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Abstract  

 

Tissue Engineering (TE) aims to devise solutions for the healing of critical defects 

which cannot heal naturally, within the host tissue. In a typical TE approach, 

biodegradable scaffolds are used to fill the defect site to provide temporary mechanical 

support and to serve as a three-dimensional substrate for cell attachment and 

proliferation. These TE scaffolds need to have a highly interconnected porous 

architecture to enable cell infiltration, nutrient flow, and integration of the material 

within the host tissue. To date, various scaffold fabrication routes have been reported. 

However, recently, emulsion templating has gained particular attention as a scaffold 

fabrication technique due to its ability to introduce (i) up to 99% porosity, (ii) high 

interconnectivity, and high tunability. The technique is briefly based on the 

preparation of emulsion composed of at least two immiscible liquids where one phase 

is dispersed in the other phase and solidification of the continuous phase of the 

emulsion and removal of the internal phase. Fabrication of emulsion templated 

matrices made of a wide range of synthetic and natural polymers have been reported. 

However, polycaprolactone (PCL)-based emulsion templated substrates have 

previously been shown to be challenging to formulate due to the high viscosity of the 

polymer, which limits the efficient mixing of the two phases within the emulsion. 

In this study, tetramethacrylate functionalised PCL (4PCLMA) was synthesised, and 

photocurable PCL-based Polymerised High Internal Phase Emulsions (PolyHIPEs) 

were developed. The effect of diluting solvent volume and composition on the stability 

of HIPEs and morphology of PolyHIPEs was studied in depth. Following the 
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development of the formulation of PCL PolyHIPEs using a solvent blend of chloroform 

and toluene and their initial cytotoxicity test were conducted. Then, the suitability of 

PCL PolyHIPEs to be used as a dental membrane (BM) was tested. Bilayer BM was 

developed by combining electrospinning and emulsion templating techniques. Impact 

of air plasma treatment of PolyHIPEs on cell viability and cell penetration was 

investigated. Results showed that PCL electrospun layer was capable of limiting cell 

infiltration at least for four weeks while the morphology of the PCL PolyHIPEs allows 

infiltration of bone cells through the pores. Especially, cell infiltration was significantly 

higher in air plasma treated PolyHIPEs. Ex ovo chick chorioallantoic membrane (CAM) 

assay showed that the pore structure of PolyHIPEs allows blood vessel growth through 

the pores. 

PCL PolyHIPE-based multiscale porous scaffolds were also fabricated by combining 

emulsion templating with additive manufacturing. In this study, PCL-based emulsions 

were prepared and transferred into the syringe of the pneumatic extrusion printer, 

and scaffolds were printed and cured simultaneously by the integrated LED of the 

printer. This multi-step fabrication route is a promising way to develop scaffolds with 

more complex shapes using three-dimensional data of the defect site. To increase the 

biological performance of the polymeric multiscale porous scaffolds, they were 

decorated with in vitro generated bone extracellular matrix (ECM). Briefly, bone cells 

were grown on PCL PolyHIPEs, and a decellularisation procedure was applied to 

remove the genetic material and create a biohybrid scaffold. The presence of bone 

ECM, which is mainly composed of collagen and mineral, was shown to improve the 

osteogenic performance of PolyHIPE scaffolds in vitro and enhance the angiogenic 

performance in vivo. In addition, a higher degree of cell infiltration and a higher 
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number of blood vessels within the macropores was observed in biohybrid scaffolds 

compared to PolyHIPEs. 

To summarise, 4PCLMA was used as a novel biomaterial with an emulsion templating 

as a scaffold fabrication technique, to produce highly tunable scaffolds, demonstrating 

that emulsion templated 4PCLMA is a promising candidate to be used for tissue 

engineering applications.
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CHAPTER 1  

Introduction 

 Thesis outline 

This thesis describes the development of emulsion templated matrices made of 

photocurable polycaprolactone (PCL) and their use in tissue engineering (TE) 

applications.  

Chapter 1 is a literature review that approaches the emulsion templating technique as 

a scaffold manufacturing route. Chapter 2 explains the development process of 

emulsion templated matrices made of solely photocurable PCL. In Chapter 3, these 

matrices were fabricated in membrane form and tested to be used as a guided bone 

regeneration membrane. In the next chapter, PCL-based emulsions were used as 

printing ink, and multiscale porous scaffolds were fabricated, combining additive 

manufacturing with emulsion templating techniques. Additionally, these 3D printed 

scaffolds were decorated with bone cell-derived extracellular matrix to increase the 

biological performance of the PCL-based synthetic scaffolds, creating ‘biohybrid’ 

scaffolds. In Chapter 5, the overall conclusion and future work of this study are 

discussed. Finally, in Chapter 6, I explain and discuss the development of artistic visual 

materials with various techniques for better communication in science. 

Chapters 1-4 of this thesis are the published/submitted articles in peer-reviewed 

journals. The numbering of the figures, tables, and the headings of the papers were 
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 Literature review: emulsion templating as an emerging 

manufacturing method of tissue engineering scaffolds 

Abstract 

Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal 

naturally, by using highly porous biodegradable matrices called TE scaffolds. There are 

various manufacturing techniques commonly used to fabricate TE scaffolds. However, 

in most cases, they do not provide materials with a highly interconnected pore design. 

Thus, emulsion templating is a promising and convenient route for the fabrication of 

matrices with up to 99% porosity and high interconnectivity. These matrices have 

been used for various applications for decades. Although this polymer structuring 

technique is older than TE itself, the use of polymerised internal phase emulsions 

(PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing 

techniques. To date, a number of excellent reviews on emulsion templating have been 

published by the pioneers of this field in order to explain the chemistry behind this 

technique and potential areas of use of the emulsion templated structures. This 

particular review focusses on the key points of how emulsion templated scaffolds can 

be fabricated for different TE applications. Accordingly, we first explain the basics of 

emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the 

role of each ingredient in the emulsion and the impact of the compositional changes 

and process conditions on the characteristics of PolyHIPEs. Afterwards, current 

fabrication methods of PolyHIPE scaffolds and polymerisation routes are detailed, and 

the functionalisation strategies that can be used to improve the biological activity of 
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PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and 

hard TE as well as in vitro models and drug delivery in the literature are summarised. 

 Introduction 

Tissue and organ failure is one of the most frequent, inevitable major public health 

problems due to congenital health issues, traumas, diseases, and the increasing 

average age of the population [1,2]. Tissue Engineering (TE) aims to devise solutions 

to restore or to improve the functions of injured/diseased parts of the host tissue 

which cannot heal naturally [3,4]. TE utilizes porous matrices that are called scaffolds 

to fill the defect site. Scaffolds serve as a guide for tissue regeneration as a three-

dimensional substrate for cell attachment, proliferation, infiltration, and they also 

provide temporary mechanical support [5,6] (Figure 1.1A). There are five essential 

requirements that an ideal scaffold should have [3,7]; (i) biocompatibility, not causing 

any adverse effect at any level, from cellular activity to molecular signalling, on 

cells/tissues when they are in contact [7,8], (ii) biodegradability, degrading over time 

in vivo to create a space for newly forming tissues, (iii) having appropriate surface 

chemistry to allow cellular attachment, proliferation and differentiation, (iv) having 

similar mechanical properties with the native tissue not to inhibit tissue formation due 

to excessive deformation [7,9], and (v) the morphology is a key feature that affects 

both biological and mechanical efficiency of the scaffolds. Scaffolds need to have a 

porous architecture with high interconnectivity to enable cell infiltration, nutrient 

flow, and integration of the material within the host tissue (Figure 1.1B). 
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Figure 1.1: Significance of the interconnectivity on scaffold design. (A) Scaffolds are 3D 

substrates that are implanted to the defect site to guide tissue regeneration. (B) Low 

interconnectivity limits cell infiltration due to blind (labelled with *) and inaccessible (labelled 

with #) pores, while higher interconnectivity provides enhanced permeability and cell 

penetration. (C) Scanning electron microscope image of the emulsion templated scaffold 

(polycaprolactone PolyHIPE) that shows tissue infiltration through the interconnected pores of 

the scaffold (cross-section). 

To date, various scaffold manufacturing techniques such as gas foaming [10,11], 

porogen leaching [10,12], electrospinning [13–16], and additive manufacturing (AM) 

[17,18] have been widely used to introduce porosity into TE scaffolds. Recently, 

emulsion templating has gained particular attention as a scaffold fabrication technique 

due to its three main advantages; providing (i) high porosity (up to 99% [19]), (ii) high 

interconnectivity (Figure 1.1C), and (iii) high tunability. The technique is briefly based 

on two basic steps; the preparation of emulsion composed of at least two immiscible 

liquids where one phase is dispersed in the other phase and solidification of the 

continuous phase of the emulsion (the phase that liquid droplets dispersed in). These 

biphasic emulsion systems can be either water-in-oil (w/o) or oil-in-water (o/w) 

depending on the positioning of the lipophilic (non-polar, fat-loving, oil) and 

hydrophilic (polar, water-loving, water) phases. In this process, droplets of dispersed 
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phase behave like templates, and they are removed following solidification to obtain 

porous matrices (Figure 1.2). 

 

Figure 1.2: Fabrication steps of the Polymerised High Internal Phase Emulsion (PolyHIPE). (A, 

B) The gradual addition of the internal phase into the continuous phase while the system is mixed, 

(C) polymerisation of the high internal phase emulsion (HIPE), D. 2D projection of PolyHIPE, (E-

G) the formation of the pores and windows, and H. scanning electron microscope image of the 

PolyHIPE. 

Although emulsion templating has been mentioned as a relatively new scaffold 

manufacturing route in recent publications, the birth of the term ‘emulsion templating’ 

in the literature is older than TE itself (Figure 1.3); it dates back to the late 1950s [20] 

where it was defined in a patent. Many other patents -including one by National 

Aeronautics and Space Administration (NASA)- followed up the development of 

emulsion templated polymers for different applications such as oil absorbents [21] 

and 3D shaped porous objects with smooth surfaces [22]. Over the years, emulsion 

templated matrices have been used in various other areas such as; catalyst supports 
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[23], separation columns [24], solid-phase synthesis [25], and substrates for 

electrodes [26]. 

 

Figure 1.3: Historical landmarks in emulsion templating in terms of material development and 

its use in tissue engineering applications (a. [20], b. [27], c. [28,29], d. [30], e. [31,32], f. [1], g. [33], 

h. [34], i. [35], j. [36], k. [37], l. [38], m. [39,40], n. [41], o. [42], p. [13]). 
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Studies on the use of emulsion templating for the manufacturing of 3D substrates for 

cell culture applications is relatively new; it dates back to the early 1990s 

[31,32,43,44]. That is most likely why the number of TE-related studies is not more 

than 6% of the total number of all reported applications about emulsion templating 

(Figure 1.4A). Emulsion templating also has the lowest number of reports within TE 

applications when compared with other well-known scaffold manufacturing 

techniques (Figure 1.4B). However, there has been an increasing trend in the number 

of publications on emulsion templating in the last years, and almost 40% of emulsion 

templating in TE papers have been published in the last three years (Figure 1.4C). 

 

Figure 1.4: (A) The number of publications on emulsion templating in tissue engineering (TE) 

and other areas. Data generated using “tissue engineering” and “emulsion templating” for the 
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navy portion, “emulsion templating” for the whole. (B) The number of publications between 

1900-2019 (Data obtained on 22 Nov 2019) for various scaffold fabrication methods. Data 

generated using –the name of the manufacturing route- and “tissue engineering” as a search 

term. (C) The number of papers published on emulsion templating in TE in the given years. Data 

generated using “emulsion templating” and “tissue engineering” as a search term. Web of science 

was used as a search platform, and keywords were searched in all the fields. 

Development of the emulsion templated scaffolds requires a multidisciplinary 

approach that combines knowledge and experience from chemistry, materials science, 

and TE. To date, there has been a number of significant reviews from the pioneers of 

the field of emulsion templating in the literature [45–50]. These reviews 

comprehensively cover the chemistry and material science behind this technique and 

briefly summarise all of the potential usage areas of emulsion templating. Accordingly, 

in this review, we aimed to approach emulsions templating as solely a scaffold 

fabrication technique. We summarised the basics of emulsion templating by reviewing 

the literature and determined a road map for researchers that would like to explore 

this advantageous technique in their TE applications.  

 Mechanism of emulsion templating and the terminology 

One of the most favourable features of emulsion templated scaffolds is the tunability 

of their porosity by simply increasing the internal phase volume. In the literature, 

emulsions that have at least 74.048% internal phase volume are defined as High 

Internal Phase Emulsions (HIPEs). The value of 74.048% is the densest possible 

monodispersed sphere packing density, according to Kepler Conjecture [51]. In 1966, 

Lissant reported that beyond 74.048%, monodispersed water droplets are deformed 

into polyhedrons as the touching points become flattened (Figure 1.5) [27]. 
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Figure 1.5: (A) Closest packing density of the solid spheres (non-deformed) (74.048%) where 

each sphere touches twelve other spheres. (B) The transition from sphere to rhomboidal 

dodecahedron (RDH) by the gradual flattening of the touching points. (C) The geometry of the 

basic RDH. (Improved images were recreated using Ref [27] as a guide).  

This situation applies in monodispersed solid spheres, and already in 1907 Spencer 

Pickering questioned the validity of this value for liquid spheres as liquid droplets in 

emulsion are in reality not uniform but are polydisperse [52]. Additionally, in 

emulsions, liquid droplets are not actually in contact; there is a thin wall separating 

the droplets from each other. That’s why, even the maximum packing density for 

mono-disperse, non-deformed liquid droplets would be less than the maximum 

packing density of the solid spheres (<74.048%). Indeed, the requirement for the 

revised definition of HIPEs has also been reflected recently by other researchers 

[42,53,54]. However, herein, we use the commonly recognised definition of HIPEs. 

Although emulsion polymerisation has previously been described in the literature 

[55,56] the term “Polymerised High Internal Phase Emulsion (PolyHIPE)” appeared in 

the literature the first time in 1982 to define porous structures formed following 

solidification of the HIPEs [30]. Emulsion templated matrices with various internal 

phase volumes; PolyHIPEs (~74-99% [57]), Polymerised Medium Internal Phase 

Emulsions (PolyMIPEs) (20–65% [27]) and Polymerised Low Internal Phase 
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Emulsions (PolyLIPEs) (<20% [27]) have been reported in the literature. However, in 

this review, we mainly focused on PolyHIPEs unless otherwise stated.  

In terminology, it is important to comprehend the difference between HIPEs and 

PolyHIPEs. HIPEs can be further processed until the gelation point to change their 

droplet size and viscosity, but PolyHIPEs are the solid matrices that are made of solely 

the continuous phase, and they are obtained by the polymerisation of HIPEs. The 

cavities formed after removal of the internal phase being defined as “pores”, “cells”, or 

“voids”. The throats connect the adjacent pores to each other are defined as 

“interconnects” or “windows” (Figure 1.2). The formation of these interconnects has 

been reported to be due to the rupture of the thin polymer films between neighbouring 

pores during the polymerisation [58]. Depending on the presence and absence of 

interconnects, PolyHIPEs are categorised as “open cellular” and “closed cellular”, 

respectively.  

 Characteristics of emulsion templated scaffolds 

Although the emulsion templating technique itself is easy to apply, due to the high 

tunability of the process, there are many parameters that need to be controlled for the 

precise engineering of characteristics of the matrices (detailed in Section 1.2.4). In this 

section, we covered the characteristics of HIPEs and PolyHIPEs that can be controlled 

for specific applications. 

1.2.3.1. Morphological characteristics 

Internal phase volume is the main factor determining the porosity of emulsion 

templated scaffolds. However, the volume of the internal phase does not always 

correspond to the porosity of PolyHIPE scaffolds. In our recent study, the porosity of 
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PolyHIPEs prepared using 82% internal phase volume was measured at around 70%. 

This is likely because of 15–20% shrinkage of these scaffolds in each dimension during 

crosslinking and drying [42]. This is corroborated by other studies, for example, Chen 

et al. also reported the lesser extent of porosity than the internal phase volume due to 

the same reason [59]. This could be a problem for the clinic when defect matching 

scaffolds are needed. Thus, for more accurate design of the scaffolds, the degree of 

shrinkage can be calculated accurately, and it can be taken into account during the 

design process. Also, especially in dentistry, there are some approaches to overcome 

the polymerisation shrinkage [60]. 

Thus, the porosities of the PolyHIPEs can be calculated using Equation 1 [42,61,62], 

where ρPolyHIPE is the PolyHIPE density and ρwall is the density of PolyHIPE wall. The 

measured density of the bulk polymer is used for the density of the wall. 

 

% 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = (1 −
𝜌𝑃𝑜𝑙𝑦𝐻𝐼𝑃𝐸

𝜌𝑤𝑎𝑙𝑙
) × 100 (1) 

 

It is also important to note that emulsion templated scaffolds mostly shrink in a dry 

state [63]. Thus, densities and accordingly, the porosities are different at their wet and 

dry conditions. However, for TE scaffolds, we believe that the porosity in the wet state 

is more relevant as the scaffolds are introduced into a fluid-rich environment of the 

body.  

Higher volume of the internal phase causes a reduction in the pore size as tighter 

packing of the droplets is needed [64]. Typically, the average pore size and window 

size ranges of PolyHIPEs are 1-150 µm and 0.2-50 µm, respectively [57,65]. Mercury 

porosimetry and nitrogen adsorption methods are effective tools to characterise the 
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structural and physical features of PolyHIPEs [66]. The use of micro-computed 

tomography (micro-CT) for microstructural characterisation of PolyHIPEs has also 

been reported [67,68] 

Another commonly used method is measuring the pore and window sizes using 

scanning electron microscopy (SEM) images of the cross-section of the PolyHIPEs. 

However, when the scaffolds are sectioned, pores are not ideally bisected; they are 

sectioned from a random distance (h) from the centre (Figure 1.6). Thus, as we can 

only measure the radius of the circular section at a distance of h from the centre of the 

pore (r) rather than the exact pore radius (R), a statistical correction factor should be 

applied to the measured average pore size [66]. The relationship between R, r, and h 

can be expressed using Equation 2. 

 

𝑅2 = ℎ2 + 𝑟2 (2) 

 

The value of h can be between 0 to R, depending on the position of the sectioning. By 

replacing an average value for h; R/2, in Equation 2, R/r can be found 2/√3 as a 

correction factor that is applied to the measured diameter for adjusting the 

underestimation of the exact diameter.  
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Figure 1.6: Derivation of the statistical correction factor that is applied for adjusting the 

underestimation of the exact diameter of the pore size. R, an actual radius of the pore and r, the 

radius of the circular section at a distance of h from the centre of the pore. 

The degree of interconnectivity of PolyHIPEs is calculated by dividing the average 

window size to average pore size (d/D) [42,69] however, as this number does not give 

any indication about the number of windows, an alternative definition termed the 

degree of openness, is suggested to be calculated by dividing open surface to total 

surface (Equation 3) [50,70]. 

 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑜𝑝𝑒𝑛𝑛𝑒𝑠𝑠 =  
𝑂𝑝𝑒𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑒 (𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑒
 

(3) 

  

1.2.3.2. Physical characteristics 

PolyHIPEs are defined as low-density polymeric foams with typical densities of around 

0.1 g/cm3 [71]. This value can be lowered with higher porosity and a higher degree of 

openness, and it has a direct effect on the mechanical properties of the matrices [72]. 

PolyHIPEs are also characterised with the low surface area due to the openness on the 

cavities. While increasing internal phase volume reduces the surface area dramatically 
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[45], the addition of porogenic solvents can increase the surface area up to 690 m2/g. 

PolyHIPEs with significantly higher surface area (up to 2000 m2/g) can be obtained 

using the hyper-crosslinking approach [73,74]. 

1.2.3.3. Rheological characteristics 

HIPEs are viscous emulsions, and they have a mayonnaise-like consistency with 

yellowish-white colour due to the light refraction difference between the oil and water 

phase. They exhibit shear-thinning behaviour which is a favourable characteristic for 

them to be used in extrusion-based fabrication methods [75–77]. Sears et al. reported 

that viscosity of methacrylate-based emulsions are less than 10 Pa.s at a shear rate of 

50 s−1,  and that is low enough to be printed via extrusion printer [76]. The viscosity of 

HIPEs depends on the viscosities of the internal and continuous phases, droplet size 

and the internal phase volume [78–81]. Anisa et al. showed that viscosity of w/o crude 

oil emulsion increases from 152.69 cP to 493.16 cP when the average droplet diameter 

reduced from 60.34 µm to 15.82 µm [78]. Yield stress, the minimum critical stress 

value that needs to be applied to the materials to start the flow [82,83], and thixotropic 

recovery rate, the rate that the material returns its original viscosity when the force is 

removed [84], are other critical rheological parameters that need to be considered, 

especially when the extrusion-based printing or injecting will be used as a fabrication 

technique. 

1.2.3.4. Mechanical characteristics 

The mechanical features of PolyHIPEs can be tailored to a large extent by tuning other 

parameters such as the composition, porosity, and pore size of the PolyHIPE. Although 

high porosity is desired for better cell infiltration in TE scaffolds, there is an indirect 

relationship between porosity and mechanical properties [70,85,86]. Larger pore size 
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increases the Young’s Modulus of the PolyHIPEs [42,87,88] probably due to the thicker 

struts between the pores [89]. The higher degree of interconnectivity results in a 

larger open area within the walls, and it leads to lower structural integrity [42,66]. 

 Development of the emulsion templated scaffolds  

Emulsion templated scaffolds are fabricated by following a multi-step route before 

they are used in TE applications (Figure 1.7); (i) development of the emulsions by 

optimisation of their composition and emulsification conditions, (ii) structuring the 

emulsions, (iii) applying the appropriate solidification method, and (iv) post-

processes which include improving the functionality of the scaffolds, purification and 

sterilisation. 

1.2.4.1. Preparation of HIPEs 

There are at least three essential ingredients that need to be used to make HIPEs; (i) a 

continuous phase (polymer phase), (ii) an internal phase, and (iii) a stabiliser 

(although there are a limited number of studies on the development of stabiliser-free 

HIPEs [90]). In addition to these core elements of the HIPEs, additional ingredients 

may be required to be added into the inner or/and into the continuous phase of the 

emulsion.  
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Figure 1.7: (Top) Steps of manufacturing of the emulsion templated substrates, (Bottom) 

commonly seen relations of the characteristics of HIPEs and PolyHIPEs and some of the process 

conditions. (Orange arrows indicate one-way reciprocal proportionality, brown arrows indicate 

one-way direct proportionality. For example, an increase in the porosity of PolyHIPEs (or internal 

phase volume of HIPEs –characteristic of HIPEs and PolyHIPEs corresponds to each other) 

reduces the density of PolyHIPEs and increases the emulsion viscosity). References for the 

relations; (a-i) [91–93], (a-g) [70,85,86], (a-e) [72], (a-c) [64,72], (a-b) [65,70], (a-f) [45], (b-g) 

[42,66,70], (c-i) [94], (c-g) [42,87–89], (c-f) [45], (d-b) [50], (d-n) [45], (e-g) [72], (h-c) [42], (h-

n) [42], (h-i) [95], (j-i) [94,96], (j-c) [38,94,97], (j-n) [96], (k-h) [42], (k-f) [45,73], (k-n) [42,69], 

(l-c) [38], (l-f) [98], (m-h) [42], (m-n) [69], (m-c) [69,97,99], (m-d) [69], (m-f) [100]. 
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1.2.4.1.1. Formulation of the continuous phase 

The selection of the monomeric or oligomeric pre-polymer for the continuous phase 

of the PolyHIPEs is the fundamental basis to formulating emulsion templated 

structures with pre-determined properties and will be discussed in Section 1.2.4.3. 

The pre-polymer is typically formulated with a number of additives (i.e. solvent, 

stabiliser and initiator) to form the continuous phase, which will be discussed in this 

section. 

1.2.4.1.2. Diluting solvents 

Pre-polymers used in the emulsification process may be in solid-state or in liquid 

phase with high viscosity. During the mixing of the two immiscible phases, although 

the high viscosity of the continuous phase increases the kinetic stability of the 

emulsion, it needs to be low enough to enable efficient mixing of the two phases 

[36,101]. In order to reduce the viscosity of the oil phase, either the temperature of the 

system can be increased (Figure 1.7), or polymers can be diluted with the solvents that 

are called diluting or porogenic solvents as they are removed after polymerisation. 

After removal, these matrices shrink up to 50% [102]. Also, the addition of diluting 

solvents may provide additional nanoscale porosity on the walls of the PolyHIPEs 

[103].  

Diluent type [42] and volume [36,42] plays a critical role in the characteristics of HIPEs 

and PolyHIPEs. While water and phosphate buffer saline (PBS) are commonly used to 

dilute the continuous phase of the o/w emulsions [90], more apolar solvents (with less 

solubility in water) such as; toluene [36,42,104,105], chloroform [42], tetrahydrofuran 

(THF) [106], dichloromethane (DCM), and dichloroethane (DCE) [107] are used as 

diluents in w/o emulsions.  
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Recently, we have shown the impact of absence/presence, volume and the type of 

diluting solvents on the stability of polycaprolactone (PCL) HIPEs and the morphology 

of PCL PolyHIPEs [42]. Increasing the volume of the diluent enhances the limit of the 

maximum internal phase volume that can be incorporated into the emulsion. However, 

a further increase in the solvent volume from a certain point reduces stability HIPE 

[42]. Thus, there is a narrow range that a stable emulsion can be formed. The viscosity 

should be low enough to enable mixing of the two phases, but high enough to form a 

stable emulsion. 

1.2.4.1.3. Internal phase (dispersed phase) 

While the internal phase of w/o emulsions is most dominantly composed of water, in 

reversed emulsions (o/w), more apolar liquids, often toluene [65,108,109] form the 

internal phase. Selection of the internal phase composition and the volume is another 

factor that has an impact on the properties of HIPEs and PolyHIPEs. Krajnc et al. tested 

toluene, chlorobenzene, DCM, and chloroform as the internal phases for acrylic acid 

PolyHIPEs (o/w), and reported that only the emulsions prepared with toluene resulted 

in a stable emulsion [109]. 

There are some salts such as sodium sulphate (Na2SO4), calcium chloride (CaCl2), 

sodium chloride (NaCl) [110], and potassium iodide (KI) that are included in the 

internal phase of the w/o emulsions to increase stability [111,112]. Opawale et al. 

showed that NaCl affects the surfactant adsorption and the emulsions interfacial 

elasticity, which play a crucial role in emulsion stability [113]. However, the intensity 

of the impact depends on the type of surfactant used [114]. CaCl2 was reported to 

increase emulsion stability by preventing Oswald ripening [38]. Similarly, potassium 
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sulphate (K2SO4) was also reported to increase the rigidity of the interface between 

two-phase [115–117]. 

Opposed to abovementioned applications that attempt to increase the stability of the 

emulsions, there are some approaches to reduce emulsion stability on purpose to 

enable an increase of the pore size of the PolyHIPE. Magnesium sulphate (MgSO4) has 

been reported to reduce the surfactant adsorption and increases the droplet size 

within the emulsion [118]. Also, chemicals that are partially soluble in both phases of 

the emulsion such as poly(ethylene glycol) (PEG) [69] and THF [45,69,119,120] reduce 

emulsion stability and are included in the internal phase of the w/o emulsions to 

increase pore size.  

1.2.4.1.4. Stabilisers 

The coexistence of two immiscible liquids in the emulsion composition causes high 

surface tension at the interfaces of these liquids. The droplets of the inner phase 

coalescence gradually to reduce the surface area, and this process ends up inevitably 

as phase separation. Stabilising agents, surfactants and Pickering particles, reduce the 

interfacial tension by stabilising the oil-water interface. 

1.2.4.1.4.1. Surfactant stabilisation 

The surfactant is an amphiphilic compound that its head is water-soluble, and the tail 

is oil-soluble (Figure 1.8). Surfactants create a continuous film around the inner phase, 

act as a barrier between two phases, reduce the interfacial tension, and stabilise the 

emulsions. There are various types of surfactants available, and they are classified as 

non-ionic, anionic, cationic, and amphoteric, depending on the charge of the 
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hydrophilic head (Figure 1.8A). The surfactant choice [35,38,102] and concentration 

[42] play an important role in emulsion stability and PolyHIPE morphology. 

When there is no surfactant used in the water and oil system, the type of emulsion 

depends on the volume of the phase. The higher volume phase will be the continuous 

phase. In the presence of surfactants, according to the Bancroft rule [121], the phase 

that the surfactant is predominantly dissolved in forms the continuous phase. 

Specifically, while oil-soluble surfactants tend to form w/o emulsions, water-soluble 

surfactants are suitable for o/w emulsions [122].  

Although the selection of the best working surfactant has been empirical, the 

quantitative classification of the surfactants, hydrophile-lipophile balance (HLB) 

classification described by Griffing, gives an insight for the initial surfactant choice 

[123,124]. The HLB value varies between 0 to 20, and the value is in direct correlation 

with the hydrophilicity of the surfactant [125]. While surfactants with low HLB values 

are good for w/o emulsions, surfactants with high HLB values are more suitable for 

o/w emulsions [125].  

The HLB value of a surfactant is not always a sole determining factor for emulsion 

stability, which depends on various parameters such as the selection of the monomer 

and solvent, emulsification temperature, and absence/presence of the electrolyte 

[125]. Indeed, many researchers reported that just HLB is not enough on its own to 

select a suitable surfactant for emulsion systems [35,38]. 
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Figure 1.8: Emulsions can be stabilised either by surfactants or particles. (A) The positioning of 

the surfactant molecules in o/w or w/o emulsions and type of surfactants. (B) The positioning of 

the particles on the water-oil interface of either in o/w or w/o emulsions depending on the degree 

of wettability of the particles by these phases. 

W/o emulsions are mostly stabilised using oil-soluble nonionic surfactants [46]. Span 

80, Hypermer 246, and polyglycerol polyricinoleate (PGPR) are the most widely used 

surfactants for w/o HIPEs (Table 1.1). However, Zhang at al. replaced the non-ionic 

surfactant with cationic surfactant for divinylbenzene (DVB)-styrene HIPEs and 

reported the formation of PolyHIPEs with higher pore volumes than the ones prepared 

using non-ionic surfactants [126]. The concentration of the surfactants used in the 

preparation of HIPEs is generally in the range of 1-30% (w/w) (of the monomer). 

Higher surfactant concentration results in smaller average pore size and more uniform 

pore size distribution [38]. 

Surfactants are commonly intended not to react with the monomer, and they are 

removed from the PolyHIPE composition following polymerisation. However, the use 
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of reactive block copolymer surfactants in HIPE composition is also reported [127]. As 

they covalently attach to the PolyHIPE surface, surfactant removal is not needed. 

Table 1.1: Commonly used surfactants in HIPEs of various polymer systems. 

Emulsion 
type 

Emulsifier 
HLB/ 
Type 

Polymer Ref. 

w/o 

Polyglycerol 
polyricinoleate (PGPR) 

∼3 [128] 

Nonionic 

1,6-diisocyanatohex-ane and 

Polycaprolactone triol 
[106] 

Propylene fumarate 

Dimethacrylate 
[38,57,129] 

Sorbitan monooleate 
(Span 80) 

4.3 [130] 

Nonionic 

Propylene fumarate (diacrylate) [36] 

Styrene/divinylbenzene [119,131] 

2-Ethylhexyl acrylate (EHA) and 

isobornyl acrylate (IBOA) 
[63] 

Hypermer 246 
5-6 [132] 

Nonionic 

2-Ethylhexyl acrylate (EHA) and 

isobornyl acrylate (IBOA) 
[39,70,133,134] 

Thiolene  [135,136] 

Polycaprolactone [13,42] 

Brij-58 
15.7 [137] 

Nonionic 
Polycaprolactone [138] 

Pluronic L121 
1 [139] 

Nonionic 

Tetrakis-3-mercaptopropionate 
and divinyladipate 

[140] 

Cetyltrimethylammonium 
bromide (CTAB) 

10 [141] 

Cationic 
Styrene/divinylbenzene [126] 

o/w 
Triton X-405 

 

17.9 [142] 

Nonionic 

Alginate methacrylate [143,144] 

Dextran 

Dextran-b-PolyNIPAAm (Poly(N-
isopropylacrylamide) 

[145] 

Gelatin methacrylate [65,108] 

Pullulan methacrylate [108] 

Dextran methacrylate [108] 

Alginate [144] 

Acrylic acid [109] 
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1.2.4.1.4.2. Pickering particle stabilisation 

The emulsion can also be stabilised using solid particles (micro or nanoparticles), and 

these surfactant-free emulsions are defined as Pickering emulsions [146,147]. As in 

surfactant stabilised emulsions, the pore size of the particle stabilised emulsions can 

be adjusted by changing the particle concentration [148]. 

The principle behind the stabilisation mechanism of Pickering emulsions lays on the 

wettability of the particles by oil and the water phases. These particles position at the 

interface and need to be absorbed by both phases to some extent. The particles are 

more adsorbed in the phase that they are wetted more, and this defines their 

positioning in the interface (Figure 1.8B). While water wetted particles forms o/w 

emulsions, oil-wetted particles can stabilise w/o emulsions [149–151]. The particles 

that are not wetted by one of these phases disperse in the phase they are wetted and 

fail to stabilise the emulsion. 

Hydroxyapatite (HA) is the most widely used particles used for stabilisation of 

Pickering HIPEs. Interestingly it is reported to be used both o/w [148] and w/o 

[41,152,153] HIPEs. Hu et al. used nano-HA to stabilise PCL HIPEs [154] and in their 

follow-up study, Yang et al. claimed that emulsions stabilised using silica nanoparticles 

have a higher viscosity than the emulsions stabilised by HA particles [146]. Starch 

nanoparticles [155] and gelatin nanoparticles [156] are the other alternative particles 

used for the stabilisation of the Pickering o/w and w/o emulsions, respectively. 

1.2.4.1.5. Initiators 

Initiators are chemical compounds that react with the monomers. They form 

intermediate compounds that can be linked with other monomers and propagate to 
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form the polymer chains. Initiators can be included either into the inner or continuous 

phase of the emulsions, and the locus of initiation has been shown to have a significant 

effect on porous structures [147]. 

Ammonium persulfate (APS) [38] and potassium persulfate (KPS) [115,117,157] are 

water-soluble oxidising agents that are used as redox initiators in radical crosslinking 

of the macromer chains. They have been reported to be introduced into the water 

phase of the styrene [158,159], dextran, [148] or polypropylene fumarate (PPF) 

[36,38] HIPEs with the concentration of 1-5% w/v of the aqueous phase. 

Benzoyl peroxide (BPO) is an oil-soluble redox initiator also used for polymerisation 

of PPF HIPEs. Robinson et al. showed that initiator selection has a great impact on 

PolyHIPE morphology [57]. While PPF PolyHIPEs prepared using APS as an initiator 

resulted in closed cellular structure, BPO included PolyHIPEs exhibited open cellular 

structure. Also, the concentration of the redox initiator has shown to have an impact 

on the curing time of HIPEs and on the mechanical properties of PolyHIPEs [129]. 2,2′-

Azobisisobutyronitrile (AIBN) is another oil-soluble initiator. It has been reported to 

be introduced into the continuous phase of styrene [160] and the internal phase of 

gelatin HIPEs [65] for thermal polymerisation. 

Photoinitiators are the molecules that create reactive species when exposed to light, 

and they are included in the composition of the HIPEs that will be polymerised via 

photo-initiation. In the photoinitiator selection process, the critical parameter is that 

the absorption band of the photoinitiator should overlap with the emission spectrum 

of the light source [161]. 2,4,6-Trimethylbenzoyl phosphine oxide/2-hydroxy-2-

methyl propiophenone blend [13,42,107,162] and phenyl bis(2,4,6‐trimethyl 

benzoyl)‐phosphine oxide (BAPO) [76] are widely used photoinitiators in photo-
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polymerisation of HIPEs. Photoinitiators are mostly used in HIPE compositions at a 

concentration range of 0.2-10% (w/w) of the polymer. The concentration of the 

photoinitiator that is included in the composition of the photocurable resins is 

reported to have an effect on the rheological properties of the monomer and its 

gelation time [163]. Interestingly, there are very few studies that investigate the 

photoinitiator type and concentration on the characteristics of PolyHIPEs [164]. Also, 

photopolymerisation kinetics has been shown to be affected by the 

photopolymerisation temperature and the intensity of the light source [165,166]. In 

most cases, higher temperature and light intensity has been reported to increase the 

polymerisation rate [166–168]. 

1.2.4.1.6. Crosslinker (crosslinking agent) 

Crosslinkers are the precursors with at least two reactive ends to connect primary 

polymer chains by forming intermolecular linkages (Figure 1.9A). Using an external 

crosslinking agent increases the degree of crosslinking of the polymer phase, and it 

improves the stiffness of the materials [157]. The most known crosslinker is DVB that 

is used in the composition of styrene HIPEs [131,169,170] (Figure 1.9B, C). 

Christenson et al. used propylene fumarate diacrylate (PFDA) as a crosslinker for PPF 

HIPEs and showed that crosslinker concentration has an impact on the emulsion 

stability of HIPEs and on the morphology of PolyHIPEs [36]. Nalawade verified this 

finding on hydrogel-based HIPEs [171]. Trimethylolpropane triacrylate (TMPTA) is 

also widely used crosslinker for 2-ethyl hexyl acrylate (EHA) and isobornyl acrylate 

(IBOA) PolyHIPEs [70,133]. 
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Figure 1.9: (A) Positioning of the crosslinker between linear polymer chains. As an example; (B) 

formation of polystyrene chain from styrene monomers and crosslinking of polystyrene chains 

using the crosslinker, divinylbenzene. 

1.2.4.1.7. Temperature 

The most dramatic effect of the temperature is on the viscosity of the oil phase that 

also affects the viscosity and the stability of the emulsion. The viscosity of the polymer 

and the temperature are inversely proportional to each other as shown in Equation 6 

where ƞ is the viscosity of the polymer, T is the temperature, A and B are the material 

constants;  

Also, according to Stoke’s equation (Equation 7), the viscosity of the polymer and the 

velocity of the droplet (v) are inversely proportional [172]; 

𝑛 = 𝐴𝑒
𝐵
𝑇  

(4) 
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𝑣 = 𝐷2 ∆𝜌𝑔/18𝑛 (5) 

D is the droplet diameter under gravitational force, Δρ is the density difference 

between water and oil phase, n is the viscosity of the oil phase, and g is the 

gravitational force. Consequently, the increasing temperature reduces the oil phase 

viscosity, and this increases the speed of droplets of the inner phase and creates a 

bigger pore size [64,97,173]. Further increase in the temperatures can lead to 

emulsion separation due to the increased mobility of the droplets [69,99]. Although 

some studies increase the temperatures in a controlled manner to increase the pore 

size, moderate temperatures are more favourable as they create comparatively more 

stable emulsions.  

To investigate the effect of higher temperature on PolyHIPEs, researchers use different 

setups. Caldwell et al. showed that increasing the temperature of the inner phase from 

23 °C to 80 °C increased the pore sizes up to 2-fold [99]. Akay et al. heated the whole 

mixing system using a stainless steel vessel with a heating jacket [131]. 

1.2.4.1.8. Efficiency of mixing 

In the conventional emulsification route, the internal phase is introduced into the 

continuous phase dropwise while the system is mixed continuously. There are various 

mixing methods reported; such as over-head stirrer [99,107,135], magnetic stirrer 

[13,42], mechanical shaking [146], speed mixer [38,57,129], vortex [19], homogeniser 

[152], and shaking by hand [153]. The type of mixing route is reported to have an effect 

on the maximum internal phase volume that could be incorporated into the emulsion 

[19]. Effect of stirring speed on the characteristics of HIPEs has been reported by many 

groups [38,64,97]. Higher mixing speeds commonly result in smaller pore sizes. 
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Bokhari et al. revealed that the way of adding inner phase into the continuous phase 

(syringe pump or dropping funnel) also influences the emulsion stability, the pore size 

distribution of the droplets, and the reproducibility [173]. Another emulsification 

route; the multiple emulsion method, combines and mixes all the components from the 

oil and water phase together. But as the emulsion prepared using this method forms 

gradually, the system needs to be stirred until the PolyHIPE forms [19]. 

Apart from the parameters mentioned above, it is also important to note that, every 

parameter that affects the energy input for the droplet breakup; such as mixing time, 

the batch volume of the emulsion, materials and the diameter of the emulsification 

container, and the magnetic stirrer/paddle size (where relevant) directly affects the 

mixing efficiency of the emulsion and will have an impact on the final morphology. 

Keeping these parameters constant between batches helps the consistency and 

reproducibility of the PolyHIPEs. 

1.2.4.2. HIPEs to PolyHIPEs 

1.2.4.2.1. Emulsion solidification approaches 

1.2.4.2.1.1. Free-radical polymerisation 

PolyHIPEs based on many popular polymers, such as; acrylates, methacrylates, and 

styrenes are synthesised using free radical polymerisation (FRP) [48]. The type of the 

initiator (Section 1.2.4.1.5) used in the emulsion composition determines one of the 

following initiation routes of FRP; (i) thermal-initiated polymerisation, (ii) photo-

initiated polymerisation, and (iii) redox-initiated polymerisation. 

The earliest examples of the PolyHIPEs (the 1980s) were based on thermal 

polymerisation [174,175]. In this process, an emulsion mixture that contains thermal 
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initiator is exposed to heat in an oven or in a heat bath for 6-48 hours for the 

polymerisation. The temperature is often kept quite high (60-70 °C 

[36,102,115,159,173]) to decompose the initiator into radicals thermally. 

Exceptionally, polypropylene fumarate dimethacrylate (PFDMA) HIPEs can be 

polymerised at 37 °C [38,57]. Also, by the use of a catalyst, the polymerisation 

temperatures can be reduced [176]. 

In photo-initiated polymerisation, emulsions are prepared using photosensitive 

materials as a continuous phase and photoinitiators are exposed to light to be able to 

generate free-radicals and initiate the polymerisation. This method has many 

advantages over thermal-induced polymerisation; polymerisation takes places at 

room temperature (RT) just in seconds to minutes depending on the sample size. 

Photopolymerisation is an efficient polymerisation route, especially in relatively small 

samples, as ultraviolet (UV) penetration depth can be limited in a larger volume of 

emulsions. Photo-initiated polymerisation of the emulsions, specifically HIPEs, were 

described in patents in 1986 [177] and 1999 [34], respectively. A more detailed 

experimental procedure of photo-initiated polymerisation of HIPEs was reported in 

2006 by Pierre et al. [63]. However, recently, a number of studies about the 

development of PolyHIPEs based on photocurable materials such as thiolene [107], 

meth(acrylates) of PCL [13,42] or gelatin [178] have increased the potential 

applications. Redox-initiated polymerisation, which uses reducing and oxidising 

agents, is also another FRP route used in the polymerisation of HIPEs [129].  

1.2.4.2.1.2. Step growth (condensation) polymerisation 

Integration of step-growth polymerisation into the emulsion templating process has 

been successfully implemented in polyurethane PolyHIPEs [106]. It is synthesised 
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using diisocyanate and PCL triol, and the reaction of a diisocyanate with water 

produced urea groups and carbon dioxide (CO2). The bubbles of generated CO2 created 

additional porosity into PolyHIPE structure. 

1.2.4.2.1.3. Ring-opening polymerisation 

Development of PolyHIPEs by ring-opening polymerisation (ROP) of cyclic monomers 

is a relatively new route of polymerisation HIPEs. ε-caprolactone and L-lactide are the 

most widely used monomers in this approach [179–183]. One of the most important 

advantages of this technique is the elimination of diluting solvents from the emulsion 

composition due to the low viscosity of the cyclic monomers. Catalyst concentration is 

the deterministic factor of the rate and the degree of polymerisation. The 

polymerisation temperatures and the polymerisation durations vary between 37 °C to 

120 °C and 6 hours to overnight, respectively. 

1.2.4.2.1.4. Solvent evaporation 

Although the term PolyHIPE refers to polymerised emulsions, recently polylactic acid 

(PLA), PCL, polylactic-co-glycolic acid (PLGA) PolyHIPEs solidified without 

polymerisation have been reported [41,138,146,152,153,184,185]. This process is 

based on dissolving the non-functional, linear, high molecular weight polymer in an 

appropriate diluting solvent, then emulsification, and finally solidification of HIPEs via 

solvent evaporation. As high molecular weight polymers are commercially available, 

this process does not require polymer synthesis or functionalisation steps. PolyHIPEs 

can be fabricated either with moulding or 3D printing. The main disadvantages of this 

technique are the long solidification process (24-48 hours) [146], and the requirement 



71 
 

of development of emulsions with high stability that would keep the shape until 

solidification. 

1.2.4.2.1.5. Crosslinking 

Crosslinking of PolyHIPEs as a solidification approach can be either ionic, thermal or 

enzymatic. Alginate PolyHIPEs has been synthesised using calcium ions [143,144]. 

This reversible gelation can be de-cross-linked using sodium citrate. Solidification of 

gelatin HIPEs using enzymatic crosslinking also has been reported [178]. In another 

study, gelatin PolyHIPEs has been obtained by physically thermal-crosslinking at 4 °C 

[90]. 

1.2.4.2.2. Fabrication routes 

1.2.4.2.2.1. Casting (moulding) 

The earliest examples of PolyHIPE scaffolds were fabricated using the casting 

technique (Figure 1.10Aa). This technique is the easiest way of manufacturing 

PolyHIPE scaffolds with almost no additional technical equipment requirement. 

Silicone [13,42,140,186], polyvinyl chloride [102], polytetrafluoroethylene 

[119,120,187], glass [158], polypropylene [188], polycarbonate centrifuge tubes 

[69,189], and aluminium [38] are some of the materials reported to be used to create 

moulds for the fabrication of PolyHIPE scaffolds. Recently, we have shown that mould 

material has a significant impact on the morphology of the contact surface of 

PolyHIPEs which have fully or partially closed cellular morphology [13]. Similar to our 

finding, the influence of the mould material on PolyHIPE morphology and HIPE 

stability has also been reported previously by Cameron et al. [45]. 
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In order to avoid the closed-pores on the surface of the PolyHIPEs, the moulded 

PolyHIPE blocks are typically sectioned using various methods and benefit from the 

open porous cross-sectional surface. Vibratomes [13,160] and microtomes [173] allow 

precise micro-scale thick scaffolds to be obtained. Additionally, tabletop precision 

saws [57,190,191], and scalpels/razor blades [13,42,99] have been used cut monoliths 

to millimetre scale sections. 

Casting enables the manufacturing of scaffolds in a wide range of shapes and sizes, 

depending on the mould design [186,192–194]. Recently, Dikici et al. reported the 

fabrication of the PolyHIPEs in tubular form by designing a re-usable tubular silicone 

mould system that, HIPE can be injected into, polymerised and recovered easily 

(Figure 1.10Ab) [186]. Also, sacrificial polymer beads made of PDMS [193] or alginate 

[194] have been incorporated into emulsion composition prior to polymerisation in a 

mould to simply introduce multiscale porosity to PolyHIPEs.  

1.2.4.2.2.2. Vat polymerisation 

Fabrication of TE scaffolds using AM techniques gained huge attention in the last 

decades due to various advantages of the AM such as enabling the manufacture of 

complex shapes using a broad range of materials, high reproducibility and providing 

control on the exterior architecture of the scaffolds. However, manufacturing of pores 

less than 20 μm using the current AM techniques remains a challenge [195]. 

Alternatively, combining emulsion templating with AM techniques such as vat 

polymerisation or material extrusion enables the fabrication of well-defined 

multiscale porous complex scaffolds.  
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Vat polymerisation is a laser-based fabrication method that selectively polymerises 

photo-sensitive liquid resin layer-by-layer by use of a laser. During the process, light 

is formed by static or dynamic masking and exposed to the top or bottom of a thin layer 

of a photocurable monomer, once a layer of the resin cured, the stage moves and the 

surface is recoated with the monomer, and the process is repeated. The schematic 

diagram of vat polymerisation is given in Figure 1.10Ba. It provides higher accuracy 

compared to other AM technologies [39,196,197]. Emulsions with low viscosity are 

preferable to be able to provide enough spreading on the z-stage while the building 

chamber is moving in the z-axis. Advantages and disadvantages of stereolithography 

over other manufacturing techniques of emulsion templated scaffolds have been 

reported in Table 1.3. 

Johnson et al. reported the 3D defined complex structures of PolyHIPEs made of 

EHA:IBOA using micro-stereolithography up to 30 µm accuracy [39]. Exactly on the 

same date, Sušec et al. reported the development of stable photocurable thiolene 

HIPEs that can be used to produce PolyHIPEs using stereolithography [40]. Fabrication 

of EHA:IBOA PolyHIPEs via stereolithography in wood-pile structure has been 

reported many times for various TE applications (Figure 1.10Bb) [70,133,134]. 

However, manufacturing of EHA:IBOA PolyHIPEs cause the formation of surface skin 

that is characterised with the closed pore at the surface. In 2018, Sherborne et al. 

showed that the use of UV absorbers could reduce skin formation without causing any 

toxic effect on cells [162]. 

1.2.4.2.2.3. Material extrusion 

Material extrusion is another convenient AM route to combine with emulsion 

templating for the fabrication of multiscale scaffolds. This method is based on the 
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preparation of emulsions inks, filling the printing head reservoir with a required 

amount of the emulsion, and printing the emulsion in the designed 3D shape. 

Schematic of the setup is given in Figure 1.10. The material can be extruded via a 

filament-fed extruder, screw extruder or a syringe extruder. The syringe-type extruder 

can have either motor-driven plunger or pneumatic extruder. Nozzle size and printing 

speed are some of the parameters that have an impact on the final structure. There are 

two approaches used in this manufacturing technique; (i) simultaneous printing and 

solidification of the HIPEs and (ii) printing HIPEs and subsequent solidification. Only 

for the first approach, emulsions prepared from photocurable materials are needed. 

Otherwise, material extrusion is not limited to use of the photocurable resins as in vat 

polymerisation. 

The shear-thinning nature and the high viscosity of HIPEs make them good candidates 

to be used as inks for the 3D printing. It is essential to highlight the fact that emulsion 

viscosity is inversely proportional to the size distribution of the water droplets [78]. 

Thus, the viscosity of the emulsion should be high enough for successful printing of the 

emulsion and low enough for enabling the manufacturing of the scaffolds with a pore 

size range that allows cell infiltration. Recently, a few publications have reported the 

use of material extrusion for the fabrication of bone TE scaffolds [75,76,146]. Unlike 

vat polymerisation, material extrusion enables fabrication of heterogeneous 

structures made of emulsions in different composition by using different printing 

heads [154]. Advantages and disadvantages of the fabrication techniques have been 

reported in Table 1.3. 
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1.2.4.2.2.4. Injecting 

Although AM techniques are first to come to the mind to fabricate defect matching 

scaffolds, their use requires highly accurate imaging techniques to be able to create 3D 

custom-made models [188]. Alternatively, injectable materials that harden in situ can 

fill irregular shapes by minimal invasive delivery (Figure 1.10D), and they can also be 

used as a carrier for cells and other biological molecules [198–200]. 

The main prerequisites for the development of injectable emulsions are the 

elimination of the toxic solvents and enabling polymerisation at physiological 

temperatures. Thus, there are a limited number of materials that can be used to 

develop injectable HIPEs. 

PPF HIPEs, discussed in detail in Section 1.2.4.3, have a suitable viscosity for injection 

from a syringe, and they can solidify at body temperature in 15 minutes. They have 

been shown to be stable for storage up to 6 months and to integrate into the host tissue 

successfully [57,129]. Moglia et al. also developed PCL-diisocyanate (PCL-DI) and PCL-

triisocyanate (PCL-TI)-based injectable PolyMIPEs without the use of any organic 

solvents, but curing time at 37 °C has been reported as 48 hours which limits their 

clinical applicability [188]. Zhou et al. reported injectable alginate PolyHIPEs (not 

HIPEs) [143]. Following the preparation of o/w HIPEs with methacrylate 

functionalised alginate, they were thermally set. It was shown that PolyHIPEs could be 

extruded from a needle by retaining its morphology and further crosslinked using 

calcium ions. Similarly, Oh et al. developed injectable poly(N-isopropylacrylamide) 

(PNIPAM) grafted gelatin PolyHIPEs [90]. 
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1.2.4.2.2.5. Electrospinning 

Electrospinning is a versatile route for the fabrication of the fibres with varying 

diameters from nanometres to micrometres scale using a wide range of materials 

[13,15,186,201]. The system has three main components; high voltage power unit, 

material delivery unit, and fibre collection unit (the schematic illustration of the 

electrospinning setup is given in Figure 1.10E). The polymer solution is dispensed 

from the syringe using a syringe pump, and electrically charged jet of the polymer 

solution is created under high voltage. The polymer jet is elongated and collected on 

the collection unit [202]. Fibres in the nanometer scale to the micrometre scale can be 

fabricated using electrospinning. Final fibre morphology can be controlled via process 

parameters such as;  flow rate, working distance, the diameter of the needle, voltage, 

temperature and properties of the polymer solution such as conductivity 

concentration, a viscosity (Table 1.2) [203,204]. 

Table 1.2: Parameters that affect the fibre morphology of the electrospun meshes  [205]. 

 Parameter Effect on fibre morphology 
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Voltage  ↑ Fibre diameter↓ 

Flow rate  ↑ 

Fibre diameter↑ 

Bead formation ↑ 

Distance ↑ Fibre diameter ↑ 

Needle diameter ↑ Fibre diameter↑ 

Temperature  ↑ Fibre diameter ↓ 
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Solution concentration ↑ Fibre diameter↑ 

The conductivity of the polymer solution ↑ Fibre diameter ↓ 

The viscosity of the polymer solution ↑ Fibre diameter ↑ 
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There are many examples of electrospinning of emulsions in the literature [206–208], 

but a few studies reported the electrospinning of HIPEs. Samanta et al. reported the 

fabrication of the PCL electrospun fibres from HIPE [138]. Briefly, PCL (dissolved in 

toluene) and polyvinyl alcohol (PVA) (dissolved in water) were used for continuous 

and internal phases, respectively. They showed that increasing the 

continuous/internal phase ratio reduces the fibre diameter. The same group also 

reported the electrospinning of solvent-free Pickering PCL HIPEs [209]. 

1.2.4.2.2.6. Porous particle manufacturing 

Microporous PolyHIPE particles can be applied to the defect site by injecting and used 

as substrates for controlled drug delivery [210,211]. They can be created using 

multiphasic emulsion systems that are mostly water-in-oil-in-water (w/o/w) 

emulsions. The easiest way of fabrication of porous particles is dropwise addition of 

w/o emulsion into the water while the system is stirred (controlled stirred-tank 

reactor (CSTR)). Although CSTR is practical and does not need a complicated setup, it 

only enables fabrication of polydisperse particles, and it does not provide an accurate 

control on particle size. Recently, microfluidic systems gained attention for the 

fabrication of porous particles due to providing high control over particle size. The 

process is briefly based on injecting w/o emulsion and water phase into the tubing 

system using syringe pumps (Figure 1.10F) [212]. Bead size can be controlled by 

changing the nozzle size, flow rates of the water phase and emulsion phase. Paterson 

et al. reported that microfluidics enables the manufacturing of the beads with 

narrower size distribution compared to particles fabricated using CSTR [97].  
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Figure 1.10: Setups of various fabrication routes of emulsion templated scaffolds (Aa, Ba, Ca, Da, 

Ea, Fa), and scanning electron microscopy images of these scaffolds (Ab, Bb, Cb, Db, Eb, Fb). 

(Original images were cropped, and scale bars were added to enhance the figures). Images Ab, 

Bb, Cb, and Fb are adapted from [186], [70], [75], and [97] respectively, under The Creative 

Commons License. Image Db was adapted with permission from [38], Copyright 2011 American 

Chemical Society. Image Eb was adapted with permission from [213], Copyright 2017 American 

Chemical Society. 
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Table 1.3: Advantages of disadvantages of the fabrication routes of emulsion templated scaffolds 

 Advantages Disadvantages 
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 The easiest way of manufacturing PolyHIPE 

scaffolds 

 No additional technical equipment 

requirement 

 Enables the manufacturing of scaffold in a 

wide range of shapes and sizes 

 Can be used for all type of PolyHIPEs 

 Surface architecture is affected by mould 

material 

 Limited complexity of designs 

 Limited light penetration in 

photopolymerisation 
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 Enables fabrication of complex shapes 

 Second-grade porosity can be introduced 

 Does not need sacrificial material 

 Limited with photocurable material 

 The larger volume of the material 

requirement (to fill the tank) 

 Surface skin 

 Requires HIPEs with low viscosity 

 The requirement of the 3D model  
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 The small amount of material is sufficient 

 Not limited with the photocurable PolyHIPEs 

 Can be combined with other materials 

 Second-grade porosity can be introduced 

 Requires HIPEs with high viscosity 

 Surface skin 

 Equipment coast 

 The sacrificial material can be needed for 

higher accuracy 

 The requirement of the 3D model 
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  Can be used for complex shapes without need 

of the 3D model 

 Mild operation conditions 

 Enables minimal invasive delivery 

 Limited choice of materials 
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 Well-established method 

 High tunability 

 Limited with the materials that can be 

solidified via solvent evaporation 
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 Injectable 

 Suitable for drug delivery 

 Limited with photocurable materials 

 Not suitable for large defects 
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1.2.4.3. Monomers/macromers 

1.2.4.3.1. Hydrophobic polymers for the fabrication of w/o PolyHIPEs 

1.2.4.3.1.1. Non-degradable polymers 

The earliest studies about the development of emulsion templated substrates used 

styrene as a monomer [20,30–32,44]. In 1992, commercial styrene PolyHIPE 

microcarriers (provided by the company, Microporous Materials) tested with 

suspension-growing cell lines for the production of a therapeutic protein, and it was 

found advantageous as being sterilizable, cheap, and suitable for surface 

functionalisation [31,32]. In 1993, human endothelial cells were cultured on the same 

microcarriers for a similar purpose, and they reported that PolyHIPEs did not support 

cell growth [43]. Akay et al. have a patent on styrene/DVB PolyHIPEs as a cell growth 

media in 1998 [44]. Since then, styrene/DVB is also the highest reported PolyHIPE 

material in the literature. 

The blend of acrylate-based monomers; EHA:IBOA is another commonly reported non-

degradable material that is mostly solidified using photo-initiated polymerisation 

[63,97,133]. Owen et al. showed that PolyHIPEs prepared by changing the ratios of 

EHA or IBOA yield in varying mechanical properties (up to a 60-folds) [70,85].  

1.2.4.3.1.2. Degradable polymers 

PCL: As TE scaffolds are desired to be made of biodegradable materials, the 

development of biodegradable PolyHIPEs is important to satisfy the need of 

implantable TE constructs (Figure 1.11). PCL is the earliest biodegradable polymer 

that has been included in PolyHIPE composition. However, the development of HIPEs 
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made of PCL has been problematic over the years due to the high viscosity of the 

polymer, which limits the mixing of two phases during emulsion [104,115–117].  

The earliest reported PolyHIPE made from PCL was created by copolymerisation of 

PCL diacrylate with non-degradable monomers [104]. Various diluting solvents were 

included in HIPE composition to reduce the viscosity of PCL [104–106]. Johnson et al. 

reported the incorporation of 76% PCL triacrylate into HIPE composition when DCE 

used as a porogenic solvent [107]. Recently, we have reported the manufacturing route 

of PolyHIPEs fully made of photocurable PCL tetra-methacrylate diluted by a solvent 

blend of chloroform and toluene [42]. Also, recently, the development of high 

molecular weight non-reactive PCL PolyHIPEs has been reported by solvent 

evaporation [138,146,153,184,185]. 

PLA and PLGA: PLA and its copolymer PLGA are widely used biomaterials for 

fabrication of TE scaffolds. In 2002, Busby et al. reported the development of thermal 

polymerised PLA diacrylate PolyHIPEs (PLA content up to 40%) by diluting the oil 

phase with methyl methacrylate (MMA) [102]. Also, synthesis PolyHIPEs based on PCL 

and PLA blends, without the use of any diluents, via opening polymerisation also has 

been reported [180]. Recently, Hu et al. reported the development of composite 

HA/PLA [152] and HA/PLGA [41] scaffolds by Pickering emulsion templating and 

solvent evaporation. 

PPF: PPF, an unsaturated linear polyester, can be easily cured through double-bound 

on the backbone of the fumarate using various crosslinking agents [214]. It is 

commonly suggested to be cured by in situ crosslinking in the defect site [215]. Its 

degradation products are nontoxic monomers [214,216]. Due to its aforementioned 

advantages, it has been used in various biomedical applications, including TE scaffolds 
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and orthopaedic implants [217]. Fumarate-based PolyHIPEs (PPF [36], PFDA [36] and 

PFDMA [38]), are groups of the well-established biodegradable PolyHIPE 

compositions. 

In 2007, Christenson et al. developed PPF PolyHIPEs that can be cured at 60 °C in 48 

hours in the presence of PFDA as a crosslinker [36]. They showed the tunability of the 

material by changing PPF, PFDA and toluene concentrations. Later on, Moglia et al. 

reported the development of injectable solvent-free PFDMA PolyHIPE that can be 

cured at 37 °C [38]. However, the structures obtained exhibited closed cellular 

morphology. In 2014, Robinson et al. hypothesised that including an oil-soluble 

initiator into PFDMA PolyHIPE might induce organic phase initiation and this results 

in open porous monoliths. Indeed, they have used both an oil-soluble initiator; BPO 

and a water-soluble initiator, APS, and PolyHIPEs with BPO showed open-porosity. 

However, the curing time of the HIPEs was still long (overnight) for the ultimate aim 

of in situ crosslinking [57]. Moglia et al. used the redox initiated polymerisation rather 

than thermal initiation in order to reduce the curing time. They created two PolyHIPE 

compositions; one with benzoyl peroxide (BPO) as an initiator and other with 

trimethylaniline (TMA) as reducing agent and used a syringe with the double barrel 

for the injection of the emulsion and enabled polymerisation of HIPEs just in 15 

minutes [129]. 

Thiol (ene/yne): Thiol(ene/yne) chemistry (also classified as click chemistry [218]) is 

the reaction between a thiol and an alk(ene/yne) to thioether. This high yield reaction 

has recently gained attraction in various applications, including the development of 

thiol(ene/yne) PolyHIPEs [99,107,135]. 
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In 2011 Lovelady et al. reported the development of thiol(ene/yne) PolyHIPEs [135]. 

In the follow-up study, Caldwell et al. developed TMPTA and dipentaerythritol 

penta/hexa-acrylate (DPEHA)-based thiolene PolyHIPEs and showed the dependency 

of mechanical properties to monomer selection [99]. In 2015, Johnson et al. reported 

the development of photocurable PCL triacrylate thiolene PolyHIPEs with up to 95% 

interconnected porosity [107]. The degradation products have been shown to be non-

toxic on fibroblasts up to a concentration of 0.1 mg/ml. Whitely et al. also developed 

thiolene PolyHIPEs made of tetra-functional thiol, pentaerythritol tetrakis-3-

mercaptoproprionate, and PFDMA [191], and they showed the hydrolytic and 

accelerated degradation profiles of these scaffolds. 

 

Figure 1.11: Commonly used synthetic polymers to prepare emulsion templated matrices. 

 

1.2.4.3.2. Hydrophilic polymers for the fabrication of o/w PolyHIPEs 

In 1997, Naotaka Kitagawa described the development of hydrophilic PolyHIPEs [33]. 

Since then, a number of naturally derived polymers have been used to fabricate 

PolyHIPEs from o/w emulsions. These matrices have the advantages of being 

hydrophilic and biodegradable, often similar to extracellular matrix (ECM) 

components to be used as materials for the fabrication of TE scaffolds. However, they 



84 
 

have the disadvantages of having a high degree of batch-to-batch variability and 

comparably lower mechanical strength than synthetic counterparts [219,220]. 

Gelatin is one of the most common natural biopolymers used for the fabrication of TE 

scaffolds. As it is derived from collagen of skin, bone or tendon of animals, it is highly 

abundant and cost-effective [221]. In 2005, Barbetta et al. successfully developed 

gelatin-methacrylate PolyHIPEs with up to 95% internal phase using free-radical 

polymerisation [65]. Following this, they also reported the development 

polysaccharides; dextran and pullulan methacrylate PolyHIPEs [108]. They also 

developed gelatin PolyHIPEs that are solidified via enzymatic cross-linking [178]. 

Although PolyHIPEs obtained via free-radical polymerisation of gelatin exhibited 

better-defined morphology, enzymatically crosslinked PolyHIPEs were found less 

toxic on hepatocytes and showed an improved expression of adhesion proteins [178]. 

Oh et al. developed gelatin PolyHIPEs by grafting gelatin with poly(N-

isopropylacrylamide) (PNIPAM). Due to the amphiphilic nature of gelatin-graft-

PNIPAM as a continuous phase, they managed to incorporate an internal phase of up 

to 90% without the use of any surfactants [90]. Recently Yuan et al. reported the 

fabrication of gelatin PolyHIPEs with 92% porosity by two-step crosslinking and 

freeze-drying [222]. Alginate, a polysaccharide derived from seaweed, is another 

biomaterial that can be used to fabricate PolyHIPE scaffolds [143,144]. Krajnc et al. 

also reported the development of o/w HIPEs from a synthetic hydrophilic monomer, 

acrylic acid [109]. 
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1.2.4.4. Post-processes 

1.2.4.4.1. Improving the biomimetic behaviour of the PolyHIPE scaffolds 

The suitability of the morphology of PolyHIPE matrices to be used as TE scaffolds has 

been well-accepted. However, as PolyHIPEs are most commonly created using w/o 

emulsions, they are highly hydrophobic, and lack of functionality which limits their 

interaction with biological tissues [136]. Thus, starting from the early 2000s, 

researchers started to explore the ways of enhancing the biological activities of the 

PolyHIPE scaffolds using various methods such as chemical functionalisation [13], 

incorporation of the hydrophilic particles such as HA [131,134], incorporation of a 

single biologically active agent [136,223], or decoration PolyHIPEs with cell-derived 

in vitro generated ECM [75] (Table 1.4). 

1.2.4.4.1.1. Chemical functionalisation 

The surface of the scaffolds can be modified to create functional groups that act as 

hooks for biomolecules and cells. Amines, hydroxyl, carbonyl, carboxyl, epoxy groups, 

and thiols are the functional groups generally used for improving cell interaction or 

enabling the incorporation of other biomacromolecules into the scaffolds [224]. A 

wide range of applications can be used for chemical functionalisation of PolyHIPEs 

[225]. There are two main approaches for chemical functionalisation of PolyHIPEs; (i) 

incorporating co-monomers with desired functionality into HIPE composition and (ii) 

post-functionalisation of PolyHIPEs. Although the first approach seems convenient as 

the functionality can be improved using a one-step route, incorporating hydrophilic 

monomers may cause destabilisation of the emulsion, results in bigger pores, and less 

well-defined morphology [226]. The second approach enables the introduction of 

functional groups without changing the morphology of the PolyHIPEs. 
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Hayward et al. incorporated acrylic acid into the water phase of the styrene/DVB/EHA 

PolyHIPE, and they verified the success of the carboxylic acid functionalisation by X-

ray photoelectron spectroscopy, wettability analysis, and toluidin blue staining [189]. 

Post-polymerisation of thiol-acrylate PolyHIPEs has also been reported. During the 

polymerisation of thiol-acrylate, there are two competing addition reactions that 

occur; the first one is between thiols and acrylates, and the second one is between 

acrylates and acrylates. With a stoichiometric thiol to acrylate ratio, the occurrence of 

the second reaction will result in the presence of unreacted residual thiols. These can 

be used for further functionalisation using various reactions, such as thiol-ene click 

chemistry [227] or Michael addition reaction [223]. 

Plasma treatment is one of the most common and effective ways of post-

functionalisation to promote hydrophilicity of the polymer surfaces by adding polar 

groups to the surface of the material without altering the bulk properties [228–232]. 

Owen et al. showed that both air and acrylic acid plasma treatment improved the 

attachment and proliferation of mesenchymal progenitors on acrylate-based 

PolyHIPEs, whereas untreated scaffolds did not support cell attachment [70,85]. 

Pakeyangkoon et al. reported that water contact angle on poly(styrene/ ethylene 

glycol dimethacrylate) PolyHIPE dramatically dropped and it improved attachment of 

fibroblast-like cells on PolyHIPEs [233]. Recently, we reported that air plasma 

treatment improved the wettability of highly hydrophobic polymer, PCL PolyHIPEs, 

and it enhanced infiltration of bone cells through PolyHIPE scaffolds [13]. 
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1.2.4.4.1.2. Incorporation of ceramic particles 

Incorporating HA, a bioceramic that is present in native bone, forming about 70% of 

the matrix, within a scaffold is a common approach to improve the biocompatibility, 

osteoconductivity, and osteoinductivity of polymer-based bone TE scaffolds. Although 

emulsions are metastable systems that are readily destabilised by incorporation of 

additional particles, many researchers have managed to incorporate nano/micro HA 

particles into the various PolyHIPE compositions to improve the biological or 

mechanical properties of PolyHIPEs rather than using HA as Pickering particle. 

HA is commonly included in HIPE composition before emulsification. It can be added 

either into the oil phase or into the water phase. Akay and Bokhari et al. incorporated 

commercially available HA into the water phase of the w/o PolyHIPEs to be able to 

locate the HA particles only on the surface of the pores. They showed that 0.5% HA (of 

the aqueous phase) incorporated DVB/styrene PolyHIPE increased the viability of 

cells, cell penetration into the scaffolds, and osteoblast differentiation in vitro 

[131,159]. Wang et al. incorporated 4-32% HA that was synthesised in house into the 

water phase of the EHA:IBOA PolyHIPE [134]. No pore size difference was observed 

between groups except that 32% HA incorporated HIPEs showed reduced stability and 

increased pore size. However, the tensile modulus of this group was increased more 

than 2-fold in comparison to the control group, probably due to having bigger pore 

sizes. Lee et al. incorporated (5-10%) HA and strontium-modified HA into PolyHIPE 

composition by adding it into the oil phase of the emulsion [187]. HA incorporation 

increased the pore size distribution with increasing concentration and significantly 

increased the compressive strength. Although it was incorporated into the oil phase, 

SEM/Energy Dispersive X-Ray Analysis (EDX) images showed the presence of HA 
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particles on the surface of the scaffolds as well. Incorporation of HA, particularly 

strontium-modified HA, increased cell adhesion and proliferation when compared to 

unmodified PolyHIPE. Similarly, Robinson et al. incorporated 2wt% calcium 

phosphate nanoparticles, 5wt% HA nanoparticles, and 15wt% demineralised bone 

matrix (DBM) particles into injectable PFDMA HIPEs [190]. Particles affected neither 

the emulsion stability nor the pore size of the PolyHIPEs. Similar to the results of Lee 

et al., although the particles were added into the oil phase of the emulsion, 

transmission electron microscopy (TEM) images showed the localisation of the 

particles on the surface unless they aggregated.  

1.2.4.4.1.3. Incorporation of biomolecules 

Incorporation of the biomolecules into the composition of PolyHIPE scaffolds requires 

moderate operation conditions in terms of temperature and solvents. Biomolecules 

such as peptides and ECM proteins can be either covalently attached to the surfaces or 

physically absorbed/coated to the PolyHIPEs.  

Robinson et al. applied biologically inspired self-assembling peptide hydrogel into HA-

doped styrene PolyHIPEs via cell seeding suspension. Osteoblast (OB) penetration 

depth and the alkaline phosphatase (ALP) activity have been shown to be increased in 

comparison with the control [159]. Hayman et al. used Poly-D-lysine and laminin 

coating on DVB/styrene PolyHIPEs and showed the advantages of Poly-D-lysine and 

laminin coating over only Poly-D-lysine coating in terms of increasing the mean 

neurite length [119,120]. Eissa et al. reported that fibronectin coating of thiolene 

PolyHIPEs significantly increased the attachment, proliferation and infiltration of 

primary human endometrial epithelial and stromal cells when compared to the 

uncoated PolyHIPEs [234]. 
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Richardson et al. functionalised thiol-acrylate PolyHIPE scaffolds with covalent 

attachment of fibronectin using a two-step procedure. First, they functionalised 

PolyHIPEs with N-sulfosuccinimidyl-6-(4′-azido-2′-nitrophenylamino hexanoate 

(sulfo-SANPAH)), which is a photo-linker compound that enables conjugation of 

biomolecules to the surfaces, and then they further functionalised the surface by 

covalent attachment of fibronectin to sulfo-SANPAH molecule. An improved cell 

attachment and infiltration of human endometrial stromal cells have been found when 

compared to unmodified, just sulfo-SANPAH functionalised, and fibronectin-absorbed 

(physically) PolyHIPEs [136]. 

Ratcliffe et al. functionalised thiol-acrylate PolyHIPE using maleimide-derivatised 

cyclo-arginine-glycine-aspartate (RGD) peptide by benefiting from the reaction 

between the unreacted thiols in PolyHIPE and the maleimide. While non-

functionalised scaffolds did not support attachment and proliferation of human 

embryonic stem cells, PolyHIPEs functionalised with RGD showed significantly higher 

proliferation and infiltration rate [223].  

Hayward et al. incorporated pentafluorophenyl acrylate (PFPA) into the oil phase of 

the styrene HIPE to be able to conduct a coupling reaction between ester groups of 

PFPA and galactose afterwards, as hepatocytes are known to have specific receptors 

that bind to galactose. Hepatocytes have been shown to proliferate on the 

functionalised scaffold, and they showed significantly higher activity on galactose 

functionalised PolyHIPEs in terms of albumin synthesis compared to cells cultured on 

unmodified PolyHIPEs [160]. 

In our recent study, we decorated 3D printed PCL PolyHIPE scaffolds with in vitro cell 

generated bone ECM rather than a single biologically active agent [75]. This collagen 
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and mineral-rich ECM coating was shown to improve attachment and proliferation of 

human mesenchymal progenitor cells (hES-MPs). Both angiogenic and osteogenic 

activities of biohybrid scaffolds were found to be significantly higher than the activities 

of the non-coated PolyHIPEs [75].



  

Table 1.4: Various functionalisation strategies for PolyHIPE scaffolds from the literature. 

Approach Monomer/macromer Improvement Results Ref 

Chemical functionalisation/ 

Incorporation of functional 
monomers 

Styrene, divinylbenzene, and 2-
Ethylhexyl acrylate 

Incorporation of the monomer acrylic acid into the 
water phase of w/o emulsion 

7.5% carboxylic acid functionality 

Increased wettability 

No adverse effect on cell attachment 

[189] 

Chemical functionalisation/ 

Post-functionalisation 

Poly(styrene/ ethylene glycol 
dimethacrylate) 

Air plasma treatment 
Increased wettability 

Enhanced cell attachment 
[233] 

2-Ethylhexyl acrylate and 
isobornyl acrylate 

Air plasma or acrylic acid plasma treatment 
Enhanced cell attachment and cellular metabolic 
activity 

[70] 

Photocurable polycaprolactone Air plasma treatment 
Increased wettability 

Enhanced cell infiltration 
[13] 

Incorporation of ceramic 
particles 

Styrene Hydroxyapatite/internal phase 
Higher cell viability, penetration and osteoblast 
differentiation 

[131,159] 

2-Ethylhexyl acrylate and 
isobornyl acrylate 

Hydroxyapatite/internal phase Improved tensile modulus [134] 

Thiol-acrylate 
Hydroxyapatite and strontium-modified 
hydroxyapatite/ continuous phase 

Improved cell adhesion and proliferation [187] 

Poly fumarate dimethacrylate 
Calcium phosphate, hydroxyapatite / demineralised 
bone matrix 

Improved gene expression in some osteogenic 
markers 

[190] 

Incorporation of biomolecules 

 

Styrene 
Peptide coating 

(Physical) 

Improved osteoblast penetration depth and the 
alkaline phosphatase activity 

[159] 

Styrene 
Poly-D-lysine & laminin coating 

(Physical) 

Poly-D-lysine & laminin coating was found 
advantageous over only Poly-D-lysine 

[119] 

Thiolene 
Fibronectin coating  

(Physical) 

Improved cell attachment, proliferation and 
infiltration 

[234] 

Thiol-acrylate Maleimide-derivatised RGD peptide attachment Improved cell attachment and proliferation [136] 

Photocurable polycaprolactone In vitro cell-derived extracellular matrix deposition 
Improved cell attachment and proliferation,  

Enhanced osteogenic and angiogenic activity 
[75] 

Chemical functionalisation/ 

Incorporation of functional 
monomers + 

Incorporation of biomolecules 

Thiol-acrylate 
Functionalisation with sulfo-SANPAH  

+ Covalent fibronectin attachment 
Improved cell attachment and infiltration [136] 

Styrene 
Incorporation of pentafluorophenyl acrylate into 
the oil phase of the HIPE + Galactose attachment 

Higher albumin synthesis by hepatocytes [160] 
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1.2.4.4.2. Washing 

Following the fabrication of the emulsion templated scaffolds, typically a series of 

washing steps need to be applied to remove uncured material and residual surfactant. 

Insufficient washing of scaffolds may cause a toxic effect on cells. Also, they may give 

false colour changes on colourimetric cell viability assays such as MTT (3-[4, 5-

dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) and resazurin reduction. 

The washing process can be conducted by either a series of manual soakings in 

selected solvents or using Soxhlet extractor.  

The solubilities of the materials that need to be removed should be considered for the 

selection of the washing solvent. Acetone is one of the commonly used solvents for 

washing of PolyHIPE scaffolds due to the high solubility of a wide range of polymers in 

acetone [99,136,160]. In our recent studies, we have used methanol instead of acetone 

due to it being less toxic and less destructive to crosslinked monoliths [13,42]. There 

are also studies reported using different solvents such as isopropanol [159] or 

combinations of multiple solvents [109,143].  

A limited number of studies have reported the effect of the washing method, duration 

and the choice of solvent on the features of PolyHIPE. Pakeyangkoon et al. showed that 

duration of solvent extraction has an impact on the surface area and mechanical 

properties of the PolyHIPEs [235]. While an extraction time of between 6-12 hours 

improves the surface area and mechanical properties compared to non-extracted 

samples, mechanical properties become poorer than control when the extraction time 

is longer than 12 hours. 
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1.2.4.4.3. Sterilisation 

TE scaffolds should be free of contamination by living organisms such as bacteria and 

viruses for in vitro and in vivo tests and also for implantation to the human body. There 

are various methods used for this purpose, such as treatments with heat [236,237], 

gamma irradiation [236], UV [238], plasma [239,240], ethylene oxide [237,238], 

ethanol [240], and peracetic acid [237]. As the efficiency of the methods in terms of the 

degree of removal/inactivation of microorganism varies, it might be appropriate to 

clarify the difference between the terms of disinfection and sterilisation. While 

disinfection reduces the number of organisms present, this method cannot provide 

removal of all microorganisms, including spores. However, sterilisation indicates the 

removal of all kind of microorganisms including spores [241]. Most common 

sterilisation techniques in the clinics are ethylene oxide, gamma irradiation, and heat 

treatment. However, some of these methods have been found to cause compositional 

changes in the biomaterials [236,242,243]. 

Ethanol and UV treatment are commonly used for inactivation of the microorganisms 

on biomaterials for in vitro applications. However, ethanol treatment cannot inactivate 

bacteria spores, non-enveloped viruses, and prions. UV treatment works by damaging 

the DNA of microorganisms, and the major drawback of this technique is the limited 

penetration depth of UV. In addition, it was also found to be insufficient for inactivation 

of mycobacteria, bacteria spores, non-enveloped viruses, and prions. Thus, ethanol 

and UV treatments are categorised as medium level inactivation methods [242].  

The sterilisation/disinfection method of the scaffolds should be selected by 

considering the material properties, application type, and experiment duration. 

Inactivation of microorganism on PolyHIPE scaffolds was commonly reported by using 
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ethanol [99,119,129,234]. There are also several studies that reported the use of UV 

irradiation [38,90], gamma-irradiation [146], electron-beam irradiation [154], and 

autoclave [140,193]. Future studies investigating the effect of sterilisation methods on 

physical, chemical, and mechanical properties of emulsion templated scaffolds are 

needed to establish a greater degree of understanding of this matter. 

 PolyHIPEs in TE applications 

1.2.5.1. In vitro models 

In 2018, 3.53 million procedures involving living animals were conducted in the 

United Kingdom, and 56% of these procedures were for basic research purposes [244]. 

Although animal models are the gold standard due to their better ability to mimic 

complex human physiology, the 3R approach, replacing, reducing and refining of 

animal-based tests, should also be considered where possible [245]. As an alternative 

to these in vivo platforms, the use of in vitro models has gained attention in various 

research areas such as; testing new drugs, studying diseases and monitoring of the 

natural behaviour of the cells at different scales [246]. In vitro models aim to mimic 

the natural environment of the cells isolated from the body in architectural, 

mechanical and biological aspects to be able to encourage cells to behave in a similar 

way as they would behave in their own niche in vivo.  

Cells populated in 2D tissue culture plates (TCPs) are known not to be a good 

representative of the in vivo environment of the cells. Cells grown in 2D have shown to 

have flattened morphology opposed to their stretched 3D morphology in vivo, and they 

have been reported to have less similar gene expression profiles to that observed in 

vivo [247].  
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Non-degradable or slow-degrading 3D emulsion templated substrates are attractive in 

vitro test platforms due to their tunability in the physical and mechanical properties 

for different applications, ease of fabrication, reproducibility, and stability for long 

term experiments [234].  

Styrene PolyHIPEs have been used as an in vitro platform by many researchers. 

Hayman et al. proposed the differentiation behaviour of human pluripotent stem cell-

derived neurons to be studied in vitro on styrene PolyHIPEs [119,120]. Bokhari et al. 

showed that styrene PolyHIPEs showed better results over TCPs in terms of cell 

viability, ALP activity, and osteocalcin secretion of MG63 osteoblast-like cells, and 

better represents in vivo [173]. The same group also cultured hepatic carcinoma cells 

on polystyrene PolyHIPE and proposed this system to be used as in vitro platform to 

study toxicity and screening of drugs [248]. Similarly, Sun et al. used styrene 

PolyHIPEs as a 3D tissue model to study the cytotoxicity of cigarette smoke [249]. 

Polystyrene PolyHIPE is also commercially available (Alvetex®) on the market. 

Costello et al. developed a multi-layered skin equivalent on these scaffolds and 

suggested its use for disease modelling and testing of cosmetics’ active compounds 

[250].  

Non-degradable EHA and IBOA PolyHIPEs were also shown to support bone cell 

proliferation [133,162] and osteosarcoma growth [133], and they were suggested as 

an in vitro platform to study tumour tissue [133]. Eissa et al. proposed DPEHA and 

trimethylolpropane tris(3-mercaptopropionate) (trithiol) PolyHIPEs as an in vitro 

model that could mimic native human endometrial architecture and function [234].  

Recently, Severn et al. revealed that functionalised thiolene PolyHIPEs are promising 

platforms to mimic the bone marrow niche [251]. Recently, Dikici et al. developed a 3D 
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dynamic in vitro model using tubular PCL PolyHIPEs combined with electrospun PCL 

tubes that can be used for the testing of angiogenic agents (Figure 1.14D) [186]. In the 

developed system, PCL PolyHIPE was found to be a suitable environment for 

comparison of the infiltration capacity of endothelial cells in response to different pro-

angiogenic factors. 

1.2.5.2. PolyHIPEs as TE scaffolds 

Tissues in the body are subjected to various mechanical forces including compression, 

tension, torsion, and bending, and have some mechanical features such as; Young’s 

modulus, toughness, elasticity, tensile, and compressive strength. These mechanical 

features vary depending on tissue type and function. Mechanical properties of the 

scaffolds are proposed to be required to match with the mechanical properties of the 

host tissue to avoid over/under mechanical loading and undesirable, heterogeneous 

stress distribution. Required Young’s modulus of scaffolds has been reported to be in 

the range of 10–1500 MPa and 0.4–350 MPa for hard and soft tissues, respectively [9]. 

Also, cells can sense and respond to the mechanical forces in their microenvironments 

(mechanosensitivity). Thus, the elasticity of the surface that cells are attached is also 

known to affect cell behaviour, such as differentiation to specific phenotypes 

[252,253]. 

1.2.5.2.1. PolyHIPEs for Hard TE 

1.2.5.2.1.1. Basics of bone biology, anatomy and physiology 

Bone is a complex organ that has various roles in the human physiology such as; 

protecting internal organs, facilitating movement, housing bone marrow and 

progenitor cells, blood production, acting as mineral storage and homeostasis.  The 
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bone ECM is composed of 60% inorganic component that is dominantly HA and 40% 

organic matrix which is predominantly collagen type I (90% of all proteins), trace 

amounts of collagen type III and V, and non-collagenous proteins such as 

proteoglycans, matrix proteins, cytokines and growth factors [254,255]. An adult 

skeleton has 206 bones and they classified by shape as long bone, short bone, flat bone, 

irregular bone and sesamoid bone. Long bones have a tubular shape with hollow shaft 

and end expanded for articulation with other bones, such as bones of arms and legs. 

Shorts bones are small, cuboidal bones and they present in ankles and wrists. Flat bone 

is plates of bone and often curved. Skull, mandible, ribs are categorised as flat bones. 

Irregular bones can be in various shapes, and sacrum and coccyx are examples for the 

irregular bones. Sesamoid bones are the round and oval nodules in a tendon [256]. 

Osseous tissue can be categorised as woven bone or lamellar bone depending on the 

organisation of the collagen fibrils (Figure 1. 12). Woven bone is immature bone and 

has disorganised collagen fibre orientation and forms during foetal development and 

tissue repair. On the other side, lamellar bone has highly organised collagen fibres and 

layered structure (lamellae).  

The types of bone based on their macro-structure are cortical (compact) bone and 

trabecular (cancellous, spongy) bone. Cortical bone is the dense, solid outer shell of 

most of the bones in the body. Cancellous bone is the inside of the bone and has high 

porosity and made of open cellular, interconnecting rods. The surface of the bones is 

covered with the periosteum that is the outer membrane made of connective tissue. 

The microarchitectures of cortical and trabecular bone are significantly different. The 

fundamental structural unit of the compact bone is osteon. It is composed of concentric 

cylindrical structures (Lamella) that surrounds the Haversian canal (Figure 1.12). 



 

 

99 

Osteons are connected to each other with Valkmann's canal. Both Haversian and 

Volkmann's canal hosts nerved and blood vessels. Lacunae are the small spaces 

between lamellae, and they hold osteocytes. Canaliculi is the fine branches of lacunae 

that enables communication od the osteocytes and transportation of waste and 

nutrients. The main microscopic difference between cortical and trabecular bone is 

that lamellae of the trabecular bone are not concentric and does not form osteons and 

vascular channels (Haversian channel) [257,258].  

 

Figure 1.12: The hierarchical structure of bone. 

There are four types of bone cells; osteoprogenitor cells, osteoblasts, osteocytes and 

osteoclasts. Osteoblasts are cuboidal cells that are generated from osteoprogenitor 

cells, and they are responsible for matrix production. They produce type I collagen and 

mineralised ECM by depositing HA crystals on collagen fibrils, and they show high ALP 

activity and also produce non-collagenous proteins. Osteocytes are terminally 

differentiated cells of the osteogenic lineage and the most abundant cells in bone. They 

are embedded in the bone matrix, and they are responsible for form maintaining the 

matrix and mineral haemostasis.  Osteoclasts are multinucleated cells, they form from 
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hematopoietic stem cells, and they are responsible for the resorption of the bone by 

dissolving the mineralised matrix via acid and enzymatic breakdown of the 

collagen [259]. 

Bone is a metabolically active and highly dynamic organ. It remodels itself throughout 

life for its hemostasis, to form bone shape, to replace the woven bone with lamellar 

bone, for reorientate fibrils and trabeculae in a favourable direction for mechanical 

strength, as a response to loading (Wolf's Law), to repair the damage. This metabolic 

process is basically based on a bone deposition by osteoblast and bone resorption by 

osteoclasts. In this lifelong process,  all of the bones are altered, and new bone replaces 

with the old bone. On the other side, bone modelling is the growth and development 

of the skeleton, and in this process, osteoblasts and osteoclasts are not necessarily 

coordinated. The gross shape of the bone is altered [260]. 

1.2.5.2.1.2. Social, economic impact of bone defects 

There are various bone-related clinical problems such as; osteogenesis imperfecta 

(collagen), osteopetrosis (osteoclasts), Paget's disease (focal bone turnover), 

osteomalacia  (mineralisation defect), rickets, primary bone cancers  (osteosarcoma), 

secondary cancer (tumour metastasis), osteoarthritis, injuries and traumas [261]. 

They result in a variety of socio-economic issues. Bone is the second most commonly 

transplanted tissue after blood. More than two millions of bone grafting procedures 

are conducted every year, with an estimated cost of about USD 2.5 billion [262–264]. 

It is estimated that there will be more than 12 million bone fracture annually in the 

Europian Union by 2050 because of the increasing age of the population [265]. The 

market of bone graft substitutes and dental membranes is anticipated to rise from  USD 

419 million (2015) to USD 922.2 million by 2024 [266]. When the disadvantages of 
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autografts and allografts are considered (discussed in details in Section 4.1), the 

development of tissue-engineered scaffold-based bone grafts is crucial [267]. 

1.2.5.2.1.3. Use of PolyHIPEs as bone graft 

In hard TE, it is highly desirable to fabricate porous scaffolds with adequate strength 

and Young’s Modulus. Thus, PolyHIPE scaffolds made from synthetic polymers are 

preferable over naturally sourced polymers for hard TE applications due to their 

comparatively higher mechanical strength. 

Akay et al. showed the biocompatibility of HA incorporated DVB-styrene scaffolds up 

to 35 days using primary rat osteoblasts. They penetrated up to 1.4 mm, differentiated 

and formed mineralised matrix [131].  

We have recently investigated the potential use of PCL PolyHIPE scaffolds for guided 

bone regeneration (Figure 1.13A) [13]. We showed that murine long-bone osteocytes 

(MLO-A5s) attached, proliferated and infiltrated throughout the interconnects of the 

PolyHIPE scaffolds. Suitability of the pores for blood vessel ingrowth was also shown 

using chick chorioallantoic membrane (CAM) assay (Figure 1.14L-O).  

Moglia et al. developed injectable PFDMA PolyHIPEs with an average compressive 

modulus and strength of 33 MPa and 5 MPa, respectively, which showed up to 95% 

initial cytocompatibility with fibroblasts after 24 hours [38]. Whitely et al. have 

developed an in situ cell seeding approach for 3D printed PFDMA HIPEs to be used as 

a bone regeneration strategy [268]. They successfully showed the homogeneous 

seeding of human mesenchymal stem cells (hMSCs) all over the scaffold. HMSCs on 

scaffolds were mineralised and showed higher ALP activity compared to hMSCs 

on TCP. 
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Langford et al. reported the fabrication of bilayer thiol‐acrylate PolyHIPEs made of two 

different HIPE compositions [269]. They obtained PolyHIPE structures with different 

morphologies and suggested their use as scaffolds for the tissues that require layered 

designs such as ligaments, tendons, and bone attachments (Figure 1.13B). 

Naranda et al. developed thiolene PolyHIPEs for cartilage regeneration and showed 

that PolyHIPE scaffolds fully degraded with accelerated degradation and lost 55% of 

their weight in PBS in 4 weeks [140]. Young’s modulus of the scaffolds was measured 

as 0.15 MPa as prepared and 0.18 MPa after 20-day culture of primary human 

chondrocytes on the scaffolds. Collagen type-II deposition and gene upregulation were 

shown using immunostaining and PCR, respectively. 
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Figure 1.13: Hybrid PolyHIPE scaffolds with multiple layers: (A) emulsion templating combined 

with electrospinning for development of membrane for guided bone regeneration, (B) PolyHIPEs 

with two different morphologies, (C) 3D printing of drug-loaded and drug-free HIPEs selectively, 

and (D) emulsion templating combined with electrospinning in a tubular form for the 

development of in vitro angiogenesis model. Images A and D were reproduced with permission 

from ref [13] and [186] respectively, under The Creative Commons License. Image B was adapted 

with permission from [269] Copyright 2015 John Wiley and Sons. Image C was adapted with 

permission from, [146] Copyright 2017 American Chemical Society. 

 

1.2.5.2.2. PolyHIPEs for Soft TE 

The two main components of soft tissues, such as skin, nerve, fascia, and blood vessels, 

are elastin and collagen, which both have very high water content [270]. Thus, 

hydrogels are preferable candidates to be used as scaffold materials for soft TE [271]. 



 

 

104 

Barbetta et al. reported that dextran PolyHIPEs support penetration and colonisation 

of neurons into the inner cavities of the scaffold [108]. Murphy et al. showed that 

TMPTA, 1,6-hexanediol diacrylate (HDDA) and PEG diacrylate (PEGDA) thiolenes 

PolyHIPEs support proliferation, differentiation and infiltration of induced pluripotent 

stem cell (iPSC)-derived human neural progenitor cells (hNPCs) [272]. Especially 

thiolene polymerised PEGDA PolyHIPE was found to be a favourable substrate for 

hNPCs culture due to the similarity of its mechanical properties to the native human 

brain. Recently, they further explored the ability of laminin-coated PEGDA PolyHIPE 

for the culture of human-induced pluripotent stem cell- and embryonic stem cell-

derived neural precursor cells (hPSC-NPCs) in 45-day culture period [273].  

Luo et al. developed surfactant-free and solvent-free PolyHIPEs and showed the 

proliferation of fibroblasts and cardiac muscle cells on PVA PolyHIPE hydrogels [274]. 

Recently, we showed cell viability and attachment of human dermal fibroblasts (HDFs) 

on PCL PolyHIPEs in comparison with commercially available styrene PolyHIPE 

scaffolds [42]. SEM images of the HDFs suggested that the pore size of the PolyHIPEs 

have a profound effect on the orientation of the cells. 

Moglia et al. developed injectable PCL PolyMIPEs with 20-200 KPa and 4-60 KPa 

compressive moduli and strengths, respectively. They suggested their use for soft 

tissue regeneration and showed the initial cytocompatibility of PolyHIPEs with the 

activity of hMSC higher than 95% after 72 hours [188]. 

1.2.5.2.3. Drug-releasing PolyHIPEs 

Controlled release of drugs and bioactive molecules is desired for accelerating tissue 

regeneration, controlling biological responses or inhibiting pathology. PolyHIPEs are 

good candidates to elute drugs in a controlled manner as the surface area of these 
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matrices can be precisely engineered. However, there is only a limited number of 

studies reporting PolyHIPE matrices as drug delivery tools. 

Yang et al. incorporated enrofloxacin (ENR) solution (in DCM), a veterinary wide-

spectrum antibiotic, into the oil phase of the PCL HIPEs [146]. They also showed the 

possibility of fabricating scaffolds using two different inks (drug-loaded and non-

loaded) for the selective construction of drug-loaded parts (Figure 1.13C). Drug-

loaded PolyHIPEs showed a rapid release profile with 80% and 98% release in 2.5 

hours and 10 hours, respectively. Hu et al. dissolved ibuprofen, an anti-inflammatory 

drug, in the oil phase of PCL HIPE to create ibuprofen releasing PolyHIPE scaffolds 

[154]. Burst release of the drug (75-90% for various compositions) was observed 

within the first 8 hours. The release profile has been shown to be controllable by 

changing the concentration of the PCL. More research on the development of 

Ibuprofen-loaded PCL [275], PLGA [41], and PLA [152,275] Poly(HIPEs/MIPEs) has 

been reported by the same group. They also incorporated bovine serum albumin (BSA) 

into the water phase of the HA stabilised Pickering emulsions and showed that the 

release profile of BSA could be controlled by changing HA concentration in the 

composition [275]. 

All of these studies suggested promising results for the use of PolyHIPEs in drug 

delivery applications. The common characteristics of all the studies mentioned above 

were the inclusion of the drugs in the emulsion composition before emulsification, and 

the use of toxic solvents in the emulsion composition to dissolve the polymers. 

Although scaffolds were left under vacuum to remove the solvent after solidification, 

they did not include any washing step for the removal of any leftover uncured 
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materials or solvent as this step may also cause washout of the high amount of drugs 

from the scaffolds. 

Moglia et al. developed bone morphogenetic protein 2 (BMP-2) releasing solvent-free 

ethylene glycol dimethacrylate PolyHIPE microspheres using w/o/w double emulsion 

system [210]. They reported that while the encapsulation efficiency of their system 

was up to 73%, this efficiency reduced to as low as 15% in the processes which 

required purification. In a follow-up study from the same group, they have shown the 

sustained release of BMP-2 over at least 14 days, and the retention of bioactivity was 

confirmed by osteogenic differentiation of OB cultured on these microspheres [211]. 

 Where are we currently? 

To date, PolyHIPEs based on a wide variety of synthetic and natural materials have 

been developed, characterised, and tested in vivo. It is beyond doubt that we have 

gained a greater understanding of this formulation technique over the last decade. In 

addition to producing favourable 3D porosity, the development of surface 

functionalisation methods have further improved cell-material interactions of the 

emulsion templated matrices and increased the potential of PolyHIPEs to be used in 

the medical industry. 

This extensively tunable fabrication technique has been used for the manufacture of 

TE scaffolds for various soft and hard tissues so far. The emulsion templated scaffolds 

have been demonstrated to support the in vitro growth of fibroblasts (Figure 1.14A, B) 

[42,107], bone cells (Figure 1.14C, D) [13,75,162], mesenchymal stem cells (Figure 

1.14E) [188], mesenchymal progenitors (Figure 1.14F, G) [70,75], endothelial cells 

(Figure 1.14H) [186], neuronal cells (Figure 1.14I) [108,272,273], cardiac muscle cells 
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(Figure 1.14J) [276], and chondrocytes (Figure 1.14K) [140]. Although 

aforementioned in vitro results are promising, in vivo evaluation of the PolyHIPEs 

remains limited to the chick chorioallantoic membrane (CAM) assay which is a rapid 

and inexpensive in vivo platform to investigate initial tissue response to biomaterials 

and angiogenic agents [201,277]. We previously reported testing of in vivo 

biocompatibility and angiogenic activity of the PolyHIPEs in an ex-ovo CAM assay 

(Figure 1.14L-O) [13,75]. 

Bringing medical devices to market in many countries is challenging due to the strict 

regulations on the commercialisation process [278]. For commercialisation and 

clinical use of PolyHIPE matrices, there are still many issues that need to be 

investigated, such as; the long-term behaviour of PolyHIPEs in vivo and their clinical 

validation, the evaluation of the integration of them with host tissue, how their 

mechanical properties change over time, sterilisation routes, and shelf life of these 

matrices [279].  

One of the most important changes in the Medical Device Regulations (MDR) that will 

come into force on May 2020 is that the human origin cells and tissues or their 

derivatives (in the same way as those of animal origin) will be considered as a high-

risk medical device (Class III) [280]. Due to these regulatory restrictions, human or 

animal-sourced medical devices and implants will likely have more restrictive 

approval processes and a more challenging pathway for clinical approval [281–283]. 

Thus, synthetically sourced PolyHIPE matrices, in particular, are promising alternative 

substrates to be used for the fabrication of medical devices. 
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Figure 1.14: (A) False coloured scanning electron microscopy (SEM) image of human dermal 

fibroblasts on PCL PolyHIPE [42] (scale bar: 250 μm), (B) H&E image of L929 fibroblasts on 

thiolene PolyHIPE [107] (scale bar: 200 μm), (C) confocal microscopy image of MG63 bone cells 

on EHA:IBOA PolyHIPE (DAPI and Phalloidin-FITC) [133] (scale bar: 500 μm), (D) SEM image of 

murine long-bone osteocytes (MLO-A5s) on PCL PolyHIPE [13] (scale bar: 100 μm), (E) confocal 

microscopy image of mouse bone mesenchymal stem cells (mBMSCs) on PCL PolyHIPE (Calcein-

AM staned)[146] (scale bar: 200 μm), (F) confocal microscopy image of human embryonic stem 

cell-derived mesenchymal progenitor cells (hES-MPs) on EHA:IBOA PolyHIPE (DAPI and 

Phalloidin-FITC) [97] (scale bar: 200 μm), (G) confocal microscopy image of hES-MPs on EHA 

PolyHIPE (DAPI and Phalloidin-TRITC) [70] (scale bar: 200 μm), (H) fluorescent microscopy 

image of human aortic endothelial cells (HAECs) on PCL PolyHIPE (Phalloidin-TRITC) [186] 

(scale bar: 200 μm), (I) SEM image of mix nerve cells (extracted from mice retina) on dextran 

PolyHIPE [108] (scale bar: 10 μm), (J) fluorescent microscopy image of cardiac muscle cells 

(H9c2s) on polyacrylamide PolyHIPE (DAPI) [276], (K) SEM image of human articular 

chondrocytes on polyester PolyHIPE [140] (scale bar: 5 μm), (L) PCL PolyHIPE on chick 
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chorioallantoic membrane (CAM) [13] (scale bar: 10 mm), (M) H&E image of PCL PolyHIPE on 

CAM at day 14 (green arrow indicates the blood vessel on the CAM itself; yellow arrows indicate 

the blood vessels in PCL PolyHIPE [13] (scale bar: 100 µm), (N) in vitro bone ECM decorated 3D 

printed PCL PolyHIPE on CAM [75] (scale bar: 2 mm), (O) H&E image of in vitro bone ECM 

decorated 3D printed PCL PolyHIPE on CAM at day 14 (black arrows indicate the blood vessels) 

[75] (scale bar: 100 μm). Images were reproduced with permission from the indicated references. 

Images A, C, D, F, G, H, K were adapted from [42], [133], [13], [97], [70], [186], [140], respectively, 

L and M were adapted from [13], N and O were adapted from [75], under The Creative Commons 

License. The image B was adapted with permission from [107], Copyright 2015 Royal Society of 

Chemistry. Image E was adapted with permission from [146], Copyright 2017 American Chemical 

Society. The image I was adapted with permission from [108], Copyright 2005 John Wiley and 

Sons. Image J was adapted with permission from [276], Copyright 2015 Royal Society of 

Chemistry. 

 Conclusion and prospective outlook 

Emulsion templating is a favourable scaffold fabrication technique with various 

advantages, such as enabling high porosity, providing high interconnectivity, having 

high tunability of the architecture, mechanical properties and functionality, being 

suitable to be fabricated in various forms using a wide range of materials. Important 

to note is that emulsion templating can be used as a reliable fabrication method, but 

the production is dependent on a large number of process variables, and the 

fabrication setup is extremely sensitive to changes in the composition and condition 

of the process. Thus, to be able to have control over the morphology and the 

mechanical properties of the scaffolds, it is important to know the effect of individual 

parameters on the PolyHIPE properties. We devised this review as a guide text for the 

use of emulsion templating as a TE scaffold fabrication route by summarising the key 

points that should be considered during the PolyHIPE fabrication process.  

The main challenge of emulsion templating is to remove the toxic organic solvents 

used in emulsion composition and other impurities such as unreacted monomers and 
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residual surfactant. Thus, especially solvent-free and surfactant-free HIPE 

compositions are considered as promising and cost-effective as they eliminate the 

solvent and impurity removal steps. 

For improved scaffold-biological tissue interaction, more studies focusing on the 

development of o/w PolyHIPEs with enhanced mechanical properties and 

development functionalised w/o PolyHIPEs is needed. We are confident that emulsion 

templating will become an increasingly popular scaffold manufacturing technique in 

the next decade by considering the increasing number of publications on emulsions 

templating and TE. Also, future studies that concentrate on the investigation of long 

term behaviour of PolyHIPE matrices in vivo would aid to establish a greater degree of 

understanding on the potential of emulsion templated matrices to be used in the clinic. 
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 Research Aim and Objective 

The main aim of the work presented in this thesis is to develop emulsion templated 

substrates that can be used for tissue engineering applications and to investigate their 

potential to be used as scaffolds in the clinics.  

To achieve the main goal, the following aims and objectives were targeted in each 

chapter; 

1. Chapter 1 is a review article that investigates emulsion templating as solely a 

scaffold fabrication technique and summarises the basics of the techniques 

while highlighting the related literature. Although photocurable 

polycaprolactone (PCL) was used as a polymer in this thesis, the review 

summarises an overall roadmap that can be applied to any polymer to fabricate 

emulsion templated scaffolds. 

2. The aim of Chapter 2 is the development of emulsion templated matrices made 

of solely photocurable PCL as a monomer by achieving the following tasks; 

a. Investigating the effect of diluting solvent on characteristics of HIPEs 

and PolyHIPEs and having control on morphological and mechanical 

properties of these matrices by changing the diluting solvent volume 

and composition. 

b. Performing an initial cytotoxicity test on PCL PolyHIPEs with 

fibroblasts. 

3. The aim of Chapter 3 is investigating the suitability of emulsion templated PCL 

matrices to be used as a guided bone regeneration membrane by achieving the 

following tasks; 
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a. Investigating the effect of moulding material on the surface morphology of 

emulsion templated matrices. 

b. Development of an open porous membrane made of photocurable PCL 

PolyHIPE. 

c. Development of bilayer membrane made of PCL PolyHIPE and electrospun 

PCL. 

d. Improving the cell-material interaction via air-plasma treatment. 

e. Investigating the infiltration potential of bone cells within PCL PolyHIPE. 

f. Investigating the suitability of morphology of PCL PolyHIPE for the growth 

of blood vessels through the pores. 

4. The aim of Chapter 4 is increasing the osteogenic and angiogenic performance 

of multiscale porous scaffolds by in vitro generated extracellular matrix 

decoration by achieving the following tasks; 

a. Development of the printing of photocurable PCL-based emulsions with 

high viscosity. 

b. Fabrication of multiscale porous polymeric scaffolds by combining 

emulsion templating and 3D printing. 

c. The population of polymeric scaffolds with bone cells to generate bone 

extracellular matrix. 

d. Investigating the decellularisation approaches to remove DNA while 

keeping the extracellular matrix. 

e. Investigating the cell attachment, proliferation and extracellular matrix 

deposition of embryonic mesenchymal stem cell progenitors in vitro on PCL 

only and biohybrid scaffolds. 
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f. Investigating the angiogenic performance of PCL only and biohybrid 

scaffolds in vivo using CAM assay. 

5. In Chapter 5, the overall conclusion and future work of this study are discussed. 

6. The aim of Chapter 6 is to describe the development of artistic visual materials 

with various techniques; such as false SEM colouring and scientific and medical 

illustration. 
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CHAPTER 2  

Emulsion templated scaffolds manufactured from 

photocurable polycaprolactone 

 
 
 

Abstract  

Emulsion templating is an emerging route for the production of highly porous scaffolds 

(PolyHIPEs) with interconnected porosity. Polycaprolactone (PCL) is one of the most 

extensively used synthetic, bioresorbable polymer for scaffold materials for both hard 

and soft tissues. PolyHIPEs have previously been shown to be challenging to formulate 

from PCL due to the high viscosity of the polymer, which limits the efficient mixing of 

the two phases of the emulsion. Herein, we present the development of PolyHIPEs 

made of photocurable 4-arm polycaprolactone methacrylate (4PCLMA) by optimising 

the diluting solvent composition of the oil phase. The relationship between oil phase 

viscosity and solvent combinations, the balance between solvent and oil phase density 

were investigated. Tuning the balance of these parameters was found to be critical to 

obtain stable HIPEs.  
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Stable 4PCLMA HIPEs and 4PCLMA PolyHIPEs with open pores were successfully 

produced via using chloroform as a diluent, and via using chloroform/toluene blends 

as a diluent, we were able to tune the pore size. 4PCLMA PolyHIPE scaffolds were 

shown to be capable of supporting cell attachment, growth, and migration. 

Keywords: polycaprolactone; emulsion; tissue engineering 

 Introduction 

Tissue Engineering (TE) aims to devise solutions for the healing of critical defects, i.e., 

defects which cannot heal naturally, within the host tissue. In a typical TE approach, 

biodegradable scaffolds are used to fill the defect site to provide temporary mechanical 

support and to serve as a three-dimensional substrate for cell attachment and 

proliferation. These TE scaffolds need to have a highly interconnected porous 

architecture to enable cell infiltration, nutrient flow and integration of the material 

within the host tissue [7,284,285].  

Both natural and synthetic polymers can be used to produce biodegradable TE 

scaffolds. Natural polymers closely mimic the native extracellular matrix structure and 

composition, but they exhibit a number of disadvantages compared to synthetic 

polymers; (i) they present the risk of pathogen transmission, (ii) they can present a 

high degree of batch-to-batch variability, and (iii) they potentially contain protein 

impurities which may lead immune reaction [286]. Some advantages of synthetic 

polymers over naturally sourced ones are that their production is relatively 

inexpensive, and they can be tuned to create polymers with a range of mechanical and 

chemical properties [287,288].  
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Polycaprolactone (PCL) is one of the most extensively used synthetic and 

bioresorbable polymers and has been used for FDA approved drug delivery devices 

and sutures [289]. This makes PCL an attractive and promising biomaterial for use in 

other clinically relevant biomedical applications. PCL scaffolds can be used for both 

hard and soft tissues [17,290,291], such as bone [10], cartilage [292], vascular grafts 

[293], skin [294,295] and nerve [290]. Various manufacturing techniques such as gas 

foaming [10,11], porogen leaching [10,12] and additive manufacturing [17] have been 

used to introduce porosity into PCL-based scaffolds. Nevertheless, these processes 

have limitations, gas foaming and porogen leaching results inadequate pore 

interconnectivity [296], while current additive manufacturing techniques lack the 

resolution to build scaffolds on length scales relevant to influence cell behaviour (1-50 

m). 

Emulsion templating is an alternative and attractive route to introduce a highly 

interconnected porosity into scaffolds materials [297]. The process involves mixing 

two immiscible liquids where one liquid (internal droplet phase) is dispersed within a 

continuous connected phase (the polymer) in the presence of a surfactant which 

stabilizes the emulsion [298]. When the volume of the dispersed droplet phase (φ) is 

greater than 74.05%, which is the maximum packaging density of uniform spherical 

droplets, the emulsion is classified as a High Internal Phase Emulsion (HIPE) [299]. 

When the continuous phase is solidified by bulk polymerisation, that structure is 

defined as Polymerised HIPE (PolyHIPE). 

The porosity and interconnectivity of PolyHIPEs can be tuned by the emulsion 

conditions or components used. Temperature, stirring speed, surfactant 

type/quantity, and internal phase volume are the parameters shown to affect the 
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morphology [35,38,69,70,97,99]. Since the specific pore size range required for cell 

ingrowth is cell and tissue-dependent [300], the properties of PolyHIPEs can, 

therefore, be tailored towards specific cell types and applications [65,131].  

PolyHIPE foams made of biodegradable materials such as polypropylene fumarate 

(dimethacrylate) [36,38], thiol-enes [135], and ethylene glycol dimethacrylate [210] 

have been reported. However, fabrication of HIPE foams made of PCL is challenging 

because of the high viscosity of the polymer, which constrains the mixing of two phases 

during emulsion formation [35,115–117]. 

The earliest reported PolyHIPE made from PCL was created by copolymerisation of 

PCL diacrylate with substantial amounts of non-degradable monomers [35]. In 

particular, up to 40 wt. % PCL diacrylate was incorporated into the PolyHIPE 

composition, but the emulsion did not form beyond this mixing ratio due to the high 

viscosity of the oil phase. This was confirmed by Lumelsky et al. who developed vinyl 

terminated PCL-based PolyHIPE and highlighted that the high viscosity of PCL limited 

the incorporation of PCL to above 50 wt. % [117].  

The viscosity of the oil phase can be reduced via increasing the temperature of the 

system or diluting the oil phase with a solvent. Diluting the polymer with solvents 

(defined as diluents or porogenic solvents) is an attractive method to control the 

viscosity of the oil phase compared to simply increasing the temperature, as raising 

the temperature can lead to emulsion separation due to the increased mobility of the 

water droplets [69,99].  

Busby et al. used toluene as a diluent to produce a PCL diacrylate-based PolyHIPE, but 

the monoliths did not show an open cellular PolyHIPE structure [35]. Also, David et al. 
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produced polyurethane PolyHIPE foams via step-growth polymerisation of 

diisocyanate and PCL triol and used tetrahydrofuran to reduce to the high viscosity of 

the oil phase [106]. Changotade et al. used toluene as a diluent to create PCL 

polyurethane PolyHIPEs [105]. Johnson et al. used 1,2-dichloroethane as a porogenic 

solvent to reduce the viscosity of the oil phase, which was a blend of the photocurable 

monomers containing thiol and PCL triacrylate, and they were able to incorporate up 

to 76% PCL-TA into the PolyHIPE structure [107].  

Recently, the development of non-reactive PCL-based PolyHIPEs has been reported. 

This requires dissolving high molecular weight PCL beads in various solvents such as 

dichloromethane [146,153,184], toluene [138], tetrahydrofuran/methanol [185], to 

produce stable PolyHIPEs from these emulsions via solvent evaporation.  

All these studies concluded that either to reduce the viscosity of functionalised PCL or 

to dissolve the high molecular weight PCL, a diluting solvent needs to be used for 

PolyHIPE production. Although the effect of solvent on the PolyHIPE morphology has 

been investigated [36,301], these studies have been limited to single-solvents and only 

show the effect of solvent type or volume on the PolyHIPE morphology and emulsion 

stability. The effect of solvent blends, and in particular the interplay between the 

different solvent densities and their effect on emulsion stability and morphology are 

yet to be clearly established. 

In this study, we investigated the most suitable solvent composition to dilute 4-arm 

PCL methacrylate (4PCLMA) to produce a PolyHIPE scaffold. Chloroform and toluene 

were tested systematically as diluent solvents. The effects of solvent volume, solvent 

density and oil phase viscosity on the stability of HIPEs and the morphology of 

PolyHIPEs were investigated. Stable 4PCLMA HIPEs and open porous 4PCLMA 
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PolyHIPEs were successfully developed using chloroform as a diluent, and we were 

able to tune the pore size via using chloroform/toluene blends as a diluent. To be able 

to control the scaffold morphology using different solvent blends allows us to tailor 

scaffolds for specific tissue engineering applications. Cell viability of human dermal 

fibroblasts (HDFs) on the 4PCLMA PolyHIPE scaffolds was investigated, and they were 

compared to a commercial PolyHIPE-based scaffold, Alvetex®. 

 Experimental 

 Materials 

Pentaerythritol (98%), ε-caprolactone, tin(II) 2-ethylhexanoate (stannous octoate 

(SnOct2)), triethylamine (TEA), methacrylic anhydride (MAAn), hydrochloric acid 

(HCl), photoinitiator (PI) (2,4,6-Trimethylbenzoyl Phosphine Oxide/2-Hydroxy-2- 

Methylpropiophenone blend), Dulbecco`s Modified Eagle Media (DMEM), fungizone, 

fetal calf serum (FCS), penicillin/streptomycin (PS), L-glutamine, trypsin, 

paraformaldehyde, resazurin sodium salt, glutaraldehyde, ethanol, 

hexamethyldisilazane (HMDS), hematoxylin solution, eosin y solution, were all 

purchased from Sigma Aldrich. Dichloromethane (DCM), industrial methylated spirit 

(IMS), xylene and methanol were purchased from Fisher Scientific. DPX mounting 

medium for microscopy was obtained from Merck. The surfactant Hypermer B246-SO-

M was received as a sample from Croda. Tissue freezing medium was purchased from 

Leica Biosystems. Alvetex® polystyrene scaffolds were obtained from Reinnervate. All 

materials were used without further purification. 
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 Synthesis of 4PCLMA 

Throughout the manuscript, 4PCL and 4PCLMA were used to define 4-arm non-

methacrylated PCL and 4-arm methacrylated PCL, respectively. 

Synthesis of 4PCLMA has been performed in two steps: (i) 4PCL synthesis via ring-

opening polymerisation, (ii) methacrylate functionalisation of hydroxyl end groups of 

4PCL. 

2.2.2.1. Synthesis of 4PCL 

Under nitrogen flow, pentaerythritol (12.00 g, 0.088 mol) and ε-caprolactone (80.49 g, 

0.705 mol) were added into a three-neck round-bottomed flask, and the system was 

heated to 160°C using an oil bath while being mixed at 200 rpm using a magnetic 

stirrer. When the pentaerythritol was completely dissolved, 50 µl of tin(II) 2-

ethylhexanoate (1.25 g/ml, 0.08 wt. % of the monomer) was added from the middle 

neck of the round flask, and the system was left overnight to react to form 4PCL. 

Finally, the system was removed from the oil bath and left to cool down in the ambient 

atmosphere.  

2.2.2.2. Methacrylate functionalisation of 4PCL 

4PCL was dissolved in 300 mL of DCM, and then TEA (52.65 g, 0.52 mol) was added. 

Reagents were stirred, and a further 200 mL of DCM was added to ensure everything 

was dissolved. The flask was placed in an ice bath. MAAn (80.22 g, 0.52 mol) was 

dissolved in 100 mL DCM and transferred into a dropping funnel (~1 drop per second). 

When the MAAn was completely dispensed, the ice bath was removed, and the system 

was maintained at room temperature (RT) overnight while continuously stirring (375 

rpm). To remove the TEA, MAAn, and salts, the 4PCLMA pre-polymer was washed with 
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HCl solution (1 M, 1000 mL) prepared from concentrated HCl (37%, 12 M) and 

deionised water (dH2O). Subsequently, the mixture was washed twice with dH2O to 

remove any salt. Using a rotary evaporator, almost all solvent was removed. The 

4PCLMA solution was transferred into a bottle filled with methanol and placed in a -

80°C freezer until the precipitate formed at the bottom (overnight). The supernatant 

methanol was removed, and fresh methanol was added. These steps were repeated at 

least three times. Any remaining solvent was removed using a rotary evaporator, and 

then 4PCLMA was stored in a cold durable glass in the freezer (-20°C). 

2.2.2.3. Characterisation of 4PCLMA 

2.2.2.3.1. Proton nuclear magnetic resonance 

To confirm the structure of 4PCLMA, proton (1H) NMR spectroscopy analysis was 

performed on an AVANCE III spectrometer at 400 MHz. The spectra were recorded 

using an 8.2 kHz acquisition window, with 64k data points in 16 transients with a 60 s 

recycle delay (to ensure full relaxation). Deuterated chloroform was used as a diluent 

(CDCl3). Spectra were analyzed using MestReNova software. Chemical shifts were 

referenced relative to CDCl3 at 7.27 ppm. 

2.2.2.3.2. Gel permeation chromatography 

Molecular weight and molecular weight distributions of 4PCLMA were determined 

using a Viscotek GPCmax VE200 gel permeation chromatography (GPC) system with a 

differential refractive index detector (Waters 410). Tetrahydrofuran was used as the 

eluting solvent at a flow rate of 1 mL/minute at 40 °C, and polystyrene standards were 

used as the calibration sample.  
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2.2.2.3.3. Gel fraction analysis 

Gel fraction analysis was conducted to measure the extent of crosslinking. 4PCLMA 

and 6% (w/w) PI were mixed in a glass vessel, and the mixture was injected into 

circular moulds with a diameter of 3.7 mm and the height of 1.5 mm, and photocured 

for 3 minutes on both sides. Initial weights of each sample (W0) were recorded. Then, 

samples were immersed in 15 mL of DCM to solubilize the uncross-linked 4PCLMA for 

24 hours, and the specimens were left to dry for 6 hours in the fume cupboard and 

then vacuum-dried overnight at ambient temperature. The dry weights of the 

extracted samples (Wi) were recorded. The same protocol was applied to the control 

samples apart from the DCM washing. The gel fractions were calculated using 

Equation 1 [302];  

𝐺𝑒𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (%) =
𝑊𝑖

𝑊0
× 100 

(1) 

 Preparation and characterisation of 4PCLMA PolyHIPEs 

2.2.3.1. Preparation of 4PCLMA HIPEs 

The term ‘oil phase’ is used to describe the combination of all the water-

immiscible/low immiscible parts of the emulsion, this includes; the polymer, 

surfactant, photoinitiator, and solvent(s) used as a diluting agent (if applicable). Unless 

otherwise stated, the amount of 4PCLMA (0.40 g, 1.13 g/mL), surfactant (0.04 g, 

0.94 g/mL), photoinitiator (0.06 g, 1.12 g/mL) and water (2 mL, internal phase is 82 

vol. %) were kept constant in one batch of emulsion. 4PCLMA and the surfactant were 

added into a glass vial (Ø=25 mm) and heated to 40 °C to dissolve the surfactant, then 

left to cool down. Single solvent/solvent blends (Table 2.1 and 2.2) and PI were added 

in the 4PCLMA-surfactant mixture, respectively. All were mixed at 375 rpm using a 
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magnetic stirrer (8×20 mm) for 1 minute at RT. Once the homogeneous mixture was 

created, water was added dropwise in 2 minutes, and the emulsion was mixed for 

further 2 minutes.  

The term ‘stable emulsion’ is used to indicate that there is no observable separation of 

phase or coalescence of droplets in the HIPE before polymerisation. 

2.2.3.2. Nomenclature of the 4PCLMA PolyHIPEs 

The PolyHIPE samples prepared to investigate the effect of the single solvent in this 

study are referred to using a code of the form XY where X is the type of the solvent 

used to dilute oil phase ((T) toluene, (C) chloroform and (CT)), Y indicates the volume 

of solvent (in mL) used in one batch of PolyHIPE (per 0.40 g polymer; this was kept 

constant throughout the study). For example, C0.40 is the PolyHIPE sample prepared 

by using 0.40 mL of chloroform as a diluting solvent of the oil phase. NS defines the 

group which is prepared without any diluting solvent. 

The PolyHIPE samples were prepared to investigate the effect of changing the solvent 

ratio in a solvent blend are referred to using a code of the form C/T: K/L where K 

indicated chloroform percentage in a solvent blend and L indicated the toluene 

percentage in a solvent blend. For example, C/T:20/80 means 20 wt. % of the total 

solvent is chloroform, 80 wt. % is toluene.  

2.2.3.3. Viscosity measurements of the oil phases of the 4PCLMA HIPEs 

AR2000 (TA Instruments, Ettenleur, The Netherlands) was used to characterise the 

viscosity of the oil phase of HIPEs. 40mm 2° steel cone plates were used with the gap 

of 55 micrometres at 25 °C. 0.6 mL of sample was injected, and a continuous ramp step 
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was applied with a shear between 0.01 to 100 s-1 for 1 minute using linear mode and 

50 points per decade. 

2.2.3.4. Polymerisation of 4PCLMA HIPE 

For scanning electron microscopy (SEM) of the samples, 4PCLMA PolyHIPE was 

pipetted into silicon moulds. For cell culture, 4PCLMA PolyHIPE was loaded into a 2 

mL syringe. All HIPE compositions were UV cured immediately (within 10 seconds) 

once prepared to capture the microstructure before breakdown. Both groups were 

cured for 3 minutes on both sides using the OmniCure Series 1000 curing system (100 

W, Lumen Dynamics, Canada). The reported light density of the UV lamp is 18 W/cm2 

with a spectral output from 250-600 nm [303]. The resulting parts were recovered 

either from the silicon mould or syringe and soaked in methanol for removal of non-

cured material for 2 hours. Following this, the samples were gradually transferred to 

increasing concentrations of water (50%, 100%) and then left in 100% water for a day. 

As it is reported that PCL PolyHIPE tends to collapse during drying [107], the samples 

were taken out and left in a -80°C freezer for an hour, then transferred into the vacuum 

oven and left for a day to preserve the porous structure of 4PCLMA PolyHIPE.  

2.2.3.5. Determination of the densities and the porosities 

The densities of PolyHIPEs were calculated by measuring the mass and volume values 

of the cylindrical samples (diameter: 3.7 mm, height: 1.5 mm, n=3). The density of bulk 

4PCLMA (n=3) was measured by gas pycnometer (Micromeritics AccuPyc II 1340, 

USA). The porosities of the 4PCLMA PolyHIPEs were calculated using Equation 2 

[61,62]. 
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% 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = (1 −
𝜌𝑃𝑜𝑙𝑦𝐻𝐼𝑃𝐸

𝜌𝑤𝑎𝑙𝑙
) × 100 (2) 

Where ρPolyHIPE is the PolyHIPE density and ρwall is the density of PolyHIPE wall. For the 

density of the wall, the measured density of the bulk polymer was used. 

The expected density of 4PCLMA PolyHIPE was calculated using Equation 3; 

𝜌𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝜌𝑝𝑜𝑙𝑦𝑚𝑒𝑟 × (1 − 𝜃) × (𝑔𝑒𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) (3) 

Where ρpolymer is the density of the bulk polymer, ϴ is internal phase volume fraction 

(0.82), and the gel fraction was calculated as explained in Section 2.2.2.3.3. 

2.2.3.6. Investigating the stability of 4PCLMA HIPEs 

The long-term stabilities of HIPE groups of C/T:60/40, C/T:80/20 and C/T:100/0 

were tested. Emulsions were prepared using the standard protocol described in 

Section 2.2.3.1. The emulsions were transferred into small diameter glass vials (Ø=16 

mm) to observe any separation. The samples were covered with aluminium foil and 

left for five days at RT in a place, free from vibration, with a closed lid. On day 5, the 

emulsions were polymerised, as described in Section 2.2.3.4, in the bottle to preserve 

the structure. The pore sizes and amount of emulsion separation were investigated 

using SEM. 

2.2.3.7. Morphological characterisation of 4PCLMA PolyHIPEs 

To observe the microarchitecture of 4PCLMA PolyHIPE, scaffolds were cut vertically 

using a razor blade and sections mounted on carbon pad adhered aluminium stubs. 

Samples were gold sputter-coated in 15 kV for 2.5 minutes to increase conductivity. 
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FEI Inspect F SEM (Philips/FEI XL-20 SEM, Cambridge, UK) was used with 10 kV 

power. 

To calculate the average pore size and pore size distribution of the scaffolds, the 

following image processing steps were applied (detailed in Figure 2.7). SEM images 

were imported into Adobe Photoshop CS6. Fifty voids were selected randomly, and the 

pores were framed with a solid colour in the new layer using the ellipse tool. The areas 

of each pore were measured using Image J, and the diameters were calculated in 

Microsoft Office Excel 2016. Since the void diameters are assumed to have been exactly 

bisected, a statistical correction factor (2/√3) was applied to adjust for the 

underestimation of diameter because of uneven sectioning and finally pore size 

histograms were created [66].  

2.2.3.8. Mechanical characterisation of PCLMA PolyHIPEs 

Dog-bone-shaped tensile test samples (overall length (LO); 32.5 mm, thickness (T); 2 

mm, gage length (G); 7.6 mm, with of the narrow section (W); 3.2 mm, the radius of the 

fillet (R); 12.7, the distance between grips; 22.5 mm, width overall (WO); 8mm) were 

fabricated using silicon moulds based on a modified version of ASTM D638-14 

(standard test method for tensile properties of plastics), Type V specimens [304]. 

0.5 mL 4PCLMA PolyHIPE was pipetted into the moulds and cured for 3 minutes on 

each side. They were washed with methanol overnight and gradually transferred into 

phosphate-buffered saline (PBS) (50%, 100%) and tested as wet as it represents the 

cell culture conditions better. Samples were tested using Zwick Roell Z 0.5 mechanical 

testing machine equipped with 500 N load cell. Grip distance and extension rate was 

set to 10 mm and 0.02 mm/s, respectively. Both the force and elongation data were 

recorded. The modulus was determined using the linear-elastic region of each 
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sample’s stress-strain curve. The ultimate tensile strength (UTS) was calculated that 

of the maximum force applied divided by to the cross-sectional area of the sample. 

Ultimate elongation is the elongation at the failure point. 

2.2.3.9. Biological assessment of 4PCLMA PolyHIPEs 

2.2.3.9.1. 4PCLMA PolyHIPE scaffold fabrication and treatment for cell culture 

The 4PCLMA PolyHIPE which was cured in the syringe was cut into 1 mm slices using 

a scalpel blade to make thin discs. Air plasma treatment was applied to enhance cell 

attachment on PolyHIPEs. As demonstrated in our previous work, the plasma coating 

improves cell attachment on these typically hydrophobic surfaces [70]. Briefly, the lid 

of a six-well plate was covered with aluminium foil, and the foil was pierced using a 

scalpel to enable diffusion of the air. Scaffolds were placed on the foil, and they were 

placed in the plasma machine (Figure 2.1). Air plasma (Diener Electronic, Ebhausen, 

Germany) was applied to PolyHIPE scaffolds with a power of 50 W and a pressure of 

0.8 mbar for 60 seconds. PolyHIPEs were flipped over, and the same procedure was 

repeated for the other surface. 

 

Figure 2.1: (A) Air plasma machine used in this study, (B) PolyHIPEs during air plasma 

treatment, (C) parameters used for air plasma treatment. 

Alvetex® scaffolds were used as a control. 13 mm diameter Alvetex® scaffolds were 

cut by using a sterile punch (6 mm) to obtain the same diameter as our scaffolds. 
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4PCLMA PolyHIPE scaffolds were washed with 100% methanol for 24 hours with four 

changes to remove any remaining contaminants of surfactant, solvent or uncured 

material. For disinfection, 4PCLMA PolyHIPE scaffolds and Alvetex® were left in 70% 

ethanol for 2 hours and then transferred into PBS in sterile conditions, 4 PBS washes 

were applied in 24 hours. DMEM supplemented with 10% FCS, 1% L-glutamine, 1% 

PS and 0.25% fungizone was used as a cell culture medium. Scaffolds were then placed 

into 24 well-plate, and they were conditioned with culture media for an hour in the 

incubator. 

2.2.3.9.2. Isolation of human dermal fibroblasts and general cell culture 

Primary HDFs were isolated from donated skin of a patient. Skin samples were taken 

from a donor undergoing abdominoplasty with informed consent (Ethical approval for 

the tissue acquisition was granted by the local ethical approval committee of the NHS 

Trust, Sheffield, UK, ethics reference: 15/YH/0177).  

Briefly, the skin was cut into 0.5 cm2 pieces by using a sterile scalpel and left in Difco 

trypsin (0.1% (w/v)) (including D-glucose (0.1% (w/v) in PBS) overnight at 4 °C and 

washed with PBS. The epidermis was removed from dermis mechanically. Following 

mincing the dermal layer, they were transferred into 0.5% (w/v) collagenase A 

solution and incubated overnight at 37 °C for dissociating the tissue. The cell 

suspension was centrifuged at 2000 rpm for 10 minutes to obtain a cell pellet. Finally, 

HDFs were suspended in the media, expanded and frozen down for further use.  

For cell culture experiments of this study, HDFs were used between passage 7-8. Cells 

were defrosted into T75 flask and cultured until 90% confluence. Then, cells were 

trypsinised, counted and centrifuged. The cell pellet was re-suspended in fresh media 

(25000 cells/20 µm). The media in 24 well plate was aspirated, and 20 µm of cell 
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suspension was placed over the surface of each scaffold homogenously and left for 2 

hours in the incubator (37.5°C, 5% CO2) for cell attachment. To prevent drying of cells 

and to keep them inside of the well humid during this time, 4 mL medium was injected 

into the reservoirs between wells. After 2 hours, scaffolds were transferred into a fresh 

well plate, 2 mL of media was supplied into each well and incubated. For all cell culture 

experiments, the medium was changed in every 2-3 days.  

2.2.3.9.3. Assessment of cell viability on 4PCLMA PolyHIPE scaffolds 

Resazurin reduction (RR) assay was applied to measure the cellular metabolic activity 

and estimate the cell viability on scaffolds. Resazurin solution (non-fluorescent, blue) 

is reduced by the cells and forms resorufin (fluorescent, pink) which is detectable by 

a fluorescence plate reader. 1 mM resazurin stock solution in dH2O was diluted to 100 

µM in culture media to make the resazurin working solution. 1 mL of RR solution was 

added into each well, and the scaffolds were transferred into a fresh well plate using 

sterile forceps. The well plates were protected from light and incubated for 4 hours at 

37°C. From each scaffold, triplicate samples of 200 µl of the reduced solution were 

added to a 96 well plate. It was measured three times using a spectrofluorometer 

(FLX800, BIO-TEK Instruments, Inc.) at an excitation wavelength of 540 nm and an 

emission wavelength of 630 nm. Scaffolds were washed twice with PBS before adding 

fresh media. RR assay was performed at three time points (day 1, day 4, and day 7) 

with fresh scaffold/cell constructs for each. 

2.2.3.9.4. Assessment of cell penetration on 4PCLMA PolyHIPE scaffolds 

After 7 days culture of HDFs on 4PCLMA PolyHIPEs, scaffolds were washed three times 

with PBS, and they were fixed in 3.7% paraformaldehyde for 1 hour at RT before 

washing three more times with PBS. Excess fluid was removed by placing the scaffolds 
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on filter paper for 5 minutes before being soaked in 2 mL of freezing media in a 5 mL 

container. The container was kept in a vacuum oven for 2 minutes in freezing media to 

be penetrated into all the pores. Scaffolds were transferred into cryomolds filled with 

freezing media and cryomolds were immersed in liquid nitrogen for solidification. 

Blocks were removed from the moulds, and they were mounted into pins. 7 µm 

sections were sliced on glass slides using the cryostat (Leica CM1860 UV, Milton 

Keynes, UK). Slides were soaked in dH2O for 1 minute, and stained with hematoxylin 

solution for 1.5 minutes and washed with dH2O water for 4 minutes. The slides were 

then stained in eosin for 5 minutes. After washing with dH2O water, slides were 

dehydrated in 70% and 100 % IMS and dunked into xylene to remove excess dye. The 

slides were then mounted with DPX and viewed using a light microscope (Motic 

BA210, China).  

2.2.3.9.5. Preparation of the biological samples for SEM 

On day 4, scaffolds were washed three times with PBS after removing culture media. 

They were fixed in 2.5% glutaraldehyde (in PBS) at RT for 1 hour to preserve cell 

structure. They were rinsed with PBS for 15 minutes (3 times) and soaked in dH2O 

water for 5 minutes. Following this, samples were subjected to serial ethanol washes 

to be dehydrated (35%, 60%, 80%, 90%, and 100% for 15 minutes for each 

concentration). Finally, samples were treated with drying agent HMDS/ethanol (1:1) 

for 1 hour and 100% HMDS for 5 minutes before air drying. Samples were gold coated 

and visualised using methods described in Section 2.2.3.7. The false colouring of SEM 

images was performed manually using Adobe Photoshop CS6. 
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 Statistical analysis 

Statistical analyses were performed by using GraphPad Prism 6 using one-way and 

two-way analysis of variance (ANOVA) for mechanical testing and cellular metabolic 

activity assays, respectively, and plotted as mean±SD. A difference was deemed 

statistically significant if the p-value was less than 0.05 and the statistical differences 

are denoted in the figures. The total number of replicates (n) is stated in the figure 

legends. 

 Results and Discussion 

 Synthesis and characterisation of the photocurable 4PCLMA 

4PCL was synthesised by ring-opening polymerisation of ε-caprolactone in the 

presence of pentaerythritol and Sn(Oct)2 as an initiator and a catalyst, respectively. 

Subsequently, it was methacrylate functionalised with MAAn to add photocurable end 

groups, as detailed in Figure 2.2A. The 4PCL synthesis and methacrylation were 

confirmed by 1H-NMR spectroscopy.  
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Figure 2.2: A. (i) Synthesis of 4PCL from the monomers via ring-opening polymerisation, (ii) 

methacrylate functionalisation of the hydroxyl end groups (4PCLMA), B. Chemical structure 

diagram and proton NMR spectrum of 4PCL and 4PCLMA and the relative assignments. Hydrogen 

environments in the polymer are labelled a-j.  

The 1H-NMR analysis confirms the chemical composition of caprolactone in both 4PCL 

and 4PCLMA with the peaks at 1.6, 2.3, 1.4 and 4.1 ppm. 4PCL has methylene groups 

adjacent to hydroxyl end groups shown with a peak at 3.6 ppm. The methacrylation 

process reduces the number of these groups as they are converted into methacrylate 

groups; which are indicated at peaks 1.9, 5.5 and 6.1 ppm. These peaks only appear in 

the 4PCLMA and verify the methacrylation reaction (Figure 2.2B). This 1H-NMR data 

correlates well with the PCL methacrylate synthesised by Messori et al. [305]. The 

molecular weight of the 4PCLMA was determined by GPC analysis. Mw and Mn values 

are 3531 g/mol and 2648 g/mol, respectively, which gives a dispersity index of 1.33. 

Photocurable PCL is not a commercially available product, and it has to be synthesised 

in house, so there are a limited number of studies using photocurable PCL as a 

PolyHIPE-based scaffold material [107]. There are other reported PCL-based 

PolyHIPEs, but in those studies, the PCL-based PolyHIPEs were produced via thermal 
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curing [35,116] or solvent evaporation [146,180], which involved a long duration (6-

48 h) step for curing. In those processes, a stable emulsion is required to maintain its 

morphology during the polymerisation period. In our approach, the PolyHIPE was 

cured via photochemical crosslinking, which can be carried out in a matter of seconds 

to minutes, depending on the intensity of the light source and the size of the object. Via 

photocuring, the HIPE is almost instantaneously converted into a PolyHIPE which 

locks the emulsion microstructure [107,306]. 4PCLMA was chosen due to its relatively 

high number of functional groups, increasing the monomer functionality causes an 

increase in the polymerisation rate and the crosslinking density [107,307]. This is 

confirmed in this study; the gel fraction of the 4PCLMA was measured to be high 

(92.1±3.9%), which indicates a high cross-linking density. 

The cure depth in our experiments was maximum 4.5 mm, and throughout our 

experiments, we did not observe any cure-depth dependent difference in 

microstructure of 4PCLMA PolyHIPEs. This indicates that the 4PCLMA PolyHIPE was 

cured throughout by the high power UV-lamp. This is in line with the observations 

made by Kimmins et al. [308] who were able to photo-cure a 35 mm thick monolith of 

highly crosslinked glycidyl methacrylate-based PolyHIPE.  

 Diluent solvent type and amount affect the 4PCLMA PolyHIPE 

morphology 

2.3.2.1. Incorporation of chloroform as a diluent creates porous structures 

In the first attempt of synthesis of 4PCLMA PolyHIPE, no solvent was used. This 

resulted in droplets of PCL floating around the water phase, Figure 2.3A. We attributed 
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this to the 4PCLMA oil phase being too viscous to create an emulsion when no solvent 

is used. 

The individual contributions of the oil phase components to its viscosity were 

investigated. The addition of the surfactant to 4PCLMA slightly increased the viscosity 

of the mixtures, and the addition of PI contributed to the reduction in the overall 

viscosity, Figure 2.3B. But viscosity of the oil phase remained too high to form an 

emulsion. 

Although the high viscosity of the continuous phase increases the kinetic stability, the 

viscosity needs to be low enough to enable efficient mixing [36,101]. When the 

viscosity of the polymer is too high to create a HIPE, it can be reduced by diluting the 

polymer with solvents [36,107]. In this study, we chose chloroform and toluene as 

diluent solvents to be tested because they have very low miscibility in water, and they 

are reported as good solvents for PCL in the literature [309]. 

The oil phase prepared with the lowest volume of chloroform, C0.25 (for the 

nomenclature see Section 2.2.3.2.) was the most viscous diluted oil phase in our study 

(Figure 2. 3C). This oil phase did not form a stable emulsion above 77 vol. % of internal 

(aqueous) phase and inverted into a water-in-oil-in-water (w/o/w) emulsion. It may 

be due to the high viscosity of the oil phase and the high viscosity of the emulsion. The 

viscosity of the oil phase limits the maximum internal phase volume that can be 

incorporated [310,311]. As for the viscosity of the emulsion depends on various 

factors, including the volume fraction of the dispersed phase and the viscosity of the 

continuous phase [65,95]. The viscosity of the emulsion increases with an increasing 

amount of internal (aqueous) phase [66,93,95], and this may limit the incorporation 

of water into the emulsion, and the water addition results in emulsion break down. 
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Interestingly, the breakdown occurs at an internal phase volume close to the close 

packing limit of uniform, non-deformed spherical particles [312]. Beyond this limit, 

the internal droplets are compressed into polyhedral cells separated by thin films 

[310] and form a HIPE. 

No visual separation was observed in group C0.40 either during mixing or when 

mixing stopped, and this group resulted in open porosity which is characterised by 

windows, the smaller voids on pores connecting adjacent pores to each other, as 

described by Christenson et al. [36].  

The higher volume of chloroform emulsions (C0.55 and C0.70) started to break down 

in minutes. The emulsion likely separates out by gravity-induced coalescence, where 

the oil phase film around the water droplets ruptures, and the water droplets merge. 

The velocity of the single droplet during this process can be estimated with Stoke’s 

equation (Equation 4) where, v is the velocity of the droplet, D is the droplet diameter 

under gravitational force, Δρ is the density difference between water and oil phase, n 

is the viscosity of the oil phase and g is the gravitational force [172];  

𝑣 = 𝐷2 ∆𝜌𝑔/18𝑛 (4) 

Adding chloroform as a diluting solvent for the oil phase has a dual effect on the 

emulsion; it increases the density difference between the water and oil phases 

(Table 2.1) and reduces the viscosity of the oil phase. Both of these effects will speed 

up the droplet travel, according to Stoke’s law.  
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Table 2.1: Composition details of 4PCLMA PolyHIPE groups which were prepared by using no 

solvent or single solvent of chloroform or toluene.  

 

SEM analysis was used to characterise microstructures of the PolyHIPEs, and the 

morphology of each composition is shown in Figure 2.3D. The average pore size in 

group C0.25 was 6±3µm. Then, a further increase in the amount of chloroform (from 

C0.40 to C0.70) resulted in an increase in pore size of the monoliths from 69±31 µm to 

427±182 µm (pore size distributions are provided in Figure 2.8).  

Sample 

ID 

Vsolvent 

(ml) 

ρoil phase 

(g/ml) 

Separation 

during mixing 

Separation right 

after mixing 

Porous 

structure 

D 

(µm) 

NS 0.00 1.11 - - N - 

C0.25 0.25 1.19 Y N Y 6±3 

C0.40 0.40 1.22 N N Y 69±31 

C0.55 0.55 1.25 N Y Y 139±84 

C0.70 0.70 1.27 N Y Y 427±182 

T0.25 0.25 1.06 N N N - 

T0.40 0.40 1.04 N N N - 

T0.55 0.55 1.02 N N N - 

T0.70 0.70 1.01 N N Y 24±7 

N: no separation, Y: separation was observed 
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Figure 2.3: SEM micrograph of A. NS, B. 4PCLMA PolyHIPE composition prepared using 

chloroform as a diluting solvent, C. SEM images of each 4PCLMA PolyHIPE composition prepared 

using toluene as a diluting solvent (scale bar: 100µm). B. The viscosity of the oil phase 

components without any solvent (n=4). 

In summary, while the viscosity of C0.25 was not low enough to hold the whole volume 

of the internal phase, all other three groups (C0.40, C0.55, and C.070) formed an 

emulsion and resulted in open porous cellular morphology. However, C0.40 was the 

only group to form a stable emulsion for the single chloroform volumes tested. When 

using a solvent to dilute the pre-polymer, there is a narrow range over which a stable 

emulsion can be formed. The viscosity should be low enough to enable mixing of the 

two phases, but high enough to form a stable emulsion [36,107]. 
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2.3.2.2. Incorporation of toluene as a diluent increases stability of the 4PCLMA 

HIPEs 

When toluene was used as a diluent, the viscosity of the oil phase was lower than when 

chloroform was used, despite both solvents having a similar viscosity (0.56 mPaS and 

0.60 mPaS at 20°C for chloroform and toluene, respectively). The viscosity of the oil 

phases prepared with either solvent showed a similar pattern as the solvent volume 

was increased, Figure 2.3C. The difference in 4PCLMA solvation by either chloroform 

or toluene could be the main contributing factor affecting the small difference in the 

oil phase viscosity. Similarly, Zverev et al. also reported that polymer viscosity is 

different in good and poor solvents. Polymers have a higher viscosity in good solvents 

due to higher the mean square end-to-end distance of the macromolecules compared 

to poor solvents [313]. 

The solvation of a polymer in a solvent is dictated by the free energy of mixing 

(Equation 5); where ∆Gm is the Gibbs free energy change on mixing, ∆Hm is the 

enthalpy change on mixing, T is the absolute temperature, and ∆Sm is the entropy 

change on mixing. 

∆𝐺𝑚 = ∆𝐻𝑚 − 𝑇∆𝑆𝑚 (5) 

∆Hm of mixing can be expressed with Equation 6 [314]; 

∆𝐻𝑚 = 𝑉𝑚𝑖𝑥  [(
Δ𝐸1

𝑉

𝑉1
)1/2 −  (

Δ𝐸2
𝑉

𝑉2
)1/2]

2

Φ1Φ2 
(6) 

Where Vmix is the volume of the mixture, ∆EV is the energy of vaporisation, V is the 

molar volume of each species in the mixing, ɸ is the volume fraction. Equation 6 can 

be rewritten as [314]:  
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∆𝐻𝑚

𝑉
= (𝛿1 − 𝛿2)2 Φ1Φ2 

(7) 

Where V is the molar volume of solvent, δ is the solubility parameter of the solvent (1) 

and the polymer (2), respectively. For better polymer-solvent miscibility or 

dissolution ∆Hm must be smaller than the entropic term (-TΔSm) in Equation 5. 

Therefore, a smaller difference between solubility parameters (δ1- δ2)2 improves the 

solubility of the polymer in a solvent (Equation 7) [309,314].  

The solubility parameters of PCL, chloroform, and toluene are 10.00, 9.21 and 8.91 

(cal/cm3)1/2, respectively [309]. This indicates that chloroform is a better solvent than 

toluene for PCL, which is also confirmed by Bordes et al. [309]. 

The viscosity of the oil phase is also an important parameter that determines the 

success of the emulsification process, for example, T0.25 (for the nomenclature, see 

the Section 2.2.3.2.) makes a successful emulsion while C0.25 does not since the oil 

phase of T0.25 exhibits a lower viscosity compared to oil phase of C0.25. Interestingly, 

apart from T0.70, no interconnected pores were observed in 4PCLMA PolyHIPE 

scaffolds with toluene as porogenic solvent. Although group T0.70 has an 

interconnected porous structure, its cellular morphology is more disordered than 

4PCLMA PolyHIPEs with chloroform as a porogenic solvent. Although the detectable 

average pore sizes of T0.70 and C0.70 were measured as 24±7 µm and 427±182 µm, 

respectively, it is hard to determine the individual pores and the windows of group 

T0.70. The structure appears to exhibit very small pores interconnected by large 

windows; both these features have been associated with a small interfacial tension 

between the water and organic phase as reported [35,66]. This may explain the 

disordered morphology observed in T0.70. The question remains, as to why a porous 
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structure was not observed in the other emulsion templated polymers with toluene as 

porogenic solvent. 

To investigate the potential effect of the surfactant, the emulsions were prepared with 

toluene as a porogenic solvent and without surfactant. Interestingly, despite the low 

interconnectivity, all samples exhibited porous morphologies (Figure 2.10). Adding 

the surfactant has a strong influence on the microstructure of the produced PolyHIPE. 

The surfactant used in this study is an oil-soluble, polymeric emulsifier made of A-B-A 

block copolymer (polyhydroxystearic acid-polyethylene glycol-polyhydroxystearic 

acid) (Hypermer 256) with a Hydrophile-Lipophile Balance (HLB) of 4.6. The assembly 

of the block copolymer is strongly affected by the solvents they are in contact with 

[315,316]. Although 10% Hypermer 246 was found to be a suitable surfactant system 

for chloroform diluted oil phases to obtain typical open cellular PolyHIPE morphology 

[49], further investigation is needed to find a better surfactant for materials with 

toluene as porogenic solvent. In this study, we aimed to use chloroform as a dominant 

solvent, and toluene is used to tune the pore size, interconnectivity, and stability of the 

4PCLMA PolyHIPEs. 

Emulsions with toluene as a porogenic solvent did not exhibit any observable 

separation after addition of water and turned to white, which is a general behaviour of 

the emulsion formation as the droplets of water scatter the light, suggesting that more 

stable emulsions were formed with toluene compared to chloroform as the diluting 

solvent. This can be attributed to the following: (i) the larger polarity difference 

between toluene and water compared to chloroform and water [317] which results in 

the formation of more stable HIPEs [318,319], (ii) the droplet diameter is much 

smaller with toluene (e.g. T0.70 24±7 µm compared to C0.70 427±182 µm) which 
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reduces the speed of gravity-driven coalescence (Equation 4), (iii) the speed of gravity-

driven coalescence is reduced by matching the density difference between the oil 

phase (Table 2.1) and the water phase, and (iv) the lower interfacial tension of the 

toluene diluted oil phases and water compared to the chloroform diluted systems. It is 

because, the interfacial energy is directly correlated to the interfacial tension 

(Equation 8), and low interfacial energy increases emulsion stability [320], [321]. 

𝐸 = ∆𝐴 × 𝛿 (8) 

Where E is energy, ∆A is an increase in the area, δ is the interfacial tension.  

2.3.2.3. 4PCLMA PolyHIPE morphology can be tuned by solvent blend as a 

diluent 

To show the translational morphological changes from C0.40 (C/T:100/0) to T0.40 

(C/T:0/100), 4PCLMA PolyHIPEs whose oil phases were diluted with a solvent blend 

of chloroform and toluene were investigated (Figure 2.4). The viscosity of the oil phase 

gradually reduced from C/T:100/0 to C/T:0/100, Figure 2.11A. As expected, no visual 

separation or emulsion instability was observed in all these solvent blend groups until 

the moment of solidification because both C0.40 and T0.40 were stable emulsions and 

their blends expected to be stable. 

Although any apparent porous PolyHIPE structure was not observed in either 

C/T:40/60 or C/T:20/80, closed pores showed up in the group C/T:40/60. Open 

porous, cellular morphology was observed in only three groups whose chloroform 

ratio in diluting solvent composition was 60% or more. The average pore diameters 

were 15±4 µm, 20±7 µm, 69±31 µm for C/T:60/40, C/T:80/20, C/T:100/0, 

respectively (pore size distributions are provided in Figure 2.9).  
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Decreasing the ratio of C/T reduces the pore sizes, but it increases the degree of 

interconnectivity which is important for the transport of nutrients, removal of waste 

products and migration of cells [99]. The degree of interconnectivity is calculated as 

the ratio of the average window diameter (d) to an average pore diameter (D) [69]. 

For C/T:60/40, C/T:80/20, and C/T:100/0, window diameters were measured as 

3.7±1.7 µm, 3.6±1.7 µm, and 10.5±4.8 µm, respectively, and the degrees of 

interconnectivities (d/D) were calculated as 0.24, 0.18, and 0.15, respectively. Higher 

interconnectivity is related to lower interfacial tension, as previously discussed. When 

interfacial tension is lower, the walls between the pores become thinner and shrink 

comparably more, which results in an increase in window size [46,66,301]. 

To conclude, as chloroform was found to be a better diluting solvent to form PolyHIPE 

structure, it was determined that it needs to be used as a dominant solvent for the 

solvent volumes tested. By the addition of a comparably smaller volume of toluene into 

a solvent composition, cellular morphology; pore size and interconnectivity can be 

controlled. Since HIPEs of C/T:60/40, C/T:80/20, and C/T:100/0 are stable, and their 

monoliths have open cellular pore morphologies, these three groups were selected for 

further investigation. 

2.3.2.4. Determination of the densities and the porosities 

The density of 4PCLMA was measured as 1.13 g cm-3. Densities and porosities of 

C/T:60/40, C/T:80/20 and C/T:100/0 were calculated as 0.35 g cm-3, 0.34 g cm-3 and 

0.31 g cm-3, and 69%, 70% and 73% respectively. There is no statistical difference 

found in the porosity of these groups. Interestingly, the internal phase volume was 82 

vol. % (which would yield an expected density of 0.19 g cm-3), and although the 

internal phase volume is responsible for the porosity of the PolyHIPE, the measured 
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porosity was lower. This could be due to either shrinkage after crosslinking and drying 

[59] or a collapse in the PolyHIPE morphology [62]. In this study, a typical 15-20 % 

shrinkage in each dimension of 4PCLMA PolyHIPE samples was observed after 

crosslinking and drying, and SEM analysis of the samples did not indicate any 

significant microstructural collapse occurring in tested groups of the 4PCLMA 

PolyHIPEs. The HIPE still produces an interconnected foam, despite having a lower 

porosity as typically observed in PolyHIPEs. This is in line with the study by Menner 

et al., who produced open cellular monoliths with a porosity of 70% [53]. 

2.3.2.5. 4PCLMA HIPEs prepared using solvent blends are stable enough for 

photo-polymerisation 

After 5 days, there were very thin dense layers (less than 1 mm, ~10% (v/v) of the 

emulsion) at the bottom of the bottles of groups C/T:60/40, C/T:80/20 and 

C/T:100/0. Due to the slow coalescence of the droplets (the effect can be seen only in 

days) and the higher density of the oil phase compared to the water, the oil phase tends 

to accumulate at the bottom of the bottle. Due to both solvent and water evaporation, 

the bottles had condensation droplets on the wall, as shown in Figure 2.11B. 

Over 5 days the average pore sizes of the samples increased to 43±15 µm, 51±20 µm 

and 87±32 µm for C/T:60/40, C/T:80/20 and C/T:100/0 (SEM images and pore size 

distributions are provided in Figure 2.11C and Figure 2.12). Although the stability of 

the emulsions still needs to be improved for long-term storage, once created, 

emulsions are typically polymerised within a few minutes to hours so that slow 

coalescence is unlikely to pose a problem. 
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Table 2.2: Details of compositions of 4PCL PolyHIPE prepared by using solvent blends of 

chloroform and toluene. 
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0:10 

(C:T) 

C:0.0  

T:0.4 
1.04 N N N - - - - 

2:8 

(C:T) 

C:0.8 

T:3.2 
1.06 N N N - - - - 

4:6 

(C:T) 

C:1.6 

T:2.4 
1.09 N N N - - - - 

6:4 

(C:T) 

C:2.4 

T:1.6 
1.13 N N Y 15±4 3.7±1.7 0.24 43±15 

8:2 

(C:T) 

C:3.2 

T:0.8 
1.17 N N Y 20±7 3.6±1.7 0.18 51±20 

10:0 

(C:T) 

C:0.4 

T:0.0 
1.22 N N Y 69±31 10.5±4.8 0.15 87±32 

a An average void diameter (cured right after preparation), b An average interconnecting window diameter, c The 

degree of interconnectivity, d An average void diameter (cured 5 days later for stability test), N: no separation, Y: 

separation was observed 
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Figure 2.4: A. SEM images of C/T:60/40, C/T:80/20 and C/T:100/0; polymerised A. Right after 

preparation of HIPE, B. 5 days after preparation (scale bars: 100µm). 

 Morphology of 4PCLMA PolyHIPE affects the mechanical 

properties 

Changing between the solvent blend ratios (C/T:60/40, C/T:80/20 and C/T:100/0) 

affects the mechanical properties of the material and the PolyHIPE morphology. The 

lowest elastic modulus was observed in group C/T: 60/40 (Figure 2.5A). This is likely 

due to two structural features of this group; (i) the highest interconnectivity and (ii) 

the smallest pore size. Interconnectivity results in a large open area on the surface of 
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the pores leading to lower structural integrity due to the interconnected windows [66], 

and Young’s modulus increases with the increasing pore size as previously reported 

by Krajnc et al. and Kovačič et al. [87,88]. Gibson et al. also reported that at constant 

volumetric porosity, larger pore size results in thicker struts between pores which 

increase the modulus of the scaffolds [89]. The lowest UTS was observed in group C/T: 

60/40, However, either UTS or ultimate elongation did not show a direct relationship 

between pore size. The greatest elongation, up to 98%, was recorded in the scaffolds 

with medium pore size Figure 2.5C. The elongation values of other groups were around 

66% and 84% for scaffolds with smallest and largest pore sizes, respectively. 

 

Figure 2.5: Mechanical properties of C/T:60/40, C/T:80/20 and C/T:100/0 A.Elastic modulus, B. 

Ultimate tensile strength, C. Percentage elongation at failure (*: p<0.05, ns: no significant 

difference, n=3). 

The mechanical test data of the 4PCLMA PolyHIPE scaffolds indicates that the 

materials are likely to be suitable for use in soft TE, as the elastic modulus of soft 

tissues is lower than 1 MPa [99,322,323]. 
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 4PCLMA PolyHIPEs can support the attachment, growth, and 

infiltration of HDFs 

There was a significant increase in the cellular metabolic activity of HDFs from day 1 

to day 7 on both 4PCLMA PolyHIPE scaffolds and Alvetex®, Figure 2.6A. At day 1 and 

day 4, there was no significant difference between any groups. At day 7, while there 

were no significant differences between 4PCLMA PolyHIPE groups, the cellular 

metabolic activity of HDFs on Alvetex® scaffolds was significantly higher than 

C/T:60/40 and C/T:100/0. The thinner structure and higher porosity make Alvetex® 

(200 µm thick, 90% porous) a more optimised scaffold for studying cell ingrowth than 

the 4PCLMA PolyHIPE scaffold (1 mm thick, internal phase 82 vol. %). Interesting to 

note is that there was no significant difference between C/T:80/20 and Alvetex® at 

day 7. HDFs attached and spread on the surface of all 4PCLMA PolyHIPE scaffolds at 

day 4 before the culture reached confluence on the surface. Additionally, the cells grew 

into the pores of the scaffold and exhibited a flat morphology, especially in the 

scaffolds with larger pore size, see Figure 2.6B. False-coloured SEM images are 

presented to distinguish the presumed cellular material from the scaffold; the original 

SEM images are provided in 2.12. 
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Figure 2.6: A. Biological assessment of 4PCLMA PolyHIPE scaffolds. A. Resazurin reduction assay 

results which show the cellular metabolic activity of HDSs for 7 days on PolyHIPE scaffolds 

(ANOVA, multiple comparisons, ns, 0.05>p, * ,+,# , p ≤ 0.05, n=3), B. SEM images of 4-day cultured 

HDFs on C/T:60/40, C/T:80/20, C/T:100/0 and Alvetex®, respectively (top view). SEM images 

were false-coloured for clear visibility of the cells on the scaffold surface. (yellow: scaffold, 

turquoise: cells (Scale bars: 50µm) C. H&E stain of a section of 4PCLMA PolyHIPE groups after 7 

days of cell culture (scale bar: 250µm). 

The potential of the scaffolds to support cell ingrowth was investigated with 

histological staining. Cells penetrated up to 250 µm over 7 days of culture into the 

highly interconnected 4PCLMA PolyHIPEs, Figure 2.6C. However, they appeared to be 

more evenly distributed through the scaffolds with smaller pore sizes compared to 

those with larger pores. The group (C/T: 100/0) with largest pore sizes (69 ± 31 µm) 

showed the lowest penetration in comparison with the other two groups (C/T:80/20 

and C/T:60/40with 15 ± 4 µm and 20 ± 7 µm pore sizes, respectively). This is likely to 

be because of its smaller degree of interconnectivity in comparison with the other two 

scaffolds. 
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Johnson et al. investigated the cellular metabolic activity (day 3 and day 7) and 

migration (day 7) of L929 fibroblasts on fully degradable, 90-95% porous, three 

PCL-based thiolene scaffolds and Alvetex® with pore sizes 62, 68, 82 and 40 µm, 

respectively [107]. They observed a reduction in cellular metabolic activity from day 

3 to day 7 on the Alvetex® scaffolds. This is likely due to higher seeding density 

(500.000 cells per scaffold, Ø = 20 mm) than used in our study (25.000 cells per 

scaffold, Ø = 6 mm). In contrast, the cell viability of fibroblasts increased from day 3 to 

day 7 in PCL-based thiolene PolyHIPEs. Although cells accumulated on the surface due 

to high seeding density, as shown in the H&E sections, they also penetrated through 

the structure. Additionally, Akay et al. manufactured styrene-based PolyHIPEs with 

average pore sizes of 40 µm, 60 µm, and 100 µm by changing the emulsification 

temperature [131]. They cultured rat osteoblast on PolyHIPE scaffolds for 35 days. 

While there was a significant increase from day 1 to day 35 in cellular metabolic 

activity on each PolyHIPE scaffold, there was no significant difference between 

scaffolds of different pore sizes at day 35. Interestingly, while the cell penetration 

depth was over 300 µm in 40 µm porous scaffolds in 7 days, it was ~250 µm and ~50 

µm for scaffolds with 60 µm and 100 µm pore sizes, respectively, which is a similar 

trend observed as in our study.  

Overall the cell culture and ingrowth on 4PCLMA scaffolds is comparable by the other 

PolyHIPE scaffolds highlighted in the literature, and in particular, the commercially 

available Alvetex® scaffold.  
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 Conclusions 

In this study, we developed PolyHIPE scaffolds made of photocurable 4PCLMA. Solvent 

dilution was used to reduce the viscosity of the oil phase and enable mixing of two 

phases of the emulsion. Chloroform and toluene were used as diluents. We revealed 

that solvent composition and volume have a high impact on both emulsion stability 

and PolyHIPE morphology due to the joint contribution of the density and the viscosity 

of the oil phase. Overall, chloroform was found to be a better porogenic solvent to 

dilute the oil phase for creating porous scaffolds. On the other hand, when toluene was 

used to dilute the oil phase, HIPEs were found more stable due to less difference 

between the densities of the oil and water phases. Both open porous and comparably 

stable HIPEs were successfully created when solvent blends of chloroform and toluene 

were used to dilute the oil phase. The pore and interconnect sizes of the 4PCLMA 

PolyHIPEs were shown to be tunable by adjusting the chloroform and toluene ratios 

in the solvent blend. These changes in morphology affect mechanical properties, 

demonstrating that conditions could be adjusted to create a scaffold of the required 

mechanical properties. 4PCLMA PolyHIPE scaffolds supported cell attachment, growth 

and penetration in comparable rate to commercial scaffolds when HDFs were cultured 

on them indicating that this material is suitable as a material for building TE scaffolds. 

 Supporting information 

For measurements of the pores, the following protocol was applied. SEM images were 

imported into Adobe Photoshop CS6. A random rectangular area was selected. By 

using the ellipse tool, pores in that area were framed in a new layer and saved as 8-bit 

tiff document. The original images were imported into Image J to set the scale (global 
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calibration). Then, the processed images were imported into Image J and by using the 

following process>binary>make binary steps, each file was converted into a binary 

image. Using analyze>set measurements, the desired parameter was selected (area). 

Finally, using the analyze tab, analyze particles command was chosen, and the 

individual area of each pore was measured and provided pop up in a separate window. 

This data was transferred to excel to calculate pore diameters (roundness of pores was 

assumed to be 1) with the correction factor.  

 

Figure 2.7: The processing steps of pore size calculation, from left to right: the SEM image was 

imported into Adobe Photoshop CS6, using the ellipse tool pores are framed in a new layer, the 

image is saved as a black and white 8-bit tiff file, the file is converted into a binary image, the 

area of each pore was calculated. 

 

 
 
Figure 2.8: Average pore sizes and pore size distributions of 4PCLMA PolyHIPEs prepared by 

using single solvents of either chloroform or toluene. 
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Figure 2.9: Average pore sizes and pore size distributions of 4PCLMA PolyHIPEs prepared by 

using solvent blends of chloroform and toluene. 

 

 
 

Figure 2.10: 4PCLMA PolyHIPE compositions whose oil phases were diluted with (A.0.25 mL, 

B. 0.40 mL, C. 0.55 mL, and D. 0.70 mL) toluene prepared without surfactant (scale bar: 500 µm). 

 
 

 

Figure 2.11: A. Viscosity changes with changing solvent ratios of chloroform and toluene in the 

solvent blend (n=4), B. Macro images of emulsions once prepared and 5 days after preparation 
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(scale bar: 5mm), C. SEM image of the bottom of the cured emulsion 5 days later, which shows 

separation at the bottom of the bottle (scale bar: 1mm). 

 

 
Figure 2.12: Average pore sizes and pore size distributions of HIPE compositions which were 

prepared by using solvent blends of chloroform and toluene (samples were cross-linked 5 days 

later for stability tests). 

 

 
 
Figure 2.13: Original SEM images of 4-day cultured fibroblasts on C/T:60/40, C/T:80/20, 

C/T:100/0 and Alvetex®, respectively (scale bar: 250µm). 
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CHAPTER 3  

A novel bilayer polycaprolactone membrane for 

guided bone regeneration: combining 

electrospinning and emulsion templating 

 

Abstract 

Guided bone regeneration is a common dental implant treatment where a barrier 

membrane (BM) is used between epithelial tissue and bone or bone graft to prevent 

the invasion of the fast-proliferating epithelial cells into the defect site to be able to 
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preserve a space for infiltration of slower-growing bone cells into the periodontal 

defect site. In this study, a bilayer polycaprolactone (PCL) BM was developed by 

combining electrospinning and emulsion templating techniques. First, a 250 µm thick 

polymerised high internal phase emulsion (PolyHIPE) was manufactured and treated 

with air plasma, which was shown to enhance the cellular infiltration. Then, four 

solvent compositions were investigated to find the best composition for 

electrospinning nanofibrous PCL barrier layer on PCL PolyHIPE. The biocompatibility 

and the barrier properties of the electrospun layer were demonstrated over four 

weeks in vitro by histological staining. Following in vitro assessment of cell viability 

and cell migration, cell infiltration and the potential of PCL PolyHIPE for supporting 

blood vessel ingrowth were further investigated using an ex-ovo chick chorioallantoic 

membrane assay. Our results demonstrated that the nanofibrous PCL electrospun 

layer was capable of limiting cell infiltration for at least four weeks, while PCL 

PolyHIPE supported cell infiltration, calcium and mineral deposition, and blood 

vessel ingrowth. 

Keywords: guided tissue regeneration, guided bone regeneration, barrier membrane, 

PolyHIPE, electrospinning, polymer, polycaprolactone, CAM assay, GTR, GBR 

 Introduction 

In the US, almost 50% of the adult population experiencing a type of periodontitis 

which may eventually cause tooth extraction if it is not treated. It is estimated that 

more than 200 million of the US population will suffer from partial tooth loss by 2027. 

Losing a tooth may have an adverse effect on the psychology and social life of the 
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patient [258] in addition to its economic burdens. In 2010, it was estimated that the 

global cost of dental diseases to be USD 442 billion [324].  

Periodontal regenerative procedures require the use of guided tissue 

regeneration/guided bone regeneration membranes (GTR/GBR) in various conditions 

such as socket preservation, grafting, maxillary sinus elevation and the treatment of 

the chronic periodontitis [325]. The main principle of the GTR/GBR procedure is to 

place a barrier membrane (BM) between epithelial tissue and bone or bone graft to 

prevent migration of the fast-proliferating epithelial cells into the defect site to be able 

to preserve a space for infiltration of bone cells into periodontal defect site [326,327].  

The earliest developed membranes were made of non-resorbable materials such as 

cellulose filters, polytetrafluoroethylene (e-PTFE), and titanium meshes but the 

necessity of a second surgery for removal led to the development of resorbable 

membranes [328]. The most common natural membranes are made of porcine, bovine, 

or human collagen. Despite their high biocompatibility, the main disadvantages of 

collagen membranes are their potential for antigenicity, poor mechanical properties, 

and rapid degradation [329,330]. Alternatively, synthetic polymers such as 

Polyglycolic acid (PGA) and Polylactic acid (PLA) have been commonly investigated for 

the fabrication of BMs. Although they are biodegradable and non-cytotoxic, their rapid 

degradation can generate an acid environment around the implant, which may cause 

adverse inflammatory tissue reactions [331,332].  

Polycaprolactone (PCL) is another bioresorbable synthetic polymer, which degrades 

more slowly and consequently does not produce an overly acidic environment in the 

degradation process [331]. FDA approved biomedical devices made of PCL are already 

on the market, which makes PCL a promising material for other biomedical 
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applications. Additionally, due to its ease of fabrication in different forms, PCL is used 

as a scaffold material for both hard and soft tissue engineering [289]. It has previously 

been reported for various biomedical applications including drug delivery 

applications [333,334], periodontal regeneration [335,336], vascular grafts [337], 

bone tissue engineering applications [338,339], and wound healing [340,341]. One of 

the main drawbacks of PCL, as with many other synthetic polymers is that it is 

hydrophobic, which limits the polymer-cell interaction [342,343]. Plasma treatment is 

one of the most common and effective ways to promote hydrophilicity of the polymer 

surfaces by adding polar groups to the surface of the material without altering the bulk 

properties [228–232]. 

A BM is expected to be in contact with both hard and soft tissues, and it has different 

functions on each side. While being cell occlusive on the side in contact with soft tissue, 

it should encourage bone regeneration on the other side. There are many methods 

used in barrier membrane fabrication; such as solvent casting [344,345], 

electrospinning [336,346–349], phase inversion, freeze-drying [350,351], and 3D 

printing [352,353]. 

Electrospinning is a versatile technique for fabricating fibres with varying diameters 

from a few nanometres to several micrometres from a wide variety of materials [354]. 

PCL is also one of the widely-used polymers that have been electrospun for its use in 

numerous applications [355]. Several solvents and solvent blends have been reported 

to be used to dissolve PCL for preparing the electrospinning solution [356]. Although 

several parameters have been associated with the size of fibres [357], the composition 

and the ratio of solvents have been demonstrated to have a significant effect on fibre 

diameters [358]. As electrospun nanofibers are shown to prevent cell infiltration 



 

 

159 

without limiting the diffusion of oxygen and nutrients, electrospinning is a promising 

method to manufacture a physical barrier.  

Emulsion templating is another scaffold manufacturing technique where polymer 

solution and water are mixed in the presence of surfactants to form an emulsion. When 

the water droplets are encapsulated in a polymer solution, it is called water in oil (w/o) 

emulsion. If the internal phase volume (water content) is increased over 74% (v/v), 

the emulsion is called a high internal phase emulsion (HIPE) [39,91,359,360]. After 

solidification of the polymer phase (continuous phase) by thermal curing or photo-

curing or solvent evaporation, the structure is locked, and water droplets are removed. 

The resulting porous structure is defined as polymerised HIPE (PolyHIPE). PolyHIPEs 

are favourable as a tissue engineering scaffolds because of their highly interconnected 

porous structures which have been previously demonstrated as promoting cell 

migration and tissue ingrowth [9,36,42,107,131,162]. 

Manufacturing of scaffolds made of photocurable PCL by using emulsion templating 

technique is challenging because of the high viscosity of the polymer, which constrains 

the mixing of two phases during emulsion formation. We have recently developed and 

reported a production route of PolyHIPEs made of photocurable PCL and showed the 

biocompatibility of the material by using human dermal fibroblasts [42]. However, this 

developed composition has not been used for any specific application yet, and the use 

of emulsion templated PolyHIPEs in GBR/GTR barrier membrane applications has not 

previously been reported. 

In this study, we combined two methods; emulsion templating and electrospinning to 

manufacture a bilayer, bioresorbable BM made of PCL. Emulsion templating is selected 

for manufacturing of the layer, which will be in contact with bone/bone graft. 250 μm 
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thick PCL PolyHIPE layer was manufactured and treated with air plasma to enhance 

the cellular infiltration. Following the in vitro evaluation of the biological performance, 

the suitability of PCL PolyHIPE morphology for blood vessel infiltration through the 

pores was further investigated using an ex-ovo chick chorioallantoic membrane (CAM) 

assay. Electrospinning was selected to manufacture the nanofibrous barrier layer. 

Four different solvent compositions were tested in terms of their abilities to enable 

nanofiber production. The biocompatibility and the barrier properties of the 

electrospun layer were tested over four weeks in vitro by histological staining. 

 Experimental 

 Materials 

Pentaerythritol (98%), ε-caprolactone, tin (II) 2-ethylhexanoate, triethylamine (TEA), 

methacrylic anhydride (MAAn), photoinitiator (PI) (2,4,6-Trimethylbenzoyl 

Phosphine Oxide/2-Hydroxy-2-Methylpropiophenone blend), fungizone, fetal calf 

serum (FCS), penicillin/streptomycin (PS), L-glutamine, trypsin, 37% formaldehyde 

(FA) solution, resazurin sodium salt, glutaraldehyde, ethanol, hexamethyldisilazane 

(HMDS), perchloric acid, picric acid, hematoxylin solution, eosin Y solution, porcine 

gelatine, beta-glycerolphosphate (βGP), ascorbic acid 2-phosphate (AA2P), PCL (Mn: 

80.000 g/mol), Triton X-100, Alizarin red S, Polydimethylsiloxane (PDMS, silicone), 

and Dulbecco’s Modified Eagle’s Medium (DMEM) were purchased from Sigma Aldrich 

(Poole, UK). Direct Red 80 (Sirius Red) was purchased from Fluka (Buchs, 

Switzerland). Acetone, dimethylformamide (DMF), chloroform, and industrial 

methylated spirit (IMS), dichloromethane (DCM), and methanol were purchased from 

Fisher Scientific (Pittsburgh, PA, USA). The surfactant Hypermer B246-SO-M was 
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received as a sample from Croda (Goole, UK). Conditioning Minimum Essential Alpha 

Medium (α-MEM) was purchased from Lonza (Slough, UK). 4',6-diamidino-2-

phenylindole (DAPI) solution and phalloidin Tetramethylrhodamine (TRITC) were 

purchased from ThermoFisher Scientific (San Jose, CA, USA). Optimum cutting 

temperature tissue freezing medium (OCT-TFM) was purchased from Leica 

Biosystems (Newcastle, UK). Collagenase A was purchased from Roche (Indianapolis, 

IN, USA). 

 Manufacturing of the PCL PolyHIPE, PCL electrospun, and 

bilayer membrane 

3.2.2.1. Synthesis of PCL methacrylate 

The PCL used in this study is 4-arm PCL methacrylate (4PCLMA), and the detailed 

synthesis of 4PCLMA (Figure 3.1A) is described elsewhere [42]. Throughout the paper, 

the term ‘PCL PolyHIPE’ will be used to describe 4PCLMA PolyHIPE unless otherwise 

stated. 

Briefly, pentaerythritol and ε-caprolactone were mixed in a round flask at 160°C while 

stirring continuously at 200 rpm. When pentaerythritol was dissolved, tin (II) 2- 

ethylhexanoate was added, and the system was removed from the oil bath to cool 

down. PCL was dissolved in DCM, and then TEA was added. The flask was placed in an 

ice bath. MAAn was dissolved in DCM and transferred into a dropping funnel. When 

the addition of MAAn was completed, the ice bath was removed, and the system was 

kept at the room temperature (RT) overnight with stirring at 375 rpm. To remove the 

TEA, MAA and salts formed, the methacrylated PCL was washed with HCl solution, and 

then with pure deionised water. Almost all solvent was evaporated using a rotary 
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evaporator. Three methanol washes were applied, and any remaining solvent was 

removed by using the rotary evaporator. 4PCLMA was stored in an appropriate vessel 

in the freezer (-20°C) for further use. 

3.2.2.2. Preparation PCL HIPEs 

4PCLMA (0.4 g) and the surfactant Hypermer (10% w/w of polymer) were added into 

a glass vial and heated to 40°C to dissolve surfactant which is crucial for emulsion 

stability. Solvent blend (150% w/w of polymer, 80% chloroform, 20% toluene (w/w)) 

and PI (10% w/w of polymer) were added in a 4PCLMA-surfactant mixture, 

respectively and mixed at 375 rpm using a magnetic stirrer for 1 minute at RT. Once 

the homogeneous mixture formed, 2.5 mL of water (internal phase volume 85% v/v) 

was added dropwise in 2 minutes, and the emulsion was mixed further 2 minutes 

more, as illustrated in Figure 3.1B. 

3.2.2.3. Optimisation of manufacturing of PCL PolyHIPEs 

The emulsion templating technique was selected due to its ability to manufacture 

scaffolds with interconnected architecture. However, during the polymerisation, the 

material in contact with emulsion has been reported to have a significant effect on 

PolyHIPE morphology [45].  

To find the best manufacturing method in terms of creating interconnected scaffolds, 

we briefly polymerised PCL HIPEs in PDMS moulds, with the upper surface in contact 

with air, glass, and PDMS, and we investigated the morphology of the surface and 

transverse sections with SEM. 

3.2.2.4. Manufacturing of PCL PolyHIPE layer 

PCL HIPEs were manufactured by either polymerisation in silicone moulding and 

sectioning of 250 µm samples using a vibratome (Bio-Rad Polaron Division) or syringe 
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moulding and sectioning of 1 mm samples using a scalpel. For the fabrication of a 

bilayer BM, 250 µm sections of PCL PolyHIPE were used. 1 mm thick PCL PolyHIPE 

samples were used alone for MLO-A5 cell culture, measurements of their metabolic 

activity, Alizarin Red and Sirius Red staining, histological evaluation of infiltration of 

MLO-A5s and CAM experiments. 

Briefly, PCL HIPE was pipetted into either silicon templates or 2.5 mL syringes 

(diameter of 6 mm) and cured 3 minutes to both sides using the OmniCure Series 1000 

curing system (Lumen Dynamics, Canada) (Figure 3.1C). The resulting parts were 

recovered, soaked in 100% methanol for 24 hours with four changes to remove any 

remaining contaminants of surfactant, solvent or uncured material. Then the samples 

were left in methanol (50% (v/v) in water) for 24 hours and water for a further 24 

hours. Finally, the samples were taken out from the water and left in the freezer (-

80°C) for an hour then transferred into a vacuum oven and left for a day to preserve 

the porous structure of PCL PolyHIPE without any collapse.  
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Figure 3.1: Summary of the manufacturing process of the bilayer membrane. (A) Synthesis of 4-

arm hydroxyl-terminated PCL and methacrylate terminalisation reaction (B) PCL PHIPE 

preparation process, (C) the polymerisation of PCL HIPEs to obtain PCL PolyHIPE and slicing the 

samples, (D) air plasma treatment of PCL PolyHIPE, (E) electrospinning of PCL on 250 µm thick 

PCL PolyHIPE layer, (F) Final representation of the bilayer BM. 

For the fabrication of bilayer BM, 250 µm sections of PCL PolyHIPE layer were 

obtained using a vibratome (Bio-Rad Polaron Division). For metabolic activity, Alizarin 

red, Sirius red, and CAM experiments, 1 mm sections of dry samples (obtained from 

syringe moulding) were taken using a scalpel, and these monolayer PCL PolyHIPE 

samples were used.  

Air plasma (Diener Electronic, Ebhausen, Germany) was applied on both surfaces of 

the PCL PolyHIPE with a power of 50 W and a pressure of 0.8 mbar for 60 seconds to 

improve cell attachment to the hydrophobic surfaces as demonstrated in our previous 

work (Figure 3.1D) [70]. 
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3.2.2.5. Assessment of solvent compositions in terms of their ability to form the 

nanofibrous structure  

PCL (10% (w/w)) pellets were dissolved in acetone (100%), acetone:chloroform 

(30:70 w/w), DCM:methanol (90:10 w/w), and chloroform:DMF (70:30 w/w). The 

mixtures were magnetically stirred overnight. 

Fabrication of PCL electrospun fibres using chloroform:DMF (70:30) [361,362], 

acetone [363–365], acetone:chloroform (30:70) [293] has previously been reported in 

the literature. The use of DCM:methanol (90:10) for the fabrication of PCL electrospun 

meshes had previously been investigated by our group [366]. Accordingly, in this 

study, these four previously reported solvent compositions were selected to be 

compared in terms of their ability to form the nanofibrous structure. 

Solutions (~5 mL) were loaded into 5 mL syringes fitted with 0.6 mm inner diameter 

(ID) blunt syringe tips. The syringe was then placed in a syringe pump (GenieTMPlus, 

KentScientific, Connecticut, USA). Aluminium foil was used as the collector and placed 

at a distance of 17 cm from the needle tips. The pump was set to 40 µl/minutes, and 

17 kV voltage was applied both to the collector and the tips. Solutions of PCL prepared 

with various solvent blends were then electrospun at RT for 40 minutes. 

Single-layer of electrospun PCL (without PolyHIPE layer) manufactured using each 

polymer solutions were morphologically investigated, as explained in Section 3.2.3.1. 

In the rest of the text, the following nomenclatures are used for electrospinning 

groups. Acetone (100) defines acetone (100%). Acetone:chloroform (30:70) refers to 

acetone:chloroform (30:70 w/w). DCM:methanol (90:10) denotes DCM:methanol 

(90:10 w/w), and chloroform:DMF (70:30) refers to chloroform:DMF (70:30 w/w). 
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3.2.2.6. Manufacturing of bilayer PCL BM 

The aluminium foil collector was sprayed with methanol, and 250 µm thick sections of 

PCL PolyHIPE layer were placed onto it. This step was performed immediately before 

electrospinning of the PCL barrier layer. Chloroform:DMF (70:30) solvent blend was 

used for the production of PCL electrospun barrier layer, as explained in Section 

3.2.2.5. 10% PCL solution was loaded into 5 mL syringes fitted with 0.6 mm ID blunt 

syringe tip. PCL was then electrospun onto PCL PolyHIPE layers with a rate of 40 

µl/minutes and a voltage of 17 kV for 40 minutes (Figure 3.1E, F). 

 Morphological, mechanical and surface characterisation 

3.2.3.1. Morphological characterisation 

Micro-architectures of PCL PolyHIPE, PCL electrospun, and bilayer BM were examined 

using a scanning electron microscope (SEM). All samples were gold-coated with a 

voltage of 15 kV for 2.5 minutes using a gold sputter coater (Edwards sputter coater 

S150B, Crawley, UK) to increase conductivity. SEM (Philips/FEI XL-20 SEM; 

Cambridge, UK) was used with 10 kV power. 

SEM images of the PCL fibres and PCL PolyHIPE were analysed for the determination 

of the fibre diameters, pore size distributions, and window size using ImageJ software 

(Bethesda, MD, USA). Total of 54 different fibre diameters and 54 pore sizes were 

measured for each group of PCL electrospun layers, 100 pores and 150 windows were 

measured for PCL PolyHIPE. All measurements were taken from three different areas 

of three different samples. 
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3.2.3.2. Mechanical characterisation 

The bilayer BM was mechanically tested under dry and wet conditions using a 

mechanical testing unit (BOSE Electroforce Test Instruments, Minnesota, USA) 

equipped with a 22.5 N load cell. Briefly, mechanical testing samples were cut into 10 

mm x 3 mm pieces and clamped to the device with two tensile grips, and the tensile 

tests were performed on each sample at a rate of 0.1 mm/s until the samples failed. 

Elastic modulus (E), ultimate tensile strength (UTS) and elongation (%) values were 

calculated from stress (σ) and strain (ε) curves of each sample. The elastic modulus 

was determined as the slope of the initial linear section of the curve. UTS was obtained 

from the curve as the maximum stress that the samples could withstand. Ultimate 

elongation was measured as the percentage elongation of the samples at the break. 

3.2.3.3. Contact angle measurements 

Contact angle measurements were conducted to evaluate the effect of air plasma 

treatment on the hydrophilicity of PCL PolyHIPE. In brief, a 5 µl water droplet was 

dropped onto the surface of the either non-treated or plasma-treated PCL PolyHIPE, 

and the water contact angles were determined via drop shaper analyser (Krüss 

DSA100, Germany) under ambient laboratory conditions.  

 Biological assessment 

3.2.4.1. Cell culture of HDFs 

HDFs were isolated from skin grafts taken from patients using a well-established 

protocol [367]. Briefly, the dermis was minced into 10 mm2 pieces, and the pieces were 

incubated overnight at 37°C in 0.5% (w/v) collagenase A solution. The cell suspension 

was then centrifuged at 1000 rpm for 5 minutes and resuspended and cultured in 

DMEM containing 10% (v/v) FBS, 100 IU mL-1 penicillin, 100 mg mL-1 streptomycin, 
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2mM L-glutamine and 0.625 μg mL-1 amphotericin B. HDFs were used between 

passage 4-8. The investigations were carried out following the rules of the Declaration 

of Helsinki of 1975. Ethical approval for the tissue acquisition was granted by the 

National Research Ethics Service (NRES) Committee Yorkshire & The Humber–

Sheffield (REC ref: 15/YH/0177, REC opinion date: 03/06/2015). 

3.2.4.2. HDF cell seeding onto the PCL electrospun layer 

Bilayer BMs were used as test samples to measure the metabolic activity and for 

histological assessment of HDFs. BMs were cut into 10 mm circles using a biopsy punch 

(Stiefel, Slough, UK) and 70% ethanol solution was used as an antiseptic agent for 45 

minutes prior to cell seeding. 2×104 HDFs were trypsinised, centrifuged, and 

resuspended in 100 µl of DMEM growth medium and pipetted on PCL electrospun 

(barrier) side of the bilayer BM. Before submerging the BMs into HDFs culture 

medium, they were incubated at 37°C for 2 hours to allow HDFs to attach. BMs were 

kept in culture for 4 weeks by changing the culture medium every 2 days. 

3.2.4.3. Cell culture of murine long bone osteocytes (MLO-A5) 

MLO-A5, murine osteoblast cell line (kindly donated by Dr Lynda Bonewald) was used 

to evaluate the potential of PCL PolyHIPE as GBR membrane as it was previously used 

for evaluation of bone tissue engineering applications [162]. The T75 flasks were 

coated with 0.1% gelatin solution for 2 hours at 37°C and washed gently with PBS prior 

to cell culture. Cells were expanded on gelatine-coated T75 flasks in basal media 

containing α-MEM supplemented with 10% fetal bovine serum, 2mM L-glutamine and 

100 mg/mL penicillin/streptomycin. MLO-A5s cultured until 90% confluence and 

media was changed in every 2-3 days. Cells were used between passages 35-36. 
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3.2.4.4. MLO-A5 cell seeding onto the PCL PolyHIPE layer 

To be able to test the full infiltration capacity of MLO-A5s through PCL PolyHIPE, 

monolayer, 1 mm PCL PolyHIPE samples (without electrospun layer) were used for 

biological assessment of PCL PolyHIPE. 

Prior to cell seeding, PCL PolyHIPEs were left in 70% ethanol for 2 hours and then 

transferred into PBS in sterile conditions, four washes were applied in 24 hours to 

replace the ethanol with PBS. Finally, they were conditioned with basal media for an 

hour in the incubator in 24 well plates to remove the PBS completely and not to dilute 

the media used during the cell seeding stage with PBS. MLO-A5s were trypsinised, 

counted, and centrifuged. The cell pellet was re-suspended in fresh basal media 

(2.5 x 104 cells in 20 µL). The cell suspension was placed over the surface of each PCL 

PolyHIPE homogenously. Before PolyHIPE layers were moved to the fresh wells, and 

2 mL basal media was supplied into the wells, they were left for 2 hours in the 

incubator (37.5°C, 5% CO2) for cell attachment. 2 mL of media was supplied. A day 

after, basal media was replaced with supplemented media consisting of basal media 

supplemented with 5 mM βGP and 50 μg/mL AA2P. Media was changed every 2–

3 days. 

3.2.4.5. Assessment of metabolic activity 

AlamarBlue® assay was performed in order to track the metabolic activities of HDFs 

on the PCL electrospun and MLO-A5s on PCL PolyHIPE. 0.1 mM AlamarBlue® working 

solution was prepared by 10× dilution of the 1 mM AlamarBlue® stock solution with 

growth medium. At days 1, 7, 14, 21, and 28 growth media were removed, and the 

samples were washed with PBS. 1 mL of AlamarBlue® working solution was added to 

each well and incubated at 37°C for 4 hours. After an incubation period, 200 µl of the 
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solution was transferred into 96-well plate, and the fluorescence readings were done 

at an excitation wavelength of 540 nm and an emission wavelength of 635 nm. Fresh 

samples were used for the measurements at each time point. 

3.2.4.6. Assessment of calcium deposition 

Alizarin red powder was dissolved in deionised water at 1 w/v% in a water bath and 

filtered to remove particles to make Alizarin red solution (ARS). PCL PolyHIPE’s were 

submerged in 1 mL of ARS solution and incubated for 1 hour. ARS solution was 

removed, and the samples were washed every five minutes with deionised water and 

gentle orbital shaking until the water remains clear. They were submerged with 1 mL 

of 5% perchloric acid to destain and left for further 30 minutes with gentle orbital 

shaking. 150 μL of the destain solution in triplicates were transferred into a clear 96 

well plate and read at an absorbance of 405 nm. 

3.2.4.7. Assessment of collagen deposition 

Sirius red (direct 80) powder was dissolved in saturated picric acid (1 w/v%) to form 

Sirius red solution (SRS) and filtered to ensure no particles remain. PCL PolyHIPE’s 

were submerged with 1 mL of SRS solution and left for 1 hour. SRS solution was 

removed, and the samples were washed every five minutes with deionised water and 

gentle orbital shaking until the water remains clear. They were submerged with 1 mL 

of 0.2 M sodium hydroxide (NaOH):methanol (1:1) to destain and left for 30 minutes 

with gentle orbital shaking. 150 μL of the destain solution in triplicates were 

transferred into a clear 96 well plate and read at an absorbance of 405 nm. 

3.2.4.8. Haematoxylin & Eosin (H&E) and Alizarin red staining 

Bilayer BM and PCL PolyHIPE cultured with HDFs and MLO-A5s, respectively for 1-

week and 4-week and PCL PolyHIPE on CAM were stained with H&E using a standard 
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protocol [368]. Briefly, samples were washed with PBS before (once) and after (three 

times) fixing them in 3.7% FA for 30 minutes at RT. Meanwhile, cryomoulds were filled 

with OCT-TFM. Samples were embedded into it, and the rest of the volume was then 

filled with OCT-TFM to the top. Cryomoulds were placed into liquid nitrogen and 

incubated for 5-7 minutes until solidified. Frozen blocks were fixed on mounting 

platforms, and placed into a cryostat (Leica CM1860 UV, Milton Keynes, UK) before 

sections were sliced at 5-10 µm and immediately mounted onto the surface of Thermo 

SuperFrost® Plus slides. For H&E staining, slides were stained with hematoxylin for 

90 seconds and eosin for 5 minutes. For calcium staining, slides were stained with 2% 

(w/v, in water) ARS for 5 minutes. Excess dye is shaken off, and the slides were rinsed, 

dehydrated, cleared and mounted the slide using the permanent mounting medium. 

3.2.4.9. Preparation of biological samples for SEM 

On day 28, the PCL PolyHIPE discs seeded with MLO-A5s were washed 3 times with 

PBS and fixed with 2.5% glutaraldehyde at RT for 1 hour and rinsed with PBS. Then 

the discs were soaked in deionised water for 5 minutes prior to dehydration of the 

samples with serial ethanol washes. Finally, HMDS is used as the chemical drying 

agent, and the discs were soaked in HMDS:ethanol (1:1) solution for 1 hour and 

transferred into 100% HMDS for 5 minutes. The samples were then air-dried 

overnight in a fume hood and gold-coated at a current of 15 mA for 2.5 minutes with a 

gold sputter (Edwards sputter coater S150B, Crawley, England) prior to imaging under 

SEM (Philips/FEI XL-20 SEM; Cambridge, UK). 

3.2.4.10. Fluorescent staining 

At days 7 and 28, PCL PolyHIPE discs were fixed with 3.7% FA for 30 minutes and 

washed gently with PBS prior to submerging into 0.1% (v/v) Triton X 100 (in PBS) 
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solution for 20 minutes. After serial PBS washes, phalloidin-TRITC (1:500 diluted in 

PBS from stock solution) solution was added onto samples to visualize F-actin 

filaments of the cells and incubated for 30 minutes at RT in the dark. Discs were 

washed three times with PBS. To stain the cell nuclei, DAPI solution (1:1000 diluted in 

PBS) was added onto the PolyHIPE discs and incubated for 10-15 minutes at RT in the 

dark; samples were then washed three times with PBS and imaged under a fluorescent 

microscope (Olympus IX3, Tokyo, Japan). 

3.2.4.11. Ex-ovo CAM assay 

An ex-ovo CAM assay was used to evaluate the potential of PCL PolyHIPE layer for the 

suitability of blood vessel ingrowth, as described previously [201,277]. Briefly, 

fertilised chicken eggs (Gallus Domesticus) were purchased from Henry Stewart & Co. 

MedEggs (Norwich, UK) and cleaned with 20% IMS solution. Eggs were incubated at 

37.5°C for 3 days in an egg incubator (RCOM King SURO, P&T Poultry, Powys, Wales). 

At the end of day 3, the embryos were transferred gently into sterile Petri dishes and 

incubated at 38°C in a humidified cell culture incubator (Binder, Tuttlingen, Germany). 

On day 7, PCL PolyHIPE discs were implanted to CAM, and the chicks were incubated 

for further 7 days. On day 14, the chicks were euthanised, and the CAMs with the 

PolyHIPE discs integrated to them were removed and fixed in 3.7% FA solution. 

Sections of the CAMs were taken and stained with H&E as described in Section 3.2.4.8. 

 Statistical analysis 

Statistical analysis was carried out using one-way and two-way analysis of variance 

(ANOVA) using statistical analysis software (GraphPad Prism, California, USA). Where 

relevant, n values are given in figure captions. Error bars indicate standard deviations 

in the graphs unless otherwise stated. 
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 Results and Discussion 

 Manufacturing and characterisation of the PCL PolyHIPE layer 

The surface of PCL PolyHIPEs polymerised in contact with air, glass, or PDMS showed 

different morphologies (Figure 3.2A-C). When the surface was not covered by any 

substrate, and UV was directly applied on PCL HIPEs, the surface was porous, but it did 

not have open interconnected cellular morphology (Figure 3.2A). When the surface of 

the HIPE was in contact with glass, the surface showed microscale roughness, rather 

than pores (Figure 3.2B). In terms of interconnectivity, the best surface morphology 

was obtained when the PDMS sheet was used as a cover. PCL PolyHIPE surfaces 

created this way had a mixture of open and closed porous morphology (Figure 3.2C).  

The significant influence of the mould material on PolyHIPE has been reported 

previously [45]. This study correlated the surface interconnectivity with the following 

potential scenarios on the PolyHIPE-mould interface; (i) PolyHIPE can potentially bind 

to mould surface leading to difficulties in demoulding, (ii) the mould can leach 

materials leading to contamination of the PolyHIPE surface, and (iii) partial phase 

separation of the emulsion which leads to closed-pore PolyHIPE surfaces. 

Figure 3.2D shows the transverse section of PCL PolyHIPE. It has a homogenous, open 

cellular architecture with interconnected porosity. Pore interconnects are pathways 

for cells, waste and nutrients, the interconnectivity of the scaffold is a crucial feature 

for cell invasion, tissue integration and vascularisation [369–372]. To be able to 

benefit from the interconnected inner morphology of the scaffolds, the PCL PolyHIPE 

layer was decided to be created by sectioning bulk pieces into slices as described in 

Section 3.2.2.3. 
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Figure 3.2: SEM images of the top surfaces PCL PolyHIPEs cured in contact with; (A) air, (B) 

glass, and (C) PDMS sheet. (D) SEM image of the transverse section of PCL PolyHIPEs. (E) Pore 

size and window size distributions of the inner section. (F) Contact angle measurements of a 

water droplet on PCL PolyHIPE before and after air plasma treatment (n=3). 

The pore sizes of the PCL PolyHIPE layer were distributed between 10-78 µm; the 

average pore size (D) was found 34±13 µm, 90% of the pores have the pore sizes 

between 20-75 µm range (Figure 3.2E). The window sizes were distributed between 

2-13 µm range, and the average window size (d) was measured as 6±2 µm (Figure 

3.2E), which gives the degree of connectivity (d/D) as 0.18. In our previous study, 

when the same solvent composition was used to dilute PCL (80:20 chloroform:toluene 

(w/w)) the average pore size and the window size was found 20±7 µm and 4±2, 

respectively [42]. The difference between the pore and window size found in the 
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previous study and the current work can be explained with the two main 

compositional changes; (i) increasing the internal phase volume from 82% to 85%, 

and (ii) increasing the total solvent volume from 0.40 mL to 0.46 mL. A higher internal 

phase volume is expected to reduce the average pore size while increasing the average 

window diameter as water droplets will need to be more tightly packed. On the other 

side, the increasing solvent amount is expected to show a dramatic increase in the 

average pore diameter [373]. The overall effect of these two compositional changes 

resulted in approximately 50% increase in average pore size and window diameter. 

The main drawback of PCL to be used as tissue engineering scaffold material is its 

hydrophobicity, which limits cell attachment to the material surface. To overcome this, 

oxidising the surface by plasma treatment is one of the most popular methods for 

enhancing cell attachment [70,361,374–377]. In this study, our finding also proved 

that air plasma treatment changes the surfaces from hydrophobic to hydrophilic and 

this change encourages the cell attachment and cellular infiltration on PCL PolyHIPE 

layer which will be further discussed following sections. Contact angles of the water 

droplets on non-treated (P-) and air plasma treated (P+) PCL PolyHIPEs were 

measured as 67±4° and 96±4°, respectively (Figure 3.2F). 

 Assessment of the metabolic activity of MLO-A5s on PCL 

PolyHIPE and the cellular infiltration through PCL PolyHIPE 

layer 

At all-time points, the metabolic activity of MLO-A5s cultured on P+ PCL PolyHIPEs 

was slightly higher than MLO-A5s cultured on P- PCL PolyHIPEs, but there was no 

statistical difference observed between these two groups (Figure 3.3A). Metabolic 
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activities of MLO-A5s on both P+ and P- PCL PolyHIPEs increase from day 1 to day 28 

gradually, but the dramatic decrease was observed in the metabolic activity of the 

MLO-A5s on tissue culture plate (TCP) after day 7. 

Figure 3.3B and Figure 3.3C clearly show the positive impact of air plasma treatment 

of PCL PolyHIPE on the attachment of MLO-A5s to the surface at day 28. While the 

layer of MLO-A5s is peeled off from the surface of P- PCL PolyHIPE, cells on P+ PCL 

PolyHIPE are still integrated with the PolyHIPE layer. The preparation steps of the 

biological samples for SEM includes multiple washing steps and drying (Section 

3.2.2.4.). The loosely attached cell layer detached from P- PCL PolyHIPE at the end of 

all these steps, probably due to limited cell penetration into the pores. 

Although air plasma treatment seems as it has not had a significant effect on the 

metabolic activity of MLO-A5s, H&E and fluorescent images support the finding from 

SEM images, and they show that air plasma treatment has a huge impact on cell 

infiltration (Figure 3.3D, E). At week 1, while MLO-A5s only accumulated on the 

surface of the P- PCL PolyHIPE with nearly no infiltration, they were observed as 

migrating through the pores the P+ PCL PolyHIPE.  

Even during the seeding of the MLO-A5s on the PCL PolyHIPE layer, the positive effect 

of plasma treatment was observed. Once the cell suspension was placed on the top of 

the PCL PolyHIPE, it immediately absorbed by P+ PolyHIPE but stayed as a droplet on 

the P- layer. This indicates that even from the cell-seeding stage onwards, plasma 

treatment encourages cells to migrate into the pores of the PCL PolyHIPE layer. 

Although MLO-A5s tend to densely accumulate on the top of both PCL PolyHIPEs at 

week 4, cell migration up to 400 µm was observed on P+ PolyHIPEs. This positive 

influence of air plasma treatment on polymer scaffold has also been demonstrated in 
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vivo. Valence et al. had reported improvement of cell attachment and infiltration within 

a vascular graft upon plasma treatment when materials were implanted 

subcutaneously [232]. 

 

Figure 3.3: (A) Metabolic activity of MLO-A5s cultured on P-, P+ PCL PolyHIPEs, and TCP for 4 

weeks. SEM images of the top surfaces of (B) P+ and (C) P- PCL PolyHIPEs cultured MLO-A5s on 

for 4 weeks (Scale bar represents 500 µm). (D) H&E and Alizarin Red, and (E) Fluorescent 
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staining of MLO-A5s cultured on P+ and P- PCL PolyHIPEs for 1 week and 4 weeks (Scale bar 

represents 250 µm, blue: DAPI, red: Phalloidin TRITC).  

Interestingly, on H&E slides, very small-sized haematoxylin-stained particles 

(different than haematoxylin stained cells) were observed only at week 4 at both P+ 

and P- PCL PolyHIPEs (Figure 3.3D). Fluorescent staining shows that they are not cells. 

It has been previously reported that haematoxylin selectivity stains calcium-

containing particles [378]. Alizarin red staining images shows densely accumulated 

calcium on the top of P- PCL PolyHIPE and comparably less dense stains in deeper 

pores, while there is dense calcium deposition P+ PCL PolyHIPE up to 400 µm deep 

(Figure 3.3D). 

 Assessment of the extracellular matrix (ECM) deposition of 

MLO-A5s on PCL PolyHIPE layer 

As MLO-A5s cultured in supplemented media, they were expected to deposit calcified 

ECM [162,379,380]. Prideaux et al. previously reported that supplementation of MLO-

A5 cell cultures with AA2P and βGP showed a significant increase in ECM 

mineralisation compared to the non-supplemented group [381]. 

Calcium and collagen deposition on P+ PCL PolyHIPE gradually increased from day 7 

to day 28 (All subsequent studies were conducted on P+ PCL PolyHIPE only). ECM 

deposition, mineral nodules, and collagen fibres of MLO-A5s cultured on PCL PolyHIPE 

layer for 4 weeks are shown in Figure 3.4B. An SEM image of the cross-section of the 

PCL PolyHIPE shows the pores densely filled with cells and extracellular material 

(Figure 3.4C). Additionally, sub-micrometric crystalline debris was observed in 

regions beyond the maximum cell ingrowth (Figure 3.4D, E), these indicate the 
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existence of calcium deposits deep within the PolyHIPE layer, as also observed in on 

H&E and Alizarin red images. 

  

Figure 3.4: (A) Assessment of calcium and collagen deposition of MLO-A5s after 7, 14, 21 and 28-

day culture on PCL PolyHIPE by using Alizarin Red and Sirius Red, respectively. (B) Scanning 

electron microscopy images of the surface, and (C, D, E) the cross-section of PCL PolyHIPE 

cultured with MLO-A5s for 28 days in supplemented media. 

These calcium deposits look similar to surfaces of PolyHIPE layer incubated in 

simulated body fluid, which is commonly used to test the ability of the formation of 

bone-like apatite or mineral deposition on scaffolds [382–384]. The source and 

mechanism of the formation of the deposited calcium-containing crystals will be 

investigated in future studies. 
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 Assessment of the performance of PCL PolyHIPE for supporting 

blood vessel ingrowth using ex-ovo CAM assay  

The CAM assay is a well-established method for the assessment of angiogenesis and 

initial response to biomaterials [201,277,385]. In an ex-ovo CAM assay, the embryos 

are transferred into petri dish on day 3 (Figure 3.5A) and incubated until day 7 (Figure 

3.5B) which is the day of material implantation. At day 14, the following features can 

be assessed macroscopically (Figure 3.5C) and histologically (Figure 3.5D): (i) 

biocompatibility, (ii) cellular infiltration capacity and (iii) the performance of the PCL 

PolyHIPE layer for supporting vascularisation.  

Our laboratory has reported the average survival rate for the ex-ovo CAM assay as 68% 

for intermediate and 83% for experienced users [277]. The survival rate of the chicks 

was approximately 75% and 73% for non-implanted, and PCL PolyHIPE implanted 

groups, respectively, in line with previous investigations. Thus, the PCL PolyHIPE 

showed good biocompatibility, and the implantation of the material did not affect the 

survival rate of the chicks.  

The integration of the CAM tissue into PCL PolyHIPE was examined. Extensive cell 

infiltration was observed from the CAM tissue to PCL PolyHIPE, showing complete 

integration of the material with the membrane. During the isolation of the PCL 

PolyHIPE from the CAM, it was not possible to separate it from the CAM, which is also 

an indication of strong integration. This is in line with studies reported by other groups 

on the good-integration of PCL porous scaffolds with CAM [386–388]. The infiltration 

capacity of the cells into PCL PolyHIPE was better in the ex-ovo CAM assay (Figure 

3.5D) when compared with the in vitro histology data (Figure 3.3D). This is potentially 
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due to the continuous contact of the PCL PolyHIPE with a dense and dynamic cell 

population in the CAM.  

 

Figure 3.5: Chick embryos in a petri dish on (A) embryonic development day 3 and (B) embryonic 

development day 7 (Scale bar represents 10 mm). (C) PCL PolyHIPE on CAM at day 14 (Scale bar 

represents 2 mm). (D) H&E images of PCL PolyHIPE on CAM at day 14 (Green arrow indicates the 

blood vessel on CAM itself; yellow arrows indicate the blood vessels in PCL PolyHIPE. Scale bar 

represents 100 µm). 

Assessment of the PolyHIPE material on the CAM demonstrated that the structure and 

the pore size of the PolyHIPE were suitable for supporting blood vessel ingrowth 

through the PolyHIPE. H&E staining shows that alongside the high level of integration 

of the host CAM tissue with the PolyHIPE layer, many blood vessels were found 
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growing into the pores of PCL PolyHIPE and through the interconnections 

(Figure 3.5D) in only 7 days.  

Current understanding of vascularisation of porous scaffolds indicates that the pore 

size should be at least 250 µm for vascularisation to occur [389,390], but some studies 

suggest smaller pore sizes can also allow for the ingrowth of blood vessels. Madden et 

al. have shown that 30-40 µm pore size with 15 µm interconnects are suitable for 

vascularisation in rats [391]. Similarly, Baker et al. reported that particulate-leached 

PCL scaffolds with 5-200 µm pore range allowed extensive vascularisation in the 

scaffold when implanted subcutaneously into rats [392]. Klenke et al. observed 

vascularisation in ceramic particles with macropores ranged from 40 to 280 μm [393]. 

Finally, our group has demonstrated the vascularisation of polylactic acid electrospun 

scaffolds with a mean pore size of 4.25 µm in the CAM assay [394]. 

By using the CAM assay, we have shown the performance of the developed BM for 

supporting tissue integration and vascularisation. Both are critical factors in avoiding 

delay in osteogenesis and tissue regeneration and overcoming the rejection of an 

implant [395,396]. 

 Assessment of solvent compositions in terms of their ability to 

form the nanofibrous structure 

The mean diameters of the PCL fibres where polymer solutions were prepared with 

different solvents were 0.35 ± 0.10 µm, 0.74 ± 0.32 µm, 1.69 ± 0.75 µm, and 0.47 ± 0.22 

µm, and the average pore sizes were 6.28 ± 2.30 µm, 8.34 ± 4.96 µm, 9.84 ± 5.25 µm, 

and 3.57 ± 2.08 µm for acetone (100), acetone:chloroform (30:70), DCM:methanol 

(90:10), and chloroform:DMF (70:30) groups, respectively (Figure 3.6). 



 

 

183 

Except for the acetone (100) group, a decrease in the pore sizes was observed when 

the diameter of the PCL fibres gets smaller. Although the acetone (100) led to the 

formation of the smallest diameter PCL fibres, the smallest pore size was calculated 

for the electrospun layer prepared with chloroform:DMF (70:30). 

 

Figure 3.6: Morphological characterisation of the electrospun PCL fibres, where polymer 

solutions were prepared with different solvents. SEM image of PCL electrospun prepared by 

dissolving PCL in (A) acetone (100), (B) acetone:chloroform (30:70), (C) DCM:methanol (90:10), 

(D) chloroform:DMF (70:30). The graphs show (E) the fibre diameter and (F) the pore size 

distributions, respectively. Yellow scale bars represent 20µm. 

When acetone was used as the sole solvent, it was difficult to electrospin the solution, 

and bead formation occurred. The undesirable bead formation during electrospinning 

is likely to increase pore size between the fibres [397]. One of the main reason for the 

formation of thinner fibres and beads has been reported as the lower viscosity of the 

electrospinning solution [398]. It has previously been shown that among the five 

solvents used in this study, acetone has the lowest viscosity [399]. Zverev et al. 
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reported that the viscosity of the polymer solution changes with the solubility, and low 

viscosity is linked with poor solubility when other parameters kept constant [400]. 

The electrospinnability of the PCL solutions from high to low was: chloroform:DMF 

(70:30) > acetone:chloroform (30:70) > acetone (100) > DCM:methanol (90:10). The 

quality of the PCL electrospinning was assessed based on smooth fibre formation, bead 

or particle formation and continuous electrospinning of the solution, which depend on 

parameters such as solubility, viscosity, dielectric constant, and conductivity [401]. 

The solubility of the polymer in a solvent has a major effect on electrospinning 

nanofibres. DCM, methanol, chloroform, DMF and acetone (as single solvents or 

solvent blends) are common solvents for dissolving PCL and widely used for the 

production of PCL fibres with electrospinning [356,402]. Among these solvents, PCL 

has a higher solubility in chloroform and DCM, whereas the solubility of PCL is poor in 

DMF, acetone, and methanol [309].  

When acetone was used as the single solvent to dissolve PCL, the solution resulted in 

poor electrospinnability and the formation of undesired beads during the 

electrospinning process. Using the acetone:chloroform (30:70) solvent blend 

significantly increased the electrospinnability of PCL, which can be explained by the 

addition of chloroform to the solvent mixture, in which PCL has higher solubility [403]. 

The ability to electrospin PCL dissolved in DCM:methanol (90:10) was very poor, and 

we did not manage to obtain nanofibers when this solvent used for electrospinning. 

This can be explained by the low dielectric constant and conductivity of the main 

solvent, DCM, in the solvent blend [404]. The best solvent blend for electrospinning 

PCL nanofibers was chloroform:DMF (70:30) solvent composition used. Although DMF 

is not classified as a good solvent for PCL, it has a high dielectric constant and, it is a 
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polyelectrolyte [405]. Due et al. previously reported that the addition of DMF to the 

solvent blend improves the electrospinnability of PCL and leads to smaller diameter 

fibre formation. [406]. Kanani et al. had shown that when DMF was added to 

methylene chloride, and the solvent mixture used for electrospinning PCL, the 

spinning process was improved, and uniform nanofibers were obtained [358]. Hsu et 

al. demonstrated a reduction in the diameter of electrospun PCL fibres with the 

addition of DMF to chloroform [407]. Bolgen et al. observed a dramatic decrease in 

diameter (from 1300 nm to 300 nm) when DMF was included in the solvent mixture 

up to 40% [408]. 

In this study, the chloroform:DMF (70:30) solvent blend was selected for the 

manufacturing of nanofibrous barrier layer due to multiple factors including the 

improved electrospinnability, the decreased fibre diameter, and the smaller pore size. 

 Manufacturing and characterisation of the PCL bilayer barrier 

membrane 

Following the optimisations of manufacturing of PCL electrospun and PCL PolyHIPE 

layers, two layers were combined to fabricate the bilayer BM (Figure 3.7A-D). The 

complete integration of both layers can be seen from SEM images. This is more likely 

due to the fact that both polymers are PCL, and the solvent composition used for 

electrospinning PCL can partially dissolve the surface of the PCL PolyHIPE layer. No 

delamination of the two layers was observed, and the BM preserved its integrity 

during the experiments.  

Figure 3.7E-J shows the handling ability of the PCL bilayer BM. The resulting BM was 

very flexible and allowed manual handling, including bending and twisting without 
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losing its structural integrity. Figure 3.7I shows the space making ability of the BM, 

which is defined as the ability to maintain a space for cells without any collapse. 

For this study, the thicknesses of the PCL electrospun and PCL PolyHIPE layers were 

determined as 200 µm and 250 µm, respectively. The thicknesses of the PCL 

electrospun and PCL PolyHIPE layers can be controlled easily by changing the 

electrospinning time and slicing thickness, respectively. To show the controllability of 

the thickness of the PCL electrospun layer, Figure 3.7B shows a bilayer membrane with 

a low thickness where PCL was electrospun on PolyHIPE for 20 minutes instead of 40 

minutes. Thicker membranes are assumed to have better barrier performances in 

addition to higher mechanical strength [409] and a longer degradation time and which 

results in the GTR membrane being present during a longer time period [410]. The 

question of the optimum barrier membrane thickness can be answered to some extent, 

experimentally in vitro, but ideally, it needs to be investigated in vivo in future studies. 

Here, the tunability of the thickness of individual layers is an advantage in our 

manufacturing method as we can provide BMs of varying thicknesses for comparative 

evaluation of performance and rate of breakdown in vivo.  
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Figure 3.7: SEM images of (A) 250 µm sectioned PCL PolyHIPE layer, (B) 20 minutes PCL 

electrospun on PCL PolyHIPE, (C) 40 minutes PCL electrospun on PCL PolyHIPE, (D) Higher 

magnification SEM image showing the border of two layers. Macro images of the bilayer PCL BM 

to show the suitability of the design for (E-F) stretching in different axes, (G-H) bending, (I) space 

making, and (J) side view of the BM to show the integration of the two layers. 
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Tensile tests of the BMs were conducted on both dry and wet conditions. Biomedical 

implants are usually in contact with body fluids, which significantly influences their 

performance in comparison with their dry state. The mechanical behaviour of an 

implant under wet conditions is important for better representing the in vivo 

conditions [411].  

Both the E and UTS values of dry BMs were significantly higher compared with the wet 

BM samples. But there was not any statistically significant difference between the 

elongation of the BMs in dry and wet state (Figure 3.8).  

The UTS of the BM s were measured as 137.3±6.7 KPa and 75.0±4.2 KPa for dry and 

wet samples, respectively. The elastic modulus and elongation of dry and wet BMs are 

452.1±24.5 KPa and 304.2±12.9 KPa; and 79.3 ± 3.5% and 83.2 ± 2.1%, respectively.  

 

Figure 3.8: Mechanical properties of the BM under dry and wet conditions. (A) Representative 

stress-strain curves, (B) Elastic modulus, (C) UTS of the BMs under dry and wet conditions 

(*** p ≤ 0.001, ns p ≥ 0.05, n = 3).  

The mechanical properties of the developed membrane show similarities with other 

developed membranes in literature. Lee et al. reported tensile strength of commercial 

collagen membrane (Ossix plus) around 110 KPa and 20 KPa for the dry and wet state, 

respectively [409]. Poly(lactic-co-glycolic acid) (PLGA) membrane fabricated with 
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freezing and lyophilisation has been reported to have similar UTS with our BM where 

the elongation of the PLGA membrane was approximately eight times lower [412]. 

Similarly, the tensile strength of the freeze gelated chitosan membrane has been 

demonstrated approximately four times and ten times lower, respectively under dry 

and wet conditions when compared with the developed BM in this study [351]. 

Electrospun chitosan membrane with random fibre orientation has been shown to 

have slightly higher UTS in wet state, but at the same time, it was approximately ten 

times less elastic than our BM, and the elongation was almost six times lower [413]. 

Another study has revealed that the polysaccharide/bioactive glass membrane 

produced using the layer by layer deposition technique has very similar mechanical 

properties in terms of UTS and E values with our BM [414]. 

 Assessment of the metabolic activity of HDFs on PCL 

electrospun layer and the ability of the PCL electrospun layer 

to act as a cell barrier 

The metabolic activities of HDFs growing on the PCL electrospun layer gradually 

increased from day 1 to 28 (Figure 3.9) showing the biocompatibility of the bilayer 

PCL membrane. Although the metabolic activities of the HDFs growing on TCP were 

higher at each time point, they started to drop after day 14. This decrease is more likely 

to be due to the limited to two dimensional surface of the TCP, which restricts the 

capacity of cells to expand [415]. 

Histological analysis of the PCL electrospun layer showed that HDFs were not able to 

penetrate due to the small pore sizes of nanofibrous random PCL fibres. Instead, they 

were observed as growing on the surface of the electrospun barrier layer and not 
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migrating towards the PolyHIPE layer (Figure 3.9) confirming the ability of cell-

occlusiveness of the electrospun PCL layer. Randomly orientated nanofibrous scaffolds 

have been demonstrated as a physical barrier to cell penetration while allowing the 

diffusion of nutrients. Previous work from our laboratory has shown that 

keratinocytes and fibroblasts were successfully segregated when separated by a 

nanofibrous Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) layer [348]. 

Similarly, Vaquette et al. showed that fibroblasts seeded on a random fibre mat did not 

penetrate the scaffold and colonised on the surface and formed a 30 µm thick cell sheet 

[416].  

 

Figure 3.9: Evaluation of the biocompatibility and the barrier properties of the bilayer BM. The 

metabolic activity of the HDFs growing on PCL electrospun layer from day 1 to day 28 is given in 

the graph (*** and ΦΦΦ p ≤ 0.001, ** and ΦΦ p ≤ 0.01, * and Φ p ≤ 0.05, n = 3). Histological images 

demonstrate the barrier properties of the PCL electrospun layer over 4 weeks. Dotted line 

indicates the boundary of the two layers (Scale bar represents 200 µm). 

As the crucial time for epithelial invasion has been reported as the first 14 days of 

implantation, then the barrier function limiting the epithelial invasion up to 14 days is 

considered sufficient for GBR applications [417,418]. 
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 Conclusions 

In the present study, a bilayer BM made of a biodegradable synthetic polymer, PCL was 

successfully fabricated by combining electrospinning and with emulsion templating. 

The resulting BM showed no delamination, and its structure was qualitatively resilient 

to torsion and stretching, and it was straightforward to handle. The electrospun layer 

of the BM has been confirmed for its barrier features for the prevention of soft tissue 

invasion whereas the interconnected PCL PolyHIPE layer has shown potential for use 

as the bone promoting layer providing the key requirements such as cell compatibility, 

supporting cellular infiltration, and promoting collagen and mineral deposition. 

Furthermore, the pore structure of the PCL PolyHIPE layer has been found to be 

suitable for blood vessel ingrowth. In conclusion, by combining two methods of 

fabricating, an FDA approved polymer, PCL, a bilayer BM that is a good candidate for a 

diverse range of GTR applications can be fabricated. Further exploration of the in vivo 

performance of the developed BM will be interesting in future studies.
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CHAPTER 4  

Boosting the osteogenic and angiogenic performance 

of multiscale porous polycaprolactone scaffolds by 

in vitro generated extracellular matrix decoration 

 

Abstract 

Tissue engineering (TE)-based bone grafts are favourable alternatives to autografts 

and allografts. Both biochemical properties and the architectural features of TE 

scaffolds are crucial in their design process. Synthetic polymers are attractive 

biomaterials to be used in the manufacturing of TE scaffolds, due to various 

advantages; such as being relatively inexpensive, enabling precise reproducibility, 

possessing tunable mechanical/chemical properties, and ease of processing. However, 

such scaffolds need modifications to improve their limited interaction with biological 
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tissues. Structurally, multiscale porosity is advantageous over single scale porosity, 

therefore, in this study, we have considered two key points in the design of a bone 

repair material; (i) manufacture of multiscale porous scaffolds made of photocurable 

polycaprolactone (PCL) by a combination of emulsion templating and 3D printing, and 

(ii) decoration of these scaffolds with in vitro generated bone-like extracellular matrix 

(ECM) to create biohybrid scaffolds that have improved biological performance 

compared to PCL-only scaffolds. Multiscale porous scaffolds were fabricated, bone 

cells were cultured on them, and then they were decellularised. The biological 

performance of these constructs was tested in vitro and in vivo. Mesenchymal 

progenitors were seeded on PCL-only, and biohybrid scaffolds. Cells not only showed 

improved attachment on biohybrid scaffolds but also exhibited a significantly higher 

rate of cell growth and osteogenic activity. The chick chorioallantoic membrane (CAM) 

assay was used to explore the angiogenic potential of the biohybrid scaffolds. CAM 

assay indicated that the presence of the in vitro generated ECM on polymeric scaffolds 

resulted in higher angiogenic potential and a high degree of tissue infiltration. This 

study demonstrated that multiscale porous biohybrid scaffolds present a promising 

approach to improve bioactivity, encourage precursors to differentiate into mature 

bone, and to induce angiogenesis. 

Keywords: tissue engineering, emulsion templating, 3D printing, decellularisation, 

angiogenesis, PolyHIPE, biohybrid 

 Introduction 

Bone grafting is the second most frequent tissue transplantation technique worldwide 

after blood transfusion [262]. Autogenous bone grafts are considered to be the gold 
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standard as they have osteogenic, osteoinductive and osteoconductive properties 

[419–421]. However, autologous bone is mostly harvested from the iliac crest (hip) 

with limited availability and carries the risk of donor site morbidity [422]. An acellular 

alternative to the autograft is an allograft, which is more abundantly available without 

size limitations [423]. However, allografts need to be processed and cleaned after 

isolation to prevent an immune response and disease transmission [424,425]. These 

treatments considerably affect the physical and biological properties of the bone, and 

the process results in grafts with comparably poor regenerative potential and/or weak 

mechanical properties depending on the treatment (demineralisation, deproteination, 

irradiation) [419,424]. The regulations of the European Union for medical devices, 

known as the Medical Device Directive (MDD) [426] were replaced with a new set of 

Medical Device Regulations (MDR) [280] in 2017, and the new MDR will come into 

force on May 2020. With the new MDR, human origin cells and tissues or derivatives 

will also be considered as a high-risk medical device (Class III) in addition to those of 

animal origin (Rule 18). Due to these regulatory restrictions, allografts including 

demineralised and deproteinised bone matrices (DMB and DPB) will likely have more 

restrictive approval processes and a more challenging pathway for clinical approval 

[281–283]. 

Alternatively, scaffold-based tissue engineering (TE) has gained great attention over 

the last years. Scaffolds are biodegradable porous matrices, made from natural or 

synthetic materials, which aim to mimic both the biochemical and structural features 

of native tissues for the regeneration of the defect site [28,427,428].  

To date, several techniques including; electrospinning [429,430], particle leaching 

[431,432], freeze-drying [433,434], and additive manufacturing [18,435] have been 
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widely used for fabrication of bone TE scaffolds. Recently, emulsion templating has 

gained particular attention as a scaffold fabrication technique due to its ability to 

introduce up to 99% porosity with high interconnectivity into TE scaffolds. Emulsion 

templating is based on creating a stable emulsion by mixing two immiscible liquids 

and then polymerising the continuous phase. Emulsion droplets act as a pore template 

during polymerisation, and they are removed afterwards. When the internal phase 

volume (total droplet volume) of the emulsion is greater than 74%, it is defined as High 

Internal Phase Emulsion (HIPE). Typically, the average pore range of polymerised 

HIPEs (PolyHIPEs) varies from microns to 10s of microns [45]. As multiple length scale 

porosity is advantageous for bone regeneration when compared to single scale 

porosity [436], combining emulsion templating with additive manufacturing enables 

the fabrication of hierarchically porous scaffolds [70,76,146,162]. 

PolyHIPEs are most commonly created using water-in-oil (w/o) emulsions where a 

synthetic hydrophobic polymer is used as the continuous phase. Synthetic polymers 

have various advantages over ceramics and natural polymers such as; having 

tailorable physical, chemical, and mechanical properties, precise reproducibility, 

controllable biodegradability, and processability [219,437,438]. However, they have 

the disadvantage of having comparably limited interaction with biological tissues 

[439,440]. One approach to overcome this limitation is the decoration of polymeric 

scaffolds with ceramic particles [441] or exogenous extracellular matrix (ECM) 

components [442] such as peptides [443,444], proteins and growth factors [445,446]. 

Nevertheless, the incorporation of a limited number of exogenous ECM elements is not 

entirely sufficient to mimic the unique complexity of the natural ECM [447], which is a 

rich source of bioactive molecules [448,449]. For this reason, TE adopts cell-based 

approaches in which live cells are implanted with the biomaterial. However, the use of 
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live cells is clinically risky, expensive, and time-consuming [450]. Therefore, there has 

been an increasing interest in using cell-derived ECM to increase the biological 

performance of the scaffolds while avoiding the implantation of live cells 

[419,449,451–455].  

Recently, we reported the development of polycaprolactone (PCL)-based PolyHIPEs 

and demonstrated their initial cell-compatibility [42] and their potential use in guided 

bone regeneration [13]. However, due to the hydrophobic nature of the PCL, cell 

infiltration was limited unless the PCL-based scaffolds were treated with air-plasma 

[13]. Although there is an increasing demand for the use of emulsion templated 

scaffolds for various TE applications [46,186] due to their ability to create structures 

with favourable morphological properties, there are only a limited number of studies 

establishing methods to improve the cell-material interactions of PolyHIPE scaffolds, 

and these are limited to the incorporation of a single biologically active agent 

[136,223] or hydroxyapatite (HA) [131,134]. 

Herein, we aimed to consider both the structural and biochemical requirements for 

the development of scaffolds for bone regeneration and suggest an alternative 

approach to improve the biological performance of w/o PolyHIPEs. Firstly, we 

manufactured multiscale porous polymeric scaffolds by combining emulsion 

templating and 3D printing techniques, taking advantage of the photo-cure ability of 

the synthesised PCL (Figure 4.1). Subsequently, we populated them with bone cells to 

decorate these scaffolds with an in vitro cell-derived ECM. Finally, we decellularised 

these constructs to obtain biohybrid scaffolds made of PCL and bone-like matrix. The 

biohybrid scaffolds were then evaluated for their ability to support cell attachment, 

cell viability, and osteogenic differentiation using human embryonic stem cell-derived 
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mesenchymal progenitor cells (hES-MPs). The angiogenic potential of the biohybrid 

multiscale porous scaffolds was assessed using a well-established in vivo assay, ex-ovo 

chick chorioallantoic membrane assay (CAM). 

 Experimental 

 Materials 

Pentaerythritol (98%), ε-caprolactone, tin (II) 2-ethylhexanoate, triethylamine (TEA), 

methacrylic anhydride (MAAn), photoinitiator (2,4,6-Trimethylbenzoyl Phosphine 

Oxide/2-Hydroxy-2-Methylpropiophenone blend), fungizone, fetal calf serum (FCS), 

penicillin/streptomycin (PS), L-glutamine, trypsin, 37% formaldehyde (FA) solution, 

resazurin sodium salt, glutaraldehyde, ethanol, hydrochloric acid (HCl), sodium 

hydroxide (NaOH), hexamethyldisilazane (HMDS), perchloric acid, picric acid, 

hematoxylin solution, eosin Y solution, porcine gelatine, beta-glycerolphosphate 

(βGP), ascorbic acid 2-phosphate (AA2P), dexamethasone, Triton X-100 (Triton), 

deoxyribonuclease (DNAse), and Alizarin red S were purchased from Sigma Aldrich 

(Poole, UK). Direct Red 80 (Sirius Red) was purchased from Fluka (Buchs, 

Switzerland). Chloroform, industrial methylated spirit (IMS), dichloromethane (DCM), 

and methanol (MeOH) were purchased from Fisher Scientific (Pittsburgh, PA, USA). 

The surfactant Hypermer B246-SO-M was received as a sample from Croda (Goole, 

UK). Minimum Essential Alpha Medium (α-MEM) was purchased from Lonza (Slough, 

UK). Quant-iT™ PicoGreen® dsDNA Assay (PG) Kit and human fibroblastic growth 

factor (hFGF) were obtained from Life Technologies (Frederick, Maryland, USA). 

Optimum cutting temperature tissue freezing medium (OCT-TFM) was purchased 

from Leica Biosystems (Newcastle, UK).  
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 Manufacturing and characterisation of the multiscale porous 

PCL scaffolds 

Multiscale porous photocurable PCL-based scaffolds were created in three main steps: 

(i) synthesis of 4-arm hydroxyl-terminated polycaprolactone (4PCL) and methacrylate 

functionalisation of 4PCL (4PCLMA) to make the polymer photocurable, (ii) 

preparation of the emulsions made of 4PCLMA, and (iii) simultaneous 3D printing and 

cross-linking of 4PCLMA-based emulsions. 

 

Figure 4.1: Manufacturing routes of the multiscale porous photocurable polycaprolactone (PCL) 

scaffolds (step1, 2) and multiscale porous biohybrid scaffolds (step 1-3). (1) Preparation of the 

emulsion made of photocurable PCL and water, (2) the transfer of the PCL-based high internal 

phase emulsion (HIPE) into the syringe, pressure-assisted 3D printing and simultaneous cross-

linking, and (3) the culture of bone cells on PCL-only scaffold to be decellularised and generation 

of the biohybrid scaffolds. 

4.2.2.1. Synthesis and methacrylation of 4PCL 

The detailed synthesis of the polymer, 4PCLMA has been described elsewhere [42]. 

Briefly, under nitrogen flow, pentaerythritol (0.088 mol) and ε-caprolactone 
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(0.705 mol) were added into a three-neck round-bottomed flask, and the system was 

heated to 160 °C using an oil bath while being mixed at 200 rpm. When the 

pentaerythritol was completely dissolved, the catalyst, tin(II) 2-ethylhexanoate was 

added, and the system was left overnight to form 4PCL before being removed from the 

oil bath and left to cool down in the ambient atmosphere. 

4PCL was dissolved in 300 mL of DCM, and then TEA (0.705 mol) was added. Reagents 

were stirred, and a further 200 mL of DCM was added to ensure everything was 

dissolved. The flask was placed in an ice bath. MAAn (0.705 mol) was dissolved in 

100 mL DCM and transferred into a dropping funnel (∼1 drop per second). When the 

MAAn was completely dispensed, the ice bath was removed, and the system was 

maintained at room temperature (RT) for 68 hours while being mixed. It was then 

washed with HCl solution, and then with deionised water (dH2O) to remove TEA, MAA, 

and salts formed. Almost all solvent was evaporated using a rotary evaporator. Three 

methanol washes were applied, and any remaining solvent was removed using a rotary 

evaporator. 4PCLMA was stored in the freezer (−20 °C) for further use. 

4.2.2.2. Characterisation of 4PCL and 4PCLMA 

To confirm the structure of 4PCL and 4PCLMA, and also to measure the degree of 

methacrylation, proton (1H) nuclear magnetic resonance (NMR) spectroscopy analysis 

was performed on an AVANCE III spectrometer at 400 MHz. The spectra were 

recorded using an 8.2 kHz acquisition window, with 64 k data points in 16 transients 

with a 60 s recycle delay (to ensure full relaxation). Deuterated chloroform was used 

as a diluent (CDCl3). Spectra were analysed using MestReNova software. Chemical 

shifts were referenced relative to CDCl3 at 7.26 ppm.  
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The weight average molecular weight (Mw) and number average molecular weight 

(Mn) distributions of 4PCLMA were determined using a Viscotek GPCmax VE200 gel 

permeation chromatography (GPC) system with a differential refractive index detector 

(Waters 410). Tetrahydrofuran was used as the eluting solvent at a flow rate of 

1 mL/minute at 40 °C, and polystyrene standards were used as the calibration sample. 

4.2.2.3. Preparation of 4PCLMA-based HIPEs 

Throughout this study, the only polymer used was 4PCLMA, and it has been entitled as 

PCL in the rest of the text except Section 4.3.1 unless otherwise stated. PCL (0.2 g) and 

10% (w/w) surfactant were added into a glass vial (Ø=25 mm) and heated to 40 °C to 

dissolve surfactant and left for cooling. Chloroform/toluene solvent blend (40/60 

(w/w), 0.3 g) was added to the PCL-surfactant mixture and mixed at 375 rpm using a 

magnetic stirrer (8x20 mm) for 1 minute at RT. Once the homogeneous mixture was 

created, 2 mL water was added dropwise for PCL HIPEs ( 89% internal phase volume), 

and the emulsion was mixed for a further 5 minutes at 375 rpm and 5 minutes at 

1000 rpm. 

4.2.2.4. Viscosity measurements 

AR2000 (TA Instruments, Ettenleur, The Netherlands) was used to characterise the 

viscosity of the PCL HIPEs. 40 mm 2° steel cone plates were used with a gap of 55 μm 

at 25 °C. 0.6 mL of sample was injected, and a continuous ramp step was applied with 

a shear between 0.01 and 10 s−1 for 1 minute using linear mode and 50 points per 

decade. 

4.2.2.5. 3D printing and polymerisation of PCL-based HIPEs 

A 10x10x1.4 mm tetragonal prism was designed using Solidworks (2012) and saved 

as a standard tessellation language (.stl) file format. This file was imported into 
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Repetier host to convert .stl format to .gcode format, which is a layer by layer design 

of the scaffold to make it recognisable by the printer (Figure 4.2). During the 

conversion, the following parameters were set: layer height; 100 µm, infill; 36% 

rectilinear, and speed; 13 mm/s (Table 4.1). 

 

Figure 4.2: Isometric view of (A) the 3D design of the tetragonal prism (10x10x1.4 mm, .stl)  and 

(B) the layer-by-layer design of the scaffold. (C) Top view of a single layer and (D) complete model 

of the layer-by-layer design. 

The Gcode file was imported into Bioprint software, and the PCL-based HIPE was 

loaded into a syringe with a 30G precision tip needle. The syringe was connected to 

the compressor line and placed into a three-axis dispensing control system at RT. The 

pressure was set to 20 psi; however, slightly adjusted throughout the process for the 

best results. Multiscale porous PCL scaffolds were prepared by simultaneous printing 

and crosslinking of the PCL-based HIPE with the help of the integrated LED lamp 

(400-410 nm) of the printer (Biobots, Philadelphia, PA, USA). 
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Table 4.1: Design and processing parameters of the scaffolds. 

Dimensions of the model 10x10x1.4 mm 

Layer height 100 µm 

Infill 36% rectilinear 

Speed 13 mm/s 

Pressure 20 psi 

Needle size Inner diameter; 150 µm (30 G) 

Outer diameter; 310 µm 

 

4.2.2.6. Morphological investigation of the multiscale porous PCL scaffolds  

Scanning electron microscopy (SEM) was used to investigate the microarchitecture of 

the scaffolds. Samples were gold sputter-coated in 15 kV for 2.5 minutes to increase 

conductivity. A FEI Inspect F SEM (Philips/FEI XL-20 SEM, Cambridge, UK) was used 

with 10 kV power. 20 pores, 20 struts, and 50 micropores were selected randomly, and 

measurements were taken. A statistical correction factor (2/√3) was applied to 

micropore measurements to adjust the underestimation of diameter because of 

uneven sectioning [66]. The degree of interconnectivity was calculated by dividing the 

average window size by the average pore size (d/D) [42,69], and the degree of 

openness was calculated by dividing open surface area to total surface area [50,70]. 

The window diameters of 50 micropores (426 windows in total) were measured. 
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 Manufacturing of the biohybrid scaffolds via in vitro generated 

ECM matrix deposition on multiscale porous PCL scaffolds 

Biohybrid scaffolds, made of PCL and bone ECM, were manufactured in three main 

steps; (i) manufacturing of the multiscale porous PCL scaffolds as described in 

Section 4.2.2, (ii) cellularisation, and (iii) decellularisation of these scaffolds. 

4.2.3.1. Cellularisation of the multiscale porous PCL scaffolds with bone cells 

Multiscale porous PCL scaffolds were washed with 100% ethanol four times (24 hours 

each) to remove any remaining contaminants of surfactant, solvent or uncured 

material. Then, they were left in 70% ethanol for 2 hours and then transferred into 

PBS in sterile conditions, four PBS washes were applied in 24 hours. α-MEM 

supplemented with 10% FCS, 2 mM L-glutamine and 100 mg/mL PS was used as a 

basal cell culture media (BM). Scaffolds were conditioned with BM for two hours in the 

incubator. Murine Osteoblast/Osteocyte-like cells (MLO-A5s) were defrosted into 

gelatine-coated T75 flasks and cultured until 90% confluence. MLO-A5s were 

expanded, trypsinised, counted and centrifuged. The cell pellet was re-suspended in 

fresh BM media (25000 cells / 20 µm). The media in the well plate was aspirated, and 

20 µm of cell suspension was placed on the whole surface of each scaffold 

homogenously and left for 2 hours in an incubator (37 °C, 5% CO2) for cell attachment. 

During this time, to prevent cells from drying out and keep the inside of the well humid, 

4 mL BM media was injected into the spaces between the wells. After 2 hours, 2 mL of 

BM media was supplied into each well and incubated overnight. On the following day, 

scaffolds were transferred into a fresh well plate and incubated with supplemented 

media (SM) consisting of BM with 50 µg/mL AA2P and 5 mM βGP for 28 days. Cell 

culture media was changed every 2-3 days.  
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4.2.3.2. Decellularisation of the multiscale porous PCL scaffolds populated with 

bone cells 

Three different decellularisation methods were used for devitalisation of multiscale 

porous PCL scaffolds cultured with MLO-A5s; freezing and thawing (ft), Triton and 

ammonia (ta), and DNAse. Four different combinations of these protocols were tested; 

(i) ft only, (ii) ft+ta, (iii) ft+DNase, (iv) ft+ta+DNAse, and they were compared in terms 

of their efficiency of DNA removal. Before applying each decellularisation protocol, 

culture media was removed, and scaffolds were washed twice with PBS. Each method 

is described in the following section. At the end of the application of a decellurisation 

method, scaffolds were washed with warm (37 °C) PBS three times to remove the 

cellular component. Combined protocols were applied by following the individual 

protocols in order. 

The method of ft is categorised as mechanical decellularisation, and it is applied by 

alternating the temperature between freezing temperatures and biological 

temperatures. The ft technique leads to lysis of cells by the help of intracellular ice 

crystals. Although this technique maintains ECM properties, its usage as a single-step 

method has been found to be inefficient based on DNA removal [456]. Herein, we 

applied consecutive three freeze-thaw cycles. For one freeze-thaw cycle, scaffolds 

were left in -80 °C for 15 minutes and transferred into a 37 °C water bath for 30 

minutes.  

Triton is a non-ionic detergent and used as a chemical decellularisation agent, it 

disrupts lipid-lipid and lipid-protein interactions, and it is less damaging to ECM 

structure in comparison with ionic detergents such as sodium dodecyl sulphate. Triton 

is commonly used with ammonium hydroxide (triton + ammonium hydroxide: ta), 
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which is an acid, and it also solubilises the cell membrane and nuclear components 

[457]. Scaffolds were incubated in a 1 mL mixture of Triton (0.5%) and ammonium 

hydroxide (20 mM in PBS) for 10 minutes at 37 °C and the solution was removed 

afterwards. 

DNAse is as an enzymatic decellularisation agent, used for breaking down of DNA 

fragments and removal of the nucleotides lysis of the cell membrane with another 

complementary method. There are no reported adverse effects of DNAse on ECM 

[458–460]. Scaffolds were incubated in 1 mL DNAse solution (0.2 mg/mL) in an 

incubator for an hour.  

 Cellularisation of the biohybrid scaffolds with mesenchymal 

progenitors  

Multiscale porous PCL-only scaffolds and biohybrid scaffolds were seeded with hES-

MPs (Cellartis, Sweden) for testing their biological performance. HES-MPs were 

defrosted into gelatine-coated T75 flasks and cultured until 90% confluence with BM. 

During the expansion of cells, BM was supplemented with hFGF at 4 ng/mL to stop 

differentiation of cells to other cell types. After the expansion of cells, they were 

trypsinised, counted, and centrifuged. The cell pellet was re-suspended in fresh media 

(25000 cells / 20 µm). The media in the 24 well plate was aspirated, and 20 µm of cell 

suspension was placed on the whole surface of each scaffold homogenously and left 

for 2 hours in an incubator (37 °C, 5% CO2) for cell attachment. During this time, to 

prevent cells from drying out and keep the inside of the well humid, 4 mL BM media 

was injected into the spaces between the wells. After 2 hours, 2 mL of BM media was 

supplied into each well and incubated overnight. On the following day, scaffolds were 
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transferred into the fresh well plate and incubated with osteogenic media (OM) 

consisting of SM with 100 nM dexamethasone for 28 days. Cell culture media was 

changed every 2-3 days. 

 Biological characterisation of PCL-only and biohybrid scaffolds 

4.2.5.1. Cell viability assay 

Resazurin reduction (RR) assay was applied to measure the cellular metabolic activity 

and estimate the cell viability on scaffolds. Resazurin solution (non-fluorescent, blue) 

is reduced by the cells and forms resorufin (fluorescent, pink) which is detectable by 

a fluorescence plate reader. 1mM Resazurin stock solution (in dH2O) was diluted to 

100 μM in culture media to make the resazurin working solution. 1 mL of resazurin 

working solution was added into each well, and the scaffolds were transferred into a 

fresh well plate using sterile forceps. The well plates were protected from light and 

incubated for 4 hours at 37 °C. From each scaffold, triplicate samples of 200 μL of the 

reduced solution were added to a 96 well plate. This was measured three times using 

a spectrofluorometer (FLX800, BIO-TEK Instruments, Inc.) at an excitation wavelength 

of 540 nm and an emission wavelength of 630 nm. RR assay was performed at days 1, 

7, 14, 21, and 28 of culture for both MLO-A5s and hES-MPs using a fresh scaffold for 

each time points. 

4.2.5.2. Measuring DNA content 

To find the cell seeding efficiencies of MLO-A5s and hES-MPs and to measure the 

remaining DNA content following the decellularisation of the scaffolds, a Quant-iT™ 

PicoGreen® dsDNA Assay Kit was used. Scaffolds were washed with PBS three times, 

and 500 µL cell digestion buffer was added and incubated for 30 minutes. The three 

freeze-thaw cycles were applied, and scaffolds were vortexed for 15 seconds. Scaffolds 
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were removed, and the remaining buffer was mixed homogenously. The sample and 

the Picogreen working solution were transferred into 96 well-plate (1:1) as triplicates. 

The plate was covered with aluminium foil and incubated at RT for 10 minutes with 

gentle shaking. The resulting solution was read by using spectrofluorometer at an 

excitation wavelength of 485 nm and an emission wavelength of 528 nm. 

4.2.5.3. Measuring ECM deposition 

Alizarin red (AR) and Sirius red (SR) staining was conducted to measure calcium and 

collagen deposition, respectively. Culture media was removed, and scaffolds were 

washed with PBS. Scaffolds were transferred into 1 mL 3.7% FA and left for 2 hours at 

RT. FA was removed, and scaffolds were washed twice with dH2O. AR powder was 

dissolved in dH2O at 1% (w/v) in a water bath and filtered to remove particles to make 

alizarin red solution (ARS). SR powder was dissolved in saturated picric acid (1% 

(w/v)) to form Sirius red solution (SRS) and filtered to ensure no particles remained. 

Scaffolds were submerged in 1 mL of SRS or ARS and left for 1 hour. The solution was 

removed, and scaffolds were washed every five minutes with dH2O while being mixed 

until the water remains clear. Scaffolds were submerged with a known volume of 5% 

perchloric acid or 0.2 M NaOH:MeOH (1:1) to destain the AR and SR, respectively, for 

1 hour with gentle orbital shaking. 150 μL of the destain solution in triplicates were 

transferred into a clear 96 well plate and read at an absorbance of 405 nm.  

4.2.5.4. SEM of Biological Samples 

Scaffolds were washed three times with PBS after removing culture media and fixed in 

2.5% (in PBS) glutaraldehyde at RT for 1 hour to preserve cell structure. They were 

rinsed with PBS for 15 minutes (3 times) and soaked in dH2O for 5 minutes. Following 

this, samples were subjected to serial ethanol washes to be dehydrated (35%, 60%, 
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80%, 90%, and 100% for 15 minutes for each concentration). Finally, samples were 

treated with drying agent HMDS/ethanol (1:1) for 1 hour and 100% HMDS for 5 

minutes before air drying. Samples were gold coated and visualised using methods 

described in Section 4.2.2.6. 

4.2.5.5. Energy Dispersive X-ray analysis (EDX) 

Biological samples were prepared in the same way as described in Section 4.2.5.4. and 

carbon-coated. SEM microscopy (FEI Inspect F50 (Philips/FEI XL-20 SEM, Cambridge, 

UK)) with an energy dispersive analyser was used with 10 kV power for scanning and 

EDX elemental mapping. 

4.2.5.6. Ex ovo CAM assay 

Fertilised eggs (Henry Steward Co. Ltd, UK) were cracked, and embryos were 

transferred into weighing boats inserted inside the Petri dishes at embryonic 

development day (EDD) 3. The ex-ovo chick embryos were cultured in an incubator at 

38 °C from EDD 3 to EDD 8 without any further modification. At EDD 8, PCL-only 

scaffolds (negative control), hybrid scaffolds, and scaffolds cultured with MLO-A5s (4 

weeks) (positive control) were cut by using a sterile punch (Ø=6mm) and placed on 

CAM and incubated. At EDD 14, digital images were taken, and embryos were 

sacrificed by cutting their arteries. Scaffolds were isolated with 1 cm CAM margin for 

histological assessment. 

4.2.5.7. Morphometric quantification of the angiogenesis  

At EDD 14, the macro-images of the scaffolds on CAM were taken with a digital 

microscope (Figure 4.3A). Four digital images from each group were quantified using 

a modified version of a well-established method [201,461,462]. A 10 mmx10 mm 

region was cropped in each image. To improve the discernability of the blood vessels, 
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the following parameters were set to all images in Adobe Photoshop CS6 ; brightness 

and contrast; -50/10, unsharp; 50/10/0, smart sharpen; 100/5 with gaussian blur and 

reduced noise; 5/0/0/50 (Figure 4.3B). A new layer was created in Photoshop, and all 

discernable vessels were drawn digitally using a Wacom Intuos Pro Medium Tablet 

with 2 pixels size-hard round brush (Figure 4.3C). 

The layer created for the drawing of blood vessels was exported from Photoshop and 

imported into Image J (Figure 4.3D). The image was converted to binary, inverted and 

saved (Figure 4.3E). The number of blood vessels was calculated by counting the total 

count of the vessels touching the border of the scaffolds. The total vessel length and 

the total number of junctions were quantified using Angiotool (National Cancer 

Institute, MD, USA) (Figure 4.3F). 
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Figure 4.3: Steps of the morphometric quantification of angiogenesis; (A) macro-image as 

captured, (B) improved image using Photoshop, (C) drawn discernable blood vessels, (D) 

exported blood vessel layer from Photoshop, (E) binary and inverted image in Image J, (F) 

analysed image using Angiotool. 

4.2.5.8. Haematoxylin&Eosin staining 

Heamotoxylin&Eosin (H&E) staining on PolyHIPE scaffolds has been described in 

detail elsewhere [42]. Briefly, scaffolds isolated from CAM were washed with PBS and 

fixed in 3.7% FA. Scaffolds were transferred into cryomolds filled with freezing media 

and frozen. Sections with 5-8 μm thickness were sliced on glass slides using the 

cryostat (Leica CM1860 UV, Milton Keynes, UK). Slides were stained with hematoxylin 

and eosin for 1.5 minutes and 5 minutes, respectively. After washing with dH2O, slides 

were dehydrated in IMS and dunked into xylene. The slides were then mounted with 

DPX, and the images were captured using a light microscope (Motic BA210, China). 
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 Statistical analysis 

Statistical analysis was carried out using GraphPad Prism. Comparisons of more than 

two groups were performed with one-way ANOVA to find the statistical significance. 

Where relevant, n values are given in figure captions. Error bars indicate standard 

deviations in the graphs unless otherwise stated. 

 Results and Discussion 

 Synthesis and characterisation of the photocurable PCL  

The chemical structure and 1H NMR spectra of 4PCL and 4PCLMA are given in 

Figure 4.4A-4.4C, 4.4E. The peaks of the hydroxyl ends (-OH) are framed with the dark 

grey box and labelled with “a”. These peaks represent the ends which were not 

methacrylated. The peaks of the methacrylate group are framed with yellow boxes and 

labelled with “b, c and d”. From these results, it is clear that all the hydroxyl ends that 

showed up in 4PCL, have been converted to methacrylate ends following the 

methacrylation reaction. This suggests that the 4PCLMA used in this study is 100% 

methacrylated. It was reported that the higher degree of methacrylation crosslinks the 

photocurable monomers to a higher degree, and this results in a mechanically stronger 

material [463–465]. GPC results showed that the Mw and Mn values were 2069 g/mol 

and 1771 g/mol, respectively and the dispersity index was calculated as 1.17 (Mw/Mn). 
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Figure 4.4: The synthesis scheme of 4-arm photocurable polycaprolactone: (A-B) monomer and 

initiator were used for the synthesis of hydroxyl-terminated 4-arm polycaprolactone (4PCL). (B-

C). 4PCL was methacrylated. (D) Schematic demonstration of the photocured (UV-crosslinked) 

network showing a building block made of 4PCLMA. (E) 1H NMR spectrum of 4PCL, 4PCLMA and 

relative assignments. Dark grey region: peaks of the hydroxyl group, light yellow regions: peaks 

of the methacrylate group, which only showed up after methacrylation reaction while they are 

absent in 4PCL. 

PCL is a synthetic polymer that has drawn considerable attention for use in the 

fabrication of TE scaffolds due to having various advantages such as being cell-

compatible, bioresorbable and having an ease of processability [466]. Also, PCL has 

been approved by the Food and Drug Administration (FDA) for its use in several 

medical products, such as; drug delivery devices and sutures [289]. However, there 

are a limited number of studies that use photocurable PCL in biomedical applications 

[42,107,467,468]. Photocurable polymers need to have photoreactive groups such as 

acrylates or methacrylates to be able to be crosslinked via UV and to create a polymer 
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network in the presence of photoinitiator (Figure 4.4D) [467]. However, as 

commercial PCL does not contain these photoreactive groups, photocurable PCL needs 

to be synthesised in house. Photocurable polymers can be polymerised within seconds, 

they have higher solvent resistance over the non-crosslinked polymers, and they do 

not need the high temperatures, which are required for thermally initiated 

polymerisation [469]. Due to being processable at mild operational conditions, 

photocurable polymers are considered to be good candidates for use in 3D printing 

applications [470,471]. 

 Fabrication of multiscale porous PCL scaffolds by a 

combination of emulsion templating and 3D printing 

There are two main issues that should be considered in the design of emulsion inks for 

the 3D printing process; (i) emulsions need to have a viscosity high enough to hold the 

printed shape until gelation (crosslinking), (ii) emulsion templated scaffolds need to 

have a pore size distribution that does not limit cell infiltration. It is essential to 

highlight the fact that in w/o emulsions, emulsion viscosity is inversely proportional 

with the size distribution of the water droplets [78]. Thus, the viscosity of the emulsion 

should be high enough for successful printing of the emulsion inks and low enough to 

enable the manufacturing of the scaffolds with a pore size ranges that allow cell 

infiltration.  

Both viscosity and pore size can be tuned by controlling the internal phase volume, 

type/amount of surfactant used, process temperature, and mixing conditions [78–81]. 

Sears et al. reported 3D printing of acrylate-based emulsion inks, prepared by mixing 

up to 2500 rpm. In their study, the rheology of the inks was optimised for high accuracy 
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printing of the emulsion to fabricate lattice design scaffolds for bone TE, but the micro-

pore size was not reported [76]. Yang et al. reported the use of mechanical shaking for 

the emulsification process and demonstrated the successful fabrication of 3D printed 

emulsion templated scaffolds with an average micropore size of 20 µm [146]. 

 

Figure 4.5: (A) Viscosity of the polycaprolactone (PCL)-based high internal phase emulsion 

(HIPE) prepared to be used in the printing process. (B) 3D printing and simultaneous cross-

linking of PCL HIPE. (C) Morphological characterisation (nmacropore=20, nstrut=20 and nmicropore=50) 

and (D) micropore size distribution of the scaffolds in terms of the diameter frequency and the 

volume frequency. 

As relative viscosity increases with the increasing volume fraction of the dispersed 

phase [93,472], we maximised the inner phase volume. The maximum water volume 

achieved was 89% where a further increase in the water volume beyond that resulted 

in phase separation of the emulsion at the reported process conditions. PCL-based 

HIPE showed shear-thinning behaviour, which enables their extrusion through the 

nozzle with applied pressure [473] (Figure 4.5A). Throughout the printing process, no 

phase separation was observed in PCL-based HIPEs. Similarly, we have previously 

shown the stability of the photocurable PCL-based HIPEs over 5 days [42]. 
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Pore size is one of the critical features that affect the biological performance of bone 

TE scaffolds in terms of cell attachment, infiltration [284,474], bone formation 

[86,475,476], differentiation [474,477], osseointegration [393,478] and 

vascularisation [86,393]. Recently multiscale porous scaffolds, developed to mimic the 

hierarchical structure of natural bone, have attracted great attention [479–482], and 

multiscale porosity has been found to be more favourable for bone regeneration 

compared to single scale pore designs [86,436]. While macropores encourage 

vascularisation and osteointegration [481], incorporation of microporosity into 

scaffolds has been reported to provide grooves and roughness on the surface topology 

of the scaffolds, which facilitate cell adhesion [86,483]. These also provide a larger 

surface area, thereby higher protein absorption [484,485]. The reported optimal 

micro- and macro- pore size ranges for bone TE scaffolds in the literature are 

conflicting, as the compositions of the scaffolds, pore shapes, mechanical properties, 

cell types used in the experiments, test conditions, and duration of the experiments 

vary [7,86]. However, in general, scaffolds with macropores sized over 300 µm and 

micropores sized less than 10-50 µm have been recommended and used by many 

researchers for bone regeneration studies [86,481,482]. 

In this study, the multiscale porous PCL-only scaffolds were easily fabricated by 3D 

printing and the simultaneous cross-linking of PCL HIPEs (Figure 4.5B). No post-

process was required to polymerise the PCL scaffolds. The average sizes of the 

macropores, struts, and micropores were measured as 315±25 µm, 325±18 µm, and 

8±5 µm (Figure 4.5C, 4.5D), respectively. Micropores of the scaffolds exhibited open-

cell morphology which is characterised by the presence of windows on the walls of the 

pores. Average window diameter was measured as 1.6 µm, both the degree of 
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openness and the degree of interconnectivity of the PolyHIPEs were measured as 0.2, 

which is in line with the reported values in the literature [42,70]. 

The microporous architecture of the scaffolds was found to be different at the surface 

of the struts compared to within the core of the scaffolds (Figure 4.6C, 4.6D). This is 

because the surface of the PolyHIPE is known to be affected by the contact materials 

such as the mould or air, and monoliths result in different morphologies at the surface 

and the cross-section [13]. However, as the pores on the surface still exhibited an open 

porosity, we believe this morphological difference did not pose a limitation to our 

system. A similar structural difference also can be seen in the study reported by Binks 

et al. for 3D printed non-photocurable PCL PolyHIPE scaffolds [146]. 
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Figure 4.6: SEM micrographs (A-D) multiscale porous PCL-only scaffolds immediately after 

manufacture, (E-G) after 1-week of MLO-A5 culture, (H-J) after 4-weeks of MLO-A5 culture, (K-

M) after the decellularisation process (biohybrid scaffold), (N-P) after 4-weeks of the culture of 

hES-MPs on the biohybrid scaffolds. First column macro view of the scaffold, the second column 
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shows the single pore, and the third column shows the microsurface of the scaffold at different 

stages of the experiment. All the images were captured from the top view. 

 Generation of the biohybrid scaffolds and evaluation of their 

biological activity 

4.3.3.1. Bone ECM deposition on the multiscale porous PCL scaffolds 

MLO-A5 cells are late-stage osteoblasts (pre-osteocytes) which have been shown to 

mineralise in 3 days in supplemented media and to rapidly-produce bone-like matrix. 

We use this mouse cell line in the proof-of-concept of this study as they have been 

previously reported to produce mineral (in culture), which has similar characteristics 

to that of native bone as measured by Fourier transformed infrared spectroscopy 

[486].  

Despite the long incubation time for cell seeding (2 hours) and conditioning of the 

scaffolds with media, the seeding efficiency of MLO-A5s was found to be less than 15% 

using a DNA quantification assay (Figure 4.7A). This is likely because; (i) the 

macroporosity of the scaffolds caused the cell suspension to drain from the scaffolds 

to the tissue culture plate (TCP) and (ii) the hydrophobicity of PCL limiting the cell-

surface interactions and inhibiting cell attachment. Recently we have shown that air 

plasma treatment can increase cell attachment, viability, and infiltration on 

hydrophobic PolyHIPE scaffolds [42,70]. However, in this study, air plasma treatment 

was not used to be able to show the single impact of ECM deposition on the biological 

activity of the scaffolds.  
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Figure 4.7: (A) Cell seeding efficiency of MLO-A5s on multiscale porous PCL-only scaffolds (n=5). 

(B) Metabolic activity (n=5), (C) mineral, and (D) collagen deposition of MLO-A5s on multiscale 

porous PCL-only scaffolds and TCP as control over 28 days (n=3,*: p<0.05, p>0.5; ns: not 

significant). 

Although the culture began with low cell numbers on multiscale porous PCL scaffolds 

at day 1, the cell viability of MLO-A5s dramatically increased from day 1 to day 7 and 

continued to increase until day 28 (Figure 4.7B). Cell viability of MLO-A5s cultured on 

TCP increased steadily from day 1 to day 14 and then remained stable, likely due to 

reaching confluence in the limited 2D growth area that TCP provided.  

Mineral and collagen deposition of MLO-A5s cultured on multiscale porous PCL-only 

scaffolds showed a dramatic increase from day 14 to day 28 (Figure 4.7C, 4.7D). There 
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was a progressive population of bone cells on the struts and the pores of the scaffold 

(Figure 4.6A-4.6J). At week 4, complete coverage of the surface with cells and 

deposited ECM material (Figure 4.6H) containing mineralised nodules (Figure 4.6J) 

was observed. 

4.3.3.2. Decellularisation of the multiscale porous PCL scaffolds populated with 

bone cells 

The fundamental aim of the decellularisation process is to remove the genetic material, 

which may trigger an immune response [487] while preserving ECM components 

[458]. There are various decellularisation methods described in the literature [458]. 

Depending on the target tissue, cell line and the scaffold design, various combinations 

of these methods have been performed to disintegrate the cell membrane and to 

remove the cellular material [488]. While multiple methods are combined, and longer 

washing steps are applied for decellularisation of the whole organs or tissues 

[458,489], less harsh methods are used for decellularisation of the in vitro generated 

ECM on scaffolds [419,451–455]. 

Herein, we compared the efficiency of ft, ft+ta, ft+DNAse, and ft+ta+DNAse treatments 

in terms of DNA removal, and the remaining DNA amounts were measured as 26%, 

14%, 5%, and 4% of the total amount of initial DNA, respectively. There was no 

significant difference found in the remaining DNA contents of the groups 

decellularised via ft+DNAse and ft+ta+DNAse. Thus, Ft+DNAse treatment was chosen 

as the decellularisation method for this study due to its ability to remove DNA up to 

95%.  
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Figure 4.8: (A) Comparison of the various decellularisation techniques in terms of remaining 

DNA content (n=3), (B) Calcium and collagen content of the scaffolds cultured with MLOs for 4 

weeks (blue) and scaffolds that are decellularised (purple) (n=3, p>0.05; ns: not significant), (C) 

EDX spectrum of the decellularised scaffold showing the peaks of carbon (C), phosphorus (P), 

calcium (Ca), and oxygen (O), (D, E) SEM images of the decellularised scaffolds in lower and 

higher magnifications, respectively (top-view). (F-I) EDX elemental mapping of Ca (red) and P 

(green) . 

Following the decellularisation, 88% and 77% of the deposited calcium and collagen 

amounts were found to be preserved on biohybrid scaffolds. The Ft+DNAse method 

was successful in the removal of 95% of the total DNA while preserving most of the 

collagen and mineral deposited onto the scaffolds. Although the macropores were 
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covered with MLO-A5s after 4 weeks of culture, the multiple washing steps of the 

decellularisation process seemed to disrupt the ECM layer covering the macropores 

and resulted in a mostly open porous structure (Figures 4.6K-4.6M). EDX analysis of 

the biohybrid scaffolds also showed that the remaining elemental composition 

consisted of mostly calcium (Ca) and phosphorus (P); the main inorganic constitutes 

of native bone tissue (Figure 4.8). Some trace elements, such as; sodium (Na), 

magnesium (Mg), silicon (Si), and sulphur (S) were also found within the deposited 

ECM. The small peak that corresponds to the presence of P detected on the PCL-only 

scaffolds is likely to come from the photoinitiator that joined the structure of the 

polymer during free-radical polymerisation. 

4.3.3.3. Evaluation of the biological activity of the biohybrid scaffolds using hES-

MPs 

HES-MPs are able to differentiate into osteogenic, chondrogenic and adipogenic cell 

lines. The gene expression profile of hES-MPs is similar to human mesenchymal stem 

cells (MSCs), but they have a higher proliferation rate [490,491]. In this study, they 

were used as a representative of osteoprogenitor cells to understand the initial steps 

that may occur when human osteoprogenitors encounter biohybrid scaffolds in vivo. 

Seeding efficiencies of hES-MPs were found to be 11% and 34% on PCL-only and 

biohybrid scaffolds, respectively. ECM deposition onto the polymeric scaffold 

increased the initial cell attachment up to 3-fold compared to PCL-only scaffold. Cell 

adhesion is a process that is modulated by surface receptors; integrins which can 

recognise ECM proteins [492]. Similarly, the presence of ECM proteins on the surfaces 

has been reported to have a positive impact on cell attachment and growth 

[451,493,494]. Also, the remaining ECM deposited on the surfaces has been reported 
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to increase the roughness of the surfaces of the substrates, and this is likely to enhance 

the initial cell attachment [495].  

 

Figure 4.9: (A) Seeding efficiencies of human embryonic stem cell-derived mesenchymal 

progenitor cells (hES-MPs) on polycaprolactone (PCL) -only and biohybrid scaffolds (n=6), (B) 

the metabolic activity (n=6), (C) mineral (n=3), and (D) collagen deposition of hES-MPs on PCL-

only, biohybrid scaffolds, and on tissue culture plate (TCP) as a control in 28 days culture (n=3) 

(*: p<0.05, ****: p<0.001, ns: not significant). 

While hES-MPs cultured on PCL-only scaffolds barely survived over 28 days, the cell 

viability of hES-MPs cultured on biohybrid scaffolds showed a significant increase 
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from day 14 to day 28. The viability of hES-MPs growing on TCP increased until day 

14, and cells started to detach from the surface of the TCP after that point. 

Various properties, such as biochemical composition [429,496,497], morphology 

[498], and mechanical properties [499] of the substrates have been shown to affect the 

osteogenic activities of stem-cells. Similarly, in our system, the amounts of newly 

formed ECM; collagen and mineral by hES-MPs on biohybrid scaffolds was 

dramatically higher compared with ECM deposition on PCL-only scaffolds. Although 

hES-MPs cultured on both PCL-only and the biohybrid scaffolds were supplemented 

with OM, hES-MPs on PCL-only scaffolds was not able to deposit a significant amount 

of calcium. Similar to our findings, Datta et al., previously showed that in vitro cell-

generated ECM decoration on titanium implants stimulates the differentiation of rat 

marrow stromal cells even in the absence of osteogenic supplements, although this 

effect is shown to increase with the supplementation of osteogenic factors [451]. 

Baroncelli et al. have shown more than a 20-fold increase in the calcium deposition of 

MSCs on ECM decorated substrates compared to plain ones [495]. Tour et al. also 

reported that decoration of HA scaffolds with in vitro generated ECM obtained from 

both rat osteoblasts and rat fibroblasts enhanced the osteogenic activity and reduced 

the inflammatory response in vivo [455]. 

4.3.3.4. Evaluation of the angiogenic activity of the biohybrid scaffolds using 

CAM assay 

CAM assay is a rapid (two-weeks) and a cost-effective bioassay which has been widely 

accepted as an in vivo platform to investigate initial tissue response to biomaterials 

and angiogenic factors [201,277,500]. In practice, it is comparatively easier than other 

in vivo assays, most of which require several surgical procedures. The CAM assay 
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allows direct visualisation of newly formed blood vessels in the area of implantation 

throughout the duration of the experiment when performed ex-ovo (shell-less) [501]. 

Angiogenesis and host tissue integration are crucial for osseointegration of bone grafts 

after implantation [502–504]. Herein, we used ex-ovo CAM assays to evaluate: (i) initial 

in vivo response, (ii) angiogenic response, and (iii) the degree of cell and tissue 

integration with scaffolds. 

Angiogenic effects of various cell types, including adipose-derived MSCs [462,505], 

human dermal microvascular endothelial cells [506], and fibroblasts [505,506] on 

CAM have previously been reported. However, it has not been studied whether the 

cells cause the angiogenic effect or the ECM they deposit during the implantation 

period. In our CAM assay experiments, PCL scaffolds populated with MLO-A5 were 

used as positive control and PCL-only scaffolds were used as a negative control as 

these should not possess any angiogenic properties. 

The ex-ovo CAM assay demonstrated that ECM deposition and presence of MLO-A5s 

did not show a negative impact on embryo survival rate, which was above 70%. 

Scaffolds with either ECM or live MLO-A5s significantly increased the number of blood 

vessels, total vessel length and the total number of junctions in comparison to the PCL-

only group. Scaffolds cultured with MLO-A5s showed a better performance in terms of 

all the three measurements mentioned above; however, only the number of blood 

vessels was significantly different from other groups.  

At EDD 14, while isolating scaffolds, it was not possible to peel the CAM layer from the 

scaffold, and there was a complete integration of CAM with scaffolds in all three groups 

(Figure 4.10G-4.10O). However, while there was limited cell infiltration from CAM to 

the PCL-only scaffold, the ECM containing group showed higher infiltration through 
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both macro- and micro- pores whereas the highest infiltration was observed in the cell 

containing group. Additionally, blood vessels growing in the macropores were clearly 

detectable in the ECM and cell loaded groups. 

Pham et al. have also previously shown that in vitro generated ECM increased the 

vascularisation of the constructs implanted intramuscularly in a rat animal model 

[419]. They hypothesised that it is potentially because of the contribution of the 

angiogenic factors that are released into the in vitro deposited ECM. Although future 

investigations are necessary to validate the composition of the ECM present here in 

terms of growth factors, angiogenic factors and cytokines; our conclusions are in line 

with their hypothesis. Additionally, we also consider the contribution of the trace 

elements whose presence were verified using EDX analysis. Zhang et al. reported that 

Mg, Ca, and Si-containing ceramic scaffolds improved vascularisation and bone 

regeneration in vivo [507]. Similarly, Mg is reported to be a vital trace element in bone, 

and its role in bone regeneration and vascularisation has been investigated by many 

other researchers [508–510].  

Accordingly, the findings from the quantification of both macro and histology images 

support the notion that ECM deposition increased the angiogenic activity and tissue 

infiltration of the PCL scaffolds. Although this response was slightly higher when the 

cells were maintained alive in the scaffolds, this needs to be weighed against the 

difficulties and limitations of implanting live cells in a clinical situation. 
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Figure 4.10: Evaluation of the angiogenic potential of polycaprolactone (PCL)-only, PCL-only 

populated with murine long bone osteocyte cells (MLO-A5s), and biohybrid scaffolds using chick 

chorioallantoic membrane (CAM) assay; (A-C) Macro images were taken on embryonic 

development day 14, (D-F) quantification of the number of blood vessels, total vessel length and 

the total number of junctions. (n=4, *: p<0.05, **: p<0.01, ***: p<0.005, ****: p<0.001, ns: not 
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significant), (G-O) histological evaluation of the scaffolds isolated from CAM (Black arrows 

indicate the blood vessels). 

 Conclusions 

In this study, we developed biomimetic and biohybrid scaffolds for bone TE. 

Hierarchically porous PCL-based scaffolds were successfully fabricated by combining 

emulsion templating and 3D printing techniques. Following the culture of bone cells 

on these scaffolds for bone ECM deposition, the decellularisation procedure 

successfully removed the 95% of the DNA, while preserving most of the collagen and 

mineral on the scaffolds. By testing the scaffolds for their ability to support 

osteoprogenitors, it was revealed that bone-derived ECM improved cell attachment, 

proliferation and ECM deposition ability of hES-MPs. Bone-derived ECM also 

significantly improved the angiogenic activity in ex-ovo CAM assay where the blood 

vessels were found to be growing through the macropores of the scaffolds on CAM. The 

results suggested that biohybrid scaffolds made of PCL PolyHIPE, and cell generated 

ECM exhibit both osteogenic and angiogenic properties.  

To conclude, the ECM decorated multiscale porous scaffolds developed in this study 

appear to have great potential to be used as a bone graft substitute. While we used a 

mouse cell line in this proof-of-concept study, this technique could be easily adapted 

for use with donated human MSC-derived ECM to create a product to replace cadaveric 

donor bone graft or patient-specific MSCs to replace autologous bone graft. 

Additionally, it will be interesting to evaluate the developed biohybrid scaffolds for 

their use as an in vitro tissue model mimicking the native bone niche. 
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CHAPTER 5  

Overall conclusion and future work 

The main focus of the research in this thesis was to develop tetramethacrylate 

functionalised polycaprolactone (4PCLMA)-based emulsion templated matrices for 

tissue engineering applications.  

In the first chapter, it was emphasised that emulsion templating is a complex 

fabrication process that is sensitive to changes in various parameters. This study 

enables the precise engineering of the emulsion templated matrices by optimisation of 

each parameter that has an impact on the characteristics of HIPEs and PolyHIPEs. To 

date, the individual effects of most of the parameters on the final PolyHIPE structure 

have been reported. Although it was not in the scope of this thesis, future studies 

exploring the dependence of the final morphology on individual parameters via 

mathematical models would be interesting to implement. In this way, it would be 

possible to formulate the compositions virtually for any specific applications. Also, it 

may be possible to conduct multiscale computational modelling of these structures to 

predict their physical properties. 

In the second chapter, the development of PolyHIPEs made of 4PCLMA was reported. 

The findings from this study contributed to our understanding of the effect of the 

diluting solvent on the morphological and mechanical properties of PolyHIPE. 

Chloroform, toluene and their blends were used as diluting solvents. Stable HIPEs 

were successfully created, and the tunability of PolyHIPEs by solvent volume and 
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compositions was shown. Results suggested that the density and polarity of the 

solvent, the solubility of the solvent in the internal phase, and solubility of the polymer 

in the diluting solvent are some of the parameters that should be considered during 

the solvent selection process. I demonstrated that emulsions, where toluene alone was 

used as a diluting solvent (in the tested volumes) did not show typical open-porous 

PolyHIPE. However, as shown in the supporting data, when the surfactant was 

excluded from the composition, PolyHIPEs diluted with toluene showed a porous 

structure. These findings suggest that the interactions between the surfactant and the 

diluting solvent also should be investigated while formulating the emulsion 

composition, as previously suggested by Moglia et al. [38]. 

In the third chapter, we have shown the potential use of PCL PolyHIPE membranes for 

dental applications. For this, we needed to create a membrane with a thickness of 

hundreds of micrometres. Investigations on the effect of moulding material on the 

surface morphology of PolyHIPEs has shown that moulded emulsions have shown 

partially or fully closed morphology on the surface. Thus we have fabricated cylindrical 

structures and sectioned them using a vibratome and managed to obtain a fully open-

porous structure all over the membrane. However, further research is needed to 

explore the ways of obtaining open porous morphology on moulded PolyHIPE 

scaffolds.  

All scaffolds fabricated for the in vitro cell culture tests and ex-ovo CAM assays were 

disinfected using ethanol, and throughout the experiments, I didn’t observe any sign 

of infection. However, for clinical purposes, it is critical to investigate a convenient 

sterilisation route for PCL PolyHIPEs. I have previously autoclaved PCL PolyHIPE discs 

(data not shown) just to see if there will be any difference in their properties, colour 
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and integrity. There were not any observable changes between samples that were 

autoclaved vs non- autoclaved. However, research is needed to better understand the 

effect of sterilisation route on the chemical and mechanical features of PCL PolyHIPEs.  

In the last section, I successfully fabricated photocurable 4PCLMA-based multiscale 

porous scaffolds by combining emulsion templating and additive manufacturing. I 

have shown that the decoration of these scaffolds with cell generated bone 

extracellular matrix (ECM) enhanced osteogenic and angiogenic performance of those 

scaffolds. As proof of concept, murine bone cells were used to populate the scaffolds 

for ECM production. However, the use of mesenchymal stem cells would be more 

relevant to show the clinical potential of those biohybrid scaffolds. Results showed 

that the presence of ECM within the polymeric structure significantly increased the 

biological performance of the scaffolds. Although calcium and collagen deposition was 

quantified and elemental analysis and mapping were conducted, further research is 

required to demonstrate that angiogenic and osteogenic biomolecules exist in the 

compositions of the bone ECM. Also, fabricated biohybrid scaffolds are structurally and 

biologically close representatives of natural bone niches. Thus, it would be interesting 

to use the biohybrid scaffolds as an in vitro test platforms. 

PCL is one of the widely used synthetic polymers for the fabrication of scaffolds of soft 

and hard tissue engineering. It is biodegradable and processable to various shapes. 

However, its long degradation time, 2-4 years, is seen as the biggest disadvantage of 

the use of PCL to be used as a biomaterial in scaffolds structure. Most studies use linear, 

high molecular weight (60.000-90.000 g/mol) PCL as it is commercially available. 

However, studies have shown that networks created by crosslinking of functionalised 

PCL that is synthesised in house have a significantly higher degradation rate [511,512]. 
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The number of arms (branch) and the degree of functionalisation 

(methacrylation/acrylation) are some of the parameters that have an impact on the 

mechanical properties and the degradation rate of PCL. Thus, further investigations 

are needed to establish this relationship. Also, it would be interesting to explore the 

dependence of degradation rate on the morphological properties of PolyHIPEs such as 

pore size, window size, and degree of interconnectivity. As these parameters change 

the surface area, a significant difference is expected in their degradation profiles.  

In vitro cell culture data indicates that PCL PolyHIPE scaffolds are promising 

candidates to be used as tissue engineering scaffolds. However, future studies on ex 

vivo organ model and in vivo animal models are essential to test these matrices in 

physiologically relevant conditions. Long-term in vivo tests are also needed to show 

host tissue integration and the in vivo degradation profile of these matrices. 

Finally, emulsion templating is a highly tunable and favourable fabrication technique 

that enables the production of precisely engineered tissue engineering scaffolds. 

4PCLMA is also a highly tunable biomaterial. We have shown that 4PCLMA-based 

emulsion templated matrices are promising substrates to be used in various tissue 

engineering applications. However, as both, the technique and the biomaterial are 

quite novel, and there are still endless areas that can be explored to establish a greater 

degree of understanding in this field.
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CHAPTER 6  

pArt of science 

“Draw what can’t be seen …. 

and tell thousands about it without saying a word.” 

- Frank Netter, MD/ 1906-1991, ABD 

 Introduction 

As researchers, when we explore something, we are passionate about sharing it in a 

way that would be received more easily. We write articles; we do presentations. And 

visual materials: photography, microscopy images, basic sketches, detailed 

illustrations, 3D models, are often the best narrators of our research. Visual 

communication tools are powerful ways to grab the attention of the audience and 

enhance the memorability of the subject [513]. Similarly, throughout my research, I 

needed visual materials to tell my story. I have gained experience in different 

techniques, such as; medical and scientific illustration and false coloring of scanning 

electron microscopy (SEM) images, which are summarised in this chapter. 

 Medical and Scientific Illustration 

Medical and scientific illustrations are effective ways of conveying certain information 

to an observer by visual communication. Illustrations are generally used for articles, 

journal and book covers, atlases, education of the patients or advertisement purposes. 
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Even a single frame may illustrate anatomy, a medical problem, a proposed 

solution/design, and the treatment all at the same time. Although photography also 

can be used with similar purposes, illustration enables simplifying and modifying the 

frame. For example; Figure 6.1A, 6.1C shows the complex anatomy of the ulnar side 

wrist by an intraoperative photograph. However, a simple illustration can be used to 

show the only necessary details (Figure 6.1B, 6.1D). 

 

Figure 6.1: Power of an illustration to simplify the scene. Intraoperative photograph (A) and 

illustration (B) of the entrapped ulnar nerve by flexor carpi ulnaris tendon. Intraoperative 

photograph (C) and illustration (D) of the release of nerve loop from flexor carpi ulnaris tendon. 

a. the ulnar nerve, b. flexor carpi ulnaris tendon, c. main trunk, d. ulnar artery, e. pisiform bone. 

Image reprinted from [514] with the kind permission of the Journal of Neurosurgery Publishing 

Group. 
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Various basic scientific illustrations were presented in the previous chapters of this 

thesis to explain a specific application or procedure. I have also created medical 

illustrations with greater details for publications (Figure 6.2, Figure 6.3). 

 

 

Figure 6.2: The medical illustration showing the anatomical features of pelvic floor created for 

the study published in Nature Reviews Urology [15]. 

The creation process of detailed medical illustrations is more time consuming when 

compared with the basic vector-based illustrations. The process starts with the 

preliminary investigation on the subject and searches for reference images, 3D models, 
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or videos. If the drawing is about the operation, then attending a real operation helps 

to understand the procedure and the anatomy better. Following the creation of the 

first sketch, the illustration is colourised and detailed. Finally, it is finalised with the 

labelling (if needed) and the signature of the artist. Nowadays, there are as many 

digital techniques that enable real-time manipulation with endless tools. I use Adobe 

Photoshop and Wacom Medium Pro drawing tablet to create my illustrations. 

 

Figure 6.3: Graphical abstract figure drawn for the research presented in Chapter 3, published 

on Materials [13]. 

 False Coloured SEM Images 

SEM is one of the most informative imaging techniques in the field of biomaterials and 

tissue engineering to monitor morphology of the biomaterials, scaffolds, and cells. 

However, SEM images are usually monochrome. Although SEM images have strong 

contrast which creates a perception of high depth, and it has great image resolution, 
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complex structures composed of multiple components can be hard to interpret at a 

greyscale. In addition, from the aesthetical point of view, colour helps the human brain 

to identify different components [515]. Thus, for better interpretation, black and white 

images are colourised using computer technologies. Although fully automated systems 

that enable pseudo/ false colourisation of the SEM images is highly desirable, currently 

there is not any fully accurate system for this application. Semi-automated systems 

where colour assignments are required to be performed by the user have been 

reported [516,517]. Although they exhibited highly promising results, they still have 

an inaccuracy in the detection of the edges (Figure 6.4). 

 

Figure 6.4: Semi-automated false SEM colouring. Cellulose–fibre–epoxy composite SEM sample 

images. (A) Image after marking with colours on monochrome SEM image and (B) after false 

colourisation. Black arrows show the inaccuracy in the detection of the edges. Images are 

adapted from [517] with the kind permission of John Wiley and Sons. 

Alternatively, whole colourisation process can be performed manually. Although this 

technique is time-consuming, it enables the multitone colouring of the images and this 

results in more artistic images. Figure 6.5 and Figure6.6 are the SEM images in which 

I performed manual false-colouring. Comparison of original and processed images 

strongly emphasises the power of the colour on SEM images. 
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Figure 6.5: Recreation. (Top) Original scanning electron microscopy image and (Bottom) False 

scanning electron microscopy image of 4 days culture of human dermal fibroblasts on 

polycaprolactone PolyHIPE scaffold. Winners of Department of Materials Science and 

Engineering 2019 Image Competition, in the category of Biomaterials, and The University of 

Sheffield, Faculty of Engineering Photography Competition, category of The Future of 

Engineering. 
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Figure 6.6: Dali’s Crumpet. (Top) Original scanning electron microscopy image and (Bottom) 

False scanning electron image the cross-section of polycaprolactone PolyHIPE scaffold which has 

different morphologies inside and outside. Although this heterogeneity can be a problem to be 

solved for scaffold engineering, this false coloured scanning electron microscope image reminds 

Dali’s “Persistence of Memory” and crumpets. 
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 Conclusion 

There is no doubt we all prefer a presentation with eye-catching and informative 

images than a presentation full of lines of words. Visual materials have a great role in 

the cognitive process of our psychologies. In addition to their ability to catch the 

attention of the audience, they have a role in better understanding and memorability 

of the subjects. 

As researchers, we also benefit from the visual tools in our communication with the 

science community and also with non-specific audiences. To me, art is an intellectual 

process like science, and science is a creative process like art. Both require 

commitment, imagination, critical thinking, design, and technical skills. And both are 

needed equally. One of the best representations of this approach is the lovely motto of 

Massachusetts Institute of Technology (MIT): “Mens et Manus”: “Mind and Hand” in 

Latin and complementary to this message is the depiction of a craftsman at the anvil 

and the scholar with a book on the MIT seal. 

 

 

“It should be remembered that nothing in Nature stands alone; but that every art and 

science has a relation to some other art or science, and that it requires a knowledge of 

these others, as far as this connection takes place, to enable us to become perfect in 

that which engages our particular attention.” 

-John Hunter, MD 

1728-1793, UK 
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