 5.3.3. Finally,
Section 5.4 concludes the chapter.

5.2 Simulation Studies

In this section we present the details regarding the simulation studies performed not only
to validate the controllers, but also to evaluate the trade-offs between performance and
complexity, in a variety of scenarios.

5.2.1 Simulation setup

In this section, we describe the simulator, as well as setup used for the simulations. The
simulator used was built using the open-source Open Dynamics Engine (ODE) library [117],
and is an adaptation of the simulator presented in [115]. Each module is simulated as a solid
cube, with side length 1cm and mass m = 1g. The modules are neutrally buoyant, that is, the
densities of the fluid and of the modules is equal. The module’s faces are numbered from one
to six, based on the face’s normal directions—odd numbered faces ( j = 2i−1) have normal
vectors anti-parallel to X local

i and even numbered faces ( j = 2i) have normal vectors parallel
to X local

i . Placed at the centre of each module’s face is an actuator, a connection sensor and
a light sensor. By default, each active actuator exerts a force fp = 5.25 µN, applied in the
centre of the module’s face, in an anti-parallel direction to the face’s normal.We chose this
value for the force exerted by each actuator, so that in water like conditions the robot is able
to travel at a speed of 1 cm/s . Internal fluid movement and forces associated with it, are not
simulated.

We simulate a 3D, continuous and unbounded liquid environment. The environment
consists of a liquid with constant density ρ = 1g/cm3 that contains a single modular robot
and a goal point, shown in Figure 5.1. By default, the simulations are conducted using
a 10× 10× 10 robot, that is, a cubic robot of 10cm body length. All the modules in the
robot are oriented consistently, that is, the modules and the robot share the orientation of the
reference frame. The goal point consist of a rigid sphere of diameter d = 1cm. The origin of
the world reference frame coincides with the starting position of the robot. By default, the
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Fig. 5.1 Image from the simulator showing the default simulation environment, consisting
of a 10×10×10 robot and a goal point. The goal is represented by the green sphere. The
robot is placed 85.5 cm away from the goal. In yellow are represented the module faces that
can detect the target. The green faces are used to mark the face with wich the robot needs to
reach the target. In blue are represented the active pumps.

robot is placed 85.5 cm away from the goal1. To reach the goal, it has to travel a distance of
approximately 8 body lengths2. The robot’s initial orientation is chosen at random from a
uniform distribution. Unless otherwise specified, the time limit for each trial is 1200 s. A
simulation trial terminates if the robot collides with the goal or the time limit is reached. A
trial is deemed successful if the point of collision between the robot and the goal belongs to
the preferred face of the robot (face 1). The point of collision between the robot and the goal
is determined using the collision detection functionalities of ODE. This is used to determine
if the robot reached the goal with the correct orientation.

The only forces acting on the robot are the forces generated by the modules and the forces
associated with fluid drag. As the computational cost of a full fluid dynamics treatment
would be significant [71], drag forces are determined using a quadratic approximation. The
drag force is calculated for each external module face, and then summed over all external

1The initial distance between the goal and the robot is measured from the center of the robot to the center
of the goal, and is determined by the number of robot body lengths has to travel, plus half of the robot size plus
half of the goal size.

2If the robot does not travel in a straight line towards the goal, the travel distance can be more than 8 body
lengths. In a similar fashion, if the robot collides with the goal at an angle, the travel distance can be less than 8
body lengths
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faces. The drag force fD acting on an external module face is determined by:

fD =

−
1
2

ρCDε
2q̇ · q̇u, q̇ ·u > 0

0, otherwise.
(5.1)

where ρ is the fluid density, ε the module side length, CD the drag coefficient value, q̇ the
velocity of the center point of the module’s face and u the face normal. Using CD = 1.05
(drag coefficient value of a cube translating in a direction perpendicular to a face), the robot
can reach a terminal velocity of 1 cm/s when translating.

We test the decentralised controllers presented in Section 4.4.2. We evaluate the impact
that changes in fluid drag, initial distance between the robot and the goal, modular resolution,
and actuator and sensor noise have each controller’s performance. Additionally, we compare
the decentralised controllers results against a centralised controller from the literature [27].

The centralised controller used is a proportional-integral-derivative (PID) controller, and
requires the position and orientation of the robot, as well as the positions of its thrusters, as
inputs. The errors in position and orientation of the robot are used to determine the thruster
output of the robot. In the original controller, each thruster is given an output from within the
working range of the thruster [27]. In our implementation, the centralised controller uses the
same set of binary pumps as the decentralised controllers.

We calibrated the proportional, integral and derivative parameters of the controller via
grid search, for the default simulation setup. Figure 5.2 shows the completion times for
the sets of parameters tested, with 100% success rate. The values obtained through the
calibration (PT = 1, IT = 0, DT = 1, PR = 1000, IR = 0, DR = 1000, PID set index = 80) are
used for all setups used in the multiple studies. However, this means that, for other than the
default setup, the performance of this controller can be lower than expected.

5.2.2 Controller implementation

In this section, we describe the implementation of the controllers used for the simulation
studies. In Sections 4.3 and 4.4 we assume that a robot moving in 3D has access to M ∈
{0,2,5} shared power lines, that are used to share information between the modules. These
shared power lines need to be implemented in the simulator, to obtains the behaviour produced
by the decentralised controllers.
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Algorithm 3 Simulator generic time step
1: Let n be the number of modules in the robot, t and T be the current and maximum

simulation time and M ∈ {0,2,5} be the number of shared power lines.
2: while t < T do
3: if decentralised then ◃ If using a decentralised controller.
4: if M ≥ 2 then ◃ If the controller uses shared power lines.
5: for i← 1,n do ◃ Go through all modules.
6: for j← 1,6 do ◃ Go through all faces.
7: d j← Goal sensor reading
8: b← fb(c,d j) ◃ Evaluate state of power lines.
9: end for

10: end for
11: end if
12: for i← 1,n do
13: for j← 1,6 do
14: p j← fp(c,d,b) ◃ Determine pump activation state, from controller.
15: end for
16: end for
17: else ◃ If using the centralised controller.
18: q← robot_position ◃ Obtain the robot’s position.
19: θ ← robot_orientation ◃ Obtain the robot’s orientation.
20: for i← 1,n do
21: for j← 1,6 do
22: p j← PID(q,θ) ◃ Get pump activation, from PID controller.
23: end for
24: end for
25: end if
26: Do physics time-step ◃ Determine current pose.
27: if collision then
28: break ◃ If a collision is detected, terminate the simulation
29: end if
30: t← t +∆t ◃ Increase current time by ∆t
31: end while
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Algorithm 3 describes the steps of a generic time step for the simulator. Each simulation
is run until either the time limit is reached (i.e. 1200 s), or a collision between the robot
and goal has been detected. When using one of the decentralised controllers that use shared
power lines, it is required to go through the faces of the modules twice: the first time to
evaluate the state of the shared power lines according the functions gb,k(c,c) presented in
Section 4.4.2 (lines 3–11), and the second to have the actuation state of the pump in each
face match the state obtained by using the functions gp(c,c,b) presented in Section 4.4.2
(lines 12–16). As the state of each shared power line is dependent on the sensing states of
all modules, it represents the minimum amount of information each module requires from a
set of sensors of all the modules. In a physical robot, if the sensor readings of a particular
module indicate that the k-th inactive shared power line (bk = 0) should be active (bk = 1),
the module is capable of changing the shared power line state, while simultaneously updating
its actuation state. Similarly, when a module detects a change in a shared power line it
can update the actuation state of each pump. As a result, there is no significant difference
between the updating of the shared power lines and actuation. However, for each module to
be able to react to changes in the shared power lines in the simulator, it is required that the
state of the shared power lines is known. To determine this, the simulator first needs to go
through all module faces. When the decentralised controller does not use shared power lines,
only one cycle though all module faces is required, as the activation state of each pump is
based on the sensor readings of each face. If using the centralised controller, the position
and orientation of the robot are obtained and stored (lines 18 and 19). The robot for which
the centralised controller was developed had access to an IMU and GPS sensors, allowing
for this information to be easily obtained. The position and orientation of the robot are used
to determine the error between the current and preferred position and orientation. These
errors, together with the positions of each pump, are used to determine the activation state of
each pump (lines 20–24) Once the pump activation states are determined, the physics of the
system are evaluated to determine the positions and velocities of the robot and each module
(line 26). After completion, a test for collision between the robot and the goal is performed.
If no collision is detected, the simulation moves into the next time step. If a collision is
detected, the simulation terminates (lines 27–31).

5.2.3 Results

In this section, we present the results for five simulation studies performed. In each study,
the impact of a different variable of the default setup is evaluated. We perform a total of 100
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Fig. 5.3 Position and orientation of the robot over time, for a successful trial. The different
lines correspond to the 3D-0SP-V1 (blue), 3D-0SP-V2 (orange), 3D-2SP (green), 3D-5SP-V1
(red), 3D-5SP-V2 (black) and centralised (pink) controllers.

simulation trials per variable value. For each study, a set of fixed 100 random orientations
is used for all variable values and controllers. Each study uses a different set of random
orientations. Additionally, we perform a comparison of the behaviours and trajectories of the
robot, for all controllers.

5.2.3.1 Analysis of the robot’s movement for each controller

In this section, we compare the changes in position and orientation of the robot, as well
as obtained trajectories, for a successful trial. The trial was chosen in such a way that
rotations along all axis occur, for the 3D-2SP controller. The robot’s initial position and
orientation is the same for all controllers and corresponds to (X1,X2,X3) = (0,0,0) and
(ψ,θ ,φ) = (0.7π,0.29π,0.84π), with ψ , θ and φ corresponding to the yaw, pitch and roll
angles, respectively. This orientation corresponds to the global sensing state represented
by node 0 in Figures 4.15–4.17. The goal is positioned at (X1,X2,X3) = (85.5,0,0) and the
preferred orientation is (ψ,θ ,φ) = (π,0,φ). The requirement for a successful trial is that
the robot collides with the preferred face. As the preferred face is perpendicular to the X1

axis, rotations along this axis do not change the face colliding with the goal. As a result, the
preferred orientation can be fully defined by the yaw and pitch angles.
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Figure 5.3 shows the changes in position and orientation of the robot over time, for
each controller, which were obtained from the simulator3. For all controllers, the positions
and angles present two distinct phases: rotation into preferred orientation (with or without
translation) and pure translation towards the goal. During the rotation period, the robot’s
position only changes if using the 3D-0SP-V1, 3D-0SP-V2 or centralised controller. The
3D-0SP-V1, 3D-0SP-V2 cause larger changes in the X2 and X3 position of the robot during
rotation, due to the disparity between the number of pumps contributing to rotation and
translation. On the other hand, the centralised controller, can increase or decrease the number
of pumps contributing to each movement. As a result, the robot shows smaller changes in its
X2 and X3 position while rotating. In terms of the rotation movement, all controllers except
the 3D-2SP and 3D-5SP-V1 controllers reach the preferred orientation in a single rotation.
While the rotation movement is the same, the time taken to reach the preferred orientation is
different, due to the differences in the number of pumps contributing to the rotation. As a
result, the centralised controller is the fastest, as it is able to use more than the robot edges
in the rotation, and the 3D-0SP-V1 is the slowest, as it uses the smallest subset of edges for
the rotation. When using the 3D-0SP-V1 controller, the robot stops rotating before reaching
the preferred orientation (ψ,θ ,φ) = (π,0,φ). As the robot moves in the X2X3 plane during
rotation, the orientation of the robot where it faces the goal with the preferred face does
not match the preferred orientation. Both the 3D-2SP and 3D-5SP-V1 controllers perform
more than one rotation movement, causing them to be the slowest in reaching the preferred
orientation. In the pure translation phase, all controllers generate a linear motion, where the
robot directly translates towards the goal. The differences in final position of the robot are
caused by differences in the over-shoot that occurs for each controller. The over-shoot also
justifies small differences between the final and preferred orientation.

Figure 5.4 shows the trajectories of the robot, when using the different controllers,
projected in the X1X2 and X1X3 planes. For the controllers that use shared power lines, the
trajectories are straight lines towards the goal, as the robot only starts moving after reaching
the preferred orientation. For the 3D-0SP-V1, 3D-0SP-V2 and centralised controllers, the
trajectory shows some curvature, while the robot is rotation, followed by a straight line
towards the goal, once the preferred orientation is reached. While all of the controllers allow
the robot to reach the goal, the contact points for each controller are different. The differences
observed can be attributed to small overshoots that occur when the robot is de-accelerating
its rotation.

3The robots are not capable of obtaining their absolute orientation or position. The data presented is
obtained from the records of each physics time step of the simulator.
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Fig. 5.4 Trajectory of the robot, viewed from two perspectives, for a successful trial. The
different lines correspond to the 3D-0SP-V1 (blue), 3D-0SP-V2 (orange), 3D-2SP (green),
3D-5SP-V1 (red), 3D-5SP-V2 (black) and centralised (pink) controllers.

5.2.3.2 Study on the impact of drag coefficient on the performance of the controllers

In this section, we evaluate the performance of each controller under different drag conditions.
We tested drag coefficients values of CD = 1.05×K, where K = 1.2k,k ∈ {1,2, . . . ,30}. This
allows for the evaluation of the performance of the controllers when the robot is immersed in
different fluids. For each K, 100 trials were conducted for each controller.

Figure 5.5 shows the percentage of successful trials for all controllers. From Equa-
tion (5.1) we know that v ∝

1√
CD

, where v corresponds to the robot’s terminal velocity.
Assuming the robot travels at terminal velocity for the full duration of the trial, in order to be
able to reach the goal within the trial time limit, the robot needs to reach a terminal velocity
of v = 0.06(6)cm/s. As such, in general, for drag coefficients with K > 225, the goal cannot
be reached, even when travelling at terminal velocity for the entire trial duration.

The 3D-0SP-V1 controller succeeds in about 70% of the trials for all but the highest
drag coefficients (K > 165). In the unsuccessful trials the robot reaches the goal with a
non-preferred orientation. As this controller assigns the smallest subset of the robot edges to
contribute to rotation, when compared to other controllers, the toques acting on the robot—
and by extension its angular velocity—is smaller. As the controller allows for simultaneous
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Fig. 5.5 Performance of a 10×10×10 robot in environments with different drag coefficient
(100 observations per setting). A trial is successful if the robot in its preferred orientation
collided with the goal within a fixed time period.

translation and rotation, the angular velocity is not always sufficient to correctly align the
robot prior to reaching the goal. By contrast, the 3D-0SP-V2 controller is able to successfully
complete all trials for drag coefficients that have K ≤ 46, but its performance drops with
further increases in drag coefficient. For drag coefficient values with K > 137, the robot
is unable to complete the task when using this controller. While the 3D-0SP-V2 controller
also allows for simultaneous translation and rotation, there are two differentiating factors
when compared to the 3D-0SP-V1 controller: (i) the translation towards the goal (henceforth
denominated as active translation) only starts if |∆θ | < π

2 ∨ |∆ψ| < π

2 , where ∆θ and ∆ψ

correspond to the differences between the robot’s current and preferred orientation, with
the robot translating away from the goal (henceforth denominated as passive translation)
if |∆θ |> π

2 ∧ |∆ψ|> π

2 , and (ii) a larger subset of edges is is used for rotation—the edges
only contribute to rotation and are not used for translation—leading to a faster rotation but
slower translation. The reduced translation speed, joined together with the robot being able
to translating away from the goal, leads to an earlier drop in success rate for higher drag
coefficient value, when compared to the 3D-0SP-V1 controller. On the other hand, the faster
rotation allows the 3D-0SP-V2 controller to perform better at lower drag coefficient values,
when compared to the 3D-0SP-V1 controller.

The 3D-2SP controller performs flawlessly for drag coefficients in the range 18.5≤ K ≤
55.2. For K > 55.2, both the linear and angular velocity are reduced to the point where the
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robot does not have enough time to rotate, and then translate to reach the goal. For lower
drag coefficients, the drag is insufficient to counter inertia forces, causing over-shoot during
rotation. For 1≤ K ≤ 8.9 even a small rotation will cause the robot to rotate more than the
required. For 8.9 < K < 18.5 small rotations do not cause significant over-shoot, allowing
trials where the differences between initial and preferred orientation are small to succeed.

The 3D-5SP-V1, 3D-5SP-V2 and centralised controllers perform flawlessly for all but
the highest drag coefficients. For high K values, the drops in performance occur first for the
3D-5SP-V1 controller, followed by the 3D-5SP-V2 controller, followed by the centralised
controller. Simultaneous rotation and translation ensure the centralised controller is the
fastest of the three. Due to performing shorter rotations than the 3D-5SP-V1 controller,
the 3D-5SP-V2 consumes less time to reach the preferred orientation. This allows a larger
portion of the trial time to be used for translation. For low K values, as the 3D-5SP-V2 and
centralized controllers can rotate counter-clockwise and clockwise, along all considered axis
of rotation, the over-shoot can be corrected. The 3D-5SP-V1 controller can rotate counter-
clockwise and clockwise along two of the axis, but only clockwise along the third. As such,
only the over-shoot along axis X local

2 and X local
3 can be corrected. The over-shoot along the

X local
1 cannot be corrected. However, due to the sequences of rotations (see Figure 4.16), and

the fact that the rotations along the two other axis can correct the over-shoot, the robot will
always reach the preferred orientation, if given enough time.

The results presented show that, in general, as the amount of information the modules
can share increases (increased number of shared power lines), the value of drag coefficient
at which the performance of the controller starts to drop increases as well. However, for
very high drag coefficient values, the 3D-0SP-V1 controller is able to slightly outperform
all controllers using shared power lines. At high drag coefficient values, the controllers that
use share power lines are unable to complete the task due to the limitations on robot velocity
caused by the high drag. On the other hand, the 3D-0SP-V1 controller, by generating a
rotation movement, while generating a translation at maximum velocity towards the goal, is
capable of keeping its performance for higher drags as all other controllers start being unable
to complete the task.

For the remainder of this chapter, we use a default value for the drag coefficient of
CD = 1.05× 20. This value is chosen to allow all controllers to perform their best in the
default setup.
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Fig. 5.6 Performance of a 10× 10× 10 robot when the goal is initially a short, medium,
or large distance away from the robot (100 observations per setting). The controllers are
(from the left to the right): the decentralised controllers, 3D-0SP-V1, 3D-0SP-V2, 3D-2SP,
3D-5SP-V1, 3D-5SP-V2, and the centralised controller. Bars represent the percentage of
successful trials. Box plots represent completion times (successful trials only).

5.2.3.3 Study on the impact of goal distance on the performance of the controllers

From the formal analysis of the controllers done in Section 4.5.2, the performance of the
controllers with no communication is dependent on the initial distance to the goal. For the
remaining controllers, the distance is only expected to impact the success rate if there is not
enough simulation time to rotate and reach the goal. In this study, we evaluate the controller’s
performance in controlling the pose of the robot over short (2 body lengths), medium (8
body lengths–default setup), and long (32 body lengths) distances. To account for the longer
distances, the trial duration is adjusted accordingly to 300 s, 1200 s and 4800 s.

Figure 5.6 shows the percentage of successful trials and time it taken to reach the goal, for
each distance considered. The 3D-0SP-V1 and 3D-0SP-V2 controllers exhibit improvements
in success rate as the initial distance between the robot and goal increases. For long distances,
both controllers complete all tasks. At short distance, however, the performance is poor. Due
to simultaneous rotation and translation, shorter distances do not allow the robot to reach



126 MHP Pose Control Validation

(a) (b)

Fig. 5.7 Two robots, with the same orientation, after finishing a counter-clockwise rotation.
All of the conditions are the same for both scenarios, except for the distance to the goal. The
over-shoot for both case is the same. (a) While the robot over-shoot its rotation, the goal
point is still within the boundaries of what is detected only by the preferred face. (b) With
the same over-shoot as (a) the goal can be detected by a face other than the preferred, leading
the robot to keep rotating.

the preferred orientation before reaching the goal. This effect is amplified by the fact that
fewer modules contribute to rotation than for the other controllers. It is worth noting that for
short and medium distances the controller that performs better, of these two controllers, is
different. This situation will be analysed in more detail in Section 5.2.3.3.

The 3D-2SP controller fails to complete some of the trials when the goal is at short
distance. For medium distances, this controller is able to complete all trials. For long
distances, the controller fails to complete the task for all trials. Using this controller, the robot
first rotates, and only after reaching the preferred orientation does it translate. For a distance
of 2 body lengths, the drag coefficient value limits the rotation and translation velocities,
preventing the robot from reaching the goal within the time limit, large differences between
the initial and preferred orientation. On the other hand, for a distance of 32 body lengths, the
drag coefficient is not large enough to correct the rotation over-shoot, which leads to the robot
being unable to reach the preferred orientation. This effect is demonstrated in Figure 5.7. As
the distance between the robot and the goal increases, the maximum over-shoot for which the
completion of the trial is not compromised decreases. The changes in performance of this
controller with distance suggest that the liquids in which the controller is able to perform,
are depended on the initial distance between the robot and the goal. To investigate this, the
performance of the controller was tested for multiple drag values, for the three distances
considered. Figure 5.8 shows the results. The optimal performance for the controller, in
terms of drag coefficient, is shown to be dependent on the distance. As the distance between
the robot and the goal increases, the curve moves to the left, meaning the controller requires
a higher drag coefficient to guarantee completion of the task.
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Fig. 5.8 Performance of a 10×10×10 robot, using the 3D-2SP controller in environments
with different drag coefficient (100 observations per setting). Three different initial distances
are tested.

The 3D-5SP-V1 controller is able to always complete the task for short and medium
distances. For long distances, the success rate drops to 96%. This performance drop is
associated with the rotation over-shoot, when rotating along X local

1 . As mentioned before, the
over-shoot, by itself, does not represents a problem for the controller, in terms of reaching
the preferred orientation (in contrast with the 3D-2SP controller, that rotates indefinitely in
this situation). However, it leads to increased rotation time. In extreme cases, the robot will
be able to reach the preferred orientation, but will not have time to reach the goal.

For all travel distances, the 3D-5SP-V2 and centralised controllers are always able to
complete the task. The 3D-5SP-V2 controller, due to shorter rotations, does not suffer from
the high drags for short distances. For long distances, as it can rotate counter-clockwise and
clockwise, it can correct any possible over-shoot. The centralised controller, due too being
able to control both its rotation and translation velocities, is also able to overcome the high
drag forces for short distances and eliminate any over-shoot for long distances.

In terms of completion time, the 3D-0SP-V1 controller has the best completion times, as
it is always translating at maximum speed. The centralised controller is the second faster,
being almost identical for medium and long distances, due to its simultaneous rotation and
translation. The 3D-2SP and 3D-5SP-V1 controllers are the slowest, as the rotation and
translation are separate. Of the two, the 3D-2SP is the slowest, due to a longer rotation path.
The 3D-5SP-V2 controller presents completion times that are in between the centralised
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Table 5.1 Average completion times for each controller and distance in seconds.

Controller Distance 2 Distance 8 Distance 32
3D-0SP-V1 91.86 391.34 1496.89
3D-0SP-V2 144.95 589.62 1917.40
3D-2SP 208.95 556.51 –

3D-5SP-V1 173.83 465.76 3075.11
3D-5SP-V2 153.99 431.47 1512.17
Centralised 133.99 397.77 1499.06

and 3D-5SP-V1 controllers. Table 5.1 presents the average completion times for each
controller, for each distance. As the distance increases, the ratio of average completion time
between controllers gets closer to 1. As for longer distances the majority of the trial is spent
translating, differences in rotation time have a smaller impact. The 3D-5SP-V1 controller in
long distances is an exception to this, as it spends significant time rotating.

As before, increased sharing of information between the modules was expected to
translate into performance. However, that is shown to be the case only for short distances. As
the distance increases, the performance of the controllers that require no shared power lines
improves, with the 3D-0SP-V2 controller surpassing the 3D-2SP controller in medium and
long distances, and the 3D-0SP-V1 controller performing better than all other controllers,
including centralised (although the difference is minimal), in long distances. The fact
that the 3D-0SP-V1 controller allows the robot to rotate in all directions, overcoming the
overshoot present in the 3D-2SP and 3D-5SP-V1 controllers, and translates towards the goal
at maximum speed from the start, allow it to be a better solution for situations where there is
enough time (distance) to complete the rotation. On the other hand, its translation becomes
the limiting factor in short distances, where while still being the faster controller to complete
the task, its ability to complete the task is limited to small offsets of orientation from the
desired orientation.

Controllers with no shared power lines (3D-0SP-V1 and 3D-0SP-V2): comparison
and use cases

We previously observed that for short and medium distances, between the 3D-0SP-V1 and
3D-0SP-V2 controllers, the one with the higher success rate was not the same. Additionally,
from the formal analysis performed in Section 4.5.2.2, it was expected that the 3D-0SP-V2
controller would perform better for shorter distances. The results presented in Figure 5.6
show the opposite. To investigate this, the performance of these two controllers was tested
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Fig. 5.9 Performance of a 10×10×10 robot for multiple goal distances (100 observations
per setting). The controllers are the 3D-0SP-V1 (blue) and 3D-0SP-V2 (yellow) controllers.
Bars represent the percentage of successful trials. Box plots represent completion times
(successful trials only).

for initial distances between the robot and the goal of 1 to 20 robot body lengths. For this set
of distances, the time was not adjusted, that is, the time limit for each trial is 1200 s for all
distances.

Figure 5.9 shows the percentage of successful trials, and the time taken to reach the
goal for each of the distances considered, for the two controllers. The 3D-0SP-V1 controller
presents a success rate of close to 20% for a distance of one robot body length. As the
distance increases the controller’s performance increases, obtaining full success rate for
distances higher than 15 robot body lengths. The 3D-0SP-V2 controller starts with a success
rate of close to 10%, which increases rapidly, reaching 100% success rate at a distance of
six robot body lengths. For distances above 16 robot body lengths, the success rate starts
dropping, due to the lack of time (in Figure 5.6 this controller is still able to complete all
trials for long distances due to the adjusted time limit).

The results obtained for distances equal or larger than three robot body lengths are in line
with what was expected from the theory: as the distance required to guarantee the success of
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(a) (b)

Fig. 5.10 Comparison of the net force, and resulting rotation and translation direction acting
on a robot at a short distance from the goal (in orange), with a π

4 orientation offset between the
initial and preferred orientations, using the (a) 3D-0SP-V1 and the (b) 3D-0SP-V2 controllers.
The preferred face is represented by the green modules. In blue are represented the pumps
that are firing for each controller. While using the 3D-0SP-V1 controller leads to a movement
that will reach the goal the goal, the 3D-0SP-V2 controller generates an orbiting movement
around the goal, that does not guarantee reaching it.

the controller is smaller for the 3D-0SP-V2 controller, it performs better in shorter distances
than the 3D-0SP-V1 controller. As the distance increases, the performance gap gets smaller,
until both controllers are always able to complete the task (if time is not considered a factor
for the success of the controllers). However, for very short distances (one and two robot body
lengths) the 3D-0SP-V1 controller outperforms the 3D-0SP-V2 controller.

For short initial distances between the robot and the goal, the success of these controllers
is strongly tied with the difference between initial and preferred orientation4. For large
orientation differences, neither controller is able to complete the task. For short orientation
differences, both controller should be able to complete the task. However, there is a set
of initial orientations, for which the difference with the preferred orientation is small5,
that do not allow the 3D-0SP-V2 controller to complete the task. The the 3D-0SP-V1 and
3D-0SP-V2 controllers generate a different translational movement in the same situation.
Figure 5.10 show the direction net force acting on a robot using the 3D-0SP-V1 and the
3D-0SP-V2 controllers. The 3D-0SP-V2 controller generates a net force that is not directed
towards the goal. For short distances, this leads to the robot orbiting around the goal. On
the other hand, the 3D-0SP-V1 controller, will reach the goal with the preferred orientation

4A comparison between the "types of failure" each of these controllers produces is made in Appendix E.
5This set of orientations is defined as having a small difference to the preferred orientation because the

3D-0SP-V1 controller is able to complete the task successfully.
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when placed in a similar situation. As a result, the 3D-0SP-V1 controller presents a higher
success rate for initial distances under 3 robot body lengths.

While the 3D-0SP-V2 performs better than the 3D-0SP-V1 for short–medium distances,
that only takes into consideration the success rate of each controller. As a consequence of
its smaller translation velocity and being able to move the robot away from the goal, the
3D-0SP-V2 controller always takes longer to complete the trials. Additionally, the increased
success rate comes at the cost of increased energy consumption.6 As a result, while the
3D-0SP-V2 controller can be a better option for short–medium distances, for long distances,
where the success rate is no longer in question, the 3D-0SP-V1 performs better.

5.2.3.4 Study on the impact of modular resolution on the performance of the con-
trollers

From the analysis performed in Section 4.2 we know that increasing the robot’s resolution
increases the amount of unique net torques that can be applied to the robot. If the overall size
of the robot is kept the same, and the pump’s output is adjusted for the modules reduced size,
the maximum torque that can be produced does not change significantly. However, due to
the increased number of modules, the granularity of the movement undergoes a substantial
increase. In this study, we evaluate the ability of the controllers to cope with modular robots
of different resolution. While the overall robot size remains the same, the number and
size of modules varies. For each module size considered, the thrust force of the pumps
is re-calibrated to ensure that the net translational force, and by consequence the terminal
translational velocity, remains the same.

Figure 5.11 shows the success rate of each controller for the module sizes considered.
In general, the smaller the modules, the lower the torque produced by each module. This
means that the terminal angular velocity decreases with the increased modular resolution. As
result, the performance of the 3D-0SP-V1 and 3D-0SP-V2 controllers decreases substantially
with increased modular resolution. As there is no change in the translation velocity, and
the angular velocity is reduced, the robot reaches the goal before it can finish rotating. The
performance of the 3D-2SP controller is more robust, but also decays for very small module
sizes (ca. 0.16 cm width). This is due to the robot not enough time to reach the goal, and
is caused by the longer rotation times. The 3D-5SP-V1 and 3D-5SP-V2 controllers perform

6A comparison between the energy consumed by each controller is performed in Appendix E.
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Fig. 5.11 Performance for robots of different modular resolution (100 observations per
setting). While the number of modules and their size changes, the robot’s overall dimensions
remains the same. For details, see text.

flawlessly for the increased modular resolution, as the rotation is shorter. However, we
predict that it will eventually degenerate at higher resolutions.

For robots with decreased modular resolution, all controllers, except the 3D-0SP-V2

controllers perform flawlessly. The 3D-0SP-V2 controller is unable too complete any trial
for a robot of size 23. This is a limitation of the controller, as it uses the module faces
that do not belong to the edges to translate. As in this configuration those do not exist, the
robot is able to get to the preferred orientation, but cannot actively translate to the goal. If
the robot size were to be increased, it is expected that the performance of other controllers,
particularly the 3D-2SP controller, would decrease for low modular resolution. As the torques
generated by the edge modules would increase, it would simulate a situation similar to low
drag coefficients.

The centralised controller performs well irrespective of the modular resolution. This
controller uses additional information (relative positions of all modules), and can activate
half of externally-facing pumps of a robot to support a rotation. As such, even if the modular
resolution were to be increased even further, no drops in performance are expected.

While the performance of the controllers decreases, this is only due to the time limit
imposed on the simulations. From Section 4.2, we know that increasing modular resolution
increases the granularity of the movement control. This can be advantageous if particularly
precise movements are required. Figures 5.12 and 5.13 show, for each controller, how the
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(a)

(b)

(c)

Fig. 5.12 Heatmaps showing the distribution of the contact points between the robot and the
goal for successful trials (contact point in the preferred face) when using the (a) 3D-0SP-V1
controller, (b) 3D-0SP-V2 controller and (c) 3D-2SP controller. Three robot resolutions are
show, from left to right: a 53 robot, a 103 robot and a 203 robot.
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(a)

(b)

(c)

Fig. 5.13 Heatmaps showing the distribution of the contact points between the robot and the
goal for successful trials (contact point in the preferred face) when using the (a) 3D-5SP-V1
controller, (b) 3D-5SP-V2 controller and (c) centralised controller. Three robot resolutions
are show, from left to right: a 53 robot, a 103 robot and a 203 robot.
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contact points between the robot and goal are distributed along the preferred face. Three
modular resolutions are considered: 53, 103 and 203. In general, as the resolution increases,
the distribution of the contact points gets less disperse. The positions that the contact
points tend to converge to depends on the controller used. The 3D-0SP-V1 and 3D-0SP-V2

controllers can rotate along two axis simultaneously. However, due to the smaller torques
applied, a robot using this controller stops rotation faster. For these reasons, the contact
points tend to get closer to the corners of the face (Figure 5.12a and 5.12b). For the 3D-2SP
controller, the majority of initial orientations will lead to reach the preferred orientation with
a rotation along X local

3 (of the 25 global sensing states that lead to a rotation, in only four
will the robot reach the preferred orientation with a rotation along X local

2 —Figure 4.15). As
such, the contact points tend to a line perpendicular to the rotation axis (Figure 5.12c). The
3D-0SP-V1 controller, for similar reasons to the 3D-2SP controller, tends to form four lines,
each corresponding to one of the possible rotation axis and rotation direction(Figure 5.13a).
With increased modular resolution, those lines tends to get closer to the center, for both
controllers. For the 3D-5SP-V2 controller, as the robot is able to rotate along two axis
simultaneously, the points distribution tends to be equidistant to the center, forming a shape
similar to a circle (Figure 5.13b). Increased modular resolution decreases the dispersion of
the points, bringing them closer to the center. The centralised controller is able to assign
more than the edge modules to the rotation. This leads to a more accurate control of the
rotation. As a result, when using the centralised controller, the same distribution of contact
points is obtained, regardless of resolution.

5.2.3.5 Study on the impact of actuation noise and failure on the performance of the
controllers

In all of the previous studies, all of the modules performed flawlessly. However, there are
situations where such a performance is not achievable. Additionally, one of the potential
advantages of modular robots is their robustness to failure and redundancy [8]. Incorrectly
behaving actuators can drastically affect the robot’s movement. In this study, we evaluate the
impact of modular robots being exposed to actuation noise or actuation failure. Each pump
chooses with probability P a uniformly random activation value, or zero, and uses the value
obtained by the controller, otherwise.

Figure 5.14 shows the results for robots with modules subject to actuation noise. All
controllers succeed in rejecting small disturbances. Apart from the 3D-0SP-V2 and 3D-2SP

controller, the performance is not substantially affected up to a noise level of 40%. Thereafter
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Fig. 5.14 Performance of a 10×10×10 robot when subjected to different levels of actuation
noise (100 observations per setting).

Fig. 5.15 Performance of a 10×10×10 robot when subjected to different levels of actuation
failure (100 observations per setting).
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Fig. 5.16 Performance of a 10×10×10 robot when subjected to different levels of sensory
noise (100 observations per setting).

the performance decreases rapidly. These controllers are susceptible to lower noise levels
due to their slower translation and rotation, respectively. For noise levels of 50% and beyond
the robot is unable to reach the goal within the time limit. Figure 5.15 shows the results for
robots with modules subject to actuation failure. The shape of the success rate curves is very
similar to the ones from actuation noise. However, the success rates are slightly higher. This
is due to the fact that there are no actuators acting against the movement.

5.2.3.6 Study on the impact of sensor noise and failure on the performance of the
controllers

The proposed decentralised control solutions are entirely dependent on the sensing of each
module to determine the actuator states. As a result, sensors are another component that
can highly impact the robot’s performance. In this study, we evaluate the impact of modular
robots being exposed to sensing noise or failure. Each sensor reports with probability P a
uniformly random value, or zero, and uses the original value, otherwise. The centralized
controller is not included here, as it doesn’t use sensors and its performance would not be
affected.

Figure 5.16 shows the results for robots with modules subject to sensor noise. The
controllers that use shared power lines are highly susceptible to sensor noise. As long as one
sensor belonging to a face other than the preferred direction gets a false positive reading,
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Fig. 5.17 Performance of a 10×10×10 robot when subjected to different levels of sensory
failure (100 observations per setting).

the corresponding power line is pulled up, causing the robot to rotate. This means that a
single sensor malfunction can stop the robot from completing the task. On the other hand,
the controllers that do not use shared power lines are less susceptible to sensor noise. As
the modules do not share any information, false readings cannot propagate. The 3D-0SP-V1
controller performs robustly with up to 85% noise. Above this value of sensor noise, the robot
becomes unable to reach the goal. The 3D-0SP-V2 controller is able to perform flawlessly
for sensor noise values up to 15%. While the rotation component of the movement should
suffer the same as the 3D-0SP-V1 controller, the active translation behaviour is dependent on
a single face detecting the goal. As pumps belonging to all faces other than the preferred face
are active regardless of sensor readings, false positive readings in the preferred face cause
the robot to actively translate towards the wrong direction.

Figure 5.17 shows the results for robots with modules subject to sensor failure. In contrast
with the sensor noise, the controllers that use shared power lines are very robust to sensor
failure. These controllers effectively only need a total five sensors, one per face other than
the preferred, to operate correctly. As a result, they can easily deal with sensor failure. The
3D-0SP-V1 controller, on the other hand, drops in performance as the the sensor failure level
increases. This comes from the fact that sensor failure impedes both the robot translation and
rotation, meaning that it takes longer to both reach the target and the preferred orientation.
The 3D-0SP-V2 suffers from the same effect, although to a smaller scale. For this reason, it
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Fig. 5.18 Comparison of the performance of a cubic robot (10× 10× 10) with a thin and
long robot (5×5×40). Simulations were performed with the long component along all three
axis. Bars represent the percentage of successful trials. Box plots represent completion times
(successful trials only).

is able to perform flawlessly up to sensor failure values of 60%, at which point it becomes
unable to complete all trials.

5.2.3.7 Study on the impact of robot sizes on the performance of the controllers

In Section 5.2.3.4, we studied the effect of modular resolution on the performance of the
controllers. However, while the size of the modules was reduced, the overall size of the
robot remained the same. In this section, we study the impact that different robot dimensions
can have on the performance of the controllers, using cuboid robots, in order to maintain
convexity.

We consider three different sets of robot dimensions: 5× 5× 40, 5× 10× 20 and 5×
14× 14, and compare the performance obtained using the proposed controllers, with the
performance of the 10×10×10. For first two sets of dimensions, the number of modules is
the same as the robot used in the previous studies. The last set uses less modules, of a total
of 980 (98 % of the volume of the 10×10×10 robot). The aim is to have robots with two
identical dimensions and a larger/smaller third dimension. All possible combinations of the
considered dimensions, over the three axes are tested.



140 MHP Pose Control Validation

Figure 5.18 presents the results for the different arrangements of the set of dimensions
5×5×40, and compares them with the results obtained for the 10×10×10 robot. When
using this set of dimensions, the torque produced along the axis of longer dimension is
approximately 1.8 times larger than for a 10×10×10 robot, with the torques in the other
directions 1.2 times larger. This leads to faster rotations and larger overshoot for robots
using the 3D-2SP controller, which justifies its poor performance for all combinations of the
dimensions considered. The 3D-5SP-V1 controller suffers from a similar problem, when the
longer dimension is along the X local

1 axis, as it can overshoot while rotating along this axis,
justifying its poor performance for robots of dimensions 40×5×5.

When considering translation, if the longer direction is along the X local
1 axis, the terminal

velocity drops to half of what it is for a 10×10×10 robot, while it is increases by 40 % for
the other two cases. This justifies the increased success rate for the 3D-0SP-V2 controller, as
it has additional time to complete the rotation.

The performance of the 3D-0SP-V1 controller remains largely unchanged over the dif-
ferent dimension arrangements, as the changes in rotation velocities balance the changes in
translation velocity. As the controller does not generate rotations along the X local

1 axis, when
this is the larger dimension, there is only a small increase in rotation velocity, and a reduction
of half of the translation velocity. If the larger dimension is along any other axis, even though
the robot benefits from an significant increase in rotation velocity, it is only along one of the
rotation axes, while its translation velocity is increased reducing the time it has to complete
the rotation.

The 3D-5SP-V2 controller, demonstrates similar performance for all configurations, only
showing an increase of completion time for the 40× 5× 5, largely due to its decreased
translation velocity.

Figure 5.19 presents the results for the different arrangements of the set of dimensions
5×10×20, and compares them with the results obtained for a robot of dimensions 10×
10×10. When using the set of dimensions 5×10×20, the torque produced along the axis
of longer dimension is approximately 1.4 times larger than for a 10×10×10 robot, with the
torque along the axis of the second longest direction being approximately 1.3 times larger,
and 0.8 times smaller along the remaining axis. This leads to faster rotations along two axis
and slower along the last, generating both larger and smaller overshoots depending on the
axis of rotation for robots using the 3D-2SP controller. As this controller likely to perform
multiple rotation rotations along the X local

1 in a single trial, and the dimension of the robot
along this axis increases, its performance drops, due to increased overshoot. The 3D-5SP-V1
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Fig. 5.19 Comparison of the performance of a cubic robot (10×10×10) with a robot with
three different dimensions (5× 10× 20). Simulations were performed with all possible
combinations of dimensions along all three axis. Bars represent the percentage of successful
trials. Box plots represent completion times (successful trials only).

controller suffers from a similar problem, when the longer dimension is along the X local
1 axis,

as it can overshoot while rotating along this axis, justifying its increased completion time for
robots with a larger dimension along the X local

1 axis.

When considering translation, the terminal velocity 0.7, 1 and 1.4 times of what it is for
a 10× 10× 10 robot, as the robot dimension along the X local

1 axis increases. As with the
previous case, this justifies the increased success rate for the 3D-0SP-V2 controller, as it has
additional time to complete the rotation.

The performance of the 3D-0SP-V1 controller remains constant for all cases other that
configurations with the larger dimension along X local

1 . In this case, even though its translation
is slower, giving it more time to complete the rotation, its rotations are also slower.

The 3D-5SP-V2 controller demonstrates similar performance for all configurations, only
showing an increase of completion time for the configurations with the longest dimension
along the X local

1 axis, largely due to its decreased translation velocity.

Figure 5.20 shows the results for robots of dimensions 5×14×14, which follow a similar
trend to the results previously presented for all controllers but the 3D-0SP-V1. This controller
shows increased performance with the increases in robot size along the X local

1 axis. For this
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Fig. 5.20 Comparison of the performance of a cubic robot (10×10×10) with a short and
wide robot (5× 14× 14). Simulations were performed with all possible combinations of
dimensions along all three axis. Bars represent the percentage of successful trials. Box plots
represent completion times (successful trials only).

particular robot configuration, the increases in rotation velocity are higher than for the cases
presented above, while presenting similar translation velocity reductions. Additionally, as
the mass of the robots is smaller (and by extension, its inertia), it accelerates faster. As a
result, this controller is capable of completing more trials in this configuration.

From the analysis of the results presented in this section it is possible to see that controllers
with zero or five shared power lines are capable of good performance, for robots of different
sizes, the 3D-2SP controller deals poorly with changes in the robot dimensions. Additionally,
it is shown that the controllers used with robots using the same set of dimensions, but with a
different order along the axis, can have (minor) differences in performances.

5.2.3.8 Study on performance of the controllers for randomly shaped robots

In Section 4.6, it is shown that while there are some non-convex shapes for which the
controllers are able to complete the task, that is not the case for all non-convex shapes. In
this chapter we test the performance of the proposed controllers for robots of random shape.
These robots are initialized with a single module, with additional modules being added one at
a time. A new module is added to a face that is chosen randomly from all available external
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(a) (b) (c)

Fig. 5.21 Examples of robots with random shapes generated with 1000 modules.

module faces on the robot. This repeats until the robot consists of the desired number of
modules. So that the mass of the robot does not change, robots of random shape use 1000
modules. Examples of robots with random shapes are presented in Figure 5.21.

Figure 5.22 shows the performance of the controller using robots of random morphologies,
and compares it with the performance of a cubic robot of the same mass/volume. From the
results presented, it is possible to see that some controllers are unable to complete the task.
The 3D-0SP-V2 controller requires at least three modules side by side to be able to perform
translations. By the nature of random morphologies, it is not possible to guarantee that this
requirement is met. As a result, even though it is possible for a robot to reach the desired
orientation, it is unlikely that a robot of random morphology is able to move towards the
target using this controller.

In Section 4.6, we mention that a robot in a random configuration might be able to detect
the goal from two opposite directions simultaneously. As a result, both the 3D-2SP and
3D-5SP-V1 controller are unable to complete the task, as detecting the goal with multiple
faces leads to continuous rotation along one of the axes.

From this, the only controllers capable of completing the task are the 3D-0SP-V1 and the
3D-5SP-V2 controllers. When compare with a 10×10×10 robot, the 3D-0SP-V1 controller
is capable of completing all trials, although with an increased completion time. Due to the
random morphology, the number of corner modules in the robot increases, which leads to
more modules contributing to rotation, and less to translation. As a result, not only is the
rotation faster, there is more time to complete it, as the translation is slower.

On the other hand, the 3D-5SP-V2 controller performs worse, when compared with an
equivalent cubic robot. This controller required small modifications to allow it to translate
when detecting the goal from two opposing sides. This small modification made it that the
robot could reach the goal. However, due to its random morphology, in situations where the
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Fig. 5.22 Performance of a 10× 10× 10 robot and randomly shaped robots with 1000
modules (100 observations per setting). Bars represent the percentage of successful trials.
Box plots represent completion times (successful trials only).

robot is very close to the goal, without colliding, one of the two opposing faces that detected
the goal can be occluded by the robot itself. As a result the robot rotates, it can collide with
the goal with the incorrect face, leading to a failed trial. This leads to the controller, although
being able to complete the task, having a poor performance. Using a different criteria for
ending the simulation and face detection could resolve this issue. For example, if the trial
was assumed as finished as soon as the goal enters the smallest axis aligned bounding box
that can contain the robot, and the face of contact was determined from this bounding box,
we expect that the performance of this controller would improve.

5.2.3.9 Study on the impact of sensing angle on the performance of the controllers

All the simulation studies presented in this chapter assume that the sensors used to detect the
goal have a half-plane field of view. However, as discussed in detail in Section 3.5.3, this
is not representative of the hardware. In Chapter 3 we propose a hardware implementation
of the MHP robot. Upon testing, it was determined that the sensors used in the hardware
have a field of view of 64.1 º (tested at the maximums detection distance used in physical
experiments). In this section we study the performance of the controllers, using the field of
view of the physical hardware.
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Fig. 5.23 Performance of a 10×10×10 robot using a sensor field of view of 180 º (half-plane)
and 64.1 º (measured frm real hardware). Bars represent the percentage of successful trials.
Box plots represent completion times (successful trials only).

Figure 5.23 shows the performance of all controllers for the two fields of view considered.
The controllers that use no shared power lines are completely unable to complete the task
when using a reduced field of view. When the robot is sufficiently far away from the goal,
both controllers are able to detect it. However, as the robot gets close to the goal it can enter
a dead sensing zone, i.e. a situation where no face can detect the target. In this situation,
both controllers are unable to generate movement, as all faces are pushing the robot. As a
result, in these situations the robot moves only due to the inertia generated by the previous
movement preformed, until a face is able to detect the goal. This leads to very slow progress,
not allowing the robot to reach the goal within the time limit for the simulation.

The controllers that use shared power lines perform slightly better, although not sat-
isfactory, allowing the robot to reach the goal with the correct face in a couple of trials.
When using these controllers, if the robot is in a dead sensing zone it will translate in the
direction of the preferred face (even if it is not in the correct orientation). As a result, the
robots are able to leave dead sensing zones more easily, and reach the goal. When using the
half-plane field of view the robot only has to perform a single rotation using these controllers,
whereas the reduced field of view, the robot goes through multiple rotations, intercalated
with translations. As a result, even when getting close to the goal the robot might not be in
the correct orientation, and reaches the goal with the incorrect face.



146 MHP Pose Control Validation

Fig. 5.24 Performance of a 10×10×10 robot using a sensor field of view of 64.1 º (measured
from real hardware) in environments with different drag coefficients (100 settings per value).
Bars represent the percentage of successful trials. Box plots represent completion times
(successful trials only).

While the performance of the controllers is very poor with a reduced field of view, a
lower drag coefficient value could allow it to increase. As when in a dead sensing zone the
robot moves only through inertia, a high drag coefficient makes these movements decrease
in a short period of time. On the other hand, a lower drag coefficient would allow these
movements too continue for longer, reducing the time a robot is in a dead sensing zone.
While this, previously defined as overshoot, was a negative factor when using a half-plane
field of view, with a reduced field of view, it can be beneficial to the performance of the
controllers. Figure 5.24 shows the success rate for the controllers, when using a reduced
sensing field of view, for multiple drag coefficient values.

As expected, the performance of the controllers improves with the reduced drag coefficient
values. The controllers that present the most significant improvement are the 3D-2SP and
3D-5SP-V1 controllers. While these controllers are usually the worst performing, as they can
rotate in a direction for at least a single axis, in this case this limitation is what leads them
to perform better. While in all other studies presented, rotation overshoot was a problem,
in this study it is an advantage. Thus, the controllers that suffer from overshoot perform
better. While some overshoot is still present in the 3D-0SP-V1, 3D-0SP-V5 and 3D-5SP-V2

controllers, the fact that it can be corrected leads to a reduced rotation inertia from the
rotation performed last, increasing the time spent in a dead sensing zone. As a result, the
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controllers that do not use shared power lines are the worst performing as they spend a
significant amount of time moving just by inertia.

5.2.4 Discussion

In the previous section we presented multiple simulation studies that aimed to evaluate
the performance of the proposed controllers, and put into perspective by using a controller
from the literature. Through the analysis of the results presented it is possible to present
a comparison of the different controllers, where the trade-offs between complexity and
performance can be detailed.

With the exception of the study with robots of random morphologies, the controller
that consistently demonstrated the best performance was the 3D-5SP-V2. This controller
presented results comparable to the centralised controller from the literature7, while re-
quiring less computational resources. When compared with the 3D-5SP-V1 controller, the
3D-5SP-V2 controller performs equally or even better, and the computational resources used
for both controllers are the same. As a result, the 3D-5SP-V2 controller is more flexible
and adaptable, making it a better choice. Exceptions to this are situations involving sensor
noise, where no controller that uses shared power lines can complete the task, and for robots
with small sensing angle, as in this case controllers that result in a large overshoot have the
advantage.

The 3D-0SP-V1 is the controller capable of best performance, while also requiring the
minimum computational resources of the proposed controllers. While this controller is
less flexible than the 3D-5SP-V2 controller, as it is not in all conditions that it can perform
optimally, it frequently outperformed the other controllers that require shared power lines.
Additionally, while in certain cases it was outperformed by the 3D-0SP-V2 controller, the
3D-0SP-V1 controller does not impose requirements on the shape of the robot. Additionally,
the 3D-0SP-V2 controller has additional costs in terms of energy expenditure and a larger
average completion time. While the 3D-0SP-V1 controller is better suited for situations
where sensing noise is involved, it performs even worse than the 3D-5SP-V2 controller when
the sensing angle is reduced. As a result, it is also inadequate to deal with these situations.

7The 3D-5SP-V2 controller was outperformed by the centralised controller in the sensing related studies,
but since the centralised controller does not use goal detection sensing, these studies were not considered for
this particular comparison.
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The remaining controller that makes use of shared power lines, the 3D-2SP controller,
was expected to be a solution with a performance between the 3D-0SP-V1 controller, that
requires no shared power lines, and the 3D-5SP-V2 controller, that makes use of five shared
power lines. However, this controller’s performance, while excellent in certain scenarios,
was frequently outperformed by the 3D-0SP-V1 controller. Additionally, its performance is
highly dependent on the environment, making it the least flexible of all proposed controllers.
The only situation in which the 3D-2SP controller outperforms all other proposed controllers
is when considering reduced sensing angle, due to the high overshoot generated.

As a result, from the analysis of all studies performed, in a situation where resources
are available, or guaranteed success is needed, the best controller to use is the 3D-5SP-V2
controller8. In situations where resources are scarce, and there is enough manoeuvring space,
the 3D-0SP-V1 controller can be the better option. The only exception to this is if sensing
noise is expected, where the 3D-5SP-V2 controller is not a viable solution (as well as any of
the controllers that make use of shared power lines). Additionally, for robots with a sensing
angle smaller than 180 º, neither controller performs adequately, with the 3D-2SP controller
being a better choice for these situations.

5.3 Physical Experiments

In the previous section, the proposed pose controllers were validated and studied in simulation,
in 3D environments. However, no validation was performed for the pose controllers proposed
for 2D movement. In this section we present a set of physical experiments, using the MHP
robots developed in Chapter 3. The aim is to validate the performance of the pose controllers
proposed in Section 4.4 in a physical system and compare their performance with the results
obtained in simulation.

5.3.1 Experimental Setup

To validate the controllers in a physical platform we perform experiment using four modules
arranged in a 2×2 configuration, with the controllers 2D-1SP and 2D-2SP. The 2D-0SP-V1
and 2D-0SP-V2 controllers are not tested as the 2D-0SP-V2 requires at least three modules

8This can be correct for specific non-convex morphologies, although not all, as showed in Figure 5.22
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per dimension, and the theoretically expected trajectory of the2D-0SP-V1 controller requires
a larger water tank9.

The experimental setup is identical to the one presented in Section 3.5.1. At the beginning
of each trial the robot starts at one end of the water tank, approximately equidistant to the
tank’s long boundaries (see Figure 3.7). The robot orientation is chosen from a set of four
orientations, with a rotation of -90 º, 0 º, 90 º and 180 º from the preferred orientation. For
each controller tested, five trials are performed for each orientation.

Each trial lasts for a duration of 90 seconds. A trial is deemed successful if, before the
time limit is reached, the robot’s centroid reaches the finish line with the preferred orientation.
For the purpose of the experiments, a robot is assumed to be in the preferred orientation if the
angle formed between the line connecting the robot’s centroid and the goal and the normal of
the preferred face is smaller than 45 º10.

5.3.2 Controller Implementation

The 2D-1SP and 2D-2SP controllers require the use of shared power lines. However, the
physical robots do not possess the capabilities that allow the existence of the shared power
lines. While the shared power lines could be virtually created, through the use of memory
and communication, this would require the robots to be able to communicate more than one
bit of information. Although possible, once in water, the communication becomes unreliable,
not allowing the correct behaviour to be used by the robot. To circumvent this issue, the four
modules are connected to an Arduino micro board, mounted on top of the robot, that acts as
the shared power lines.

The implementation of the controllers is presented in Algorithm 4. At the beginning
of each cycle, each module reads its light and connection sensing (lines 8–11). From the
sensing readings each module evaluates the state of the power line(s), as if it were the only
module on the robot, using the function described in Section 4.4.1. This value is then sent to
the external Arduino (lines 12–14), that by using the power line(s) state(s) of all modules,
determines the state(s) of the shared power line(s), which is then sent to each module (lines

9The expected trajectories and justification are presented in Appendix F.
10In some situations, the data obtained through the tracking software indicates an angle higher than 45 º, and

the trial is still counted as successful. The occurs because the robot is not centred in the Y axis in the water
tank. As a result, even though the angle obtained though the tracking software is higher than 45 º, the angle
formed between the line connecting the robot’s centroid and the goal and the normal of the preferred face is
still smaller than 45 º.
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Algorithm 4 Implementation of controller requiring shared power lines
1: c j, d j and p j correspond to the states of the sensors and pump of face k
2: Bk corresponds to an internal evaluation of the power line, sent to the external arduino
3: bk corresponds to the state of the k-th shared power line
4: n f aces = 4
5: tcycle = 100 ◃ Time in milliseconds.
6: loop
7: t1← time
8: for j← 1,n f aces do ◃ Go through all faces.
9: c j← Connection sensor reading ◃ Get connection sensor readings.

10: d j← Goal sensor reading ◃ Get light sensor readings.
11: end for
12: for k← 1,npowerlines do ◃ Evaluate internal state of power lines
13: Bk← gk(c,d)
14: end for
15: for k← 1,npowerlines do ◃ Read external power lines
16: bk← read from arduino
17: end for
18: for j← 1,n f aces do ◃ Go through all faces.
19: p j← gb(c,d,b)
20: end for
21: t2← time
22: if t2− t1 < tcycle then ◃ If the loop was faster than the minimum cycle time, wait.
23: wait(tcycle− (t2− t1))
24: end if
25: end loop

15–17). Using the policies presented in Section 4.4.1, and using the value(s) for the shared
power line(s) sent by the external arduino, the activation state of the pumps is determined
(lines 18–20). Due to the limited response times of the pumps, we ensure pump states are
only updated up to ten times per second (lines 21–24).

5.3.3 Results

In this section we present and discuss the results obtained in the physical experiments. The
2D-1SP and 2D-2SP controllers had a success rate of 40 % (8 out of 20) and 100 % (19 out
of 19). The analysis of the results is based on visual analysis of the recordings and tracking
of the robot’s movement using visual tracking software. During the analysis, one of the trials
for the 2D-2SP controller had to be removed, due to a recording error. The overall higher
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Table 5.2 Summary of the results for completion time for the 2D-1SP and 2D-2SP controllers

Completion Time 2D-1SP 2D-2SP
Minimum [s] 17.8 16.7
Average [s] 25.8 32.1

Maximum [s] 38.6 46.1

success rate of the 2D-2SP controller is expected, as the pumps used were not calibrated,
leading to translation during rotation. As a result, since the 2D-2SP controller can correct
overshoot, it reduces the time for rotation, allowing the robot to reach the finish line with an
orientation close to the desired orientation.

For the successful trials of the 2D-1SP controller, four have an initial orientation of
0 º, two trials with initial orientation of 180 º and a single successful trial for the initial
orientations of -90 º and 90 º. The failed trial with initial orientation of 0 º, failed due to
excessive robot rotation, on collision with the wall. For the initial orientation of 180 º, the
robot ended moving away from the goal, and latching to a corner of the water tank, for the
remaining duration of the trial. The failed trials for the remaining orientations were mostly
caused by the inability of the controller to recover from overshoot, allowing it to rotate until
the end of the trial. While some of the reasons for trial failure are controller dependent (single
direction of rotation), some other reasons can be presented.

The size of the water tank might not be adequate for these particular experiments, as
collisions with the walls lead to changes in orientation of the robot. As a result, performing
the experiments in a larger environment might improve the observed controller performance.
An additional reason could be the lack of calibration of the pumps. While it is interesting
to demonstrate that even with non-calibrated pumps the controllers are somewhat capable
of completing the task, the lack of calibration introduces translation movements during the
rotation period. This leads to the robot having a reduced time to reach the desired orientation
and colliding with the walls of the water tank, which can interfere with its rotation11. Lastly,
as shown through simulations, the small sensing angle of the sensors creates dead sensing
angles, which limit robot performance.

Figure 5.25 shows the distribution of time taken for successful trials of both controllers.
From the simulation results presented in the previous section, and assuming the relationship
between the 2D-1SP and the 2D-2SP controllers is similar to the relationship between the
3D-2SP and the 3D-5SP-V1 controllers, it was expected that the time taken for completion

11Note that even with calibrated pumps the water tanks might be limiting factor as the robots will not
necessarily move in a strait line due to existing overshoot.
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Fig. 5.25 Time taken for a physical 2×2 MHP robot to move 60 cm towards the goal, with a
predefined orientation, using the 2D-1SP and 2D-2SP controllers. Successful trials only; the
boxes on the left and right represent 8 and 20 trials, respectively.

of the trials would be shorter for a robot using the 2D-2SP controller than for a robot using
the 2D-1SP controller. However, when looking into the study related to the sensing angle,
the 3D-2SP controller outperforms the 3D-5SP-V1 controller, for low drag coefficients12, in
terms of success, while having a larger completion time. The results obtained and presented
in Figure 5.25, contradict these expectations, with the 2D-2SP controller having a larger
success rate, with a larger completion time. Table 5.2 summarises the results presented in
Figure 5.25. While the minimum completion time is smaller for the 2D-2SP controller, both
the average and maximum completion times are larger. One explanation for this is the size
of the sample used for calculation of these values. Additionally, since the actuators are not
calibrated, when changing between rotation directions, a robot can move backwards slightly,
which increases the time of the trial.

Figures 5.26 and 5.27 show angle variations, over time, for a sample of four trials of
each controller, one for each initial orientation. These trials were chosen for their success
and behaviour best matching the one expected for each controller. Results for the remaining
trials, including unsuccessful, are presented in Appendix G. Each vertical line corresponds to
a translation of 10 cm towards the goal. As mentioned above, these results were obtained

12Conditions closer to the experimental setup.
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(a) (b)

(c) (d)

Fig. 5.26 Examples of the changes in angle during a trial for a robot using the 2D-1SP
controller, with starting orientation of (a) 0 º, (b) 90 º, (c) 180 º and (d) -90 º, from the
preferred orientation. The orange vertical lines represent the times at which the robot reached
10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.

through visual software tracking, used on the recordings of the trials. However, as the light
source used as goal emitted white light, the closer the robot is from the goal, the more
inaccurate the tracking. As a result, the tracking of the orientation of the robot, obtained for
translations above 50 cm might not be accurate.

When comparing the results obtained for each controller in terms of changes in orientation
during the trial, the changes in orientation tend to be in a single direction for the 2D-1SP

controller, i.e. always decreasing (particularly for Figures 5.26c and 5.26d), whilst in trials
using the 2D-2SP controller, there are clear changes in direction of rotation. These results
are in accordance with the expectation for the control policies presented in Section 4.4.1.
The increases in angle seen in trials performed with controller 2S-1SP can be attributed
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(a) (b)

(c) (d)

Fig. 5.27 Examples of the changes in angle during a trial for a robot using the 2D-2SP
controller, with starting orientation of (a) 0 º, (b) 90 º, (c) 180 º and (d) -90 º, from the
preferred orientation. The orange vertical lines represent the times at which the robot reached
10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.

to differences in output from the pump, and possible collisions with the elastic bands that
surround the interior of the water tank.

5.4 Summary

In this chapter, we validated the 2D and 3D controllers proposed, through physics simula-
tions and physical experiments. We performed multiple simulation studies, to evaluate the
performance of the proposed 3D controllers in different scenarios. The simulator used was
adapted from an existing one [115], and relies on the open source ODE physics library to
simulate the robot’s interactions with the environment. We tested the performance of the
controllers to changes in the environment (drag coefficient), distance to the goal, modular
resolution, actuator noise and failure and sensor noise and failure.
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All of the controllers, with exception of the 3D-2SP controller performed robustly for
low to medium drag coefficient values. For very high drags, the controllers stated dropping
in performance, due to velocity reduction caused by the drag. The 3D-2SP controller, failed
to perform in low drag environments, due to only being able to rotate in one direction.

The 3D-0SP-V1, 3D-0SP-V2 and 3D-2SP controllers’ performance showed some de-
pendency with distance between the goal and the robot. The 3D-2SP controller performed
acceptably for short distances, flawlessly for medium distances and for long distances is
unable to reach the goal. Further tests indicated that the distances at which this controller
is able to perform flawlessly are dependent on the environment (drag coefficient). The
performance of the 3D-0SP-V1 and 3D-0SP-V2 increased with the distance. For very short
distances both controllers perform poorly. As the distance increases the performance of both
increases, with the 3D-0SP-V2 controller outperforming the 3D-0SP-V1 controller, until
both achieve flawless performance. However, the better performance of the 3D-0SP-V2 for
shorter distances is paired with increased trial completion times and energy consumption.
The remaining controllers performed comparatively well for all distances.

The performance of the controllers that use shared power lines scaled well for the modular
resolution values tested. However, if the modular resolution is increased further, we predict
that the performance will start degenerating. The 3D-0SP-V1 and 3D-0SP-V2 controllers
showed performance drops even for slight increases in modular resolution. The performance
drops are caused by the reduced torques acting during rotation, making time one of the
limiting factors for this study. However, increased modular resolution brings an increase in
the accuracy of the movement.

When subject to actuator noise or failure, all controllers showed no drops in performance
for low noise/failure values. As the probability of a malfunctioning or noisy actuator
increased, the performance of the controllers started falling, up to 50% probability, with
the controllers producing the least effective movement dropping first. Above this value, no
controller was able to perform consistently.

While the reactions to actuator noise or failure were similar, the performance observed for
the controllers under sensor noise or failure were significantly different. Under sensor noise
only the 3D-0SP-V1 controller was able to perform consistently. The 3D-0SP-V2 showed
some resilience to low sensor noise values, but rapidly dropped performance for higher noise
probability values. On the other hand, the 3D-0SP-V1 controller is the most affected by
sensor failure, while the remaining controllers performed robustly up to high sensor failure
values.
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When considering convex non cubic robots, while every controller was able to somewhat
complete the task, the performance varied, depending on the axis along the longest robot
dimension. In general, robots with a larger X local

1 dimension performed worse, due to reduced
translation velocity. For robots of random morphology, only the 3D-0SP-V1 controller was
capable of completing all trials (other than the centralised controller), with the 3D-5SP-V2
controllers being the only other controller to be able to complete any trial. When testing a
reduced sensing angle, the controllers that do not make use of share power lines were unable
to complete the task, as when not detecting the goal, the robot only moves due to inertia.
The other controllers were able to somewhat complete the task, with the 3D-2SP controller
showing better performance, as higher overshoot leads to less time in an orientation where
the goal is not detected.

The physical experiments were performed using the hardware developed in Chapter 3,
with the addition of an Arduino, to serve as the shared power lines. The experiments tested
the performance of the 2D-1SP and 2D-2SP controllers, with the latter showing a higher
success rate but increased trial completion time.



Chapter 6

Conclusions

In this thesis we designed and built a new version of the MHP robot, the MHP 2, and
developed novel minimalistic control strategies that can be used to allow an MHP robot to
reach a goal with a specific orientation.

Chapter 3 presented MHP 2, a new implementation of the MHP concept, offering en-
hanced reliability and capabilities. This improved the robot’s usability and utility, also
allowing controllers with increased resource requirements to be realised. Moreover, each
module’s volume and mass was reduced by 63% and 73%, when compared to the original
system. The reduction of the module’s volume and mass was a first step towards miniaturisa-
tion of the robot, which could have the potential of opening new applications of the system.
Additionally, the simplicity of the design helped lower the production cost, allowing for the
validation of the controllers in a system comprised of a larger number of modules.

We performed a set of physical experiments with MHP 2 robots, using two decentralised
and reactive controllers. The robots were tasked with moving towards a goal. The two
controllers used are occlusion based, and were proposed and tested in simulation in [111].
The controllers differ only by the presence or absence of communication between modules
and their respective faces. The controllers were compared in terms of trial completion time
and energy used. When used in the physical robots, both controllers were successful in
completing the task. When using communication, the energy consumed was reduced by
70%. However, the energy decrease came at the cost of an increased trial completion time.
From the analysis of the results, we concluded that the placement and detection angle of the
goal sensors led to the presence of false-negative sensor readings, which had a significant
impact in the performance of the controllers. The significant decrease in energy consumption,



158 Conclusions

even at the cost of increased trial completion time, can be advantageous in situations where
the energy available to the system could be limited. For example, when miniaturising the
modules, the power-source of the system could be significantly smaller. This could make the
reduction of the energy consumption a priority, to allow extended periods of operation.

Chapter 4 aimed to develop novel, fully decentralised and reactive strategies that would
allow an MHP robot to control the orientation with which the goal is reached. We established
that there is a wide variety of unique total forces and net torques a 3D convex MHP robot
can produce. The analysis performed quantified the number of controllable states a cubic
MHP robot is capable of. It also gave insight on how finely the angular and linear velocities
could be controlled. Multiple controller solutions were proposed, which differ in the amount
of information shared between the modules, via shared power lines. This allowed for an
evaluation of the trade-off between the simplicity of the controller solutions (by including
communication) and performance. We proposed controller solutions using zero to two bits
of shared information for 2D robots, and controller solutions using zero, two and five bits of
shared information for 3D robots. For all controller solutions, the activation state of the pump
of a given module’s face was based on its local connectivity and sensor/shared power lines
values. As a result, all of the controllers could be implemented on a hardware level, without
requiring a dedicated processor. To the best of our knowledge, the controllers proposed in
this thesis are the first set of controllers able to control both the translation and orientation of
a modular robot in a fully decentralised and reactive manner.

The controllers that use shared power lines were formally proven correct for convex
robots, under the assumption that in its initial position the robot was able to rotate in place
without colliding with the goal. For the controllers that do not use shared power lines, this
condition was not sufficient to guarantee successful task completion. Assuming a sufficiently
high viscous environment, and slow rotation and translation velocities, we derived an initial
distance condition that ensured the robot can reach the goal with the correct orientation,
using these controllers. While this could limit their uses, obtaining controller solutions that
make no use of communication allowed for truly minimalistic implementations. Additionally,
there were less elements prone to failure. As a result, the reliability of the system was
significantly increased. However, it did not allow for coordination between modules. In
situations where the spaces in which robots need to move in could be severely constrained,
using communication though shared power lines allows the robots to complete the task, while
not significantly increasing the complexity of the system. An analysis of the controllers when
applied to robots of generic shape was performed. Multiple counter-examples were found
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that indicate that relying on the local connectivity to determine active actuators might not
be enough to guarantee task completion for robots of concave shape. However, we proved
that for orthogonally convex robots that are symmetric along one axis perpendicular to the
rotation axis the controllers are able to complete the task, without requiring changes.

Chapter 5 validated the controllers through computational simulations and physical
experiments. The simulations were performed in a 3D unbounded environment, containing a
single robot and a goal point. We performed multiple studies, comparing the performance of
the decentralised controllers with that of a centralised controller from the literature [27]. In
general, we observed that controllers that use zero or a high number of shared power lines
were better equipped to deal with different scenarios, while maintaining a high success rate.
On the other hand, controllers that use shared power lines were highly susceptible to sensor
noise. However, this applies only to sensors malfunctioning by detecting the goal, when no
goal was in sight (false positive sensor readings). All of the controllers using shared power
lines showed high resilience to sensor failure. One of the controllers with no shared power
lines also demonstrated a high level of flexibility, robustness to noise and outperformed all
other controllers for robots of random morphologies.

Controllers able to rotate in multiple directions along one or all of the rotation axes
were shown to be largely independent of the environment conditions in term of performance.
Additionally, the larger the number of rotation options a controller was able to perform, the
faster the rotation was performed. When increasing the robot’s modular resolution, drops in
performance were observed, associated with a slower rotation of the robot. However, the robot
also performed more accurate rotations, showing more consistent collision points with the
goal. All of these results allow for a better comprehension of the applicability of the proposed
controllers. In turn, this will allow for the best option to a specific situation/task to be
chosen, based on the environment conditions and limitations of the modular robot to be used.
While the proposed controllers presented some limitations, they can be advantageous when
minimalistic control is required, either due to the lack of resources or system miniaturisation.

The physical experiments were performed using the controllers proposed for 2D move-
ment, and the hardware developed in Chapter 3. Only the controllers using shared power
lines were tested due to the limited number of modules available and environment conditions.
Similarly to the simulation results, the controller with a higher number of shared power lines
performed better, in terms of success rate, although with increased trial completion time.
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6.1 Future work

The work performed in this thesis produced encouraging results for controlling the pose of
MHP robots with minimalistic control strategies. However, as previously discussed, there
are some limitations to this work which can be addressed. Additionally, there are research
avenues that the work performed has yet to explore.

Further improvements could be made in the MHP physical implementation. While a
basic set of requirements was met, the use of the system in physical experiments brought to
light elements not considered in the design process. The issues found could be addressed in
a new version of the system. Moreover, we have yet to realise on the physical platform the
potential for large reconfiguration space and scalability the concept presents [111], as only 2D
reconfiguration is possible with the current system. To demonstrate these capabilities, further
module miniaturisation, or design an implementation of the robot capable of 3D/underwater
movement are desirable. Additionally, self-reconfiguration of the modules could be added in
new versions to increase the adaptability of the system.

In this thesis we presented an analysis of the number of unique total forces and net torques
a 3D convex MHP robot is able to produce. This analysis gives insight into how finely one
can control the linear and angular velocities of the robot, allowing the development of control
strategies capable of precise movement. However, for multiple simultaneous rotation axes,
the analysis was only performed for robots that have the same number of modules along each
axis. Future work could expand this analysis for convex robots with different side lengths.
Additionally, this analysis does not specify how many different movements a convex MHP
robot is capable of performing, which can also be a requirement for precise movement. As a
result, an in depth analysis on the number of different movement an MHP robot is able to
perform could be done. By determining the multiple ways an MHP robot can move, new
control strategies that generate a more efficient movement could be developed.

Convex robots can have limited usefulness in real applications. However, as showed in
Section 4.6, the controllers proposed are only guaranteed to succeed for convex or orthogo-
nally convex with a symmetry axis robots. On one hand, this limits the geometries for which
the controllers can be used. On the other hand, the counter-examples found correspond to
geometries that would have little practical application. Future research could be performed in
this area, not only to expand the robot configurations the controllers are applicable, but also
to investigate what classes of geometries guarantee successful task completion in specific
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applications. With the increased set of geometries where the controllers could be used, the
applicability of the controllers to real applications increases.

One of the largest limitations of the proposed controllers was their susceptibility to sensor
noise. One solution could be for the modules to filter their sensor and/or power line readings.
Another solution could be for them to reach consensus on the power line state (e.g., via
quorum sensing). However, these solutions likely require the use of run-time memory and/or
computation. Future research could attempt to improve the controllers response to sensor
noise, both with and without requiring arithmetic computation and run-time memory. By
improving the resilience of the controllers to sensor noise the reliability of the controllers
increases.

When using robots with a reduced sensing angle and/or of random morphology, the
overall performance of the proposed controllers is poor. However, in these situations there
was still one controller (for each case) that showed reasonable to good performance.

While validation was performed through physical experiments, only the 2D controllers
that use shared power lines were tested, due to hardware and experimental setup limitations.
Future work should present a comprehensive comparison between the performance of all
2D controllers, using a better suited experimental setup. Additionally, in order to to gain
insight on the limitations of hardware that do not allow the performance of the controller
to increase, a comparison between simulation and experimental results could be performed.
While the simulation study performed with a reduced sensing angle was a step, additional
studies should be performed.

In this thesis we proposed and validated strategies that allow a robot to reach a goal
with a predefined orientation. However, the use of these controllers was not demonstrated
in real-life applications. Future work could study how the proposed controllers can be used
in specific applications. For example, the controllers could be tested in the tracking of a
dynamic goal [118]. In this type of task, the robot could be required to detect and approach
the goal, as well as accompany it, while maintaining a fixed orientation relative to the goal.
Other tasks, such as docking, object transportation, structure building and inspection could
be considered.
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Appendix A

Circuit schematics for the new
implementation of the MHP robots

This appendix presents the circuit schematics for MHP 2 robot introduced in Chapter 3.

Figure A.1a depicts the microcontroller used, as well as its ports that are used in the
circuit. The red line represents the 5 V power line while the black lines represent connections
to ground. Pins 1 to 4 are the connections to the programming header. Pins 13 to 16 (dark
blue lines) power the motor drivers. Pins 19 and 20 (dark green) are connected to the compass.
Pin 21 is connected to the infra-red receiver responsible for starting the algorithm. Pins 23 to
26, 30 to 37 and 40 to 43 (light green and pink lines) connect to the daughter boards. Pin
44 is connected to the debug LED. Figure A.1b shows the detailed connections between the
microcontroller and the connection pins with one of the daughter boards. As the daughter
boards, all of the circuitry necessary for the sensors (operational amplifiers and LED’s)
was placed on the main board. The operational amplifiers connect to the output pins of the
light and infra-red detectors. The resistors used for signal amplification are connected in a
non-inverting amplification loop, with a gain of 83. An LED is connected to the output of the
connection sensor, to indicate free faces. As there are four daughter boards per module, four
copies of what is shown in Figure A.1b are used and connected to the microcontroller.

Figure A.2a shows the power regulation section of the circuit. The system is powered by
two 3.7 V rechargeable batteries, which are connected to the pins on the left. The batteries
are connected to a DPDT (double pole double throw) switch that closes the circuit (powering
the module), in the up position, and connects the batteries to the charging pins in the down
position. The voltage regulator, converts the 7.4 V from the batteries into the 5 V used by the
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(a)

(b)

Fig. A.1 Microcontroller and daughter board connection schematics. (a) Section of the circuit
showing the microcontroller and its connected pins. (b) Section of the circuit responsible for
the connection with the daughter boards.

(a)
(b)

Fig. A.2 Schematics for (a) the power regulation and charging pins, and (b) the programming
headed.
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(a)

(b)

Fig. A.3 Schematics for the (a) connections between the motor drivers, the pumps and the
microcontroller, and (b) capacitors used for smoothing the power signal used by the motor
drivers.

circuit components. The capacitors ensure correct filtration of the input and output voltage.
Figure A.2b shows the connections to system’s reset button and to the programming header
of the microcontroller. These are the connections used for programming the module.

Figure A.3a shows the connectors to the pumps and the motor driving system. One
half-bridge motor diver is used per pump. Additionally, LEDs are used to highlight the
actuation status of each pump. Figure A.3b shows the capacitors that are used with the motor
drivers. Even though these capacitors are only connected to the power rail and ground, they
reduce the noise and smooth the signal coming out of the motor drivers to power the pumps.
To ensure maximum effect for these capacitors, they have to be placed close to the motor
drivers, even though they are not connected to them in any way.

Figure A.4a shows the connections of the compass. Two pull-up resistors are needed for
the correct working of the compass. Figure A.4b shows the infra-red receiver used to start
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(a) (b)

Fig. A.4 Schematics for the (a) the compass, the pull-up resistors and the connections to the
microcontroller, and (b) infra-red receiver.

(a) (b)

Fig. A.5 Schematics for the (a) LED of the system used for testing and debugging, and (b)
serial communication pins.

the system. This component can be connected directly to the microcontroller without having
to use any other components.

Figure A.5a shows the debug LED. This LED is used mainly for testing purposes. It cam
also be used as an indicator of the state of the module; if the LED is off, the power is off, if
the LED is on the system is on and on standby and if the LED is flashing the system is solving
a task, for example. Figure A.5b shows the pins of the system for serial communication.
These are used for communication with the computer. Figure A.6 shows the sensors placed
in the daughter board and their connections.
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Fig. A.6 Section showing sensors placed in the daughter board and its connections. The
rectangle on the left represents the Hall-effect sensor; the rectangle on the top represents the
infra-red sensor; the square on the right represents the light sensor.





Appendix B

Static analysis - remaining cases

In Section 4.2, the number of actuation states that generate unique torques for a 3D convex
MHP robot of dimensions a1ε×a2ε×a3ε was derived. However, for torques with a single
non-zero component, only the derivation for the case where all robot side lengths are odd (i.e.
a1,a2,a3 ∈ 2Z+−1) was shown. Here, we show the derivation of the remaining cases.

Table 4.1 shows all seven remaining possible cases of robot side lengths. However, the
results for some of the possible cases considered are similar to each other. For example, the
results for the first two rows of Table 4.1 for torques applied along X1 are identical, with
the results for torques applied along X2 and X3 being swapped. Regarding the format of the
number of unique torques, there are five unique cases:

• Two odd and one even side lengths, with non-zero torque component in the direction
of one of the odd side length;

• Two odd and one even side lengths, with non-zero torque component in the direction
of the even side length;

• One odd and two even side lengths, with non-zero torque component in the direction
of the odd side length;

• One odd and two even side lengths, with non-zero torque component in the direction
of the one of the even side length;

• Three even side lengths, with non-zero torque component in the direction of any side
length.
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a1
a2

a3

X1X2

X3

Fig. B.1 An a1 by a2 by a3 robot (a1 even, a2 and a3 odd) with active actuator configuration
that achieves maximum torque along axis X3. Green faces represent the faces with active
actuators. The rotation axis is represented by the red line, going through the robot face. On
the non-visible faces the actuators in mirrored positions are firing.

B.1 Robot with two odd and one even side lengths

Consider a 3D convex MHP robot, with a1 ∈ 2Z+ and a2,a3 ∈ 2Z+−1.

B.1.1 Torque with non-zero component in the direction of an odd side
length

The maximum torque along X3 is obtained when:

pe j =

1, n⊤3 (xe×u j)< 0∧ ce j = 0;

0, otherwise.
(B.1)

The actuator firing configuration described in Equation (B.1) is illustrated in Figure B.1.
Using Equation (4.2) for this actuator firing configuration, we obtain a net torque of:

τ
X3
max(a1,a2,a3) = 2a3

[(
1
2
+

3
2
+ · · ·+ a1−1

2

)
+

(
1+2+ · · ·+ a2−1

2

)]

= a3

(
a2

1
4
+

(a2−1)(a2 +1)
4

)
=

a3(a2
1 +a2

2−1)
4

. (B.2)
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Lemma 4. For the case that a1 ∈ 2Z+ and a2,a3 ∈ 2Z+−1, the robot can produce every

half-integer torque τX3 ∈ {−τ
X3
max(a1,a2,a3), . . . ,τ

X3
max(a1,a2,a3)}, along the X3 axis.

Proof. We prove Lemma 4 by induction.

Base case: Consider the cases where a3 = 1. If a1 = 2,4, . . . ,k,∀k ∈ 2Z+ ∧ a2 =

1,3, . . . ,k,∀k ∈ 2Z+−1, when the torque is applied along X3, this corresponds to the 2D case
presented in [115] and every half-integer torque τX3 ∈ {−τ

X3
max(a1,a2,1), . . . ,τ

X3
max(a1,a2,1)}

can be produced along X3 axis.

Inductive step: We assume that Lemma 4 is correct for a3 = 1,3, . . . ,k,∀k ∈ 2Z+− 1.
When a1×a2×1 modules are added along X3, symmetrically about the robot’s center of
mass, the positions of the existing modules does not change. This means that if the robot was
able to produce a given torque for a3 = k, that same torque can be produced for a3 = k+2.
For this reason, all half-integer torque values τX3 ∈ {−τ

X3
max(a1,a2,k), . . . ,τ

X3
max(a1,a2,k)}

can be produced.

Consider now the situation where the maximum torque τ
X3
max(a1,a2,k+2)= (k+2)(a2

1+a2
2−1)

4

is produced. Each of the two layers of a1× a2× 1 added modules is capable of produc-
ing every half-integer torque τX3 ∈ {−τ

X3
max(a1,a2,1), . . . ,τ

X3
max(a1,a2,1)}. So that the ro-

tation axis does not change, the two sets of a1× a2× 1 added modules are capable of
producing every integer torque τX3 ∈ {0,1, . . . ,2τ

X3
max(a1,a2,1)− 1,2τ

X3
max(a1,a2,1)}. The

half-integer torque values τX3 ∈ {1
2 ,

3
2 , . . . ,2τ

X3
max(a1,a2,1)− 1

2} can be produced by activat-
ing/deactivating pumps pe j for which re j = (a1−1

2 ,1,0) or re j = (1, a2−1
2 ,0). As such all

half-integer torque values τX3 ∈ {0, . . . ,2τ
X3
max(a1,a2,1)} can be produced.

Given that τ
X3
max(a1,a2,k+2)−τ

X3
max(a1,a2,k) = 2a2

1+a2
2−1

4 = 2τ
X3
max(a1,a2,1), the robot is

able to produce every half-integer torque τX3 ∈ {τX3
max(a1,a2,k+2)−τ

X3
max(a1,a2,k), . . . ,τ

X3
max

(a1,a2,k+2)}. By symmetry, the robot is able to produce every half-integer torque τX3 ∈
{−τ

X3
max(a1,a2,k+ 2), . . . ,−τ

X3
max(a1,a2,k+ 2)+ τ

X3
max(a1,a2,k)}. Therefore, the robot can

produce every half-integer torque τX3 ∈ {−τ
X3
max(a1,a2,k+ 2), . . . ,τX3

max(a1,a2,k+ 2)} and
which concludes the inductive step. �

Theorem 11. The number of unique net torques that a 3D convex MHP robot with a1 ∈
2Z+ and a2,a3 ∈ 2Z+ − 1 is able to generate, with non-zero component along X3 is

η
τ

X3 (a1,a2,a3) = a3(a2
1 +a2

2−1)+1.

Proof. The minimum and maximum net torques the robot can generate are −τX3(a1,a2,a3)

and τX3(a1,a2,a3), respectively. From Lemma 4, the robot is able to produce all half-integer
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a1
a2

a3

X1X2

X3

Fig. B.2 An a1 by a2 by a3 robot (a1 even, a2 and a3 odd) with active actuator configuration
that achieves maximum torque along axis X1. Green faces represent the faces with active
actuators. The rotation axis is represented by the red line, going through the robot face. On
the non-visible faces the actuators in mirrored positions are firing.

torques between −τX3(a1,a2,a3) and τX3(a1,a2,a3). Since each actuator is only able to
produce an half-integer or integer torque, the robot can not produce any other net torque
value. As a result, the number of unique net torques the robot ii able to produce is given by:

η
τ

X3 (a1,a2,a3) = 4τ
X3
max(a1,a2,a3)+1 = a3(a2

1 +a2
2−1)+1. (B.3)

�

B.1.2 Torque with non-zero component in the direction of an even side
length

The maximum torque along X1 is obtained when:

pe j =

1, n⊤1 (xe×u j)< 0∧ ce j = 0;

0, otherwise.
(B.4)
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The actuator firing configuration described in Equation (B.4) is illustrated in Figure B.2.
Using Equation (4.2) for this actuator firing configuration, we obtain a net torque of:

τ
X1
max(a1,a2,a3) = 2a1

[(
1+2+ · · ·+ a2−1

2

)
+

(
1+2+ · · ·+ a3−1

2

)]

= a3

(
(a2−1)(a2 +1)

4
+

(a3−1)(a3 +1)
4

)
=

a1(a2
2 +a2

3−2)
4

. (B.5)

Lemma 5. For the case that a1 ∈ 2Z+ and a2,a3 ∈ 2Z+−1, the robot can produce every

even torque τX1 ∈ {−τ
X1
max(a1,a2,a3), . . . ,τ

X1
max(a1,a2,a3)}, along the X1 axis.

Proof. We prove Lemma 5 by induction.

Base case: Consider the cases where a1 = 2. If a2 = 1∧ a3 = 1, the robot consists of
two modules stacked along X1; from Equation (4.2), no torque can be produced along X1. If
a2 = 1,3, . . . ,k,∀k ∈ 2Z+∧a3 = 1,3, . . . ,k,∀k ∈ 2Z+−1, when the torque is applied along
X3, this corresponds to two layers of 1×a2×a3. From Lemma 1, every even torque τX1 ∈
{−2τ

X1
max(1,a2,a3),−2τ

X1
max(1,a2,a3)+2, . . . ,2τ

X1
max(1,a2,a3)−2,2τ

X1
max(1,a2,a3)} can be pro-

duced along X1 axis.

Inductive step: We assume that Lemma 5 is correct for a1 = 2,4, . . . ,k,∀k ∈ 2Z+. When
1×a2×a3 modules are added along X1, symmetrically about the robot’s center of mass, the
positions of the existing modules does not change. This means that if the robot was able to
produce a given torque for a1 = k, that same torque can be produced for a1 = k+2. For this
reason, all even torque values τX1 ∈ {−τ

X1
max(k,a2,a3), . . . ,τ

X1
max(k,a2,a3)} can be produced.

Consider now the situation where the maximum torque τ
X1
max(k+2,a2,a3)=

(k+2)(a2
2+a2

3−2)
4

is produced. Each of the two layers of 1×a2×a3 added modules is capable of producing
every integer torque τX1 ∈ {−τ

X1
max(1,a2,a3), . . . ,τ

X1
max(1,a2,a3)}. So that the rotation axis

does not change, the two sets of 1×a2×a3 added modules are capable of producing every
even torque τX1 ∈ {0,2, . . . ,2τ

X1
max(1,a2,a3)−2,2τ

X1
max(1,a2,a3)}.

Given that τ
X1
max(k+ 2,a2,a3)− τ

X1
max(k,a2,a3) = 2a2

2+a2
3−2

4 = 2τ
X1
max(1,a2,a3), the robot

is able to produce every even torque τX1 ∈ {τX1
max(k+2,a2,a3)− τ

X1
max(k,a2,a3), . . . ,τ

X1
max(k+

2,a2,a3)}. By symmetry, the robot is able to produce every even torque τX1 ∈ {−τ
X2
max(k+

2,a2,a3), . . . ,−τ
X1
max(k,a2,a3)+τ

X1
max(k,a2,a3)}. Therefore, the robot can produce every even

torque τX1 ∈ {−τ
X1
max(k+ 2,a2,a3), . . . ,τ

X1
max(k+ 2,a2,a3)} which concludes the inductive

step. �
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Theorem 12. The number of unique net torques that a 3D convex MHP robot with a1 ∈ 2Z+

and a2,a3 ∈ 2Z+−1 is able to produce, with non-zero component along X1 is η
τX1 (a1,a2,a3)=

a1
(a2

2+a2
3−2)

4 +1.

Proof. The minimum and maximum net torques the robot can generate are −τX1(a1,a2,a3)

and τX1(a1,a2,a3), respectively. From Lemma 5, the robot is able to produce all even torque
between −τX1(a1,a2,a3) and τX1(a1,a2,a3). Since each actuator is only able to produce an
integer torque, the robot can not produce any other net torque value. As a result, the number
of unique net torques the robot is able to produce is given by:

η
τX1 (a1,a2,a3) = τ

X1
max(a1,a2,a3)+1 = a1

(a2
2 +a2

3−2)
4

+1. (B.6)

�

B.2 Robot with one odd and two even side lengths

Consider a 3D convex MHP robot, with a1,a2 ∈ 2Z+ and a3 ∈ 2Z+−1.

B.2.1 Torque with non-zero component in the direction of an odd side
length

The maximum torque along X3 is obtained when:

pe j =

1, n⊤3 (xe×u j)< 0∧ ce j = 0;

0, otherwise.
(B.7)

The actuator firing configuration described in Equation (B.7) is illustrated in Figure B.3.
Using Equation (4.2) for this actuator firing configuration, we obtain a net torque of:

τ
X3
max(a1,a2,a3) = 2a3

[(
1
2
+

3
2
+ · · ·+ a1−1

2

)
+

(
1
2
+

3
2
+ · · ·+ a2−1

2

)]

= a3

(
a2

1
4
+

a2
2

4

)
=

a3(a2
1 +a2

2)

4
. (B.8)
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a1a2

a3

X1X2

X3

Fig. B.3 An a1 by a2 by a3 robot (a1 and a2 even, a3 odd) with active actuator configuration
that achieves maximum torque along axis X3. Green faces represent the faces with active
actuators. The rotation axis is represented by the red line, going through the robot face. On
the non-visible faces the actuators in mirrored positions are firing.

Lemma 6. For the case that a1,a2 ∈ 2Z+ and a3 ∈ 2Z+−1, the robot can produce every

half-integer torque τX3 ∈ {−τ
X3
max(a1,a2,a3), . . . ,τ

X3
max(a1,a2,a3)}, along the X3 axis.

Proof. The proof is omitted, as it is identical to the proof of Lemma 4. �

Theorem 13. The number of unique net torques that a 3D convex MHP robot with a1,a2 ∈
2Z+ and a3 ∈ 2Z+−1 is able to generate, with non-zero component along X3 is η

τ
X3 (a1,a2,a3)=

a3(a2
1 +a2

2)+1.

Proof. The minimum and maximum net torques the robot is able to generate are−τX3(a1,a2,a3)

and τX3(a1,a2,a3), respectively. From Lemma 6, the robot is able to produce all half-integer
torque between −τX3(a1,a2,a3) and τX3(a1,a2,a3). Since each actuator is only able to pro-
duce an half-integer torque, the robot can not produce any other net torque value. As a result,
the number of unique net torques the robot is able to produce is given by:

η
τ

X3 (a1,a2,a3) = 4τ
X3
max(a1,a2,a3)+1 = a3(a2

1 +a2
2)+1. (B.9)

�
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a1a2

a3

X1X2

X3

Fig. B.4 An a1 by a2 by a3 robot (a1 and a2 even, a3 odd) with active actuator configuration
that achieves maximum torque along axis X1. Green faces represent the faces with active
actuators. The rotation axis is represented by the red line, going through the robot face. On
the non-visible faces the actuators in mirrored positions are firing.

B.2.2 Torque with non-zero component in the direction of an even side
length

The maximum torque along X1 is obtained when:

pe j =

1, n⊤1 (xe×u j)< 0∧ ce j = 0;

0, otherwise.
(B.10)

The actuator firing configuration described in Equation (B.10) is illustrated in Figure B.2.
Using Equation (4.2) for this actuator firing configuration, we obtain a net torque of:

τ
X1
max(a1,a2,a3) = 2a1

[(
1
2
+

3
2
+ · · ·+ a2−1

2

)
+

(
1+2+ · · ·+ a3−1

2

)]

= a3

(
a2

2)

4
+

(a3−1)(a3 +1)
4

)
=

a1(a2
2 +a2

3−1)
4

. (B.11)

Lemma 7. For the case that a1,a2 ∈ 2Z+ and a3 ∈ 2Z+−1, the robot can produce every

integer torque τX1 ∈ {−τ
X1
max(a1,a2,a3), . . . ,τ

X1
max(a1,a2,a3)}, along the X1 axis.

Proof. We prove Lemma 7 by induction.

Base case: Consider the cases where a1 = 2. If a2 = 2,4, . . . ,k,∀k ∈ 2Z+ ∧ a3 =

1,3, . . . ,k,∀k ∈ 2Z+− 1, when the torque is applied along X1, this corresponds to two
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layers of 1× a2× a3. Each layer is capable of producing every half-integer torque τX1 ∈
{−τ

X1
max(1,a2,a3), . . . ,τ

X1
max(1,a2,a3)}. From Lemma 5 every integer torque τX1 ∈{−2τ

X1
max(1,

a2,a3), . . . ,2τ
X1
max(1,a2,a3)} can be produced along X1 axis.

Inductive step: We assume that Lemma 7 is correct for a1 = 2,4, . . . ,k,∀k ∈ 2Z+. When
1× a2× a3 modules are added along X1, symmetrically about the robot’s center of mass,
the positions of the existing modules does not change. This means that if the robot was
able to produce a given torque for a1 = k, that same torque can be produced for a1 = k+2.
For this reason, all integer torque values τX3 ∈ {−τ

X1
max(k,a2,a3), . . . ,τ

X1
max(k,a2,a3)} can be

produced.

Consider now the situation where the maximum torque τ
X1
max(k+2,a2,a3)=

(k+2)(a2
2+a2

3−1)
4

is produced. Each of the two layers of 1×a2×a3 added modules is capable of producing
every half-integer torque τX1 ∈ {−τ

X1
max(1,a2,a3), . . . ,τ

X1
max(1,a2,a3)}. So that the rotation

axis does not change, the two sets of 1×a2×a3 added modules are capable of producing
every integer torque τX1 ∈ {0,1, . . . ,2τ

X1
max(1,a2,a3)−1,2τ

X1
max(1,a2,a3)}.

Given that τ
X1
max(k+2,a2,a3)−τ

X1
max(k,a2,a3) = 2a2

2+a2
3−1

4 = 2τ
X1
max(1,a2,a3), the robot is

able to produce every integer torque τX1 ∈ {τX1
max(k+2,a2,a3)− τ

X1
max(k,a2,a3), . . . ,τ

X1
max(k+

2,a2,a3)}. By symmetry, the robot is able to produce every integer torque τX1 ∈ {−τ
X2
max(k+

2,a2,a3), . . . ,−τ
X1
max(k,a2,a3)+τ

X1
max(k,a2,a3)}. Therefore, the robot can produce every even

torque τX1 ∈ {−τ
X1
max(k+ 2,a2,a3), . . . ,τ

X1
max(k+ 2,a2,a3)} which concludes the inductive

step. �

Theorem 14. The number of unique net torques that a 3D convex MHP robot with a1 ∈
2Z+ and a2,a3 ∈ 2Z+−1 is able to generate, when applied along X1 is η

τX1 (a1,a2,a3) =

a1
(a2

2+a2
3−1)

2 +1.

Proof. The minimum and maximum net torques the robot can generate are −τX1(a1,a2,a3)

and τX1(a1,a2,a3), respectively. From Lemma 7, the robot is able to produce all even torque
between −τX1(a1,a2,a3) and τX1(a1,a2,a3). Since each actuator is only able to produce an
half-integer or integer torque, the robot can not produce any other net torque value. As a
result, the number of unique net torques the robot is able to produce is given by:

η
τX1 (a1,a2,a3) = 2τ

X1
max(a1,a2,a3)+1 = a1

(a2
2 +a2

3−1)
2

+1. (B.12)

�
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a1a2

a3

X1X2

X3

Fig. B.5 An a1 by a2 by a3 robot (all side lengths even) with active actuator configuration
that achieves maximum torque along axis X3. Green faces represent the faces with active
actuators. The rotation axis is represented by the red line, going through the robot face. On
the non-visible faces the actuators in mirrored positions are firing.

B.3 Robot with three even side lengths

Consider a 3D convex MHP robot, with a1,a2,a3 ∈ 2Z+. The maximum torque along X3 is
obtained when:

pe j =

1, n⊤3 (xe×u j)< 0∧ ce j = 0;

0, otherwise.
(B.13)

The actuator firing configuration described in Equation (B.7) is illustrated in Figure B.3.
Using Equation (4.2) for this actuator firing configuration, we obtain a net torque of:

τ
X3
max(a1,a2,a3) = 2a3

[(
1
2
+

3
2
+ · · ·+ a1−1

2

)
+

(
1
2
+

3
2
+ · · ·+ a2−1

2

)]

= a3

(
a2

1
4
+

a2
1

4

)
=

a3(a2
1 +a2

2)

4
. (B.14)

Lemma 8. For the case that a1,a2,a3 ∈ 2Z+ the robot can produce every integer torque

τX1 ∈ {−τ
X1
max(a1,a2,a3), . . . ,τ

X1
max(a1,a2,a3)}, along the X1 axis.

Proof. The proof is omitted, as it is identical to the proof of Lemma 7. �

Theorem 15. The number of unique net torques that a 3D convex MHP robot with a1,a2,a3 ∈
2Z+ is able to generate, when applied along X3 is η

τ
X3 (a1,a2,a3) = a3

(a2
1+a2

2)
2 +1.



B.3 Robot with three even side lengths 189

Proof. The minimum and maximum net torques the robot can generate are −τX3(a1,a2,a3)

and τX3(a1,a2,a3), respectively. From Lemma 8, the robot is able to produce all integer
torque between −τX3(a1,a2,a3) and τX3(a1,a2,a3). Since each actuator is only able to
produce an half-integer torque, the robot can not produce any other net torque vale. As a
result, the number of unique net torques the robot is able to produce is given by:

η
τ

X3 (a1,a2,a3) = 2τ
X3
max(a1,a2,a3)+1 = a3

(a2
1 +a2

2)

2
+1. (B.15)
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Appendix C

Hybrid pose controllers

In here, a controller solution for 2D and 3D, that makes use of a single shared power line,
but performs some translation during the rotation process is described.

C.1 2D-1SP-H Hybrid controller

In Section 4.4.1, we proposed controller solutions that use M ∈ {0,1,2} shared power lines.
Additionally, the controllers that use shared power lines are able to perform the rotation
and translation components of the movement separately. When presenting the 2D-2SP

controller, we state that two bits of shared information is the minimum required for the
robot to differentiate between translation, clockwise rotation and counter-clockwise rotation.
However, this is only correct if it is required that the robot does not translate while rotating.
If some translation is allowed, by combining the rotation component of the 2D-0SP-V1 and
2D-0SP-V2 controllers and the translation component of the 2D-1SP controller, a controller
using only a single shared power line that is capable of both clockwise and counter-clockwise
rotation can be obtained. Additionally, this controller is guaranteed to succeed, if the initial
distance condition is valid, that is, if the robot is able to rotate on the spot without colliding
with the goal.

C.1.1 Control policy

As previously mention this controller requires a single shared power line (i.e., M = 1). The
shared power line activation activation policy, fb,1(c,d) is identical to the one used by the
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Fig. C.1 Decentralised pose control without communication (2D-1SP-H controller). Shown
are eight scenarios of a robot that needs to touch the goal (orange point) with its preferred
face (face 1). The goal is visible from any module face marked with orange. Up to three
pumps are active, causing the robot to rotate. However, as the pumps active for each face are
not symmetrical, some undesired translation, away from the goal, occurs.

2D-1SP controller (Equation 4.46).The control policy for this controller variant (2D-1SP-H
controller), fp(c,d,b), is given by:

p1 = c̄1c̄3d3 ∨ c̄1c̄4d4, (C.1)

p2 = c̄2c̄4d̄4 ∨ c̄2b̄2, (C.2)

p3 = c̄3c̄2d3, (C.3)

p4 = c̄4c̄2d4. (C.4)

In the alignment of the equations, the first column is responsible for the counter-clockwise
rotation, the second column for the clockwise rotation and the last column for the translation
of the robot. With this control policy, the robot only actively translates once it is correctly
oriented towards the goal. If any module face, other than the preferred face, detects the goal,
the robot rotates. However, since the decisions on rotation are made locally by the modules,
some undesired translation occurs. Figure C.1 shows the different pump activation scenarios
possible.
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C.1.2 Controller analysis

As the torque applied on the robot is non-zero, if the robot is not in the preferred orientation,
from Theorem 5 the robot is able to reach the desired orientation in finite time. If the robot is
in the preferred orientation, from Lemma 2, the robot is able to reach the target in finite time.
Similarly to the 2D-0SP-V1 and 2D-0SP-V2 controllers, as there is some translation during
the rotation movement, to guarantee the success of the controller, it is required to show that
there is no collision between the robot and the goal during rotation.

From the actuation states depicted in Figure C.1, it can be observed that the undesired
translation moves the robot away from the target. As a result, if the robot is able to rotate in
place in the initial position, the robot is guaranteed to complete the task using this controller.
This means that,the initial distance condition is sufficient to guarantee the success of the
controller.

C.2 3D-1SP-H Hybrid controller

In Section 4.4.2 we stated that a single bit of shared information was not sufficient to
guarantee that the robot completes the task, leading to a minimum of two bits of shared
information being required. However, that is only correct if no translation can occur while the
robot is rotating. Additionally, using two bits of information, the robot is only able to rotate
in a single direction along each of the axis. If some translation is allowed, by combining
the rotation component of the 3D-0SP-V1 and 3D-0SP-V2 controllers and the translation
component of the 3D-2SP controller, a controller using only a single shared power line that
is capable of both clockwise and counter-clockwise rotation, along each of the axis, can
be obtained. Additionally, this controller is guaranteed to succeed, if the initial distance
condition is valid, that is, if the robot is able to rotate on the spot without colliding with the
goal.

C.2.1 Control policy

As previously mention this controller requires a single shared power line (i.e., M = 1). The
shared power line activation activation policy, fb,1(c,d) is given by:

b1 = d2∨d3∨d4∨d5∨d6. (C.5)
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The control policy for this controller variant (3D-1SP-H controller), fp(c,d,b), is given
by:

p1 = c̄1c̄3d3 ∨ c̄1c̄4d4 ∨ c̄1c̄5d5 ∨ c̄1c̄6d6, (C.6)

p2 = c̄2c̄4d̄4 ∨ c̄2b̄2, (C.7)

p3 = c̄3c̄2d3, (C.8)

p4 = c̄4c̄2d4, (C.9)

p5 = c̄5c̄2d5, (C.10)

p6 = c̄6c̄2d6. (C.11)

In the alignment of the equations, the first column is responsible for the counter-clockwise
rotation along X local

3 , the second column for the clockwise rotation along X local
3 , the third

column is responsible for the counter-clockwise rotation along X local
2 , the second column for

the clockwise rotation along X local
2 , and the last column for the translation of the robot. With

this control policy, the robot only actively translates once it is correctly oriented towards the
goal. If any module face, other than the preferred face, detects the goal, the robot rotates.
However, since the decisions on rotation are made locally by the modules, some undesired
translation occurs.

C.2.2 Controller analysis

As the torque applied on the robot is non-zero, if the robot is not in the preferred orientation,
from Theorem 8 the robot is able to reach the desired orientation in finite time. If the robot is
in the preferred orientation, from Lemma 3, the robot is able to reach the target in finite time.
Similarly to the 3D-0SP-V1 and 3D-0SP-V2 controllers, as there is some translation during
the rotation movement, to guarantee the success of the controller, it is required to show that
there is no collision between the robot and the goal during rotation.

As with the 2D version of this controller, only faces that detect the goal (and possibly the
preferred face) have active actuators the undesired translation moves the robot away from
the target. As a result, if the robot is able to rotate in place in the initial position, the robot
is guaranteed to complete the task using this controller. This means that,the initial distance
condition is sufficient to guarantee the success of the controller.
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C.3 Simulation results

In this section, we present the results of physics simulations, using the 3D-1SP-H controller.
The setup for the simulations is the same as the one described in Section 5.2.1. We start by
performing an analysis of the movement of the robot during a successful trial. Additionally,
the performance of the controller, in terms of success rate and trial completion time is
compared to the other proposed controllers (and centralised controller) for short, medium
and long distances.

C.3.1 Movement analysis

Figure C.2a shows the position and orientation (in Euler angles) of the robot over time, for
the duration of the trial. At the start of the trial the robot is positioned at (0,0,0) with a
non-preferred orientation. The goal is positioned at (85.5,0,0), and the desired orientation
is (ψ = π,θ = 0,φ), where ψ , θ and φ correspond to the yaw, pith and roll angles1. In
order to reach the goal, the robot is only required to translate along X local

1 . The robot takes
approximately 100 s to reach the desired orientation, from the initial orientation. In that time
period, the distance between the robot and the goal increases. Once the robot is correctly
oriented, the robot translates towards the goal. As the robot moved from the initial position
during rotation, translation occurs along all axis.

Figure C.2b shows the trajectory of the robot in two planes: X1X2 plane (right view) and
X1X3 plane (top view). The robot moves away from the target from the initial position, while
it rotates, in an arching trajectory. Once the rotation is completed (preferred orientation has
been reached) the robot translates in a strait line towards the goal. The behaviour of the
robot when using this controller is in accordance with what is expected from the controller
analysis.

C.3.2 Comparison with the controllers proposed in Chapter 4

Figure C.3 compares the performance of the 3D-1SP-H controller with the controllers pro-
posed in Chapter 4 for short, medium and long distances. The 3D-1SP-H controller consis-
tently outperforms the 3D-2SP controller. For all three distances, the 3D-1SP-H controller
presents a nearly perfect success rate (98% for short distances and 100% for medium and

1Note that the desired orientation is dependent only of the yaw and pitch angles.
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(a)

(b)

Fig. C.2 Movement of the robot over a successful trial using the 3D-1SP-H controller. (a)
Robot’s position and orientation over time. (b) Robot’s trajectory when observed from the
top (left) and right (right) views.
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Fig. C.3 Performance of a 10× 10× 10 robot when the goal is initially a short, medium,
or large distance away from the robot (100 observations per setting). The controllers
are (from the left to the right): the decentralized controllers, 3D-0SP-V1, 3D-0SP-V2,
3D-2SP, 3D-5SP-V1, 3D-5SP-V2, the centralized controller and decentrlised hybrid con-
troller 3D-1SP-H. Bars represent the percentage of successful trials. Box plots represent
completion times (successful trials only).

long distances), while presenting similar completion times. The 3D-2SP controller is only
capable of generating rotations along one of the axis of the robot’s reference frame at the
time, the 3D-1SP-H controller is capable of generating rotations along two of the axis of the
robot’s reference frame simultaneously. Additionally, the 3D-1SP-H controller is capable
of generating rotations along both directions, while the 3D-2SP controller can only gener-
ate rotations along one. As a result, the 3D-1SP-H controller generates a shorter rotation
towards the preferred orientation than the 3D-2SP controller. While the terminal angular
velocities along each of the robot’s axes is smaller for the 3D-1SP-H controller (less modules
contributing to the rotation), as the rotation is significantly shorter, the rotation time is also
shorter. The shorter rotation times justify the better success rates for short distances, as the
high drag coefficient value does not impact as much as for the 3D-2SP controller. For longer
distances, the 3D-1SP-H controller is able to compensate for the overshoot, by rotating both
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clockwise and counter-clockwise. The similarities between the completion times are justified
by a longer translation for the 3D-1SP-H controller.

While performing better than the 3D-2SP controller, the 3D-1SP-H controller is outper-
formed by the 3D-5SP-V2 and centralised controllers for all distances, and by the 3D-5SP-V1
controller for short and medium distances. The 3D-5SP-V2 controller performs the same
rotations as the 3D-1SP-H controller. However, as more modules contribute to the rotation,
the preferred orientation is reached faster. Additionally, as the 3D-1SP-H controller performs
a longer translation, the translation time is also shorter for the 3D-5SP-V2 controller. When
compared to the 3D-5SP-V1 controller, the 3D-1SP-H controller presents slightly higher
completion times (except for long distances). While the rotations for the 3D-5SP-V1 con-
troller are longer, the terminal angular velocities long each axis are higher. This leads to
similar rotation times. With longer translations for the 3D-1SP-H controller, the 3D-5SP-V1
controller completes the task faster. Long distances represent an exception, due to the
overshoot the 3D-5SP-V1 controller suffers when rotating along X local

1 .

Compared to the 3D-0SP-V2 controller, the 3D-1SP-H controller presents better results in
terms of either success rate (short distances) or completion time (medium and long distances).
Additionally, it outperforms the 3D-0SP-V1 controller for short and medium distances (higher
success rate). However, for long distances, the 3D-0SP-V1 controller performs better, due to
its shorter completion times.



Appendix D

Behaviour comparison for controllers
using more/less shared power lines than
the predictied minimum required

Table D.1 compares the behaviours generated by using four and five bits of information for
the 3D-5SP-V1 controller. It can be seen that by combining the sensing status of the face
with outward normal parallel to X local

1 with the sensing status of adjacent face changes the
rotation axis of some of the global sensing states.

Table D.2 shows the behaviours generated by using six bits of information for the
3D-5SP-V2 controller. It can be seen that the last eight situations for which the extra shared
power line is active (b1 = 1) are identical to the first eight situations for which the extra
shared power line is inactive (b1 = 0). Table D.3 shows the same results for the 3D-5SP-V1
controller. As a result, adding an extra shared power line, would bring no improvements to
both controllers, while increasing their complexity.
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Behaviour comparison for controllers using more/less shared power lines than the predictied

minimum required

Table D.1 Behaviours obtained by using 5 and 4-bit of shared information in the 3D-5SP-V1
controller. For the 5-bit case, the value of the shared power lines is given by b j = d j. For
the 5-bit case, the value of the shared power lines is given by b3 = d2∨d3, b4 = d4, b5 = d5,
b6 = d6.

5-bit shared power line 4-bit shared power line
b2 b3 b4 b5 b6 Behaviour b3 b4 b5 b6 Behaviour
0 0 0 0 0 T 0 0 0 0 T
0 0 0 0 1 CCW X local

2 0 0 0 1 CCW X local
2

0 0 0 1 0 CW X local
2 0 0 1 0 CW X local

2
0 0 1 0 0 CW X local

3 0 1 0 0 CW X local
3

0 0 1 0 1 CW X local
1 0 1 0 1 CW X local

1
0 0 1 1 0 CW X local

1 0 1 1 0 CW X local
1

0 1 0 0 0 CCW X local
3 1 0 0 0 CCW X local

3
0 1 0 0 1 CCW X local

1 1 0 0 1 CCW X local
1

0 1 0 1 0 CCW X local
1 1 0 1 0 CCW X local

1
1 0 0 0 0 CCW X local

3 1 0 0 0 CCW X local
3

1 0 0 0 1 CCW X local
2 1 0 0 1 CCW X local

1
1 0 0 1 0 CW X local

2 1 0 1 0 CCW X local
2

1 0 1 0 0 CW X local
3 1 1 0 0 CW X local

3
1 0 1 0 1 CW X local

1 1 1 0 1 CW X local
1

1 0 1 1 0 CW X local
1 1 1 1 0 CW X local

1
1 1 0 0 0 CCW X local

3 1 0 0 0 CCW X local
3

1 1 0 0 1 CCW X local
1 1 0 0 1 CCW X local

1
1 1 0 1 0 CCW X local

1 1 0 1 0 CCW X local
1
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Table D.2 Expected behaviour for the 3D-5SP-V2 controller using six shared power lines,
for all possible global sensing states.

b1 b2 b3 b4 b5 b6 Behaviour
0 0 0 0 0 1 CCW X local

2
0 0 0 0 1 0 CW X local

2
0 0 0 1 0 0 CW X local

3
0 0 0 1 0 1 CW X local

3 CCW X local
2

0 0 0 1 1 0 CW X local
3 CW X local

2
0 0 1 0 0 0 CCW X local

3
0 0 1 0 0 1 CCW X local

3 CCW X local
2

0 0 1 0 1 0 CCW X local
3 CW X local

2
0 1 0 0 0 0 CCW X local

3
0 1 0 0 0 1 CCW X local

2
0 1 0 0 1 0 CW X local

2
0 1 0 1 0 0 CW X local

3
0 1 0 1 0 1 CW X local

3 CCW X local
2

0 1 0 1 1 0 CW X local
3 CW X local

2
0 1 1 0 0 0 CCW X local

3
0 1 1 0 0 1 CCW X local

3 CCW X local
2

0 1 1 0 1 0 CCW X local
3 CW X local

2
1 0 0 0 0 0 T
1 0 0 0 0 1 CCW X local

2
1 0 0 0 1 0 CW X local

2
1 0 0 1 0 0 CW X local

3
1 0 0 1 0 1 CW X local

3 CCW X local
2

1 0 0 1 1 0 CW X local
3 CW X local

2
1 0 1 0 0 0 CCW X local

3
1 0 1 0 0 1 CCW X local

3 CCW X local
2

1 0 1 0 1 0 CCW X local
3 CW X local

2
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Behaviour comparison for controllers using more/less shared power lines than the predictied

minimum required

Table D.3 Expected behaviour for the 3D-5SP-V1 controller using six shared power lines,
for all possible global sensing states.

b1 b2 b3 b4 b5 b6 Behaviour
0 0 0 0 0 1 CCW X local

2
0 0 0 0 1 0 CW X local

2
0 0 0 1 0 0 CW X local

3
0 0 0 1 0 1 CW X local

1
0 0 0 1 1 0 CW X local

1
0 0 1 0 0 0 CCW X local

3
0 0 1 0 0 1 CCW X local

1
0 0 1 0 1 0 CCW X local

1
0 1 0 0 0 0 CCW X local

3
0 1 0 0 0 1 CCW X local

2
0 1 0 0 1 0 CW X local

2
0 1 0 1 0 0 CW X local

3
0 1 0 1 0 1 CW X local

1
0 1 0 1 1 0 CW X local

1
0 1 1 0 0 0 CCW X local

3
0 1 1 0 0 1 CCW X local

1
0 1 1 0 1 0 CCW X local

1
1 0 0 0 0 0 T
1 0 0 0 0 1 CCW X local

2
1 0 0 0 1 0 CW X local

2
1 0 0 1 0 0 CW X local

3
1 0 0 1 0 1 CW X local

1
1 0 0 1 1 0 CW X local

1
1 0 1 0 0 0 CCW X local

3
1 0 1 0 0 1 CCW X local

1
1 0 1 0 1 0 CCW X local

1



Appendix E

Additional simulation results

In Section 5.2.3.3 the performance of the 3D-0SP-V1 and 3D-0SP-V2 controllers is compared,
over increasing distance. However, that comparison only takes into account the success
rate and completion time for each distance. In here, the comparison is extended to energy
consumption and failure type.

Figure E.1 shows the average energy consumed in a successful trial, when using the
3D-0SP-V1 and 3D-0SP-V2 controllers, for initial distances between the robot and the
goal of 1 to 20 robot body lengths. For initial distances up to 14 robot body lengths, the
3D-0SP-V2 controller consumes more energy than the 3D-0SP-V1 controller. The higher
energy consumption is caused by the 3D-0SP-V2 controller having more active pumps in
the initial of the trial, to avoid active translation towards the target. However, since the edge
modules do not contribute to the translation, as the initial distance increases, the energy
consumption increases are smaller. On the other hand, energy consumed by the 3D-0SP-V1
controller increases close to linearly with the distance. As a result, for longer distances the
3D-0SP-V1 controller consumes more energy than the 3D-0SP-V2 controller.

In Section 5.2.1, a trial was defined as successful is the robot reached the goal with the
preferred face within the time limit. In here, we define a trial as partial successful if the goal
is reached with a face other than the preferred, and as unsuccessful if there is no collision
between the robot and the goal. Figure E.2 shows a comparison of the number of successful
and partially successful trials for the 3D-0SP-V1 and 3D-0SP-V2 controllers, for multiple
initial distances between the robot and the goal.

When using the 3D-0SP-V1 controller, the robot always reaches the target, due to constant
active translation, regardless of the orientation it reaches it in. This leads to a high number
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Fig. E.1 Average energy consumed per trial using the 3D-0SP-V1 and 3D-0SP-V2 controllers,
for multiple initial distances between the robot and the goal. One energy unit is defined as the
amount of energy consumed by a pump in one simulated time-step (time step ∆t = 0.01s).
The black lines represent the standard deviation for the 100 trials, for each distance. Results
for successful trials only.

of partial successful trials for short distances. On the other hand, the 3D-0SP-V2 controller
tends to only allow the robot to reach the goal with the correct orientation. As described in
Section 5.2.3.3, if the robot does not reach the desired orientation in time, no collision with
the goal is expected. For short distances, the obit radius can be small leading to unexpected
collisions (partial successful trials).

In summary, two different failure behaviours can be observed. When using the 3D-0SP-V1
controller there are only successful and partially successful trials. When using the 3D-0SP-V2
controller, only successful and unsuccessful trials are expected.
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Fig. E.2 Full and partial success of each controller,for multiple initial distances between the
robot and the goal.





Appendix F

2D-0SP - Experimental analysis

In Section 5.3.2 it is mentioned that the water tank used for the physical experiments is not
adequate to perform experiments using the 2D-0SP-V1 controller.

In order to perform a proper estimation of the angle variations and trajectory, information
on angular and linear accelerations, terminal velocities and de-accelerations is required.
This data was obtained from recordings of a robot only performing rotation and translation
(starting from rest, and upon reaching terminal velocity, de-accelerating). The acceleration
and de-acceleration were approximated with a polynomial function of order 7.

For each initial orientation considered, the position and orientation of the robot were
calculated, over time, taking into consideration the real sensing angle of the modules. The
results, for orientation and trajectory are presented in Figures F.1 to F.4. In Figures F.2
and F.4 we can see that the center of the module reaches a Y position of close to 25 cm,

Fig. F.1 Theoretical angle variations and trajectory of a robot completing the task using the
2D-0SP-V1 controller. The initial orientation of the robot is 0 º.
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Fig. F.2 Theoretical angle variations and trajectory of a robot completing the task using the
2D-0SP-V1 controller. The initial orientation of the robot is 90 º.

Fig. F.3 Theoretical angle variations and trajectory of a robot completing the task using the
2D-0SP-V1 controller. The initial orientation of the robot is -180 º.

Fig. F.4 Theoretical angle variations and trajectory of a robot completing the task using the
2D-0SP-V1 controller. The initial orientation of the robot is -90 º.



209

meaning the, in the best case scenario, the edge of the module reaches over 30 cm, which is
already over the limit of the water tank used.. Additionally, the data for the angular velocity
was retrieved using a rotation based on the rotation policy of the 2D-1SP controller, which
generates a higher torque than it is possible for the 2D-0SP-V1 controller. This means that
the rotation would be slower, leading to a higher maximum Y position. as a result, the water
tank is not large enough, along the Y axis, to allow this controller to perform unimpeded.





Appendix G

Full Experimental results

In Section 5.3.3 we presented the results, in terms of angle variation over time, for an example
trial of each controller, using each initial orientation. In here, we present the results for the
remaining trials of each controller, grouping them by initial orientation.
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(a) (b)

(c) (d)

Fig. G.1 Angle changes over trial duration for the remaining 2D-1SP controller trials, using
an initial orientation of 0 º. The orange vertical lines represent the times at which the robot
reached 10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.
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(a) (b)

(c) (d)

Fig. G.2 Angle changes over trial duration for the remaining 2D-1SP controller trials, using
an initial orientation of 90 º. The orange vertical lines represent the times at which the robot
reached 10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.
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(a) (b)

(c) (d)

Fig. G.3 Angle changes over trial duration for the remaining 2D-1SP controller trials, using
an initial orientation of 180 º. The orange vertical lines represent the times at which the robot
reached 10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.
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(a) (b)

(c) (d)

Fig. G.4 Angle changes over trial duration for the remaining 2D-1SP controller trials, using
an initial orientation of -90 º. The orange vertical lines represent the times at which the robot
reached 10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.
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(a) (b)

(c)

Fig. G.5 Angle changes over trial duration for the remaining 2D-2SP controller trials, using
an initial orientation of 0 º. The orange vertical lines represent the times at which the robot
reached 10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.
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(a) (b)

(c) (d)

Fig. G.6 Angle changes over trial duration for the remaining 2D-2SP controller trials, using
an initial orientation of 90 º. The orange vertical lines represent the times at which the robot
reached 10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.



218 Full Experimental results

(a) (b)

(c) (d)

Fig. G.7 Angle changes over trial duration for the remaining 2D-2SP controller trials, using
an initial orientation of 180 º. The orange vertical lines represent the times at which the robot
reached 10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.
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(a) (b)

(c) (d)

Fig. G.8 Angle changes over trial duration for the remaining 2D-2SP controller trials, using
an initial orientation of -90 º. The orange vertical lines represent the times at which the robot
reached 10, 20, 30 ,40, 50 and 60 cm in translation, along the x axis.
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