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Abstract

Accurate descriptions of the electronic properties of molecules, solids and other ma-

terials are crucial in the development of many modern technologies, and are therefore

the subject of much scientific research. In tandem with experimental research, compu-

tational simulations play a huge role. Density functional theory (DFT) is the most pop-

ular method for performing ground-state electronic structure calculations due to its ac-

curacy in many situations along with its computational efficiency. Its time-dependent

extension (TDDFT) allows the modelling of the dynamics of systems of interacting

electrons. (TD)DFT is an exact theory in principle, but requires approximations in

practice, specifically to the many-body effects of electron exchange and correlation

(xc), which are described by some unknown universal functional. Despite much suc-

cess, it often proves inadequate in many scenarios of increasing interest. Therefore, we

aim to contribute to the development of improved approximate density functionals.

In this thesis, we take the approach of studying small model systems for which we can

compute the exact functionals. These systems are designed to exhibit the key features

present in realistic quantum systems, such as atoms and molecules, which the exact

universal (TD)DFT functional is capable of describing, but are often ill-described by

the commonly used approximations. By analysing the nature of these exact function-

als, we gain valuable insight into their fundamental properties, together with identi-

fying where the current approximations are lacking, thereby allowing us to suggest

how these approximations may be improved.
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CHAPTER 1

INTRODUCTION

A primary contributor to the advancement of many areas of modern technology is the

accurate quantum mechanical description of matter. Accordingly, computational sim-

ulations have become one of the most important features of scientific research. The

majority of electronic structure calculations in condensed matter physics and many

areas of materials science are performed using density functional theory (DFT), a

method based on a reformulation of quantum mechanics and exact in principle. When

extended to the time-dependent regime, time-dependent DFT (TDDFT) is widely used

to model the dynamics of systems of interacting electrons. However, the success of

(TD)DFT in practical calculations hinges on approximating electron exchange and cor-

relation (xc) — an unknown functional to which various approximations exist. Cur-

rently, DFT can be used to accurately model a wide variety of ground-state systems,

but there are a number of important situations in which the most commonly used ap-

proximate functionals are inappropriate. Furthermore, these ground-state functionals

are frequently utilised in many TDDFT calculations, and are often incapable of predic-

tive accuracy in relation to a multitude of applications to diverse fields. In this chapter,

we briefly discuss the limitations of (TD)DFT in order to provide the motivations for

performing studies shown later in this thesis. We also outline our general strategy for

performing these studies and describe the presentation of the results in the context of

the overall thesis.
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2 1.1. Motivation

1.1 Motivation

Many-electron quantum mechanics cannot be used in practical calculations due to the

computational cost of doing so, and hence methods such as DFT [1, 2] are employed,

as discussed above. While being computationally efficient, and hugely successful in

many cases, it becomes much less accurate in the presence of strong correlation. Most

approximate xc functionals are (semi-) local1, such as the widely used local density ap-

proximation [2] (LDA), which is known to miss out some key features present in the

exact xc functional [3–9]. Most applications of TDDFT [10, 11] utilise an adiabatic ap-

proach2, in which the instantaneous electron density is implicitly assumed to be in its

ground state, thereby neglecting all memory effects. Here, a ground-state xc functional

is used as an approximation to the true xc functional. This proves inadequate in many

situations, such as the determination of electronic excitation energies including those

of a charge-transfer nature [12], electron dynamics [13] including non-perturbative

charge transfer dynamics [14], time-resolved spectroscopy [15] and electron scattering

[16].

The approximate density functionals of (TD)DFT that are currently available need

to be improved upon to allow more accurate simulations of matter, which are neces-

sary for continual technological advancements where descriptions of electronic prop-

erties are crucial.

1.2 Our strategy

Our approach is to study small, prototype systems of a few electrons, where we can

solve the many-electron Schrödinger equation exactly, to within machine precision.

This gives us access to the exact wavefunctions and electron density, and through op-

timisation techniques, we can determine the exact ground-state and time-dependent

exchange-correlation functional. Our aim is to identify features present in the exact

xc functional that are missing from the commonly used approximations, in order to

inform the development of improved approximate functionals. We can also imple-

ment approximations, both established and novel, to test their performance against

1The true xc potential vxc at each point in space depends on the density at all points in the system in an
unknown way. Most approximate functionals are either local, in which vxc at each point is assumed to
depend only on its local density value, or semi-local, through, e.g. local density gradients.

2The true time-dependent vxc depends on the present and entire history of the density. Adiabatic func-
tionals ignore this memory dependence and use the instantaneous density as the input to the functional.
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1.3. Outline of thesis 3

the exact solutions. Each system we study is designed to illustrate important general

phenomena in order to be representative of the behaviour of electrons in more realistic

finite systems, e.g. molecules.

To perform our calculations we use the interacting Dynamic Electrons Approach

[17] (iDEA) code, developed within our research group. This models small, one-

dimensional prototype systems of spinless electrons for which we can compute exact

solutions, and is used for all the research presented in this thesis (see Chapter 3 for

more details).

1.3 Outline of thesis

Chapter 2 outlines the concepts underpinning many-body quantum mechanics, and

through use of the Born-Oppenheimer approximation, many-electron quantum me-

chanics. We discuss various approaches to performing practical electronic structure

calculations, focusing on DFT and TDDFT. We then review the successes and failures

of the typical approximations used within these methods, which are the limiting factor

in their application, and thus motivate the work presented in this thesis.

In Chapter 3, we outline how we perform our electronic structure calculations us-

ing the iDEA code, as mentioned above. We also give details about the workings of

iDEA, background theory and development/testing of the code.

The LDA is the simplest and one of the most widely used approximations to the xc

functional, and is typically constructed from accurate quantum Monte Carlo (QMC)

simulations of the homogeneous electron gas (HEG) – an infinite system approach-

ing the thermodynamic limit. In Chapter 4, we introduce a set of alternative LDAs

constructed from one-dimensional finite systems, which resemble the HEG within

a finite region. We also construct a HEG-based LDA appropriate for spinless elec-

trons in one dimension. By comparing the finite and HEG LDAs with one another we

demonstrate that local approximations constructed from finite systems are a viable

alternative, and explore the nature of any differences between them. By identifying

their relative strengths and weaknesses, we hope this insight will lead to better accu-

racy in a variety of applications, and through extension to the time-dependent regime,

the development of improved TDDFT functionals from finite systems. This analysis

sheds light on whether local density functionals can be tailored for use in ab initio

calculations, which has the potential to improve the predictive power of (TD)DFT cal-

culations.
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4 1.3. Outline of thesis

Following on from Chapter 4, which focused on approximating the exact quantities

of ground-state DFT, we now move on to exact TDDFT. In practical TDDFT calcula-

tions, an adiabatic approximation based on ground-state DFT is often used for the true

xc potential, thereby neglecting all memory effects in this part of the Kohn-Sham (KS)

potential and severely limiting the application of TDDFT to a multitude of diverse

fields. In Chapter 5, we present a new perspective on the KS potential, by considering

the purest application of the concept of the adiabatic functional to the complete KS po-

tential, and present a simple geometrical “fluidic” approximation to the non-adiabatic

part. We find that the fluidic approximation corrects a large part of the error arising

from the “exact adiabatic” approach, even when the system is evolving far from adi-

abatically. We believe this may form a solid foundation for a hierarchy of approxima-

tions, and provide an alternative method to conduct TDDFT calculations, particularly

in situations where the typical adiabatic xc functionals are insufficient. Through our

novel approach, the surprising power of the fluidic approximation helps to address

the difficult problem of non-adiabaticity in the evolution of many-electron quantum

systems, which the vast majority of approximations completely neglect, and currently

prevents the application of TDDFT to a wide variety of experimental situations.

One particularly important class of applications of TDDFT, whose accuracy is severely

restricted, is the wide variety of spectroscopies, such as optical absorption spectra of

molecules and solids. Here, accurate approximations to the exchange-correlation ker-

nel fxc are required, but the most commonly used approximate kernels are adiabatic

and (semi-) local, in much the same way as most approximations to vxc are. There have

been a limited number of studies conducted on analysing the character of the exact fxc,

all of which focus on particular aspects of it, rather than a mixture. We believe that

calculating the full dynamic fxc opens up this possibility. As a step in this direction,

in Chapter 6 we calculate the exact fxc for prototype systems, including full spatial

behaviour and frequency-dependence. By characterising and analysing its properties,

we draw conclusions on the applicability of approximate kernels and suggest circum-

stances where more sophisticated approximations may be needed. We anticipate that

the insight our work generates will, through further research, lead to the development

of improved approximate kernels for model systems, which we hope can in time be

extended to ab initio calculations.

Finally, Chapter 7 summarises the results presented in earlier chapters and brings

the work together to decide what broad conclusions we can infer.
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CHAPTER 2

ELECTRONIC STRUCTURE THEORY

The fundamental description of nature on the atomic scale is described by the theory

of quantum mechanics. This constitutes a many-body problem, stemming from the

interactions between particles. Many-body problems rank among the most computa-

tionally demanding problems in many areas of science, and are often infeasible. In

this chapter, we outline the concepts underpinning many-body quantum mechanics,

and through use of the Born-Oppenheimer approximation, many-electron quantum

mechanics. The Born-Oppenheimer approximation allows us to consider the motion

of the electrons in molecular systems separately from that of the nuclei, i.e. consti-

tuting electronic structure calculations. We then discuss approaches to performing

these types of calculations with the most prominent being density functional theory

(DFT) and its time-dependent counterpart TDDFT. TDDFT, through a reformulation

of quantum mechanics, is in principle an exact and efficient theory of the dynamics of

systems of interacting electrons, but in practice it requires approximations to be made.

We review the successes and failures of these approximations, which are the limiting

factor in applications of TDDFT.
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6 2.1. Many-body quantum mechanics

2.1 Many-body quantum mechanics

2.1.1 The many-body problem

The behaviour of systems of nuclei and electrons interacting via the Coulomb poten-

tial, such as atoms and molecules, is described by the equations of many-body quan-

tum mechanics. These necessitate the formulation of the many-body Hamiltonian1:

Ĥ =−∑
i

h̄2

2me
∇2

i −∑
I

h̄2

2MI
∇2

I −∑
i,I

1
4πε0

ZIe2

|~ri − ~RI |
+ ∑

i
∑
j>i

1
4πε0

e2

|~ri −~rj|

+ ∑
I

∑
J>I

1
4πε0

ZI ZJe2

|~RI − ~RJ |
, (2.1)

which includes the kinetic energy of the electrons and nuclei, the electron-nucleus

interaction, electron-electron interaction and nucleus-nucleus interaction. Here, elec-

trons are denoted by charge e, mass me and coordinates ~ri. Nuclei are denoted by

atomic number ZI , charge ZIe, mass MI and coordinates ~RI .

In theory, one can obtain the many-body wavefunction through solving the many-

body Schrödinger equation, from which all properties of the system can be derived.

However, the computational cost of solving this equation scales exponentially with

the number of particles in the system, due to the interaction terms in Eq. (2.1). This

makes practical use near impossible and is known as the many-body problem.

2.1.2 The Born-Oppenheimer approximation

In quantum chemistry, molecular physics and other electronic structure calculations,

the Born-Oppenheimer approximation [18] is often used. Its validity stems from the

mass of nuclei being much larger than the mass of the electron2, and as such treats

the motion of atomic nuclei and electrons separately3. The nuclear kinetic energy (the

second term in Eq. (2.1) and ∝ 1/MI) is neglected, thereby assuming fixed nuclei. This

means the last term, the nucleus-nucleus interaction, is a constant and can therefore

be added to the zero of energy. Furthermore, the electron-nucleus interaction (third)

term becomes equivalent to the electrons experiencing an external Coulomb potential

fixed in space. This leaves a fully electronic Hamiltonian which drastically simplifies

1Other terms, such as those describing externally applied scalar and vector fields and relativistic effects,
can be included. But for now, we have neglected them.

2Approximately 1836 times as large for the lightest atomic nucleus, hydrogen.
3Mathematically, the wavefunction of a system is separated into an electronic wavefunction and a nuclear
wavefunction.

Chapter 2 Electronic structure theory



2.1. Many-body quantum mechanics 7

the problem4.

The Born-Oppenheimer approximation is well justified for many electronic struc-

ture calculations, and allows one to focus on the description of electrons. While it has

its limitations, its validity remains for our calculations. Therefore, it is used through-

out all the work presented in this thesis.

2.1.3 The many-electron Schrödinger equation

As stated above, utilising the Born-Oppenheimer approximation allows us to switch

to a fully electron problem where Eq. (2.1) reduces to a many-electron Hamiltonian5:

Ĥ = −1
2 ∑

i
∇2

i + ∑
i

vext(~ri) + ∑
i

∑
j>i

1
|~ri −~rj|

, (2.2)

where we have rewritten the electron-nucleus interaction as an external potential vext,

felt by all electrons. All observables of the system can be determined, in theory,

through solving the Schrödinger equation. Its time-independent form, the time-indep-

endent Schrödinger equation (TISE), is given by

ĤΨn({~ri}) = EnΨn({~ri}), (2.3)

whose solutions Ψn are the eigenstates (allowed states) of the system. In general, a

system will exist in a superposition of these eigenstates Ψ = ∑n cnΨn, with the ex-

pectation value of an observable O, with corresponding Hermitian operator Ô, given

by

〈O〉 = 〈Ψ|Ô|Ψ〉. (2.4)

Ψ is a single-valued, continuous function of {~ri}, which is anti-symmetric with respect

to exchange of any two electron coordinates (see Sec. 2.2.3) and normalised (〈Ψ|Ψ〉 =
1).

A system’s eigenstates, and indeed its general many-electron wavefunction, de-

pend on the coordinates of all electrons {~ri} in an irreducible way, due to the presence

of the electron-electron interaction term in Eq. (2.2). For N electrons in three dimen-

sions Ψ is a complex-valued function of 3N variables. As such, the many-electron

4The Born-Oppenheimer approximation still allows the motion of nuclei to be accounted for. E.g., solving
the electronic problem for different (stationary) nuclear positions allows the determination of a potential
energy surface for the nuclei, which can be used to simulate molecular dynamics.

5Hereafter we switch from SI units to Hartree atomic units: me = h̄ = e = 4πε0 = 1.
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problem itself is too difficult to solve in any realistic system due to the exponential

scaling in computational cost.

The system may also be subject to externally applied potentials, e.g. electric fields,

which are included in Eq. (2.2) through vext. In the case of time-dependent potentials,

the system is not static, and the time-evolution of the wavefunction is described by

the time-dependent Schrödinger equation (TDSE):

ĤΨ({~ri}, t) = i
∂

∂t
Ψ({~ri}, t). (2.5)

2.2 Density functional theory

Density functional theory (DFT) is an exact reformulation of many-electron quantum

mechanics, whose fundamental quantity is the electron density n(~r) rather than the

many-electron wavefunction Ψ({~ri}). This reduces the N-electron problem from a

complex-valued function of 3N variables to a real-valued function of 3 variables6. As

such, DFT is a practical, and the most widely used, method for electronic structure

calculations.

2.2.1 The Hohenberg-Kohn theorems

The theoretical foundations of DFT were established in 1964 with the theorems devel-

oped by Hohenberg and Kohn [1] (HK). The first HK theorem states that the external

potential of an N-electron system is a unique functional (up to an additive constant)

of the electron density n(~r), where
∫

n(~r) d3r = N. Hence, the total energy E is also a

functional of n(~r), which may be written as [19]

E[n] = 〈Ψ|Ĥ|Ψ〉

= F[n] +
∫

n(~r) vext(~r) d3r

= min
Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉+

∫
n(~r) vext(~r) d3r, (2.6)

where we have inputted Ĥ from Eq. (2.2) into Eq. (2.4) and denoted T̂ and V̂ee as the

many-electron kinetic energy and electron-electron repulsion operators, respectively.

F[n] is some unknown, but universal functional of the density and is known as the HK

functional. A corollary of theorem one is that there is a one-to-one mapping between

6The factor of 3 arises from dimensionality. Later on we restrict ourselves to one dimension (1D) (see
Chapter 3), which reduces this factor to 1.
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the external potential and ground-state wavefunction, i.e. two different potentials

cannot give rise to the same ground-state electron density.

The second HK theorem states that the density that minimises Eq. (2.6) is the true

ground-state density n0:

E0 = E[n0] = 〈Ψ0[n0]|Ĥ|Ψ0[n0]〉 = F[n0] +
∫

n0(~r) vext(~r) d3r, (2.7)

where Ψ0 is the ground-state wavefunction.

The power of DFT is that all ground-state properties of a system can, in principle,

be expressed as functionals of n0(~r), without need for Ψ0({~ri}).

2.2.2 The Kohn-Sham formalism

A year later in 1965 Kohn and Sham [2] showed that the real system of interacting elec-

trons can be mapped onto an auxiliary system of non-interacting electrons moving in

an effective local Kohn-Sham (KS) potential vs(~r), with both systems yielding the same

ground-state electron density. This allows us to rewrite our total energy functional in

Eq. (2.6) as

E[n] = F[n] +
∫

n(~r) vext(~r) d3r

= T[n] + Eee[n] +
∫

n(~r) vext(~r) d3r

= Ts[n] + EH[n] + Exc[n] +
∫

n(~r) vext(~r) d3r

= Ts[n] +
∫

n(~r) vs(~r) d3r, (2.8)

where Ts are the single-particle kinetic energies, EH is the Hartree energy, and Exc is

the exchange-correlation (xc) energy. The first two are known analytically:

Ts[n] = Ts[{φi[n]}] = −
1
2

N

∑
i=1

∫
φ∗i (~r)∇2φi(~r) d3r, (2.9a)

EH[n] =
1
2

∫ ∫ n(~r)n(~r′)
|~r−~r′| d3r d3r′. (2.9b)

The non-interacting kinetic energy functional Ts[n] is simply the expectation value of

the kinetic energy operator evaluated with the single-particle wavefunction φi (a KS

orbital found from solving the KS equations7; see Eq. (2.14)), summed over all oc-

7While the HK theorems say that, in principle, only the electron density is needed, the KS formalism
reintroduces wavefunctions (KS orbitals) as they are needed to evaluate Ts in Eq. (2.9a).
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10 2.2. Density functional theory

cupied states, while the Hartree energy EH[n] is the classic Coulomb energy of the

electronic charge density. The form of Exc[n] is unknown and its role is to account for

the many-electron effects in this non-interacting system by correcting the discrepan-

cies in the many- and single-particle kinetic energies, T− Ts, and interaction energies,

Eee − EH.

Now, through variation of E[n] with respect to n, we obtain the Euler-Lagrange

equation for this functional:

δE[n]
δn(~r)

= 0 =⇒ δF[n]
δn(~r)

+ vext(~r) =
δTs[n]
δn(~r)

+ vs(~r) = µ, (2.10)

where µ is a Lagrange multiplier necessary to constrain the electron number to N. This

can only hold if

vs(~r) = vext(~r) + vH(~r) + vxc(~r), (2.11)

where vH is the Hartree potential:

vH(~r) =
δEH[n]
δn(~r)

=
∫ n(~r′)
|~r−~r′| d3r′, (2.12)

and vxc is the xc potential:

vxc(~r) =
δExc[n]
δn(~r)

. (2.13)

While KS DFT is an exact theory in principle, the functional form of vxc[n], like Exc[n],

is unknown and must therefore be approximated in all practical calculations. As the

KS electrons are non-interacting, the system is governed by a set of single-particle

Schrödinger equations, known as the KS equations:

(
− ∇

2

2
+ vs[n](~r)

)
φn(~r) = εnφn(~r), (2.14)

where εn is the eigenenergy of the orbital φn, which is orthonormal to all other orbitals

(〈φn|φm〉 = δnm). Summing the squares of the lowest N (occupied) orbitals yields the

ground-state density of the non-interacting system:

n0(~r) =
N

∑
i=1
|φi(~r)|2, (2.15)

which is equal to the ground-state density of the interacting system.
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2.2.3 The exchange-correlation functional

The only part of the KS functional that is unknown is the xc term. As such, the accu-

racy of a practical DFT calculation is determined by the approximation to this term.

We now explore it in more detail, along with one of the most common approximations

to it.

The exchange-correlation energy Exc[n], by accounting for the many-electron ef-

fects, acts to lower the total energy E. It can be split into two components, Exc =

Ex + Ec. The first of which accounts for the exchange interaction between identical

particles. In the case of electrons (fermions), this ensures that the Pauli exclusion prin-

ciple is obeyed, i.e. two electrons cannot occupy the same quantum state, and acts

as a repulsive force between electrons of like spin. Mathematically, this requires the

many-electron wavefunction to be antisymmetric with respect to the exchange of two

electron coordinates. E.g., for the ground state of a two-electron system:

Ψ0({~ri}) = Ψ0(~r1, ~r2) = −Ψ0(~r2, ~r1). (2.16)

Additionally, the exchange term removes the self-interaction error introduced by the

Hartree potential, in which each KS electron spuriously interacts with itself.

The second component accounts for electron correlation, which is the tendency

of electrons to “push” electrons out of their vicinity due to their mutual Coulomb

repulsion, i.e. their motion is correlated. This manifests in a decrease in the repul-

sive Hartree potential between each pair of KS electrons, and a difference between

the many-electron and single-electron kinetic energies. Like the exchange interaction,

electron correlation lowers E.

2.2.3.1 The local density approximation

The local density approximation (LDA) was first proposed by Kohn and Sham in their

original 1965 paper [2]. It is the most simple, and one of the most widely used, meth-

ods for approximating the xc functional. While the true Exc[n] depends on the electron

density in a non-local fashion (e.g. through spatial derivatives of n), the LDA assumes

that it depends solely on the local electron density at each point in the system. Specif-

ically:

ELDA
xc [n] =

∫
n(~r) εh

xc(n̄)|n̄=n(~r) d3r, (2.17)
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12 2.2. Density functional theory

where εh
xc(n̄) is the xc energy per electron of a homogeneous electron gas (HEG) of

density n̄. The HEG is a conceptually important model system containing an infinite

number of interacting electrons with a spatially-uniform density n̄ 6= n̄(~r). Like the

total xc energy Exc, the xc energy per electron of a system can also be split into separate

exchange and correlation components, εxc = εx + εc. The exchange term for the HEG

is known analytically:

εh
x(n̄) = −

3
4

(
3
π

)1/3
n̄1/3, (2.18)

while no corresponding analytic expression for εh
c(n̄) exists. Instead, numerical values

for εh
c are obtained through quantum Monte Carlo (QMC) calculations, with the orig-

inal being by Ceperley and Adler [20]. Here, quantum mechanical expectation values

(see Eq. (2.4)), which are multi-dimensional integrals, are evaluated using one of sev-

eral techniques based on the Monte Carlo method. This consists of repeated random

sampling to obtain an approximation to the quantity of interest, e.g. εh
c. The results are

then parameterised to obtain an accurate εh
c(rs), where rs is the Wigner-Seitz radius

and is related to the density by 4πr3
s /3 = 1/n̄.

Due to the relative simplicity of ELDA
xc [n] in Eq. (2.17), the xc potential in Eq. (2.13)

reduces to

vLDA
xc [n](~r) =

δELDA
xc [n]

δn(~r)
= εh

xc(n̄)|n̄=n(~r) + n(~r)
dεh

xc
dn̄

∣∣∣∣
n̄=n(~r)

, (2.19)

such that vLDA
xc (~r) at each point~r depends solely on the electron density at that point,

n(~r).

The LDA becomes exact in the uniform limit, i.e. n 6= n(~r). No realistic system

is perfectly uniform, and so when first proposed, the LDA was expected to perform

well in systems where the density was slowly varying. Mathematically, this means

|∇n(~r)|/n(~r) � kF(~r), where kF(~r) is the local Fermi wave vector. The LDA has

however performed much better than first predicted, even in situations where the

aforementioned conditions are violated. One of the reasons for this is that the LDA is

based off a physical system (the HEG) and so it satisfies many of the sum rules of the

exact xc functional; e.g. the sum rule to the exchange-correlation hole which ensures

that an electron excludes a total charge of one electron from its neighbourhood [21].

There are a number of important cases where the LDA is inadequate and breaks down,

and these are discussed at the end of this chapter and in Chapter 4.
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2.3 Hartree-Fock theory

The Hartree-Fock method (HF) predates DFT and dominated electronic structure the-

ory calculations for decades, and continues to be widely used today. It originated

as an extension of the Hartree equations [22], which were formulated a year after

Schrödinger published his own equation, and were the first attempt at replacing the

intractable many-body problem with a single-particle approach. While they enjoyed

some success, the relative simplicity of the Hartree equations means the resulting ap-

proximation to the many-electron wavefunction, a (Hartree) product of the occupied

single-electron orbitals, is not exchange-antisymmetric [23, 24].

The HF method [24, 25] corrects this by approximating the many-electron wave-

function for the ground state as a single Slater determinant:

Ψ0({~ri}) ≈ ΦHF({~ri}) =
1√
N

∣∣∣∣∣∣∣∣∣∣∣∣

φHF
1 (~r1) φHF

2 (~r1) · · · φHF
N (~r1)

φHF
1 (~r2) φHF

2 (~r2) · · · φHF
N (~r2)

...
...

. . .
...

φHF
1 (~rN) φHF

2 (~rN) · · · φHF
N (~rN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.20)

where {φHF
n }8 are the set of solutions to the self-consistent HF equation:

[
− ∇

2

2
+ vext(~r) + vH(~r)

]
φHF

n (~r)−
N

∑
k=1

∫
d3r′

φHF∗
k (~r′)φHF

k (~r)
|~r−~r′| φHF

n (~r′) = εHF
n φHF

n (~r),

(2.21)

which is derived through a variational procedure of the expectation value [Eq. (2.4)]

of the many-electron Hamiltonian [Eq. (2.2)] with Eq. (2.20).

In contrast to the KS equations of DFT, in which the electrons are moving in an

effective local potential, the effective potential in Eq. (2.21) is non-local due to the last

term:

vHF
x (~r,~r′)φHF

n (~r′) = [vx φHF
n ](~r) = −

N

∑
k=1

∫
d3r′

φHF∗
k (~r′)φHF

k (~r)
|~r−~r′| φHF

n (~r′), (2.22)

where vHF
x is known as the Fock operator, and Eq. (2.21) reduces to the Hartree approx-

imation if we set vHF
x = 0. This non-locality means that HF is more computationally

expensive than DFT, which typically uses simple approximate functionals in practical

applications.

8In general the set {φHF
n } are spin orbitals, but here we neglect spin such that they are spatial orbitals.
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In HF theory exchange is treated exactly, including complete removal of the spuri-

ous electron self-interaction, and so

E− EHF = E− 〈ΦHF|Ĥ|ΦHF〉 = EHF
c , (2.23)

where the remainder EHF
c is the correlation energy and is completely neglected. It is

worth noting that the exchange energy EHF
x , and EHF

c , are in general not the same as

their counterparts in DFT9. This arises from Eq. (2.21) being derived from an uncon-

strained minimisation of E with respect to the single-particle orbitals, which produces

the effective non-local potential, whereas DFT is restricted to an effective local potential.

2.4 Time-dependent density functional theory

Time-dependent DFT (TDDFT) is in principle an exact and efficient theory of the

excited-state properties and dynamics of many-electron systems under the influence

of time-dependent potentials. An extension to DFT, TDDFT replaces the time-depend-

ent many-electron wavefunction Ψ({~ri}, t) with the time-dependent electron density

n(~r, t) as the fundamental quantity.

2.4.1 The Runge-Gross theorem

The time-dependent Schrödinger equation [Eq. (2.5)] defines a unique mapping be-

tween a system’s time-dependent external potential vext(~r, t) and time-dependent wave-

function Ψ({~ri}, t), for a given initial state Ψ({~ri}, t = 0) (which is often the ground

state, Ψ0({~ri})).
The Runge-Gross theorem [10] states that for any fixed initial state Ψ({~ri}, t =

0), there is a one-to-one mapping between n(~r, t) and vext(~r, t), thereby resulting in

vext(~r, t) being a unique functional (up to an additive time-dependent constant) of

n(~r, t). Consequently, all observables of a time-dependent system can be be expressed

as functionals of n(~r, t).

9Certain cases do exist, e.g. the exchange energy of the HEG is defined via the HF method. Here, the
omission of correlation leads to errors, such as a broadening of the occupied part of the band structure
and a singularity at the Fermi energy – a typical failure of HF in all metals.
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2.4.2 Time-dependent Kohn-Sham theory

The KS formalism of ground-state DFT allows us to replace the real interacting system

with an auxiliary non-interacting system that has the same ground-state density n(x),

thus making DFT a practical theory. We would like to extend this procedure to TDDFT,

however the Runge-Gross theorem alone does not guarantee such a procedure is valid.

For this we need the van Leeuwen theorem10 [11] which proves that for a many-

electron system, such as the one described above (with interaction vee(~r,~r′) = 1/|~r−
~r′|), there exists a different many-electron system with interaction v′ee(~r,~r′) and unique

external potential v′ext(~r, t) which yields the same time-dependent density (n′(~r, t) =

n(~r, t)), provided that the initial state Ψ′({~ri}, t = 0) is chosen such that n′(~r, t = 0) =

n(~r, t=0) and ∂tn′(~r, t=0) = ∂tn(~r, t=0). By setting v′ee = 0 we have a non-interacting

system, which shows that a time-dependent KS scheme is valid. There are certain

restrictions, but this is not the case when the initial states of both systems are their

respective ground states (many-electron: Ψ(t = 0) = Ψ0, Kohn-Sham: Φ(t = 0) = Φ0),

which is the case in all the work presented in this thesis. In these situations, the time-

dependent KS (effective) potential vs[n, Ψ(t = 0), Φ(t = 0)](~r, t) reduces to a density

functional vs[n](~r, t), which is given by

vs(~r, t) = vext(~r, t) + vH(~r, t) + vxc(~r, t). (2.24)

Here, vH(~r, t) is the time-dependent Hartree potential, whose value at a particular time

is obtained through inputting the instantaneous density into Eq. (2.12), and vxc(~r, t) is

the time-dependent xc potential, which like its ground-state counterpart, is unknown.

The single-particle orbitals of the KS system evolve according to the time-dependent

KS equations: (
− ∇

2

2
+ vs[n](~r, t)

)
φn(~r, t) = i

∂

∂t
φn(~r, t), (2.25)

where the time-dependent density is given by

n(~r, t) =
N

∑
i=1
|φi(~r, t)|2. (2.26)

10The Runge-Gross theorem is a particular case of the van Leeuwen theorem, where v′ee = vee, v′ext = vext
and Ψ′(t=0) = Ψ(t=0).
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2.4.3 The time-dependent exchange-correlation functional

The time-dependent xc potential vxc[n], is a functional of the density at the present

and all previous times. It is the only part of the time-dependent KS potential that is

unknown and therefore limits the applicability of TDDFT. Below we outline some of

the known properties of the exact vxc, and discuss the commonly employed adiabatic

approximation to it.

2.4.3.1 Exact properties

When applied to a one-electron system, the KS potential reduces to the external po-

tential, vs(~r, t) = vext(~r, t). Therefore, the xc potential must equal the negative of the

Hartree potential, to ensure the KS system is self-interaction free:

vxc(~r, t) = −vH(~r, t) = −
∫ n(~r′)
|~r−~r′| d3r. (2.27)

For any system, as both vH and vxc originate from the Coulomb repulsion between

electrons, they cannot exert a net external force on the system, by Newton’s third law.

At the level of the xc potential, this means

∫
n(~r, t)∇vxc(~r, t) d3r = 0, (2.28)

and is known as the zero-force theorem [26].

The exact vxc[n] must also obey generalised translational invariance [26]: a linearly ac-

celerated observer who resides in a reference frame at position ~x relative to the (orig-

inal) lab frame will observe a rigidly translated density, n′(~r, t) = n(~r + ~x, t), and a

rigidly translated xc potential:

vxc[n′](~r, t) = vxc[n](~̄r, t)|~̄r=~r+~x. (2.29)

There are two special cases of the above. One is when the observer’s frame is moving

at constant velocity, such that the translational invariance reduces to Galilean invari-

ance. The second is when the system of interacting electrons is confined to a harmonic

potential, subject to a uniform electric field at t = 0, such that the density rigidly

moves in the manner of the underlying classical harmonic oscillator — this is known

as the harmonic potential theorem [27].

The true vs, and therefore vxc, are in general functionals of n, Ψ(t=0) and Φ(t=0).
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These must be independent of which previous instant in the evolution of the system

is to be used to designate the initial states, such that

vxc[n, Ψ(t′), Φ(t′)](~r, t) = vxc[n, Ψ(t′′), Φ(t′′)](~r, t) ∀t > t′, t′′, (2.30)

and is known as the memory condition [28].

2.4.3.2 The adiabatic approximation

The true time-dependent xc potential is dependent on the present and entire history

of the density. However, if the perturbation applied is sufficiently weak, and slow,

then the system remains in the instantaneous ground state, i.e. the adiabatic theorem

of quantum mechanics [29]. In situations such as this, the exact xc potential at time t

depends only on the instantaneous density n(t) [30, 31]:

vxc[n](~r, t) = v0
xc[n0](~r, t)|n0(~r)→n(~r,t), (2.31)

where the ground-state xc potential v0
xc is a functional of the ground-state density n0.

Most practical functional approximations are adiabatic, and trivially satisfy many

of the properties of the exact (non-adiabatic) functional through their complete lack

of memory-dependence. The simplest, and one of the most common, is the adiabatic

LDA (ALDA) in which the instantaneous density is inputted into the ground-state

LDA xc functional [Eq. (2.19)]. While these adiabatic functionals have steadily im-

proved, they prove inadequate in many applications. This is discussed at the end of

this chapter and in Chapter 5.

2.5 Linear response

In many applications of TDDFT, such as spectroscopies, the perturbing potential is

weak enough to not induce a large density response away from the ground state. Here,

first-order perturbation (linear response) theory is valid in which the variation of the

system can be described as a functional of the ground-state density11, i.e. employing

ground-state DFT. We introduce this below.

11We are assuming the initial states Ψ0 and Φ0 are non-degenerate ground states. This is often the case
in practice, in particular for optical spectra calculations (see Sec. 2.5.4), and is the case in all the work
presented in this thesis.
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2.5.1 The density-response function

Consider an interacting system, initially in the ground state, with a perturbing poten-

tial applied at t = 0:

vext(~r, t) = v0
ext(~r) + δvext(~r, t), (2.32)

which induces a small response in the electron density, n(~r, t) = n0(~r)+ δn(~r, t), where

δn may be expressed as a Taylor series with respect to δvext. In linear response theory,

we are only interested in the leading term, and choose to neglect all those of higher-

order, such that

δn(~r, t) =
∫

dt′
∫

d3r′ χ[n0](~r,~r′, t− t′)δvext(~r′, t′), (2.33)

where χ[n0](~r,~r′, t − t′) is the interacting density-response function12 and is defined

as

χ[n0](~r,~r′, t− t′) =
δn(~r, t)

δvext(~r′, t′)

∣∣∣∣
v0

ext

, (2.34)

i.e. describing how the density will change at point~r and time t, if the external po-

tential is changed at point~r′ at an earlier time t′. It can be expressed in terms of the

eigenstates of the unperturbed system through the “Lehmann representation” (see

Appendix A.1.1):

χ(~r,~r′, ω) = lim
η→0+

∑
n

[ 〈Ψ0|n̂(~r)|Ψn〉〈Ψn|n̂(~r′)|Ψ0〉
ω− (En − E0) + iη

− 〈Ψ0|n̂(~r′)|Ψn〉〈Ψn|n̂(~r)|Ψ0〉
ω + (En − E0) + iη

]
,

(2.35)

where |Ψ0〉, E0, |Ψn〉 and En are the ground state and its energy, and the n−th excited

state and its energy, respectively, n̂ is the density operator in the Heisenberg picture

and ω is the frequency of the perturbation. χ has poles at the excitation energies of the

system, En − E0, and provides a description of neutral excitations13.

Similarly, the corresponding KS system, upon a small change δvs in the effective

potential, will experience a response in the density:

δn(~r, t) =
∫

dt′
∫

d3r′ χ0[n0](~r,~r′, t− t′)δvs(~r′, t′), (2.36)

which must be the same as that in the interacting system due to both systems having

12As with vs, there is no initial-state dependence if the system begins in the ground state.
13The first term in the summation corresponds to absorption (poles at positive ω), while the second term

corresponds to stimulated emission (poles at negative ω).
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the same density at all points in space and time. Here, χ0[n0](~r,~r′, t− t′) is the non-

interacting density-response function:

χ0[n0](~r,~r′, t− t′) =
δn(~r, t)

δvs(~r′, t′)

∣∣∣∣
vs[n0]

, (2.37)

which in the Lehmann representation is given by (see Appendix A.1.2)

χ0(~r,~r′, ω) = lim
η→0+

∑
i,j
( fi − f j)

φ∗i (~r)φj(~r)φ∗j (~r
′)φi(~r′)

ω− (ε j − ε i) + iη
, (2.38)

where the φi, ε i are the exact solutions to the Kohn-Sham equations of ground-state

DFT [Eq. (2.14)], and fi is the Fermi occupation (0 or 1) of φi. In a manner analogous

to χ, which has poles at the excitation energies of the interacting system, χ0 has poles

at the excitation energies of the Kohn-Sham system, ε j − ε i.

2.5.1.1 Exact properties

Below we outline some of the basic properties of the exact interacting density-response

function. When a perturbation is applied to a system, the induced density response,

δn(~r, t) [Eq. (2.33)], must be real, and hence so must χ(~r,~r′, t− t′). In frequency space,

the following result is obtained:

χ(~r,~r′, ω) = χ∗(~r,~r′,−ω). (2.39)

Substituting the Lehmann representation for χ [Eq. (2.35)] into the above equation

leads to the basic symmetry property:

χ(~r,~r′, ω) = χ(~r′,~r, ω). (2.40)

The positive infinitesimal in Eq. (2.35) means that χ is only analytic in the upper half of

the complex plane. Through the use of contour integration techniques, it is possible to

relate the real and imaginary parts of χ on the real ω-axis through the Kramers-Kronig

relations [32, 33]:

Re
[
χ(~r,~r′, ω)

]
= P

∫
dω′

π

1
ω′ −ω

Im
[
χ(~r,~r′, ω′)

]
, (2.41a)

Im
[
χ(~r,~r′, ω)

]
= −P

∫
dω′

π

1
ω′ −ω

Re
[
χ(~r,~r′, ω′)

]
. (2.41b)
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For any one-electron system, χ simply reduces to the non-interacting density-response

function:

χ(~r,~r′, ω) = χ0(~r,~r′, ω). (2.42)

2.5.2 The Dyson equation

By equating Eq. (2.33) and Eq. (2.36) we obtain

∫
dt′
∫

d3r′ χ(~r,~r′, t− t′)δvext(~r′, t′) =
∫

dt′
∫

d3r′
[
χ0(~r,~r′, t− t′)

{
δvext(~r′, t′)+

δvH(~r′, t′) + δvxc(~r′, t′)
}]

,

(2.43)

where we have split vs into its separate components [Eq. (2.24)]. To calculate the varia-

tions of the Hartree and xc components, we utilise the chain-rule for functional deriva-

tives:

δvH(~r′, t′) =
∫

dt′′dt′′′
∫

d3r′′d3r′′′
δvH(~r′, t′)
δn(~r′′, t′′)

δn(~r′′, t′′)
δvext(~r′′′, t′′′)

δvext(~r′′′, t′′′)

=
∫

dt′′dt′′′
∫

d3r′′d3r′′′ u(~r′,~r′′)χ(~r′′,~r′′′, t′′ − t′′′)δvext(~r′′′, t′′′), (2.44a)

δvxc(~r′, t′) =
∫

dt′′dt′′′
∫

d3r′′d3r′′′
δvxc(~r′, t′)
δn(~r′′, t′′)

δn(~r′′, t′′)
δvext(~r′′′, t′′′)

δvext(~r′′′, t′′′)

=
∫

dt′′dt′′′
∫

d3r′′d3r′′′ fxc(~r′,~r′′, t′ − t′′)χ(~r′′,~r′′′, t′′ − t′′′)δvext(~r′′′, t′′′),

(2.44b)

where u(~r,~r′) = 1/|~r −~r′| is the Coulomb repulsion, and fxc is the xc kernel. Substi-

tuting these into Eq. (2.43) and Fourier-transforming to frequency space gives us the

relationship between χ and χ0:

χ(~r,~r′, ω) = χ0(~r,~r′, ω) +
∫

d3r′′
∫

d3r′′′
[
χ0(~r,~r′′, ω)

{
u(~r′′,~r′′′) + fxc(~r′′,~r′′′, ω)

}
×

χ(~r′′′,~r′, ω)
]
,

(2.45)

which is known as the Dyson equation [34].

If one ignores the classical electron-electron interaction (u = 0) and all exchange-

correlation effects ( fxc = 0), one simply obtains χ = χ0. Inputting the correct u but

setting fxc = 0 is known as the random phase approximation [35] (RPA) and is equiv-

alent to time-dependent Hartree theory. Typically, one goes beyond both of these and
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makes some relatively simple approximation to fxc, e.g. the ALDA.

2.5.3 The exchange-correlation kernel

The xc kernel is defined as

fxc[n0](~r,~r′, ω) =
δvxc[n](~r, ω)

δn(~r′, ω)

∣∣∣∣
n=n0

, (2.46)

and unlike the time-dependent xc potential vxc[n], is solely a functional of the ground-

state density n0. Nevertheless, it is an intricate quantity and its functional form re-

mains unknown. Below we outline some of the known properties of the exact fxc,

and discuss the commonly employed adiabatic approximation to it. It is also conve-

nient to define fxc in terms of χ and χ0 through manipulation of the Dyson equation

[Eq. (2.45)]:

fxc(~r,~r′, ω) = χ−1
0 (~r,~r′, ω)− χ−1(~r,~r′, ω)− u(~r,~r′). (2.47)

2.5.3.1 Exact properties

The density-response function χ is symmetric in~r and~r′ [Eq. (2.40)], as is χ0, leading

to fxc having the same property:

fxc(~r,~r′, ω) = fxc(~r′,~r, ω). (2.48)

Both vxc(~r, t) and the density response δn(~r, t) are real-valued functions, and therefore

fxc(~r,~r′, t− t′) = δvxc(~r, t)/δn(~r′, t′)|n0 is also real. Consequently, it becomes complex

in frequency space and satisfies

fxc(~r,~r′, ω) = f ∗xc(~r,~r′,−ω), (2.49)

in the same manner as χ [Eq. (2.39)] and χ0.

χ is only analytic in the upper half of the complex ω-plane, which results in a

connection between its real [Eq. (2.41a)] and imaginary [Eq. (2.41b)] parts through the

Kramers-Kronig relations. Furthermore, it is also invertible in this upper plane. As

this is also true for χ0, Eq. (2.47) means we can define the following Kramers-Kronig

relations for fxc:

Re
[

fxc(~r,~r′, ω)
]
= Re

[
fxc(~r,~r′, ∞)

]
+ P

∫
dω′

π

Im
[

fxc(~r,~r′, ω′)
]

ω′ −ω
, (2.50a)
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Im
[

fxc(~r,~r′, ω)
]
= −P

∫
dω′

π

Re
[

fxc(~r,~r′, ω′)
]
− Re

[
fxc(~r,~r′, ∞)

]
ω′ −ω

. (2.50b)

The exact conditions of vxc also yield results for fxc. By taking the functional

derivative of Eq. (2.28) and applying some further manipulation, we arrive at

∫
fxc(~r,~r′, ω)∇′n0(~r′) d3r′ = ∇v0

xc(~r), (2.51)

which ensures fxc satisfies the zero-force theorem. Additionally, taking the functional

derivative of Eq. (2.27) leads to the following requirement for a one-electron system:

fxc(~r,~r′, ω) = −u(~r,~r′), (2.52)

which guarantees that the KS system is self-interaction free.

2.5.3.2 The adiabatic approximation

By considering a system under the influence of a static perturbation δvext(~r), with the

corresponding KS system experiencing a change in effective potential δvs(~r), linearis-

ing the KS equations of ground-state DFT [Eq. (2.14)] gives the ω = 0 (static) limit of

fxc:

fxc(~r,~r′, 0) =
δv0

xc[n0](~r)
δn0(~r′)

=
δ2Exc[n0]

δn0(~r)δn0(~r′)
, (2.53)

which is purely real.

While the exact fxc(~r,~r′, ω) is, in general, complex, spatially non-local and ω-

dependent, most practical applications utilise an adiabatic approach, i.e. ignoring the

ω-dependence, and thereby the imaginary component through Eq. (2.49). Of particu-

lar use is the ALDA, which is also spatially local:

f ALDA
xc (~r,~r′) =

d2εh
xc(n̄)

dn̄2

∣∣∣∣
n̄=n0(~r)

δ(~r−~r′), (2.54)

and has been derived by taking the functional derivative of Eq. (2.19).

Adiabatic TDDFT functionals are heavily used, and while there have been some

successes, they prove inadequate in many applications of linear response theory. This

is discussed at the end of this chapter.

Chapter 2 Electronic structure theory



2.5. Linear response 23

2.5.4 Optical absorption spectra

TDDFT can be applied to a wide variety of important spectroscopies. If the perturbing

electromagnetic field is weak enough, as is the case in optical (visible light) absorption

spectra calculations of molecules and solids, we are sufficiently in the linear response

regime. Furthermore, as the wavelength of visible light is typically much larger than

the typical length scale of the system we can work in the dipole approximation, in

which we neglect this spatial variation in the perturbing field. Here, the perturbing

potential takes the form δvext(~r, t) = Ex cos(ωt), which represents a monochromatic

electric wave with amplitude E and angular frequency ω polarised along the x-axis,

where the magnetic field component is weak enough to be neglected. A quantity of

interest in spectroscopy is the photoabsorption cross-section σ(ω) [Fig. 2.1], otherwise

known as the absorption spectrum, which provides a measure of how much of the

incident radiation is absorbed by the system, and can be calculated from the imaginary

part of the density-response function (see Appendix A.2):

σ(ω) = −4πω

c

∫
d3r

∫
d3r′ Im

[
χ(~r,~r′, ω)

]
x x′, (2.55)

where c is the speed of light.

Fig. 2.1. If monochromatic light of angular frequency ω is incident on a system, such
as a molecule, the photoabsorption cross-section σ(ω) gives a measure of how much
of the light is absorbed by the system: σ multiplied by the intensity of the light I will
give the total power absorbed P.
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2.6 Limitations of practical applications

2.6.1 Ground-state calculations

DFT is the most widely used method to perform ground-state electronic structure cal-

culations in condensed matter physics and many areas of materials science. It is com-

putationally efficient and often provides better accuracy than more expensive meth-

ods, such as HF. However, its application is restricted by the limitations of available

approximate xc functionals. These functionals can be arranged into a hierarchy of ap-

proximations, known as Jacob’s ladder [36], with the first rung on the ladder being the

LDA, which remains widely used in DFT calculations.

Despite its simplicity the LDA performs much better than first predicted: atomic

and molecular ground-state energies, molecular equilibrium distances and geome-

tries, Fermi surfaces of bulk metals, lattice constants of solids and vibrational frequen-

cies and phonon energies in a wide range of materials are all close to their experimen-

tal values [37]. One of the reasons for the success of the LDA is error cancellation:

exchange energies are typically overestimated, while correlation energies are typically

underestimated [38, 39]. This stems from the LDA being based on a real, physical

system (the HEG) and the fact that it satisfies a variety of exact sum rules [21].

While LDAs have been hugely successful in many cases [40, 41], their validity

breaks down in a number of important situations, particularly when there is strong

correlation. They are known to miss out some key features present in the exact xc

functional. A notable failing is the inability to correctly cancel the spurious electron

self-interaction [3, 7, 8], introduced by the Hartree potential. A consequence of this

is the exponential decay of the LDA xc potential far from a finite system [3, 6], rather

than following the Coulomb-like −1/r decay present in the exact vxc [5, 6]; see Fig. 2.2

for the example of the Helium atom. This results in errors in the energies of the KS

orbitals [42], such as the HOMO, and hence the ionisation energy. It also prevents

the modelling of negative ions, which are unstable when using the LDA, even when

they are known to be stable through experiment. Binding energies also tend to be

overestimated, with this more pronounced in finite systems. LDAs also fail to capture

the derivative discontinuity [4, 9], the discontinuous nature of the derivative of the xc

energy with respect to electron number N, at integer N. This leads to incorrect band

gaps in solids, as well as the wrong dissociation limit of molecules, resulting in incor-

rect distributions of fractional charges [37]. In general, the LDA is good at qualitatively
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describing physical properties, and has been instrumental in the application of DFT

to electronic structure calculations, but is not sufficient for a variety of applications

requiring “chemical accuracy” [37].

Fig. 2.2. The exact vxc for the Helium atom, along with those obtained using the LDA
(VWN [43]) and GGA (PW91 [44]), which have the wrong asymptotic behaviour due
to their local and semi-local dependence on the density. (Figure 10 in Ref. 45.)

The second rung on Jacob’s ladder of DFT is the generalised gradient approxi-

mation [46] (GGA). A step up from the LDA, the xc energy density in the GGA,

εGGA
xc (n(~r),∇n(~r)), is dependent on the local density and its spatial gradient, and is

therefore a semi-local functional. GGAs offer marked improvements and correct some

of the deficiencies present in LDAs. While generally giving good xc energies, the as-

sociated xc potentials are less reliable, displaying the same incorrect asymptotic be-

haviour as the LDA [Fig. 2.2]. While integrated quantities such as energies are good,

they sometimes overcompensate, e.g. often underestimating binding energies [47].

Additionally, they too are not sufficient for many chemical applications. Climbing the

ladder leads to significant increases in computational cost which limit practical use.

2.6.2 Time-dependent calculations

The vast majority of applications of TDDFT are in the linear-response regime, with

the aim of determining the excited-state properties of a wide variety of many-electron

systems. This includes a number of important spectroscopies, including optical spec-

troscopy, with the general objective being to accurately describe the density response,

excitation energies and absorption spectra of atoms, molecules and solids. While it

offers a unique compromise between accuracy and computational efficiency, and has
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resulted in much success, linear-response TDDFT still poses problems in many impor-

tant circumstances. We discuss some of these below.

2.6.2.1 Single excitations

In a typical TDDFT calculation, computing χ through the Dyson equation [Eq. (2.45)]

is a two-step process. First, a ground-state DFT calculation must be performed to

compute χ0 from the KS orbitals [Eq. (2.38)], which will not be the true χ0 as some

approximation to vxc must be used. Second, an approximation to fxc must be made,

whose job is to shift the KS excitations onto the true excitations.

Generally, in finite systems e.g. atoms and small molecules, the choice of approx-

imate ground-state functional used in the first step is the most important factor [48].

However, the use of some approximate kernel, i.e. going beyond the RPA, improves

significantly upon the bare KS excitations, the choice of which becomes more impor-

tant in systems with strong correlation [48]. For low-lying single excitations, good

results are obtained using local, e.g. the LDA/ALDA, and semi-local functionals.

Higher excitations, such as a Rydberg series, tend to be poorly described due to the

incorrect asymptotic decay of vxc in these functionals, with these excitations under-

estimated or not bound at all [7, 48–52]. This distinction in the performance of the

LDA/ALDA tends to occur near the ionisation threshold (−εLDA
HOMO) [53], which is sig-

nificantly lower than the true ionisation potential due to the incorrect exponential de-

cay of vxc [54]; the examples of N2 and CO molecules are illustrated in Fig. 2.3. This

failure to describe higher excitations can be rectified to some extent through asymptot-

ically corrected functionals [7, 50, 55], or more sophisticated exact-exchange methods

[56, 57] and hybrid functionals [58–63].

2.6.2.2 Multiple excitations

One of the biggest challenges is to describe multiple excitations. In a non-interacting

system, a multiple excitation results from several electrons each absorbing a photon

and being promoted to a higher-energy orbital, e.g. a double excitation describes the

promotion of two electrons. However, only the single-particle excitations of the KS

system are captured by the KS response function χ0, with all multiple excitations

absent. Therefore, the exact fxc has to not only shift the single-particle excitations,
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Fig. 2.3. Left: The first 35 vertical excitation energies of N2 computed using the ALDA
(TDLDA) kernel, with the ground-state vxc used being either that of the LDA or the
LB94 [55] which has the correct asymptotic behaviour. Also plotted are some exper-
imental results and those obtained using a high-level theoretical method [64] (MR-
CCSD). While the TDLDA/LDA performs well for the lowest excitations, it fails above
the ionisation threshold, while the TDLDA/LB94 holds, demonstrating the impor-
tance of the long-range behaviour of the xc potential. (Figure 1 in Ref. 49.) Right:
Similar to the left panel, but now plotting the first 23 vertical excitation energies of
CO, and using an alternative theoretical method [65] (SOPPA). Again, the LDA proves
insufficient above the ionisation threshold. (Figure 2 in Ref. 49.)
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but introduce additional poles to describe the missing multiple excitations14. While

adiabatic kernels tend to describe single-particle excitations well, all are incapable of

describing multiple excitations as strong ω-dependence is known to be necessary [66–

71]; an example is illustrated in Fig. 2.4.

Fig. 2.4. The exact density-response functions when a double excitation mixes with
a single excitation, well separated from the other excitations, in the limit that the
Coulomb interaction is weak: The inverse of the KS response function χ−1

s passes
through zero at the single excitation ωq, which an adiabatic kernel ( f A

Hxc = f A
xc + u)

shifts to ω̄. The inverse of the interacting response function χ−1 passes through zero
at the true excitation energies, ωa and ωb, and displays strong frequency-dependence,
which must also be present in the true xc kernel ( fxc = χ−1

s − χ−1 − u). (Figure 1 in
Ref. 66.)

2.6.2.3 Charge-transfer excitations

In systems that have regions of charge density spatially separated from one another,

and so can be viewed as separate subsystems, charge can transfer from one subsystem

to another. These types of processes are known as charge-transfer excitations and are

not well described by standard TDDFT functionals. Consider an electron moving from

one subsystem (the donor) to another (the acceptor), separated by a distance R. The

lowest charge-transfer excitation energy ωct, is known exactly in the large separation

limit:

lim
R→∞

ωexact
ct = Id − Aa −

1
R

, (2.56)

14Multiple excitations are less well defined in an interacting system. If one was to expand a many-
electron excited state in the complete basis of single-electron orbitals, a doubly-excited state would be
one dominated by a double-excited Slater determinant.
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where Id is the ionisation potential of the donor, Aa is the electron affinity of the ac-

ceptor and the last term is the electrostatic interaction energy of the electron-hole pair

that has been created. In the large separation limit, the overlap between the occu-

pied (HOMO in the donor) and unoccupied (LUMO in the acceptor) orbitals vanishes.

Consequently, local (e.g. LDA) and semi-local (GGA) functionals yield an excitation

energy equal to this orbital energy difference, εL
a − εH

d [8, 72]. In the exact Kohn-Sham

system Id = −εH
d , and Aa = −εL

a − ∆a
xc, where ∆a

xc is the xc correction to the KS gap of

the acceptor. The LDA, GGA, etc. tend to underestimate the KS eigenvalues and com-

pletely neglect ∆a
xc. Along with missing out the−1/R term, this results in a significant

underestimation of ωct.

Improved results are obtained through range-separated hybrids [73–77], which

mix a TDDFT functional with Hartree-Fock, which treats exchange exactly. If one were

to calculate excitation energies through full time-dependent HF theory, one would find

Eq. (2.56) reducing to ωHF
ct = εL,HF

a − εH,HF
d − 1/R, with Id − Aa being well approxi-

mated by the difference in eigenvalues as a consequence of Koopmans’ theorem [78],

and the −1/R term arising from the exchange integral, thereby describing charge-

transfer excitations qualitatively correctly. This class of hybrid functionals, which re-

duce to full HF exchange at large R, offers an improvement over pure TDDFT meth-

ods; an example is illustrated in Fig. 2.5. Exact exchange (EXX) TDDFT, implemented

through the optimised effective potential (OEP), is another approach which is capable

of describing charge-transfer excitations [79, 80].

One case where all of the above fail is charge transfer between open-shell frag-

ments [81, 82]. Here, the HOMO of the donor and LUMO of the acceptor are delo-

calised over the whole system. Although this means there is finite overlap between

them, their energy difference approaches zero in the limit of large separation. Hence,

the charge-transfer energy has to be described entirely by fxc (plus the Coulomb repul-

sion), which must diverge with interatomic separation and have strong ω-dependence

[31].

2.6.2.4 Semiconductors and insulators

Simple TDDFT functionals, e.g. ALDA, generally perform well in metallic systems,

improving upon the RPA. This is less so for non-metallic systems. While electron

energy loss spectra [83] (EELS) are well described in many semiconductors and insu-
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Fig. 2.5. The lowest charge-transfer excitation energy of the C2H4 – C2F4 dimer for
increasing R, calculated using the ALDA (KS), Hartree-Fock (HF) and two range-
separated hybrids (LC, RSH). Both hybrids show the correct −1/R behaviour at large
R, given by the HF exchange term, and are a significant improvement on the ALDA.
(Figure 6 in Ref. 77.)

lators, the optical absorption spectra15 are often poor [84]. The two main issues are un-

derestimation of the optical gap (the energy at which continuous absorption begins),

and missing out the excitonic peaks, which are created by electron-hole pair interac-

tions. The example of bulk silicon is illustrated in Fig. 2.6. Both of these problems

require a long-ranged fxc [85–88] (1/q2 behaviour in Fourier space), which is not the

case for local (the ALDA is q-independent) and semi-local functionals. In order to cor-

rect the optical gap, an imaginary component of fxc is also needed [87], which means

the kernel must be ω-dependent [Eq. (2.49)], and is therefore beyond the capability of

adiabatic functionals.

Attempts to address one or both of the above issues include EXX methods [89],

and adding long-range contributions to fxc, through long-range corrected kernels [84,

86, 88, 90], meta-GGAs [91] and hybrid functionals [88, 92]. Another approach in-

volves calculations of the homogeneous electron gas [93–96]. Kernels derived from the

Bethe-Salpeter equation (BSE) have had much success [97–99], but require an expen-

sive many-body perturbation theory calculation involving the manipulation of large

matrices as their input, severely limiting their applicability, and are outside the KS

15In the long wavelength limit, q→ 0.
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TDDFT framework. Hence, this provides the motivation for the development of im-

proved approximate TDDFT functionals.

Fig. 2.6. The optical absorption spectrum of bulk silicon. Both the RPA and ALDA
(TDLDA) underestimate the optical gap and fail to reproduce the excitonic peak. (Fig-
ure 3 in Ref. 100, reproduced from Figure 1 in Ref. 84.)
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CHAPTER 3

METHOD

In Chapter 2 we introduced many-electron quantum mechanics and its exact descrip-

tion of matter on the atomic scale. The equations governing it cannot be solved in

practice due to the computational scaling with the number of particles and so other

methods, such as time-dependent density-functional theory, must be used. In gen-

eral these must be implemented numerically as analytic solutions do not exist. In this

chapter, we outline how we perform the electronic structure calculations for the re-

search presented in this thesis. Our approach is to study small, prototype systems of

a few electrons, where we can solve the many-electron Schrödinger equation exactly,

to within machine precision. Using optimisation methods, we can then determine the

exact ground-state and time-dependent Kohn-Sham potential. This allows us to iden-

tify features present in the exact exchange-correlation functional that are missing from

the commonly used approximations, in order to inform the development of improved

approximate functionals. We can also implement approximations, both established

and novel, to test their performance against the exact solutions.
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3.1 The iDEA code

3.1.1 General overview

The interacting Dynamic Electrons Approach [17] (iDEA) is a Python-Cython [101,

102] software suite developed in Rex Godby’s research group at the University of York

since 2010. As mentioned on the previous page, the iDEA code models small, one-

dimensional1 prototype systems of spinless electrons for which we can compute exact

solutions. Various approximate functionals (established and novel) have also been

implemented for comparison. We choose to restrict ourselves to one dimension (1D)

as this allows us to calculate the exact, fully-correlated many-electron wavefunction

for a system of interacting electrons, i.e. thereby including exact electron exchange

and correlation.

Spinless electrons obey the Pauli principle but are restricted to a single spin type.

There are certain limitations to their use – they cannot model, for example, singlet

and triplet states, or the formation of electron pairs through chemical bonding. How-

ever, these are not necessary for the research presented in this thesis. Meanwhile, the

use of spinless electrons gives us access to richer correlation as they exhibit features

that would need a larger number of spin-half electrons to become apparent, e.g. two

spinless electrons experience the exchange effect, which is not the case for two spin-

half electrons in an S = 0 state. Furthermore, spinless KS electrons occupy a greater

number of KS orbitals, thereby increasing correlation.

Below we discuss in more detail the components of iDEA which were instrumental

for the research presented in this thesis, with much of the functionality developed by

the author2.

3.1.2 Many-electron quantum mechanics implementation

The most computationally demanding part of iDEA involves generating the solutions

to the TISE [Eq. (2.3)] and TDSE [Eq. (2.5)]3. At present, this can be done for systems

of up to four electrons, under the influence of an arbitrarily defined external potential

1The entirety of the work presented in this thesis was generated using iDEA and so we switch to one
dimension hereafter.

2This development and testing is discussed in more detail in Sec. 3.1.5.
3A particularly expensive many-electron calculation can take approximately a few days to obtain well
converged results.
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vext(x, t), and interacting via the softened Coulomb repulsion:

u(x, x′) =
1

|x− x′|+ a
(3.1)

where a = 1 is an appropriate softening parameter to avoid a singularity at x = x′

[103]4.

3.1.2.1 The exact ground state

The first step is to calculate the ground state of the system through solving the TISE.

This, along with most differential equations cannot in general be solved analytically,

and must be done so numerically. In iDEA we do this through finite-difference meth-

ods on a real-space grid5, i.e. the position variable x becomes discretised, functions

becomes vectors and operators becomes matrices. We consider the many-electron

Hamiltonian [Eq. (2.2)] in 1D:

Ĥ = −1
2 ∑

i

∂2

∂x2
i
+ ∑

i
vext(xi) + ∑

i
∑
j>i

u(xi, xj), (3.2)

which becomes the Hamiltonian matrix:

H =

∣∣∣∣∣∣∣∣∣∣∣∣

H11 H12 · · · H1P

H21 H22 · · · H2P
...

...
. . .

...

HP1 HP2 · · · HPP

∣∣∣∣∣∣∣∣∣∣∣∣
(3.3)

where Hab = 〈ea|Ĥ|eb〉. Here, ea and eb are members of some basis set {eµ} that spans

the Hilbert space. As we work on a real-space grid we employ the position basis: this

can be visualised as a set of top-hat functions centred on each grid point that approach

delta functions as the grid spacing δx → 0. Therefore, P = GN , where G is the number

of grid points sampling the N-electron system, and the Hamiltonian matrix elements

4In Ref. 103 it is determined that a = 1 is the most appropriate. While our numerical results depend to
some extent on the chosen value of a, the general conclusions drawn do not.

5We use a uniform grid spacing in iDEA: xj+1 − xj = δx ∀ j. We converge our results with respect to
δx, and typically find ∼ 100 grid points is sufficient to obtain ground-state densities that are close to
machine precision. See Appendix C for details on the calculations presented in this thesis.
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become

Hab = 〈x1, x2, . . . , xN |
{
− 1

2 ∑
i

∂2

∂x2
i
+ ∑

i
vext(xi) + ∑

i
∑
j>i

u(xi, xj)

}
|x′1, x′2, . . . , x′N〉,

(3.4)

where |x′1, x′2, . . . , x′N〉 is the position eigenstate with the i−th electron located at posi-

tion x′i . We approximate the second-order derivative using a stencil (see Appendix B.2).

Solving the TISE with H will generate exchange-antisymmetric (fermionic) and

exchange-symmetric (bosonic) eigenvectors. In order to restrict ourselves to the fermi-

onic eigenvectors, we construct a reduction matrix R, which restricts us to a sub-

space where x1 > x2 > ... > xN ; a fermionic wavefunction must be zero unless all the

x1, x2, ..., xN are different, and other permutations follow from exchange-antisymmetry.

The Hamiltonian matrix in this reduced space is given by RHRT. If we determine

the normalised eigenvectors {ψm} of this reduced Hamiltonian, then the set of nor-

malised, exchange-antisymmetric eigenvectors {Ψm} of the full Hamiltonian can be

obtained via Ψm = RTψm (or vice versa, ψm = RΨm).

After constructing the reduced Hamiltonian matrix we pass it to a linear algebra

routine6 from the SciPy library [105], which computes the eigenvectors and eigenval-

ues. The eigenvectors of the full Hamiltonian then follow from the procedure outlined

above. The exact ground-state electron density is then determined by

n0(x) = N
∫

dx2

∫
dx3 · · ·

∫
dxN |Ψ0({xi})|2, (3.5)

where we have relabelled x1 = x.

The method described above is used in Chapter 5 and Chapter 6. The results in

Chapter 4 were generated using an earlier version of iDEA. Here, after constructing

the Hamiltonian matrix, a trial wavefunction Ψ is chosen as an initial guess to Ψ0, the

true ground state7. This trial wavefunction can be expanded in the basis of the many-

electron eigenstates of the system as they form a complete set, Ψ = ∑m cmΨm. Upon

propagation in imaginary time τ8, it becomes (see Appendix B.1)

Ψ({xi}, τ) = ∑
m

cme−Emτ Ψm({xi}), (3.6)

6The ‘eigsh’ routine from the linear algebra section of the SciPy library which uses the Implicitly
Restarted Lanczos Method [104].

7Typically a Hartree-Fock calculation is performed as this provides a reasonable starting point.
8We use the Crank-Nicolson method (see Appendix B.1.1: CN-method).
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which allows us to calculate the ground state of the system:

Em+1 > Em ∀ m =⇒ lim
τ→∞

Ψ({xi}, τ) = Ψ0({xi}), (3.7)

provided that we ensure Ψ is correctly normalised.

3.1.2.2 The exact excited states

The linear algebra routine (eigsh) from the SciPy library allows more than one eigen-

vector (and corresponding eigenvalue) to be calculated, and so we use this to deter-

mine the excited states of the system.

In the earlier version of iDEA we used the Gram-Schmidt algorithm to compute

the excited states. Eq. (3.7) shows that as we propagate a trial wavefunction through

imaginary time we converge to the ground state of the system. After we have done

this, as long as we “project out” the ground state at each imaginary time step9, a trial

wavefunction will converge to the first excited state of the system. The second excited

state can then be calculated using the same method, but we now project out both

the ground state and the first excited state, and so on. The Gram-Schmidt algorithm

orthonormalises a set of linearly-independent vectors in an inner product space. In

iDEA this corresponds to the many-electron eigenstates in Hilbert space, spanned by

the position basis. To calculate the m−th excited state, i.e. ensuring the RHS of Eq. (3.7)

= Ψm, we project out the previously determined states from the trial wavefunction at

each time step:

Ψ({xi}, τ) −→ Ψ({xi}, τ)−
m−1

∑
k=0
〈Ψ|Ψk〉Ψk. (3.8)

The excited states are necessary for calculations performed in Chapter 6. Some of the

initial calculations, including those presented in Ref. 106, relied on the earlier method.

We have verified these results by comparing with the new, improved method.

3.1.2.3 Exact time propagation

In the spirit of linear response theory, we take our system to initially be in the ground

state, with a perturbation δvext applied at t = 0. We use static perturbations, i.e. rep-

resenting switch-on processes, such that the Hamiltonian operator does not explicitly

depend on time. In this case, the time-evolution operator [Eq. (A.1.14)] reduces to

9Just as we use uniform grid spacings, we also use uniform time steps: tj+1 − tj = δt, τj+1 − τj = δτ ∀ j.
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Û(t) = −itĤ, and the solution to the TDSE is trivial:

Ψ({xi}, t) = e−itĤΨ({xi}, t = 0). (3.9)

From this we determine

Ψ({xi}, t) = e−iδtHΨ({xi}, t− δt), (3.10)

which tells us how to compute the wavefunction at each time step from the wave-

function at the previous time step (t− δt)10. We have replaced Ĥ with its matrix rep-

resentation H, as numerically this constitutes a matrix equation. We solve this using

a linear algebra routine from the SciPy library which computes the matrix exponen-

tial in Eq. (3.10) using a Padé approximant. At each time step, after determining the

wavefunction, we calculate the exact time-dependent electron density by

n(x, t) = N
∫

dx2

∫
dx3 · · ·

∫
dxN |Ψ({xi}, t)|2, (3.11)

and relabel x1 = x.

The old version of iDEA used the Crank-Nicolson method for this real time prop-

agation, as it did for the imaginary time propagation (see Appendix B.1.1). No results

presented in this thesis rely on this method, and so we neglect to discuss it in detail.

3.1.3 Kohn-Sham DFT/TDDFT implementation

One of the key functions of iDEA is the determination of the exact ground-state and

time-dependent KS potential. This is done by reverse-engineering the exact electron

density through optimisation procedures. This is discussed below.

3.1.3.1 Exact ground-state reverse-engineering

Until a perturbation is applied at t = 0, both the interacting and KS systems are in

their respective ground state. To determine the exact KS potential we use a two-step

process. The first step involves initialising with a trial potential, e.g. vs = vext, and

10As we do with grid spacing, we converge out results with respect to δt, and typically find this must be
smaller than δx. We find the choice of time step to be particularly important for the time-dependent
reverse-engineering algorithm (see Sec. 3.1.3.2), which also requires a well converged ground state to
avoid propagation of error. See Appendix C for details on the calculations presented in this thesis.
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iteratively correct using the procedure

vs(x) −→ vs(x) + µ
[
n′(x)p − n(x)p]. (3.12)

Here, µ and p are both constants which can be adjusted to optimise the rate of conver-

gence of the trial density n′(x), which is calculated through solving the ground-state

KS equations [Eq. (2.14)] with the trial potential11, to the exact ground-state density

n(x). This procedure raises the trial potential in regions where the trial density is too

high (n′ > n), lowers it in regions where the trial density is too low (n′ < n), and

clearly has the correct fixed point at n′ = n. As we are working on a discretised grid,

we calculate the mean absolute error (MAE) by summing over all grid points xj:

MAE =
1
G

G

∑
j=1
|n′(xj)− n(xj)|. (3.13)

Typically, the procedure outlined above generates MAE ∼ 10−12 and was used to

generate the results in Chapter 4. The new version of iDEA involves a second step

to reduce the MAE further. This invokes a root finder function from the SciPy library

which uses a Powell hybrid method [107] to find the correct vs(x) such that f (x) =

0 ∀ x. Here, f (x) is the residual function:

f (x) =
|n′(x)− n(x)|√

n(x)
, (3.14)

where the square root emphasises the value of the residual in the low-density regions.

Through this we reduce the error to machine precision, MAE ∼ 10−16.

3.1.3.2 Exact time-dependent reverse-engineering

A static perturbing field is applied to the interacting system at t = 0, such that vext(x, t)

= v0
ext(x) + δvext(x). We initialise the trial KS potential to be vs(x, t = 0) = v0

s (x) +

δvext(x), and use the root finder to find the exact vs(x, t = 0): the time-dependent

KS equations [Eq. (2.25)] are solved across one step, i.e. the occupied ground-state

KS orbitals are propagated from t = 0 → t = δt (using the single-particle version of

Eq. (3.10)), which gives access to n′(x, t = δt). The trial potential is corrected to find

the exact vs(x, t = 0), such that n′(x, t = δt) = n(x, t = δt), i.e. the residual function

11We construct the single-particle Hamiltonian matrix and diagonalise to find the eigenvectors and eigen-
values.
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[Eq. (3.14)] is minimised. To determine vs(x, t = δt) (the next time step), we take the

trial potential to be the exact vs(x, t=0), and use the root finder to correct it such that

the time-dependent KS equations are satisfied across t= δt→ t=2 δt. We then repeat

for all time steps, giving us access to the exact vs(x, t) [Fig. 3.1]. In general, this means

finding the root of the residual function at each time step:

f (x, t) =
|n′(x, t)− n(x, t)|√

n(x, t)
. (3.15)

As the time-dependent density matches that of the interacting system, the current

density j also matches via the continuity equation:

∂

∂t
n(x, t) +

∂

∂x
j(x, t) = 0. (3.16)

Start t = 0
Input initial

guess:

vs = v0
s + δvext

Output

quantities
Does t = tmax?

Compute exact

vs(t) using
root finder

Finish t = t + δt
Input initial

guess: vs(t) =
vs(t − δt)

yes

no

Fig. 3.1. A flowchart describing the time-dependent reverse-engineering algorithm in
iDEA, used to calculate the exact vs(x, t).

3.1.3.3 Self-consistent LDA calculations

The ground-state KS equations [Eq. (2.14)] constitute a non-linear eigenproblem: the

density one obtains from solving them [Eq. (2.15)] is required as their input due to the

functional dependence of vs[n]. In order to solve them, some sort of self-consistent

field (SCF) procedure must be used, of which there are many [108]. Finding a solution

is what it means to attain self-consistency.
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We have implemented various SCF methods in iDEA in order to test the perfor-

mance of approximate functionals, e.g. the LDA, against the exact solution, which we

have determined through our reverse-engineering algorithm. These include conju-

gate gradient minimisation [109], Pulay mixing [110], mixing the Hamiltonian matrix

directly and linear mixing of the KS potential. The linear mixing scheme is the sim-

plest, most widely used and is illustrated in Fig. 3.2. Once we have used the LDA

to determine the approximate ground-state solution, we simply apply it adiabatically

[Eq. (2.31)] to solve the time-dependent KS equations [Eq. (2.25)], i.e. through in-

putting the ground-state xc functional [Eq. (2.19)]. Details of our calculations, includ-

ing the LDA xc functionals used, are given in Chapter 4.

Start Iteration = 1

Input initial

guess:

vs = vext

Iteration += 1
Solve the KS

equations

Calculate n

Has n
converged?

Is iteration

> 1?

Calculate

vH and vxc

Output

quantities
v′s = vext +

vH + vxc

Finish
vs −→

αvs + (1− α)v′s

no

yes

no

yes

Fig. 3.2. A flowchart describing the linear mixing scheme: one of the many schemes
used to perform self-consistent ground-state LDA calculations in iDEA.
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3.1.4 Linear response implementation

After solving the many-electron Schrödinger equation exactly and reverse-engineering

the electron density to determine the exact KS system, we are able to calculate the ex-

act interacting and non-interacting density-response functions, χ and χ0, and hence

the exact xc kernel fxc. As well as identifying its properties, this allows us to analyse

the performance of common approximations, e.g. the RPA and ALDA. We discuss this

below.

3.1.4.1 The density-response functions

We have obtained the many-electron eigenstates {Ψm} through solving the many-

electron Schrödinger equation, which allows us to calculate the exact χ [Eq. (2.35)].

We make use of the following identity:

lim
b→0+

1
a + ib

= P
(

1
a

)
− iπδ(a), (3.17)

from which we obtain the imaginary part of χ:

Im
[
χ(x, x′, ω)

]
= π ∑

n

[
− 〈Ψ0|n̂(x)|Ψn〉〈Ψn|n̂(x′)|Ψ0〉 δ(ω− (En − E0))

+ 〈Ψ0|n̂(x′)|Ψn〉〈Ψn|n̂(x)|Ψ0〉 δ(ω + (En − E0))
]
. (3.18)

The amplitudes (〈Ψ0|n̂(x)|Ψn〉 etc.) are determined from the many-electron eigen-

states (see Appendix B.3.1). It is customary to replace the positive infinitesimal η in

Eq. (2.35) with a small positive number12, such that the δ functions in the above ex-

pression become Lorentzian distributions:

f (ω,±(En − E0), γ) =
1

πγ

γ2

(ω∓ (En − E0))2 + γ2 , (3.19)

where ω = ±(En− E0) specifies the peak of the distribution and γ is a scale parameter.

The Kramers-Kronig relation [Eq. (2.41a)] allows us to calculate the real part of χ from

12This broadens the peaks in the optical absorption spectrum [Eq. (2.55)] for ease of viewing. The specific
values we use in our calculations are given in Appendix C.3.
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the imaginary part:

Re
[
χ(x, x′, ω)

]
= P

∫
dω′

π

1
ω′ −ω

Im
[
χ(x, x′, ω′)

]

= ∑
n

[ 〈Ψ0|n̂(x)|Ψn〉〈Ψn|n̂(x′)|Ψ0〉
(ω− (En − E0))2 + γ2 (ω− (En − E0))

− 〈Ψ0|n̂(x′)|Ψn〉〈Ψn|n̂(x)|Ψ0〉
(ω + (En − E0))2 + γ2 (ω + (En − E0))

]
. (3.20)

We calculate the real and imaginary components of the exact χ0 [Eq. (2.38)] in a similar

manner:

Im
[
χ0(x, x′, ω)

]
= π ∑

i,j
( f j − fi) φ∗i (x)φj(x)φ∗j (x′)φi(x′) f (ω, ε j − ε i, γ), (3.21a)

Re
[
χ0(x, x′, ω)

]
= P

∫
dω′

π

1
ω′ −ω

Im
[
χ0(x, x′, ω′)

]
= ∑

i,j
( fi − f j)

φ∗i (x)φj(x)φ∗j (x′)φi(x′)

(ω− (ε j − ε i))2 + γ2 (ω− (ε j − ε i)). (3.21b)

3.1.4.2 The exact exchange-correlation kernel

The Dyson equation [Eq. (2.45)] in 1D is written as

χ(x, x′, ω) = χ0(x, x′, ω) +
∫

dx′′
∫

dx′′′
[
χ0(x, x′′, ω)

{
u(x′′, x′′′) + fxc(x′′, x′′′, ω)

}
×

χ(x′′′, x′, ω)
]
.

(3.22)

This can be rearranged to give an expression for the xc kernel:

fxc(x, x′, ω) = χ−1
0 (x, x′, ω)− χ−1(x, x′, ω)− u(x, x′), (3.23)

which we can calculate as we have access to the exact χ and χ0. However, the in-

verses of χ and χ0 are not well defined. For instance, a spatially uniform perturbation,

δvext(x, ω) = c(ω), induces no change in density for all ω, so both χ and χ0 have a

zero eigenvalue and therefore a zero determinant. Numerical methods are employed

to overcome this, and are discussed in Chapter 6.
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3.1.4.3 Applying the RPA and ALDA

As discussed in Chapter 2, computing χ through the Dyson equation is a two-step

process in a practical TDDFT calculation. First, a ground-state DFT calculation must

be performed to compute χ0, which will not be the true χ0 as some approximation

to vxc must be used. Second, an approximation to fxc must be made. Both of these

introduce error into the final χ that is computed through the Dyson equation.

In iDEA, unlike in practical calculations, we are able to generate exact solutions.

Therefore, when analysing the performance of the RPA ( fxc = 0) and ALDA kernels

[Eq. (2.54)], we can choose to start from the exact χ0, or some approximate χ0, e.g.

constructed from the ground-state LDA orbitals. This allows us to clearly distinguish

between both sources of error. The RPA and ALDA were used to generate results

presented in Chapter 6 and more detail is given there.

3.1.4.4 Computing the optical absorption spectrum

The optical absorption spectrum [Eq. (2.55)] in 1D is given by

σ(ω) = −4πω

c

∫
dx
∫

dx′ Im
[
χ(x, x′, ω)

]
x x′. (3.24)

We compute this for the interacting system by inputting Eq. (3.18) into the above ex-

pression. If we input Eq. (3.21a) instead, we obtain σ(ω) for the exact KS system13.

Finally, if we perform an RPA or ALDA calculation, we simply input the imaginary

component of the approximate χ that was computed.

3.1.5 Development and testing of iDEA

iDEA has been developed over several years with improvements made to existing

code structure and the addition of new functionality. Below we discuss the compo-

nents of iDEA that were created by the author and appropriate testing of the code.

3.1.5.1 Many-electron module

The many-electron module existed in a more rudimentary form but was substantially

rewritten by the author, including through the development of Cython extensions.

This achieved a speedup factor of∼ 20 for a typical ground-state calculation and∼ 10

13We have computed the exact ground-state KS potential, and hence orbitals, to give us the exact χ0. The
σ(ω) that follows is that of the exact KS system.
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for a typical time propagation. The Gram-Schmidt algorithm was also implemented,

allowing the initial computation of excited states, which were used for the calculations

presented in Ref. 106. This was replaced with the improved method of computing the

excited states through the linear algebra routine from the SciPy library.

Unit tests had been developed previously for the ground-state calculation and time

propagation, and we checked that the improved many-electron module continued to

pass them all. This included generating numerical results for a variety of systems and

comparing to previously obtained results, as well as checking the results obtained

for systems with known solutions, e.g. electrons in a harmonic potential with the

Coulomb repulsion set equal to zero. We also used this system of non-interacting elec-

trons to test the implementation of the Gram-Schmidt algorithm, i.e. the calculation

of the excited states. After this test was passed, we increased the Coulomb repulsion

from zero to a fraction of its true strength, i.e. u(x, x′) = α(|x − x′| + 1)−1, where

α � 1. We then checked that the corrections to the eigenvalues of the excited states

agreed with those obtained from first-order perturbation theory. When the Gram-

Schmidt algorithm was replaced with the SciPy routine, we verified that these tests

continued to be passed.

3.1.5.2 Reverse-engineering module

The ground-state reverse-engineering module was also rewritten to achieve speedups

in calculations, and to include the root finder, thereby reaching machine precision

when determining the KS potential. We ran the code for several systems that we had

previously generated results for (including in published papers) and verified that the

results obtained were the same.

The time-dependent reverse-engineering initially used a different type of algo-

rithm that often failed14. Therefore, this was modified to more closely resemble the

ground-state algorithm, including the use of the root finder (as discussed in Sec. 3.1.3.2).

Again, we checked the results against those obtained from previous versions of the

code.

3.1.5.3 LDA module

The LDA module was originally developed by the author and used the linear mix-

ing scheme [Fig. 3.2]. Improvements were made, such as the addition of other SCF

14This has not been discussed as no results presented in this thesis were generated from it.
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methods, by other researchers in the group. The code uses novel LDA xc functionals

(see Chapter 4) and therefore known results do not exist. In order to test this module,

we first verified that the results obtained using the linear mixing scheme reduces to

Hartree theory if we set vxc = 0. Secondly, we checked that each SCF method con-

verges to the same result as one another for a variety of systems (including where

vxc 6= 0).

3.1.5.4 Linear response module

The linear response module was developed by the author15. The first set of tests con-

sisted of setting the Coulomb interaction to zero and checking that χ (constructed from

the many-electron eigenstates) and χ0 (constructed from the KS orbitals) were equal to

one another, for a variety of systems. As a further test, we computed the ground-state

density n0, and many-electron eigenstates, and hence χ, of two interacting electrons16

in a harmonic potential. We then computed the ground-state density n′0, of two inter-

acting electrons in the same harmonic potential but with a weak linear field applied,

i.e. vext → vext + εx. We checked that χ obeyed (the Fourier transform of) Eq. (2.33) at

ω = 0: δn = n′0 − n0 =
∫

χεx dx′. We repeated the test for the KS system by verifying

that χ0 obeyed (the Fourier transform of) Eq. (2.36) at ω = 0: δn =
∫

χ0 δvs dx′.

By inverting χ and χ0 we obtain fxc. In every calculation we then input fxc and χ0

into the Dyson equation. We check that the resultant χ is equal to the exact χ. We also

verify that fxc satisfies the zero-force sum rule [Eq. (2.51)]. This is discussed in more

detail in Chapter 6.

15The inversion of the density-response functions to obtain fxc was improved by Nick Woods, a collabo-
rator, and is discussed in Chapter 6.

16We repeated this test for three interacting electrons as well.
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CHAPTER 4

LOCAL DENSITY FUNCTIONALS BASED ON

ELECTRON GAS AND FINITE SYSTEMS1

As discussed in Chapter 2, a widely used approximation to the exchange-correlation

(xc) functional in ground-state density functional theory (DFT) is the local density ap-

proximation (LDA), typically derived from the properties of the homogeneous elec-

tron gas (HEG). In this chapter, we introduce a set of alternative LDAs constructed

from one-dimensional systems of one, two, and three electrons that resemble the HEG

within a finite region. We also construct a HEG-based LDA appropriate for spinless

electrons in one dimension. By comparing the finite and HEG LDAs with one another

we demonstrate that local approximations constructed from finite systems are a viable

alternative, and explore the nature of any differences between them. As expected, all

LDAs are inadequate in low-density systems where correlation is strong. However, we

find that the finite LDAs give better densities and energies in high-density exchange-

dominated systems, arising partly from a better description of the self-interaction cor-

rection.

1This chapter represents collaborative work that has been published: M. T. Entwistle, M. Casula and R.
W. Godby, ‘Comparison of local density functionals based on electron gas and finite systems’, Phys. Rev.
B 97, 235143 (2018). The sections of this chapter have been adapted from the publication. Additionally,
some of the introductory remarks and background work relate to a previous paper: M. T. Entwistle, M.
J. P. Hodgson, J. Wetherell, B. Longstaff, J. D. Ramsden and R. W. Godby, ‘Local density approximations
from finite systems’, Phys. Rev. B 94, 205134 (2016). The research presented in this previous paper was
conducted before I became a PhD student.
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4.1 Introduction

The LDA [2] (see Sec. 2.2.3.1) is a widely used approximation in DFT and assumes that

the true xc functional is solely dependent on the electron density at each point in the

system. LDAs are traditionally derived from knowledge of the xc energy of the HEG

[20], a model system where the exchange energy2 is known analytically and the cor-

relation energy3 is usually calculated using quantum Monte Carlo simulations. LDAs

have been hugely successful in many cases [40, 41], however, their validity breaks

down in a number of important situations [83, 111–118], particularly when there is

strong correlation. They are known to miss out some critical features that are present

in the exact xc potential (see Sec. 2.6.1), such as the cancellation of the spurious elec-

tron self-interaction [3, 7, 8], or the Coulomb-type −1/r decay of the xc potential far

from a finite system [5, 6], instead following an incorrect exponential decay [3, 6]. This

results in errors in the energies of the KS orbitals [42], such as the HOMO, and hence

the ionisation energy. Binding energies also tend to be overestimated. Furthermore,

LDAs fail to capture the derivative discontinuity [4, 9, 119, 120], the discontinuous

nature of the derivative of the xc energy with respect to electron number N, at integer

N. This leads to incorrect band gaps in solids, as well as the wrong dissociation limit

of molecules, resulting in incorrect distributions of fractional charges [37].

In a previous paper4 [121], we introduced a set of LDAs which, in contrast to the

traditional HEG LDA, were constructed from systems of one, two, and three electrons

which resembled the HEG within a finite region. Illustrating our approach in one di-

mension (1D), we found that the three LDAs were remarkably similar to one another.

In this chapter, we construct a 1D HEG LDA through suitable diffusion Monte Carlo

[122] (DMC) techniques, along with a revised set of LDAs constructed from finite sys-

tems. We compare the finite and HEG LDAs with one another to demonstrate that

local approximations constructed from finite systems are a viable alternative, and ex-

plore the nature of any differences between them. Broadly, we wish to understand the

strengths and weaknesses of alternative approaches to constructing local xc function-

als, in order to tailor approximations for use in ab initio calculations. This may also

prove useful when extending functionals to the time-dependent regime.

2We take the exchange energy to be the exchange energy of a self-consistent Hartree-Fock calculation.
3We take the correlation energy to be the difference between the exact energy of the many-electron system
and the energy of a self-consistent Hartree-Fock calculation.

4The research presented in this previous paper was conducted before I became a PhD student.
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In order to test the LDAs, we employ the iDEA code [17] (described in Chapter 3)

to solve the many-electron Schrödinger equation exactly for model finite systems in

order to determine the exact, fully-correlated, many-electron wave function. Using

this to obtain the exact electron density, we then utilise the reverse-engineering algo-

rithm to find the exact KS system. In our calculations we use spinless electrons which

interact via the appropriately softened Coulomb repulsion [103] (|x− x′|+ 1)−1.

4.2 Set of LDAs

4.2.1 LDAs from finite systems

In Ref. 121 we chose a set of finite locally homogeneous systems in order to mimic

the HEG, which we referred to as “slabs” [Fig. 4.1]. We generated sets of one-electron

(1e), two-electron (2e), and three-electron (3e) slab systems over a typical density range

(up to 0.6 a.u.) and in each case calculated the exact xc energy Exc. From this we pa-

rameterised the xc energy density εxc = Exc/N in terms of the electron density of the

plateau region of the slabs, repeating for the 1e, 2e, and 3e set. To generate these slab

systems we developed an optimisation module5 (in iDEA) which finds the correct ex-

ternal potential vext for a target system with a desired electron density nT(x)6. After

making an initial guess for the system, the exact many-body wave function is calcu-

lated and vext is refined iteratively, following the method used for the ground-state KS

potential (see Sec. 3.1.3.1). To approximate the xc energy of an inhomogeneous system,

the LDA focuses on the local electron density at each point in the system:

ELDA
xc [n] =

∫
n(x)εxc(n) dx, (4.1)

where in a conventional LDA εxc(n) is the xc energy density of a HEG of density n.

This approximation becomes exact in the limit of the HEG, and so it is a reasonable

requirement for the finite LDAs to become exact in the limit of the slab systems.

Due to the initial parameterisation of εxc(n) focusing on the plateau regions of

the slabs (i.e. ignoring the inhomogeneous regions at the edges), we used a refine-

ment process [121] in order to fulfil this requirement. This involved applying each

LDA to the set of slab systems from which it was constructed. Small errors in the

5The optimisation module was not needed for the 1e slab systems as Exc is known exactly in 1e systems:
it is the negative of the Hartree energy [Eq. (2.9b)].

6See Appendix C.1.1 for the parametric form of the slab systems.
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Fig. 4.1. The exact many-body electron density (solid lines) for a selection of the two-
electron slab systems. The density is locally homogeneous across a plateau region
and decays exponentially at the edges. Inset: the external potential for a typical two-
electron slab system (middle density in main figure).

xc energy ∆Exc were found due to neglecting the regions of inhomogeneous density.

These calculated errors were then used to determine refined forms for εxc in the LDAs ,

εxc(n)→ εxc(n)−∆Exc(n)/N. These refined forms for εxc reduced ∆Exc from 2%− 3%

to below 0.5% when applied to the slab systems. This refinement process was thus de-

termined to be sufficient.

The refined form for the xc energy density in the three finite LDAs has now been

increased from the four-parameter fit in Ref. 106 to a seven-parameter fit7:

εxc(n) = (A + Bn + Cn2 + Dn3 + En4 + Fn5)nG, (4.2)

where the optimal parameters for each LDA are given in Table 4.1. The functional

form of the original four-parameter fit was chosen after exploring a variety of different

fits and finding it to most closely match the data. With the increased precision of our

calculations, in the refined fit, we have determined seven parameters to be the optimal

number after performing some statistical tests, such as the Fisher F-test etc.

7We have significantly increased the precision of the calculations for the slab systems in order to do this.
The numerical difference between the new seven-parameter fits and original four-parameter fits is less
than 1% in εxc across the density range used in constructing the LDAs (except in the very low-density
region n < 0.06 a.u.). This has allowed us to resolve the differences between the four LDAs in fine
detail.
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Table 4.1: Optimal fit parameters for εxc(n) in the finite LDAs. The last two rows
contain the mean absolute error (MAE) and root-mean-square error (RMSE) of the fits,
which are approximately one order of magnitude smaller than those of the original
four-parameter fits. εxc(n) is graphed in Sec. 4.2.4 below.

Parameter 1e value 2e value 3e value

A -1.2202 -1.0831 -1.1002
B 3.6838 2.7609 2.9750
C -11.254 -7.1577 -8.1618
D 23.169 12.713 15.169
E -26.299 -12.755 -15.776
F 12.282 5.3817 6.8494
G 7.4876 ×10−1 7.0955 ×10−1 7.0907 ×10−1

MAE 1.3 ×10−4 1.2 ×10−4 9.9 ×10−5

RMSE 1.9 ×10−3 5.1 ×10−4 3.8 ×10−4

The xc potential vxc is defined as the functional derivative of the xc energy which

in the LDA reduces to a simple form8:

vLDA
xc (n) = εxc(n(x)) + n(x)

dεxc

dn

∣∣∣∣
n(x)

. (4.3)

4.2.2 HEG exchange functional

In Ref. 121 we solved the Hartree-Fock equations to find the exact exchange energy

density εx for a fully spin-polarised (ζ = 1 where ζ ≡ (N↑ − N↓)/N)9 1D HEG of

density n consisting of an infinite number of electrons interacting via the softened

Coulomb repulsion u(x− x′) = (|x− x′|+ 1)−1:

εx(n) = −
1

8π2n

∫ πn

−πn
dk
∫ πn

−πn
dk′ u(k′ − k), (4.4)

where the Fourier transform of u(x − x′) is integrated over the plane defined by the

Fermi wave vector kF = πn.

Solving Eq. (4.4) for the range of densities we used in the finite LDAs, we param-

eterised εx(n). Once again, we have increased our fit from four parameters to seven

parameters, as in Eq. (4.2) above10. The optimal parameters are given in Table 4.2. The

εx(n) curve is shown in the inset of Fig. 4.2

8See Appendix C.1.1 for the parametric form of the xc potential in the finite LDAs.
9Here, N↑ and N↓ are the densities of the spin-up and spin-down electrons, respectively. As we restrict
ourselves to spinless electrons (i.e. a single spin type), this corresponds to full spin polarisation.

10See Appendix C.1.2 for the parametric form of the exchange potential in the HEG LDA.
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Table 4.2: Optimal fit parameters for εx(n) in the HEG LDA. The last two rows contain
the mean absolute error (MAE) and root-mean-square error (RMSE) of the fit.

Parameter Value Parameter Value

A -1.1511 E -20.896
B 3.3440 F 9.4861
C -9.7079 G 7.3586 ×10−1

D 19.088

MAE 6.5 ×10−5

RMSE 7.2 ×10−4

4.2.3 HEG correlation functional11

We use the lattice regularized diffusion Monte Carlo (LRDMC) algorithm [122] to com-

pute the ground-state energy of the fully spin-polarised HEG over a wide range of

densities, much higher than the 0.6 a.u. limit used in the finite LDAs. This is in order

to ensure the resultant parameterisation of the correlation energy density εc reduces

to the known high-density and low-density limits. We determine εc by subtracting the

kinetic energy and εx contributions from the total energy.

To parameterise the correlation energy density we use a fit of the form12

εc(rs) = −
ARPArs + Er2

s
1 + Brs + Cr2

s + Dr3
s

ln
(
1 + αrs + βr2

s
)

α
, (4.5)

where rs is the Wigner-Seitz radius and is related to the density (in 1D) by 2rs = 1/n.

The optimal parameters (with estimated errors) are given in Table 4.3. The fit applied

to the data is shown in Fig. 4.2.

The high-density limit (infinitely-weak correlation) of the parameterisation is

εc(rs → 0) = −ARPAr2
s , (4.6)

and its low-density limit (infinitely-strong correlation) is

εc(rs → ∞) = − 2E
αD

ln(rs)

rs
. (4.7)

Therefore, the parametric form in Eq. (4.5) is appropriate as it correctly reproduces the

expected behaviour of the correlation energy density in the high-density limit [123,

11The calculations in this section were performed by M. Casula.
12See Appendix C.1.2 for the parametric form of the correlation potential in the HEG LDA.
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Table 4.3: Optimal fit parameters with estimated errors in parentheses for εc(rs) in the
HEG LDA. The last two rows contain the mean absolute error (MAE) and root-mean-
square error (RMSE) of the fit. Note: ARPA has been determined from the high-density
limit for εc (in which the random phase approximation (RPA) is exact [123, 124]), which
is exactly fulfilled by our fit, and hence has no associated error.

Parameter Value Parameter Value

ARPA 9.415195 ×10−4 E 2.61(3) ×10−6

B 2.601(5) ×10−1 α 1.254(2)
C 6.404(7) ×10−2 β 28.8(1)
D 2.48(3) ×10−4

MAE 2.4 ×10−5

RMSE 1.3 ×10−4
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Fig. 4.2. The εc (with associated error bars) for a set of HEGs over the density range
used in the finite LDAs. The fit applied (solid blue) becomes exact in the known high-
density and low-density limits. Inset: The εx curve in the HEG LDA.
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124] (εc ∝ r2
s ) and low-density limit (εc ∝ ln(rs)/rs).

4.2.4 Comparison of 1e, 2e, 3e and HEG LDAs

Summing together the HEG exchange and correlation parametric fits, we can now

compare the HEG LDA that we have developed against the three finite LDAs. The

striking similarity between the four εxc curves can be seen in Fig. 4.3(a). While very

similar in the low-density range, there are some differences between them. These are

highlighted in Fig. 4.3(b) which, using the 1e LDA as a reference, plots its difference

with the remaining LDAs. There is a competing balance between exchange and cor-

relation. At low densities, these differences can be mainly attributed to εc, which is

entirely absent in the 1e LDA, and increases in magnitude as we progress to 2e to 3e

to HEG [Fig. 4.4]. As we move to higher densities in which the magnitude of εc de-

creases, and the magnitude of εx increases, the order of the four εxc curves reverses.

They increasingly separate as we move to higher densities with the 1e LDA, which

consists entirely of self-interaction correction, giving the largest magnitude for εxc. By

plotting the difference between the 1e LDA (where correlation is absent) and the ex-

change part of the HEG LDA (i.e. removing the correlation term), it can be seen that

the 1e LDA yields a larger exchange energy density than the HEG LDA at all densities

[Fig. 4.5].

The refinement process used in the construction of the finite LDAs focused on giv-

ing the correct Exc in the limit of the slab systems, but did not ensure that the correct

vxc, and by extension electron density, were reproduced (a property of HEG LDAs).

Hence, it is of interest to examine the self-consistent application of our LDAs to the

slabs. By doing so we find that the finite LDAs are completely inadequate at repro-

ducing the densities of the slab systems. In order to understand this we analyse the

exact vxc for a variety of the slab systems (i.e. we reverse-engineer the exact n). We

compare the exact vxc against the exact n and find that there is a high non-local depen-

dence on n (see Fig. 4.6 for an example). This implies that no local density functional

can accurately reproduce vxc and hence n for the slab systems. In light of this, the

success of the finite LDAs reported below is all the more surprising.
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Fig. 4.3. (a) The εxc curves in the 1e (dashed red), 2e (solid green), 3e (dotted blue)
and HEG (dotted-dashed black) LDAs. Inset: Close-up of the four curves at higher
densities. The similarity between them is striking, with a clear progression from 1e to
2e to 3e to HEG. (b) The 1e LDA is used as a reference here. Plotted is its difference
(δεxc = εxc − ε1e

xc) with the 2e (solid green), 3e (dotted blue) and HEG (dotted-dashed
black) LDAs.
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Fig. 4.4. We calculate the exact εc for the 2e (solid green line) and 3e (dotted blue line)
slab systems through Hartree-Fock calculations. We plot these against the εc curve in
the HEG LDA (dotted-dashed black line). The εc in the HEG LDA is much larger (∼2–
3 that of the 3e LDA and∼3–4 that of the 2e LDA). While not a perfect comparison due
to the refinement process used in the construction of the finite LDAs, it gives a useful
indication of the size of εc in their εxc curves.
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Fig. 4.5. The εx curve in the 1e LDA (εx = εxc) is used as a reference here. Plotted is its
difference (δεx = εx − ε1e

x ) with the εx curve in the HEG LDA (εx = εxc − εc). It can be
seen that the 1e LDA yields a larger exchange energy density than the HEG LDA at all
densities. Note: This is not true in the very low-density region (n < 0.012), which we
attribute to errors in the fits.
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Fig. 4.6. The exact electron density (solid red line) and xc potential (dotted-dashed
blue line) for a typical two-electron slab system with a locally homogeneous density
of ≈ 0.22 a.u. across the plateau region. There is a high non-local dependence of vxc
on n, which implies that no local density functional can accurately reproduce vxc and
hence n for the slab systems.

4.3 Testing the LDAs

In the previous section we observed the close similarity between the four LDAs. In

this section we apply them to a range of model systems13 in order to identify the

differences between them.

4.3.1 Weakly correlated systems

System 1 (2e harmonic well). We first consider a pair of interacting electrons in a strongly

confining harmonic potential well (ω = 2
3 a.u.) where correlation is very weak14. We

calculate the exact many-body electron density using iDEA, and compare it against

the densities obtained from applying the LDAs self-consistently. There is a progres-

sion from the 1e–2e–3e–HEG LDA and so we choose to plot the 1e and HEG LDA den-

sities (i.e. the 2e and 3e LDA densities lie between these) against the exact [Fig. 4.7(a)].

13See Appendix C.1 for the parameters of the model systems, and details on our calculations to obtain
converged results.

14We calculate the absolute error between the exact electron density and the density obtained from a self-
consistent Hartree-Fock calculation (δn = nHF−nexact), and find the net absolute error to be

∫
|δn| dx ≈

1.4× 10−3. The correlation energy is 0.13% of the exchange-correlation energy, −0.62 a.u.
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Table 4.4: Total energies and xc energies for the set of weakly correlated systems (1–3),
from exact calculations and from applying the four LDAs self-consistently (δELDA =
ELDA − Eexact). Estimated errors are ±1 in the last decimal place, unless otherwise
stated in parentheses.

System Etotal (a.u.)

Exact δE1e
total δE2e

total δE3e
total δEHEG

total

2e harmonic well 1.6932 0.0037 0.0126 0.0153 0.0211
3e harmonic well 3.1875 -0.0073 0.0065 0.0108 0.0199

2e double well -1.0301 0.0237 0.0286 0.0296 0.0323

System Exc (a.u.)

Exact δE1e
xc δE2e

xc δE3e
xc δEHEG

xc

2e harmonic well -0.6192 0.0045 0.0137 0.0165 0.0225
3e harmonic well -0.9305(5) -0.0058(5) 0.0085(5) 0.0129(5) 0.0223(5)

2e double well -0.5349 0.0256 0.0317 0.0331 0.0363

Both LDAs match the exact density well, and so we plot their absolute errors (δn =

nLDA − nexact) to more clearly identify their differences [Fig. 4.7(b)]. The 1e LDA has a

slightly smaller net absolute error (
∫
|δn| dx). While the HEG LDA gives a slightly bet-

ter electron density in the central region (dip in the density), the 1e LDA better matches

the decay of the density towards the edges of the system, and perhaps more interest-

ingly, the two peaks in the density where the self-interaction correction is largest.

Due to the importance of energies in DFT calculations, we also compare the ex-

act Exc and total energy Etotal, with those obtained from applying the LDAs self-

consistently [Table 4.4]. While all the LDAs give good approximations to both quan-

tities, there are some significant differences due to this system being dominated by

regions of high density, and the εxc curves separating in this limit (see Fig. 4.3). As

with the approximations to the electron density, there is a progression from the 1e–2e–

3e–HEG LDA, with the 1e LDA reducing the absolute errors (δE = ELDA − Eexact) in

the HEG LDA by a factor of 5− 6.

System 2 (3e harmonic well). Next, we consider a harmonic potential well with three

electrons, but slightly less confining (ω = 1
2 ), in order to avoid an unphysically high

electron density (n > 0.6 a.u.). As in the 2e harmonic well system, we find a progres-

sion from the 1e–2e–3e–HEG LDA, with all LDAs giving good electron densities (see

Fig. 4.8(a) for the 1e and HEG LDA densities plotted against the exact). Again, the 1e

LDA has the smallest net absolute error, and outperforms the rest of the LDAs in the

regions where the density peaks [Fig. 4.8(b)].
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Fig. 4.7. System 1 (two electrons in a harmonic potential well). (a) The external poten-
tial (dotted-dashed blue line), together with the exact electron density (solid red line),
and the densities obtained from applying the 1e (dashed green line) and HEG (dotted
black line) LDAs. Both LDAs are in very good agreement with the exact result. (b)
The absolute error in the density (δn = nLDA− nexact) in the 1e (dashed green line) and
HEG (dotted black line) LDAs, allowing their differences to be more clearly identified.
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Fig. 4.8. System 2 (three electrons in a harmonic potential well). (a) The external
potential (dotted-dashed blue line), together with the exact electron density (solid red
line), and the densities obtained from applying the 1e (dashed green line) and HEG
(dotted black line) LDAs. Much like the 2e harmonic well system, both LDAs match
the exact density well. (b) The absolute error in the density in the 1e (dashed green
line) and HEG (dotted black line) LDAs. Again, the 1e LDA outperforms the HEG
LDA in the density peaks, which is dominated by the self-interaction correction.
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We also compare the exact Exc and Etotal against the LDAs [Table 4.4]. All LDAs

give good energies, with some noticeable differences between them due to this sys-

tem being dominated by regions of high density, like in the 2e harmonic well system.

However, the magnitude of Exc in the 1e LDA is greater than the exact (i.e. it overesti-

mates the amount of exchange + correlation), and subsequently it gives a total energy

lower than the exact. While the absolute error in Exc for each LDA is similar to that

in Etotal, this overestimation of exchange + correlation in the 1e LDA results in the 2e

LDA giving the best total energy.

4.3.2 A system dominated by the self-interaction correction

The one-electron orbitals of the HEG are plane waves extended over the entire (infi-

nite) system and are therefore free of self-interaction. Hence, the self-interaction cor-

rection (SIC) is absent in xc functionals constructed from the HEG. However, the xc

energy of the 1e slab systems (which were used to construct the 1e LDA) consists en-

tirely of SIC. In the first two model systems, we found that the 1e LDA (and the other

finite LDAs) better describes the electron density in regions where the SIC is strongest,

than the HEG LDA. We now investigate this further.

System 3 (2e double well). We choose a system with two electrons confined to a

double-well potential. The wells are separated, such that the electrons are highly lo-

calised and can be considered as two separate subsystems [Fig. 4.9(a)]. This results in

the Hartree potential being small outside of the wells, and being dominated by the

electron self-interaction within the wells. Consequently, a large proportion of the xc

potential is self-interaction correction. Applying the LDAs, we find the usual progres-

sion 1e–2e–3e–HEG. Focusing on the peaks in the electron density, the 1e LDA sub-

stantially reduces the error present in the HEG LDA [Fig. 4.9(b)]. To understand this,

we analyse the xc potential [Fig. 4.9(c)]. The 1e LDA better reproduces the large dips

in vxc, corresponding to the peaks in the electron density. Hence, the SIC is more effec-

tively captured. While the LDA errors in Exc are larger than in the first two systems,

they are still small (4.8–6.8%) [Table 4.4]. The absolute errors in Etotal are similar.
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Fig. 4.9. System 3 (two electrons in a double-well potential). (a) The external potential
(dotted-dashed blue line), together with the exact electron density (solid red line),
and the densities obtained from applying the 1e (dashed green line) and HEG (dotted
black line) LDAs. The wells are separated, such that the electrons are highly localised.
(b) The absolute error in the density in the 1e (dashed green line) and HEG (dotted
black line) LDAs. The 1e LDA is far superior in the regions where the density peaks,
and hence where the Hartree potential is large and dominated by the electron self-
interaction. (c) The exact xc potential (solid red line), and the xc potentials given by
the 1e (dashed green line) and HEG (dotted black line) LDAs. The dips in vxc are more
closely matched by the 1e LDA due to it better capturing the self-interaction correction,
present in the exact vxc.
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Table 4.5: Total energies and xc energies for the set of strongly correlated systems (4–5),
from exact calculations and from applying the four LDAs self-consistently (δELDA =
ELDA − Eexact). Estimated errors are ±1 in the last decimal place, unless otherwise
stated in parentheses.

System Etotal (a.u.)

Exact δE1e
total δE2e

total δE3e
total δEHEG

total

2e atom -1.5099 0.0053 0.0044 0.0032 0.0022
3e atom -2.3282(5) 0.0121(5) 0.0085(5) 0.0057(5) 0.0029(5)

System Exc (a.u.)

Exact δE1e
xc δE2e

xc δE3e
xc δEHEG

xc

2e atom -0.3728 0.0084 0.0101 0.0099 0.0111
3e atom -0.493(4) 0.029(4) 0.029(4) 0.027(4) 0.028(4)

4.3.3 Systems where correlation is stronger

System 4 (2e atom). We now consider a system where the relative size of electron cor-

relation increases significantly15: two electrons confined to a softened atomic-like po-

tential, vext = −a/(|x| + a), where a = 20. Although we find the same progression

(1e–2e–3e–HEG) as seen in the first three model systems, in which correlation was

weak, all LDAs give inadequate electron densities. This can be seen by plotting the 1e

and HEG LDA densities against the exact [Fig. 4.10(a)]. The LDAs give densities that

are not even qualitatively correct, e.g. predicting a single peak in the centre of the sys-

tem, which is absent in the exact density. The net absolute errors are much larger than

in the weakly correlated systems, however, the 1e LDA once again gives the smallest

[Fig. 4.10(b)]. We find that although the LDA densities are poor, the xc energies are

surprisingly good [Table 4.5]. This can be attributed somewhat (see Sec. 4.3.4 for inves-

tigation of further causes) to errors in the density being partially cancelled by errors

inherent in the approximate xc energy functional [125]. We infer this by noting the

progression (HEG–3e–2e–1e) when we apply the LDAs to the exact density, in contrast

to the self-consistent solutions in Table 4.5. As in the weakly correlated systems, the

absolute errors in Etotal are smaller than in Exc, due to a partial cancellation of errors

from the Hartree energy component. It is much more apparent in this system due to

the LDAs incorrectly predicting a central peak in the electron density [Fig. 4.10(a)].

System 5 (3e atom). Finally, we consider three electrons in an external potential of

15We calculate the absolute error between the exact electron density and the density obtained from a self-
consistent Hartree-Fock calculation (δn = nHF−nexact), and find the net absolute error to be

∫
|δn| dx ≈

7.4× 10−2. The correlation energy is 1.1% of the exchange-correlation energy, −0.37 a.u.
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Fig. 4.10. System 4 (two electrons in a softened atomic-like potential). (a) The external
potential (dotted-dashed blue line), together with the exact electron density (solid red
line), and the densities obtained from applying the 1e (dashed green line) and HEG
(dotted black line) LDAs. Unlike in the weakly correlated systems, the LDAs give
poor electron densities. (b) The absolute error in the density in the 1e (dashed green
line) and HEG (dotted black line) LDAs. While the net absolute errors are much larger
than in the weakly correlated systems, the 1e LDA still performs the best.
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the same form as the 2e atom, but less confining, with a = 50. Along with the usual

progression (1e–2e–3e–HEG), we find a similar result to the 2e atom, with the LDAs

giving poor electron densities [Fig. 4.11(a)]. Although the densities are qualitatively

correct, unlike in the 2e atom, the LDAs significantly underestimate the peaks in the

electron density. Subsequently, the absolute errors are very large [Fig. 4.11(b)]. The

1e LDA, along with giving the lowest net absolute error, most accurately reproduces

the peaks in the density, where the SIC is largest. While the absolute errors in Exc are

larger than in the 2e atom, they are still small [Table 4.5]. Again, this partially arises

from applying approximate xc energy functionals to incorrect densities. As in the 2e

atom, the absolute errors in Etotal are much lower than those in Exc, due to a partial

cancellation of errors from the Hartree energy component.

4.3.4 Cancellation of errors between exchange and correlation

HEG-based LDAs have been known to typically underestimate the magnitude of the

exchange energy Ex, while overestimating the magnitude of the correlation energy Ec

[38, 39]. This stems from the fact that the HEG is a real, physical system and HEG-

based LDAs thereby satisfy a variety of exact sum rules [21]. Consequently, while the

total Exc is underestimated in magnitude, the approximation proves to be better than

was originally expected due to a partial cancellation of errors.

We investigate how well our HEG LDA approximates Ex and Ec in the model sys-

tems, and how this contributes to accurate values for Exc. To do this we perform

Hartree-Fock calculations for each of the model systems, and together with the exact

solutions obtained through iDEA, are able to divide the exact Exc into its exchange and

correlation components. We then apply the HEG LDA, which is split into separate Ex

and Ec functionals, for comparison [Table 4.6]. In all systems, the HEG LDA under-

estimates the magnitude of Ex, while it overestimates the magnitude of Ec. However,

due to the exchange energy being the dominant component of Exc, even in strongly

correlated systems, this only leads to a partial cancellation of errors.

The 1e LDA yields a larger magnitude for εx than the HEG LDA across the entire

density range studied (up to 0.6 a.u.) [Fig. 4.5], which arises from a better description

of the SIC [Sec. 4.3.2]. In the 1e LDA correlation is absent. Consequently, the 1e xc

energies that follow from Tables 4.4 and 4.5 can be considered as approximations to

Ex. We note that the 1e LDA substantially reduces the error in Ex that arises in the
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Fig. 4.11. System 5 (three electrons in a softened atomic-like potential). (a) The external
potential (dotted-dashed blue line), together with the exact electron density (solid red
line), and the densities obtained from applying the 1e (dashed green line) and HEG
(dotted black line) LDAs. Like in the 2e atom, the LDAs give poor electron densities.
The 1e LDA more accurately reproduces the peaks in the density, where the SIC is
largest. (b) The absolute error in the density in the 1e (dashed green line) and HEG
(dotted black line) LDAs. Again, the net absolute errors are large, with the 1e LDA
giving the smallest.
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Table 4.6: Exchange energies and correlation energies for all systems (1-5), from ex-
act calculations and from applying the HEG LDA self-consistently (δELDA = ELDA −
Eexact). Estimated errors are ±1 in the last decimal place, unless otherwise stated in
parentheses.

System Ex (a.u.)

Exact δEHEG
xc

2e harmonic well -0.6184 0.0268
3e harmonic well -0.9286(5) 0.0276(5)

2e double well -0.5349 0.0441
2e atom -0.3686 0.0185
3e atom -0.488(3) 0.041(3)

System Ec (a.u.)

Exact δEHEG
xc

2e harmonic well -0.0008 -0.0043
3e harmonic well -0.0019 -0.0053

2e double well -0.0000 -0.0077
2e atom -0.0042 -0.0074
3e atom -0.0043(5) -0.0142(5)

HEG LDA16. We infer that this error reduction will also extend to the 2e and 3e LDAs.

4.4 Conclusions

We have constructed an LDA based on the homogeneous electron gas (HEG) through

suitable quantum Monte Carlo techniques and find that it is remarkably similar in

many regards to a set of three LDAs constructed from finite systems. Applying them

to test systems to explore the differences between them, we find that the finite LDAs

give better densities and energies in highly confined systems in which correlation is

weak. Most interestingly, the LDA constructed from systems of just one electron most

accurately describes the self-interaction correction. All LDAs give poor densities in

systems where correlation is stronger, but give reasonably good energies, with the

HEG LDA giving the best total energies. Across all test systems, the HEG LDA un-

derestimates the magnitude of the exchange energy and overestimates the magnitude

of the correlation energy, leading to a partial cancellation of errors. As a consequence

of the finite LDAs giving a better description of the self-interaction correction, we in-

fer that they would reduce the error in the exchange energy. Furthermore, we expect

16This is also true in the 2e double-well system where correlation is negligible, and the exchange energy
is dominated by the SIC.
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that finite LDA functionals will also provide a better treatment of the SIC for spin-

ful electrons. Their derivation and usage could lead to an improved description of

the electronic structure in many situations, such as at the onset of Wigner oscillations

which manifest in the density and are a sign of incipient Wigner localisation driven by

the interaction between electrons [126, 127].

As discussed extensively in Sec. 2.6, local approximations are widely used in many

applications of DFT and, through adiabatic application, TDDFT. Even in non-adiabatic

applications, the ground-state functional used in a TDDFT calculation is crucial to

its predictive power, e.g. when solving the Dyson equation to compute the density-

response function χ. In this chapter, we have identified the relative strengths and

weaknesses of constructing ground-state local approximations from finite systems

rather than the HEG. This insight could lead to better accuracy in a variety of ap-

plications, and through extension to the time-dependent regime, the development of

improved non-adiabatic functionals from finite systems.

Chapter 4 Local density functionals based on electron gas and finite systems



CHAPTER 5

EXACT NON-ADIABATIC PART OF THE

KOHN-SHAM POTENTIAL AND ITS FLUIDIC

APPROXIMATION1

As discussed in Chapter 2, the validity of time-dependent DFT (TDDFT) in practical

applications is often restricted by the limitations of available approximate functionals

for electron exchange and correlation. Typically, an adiabatic approximation based on

ground-state DFT is used for this part of the time-dependent Kohn-Sham potential,

thereby neglecting all memory effects. In this chapter, we consider the purest applica-

tion of the concept of the adiabatic functional to the complete KS potential, and present

a simple geometrical “fluidic” approximation to the non-adiabatic part. For a variety

of model systems, we calculate the exact time-dependent electron density, and find

that the fluidic approximation corrects a large part of the error arising from the “exact

adiabatic” approach, even when the system is evolving far from adiabatically.

1This chapter represents work that has been published: M. T. Entwistle and R. W. Godby, ‘Exact nona-
diabatic part of the Kohn-Sham potential and its fluidic approximation’, Phys. Rev. Materials 4, 035002
(2020). The sections of this chapter have been adapted from the publication.
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5.1 Introduction

As discussed in Sec. 2.4.3, the true time-dependent xc potential is a functional of the

density at the present and all previous times vxc[n]. However, most approximate func-

tionals utilise an adiabatic approach, in which the instantaneous electron density is

implicitly assumed to be in its ground state, thereby neglecting all memory effects

[30, 31] (see Sec. 2.4.3.2):

vxc[n](x, t) = v0
xc[n0](x, t)|n0(x)→n(x,t). (5.1)

While these ground-state approximations have steadily improved [2, 3, 44, 46, 128–

135] (moving up Jacob’s ladder [36]; see Sec. 2.6.1), by definition they cannot approach

the exact TDDFT potential: it is necessary to address the non-adiabatic contributions

in order for TDDFT to be capable of predictive accuracy in relation to a multitude of

applications to diverse fields such as the determination of electronic excitation ener-

gies including those of a charge-transfer nature [12], electron dynamics [13] including

non-perturbative charge-transfer dynamics [14], time-resolved spectroscopy [15] and

electron scattering [16].

It has been argued [26, 27, 136, 137] that the exact non-adiabatic functional often

requires strong non-local temporal and spatial dependence on the density. A number

of properties of the exact functional (see Sec. 2.4.3.1), such as the harmonic potential

theorem (HPT) [27] and zero-force theorem (ZFT) [26], have been used to identify

limitations of previous approximate TDDFT functionals. Adiabatic functionals triv-

ially satisfy many of these exact conditions through their complete lack of memory-

dependence, yet prove inadequate in many applications [8, 12–16, 31, 53, 66, 67, 138–

143] (see Sec. 2.6.2). The development of non-adiabatic functionals that continue to

satisfy these exact properties is non-trivial. For example, it was shown that modifying

the adiabatic local density approximation (ALDA) by introducing time-nonlocality,

such as in the Gross-Kohn [144] (GK) approximation, is inappropriate [26, 27].

The best-known approximate non-adiabatic functional is that developed by Vig-

nale and Kohn [137, 145, 146] (VK). This was constructed by studying the responses

to slowly-varying perturbations of the homogeneous electron gas, and they found

a time-dependent xc vector potential as a functional of the local current and charge

densities j and n, thereby implicitly obtaining a scalar potential which depends non-

locally on the density. While the VK formalism has proved promising [147–157], not
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least through it obeying the HPT and ZFT, its validity is limited [158–162] owing to

the constraints under which it was derived.

5.1.1 Decomposition of the Kohn-Sham potential

As discussed above, most approximate TDDFT functionals are adiabatic, which is typ-

ically understood to mean combining a ground-state xc potential v0
xc, with the time-

dependent external and Hartree potentials. While the Hartree potential is purely adi-

abatic, as it depends solely on the instantaneous density, the external potential will, in

general, contain a component which induces a non-adiabatic response in the density2.

Strictly speaking, there is some level of inconsistency in this approach, with mixing

and matching of adiabatic and non-adiabatic components.

In this chapter, in order to clearly distinguish between adiabatic and non-adiabatic

contributions, we consider the purest application of the concept of the adiabatic func-

tional to the complete KS potential, vs[n]: at each instant, the DFT KS potential vA
s ,

whose ground-state density is equal to the exact time-dependent density. The remain-

der of the exact vs constitutes the unambiguously non-adiabatic part ∆vs, to which we

also propose an approximation. The two components are defined as

vA
s [n](x, t) = v0

s [n0](x, t)|n0(x)→n(x,t), (5.2a)

∆vs[n](x, t) = vs[n](x, t)− vA
s [n](x, t), (5.2b)

where v0
s is the exact ground-state KS potential.

5.2 Fluidic approximation

In developing an approximation to ∆vs, it is helpful to consider the situation in differ-

ent inertial frames, related through a Galilean transformation, as noted by Tokatly et al.

[140, 163–166]. While vA
s requires zero correction in any inertial frame when the den-

sity is fully static in one of these frames (a consequence of generalised translational in-

variance; Eq. (2.29)), in the more general case the non-adiabatic corrections to vA
s may

be expected to be at their smallest in the local, instantaneous rest frame of the density,

defined by a transformation velocity of the local velocity field u(x, t) = j(x, t)/n(x, t).

In particular, the effects of acceleration (u̇ 6= 0) and dispersion (∂xu 6= 0) have least

2A switch-on process is a good example, whereby a perturbing field is suddenly applied to the system in
question. While there is a “jump” in the external potential vext, the density n will not respond in kind.
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effect in a frame where u itself is zero3. Conveniently, introducing a vector potential

A = −u(x, t) in the original frame of reference is (apart from an unimportant tempo-

ral phase factor) equivalent to a Galilean transformation to the local instantaneous rest

frame4 [163, 164]. As described above, the non-adiabatic correction should be minimal

in the latter frame, and here we adopt the simple assumption that it is zero. We term

this the fluidic approximation. The resulting non-adiabatic correction in the original

frame is therefore

∆vs(x, t > 0) = −
∫ x

−∞

∂

∂t
u(x′, t > 0) dx′, (5.3)

where we have gauge-transformed A into a scalar potential. It is evident that the

density-dependence of this ∆vs is non-local in both space and time [137]. For a more

in-depth explanation of the above justification, see Appendix D.

5.3 Calculations

Our calculations5 employ the iDEA code to solve the many-electron Schrödinger equa-

tion to determine the exact n(x, t). We then determine the exact vs(x, t) through time-

dependent reverse-engineering (see Sec. 3.1.3.2). We also obtain the exact vA
s (x, t) by

applying ground-state reverse-engineering (see Sec. 3.1.3.1) to the instantaneous den-

sity at each time step6. The exact non-adiabatic component ∆vs is then vs − vA
s .

5.3.1 System 1: two-electron Gaussian well

As a first test of the fluidic approximation, we consider two interacting electrons in a

potential well, which takes the form of an inverted Gaussian function. Initially in the

ground state, a uniform electric field, −εx, is applied at t = 0, driving the electrons

to the right and inducing a current [Fig. 5.1(a)]. The sudden application of the per-

turbation means that we are well outside of the adiabatic limit, and this can be seen

by solving the time-dependent KS equations with the exact adiabatic KS potential,

vs(t) = vA
s (t). By plotting the change in the electron density from the ground state,

3The rate of change of kinetic energy is proportional to uu̇ (as in classical mechanics), and so is smallest
when u is zero. Also, if the density is moving with velocity u it will more rapidly encounter a region in
which a larger non-adiabatic correction is required.

4The stated A causes the wavefunction in the original frame to become the wavefunction in the instan-
taneous rest frame multiplied by exp

(
−iu2t/2

)
.

5See Appendix C.2 for the parameters of the model systems, and details on our calculations to obtain
converged results.

6Our graphs show the various adiabatic and non-adiabatic KS potentials, etc., evaluated on the exact
time-dependent density, so that any errors in the potentials or densities are entirely attributable to errors
in the functionals, not the input to the functionals.
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δn, we find vA
s (t) on its own to be wholly inadequate (≈ 13% error7 in n at t = 8 a.u.),

while adding the fluidic approximation substantially reduces this error to less than 1%

[Fig. 5.1(b)].

To understand these results we analyse the non-adiabatic correction to the KS po-

tential in both its scalar and its vector forms. We find very good agreement between

the exact ∆As and that obtained using the fluidic approximation −u(x, t) [Fig. 5.2(a)].

The velocity field u (the negative of the fluidic curve in Fig. 5.2(a)) quickly becomes

strongly non-uniform in both space and time as the electrons explore excited states –

far removed from a universal rest frame. Similarly close agreement between the exact

and fluidic ∆vs [Fig. 5.2(b)] is evident when the non-adiabatic correction is cast into its

scalar form through Eq. (5.3).

5.3.2 Systems 2A, 2B and 2C: two- and three-electron atoms

We now consider a set of systems of interacting electrons in atomic-like external po-

tentials which decay much more slowly at large x, vext = −a/(|x|+ a) with a = 20,

thereby increasing correlation. At time t = 0, a static sinusoidal perturbation of the

form ε cos(0.75x) is applied, where ε is 0.02 for System 2A (two electrons), 0.02 for

System 2B (three electrons) and 0.1 for System 2C (three electrons).

In System 2A the sudden perturbation at t = 0 acts to push the two electrons apart

[Fig. 5.3(a)]. This results in a velocity field that is varying in both space and time, as

in System 1; in this case even the sign of u is not the same for all x, which takes us

even further away from a universal rest frame. Correspondingly, we find the exact

adiabatic potential to be insufficient (≈ 5% error in n at t = 5 a.u.), while adding the

fluidic approximation reduces this error to≈ 1% [Fig. 5.3(b)]. System 2B contains three

interacting electrons in the same vext as System 2A. The additional electron results in

a ground-state density that is much less spatially uniform [Fig. 5.4(a)]. We run the

simulation for 5 a.u. of time and find similar results: vA
s produces an error in n of

≈ 5%, and the fluidic approximation reduces this to ≈ 1% [Fig. 5.4(b)].

As mentioned above, the fluidic approximation assumes that a system remains

close to its ground state in the local instantaneous rest frame. In order to stretch this

approximation severely, in System 2C the perturbing potential is much stronger, re-

sulting in a much larger response of the density [Fig. 5.5(a)]. The fluidic approxima-

7The integrated absolute error,
∫

dx |n1(x, t)− n2(x, t)|, expressed as a percentage of the total number of
electrons.
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Fig. 5.1. System 1: two interacting electrons in a Gaussian potential well, with a uni-
form electric field applied at t = 0, driving the electrons to the right and inducing
a current. (a) The ground-state external potential (dashed purple) and exact ground-
state electron density (dashed blue), along with the perturbed external potential (solid
purple) and exact time-dependent electron density at t = 8 a.u. (solid blue). (b)
The change in the exact electron density (δn(x, t) = n(x, t) − n(x, 0)) at t = 8 a.u.
(short-dashed green), along with that obtained when using the exact vA

s (solid blue),
and when adding the exact vA

s with the fluidic approximation ∆As = −u (dashed
red). The exact adiabatic potential is clearly inadequate, but its error is substantially
reduced by the fluidic approximation.
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Fig. 5.2. The non-adiabatic correction to the KS potentials for System 1. (a) The exact
∆As (short-dashed green) and that obtained using the fluidic approximation ∆As =
−u (dashed red), at t = 8 a.u. (b) The corresponding exact (short-dashed green) and
fluidic (dashed red) ∆vs in its scalar form. The fluidic approximation performs very
well, even though the velocity field is non-uniform in both space and time. (The exact
adiabatic approximation, of course, amounts to setting ∆As = ∆vs = 0.)
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Fig. 5.3. System 2A: two interacting electrons in an atomic-like potential, with a
static sinusoidal perturbation applied at t = 0, pushing the electrons apart. (a) The
ground-state external potential (dashed purple) and exact ground-state electron den-
sity (dashed blue), along with the perturbed external potential (solid purple) and exact
time-dependent electron density at t = 5 a.u. (solid blue). (b) The change in the exact
electron density at t = 5 a.u. (short-dashed green), along with that obtained when
using the exact vA

s (solid blue), and when adding the exact vA
s with the fluidic ap-

proximation (dashed red). As in System 1 (two-electron Gaussian), the exact adiabatic
potential is insufficient, but its error is substantially reduced by the fluidic approxima-
tion.
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Fig. 5.4. System 2B: three interacting electrons in an atomic-like potential, with a
static sinusoidal perturbation applied at t = 0, pushing the electrons apart. (a) The
ground-state external potential (dashed purple) and exact ground-state electron den-
sity (dashed blue), along with the perturbed external potential (solid purple) and exact
time-dependent electron density at t = 5 a.u. (solid blue). (b) The change in the exact
electron density at t = 5 a.u. (short-dashed green), along with that obtained when
using the exact vA

s (solid blue), and when adding the exact vA
s with the fluidic approx-

imation (dashed red). Once again, the exact adiabatic potential performs poorly, but
its error is substantially reduced by the fluidic approximation.
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tion still succeeds in reducing the error in the density, from ≈ 25% where only the

exact adiabatic potential is used, to ≈ 6%, at t = 5 a.u. [Fig. 5.5(b)]. At later times,

the dynamic (time-dependent) xc effects become very significant. To confirm this, we

replace the xc component of the exact time-dependent vs with the fixed ground-state

vxc
8, thereby suppressing the dynamic part, and find this potential to be wholly inad-

equate (≈ 62% error in n at t = 18 a.u.). Here, the exact adiabatic KS potential is better

(≈ 17% error), while adding the fluidic approximation improves it further (≈ 15%

error) [Fig. 5.5(c)].

5.3.3 Exact conditions

A number of properties of the exact xc functional are known (see Sec. 2.4.3.1), and

these are often used to identify the limitations of approximate functionals. We now

explore whether the fluidic approximation satisfies these exact conditions.

We begin with the one-electron limit, where the exact xc functional, when applied

to a one-electron system, reduces to the negative of the Hartree potential vH, thereby

cancelling the spurious self-interaction. This means that vs is described exactly by a

known functional [13, 31, 138], which has been termed [167] the single orbital approx-

imation – itself capable of capturing features such as steps in the KS potential [13, 103]

– whose non-adiabatic part is

∆vs(x, t) = −
∫ x

−∞

∂

∂t
u(x′, t) dx′ − 1

2
u2(x, t). (5.4)

We note that the first term is the fluidic approximation [Eq. (5.3)]. We have studied

systems of one electron in the external potentials from Systems 1, 2A and 2C, and con-

firm that the full Eq. (5.4) yields the exact vs; here, the effect on the density of including

the −u2/2 term ranges from <0.1% (potential 2A) to 14% (potential 2C), so that the

fluidic approximation alone is already satisfactory. Indeed, in our two- and three-

electron systems, the effect of adding the additional term to the fluidic approximation

is small and typically slightly deleterious.

The zero-force theorem [26] follows from Newton’s third law and requires the net

force exerted on the system by vH and vxc to vanish. At the level of the KS potential:

∫
n(x, t)∂x∆vs(x, t) dx =

∫
n(x, t)∂xvext(x, t) dx, (5.5)

8Using the exact ground-state vxc, commonly known as the “adiabatically exact” approximation, allows
us to identify errors solely attributable to the lack of memory dependence.
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Fig. 5.5. System 2C: three interacting electrons in an atomic-like potential, with a
strong, static sinusoidal perturbation applied at t = 0, pushing the electrons apart. (a)
The ground-state external potential (dashed purple) and exact ground-state electron
density (dashed blue), along with the perturbed external potential (solid purple) and
exact time-dependent electron density at t = 5 a.u. (short-dashed blue) and t = 18
a.u. (solid blue). (b) The change in the exact electron density at t = 5 a.u. (short-
dashed green), along with that obtained when using the exact vA

s (solid blue), and
when adding the exact vA

s with the fluidic approximation (dashed red). Even though
the density is strongly disrupted, the fluidic approximation remains successful. (c) The
same as (b) but at t = 18 a.u. where the dynamic xc contribution is very significant,
evident by the completely inadequate result obtained with the fixed vxc (short-dashed
grey) (see main text). Here, the exact vA

s is better, but adding the fluidic approximation
improves it further.
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since the exact vA
s satisfies the theorem in its own right. In the fluidic approximation

for System 19, the left and right hand sides of this equation are within 11% of one

another, so that the theorem appears to be approximately obeyed.

The harmonic potential theorem [27], which is a special case of generalised trans-

lational invariance [Eq. (2.29)], shows that in a system of interacting electrons in a

harmonic potential, subject to a uniform electric field at t = 0, the density rigidly

moves in the manner of the underlying classical harmonic oscillator. We have shown

that the fluidic approximation adds exactly the non-adiabatic correction required (see

Appendix D.4; apart from an unimportant time-dependent constant) by the HPT. We

have also confirmed this numerically for two interacting electrons in a harmonic po-

tential.

A constraint that can be challenging for non-adiabatic functionals is the memory

condition [116], which notes that vxc(t) and hence vs(t) must be independent of which

previous instant in the evolution of the system is to be used to designate the initial

states:

vs[n, Ψ(t′), Φ(t′)](x, t) = vs[n, Ψ(t′′), Φ(t′′)](x, t) ∀t > t′, t′′. (5.6)

This is violated by the VK functional [31]. Eq. (5.3) demonstrates that the fluidic ap-

proximation satisfies this memory condition by virtue of its dependence only on the

instantaneous rate of change of u, and not its full history.

5.3.4 System 3: two-electron tunnelling system

As a challenging test of the fluidic approximation, we finally consider two interacting

electrons in a tunnelling system. Initially vext is a symmetric double-well potential,

with one electron localised in each well. At t = 0, the left-hand well is raised and

the right-hand well lowered, initiating tunnelling through the barrier [Fig. 5.6(a)]. A

tunnelling electron has an imaginary momentum, meaning that the (real) velocity field

is of less physical significance. Correspondingly, the fluidic approximation recovers

less of the adiabatic density error, but nevertheless reduces it from ≈ 8% to ≈ 4%, at

t = 15 a.u. Accordingly, the tunnelling rate from the left-hand side to the right-hand

side is initially improved, but this is not the case at later times [Fig. 5.6(b)].

9Systems 2A, 2B and 2C satisfy the theorem owing to their symmetry, so do not form a useful test.
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Fig. 5.6. System 3: two interacting electrons in a tunnelling system. (a) The
ground-state external potential (dashed purple) and exact ground-state electron den-
sity (dashed blue), along with the perturbed external potential (solid purple) and exact
time-dependent electron density at t = 15 a.u. (solid blue). (b) The exact total electron
number on the left-hand side (x < 0) (short-dashed green); also the exact adiabatic
(solid blue) and fluidic approximation (dashed red).
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5.4 Conclusions

In summary, we have calculated the exact adiabatic and non-adiabatic parts of the

KS potential, vA
s and ∆vs, for a variety of model systems. ∆vs is precisely defined

by our procedure, and represents the part of the time-dependent KS potential that is

intrinsically unobtainable from a ground-state functional. Our key finding is that a sim-

ple geometrical approximation to this non-adiabatic KS potential – making use of a

Galilean transformation to the local instantaneous rest frame – recovers most of the

density error attributable to the exact adiabatic approach: typically 80− 95% in the

ballistic systems studied.

As discussed extensively in Sec. 2.6.2, most approximate TDDFT functionals utilise

an adiabatic approach, which severely limits the application of TDDFT to a multi-

tude of diverse fields. Here, an adiabatic approach typically entails combining the

time-dependent external and Hartree potentials with a ground-state xc potential. In

contrast, in this chapter we have considered the purest application of the concept of

the adiabatic functional to the complete KS potential, with the remainder constitut-

ing the unambiguously non-adiabatic part, thereby removing any inconsistency. We

have found that combining the exact vA
s with a simple fluidic approximation to ∆vs

performs well, even in highly non-adiabatic situations. Studies of additional systems

should further illuminate this decomposition of the KS potential of TDDFT in highly

non-adiabatic situations, with the fluidic approximation providing a solid foundation

for a hierarchy of approximations to ∆vs. This may provide an alternative method

to conduct TDDFT calculations and lead to improved results in situations where the

typical adiabatic xc functionals are insufficient. Identifying the most appropriate im-

plementation of the fluidic approximation in practical calculations forms another line

of research.
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CHAPTER 6

EXACT EXCHANGE-CORRELATION KERNELS

FOR MODEL SYSTEMS1

As discussed in Chapter 2, the validity of time-dependent DFT (TDDFT) in practi-

cal applications is predicated on the available approximate exchange-correlation (xc)

functionals. The exchange-correlation kernel, fxc, is the key quantity in many impor-

tant spectroscopies, but the most commonly used approximate kernels are adiabatic

and (semi-) local, thereby severely restricting their success. In this chapter, we calcu-

late the exact fxc(x, x′, ω) for prototype systems, in order to inform the development

of improved approximate functionals. We find that, up to the first excitation energy,

the exact fxc has weak frequency-dependence and a simple, though non-local, spatial

form. For higher excitations, the spatial behaviour and frequency-dependence be-

come more complex. The accuracy of the underlying exchange-correlation potential is

of crucial importance.

1This chapter represents work that has been published: M. T. Entwistle and R. W. Godby, ‘Exact
exchange-correlation kernels for optical spectra of model systems’, Phys. Rev. B 99, 161102(R) (2019).
The sections of this chapter have been adapted from the publication. Additionally, parts of some sec-
tions (Sec. 6.2, Sec. 6.3.3 and Sec. 6.3.4) have been extended and represent collaborative work that is
being prepared for publication: M. T. Entwistle, N. D. Woods and R. W. Godby, ’Insights from exact
exchange-correlation kernels’.
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6.1 Introduction

As discussed in Sec. 2.4, TDDFT is in principle an exact and efficient theory of the

excited-state properties of many-electron systems, including a wide variety of impor-

tant spectroscopies such as optical absorption spectra of molecules and solids. How-

ever its application is restricted by the limitations of the available approximate func-

tionals for electron exchange and correlation – in particular the exchange-correlation

kernel fxc, the functional derivative of the exchange-correlation potential with respect

to the electron density (see Sec. 2.5.3). Within the framework of linear response the-

ory (see Sec. 2.5), the induced density is described by the interacting density-response

function, the functional derivative χ = δn/δvext. χ is related to the non-interacting

density-response function of the KS system, χ0 = δn/δvs, by the Dyson equation

χ = χ0 + χ0(u + fxc)χ [Eq. (2.45)]. χ0 is to be obtained from a ground-state DFT calcu-

lation. χ can then be used to compute, for example, the optical absorption spectrum

of the system [Eq. (2.55)]:

σ(ω) = −4πω

c

∫
dx
∫

dx′ Im
[
χ(x, x′, ω)

]
x x′. (6.1)

In practice, both vxc and fxc must be approximated. While there have been some

successes and linear-response TDDFT offers a unique compromise between accuracy

and computational efficiency, problems remain in many important circumstances, as

discussed in Sec. 2.6.2. In finite systems, the use of accurate approximate kernels be-

comes important in systems with strong correlation or when a description of higher

excitations (such as Rydberg series) is needed. Furthermore, the commonly used adi-

abatic TDDFT functionals, such as the adiabatic LDA (ALDA), are incapable of de-

scribing multiple excitations or excitations of a charge-transfer nature. They also fail

in extended systems. For example, the optical absorption spectra of many semicon-

ductors and insulators are not even qualitatively described, with excitonic effects and

many-electron excitations omitted, and the optical gap underestimated. Here, approx-

imations for fxc achieve little improvement over the random phase approximation

(RPA), in which fxc is neglected entirely. Attempts to improve approximations for fxc

include exact-exchange methods, diagrammatic expansions using perturbative meth-

ods, and adding long-range contributions. Another approach involves calculations of

the homogeneous electron gas (HEG). Kernels derived from the Bethe-Salpeter equa-

tion have had some success, but require a relatively expensive many-body perturba-
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tion theory calculation as their input, and are outside the KS TDDFT framework.

There have been a limited number of studies conducted on analysing the charac-

ter of the exact fxc, all of which focus on its frequency-dependence. One approach

has been to calculate the exact adiabatic fxc for model systems [168], in order to in-

vestigate its performance upon application and deduce when memory effects become

important. This approach has been used in simple Hubbard systems [169, 170] and ex-

tended by analysing additional properties, such as the frequency-dependence of the

full fxc around double excitations. Other research has explored how this frequency-

dependence of fxc turns the single-particle quantities of exact KS TDDFT into many-

body excitations [171] and its behaviour for long-range excitations has been analysed

in order to develop approximate kernels [82]. Whilst this previous research has pro-

vided important understanding of the nature of the exact fxc, it has its own limitations

by its focus on individual characteristics.

In this chapter, we explore the properties of exact xc kernels, in order to inform

the development of improved approximate functionals. We show the explicit spa-

tial dependence of the exact dynamic fxc – which when combined with its frequency-

dependence, displays its full features. As stated above, the usual approximations to

fxc are known to have severe limitations, and attempts to improve upon them have of-

ten focused on addressing the frequency-independence of adiabatic kernels, or intro-

ducing non-locality to local kernels, rather than a mixture of the two. We believe that

calculating the full dynamic fxc opens up this possibility. Furthermore, knowledge of

the spatial dependence of the exact fxc provides a strong indication of whether it is

amenable to approximation, e.g. through a simple non-local kernel.

6.2 Computing fxc

As mentioned in Sec. 2.5.3 and Sec. 3.1.4.2, the Dyson equation can be rearranged to

give an expression for the xc kernel in terms of χ and χ0:

fxc(x, x′, ω) = χ−1
0 (x, x′, ω)− χ−1(x, x′, ω)− u(x, x′). (6.2)

Chapter 6 Exact exchange-correlation kernels for model systems



86 6.2. Computing fxc

6.2.1 Inverting the density-response functions2

As discussed in Sec. 3.1.4.2, the inverses of χ and χ0 are not well defined, with both

having zero, and near-zero, eigenvalues. The zero eigenvalue (and hence zero deter-

minant) present in both χ and χ0 represents the vanishing density response that arises

from a spatially uniform perturbation, δvext(x, ω) = c(ω) (= δvs(x, ω)) [172]. Near-

zero eigenvalues, which also pose numerical difficulties when calculating the inverses

of the response functions, represent perturbations that induce small density responses,

e.g. those with very high spatial frequencies with respect to system size. To overcome

these issues, we find pseudo-inverses of χ and χ0 using truncated singular-value de-

composition (SVD). Here, an eigendecomposition of each matrix is performed [172]:

χ−1(x, x′, ω) = ∑
l

1
λl(ω)

ζl(x, ω)ζ∗l (x′, ω), (6.3a)

χ−1
0 (x, x′, ω) = ∑

l

1
λl,s(ω)

ζl,s(x, ω)ζ∗l,s(x′, ω), (6.3b)

where {λl , ζl} and {λl,s, ζl,s} are the eigenvalue-eigenvector pairs of χ and χ0, respec-

tively. The pseudo-inverses χ† and χ0† are the solutions to [173]

min
χ†
‖χ χ †−I‖, (6.4a)

min
χ0†
‖χ0 χ0 †−I‖, (6.4b)

where ‖‖ is the Euclidean norm and I is the identity matrix. We attain these by remov-

ing eigenvalues below machine precision in Eq. (6.3a) and Eq. (6.3b). These eigenvec-

tors with near-zero eigenvalues define our “null” space: the directions in which per-

turbations to our potential produce negligible density response, and do not meaning-

fully contribute to the true response functions and absorption spectra. We are in effect

inverting our response functions in the remaining “active” space: the directions in

which perturbations to our potential produce meaningful density response. We have

to be careful when determining these active spaces, but find there is a near-perfect

overlap between the active space of the interacting system and that of the KS system,

resulting in the eliminated null spaces effectively cancelling.

2In Ref. 106 we performed our calculations using this SVD procedure. However, we only retained the few
largest eigenfunctions of χ and χ0 when inverting in their respective subspaces. The implementation
of this SVD procedure was subsequently improved by N. D. Woods, ensuring all eigenfunctions with
corresponding eigenvalues above machine precision are retained, and so the results presented in this
chapter vary slightly from those presented in the publication, to reflect the increased accuracy obtained.
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6.2.2 Verification of procedure

From the modified response functions we obtain a kernel fxc. We confirm the validity

of this procedure by verifying that the calculated fxc, together with the unmodified χ0,

closely reproduces the unmodified χ via the Dyson equation. Additionally, we ensure

that the zero-force sum rule is obeyed (see Appendix C.3) – a well known property of

the exact fxc (see Sec. 2.5.3.1; Eq. (2.51)).

6.2.3 Gauge freedom in fxc

As stated above, a spatially uniform perturbation, or constant vector |c〉, will induce a

density response 0|c〉. This is true in both the interacting and KS systems, and so both

χ and χ0 share this eigenvector. As such, an eigendecomposition of each response

function will include the term 0|c〉〈c|. Now, Eq. (6.2) can be rearranged to give

χ =
[

I − χ0( fxc + u)
]−1

χ0. (6.5)

If we were to add a term α|c〉〈c| to fxc, we can see this leads to the additional product

χ0 α|c〉〈c|within the inverse. As the eigenvectors of χ0 form an orthonormal basis, the

only surviving term is 0|c〉〈c|α|c〉〈c| = 0|c〉〈c|, and so the resultant χ will remain the

same. We are therefore free to add a constant to fxc, in much the same way we are free

to add a constant to vxc. We choose the convention fxc + u→ 0 as |x− x′| → ∞.

6.3 Calculations

6.3.1 Adiabatic limit and low frequency

System 1: two-electron harmonic well. We begin by considering a system of two inter-

acting electrons confined to a harmonic well potential (ω0 = 0.25 a.u.), where ω0 is

the angular frequency of the well [Fig. 6.1(a)]. We compute the exact optical absorp-

tion spectrum of the system, and find only the first excitation at ω = ω0 appears3

[Fig. 6.1(b)]. Additionally, we compute the absorption spectrum of the exact Kohn-

Sham system, in which the absorption frequency is slightly too low (≈ 0.01 a.u.). We

3For a one-electron harmonic well system, at the level of linear response theory, only one excitation
appears in the absorption spectrum, due to selection rules. Specifically, as we are working in the dipole
approximation, a transition can only occur between states whose principal quantum numbers differ by
unity. As the system is initially in the ground state (n = 0), the only allowed transition is to the first
excited state (n = 1). Here, we observe this in the two-electron harmonic well system.
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also calculate the RPA and ALDA absorption spectra, in which the RPA and ALDA

kernels4 are combined with the exact5 χ0. This last point provides a strong reminder

of the challenge of fxc: starting from the exact Kohn-Sham orbitals, which require the

exact Hartree and xc potentials of the unperturbed system, a much better absorption

peak is obtained by ignoring the induced changes in the Hartree and xc potentials (χ0)

than by accounting for the first exactly and either neglecting (RPA) or approximating

(ALDA) the second. Furthermore, if we choose to start from the LDA orbitals and en-

ergies, the approximate χ0 obtained (not shown) has an absorption frequency that is

≈ 0.03 a.u. lower than the true absorption frequency, which is a factor of 3 greater than

that of the exact χ0 (≈ 0.01 a.u. too low). This highlights the importance of obtaining

a good approximation to the ground-state xc potential vxc, as discussed in Sec. 2.6.2.1.

We now turn to the spatial characteristics of fxc [Fig. 6.2]. We observe that while fxc

has real and imaginary parts (see later), the real part alone is sufficient to reproduce

the position and weight of the first excitation (ω = ω0). Fig. 6.2(a) and Fig. 6.2(b) show

Re( fxc) at ω = 0 and ω0, respectively. The behaviour of fxc away from the diagonal,

x 6= x′, represents the kernel’s non-locality, and it is evident that this is fairly simple

in nature; analysis [Fig. 6.2(c)] shows it to be similar to the negative of the Coulomb

interaction, with which it therefore tends to cancel in the expression for χ. The ω-

dependence of fxc up to the first excitation is seen to be extremely weak, as observed

in other model systems [169–171]. We analyse this more closely in Fig. 6.2(d).

To gain insight into these observations, we analyse the exact χ and χ0. Fig. 6.3

shows Re(χ) and Re(χ0); up to the first excitation, these exhibit strong – but closely

similar – ω-dependence. The similarity arises in part from the exact many-electron

wavefunction being well approximated by the exact Kohn-Sham wavefunction6, which

reflects the dominance of exchange (including self-interaction correction) in the har-

monic potential system7. Therefore χ−1 and χ−1
0 largely cancel, so that fxc is similar to

−u, with weak ω-dependence.

4We use the LDA constructed from two-electron “slab” systems, as reported in Ref. 174 and presented in
Chapter 4.

5We use the exact χ0 (constructed through knowledge of the exact ground-state vxc) so that any error in
the resultant χ can be attributed solely to the approximate xc kernels used.

6We define this as a Slater determinant of the occupied KS orbitals.
7E. Richardson, private communication.
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Fig. 6.1. System 1: two interacting electrons in a harmonic potential. (a) The electron
density (solid blue), along with the external (dotted-dashed green) and exact Kohn-
Sham (dashed purple) potentials. (b) The absorption spectra (detailing the first exci-
tation) of the exact (solid red) and Kohn-Sham (dotted-dashed blue) systems, along
with the RPA (dashed green) and ALDA (dotted magenta) approximations. We check
that the calculated fxc is correct by solving the Dyson equation and comparing the
resultant absorption spectrum (short-dashed black) with the exact.
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Fig. 6.2. The real part of the exact fxc of the harmonic well system: (a) In the adiabatic
limit (ω = 0), and (b) at the first excitation (ω = 0.25). (c) fxc has a rather simple
non-local dependence, which is similar to the negative of the Coulomb interaction u.
Here we focus on fxc at ω = 0.25 and analyse its variation with x − x′. (The sharp
change in the dotted-dashed blue curve (x = 0) close to x − x′ = 0 arises due to the
discretised spatial grid.) (d) We observe fxc to have strikingly weak ω-dependence up
to the first excitation (vertical line). We illustrate this by plotting its value (solid red)
at a point along the main diagonal (x = x′) which corresponds to the peak in electron
density in Fig. 6.1(a) (x = 1.8 a.u.).
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Fig. 6.3. The exact χ and χ0 in the harmonic well system: Left: Re(χ) at ω = 0 and on
either side of the transition at 0.250. Right: Re(χ0) at ω = 0 and on either side of the
transition at 0.241. Re(χ) and Re(χ0) exhibit remarkably similar spatial structure.
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6.3.2 Insight using a simple toy model

The above results can be demonstrated succinctly through a simple model, in which

we take Eq. (2.35) and Eq. (2.38) (the Lehmann representation of χ and χ0, respec-

tively), and replace the spatially-dependent numerators (the oscillator strengths) with

scalars. Specifically, we consider a system with a single excitation at ω = 1, set the nu-

merator equal to 1, and let η = 0.05 (inset of Fig. 6.4(a)). We do the same for the Kohn-

Sham system, but choose the excitation to occur at ω = 0.9. The density-response

functions therefore become

χ(x, x, ω) =
1

ω− 1 + 0.05i
− 1

ω + 1 + 0.05i
, (6.6a)

χ0(x, x, ω) =
1

ω− 0.9 + 0.05i
− 1

ω + 0.9 + 0.05i
. (6.6b)

By taking their inverses, we calculate Re(χ−1
0 − χ−1), which is the ω-dependent

part of Re( fxc) in Eq. (6.2), and find this to be small in amplitude and have a fairly

weak ω-dependence up to the first excitations [Fig. 6.4(b)]. The inclusion of higher

excitations, and taking the limit η → 0, change little at these low frequencies.

Including higher excitations in the model χ causes Re(χ) to pass through zero

between excitations. At these points Re(χ−1) also passes through zero, and Im(χ−1)

peaks sharply [Fig. 6.4(a)]. As Im( fxc) = Im(χ−1
0 − χ−1), we find that the fxc in our

simple model only has an imaginary component when χ or χ0 passes through zero

between excitations, and hence is completely real up to the first excitations (as η → 0).

This supports our finding in the harmonic well system, in which Im( fxc) was very

small up to the first excitations, and Re( fxc) was sufficient to reproduce the peak in

the absorption spectrum. Additionally, fxc in our simple model is well behaved up to

the first excitation and around all additional excitations, with poles only appearing in

between excitations (when the real part passes through zero and the imaginary part

peaks). This agrees with the analysis of the exact fxc for finite systems as reported in

Ref. 172.

6.3.3 Higher excitations

System 3: two-electron atom. We now consider a system whose absorption spectrum

includes higher excitations – two interacting electrons in a softened atomic-like po-

tential [Fig. 6.5(a)]. As in the harmonic well system, the absorption spectrum of the
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Fig. 6.4. System 2: a simple toy model. The inset shows χ for a simple toy model with-
out spatial dependence and a single excitation at ω = 1. (a) Two further excitations at
ω = 2 and 3 have been included, to show that Re(χ−1) passes through zero between
excitations, which leads to a non-zero Im( fxc), as does the corresponding feature in
χ−1

0 (not shown). (b) The near cancellation (solid green) between Re(χ−1) (dashed
red) and Re(χ−1

0 ) (dotted dark red), where χ0 has an excitation at 0.9, causing fxc to
exhibit weak ω-dependence up to these first excitations.
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exact Kohn-Sham system is slightly too low for the first excitation8 [Fig. 6.5(b)]. Again,

we find fxc to be dominated by its real part and nearly ω-independent, while exhibit-

ing relatively simple spatial structure, up to and including the first excitation (see

Fig. 6.6(a) and Fig. 6.6(b)). The second excitation (ω = 0.0859) does not appear in the

absorption spectrum, but again we find the corresponding excitation in the KS system

to be slightly too low (ω = 0.0825), with χ and χ0 exhibiting more complex but very

similar behaviour to one another (see later), leading to little change in fxc [Fig. 6.6(c)].

Moving to the third excitation9, which does appear in the absorption spectrum but is

much smaller in amplitude than the first, we once more observe the peak in the Kohn-

Sham system to be slightly below but still very close to the exact10 (inset of Fig. 6.5(b)).

Again, the closeness between the two peaks arises from the similarity between χ and

χ0. In order to reproduce this excitation, higher spatial frequencies in fxc are needed11

[Fig. 6.6(d)]. As we progress to higher transitions, fxc continues to acquire additional

spatial structure and stronger ω-dependence [Fig. 6.6(e)].

Once more, we analyse the exact χ and χ0 [Fig. 6.7]. As in the harmonic well

system, Re(χ) and Re(χ0) display strong but similar ω-dependence up to the first ex-

citation (first row of Fig. 6.7), resulting in χ−1 and χ−1
0 largely cancelling, and hence

leading to simplicity in fxc. This behaviour of fxc is maintained up to the second excita-

tion, in which the density response functions acquire additional spatial structure, but

continue to look alike (second row of Fig. 6.7). Interestingly, this continues to be the

case near the third KS excitation (third row of Fig. 6.7), even though the corresponding

excitation in the interacting system is at higher ω. Moving to the third excitation in

the interacting system (fourth in the KS system), both χ and χ0 have developed more

elaborate structure (fourth row of Fig. 6.7), and also differ to a certain degree, giving

rise to increased complexity in fxc. If we move to higher frequencies, this progression

persists.

8If we use the LDA orbitals and energies to construct χ0, the error is a factor of 6-7 greater.
9The third excitation in the interacting system corresponds to the fourth excitation in the KS system. The
third excitation in the KS system manifests at higher ω in the interacting system, but is suppressed in
both absorption spectra.

10If we use the LDA orbitals and energies to construct χ0, the peak is above that of the exact χ, and
much too small in amplitude. The exact χ0 corrects the peak height by a factor of 2-3, and reduces the
discrepancy in position by ≈ 30%.

11As expected for higher energy excited states.
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Fig. 6.5. System 3: two interacting electrons in an atomic-like potential. (a) The elec-
tron density (solid blue), along with the external (dotted-dashed green) and exact
Kohn-Sham (dashed purple) potentials. (b) The absorption spectra of the exact (solid
red) and Kohn-Sham (dotted-dashed blue) systems; the inset shows the third excita-
tion (fourth in the KS system) in more detail, which is the next to appear after the first
excitation. As in the harmonic well system, we check that the calculated fxc is cor-
rect by solving the Dyson equation and comparing the resultant absorption spectrum
(short-dashed black) with the exact.
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Fig. 6.6. The real part of the exact fxc of the atomic-like system: (a) In the adiabatic
limit (ω = 0), (b) at the first excitation (ω = 0.0448), (c) at the second excitation
(ω = 0.0859), (d) at the third excitation (ω = 0.1187), and (e) at the sixth excita-
tion (ω = 0.1773). As in the harmonic well system, we find fxc to be nearly ω-
independent and exhibit a relatively simple spatial form up to the first excitation. This
behaviour persists up to the second excitation, however, more complex spatial struc-
ture is needed to capture the third excitation. We find this additional spatial structure
and stronger ω-dependence to increase as we progress to higher excitations, as seen
at the sixth excitation in (e) (not shown in previous plot of σ(ω): Fig. 6.5(b)).
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Fig. 6.7. The exact χ and χ0 in the atomic-like system: Row one: Re(χ) and Re(χ0)
immediately prior to their first transitions at ω = 0.0448 and 0.0435 (main panel of
Fig. 6.5(b)), respectively. Row two: The same but for the second transitions at 0.0859
and 0.0825, respectively, which are suppressed in σ(ω). Row three: Re(χ) and Re(χ0)
immediately prior to the third KS excitation at 0.1060 (suppressed in σ(ω)), which
manifests at higher ω in the interacting system. Row four: Re(χ) and Re(χ0) immedi-
ately prior to their next transitions at 0.1187 (third in the exact) and 0.1154 (fourth in
the KS), respectively, which are the next peaks to appear in σ(ω) (inset of Fig. 6.5(b)).
As seen in the harmonic well system, Re(χ) and Re(χ0) exhibit remarkably similar
spatial structure. This becomes less so as we progress to higher transitions, in which
both response functions also acquire additional spatial structure.
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6.3.4 Performance of approximate kernels

As set out in the introduction to this chapter, we are exploring the properties of exact

kernels for model systems, in order to gain insight and to ascertain as to whether fxc

is amenable to approximation. To this end, we now investigate the performance of

adiabatic kernels as well as local kernels, in the same spirit as most practical approxi-

mations.

We begin with the exact adiabatic approach, in which we take the static (ω = 0)

limit of the exact fxc, and apply this at all frequencies: we mix f A
xc(x, x′) = fxc(x, x′, ω =

0) with the exact χ0(x, x′, ω) to obtain some χ(x, x′, ω), via the Dyson equation. As the

exact xc kernel is completely real in the static limit, so too is the exact adiabatic xc ker-

nel. This will help us to determine the importance of not only the ω-dependence of fxc,

but also the imaginary component, as any kernel with memory must have an imagi-

nary component (and any adiabatic kernel must be purely real), as a consequence of

the known properties of the exact kernel (see Sec. 2.5.3.1).

We begin with the harmonic well system and find that the exact f A
xc does a strik-

ingly good job of describing the first excitation [Fig. 6.8(a)]; see the inset of the figure

for a close-up view. It can be seen that the position of the KS peak and the slight dis-

crepancy in its height is almost perfectly corrected by the exact adiabatic kernel. This

reflects the remarkably weak ω-dependence of fxc, as analysed in Fig. 6.2.

Moving on to the atomic-like system, we find a very similar result with the first

excitation being well described by the exact f A
xc [Fig. 6.8(b)], although the slight error

is more noticeable in this system, as can be seen in the top inset of the figure. The bot-

tom inset details the third excitation (the next to appear in σ(ω)), which the exact adi-

abatic kernel is completely incapable of capturing. These results reflect the more com-

plex spatial structure and ω-dependence that manifests in fxc at higher frequencies, as

shown in Fig. 6.6. It is clear that memory effects, described through the ω-dependence

and imaginary part of the exact fxc, become significant as we move beyond the first

excitation (as suggested by our analysis of the simple toy model in Fig. 6.4), revealing

the limitations of adiabatic kernels (even the exact adiabatic approach).

We now investigate the extent to which local kernel approximations for fxc may be

meaningful. As we have observed fxc to largely cancel with u at low ω, we choose to

focus on the Hartree-exchange-correlation kernel fHxc = fxc + u. We find this cancella-

tion results in it being much smaller in magnitude than fxc, as shown in Fig. 6.9 for the

atomic-like system. We seek to replicate the effect of the exact fHxc(x, x′, ω) through a

Chapter 6 Exact exchange-correlation kernels for model systems



6.3. Calculations 99

0.00 0.05 0.10 0.15 0.20 0.25 0.30

! (a.u.)

0

5

10

15

20

æ
(a

.u
.)

Exact ¬
Exact ¬0

Exact ¬0 + fA
xc

0.240 0.245 0.250
! (a.u.)

16

17

18

19

æ
(a

.u
.)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

! (a.u.)

0

10

20

30

40

50

æ
(a

.u
.)

0.042 0.044 0.046
! (a.u.)

40

42

44

46
æ

(a
.u

.)

0.10 0.11 0.12 0.13
! (a.u.)

0.00

0.25

0.50

æ
(a

.u
.)

(a)

(b)

Fig. 6.8. Performance of the exact adiabatic xc kernel f A
xc: (a) In the harmonic well

system: the absorption spectra of the exact (solid red) and Kohn-Sham (dotted-dashed
blue) systems, along with the exact adiabatic approximation (short-dashed black); the
inset shows the peaks in more detail. (b) In the atomic-like system: the same; the top
inset and bottom inset show the first and third excitations in more detail, respectively.
In both systems f A

xc does a strikingly good job of correcting χ0 for the first excitation,
particularly in the harmonic well system. It is completely inadequate for capturing the
third excitation in the atomic-like system, which is not too surprising given the more
complex spatial structure and ω-dependence that manifests in the exact fxc at higher
frequencies (see Fig. 6.6(d)).
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simple local kernel f l
Hxc(x, ω):

fHxc(x, x′, ω) ≈ f l
Hxc(x, ω) δ(x− x′), (6.7a)

f l
Hxc(x, ω) =

∫
f l
Hxc(x, ω) δ(x− x′) dx′ =

∫
fHxc(x, x′, ω) dx′. (6.7b)

Here, we are trying to incorporate the non-local parts of fHxc through some envelope

function, with which fHxc is integrated over x′, for each fixed point x along the main

diagonal. We assume a simple model for this envelope function – a constant. We

find when mixed with the exact χ0, this local kernel outperforms the RPA and ALDA

kernels in regard to the peak position, but fails to correct the peak height and still

performs worse than χ0 alone, for the first excitation. Such a local kernel is completely

inadequate to describe the third excitation.
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Fig. 6.9. The exact kernels of the atomic-like system at ω = 0: (a) The exchange-
correlation kernel fxc, and (b) the Hartree-exchange-correlation kernel fHxc = fxc + u.
As we observed earlier, fxc largely cancels with u at low ω, leading to fHxc being much
smaller in magnitude.

6.4 Conclusions

In summary, we have calculated the exact fxc(x, x′, ω) for two prototype systems. At

low ω, we find the imaginary component of fxc to be small, with the real part alone

sufficient to reproduce the first excitation. Up to and including the first excitation,

Re( fxc) exhibits strikingly weak ω-dependence, stemming from strong, but closely
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similar ω-dependence between the interacting and non-interacting density-response

functions – boding well for the applicability of adiabatic kernels. Additionally, Re( fxc)

here has a rather simple spatial form, which is similar to the negative of the Coulomb

interaction u, indicating that approximations to fHxc may be more appropriate than

those for fxc alone. For higher excitations, fxc exhibits both additional spatial struc-

ture and stronger ω-dependence, indicating that more sophisticated approximations

are needed. Throughout, the absorption spectrum of the exact Kohn-Sham system

provides a very good starting point, signifying the crucial importance of an accurate

approximation for the ground-state vxc.

As discussed extensively in Sec. 2.6.2, most approximate TDDFT functionals utilise

an adiabatic and (semi-) local approach. Our results so far suggest that these types of

approximations are not adequate beyond low lying frequencies, thereby demanding

improved functionals that account for non-adiabatic effects. While the exact fxc is an

enigmatic quantity, we have gained valuable insight into its nature through our anal-

ysis of prototype systems and a simple toy model. Further research should allow us

to assimilate these insights into the development of more sophisticated approximate

kernels, through e.g. current functionals.
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CHAPTER 7

CONCLUSIONS

7.1 Discussion of results

In this thesis, we set out to investigate the nature of the exact functionals of time-

dependent density functional theory (TDDFT) through the study of prototype elec-

tronic systems. To begin our investigations we focused exclusively on ground-state

DFT, whose solution forms the initial input into TDDFT calculations, and is therefore

of crucial importance. The local density approximation (LDA) is the simplest, and one

of the most widely used, approximate density functionals. Typically, LDAs are con-

structed from the homogeneous electron gas (HEG), and their successes and failures

are well known. As an alternative approach, we constructed a set of LDAs from finite

systems, and compared them against a suitable HEG-based LDA. We found these fi-

nite LDAs to give better densities and energies in exchange-dominated systems than

did the HEG LDA. We demonstrated that an LDA constructed from systems of just

one electron is possible, and remarkably is the one which most accurately describes

the self-interaction correction (SIC) in our test systems — a notable failing of HEG-

based LDAs. We ascribe this to the HEG being SIC-free in itself, whereas the xc energy

of a one-electron system (from which the one-electron LDA was constructed) consists

entirely of SIC. We inferred that this better description of the SIC would lead to a

reduced error in the exchange energy. All LDAs performed poorly in systems with

stronger correlation, highlighting the limitations of local density functionals.

Following on from this work on ground-state DFT we moved on to explicit time-

dependence. Here, most approximate functionals utilise an adiabatic approach, thereby

completely neglecting the memory-dependence of the true time-dependent xc func-

tional, severely limiting the applicability of TDDFT to a variety of fields of increasing

interest. Adiabatic approaches typically entail combining the time-dependent exter-
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nal and Hartree potentials with a ground-state xc potential. In our work, we presented

a new perspective on the concept of adiabaticity by applying it to the complete time-

dependent Kohn-Sham (KS) potential. By rigorously splitting it into its adiabatic and

non-adiabatic parts, we proposed a simple geometrical ”fluidic” approximation to the

latter. We found the fluidic approximation performed well when applied to a variety

of test systems — recovering most of the density error attributable to the exact adia-

batic approach — even in highly non-adiabatic situations where the dynamic xc effects

become very significant. Further research is needed to better elucidate the advantages

and disadvantages of this decomposition of the KS potential.

An important class of applications of TDDFT is the wide variety of spectroscopies,

such as optical absorption spectra of molecules and solids. Here, the key quantity

to approximate is the xc kernel fxc, the functional derivative of the xc potential with

respect to the density. Little is known about the nature of the exact fxc, with most

approximate functionals being (semi-) local and adiabatic – proving to be inadequate

in many regards. With the aim to assist the development of improved approximate

kernels, we have calculated the exact fxc for a set of prototype systems. We find the

imaginary component of the exact fxc to be negligible at low frequencies ω, with the

real part exhibiting strikingly weak ω-dependence and rather simple spatial struc-

ture, boding well for the applicability of simple, adiabatic kernels to describe the first

excitation. Through analysis of the density response functions, and investigation us-

ing a simple toy model, we ascribe these results in part to the exact many-electron

wavefunction being well approximated by the exact KS wavefunction. For higher ex-

citations, fxc exhibits both additional spatial structure and stronger ω-dependence,

indicating that more sophisticated approximations are needed – motivating the devel-

opment of improved non-adiabatic functionals. A key finding was that the absorption

spectrum of the exact Kohn-Sham system provides a very good starting point to the

absorption spectrum of the true interacting system, demonstrating the critical impor-

tance of using an accurate approximation to the ground-state xc potential.

7.2 Future work

The ground-state xc functional is crucial to the predictive power of TDDFT, even in

non-adiabatic applications. This is evident, for example, from the results presented

in Chapter 6, in which we conclude that the exact χ0 (constructed from the exact

ground-state xc potential vxc) provides a good starting point to obtain the exact χ.
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As discussed extensively throughout this thesis, local density functionals are widely

used to approximate vxc. The insight we gained in Chapter 4, from exploring alter-

native ways to construct these most simple of approximations, provides the rationale

to extend this analysis. This may include generating local xc kernels from our set of

LDAs and analysing how they, and the HEG-based one, perform in optical spectra cal-

culations. Alternatively, we may progress to more sophisticated functionals, such as

the semi-local generalised gradient approximation (GGA), and explore other ways of

constructing these. The primary goal of this line of research is to understand whether

approximate functionals can be tailored for use in ab initio calculations.

In Chapter 5, we saw that the fluidic approximation provides a very good descrip-

tion of the non-adiabatic part of the time-dependent KS potential, in the test systems

studied. Further investigation is warranted to identify the limits of this approxima-

tion; we began to identify this, for example, when simulating a quantum tunnelling

system. Nevertheless, the positive results obtained so far lead us to believe that this

approach may prove to be a new procedure for performing TDDFT calculations1, with

the fluidic approximation providing a basis for more sophisticated approximate func-

tionals. As detailed in the aforementioned chapter, the fluidic approximation assumes

that a system remains close to its ground state in the local instantaneous rest frame,

and neglects all non-adiabatic effects in this frame. Further research could perhaps fo-

cus on quantifying this remaining non-adiabatic contribution to the KS potential, with

the aim of incorporating it into a more sophisticated functional.

Chapter 6 provided important insight into the nature of the exact fxc, including the

inadequacy of local and adiabatic kernels for anything but the lowest lying excitation.

Our next stage of research should prioritise extending this analysis of the exact xc ker-

nel and to understand how we can incorporate the results into developing improved

approximate kernels for these first few excitations. While the performance of different

local kernels (from our finite LDAs for instance) should be investigated, our results

so far highlight the need to go beyond local, and perhaps semi-local approximations

for fxc, with the use of current functionals being a potential way forward. We could

develop these current functionals through investigating the exact time propagation of

prototype systems, e.g. utilising the “slab” systems presented in Chapter 4. Addition-

ally, with the exact fxc to hand, the tensor xc kernel of time-dependent current density

1As the application of the fluidic approximation in our test systems required knowledge of the exact
density, we need to identify the most appropriate implementation in a practical calculation. This forms
another line of research.
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functional theory (TDCDFT) is readily available for analysis. If we deduce that the

non-adiabatic xc effects captured by the fluidic approximation can be isolated, either

exactly or approximately, this may prove to be another possible route to constructing

current functionals, by e.g. mixing with an adiabatic kernel. Further research should

also go beyond single excitations to explore more problematic situations for traditional

approximate functionals, e.g. double excitations.

To summarise, we have presented and investigated the performance of a set of

local density functionals as an exploration of the merits of developing approximate

ground-state functionals from finite systems, in contrast to the usual extended sys-

tem approach. We have suggested how this exploration may be furthered in future

research. We have also introduced a new perspective on how to address the issue

of non-adiabaticity in dynamic systems, and presented a simple geometrical approx-

imation, upon which we hope more sophisticated approximations can be developed.

Furthermore, we have begun to characterise the properties of the exact xc kernel of

TDDFT, allowing us in part to examine the limitations of the typically applied adia-

batic and (semi-) local approximations. In all our research we are always being guided

by knowledge of the exact functional, including by analysing its properties in a variety

of cases. The results and insight that we have obtained so far from the study of proto-

type systems are encouraging and set the scene for additional lines of research. A key

question to answer is to what extent our results from one dimension translate over to

three dimensions, which we began to explore in Ref. 121 and found the preliminary

results to be positive. Further work is required to deduce what additional effects, if

any, need to be incorporated as we transition to more realistic systems. Our aim is

to develop improved approximate functionals for use in practical electronic structure

calculations. To this end, after further development and testing in prototype systems,

we hope to implement them in ab initio codes.
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APPENDIX A

LINEAR RESPONSE THEORY

A.1 The density-response function in the Lehmann represen-

tation

A.1.1 The interacting density-response function1

The frequency representation of the interacting density-response function is given by

χ(~r,~r′, ω) = lim
η→0+

∑
n

[ 〈Ψ0|n̂(~r)|Ψn〉〈Ψn|n̂(~r′)|Ψ0〉
ω− (En − E0) + iη

− 〈Ψ0|n̂(~r′)|Ψn〉〈Ψn|n̂(~r)|Ψ0〉
ω + (En − E0) + iη

]
,

(A.1.1)

where |Ψ0〉, E0, |Ψn〉 and En are the ground state and its energy, and the n−th excited

state and its energy, respectively, n̂ is the density operator in the Heisenberg picture,

and ω is the frequency of the perturbation. χ has poles when ω → (En − E0), which

describe the excitation energies of the system. Below we derive Eq. (A.1.1) from time-

dependent perturbation theory.

A.1.1.1 Derivation from time-dependent perturbation theory

Eq. (2.4) defines the expectation value of an observable, with a corresponding Her-

mitian operator, for a system in state Ψ. Consider an observable α, with Hermitian

operator α̂:

α(t) = 〈Ψ(t)|α̂|Ψ(t)〉, (A.1.2a)

α0 = 〈Ψ0|α̂|Ψ0〉, (A.1.2b)

where α0 is the expectation value of α when the system is initially in the ground state

Ψ0. At t = 0, a time-dependent perturbing field F(t) is applied, such that the Hamil-

1The working below closely follows that presented in Refs 175 and 176.

107



108 A.1. The density-response function in the Lehmann representation

tonian becomes

Ĥ(t) = Ĥ0 + Ĥ′(t), (A.1.3a)

Ĥ′(t) = F(t)β̂, (A.1.3b)

where Ĥ0 is the static (ground-state) Hamiltonian and β̂ is some observable that F(t)

couples to. The response of α̂ to this perturbation is

δα(t) = α(t)− α0

= α1(t) + α2(t) + α3(t) + ...

≈ α1(t)

= −i
∫ t

0
dt′ F(t′)〈Ψ0|[α̂(t), β̂(t′)]|Ψ0〉. (A.1.4)

Here, we have expanded δα(t) in powers of F(t) and then only taken the first-order

(linear response) term α1(t), into consideration, i.e. neglecting higher-order terms,

which is valid providing F(t) is weak enough. The last line has been obtained through

consideration of the time-evolution operator (see A.1.1.2).

We now define the response function as

χαβ(t− t′) = −iθ(t− t′)〈Ψ0|[α̂(t− t′), β̂]|Ψ0〉, (A.1.5)

where [α̂(t), β̂(t′)] has been replaced by [α̂(t − t′), β̂] as Ĥ0 is time-independent, and

θ(t− t′) is the step function that ensures causality. This means that the linear response

can be written as

δα(t) ≈ α1(t) =
∫ ∞

−∞
dt′ χαβ(t− t′)F(t′), (A.1.6)

where we have replaced the lower integration limit 0 by −∞ as F(t) is only non-zero

for t ≥ 0.

In applications of TDDFT we are interested in situations where the the pertur-

bation is a scalar potential δvext(~r, t). Here, δvext couples to the density operator

n̂(~r) = ∑i δ(~r−~ri), such that

Ĥ′(t) =
∫ ∞

−∞
d3r′ δvext(~r′, t)n̂(~r′). (A.1.7)

This means the response function in Eq. (A.1.5) becomes the density-response func-
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tion:

χ(~r,~r′, t− t′) = −iθ(t− t′)〈Ψ0|[n̂(~r, t− t′), n̂(~r′)]|Ψ0〉, (A.1.8)

and the linear response in Eq. (A.1.6) becomes the linear response in the density:

δn(~r, t) ≈
∫ ∞

−∞
dt′
∫ ∞

−∞
d3r′ χ(~r,~r′, t− t′)δvext(~r′, t′). (A.1.9)

Now, we Fourier transform Eq. (A.1.8) to obtain χ in frequency space:

χ(~r,~r′, ω) = −i
∫ ∞

−∞
dτ θ(τ)〈Ψ0|[n̂(~r, τ), n̂(~r′)]|Ψ0〉eiωτ

= −i ∑
n

∫ ∞

−∞
dτ

[
θ(τ)eiωτ

{
〈Ψ0|n̂(~r)|Ψn〉〈Ψn|n̂(~r′)|Ψ0〉e−iωnτ

− 〈Ψ0|n̂(~r′)|Ψn〉〈Ψn|n̂(~r)|Ψ0〉eiωnτ
}]

, (A.1.10)

where τ = t− t′, ωn = En − E0, and we have used the interaction representation of

operators [Eq. (A.1.18)] and the completeness relation ∑n |Ψn〉〈Ψn| = 1. Finally, it can

be proved using contour integration that

θ(τ) = lim
η→0+

i
2π

∫ ∞

−∞
dω′

e−iω′τ

ω′ + iη
, (A.1.11)

and so

χ(~r,~r′, ω) = lim
η→0+

∑
n

[ 〈Ψ0|n̂(~r)|Ψn〉〈Ψn|n̂(~r′)|Ψ0〉
ω− (En − E0) + iη

− 〈Ψ0|n̂(~r′)|Ψn〉〈Ψn|n̂(~r)|Ψ0〉
ω + (En − E0) + iη

]
.

(A.1.12)

A.1.1.2 The time-evolution operator

The solution to the time-dependent Schrödinger equation [Eq. (2.5)] can be written as

Ψ({~ri}, t) = Û(t)Ψ0({~ri}), (A.1.13)

where Û(t) is the time-evolution operator acting on the initial (ground-state) wave-

function Ψ0. For a general time-dependent Hamiltonian H(t), Û(t) can be written

as

Û(t) = T̂ exp
[
− i

∫ t

0
dt′ Ĥ(t′)

]
, (A.1.14)

where T̂ is the time-ordering operator.

We now consider the specific Hamiltonian in Eq. (A.1.3a), where a time-dependent
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perturbation is applied at t = 0. For convenience, we define

Û(t) = e−iĤ0tÛ1(t). (A.1.15)

It can be proven from the TDSE that

i
∂

∂t
Û1(t) = eiĤ0tĤ′(t)e−iĤ0tÛ1(t), (A.1.16)

with initial condition Û1(t= 0) = 1, so that Û(t= 0) = Û1(t= 0) and Ψ({~ri}, t= 0) =

Ψ0({~ri}). Substituting this initial condition into the RHS of the above equation and

integrating over time leads to the following (first-order) approximation:

Û1(t) ≈ 1− i
∫ t

0
dt′ eiĤ0t′ Ĥ′(t′)e−iĤ0t′ . (A.1.17)

The time-dependent perturbation takes the form Ĥ′(t) = F(t)β̂ [Eq. (A.1.3b)], and the

observable β̂ can be written as

β̂(t̃) = eiĤ0 t̃ β̂e−iĤ0 t̃. (A.1.18)

Finally, this leads to the first-order approximation to the full time-evolution operator:

Û(t) ≈ e−iĤ0t
(

1− i
∫ t

0
dt′ F(t′)β̂(t′)

)
. (A.1.19)

A.1.2 Non-interacting systems

The frequency representation of the non-interacting density-response function is given

by

χ0(~r,~r′, ω) = lim
η→0+

∑
i,j
( fi − f j)

φ∗i (~r)φj(~r)φ∗j (~r
′)φi(~r′)

ω− (ε j − ε i) + iη
, (A.1.20)

where the φi, ε i are the exact solutions to the Kohn-Sham equations of ground-state

DFT, and fi is the Fermi occupation (0 or 1) of φi. In a manner analogous to χ, which

has poles at the excitation energies of the interacting system, χ0 has poles at the excita-

tion energies of the Kohn-Sham system, ε j − ε i. Below, by considering the expression

for χ [Eq. (A.1.1)], we derive Eq. (A.1.20) for a system of two non-interacting electrons.

This is generalisable to a system of N electrons.
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The ground-state wavefunction of a system of two non-interacting electrons is a

single Slater determinant of the lowest (occupied) single-particle orbitals:

Ψ0(~r1, ~r2) =
1√
2

∣∣∣∣∣∣φ1(~r1) φ2(~r1)

φ1(~r2) φ2(~r2)

∣∣∣∣∣∣ = 1√
2

[
φ1(~r1)φ2(~r2)− φ2(~r1)φ1(~r2)

]
. (A.1.21)

If either electron (or both) is promoted to a higher-energy orbital, this represents an

excited state:

Ψn(~r1, ~r2) =
1√
2

∣∣∣∣∣∣φµ(~r1) φν(~r1)

φµ(~r2) φν(~r2)

∣∣∣∣∣∣ = 1√
2

[
φµ(~r1)φν(~r2)− φν(~r1)φµ(~r2)

]
. (A.1.22)

Substituting the above expressions, along with the density operator n̂(~r) = ∑i δ(~r −
~ri), into the amplitudes in Eq. (A.1.1):

〈Ψ0|n̂(~r)|Ψn〉 =
1
2

∫
d3r1

∫
d3r2

[
φ∗1(~r1)φ

∗
2(~r2)− φ∗2(~r1)φ

∗
1(~r2)

][
δ(~r− ~r1) + δ(~r− ~r2)

]
×[

φµ(~r1)φν(~r2)− φν(~r1)φµ(~r2)
]

=
1
2

∫
d3r1

∫
d3r2

[
δ(~r− ~r1) + δ(~r− ~r2)

][
φ∗1(~r1)φ

∗
2(~r2)φµ(~r1)φν(~r2)−

φ∗1(~r1)φ
∗
2(~r2)φν(~r1)φµ(~r2)− φ∗2(~r1)φ

∗
1(~r2)φµ(~r1)φν(~r2)+

φ∗2(~r1)φ
∗
1(~r2)φν(~r1)φµ(~r2)

]

=
1
2

∫
d3r1

[
φ∗1(~r1)φ

∗
2(~r)φµ(~r1)φν(~r)− φ∗1(~r1)φ

∗
2(~r)φν(~r1)φµ(~r)−

φ∗2(~r1)φ
∗
1(~r)φµ(~r1)φν(~r) + φ∗2(~r1)φ

∗
1(~r)φν(~r1)φµ(~r)

]
+

1
2

∫
d3r2

[
φ∗1(~r)φ

∗
2(~r2)φµ(~r)φν(~r2)− φ∗1(~r)φ

∗
2(~r2)φν(~r)φµ(~r2)−

φ∗2(~r)φ
∗
1(~r2)φµ(~r)φν(~r2) + φ∗2(~r)φ

∗
1(~r2)φν(~r)φµ(~r2)

]

=
1
2
[
φ∗2(~r)φν(~r)δ1µ − φ∗2(~r)φµ(~r)δ1ν − φ∗1(~r)φν(~r)δ2µ + φ∗1(~r)φµ(~r)δ2ν

]
+

1
2
[
φ∗1(~r)φµ(~r)δ2ν − φ∗1(~r)φν(~r)δ2µ − φ∗2(~r)φµ(~r)δ1ν + φ∗2(~r)φν(~r)δ1µ

]

= φ∗2(~r)φν(~r)δ1µ + φ∗1(~r)φµ(~r)δ2ν,

(A.1.23)
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where the last line has used δ1ν = δ2µ = 0 as both electrons cannot occupy the same

single-particle state.

Similarly:

〈Ψn|n̂(~r′)|Ψ0〉 = φ2(~r′)φ∗ν(~r
′)δ1µ + φ1(~r′)φ∗µ(~r

′)δ2ν, (A.1.24)

〈Ψ0|n̂(~r′)|Ψn〉 = φ∗2(~r
′)φν(~r′)δ1µ + φ∗1(~r

′)φµ(~r′)δ2ν, (A.1.25)

〈Ψn|n̂(~r)|Ψ0〉 = φ2(~r)φ∗ν(~r)δ1µ + φ1(~r)φ∗µ(~r)δ2ν. (A.1.26)

Substituting these amplitudes into the expression for χ to obtain χ0:

χ0(~r,~r′, ω) = lim
η→0+

∑
n

[ 〈Ψ0|n̂(~r)|Ψn〉〈Ψn|n̂(~r′)|Ψ0〉
ω− (En − E0) + iη

− 〈Ψ0|n̂(~r′)|Ψn〉〈Ψn|n̂(~r)|Ψ0〉
ω + (En − E0) + iη

]

= lim
η→0+

∑
µ,ν∈unocc

[
φ∗2(~r)φν(~r)φ2(~r′)φ∗ν(~r′)δ1µ + φ∗1(~r)φµ(~r)φ1(~r′)φ∗µ(~r′)δ2ν

ω− (Eµν − E0) + iη
−

φ∗2(~r
′)φν(~r′)φ2(~r)φ∗ν(~r)δ1µ + φ∗1(~r

′)φµ(~r′)φ1(~r)φ∗µ(~r)δ2ν

ω + (Eµν − E0) + iη

]
,

(A.1.27)

where we have ignored the δ1µδ2ν cross-terms as these must be zero, and used Eµν to

denote the energy of an excited state. It is clear from the above equation that all double

excitations (δ1µ = δ2ν = 0) are absent from χ0 and only the single-particle excitations

are captured. Simplifying:

χ0(~r,~r′, ω) = lim
η→0+

∑
i∈occ

∑
j∈unocc

[φ∗i (~r)φj(~r)φ∗j (~r
′)φi(~r′)

ω− (ε j − ε i) + iη
−

φ∗i (~r
′)φj(~r′)φ∗j (~r)φi(~r)

ω + (ε j − ε i) + iη

]
,

(A.1.28)

where we have noted that for each excitation (i → j), the excitation energy will be

equal to the difference between the KS eigenvalues. We can rewrite the above expres-

sion to obtain Eq. (A.1.20):

χ0(~r,~r′, ω) = lim
η→0+

∑
i,j
( fi − f j)

φ∗i (~r)φj(~r)φ∗j (~r
′)φi(~r′)

ω− (ε j − ε i) + iη
. (A.1.29)

This expression is equivalent [177] to that derived by Adler [178] and Wiser [179]

for a periodic system in reciprocal space.
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A.2 Optical absorption spectrum from the density-response

function

A quantity of interest in spectroscopy is the photoabsorption cross-section σ(ω), oth-

erwise known as the absorption spectrum, which provides a measure of how much

of the incident radiation is absorbed by the system, and can be calculated from the

imaginary part of the density-response function:

σ(ω) = −4πω

c

∫
dx
∫

dx′ Im
[
χ(x, x′, ω)

]
x x′, (A.2.30)

where c is the speed of light and we have restricted ourselves to 1D.

Below we derive Eq. (A.2.30) from first principles.

A.2.1 Derivation from semi-classical physics

Consider a uniform electric field oscillating with time t at frequency ω:

E(t) = E cos(ωt), (A.2.31)

where E is polarised along the x-axis. This represents the long-wavelength limit of a

linearly polarised electromagnetic wave, where the magnetic field component is weak

enough to be neglected. Some of this energy will be absorbed by the system and is

quantified by σ(ω). This absorption cross-section can be imagined as a “disc” that

absorbs all energy incident upon it. When multiplied by the intensity of the light I, it

gives the total power absorbed by the system (P = Iσ).

We begin with electromagnetic theory, specifically the Poynting vector, which de-

scribes the directional energy flux (rate of energy transport per unit area) of an elec-

tromagnetic field. For a monochromatic linearly polarised electromagnetic wave in

empty space, such as the one in Eq. (A.2.31), the Poynting vector points in the direc-

tion of propagation and is given by

~S =
1
µ0

~E× ~B, (A.2.32a)

S =
1
µ0

EB, (A.2.32b)

where S is the magnitude of the Poynting vector and reduces to this simple form due

to the electric field ~E and magnetic field ~B being perpendicular to one another.
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For a plane wave, Maxwell’s equations enforce the relationship between the streng-

th of ~E and ~B, c = E/B, where c is the speed of light in empty space. This allows the

Poynting vector in Eq. (A.2.32b) to be written in terms of the electric field:

S =
1
µ0

1
c

E2 = ε0cE2, (A.2.33)

where the relationship c = 1/
√

µ0ε0 has been used. Substituting the magnitude of the

electric field in Eq. (A.2.31) into Eq. (A.2.33):

S = ε0cE2 cos2(ωt). (A.2.34)

It can be seen from this equation that the Poynting vector fluctuates over one complete

cycle. To get the cycled-averaged intensity of the incident wave, we need to average

Eq. (A.2.34) over all cycles:

I = 〈S〉 = ε0cE2〈cos2(ωt)〉 = 1
2

ε0cE2, (A.2.35)

where we have used the well known expectation value 〈cos2(ωt)〉 = 1
2 .

Now that we have determined an expression for the intensity of the incident light,

we need to determine an expression for the power that is absorbed by the system. To

do so, it is helpful to recast the incident EM wave in complex exponential form:

E(t) = E e−iωt, (A.2.36)

where the real part of this represents the true physical wave. After enough time has

elapsed, such that the system has reached a steady-state, the time-dependent electron

density is described by the sum of the ground-state density and a small induced (com-

plex) density response δn, oscillating with frequency ω:

n(x, t) = ngs(x) + δn(x)e−iωt. (A.2.37)

As a result, the time-dependent electron current density also oscillates with frequency

ω:

j(x, t) = j0(x)e−iωt, (A.2.38)

where again the real parts in both equations represent the true physical quantities.
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We consider the (real) force on an infinitesimal element dq at position x:

dF = E dq = E cos(ωt)× (−e)× n(x, t) dx, (A.2.39)

where −e is the electronic charge. By multiplying by the group velocity u = j/n and

integrating over space we find the total power absorbed by the system:

P =
∫

dF u

= −e E cos(ωt)
∫

Re
[
j(x, t)

]
dx

= −e E cos(ωt)
∫

Re
[
j0(x)e−iωt] dx

= −1
2

eE
∫

j1(x) dx, (A.2.40)

where we have taken the real component of j, like we did with F, as we are multiplying

two oscillating quantities together. The last line has rewritten the complex exponential

through Euler’s formula, denoted the real part of j0 as j1, and used the expectation

values 〈cos2(ωt)〉 = 1
2 and 〈cos(ωt) sin(ωt)〉 = 0 to obtain the cycled-average power

absorbed. Evaluating the integral using integration by parts:

∫ ∞

−∞
j1(x) dx =

∫ ∞

−∞
j1(x)× 1 dx

=
[

j1(x)x
]∞

−∞
−
∫ ∞

−∞

dj1
dx

x dx

= 0−
∫ ∞

−∞
−ω Im

[
δn(x)

]
x dx

= ω
∫ ∞

−∞
Im
[
δn(x)

]
x dx, (A.2.41)

where the third line has substituted Eq. (A.2.37) and Eq. (A.2.38) into the continuity

equation (∂n/∂t + ∂j/∂x = 0) to rewrite the integrand in terms of δn. This allows us

to rewrite P in Eq. (A.2.40) in terms of the induced change in the density:

P = −1
2

e Eω
∫

Im
[
δn(x)

]
x dx. (A.2.42)

Now, linear response theory tells us that a weak external perturbation δvext(x, ω) will

induce a density response that is linearly related to the density-response function:

δn(x, ω) =
∫

χ(x, x′, ω) δvext(x′, ω) dx′. (A.2.43)
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For a uniform electric field polarised along the x-axis, δvext(x, ω) = e Ex. Substituting

this into Eq. (A.2.43) to obtain δn(x, ω):

δn(x, ω) =
∫

χ(x, x′, ω) δvext(x′, ω) dx′

= e E
∫

χ(x, x′, ω) x′ dx′. (A.2.44)

Finally, substituting this expression into Eq. (A.2.42) leads to an expression for the

power absorbed by the system in terms of the density-response function:

P = −1
2

e2E2ω
∫

dx
∫

dx′ Im
[
χ(x, x′, ω)

]
x x′. (A.2.45)

We obtain the absorption cross-section σ through the ratio of the net power absorbed

P to the intensity I [Eq. (A.2.35)]:

σ(ω) =

[
− 1

2
e2E2ω

∫
dx
∫

dx′ Im
[
χ(x, x′, ω)

]
x x′

]
×
[

2
ε0cE2

]
= − e2ω

ε0c

∫
dx
∫

dx′ Im
[
χ(x, x′, ω)

]
x x′. (A.2.46)

Finally, switching to Hartree atomic units (me = e = h̄ = 1/4πε0 = 1):

σ(ω) = −4πω

c

∫
dx
∫

dx′ Im
[
χ(x, x′, ω)

]
x x′. (A.2.47)

A.2.2 Derivation from time-dependent perturbation theory

Now that we have derived Eq. (A.2.30) through a semi-classical approach we wish

to do so through a full quantum description. First, it is necessary to obtain the RHS

of Eq. (A.2.30) (ignoring the prefactor) explicitly in terms of the many-electron eigen-

states {Ψm}, as we shall determine an expression for σ(ω) in terms of {Ψm}, and then

equate the two sides. By making use of the following identity:

lim
b→0+

1
a + ib

= P
(

1
a

)
− iπδ(a), (A.2.48)

for two real numbers a and b, we obtain the imaginary part of χ [Eq. (A.1.1)]:

Im
[
χ(x, x′, ω)

]
= π ∑

n

[
− 〈Ψ0|n̂(x)|Ψn〉〈Ψn|n̂(x′)|Ψ0〉 δ(ω− (En − E0))

+ 〈Ψ0|n̂(x′)|Ψn〉〈Ψn|n̂(x)|Ψ0〉 δ(ω + (En − E0))
]
, (A.2.49)
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and then:∫
dx
∫

dx′ Im
[
χ(x, x′, ω)

]
x x′ =π

∫
dx
∫

dx′
[

x x′∑
n
−〈Ψ0|n̂(x)|Ψn〉〈Ψn|n̂(x′)|Ψ0〉

× δ(ω− (En − E0)) + 〈Ψ0|n̂(x′)|Ψn〉〈Ψn|n̂(x)|Ψ0〉

× δ(ω + (En − E0))
]
.

(A.2.50)

A.2.2.1 Fermi’s golden rule

Now, we consider situations where a time-dependent perturbation is applied at t = 0,

such that the Hamiltonian of the system becomes

Ĥ(t) = Ĥ0 + Ĥ′(t), (A.2.51)

where Ĥ0 is the static (ground-state) Hamiltonian.

The time-dependent wavefunction can be expressed in terms of the many-electron

eigenstates of the unperturbed system as they form a complete set:

Ψ(t) = ∑
m

cmΨme−iEmt, (A.2.52)

where {cm} are the expansion coefficients and Em is the energy eigenvalue associated

with Ψm. By substituting these equations into the TDSE [Eq. (2.5)] we obtain

ĤΨ = ∑
m

cmĤ0Ψme−iEmt + ∑
m

cmĤ′Ψme−iEmt, (A.2.53a)

i
∂Ψ
∂t

= i ∑
m

[
ċm(t)Ψme−iEmt − iEmcm(t)Ψme−iEmt

]
. (A.2.53b)

By equating both of these and after some manipulation:

i ∑
m

ċm(t)e−iEmt〈Ψn|Ψm〉 = ∑
m

cm(t)e−iEmt〈Ψn|Ĥ′|Ψm〉. (A.2.54)

The eigenstates are orthonormal, 〈Ψn|Ψm〉 = δnm, and so

iċn(t)e−iEnt = ∑
m

cm(t)e−iEmtH′nm, (A.2.55)
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where H′nm is a matrix element. We find

ċn(t) =
1
i ∑

m
cm(t)e−i(Em−En)tH′nm. (A.2.56)

Now, if Ĥ′ is much smaller than Ĥ0, then {cm} are slowly varying with t. As the

system is initially in the ground state, c0 = 1, with the rest equal to zero. Substituting

these initial conditions into the RHS of the above equation leads to the first-order

approximation:

ċn(t) ≈
1
i ∑

m
δ0me−iωmntH′nm =

1
i

e−iω0ntH′n0, (A.2.57)

where we have defined the transition energy ωmn = Em − En. Therefore

cn(t) ≈
1
i

∫ t

0
dt′ H′n0(t

′)e−iω0nt′ . (A.2.58)

Now, we consider the system under the influence of the electric field in Eq. (A.2.31),

such that

Ĥ′ = ∑
i

δv(xi) cos(ωt), (A.2.59)

where δv(x) = eEx. Substituting the above into Eq. (A.2.58), and using the identity

cos(ωt) = (eiωt + e−iωt)/2:

cn(t) =
1
2i

∫ t

0
dt′ δvn0

[
e−i(ω0n−ω)t′ + e−i(ω0n+ω)t′]

=
δvn0

2

[
e−i(ω0n−ω)t − 1

ω0n −ω
+

e−i(ω0n+ω)t − 1
ω0n + ω

]
=

δvn0

2

[
ei(ωn0−ω)t − 1

ω−ωn0
− ei(ω+ωn0)t − 1

ω + ωn0

]
, (A.2.60)

where δvn0 is a matrix element, defined below in Eq. (A.2.67). The first term in the

square brackets is much larger than the second term when ω ≈ ωn0, i.e. at the transi-

tion energy, representing absorption. Considering only this term for now, and using

|eiθ − 1|2 = 4 sin2(θ/2):

|cn(t)|2 ≈
δvn0t2

4
sinc2

[
(ωn0 −ω)t

2

]
. (A.2.61)

By using the identity

δ(x) = lim
ε→0

1
ε

sinc( x
ε )

π
=⇒ 2πδ(x) = lim

t→∞
t sinc

(
xt
2

)
, (A.2.62)
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we obtain the long-time limit:

|cn(t)|2 ≈
|δvn0|2πt

2
δ(ωn0 −ω)

=
|δvn0|2πt

2
δ(ω− (En − E0)). (A.2.63)

If we were to take the second term into consideration, an additional delta function

δ(ω + (En − E0)) would appear, representing stimulated emission. As the system be-

gins in the ground state only absorption is possible, and so we can neglect this addi-

tional term. The above allows us to calculate the transition rate between the ground

state and the n−th excited state:

Γ0−→n =
|cn(t)|2

t
=
|δvn0|2π

2
δ(ω− (En − E0)), (A.2.64)

which is constant in time and is known as Fermi’s golden rule. The power (energy

per unit time) absorbed will be equal to the transition rate multiplied by the transition

energy. The total power absorbed by the system will be a sum over all states:

P = ∑
n

ωn0Γ0−→n = ∑
n

[
ωn0|δvn0|2π

2
δ(ω− (En − E0))

]
= ω ∑

n

[ |δvn0|2π

2
δ(ω− (En − E0))

]
, (A.2.65)

where we have replaced ωn0 with ω as the delta function enforces this equality.

We can rewrite the spatial part of the perturbing Hamiltonian in terms of the den-

sity operator:

∑
i

δv(xi) =
∫

dx ∑
i

δ(x− xi) δv(x)

= eE
∫

dx n̂(x)x, (A.2.66)

which allows us to define the matrix element

δvn0 = 〈Ψn|
{

∑
i

δv(xi)

}
|Ψ0〉

= eE〈Ψn|
{ ∫

dx n̂(x)x
}
|Ψ0〉. (A.2.67)
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We now take the square of the modulus of this matrix element:

|δvn0|2 = δv∗n0 δvn0

= eE〈Ψ0|
{ ∫

dx n̂(x)x
}
|Ψn〉 × eE〈Ψn|

{ ∫
dx′ n̂(x′)x′

}
|Ψ0〉

= e2E2〈Ψ0|
{ ∫

dx n̂(x)x
}
|Ψn〉〈Ψn|

{ ∫
dx′ n̂(x′)x′

}
|Ψ0〉, (A.2.68)

and substitute this into Eq. (A.2.65):

P = ω ∑
n

[
e2E2π

2
〈Ψ0|

{ ∫
dx n̂(x)x

}
|Ψn〉〈Ψn|

{ ∫
dx′ n̂(x′)x′

}
|Ψ0〉×

δ(ω− (En − E0))

]

=
e2E2πω

2

∫
dx
∫

dx′
[

x x′∑
n
〈Ψ0|n̂(x)|Ψn〉〈Ψn|n̂(x′)|Ψ0〉δ(ω− (En − E0))

]
.

(A.2.69)

We divide this by the intensity of the perturbing field [Eq. (A.2.35)] and switch to

Hartree atomic units:

P
I
=

4π2ω

c

∫
dx
∫

dx′
[

x x′∑
n
〈Ψ0|n̂(x′)|Ψn〉〈Ψn|n̂(x)|Ψ0〉δ(ω− (En − E0))

]
.

(A.2.70)

Finally, through Eq. (A.2.50), we obtain σ(ω) in terms of the density-response function:

σ(ω) = −4πω

c

∫
dx
∫

dx′ Im
[
χ(x, x′, ω)

]
x x′, (A.2.71)

where we note that the expression for χ in the Lehmann representation, and hence

Eq. (A.2.50), includes terms representing stimulated emission, which we were free to

include in the above proof but neglected for simplicity.
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IDEA

B.1 Imaginary time propagation

As discussed in Chapter 3, the old version of iDEA involved propagating a trial wave-

function through imaginary time to determine the exact ground state of the system.

While the new version of iDEA uses an improved method, the results presented in

Chapter 4 were generated using this old method, and so we discuss it below, along

with the Crank-Nicolson scheme that was used to perform it.

We start from the time-dependent Schrödinger equation:

ĤΨ({xi}, t) = i
∂

∂t
Ψ({xi}, t). (B.1.1)

If the Hamiltonian operator does not explicitly depend on time, the time-evolution

operator [Eq. (A.1.14)] reduces to Û(t) = −itĤ, and the solution to the TDSE is trivial:

Ψ({xi}, t) = e−itĤΨ({xi}, t = 0). (B.1.2)

We can expand the wavefunction at t = 0 in the basis of the many-electron eigenstates

{Ψm}:
Ψ(x, t = 0) = ∑

m
cmΨm, (B.1.3)

which are the set of solutions to the time-independent Schrödinger equation:

ĤΨm = EmΨm. (B.1.4)

This allows us to recast the time-dependent wavefunction:

Ψ(x, t) = e−itĤ ∑
m

cmΨm. (B.1.5)
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Achieving a Taylor expansion1 of Û(t):

ex =
∞

∑
n=0

xn

n!
=⇒ e−itĤ =

∞

∑
n=0

(−itĤ)n

n!
. (B.1.6)

Substituting this into the RHS of Eq. (B.1.5):

Ψ(x, t) = e−itĤ ∑
m

cmΨm

= ∑
m

cme−itĤΨm

= ∑
m

∞

∑
n=0

cm
(−itĤ)n

n!
Ψm

= ∑
m

∞

∑
n=0

cm
(−itEm)n

n!
Ψm

= ∑
m

cme−itEm Ψm, (B.1.7)

i.e. the wavefunction is a weighted sum of eigenstates that are oscillatory in time. By

making the substitution τ = it:

Û(t) = e−itĤ −→ Û(τ) = e−τĤ, (B.1.8)

and so we obtain the wavefunction in imaginary time:

Ψ(x, τ) = ∑
m

cme−EmτΨm. (B.1.9)

I.e. the terms, which are oscillatory in real time, decay exponentially in imaginary

time.

B.1.1 The Crank-Nicolson method

We begin by considering the time evolution of the wavefunction, given in Eq. (B.1.2):

Ψ({xi}, t) = e−itĤΨ({xi}, t = 0). (B.1.10)

1Operators (e.g. Ĥ) Taylor expand in the same way as variables (e.g. x).
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At a time δt later:

Ψ({xi}, t + δt) = e−i(t+δt)ĤΨ({xi}, t = 0)

= e−iδtĤe−itĤΨ({xi}, t = 0)

= e−iδtĤΨ({xi}, t). (B.1.11)

Premultiplying both sides by e
iδt
2 Ĥ:

ei δt
2 ĤΨ({xi}, t + δt) = e−i δt

2 ĤΨ({xi}, t). (B.1.12)

Achieving Taylor expansions of both exponential terms and truncating to first order

in δt:

ex =
∞

∑
n=0

xn

n!
=⇒ e±i δt

2 Ĥ =
∞

∑
n=0

(
± i δt

2 Ĥ
)n

n!
= 1± i

δt
2

Ĥ +O
(
δt2). (B.1.13)

Substituting into Eq. (B.1.12):

(
1 + i

δt
2

Ĥ
)

Ψ({xi}, t + δt) =
(

1− i
δt
2

Ĥ
)

Ψ({xi}, t). (B.1.14)

This constitutes a matrix equation:

(
I + i

δt
2

H
)

Ψ({xi}, t + δt) =
(

I − i
δt
2

H
)

Ψ({xi}, t), (B.1.15)

where I is the identity matrix. This can also be cast into imaginary time by making the

substitution τ = it:

(
I +

δτ

2
H
)

Ψ({xi}, τ + δτ) =

(
I − δτ

2
H
)

Ψ({xi}, τ). (B.1.16)

The above two equations are accurate to O
(
δt2) and O

(
δτ2) respectively, as a result

of the truncation made in Eq. (B.1.13).

B.2 Derivative stencils

As iDEA implements finite-difference methods on a real-space grid, the position vari-

able x is discretised, functions become vectors and operators become matrices. Be-

low we derive the matrix representation of the second-derivative operator, which is

necessary to solve several differential equations, e.g. the many-electron Schrödinger
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equation and KS equations.

Consider a function f (x) expanded about two points, x + δx and x− δx, through

a Taylor series:

f (x± δx) =
∞

∑
n=0

(±1)n f (n)(x)
n!

δxn

= f (x)± f ′(x)δx +
f ′′(x)δx2

2!
± f ′′′(x)δx3

3!
+O

(
δx4). (B.2.17)

Summing both terms gives

f (x + δx) + f (x− δx) =
∞

∑
n=0

[
1 + (−1)n] f (n)(x)

n!
δxn

= 2 f (x) + f ′′(x)δx2 +O
(
δx4). (B.2.18)

Rearranging allows us to obtain an expression for the second derivative of f at the

point x:

f ′′(x) ≈ f (x− δx)− 2 f (x) + f (x + δx)
δx2 , (B.2.19)

where we have truncated all terms O
(
δx2). On a discretised grid with M points,

the function f (x) becomes a vector with M elements. As such, we obtain the second

derivative of f (x) as

d2 f
dx2 =

(
d2

dx2

)


f1

f2

f3
...

fM


≈ 1

δx2



−2 1 0 0 0

1 −2 1 0 0

0 1 −2
. . . 0

0 0
. . . . . . 1

0 0 0 1 −2





f1

f2

f3
...

fM


(B.2.20)

where the second-derivative matrix takes the form

d2

dx2 ≈
1

δx2



−2 1 0 0 0

1 −2 1 0 0

0 1 −2
. . . 0

0 0
. . . . . . 1

0 0 0 1 −2


(B.2.21)

This is a tridiagonal matrix and is known as a three-point stencil. Higher-order ap-

proximations can be obtained (e.g. a five-point stencil with O
(
δx4)) by taking more
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terms into account in Eq. (B.2.19). iDEA currently implements three-, five-, seven-,

nine-, eleven- and thirteen-point stencils. For a fixed grid point number, the Hamil-

tonian matrix is less sparse for higher-order stencils, thereby leading to an increase in

computation time. However, the higher-order stencils are much more accurate, and so

less grid points can be used, thereby speeding up computation time. The user is free

to specify the stencil to be used in a calculation, with these trade-offs being taken into

account.

B.3 Density-response functions

The interacting density-response function

χ(x, x′, ω) = lim
η→0+

∑
n

[ 〈Ψ0|n̂(x)|Ψn〉〈Ψn|n̂(x′)|Ψ0〉
ω− (En − E0) + iη

− 〈Ψ0|n̂(x′)|Ψn〉〈Ψn|n̂(x)|Ψ0〉
ω + (En − E0) + iη

]
,

(B.3.22)

is characterised by the amplitudes (〈Ψ0|n̂(x)|Ψn〉 etc.), which are determined from the

many-electron eigenstates. We find expressions for these numerators for two-electron

systems on a real-space grid. This is necessary for the results presented in Chapter 6.

B.3.1 Implementation for two-electron systems

We consider a two-electron system with ground state Ψ0(x1, x2) and n−th excited state

Ψn(x1, x2). We use these, along with the density operator n̂(x) = ∑i δ(x − xi), to

evaluate the first amplitude in Eq. (B.3.22):

〈Ψ0|n̂(x)|Ψn〉 =
∫

dx1

∫
dx2 Ψ∗0(x1, x2)

[
δ(x− x1) + δ(x− x2)

]
Ψn(x1, x2)

=
∫

dx2 Ψ∗0(x, x2)Ψn(x, x2) +
∫

dx1 Ψ∗0(x1, x)Ψn(x1, x)

=
∫

dx′ Ψ∗0(x, x′)Ψn(x, x′) +
∫

dx′ Ψ∗0(x′, x)Ψn(x′, x), (B.3.23)

where we have replaced the dummy variables x1 and x2 with x′. Finally, we can exploit

the exchange-antisymmetry of Ψ0(x1, x2) and Ψn(x1, x2) to combine the integrals and

obtain

〈Ψ0|n̂(x)|Ψn〉 = 2
∫

dx′ Ψ∗0(x′, x)Ψn(x′, x). (B.3.24)

Similarly:

〈Ψn|n̂(x′)|Ψ0〉 = 2
∫

dx Ψ∗n(x, x′)Ψ0(x, x′),
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〈Ψ0|n̂(x′)|Ψn〉 = 2
∫

dx Ψ∗0(x, x′)Ψn(x, x′),

〈Ψn|n̂(x)|Ψ0〉 = 2
∫

dx′ Ψ∗n(x′, x)Ψ0(x′, x).

It should be noted that as our Hamiltonian matrix is real and symmetric the associated

eigenvectors, i.e. solutions to the TISE, are real (Ψ0 =Ψ∗0 , Ψn =Ψ∗n ∀ n), and therefore

so are the amplitudes.
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APPENDIX C

DETAILS OF CALCULATIONS

C.1 Chapter 4

C.1.1 Finite LDAs

The slab systems have electron densities of the form

n(x) = n0 exp
[
− 10−11(mx)12], (C.1.1)

where n0 is the value of the plateau region and m is a scaling factor chosen so that the

density integrates to the appropriate number of electrons (1, 2 or 3).

The xc energy density in the three finite LDAs is parameterised by

εxc(n) = (A + Bn + Cn2 + Dn3 + En4 + Fn5)nG. (C.1.2)

The parameterisation of the xc potential is obtained:

vLDA
xc (n) = εxc(n(x)) + n(x)

dεxc

dn

∣∣∣∣
n(x)

=
[
A(1 + G) + B(2 + G)n + C(3 + G)n2

+ D(4 + G)n3 + E(5 + G)n4

+ F(6 + G)n5]nG. (C.1.3)

C.1.2 HEG LDAs

In the HEG LDA, the xc energy density is split into separate exchange and correlation

parts. Consequently, the xc potential is also split into separate exchange and correla-

tion parts.
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128 C.1. Chapter 4

The exchange energy density in the HEG LDA is parameterised as in Eq. (C.1.2), and

so the exchange potential is of the same form as Eq. (C.1.3).

The correlation energy density in the HEG LDA is parameterised by

εc(rs) = −
ARPArs + Er2

s
1 + Brs + Cr2

s + Dr3
s

ln
(
1 + αrs + βr2

s
)

α
, (C.1.4)

where 2rs = 1/n. The correlation potential is given by

vc(rs) = εc(rs) −
rs

α(1 + Brs + Cr2
s + Dr3

s )

[
− (A + 2Ers) ln

(
1 + αrs + βr2

s
)

+
(Ars + Er2

s )(B + 2Crs + 3Dr2
s ) ln

(
1 + αrs + βr2

s
)

1 + Brs + Cr2
s + Dr3

s

− (Ars + Er2
s )(α + 2βrs)

(1 + αrs + βr2
s )

]
. (C.1.5)

C.1.3 System 1 (Two-electron harmonic well)

The external potential is

vext(x) =
1
2

ω2x2, (C.1.6)

where ω = 2
3 a.u. The system has a spatial length of 16 a.u. and is sampled with

1601 grid points for exact and Hartree-Fock calculations, leading to a grid spacing of

δx = 0.01 a.u. The system is sampled with 3201 grid points for LDA calculations,

leading to a grid spacing of δx = 0.005 a.u.

C.1.4 System 2 (Three-electron harmonic well)

The external potential is of the same form as Eq. (C.1.6) with ω = 1
2 a.u. The system has

a spatial length of 16 a.u. and is sampled with 401 grid points for exact and Hartree-

Fock calculations, leading to a grid spacing of δx = 0.04 a.u. The system is sampled

with 4001 grid points for LDA calculations, leading to a grid spacing of δx = 0.004

a.u.

C.1.5 System 3 (Two-electron double well)

The external potential is

vext(x) = αx10 − βx4, (C.1.7)
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where α = 5× 10−11 and β = 1.3× 10−4. The system has a spatial length of 30 a.u.

and is sampled with 2001 grid points for exact and Hartree-Fock calculations, leading

to a grid spacing of δx = 0.015 a.u. The system is sampled with 4001 grid points for

LDA calculations, leading to a grid spacing of δx = 0.0075 a.u.

C.1.6 System 4 (Two-electron atom)

The external potential is

vext(x) = − a
|x|+ a

, (C.1.8)

where a = 20 a.u. The system has a spatial length of 60 a.u. and is sampled with

2001 grid points for exact and Hartree-Fock calculations, leading to a grid spacing of

δx = 0.03 a.u. The system is sampled with 4001 grid points for LDA calculations,

leading to a grid spacing of δx = 0.015 a.u.

C.1.7 System 5 (Three-electron atom)

The external potential is of the same form as Eq. (C.1.8) with a = 50 a.u. The sys-

tem has a spatial length of 90 a.u. and is sampled with 401 grid points for exact and

Hartree-Fock calculations, leading to a grid spacing of δx = 0.225 a.u. The system

is sampled with 4001 grid points for LDA calculations, leading to a grid spacing of

δx = 0.0225 a.u.

C.2 Chapter 5

C.2.1 System 1 (Two-electron Gaussian well)

The unperturbed and perturbed external potentials are

vext(x, t = 0) = −ae−bx2
, (C.2.9)

vext(x, t > 0) = −ae−bx2 − εx, (C.2.10)

where a = 0.75 a.u., b = 0.1 a.u. and ε = 0.02 a.u. The system has a spatial length of 30

a.u. and is sampled with 151 grid points, leading to a grid spacing of δx = 0.2 a.u. Real

time propagation is simulated for 8 a.u. and is sampled with 1601 time points, leading

to a time step of δt = 0.005 a.u. To determine how well the fluidic approximation

satisfies the zero-force theorem, we use δx = 0.06 a.u. and δt = 4× 10−4 a.u.
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C.2.2 System 2A (Two-electron atom)

The unperturbed and perturbed external potentials are

vext(x, t = 0) = − a
|x|+ a

, (C.2.11)

vext(x, t > 0) = − a
|x|+ a

+ ε cos(bx), (C.2.12)

where a = 20 a.u., ε = 0.02 a.u. and b = 0.75. The system has a spatial length of 40

a.u. and is sampled with 151 grid points, leading to a grid spacing of δx ≈ 0.27 a.u.

Real time propagation is simulated for 5 a.u. and is sampled with 1001 time points,

leading to a time step of δt = 0.005 a.u.

C.2.3 System 2B (Three-electron atom)

The potentials are of the same form as Eq. (C.2.11) and Eq. (C.2.12) with a = 20 a.u.,

ε = 0.02 a.u. and b = 0.75. The system has a spatial length of 50 a.u. and is sampled

with 121 grid points, leading to a grid spacing of δx ≈ 0.42 a.u. Real time propagation

is simulated for 5 a.u. and is sampled with 1001 time points, leading to a time step of

δt = 0.005 a.u.

C.2.4 System 2C (Strongly disrupted three-electron atom)

The potentials are of the same form as Eq. (C.2.11) and Eq. (C.2.12) with a = 20 a.u.,

ε = 0.1 a.u. and b = 0.75. The system has a spatial length of 50 a.u. and is sampled

with 121 grid points, leading to a grid spacing of δx ≈ 0.42 a.u. Real time propagation

is simulated for 18 a.u. and is sampled with 9001 time points, leading to a time step of

δt = 0.002 a.u.

C.2.5 System 3 (Two-electron tunnelling system)

The unperturbed and perturbed external potentials are

vext(x, t = 0) =
a

e4(−|x+4.5|+3.5) + 1
− a

e4(|x−4.5|−3.5) + 1
− a, (C.2.13)

vext(x, t > 0) =
a/2

e4(−|x+4.5|+3.5) + 1
− 3a/2

e4(|x−4.5|−3.5) + 1
− a

2
, (C.2.14)

where a = 0.3 a.u. The system has a spatial length of 20 a.u. and is sampled with

301 grid points, leading to a grid spacing of δx ≈ 0.07 a.u. Real time propagation is
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simulated for 15 a.u. and is sampled with 3001 time points, leading to a time step of

δt = 0.005 a.u.

C.3 Chapter 6

C.3.1 Sum rule

The exact fxc satisfies the zero-force sum rule (see Sec. 2.5.3.1; Eq. (2.51)):

∫
fxc(x, x′, ω)∂x′n0(x′) dx′ = ∂xv0

xc(x), (C.3.15)

where n0 is the ground-state density and v0
xc is the ground-state xc potential. As well

as giving the correct absorption spectrum from the exact χ0, we check that the fxc for

each model system satisfies this sum rule.

C.3.2 System 1 (Two-electron harmonic well)

The external potential is

vext(x) =
1
2

ω2
0x2, (C.3.16)

where ω0 = 0.25 a.u. The system has a spatial length of 20 a.u. and is sampled with 101

grid points, leading to a grid spacing of δx = 0.2 a.u. We have replaced the positive

infinitesimal η with 0.005 to broaden the absorption peaks for ease of viewing. We

calculate all many-electron eigenstates and Kohn-Sham orbitals, to obtain converged

results for χ and χ0 respectively. We verify that the exact fxc obtained is correct by

checking that it satisfies Eq. (C.3.15) [Fig. C.1(a)].

C.3.3 System 3 (Two-electron atom)

The external potential is

vext(x) = − a
|x|+ a

, (C.3.17)

where a = 20 a.u. The system has a spatial length of 50 a.u. and is sampled with 201

grid points, leading to a grid spacing of δx = 0.25 a.u. We have replaced the positive

infinitesimal η with 0.002 to broaden the absorption peaks for ease of viewing. We

calculate all many-electron eigenstates and Kohn-Sham orbitals, to obtain converged

results for χ and χ0 respectively. We verify that the exact fxc obtained is correct by

checking that it satisfies Eq. (C.3.15) [Fig. C.1(b)].
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Fig. C.1. We confirm the exact fxc obtained for each system satisfies the sum rule
[Eq. (C.3.15)]. The RHS of the equation is obtained through direct differentiation of
the exact ground-state xc potential (solid red in both plots): (a) For the harmonic well
system, we evaluate the LHS of the equation at ω = 0 (dotted-dashed blue) and at
the first excitation ω = ω0 (dashed green), both of which should be equal to the RHS
if the sum rule is satisfied. (b) For the atom-like system, we evaluate the LHS of the
equation at ω = 0 (dotted-dashed blue), at the first excitation ω = 0.0448 (dashed
green), at the second excitation ω = 0.0859 (dotted magenta), at the third excitation
ω = 0.1187 (short-dashed black), and at the sixth excitation ω = 0.1773 (long-dashed
grey), all of which should be equal to the RHS if the sum rule is satisfied. While there
are discrepancies between the sets of curves in both plots, it is important to note that
these discrepancies are much smaller in magnitude than fxc is (Fig. 6.2 and Fig. 6.6 in
Chapter 6). They can therefore be attributed to small numerical errors in fxc.
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APPENDIX D

FLUIDIC APPROXIMATION

D.1 Gauge transformation

We begin by considering the time-dependent Schrödinger equation (TDSE) for a sys-

tem under the influence of a scalar potential v and vector potential A:

i
∂

∂t
Ψ(x, t) =

1
2

(
− i

∂

∂x
+ A(x, t)

)2

Ψ(x, t) + v(x, t)Ψ(x, t), (D.1.1)

where the first term in the brackets on the RHS is the momentum operator. Gauge

theory tells us that we are free to make certain changes of gauge without affecting the

physical characteristics of the system, meaning that the TDSE continues to be satisfied.

Specifically:

Ψ(x, t) −→ e−iθ(x,t)Ψ(x, t), (D.1.2a)

A(x, t) −→ A(x, t)− ∂

∂x
θ(x, t), (D.1.2b)

v(x, t) −→ v(x, t) +
∂

∂t
θ(x, t), (D.1.2c)

which allows us to modify the scalar and vector potentials, without detriment to their

associated fields. We utilise this in Sec. D.3, introducing the concept of a “local instan-

taneous rest frame”.

D.2 Galilean transformation

Suppose we are in some frame S (the lab frame) with A = 0, such that Eq. (D.1.1)

becomes

i
∂

∂t
Ψ(x, t) = −1

2
∂2

∂x2 Ψ(x, t) + v(x, t)Ψ(x, t). (D.2.3)
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If we transform to some different (inertial) frame S′, moving with velocity u relative

to frame S, the TDSE remains invariant:

i
∂

∂t
Ψ′(x′, t) = −1

2
∂2

∂x′2
Ψ′(x′, t) + v′(x′, t)Ψ′(x′, t), (D.2.4)

where

x′ = x− ut, (D.2.5a)

v′(x′, t) = v(x, t) = v(x′ + ut, t), (D.2.5b)

Ψ′(x′, t) = e−i(ux′+ut2/2)Ψ(x, t), (D.2.5c)

and can be verified by direct substitution into Eq. (D.2.4). This Galilean invariance

is a special case of generalised translational invariance [26], and the scalar potential

rigidly follows the rigidly translated time-dependent density, n′(x′, t) = n(x′ + ut, t).

D.3 Local instantaneous rest frame

Let us now consider a KS system that is at rest in frame S′, such that the density moves

rigidly with velocity u when viewed from frame S. In S′ the KS potential (purely

scalar) will be v′s(x′, t) = vA
s [n′(x′)], i.e. the adiabatic KS potential evaluated on n′(x′),

which is static. Transforming to S through the above Galilean transformation main-

tains zero vector potential, and the scalar potential continues to be given by the adi-

abatic expression but moving along with velocity u [Eq. (D.2.5b)], i.e. following the

density.

In S we now apply a gauge transformation, As → −u. Through Eq. (D.1.2b) and

Eq. (D.1.2c) we see that vs remains unchanged (θ = ux). So, if the KS system is in

the ground state in frame S′, then neither transforming to frame S through a Galilean

transformation, nor making the gauge transformation in S, affects the validity of the

adiabatic KS potential: vs = vA
s .

But in general the system will not be at rest in frame S′, and so the density in frame

S will not be rigidly translating with a uniform and constant velocity u. Since u(x, t)

may be significantly x- and t-dependent, there is no universal rest frame S′. But, by

imagining a vector potential As(x, t) = −u(x, t) in S, we are achieving the effect of

transforming to the local instantaneous rest frame1, in which only a weak non-adiabatic

1Apart from a unimportant temporal phase factor in the KS orbitals, taking the same form as that in
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correction to vA
s is required. In particular, the effects of acceleration (u̇ 6= 0) and dis-

persion (∂xu 6= 0) have least effect in a frame where u itself is zero. Additionally, the

rate of change of kinetic energy, which provides a measure of the scale of any non-

adiabatic potential, is proportional to uu̇ (as in classical mechanics), and so is smallest

when u is zero. We now make the simple assumption that the non-adiabatic correc-

tion in the local instantaneous rest frame is zero, and approximate the KS potential as

exactly adiabatic there. Recasting this vector potential as a scalar potential through

Eq. (D.1.2b) and Eq. (D.1.2c) we obtain the non-adiabatic correction to the adiabatic

potential:

∆vs(x, t > 0) = −
∫ x

−∞

∂

∂t
u(x′, t > 0) dx′, (D.3.6)

which we term the fluidic approximation, as stated in Eq. (5.3) in Chapter 5.

D.4 The harmonic potential theorem

The harmonic potential theorem [27] (HPT), which is a special case of generalised

translational invariance, shows that in a system of interacting electrons in a harmonic

potential, subject to a uniform electric field at t = 0, the density rigidly moves in the

manner of the underlying classical harmonic oscillator. Below, we state the HPT (see

Ref. 27 for the original proof) and then show that the fluidic approximation adds ex-

actly the non-adiabatic correction required (apart from an unimportant time-dependent

constant) by the HPT2.

The unperturbed and perturbed external potentials are

v0
ext(x) =

1
2

ω2
0x2, (D.4.7a)

vext(x, t) =
1
2

ω2
0x2 + Ex cos(ωt), (D.4.7b)

where ω0 is the angular frequency of the harmonic well and E is the amplitude of the

the uniform electric field oscillating with angular frequency ω.

Ref. 27 showed that the time-dependent density is simply the ground-state den-

sity rigidly translated, n(x, t) = n0(x − X(t)), where the translation vector X(t) is

Eq. (D.1.2a) with θ(x, t) = u(x, t)x.

2We have also confirmed this numerically for two interacting electrons in a harmonic potential where the
perturbing field is static (ω = 0).
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described by the equation of motion of a (classical) driven harmonic oscillator:

Ẍ + ω2
0X = −E cos(ωt), (D.4.8)

and is given by

X(t) =
E

ω2
0 −ω2

(cos(ω0t)− cos(ωt)). (D.4.9)

The exact ground-state and time-dependent KS potentials are given by

v0
s (x) =

1
2

ω2
0x2 + v0

H(x) + v0
xc(x), (D.4.10a)

vs(x, t) =
1
2

ω2
0x2 + Ex cos(ωt) + v0

H(x− X(t)) + v0
xc(x− X(t)), (D.4.10b)

where the time-dependent Hartree and xc potentials are their ground-state counter-

parts translated3. We can also decompose vs(x, t) into its adiabatic part:

vA
s (x, t) = v0

s (x− X(t))

=
1
2

ω2
0(x− X(t))2 + v0

H(x− X(t)) + v0
xc(x− X(t)), (D.4.11)

and non-adiabatic part:

∆vs(x, t) = vs(x, t)− vA
s (x, t)

= Ex cos(ωt) + ω2
0xX(t)−1

2
ω2

0X(t)2︸ ︷︷ ︸
c(t)

= Ex cos(ωt) + ω2
0x

[
E

ω2
0 −ω2

(cos(ω0t)− cos(ωt))

]
+ c(t)

= Ex

[
1− ω2

0

ω2
0 −ω2

]
cos(ωt) +

Eω2
0x

ω2
0 −ω2

cos(ω0t) + c(t)

=
Ex

ω2
0 −ω2

[
ω2

0 cos(ω0t)−ω2 cos(ωt)
]
+ c(t). (D.4.12)

At each instant, vA
s is the DFT KS potential whose ground-state density is equal to the

exact time-dependent density, with ∆vs constituting the remainder of vs.

We now prove that the fluidic approximation is exact in the case of HPT systems.

To start with, we consider the velocity field, which is the time derivative of the trans-

3As the time-dependent density is simply the ground-state density rigidly translated, the time-
dependent vH and vxc are simply their ground-state counterparts rigidly translated, as a consequence
of generalised translational invariance (see Refs [26] and [180]; Eq. (2.29)).
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lation vector:

u = Ẋ =
E

ω2
0 −ω2

[
ω sin(ωt)−ω0 sin(ω0t)

]
, (D.4.13)

and take the time derivative one more time:

u̇ = Ẍ =
E

ω2
0 −ω2

[
ω2 cos(ωt)−ω2

0 cos(ω0t)
]
. (D.4.14)

Substituting this into the fluidic approximation [Eq. (D.3.6)]:

∆vs(x, t) = −
∫ x

−∞
u̇ dx′

= −Ẍx

=
Ex

ω2
0 −ω2

[
ω2

0 cos(ω0t)−ω2 cos(ωt)
]
. (D.4.15)

This is equal to the exact non-adiabatic potential, apart from the time-dependent con-

stant c(t), which is unimportant as it has no effect on the density, and the KS potential

is only defined up to an additive constant. The HPT is therefore satisfied by the fluidic

approximation4.

4To be clear, we have proven that the fluidic approximation satisfies the HPT. To prove the HPT itself,
one needs to consider generalised translational invariance of the system, as is done in Ref. 27.
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ABBREVIATIONS

1D one dimension.

1e one-electron.

2e two-electron.

3e three-electron.

ALDA adiabatic local density approximation.

BSE Bethe-Salpeter equation.

DFT density functional theory.

DMC diffusion Monte Carlo.

EELS electron energy loss spectra.

EXX exact exchange.

GGA generalised gradient approximation.

GK Gross-Kohn.

HEG homogeneous electron gas.

HF Hartree-Fock.

HK Hohenberg-Kohn.

HOMO highest occupied molecular orbital.

HPT harmonic potential theorem.
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Hxc Hartree-exchange-correlation.

iDEA interacting Dynamic Electrons Approach.

KS Kohn-Sham.

LDA local density approximation.

LHS left-hand side.

LRDMC lattice regularized diffusion Monte Carlo.

LUMO lowest unoccupied molecular orbital.

MAE mean absolute error.

OEP optimised effective potential.

QMC quantum Monte Carlo.

RHS right-hand side.

RMSE root-mean-square error.

RPA random phase approximation.

SCF self-consistent field.

SIC self-interaction correction.

SVD singular-value decomposition.

TDCDFT time-dependent current density functional theory.

TDDFT time-dependent density functional theory.

TDSE time-dependent Schrödinger equation.

TISE time-independent Schrödinger equation.

VK Vignale-Kohn.

xc exchange-correlation.

ZFT zero-force theorem.
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