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Abstract

Relatively small many-body quantum systems are often used as hardware
for quantum devices. Most of these devices will operate below the thermal limit
where thermodynamics must be treated differently to account for quantum
behaviours. It is therefore imperative that the thermodynamic properties of
these systems are well understood, especially as they can limit the technologies
but also help the fabrication and running of efficient quantum devices.

In this thesis we study quantum work and entropy production in closed
many-body quantum systems out-of-equilibrium. We find that, for the sys-
tems studied, the largest average quantum work can be extracted in adiabatic
weakly correlated regimes. These regimes are also seen to minimise the en-
tropy produced, making them efficient regimes in which to operate devices
based on these systems.

Adiabatic evolutions are important for many quantum devices, and so it is
important that they can be accurately characterised. The validity of current
methods has been questioned recently, so in this thesis we propose the use of
metrics as a good quantitative measure to characterise adiabaticity. We found
that the density distance (a more accessible quantity than the wavefunction
and its distance measures) alone can determine adiabaticity in a range of
quantum systems, even at finite temperature.

However, when calculating properties of many-body systems, there are
many challenges often resulting in the need to approximate. In this thesis we
propose a new style of approximation for quantum thermodynamic properties,
taking inspiration from density functional theory (DFT). This new style uses
the exact initial state of the system but approximates the dynamics and is
seen to be computationally cheap but largely accurate. We test this with non-
interacting and DFT approximated dynamics, finding that, surprisingly, the
non-interacting dynamics give the most accurate results in most regimes, with
the cheapest cost.
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1. Introduction

Progress in modern technologies has lead to the ability to fabricate systems
of only a few particles. These small systems allow for smaller technologies to
be developed. These technologies often use systems consisting of only a few
particles. When using a small number of particles, quantum physics domi-
nates and strange phenomena occur such as superposition of states, quantum
tunnelling, and particle entanglement. We can use these phenomena to gain
advantages over classical technologies, and indeed much work is being done to
try and achieve this. For example, quantum computers utilise superposition
to perform some calculations faster than classical computers, and quantum
key distribution uses entanglement to generate more secure communication
methods than classically available [1]. Because many-body quantum systems
constitute the hardware for a lot of these devices, it is imperative we have a
good understanding of them.

Much work is being done looking to advance quantum technologies, includ-
ing opening up the new field of quantum thermodynamics. This new field is
vital to help the progression of quantum technologies as it provides a platform
on which to consider energy interplays within quantum systems at finite tem-
perature. Because zero temperature is not possible to realise experimentally,
it is important to explore quantum physics at non-zero temperatures. In do-
ing so we unlock a wealth of applications for quantum devices as well as allow
for greater insight into fundamental physics. For example, recent experiments
have already demonstrated the possibility of fabricating quantum engines and
refrigerators [2, 3], and Batalhão et al. [4] used NMR techniques to study the
arrow of time in a quantum system. It is therefore important to understand
quantum thermodynamic properties in many-body systems out-of-equilibrium.
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1.1 Quantum thermodynamics

Classical thermodynamics has been well established for many decades now,
describing the interplay between work, heat, energy, and entropy. It has been
used for the creation and development of many technologies. From humble
beginnings in the industrial revolution with the advancement of steam and
combustion engines [5, 6], it now has applications which allow us to explore
the far reaches of the universe [7, 8]. For example, through thermodynamics we
have been able to develop engines which power rockets with the ability to carry
large satellites and telescopes into space. Combined with other major advances
in physics (such as improved optics), these satellites have enabled improved
communication, and the telescopes, such as the Hubble space telescope, have
been able to provide insight into the far reaches of the universe [9].

However, as quantum technologies continue to progress, with quantum en-
gines and refrigerators being experimentally realised [2, 3], it is important
that thermodynamics is understood in the quantum realm. Ideas like heat,
work, and temperature lose their usual (classical) meaning in this quantum
world with the introduction of quantum phenomenon such as entanglement
and quantum fluctuations. The rapidly growing field of quantum thermo-
dynamics was established to develop these key thermodynamic concepts for
quantum physics [10–12]. It looks at the uses and limitations of thermody-
namic properties for applications to quantum technologies [10, 11, 13–15]. For
example, quantum work is an important property to study because devices can
be developed to extract and use this work, such as for quantum heat engines
or quantum batteries [16–18]. Quantum work can also be used to understand
how to optimise energy consumption in quantum devices [19, 20]. Quantum
heat is another key property to understand as it is the uncontrollable energy in
the system, limiting the efficiency of devices [10, 19]. The entropy of a system
is also a vital quantity to understand; depending on the type of entropy one
looks at, different information can be gained. For example, the irreversible
work (a type of entropy) can provide information on the amount of energy
required to return the system to equilibrium (such as when resetting a system
after a perturbation or calculation) [4, 21], alternatively the von Neumann en-
tropy can be used as a measure of bipartite entanglement in the system (when
in a pure state) [22].

Accurately accounting for the impact of many-body interactions on quan-
tum thermodynamic properties is still an open challenge which we will ad-
dress in this thesis. It is also important to understand how these proper-
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ties are affected by out-of-equilibrium dynamics since small quantum systems
out-of-equilibrium at finite temperature are predominantly the hardware for
quantum technologies. To do this, we must first be able to characterise out-
of-equilibrium dynamics at finite temperature, identifying when an evolution
is adiabatic or not.

1.2 Adiabaticity

An adiabatic evolution in terms of quantum physics1 is an evolution which
is slow enough to prevent any transitions between energy levels occurring.
They are of key importance to many areas of quantum physics, with impor-
tant uses and applications in quantum information, quantum computing, and
quantum thermodynamics to name but a few [23–34]. For example, adiabatic
evolutions can be used to avoid quantum friction when trying to maximise the
quantum work extracted from a system [32, 35]. It was seen recently that in
the Hubbard dimer, the largest amount of average quantum work extractable
is achieved for adiabatic evolutions, whilst the entropy production is minimised
[32]. Therefore it is important to know when an evolution can be considered
(quasi-)adiabatic2 to potentially develop efficient quantum devices.

By using an adiabatic evolution where no transitions occur between the
eigenstates of the evolving system, one can design a protocol which accurately
obtains a target eigenstate of a complex interacting Hamiltonian [36, 37]. In-
deed, adiabatic dynamics via quantum annealing is the method used by the
D-Wave quantum computer [38, 39]. Adiabatic dynamics is a key concept in
adiabatic quantum computing, and so being able to characterise an adiabatic
evolution is vital [23, 34, 40, 41].

Being able to characterise an evolution as adiabatic is also important for
time-dependent density functional theory (DFT), because approximations for
density functionals are currently only tailored for the quasi-adiabatic regime.
This has important implications for devices comprising of many-body inter-
acting systems, where one would need to use an accurate DFT approximation
to calculate system properties.

We can see that adiabatic evolutions are important for quantum technolo-
gies, but being able to quantitatively characterise an adiabatic evolution is
still open to debate [42, 43]. In this thesis we develop new methods of quan-

1Not to be confused with the thermodynamic definition which defines an adiabatic evo-
lution as one in which no heat is transferred.

2i.e. the evolution is slow enough that it is, for all practical purposes, adiabatic.
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tifying an adiabatic evolution which are not as susceptible to the criticisms of
current methods. It is also important to evaluate how temperature impacts
adiabaticity, given that zero temperature quantum devices are impossible to
realise. Indeed it is still an open question as to how one can quantitatively
characterise an adiabatic evolution in a system at non-zero temperature, and
this is one of the questions we will address in this thesis.

1.3 Many-body physics

We have established that many quantum technologies require many-body sys-
tems [44–46] which have elaborate behaviours [47, 48]. However, properties of
many-body systems of interacting particles are hugely challenging to calculate
and often need to be approximated. The interactions between the particles
lead to complex correlations and dynamics such as collective behaviours and
phase transitions. This complexity increases exponentially as the number of
particles in the system is increased. Because these many-body interacting sys-
tems have important applications in quantum physics at finite temperature,
we need to understand them in the context of quantum thermodynamics. This
allows for the progression of quantum devices and helps further knowledge of
fundamental physics.

It is only in recent years that the effects of many-body interactions have
begun to be investigated for quantum thermodynamics [49–58]. Previous work
has not only investigated exact quantum thermodynamic properties (such as
the average quantum work, and the entropy production/irreversible work) in
small spin chain systems of 2 sites, but also began to develop techniques adapt-
ing DFT for approximating these properties [32, 59, 60]. This work demon-
strated that DFT can be applied to quantum thermodynamics with great
success for small chains of 2 electrons, and indeed detailed a method which
can be applied to any chain size, as well as providing insight into the behaviour
of the quantum thermodynamic properties of the exact 2 electron spin chain
system. Many new quantum technologies will require systems greater than 2
sites in size, so we need to develop and test new, computationally cheap ap-
proximations and approaches for calculating the system properties for larger
systems.

In this thesis, we will be bringing together important concepts from many-
body physics, quantum thermodynamics, and adiabaticity to build a better
understanding of how we can calculate key quantum thermodynamic proper-
ties in complex many-body systems out-of-equilibrium. From this, it is hoped
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that one can determine the system parameters which maximise quantum work
whilst minimising entropy production: these are the parameters which one
would use to increase the efficiency of the device performing a calculation.
This, in turn, could improve the fabrication, development, and use of quan-
tum devices.

1.4 Thesis outline

This thesis aims to answer two main questions, which themselves can be di-
vided further into more defined questions. These questions are:

1. How can we determine if a given evolution of a quantum system at finite
temperature is adiabatic?

(a) Can we characterise adiabaticity without using the quantum adi-
abatic criterion which has several limitations such as its base in
perturbation theory, and does not have an easy extension to finite
temperature?

(b) Can we apply the characterisation method developed from answer-
ing 1a to systems at finite temperature?

2. Can we accurately approximate quantum thermodynamic properties in
many-body quantum systems using simple approximations inspired by
DFT?

(a) Firstly, what do these properties look like for the Hubbard system
solved numerically exactly?

(b) How accurate are simple non-interacting-style approximations?

(c) Can we improve the approximations from point 2b using DFT?

Chapter 2 focuses on general theory on the concepts used throughout this
thesis (note that any theory used in only one results chapter will be discussed
only in that chapter). The computational methods used are outlined in chap-
ter 3, both previously established codes and codes developed during this PhD,
with clear distinctions made between them.

Each results chapter aims to answer one of the research questions. Re-
search question 1 is split across two chapters; point 1a will be addressed in
chapter 4 and point 1b will be addressed in chapter 5. Research question 2
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will be addressed in chapter 6 (point 2a), chapter 7 (point 2b), and chapter 8
(point 2c).

We then conclude the thesis in chapter 9, bringing together the main points
from all results chapters and explaining these conclusions in terms of the wider
research field. Without further ado, let us begin.
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2. Theory

This thesis draws together several fields of physics in order to investigate
how many-body physics impacts quantum thermodynamic properties. In this
chapter we will look at the theory behind the relevant parts of each field,
and in subsequent chapters we will see how they can be combined to compute
and analyse thermodynamic properties by applying them to our systems of
interest.

2.1 Many-body quantum physics

In quantum mechanics, all properties of an N -electron system can be de-
termined from its wavefunction, Ψ(x1, x2, . . . xN). For systems which do not
interact with their environment (closed quantum systems), the dynamics of
the wavefunction is determined by the time-dependent Schrödinger equation

i
∂

∂t
|Ψ(x1, x2, . . . xN , t)〉 = Ĥ(t) |Ψ(x1, x2, . . . xN , t)〉 , (2.1)

where Ĥ(t) is the time-dependent Hamiltonian of the system. Through this
we can control the evolution of a quantum system, emulating physical systems
and experiments such as performing a calculation on a quantum computer.

To utilise the quantum system, we need to find a way to access properties
we are interested in, such as energy, momentum, position, etc. To extract
the property of interest, we apply the appropriate operator to the wavefunc-
tion. Every observable (physical property) Q has an associated Hermitian
operator Q̂ which itself has a corresponding set of orthonormal eigenfunctions
{|φi(x1, x2, . . . xN)〉} and eigenvalues {qi}. These form the set of solutions to
the operator’s eigenequation,

Q̂ |φi(x1, x2, . . . xN)〉 = qi |φi(x1, x2, . . . xN)〉 . (2.2)

Since we can write the system wavefunction as a summation of eigenfunctions
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from a different complete basis, we can express |Ψ〉 in terms of the eigenfunc-
tions of the observable,

|Ψ〉 =
∑
i

ci |φi〉 , (2.3)

where |ci|2 is the probability of |Ψ〉 being in the state |φi〉.
Expectation values are very important in quantum physics for finding phys-

ical quantities one would want to utilise. The orthonormality condition of
{|φi(x1, x2, . . . xN)〉} implies 〈φj|φi〉 = δi,j, therefore we can write the expec-
tation value of any observable as

〈Q̂〉 = 〈Ψ| Q̂ |Ψ〉 (2.4)

=
∑
i

|ci|2 qi. (2.5)

In much of this thesis we will be working with closed systems at finite
temperature. At non-zero temperature, it is highly unlikely that the system
will be in a pure state |Ψ〉. Instead, we will need to look at the density matrix
ρ̂, which treats pure states and mixed states in the same manner. We can
write the density matrix using the set of eigenfunctions associated with the
Hamiltonian of the system

ρ̂ =
∑
i

pi |ψi〉 〈ψi| , (2.6)

where pi is the probability of being in the eigenfunction |ψi〉, and for the
ground state, zero temperature system pi = δ1,i. For closed systems at finite
temperature and at thermal equilibrium, we take the probability to be the
Boltzmann distribution,

pi =
exp −Ei

kBT∑
j exp −Ej

kBT

(2.7)

where T is the temperature of the system, and Ei is the eigenenergy associated
with the eigenfunction |ψi〉. The state ρ̂ can also be found directly from the
Hamiltonian, using

ρ̂ =
exp

(
−Ĥ
kBT

)
Tr
[
exp

(
−Ĥ
kBT

)] , (2.8)

which is the Boltzmann-Gibbs (thermal) equilibrium state.
When using the density matrix (or state, as it will be commonly referred

to in this thesis), we can write the expectation value of any observable Q as

〈Q̂〉 = Tr
[
Q̂ρ̂
]
. (2.9)
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One very important observable in this thesis is the density. The probability
density of finding a single electron in a continuous one dimensional N -particle
system can be found through

n(x1) =
∫
. . .
∫
||Ψ(x1, x2, . . . xN)〉|2 dx2, dx3 . . . dxN . (2.10)

For a system on a lattice, we can use the density operator n̂i = n̂↑,i + n̂↓,i to
find the density on site i. Here n̂↑,i = ĉ†↑,iĉ↑,i and counts the number of spin
up electrons in site i, and similarly for n̂↓,i counting spin down electrons. ĉ†↑,i
and ĉ↑,i are the usual creation and annihilation operators respectively. The
electron density (or site occupation) of site i is therefore written as

ni = 〈Ψ| n̂i |Ψ〉 , (2.11)

or, for mixed states,
ni = Tr [n̂iρ̂] . (2.12)

The density is a very important quantity because it is much simpler to use
than the wavefunction or state, as we will discover in the next few sections.

2.1.1 The many-body problem

All that has been said so far is applicable to both single-electron systems as
well as many-body systems. If we have a many-electron system with non-
interacting electrons, it is possible to simplify the Hamiltonian and wavefunc-
tion of the system. The Hamiltonian of this non-interacting system can be
written in the form

ĤNI = T̂ + V̂ , (2.13)

where T̂ is the kinetic energy operator, and V̂ is the external potential oper-
ator. This Hamiltonian can be solved using the usual Schrödinger equation
(now generalised to D dimensions)

ĤNI |Ψ(r1, r2, . . . rN)〉 = E |Ψ(r1, r2, . . . rN)〉 , (2.14)

but because the system is non-interacting, equation 2.14 can be separated into
N single-electron Schrödinger equations. In practice, each coordinate ri of the
wavefunction |Ψ(r1, r2, . . . rN)〉 is controlled by pD parameters (where p is, for
example, the spatial grid size the system is mapped over, and D is the number
of dimensions of the grid) and so the non-interacting wavefunction requires
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NpD parameters to be found. Note that the corresponding density is simpler
still as it depends on one variable and hence only requires pD parameters.

In practice, the electrons in the system will interact, and so the Hamilto-
nian should include an interacting term, Û . This interacting term is often the
Coulomb interaction, given by1

Û =
∑
i<j

1
|ri − rj|

. (2.15)

This term cannot be separated which means the interacting Schrödinger equa-
tion cannot be separated into N single-electron Schrödinger equations, unlike
its non-interacting counterpart. Therefore the interacting Schrödinger equa-
tion must be treated as a whole. As N increases, this becomes more and more
challenging.

On top of this, as N increases, the interacting wavefunction increases in
complexity, more so than the non-interacting wavefunction. Because of the
electron-electron interactions, the number of parameters required to define
the interacting wavefunction is pDN . It is clear to see how the complexity
increases exponentially as the number of electrons increases. For example, the
wavefunction for a silicon atom, consisting of 14 electrons and stored on a very
crude 3D grid of 10× 10× 10 points, would require 103×14 = 1042 values to be
stored. Therefore it is not feasible to store the wavefunction for many-body
systems of more than just a few electrons.

Notice, however, that the density still only requires pD parameters. It is
easier to work with both computationally (because of its smaller size) and
experimentally (because it is a measurable quantity). We will see next how
this is possible using density functional theory.

2.1.2 Density Functional Theory

Density Functional Theory (DFT) is a widely used and very successful theory
for calculating properties of many-body systems [61–70]. It is based on the
Hohenberg-Kohn theorem which proves that there exists a one-to-one map-
ping between the ground state wavefunction and the ground state many-body
density of any given system. The result of this is that we can reformulate the
ground state wavefunction and all associated expectation values into function-
als of the ground state density. This is of great importance because, as we

1Note that here we are using atomic units where e = ~ = m = 1, e the electron charge
and m the electron mass.
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have already demonstrated, the density is a much more manageable quantity,
and so by using it for functionals, the properties of many-body systems are,
in principle, more accessible.

Another key theory associated with DFT is the Kohn-Sham theory. The
Kohn-Sham theory allows for the application of DFT by providing a method
of calculating the exact many-body density from complex interacting systems.
It is, in principle, an exact method of finding the exact many-body density
by using a fictitious non-interacting system, allowing the system to be solved
by using N single-electron Schrödinger equations which are much simpler.
In practice, approximations are required to find the many-body interacting
density, but this has not hampered the success of these theories; they are
widely used in physics, chemistry, and even biology [61, 66–69]. These origi-
nal theorems have been extended to most scenarios, such as time-dependent
systems (TDDFT) [71], magnetic systems (CDFT) [65], and lattice Hamilto-
nians (SOFT) [72, 73].

In this thesis we will use ideas from DFT, focusing on the mapping between
the wavefunction and the density, and the concept of using a non-interacting
system to calculate the properties of an interacting many-body system. Since
we will only explicitly use DFT approximations in chapter 8, we will just briefly
introduce the main concepts of DFT here, and will more explicitly describe
the relevant ideas where they are used.

Hohenberg Kohn Theory

In 1964, Hohenberg and Kohn demonstrated that there is a one-to-one map-
ping between the ground state wavefunction |Ψ〉 and the ground state density
n of any system [74]. Therefore we can write any ground state property of
the system as a functional of the density, which only requires pD parameters,
compared to using the cumbersome wavefunction, which needs pDN parame-
ters.

Hohenberg and Kohn proved this one-to-one mapping very simply, by re-
ductio ad absurdum [74]. Let us assume we have two potentials, V̂1(r) and
V̂2(r), which differ by more than the addition of a constant and give rise to
the same density n(r). Each potential leads to a distinct Hamiltonian, Ĥ1 and
Ĥ2, with its own ground state solution |Ψ1(r)〉 and |Ψ2(r)〉 respectively, which
we will assume are non-degenerate and have ground state energies E1 and E2
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respectively. From this we can write

Ĥ1 = Ĥ2 − V̂2(r) + V̂1(r), (2.16)

E1 = 〈Ψ1(r)| Ĥ1 |Ψ1(r)〉 , (2.17)

E2 = 〈Ψ2(r)| Ĥ2 |Ψ2(r)〉 . (2.18)

From the variational principle [75], we know that no wavefunction can give
an energy lower than the ground state wavefunction. This means

E1 = 〈Ψ1(r)| Ĥ1 |Ψ1(r)〉 < 〈Ψ2(r)| Ĥ1 |Ψ2(r)〉 . (2.19)

Using equations 2.16 and 2.18, we can rewrite equation 2.19 as

E1 < 〈Ψ2(r)| Ĥ1 |Ψ2(r)〉 = 〈Ψ2(r)|
[
Ĥ2 − V̂2(r) + V̂1(r)

]
|Ψ2(r)〉 , (2.20)

< 〈Ψ2(r)| Ĥ2 |Ψ2(r)〉+ 〈Ψ2(r)|
[
V̂1(r)− V̂2(r)

]
|Ψ2(r)〉 , (2.21)

< E2 + 〈Ψ2(r)|
[
V̂1(r)− V̂2(r)

]
|Ψ2(r)〉 . (2.22)

We can then repeat this process but starting from the second system,
obtaining

E2 = 〈Ψ2(r)| Ĥ2 |Ψ2(r)〉 < 〈Ψ1(r)| Ĥ2 |Ψ1(r)〉 , (2.23)

E2 < E1 + 〈Ψ1(r)|
[
V̂2(r)− V̂1(r)

]
|Ψ1(r)〉 . (2.24)

Because we have assumed the same ground state density for both systems,
we write the potentials using 〈V̂ 〉 =

∫
V̂ (r)n(r)d(r), and so equations 2.22 and

2.24 become

E1 < E2 +
∫ [

V̂1(r)− V̂2(r)
]

(r)n(r)d(r), (2.25)

E2 < E1 +
∫ [

V̂2(r)− V̂1(r)
]

(r)n(r)d(r) (2.26)

respectively. Now if we add equations 2.25 and 2.26, we obtain

E1 + E2 < E2 + E1, (2.27)

which is indeed absurd. This shows that two different wavefunctions cannot
produce the same density, and therefore there is a one-to-one mapping between
a system’s ground state wavefunction and density.

This mapping allows for many properties of complex many-body systems
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to be calculated. In this thesis we will investigate this mapping in metric
spaces, with a focus on characterising system dynamics.

Kohn Sham theory

The Kohn-Sham theory is very useful when it comes to calculating the par-
ticle density to be used to find the other physical properties of a many-body
interacting system. It maps the interacting system to a non-interacting sys-
tem with the same particle density, but a different external potential: this
non-interacting system has additional potentials which apply corrections that
aim to include the effect of the electron-electron interactions [76]. These addi-
tional potentials are the Hartree potential, V̂H , and the exchange-correlation
potential, V̂xc. Using this fictitious non-interacting system, one can obtain
the exact many-body interacting density. One way to visualise the mapping
between the exact many-body interacting system, and the Kohn-Sham system
is

Exact system Kohn-Sham system
N -body N -body

interacting ←→ non-interacting
Ĥ = T̂ + V̂ext + Û ĤKS = T̂ + V̂ext + V̂H + V̂xc

n(r) n(r)

Whilst this theory is in principle exact, the exchange-correlation potential of-
ten has to be approximated as it is not usually known exactly [61, 62, 72]. Note
that there are a few cases where the exchange-correlation potential is known
exactly, such as for the homogeneous electron gas [76], and these systems have
then been used to create approximated exchange-correlation potentials.

In chapter 7, we will use the concept of replacing the exact interacting
system with a non-interacting system plus some corrections to calculate quan-
tum thermodynamic properties. Only in chapter 8 will we use the Kohn-Sham
theory itself, and it is in this chapter where we will discuss the theory further.

2.2 Metrics for quantum mechanics

Metrics are functions which give the distance between two objects in a set.
They are widely used in quantum physics [77–87] particularly because they
provide insight into the distinguishability between two quantum states [81,
88, 89]. From this it is possible to interpret, for example, the entanglement
between the states [90], with extensions relating this to the cost of quantum

37



communication [80]. Metrics have also been used to give insight into the
Hohenberg-Kohn mapping between the ground state wavefunction and density
in small model quantum systems [77, 78, 91].

Metrics are defined by the following axioms [82, 92]:

D(x, y) ≥ 0 Separation; (2.28)

D(x, y) = 0 ⇐⇒ x = y Coincidence; (2.29)

D(x, y) = D(y, x) Symmetry; (2.30)

D(x, z) ≤ D(x, y) +D(y, z) Triangle inequality. (2.31)

The coincidence axiom can be seen as a special case of the separation axiom,
so it is often said that there are three axioms of a metric. We will also see
how the triangle inequality can be used for setting thresholds for classifying
an adiabatic evolution in chapters 4 and 5.

In this thesis we will demonstrate how metrics can be used to analyse the
behaviour of many-body quantum systems, with a specific interest in charac-
terising adiabatic evolutions. To do this we need to define appropriate metrics
to use. We will implement the ‘natural’ metrics for the wavefunction and den-
sity, which were derived from conservation laws in reference [77] meaning they
can have a physical interpretation.

The reason we choose to look at the wavefunction and density distances is
to facilitate future exploration into the Hohenberg-Kohn theorem. We have
seen that there exists a one-to-one mapping between wavefunction and den-
sity, and that the density is a much more accessible quantity in many-body
quantum systems. We also know that wavefunctions of quantum systems are
described in Hilbert spaces. Hilbert spaces are vector spaces, which allow
us to manipulate wavefunctions using inner products and other vector space
properties, but they are also metric spaces. Electron densities do not form a
vector space, but they do form a metric space. Because of this, we can use
metric spaces as a framework in which we can more directly compare wave-
functions and densities. Through this, one can deduce further information
into the Hohenberg-Kohn theorem and how it translates into distances where
there is currently no theory to suggest whether there will be a mapping be-
tween density distance and wavefunction distance in metric spaces. It has
already been shown that the ground state mapping between wavefunction and
density is somewhat maintained in metric spaces (i.e. there is a monotonic,
quasi-linear relationship between the ground state wavefunction distance and
the ground state density distance where a small distance in one also shows
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a small distance in the other to some degree) for small model systems where
only one parameter was varied between systems (for example, a harmonic os-
cillator where ω was varied from one system to the next) [77, 78, 91]. We have
previously demonstrated that this mapping is indeed true for systems with
random potentials, implying it could be a more general trait [85, 93]. In this
thesis we exploit this quasi-mapping to provide new, graphical, density-based
tools for characterising adiabaticity in quantum systems.

2.2.1 Density metric

The natural density metric was derived as [77]

Dn =
∫
|n1(r)− n2(r)|dr. (2.32)

This metric has a maximum distance of 2N , where N is the number of particles
in the system (assuming system 1 and system 2 both have N particles). In this
thesis we rescale Dn such that the maximum distance is 2, and therefore we
can make comparisons with the ground state gradients of Dψ (equation 2.38)
against Dn found in references [77, 78]. This is important for establishing a
rough relationship between Dn and Dψ for the ground states when considering
adiabaticity, as we will see in chapters 4 and 5.

2.2.2 Metrics for pure states

From the density metric, one could be tempted to write the wavefunction
metric as

D̃ψ =
[∫
|ψ1 − ψ2|2dr1 . . . drN

] 1
2
, (2.33)

however this has a flaw; if ψ1 is multiplied by a phase factor eiφ, meaning it is
physically the same wavefunction but mathematically different, the distance
between ψ1 and ψ2 = eiφψ1 should be 0. We can see that ψ1 and ψ2 should be
the same in this case if we look at |ψ2|2 (i.e. the probability amplitude)

|ψ2|2 = |eiφψ1|2 (2.34)

=
(
eiφψ1

)∗ (
eiφψ1

)
(2.35)

= e−iφeiφψ∗1ψ1 (2.36)

= |ψ1|2. (2.37)

However if we substitute ψ2 = eiφψ1 into equation 2.33, D̃ψ

(
ψ1, e

iφψ1
)
6= 0.
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By constructing the metric from conservation laws, D’Amico et al. [77]
overcame this issue and found the natural wavefunction metric should in fact
be

Dψ =
[∫
|ψ1|2 + |ψ2|2dr1 . . . drN − |2

∫
ψ∗1ψ2dr1 . . . drN |

] 1
2
. (2.38)

This coincides with the Bures distance for pure states.

2.2.3 Metrics for mixed states

The Bures distance is a distance measure for mixed states, and is given as [82,
94]

DB
ρ (σ, ρ) =

[
2
(

1−
√
F (σ, ρ)

)]1/2
, (2.39)

where F is the fidelity2

F (σ, ρ) =
[
Tr
√√

ρσ
√
ρ
]2
. (2.40)

The maximum value of the Bures distance is
√

2 when using states normalised
to be one. The Bures distance allows for the similarity between two mixed
states to be found, unlike Dψ from equation 2.38 which is for pure states. The
Bures distance, however, presents challenges as it requires the square root of
the density matrix operators. If one can calculate these quantities, it is a very
useful measure of the distance between two mixed states. It can therefore be
applied to a wide range of systems, including systems at finite temperature,
which we will do in this thesis.

In quantum information, a very common metric used is the trace distance,
which is defined as [82]

DT
ρ (ρ, σ) = 1

2Tr [|ρ− σ|] = 1
2Tr

√
(ρ− σ)†(ρ− σ), (2.41)

and has a maximum value of 1 when using states normalised to 1. The trace
distance can also be used as a measure of distinguishability [81, 82, 89, 95],
much like the Bures, but they have a few differences and the decision of which
to use will depend on the quantities one has access to and the ease of calcu-
lating these.

It is possible to write a bound for the trace distance using the fidelity
2Note that the fidelity itself is not a metric as it does not adhere to all the axioms.

However the Bures distance shows how the fidelity can be converted into a metric.
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(indicative of a link between the Bures and trace distances) [88],

1−
√
F (ρ1, ρ2) ≤ DT

ρ (ρ1, ρ2) ≤
√

1− F (ρ1, ρ2). (2.42)

This shows that when the fidelity between ρ1 and ρ2 is 0, and hence the states
are distinguishable, both the trace distance and Bures distance are maximal.
Conversely, when the fidelity is maximal (equal to 1), the trace and Bures
distances are minimal (equal to 0). We can interpret the trace distance to
be the probability of successfully distinguishing two quantum states with one
measurement [81, 88].

As previously mentioned, we will be using these metrics in this thesis to
look at characterising adiabaticity in a wide variety of quantum systems, from
continuous single-electron systems with random potentials at zero tempera-
ture, to many-body systems on a lattice at finite temperature. For this we
must understand what it means to be adiabatic, and how adiabaticity is cur-
rently being characterised.

2.3 Adiabatic criterion

The quantum adiabatic theorem [96] defines an adiabatic evolution as one
in which no transitions between energy levels occurs, and is a fundamental
concept for any time-dependent quantum system. It was first proposed in
1928 by Born and Fock, and demonstrates that for a quantum system to be
considered adiabatic, it must be evolved slowly enough that it remains in an
instantaneous eigenstate3, with a gap between its eigenenergy and the rest of
the Hamiltonian’s spectrum [96]. Later, Avron and Elgart relaxed this gap
condition through a reformulation of the theorem [97]. At zero temperature,
this is often interpreted mathematically with the quantum adiabatic criterion
(QAC) [42, 43, 98]:

ε(t) = ~

∣∣∣〈m(t)| Ḣ(t) |k(t)〉
∣∣∣

(|Ek(t)− Em(t)|)2 � 1, (2.43)

where Ḣ(t) is the time derivative of the Hamiltonian, |m(t)〉 and |k(t)〉 are
instantaneous eigenstates of Ĥ(t) with instantaneous eigenenergies Em(t) and
Ek(t) respectively, and are usually taken with |k(t)〉 as the perfectly adiabatically-

3Note that originally it only ever considered an eigenstate, but we will work with finite
temperature and mixed states so take the definition that no transitions between states occur
during the evolution.
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Ek(t)
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Figure 2.1: Example of energy levels with time, indicating the typical levels
used to calculate ε in equation 2.43.

evolving original eigenstate and |m(t)〉 corresponding to another eigenstate of
the instantaneous Hamiltonian, where typically m = k + 1 (note that in this
thesis we use atomic units which sets ~ to 1). Figure 2.1 demonstrates the
energy levels which ε typically uses, including the energy gap which is often
important to consider for an adiabatic evolution.

Whilst the QAC is usually adequate at determining if an evolution is adi-
abatic, recent works have sparked debate into its sufficiency, necessity, and
validity in certain conditions, such as when there are oscillating terms in the
Hamiltonian [41–43, 99–102]. On top of this, the QAC is based on perturba-
tion theory so may not be applicable for stronger perturbations (where it can
be less accurate and result in potentially misleading conclusions), and often it
only considers two eigenstates, adding to its limitations.

New approaches for characterising adiabaticity in quantum systems have
been developed, where adiabaticity is analysed through comparisons between
the time evolved state and the exact “adiabatic” state (usually the instanta-
neous ground state). Lychkovskiy et al. use the “adiabatic fidelity”, based on
the fidelity for pure states, as a figure of merit to the degree of adiabaticity
[103]. The “adiabatic fidelity” is defined as

Fadiab = |〈ψGS(t)|ψ(t)〉|2 , (2.44)

where ψGS(t) is the instantaneous ground state at time t, and ψ(t) is the
time evolved state at time t [103]. The aim of this adiabatic fidelity is to
distinguish between the evolved state and the adiabatic state to determine
how close the evolution is to adiabaticity. However, the fidelity is not a metric
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and is therefore a weaker method for defining the distinguishability between
two states. In this thesis, we will develop a method for determining the degree
of adiabaticity based on metrics4, which provide a stronger definition of how
close the two states of interest are. The closer these two states, the more
adiabatic the evolution is.

This thesis also focuses on the impact of temperature on quantum systems,
which can no longer be ignored when wanting to create working quantum de-
vices. Therefore we also need to explore a method of characterising adiabatic-
ity in systems at finite temperature, where the system state will be a mixed
state and an adiabatic evolution must ensure that no transitions occur during
the dynamics. For mixed states, it is no longer possible to use equation 2.43,
so adaptations must be made. In chapter 5, we will address these changes and
develop a new QAC for systems at finite temperature.

2.4 Quantum thermodynamics

In the previous chapter we discussed the importance of the growing field of
quantum thermodynamics, especially for the development and realisation of
quantum devices. In this thesis we will focus on the quantum work and entropy
production, and so here we will introduce how classical work and entropy can
be translated into quantum physics.

2.4.1 Quantum Work

The first law of thermodynamics describes the change in internal energy ∆U
of a closed classical system as equal to the heat supplied to the system Q plus
the work done on the system W :

∆U = Q+W. (2.45)

These classical systems, however, are large enough such that any small fluc-
tuations (i.e. on the scale of a few particles) are negligible compared to the
overall energy change. This is not the case for quantum systems, where the
system is too small to ignore any fluctuations or other quantum effects [11].
We therefore need a new definition of work and heat which can encapsulate
these quantum effects.

4Reference [100] used Euclidean distances between wavefunctions to interrogate the va-
lidity of ε(t), but the measures used were similar to those in equation 2.33, which we know
are inappropriately sensitive to physically-irrelevant overall phase changes in the state.
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From equation 2.9, we know that the average energy of a quantum system
described by Ĥ in state ρ̂ can be written as

U(t) = Tr
[
Ĥ(t)ρ̂(t)

]
. (2.46)

Therefore, for a closed system (i.e. a system not connected to a bath) under-
going dynamics from an initial time t = 0 to a final time t = τ , the change in
average internal energy is

∆U = Tr
[
Ĥ(τ)ρ̂(τ)

]
− Tr

[
Ĥ(0)ρ̂(0)

]
. (2.47)

By comparing equations 2.45 and 2.47, we can hope to find some interpretation
of quantum work and quantum heat from the system Hamiltonian and state.

In any system, work can be defined as the useful energy, i.e. the energy
that we have some control over. The heat, however, is the uncontrolled energy
change which is usually lost to the environment [10]. In a quantum system,
when considering quantum work, we can think of controlling the changes in
energy with time through Ḣ(t). The change in the state with time, ρ̇(t), is
much less controllable, and is therefore more closely related to the quantum
heat.

The average quantum work done on the system is therefore defined as [10]

〈W 〉 =
∫ τ

0
Tr
[
Ḣ(t)ρ̂(t)

]
dt, (2.48)

and the average quantum heat supplied to the system is defined as [10]

〈Q〉 =
∫ τ

0
Tr
[
Ĥ(t)ρ̇(t)

]
dt. (2.49)

From these definitions, we can see that

〈Q〉+ 〈W 〉 =
∫ τ

0

d

dt
Tr
[
Ĥ(t)ρ̂(t)

]
dt. (2.50)

We can see that equations 2.47 and 2.50 are equivalent, and therefore we can
write the first law of thermodynamics for quantum systems [10]

∆U = 〈Q〉+ 〈W 〉. (2.51)

For closed quantum systems, which we will be working with in this thesis,
there is no heat exchange to an external bath, and therefore equation 2.51
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becomes
∆U = 〈W 〉 = Tr

[
Ĥ(τ)ρ̂(τ)

]
− Tr

[
Ĥ(0)ρ̂(0)

]
. (2.52)

Notice that whereas the internal energy is an observable, and can therefore be
found directly from equation 2.46 or from a single measurement, the average
quantum work is not an observable [104]; it requires two measurements to
be taken, and in open systems it is also path dependent between those two
measurements [10].

The average quantum work can also be calculated by looking at the prob-
ability of transitions taking place during the evolution of the system,

〈W 〉 =
∫
P (w)dw, (2.53)

where P (w) is the work probability distribution. For closed quantum systems
P (w) can be written as

P (w) =
∑
n,m

pn(0)pm(τ)|n(0)δ (w −∆Em,n) , (2.54)

where pn(0) = 〈n(0)| ρ̂(0) |n(0)〉 is the probability of being in the n-th energy
eigenstate at t = 0. pm(τ)|n(0) = |〈m(τ)| U |n(0)〉|2 is the probability of being
in the m-th eigenstate at time t = τ given that the system was in the n-th
eigenstate at t = 0, and the system was subject to the unitary time evolution
operator U = T e−i

∫ τ
0 Ĥ(t)dt/~ where T is the time ordered operator. ∆Em,n =

Em(τ)−En(0) is the energy difference between the m-th and n-th eigenstates.
Equations 2.52 and 2.53 can be shown to be equivalent for closed systems.

We will rewrite equation 2.53, substituting in equation 2.54 and the probabil-
ities:

〈W 〉 =
∑
n,m

pn(0)pm(τ)|n(0)∆Em,n (2.55)

=
∑
n,m

〈n(0)| ρ̂(0) |n(0)〉 |〈m(τ)| U |n(0)〉|2 (Em − En) (2.56)

=
∑
n,m

〈n(0)| ρ̂(0) |n(0)〉 〈m(τ)| U |n(0)〉 〈n(0)| U † |m(τ)〉 (Em − En)

(2.57)

=
(∑
n,m

〈n(0)| ρ̂(0) |n(0)〉 〈m(τ)| U |n(0)〉 〈n(0)| U † |m(τ)〉Em
)

−
(∑
n,m

〈n(0)| ρ̂(0) |n(0)〉 〈m(τ)| U |n(0)〉 〈n(0)| U † |m(τ)〉En
)
. (2.58)
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To reduce this equation, let us take one term at a time, starting with the first
term:

∑
n,m

〈n(0)| ρ̂(0) |n(0)〉 〈m(τ)| U |n(0)〉 〈n(0)| U † |m(τ)〉Em = (2.59)

=
∑
n,m

〈m(τ)| U |n(0)〉 〈n(0)| ρ̂(0) |n(0)〉 〈n(0)| U † |m(τ)〉Em (2.60)

We note that ∑n |n(0)〉 〈n(0)| ρ̂(0) |n(0)〉 〈n(0)| can be written in terms of two
identities (∑n |n〉 〈n| = 1, ∑s |s〉 〈s| = 1) multiplied by the state

∑
n

|n(0)〉 〈n(0)| ρ̂(0)
∑
s

|s(0)〉 〈s(0)| . (2.61)

This can be done if ρ(0) is diagonal in the basis of Ĥ(0), and therefore ρ(0) =∑
s(0) ps |s(0)〉 〈s(0)|. From this we see equation 2.61 reduces to ρ(0). Therefore

the first term becomes:

∑
m

〈m(τ)| U ρ̂(0)U † |m(τ)〉Em. (2.62)

Now we can use U ρ̂(0)U † = ρ̂(τ) and Ĥ(τ) |m(τ)〉 = Em |m(τ)〉 to write

∑
m

〈m(τ)| U ρ̂(0)U † |m(τ)〉Em = (2.63)

=
∑
m

〈m(τ)| ρ̂(τ) |m(τ)〉Em (2.64)

=
∑
m

〈m(τ)| ρ̂(τ)Ĥ(τ) |m(τ)〉 (2.65)

= Tr
[
ρ̂(τ)Ĥ(τ)

]
. (2.66)

This is the same as the first term for the work in equation 2.52.
Let us now turn our attention to the second term. Here, the terms from

pm(τ)|n(0) all reduce to unity through a series of identities.

∑
n,m

〈n(0)| ρ̂(0) |n(0)〉 〈m(τ)| U |n(0)〉 〈n(0)| U † |m(τ)〉En = (2.67)

=
∑
n,m

〈n(0)| ρ̂(0) |n(0)〉 〈n(0)| U † |m(τ)〉 〈m(τ)| U |n(0)〉En (2.68)

=
∑
n

〈n(0)| ρ̂(0) |n(0)〉 〈n(0)| U †U |n(0)〉En (2.69)

=
∑
n

〈n(0)| ρ̂(0) |n(0)〉 〈n(0)|n(0)〉En (2.70)

=
∑
n

〈n(0)| ρ̂(0) |n(0)〉En. (2.71)
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Here we have used ∑
m |m(τ)〉 〈m(τ)| = 1 to reduce the double sum to a

single sum over n, as well as U †U = 1 and 〈n(0)|n(0)〉 = 1. Now we will use
Ĥ(0) |n(0)〉 = En |n(0)〉:

∑
n

〈n(0)| ρ̂(0) |n(0)〉En = (2.72)

=
∑
n

〈n(0)| ρ̂(0)En |n(0)〉 (2.73)

=
∑
n

〈n(0)| ρ̂(0)Ĥ(0) |n(0)〉 (2.74)

= Tr
[
ρ̂(0)Ĥ(0)

]
. (2.75)

Putting the first and second term together, we find that the average quan-
tum work in a closed system from the probability distribution can be written
as

〈W 〉 = Tr
[
ρ̂(τ)Ĥ(τ)

]
− Tr

[
ρ̂(0)Ĥ(0)

]
, (2.76)

which is indeed equation 2.52.

2.4.2 Thermodynamic entropy production

Entropy is another key thermodynamic property and introduces the concept of
irreversibility in systems. It can be linked to the second law of thermodynam-
ics, of which the common definition is that the entropy of an isolated system
cannot decrease over time. In quantum physics, there has been work towards
defining the second law for quantum thermodynamics [105, 106], where once
again the small size of the systems means we must question the validity of the
classical laws.

In general, we can formulate the second law such that the average work
performed on the system is greater than the free energy, and so the free energy
of the system F is reduced [10, 105, 107]

〈W 〉 ≥ ∆F. (2.77)

The change in free energy can be written as [10, 105]

∆F = ∆U − kBT∆S (2.78)

where T is the temperature of the system (usually taken to be the temperature
of a thermal bath attached to the system), and ∆S is the thermodynamic
entropy production.
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In quantum information theory, many use the von Neumann entropy [82]

SvN = −Tr [ρ̂ ln ρ̂] , (2.79)

which is the quantum extension of the Shannon entropy of probability distri-
bution pi

SSh = −
∑
i

pi log pi. (2.80)

The Shannon entropy characterises the degree of uncertainty in the possible
outcomes of a variable. The larger SSh is, the more uncertain the outcome is,
and uniform probability distributions maximise the entropy. For example, a
normal 6-sided die will have a uniform probability distribution for achieving
each number on the die and so the chance of rolling the number 1 will be the
same as rolling each other number, therefore the Shannon entropy is maximised
as we have maximum uncertainty. Whereas a weighted die with a higher
probability of rolling a 1 will increase the certainty of the outcome, and thus
reduce the Shannon entropy.

The von Neumann entropy of a subsystem is commonly interpreted as a
measure of entanglement between pure states [22], and gives an idea of the
degree of uncertainty in a system. For equilibrium states, ∆S and ∆SvN are
equivalent subject to ∆SvN being multiplied by the Boltzmann constant kB
[10]. For non-equilibrium states, however, there is still debate as to whether
this equivalency is still true [10, 108].

The thermodynamic entropy is proportional to the “irreversible work”
(there is a factor of T between the two), and is the entropy we will be using
in this thesis. It describes the energy required to be dissipated for the evolved
system to return to an equilibrium state [4, 32]. Figure 2.2 diagrammatically
represents this thermodynamic entropy. Here a closed system initially in a
thermal equilibrium state, ρ(0), is subject to non-equilibrium dynamics via
a unitary evolution U taking it from Ĥ(0) to a final system of Ĥ(τ) (red,
solid path). Through this process, work has been extracted from the system5

〈Wext〉, and the final state ρ(τ) is now far from equilibrium. We can see the
equilibrium path, where 〈W 〉 = ∆F , results in the final equilibrium state
ρeq.(τ) (blue, long dashed path). To get from the non-equilibrium state to the
equilibrium state at time t = τ , we need to dissipate some energy to the en-
vironment. This energy is encapsulated by the thermodynamic entropy, ∆S,
shown by the brown dashed path (note that since we use closed systems in this

5Note that work could also have been performed on the system; we take work to be
extracted purely as an example.
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ρ(0)

ρ(τ)

ρeq.(τ)

〈Wext〉

∆S

quasi− static evolution

non− quasi− static evolution

Ĥ(0) Ĥ(τ)

Figure 2.2: Diagram demonstrating thermodynamic entropy production in a
system. It is the energy to be dissipated to the environment (brown dashed
line) for the system to return to an equilibrium state after non-quasi-static
dynamics (red solid line). The quasi-static evolution is where 〈W 〉 = ∆F ,
and where the system remains in the equilibrium state at all times (blue long-
dashed line).

thesis, we do not have any heat exchange and so the entropy production and
entropy change are equivalent). This is a very useful entropy to understand,
for example to improve knowledge of how much energy needs to be dissipated
to reset a quantum system back to an equilibrium state after performing a
calculation.

For a given dynamic process in a closed quantum system at temperature
T , the variation in thermodynamic entropy is defined using the average work
and the change in the free energy of the system [4, 11],

∆S = β (〈W 〉 −∆F ) . (2.81)

Here β = 1/kBT and is the inverse temperature. We use the Helmholtz free
energy variation

∆F = − 1
β

ln
(
Zf
Z0

)
, (2.82)

where Z0 is the partition function at the beginning of the dynamics, Z0 =
Tr
[
exp

(
−βĤ(0)

)]
, and Zf is the partition function at the final time.

Now that we have discussed the main theories and concepts to be used
in this thesis, it is important we address the types of systems used in this
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research.

2.5 Models used

Throughout this thesis, we will explore the behaviours of one dimensional
electronic systems subject to non-equilibrium dynamics. For the majority of
the thesis we will use the Fermi-Hubbard model, except in chapter 4 where
we will use single-electron continuous systems. Therefore we will focus on
the Fermi-Hubbard model here, and will discuss the continuous systems in
chapter 4 where they are pertinent.

2.5.1 Fermi-Hubbard model

The Hubbard model is a widely used model in theoretical physics because of
its ability to capture some of the non-trivial behaviours of many-body sys-
tems despite its simplicity. It can depict lattice systems of weakly correlated
electrons to strongly correlated electrons, and through this exhibit numerous
phenomena such as the transition from a metal to a Mott insulator, antifer-
romagnetism, and superconductivity to name a few [83, 109–112]. The model
can be used to study many physical systems, from coupled quantum dots, to
molecules, to chains of atoms [113–118]. These systems are of importance to
quantum technologies as they often make up the hardware of quantum devices.

For small systems consisting of a few lattice sites in the chain (up to ∼
10 sites), the Hilbert space of the Hubbard model is drastically truncated
meaning it is can be solved numerically exactly6. Despite their small size,
these short Hubbard chains still show interesting non-trivial behaviours such
as the precursor to the transition between the metal phase and the Mott
insulator, and describes (often challenging) strongly correlated systems. For
this reason it is often used as a test-bed for exploring interacting quantum
systems, and any associated approximations (e.g. using DFT) [32, 59, 62, 63,
113–117, 120].

For an N -site fermionic system, the Hamiltonian of the Hubbard model
6Note that the Hubbard model in one dimension can be solved exactly using the Bethe

ansatz, provided there is no driving term, the system is homogeneous and is an infinite
chain [119], however in this work we will always be driving the system, and so it is no longer
exactly solvable.
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J

U

vi

Figure 2.3: Sketch representing the 1D Fermi-Hubbard model, here showing
4 lattice sites. J shows the hopping from one site to the next; U shows the
electron-electron interaction strength on-site, and vi is the on-site potential
(here pictured as uniform).

can be given as7

Ĥ(t) = −J
N∑
i,σ

(
ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
+ U

N∑
i

n̂i,↑n̂i,↓ +
N∑
i

vi(t)n̂i, (2.83)

where J is the hopping parameter, ĉ†i,σ (ĉi,σ) is the creation (annihilation)
operator for a fermion with spin σ (σ =↑ or ↓) on site i, U is the strength
of the on-site Coulomb interaction, n̂i,σ = ĉ†i,σ ĉi,σ is the spin σ, i-site number
operator, n̂i = n̂i,↑+ n̂i,↓, and vi(t) is the time-dependent on-site potential. In
this thesis we will be working within the dipole approximation.

Equation 2.83 is represented visually in figure 2.3. In this figure we can
see a 4 site chain with on-site potential vi represented by the grey horizontal
lines within each site, the electron-electron interaction U shown on site 3, and
the hopping term J from site 1 to site 2.

In chapters 5, 6, 7, and 8 we use the time-dependent inhomogeneous Fermi-
Hubbard model at half filling to simulate systems at finite temperature. For
this, the system is connected to a thermal bath at temperature T and allowed
to thermalise from times up to t = 0−. This ensures the initial state is a
thermal state at temperature T . At t = 0−, when the system is thermalised,
it is disconnected from the bath. This now closed system in a thermal state
is then evolved by a unitary operation from time t = 0+ onward. Figure 2.4
diagrammatically represents this process (note that the configuration and size
of the chain is only given as an example).

In this thesis, we focus on three types of external potential, all of which have
a linear time dependence. These potentials are “zigzag”, “teeth” and “slope”,
and each represent a type of experimentally achievable physical system. These

7We have set ~ = 1 here, and we are taking the number of spin up and spin down
electrons to be equal.
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T

Thermal bath

T

t < 0−

t = 0−

Thermal bath

T
t = 0+

Thermal bath

T
t > 0+

Figure 2.4: The scheme for Hubbard model: top row, we connect the Hubbard
chain to a thermal bath of temperature T for times up to t = 0−; second
row, the system is thermalised at t = 0−; third row, we disconnect the now
thermalised Hubbard chain from the thermal bath; bottom row, we evolve the
now closed Hubbard system by driving the external potential using a unitary
operator U .
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Figure 2.5: We use three driving potentials throughout this work. (a)“zigzag”;
(b) “teeth”; (c) “slope”.

potentials are represented in figure 2.5, where for four sites the potentials are
driven from the red dashed lines to the blue solid lines linearly in time.

The “zigzag” potential [see figure 2.5(a)] pushes even number sites up and
odd ones down forming a zigzag pattern. It is representative of the ionic Hub-
bard model [121–123] which has been used to study neutral-ionic transitions
in physical systems [124]. These are transitions which occur with changes in
temperature and involve the transition from a band insulator (which the Hub-
bard model achieves at half filling and in the atomic limit where J → 0) to
a Mott insulator (which the Hubbard model achieves when U is greater than
the potential difference between neighbouring sites for this potential), as well
as lattice dimerisation [125].

The “teeth” potential [see figure 2.5(b)] is reminiscent of the growth of a
rabbit’s front two teeth8; here the two middle sites are the only sites to be
driven, all the others remain at the same on-site potential at all times. This
type of potential mimics a set of impurities at the centre of the chain. It is
important to understand how impurities affect quantum systems as impurity-
free quantum systems are usually very challenging to manufacture.

The “slope” potential [see figure 2.5(c)] is akin to a linear electric field
being applied to the chain, with the potential difference increasing with time.
This type of system can give insight into molecular junctions for quantum
devices [126, 127].

All of these potentials are driven linearly in time via vi(t) = µ0
i + µτi t/τ .

Here µ0
i and µτi are the time-independent coefficients for site i at time 0 and

τ respectively. For each potential, these coefficients can be written as

• “Zigzag”: for each site i, µ0
i = µ0(−1)i at t = 0 and µτi = µτ (−1)i at

t = τ , where µ0 = 0.5J and µτ = 4.5J .

• “Teeth”: the inhomogeneity µi is driven only for the middle two sites
8Albeit here the ‘teeth’ grow up rather than down.
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of the chain; µ0
i = 0 for i 6= L/2, (L/2) + 1 where i goes from 1 to L,

and L is the chain length. For the middle two sites, i = L/2, (L/2) + 1,
µ0
i = 0.5J and µτi = 10J .

• “Slope”: the sites form a linear slope from i = 1 to i = L and are
described using µ0

i = 2µ0/L× i−µ0 where µ0 = 0.5J , and µτi = 2µτ/L×
i−µτ with µτ = 10J in chapters 6, 7, and 8, and µτ = 4.5J in chapter 5.

Writing the time dependence in this way means the final Hamiltonian of
the system is independent of τ . Therefore τ gives us the time to evolve to the
final Hamiltonian, and is similar to an inverse speed. A small value for τ is a
fast evolution as the system rapidly reaches the final Hamiltonian, whereas a
large value of τ is a slow evolution and is expected to be closer to an adiabatic
dynamic.

In the next chapter, we will see how these system properties are calculated
using the cited theories, established codes, and new codes developed during
this PhD.
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3. Computational methods

For the work presented in this thesis, we used existing computational codes,
developed them for the research, and created new codes for calculating and
analysing data. In this chapter we will look at these codes and how they work,
explicitly addressing the changes made for this research.

The research can be split into continuous 1D systems, and 1D systems
on a lattice. For systems in a continuum, we used the iDEA code [128] to
solve the Schrödinger equations, calculating the wavefunctions and densities.
For systems on a lattice we used Zawadzki’s Exact Diagonalisation for Quan-
tum Thermodynamics code (unpublished) coupled with the QuTiP package
[129, 130] to solve the system for the states and site occupation densities. I
then created and developed codes which used these outputs to investigate the
properties we discuss in this research (i.e. the distances from the metrics, the
quantum work approximations, and entropy production).

3.1 iDEA code

The iDEA (interacting Dynamic Electrons Approach) suite of codes developed
by Hodgson et al. [128] has the ability to numerically exactly solve the time-
dependent many-body Schrödinger equation for continuous systems of up to
3 interacting spinless electrons at zero temperature1. For example, the iDEA
code can take the Hamiltonian of a system with two interacting electrons,
written as

Ĥ = − ~2

2m

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
+ Vext(x1, t) + Vext(x2, t) + u(|x1 − x2|). (3.1)

where the interaction term is interpreted as u(|x1 − x2|) = 1
1+|x1−x2| , which is

the truncated Coulomb interaction. The Coulomb interaction is proportional
to 1

r
, and so after the initial rapid decrease in the interaction with distance,

1Spinless electrons are used to increase the richness of correlations available with a given
computational cost [128].
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it is not worthwhile to computationally calculate the interaction, hence it is
truncated. The units the iDEA code uses are Hartree atomic units, denoted
by a.u.:

~ = e = m = 4πε0 = 1 (3.2)

The front end of the codes is written in python, but the main calculations
are performed in fortran. The iDEA code propagates a trial wavefunction in
the desired external potential through imaginary time until the ground state
wavefunction ψGS of the system is found. Once ψGS is found, an electric field
p is applied at t = 0 (i.e. representing a sudden quench) and the system is
evolved to find ψ(t) and the corresponding density n(t). Both of these evo-
lutions (in imaginary and real time) are performed using the Crank-Nicolson
scheme [131] which is based on the trapezoid rule and is accurate to second
order in time.

Chapter 4 uses two codes from the suite: SPiDEA (Single Particle iDEA)
and ViDEO (a python code used to make animations of the time-dependent
quantities). We use SPiDEA because we begin our study with only one electron
as a proof of concept for using metrics to characterise adiabaticity in systems
with random potentials. From SPiDEA we can obtain ψ(t) and n(t) = |ψ(t)|2

at each time step, which can then be passed to a separate code for calculating
the metrics.

3.1.1 Metrics for single electron systems code

For the research performed in chapter 4, I adjusted the SPiDEA code to allow
for the electric field to be applied at different speeds, and hence the applied
potential then became pxt (p the final field strength, x the 1D spatial coor-
dinate, and t the current time step divided by total number of time steps).
Because the system was always run over the same time, to vary the speed at
which the system is driven, p must be varied such that a large p gives fast
dynamics and a small p gives quasi-adiabatic dynamics.

I also adjusted the SPiDEA code to output the necessary wavefunctions
and densities [for example, we also require the instantaneous ground state
wavefunctions ψGS(t) and densities nGS(t)] at given times in the evolution
(e.g. SPiDEA can now save these properties for 100 times uniformly spread
throughout the time steps from t = 0 to completion). It was also important
to add the ability to calculate ε(t) according to the definition in equation 2.43
to provide a comparison for the metrics.

I then created a separate python code which reads in these wavefunctions
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Algorithm 1: Calculating the metrics using SPiDEA
1: Generate random potential.
2: Set up system parameters (grid size, time step, potential).
3: Run SPiDEA, ensuring it saves the wavefunction and corresponding den-

sity at each time step – note it is in SPiDEA where we introduce the
gradually increasing linear potential, p.

4: Read in the saved wavefunctions and densities from SPiDEA.
5: Calculate the ‘natural’ density and wavefunction metrics.
6: Write the data to file.
7: Repeat with different p (different driving speed, and hence different adi-

abaticity level).

Table 3.1: Algorithm showing how the metrics are used with the SPiDEA
code.

and densities to calculate the distances between the various wavefunctions and
between the various densities using equations 2.38 and 2.32 respectively. These
distances are Dψ (ψ(0), ψ(t)), Dψ (ψ(0), ψGS(t)), and Dψ (ψGS(t), ψ(t)) for the
wavefunction with corresponding distances for the density. These six distances
are saved to file ready to be plotted in various combinations, as described in
chapter 4.

The algorithm for the metrics code using SPiDEA is outlined in table 3.1.

3.2 Exact Diagonalisation for Quantum Ther-
modynamics code

Chapters 5, 6, 7, and 8 use the Exact Diagonalisation for Quantum Thermo-
dynamics code developed by K. Zawadzki (unpublished). Zawadzki’s suite of
codes has the ability to generate the Hamiltonian of the Hubbard model (see
section 2.5.1) for small one-dimensional chains up to ∼ 8 sites2, with up to
∼ 8 electrons, subject to any time-dependent external potential, and with open
boundary conditions. The codes can use this Hamiltonian in a variety of ways,
with the main use in this thesis being exactly diagonalising the Hamiltonian
to find the thermal state at any given temperature.

The concept behind this application is that the N -site Hubbard chain
is connected to a heat bath of temperature T (determined by the system
parameters chosen) for long enough that the system thermalises. Therefore
the system state of the Hubbard chain will be the thermal state of the system,
ρ̂ = exp(−βĤ)

Z
at t = 0−. Once thermalised, the Hubbard chain is disconnected

2This is dependent on the computer’s hardware.
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from the heat bath, and the system is then considered to be a closed chain of
N sites at thermal equilibrium at t = 0+ (see figure 2.4 in section 2.5.1).

Zawadzki’s codes also use the Quantum Toolkit in Python (QuTiP) [129,
130] to evolve the thermal states using any driving of the external potential.
The master equation solver of QuTiP (mesolve) is used to do this, but in the
absence of any collapse operators (which would indicate an open system) it
evolves the system according to the unitary evolution of the Hamiltonian. For
unitary dynamics, mesolve uses a usual differential equation solver for the time
dependent Schrödinger equation (see equation 2.1) to evolve the states of the
system and calculate a set of expectation values for operators provided [129,
130].

Through the master equation solver it is possible to calculate the quan-
tum work via equation 2.76 or equation 2.53. Zawadzki’s suite also contains
modules for calculating ground state DFT approximations, including the com-
monly used BALDA [72] and using the reverse engineering scheme from refer-
ence [132] to find the exact ground state V̂xc (see chapter 8 for details on these
approximations).

3.2.1 Developments to the exact diagonalisation code

Throughout this PhD I have implemented changes and additions to this suite
of codes, and also defined the set of parameters used to generate the Hubbard
systems, allowing for the calculations in chapters 5, 6, 7, and 8. I have added
the ability to calculate the entropy production from equation 2.81, and the
ability to calculate the hybrid approximations developed in chapters 7 and
8. I also extended the “quantum work code” from the suite to allow for the
calculation of 〈W 〉 during the evolution. In this section we will look explicitly
at the additions and developments made to the quantum work calculations.

Average quantum Work approximations

Zawadzki’s suite already had the ability to calculate the average quantum
work, and even had modules ready to apply DFT approximations to the
Hamiltonian. In this thesis, I investigated various methods of applying the
approximations to the quantum work calculation, trying to find the most ap-
propriate “mixture” of exact and approximated terms to optimise a “hybrid
approximation”, as introduced in chapter 7.

It was found that the approximations should be in place only for the
Hamiltonians (not the initial state). We approximate Ĥ(0) and Ĥ(τ) in equa-
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Algorithm 2: Approximating average quantum work
1: Use Zawadzki’s code to formulate the Hamiltonian for a given U .
2: Initialise the approximations.
3: Find the exact state, ρ̂(0), from the exact initial Hamiltonian.
4: Approximate the Hamiltonian for the calculation, ensuring consistent

approximations for all evolution Hamiltonians, Ĥevo, both in the QuTiP
evolution and in the quantum work equation.

5: Evolve the system to a given τ and calculate the quantum work from
equation 2.76.

6: Once the work is calculated, find the free energy using the same Hamil-
tonian as that used for ρ̂ (see equation 2.82).

7: Use the work and free energy to find the entropy using equation 2.81.
8: Save all results.
9: Repeat for all τ ’s and U ’s to be investigated.

Table 3.2: Algorithm for approximating 〈W 〉 using the the exact diagonalisa-
tion code.

tion 2.76, but we also use the approximated Hamiltonian in the evolution
operator used by QuTiP. The state we evolve, however, is the exact initial
state.

Once the quantum work has been approximated using this hybrid tech-
nique, I then introduced the calculation of the entropy production from equa-
tion 2.81. This requires the calculation of the free energy from equation 2.82,
where we now use the same Hamiltonian approximation as was used for the
initial state ρ̂(0). The entropy production is then a simple subtraction of free
energy from the average work, multiplied by the inverse temperature.

The algorithm for the hybrid approximation and the calculation of the
entropy is shown in table 3.2. To generate the contour plots that will be
shown in the results chapters, we choose a range of interaction strengths U
and evolution times τ over which the work extracted, free energy, and entropy
production are calculated. Each point in the contour plot is one run through
this algorithm.

Work with time

Another major adaptation of Zawadzki’s code that I implemented was the
ability to calculate the accumulation of the average quantum work during the
evolution of any given system. To achieve this, the evolution of ρ̂ in QuTiP’s
mesolver is adjusted to record ρ̂(t) at each time step given in a list of time
steps determined by the user. The same must also be done for the Hamiltonian,
finding Ĥ(t) for each t in the time step list. The average work extracted at
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Algorithm 3: Calculating the average quantum work for all time
steps
1: Use Zawadzki’s code to formulate the Hamiltonian for a specific U .
2: Find the exact state, ρ̂(0).
3: Set up the time grid (tlist) for which each ρ̂(t) and Ĥ(t) shall be recorded.
4: Evolve the system to a specific τ , with ρ̂(t) and Ĥ(t) being recorded for

each time in tlist (from 0 to τ).
5: For each time in tlist, calculate the work as in equation 2.76, replacing

τ with the current time step t.
6: Save the results for this τ and U .
7: Repeat for all τ ’s and U ’s to be investigated.

Table 3.3: Algorithm for finding 〈W 〉 with time using the the exact diagonal-
isation code.

time t can then be calculated by equation 2.76, replacing ρ̂(τ) and Ĥ(τ) with
ρ̂(t) and Ĥ(t) respectively.

The algorithm for finding the accumulation of the average quantum work
extracted is shown in table 3.3. This algorithm can be used for any tempera-
ture T , any system size (subject to the limitations of the computer’s memory),
any external potential (defined by the user), and for a range of interaction
strengths and evolution times.

3.2.2 Metrics using the exact diagonalisation code

In this section we will see how the core of Zawadzki’s code (i.e. the ability to
generate the Hubbard Hamiltonian for a wide range of systems) was used and
added to for investigating metrics applied to systems at finite temperature.
Table 3.4 gives the algorithm developed for calculating the Bures, trace, and
density metrics from equations 2.39, 2.41, and 2.32 using Hubbard systems
generated using Zawadzki’s code.

The metrics code generates the Hubbard Hamiltonian for a given set of
parameters, much in the same way as the quantum thermodynamics codes.
It then finds the initial state, which is the ground state if T = 0J/kB, or is
the thermal state ρ̂(0) = exp(−βĤ(0))

Z(0) if the system is at a finite temperature
T 6= 0J/kB. From this initial state, the corresponding initial density can be
found using n(0) = Tr [ρ̂(0)n̂].

We then evolve the system and, much like with the work with time cal-
culation, we ask QuTiP’s mesolver to output the evolving state at every time
from a list of times determined by the user. This list of times should go from
t = 0 to t = τ , and the number of times within the list corresponds to how
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Algorithm 4: Finding the metrics using the exact diagonalisation
code
1: Use Zawadzki’s code to generate the system Hamiltonian for a given U .
2: Find the initial state, ρ̂S(0), which will be the ground state (S = GS) if at

zero temperature, or the thermal state (S = Th) if at finite temperature.
3: Find the density n from ρ̂(0) using Tr [ρ̂(0)n̂].
4: Set up the time grid (tlist) which gives each time step at which ρ̂(t) shall

be recorded.
5: Evolve ρ̂ to a given τ according to the driving potential, recording ρ̂(t)

at each time step in tlist.
6: Find n(t) from ρ̂(t).
7: At each time step, diagonalise Ĥ(t) to find the eigenstates, |Ψ(t)〉.
8: Use |Ψ〉’s to find ρ̂S(t) with same eigenstate populations as ρ̂S(0) (see

equation 5.14 from chapter 5).
9: Find nS(t) from ρ̂S(t).
10: Calculate Bures, trace, and density metrics from equations 2.39, 2.41,

and 2.32, in particular calculating Dρ (ρ̂S(0), ρ̂S(t)), Dρ (ρ̂S(0), ρ̂(t)), and
Dρ (ρ̂S(t), ρ̂S(t)) for the Bures and trace, and the equivalent density dis-
tances.

11: Write the data to file.
12: Repeat over all τ ’s and U ’s to be investigated.

Table 3.4: Algorithm for calculating the Bures, trace, and density metrics
using the the exact diagonalisation code.

61



coarse the metric results will be (i.e. a small number of times will lead to a
very coarse time grid upon which to plot the metric results but will require
less memory to output the results, whereas a large number of times in the list
will lead to a fine time grid but will output a larger file). For this thesis we
take the time list to have 100 times (t = 0 and t = τ inclusive). Using the
ρ̂(t)’s from the mesolver, we can find the corresponding densities at each time
step.

For each t in the time list, we then calculate the Bures, trace, and den-
sity distances, with particular focus on Dρ (ρ̂S(0), ρ̂S(t)), Dρ (ρ̂S(0), ρ̂(t)), and
Dρ (ρ̂S(t), ρ̂S(t)) for the Bures and trace distances, and the corresponding den-
sity distances. Here S = GS for the ground state when T = 0J/kB, and
S = Th for the thermal state when T 6= 0J/kB. Notice that for these dis-
tances we also need to calculate the state which has the same populations as
the initial state as this would be the perfectly evolved adiabatic state. This
can be written as

ρ̂Th(t) =
∑
j

exp −Ej(0)
kBT∑

k exp −Ek(0)
kBT

|ψj(t)〉 〈ψj(t)| , (3.3)

where Ej(0) is the j-th eigenenergy at t = 0, and |ψj(t)〉 is the j-th eigenstate
of the Hamiltonian at time t. We then take nTh(t) as the corresponding density
from this state. More details on this are in chapter 5. This process is repeated
for various different driving times, correlation strengths, and temperatures,
building up a more complete picture of how well metrics can be used for
characterising adiabaticity in lattice systems at finite temperature.

Now that we have discussed the codes being used in this PhD, how they
work, and the changes that have been implemented to carry out this research,
we can turn our focus to the results obtained. We begin at zero temperature,
and explore system dynamics using the metrics.
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4. Metrics for characterising quan-
tum adiabaticity in continuous sys-
tems

This chapter aims to answer research question 1a: “Can we characterise adi-
abaticity without using the quantum adiabatic criterion which has several
limitations such as its base in perturbation theory, and does not have an easy
extension to finite temperature?” Adiabatic evolutions are important in many
areas of quantum physics [23–31], but the criterion for adiabaticity has had
several flaws exposed over the years, from not being valid or sufficient in os-
cillating Hamiltonians [42], to the challenge it faces when handling degenerate
systems [133]. We therefore look for a method to characterise adiabaticity
which does not succumb to these issues, in particular taking inspiration from
references [77–79, 132] who look at the use of metrics for studying ground
state properties of many-body quantum systems.

The ‘natural’ metrics mentioned in section 2.2, derived in reference [77],
are used in this chapter to study time-dependent (TD) systems, in partic-
ular demonstrating their ability to characterise out-of-equilibrium quantum
dynamics. Work in this chapter has been published in the Journal of Physics
A: Mathematical and Theoretical, see reference [93].

4.1 Introduction

Recall from section 2.3, the adiabatic theorem developed by Born and Fock in
1928 [96]. The key point from their theorem is that a system initially prepared
in its ground state will remain in its instantaneous ground state when evolved
slowly enough. This is important for many aspects of quantum physics, in
particular for adiabatic quantum computing and for achieving target states
[23–31]. For example, say one has a hard-to-diagonalise target Hamiltonian
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for which one wishes to find the ground state, this ground state can be known
as the target state. By taking a readily diagonalisable Hamiltonian where the
ground state is known, and adiabatically evolving the system to the target
system, the target state can be achieved.

As we can see, adiabatic evolutions are important in quantum technolo-
gies. The question becomes how can we determine if an evolution is adiabatic?
The previously mentioned quantum adiabatic theorem (QAT) [96] states that
for a Hamiltonian varying slowly enough, a system initially at equilibrium
will remain in an eigenstate of the instantaneous Hamiltonian, Ĥ. Quantifi-
cation of the adiabatic theorem is traditionally based on the criterion seen in
equation 2.43 [42, 43, 98]. In recent years, debate has opened up about the
validity and sufficiency of the quantum adiabatic criterion, with some conclu-
sions showing it to break down for specially crafted systems with oscillating
terms in the Hamiltonian [42, 43, 99]. However the question remains open
[100]. Furthermore this criterion is derived from perturbation theory which
may not be applicable for stronger perturbations.

In addressing research question 1a, we introduce the use of ‘natural’ metrics
[77, 78] for characterising adiabaticity in quantum systems1. This has the
advantage over the QAC that a) the metrics are not based on perturbation
theory and therefore in effect consider all eigenstates of the system, b) can
be used to interrogate system dynamics more completely than the QAC, and
c) are efficient, simple, and graphical tools for looking into systems. We will
demonstrate these points in the rest of the chapter.

4.2 Brief reminder of theory

In chapter 2 we discussed several metrics. We shall be using the metrics derived
in references [77] and [78], where the concept of ‘natural’ metrics – directly
arising from conservation laws – was introduced. These ‘natural’ metrics which
measure the distance between twoN -particle wavefunctions (normalised toN),
or two N -particle densities, were described in chapter 2 and are equations 2.38
and 2.32 respectively [77].

These metrics are of particular interest because the Hohenberg-Kohn the-
orem from Density Functional Theory (DFT) [74] states there is a one-to-one
mapping between the ground state wavefunction and density of any system

1Euclidean distances between wavefunctions have previously been used [100] to study
the validity of ε(t), but are inappropriately sensitive to a physically-irrelevant overall phase-
change of the state; the metrics used here are tailored to avoid this shortcoming [77].

64



meaning the information contained in the (commonly inaccessible) wavefunc-
tion is also contained in the more manageable density. From this, and seen
in previous work [77, 78, 134], the Hohenberg-Kohn theorem implies there is
the same information in the density distance as there is in the wavefunction
distance. Understanding how the relationship of the wavefunction and den-
sity behaves in metric space may give useful insight into DFT [77–79, 132].
For this work, however, we shall focus on the time-dependent behaviours of
systems and adiabaticity, and not worry about DFT.

4.3 Previous work

The work published in reference [93] begins with findings from my masters
project [134], before going on to new research performed during the PhD. In
this section we will review the previous work from the masters project, which
is important for understanding the PhD work.

This previous work establishes the systems used in the study, and provides
the main conclusion from looking at ground state systems: there is a quasi-
linear relationship between the ground state density distance and ground state
wavefunction distance2. This conclusion is vital for the time-dependent study
done in the PhD.

4.3.1 Systems used

Initially we consider a family of single electron harmonic oscillators. We ex-
plore the mapping between ground state particle densities and the correspond-
ing wavefunctions for single-particle systems, beginning with the harmonic os-
cillators before moving onto more complex, randomly generated systems. We
compare 23 simple harmonic oscillators, which have a range of frequencies
(ω) from 0.05 to 2.20 a.u.3, to a reference oscillator for which ω = 0.1. This
yields the green circles in figure 4.1 (main panel) which are well described by
a straight line with gradient 1.43.

By inserting the analytic ground states of two harmonic oscillators into
2Note that previous work had observed this quasi-linear relationship and had alluded to

it being general across different quantum systems [77, 78, 132], but the work in this section
and in reference [93] demonstrated this explicitly.

3We use atomic units, ~ = m = 1.
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equations 2.38 and 2.32, the ratio of the metrics may be written exactly as

Dn (n1, n2)
Dψ (ψ1, ψ2) =

2
[
erf

(√
ν ln(ν)
2(ν−1)

)
− erf

(√
ln(ν)

2(ν−1)

)]
√

2− 23/2ν1/4

(ν+1)1/2

, (4.1)

where ν = ω1/ω2 is the ratio of the frequencies of the two oscillators. Expand-
ing this about ν = 1, we obtain Dn (n1, n2) /Dψ (ψ1, ψ2) = 4/

√
eπ+O(v− 1)2

where e is the base of natural logarithms, demonstrating a linear relationship
with gradient 4/

√
eπ ≈ 1.37 when ω1 ≈ ω2. The numerical results confirm the

quasi-linear relationship even for |ν| � 1.
The mapping between ground state wavefunction distance to ground state

density distance found in reference [77], and indeed demonstrated above, in-
dicates the possibility of using distances to characterise adiabatic evolutions,
in particular it hints at the ability to use just the density (via the metric) as a
measure of adiabaticity. However, the systems used to calculate the distances
in reference [77] and shown previously with the harmonic oscillator were very
similar, varying only by a single parameter (such as by varying ω in Hooke’s
atom or in the harmonic oscillator). Therefore we need to test whether or not
the ground state distance mapping is a more general trait across systems which
vary by more than one parameter. A Fourier series allows us to randomly gen-
erate a wide range of potentials which vary by more parameters (here we will
vary by 6 parameters between each system), and give a range of physical char-
acteristics, from strongly localised electrons, to delocalised electrons spread
across the entire potential.

The systems we consider will have continuous, smooth, random, confining
potentials. These are generated using a truncated Fourier series with ran-
dom coefficients, together with an x10 potential to gently confine the electrons
overall:

Vext(x) = x10

1011 + Λ
3∑

n=1

(
an cos nπx

L
+ bn sin nπx

L

)
. (4.2)

Here L is half the system size, and the random numbers an and bn are drawn
from a uniform distribution between −L

3 and L
3 . The scaling factor Λ is used

to adjust the confining strength of the potential microwells, allowing different
regimes of electron localisation to be explored (see figure 4.1, lower inset, for
example potentials).
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4.3.2 Ground state conclusions

Figure 4.1 (lower inset) shows examples of two random potentials. For the
ground state study we used a family of ten random potentials with Λ = 0.1
and L = 15 a.u. We solve the Schrödinger equation for our systems using the
SPiDEA code4 to obtain the exact ground state wavefunctions and densities,
from whichDψ andDn are calculated using equations 2.38 and 2.32. Figure 4.1
(main panel) shows Dn against Dψ for all 45 pairs of systems in the family
(black crosses). The points lie close to a straight line through the origin with
gradient 1.59, deviating slightly to reach the combination of the maximum
values of Dn and Dψ (2 and

√
2 respectively, top right-hand corner of the

graph).
Reference [77] found a similar quasi-linear relationship between Dn and Dψ

for three families of systems, with the gradient depending on the number of
particles, N . There, the families of systems were each generated by varying a
single parameter in the Hamiltonian (e.g. the confining frequency for Hooke’s
atoms), while here a diverse range of systems are explored for N = 1 5.

4.4 Time-dependent systems

The time-dependent work was performed during the PhD, building on the
linear relationship found in the ground state systems, and using the random
potentials developed in the masters project.

The quasi-linear relationship of Dn (n1, n2) and Dψ (ψ1, ψ2) for ground
states may become a tool to identify whether the time dependence of a quan-
tum system is adiabatic6. Looking at the distances between densities versus
the distance between wavefunctions, if an evolution is adiabatic then we will
be comparing two ground state distances and therefore the trajectory of the
distances during the evolution will lie upon the line of Dn = mDψ. Here m
is the gradient of the quasi-linear relationship, and for N = 1 we take this
relationship to be 1.5 as an average of the harmonic systems and random sys-
tems. We can then use this relationship to test whether Dn holds the same
information as Dψ, and therefore try to develop a measure of adiabaticity that

4J. Wetherell, unpublished; subsequently incorporated into the iDEA code suite [128].
5Further results for random potentials with N=2 also show a quasi-linear relationship

[85].
6For the evolution of ground states this quasi-linear relationship indicates both equilib-

rium and adiabaticity; reference [79] suggests that a similar relationship may hold also for
excited states, hence the proposed method could be extended to any eigenstate.
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Figure 4.1: Main panel: Metrics Dn vs Dψ for 10 random single electron sys-
tems (black crosses) and 23 simple harmonic oscillator systems (green circles)
in their ground states. Dn/Dψ is approximately linear with similar gradients
of 1.59 and 1.43 respectively. Inset (lower): Two examples of the random po-
tentials (solid lines) and their ground state densities (dashed lines). These are
used for the TD study: system r1 (red, Λ = 0.5) and system r2 (blue, Λ = 0.1,
the spatial reflection of r1 divided by five); the curves are displaced vertically
so that the ground state energies lie at 0 and −2.5 on the vertical axis, re-
spectively. Inset (upper): TD adiabaticity parameter ε(t) (equation 2.43) for
the three time-dependent systems (r1, r2 and a harmonic oscillator, ho) cor-
responding to ε(0) = 1.0. The vertical grey dashed line shows the reference
time, tref , used in figures 4.5 and 4.6.
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Figure 4.2: Representation of potential r1 at the initial time and at the final
time, demonstrating how the linear perturbation affects the potential. Poten-
tial r2 will look very similar in these times with the exception that it is the
spatial reflection of r1 in the y−axis, and is 5 times smaller than r1.

only uses the density and not the wavefunction. This would be useful for
many-body systems where the density is a much more accessible quantity.

To explore adiabaticity, we use the SPiDEA code to turn on a uniform elec-
tric field increasing linearly with time with a rate p, making the Hamiltonian
of our systems Ĥ(x, t) = −1

2
∂2

∂x2 + Vext(x)− ptx.
We evaluate the distances between a system’s initial ground state, ψ(0),

instantaneous ground state, ψGS(t), and time-dependent state, ψ(t); we obtain
Dψ(ψ(0), ψ(t)), Dψ(ψ(0), ψGS(t)) and Dψ(ψGS(t), ψ(t)) from equation 2.38,
and corresponding expressions for the density from equation 2.32.

We focus on three initial systems, r1, r2 (both seen in figure 4.1), and
a harmonic oscillator with ω = 0.2 (ho). Each system is perturbed at two
different rates and figure 4.2 demonstrates how the perturbation described
above affects the r1 potential at the initial and final times (where we have
named the potential at the final time r1’ to distinguish it from the initial
time and from r2). We choose the perturbation rates p so that the initial
adiabaticity parameter ε(0) (from equation 2.43) takes the same two values
for all three initial potentials. For ε(0) = 0.01, the values of p are 2.530, 0.15
and 0.025 for the ho, r1 and r2 systems, respectively, while for ε(0) = 1.0
the values of p are 100 times greater. The six systems span a rich spectrum
of behaviours, showing the transition from the harmonic system, ho, through
the random potential r1, with a harmonic-like microwell which also allows
for mild tunnelling into the neighbouring well, to the random potential r2,
with a ground state delocalised over multiple microwells (note that ε(0) is
given in the label subscripts). See Skelt_108001277_animation_r2.mp4
for an animation of the density in r2 when ε(0) = 0.1, demonstrating the
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delocalisation of the electron7. The electron density initially spreads over
several microwells, but as the perturbation is applied, the density moves to
the right8.

By definition, if an adiabatic regime is reached, these systems should re-
main in the ground state of the instantaneous Hamiltonian at every time step.
From the findings in figure 4.1, we then expect the dynamics in metric space of
such systems to be described by a linear relationship between Dn(n(0), n(t))
and Dψ(ψ(0), ψ(t)). By using three types of graphs, we will study how such a
regime is entered/exited and, in general, characterised in metric space. These
graphs deliver complementary perspectives on the systems’ time evolution and
adiabaticity. We choose these three types of graph to develop a range of tools
for characterising adiabaticity which depend on the properties one has access
to, whilst also checking that a consensus between each method exists. For
example we use the previously mentioned ground state relationship in the dis-
tances as a guide for an adiabatic evolution when comparing Dn(n(0), n(t))
against Dψ(ψ(0), ψ(t)). Whilst the measure of Dψ(ψGS(t), ψ(t)) is an intuitive
mathematical interpretation of the quantum adiabatic theorem, there are sev-
eral circumstances in which one may not have access to ψ(t) or ψGS(t), for
example in many-body systems. Therefore we can also use this relationship
as encouragement for exploring the possibility of a density only adiabaticity
measure, since the density distance has a relationship to the wavefunction dis-
tance but is a more accessible quantity. The possibility of using the density
as a method of characterising adiabaticity will then be explored further in the
next chapter using many-body systems at finite temperature.

4.4.1 Density distance against wavefunction distance us-
ing the evolved state

The first type of graph is Dn(n(0), n(t)) against Dψ(ψ(0), ψ(t)), shown in
figure 4.3. Here adiabaticity is identified without the direct involvement of
the instantaneous ground state. It is for this graph that the gradient from
figure 4.1 is used. The ratio Dn/Dψ of the distances between any two ground
states is approximately given by this gradient of 1.5, and hence it can be used
to characterise adiabaticity in figure 4.3.

The systems in the inset of figure 4.3 follow the “adiabatic line”, showing
7Animations submitted alongside the thesis.
8In this animation we see oscillations about the instantaneous ground state, however

they are not as obvious compared to those seen in ho for this value of ε(0), discussed later.
We found, though, that the metrics showed this subtle dynamic clearly.
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quent TD state (n vs. ψ): adiabatic behaviour corresponds to proximity to the
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them to be adiabatic in agreement with the corresponding ε(0). Interestingly,
after a transient, r11.0 (main panel) is also seen to follow the adiabatic line,
despite the related value ε(0) = 1.0 suggesting non-adiabaticity. In fact the
metric graph shows the evolution to be initially non-adiabatic before returning
to the adiabatic line, in agreement with ε(t) which drops to ∼ 0.3 in the upper
inset of figure 4.1 9. For r2, figure 4.3 suggests a degree of non-adiabaticity
similar to ho, whereas ε(t) in the upper inset of figure 4.1 shows r2 to have a
much greater degree of non-adiabaticity than ho.

4.4.2 Density distance against wavefunction distance us-
ing the instantaneous ground state

The second type of graph is Dn(nGS(t), n(t)) against Dψ(ψGS(t), ψ(t)) (fig-
ure 4.4). Here, the measure of adiabaticity comes from proximity to the origin.
We can clearly see that for ε(0) = 1.0 (denoted in the label subscripts), ho
and r2 are non-adiabatic, as ε(0) would suggest. However, r1 is much closer
to adiabaticity as it lies a lot closer to the origin. Systems ho and r2 display
once more a similar degree of non-adiabaticity in the metrics, unlike their ε(t)
values which displays them as markedly different with ε(t) of r2 much greater
than ε(t) of ho (figure 4.1, upper inset). From this we are able to see how ε(t)
does not always fully describe the degree of adiabaticity of the system.

We note that Dψ(ψGS(t), ψ(t)) provides a quantitative measure of the de-
gree of adiabaticity, with Dψ(ψGS(t), ψ(t)) = 0 indicating perfect adiabatic-
ity and Dψ(ψGS(t), ψ(t)) =

√
N corresponding to maximum non-adiabaticity

[where ψ(t) is either orthogonal to or completely non-overlapping with ψGS(t)].
This means an absolute percentage deviation of the dynamic distance from the
maximum distance can be attributed at any instant in time.

This measure provides useful information beyond the degree of adiabatic-
ity; figure 4.4 displays oscillating “arches” for the adiabatic systems (inset),
where ho has the clearest arches. For ho this is seen for all values of ε(0) up to
1.0, where the arch is disrupted by the distortion of the harmonic well when
reaching the edge of the system (L = 15 a.u.). The frequency of the oscillating
arches is ω in the wavefunction, and 2ω for the density. The random potentials
also display this oscillatory behaviour when adiabatic, but with a frequency
not as clearly dependent on the trapping microwells’ frequency. These arches

9These results suggest that, by combining the requirements of a dynamic ratio
Dn(n(0), n(t))/Dψ(ψ(0), ψ(t)) following a line, with the fact the distances do not explore
the upper triangle above the line, adiabatic behaviour could be assessed even when the
ground state gradient Dn/Dψ is unknown.
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reveal a peculiar feature of the dynamics of adiabatic states: they oscillate
about the instantaneous ground state but never really adjust to it, maintain-
ing this “inertia” no matter how slowly-varying the perturbation is.

An animation for the density of ho0.1 was produced to demonstrate the os-
cillations about the instantaneous ground state, see Skelt_108001277_ani-
mation_ho.mp4 for the animation. Here ε(0) = 0.1 was used as these dy-
namics can be seen clearer than for ε(0) = 0.01, but the oscillating arches
appear in both cases. The animation shows that the dynamic state remains
superimposed to the initial ground state for a while (about t =5 a.u., or ∼2
seconds into the animation) after the perturbation has been applied, demon-
strating inertia, before it begins to move. Once the dynamic state is moving,
it catches up with the instantaneous ground state but due to the momentum,
it continues past the instantaneous ground state until it is stopped by the
potential at a time of ∼30 a.u (or ∼9 seconds animation time) where the max-
imum of the density has clearly overcome the minimum of the instantaneous
potential, and then again at about 60 a.u.. This causes the oscillations about
the instantaneous ground state, which are seen in figures 4.4, 4.5, and 4.6
(particularly in the insets). This inertia of the dynamic state gives rise to the
“ramp-up” phase, which precedes the oscillations seen for all three families of
systems (see inset of figures 4.5 and 4.6).

Figures 4.3 and 4.4 suggest a restricted behaviour for the dynamics of quan-
tum systems in metric space, with the region above the adiabatic line remain-
ing largely unexplored. This would imply that, on average, non-adiabaticity
affects the wavefunctions more than the related densities, both when mea-
sured as a distance from the instantaneous eigenstate (figure 4.4) or from the
initial state (figure 4.3)10. This behaviour sheds new light on the dynamic
wavefunction-density mapping of TDDFT: when observed in metric space this
mapping does not explore the entire space, and is limited to the lower triangle
of our figures; also, in contrast to the ground state mapping of DFT [77], it
maps, on average, close densities to less close wavefunctions. This can be partly
understood by noting that distant densities must be non-overlapping (since n
cannot be negative) and therefore imply distant wavefunctions, whereas the
converse is not true.

10Preliminary results on a strongly driven, ionising system also confirm this restricted
metric space (A. Schild, H. Gross and I. D’Amico, private communication).
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Figure 4.5: Comparing the instantaneous ground state and the TD state with
the initial ground state for n. The black stars indicate the reference time tref
as seen in figure 4.1 (upper inset). Inset: zoom to boxed area, with adiabatic
systems following the adiabatic line (dashed).

4.4.3 Graphs of density distances and wavefunction dis-
tances

The third type of graph is shown in figure 4.5 and figure 4.6: it focuses solely
on either densities (figure 4.5) or wavefunctions (figure 4.6). For an adiabatic
system ψ(t) = ψGS(t), and so Dψ(ψ(0), ψ(t)) = Dψ(ψ(0), ψGS(t)). By com-
paring Dψ(ψ(0), ψ(t)) with Dψ(ψ(0), ψGS(t)) (or similarly with the density),
the adiabaticity of the system is discerned through the proximity to the adi-
abatic line y = x. The density and wavefunction graphs are very similar,
and this suggests it should be possible to determine adiabaticity using the
density alone, e.g. conveniently calculated using DFT. It must be noted that
Dψ(ψ(0), ψ(t)) and Dn(n(0), n(t)) are not directly linked to the QAT, and
therefore one would not necessarily expect them to characterise adiabaticity.
However, they are compared to Dψ(ψ(0), ψGS(t)) and Dn(n(0), nGS(t)) respec-
tively, which indirectly compares the evolved state with the adiabatic state,
indicating the degree of adiabaticity of the evolution. Indeed one could use
Dψ(ψ(t), ψGS(t)) to directly compare these values (similarly for the density),
which is what we will do in the next chapter, but here we are exploring the
different methods of using metrics for characterising adiabatic evolutions, ex-
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ploring different combinations of metrics (both wavefunction and density) to
give greater understanding of how they can characterise a system’s dynamics.

The systems for ε(0) = 0.01 are indeed adiabatic and oscillate about the
adiabatic line. These oscillations always begin below the adiabatic line as
the dynamic state lags behind the instantaneous ground state, in agreement
with the arches seen in figure 4.4 and showing again the “inertia” felt by the
dynamic system.

The region above the adiabatic line is barely explored, once more sug-
gesting a restriction for the dynamics of quantum systems in metric space.
For figure 4.5, this may be understood using the triangle inequality obeyed
by metrics, which here takes the form Dψ(ψ(0), ψ(t)) ≤ Dψ(ψGS(t), ψ(t)) +
Dψ(ψ(0), ψGS(t))11. Since Dψ(ψGS(t), ψ(t)) becomes smaller for increasing
adiabaticity, this means that Dψ(ψ(0), ψ(t)) ≈ Dψ(ψ(0), ψGS(t)) to an in-
creasingly better approximation, limiting the vertical excursion of curves in
figure 4.5. The more adiabatic a system, the smaller the amplitude of the
oscillations about the adiabatic line. This also holds true for the density. For
ho and r2, when ε(0) = 1.0, the region below the adiabatic line is explored

11The triangle inequality has also been used to develop limits on adiabatic time in many-
body systems [135].
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considerably, demonstrating their non-adiabatic nature.
The black stars on the ε = 1.0 curves in figures 4.5 and 4.6 indicate tref

(an arbitrary reference time chosen to indicate interesting dynamics) from
figure 4.1 (upper inset). It is clear that r2 remains non-adiabatic at this time,
however r1 has come closer to adiabaticity, and oscillates about the adiabatic
line as a result of the spreading and contracting of the density in a “breathing”
motion12 (explained later).

This move towards an adiabatic regime is clearly seen in the metrics and in
ε(t), yet the metrics, due to their non-perturbative nature, reveal a lot more
about the dynamics of the system, such as the oscillations and the initial
ramp-up phase due to the inertia. They also reveal that r11.0 is definitely not
as adiabatic as ε(t)→ 0.03 (from figure 4.1 upper inset) would suggest.

An animation of the density of r11.0 was produced to demonstrate the
breathing motion (see Skelt_108001277_animation_r1.mp4 for the ani-
mation). From the beginning the electronic ground state is mainly confined by
the asymmetric right-hand microwell and the perturbation (−pxt) pushes the
electron closer to the confining potential as the microwell deepens. Starting at
about 30 a.u. (or ∼10 seconds into the animation) we observe a “breathing”
motion, with the density widening with the amplitude reducing, followed by
it tightening with the amplitude increasing. This is combined with a sideways
oscillation. This complex motion is caused by a combination of oscillations
about the instantaneous ground state caused by inertia (similar to that men-
tioned previously) combined with the reflection of the wave packet by each
side of the microwell in turn, an overall motion that is reminiscent of water
oscillating sideways in a basin. Each density maxima corresponds to one of the
maxima of the metric oscillations observed for r11.0 in figure 4.5: the higher
metric maxima correspond to the density maxima close to the system bound-
ary, while the secondary metric maxima correspond to the density maxima
close to the less steep left border of the microwell.

4.5 Conclusion

To conclude, the answer to research question 1a “can we characterise adia-
baticity without using the quantum adiabatic criterion?”, is yes; by utilising
metrics for wavefunction and density, we have proposed three types of met-
ric graphs as tools to assess adiabaticity, which all agree on the character of

12Whereas Dobson’s harmonic potential theorem [136] shows the propensity for “breath-
ing” of a time-evolving wavefunction to be suppressed in the harmonic oscillator.
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the dynamic evolutions considered. These tools provide both quantitative and
qualitative estimates of the degree of adiabaticity in the dynamics of a quan-
tum system, and show how the ground state linear relationship between Dn

and Dψ is related to adiabatically-evolving time-dependent systems. All the
numerical results, including additional intermediate perturbations not shown
here, for these three types of graph support the conjecture that the behaviour
is indeed general.

We have demonstrated that the metric-space approach can be used to as-
sess the character of the dynamics of quantum systems, in an accurate and
appealingly visual way. The metric approach studied here is also applicable
to many-particle systems, for which the characterisation of the degree of adi-
abaticity using metrics based on densities alone is particularly convenient (we
shall study this in the next chapter). This method could therefore be used to
predict parameters for experiments requiring adiabaticity, and experimentally
measured local densities could be used in the density metrics to determine the
degree of adiabaticity achieved.

The ability to use metrics based purely on densities or wavefunctions also
allows for their use in situations where only the wavefunctions or only the
densities are known. An example in which the exploration of the wavefunction
metric dynamics could be informative is the case of quantum phase transitions.

These results show that quantum dynamics, even for systems strongly far
from equilibrium, appears to be restricted in metric space with distances above
the adiabatic line not being seen. This sheds light on the density-wavefunction
mapping at the core of TDDFT.

Importantly, the metric graphs do not suffer from the same limitations as
the currently widely used adiabatic criterion, ε(t), and hence provide a more
robust indication of the degree of adiabaticity, as well as a greater insight into
the system dynamics. This establishes the metric space approach to quantum
mechanics as a versatile and sensitive probe of adiabaticity.

Next we shall look at applying this technique to many-body systems, and
explore the effects of temperature on characterising adiabaticity.
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5. Characterising adiabaticity in
quantum many-body systems at
finite temperature

In chapter 4, we developed a method to characterise adiabaticity in single-
electron systems at zero temperature using distance measures, which do not
have the same issues as the commonly used quantum adiabatic criterion. How-
ever, many quantum devices consist of more than one electron, and in practice
they must be operated at non-zero temperature. It is therefore important to
look at these methods for many-body interacting systems working at finite
temperature. In this chapter, we aim to answer research question 1b: “Can
we apply the characterisation method developed from answering 1a to systems
at finite temperature?”.

To answer this, we will consider small many-body systems on a one-dimensional
lattice using the Hubbard model. The Hubbard model is exactly solvable for
small chains but has non-trivial behaviours making it a good test-bed for a
wide range of many-body applications, including, as we will see, analysing the
use of metrics for characterising adiabaticity. Work in this chapter has been
published in Advanced Quantum Technologies, see reference [137].

5.1 Introduction

Adiabatic evolutions are important in many areas of quantum physics, such
as quantum computation, quantum thermodynamics, and quantum field the-
ory [23–31]. One particularly important application of adiabatic evolutions
is achieving specific (target) states, e.g. in adiabatic quantum computation,
where the target state is known to be the ground state of the final Hamiltonian.
Other important applications of adiabatic evolutions are for quantum thermo-
dynamic cycles, where, for example, they may yield the highest extractable
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quantum work [32, 138].

5.1.1 Metrics for the adiabatic theorem

In our approach the adiabatic theorem is written in terms of two distance
measures (metrics), namely the Bures and the trace distances. The Bures
distance is connected to the fidelity (which itself is not a proper distance),
and at zero temperature one could use the “adiabatic fidelity” as a figure of
merit for adiabaticity in time-dependent systems [103]. Importantly, the Bures
distance can be derived from conservation laws [77, 78] so that it can provide
relevant information on the physics of the many-body system [77–79, 86].

Within quantum information processing, the trace distance is considered
the best measure to operationally distinguish two quantum states [95], so we
also look at using the trace distance in place of the Bures, and find that both
the trace and Bures can be used to determine the degree of adiabaticity.

To provide a comparison with a somewhat more familiar quantity, we pro-
pose an extension of the QAC to finite temperatures, and discuss its limita-
tions. All of these methods broaden the choice of adiabatic measures to best
suit one’s needs.

At zero temperature, the Bures distance for pure states has already been
demonstrated to characterise adiabaticity in single electron systems (see previ-
ous chapter) [93], and in previous work we saw its potential for characterising
adiabaticity in two-electron systems [85]. Here we consider many-body sys-
tems (formally of any size, then testing on systems with a small number of
electrons) described over a lattice, at zero and finite temperatures. Compu-
tationally, as the system size increases, the cost of the calculation increases
exponentially. Therefore we apply the aforementioned methods to many-body
systems up to 6 electrons on a discrete lattice which can be solved numerically
exactly (giving us a test-bed on which to analyse these methods).

Taking inspiration from DFT, we ask: “can metrics based on the par-
ticle density alone give quantitative guidance to the level of adiabaticity of
a system?” We ask this because the density is, in principle, experimentally
observable and much easier to estimate, e.g. by density functional methods,
than the corresponding many-body state. Therefore the density would be a
preferable quantity to use in a tool for characterising adiabatic evolutions.
By demonstrating that this question has a positive answer, we will provide
a manageable way to measure and track adiabaticity in many-body systems,
even at finite temperature.

79



This analysis aims to help guide those wanting an adiabatic evolution (ei-
ther experimentally or computationally) in many-body systems at any temper-
ature towards achieving an understanding of the degree of adiabaticity of their
system. A guideline threshold for considering an evolution adiabatic is also
presented with discussion of the factors which impact this threshold and the
important quantities to consider when deciding a threshold for one’s system.

5.2 Proposal for a temperature-dependent quan-
tum adiabatic criterion

Recall the quantum adiabatic theorem first proposed by Born and Fock in
1928 [96], described in section 2.3, where we rephrase its definition to be: an
adiabatic evolution is one in which no transitions between energy levels occur.
We have rephrased this so that when we extend our system to finite temper-
atures, and are therefore no longer in the ground state even at equilibrium,
we still have a working definition of the adiabatic theorem. The requirement
for quantum adiabaticity at finite temperature1 that there are no transitions
between eigenstates of the system as it evolves [139] practically implies that
the population of the various eigenstates should not change with time.

When it comes to accurately characterising an adiabatic evolution, there
are many challenges, such as the complexity of calculations involving many-
body systems and defining the criterion at finite temperature. Recently, the
validity and sufficiency of this QAC for certain systems have been questioned
[42, 43, 98], and new approaches for characterising adiabaticity have also come
to light, where chapter 4 and reference [103] look at comparing the time evolved
state of the system with the “adiabatic” state, i.e. the instantaneous ground
state. It was demonstrated in chapter 4 that metrics can be used to charac-
terise adiabaticity through a variety of approaches to best suit the quantities
one has at hand [93]. All of these approaches only consider quantum adiabatic-
ity for pure states at zero temperature. The issue of tracking adiabaticity both
at finite temperature and for many-body systems remains outstanding. Here
we introduce a new expression for characterising adiabaticity in systems at
finite temperature, which are described by mixed states.

As a comparison between the metrics and a more familiar quantity, we
1Since temperature is being introduced, there are two definitions of adiabaticity; quantum

and thermal. Thermal adiabaticity looks at the heat loss of the system, which is zero for this
investigation as the system is closed. Therefore it only makes sense to look at the quantum
adiabaticity, especially when considering applications to quantum systems.

80



propose the following extension of the QAC, equation 2.43, valid at any tem-
perature T :

ε(t) = max
n,m

~
∣∣∣〈m(t)| Ḣ(t) |n(t)〉

∣∣∣
(|En(t)− Em(t)|)2

 , (5.1)

with

En(t)− E0(t) < skBT, (5.2)

Em(t)− E0(t) < s′kBT, (5.3)

s′ > s ≥ 1. (5.4)

Here E0 ≤ E1 ≤ . . . ≤ En, m 6= n, kB is the Boltzmann constant, ~ is
Planck’s constant and is taken to be 1 for this work (using atomic units), and
s and s′ are used to practically limit the energy levels considered, based on
the temperature. In the calculations presented here, we use s = 1 and do not
cap s′. For adiabaticity to hold, we still required that ε(t) � 1. Also note
that the criterion is adapted for degenerate states following Rigolin and Ortiz
[133], so that the maximum distance between the degenerate subspaces and
other levels is considered to calculate ε(t).

5.3 Metrics for density and quantum state

As seen in the previous chapter, metrics provide a useful quantitative measure
in the distance between two elements in a set [92, 140]. The use of metrics
for investigating the relationship between wavefunctions and corresponding
particle densities was developed in references [77–79, 141] where the chosen
metrics were derived from conservation laws (referred to as ‘natural’ metrics
[77, 78]) to ensure that they could provide physical insights. In chapter 4, we
introduced a method of using these metrics for characterising adiabaticity in
single electron systems at zero temperature [93]; other works [77, 78, 85, 141]
support the possibility of developing this metric-based method to characterise
adiabaticity in many-body systems. All these works considered pure states,
but since the focus in this chapter is on finite temperature, the ‘natural’ metrics
must be extended to mixed states.

The ‘natural’ metric for the wavefunction developed in reference [77] is in
fact the Bures metric at the zero temperature limit. So for mixed states we
use the Bures metric, equation 2.39, from chapter 2, remembering it has a
maximum value of

√
2 ready for forming adiabatic thresholds later. We also
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saw in chapter 2 another metric which is widely used in the quantum tech-
nology community as a measure of distinguishability between quantum states:
the trace distance [95, 140], defined in equation 2.41, and with a maximum
value of 1 for states normalised to 1. We will also consider the trace distance
in this chapter, and compare the results to the Bures. The Bures and trace
distances are related by bounds [95, 140] (as seen in section 2.2 of chapter 2)
and, at least for the systems and dynamics discussed in this work, they provide
very similar conclusions. Therefore we can suggest that the decision of which
metric to use be based on which quantities are more readily available, e.g. if
the fidelity is easy to obtain, then the Bures distance should be chosen.

The ‘natural’ density metric is unaffected by the type of state, and remains

D̃n (n1, n2) = 1
N

∫
|n1(r)− n2(r)| d3r, (5.5)

with nj(r) the particle density of system j at position r. However, because we
will be applying these metrics to a lattice system, the density metric can be
adapted for the site occupation by replacing the integration with a summation,

Dn (n1, n2) = 1
N

L∑
i=1
|n1,i − n2,i| , (5.6)

where nj,i is now the site occupation of system j at site i in the system of
length L. In this chapter, we know that systems 1 and 2 will have the same
number of particles, N , and consequently rescale the metric in equation 5.6 so
that the maximum distance is 2 (much like in reference [77]).

We propose using the density metric to characterise adiabaticity because
it is much simpler to calculate, and yields similar results to the state distances
(seen later, in section 5.5). The motivation to use the density distance relies on
the Runge-Gross theorem [64, 71] for continuous systems, and on its extension
to lattice Hamiltonians [63, 142]. At zero temperature, these theorems provide
a one-to-one correspondence between the driven many-body state and the
corresponding particle density. This allows us to shift the attention from the
system’s quantum states to the corresponding particle densities (continuum)
and site occupations (lattice Hamiltonians), objects which are much simpler
to calculate, e.g. by density functional methods [63, 64]. We therefore also
test the ability to use only the density distance to characterise adiabaticity of
many-body systems (specifically of the Hubbard model) at finite temperature,
and find it to be successful.

Using the metrics in equations 2.39, 2.41, and 5.6, we will address re-
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search question 1b, more explicitly asking “could suitable metrics be used
to characterise adiabaticity at finite temperature and for complex interacting
many-body systems which are difficult to handle?”. To answer these ques-
tions, we will propose an operative definition of adiabaticity based on an
‘adiabatic threshold’ (see section 5.4), and monitor the distance between the
time-dependent state and its adiabatic counterpart.

5.4 Introducing an adiabatic threshold

In practice, a system can be considered adiabatic when it remains close enough
to its adiabatic state during the dynamics. In this section, we will quantify
the concept of ‘close enough’ by developing an ‘adiabatic threshold’ based
on conclusions from the previous chapter [93]. We exploit the fact that the
chosen metrics have well-defined maximum values, Dmax

ρ , and so it is possible
to quantify an adiabatic threshold, ∆ρ, as a percentage of these maxima. It is
taken that for a state ρ(t) to be considered adiabatic, it obeys

Dρ(ρS(t), ρ(t)) ≤ ∆ρ, (5.7)

where ρS(t) is the instantaneous ground state for T = 0J/kB (S = GS), or
instantaneous transitionless state for finite temperature (S = Th, where the
system began in the thermal state, and no transitions between energy lev-
els have occurred during the evolution)2. Equation 5.7 looks at the distance
between the instantaneous adiabatic state, and the evolved state; if these quan-
tities are very similar, then the system is adiabatic (within an error/threshold)
and the distance is small.

For this work, we take ∆ρ = 0.1Dmax
ρ , but this threshold can be adjusted

based on the accuracy or constraints of the experiment or calculation being
performed. For example, we note that as the temperature increases, kBT
becomes the dominant energy scale so the same external driving affects the
system less, meaning for the same drive but increased temperature, ρ(t) will
remain closer to the adiabatic state throughout the evolution. Therefore one
could choose a tighter adiabatic threshold in this case, to improve appreciation
of the effect of the driving.

2For T → 0, S = Th becomes S = GS.
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5.4.1 Densities and the adiabatic line

In references [77–79, 85, 93] it was shown that there is a monotonic relation-
ship between ground state wavefunction distances and their corresponding
density distances. This relationship is quasi-linear up to relatively large dis-
tances ≈ (2/3)DB,max

ρ
3, with reference [79] indicating this relationship may

also hold for higher order eigenstates and corresponding densities. The re-
sults from this chapter show the same behaviour at finite temperatures (see
figure 5.2 which demonstrates that the relationship between Dρ(ρ(0), ρGS) and
Dn(n(0), nGS(t)) can be extended to finite temperatures, and will be discussed
further in section 5.5.2). We also note that the mapping between thermal
ensembles and densities exists in the flavour of DFT known as ‘Thermal
DFT’ [143, 144]. Therefore we can be confident that the relationship be-
tween Dρ(ρ(0), ρGS) and Dn(n(0), nGS(t)) is maintained at finite temperature.
We refer to this quasi-linear relationship as the ‘adiabatic line’ as defined in
chapter 44 [93]. The adiabatic line for a given time-dependent process can be
written as

Dn(nS(0), nS(t)) ≈ mDρ(ρS(0), ρS(t)). (5.8)

We can then extend this relation to the maximum distances, multiplied by
a small parameter δ which gives the fraction for the threshold5 so that the
quasi-linear relationship remains valid,

δDmax
n ≈ mδDmax

ρ . (5.9)

We note that δDmax
n and δDmax

ρ are the thresholds, and so we convert them
to ∆n and ∆ρ:

∆n = δDn,max ≈ mδDρ,max = m∆ρ, (5.10)

∆n ≈ m∆ρ. (5.11)

This further restricts the threshold in the density metric, which we will see
is necessary as the density distances are affected much less during the sys-
tem evolution. Without this scaling, the density distance would often classify
evolutions as adiabatic where the state distance shows they are not adiabatic.

3For example, see figure 2 in reference [77].
4We use the Bures metric to find the adiabatic line, but one could use the trace distance.

If using the trace distance though, note that the gradient will be different to those reported
in table 5.1. One must be consistent with their use of the trace or Bures metric when finding
the adiabatic line to then use the gradient for ∆n described later.

5Here we use δ = 0.1, so the adiabatic threshold is 10% of the maximum distance.

84



kBT U N Gradient N Gradient N Gradient
0J 0J 2 1.33294 4 0.647511 6 0.450959
0J 5J 2 0.91163 4 0.411435 6 0.2779
0J 10J 2 0.502006 4 0.218927 6 0.237795

0.2J 0J 2 0.924189 4 0.647354 6 0.45059
0.2J 5J 2 0.911343 4 0.409499 6 0.278244
0.2J 10J 2 0.619401 4 0.210794 6 0.205762
2.5J 0J 2 0.924189 4 0.57114 6 0.444165
2.5J 5J 2 0.744725 4 0.473781 6 0.389355
2.5J 10J 2 0.48877 4 0.231146 6 0.179414

Table 5.1: Gradients m of the adiabatic line (using the Bures metric) for the
driven Hubbard model with the slope potential considered in this chapter for
three temperatures (kBT ), correlation strengths (U), and electron numbers
(N).

The gradient of the linear relationship, m, depends on N , U , and T , as
well as the type of driving and driving strength. Table 5.1 gives the gradients
for three different coupling strengths, temperatures, and site numbers. In
practice, the gradient m can be estimated by calculating Dn(nS(0), nS(t))
and Dρ(ρS(0), ρS(t)) at 2-3 times. For these chosen times, Dρ should be less
than (2/3)Dmax

ρ where the linear relationship holds better, and the origin
should be included in the fit because of the coincidence axiom, equation 2.29.
Estimating m then requires the exact or approximate diagonalisation of the
system Hamiltonian at 2-3 instants in time6.

In principle a more accurate (and more computationally expensive) es-
timate of m could be achieved by using a polynomial fitting to the plot of
Dn(nS(0), nS(t)) versus (Dρ(ρS(0), ρS(t))), but we find that the linear approx-
imation in equation 5.8 and the simple method described above is sufficient
for achieving good results, as we will see next.

5.5 Numerical results

While the methods proposed here can be applied to both continuous and
lattice systems, we will illustrate them using the iconic model for strongly
correlated many-body quantum systems on a lattice: the Hubbard model. We
shall do this firstly at zero temperature and then move on to look at finite
temperatures.

6Table 5.1 can be used as a guideline to the type of expected values for m in a few
different circumstances.
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5.5.1 Hubbard model and system drive

We consider the out-of-equilibrium dynamics of the inhomogenous 1D Hub-
bard model at half filling to demonstrate the properties of the methods for
characterising adiabaticity proposed in this work. The Hubbard model is used
to simulate various physical systems of interest to quantum technologies [113–
118], and the inhomogeneous Hubbard model is often used as a test-bed for de-
veloping techniques for strongly correlated many-body systems [32, 59]. This
is because it displays non-trivial properties such as the metal to Mott insulator
transition, antiferromagnetism, and superconductivity, even for small chains
[32, 62, 115, 138, 145] where it can be solved (numerically) exactly, meaning
it can push approximations to their limits and compare them against exact
results (as we will see in chapters 7 and 8). The dynamics used in this study
can be used to represent transient electronic currents along a chain of atoms
or nanostructures, like coupled quantum dots, because of the application of a
time-dependent electric field across the chain, driving the system.

The corresponding Hubbard Hamiltonian for a system of N fermions and
N sites with nearest-neighbour hopping is

Ĥ = −J
N∑
i,σ

(
ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
+ U

N∑
i

n̂i,↑n̂i,↓ +
N∑
i

vin̂i, (5.12)

where J is the hopping parameter for an electron with spin σ, and σ =↑ or ↓,
U is the on-site electron-electron interaction strength, and vi is the external
potential at site i. We also note that ĉ†i,σ and ĉi,σ are the usual creation and
annihilation operators for a spin-σ fermion on site i, and n̂i = n̂i,↑+ n̂i,↓ is the
number operator, with n̂i,σ = ĉ†i,σ ĉi,σ.

To drive the system out-of-equilibrium, we will use a time-dependent vi
simulating a uniform electric field linearly increasing with time from a potential
difference of 1J to a potential difference of 10J across the chain of 6 sites. For
the change in potential to be linear in time, the on-site potential is written as

vi(t) = µ0
i + µτi t/τ (5.13)

where µ0
i and µτi are time independent coefficients of site i at t = 0 and

t = τ respectively. Then to achieve a linear electric field across the sites,
the coefficients are written as µ0

i = (2µ0/L× i) − µ0 where µ0 = 0.5J , and
µτi = (2µτ/L× i)− µτ with µτ = 4.5J .

From this way of forming the time dependence, the final Hamiltonian does

86



t/τ t/τ t/τ

(c)(b)(a)

E

−2

−1

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.2  0.4  0.6  0.8  1
−8

−6

−4

−2

 0

 2

 0  0.2  0.4  0.6  0.8  1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

 0  0.2  0.4  0.6  0.8  1

Figure 5.1: A zoom into the low-mid section of the instantaneous spectrum
versus t/τ of the time-dependent Hubbard Hamiltonian considered in this work
(6 sites, half filling). Panel (a) corresponds to zero on-site Coulomb interaction
(U = 0J), (b) to U = 5J , and (c) to U = 10J . Note the different energy scales
on the y-axis.

not depend on τ , and therefore τ denotes the evolution time, or inverse speed,
of the evolution. We can relate ε to tau such that ε ∝ (τ(∆E)2)−1 where
∆E is the minimum spectral gap. Therefore, the larger τ is, the smaller ε
will be (remembering that ε� 1 is considered adiabatic), and hence closer to
adiabaticity the system is expected to be.

In this chapter we analyse the dynamics of short inhomogeneous Hubbard
chains of N = 2, 4, and 6 sites, driven at different rates (τ = 0.5/J , 5/J ,
and 50/J), for 3 different interaction strengths (U = 0J , 5J , and 10J). We
will only explicitly look at N = 6 here but similar qualitative conclusions
can be drawn for all N studied7 (with the understanding that there will be
quantitative differences due to the adiabatic line varying with N , as discussed
previously). This system has 400 eigenstates leading to a very complex spec-
trum (see figure 5.1), which we will see greatly impacts the dynamics.

Instantaneous eigen-energies of the Fermi-Hubbard Hamiltonian

Figure 5.1 shows the low-mid section of the instantaneous spectrum of the
driven Hubbard Hamiltonian described in section 5.5.1 as it is driven (for (a)
U = 0J , (b) U = 5J , and (c) U = 10J). For U = 10J [figure 5.1(c)], the
Coulomb repulsion for states which include double occupation of sites leads
to the grouping of energy levels, separated with large gaps where no energy
levels occur. The lowest two groupings start crossing when the applied external
potential is of the order of U , around t ≈ 0.8τ . For U = 5J the gap between
the lowest two energy groups is just starting to form, and the two groups
start crossing for t ≈ 0.05τ . We will see the impact of these groups on the
adiabaticity in the coming sections.

7See appendix A for results with 2 and 4 sites.
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Figure 5.2: Curves of Dn(nS(0), nS(t)) versus DB
ρ (ρS(0), ρS(t)) for 3 interac-

tion strengths: U = 0J in red, U = 5J in green, and U = 10J in blue; and
3 temperatures, T = 0J/kB (S = GS, left) T = 0.2J/kB (S = Th, middle),
T = 2.5J/kB (S = Th, right). Note that n(0) = nS(0) and ρ(0) = ρS(0).

5.5.2 Adiabatic threshold for the density

Figure 5.2 shows the adiabatic line (Dn(nS(0), nS(t)) versus DB
ρ (ρS(0), ρS(t)))

for three temperatures [(a) kBT = 0J , S = GS; (b) kBT = 0.2J , S = Th;
(c) kBT = 2.5J , S = Th] using the set up described previously. This is
the line whose gradient determines the scaling of the density threshold, ∆n,
as described in section 5.4.1. By increasing U (from red to green to blue),
or increasing the temperature (panels from left to right), the gradient of the
adiabatic line decreases. This is also seen in the gradients given in table 5.1,
whose values give m to be used in equation 5.11. Note that here we have used
the linear approximation described in section 5.4.1, and used this to calculate
∆n for the density thresholds used in the results.

5.5.3 Zero temperature

At zero temperature, the initial system is in its ground state, and during an
adiabatic evolution it would remain in its instantaneous ground state. The
results for the zero temperature system are shown in figure 5.3. We consider
different rates of dynamics (τ = 0.5/J , red, ‘fast’ dynamics; τ = 5/J , green,
‘intermediate’ dynamics; τ = 50/J , blue, ‘slow’ dynamics, closer to adiabatic-
ity), and three interaction strengths (U = 0J , left, no interaction; U = 5J ,
middle, medium interaction; U = 10J , right, strong interaction). We choose
U = 0J as it sits in the metallic side of the Hubbard model’s metal-Mott
insulator transition, and it also allows for a comparison to the single electron
results from chapter 4. We then choose U = 5J as it sits at the transition
from a metal to Mott insulator, and then U = 10J as it sits in the Mott in-
sulator phase. One would anticipate behaviour far from adiabaticity from the
red curves, the blue curves showing behaviour closer to adiabaticity, and the
green curves demonstrating behaviour somewhere in between. In figure 5.3, we
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Figure 5.3: Zero temperature results. Red lines: τ = 0.5/J dynamics; green
lines: τ = 5/J dynamics; blue lines: τ = 50/J dynamics. Panels show: ε(t)
[(a)-(c)], DB

ρ (ρGS(t), ρ(t)) [(d)-(f)], and Dn(nGS(t), n(t)) [(g)-(i)] versus t/τ .
Three interaction strengths are considered: U = 0J (left), U = 5J (middle),
and U = 10J (right). In all panels the horizontal dashed lines indicate the
corresponding adiabatic threshold. Insets of panel (b) and (c): low energy
spectrum of the instantaneous Hamiltonian versus t/τ for U = 5 [panel (b)]
and U = 10 [panel (c)].

then compare the conclusions of ε(t) [panels (a)-(c)], the Bures metric [panels
(d)-(f)], and the density metric [panels (g)-(i)].

Predictions from ε(t)

Figure 5.3 (a)-(c) shows ε(t) from equation 5.1 with respect to time in units
of τ . For U = 0J [panel (a)], ε(t) indeed follows the expected results for each
value of τ initially, with the red curve being far from adiabaticity, the blue
curve being adiabatic at ε(t) > 0.1, and the green curve showing behaviour
in between the two. ε(t) then shows behaviour getting closer to adiabaticity
as the evolution progresses and the instantaneous eigen-energies separate [see
figure 5.1(a)], with the τ = 5/J dynamics becoming adiabatic for t . 0.9τ .

For U = 5J [figure 5.3(b)], many-body interactions become important as at
this interaction strength the static system is undergoing the transition between
a metal and a quasi-Mott insulator [62, 77, 138]. This means that states with
double occupation become less favourable, and dynamics begin to stiffen for
small driving potentials. The result of this is the system being less receptive
to the drive, and so transitions are less likely to happen meaning the system
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remains adiabatic for longer. At t ≈ 0.4τ , the driving potential becomes large
enough to create an avoided crossing in the low energy spectrum [see inset of
figure 5.3(b)], which ε(t) captures by spiking into non-adiabatic behaviour for
τ = 0.5/J and 5/J . The non-adiabatic behaviour is quickly dropped as ε(t)
is Markovian by construct, meaning it holds no memory of previous events or
times (it is based on instantaneous quantities). Therefore, as the spectrum
separates again after t ≈ 0.45τ , ε(t) returns to adiabaticity. However the
populations of the eigenstates could have changed in this period, meaning the
system may not be adiabatic any more8.

When U = 10J [figure 5.3(c)], the system is fully into the regime of being a
quasi-Mott insulator. This means the system is ‘frozen’ because the interaction
strength dominates over all other energy scales and prevents any hopping
between neighbouring sites. In this regime the system is clearly adiabatic for
all values of τ , where no transient dynamics can take place, no matter the speed
of the dynamics. At t ≈ 0.95τ , however, the driving potential becomes too
large to be negligible in comparison to the interaction strength. At this time,
transient dynamics can occur, and we see avoided crossings in the spectrum
[inset of figure 5.3(c)]. This leads to sudden peaks in ε(t) as the system breaks
out of its adiabatic evolution. Once again, because ε(t) is Markovian, it drops
quickly after the crossings have occurred.

Note that the original QAC assumes the system is non-degenerate and there
is a sufficient gap between concurrent energy levels to prevent a transition [97].
Also remember that the original QAC has been shown to be insufficient, with
Marzlin and Sanders igniting the recent debate [42], particularly concerning
oscillating Hamiltonians. Others then went on to further demonstrate the
necessity but insufficency and lack of validity of the QAC for non-degenerate
Hamiltonians [98, 133, 146]. Even though Avron and Egart reformulated the
original QAC to avoid the gap condition, and Rigolin and Ortiz developed a
QAC for degenerate systems, the QAC is still not shown to be necessary and
sufficient9 and so it is unsurprising that our adapted version has issues for this
challenging setup.

8It may not be adiabatic when compared to the initial system, however it could be
‘instantaneously’ adiabatic, where no transitions have occurred from the last time step
to the current, however this is not a useful classification for many applications involving
adiabatic evolutions, such as adiabatic quantum computing.

9Rigolin and Ortiz developed a necessary condition and a separate sufficient condition in
reference [133].
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Adiabatic and non-adiabatic behaviour according to the metrics

Figure 5.3 shows DB
ρ (ρGS(t), ρ(t)) versus time in panels (d)-(f), and in panels

(g)-(i) Dn(nGS(t), n(t)) versus time, all for the same parameters as ε(t) in
panels (a)-(c)10. The horizontal dashed lines indicate the threshold ∆ρ for the
state distances in panels (d)-(f) and the corresponding threshold ∆n for the
density distances in panels (g)-(i).

For U = 0J with τ = 0.5/J and 5/J (red and green curves respectively),
DB
ρ (ρGS(t), ρ(t)) and Dn(nGS(t), n(t)) (panels (d) and (g) respectively) are in

striking contrast to ε(t) in panel (a). For short times, the metrics correctly
predict adiabatic behaviour as the (initial) ground state takes time to mix
with the excited states. This means the system begins adiabatic then as the
transitions occur it loses the adiabatic behaviour. However, ε(t) erroneously
predicts a return to adiabaticity for these driving times. The system state for
dynamics far-from-equilibrium is highly affected by the trajectory at previous
times, and hence can be considered non-Markovian. Therefore, taking a non-
Markovian measure of adiabaticity, such as the proposed metrics, is vital for
avoiding false characterisations.

For slow dynamics with U = 0J (τ = 50/J , blue curves in panels (d) and
(g) for DB

ρ and Dn respectively), the behaviour is always adiabatic, which
is also seen for ε(t). We can therefore safely characterise this evolution as
adiabatic, and in this case any of the three methods proposed here could be
used. The oscillations seen in these results are due to the inertia of the system,
as discussed in section 4.4.2 in chapter 4.

When many-body interaction strengths are non-zero, i.e. U = 5J (panel
(e) for Dρ, or panel (h) for Dn) or U = 10J (panel (f) for Dρ, or panel (i)
for Dn), both DB

ρ (ρGS(t), ρ(t)) and Dn(nGS(t), n(t)) respond to the avoided
crossings (t ≈ 0.4τ for U = 5J , and t ≈ 0.95τ for U = 10J). Unlike ε(t), they
show the system remaining non-adiabatic afterwards, even as the energy levels
begin to separate again. This demonstrates the importance of memory effects
on the adiabaticity of a system, and hence the necessity for a non-Markovian
characterisation method.

DB
ρ (ρGS(t), ρ(t)), as distance between the system quantum state and its

adiabatic counterpart, can be readily associated to the definition of adiabatic-
ity. This is not the case for Dn(nGS(t), n(t)) because the densities are just a
function of position and time, and might not be expected to be as sensitive
to system details, such as the energy spectrum, dynamic changes, or memory

10Corresponding results for the trace distance will be discussed in section 5.5.5.
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effects. However because of the Runge-Gross theorem [71], and the correspond-
ing lattice adaptation [142], the density should contain the same information
as the state. Therefore we speculate that both the metrics employed here can
be used as successful measures of adiabaticity. This was indeed confirmed for
single electron systems in chapter 4, and here for many-body systems. This
leads to the possibility of characterising the adiabaticity using only the den-
sity, a much more accessible quantity than the state. We have seen this is the
case for zero temperature systems, now let us see if the same can be said for
finite temperature systems.

5.5.4 Finite temperature

A thermal bath at temperature T is now connected to the Hubbard chain, to
thermalise the system. Once thermalised, the bath is disconnected at t = 0−

and the now closed system is evolved from t = 0+ to τ . Therefore, the initial
state is now a thermal state, with a corresponding thermal density. We no
longer look at the distance between the dynamic state, ρ(t), and the instan-
taneous ground state, but instead must compare ρ(t) to the “transitionless”
state. This is the state which has the same populations as the initial thermal
state, and is therefore the state if the evolution was exactly adiabatic. This is
written as

ρTh(t) =
∑
j

exp −Ej,0
kBT∑

k exp −Ek,0
kBT

|ψj,t〉 〈ψj,t| , (5.14)

where Ej,0 is the j-th eigenenergy of the Hamiltonian at t = 0, and |ψj,t〉 is the
j-th eigenstate of the instantaneous Hamiltonian at time t. The corresponding
density nTh(t) is used in the density distance Dn(nTh(t), n(t)).

For this finite temperature work, we consider two temperatures: a low
temperature of T = 0.2J/kB, and a high temperature of T = 2.5J/kB.

Low temperature

Figure 5.4 shows the results for ε(t), the Bures distance, and the density dis-
tance when T = 0.2J/kB. At this temperature, kBT � E1−E0 for most cases,
and so the results are very similar to the zero temperature ones as access to
the higher energy states is still strongly limited. However a notable difference
occurs for U = 10J at 0.9 < t/τ < 1. Here the inset of figure 5.3(c) shows the
occurrence of four low-energy avoided crossings. Due to the finite-temperature
state mixing, both metrics signal the four crossings with corresponding steps
in the distances, while ε(t) remains sensitive only to the crossing occurring at
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Figure 5.4: Low temperature (T = 0.2J/kB) results. Red lines: τ = 0.5/J
dynamics, green lines: τ = 5/J dynamics, blue lines: τ = 50/J dynamics.
Panels show: ε(t) [(a)-(c)], DB

ρ (ρTh(t), ρ(t)) [(d)-(f)], and Dn(nTh(t), n(t)) [(g)-
(i)] versus t/τ . Three interaction strengths are considered: U = 0J (left),
U = 5J (middle), and U = 10J (right). In all panels the horizontal dashed
lines indicate the corresponding adiabatic threshold.

t/ ≈ 0.96τ between ground and first excited state.
These results suggest that for low temperatures, kBT � J , the density

could be used as a good indicator to characterise adiabaticity, much like at
zero temperature.

High temperature

At this higher temperature of T = 2.5J/kB, more eigenstates of the initial
Hamiltonian will be populated, strongly impacting the system evolution and
highlighting the impact of many-body interactions. Figure 5.5 shows ε(t)
in the top row, DB

ρ (ρTh(t), ρ(t)) in the middle row, and Dn(nTh(t), n(t)) in
the bottom row, all versus t/τ . The columns give the interaction strengths:
U = 0J in the left column, U = 5J in the middle column, and U = 10J in the
right column.

For U = 0J [figure 5.5, panels (a), (d), and (g)], ε(t) and the metrics are
qualitatively similar to the low temperature and zero temperature results. The
quantitative distance of the metrics is reduced, however, because the potential
driving has less of an impact on the system due to the increased temperature.
Also note the oscillations in the slowest evolution are less regular than the lower
temperatures due to thermal fluctuations in the system. Another important
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Figure 5.5: High temperature (T = 2.5J/kB) results. Red lines: τ = 0.5/J
dynamics; green lines: τ = 5/J dynamics; blue lines: τ = 50/J dynamics.
Panels show: ε(t) [(a)-(c)], DB

ρ (ρTh(t), ρ(t)) [(d)-(f)], and Dn(nTh(t), n(t)) [(g)-
(i)] versus t/τ . Three interaction strengths are considered: U = 0J (left),
U = 5J (middle), and U = 10J (right). In all panels the horizontal dashed
lines indicate the corresponding adiabatic threshold. Inset of panel (b): zoom
into short times of main panel.

aspect of this non-interacting system is that the lower part of the energy
spectrum, below kBT , has no crossings [see figure 5.1 panel (a)]: we will see
that crossings in the spectrum have a large impact on the results.

The impact of many-body interactions and avoided crossings is clear for
U = 10J [figure 5.5, panels (c), (f), and (i)], where there are distinct group-
ings of energy levels in the spectrum [figure 5.1(c)]. The gap (due to on-site
repulsion) between the lowest band of 20 eigenstates and the next band up
(consisting of 6 eigenstates) at t = 0 is much larger than kBT meaning only
the lower band is populated. For all τ ’s, the insulating behaviour of the quasi-
Mott insulator due to large U is seen, with all driving speeds showing mostly
adiabatic behaviour until t ≈ 0.8τ . At this point in the evolution, the upper
band of 6 eigenstates “meets” the lower band and causes avoided crossings.
There are 6 steps clearly visible in both metrics, and there are 6 states in the
upper band causing the crossings. Each of the steps in the metrics signal each
of the upper states beginning to cross into the lower band.

For each of the eigenstates in the upper band, the avoided crossings after
the initial avoided crossing are much less (if at all) noticeable in the metrics.
This can be attributed to the populations of the states involved with the
crossing. When the upper states first descend, they are unoccupied, so as soon
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as they cross the occupied lower band, the populations of each state drastically
change. This causes a very clear difference when compared to the adiabatic
state, where no transitions would have occurred. This, in turn, gives rise to
the sudden jumps in the Bures distance. However, as these now populated
“upper” states descend further into the lower band, any transitions between
states will be much smaller and less noticeable. Both the Bures metric and
the density metric capture this behaviour faithfully.

When we look at ε(t) for U = 10J [figure 5.5, panel (c)], a series of peaks are
presented in the region where the energy groups cross, but without distinction
between avoided crossings at the top of the lower band, or deeper within the
lower band structure. The avoided crossings affecting ε(t) are not necessarily
the ones expected to greatly change the system (e.g. due to large population
differences between states involved in the avoided crossing)11. As with the
lower temperatures, the peaks also decline rapidly after the crossings, again
due to ε(t)’s Markovian nature.

This issue of ε(t) inappropriately signalling the avoided crossings is even
more evident for U = 5J [figure 5.5, panels (b), (e), and (h)]. In this system,
the next band up from the lowest band begins to cross the lowest band almost
immediately, at t ≈ 0.05τ [figure 5.1(b)]. Since the system begins with almost
no gap between the lowest two groupings, the top states of the lower band
and the bottom states of the upper band will be similarly populated. This
means that the avoided crossings should not cause such a drastic increase in
non-adiabatic behaviour (compared to U = 10J). Both metrics capture this
well, and gradually increase out of the adiabatic threshold into non-adiabatic
behaviour. However ε(t) shows many peaks throughout the evolution, as well
as signalling the initial avoided crossing at t ≈ 0.05τ (see figure 5.5, panel (b)
inset).

Although in this work the degenerate form of QAC was adapted for fi-
nite temperature, the results show that it is still not well suited for high T .
On the other side, the metrics, which naturally include degeneracy and non-
Markovianity, can be seen to cope well with the temperature increase12.

11In fact ε(t) often appears to use unexpected eigenstates, as it is the sudden switch in
the instantaneous eigenstates used which leads to the small jump for U = 0J at t ≈ 0.55τ .

12Note that for the high temperature, there is a reduction of the distances for all U ’s and
τ ’s in all metrics. This is because the system is less susceptible to the same driving when
at the higher temperature, and so one may wish to tighten the adiabatic threshold for the
metrics.
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Figure 5.6: All figures here show the trace distanceDT
ρ (ρGS(Th)(t), ρ(t)) against

t/τ . Interaction strengths: U = 0J (left), U = 5J (middle), and U = 10J
(right); red lines corresponds to τ = 0.5/J , green lines to τ = 5/J , and
blue lines to τ = 50/J . Panels (a)-(c) show the zero temperature results,
T = 0J/kB; (d)-(f) show the low temperature results, T = 0.2J/kB; (g)-(i)
show the high temperature results, T = 2.5J/kB.

5.5.5 Comment on the trace distance

Having seen how the Bures metric characterises adiabaticity in these many-
body systems at finite temperature, we turn to look at the trace distance and
compare the results.

Beginning at zero temperature, we compare figure 5.6 (a)-(c) to figure 5.3
(d)-(f). For low temperature we compare figure 5.6 (d)-(f) to figure 5.4 (d)-(f).
And for the high temperature, we compare figure 5.6 (g)-(i) to figure 5.5 (d)-(f).
With respect to its own adiabatic threshold13, the trace distance results are
quantitatively close to the Bures distance, including the signalling of avoided
crossings via steps in the distance. This means that the trace distance can be
used as an alternative quantitative measure of adiabaticity.

5.6 Conclusion

In this chapter we have introduced methods for characterising adiabaticity in
many-body systems at finite temperature, tracking how the degree of adia-
baticity evolves with time. Not only did we see that both the Bures metric

13Remember that the maximum value of the trace distance is 1 for normalised states,
therefore the numerical values of the distance will be different to those of the Bures distance.
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and the trace metric give similar conclusions, but thanks to the Runge-Gross
theorem (fundamental to time-dependent density functional theory) [71, 142],
the density metric alone was able to characterise adiabaticity. This is impor-
tant as the density may be estimated more accurately and simply than the
corresponding many-body state. It is also experimentally measurable, opening
up new applications of this method.

Given that, in practice, achieving a perfectly adiabatic evolution is ex-
tremely challenging, we use the finite maximum values of the metrics to design
a practical ‘adiabatic threshold’. We have related the threshold for the state
metrics to an upper bound for the threshold for the density metric, which
is tight enough along most parts of the time evolutions analysed. It is also
relatively easy to estimate the density threshold, even for large systems, and
future work can look into improving this estimate (i.e. by using more complex
fits to the adiabatic line).

We also propose a method of extending the QAC to degenerate many-body
systems at finite temperature. While this is a useful adaptation, it highlights
the importance of including memory effects when characterising adiabatic-
ity. By construction, a measure based on the QAC is basically Markovian,
because, at most, the instantaneous Hamiltonian time derivative is included.
Our results show that this leads to false readings as highly out-of-equilibrium
dynamics may be reported as adiabatic. This adapted QAC can also charac-
terise quasi-adiabatic passages as non-adiabatic because it is overly sensitive
to avoided crossings where the actual many-body state may not necessarily
change significantly, giving rise to different false readings. One could propose
a cumulative measure of adiabaticity by integrating ε over time to try and
combat some of these Markovian issues, e.g.

∫ τ
0 ε(t)dt. This would lead to a

non-Markovian measure but there is the potential issue of the method being
unable to characterise returns to adiabaticity. In a similar vein, one could
then take a rolling average of ε which would be “less Markovian” (i.e. con-
siders the history of the evolution more) than the adapted QAC (although
“more Markovian” than the integrated QAC), and also more open to returns
to adiabaticity. Also note that a similar adjustment could be performed for
the density distance to combat its erroneous returns to adiabaticity.

We have seen how the energy scales of the temperature, interaction strength,
and driving potential have also all had an impact on the dynamics. The met-
rics have allowed us to analyse these behaviours more thoroughly, including
alluding to a temperature dependence required for the adiabatic threshold,
which can be studied in future work.
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To summarise, the Bures metric is a mathematical interpretation of the
quantum adiabatic theorem so can be thought of as an accurate measure of
the degree of adiabaticity (especially as it is non-Markovian). The adapted
QAC for finite temperature that we have proposed is a useful adaptation of the
QAC, but still has some faults (for example, it is Markovian and also struggles
in accurately capturing avoided crossings, which leads to false readings about
the adiabatic nature of the evolution). The density metric follows the state
metrics well, and as the density is a more accessible quantity, this method could
be the most useful of all proposed here for characterising adiabatic evolutions,
even at finite temperature. Therefore the density metric could be used as a
mathematical interpretation of the quantum adiabatic theorem, especially for
many-body systems where the state is hard to calculate and evolve.

We have looked intensively at the dynamics of many-body systems, and
added temperature to the system. Let us now use these systems to further
explore the impact of temperature on many-body systems.
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6. Many-body effects on the ther-
modynamics of closed quantum
systems

Now that we have explored methods of interrogating many-body system dy-
namics at finite temperature, we can turn our focus to other aspects of these
systems. Since we are at finite temperature, it makes sense to look at the
thermodynamic properties of the systems, especially because quantum ther-
modynamics is a rich and growing field with many applications [10, 12, 13,
28–30]. One very important quantum thermodynamic property is the quan-
tum work. It is able to inform us of energy costs for quantum technologies, as
well as opening up the possibility to generate technologies which can utilise
it, such as quantum batteries and quantum heat engines.

In this chapter we address research question 2a; “what do these [quantum
thermodynamic] properties look like for the Hubbard system solved numeri-
cally exactly?” This work will prepare us for question 2b “how accurate are
simple non-interacting-style approximations?”, to be addressed in chapter 7
and question 2c “can we improve the approximations from point 2b using
DFT?” to be addressed in chapter 8. Work in this chapter has been published
in Journal of Physics A: Mathematical and Theoretical [138].

6.1 Introduction

We discussed previously how progress on applications of quantum technolo-
gies is linked to acquiring deeper understanding of the out-of-equilibrium
thermodynamic properties of small quantum systems, particularly at finite
temperature and away from the thermodynamic limit. We know that quan-
tum thermodynamic properties, such as the extracted average quantum work
and thermodynamic entropy production, are important for quantum technolo-
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gies. A remaining challenge, however, is properly understanding the effects
of many-body interactions on quantum thermodynamic properties. Because
these many-body interactions are so important to new and existing technolo-
gies, we need to develop new approximations for quantum thermodynamic
properties in many-body interacting systems. First, however, we need to un-
derstand the exact results, and create an appropriate test-bed for the new
approximations.

Here we present a systematic study of the out-of equilibrium thermody-
namics of many-body quantum systems subject to a set of qualitatively differ-
ent potentials. For each type of potential, we consider dynamic regimes from
sudden quench, to quasi-adiabatic (denoted by τ , the system driving time);
for each dynamic regime we consider different interaction strengths, from non-
interacting to strongly correlated systems (characterised by U , the Coulomb
strength). We also consider different temperatures: low (T = 0.2kB/J), in-
termediate (T = 2.5kB/J) and high temperature (T = 20kB/J). For all cases
considered, we calculate and discuss the average quantum work extracted and
entropy produced. This systematic study allows us to uncover some important
dependencies of work and entropy on the systems’ correlation and dynamic
regimes, which are seen across the different potentials.

We also look at the accumulation of the average quantum work extrac-
tion throughout the duration of the driving for these parameters to further
understand how the system and quantum thermodynamic properties respond
whilst being driven. This provides insight into how the parameters impact the
accumulation of average quantum work extraction, and in some cases show
potential application limits when using quantum technologies.

6.2 Theory

6.2.1 Hubbard model

We will continue to use the time-dependent, inhomogeneous, one-dimensional
Hubbard model, described in section 2.5.1, as we now progress on to investi-
gating the aforementioned quantum thermodynamic properties in many-body
systems. Because the Hubbard model presents non-trivial dynamics but is ex-
actly solvable numerically for small chains, it is a great test-bed for exploring
and understanding these properties, developing approximations, and testing
them. The model parameters to be used in our systematic study are outlined
next, in section 6.2.2.
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(b) Teeth dynamics.
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(c) Slope dynamics.

Figure 6.1: On-site potentials versus site number for a 6 site chain; red dashed
lines show the potentials at t = 0, and blue solid lines show the potentials at
t = τ .

6.2.2 System parameters

Because the inhomogeneous Hubbard Hamiltonian is non-integrable and not
analytically solvable, to understand quantum thermodynamic properties and
their approximations in a more general sense, we must explore a wide range
of parameters. Therefore we shall calculate the work extracted and entropy
produced for different potentials at different temperatures undergoing a variety
of dynamic regimes with various interaction strengths.

We will consider Hubbard chains of 2, 4, and 6 sites, at half-filling and
under open boundary conditions, and explore low (T = 0.2J/kB), medium
(T = 2.5J/kB), and high (T = 20J/kB) temperatures. For each system size
and temperature, we will explore regimes from non-interacting (U = 0J) all
the way to strongly correlated (U = 10J), and dynamics from almost sudden
quench (τ = 0.5/J) all the way to quasi-adiabatic (τ = 10/J).

For each parameter combination, we will consider three types of potential1,
where each potential is driven linearly via vi(t) = µ0

i + µτi t/τ , with t the time,
τ the final time, and µ0

i and µτi the time-independent coefficients for site i at
time 0 and τ respectively. With this choice, the character of the dynamics
will depend on τ , while the final Hamiltonian Ĥf will be independent of it.
These potentials were outlined in section 2.5.1 and are “zigzag”, “teeth”, and
“slope” (remembering that µτi is now 10J for slope). The initial (red; dashed)
and final (blue; solid) potentials for a six-site Hubbard chain are illustrated in
figure 6.1.

1We note that for the 2 site chain slope and zigzag are the only relevant dynamics, and
are equivalent with appropriate values of µ0

i and µτi .
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6.2.3 Average quantum work and entropy production

Recall from chapter 2, section 2.4, that in a closed system at temperature T ,
the average quantum work can be calculated as [10]

〈W 〉 = Tr
[
ρ̂fĤf

]
− Tr

[
ρ̂0Ĥ0

]
, (6.1)

with ρ̂t the system state at time t (0 for initial, and f for final), and Ĥt

Hamiltonian at time t (again with 0 for initial and f for final).
From this work, and using the change in free energy, we can define the

variation in thermodynamic entropy for a given dynamic process as

∆S = β (〈W 〉 −∆F ) , (6.2)

where β = 1/kBT [4, 11]. The free energy variation is

∆F = − 1
β

ln
(
Zf
Z0

)
, (6.3)

with Zt the partition function at time t of the dynamics (again with 0 for
initial and f for final), given by Zt = Tr

[
exp

(
−βĤt

)]
. This thermodynamic

entropy can be considered a measure of the degree of irreversibility of the
system dynamics. In fact it captures an uncompensated heat which would need
to be dispersed to the environment for the system to return to thermodynamic
equilibrium at the end of the driven process [4, 32].

6.3 Exact results

As mentioned previously, before we can assess the accuracy of the approxi-
mations for quantum thermodynamic properties (addressed in chapters 7 and
8), we first need to understand how the exact system behaves. To do this,
we will consider the system to be in thermal equilibrium at time t = 0−, at
which point the coupling with the thermal bath of temperature T is switched
off. The closed system is then driven by a time-dependent external potential
from the initial Hamiltonian, Ĥ0, to the final Hamiltonian, Ĥf , in a time τ .
The extracted work, 〈Wext〉, from this driving is calculated using equation 6.1,
where 〈Wext〉 = −〈W 〉.

We stress that with each of the driven dynamics described in section 6.2.2
the final Hamiltonian is independent of τ . This means τ controls the rate of
driving to the final Hamiltonian. Therefore, the larger τ is, the slower the
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system has evolved and hence the more adiabatic the evolution.
For each set of the many-body system parameters, we will consider driving

times of 0.5 ≤ τ ×J ≤ 10 and electron correlation strengths of 0 ≤ U/J ≤ 10.
Due to the sheer number of results from all the combination of parameters2,
we will only explicitly show results for 6 site chains, and comment on the rest
in the chapter. The results for the parameters not shown here can be found
in appendix B.

6.3.1 Exact average quantum work extraction

Figure 6.2 shows the exact average quantum work extracted from a 6 site chain
driven via “slope” (right column), “zigzag” (middle column), and “teeth ” (left
column) potentials at temperatures of T = 0.2J/kB (first row), T = 2.5J/kB
(second row), and T = 20J/kB (third row). Each panel shows a wide range
of regimes: from non-interacting to strongly correlated systems as U increases
along the y-axis; and from sudden quench towards adiabaticity as τ increases
along the x-axis. A lighter shade of colour corresponds to higher extracted
work.

The same data from figure 6.2 is shown in figure 6.3 but with each colour
showing a specific value of the work across all the panels. This better highlights
the trends in the work extraction between the potentials and temperatures,
whereas figure 6.2 better demonstrates the trends across the parameter space
for a given potential and temperature.

The general trend we find with these data is that most extractable work
(in our parameter space for any given potential and temperature) is in the
adiabatic regime and at low-medium correlation strengths. This is also seen
as N varies (see appendix B for examples), where qualitatively the figures
look the same, but quantitatively more work is extracted as N increases. As
temperature increases, we still see most work extracted in the adiabatic regime,
however the value of this work reduces. Now let us analyse the plots with more
scrutiny to explain some of these trends.

At all temperatures, the largest work is extracted using a slope potential
(figure 6.2, right column). The slope systems have the largest final drive, so
they are able to convert this energy to extractable work. 〈Wext〉 is minimum
for the teeth potential, with work needing to be done on the system because

2A necessity due to the non-integrable Hamiltonian, meaning exact analytical solutions
are not possible. However this also shows the behaviours of the thermodynamic properties
in complex non-integrable systems with finite time dynamics, something not often done due
to its complexity.
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Figure 6.2: (a)-(i) Exact extracted average quantum work versus total dynam-
ics time τ (x-axis) and interaction strength U (y-axis). Data are presented
for 6 site Hubbard chains driven by teeth, zigzag, and slope potentials, and
at low, medium, and high temperatures, as indicated. The lighter the colour
shade, the more work is extracted, compatible with the respective work range
indicated over each panel.
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(a) T = 0.2J/kB with teeth dy-
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(b) T = 0.2J/kB with zigzag
dynamics.
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(c) T = 0.2J/kB with slope dy-
namics.
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(d) T = 2.5J/kB with teeth dy-
namics.
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(e) T = 2.5J/kB with zigzag
dynamics.
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(f) T = 2.5J/kB with slope dy-
namics.
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(g) T = 20J/kB with teeth dy-
namics.
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(h) T = 20J/kB with zigzag
dynamics.
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(i) T = 20J/kB with slope dy-
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Figure 6.3: (a)-(i) Exact extracted average quantum work versus total dynam-
ics time τ (x-axis) and interaction strength U (y-axis). This figure shows the
same data as figure 6.2, but here each colour represents a specific value for the
work across all panels. This enables easier comparison between panels.
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the middle two sites are being driven up3. Because the work extracted spans a
wide range of values, even from positive to negative, we can feel confident that
the parameters and potentials chosen are a good test bed for understanding
work extraction in systems representable by Hubbard chains. This is especially
important because our system is non-integrable, and ensures that we will have
a good test-bed on which to develop approximations for quantum thermody-
namic properties to be used when exact solutions (i.e. for larger chains) are
unobtainable.

For all potentials, increasing the temperature decreases the maximum ex-
tractable work and also decreases the range of extracted work over our pa-
rameter space. This is because as the temperature increases, it becomes the
dominant energy; at t = τ , the potential differences across the chains are
∼ 10J for zigzag and teeth, and ∼ 20J for slope, and the highest tempera-
ture is T = 20J/kB. With the temperature as a dominant energy, the system
becomes less sensitive to the applied field and so less work is extracted.

For all temperatures and potentials, the maximum work extracted occurs
at large τ ’s where the system approaches adiabaticity. Here the dynamic state
adjusts better to the driving and prefers low potential sites (T and U allowing),
which increases the average work extracted. This behaviour has been seen not
only for the results shown in figure 6.2, but also for 2 and 4 site chains (see
appendix B). So although the precise region and quantity of largest average
work extracted will be affected by N , we would anticipate the largest average
work extraction to occur with adiabatic regimes for all N in these systems4.

When increasing U for the slope potential at all temperatures (figure 6.2,
right column), hopping between sites is hampered which reduces the transient
current dynamics. This reduces the work extracted, and so we see the largest
work extracted is for non-interacting to weakly interacting regimes. As U
increases, the Hubbard chain experiences the precursor to the phase transition
to a Mott insulator which ‘freezes’ the system preventing work extraction.

Now looking at the zigzag potential (figure 6.2, middle column), at the low
temperature the results are qualitatively similar to the slope potential, but as
the temperature increases the region of largest average work extraction moves
to regimes with larger many-body interactions. Indeed for the highest tem-
perature, the maximum work extraction moves to a medium/strong U regime
(4 . U/J . 8). This is due to the high temperature having approximately

3If the middle two sites were driven down, 〈Wext〉 would be positive and hence work
could be extracted from the system.

4It would be surprising if the region of largest extracted work suddenly ‘jumped’ from
an adiabatic region to a quench region as N increases.
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twice the energy of the potential difference between neighbouring sites (∼ 10J
at t = τ), and so some repulsion is required to depopulate the high energy
sites completely and maximise work extraction.

For the teeth potential (figure 6.2, left column), the work extracted is nega-
tive meaning work must be performed on the system to achieve the final state.
The drive raises the middle two sites, making them less and less favourable for
occupation, and after the two middle sites have been depleted of electrons no
more work can be produced by the system. Throughout the parameter space
used, the sites continue to be raised after the middle sites have been depleted,
so work must be performed on the system resulting in the work performed on
the system greatly outweighing any work produced by the system. As with the
zigzag potential, we see the region of largest average work extraction moves to
regimes of larger U as the temperature increases. This is for a similar reason,
as a small amount of repulsion is required to completely depopulate the mid-
dle high energy sites allowing for maximum work extraction, especially as the
temperature increases and the thermal energy encourages the electrons up to
the higher energy sites.

To briefly summarise, for all potentials and temperatures we see the largest
average work extracted in the adiabatic regime, however we see how the tem-
perature and potentials themselves cause large differences in the average work
extraction. Here we see how the most average work extracted is achieved using
the slope potential at a low temperature, and the least is using the teeth po-
tential at a high temperature. However, also note the strengths of these driven
potentials because these energies are in competition with the temperature and
interaction strength, and therefore impact the work extraction. Overall we
see that the most average work extraction is in the adiabatic regime, but the
energy scales of the potential, temperature, and interaction strength impact
the quantitative value and, to a lesser extent, the qualitative result.

6.3.2 Average quantum work extracted with time

We have now seen how the average quantum work extracted behaves in a wide
range of τ ’s and U ’s, noting we most often get more work extracted in the
weak-medium coupling regime, and for adiabatic evolutions. But how does
this average work extraction accumulate as the Hamiltonian evolves from Ĥ0

to Ĥf? Let us look at a few examples to explore this5.
5Note that although only the results for 6 sites are discussed here, 2 and 4 sites chains

have also been calculated, and are in qualitative agreement with the 6 site results, (see
appendix B).
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Figure 6.4: (a)-(i) The average quantum work extracted versus time for 6 sites
with zigzag potentials. Three temperatures are shown, low (T = 0.2J/kB) in
the top row, medium (T = 2.5J/kB) in the middle row, and high (T = 20J/kB)
in the bottom row. The columns correspond to the values of τ with τ = 0.5/J
in the left column, τ = 5/J in the middle column, and τ = 10/J in the right
column. Each figure has 3 values of U : U = 0J in red, U = 5J in blue, and
U = 10J in green.
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Figure 6.4 shows the average extracted work accumulation with time for 6
sites with a zigzag potential. For the three temperatures used previously, we
explore three values of τ (τ = 0.5/J in the left column, τ = 5/J in the middle
column, and τ = 10/J in the right column), each showing three values of U
(U = 0J in red, U = 5J in blue, and U = 10J in green).

In general we see a quasi-linear accumulation of the work after an initial
ramp-up phase. When T � U , the work extracted is almost completely linear
in time for all potentials [unless the system saturates in work, such as with the
teeth potential shown in figure 6.6(a)], and so the ramp-up phase is very short.
The ramp-up phase is longest for the highest U where we do not even see the
linear relationship before the final time, and indeed the work extraction for
high U is always lower than for the smaller interaction strengths. This can be
attributed to the fact that at high U the system is approaching the precursor
to the phase transition leading to the Mott-insulator. This means the system
‘freezes’ with the repulsion being so strong it greatly hampers hopping between
sites and results in little work being extracted.

For the zigzag potential, we can see that the work extracted becomes more
linear in time as τ � U . We also note that for all potentials, when T �
20J/kB, lower U ’s give more work extraction.

At the highest temperature the work extracted is greatly reduced and re-
mains relatively similar for all three values of U . There are several crossings
evident between the U = 0J and U = 5J results for the longer τ ’s [figure 6.4(h)
and (i)]. These crossings show the regime of largest 〈Wext〉 transitioning from
low U to medium U (compare, for example, the regions of maximum work
extraction in figure 6.2(e) where the maximum work is with low U , to fig-
ure 6.2(h) where the maximum work extracted is with medium U ; although
these are the final time results, they highlight the type of transition to which
these crossings allude). As the driving takes place, there reaches a point where
some repulsion is advantageous for work extraction6. This is because the repul-
sion encourages electrons to remain in the rising sites longer than they would
in a non-interacting zigzag system, allowing for more work to be extracted.
Hints of a crossing are also seen for the teeth potential (see figure 6.6 and
appendix B), which also has a large difference between neighbouring sites and
hence repulsion to encourage electrons to remain in the upper sites longer is
beneficial. The slope potential (see figure 6.5 and appendix B) does not have
such a stark difference between neighbouring site energies, and so it does not

6We do not want U to be too strong otherwise the system behaves more like an insulator
so less work is extracted, as described earlier.
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Figure 6.5: (a)-(c) The average quantum work extracted versus time for 6 sites
with slope potentials driven with τ = 10/J . Three temperatures are shown,
low [T = 0.2J/kB, (a)], medium [T = 2.5J/kB, (b)], and high [T = 20J/kB,
(c)]. Each figure has 3 values of U : U = 0J in red, U = 5J in blue, and
U = 10J in green.
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Figure 6.6: (a)-(c) The average quantum work extracted versus time for 6 sites
with teeth potentials driven with τ = 10/J . Three temperatures are shown,
low [T = 0.2J/kB, (a)], medium [T = 2.5J/kB, (b)], and high [T = 20J/kB,
(c)]. Each figure has 3 values of U : U = 0J in red, U = 5J in blue, and
U = 10J in green.

show any crossings of this nature. In addition, at the high temperature (bot-
tom row of figure 6.4), the system is less sensitive to both U and the potential,
with T being the dominant energy. It is because of this lack of sensitivity
to U that the work extraction curves remain relatively close to one another.
This clustering of the curves also means crossings from a low U maximum to
a medium U maximum are easier than for lower temperatures where there are
larger differences between the curves.

Calculations for both teeth and slope potentials have also been performed
with some results being shown in figures 6.5 and 6.6 (the complete set are
displayed in appendix B). A key feature seen with teeth and slope potentials,
but not seen with zigzag potentials, is a modulation of the work extraction
with time [for example, U = 0J in figure 6.5 and figure 6.6(a)]. It is pre-
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dominantly seen with small U , where the system is more sensitive to changes
in the potential and hopping between sites is more likely as the electrons do
not have the restricted movement which is associated with high U7. This is
seen particularly for the slope potential, where the modulations occur in most
parameter sets for U = 0J . The modulations are clearer for longer τ ’s as the
system has more time to adjust to the driving and more hopping between sites
can occur.

For the teeth potential, the modulations are mainly seen for low temper-
ature with U = 0J because it is at the low temperature where the system
is more affected by the interaction strength and potential driving. It is also
worth noting that, in both teeth and slope potentials, the modulations are
seen more for 6 site chains than for 2 and 4 site chains. We speculate it is
because there are more degrees of freedom in the 6 site chains.

For the teeth potential (figure 6.6), there is another interesting feature
which the other potentials do not have: the work extraction reaches a plateau
for low T . If we think about the potential, two sites rising in the middle of
the chain whilst the rest remain unchanged, then this plateau indicates the
point at which the middle sites are depopulated and therefore no more work
can be done. This gives us an idea as to the timescale for driving a device
in this manner: a run-time which goes into the plateau will be inefficient and
will not gain anything further. We can therefore use this to increase efficiency
in any device which uses this type of potential. It is also worth noting that
the plateau occurs at larger τ ’s because the system has time to adjust to the
potential. The plateau is also reached quicker in the low temperature case
because the dominant energies are the potential and interaction strength. As
the temperature is increased we do not reach the plateau in figure 6.6, panels
(b) and (c), because the temperature becomes an important energy and this
thermal energy helps keep the middle island populated.

Also note that at the high temperature for the teeth potential [figure 6.6(c)],
there is very little distinction between the different interaction strengths, again
because the temperature is the dominant energy. This is also seen in figure 6.2
(g), which shows the contour plot of the average extracted work for the teeth
potential, and from the scale we can see there is little change in work across
the parameter space.

7As the system approaches an insulating phase, it ‘freezes’, as discussed earlier.
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6.3.3 Entropy production

As mentioned before, the average work extracted can be related to the entropy
(or irreversible work). This entropy corresponds to the heat which the system
would have to disperse to the environment to return to thermodynamic equi-
librium at the end of the dynamics. Let us examine the exact results for this
entropy, ∆S from equation 6.2, using the exact work results in section 6.3.1.
Apart from the average quantum work, the other key ingredient for ∆S is
the free energy variation, ∆F , calculated using equation 6.3. Since our final
Hamiltonians are independent of τ , the free energy only depends on U and T
(via the inverse temperature, β).

Figure 6.7, panels (a)-(c), shows the variation of free energy as U varies at
each of the temperatures considered (green line for low, blue for medium, and
red for high temperature) and for each of the potentials. At low temperatures
and, to a lesser extent, at medium temperatures ∆F significantly changes
with the interaction strength. At high temperatures though, ∆F is weakly
dependent on U . This is further evidence that the system behaves more like a
non-interacting system as the temperature increases8, which will be important
for the approximations addressed in chapters 7 and 8.

The exact entropy production for all potentials and temperatures is shown
in figure 6.7, second to fourth rows: left column for teeth, middle for zigzag,
and right for slope. ∆S increases as the colour shade becomes lighter; note,
however, that the same shade corresponds to different values in different pan-
els, as the overall entropy range significantly changes according to both tem-
perature and type of potential.

The temperature affects the entropy production drastically; compare the
ranges of ∆S (above the contour plots) between the second and last rows of
figure 6.7, where ∆S is consistently greater for the low temperature than it
is for the high temperature. This can be understood by comparing energy
scales of T , U , and the potential differences. By the end of the dynamics, our
potentials reach the maximum energy difference of 10J for zigzag, 10.5J for
teeth, and 21J for slope. For the low temperature kBT = 0.2J in the range of
parameters explored, both the interaction strength U and the potentials can be
much bigger than the thermal energy, and so they have a large impact on the
system evolution. This means the system can change quite drastically leading
to the possibility of large entropy production (and large work extraction, as

8Earlier in section 6.3 we discussed how energy scales impact the system, and a high
temperature dominates over U . This results in the system at high temperature behaving as
if it is a non-interacting system.
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Figure 6.7: (a)-(c) Variation of free energy ∆F versus U for 6 site chains at
low (green), medium (blue), and high (red) temperatures and for the three
potential (as indicated). (d)-(l) Exact entropy production ∆S versus τ (x-
axis) and U (y-axis), for 6 site chains, with teeth (left column), zigzag (middle)
and slope (right column) potential; temperatures as indicated. Darker colour
shades correspond to lower entropy production, whilst lighter to higher entropy
production.
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seen previously). However, at high temperature kBT = 20J the interaction
strength and potential are, at most, comparable to the thermal energy. The
system is therefore not as receptive to being driven. This results in it remaining
closer to its thermal state, and hence the energy required to be dispersed to
return to equilibrium (i.e. the entropy that we are considering here) will be
much less.

In general (and seen most clearly at the lowest temperature) the sudden
quench with weak-medium interaction strength region corresponds to very
high ∆S values, while a dramatic reduction in entropy is seen moving towards
the adiabatic regime. Given the correspondence between ∆S and the heat
to be dispersed at the end to recover equilibrium, it stands to reason that a
sudden quench would require a larger dissipation of energy to return to an
equilibrium state compared to an adiabatic evolution, which remains closer to
an equilibrium state at all times.

We note that systems subject to slope potential show, at low T , a rela-
tively larger entropy production in the strongly-coupled regime and τ ≈ 10/J
than systems subject to zigzag and teeth potentials. The level of adiabaticity
reached for the same value of τ differs with potential. Indeed the dynamic
induced by slope at U & 6J and τ ≈ 10/J is less adiabatic than the ones
by teeth or zigzag, as can be observed by comparing panel (c) to panels (a)
and (b) of figure 6.29. This leads to a larger amount of entropy production
occurring with slope even in this strongly-coupled large-τ region.

6.4 Conclusion

To conclude, we have presented a comprehensive study of the extracted av-
erage quantum work and entropy production in complex many-body systems
subject to a wealth of potentials and dynamic regimes. By understanding
the regimes which maximise the average work extraction, and minimise the
entropy production, efficient protocols for quantum technologies can be devel-
oped.

In general, for a quantum technologist developing a device which requires a
lot of work production and can be based on the Hubbard model, these results
have demonstrated that they should look at using a suitably low temperature,

9If adiabaticity is reached, the work extracted will plateau as τ increases because no
more work can be extracted as the system is fully adiabatic, no matter how much more
slowly it is driven. In panel (c) of figure 6.2, the work has not plateaued fully yet, and so
the system is not yet completely adiabatic.
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keeping interactions small, and evolving the system slowly in order to maximise
the work output. They should also be very careful with the type of potential
they use, with a teeth-like potential where sites are raised requiring energy
to be put into the system, whilst a slope-like potential improving the energy
output. They should be aware of the balance between temperature, interaction
strength, evolution time, and potential type/strength, and the impact these
have on the work and entropy i.e. a temperature that is much greater than
the interaction strengths considered will limit the amount of work that could
be produced compared to a temperature more comparable to the interaction
strength.

We have discussed in detail the effects of the interplay between the differ-
ent energy scales governing the systems – potentials, many-body interactions,
and thermal energy – on 〈W 〉 and ∆S. We have also compared results as
many-body correlations are increased up to the strongly coupled regime and
as the dynamic regime is continuously changed from sudden quench to quasi-
adiabatic. By using finite time processes and a system which is far from
integrability, we shed light onto how thermodynamic properties behave in this
challenging regime.

For all potentials at low to intermediate temperatures, medium to strong
Coulomb repulsion decreases work extraction by making the system less re-
sponsive to the external drive. At weak Coulomb correlations, more work can
be extracted as the system becomes adiabatic, while with stronger many-body
interactions the work production becomes independent of the overall driving
time τ much sooner. For the same parameter sets at high temperatures, work
extraction is greatly reduced both in absolute values and in variation range.

We have seen how the average work extraction accumulates whilst the sys-
tem is being driven, and analysed the effects of the energy scales. In general
the work accumulates in a quasi-linear manner, with more work being ex-
tracted for low-medium correlation strengths. This gives an idea as to the
parameters to be used for more efficient quantum technology applications.
The impact of temperature is seen clearly, with the work extraction declining
and the effect of U drastically reducing as temperature increases. The type of
potential also gives rise to interesting features, with modulations being seen
in non-interacting slope and teeth systems, and a plateau showing an effec-
tive end-point to any technological application run-times for systems with the
teeth potential.

At low temperatures the entropy production presents a behaviour some-
what more dependent on the potential applied. We observe a general tendency
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of lower ∆S values for intermediate to large τ ’s, but the onset of an adiabatic-
like entropy dynamics varies considerably with the potential at intermediate
coupling strengths. For a zero temperature, open-boundary, finite, homoge-
neous Hubbard chain, intermediate coupling strengths correspond to the pre-
cursor of a transition between metallic and insulating behaviour (precursor to
a Mott insulator transition). The behaviour observed at intermediate coupling
strengths may be a signal of how the different potentials affect this transition.

Similarly to the extracted average quantum work, entropy production de-
creases with temperature in both absolute value and range of variation, as the
system becomes less and less responsive to the applied potential.

Now that we have analysed 〈W 〉 and ∆S, and confirmed that the parameter
set provides a wide variety of situation and results, we can develop some
approximations for these many-body systems and test them against these exact
results. The hope for this is that the approximations can then be used for
larger systems where exact results are currently unobtainable, and that we
can provide an indication of the regimes in which the approximations are
highly accurate.
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7. Developing a hybrid approx-
imation for quantum thermody-
namic properties

In this chapter, we will begin to look at methods of approximating quan-
tum thermodynamic properties in many-body interacting systems, applying
these general methods to the Hubbard model. Many-body interacting sys-
tems are of great importance, being key systems for advancing of quantum
devices and developing understanding of fundamental physics [50, 51, 54–56,
147–149]. However the difficulty in computationally calculating properties
of many-body interacting systems increases exponentially with system size.
The many-body interactions are often approximated to allow for computa-
tionally viable calculations. Here we will be addressing research question 2b:
“how accurate are simple non-interacting-style approximations [for quantum
thermodynamic properties]?” Because we analysed the exact average work
extraction and entropy production in the previous chapter, we can use those
results to quantify the accuracy of the non-interacting-style approximations
developed in this chapter.

Work in this chapter has been published in Journal of Physics A: Mathe-
matical and Theoretical [138].

7.1 Introduction

We saw from chapter 6 that many-body systems are of key importance to
the progress on applications of quantum technologies, and indeed the need
to understand the role of thermodynamics in these systems has become more
apparent [10, 11, 13, 32, 59, 150]. In this respect, there have been recent works
studying out-of-equilibrium thermodynamics of many-body systems such as
quantum harmonic oscillator chains and spin chains [49–58].
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However, wherever there are many-body interactions, the computational
cost increases as the size of a many-body interacting system increases, expo-
nentially so. Therefore, solving large many-body systems (over ∼10 electrons
for evolving systems) exactly is almost impossible with current hardware1.
To bypass this issue, approximations for the interactions are often used. This
brings us to Density Functional Theory (DFT), concepts of which have lead to
the Kohn-Sham theorem where many-electron systems are approximated using
their non-interacting counterpart plus some approximation for the interaction
(explained later in chapter 8).

We will not use DFT in this chapter (that will come in chapter 8), but we
will take inspiration from it; we will look at approximating our Hubbard sys-
tem from chapter 6 with its non-interacting counterpart, and then add some
effects of the interactions. This approximation will be applied to the aver-
age quantum work and entropy production. This will enable the calculation
of these important quantum thermodynamic quantities for larger many-body
systems, hopefully leading to more energy efficient devices and even new ap-
plications.

A proposal for a density-functional-theory-based set of approximations for
the quantum work, which is in principle applicable to systems of high com-
plexity, has already been seen and proven successful [32, 59], numerically con-
sidering a system of 2 electrons. In this chapter, however, we numerically
consider larger systems and develop a new, hybrid, approximation which is
computationally cheap but has great accuracy in many parameter regimes.

As alluded to before, in this chapter we consider two quite drastic approxi-
mations for the same parameter set used in chapter 6, and compare them with
the exact results. The first is the completely non-interacting approximation,
where many-body interactions are set to zero in all phases of the thermody-
namic processes considered. The second approximation assumes knowledge
of the initial interacting many-body state, but completely neglects interac-
tions afterwards for the driven dynamics. We find that including interactions
through just the initial state yields surprisingly accurate results for the times
used in our parameter set. Of course, as the time of the evolution is extended,
the effect of the interactions will become greater and so a non-interacting
approximation will become less favourable (for example, we will see later in
figure 7.2(f) the accuracy is decreasing at larger τ ’s for intermediate interac-

1It is possible to find highly accurate results for larger systems using techniques such as
DMRG, but here we are referring to exactly diagonalising the Hamiltonian for systems on
a lattice.
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tion strengths). However, once the system reaches adiabaticity, no more work
can be extracted (i.e. when the work extracted plateaus with τ in our figures)
and the impact of the interactions during the larger τ ’s is reduced. Therefore,
the accuracy of a non-interacting-based approximation would be expected to
reduce at longer timescales until adiabaticity is reached when the accuracy
should remain relatively constant as τ is increased further. We also compare
how this hybrid approximation impacts the different methods of calculating
the quantum work2.

7.2 Recapitulation of system parameters

Having investigated the exact average work extraction and entropy produc-
tion in chapter 6, and established the range of parameters used as a good
test-bed, we will use those parameters for the approximated systems. This
allows us to directly compare the approximations with the exact results, and
hence determine the accuracy and suitability of the approximations in various
regimes.

We therefore continue to use the time-dependent, inhomogeneous, one-
dimensional Hubbard model at half filling with three potentials (zigzag, slope,
and teeth) at three temperatures [low (T = 0.2J/kB), medium (T = 2.5J/kB),
and high (T = 20J/kB)] with a range of driving times (0.5 ≤ τ × J ≤ 10)
and interaction strengths (0 ≤ U/J ≤ 10). This is our test-bed for the aver-
age quantum work extraction and entropy production for the non-interacting-
based approximations discussed in this chapter.

7.3 Developing the hybrid approximation

The most basic approximation to make to a many-body interacting system
is to assume that there are no interactions, also known as the “tight-binding
approximation”. It is with the interactions that the calculation becomes ex-
ponentially more challenging as system size N increases, and so by taking a
non-interacting approximation we reduce our calculation down to N single-
electron problems. Such a dramatic approximation is not expected to accu-
rately capture the system when U is a dominant factor.

To keep the computational requirement small, but increase the accuracy
of the results, we here propose to use a hybrid approximation composed of

2Discussed in section 2.4.1 of chapter 2: 〈W 〉 can be found using the probability distri-
bution or the change in internal energy (for closed systems).

119



the exact initial system and non-interacting dynamics. By taking the exact
initial system, we are providing some knowledge of the interactions to help
guide the approximation. However, because the evolution is still taken to
be non-interacting, the calculation is still computationally cheap at its most
challenging point.

7.3.1 Average quantum work approximations

The type of approximations we consider for the average quantum work are of
the form:

〈W is+evo〉 = Tr
[
ρ̂is+evo
f Ĥevo

f

]
− Tr

[
ρ̂is0 Ĥ

evo
0

]
. (7.1)

Here is (initial system) refers to the approximation used to derive the system
state at t = 0, ρ̂is0 = exp

(
−βĤ is

0

)
/Tr

[
exp

(
−βĤ is

0

)]
, and evo is the approxi-

mation used for the evolution operator Uevo = T e−i
∫ τ

0 Ĥevo
t (t)dt where T is the

time-ordered operator. The final state is then ρ̂is+evo
f = Uevoρ̂

is
0 U †evo. We note

that Ĥevo
0 = Ĥevo

t (t = 0). In the approximation where is and evo are the same,
only one acronym shall be written. As equation 7.1 indicates, all Hamiltoni-
ans must use the same approximation3, otherwise the mismatch in eigenstates
leads to spurious oscillations in the work production (see appendix C).

We will consider two approximations, as described in table 7.1. The first,
〈WNI〉, corresponds to a completely non-interacting system, the one obtained
by setting U = 0 in the Hubbard Hamiltonian. The second approximation,
〈W exact+NI〉, uses the exact many-body initial state, but approximates the
Hamiltonian for the evolution of the system to be non-interacting, in accor-
dance with the notation previously introduced4.

7.3.2 Entropy production approximations

When approximating the entropy, we use 〈W is+evo〉, while the free energy is es-
timated using the same assumptions as ρ̂is. This is because both ρ̂is and Zt (in
the free energy) have a similar computational cost: they include exp

(
−βĤt

)
and this term requires a computationally diagonalisable Hamiltonian. In the
NI approximation, diagonalising ĤNI is relatively easy, but then the free en-
ergy is a constant. For ∆Sexact+NI , the exact free energy is then used (see

3Note that we are not referring to the Hamiltonian used to find ρ̂.
4Although this can be considered a quench in U which has an associated work cost, we are

proposing this as an approximation not a protocol, and therefore define the approximation
without this cost. If one wished to implement this as a protocol, they would have to consider
this work.
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Acronym NI exact + NI

Approx. 〈WNI〉 〈W exact+NI〉

Ĥevo ĤNI =

− J
N∑
iσ

(
ĉ†i,σ ĉi+1,σ + h.c.

)
+

N∑
i

vin̂i

ĤNI =

− J
N∑
iσ

(
ĉ†i,σ ĉi+1,σ + h.c.

)
+

N∑
i

vin̂i

Initial state ρ̂NI0 = exp
(
−βĤNI

0

)
/ZNI ρ̂exact0 = exp

(
−βĤexact

0

)
/Zexact

Table 7.1: Types of approximations with their Hamiltonians and initial states.

figure 6.7 (a)-(c) in chapter 6) as this uses the same assumption made for cal-
culating the initial thermal state, that the system Hamiltonian can be exactly
– or very accurately – diagonalised.

7.4 Approximated results

We will firstly approximate the many-body system with a non-interacting sys-
tem and use this to estimate quantum thermodynamic quantities. Afterwards
we will extend this approach to include some memory of the electron-electron
interaction through the system’s initial state.

7.4.1 Non-interacting approximation for average quan-
tum work

Clearly, for non-interacting (NI) systems, the average work extracted 〈WNI
ext 〉

has no dependence on U . This is shown in the upper panels of figure 7.1, where
we plot 〈WNI

ext 〉 for a zigzag potential, with low (left), intermediate (middle),
and high (right) temperatures. The horizontal red line shows the temperature
kBT as a comparison with the interaction strength, noting how (for the exact
results) the most work is extracted when the interaction strength is comparable
to, or less than, the temperature. For the highest temperature, kBT = 20J
is above our parameter space so the red line cannot be seen in the figures.
We show the zigzag potential results as they correspond to an accuracy of
the results consistently in-between those of the slope and teeth potentials (see
appendix D for all results).

The lower panels of figure 7.1 show the corresponding relative error of the
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Figure 7.1: Panels (a) to (c): Work extracted in the NI approximation for 6
site chains driven by the zigzag potential. Considered regimes go from non-
interacting to strongly coupled along the y-axis, and from sudden quench to
nearly adiabatic along the x-axis. The lighter the colour shade, the more work
is extracted, compatible with the respective value ranges indicated above each
panel. Temperature increases from left to right, as indicated.
Panels (d) to (f): Relative error for 〈WNI

ext 〉 with respect to the exact results
for the same parameters as the upper panels. The darker the colour, the more
accurate the approximation is in that regime. The red horizontal lines show
the value of kBT , where for the highest temperature kBT = 20J is beyond the
parameter space.
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NI approximation, where the darker the blue, the more accurate the approx-
imation is in that regime. This approximation accurately captures the work
extraction only in the parameter regions where interactions are weak compared
to the other energy scales. These regions include higher values of U as the
temperature increases (see related discussion in section 6.3.1 in chapter 6). At
the high temperature, U becomes less of an important energy scale meaning
the system behaves more like a non-interacting system. Therefore we see the
NI approximation becomes more accurate as temperature increases for most of
the parameters sets. The range of 〈WNI

ext 〉 over the parameter space decreases
with temperature (see colour scale above each panel), and at high temper-
ature there is also very little work extracted because the thermal energy is
comparable to the driving potential rendering the driving less effective. We
find a similar accuracy pattern with increasing temperature for 2 site5 and 4
site chains.

We saw in chapter 6, figure 6.2, that the smallest average work extraction
occurs at high U , where the system ‘freezes’ and becomes a Mott insulator.
Since the non-interacting approximation does not give accurate results for large
U ’s, we see it greatly overestimating the minimum work that can be extracted.
To see this, compare the range of extracted work (indicated over each panel by
the colour scale) for the mid column of figure 6.2 to the corresponding upper
panels of figure 7.1.

In contrast, the largest average work extraction is quantitatively captured
well by the non-interacting approximation because the regions of largest work
extraction are commonly found in the weak U regimes, for these systems.
However the parameter regions of the largest work extraction are not captured
accurately, with the non-interacting approximation struggling to encapsulate
the effect of τ to a high accuracy. For example, compare the shape of the
light-shade areas of the mid-column panels of figure 6.2 to the corresponding
areas of the upper panels of figure 7.1. Despite this mismatch in large work
extraction regions, the non-interacting approximation is still within 10% of
the exact result for these small U ’s.

With the teeth potential, shown in appendix D, the non-interacting approx-
imation performs better than for the zigzag potential because U only becomes
a dominant energy at larger values (as discussed in section 6.3.1 of chapter 6).
Therefore the non-interacting potential can accurately capture the dynamics
better for a larger parameter region. As a consequence, for 6 site chains the

5See references [32] and [59] for 2 site chain examples, and especially [32] for 2 site
non-interacting results.
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teeth potential results in 10% accuracy (or better) for U . 3J at low temper-
atures, for U . 7J at intermediate temperatures, and for all regimes at high
temperatures. Recall, though, that at the highest temperature the thermal
energy dominates so that the system is not as sensitive to parameter changes
and little work is extracted across all regimes.

The slope potential, also shown in appendix D, gives rise to results less
accurate than the zigzag and teeth potentials. The improvement in accuracy
as temperature increases is also not as great as that seen for zigzag and teeth
potentials. With the slope potential, there is not a large potential difference
between neighbouring sites (unlike the other potentials), and so U still remains
relevant and is a dominating energy over the potential. Therefore, with U still
very much a key ingredient in the system, the non-interacting approximation is
bound to struggle and fail at smaller U ’s than for zigzag and teeth potentials.
Indeed we see this even at high temperatures, where we get an accuracy of
10% only for U . 3J in the 6 site chain.

7.4.2 ‘Exact initial + NI’ approximation for average
quantum work

As explained previously, to try and improve the estimate of the work ex-
tracted, we shall continue to implement a non-interacting evolution, but this
time starting from the exact many-body initial state. The rationale is that a
many-body evolution is, in general, a more challenging part of the calculation
(and hence here it is approximated), while an accurate estimate for the initial
state would be more readily available. This approximation is referred to as
〈W exact+NI〉 in table 7.1.

Indeed this simple approximation leads to a striking improvement in the
accuracy. Results are presented in figure 7.2 with 〈W exact+NI

ext 〉 in the upper
three panels, and its relative error with respect to the exact results in the lower
panels. The parameters are the same as in figure 7.1, and again the higher the
accuracy, the darker the blue of the relative difference in the second row.

By comparing 〈W exact+NI
ext 〉 to the corresponding exact results in panels (b),

(e), and (h) of figure 6.2 we see that including interactions just through the ini-
tial state is sufficient to recover the qualitative (and in great part quantitative)
behaviour at low and intermediate temperatures. The greatest improvement
is seen at the low temperature, where 〈W exact+NI〉 recaptures the correct work
to 10-20% for most regimes up to U ≈ 9J (unlike before where 〈WNI〉 was
only able to capture this accuracy for regimes up to U ≈ 2J).
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Figure 7.2: Panels (a) to (c): Work extracted in the ‘exact + NI’ approxima-
tion for 6 site chains driven by the zigzag potential. Considered regimes go
from non-interacting to strongly coupled along the y-axis, and from sudden
quench to nearly adiabatic along the x-axis. The lighter the colour shade, the
more work is extracted, compatible with the respective value ranges indicated
above each panel. Temperature increases from left to right panel, as indicated.
Panels (d) to (f): Relative error for 〈W exact+NI

ext 〉 with respect to the exact re-
sults for the same parameters as the upper panels. The darker the colour, the
more accurate the approximation is in that regime.
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At the high temperature the qualitative behaviour is not recovered, but,
as the work extracted varies only slightly at this temperature, quantitatively
the approximation remains good overall. It reproduces rather well the overall
range in the work extraction (compare the colour scale limits of figures 6.2
(b), (e), and (f) with figures 7.2 (a), (b), and (c) respectively). In general,
at all temperatures the ‘exact + NI’ approximation significantly improves the
minimum extracted average work accuracy compared to the NI value.

A similar pattern is seen in all the other systems considered, i.e. for 2 and
4 site chains, and for the teeth and slope potentials (see appendix D), demon-
strating the scalability and versatility of this approximation. The 〈W exact+NI〉
approximation handles weak to medium correlated systems well in all regimes
and temperatures, from adiabatic to sudden quench, and from low to high
temperatures. This is a vast improvement over the purely non-interacting
approximation, and for still a relatively cheap computation. The success of
this approximation indicates that the approximation of the work is far more
sensitive to the initial conditions than it is to the evolution or final conditions.

7.4.3 ‘Exact + NI’ using probability distributions.

We have now developed and tested this hybrid approximation, however, as
section 2.4.1 in chapter 2 demonstrated, there is more than one way to cal-
culate the average quantum work for closed systems. Because this hybrid
approximation moulds together two different systems (a non-interacting one,
with the exact), it is important to investigate how it could be implemented
using the other method of calculating 〈W 〉 (calculated using the probabilities,
see equation 2.53 in chapter 2). This is especially important given the sensi-
tivity of the results to the placement of the approximation for the evolution
(especially for the Hamiltonian), found during the development of this hybrid
approximation (mentioned in section 7.3.1, and demonstrated in appendix C).

We demonstrated in section 2.4.1 that, for closed quantum systems, equa-
tions 2.76 and 2.53 are equivalent. To understand the impact of the hybrid
approximation, we will begin from equation 2.76 with the ‘exact + NI’ condi-
tions, and by following the steps in section 2.4.1 we will see how equation 2.53
changes. The ‘exact + NI’ work is

〈W 〉 = Tr
[
ρ̂exact+NIτ ĤNI

τ

]
− Tr

[
ρ̂exact0 ĤNI

0

]
. (7.2)

Now let us expand the second term, writing the trace as a sum over the non-
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interacting Hamiltonian eigenstates,

Tr
[
ρ̂ex0 Ĥ

NI
0

]
=
∑
n

〈nNI0 | ρ̂ex0 ĤNI
0 |nNI0 〉 (7.3)

=
∑
n

〈nNI0 | ρ̂ex0 |nNI0 〉ENI
0,n . (7.4)

Because we know we want to be able to write pm(τ)|n(0) in some form, we can in-
troduce the identity∑m |〈m(τ)| U |n(0)〉|2 = 1 and use pn(0) = 〈n(0)| ρ̂(0) |n(0)〉
and pm(τ)|n(0) = |〈m(τ)| U |n(0)〉|2;

Tr
[
ρ̂ex0 Ĥ

NI
0

]
=
∑
n

ENI
0,n 〈nNI0 | ρ̂ex0 |nNI0 〉

∑
m

〈nNI0 | U
†
NI |mNI

τ 〉 〈mNI
τ | UNI |nNI0 〉

(7.5)

=
∑
n,m

pnex+NIpmNI(τ)|nNI(0)E
NI
0,n , (7.6)

where pnex+NI is the probability of the exact state being in the n-th non-
interacting eigenstate |nNI0 〉 at t = 0.

Now turning our attention to the first term of equation 7.2, we can write

Tr
[
ρ̂NI+ex
τ ĤNI

τ

]
=
∑
m

〈mNI
τ | ρ̂NI+ex

τ ĤNI
τ |mNI

τ 〉 (7.7)

=
∑
m

〈mNI
τ | ρ̂NI+ex

τ |mNI
τ 〉ENI

τ,m (7.8)

=
∑
m

〈mNI
τ | UNI ρ̂ex0 U

†
NI |mNI

τ 〉ENI
τ,m. (7.9)

We can now introduce the identities ∑n |n〉 〈n| = 1 and ∑s |s〉 〈s| = 1 to try
and obtain some form of pnpm(τ)|n(0);

=
∑
m

〈mNI
τ | UNI

∑
n

|n〉 〈n|ρ̂ex0
∑
s

|s〉 〈s|U †NI |mNI
τ 〉ENI

τ,m. (7.10)

These identities, highlighted in green, show where an issue arises; |n〉 and
|s〉 need to be non-interacting to allow

∣∣∣〈mNI
τ |UNI

∑
n |nNI0 〉

∣∣∣2 = pmNI(τ)|nNI(0)

and so to match the probability in the second term. However, even if they are
non-interacting, we cannot reduce the equation further towards equation 7.2
(because 〈nNI0 | ρ̂ex0 |sNI0 〉 6= pnex+NI ). To reduce it further, we would need to
take |n〉 and |s〉 as exact eigenstates.

Let us continue with |n〉 and |s〉 as exact eigenstates (so the orthogonality
of |n〉 and |s〉 can be utilised, resulting in 〈nex0 | ρ̂ex0 |sex0 〉 = δnex,sexpnex) to see
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how different the result is from equation 7.2:

∑
m

〈mNI
τ | UNI

∑
n

|nex0 〉 〈nex0 | ρ̂ex0
∑
s

|sex0 〉 〈sex0 | U
†
NI |mNI

τ 〉ENI
τ,m (7.11)

=
∑
n,m

〈mNI
τ | UNI |nex0 〉 〈nex0 | ρ̂ex0 |nex0 〉 〈nex0 | U

†
NI |mNI

τ 〉ENI
τ,m (7.12)

=
∑
n,m

pnexpmNI(τ)|nex(0)E
NI
τ,m. (7.13)

And now putting the first and second terms together gives

〈W 〉 =
∑
n,m

pnexpmNI(τ)|nex(0)E
NI
τ,m − pnex+NIpmNI(τ)|nNI(0)E

NI
0,n . (7.14)

Highlighted in green are the terms which prevent us from factorising this
formalism into one similar to equation 2.55.

So from the trace form of the average work hybrid approximation (equa-
tion 7.2), we cannot achieve the probability distribution form. However, let
us try to see how the probability distribution expression would look, both
mathematically and graphically. The closest equivalent form of equation 2.55
is

〈W 〉 =
∑
n,m

pnex+NIpmNI |nNI
(
ENI
τ,m − E0,NI

n

)
. (7.15)

Figure 7.3 (a) gives the exact result for the 2 site Hubbard model at kBT =
2.5J/kB with the zigzag potential. Panel (b) shows the result of equation 7.15
and panel (c) shows the relative error when compared with the exact work.
The results from the trace expression for these parameters are shown in panels
(d) and (e). We can see when comparing figure 7.3 (b) and (c) with figure 7.3
(d) and (e) respectively that the trace method yields larger regions of higher
accuracy and qualitatively captures the exact work better for this parameter
set.

Now let us try to identify the difference mathematically. Expanding equa-
tion 7.15, the second term (from ENI

0,n) becomes Tr
[
ρ̂ex0 Ĥ

NI
0

]
, but the first term

(from ENI
τ,m) cannot be reduced beyond

∑
n,m

〈mNI | UNI |nNI〉 〈nNI |ρ̂ex0 |nNI〉 〈nNI |U
†
NI |mNI〉ENI

τ,m (7.16)

where the green terms highlight the difference with equation 7.10 and where
〈nNI | ρ̂ex0 |nNI〉 cannot be used to factorise into the trace expression.

The difference between the trace calculation and the P (w) calculation can
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Figure 7.3: (a) The exact average quantum work extraction for a 2 site chain
with zigzag potential at T = 2.5J/kB. (b) The average work extracted using
P (w) (from equation 2.53) for the same parameters. (c) The relative difference
with the exact work for the work in (b).
(d) The average work extracted using the trace expression (from equation 2.76)
for the same parameters as (a). (e) The relative difference of panel (d) with
the exact work.
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be written as

∑
n,m

ENI
τ,m

[
〈mNI

τ | UNI |nex0 〉 〈nex0 |ρ̂ex0 |nex0 〉 〈nex0 |U
†
NI |mNI

τ 〉−

〈mNI
τ | UNI |nNI0 〉 〈nNI0 |ρ̂ex0 |nNI0 〉 〈nNI0 |U

†
NI |mNI

τ 〉
]

(7.17)

where the green terms highlight why the equation cannot be reduced to the
trace form. Note that the initial, t = 0, term cancels.

The difficulty appears when handling the initial states in the term which
includes Eτ,m: it seems challenging to match the initial probabilities in both
the initial and final terms without being very careful with where the approxi-
mations are made.

And so we can see that for the hybrid approximation, care must be taken
with where the approximation is applied and as to which method of calculating
the work is used, as equations 2.76 and 2.53 are no longer equivalent. Certainly
for closed systems, the trace method (equation 7.2) should be used as it is seen
to be more accurate.

One potential explanation as to why the trace calculation is more accurate
could be down to the 〈nex0 | ρ̂ex0 |nex0 〉 term in equation 7.17. This term stems
from the trace calculation and shows the initial state matches with the basis
of the eigenstates. The other terms, 〈mNI

τ | UNI |nex0 〉 and 〈nex0 | U
†
NI |mNI

τ 〉 do
not match bases, however we have already seen (particularly in appendix C)
that it is matching the initial state which is important for a more accurate
approximation. When we look at the term from the P (w) calculation, we see
that ρ̂ex0 does not match the non-interacting basis of |nNI〉 but the evolution
operator UNI does. So although in the evolution the basis is matched, the
fact the initial state is not matched once again seems to be key to it’s reduced
accuracy.

7.4.4 Entropy production

Using the approximated work, we can now approximate the entropy produc-
tion. As seen from equation 6.2 in chapter 6, the free energy is required for
the entropy. The free energy is dependent only on U , not τ , and must be
approximated using the same assumptions used in the quantum work; mainly
whether or not the Hamiltonian is computationally exactly diagonalisable, and
therefore if the exact partition function can be used.
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Figure 7.4: Upper panels: Non-interacting entropy production versus τ (x-
axis) and U (y-axis) for 6 site chains with a zigzag potential. Lower panels:
Non-interacting entropy production relative difference for the same parameters
as the upper panels.

Non-interacting approximation

For the non-interacting approximation, we do not assume the exact Hamilto-
nian can be readily diagonalised and therefore we must use the non-interacting
Hamiltonian in the free energy. This means the free energy no longer depends
on U and is simply a constant added to the work (U = 0J values are the
y-intercept in figure 6.7, panels (a)-(c), in chapter 6).

Figure 7.4 presents the ∆SNI results for 6 sites with zigzag potential,
and increasing temperature (left to right). The upper panels show the non-
interacting entropy production, and the lower ones the relative difference with
the exact entropy production (the darker the purple, the more accurate the
approximation is in that region).

For each given temperature, the entropy ∆SNI is just 〈WNI
ext 〉 with an added

constant (from the free energy). So, much like the non-interacting work, for all
driving times this approximation is unable to qualitatively describe the exact
entropy produced.

Comparing with the accuracy of the non-interacting approximation for the
work, the overall quantitative accuracy of the entropy is in general reduced for
all three temperatures. This is to be expected since we are severely approxi-
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mating the free energy as well as approximating the work. As U increases we
are exploring highly correlated systems, but these Coulomb correlations are
completely neglected by the non-interacting approximation.

The NI approximation works better for the slope potential than for the
zigzag potential at all temperatures. It gives a 10% accuracy (or better) for
U . 1.5J at low and intermediate temperatures and for almost all regimes
at high temperatures. For the teeth potential, the accuracy of the results is
comparable to the zigzag potential (see appendix D).

Overall we see that with this extra error coming from the free energy, the
entropy is not as accurately captured. It is only accurately calculated in very
weakly coupled systems, and cannot qualitatively describe the exact entropy.

Exact initial state with non-interacting evolution

Let us now see how considering the exact initial state affects the estimate of
the entropy production. Initially the entropy ∆S̃exact+NI is calculated from
equation 6.2 using 〈W exact+NI〉 = −〈W exact+NI

ext 〉 and the exact free energy
variation. When using the ‘exact + NI’ approximation, we can assume the
exact Hamiltonian can be readily diagonalised at both t = 0 and t = τ 6, and
so we can use the exact free energy (see figure 6.7(a)-(c) in chapter 6) in the
calculation of the entropy7.

However we note that, with the implementation described above, this ap-
proximation could lead to the nonphysical occurrence of negative entropy. The
two contributions to the entropy have opposite sign, and since the work has
been approximated, the occurrence of a negative sign cannot be excluded. We
therefore further impose that ∆Sexact+NI = max{∆S̃exact+NI , 0} to correct for
it. At least for the systems at hand, in the regions where the further restriction
is imposed, and the regions leading up to them, the accuracy of the approxi-
mation is so poor that it would not be worthwhile to use this approximation
for those parameters anyway.

Related results are plotted in figure 7.5 for 6 sites with a zigzag potential,
and increasing temperature (left to right). By comparing the upper panels of
figure 7.5 to the upper panels of figure 7.4 and to the corresponding ones in
the mid column of figure 6.7 (in chapter 6), we note a marked improvement
in the qualitative behaviour of the approximation. As with the work, we can

6We are already assuming that we can diagonalise the initial Hamiltonian to get the
exact initial state, we then make the same assumption for Hf , as this operation would have
the same calculation costs/difficulties.

7Note that since the free energy depends on U , the entropy produced is not a simple
translation of the work.
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Figure 7.5: Upper panels: ‘Exact + non-interacting’ entropy production versus
τ (x-axis) and U (y-axis) for 6 site chains with zigzag potential. Lower panels:
‘Exact + non-interacting’ entropy production relative difference for the same
parameters as the upper panels.

see an improvement also in the quantitative results. The high temperature
accuracy is very much akin to that of the work, and is accurate within 30% for
all regimes. However, as the temperature decreases, the quantitative accuracy
also decreases, with the low temperature approximation only being good in
a small area at short driving times with weak interactions. This inaccuracy
comes into the entropy calculations through the approximation of the average
work, so the regimes of greater/lesser accuracy fairly mirror those of the work.

Results for the other two potentials (teeth and slope) confirm these trends
and are shown in appendix D. Similarly to the zigzag potential, the ‘exact
+ NI’ approximation with the teeth and slope potentials recovers to a good
extent the qualitative behaviour of ∆Sexact for low and intermediate temper-
atures. For high temperatures the qualitative behaviour is recovered only for
U . 2J . Quantitatively, the areas of worse performance are related to the
areas of worse performance for the corresponding 〈W exact+NI

ext 〉, however the
approximation performs worse for ∆Sexact+NI than 〈W exact+NI

ext 〉 for teeth, and
better for slope. In general the approximation improves its quantitative per-
formance with temperature as it reproduces well the limits of the entropy
production range, and especially so at high temperature.

Overall the approximation improves its quantitative performance compared
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to the NI approximation, and while the results are not as accurate as for the
work, they are still accurate in a wide span of regimes, increasing in accuracy
as the temperature increases. The limits of entropy produced are also captured
well by the approximation.

7.5 Conclusion

In this chapter we have studied simple non-interacting style approximations
for quantum work and entropy production in many-body interacting systems.
Although the basic non-interacting approximation has very limited regions of
high accuracy in our parameter space, we have demonstrated that when the
initial state is taken to be exact and the evolution is crudely approximated
with the non-interacting system, the results are markedly improved in their ac-
curacy. This computationally cheap but surprisingly accurate hybrid approxi-
mation could potentially be used to find better and more efficient operational
regimes for systems where the exact solutions are inaccessible, particularly for
Hubbard-like devices working at correlation strengths less than or comparable
to the temperature.

The purely non-interacting approximation highlights the strong effect of
the Coulomb interaction on the extracted average quantum work. By compar-
ing exact results to the corresponding non-interacting approximations, apart
from the obvious independence on U for all regimes, this approximation strongly
overestimates the smallest average work extracted from a system. This is be-
cause it cannot reproduce the freezing of the system dynamics which is a result
of the strong many-body correlations. On the other hand, the largest average
work extracted is well captured, although it is often attributed to the wrong
parameter regions (mainly in τ).

Including many-body interactions exactly for complex systems is often a
hopeless task. In this work we have proposed a relatively simple approxi-
mation which relies on being able to provide an accurate approximation for
the system’s initial state, while interactions are completely neglected in the
dynamics. This approximation provides accurate results in a wide range of pa-
rameters, although it may not always be accurate at low temperatures or with
comparatively high interaction strengths for quantum devices (see table 7.2
below for valid ranges).

Compared to the non-interacting approximation, we found that this hy-
brid approximation behaves surprisingly well. By including interactions just
through the initial state, the qualitative (and in great part quantitative) be-
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haviour is recovered at low and intermediate temperatures for all regimes,
potentials, and system sizes considered. The greatest improvement is seen at
low temperatures; for example, when considering the zigzag potential, the ‘ex-
act + NI’ approximation reproduces the exact work within 10-20% up to very
strong interactions (U ≈ 9J) for most regimes, whereas the non-interacting
approximation only manages this accuracy for weak interactions (U ≈ 2J).
At all temperatures, the ‘exact + NI’ approximation reproduces reasonably
well the range of the average extracted quantum work across the parameter
space (see colour scales above the related figures). In particular it significantly
improves the minimum value compared to the non-interacting approximation.

We also compared the two methods of calculating the average work ex-
traction outlined in chapter 2. This hybrid approximation results in these
two methods no longer being equivalent. Therefore care must be taken when
applying the ‘exact + NI’ approximation to a closed system, where we rec-
ommend the use of the trace method over the probabilities method, as it has
been seen to yield much higher accuracy in most regions.

When looking at the entropy, using the approximated work, the fully non-
interacting approximations strongly under-perform, both qualitatively and
quantitatively. However, at high temperatures the exact entropy production
range becomes very small, and the quantitative non-interacting approximation
is crudely correct due to the decreased influence of many-body interactions.
As a result, at high temperatures even the non-interacting approximation gives
reasonable quantitative (but not qualitative) results.

When we extend the ‘exact + NI’ approximation to the entropy produc-
tion, we find qualitative improvements similar to the work extraction, with the
behaviour for low and intermediate temperatures largely recovered. Quan-
titatively this approximation significantly improves over the non-interacting
approximation, albeit not as strikingly as for the average quantum work. For
example, at high temperature and with a teeth potential, this approximation
would reproduce exact results within 10% for all parameter ranges, in contrast
to the performance by the non-interacting approximation which gives such an
accuracy only for U . 3J . Overall the ‘exact + NI’ approximation improves
its quantitative performance with temperature, and it captures the entropy
production range well.

In general we can summarise the regions in which it would be suitable
to use the approximations through table 7.2. Here we take 20% as a good
approximation, and look at the zigzag potential.

Our results show that, even when taking a very crude approximation for
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Approx. T U τ

〈WNI〉 low T low; U ≤ 1J all τ ’s
〈WNI〉 mid T low-mid; U ≤ 5J all τ ’s
〈WNI〉 high T all U all τ ’s
〈W ex+NI〉 low T low-high; U ≤ 8J most; τ > 0.75/J
〈W ex+NI〉 mid T low-high; U ≤ 9J all τ ’s
〈W ex+NI〉 high T all U bar U ≈ 6J at long τ all bar τ > 7/J for mid U

∆SNI low T low; U ≤ 1J all τ ’s
∆SNI mid T low; U ≤ 1J all τ ’s
∆SNI high T low-mid; U ≤ 4J all τ ’s

∆Sex+NI low T low; U ≤ 2J short; τ < 3/J
∆Sex+NI mid T low-mid; U ≤ 4J all τ ’s
∆Sex+NI high T all U bar U ≈ 6J at long τ all bar τ > 6/J for mid U

Table 7.2: Table summarising the regions where the approximations would be
valid for work extraction and entropy production in systems with a zigzag-like
potential.

the evolution operator, starting from an accurate initial state is sufficient for
greatly improving the estimate of thermodynamic quantities such as the av-
erage quantum work and the corresponding entropy production for the wide
range of potentials, temperatures, and a great part of the interaction and
dynamic regimes considered.

Let us now try to make this hybrid approximation more sophisticated, and
take inspiration from DFT to consider the evolution more accurately.
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8. Density Functional Theory ap-
proaches to quantum thermody-
namic properties

Given the success of the hybrid approximation developed in the previous chap-
ter, we now aim to develop a more sophisticated hybrid approximation. To
do this we turn back to density functional theory (DFT) to (cheaply) in-
clude knowledge of the initial interactions within the evolution. Therefore we
can address research question 2c: “Can we improve the approximations from
point 2b using DFT?” in this chapter.

8.1 Introduction

From previous chapters, we have seen why many-body systems are of vital
importance to the progression of quantum technologies as well as for developing
the understanding of fundamental physics. We have also seen that as the size
of a many-body interacting system increases, the computational cost in the
calculation increases exponentially. Methods of addressing these many-body
systems have been alluded to in previous chapters (namely DFT) but it is
in this chapter where we will explicitly use DFT to develop approximations
for quantum thermodynamic properties. Previous work has demonstrated the
applicability of DFT to quantum thermodynamics [32, 59], but here we take
DFT approximations, combine them with the hybrid approach from chapter 7
[138], and explore the resulting approximations for many-body systems, up
to 6 sites. This proposal for a DFT-based set of approximations is, ideally,
applicable to systems of higher complexity.

DFT is, in principle, an exact method of calculating properties of many-
body systems, and was proposed by Hohenberg and Kohn in 1964 [74]. They
demonstrated that any property of a ground state system can be, in theory,
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calculated through the ground state density. This means that properties of
complex many-body systems, for which the wavefunction is too large to han-
dle, can be found using their density, which is a much simpler quantity both
computationally and experimentally.

To find the ground state density of a given system, Kohn and Sham de-
veloped a method which mapped the interacting system to a fictitious non-
interacting system whose potential is adjusted in such a way to reproduce
the many-body interacting ground state density [76]. In practice, finding the
density of the many-body system through this Kohn-Sham system usually re-
quires some approximation to be made. This has led to a plethora of DFT
approximations, each one designed to suit a given set of parameters [61, 63,
151, 152]. One of the most commonly used approximations is the local density
approximation (LDA), which is often used to represent slowly varying continu-
ous systems close to a homogeneous electron gas [76, 153]. An extension of the
LDA, away from the homogeneous electron gas to other model systems, is the
Bethe Ansatz LDA (BALDA) developed by Lima et al., who originally used
the Hubbard model in place of the homogeneous electron gas [72]. In this work
we shall use BALDA to approximate quantum thermodynamic properties in
many-body systems out-of-equilibrium.

The other DFT approximation we shall use is to take the exact initial
Kohn-Sham system by reverse engineering the exact density at the initial time
to find the Kohn-Sham potential. The reverse engineering scheme we use was
developed in reference [132] for ground state lattice systems at zero tempera-
ture. Other work has begun to explore reverse engineering the thermal density
to find the Kohn-Sham system at low temperatures (where the temperature is
much less than the electron-electron interaction strength) [60, 154, 155]. They
found that the exact Kohn-Sham system at low temperatures is remarkably
similar to the ground state (zero temperature) Kohn-Sham system. Therefore
in this chapter we will use the well established ground state reverse engineering
scheme to find the exact T = 0J/kB Kohn-Sham system, which we will then
use to approximate the dynamics of the system when calculating the quantum
thermodynamic properties at T 6= 0J/kB.

Much like in chapter 7, we will use the parameter set from section 6.2.2
to test these DFT-hybrid approximations against the exact results from chap-
ter 6. The BALDA-based approximations give us a rough lower bound to the
accuracy of approximating the quantum work and entropy production in this
manner, whilst the exact Kohn-Sham-based approximations give an estimate
of the upper bound.
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8.2 Theory

8.2.1 Density Functional Theory

We saw in chapter 2 that DFT is extremely useful for enabling calculations of
properties of many-body interacting systems which otherwise would be prac-
tically unachievable. One of the key aspects of DFT is the Hohenberg-Kohn
theorem, which demonstrates there is a one-to-one mapping between a sys-
tem’s ground state wavefunction, its ground state density, and its external
potential [74]. From this density we can then, in theory, find all other prop-
erties of the ground state system. We can then ask: how can one find this
ground state density in the first place? This is where the other key idea in
DFT becomes relevant: the Kohn-Sham theory.

Kohn-Sham theory

The Kohn-Sham theory shows that by using a fictitious non-interacting system
with an adjusted potential (the Kohn-Sham system), one can achieve the same
ground state density as the fully interacting system [76]. This is important
because it reduces the hard-to-solve many-body interacting system to a system
of N single electrons, which is less complex.

The Kohn-Sham system takes the fully interacting Hamiltonian

Ĥ = T̂ + Û + V̂ext, (8.1)

removes the interaction Û and replaces the external potential V̂ext with a
corrected potential which partially includes the effect of the interactions. This
means the Kohn-Sham Hamiltonian is

ĤKS = T̂ + V̂KS, (8.2)

where T̂ is the same kinetic energy operator, and

V̂KS = V̂ext + V̂H + V̂xc. (8.3)

Here we have introduced two new potentials which correct the external po-
tential so the final potential incorporates some effects of the original many-
body interactions, enough to obtain the same ground state particle density.
The first potential is the Hartree potential, V̂H , which introduces an aver-
age, direct electron-electron Coulomb repulsion. The second potential is the
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exchange-correlation potential, V̂xc, which includes corrections due to all other
many-body interaction effects (for example the Pauli exclusion principle).

Although DFT is, in principle, exact, when it is put into practice approxi-
mations must be made. The exchange-correlation potential of the Kohn-Sham
system is often not known exactly, and so one must take an appropriate ap-
proximation for V̂xc. Despite this need for approximations, DFT is widely used
not only in physics but also in chemistry and biology [61, 66–69]. Because of
its widespread use, there is a sea of formulations of DFT, each adaptation
allowing the application of DFT to a wide range of systems (for example, one
can use time-dependent DFT (TDDFT) for time-dependent systems [71], or
current DFT (CDFT) for systems with a magnetic field [65]).

Given that in this chapter we will continue to use the Hubbard model, the
flavour of DFT we will use is the site-occupation functional theory (SOFT)
[72, 73]. SOFT replaces the continuous density with the site occupation
ni = 〈∑σ ĉ

†
i,σ ĉi,σ〉 for site i in the lattice. The Hartree potential is then writ-

ten as V̂H = ∑
i v̂H,i = ∑

i Un̂i/2, and is an average electron-electron on-site
interaction [62].

Each formulation of DFT comes with its own ever-increasing choice of ap-
proximations1. In this work we will focus on the Bethe-Ansatz LDA (BALDA),
and on using a reverse engineering scheme to find the exact exchange-correlation
potential.

BALDA

The Bethe Ansatz LDA (BALDA) uses the same principle as the LDA, looking
at local densities assuming the system is locally homogeneous, rather than in-
cluding any gradients or derivatives of the density like the generalised gradient
approximation [61, 157]. However, instead of taking the homogeneous electron
gas as the model system, it shifts the focus to other model systems, looking
at systems on a lattice. These other model systems still allow the approxima-
tion to assume a locally homogeneous density, but they take into account the
correlations that would be present in the corresponding inhomogeneous sys-
tem [72]. Therefore BALDA assumes the density does not change too rapidly
across the chain, allowing it to identify small volumes of uniform density. To

1Reference [156] points out that there is a lack of approximations for the exchange-
correlation potential at finite temperature, and derives conditions for creating these ap-
proximations. So although we only use ground state (zero temperature) approximations for
V̂xc in this thesis (shown to be appropriate up until a critical temperature by references [60,
155]), there is the hope that appropriate approximations for V̂xc at finite temperature will
be generated and future work can then look at implementing them in this scheme.
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approximate V̂xc using BALDA, where we take V̂xc ≈ V̂BALDA = ∑
i vBALDA,i,

we write
vBALDA,i = 2 cos

(
πni
ζ(U)

)
(8.4)

where ζ(U) for any given value of U is found from

−2ζ
π

sin
(
π

ζ

)
= −4

∫ ∞
0

J0(x)J1(x)
x [1 + exp (Ux/2)]dx (8.5)

with J0 and J1 the zero and first order Bessel functions respectively [72].
The systems we use in this study present many challenges to BALDA,

mainly testing the handling of strongly non-uniform densities. We use short
chain systems where the boundary conditions impact the system to a greater
extent than in longer chains, and the potential we apply across the system is
non-uniform, often strongly so. Both of these factors reduce the homogeneity
of the system. Further to this, BALDA was developed upon the exact Bethe
Ansatz solution to the Hubbard model in the thermodynamic limit [72] so
it cannot be expected to perform well in small systems. On top of these
factors, we increase the coupling strength U so the systems are very strongly
correlated; a regime in which all approximations of V̂xc struggle. BALDA
particularly struggles beyond intermediate coupling regimes at half filling due
to the discontinuity in the exchange-correlation potential. This discontinuity
is an important feature for V̂xc as it captures the transition from the metal
phase to the Mott insulator with increasing correlation strength [62].

The combination of all these factors makes our systems incredibly hard for
BALDA to accurately capture. Therefore we take BALDA as a poor approxi-
mation to the V̂xc in our systems, providing an estimate to the lower bound of
the accuracy of the approximations for the quantum thermodynamic proper-
ties. Let us now look at an approximation which can act as an upper bound
to the accuracy.

Inversion scheme for V̂xc

The systems we have looked at so far in this thesis have all been numeri-
cally exactly solvable, primarily to enable us to test the approximations we
formulate. However there is another benefit of having the exact solution to
the system; we can reverse engineer the density to find the exact exchange-
correlation potential at the initial time [60, 132, 154, 158]. By finding the
exact V̂xc, we can gain an indication of the upper bound to the accuracy of
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the approximation style presented2.
The reverse engineering scheme we follow in this work was developed by

Coe et al. in reference [132]. The scheme is an iterative process which begins
with an initial guess of the density3 and takes the initial V̂xc = 0. In this way
the initial Kohn-Sham Hamiltonian is Ĥ0

KS = T̂ + V̂ext + V̂H , where the initial
guess of the density is used to calculate the Hartree potential. This Kohn-Sham
Hamiltonian is then solved to give new estimates of the ground state energy,
E, and density. We take the Kohn-Sham potential to be V̂KS = ∑

i vKS,in̂i.
The next iteration (j + 1) of the potential is then found by

vj+1
KS,i = ξvjKS,i + (1− ξ)

(
nji − nexacti

)
|Ej|

n2,j
i

, (8.6)

where j gives the iteration step, i gives the site number in the lattice, and
ξ is the mixing parameter between new and old potentials to reduce the
chance of numerical instabilities4. Here we have written nji = 〈Ψj| n̂i |Ψj〉
and n2,j

i = 〈Ψj| n̂2
i |Ψj〉. Note that Ĥj

KS |Ψj〉 = Ej |Ψj〉. This process is re-
peated until it has converged such that vj+1

KS,i = vjKS,i(± convergence limit): we
set a numerical threshold for the convergence, for example 10−6 was used for
these results, and if the difference between the new potential and the previous
potential is below this limit we say the calculation has converged. This po-
tential is therefore the one which gives the target ground state density when
using the many-body Schrödinger equation [132]5. A graphical representation
of this scheme is shown in figure 8.1.

The reverse engineering code for finding the exact V̂xc was written by K.
Zawadzki as part of her suite of codes outlined in chapter 3. Implementing
the exact V̂xc and corresponding hybrid approximation in the quantum work
code was done by myself.

Other works have also shown the ability to reverse engineer the exact den-
sity of lattice systems to find the exact V̂xc [60, 154]. Indeed reference [60]
demonstrated the ability to reverse engineer the density to find the exact V̂xc

2By approximation style, we mean using a ground state, time-independent, DFT ap-
proximation for the initial potential used in the driving Hamiltonian, then combined with
the exact initial state in the calculation of the quantum work. Note that the only time-
dependent term in the driving Hamiltonian is the external potential V̂ext.

3This parameter is chosen by the user, and alongside the convergence limit and new-old
mixing parameters, gives us variables we can adjust to achieve the exact V̂xc.

4Typically we use 0.8 ≤ ξ ≤ 0.9995, where for some cases the mixing must be this small
because the systems are very sensitive.

5Note that the final V̂KS is the full system potential which contains the external potential,
V̂ext, the Hartree potential, V̂H , and the exact exchange correlation potential, V̂xc. To then
find explicitly the exact V̂xc, one must subtract V̂ext and V̂H from V̂KS (see equation 8.3).
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Input the initial guess of the density, n0

Create V̂KS using n0 for vH

Generate ĤKS from V̂KS

Find Ej and nj from ĤKSCalculate V̂ j+1
KS from equation 8.6

Is |nj − nexact| <
convergence?

Output V̂ j
KS as the numerically exact Kohn-Sham potential

no

yes

Figure 8.1: Flow chart demonstrating the reverse engineering scheme detailed
in reference [132].
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for a weakly correlated Hubbard dimer (2 sites) at low to medium tempera-
tures. In fact both reference [60] and [155] found that the exchange-correlation
potential for systems below a critical temperature Tc � U matched remark-
ably well with the exact ground state V̂xc. Therefore, although the reverse
engineering scheme we are implementing here is for the ground state system,
we can use it for low temperatures with confidence, and even stretch it to
medium temperatures. The high temperature system is not expected to be
accurately calculated by the Hamiltonian with the exact ground state V̂xc, but
we will use this temperature with the exact ground state V̂xc approximations
(see table 8.1, vxc and ‘exact + vxc’ columns) to test this approximation style
further.

8.2.2 Applying DFT to the hybrid approximation for
quantum thermodynamics

Our aim in this chapter is to create more sophisticated approximations in the
same style as the hybrid approximation developed in chapter 7. We shall do
this by applying the DFT approximations described in the previous section to
the driving Hamiltonian at t = 0. By doing this, we are partly incorporating
interactions into the evolution of the system (via this driving Hamiltonian),
but we are keeping the calculation “cheap” because the DFT calculations
are included only at the ground state level and at the initial time. This
is therefore still a crude approximation of the interacting dynamics, but we
can still analyse the impact of considering some interactions for the dynamics
versus not considering them at all, like the NI approximation, or only including
them through the initial state like the ‘exact + NI’ approximation.

In line with the previous chapter, to calculate the average quantum work
we will consider the DFT-style approximations purely by themselves, and af-
terwards we shall introduce the exact initial state (as described in section 7.3 of
chapter 7). The application of the DFT approximations to the quantum work
is via the driven Hamiltonian. This means that Ĥevo(t) used in the evolution
operator U , and in the calculation of the average quantum work extraction
(equation 7.1) at t = 0 and t = τ becomes

Ĥevo(t) = −J
N∑
iσ

(
ĉ†i,σ ĉi+1,σ + h.c.

)
+

N∑
i

vKS,i(t)n̂i, (8.7)

with
vKS,i(t) = vext,i(t) + vH,i + vxc,i. (8.8)
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Note that the only time-dependent part of the Hamiltonian is the external
potential. The vxc,i and vH,i are only calculated for the initial time as derived
from the ground state theory.

For the BALDA calculations, vxc,i is approximated using BALDA as defined
in equation 8.4, and for the exact V̂xc 6, vxc,i is calculated using the reverse
engineering scheme outlined before. Table 8.1 shows the approximations to the
quantum work addressed in this chapter, their abbreviations, Hamiltonians,
and initial state.

Acronym BALDA exact + BALDA

Approx. 〈WBALDA〉 〈W exact+BALDA〉

Ĥevo ĤBALDA =

− J
N∑
i,σ

(
ĉ†i,σ ĉi+1,σ + h.c.

)

+
N∑
i

(vext,i + vH,i

+vBALDA,i) n̂i

ĤBALDA =

− J
N∑
i,σ

(
ĉ†i,σ ĉi+1,σ + h.c.

)

+
N∑
i

(vext,i + vH,i

+vBALDA,i) n̂i

Initial state ρ̂BALDA0 = exp(−βĤBALDA
0 )

ZBALDA
ρ̂exact0 = exp(−βĤexact

0 )
Zexact

Acronym vxc exact + vxc

Approx. 〈W vxc〉 〈W exact+vxc〉

Ĥevo Ĥvxc =

− J
N∑
i,σ

(
ĉ†i,σ ĉi+1,σ + h.c.

)

+
N∑
i

(vext,i + vH,i + vxc,i) n̂i

Ĥvxc =

− J
N∑
i,σ

(
ĉ†i,σ ĉi+1,σ + h.c.

)

+
N∑
i

(vext,i + vH,i + vxc,i) n̂i

Initial state ρ̂vxc0 = exp(−βĤvxc
0 )

Zvxc
ρ̂exact0 = exp(−βĤexact

0 )
Zexact

Table 8.1: The types of approximations addressed in this chapter with their
evolution Hamiltonians and initial states. ZBALDA is the partition function
calculated using ĤBALDA, and similarly Zvxc uses Ĥvxc , and Zexact uses Ĥexact.

We will also address the entropy production results found using these ap-
proximations, using the same technique as described in section 7.3 of chapter 7.

6Denoted simply by vxc when referred to in the approximated quantum thermodynamic
properties, and not to be confused with the hybrid approximation of ‘exact + vxc’.
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Again we will use the approximated quantum work extraction for the entropy
production, but this time the free energy will use the Hamiltonian with the
corresponding DFT approximation for the BALDA and vxc calculations. For
the ‘exact + evo’ calculations, the exact free energy will be used, using the
same logic as in section 7.3, i.e. that if we can use the exact initial state, the
Hamiltonian must be computationally diagonalisable, and therefore the exact
partition function can be found for the free energy.

8.3 Approximated quantum work results

Much like in chapter 7, we will focus on 6 site chains with the zigzag potential
and use the same parameter set as outlined in section 6.2.2 (see appendix D
for the full set of results, including the ‘teeth’ and ‘slope’ potentials). This
then allows us to directly compare not only these DFT-inspired results, but
also to compare the approximations themselves. From this we will be able to
determine if including interactions via DFT techniques indeed improves the
accuracy of the hybrid approximation.

8.3.1 BALDA work extraction

As discussed, by using BALDA to approximate this system, we can assess a
lower limit to these types of techniques for approximating quantum thermo-
dynamic properties.

Figure 8.2 shows the average quantum work (top row) extracted across our
parameter set for the three temperatures used when implementing BALDA as
described in section 8.2.2. We compare these results to panels (b), (e), and
(h) of figure 6.2 to get the relative differences shown in the bottom row.

As mentioned before, BALDA assumes a slowly varying system, which we
do not have here, and as U increases, double site occupation is discouraged,
forcing the electrons into the higher energy sites. This exacerbates the non-
uniformity of the density across the system. Indeed we see that BALDA is
only able to quantitatively capture the work accurately at low U , performing
well for a metallic system with an accuracy up to ∼ 20%. However, as soon
as the precursor to the phase transition is reached at U ≈ 4J , the accuracy
reduces greatly for most τ ’s at all temperatures. As U increases further to
U & 6J , work then needs to be performed on the system to achieve the driven
dynamics for all temperatures.

Due to this negative work extraction at higher U ’s, the exact minimum
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Figure 8.2: Upper panels: Work extracted using BALDA for 0.5 ≤ τ ×J ≤ 10
(x-axis) and 0 ≤ U/J ≤ 10 (y-axis) for 6 site chains with zigzag poten-
tial, increasing temperature from left to right (the lighter shade corresponds
to greater work extracted). Lower panels: Relative difference between the
BALDA work and the exact results for the same parameters as the upper
panels (the darker shade corresponds to higher accuracy).
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work extraction across this parameter set is not captured well by BALDA (see
the colour bar above each panel). However, the maximum work extracted is
approximated accurately with BALDA. As we saw in chapter 6, the maximum
work extracted is achieved for very weakly correlated systems, and so all of the
approximations studied in this thesis capture the maximum work extraction
well.

For low temperatures, BALDA shows an improvement over the completely
non-interacting approximation from chapter 7, but this improvement is lost as
the temperature increases. This could be attributed to the fact that BALDA is
a ground state (and hence zero temperature) approximation, whereas when the
temperature increases higher energy states are populated and so a ground state
approximation is less reliable. Therefore BALDA would be more appropriate
at a lower temperature than a higher temperature, especially in comparison to
the non-interacting system which is closer to the exact behaviour of the high
temperature system.

For all temperatures, BALDA is consistently quantitatively accurate within
20% of the exact results for U . 3J . Let us now see if including the exact
initial state through the hybrid approximation outlined in table 8.1 improves
the accuracy in more regions.

8.3.2 ‘Exact + BALDA’ work extraction

Figure 8.3 shows the results for the average work extracted using the ‘exact +
BALDA’ approximation (top row), and the relative difference (bottom row)
for our parameter set. By including the exact initial state, the quantitative
accuracy is similar across all temperatures, however we do not see the im-
provement in the accuracy that was seen when going from the non-interacting
to ‘exact + NI’ approximations. Still, for the quasi-sudden quench regime,
the accuracy is improved for higher correlation strengths (10% accuracy up to
U ≈ 4J compared to up to U ≈ 2J for BALDA).

The qualitative accuracy has improved for ‘exact + BALDA’, and the
minimum work extraction is also better captured than with just BALDA,
though the minimum work in the parameter space is still negative. Surprisingly
the ‘exact + BALDA’ approximation, with interactions now being considered
somewhat in the evolution Hamiltonian, performs worse than the ‘exact +
NI’ approximation, which has no consideration of interactions in the evolution
Hamiltonian. On top of this, the improvement from BALDA to ‘exact +
BALDA’ is modest, especially when comparing it to the improvement seen
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Figure 8.3: Upper panels: Work extracted using ‘exact + BALDA’ approx-
imation for 0.5 ≤ τ × J ≤ 10 (x-axis) and 0 ≤ U/J ≤ 10 (y-axis) for 6
site chains with zigzag potential, increasing temperature from left to right, as
stated. Lower panels: Relative difference between the ‘exact + BALDA’ work
and the exact results for the same parameters as the upper panels.
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Figure 8.4: Upper panels: Work extracted using the exact vxc for 0.5 ≤ τ×J ≤
10 (x-axis) and 0 ≤ U/J ≤ 10 (y-axis) for 6 site chains with zigzag potential,
increasing temperature from left to right. Lower panels: Relative difference
between the exact vxc work and the exact results for the same parameters as
the upper panels.

between NI and ‘exact + NI’ in chapter 7. This seems to imply that when
wanting to incorporate electron-electron interactions of some DFT form into
the evolution Hamiltonian, it is important to use a DFT approximation which
is appropriate for the system, otherwise not including any knowledge of the
interactions in the evolution Hamiltonian is actually better. Let us now look
at the exact ground state V̂xc to understand a potential upper limit in the
accuracy of this approximation method.

8.3.3 Exact ground state exchange-correlation poten-
tial, vxc, work extraction

The approximation based on the exact ground state V̂xc, found using the re-
verse engineering scheme described in section 8.2.1 and denoted by ‘vxc’ in
all figures and approximation names, gives the results shown in figure 8.4 for
the average work extraction (top row), and for the relative difference when
compared to the exact work (bottom row).

The qualitative results are very similar to the non-interacting results for
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medium to large interaction strengths. However, at low U ’s the impact of the
corrections to interactions is apparent, with the behaviour of the exact results
being somewhat regained for low and medium temperatures.

The quantitative results yield regions of higher accuracy than the non-
interacting approximation, between U ≈ 1J and U ≈ 5.5J , for the lowest
temperature. The accuracy at this temperature is also improved over the
BALDA results for the region between U ≈ 1J and U ≈ 3J for all τ ’s.

As the temperature increases, the regions of medium to high accuracy
(. 40% difference to the exact) also increase to larger interaction strengths.
However accuracy is reduced to within ∼ 50% of the exact result for the
majority of U ’s and τ ’s as the temperature reaches T = 20J/kB, which is ac-
tually worse than the completely non-interacting approximation. Remember,
though, that at this high temperature the system predominantly behaves as
if it is non-interacting because U � T and so interactions are almost negli-
gible for regions up to U ≈ 5J . Also, vxc is found using an inversion scheme
developed for the ground state, and therefore would naturally have difficulty
in accurately representing systems at high temperature. That being said, vxc
performs better than both BALDA and ‘exact + BALDA’, particularly at the
medium and high temperatures. It also captures the minimum work extracted
over the parameter set much more accurately than either BALDA approxi-
mation; there is no negative work extraction in the vxc results for the zigzag
potential at 6 sites, much like in the exact results.

Let us now see how the results from vxc are impacted when the calculation
considers the exact initial state.

8.3.4 ‘Exact + vxc’ work extraction

Figure 8.5 shows the average work extracted using the ‘exact + vxc’ approx-
imation (top row) detailed in section 8.2.2, and the relative difference to the
exact results (bottom row).

There is a huge qualitative and quantitative improvement in the accuracy
over the other three approximations shown in this chapter. The regions of
medium-high accuracy (within 20-30% of the exact results) spread over most
regimes for all temperatures. Both the minimum and maximum values of
average work extraction across the parameter set are captured well, usually
within 20% of the exact value, by the ‘exact + vxc’ approximation.

The results from ‘exact + vxc’ are in fact comparable to those of ‘exact +
NI’. They show very similar patterns in the work and the relative error, but
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Figure 8.5: Upper panels: Work extracted using the ‘exact + vxc’ approxima-
tion for 0.5 ≤ τ × J ≤ 10 (x-axis) and 0 ≤ U/J ≤ 10 (y-axis) for 6 site chains
with zigzag potential, increasing temperature from left to right, as stated.
Lower panels: Relative difference between the ‘exact + vxc’ average work and
the exact results for the same parameters as the upper panels.
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‘exact + vxc’ captures the very strongly correlated systems in the quasi-sudden
quench regime more accurately than ‘exact + NI’ (particularly for the low and
medium temperatures). At the other end, ‘exact + NI’ captures the adiabatic
regime for medium interaction strengths at high temperature more accurately.
These differences can be attributed to the dominant energy at play in each
situation: in very strongly correlated systems at low and medium tempera-
tures, U will be a dominant energy and so the inclusion of the V̂xc will help
capture these interactions to provide more accurate results, however at high
temperature, T dominates over U resulting in the non-interacting approxima-
tion better representing the dynamics leading to more accurate results than
using the vxc.

Overall, we can see how a good/appropriate V̂xc approximation can yield
good results for weak to medium interaction strengths, even when only using
a ground state time-independent V̂xc approximation. It is important to choose
an appropriate approximation for the V̂xc because, as we saw with BALDA,
a poor approximation will result in accuracy worse than the non-interacting
approximation.

When including the exact initial state with a good (ground state) V̂xc, we
gain great accuracy for most regimes, including the very challenging strongly
correlated systems during a quasi-sudden quench. If a good approximation
for V̂xc cannot be found, highly accurate results can still be found using the
‘exact + NI’ approximation, which is actually computationally cheaper. In
fact, given that the exact V̂xc is almost impossible to find for most systems7,
and that the ‘exact + NI’ approximation is of similar accuracy in the majority
of regimes, we can use the computationally cheap ‘exact + NI’ approximation
to calculate the average quantum work extraction. The exception to this is
of course at high U for lower temperatures, where the ‘exact + vxc’ would be
preferable, but with a more appropriate approximation to V̂xc than BALDA.

8.4 Approximated entropy production results

As with chapters 6 and 7, we will also look at the entropy produced (irreversible
work). We will apply the approximations to the entropy using the same logic
as described in section 7.4.4, i.e. the approximation of the free energy will
match the approximation of the initial state of the system.

7Because the system we are using is exactly solvable, we have been able to find and
use the exact ground state V̂xc to provide an approximate upper bound to the accuracy
achievable by these techniques.
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Figure 8.6: Upper panels: Entropy produced using BALDA for 0.5 ≤ τ × J ≤
10 (x-axis) and 0 ≤ U/J ≤ 10 (y-axis) for 6 site chains with zigzag potential,
increasing temperature from left to right. Lower panels: Relative difference
between the BALDA entropy production and the exact results for the same
parameters as the upper panels.

8.4.1 BALDA entropy production

With the entropy approximated using BALDA, the free energy will be calcu-
lated using ĤBALDA in the partition function. Figure 8.6 shows ∆SBALDA (top
row) and the relative error with the exact entropy production (bottom row)
for our parameter set. Recall the darker the orange shade, the less entropy is
produced, and the deeper the purple shade, the more accurate the quantitative
results are.

For all temperatures, this approximation calculates the minimum entropy
production accurately (to one decimal place for low and high temperatures,
and is within 0.12 of the medium temperature result). This is largely because
the accuracy of the small entropy production is helped by having an accurate
maximum for the average quantum work extracted (as we saw in the previ-
ous section). The BALDA approximation struggles to accurately capture the
maximum entropy production though, particularly at low temperature where
it overestimates the amount of entropy produced to be almost double the ex-
act entropy production. The region of largest entropy production corresponds
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to the sudden quench with strong interactions, a system which BALDA is not
suited for, and so it is unsurprising that the maximum entropy production is
not accurately calculated here.

As the temperature increases, the quantitative accuracy improves between
the low and high temperatures, but the medium temperature loses accuracy at
weak/medium interaction strengths whilst gaining accuracy at strongly corre-
lated systems evolved adiabatically. At this medium temperature, we see accu-
racy gained in the regions where ∆SBALDA is small. A small ∆S corresponds
to a large 〈Wext〉, which we saw was calculated accurately by 〈WBALDA

ext 〉.
At the low temperature, the qualitative results capture the general shape

of the contour plot, particularly the high entropy region for sudden quenches
and with the protrusion of regions of larger entropy production at medium
correlation strengths. However qualitatively it is less accurate than the work.
Here, though, we have also approximated the free energy, which adds a new
error into the system.

The high temperature result is more accurate than for the other temper-
atures, and indeed more accurate than the work but notice that not much
entropy is produced. In contrast to the medium temperature results, accuracy
has been lost in the strongly correlated adiabatic region. Qualitatively the
parameter region of smallest entropy production is incorrect compared to the
exact result, which leads to this loss of accuracy in the upper-right section
of the parameter space. At this high temperature, there is not much entropy
produced across the parameter space and the system behaves more like a non-
interacting system, possibly making corrections to interactions easier.

8.4.2 ‘Exact + BALDA’ entropy production

The entropy production using the ‘exact + BALDA’ approximation is shown
in the top row of figure 8.7. The relative difference is shown in the bottom row.
Since we are using the exact initial state, the free energy will be calculated
using the exact (fully interacting) Hamiltonian.

The quantitative error is very similar to the ‘exact + BALDA’ work, but
this is unsurprising as the work is the main source of error in this calculation.
Qualitatively, however, the ‘exact + BALDA’ entropy struggles to capture the
exact entropy production, noticeably more so than the BALDA entropy.

The value of the maximum entropy production at the low temperature,
however, is captured much more accurately using the ‘exact + BALDA’ ap-
proximation than just BALDA (within 1% of the exact for the low and medium
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Figure 8.7: Upper panels: Entropy produced using ‘exact + BALDA’ for
0.5 ≤ τ × J ≤ 10 (x-axis) and 0 ≤ U/J ≤ 10 (y-axis) for 6 site chains
with zigzag potential, increasing temperature from left to right. Lower panels:
Relative difference between the ‘exact + BALDA’ entropy production and the
exact results for the same parameters as the upper panels.
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temperatures). The region of maximum entropy production (sudden quench
at medium interaction strengths) is closer to the exact region, but the ap-
proximation then incorrectly extends this region of large entropy production
further into larger τ ’s.

Much like with the work, we do not see a great improvement when using
the hybrid approximation with BALDA, compared to the pure BALDA ap-
proximation. Using BALDA for the V̂xc to give a lower bound to the accuracy
of this method of approximating shows accurate results (within ∼ 10% of the
exact) for weakly correlated systems (U . 3J) for all temperatures and most
τ ’s (up to τ ≈ 6/J for the lowest temperature).

8.4.3 Exact ground state exchange-correlation poten-
tial, vxc, entropy production

Figure 8.8 shows the entropy production results when using the exact vxc found
using the inversion scheme outlined in section 8.2.1. Here the free energy is
approximated using the Hamiltonian which has the numerically-exact ground
state V̂xc.

At low and medium temperatures, the results are less accurate than the
approximated work. Here we have a further error coming in through the free
energy, increasing the overall error in the entropy. The high temperature
results are accurate within 30% of the exact ones for most regimes, but very
little entropy is produced here and the range of entropy produced across the
parameter space is very small.

Qualitatively, the exact ground state vxc struggles to accurately represent
the exact results, demonstrating behaviour closer to a non-interacting system
for large U ’s. The vxc does not show much, if any, quantitative improvement
over the non-interacting approximation for the low and medium temperatures.
Indeed the vxc shows a small reduction in the quantitative accuracy compared
to both BALDA and ‘exact + BALDA’ for the low and medium temperatures.
At the high temperature, however, the accuracy is more consistently improved
across the parameter space.

8.4.4 ‘Exact + vxc’ entropy production

Using the exact initial state alongside the exact ground state V̂xc in the driving
Hamiltonian, we see an improvement in the results for low and medium tem-
peratures (figure 8.9, panels (a) and (b) for ‘exact + vxc’ entropy production at
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Figure 8.8: Upper panels: Entropy production using the exact vxc for 0.5 ≤
τ × J ≤ 10 (x-axis) and 0 ≤ U/J ≤ 10 (y-axis) for 6 site chains with zigzag
potential, increasing temperature from left to right. Lower panels: Relative
difference between the exact vxc entropy produced and the exact results for
the same parameters as the upper panels.
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Figure 8.9: Upper panels: Entropy produced using ‘exact + vxc’ for 0.5 ≤
τ × J ≤ 10 (x-axis) and 0 ≤ U/J ≤ 10 (y-axis) for 6 site chains with zigzag
potential, increasing temperature from left to right. Lower panels: Relative
difference between the ‘exact + vxc’ entropy production and the exact results
for the same parameters as the upper panels.

T = 0.2J/kB and T = 2.5J/kB respectively, and panels (d) and (e) for the rel-
ative errors). The high temperature (T = 20J/kB, figure 8.9 panel (c) for the
entropy production, and panel (f) for the relative error) shows large accuracy
over most of the parameter space, but the accuracy is reduced compared to
the vxc approximation for systems slower than the quasi-sudden quench where
τ & 1/J [compare with figure 8.8(f)].

As with the work, both the quantitative [figure 8.9, panels (d) to (f)] and
qualitative [see the general shapes in figure 8.9 panels (a) to (c)] results of
the ‘exact + vxc’ approximation are very similar to the ‘exact + NI’ results.
Again, the main differences are seen in strongly correlated systems under a
quasi-sudden quench, where the ‘exact + vxc’ performs better, and at high
temperature, where the ‘exact + NI’ performs better. This reinforces the pref-
erence of ‘exact + NI’ over any of the other ground state DFT-style approx-
imations for quantum thermodynamic properties in the majority of regimes
addressed in this thesis.

Overall, these approximations were designed with the average quantum
work extraction in mind, and so the drop in accuracy seen when translating
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Figure 8.10: Upper panels: Figures showing which hybrid approximation is
most accurate (up to 20%) for the quantum work in each region (6 sites,
zigzag). Lower panels: Figures showing which hybrid approximation is most
accurate (up to 20%) for the associated entropy production.
The colours representing the approximations are all , ‘exact + NI’ ,
‘exact + BALDA’ , and ‘exact + vxc’ , seen here. See text for full list (in-
cluding approximations which are not the most accurate in any regime).

them to the entropy production implies that an entropy specific approximation
should be considered. That being said, we have still shown regions where these
approximations can be useful and accurate, albeit there are fewer of these
regions than for the work.

8.5 Diagrammatic summary of all approxima-
tions

Figure 8.10 shows the best hybrid approximation(s) in each region of our
parameter set. The colour codes for each hybrid approximation are:

• All
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• ‘exact + NI’ and ‘exact + vxc’

• ‘exact + NI’

• ‘exact + NI’ and ‘exact + BALDA’

• ‘exact + BALDA’

• ‘exact + BALDA’ and ‘exact + vxc’

• ‘exact + vxc’

• Otherwise the error in all is over 20%

The top row shows the outcome for the average quantum work for the three
temperatures when we have a 6 site chain with a zigzag potential. The bottom
row shows the corresponding results for the entropy production.

These figures confirm that the ‘exact + NI’ approximation is the best per-
forming approximation in the majority of parameter regimes. The ‘exact +
vxc’ outperforms the ‘exact + NI’ primarily in the strongly correlated and
quasi-sudden quench regimes. Unsurprisingly all approximations are equally
accurate for the non-interacting system, but ‘exact + BALDA’ is able to oc-
casionally perform the best for the work when in weakly coupled regimes at
the low and high temperatures.

For when one does not have access to the exact initial state, figure 8.11
demonstrates the best non-hybrid approximation across the regimes. BALDA
and the exact ground state vxc are seen to be the best in more regions than
for the hybrid approximations, but the non-interacting approximation still
performs well, particularly for the quantum work at medium and high tem-
peratures.

8.6 Conclusion

Using the success of the hybrid approximation from chapter 7, we applied
DFT-style approximations to the driven Hamiltonian with the aim of creating
more sophisticated, but still computationally cheap, approximations to quan-
tum thermodynamic properties. We introduced the hybrid versions of BALDA
(‘exact + BALDA’) and of the exact (reverse-engineered) ground state V̂xc
(‘exact + vxc’) for the quantum work and entropy production. We compared
these hybrid approximations to their equivalent non-hybrid approximations
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Figure 8.11: Upper panels: Figures showing which non-hybrid approximation
is most accurate (up to 20%) for the quantum work in each region (6 sites,
zigzag). Lower panels: Figures showing which non-hybrid approximation is
most accurate (up to 20%) for the associated entropy production.
The colours representing the approximations are all , non-interacting ,
BALDA , and vxc .
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(BALDA and vxc), as well as comparing the results to the non-interacting
approximations from chapter 7.

The BALDA and ‘exact + BALDA’ results gave us an indication of the
lower bound to the accuracy one can expect from these approximation styles
for both the quantum work extraction and entropy production. Regions of
high accuracy were only seen for weakly coupled regimes, and almost no im-
provement was found when using the hybrid approximation. In fact, almost
everywhere the hybrid non-interacting approximation performed better than
either BALDA based approximation, and as it is computationally cheaper, it
would be preferable over a bad approximation to the Kohn-Sham system.

When using the numerically exact ground state vxc, an estimate of the
upper bound to the accuracy of this method of approximating the quantum
work and entropy production can be found. We see regions of high accuracy
for weak to medium coupled systems, with great improvements in both the
quantitative and qualitative accuracy when using the hybrid approximation.
The results for ‘exact + vxc’ are strikingly similar to the ‘exact + NI’ results
seen in chapter 7, with minor differences at strong correlations, and at the
high temperature.

Therefore, we suggest that it is preferable to use the ‘exact + NI’ ap-
proximation, unless one has very strongly correlated systems, where U & 9J ,
when ‘exact + vxc’ with an appropriate V̂xc would be more accurate. The im-
provements gained from using ground state DFT approximations in the driven
Hamiltonian are not large enough to warrant the extra computational cost.
In cases where the exact (or highly accurate) initial state cannot be found, it
was seen here that an appropriate DFT approximation for the V̂xc should be
used. Otherwise higher accuracy can be gained for more regions just by us-
ing the hybrid non-interacting approximation, which again is computationally
cheaper.

To improve the quantum thermodynamic approximations further, it would
be recommended to include dynamic corrections i.e. by using TDDFT in the
driven Hamiltonian Ĥevo, such as in reference [59] who found that TDDFT
improved the accuracy of the work approximations (even without including the
exact initial state), however it is a more computationally expensive scheme.
Alternatively one could develop a general reverse engineering scheme for the
V̂xc in thermal systems using the Mermin-Kohn-Sham theorem (which is the
extension of the Kohn-Sham theory to thermal systems) [159].
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9. Conclusion

This thesis looked at quantum many-body systems at finite temperature,
which are commonly used as the hardware of quantum devices, and aimed
to answer the questions:

1. How can we determine if a given evolution of a quantum system at finite
temperature is adiabatic?

2. Can we accurately approximate quantum thermodynamic properties in
many-body quantum systems using simple approximations inspired by
DFT?

To do this, we have pulled together several theories from different fields, out-
lined in chapter 2. We have taken inspiration from DFT both in searching for
simpler characterisations of adiabaticity through the electron density using
distance measures, and in taking non-interacting systems as a basis for ap-
proximating quantum thermodynamic properties. To calculate the accuracy
of these approximations, we have also explored exact quantum thermodynamic
properties in many-body systems out-of-equilibrium, addressing how various
temperatures, driving speeds, and correlation strengths impact the work ex-
traction and entropy production.

Question 1 was addressed in chapters 4 and 5. We introduced the use
of natural metrics as a method of characterising adiabaticity in many-body
quantum systems, both at zero and finite temperature. We initially studied
single-electron systems with random potentials at zero temperature in chap-
ter 4, showcasing the various combinations of distances that can be used. All
of these combinations agreed in general with the degree of adiabaticity of an
evolution. Each combination gave its own insight into the dynamics, for exam-
ple D(ψGS(t), ψ(t)) versus D(nGS(t), n(t)) demonstrated oscillating arches due
to the system inertia. We therefore recommend these metrics as a method of
characterising adiabaticity in out-of-equilibrium systems at zero temperature.

It is in chapter 5 where we explore applying these metrics to many-body
systems at finite temperature, focusing now on how the state distanceD(ρS(t), ρ(t))
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and the density distance D(nS(t), n(t)) vary in time. We find that the metrics
can be used to characterise adiabaticity, even at finite temperature. Interest-
ingly, the Bures and trace distances give very similar qualitative results, and
hence either can be used as a measure of adiabaticity. However, it is the par-
ticle density distance which gives the key result for both chapter 4 and 5. We
demonstrated the ability to characterise adiabaticity using only the system
densities. This is a very important result for many-body systems where the
wavefunction or density matrix are complex and hard to access. This has the
potential to be applied to quantum devices, allowing for better characterisa-
tion of adiabatic evolutions, and the conditions under which they can be best
achieved.

By using the metrics, we have studied the dynamics of several systems in
different conditions. The interplay between energies in the system is hugely
important when wanting to achieve an adiabatic evolution. For example, we
showed how distances are reduced when T or U dominate over the other en-
ergies in the system. We even saw the transition to a Mott insulator in the
metrics, when U increased.

Because this research was performed with computational and experimental
applications in mind, we have developed a threshold for adiabaticity and shown
which system properties affect it. The threshold is seen to be affected by U , N ,
and T , however further work is needed to develop a refined threshold explicitly
dependent on these values.

In answering question 1, we also investigated the quantum adiabatic cri-
terion, which is commonly used to characterise adiabaticity for systems at
zero temperature. We found the metrics give a fuller picture of the system
dynamics (for example, the oscillations arising from the system’s inertia), and
they are not susceptible to the same limitations as the QAC: i.e. the metrics
are not based on perturbation theory, and consider all states of the system so
can be readily extended to finite temperature. Using the definition from the
quantum adiabatic theorem, we proposed a new QAC which can be applied
to systems at finite temperature. It is with the finite temperature QAC that
we see the need for a non-Markovian method of characterising adiabaticity;
memory effects are needed to ensure the adiabaticity measure does not mis-
takenly reclassify an evolution as adiabatic after it has left adiabaticity, unless
the measure is able to positively identify that the correct populations of each
eigenstate have been re-established. Therefore the metrics are preferable over
the QAC because they can identify if an evolution is adiabatic with respect
to the initial system, whereas the QAC is only able to identify an adiabatic
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evolution with respect to the previous time step. A possibility of negating
this issue in the QAC is to develop a cumulative QAC, such as

∫ τ
0 ε(t)dt, to

include previous times. This could have the draw back of being less sensitive
to returns to adiabaticity, and so smaller integration windows could be used,
or a rolling average. A similar measure could be developed for the density
distance to help reduce the possibility of the density characterising part of the
evolution as adiabatic when the state shows it is not.

Research question 2 was addressed in chapters 6, 7, and 8. We wanted
to look at quantum thermodynamic properties in many-body quantum sys-
tems because a better understanding of quantum thermodynamics can improve
the fabrication and performance of quantum devices. However, properties of
many-body systems are very challenging to calculate computationally, so to
perform simulations of new quantum devices, we need to find accurate approx-
imations for the quantum thermodynamic properties.

Before we could test any approximation, we needed to find the exact re-
sults. The exact quantum work and entropy production were shown in chap-
ter 6, and gave interesting insights into the quantum thermodynamics of the
many-body inhomogeneous Hubbard system. It was seen that most work is
extracted in the adiabatic regime with weak correlations. As the temperature
increased, the extractable work was seen to reduce. Overall we saw that the
energy scales of U , T , and potential difference between sites are important, as
well as the type of potential. We also saw the lowest entropy production in adi-
abatic regimes, so for Hubbard-type systems, we would recommend a weakly
correlated adiabatic regime in which to operate quantum devices, maximising
efficiency (work output versus entropy production).

We saw from reference [32] that DFT methods can be applied to quantum
work for the Hubbard dimer, where the method proposed could be applied
to any length chain. Here we explore new methods of approximating quan-
tum thermodynamic properties, testing them in larger many-body Hubbard
systems, and using the concept of a non-interacting system as the basis of an
approximation. In chapter 7, we developed a hybrid approximation which con-
siders the exact initial state but then uses the non-interacting Hamiltonian for
the evolution. By including interactions just in the initial state, there is a large
increase in accuracy when approximating the quantum work (compared to the
purely non-interacting approximation), and an increase in the accuracy of ap-
proximating the entropy production (albeit a smaller increase). The ‘exact +
NI’ hybrid approximation was developed with the quantum work in mind, and
was rather simply extended to the entropy production. The drop in accuracy
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from the quantum work to the entropy implies that the entropy may benefit
from a tailored approximation, rather than an extension of the quantum work
approximation. That being said, there were large parameter regions in both
quantum work and entropy where the ‘exact + NI’ was accurate, despite it
being a crude and computationally cheap approximation.

We then extended this hybrid approximation method in chapter 8 to try
and develop more sophisticated approximations. To do this, we applied DFT
approximations to the evolution Hamiltonian. We looked at a lower bound to
the accuracy of this DFT method by taking a commonly used DFT approxi-
mation, BALDA, for which our system would be extremely challenging, and
an upper bound by using the exact ground state V̂xc. Surprisingly neither of
these DFT hybrid approximations consistently increased the accuracy of the
results over the ‘exact + NI’ approximation. In fact the only increase was
seen for highly correlated systems with sudden quench dynamics, and that
was when using the (usually unknown) exact ground state V̂xc. Therefore we
can see that it is the initial state which must be accurately found, and not the
evolution, when approximating the quantum work. The (time-independent)
approximation for the driving has much less of an impact in this method. So if
one wishes to keep the computation cheap, one may simply use non-interacting
dynamics.

One can use the hybrid ‘exact + NI’ approximation to calculate the ex-
pected work output of a system. One could also use it to find the system
parameters which maximise the work and minimise the entropy production,
much as we did in chapter 6 where we found regions of maximum work extrac-
tion and minimum entropy production for adiabatic evolutions at low tem-
perature with weak correlations. From this, it could be possible to test the
viability of new closed many-body systems for quantum devices; for example
we saw the teeth potential required work to be inputted into the system, and
so it would not be useful to use this potential when fabricating a quantum
device for performing work. In these many-body systems, it can be almost
impossible to exactly calculate the quantum thermodynamic properties, but
with the hybrid approximation, one may be able to accurately approximate
the possible work that can be extracted from their proposed system/device.

In general we always saw good accuracy in the ‘exact+NI’ approximation
at low to medium interaction strengths, with most evolution times. We saw the
region of highest accuracy increase in U when the temperature increased, and
also as the number of sites increased (see appendix D), therefore we could see
this trend continue with longer chains giving more regions where ‘exact+NI’
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could be accurate. Therefore, even when using different potentials, this ap-
proximation could be confidently recommended for low to medium U ’s at low
temperatures and short chains, and up to higher U ’s for longer chains and at
higher temperatures. We could also increase the confidence in the accuracy
of ‘exact+NI’ at higher U ’s when the potential used has large differences be-
tween neighbouring sites, i.e. more like zigzag or teeth, and unlike slope, as the
interactions have less of an impact compared to site-to-site energy difference.

Overall in this thesis we have developed new methods of characterising adi-
abaticity and approximating quantum thermodynamic properties. The meth-
ods for characterising adiabaticity can be used in quantum technologies where
an adiabatic evolution is important, for example for an adiabatic quantum
computation device which may wish to begin in a thermal state; the final den-
sity of the system can be experimentally measured and compared to the ex-
pected density using the metric to see if an adiabatic evolution was achieved.
The approximation for quantum thermodynamic properties can be used in
quantum technologies, for example when designing a device or trying to find
the parameters which maximise work output or increase efficiency. The ap-
proximation enables the calculation of work and entropy in large Hubbard-like
systems (such as coupled quantum dots) where exact calculations cannot be
performed, and in turn could highlight better conditions in which to run the
device. It could even be used to assess whether certain physical conditions
are worth adjusting for the gain in work extracted; for example determining
if it is worth trying to reduce the temperature for the amount of extra work
extraction that could be gained from the device.

9.1 Future work

This research has uncovered some interesting conclusions with important im-
plications for quantum devices, yet it can still be taken further. We have
already alluded to some of the possible directions this research can take, but
let us discuss them more thoroughly here.

We saw in chapter 4 that there is a quasi-linear relationship between ground
state wavefunction distances and density distances. We took this to be a lin-
ear relationship when characterising adiabaticity, and in chapter 5 we used
it for mapping the state adiabatic threshold to the density adiabatic thresh-
old. Whilst this worked well, the density adiabatic threshold was still more
lenient than the state adiabatic threshold when characterising an evolution as
adiabatic. Remember, it is the state distance that is based on the quantum

168



adiabatic theorem (QAT), and we have been able to use concepts from DFT
to show the density distance can be used even though it is not strictly related
to the QAT. Therefore, to improve the use of the density distance for charac-
terising adiabaticity, a more accurate mapping between the state distance and
density distance would be beneficial. This would provide a tighter, and more
accurate, threshold in the density.

To achieve a more accurate mapping, we recommend using a non-linear
fit which can encapsulate the ‘bend’ in the adiabatic line [i.e. the plots of
D(ρS(0), ρ(t)) versus D(nS(0), n(t))] where the distances approach their max-
imums. This will lead to a more precise mapping from state distance to density
distance, reducing the error and tightening the density adiabatic threshold.

We also noted that the adiabatic line is dependent on the correlation
strength, the number of electrons, and the temperature of the system. How-
ever we have not found an analytical link between these quantities and the
gradient of the adiabatic line. It would be interesting to try and find a more
quantifiable relationship between these quantities and the gradient. From this
one could then identify an adiabatic evolution from a single or very few mea-
surements, comparing the measurement result to the anticipated adiabatic
result from the analytical relationship. Again, a better understanding of the
adiabatic line gradient will also improve the mapping from the state threshold
to the density threshold, further promoting the use of the density distance as
a measure of adiabaticity.

With regards to research question 2, there are a few lines of enquiry which
could prove fruitful. The focus is on developing more sophisticated approxi-
mations which could potentially be applied to a wider range of systems and
parameters. It would also be useful to test the hybrid approximation pre-
dictions against experimental results. One could even use the approximation
to try and find the best parameter set for the experiment with regards to
maximising work and minimising entropy.

To create the next generation of these approximations, there are two promis-
ing paths to follow: use a time-dependent approximation to the driven Hamil-
tonian Ĥevo, or to find the truly exact (thermal) V̂xc for systems at finite
temperature. It is anticipated that the former would be the more fruitful
line of research, and indeed reference [59] has already demonstrated the use
of a time-dependent approximation for quantum work, using the adiabatic
LDA (ALDA). One could therefore combine the approximations from refer-
ence [59] and chapter 7 to create a hybrid time-dependent approximation for
quantum thermodynamic properties. It would be interesting to see if there is
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any improvement in the accuracy of the results when using a time-dependent
approximation, and if the exact initial state is as important as it was seen
to be in chapters 7 and 8. This, in turn, can give us further insight into the
impact of interactions and dynamics on the average quantum work.

The other path would be to use a more appropriate ‘exact’ V̂xc, i.e. one
that is tailored to the thermal state, and not the ground state. For this, we
need to develop a reverse engineering scheme which can take the exact many-
body thermal density and find the V̂xc which produces this density. The usual
Kohn-Sham theory is only applicable to ground state systems, and cannot
guarantee that there is a one-to-one mapping between thermal density and
state. However, Mermin was able to extend the Kohn-Sham theory to finite
temperatures and show that this mapping exists in thermal systems [159].
Therefore a reverse engineering scheme using the Mermin-Kohn-Sham theory
could be found, and from this we can use the thermal V̂xc to test a new upper
bound to the accuracy of the hybrid approximation1.

Overall we have introduced the ability to characterise adiabaticity using
only the system densities, and we have developed a computationally cheap but
surprisingly accurate approximation for quantum thermodynamic properties.
In this process we have been able to interrogate system dynamics and the im-
pact of various parameters on the system, providing insight into key influences
on these many-body quantum systems out of equilibrium.

1Note that reference [60] has already demonstrated the ability to reverse engineer for the
V̂xc at finite temperature, however the scheme they used here is only applicable to a system
of 2 sites and is not scalable.
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A. Characterising adiabatic evo-
lutions in the Hubbard model with
N = 2 and 4

A.1 Bures and density distances for N = 2

This section shows the Bures distance DB
ρ (ρS(t), ρ(t)) and density distance

Dn(nS(t), n(t)) with time (as outlined in chapter 5) for the 2 site system with
slope potential. Figure A.1 gives the results for zero temperature, figure A.2
gives the results for T = 0.2J/kB, and figure A.3 gives the results for T =
2.5J/kB.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.2  0.4  0.6  0.8  1

D
e
n
si

ty
 d

is
ta

n
ce

t/tau

(a) U = 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1

D
e
n
si

ty
 d

is
ta

n
ce

t/tau

(b) U = 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1

D
e
n
si

ty
 d

is
ta

n
ce

t/tau

(c) U = 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1

B
u
re

s 
d

is
ta

n
ce

t/tau

(d) U = 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

B
u
re

s 
d

is
ta

n
ce

t/tau

(e) U = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1

B
u
re

s 
d

is
ta

n
ce

t/tau

(f) U = 10

Figure A.1: Top row: DB
ρ (ρS(t), ρ(t)) against time t/τ for U = 0J (left),

U = 5J (middle), and U = 10J (right).
Bottom row: Dn(nS(t), n(t)) against time t/τ for U = 0J (left), U = 5J
(middle), and U = 10J (right).
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Figure A.2: Top row: DB
ρ (ρS(t), ρ(t)) against time t/τ for U = 0J (left),

U = 5J (middle), and U = 10J (right).
Bottom row: Dn(nS(t), n(t)) against time t/τ for U = 0J (left), U = 5J
(middle), and U = 10J (right).
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Figure A.3: Top row: DB
ρ (ρS(t), ρ(t)) against time t/τ for U = 0J (left),

U = 5J (middle), and U = 10J (right).
Bottom row: Dn(nS(t), n(t)) against time t/τ for U = 0J (left), U = 5J
(middle), and U = 10J (right).
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A.2 N = 4

This section shows the Bures distance DB
ρ (ρS(t), ρ(t)) and density distance

Dn(nS(t), n(t)) with time for the 4 site system with slope potential. Figure A.4
gives the results for zero temperature, figure A.5 gives the results for T =
0.2J/kB, and figure A.6 gives the results for T = 2.5J/kB.
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Figure A.4: Top row: DB
ρ (ρS(t), ρ(t)) against time t/τ for U = 0J (left),

U = 5J (middle), and U = 10J (right).
Bottom row: Dn(nS(t), n(t)) against time t/τ for U = 0J (left), U = 5J
(middle), and U = 10J (right).
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Figure A.5: Top row: DB
ρ (ρS(t), ρ(t)) against time t/τ for U = 0J (left),

U = 5J (middle), and U = 10J (right).
Bottom row: Dn(nS(t), n(t)) against time t/τ for U = 0J (left), U = 5J
(middle), and U = 10J (right).
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Figure A.6: Top row: DB
ρ (ρS(t), ρ(t)) against time t/τ for U = 0J (left),

U = 5J (middle), and U = 10J (right).
Bottom row: Dn(nS(t), n(t)) against time t/τ for U = 0J (left), U = 5J
(middle), and U = 10J (right).
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B. Complete set of results for
exact quantum thermodynamic prop-
erties

B.1 Exact quantum thermodynamic results

In this section, we will display the exact quantum work (as calculated using
equation 2.76) and entropy production (as calculated using equation 2.81) for
the complete parameter set (i.e. 2, 4, and 6 sites, with zigzag, teeth, and
slope potentials, for T = 0.2J/kB, T = 2.5J/kB, and T = 20J/kB) showing
0 ≤ U/J ≤ 10 along the y-axis and 0.5 ≤ τ × J ≤ 10 along the x-axis.

B.1.1 Exact work
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Figure B.1: Exact work for 2 sites with zigzag potential at the three temper-
atures.
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Figure B.2: Exact work for the 4 sites zigzag at the three temperatures.
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Figure B.3: Exact work for the 4 sites teeth at the three temperatures.
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Figure B.4: Exact work for the 4 sites slope at the three temperatures.
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Figure B.5: Exact work for the 6 sites zigzag at the three temperatures.
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Figure B.6: Exact work for the 6 sites teeth at the three temperatures.

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W exact
ext 〉

0.22 2.76 5.30 7.84 10.38 12.92 15.46 18.00 20.54 23.08 25.62

(a) T = 0.2J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W exact
ext 〉

0.48 1.36 2.23 3.11 3.98 4.86 5.74 6.61 7.49 8.36 9.24

(b) T = 2.5J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W exact
ext 〉

0.39 0.47 0.55 0.64 0.72 0.80 0.88 0.97 1.05 1.13 1.21

(c) T = 20J/kB

Figure B.7: Exact work for the 6 sites slope at the three temperatures.
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B.1.2 Exact entropy
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Figure B.8: Exact entropy for the 2 sites zigzag at the three temperatures.
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Figure B.9: Exact entropy for the 4 sites zigzag at the three temperatures.
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Figure B.10: Exact entropy for the 4 sites teeth at the three temperatures.
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Figure B.11: Exact entropy for the 4 sites slope at the three temperatures.
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Figure B.12: Exact entropy for the 6 sites zigzag at the three temperatures.
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Figure B.13: Exact entropy for the 6 sites teeth at the three temperatures.
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Figure B.14: Exact entropy for the 6 sites slope at the three temperatures.
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B.2 Work with time

Here we show the set of figures displaying the accumulation of average quantum
work with time t (x-axis). Each figure shows three temperatures: low tempera-
ture T = 0.2J/kB (top row), medium temperature T = 2.5J/kB (middle row),
and high temperature T = 20J/kB (bottom row). The columns distinguish
between three different driving rates, with the left column as a fast drive, the
middle column with a medium drive, and the right column with a slow drive.
Each figure shows three different values of U : U = 0J in red, U = 5J in blue,
and U = 10J in green.
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Figure B.15: Average quantum work accumulation in the 2 site system with
zigzag potential.
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Figure B.16: Average quantum work accumulation in the 4 site system with
zigzag potential.
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Figure B.17: Average quantum work accumulation in the 4 site system with
slope potential.
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Figure B.18: Average quantum work accumulation in the 4 site system with
teeth potential.
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Figure B.19: Average quantum work accumulation in the 6 site system with
zigzag potential.
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Figure B.20: Average quantum work accumulation in the 6 site system with
slope potential.
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Figure B.21: Average quantum work accumulation in the 6 site system with
teeth potential.
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C. Testing the variants of the
hybrid approximation

The calculation of the quantum work has 6 places where one can use either
an approximation or the exact term. These are ρ̂(0), Ĥ(0), ρ̂(τ), and Ĥ(τ) in
the equation of the quantum work (equation 2.76), and then ρ̂(t) and Ĥ(t) in
the evolution from ρ̂(0) to ρ̂(τ).

When evolving the system, we can choose an approximation for the initial
state to be used in ρ̂(t) = U ρ̂(0)U †, denoted by ρ̂0(t). However, in this evolu-
tion, we can also choose an approximation for U through the approximation
of Ĥ(t). The mixture of these two approximations gives the approximation
of ρ̂(τ). For example, using the exact initial state for ρ̂(t) but with the non-
interacting Hamiltonian for U will mean ρ̂(τ) is a combination of the exact
and the non-interacting approximations, denoted by ρ̂ex+NI(τ).

Other than ρ̂(τ), it is best to keep the approximations of ρ̂(0) and ρ̂0(t) [the
initial state used in the calculation of ρ̂(t)] consistent, and likewise with the
Hamiltonians, to avoid sudden changes in the constituent terms of the calcula-
tion. Because it is the Hamiltonian which includes the many-body interactions
during the evolution, it is the Hamiltonian which should be approximated to
reduce the complexity of the calculation. As described in chapter 7, the initial
state shall be exact to include memory of the interactions in the evolution.
However there are several possible combinations of exact and approximated
terms in the calculation. We shall use the non-interacting Hamiltonian for the
dynamics to demonstrate the variants of applying the hybrid approximation.
Table C.1 shows four of these combinations which we studied.

In the following sections we see how each combination is translated into
equation 2.76 and what the contour plots of average quantum work look like for
2 sites with zigzag potential at T = 2.5J/kB. We find that the Hamiltonians
must have the same approximation throughout the calculation, otherwise the
mismatch in eigenstates between Ĥex and ĤNI leads to spurious oscillations
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Method ρ̂(0) Ĥ(0) ρ̂0(t) Ĥ(t) ρ̂(τ) Ĥ(τ)
1 ex ex ex NI ex+NI ex
2 ex ex NI NI NI ex
3 NI ex NI NI NI ex
4 ex NI ex NI ex+NI NI

Table C.1: A table to summarise where the approximations can be imple-
mented in the average quantum work calculation. Here, “ex” means the exact
form is used; “NI” means the non-interacting approximation was used; and
“ex+NI” means the final state is obtained using the exact initial state evolved
using the non-interacting Hamiltonian.

in the results.

C.1 First method - exact states, exact Ĥ(0),
and exact Ĥ(τ ), with non-interacting evo-
lution Hamiltonian

The first method looks at only approximating the evolution Hamiltonian, and
corresponds to

〈W 〉 = Tr
[
ρ̂ex+NI(τ)Ĥex(τ)

]
− Tr

[
ρ̂ex(0)Ĥex(0)

]
, (C.1)

where Ĥex(0) is the exact initial Hamiltonian, ρ̂ex(0) is the exact initial state
calculated from Ĥex(0), Ĥex(τ) is the exact final Hamiltonian, and ρ̂ex+NI

τ is
the final state evolved from the exact initial state through a unitary transfor-
mation, UNI , using the non-interacting Hamiltonian ĤNI .

Figure C.1 shows the average work extracted and relative error for 2 sites
with zigzag potential at the medium temperature for the usual range of cor-
relation strengths and driving times used in this thesis. These results are not
as good as one could have hoped for this approximation since we have only
approximated the evolution Hamiltonian and nothing else. The oscillations
are understood to be arising from the fact that the initial and final eigenstates
are not eigenstates of the evolution Hamiltonian.
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Figure C.1: Work and relative error for method 1 for a 2 site Hubbard model
with zigzag potential at T = 2.5J/kB over 0 ≤ U/J ≤ 10 (y-axis) and 0.5 ≤
τ × J10 (x-axis).

C.2 Second method - non-interacting evolu-
tion terms

The second method looks at approximating all terms in the evolution to be
non-interacting. It is written as

〈W 〉 = Tr
[
ρ̂NI(τ)Ĥex(τ)

]
− Tr

[
ρ̂ex(0)Ĥex(0)

]
, (C.2)

where we have used the exact initial state in the calculation of the second
term, but then evolved the non-interacting state through the non-interacting
evolution to get ρ̂NI(τ).

Figure C.2 gives the corresponding figures for this calculation, which are
mildly better than the previous approximation, however the oscillations are
still evident.

C.3 Third method - matching all states

Now we shall look at what happens if we match the initial state approximation
with the evolution approximation, i.e. we shall use the non-interacting state
for the calculation of the second term as well as the evolution:

〈W 〉 = Tr
[
ρ̂NI(τ)Ĥex(τ)

]
− Tr

[
ρ̂NI(0)Ĥex(0)

]
. (C.3)
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Figure C.2: Work and relative error for method 2 for 2 sites with zigzag
potential at T = 2.5J/kB over 0 ≤ U/J ≤ 10 (y-axis) and 0.5 ≤ τ × J10
(x-axis).
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Figure C.3: Work and relative error for method 3 for 2 sites with zigzag
potential at T = 2.5J/kB over 0 ≤ U/J ≤ 10 (y-axis) and 0.5 ≤ τ × J10
(x-axis).
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From the results in figure C.3, we can see how this approximation appears
more like the purely non-interacting approximation, with mild improvements,
and with improvements in the accuracy compared to methods 1 and 2. How-
ever it still suffers from the oscillations.

C.4 Fourth method - matching Hamiltonians

As we can see from table C.1, for methods 1, 2, and 3, the eigenstates from
the initial and final (exact) Hamiltonians are not eigenstates of the evolution
(non-interacting) Hamiltonian at those times. We now try to match the eigen-
states by having a consistent approximation for the Hamiltonians, rather than
matching the states.

To do this we shall keep the initial state as exact and keep the evolution
as non-interacting, but will make the initial and final Hamiltonians as non-
interacting:

〈W 〉 = Tr
[
ρ̂NI+ex(τ)ĤNI(τ)

]
− Tr

[
ρ̂ex(0)ĤNI(0)

]
. (C.4)

The results from this approximation are very promising, as seen in fig-
ure C.4, and seem to imply it is more important to ensure the Hamiltonians
are consistent (from initial, through evolution, to the final), rather than them
being exact. This is physically seems to make sense as the eigenstates should
match for the entire evolution, and any mismatch could (and indeed appears
to) lead to spurious oscillations in the results.
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Figure C.4: Work and relative error for method 4 for 2 sites with zigzag
potential at T = 2.5J/kB over 0 ≤ U/J ≤ 10 (y-axis) and 0.5 ≤ τ × J10
(x-axis).
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D. Complete set of approximated
quantum thermodynamic proper-
ties

D.1 Non-interacting quantum work and en-
tropy

In this section, we will display the non-interacting (NI) quantum work and
entropy production as described in chapter 7 for the complete parameter set
(i.e. 2, 4, and 6 sites, with zigzag, teeth, and slope potentials, for T = 0.2J/kB,
T = 2.5J/kB, and T = 20J/kB) showing 0 ≤ U/J ≤ 10 along the y-axis and
0.5 ≤ τ × J ≤ 10 along the x-axis.

D.1.1 Non-interacting work

Calculated using 〈WNI
ext 〉 = Tr

[
ρNI(0)ĤNI(0)

]
−Tr

[
ρNI(τ)ĤNI(τ)

]
with non-

interacting dynamics.
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Figure D.1: NI work (top row) and relative error (bottom row) for the 2 sites
zigzag at the three temperatures.
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Figure D.2: NI work (top row) and relative error (bottom row) for the 4 sites
zigzag at the three temperatures.
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Figure D.3: NI work (top row) and relative error (bottom row) for the 4 sites
teeth at the three temperatures.
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Figure D.4: NI work (top row) and relative error (bottom row) for the 4 sites
slope at the three temperatures.
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Figure D.5: NI work (top row) and relative error (bottom row) for the 6 sites
zigzag at the three temperatures.
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Figure D.6: NI work (top row) and relative error (bottom row) for the 6 sites
teeth at the three temperatures.
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Figure D.7: NI work (top row) and relative error (bottom row) for the 6 sites
slope at the three temperatures.

D.1.2 NI entropy

The entropy is calculated by ∆SNI = β
(
〈WNI〉 −∆FNI

)
, where ∆FNI =

− (1/β) ln
(
ZNI
τ /ZNI

0

)
.
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Figure D.8: NI entropy (top row) and relative error (bottom row) for the 2
sites zigzag at the three temperatures.
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Figure D.9: NI entropy (top row) and relative error (bottom row) for the 4
sites zigzag at the three temperatures.
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Figure D.10: NI entropy (top row) and relative error (bottom row) for the 4
sites teeth at the three temperatures.
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Figure D.11: NI entropy (top row) and relative error (bottom row) for the 4
sites slope at the three temperatures.
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Figure D.12: NI entropy (top row) and relative error (bottom row) for the 6
sites zigzag at the three temperatures.
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Figure D.13: NI entropy (top row) and relative error (bottom row) for the 6
sites teeth at the three temperatures.
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Figure D.14: NI entropy (top row) and relative error (bottom row) for the 6
sites slope at the three temperatures.

D.2 ‘Exact + NI’

This section gives the complete set of quantum work and entropy production
results for the ‘exact + NI’ approximation defined in chapter 7.

D.2.1 ‘Exact + NI’ work

Calculated using 〈W exact+NI
ext 〉 = Tr

[
ρexact(0)ĤNI(0)

]
−Tr

[
ρexact+NI(τ)ĤNI(τ)

]
with non-interacting dynamics.
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relative error T = 20J/kB

Figure D.15: ‘Exact + NI’ work (top row) and relative error (bottom row) for
the 2 sites zigzag at the three temperatures.
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(c) ‘Exact + NI’ quantum work
T = 20J/kB
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Figure D.16: ‘Exact + NI’ work (top row) and relative error (bottom row) for
the 4 sites zigzag at the three temperatures.

204



2 4 6 8 10
τ × J

0

2

4

6

8

10
U
/J

Extracted work 〈W exact+NI
ext 〉

−18.90−17.38−15.86−14.34−12.83−11.31 −9.79 −8.27 −6.75 −5.24 −3.72

(a) ‘Exact + NI’ quantum work
T = 0.2J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W exact+NI
ext 〉

−19.39−18.96−18.54−18.11−17.68−17.26−16.83−16.41−15.98−15.56−15.13

(b) ‘Exact + NI’ quantum work
T = 2.5J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W exact+NI
ext 〉

−19.76−19.72−19.68−19.64−19.60−19.56−19.53−19.49−19.45−19.41−19.37

(c) ‘Exact + NI’ quantum work
T = 20J/kB
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Figure D.17: ‘Exact + NI’ work (top row) and relative error (bottom row) for
the 4 sites teeth at the three temperatures.
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(b) ‘Exact + NI’ quantum work
T = 2.5J/kB
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(c) ‘Exact + NI’ quantum work
T = 20J/kB
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relative error T = 2.5J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

|〈W exact+NI
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(f) ‘Exact + NI’ quantum work
relative error T = 20J/kB

Figure D.18: ‘Exact + NI’ work (top row) and relative error (bottom row) for
the 4 sites slope at the three temperatures.
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(c) ‘Exact + NI’ quantum work
T = 20J/kB
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Figure D.19: ‘Exact + NI’ work (top row) and relative error (bottom row) for
the 6 sites zigzag at the three temperatures.
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relative error T = 20J/kB

Figure D.20: ‘Exact + NI’ work (top row) and relative error (bottom row) for
the 6 sites teeth at the three temperatures.

206



2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work W exact+NI
ext

0.48 2.77 5.05 7.34 9.62 11.91 14.19 16.48 18.76 21.05 23.33 25.62

(a) ‘Exact + NI’ quantum work
T = 0.2J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work W exact+NI
ext

0.60 1.38 2.17 2.96 3.74 4.53 5.31 6.10 6.88 7.67 8.45 9.24

(b) ‘Exact + NI’ quantum work
T = 2.5J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work W exact+NI
ext

0.41 0.48 0.55 0.63 0.70 0.77 0.85 0.92 0.99 1.07 1.14 1.21

(c) ‘Exact + NI’ quantum work
T = 20J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

|〈W exact+NI
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(d) ‘Exact + NI’ quantum work
relative error T = 0.2J/kB
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relative error T = 2.5J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

|〈W exact+NI
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(f) ‘Exact + NI’ quantum work
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Figure D.21: ‘Exact + NI’ work (top row) and relative error (bottom row) for
the 6 sites slope at the three temperatures.

D.2.2 ‘Exact + NI’ entropy

The entropy is calculated by ∆Sexact+NI = β
(
〈W exact+NI〉 −∆F exact

)
, where

∆F exact = − (1/β) ln (Zexact
τ /Zexact

0 ).
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(c) ‘Exact + NI’ entropy T =
20J/kB
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(e) ‘Exact + NI’ entropy rela-
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(f) ‘Exact + NI’ entropy rela-
tive error T = 20J/kB

Figure D.22: ‘Exact + NI’ entropy (top row) and relative error (bottom row)
for the 2 sites zigzag at the three temperatures.
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(d) ‘Exact + NI’ entropy rela-
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(f) ‘Exact + NI’ entropy rela-
tive error T = 20J/kB

Figure D.23: ‘Exact + NI’ entropy (top row) and relative error (bottom row)
for the 4 sites zigzag at the three temperatures.
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(c) ‘Exact + NI’ entropy T =
20J/kB
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(f) ‘Exact + NI’ entropy rela-
tive error T = 20J/kB

Figure D.24: ‘Exact + NI’ entropy (top row) and relative error (bottom row)
for the 4 sites teeth at the three temperatures.
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Figure D.25: ‘Exact + NI’ entropy (top row) and relative error (bottom row)
for the 4 sites slope at the three temperatures.
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Figure D.26: ‘Exact + NI’ entropy (top row) and relative error (bottom row)
for the 6 sites zigzag at the three temperatures.
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Figure D.27: ‘Exact + NI’ entropy (top row) and relative error (bottom row)
for the 6 sites teeth at the three temperatures.
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tive error T = 20J/kB

Figure D.28: ‘Exact + NI’ entropy (top row) and relative error (bottom row)
for the 6 sites slope at the three temperatures.

D.3 ‘BALDA’-based approximation

This section shows the complete set of results based on the parameter set
outlined in section 6.2.2 for the ‘BALDA’ approximation defined in chapter 8.

D.3.1 ‘BALDA’ work

Calculated using 〈WBALDA
ext 〉 = Tr

[
ρBALDA(0)ĤBALDA(0)

]
−Tr

[
ρBALDA(τ)ĤBALDA(τ)

]
with Ĥevo approximated using BALDA at t = 0.
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Figure D.29: ‘BALDA’ work (top row) and relative error (bottom row) for the
2 sites zigzag at the three temperatures.
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Figure D.30: ‘BALDA’ work (top row) and relative error (bottom row) for the
4 sites zigzag at the three temperatures.
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Figure D.31: ‘BALDA’ work (top row) and relative error (bottom row) for the
4 sites teeth at the three temperatures.
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Figure D.32: ‘BALDA’ work (top row) and relative error (bottom row) for the
4 sites slope at the three temperatures.
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Figure D.33: ‘BALDA’ work (top row) and relative error (bottom row) for the
6 sites zigzag at the three temperatures.
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Figure D.34: ‘BALDA’ work (top row) and relative error (bottom row) for the
6 sites teeth at the three temperatures.
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Figure D.35: ‘BALDA’ work (top row) and relative error (bottom row) for the
6 sites slope at the three temperatures.
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D.3.2 ‘BALDA’ entropy

The entropy is calculated by ∆SBALDA = β
(
〈WBALDA〉 −∆FBALDA

)
, where

∆FBALDA = − (1/β) ln
(
ZBALDA
τ /ZBALDA

0

)
.
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Figure D.36: ‘BALDA’ entropy (top row) and relative error (bottom row) for
the 2 sites zigzag at the three temperatures.
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Figure D.37: ‘BALDA’ entropy (top row) and relative error (bottom row) for
the 4 sites zigzag at the three temperatures.
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Figure D.38: ‘BALDA’ entropy (top row) and relative error (bottom row) for
the 4 sites teeth at the three temperatures.
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Figure D.39: ‘BALDA’ entropy (top row) and relative error (bottom row) for
the 4 sites slope at the three temperatures.
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Figure D.40: ‘BALDA’ entropy (top row) and relative error (bottom row) for
the 6 sites zigzag at the three temperatures.
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Figure D.41: ‘BALDA’ entropy (top row) and relative error (bottom row) for
the 6 sites teeth at the three temperatures.
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Figure D.42: ‘BALDA’ entropy (top row) and relative error (bottom row) for
the 6 sites slope at the three temperatures.
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D.4 ‘Exact + BALDA’

This section shows the complete set of results based on the parameter set
outlined in section 6.2.2 for the ‘exact + BALDA’ approximation defined in
chapter 8.

D.4.1 ‘Exact + BALDA’ work

Calculated using 〈W ex+BALDA
ext 〉 = Tr

[
ρex(0)ĤBALDA(0)

]
−Tr

[
ρex+BALDA(τ)ĤBALDA(τ)

]
with Ĥevo approximated using BALDA at t = 0.
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Figure D.43: ‘Exact + BALDA’ work (top row) and relative error (bottom
row) for the 2 sites zigzag at the three temperatures.
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Figure D.44: ‘Exact + BALDA’ work (top row) and relative error (bottom
row) for the 4 sites zigzag at the three temperatures.
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Figure D.45: ‘Exact + BALDA’ work (top row) and relative error (bottom
row) for the 4 sites teeth at the three temperatures.
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Figure D.46: ‘Exact + BALDA’ work (top row) and relative error (bottom
row) for the 4 sites slope at the three temperatures.
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work relative error T = 20J/kB

Figure D.47: ‘Exact + BALDA’ work (top row) and relative error (bottom
row) for the 6 sites zigzag at the three temperatures.
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Figure D.48: ‘Exact + BALDA’ work (top row) and relative error (bottom
row) for the 6 sites teeth at the three temperatures.
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Figure D.49: ‘Exact + BALDA’ work (top row) and relative error (bottom
row) for the 6 sites slope at the three temperatures.
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D.4.2 ‘Exact + BALDA’ entropy

The entropy is calculated by ∆Sexact+BALDA = β
(
〈W exact+BALDA〉 −∆F exact

)
,

where ∆F exact = − (1/β) ln (Zexact
τ /Zexact

0 ).
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Figure D.50: ‘Exact + BALDA’ entropy (top row) and relative error (bottom
row) for the 2 sites zigzag at the three temperatures.
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Figure D.51: ‘Exact + BALDA’ entropy (top row) and relative error (bottom
row) for the 4 sites zigzag at the three temperatures.
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Figure D.52: ‘Exact + BALDA’ entropy (top row) and relative error (bottom
row) for the 4 sites teeth at the three temperatures.
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Figure D.53: ‘Exact + BALDA’ entropy (top row) and relative error (bottom
row) for the 4 sites slope at the three temperatures.
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Figure D.54: ‘Exact + BALDA’ entropy (top row) and relative error (bottom
row) for the 6 sites zigzag at the three temperatures.
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Figure D.55: ‘Exact + BALDA’ entropy (top row) and relative error (bottom
row) for the 6 sites teeth at the three temperatures.
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Figure D.56: ‘Exact + BALDA’ entropy (top row) and relative error (bottom
row) for the 6 sites slope at the three temperatures.
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D.5 Approximation based on the exact ground
state exchange-correlation potential, ‘vxc’

This section shows the complete set of results based on the parameter set
outlined in section 6.2.2 for the ‘vxc’ approximation defined in chapter 8. Note
that for 6 sites the teeth potential is absent. This is because the nature of the
system at t = 0 (all sites having extremely similar energies) means it is too
challenging to achieve an accurate inversion of the density.

D.5.1 Exact ground state exchange-correlation poten-
tial ‘vxc’ work

Calculated using 〈W vxc
ext 〉 = Tr

[
ρvxc(0)Ĥvxc(0)

]
−Tr

[
ρvxc(τ)Ĥvxc(τ)

]
with Ĥevo

approximated using the exact ground state vxc at t = 0.
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Figure D.57: ‘vxc’ work (top row) and relative error (bottom row) for the 2
sites zigzag at the three temperatures.

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W vxc
ext 〉

3.10 4.32 5.54 6.77 7.99 9.22 10.44 11.66 12.89 14.11 15.33

(a) ‘vxc’ quantum work T =
0.2J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W vxc
ext 〉

1.05 1.43 1.81 2.19 2.57 2.95 3.33 3.71 4.10 4.48 4.86

(b) ‘vxc’ quantum work T =
2.5J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Extracted work 〈W vxc
ext 〉

0.14 0.19 0.23 0.28 0.33 0.38 0.43 0.47 0.52 0.57 0.62

(c) ‘vxc’ quantum work T =
20J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

|〈W vxc
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(d) ‘vxc’ quantum work relative
error T = 0.2J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

|〈W vxc
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(e) ‘vxc’ quantum work relative
error T = 2.5J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

|〈W vxc
ext 〉 − 〈W exact

ext 〉|/〈W exact
ext 〉

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(f) ‘vxc’ quantum work relative
error T = 20J/kB

Figure D.58: ‘vxc’ work (top row) and relative error (bottom row) for the 4
sites zigzag at the three temperatures.
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Figure D.59: ‘vxc’ work (top row) and relative error (bottom row) for the 4
sites teeth at the three temperatures.
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Figure D.60: ‘vxc’ work (top row) and relative error (bottom row) for the 4
sites slope at the three temperatures.
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Figure D.61: ‘vxc’ work (top row) and relative error (bottom row) for the 6
sites zigzag at the three temperatures.
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Figure D.62: ‘vxc’ work (top row) and relative error (bottom row) for the 6
sites slope at the three temperatures.
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D.5.2 ‘vxc’ entropy

The entropy is calculated by ∆Svxc = β (〈W vxc〉 −∆F vxc), where ∆F vxc =
− (1/β) ln (Zvxc

τ /Zvxc
0 ).

235



2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Entropy production ∆Svxc
0.63 3.47 6.30 9.14 11.98 14.82 17.66 20.49 23.33 26.17 29.01

(a) ‘vxc’ entropy T = 0.2J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Entropy production ∆Svxc
1.14 1.23 1.31 1.40 1.48 1.56 1.65 1.73 1.82 1.90 1.98

(b) ‘vxc’ entropy T = 2.5J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

Entropy production ∆Svxc
0.033 0.034 0.036 0.037 0.039 0.040 0.041 0.043 0.044 0.045 0.047

(c) ‘vxc’ entropy T = 20J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

|∆Svxc −∆Sexact|/∆Sexact
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(d) ‘vxc’ entropy relative error
T = 0.2J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10
U
/J

|∆Svxc −∆Sexact|/∆Sexact
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(e) ‘vxc’ entropy relative error
T = 2.5J/kB

2 4 6 8 10
τ × J

0

2

4

6

8

10

U
/J

|∆Svxc −∆Sexact|/∆Sexact
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(f) ‘vxc’ entropy relative error
T = 20J/kB

Figure D.63: ‘vxc’ entropy (top row) and relative error (bottom row) for the 2
sites zigzag at the three temperatures.
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Figure D.64: ‘vxc’ entropy (top row) and relative error (bottom row) for the 4
sites zigzag at the three temperatures.
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Figure D.65: ‘vxc’ entropy (top row) and relative error (bottom row) for the 4
sites teeth at the three temperatures.
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Figure D.66: ‘vxc’ entropy (top row) and relative error (bottom row) for the 4
sites slope at the three temperatures.
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Figure D.67: ‘vxc’ entropy (top row) and relative error (bottom row) for the 6
sites zigzag at the three temperatures.
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Figure D.68: ‘vxc’ entropy (top row) and relative error (bottom row) for the 6
sites slope at the three temperatures.
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D.6 ‘Exact + vxc’

This section shows the complete set of results based on the parameter set out-
lined in section 6.2.2 for the ‘exact + vxc’ approximation defined in chapter 8.
Once again the 6 site teeth results are absent, for the same reason as described
previously.

D.6.1 ‘Exact + vxc’ work

Calculated using 〈W ex+vxc
ext 〉 = Tr

[
ρex(0)Ĥvxc(0)

]
−Tr

[
ρex+vxc(τ)Ĥvxc(τ)

]
with

Ĥevo approximated using the exact ground state vxc at t = 0.
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Figure D.69: ‘Exact + vxc’ work (top row) and relative error (bottom row) for
the 2 sites zigzag at the three temperatures.
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Figure D.70: ‘Exact + vxc’ work (top row) and relative error (bottom row) for
the 4 sites zigzag at the three temperatures.
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Figure D.71: ‘Exact + vxc’ work (top row) and relative error (bottom row) for
the 4 sites teeth at the three temperatures.
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Figure D.72: ‘Exact + vxc’ work (top row) and relative error (bottom row) for
the 4 sites slope at the three temperatures.
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Figure D.73: ‘Exact + vxc’ work (top row) and relative error (bottom row) for
the 6 sites zigzag at the three temperatures.
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relative error T = 20J/kB

Figure D.74: ‘Exact + vxc’ work (top row) and relative error (bottom row) for
the 6 sites slope at the three temperatures.
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D.6.2 ‘Exact + vxc’ entropy

The entropy is calculated by ∆Sexact+vxc = β (〈W exact+vxc〉 −∆F exact), where
∆F exact = − (1/β) ln (Zexact

τ /Zexact
0 ).
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Figure D.75: ‘Exact + vxc’ entropy (top row) and relative error (bottom row)
for the 2 sites zigzag at the three temperatures.
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Figure D.76: ‘Exact + vxc’ entropy (top row) and relative error (bottom row)
for the 4 sites zigzag at the three temperatures.
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Figure D.77: ‘Exact + vxc’ entropy (top row) and relative error (bottom row)
for the 4 sites teeth at the three temperatures.
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Figure D.78: ‘Exact + vxc’ entropy (top row) and relative error (bottom row)
for the 4 sites slope at the three temperatures.
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Figure D.79: ‘Exact + vxc’ entropy (top row) and relative error (bottom row)
for the 6 sites zigzag at the three temperatures.
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Figure D.80: ‘Exact + vxc’ entropy (top row) and relative error (bottom row)
for the 6 sites slope at the three temperatures.
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