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This is not our world with trees in it.  It’s a world of trees where humans have only just 

arrived. 

 

— Richard Powers, The Overstory 
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Abstract 

Tropical forests comprise an important long-term carbon sink.  Loss of carbon and 

biomass following severe droughts across Borneo in 1997-98 and Amazonia in 2005 and 

2010 suggest this sink is sensitive to drought, but recent evidence also identifies a shift in 

species composition to more drought tolerant species and thus the exact climate sensitivity 

of the tropical carbon sink remains unclear.  Uncertainty in how the world’s most 

biodiverse and productive ecosystems will respond to increasing temperatures and altered 

precipitation is a major limitation for predicting future climate. 

The El Niño Southern Oscillation causes anomalies of high temperature and 

drought in tropical regions and the responses of tropical forests to these climate anomalies 

gives us an insight into whether and how key carbon pools, dynamics and species might 

endure the hotter and periodically drier conditions predicted for the end of the century.  

Therefore, the record hot and dry climate caused by the 2015-16 El Niño offers a novel 

opportunity to understand the response of the tropical sink to temperature and drought as 

it was the first very strong El Niño to be captured by the African Tropical Rainforest 

Observation Network (AfriTRON) and the Amazon Forest Inventory Network (RAINFOR) 

that monitor structurally intact forests.  This thesis combines climate data with 

measurements from long-term forest monitoring plots across tropical Africa (100 plots) and 

South America (137 plots) over the El Niño climate anomaly to investigate the impacts of 

the unprecedented temperatures and droughts on tropical forests. 

For the first time, the resistance of intact African tropical forests to short-term 

drought is assessed and despite record temperatures and drought, the El Niño was 

insufficient to reverse the longstanding biomass carbon sink which reduced but was still a 

sink of 0.52 ± 0.20 Mg C ha-1 yr-1 in the El Niño.  South American tropical forests were a 

carbon sink prior to the El Niño and became a small carbon source of -0.1 ± 0.40 Mg C ha-

1 yr-1 in the El Niño.  The negative responses of African and South American tropical 

forests to high temperatures were similar, but the negative impacts of drought differed 

between the continents’ forests.  Overall, the results indicate some resistance to 

environmental change in the short-term and potential resilience in the long-term in African 

forests, although hotter drier forests in South America are vulnerable to carbon sink 

reversal.  The results in this thesis provide evidence that much of the world’s intact tropical 
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forests have the capacity to resist climate anomalies only if conservation efforts succeed in 

keeping forests intact and global temperature increases are limited. 
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Introduction 

Since the start of the Industrial Revolution the concentration of atmospheric carbon 

dioxide has been rising, leading to an increase in surface air temperature (Stocker et al. 

2013, IPCC 2018).  Tree-dominated ecosystems worldwide are affected by this 

environmental change alongside deforestation, forest degradation and fire.  Tropical 

forests comprise 44 % of global forest area (Keenan et al. 2015), are highly carbon rich 

(Sullivan et al. 2017) and house many species and communities (Barlow et al. 2007) so 

the impacts of such anthropogenic change on tropical forests may be particularly 

important.  Thus, environmental changes that impact tropical forests may have globally 

significant effects on carbon, climate and biodiversity.  

Forest cover is rapidly decreasing in the tropics, disturbance levels are increasing 

and human impacts are modifying even intact tropical forests (Lewis et al. 2015).  Current 

rates of tropical deforestation are high (Hansen et al. 2010, Baccini et al. 2012), forest loss 

is increasing by 2101 km2 yr-1 (Hansen et al. 2013) and though estimates vary widely, 

deforestation leads to loss of biodiversity, hydrological impacts, loss of carbon storage and 

sequestration (Foley et al. 2007).  Deforestation is the most pervasive land-use-change 

process and emissions from land use change contribute 1.3 Gt C yr-1 , 12 % of global 

anthropogenic CO2 emissions (Le Quéré et al. 2018).  As forests are a major carbon sink 

deforestation lowers the capacity of forests to uptake CO2 emissions (Pan et al. 2011, 

Hubau et al. 2020).  In carbon terms, there is a near neutral exchange of carbon across 

the terrestrial tropics as the large carbon losses from deforestation and degradation are 

almost entirely offset by the significant carbon uptake from intact tropical forests and 

tropical forest regrowth (Gaubert et al. 2019).  Independently, long-term measurements of 

structurally intact old-growth tropical forests also show this uptake with forest biomass 

carbon increasing across remaining African (Lewis et al. 2009), Amazonian (Brienen et al. 

2015), and Asian (Qie et al. 2017) forests.  Yet, the tropical carbon sink may be 

vulnerable: there are indications that the Amazon carbon sink is declining, driven by a 
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combination of accelerating tree mortality and a stalling of past increases of woody 

productivity (Brienen et al. 2015).  Recent evidence suggests the African carbon sink is 

beginning to decline too, with high temperatures and drought impacting both tree growth 

and tree mortality pan-tropically (Hubau et al. 2020). 

One possible cause of the decline in sink strength may be increasing surface air 

temperatures, because both photosynthesis and respiration are temperature dependent.  

Above optimal temperatures plants reduce their carbon uptake (Lloyd and Farquhar 2008), 

closing stomata to avoid water loss, reducing internal CO2 concentrations and reducing 

carbon assimilation in the leaf (Slot and Winter 2017).  One study from La Selva, Costa 

Rica has suggested a decline of up to 20 % in tree biomass growth per degree of warming 

(Clark et al. 2013).  Respiration rates also tend to increase with short-term increases in 

temperature at both the leaf-level (Heskel et al. 2016) and in tropical forest communities 

(Clark et al. 2010), again reducing tree growth.  So, rising global temperatures may be 

compromising the tropical carbon sink. 

Droughts may also be causing the decline in carbon sink strength.  Carbon gains 

from biomass growth are expected to decrease during drought and tree mortality is 

expected to increase, which means that drought may decrease the amount of carbon 

stored and negatively feedback to reduce the carbon sink of tropical forests.  Without 

sufficient water plants cannot maintain photosynthesis (Doughty et al. 2014), increase 

respiration (Metcalfe et al. 2010) and if droughts are strong enough or long enough trees 

die and tree mortality may be widespread (McDowell et al. 2018).  As hotter temperatures 

exacerbate water deficits by increasing the evaporative demands for plants (Trenberth et 

al. 2014), even if drought intensity itself is not increasing, recent droughts may have been 

stronger and had greater impacts on forests simply due to hotter temperatures.   

El Niño is a recurring stochastic climate phenomenon whereby changes in the 

magnitude and spatial distribution of Pacific sea surface temperatures impact climate 

conditions across most of the tropics for up to a year or more (Cai et al. 2015).  Typically, 

El Niño events lead to widespread drought across Amazonia, droughts in east Africa, and 

below average precipitation over the Indian subcontinent and Southeast Asia (Dai and 

Wigley 2000).  El Niño events vary in strength but sea surface temperature anomalies 

amplify land temperatures (Tyrrell et al. 2015) and strongly determine interannual variation 

in climate.  Against a background of rising atmospheric CO2 and warming, the El Niño of 
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2015-16 led to record atmospheric CO2 concentrations, record global temperatures and 

the hottest conditions across the tropics in modern times (Liu et al. 2017).  Therefore, El 

Niño presents a potential insight into the ecological impacts of the more extreme climate 

conditions predicted for the future.  

Long-term measurements of forests capture their responses to a changing climate.  

Three very strong El Niño events have occurred in the last 50 years, 1982-83, 1997-98 

and 2015-16, but only the latter occurred after networks of long-term inventory plots had 

been established in Africa and South America and were poised to capture an El Niño 

event.  The 2015-16 El Niño event provides a first opportunity to assess the impact of high 

temperatures and strong water deficits on African and South American tropical forests.  

Climate data is combined with measurements from inventory plots to gain a quantitative 

impact of the 2015-16 El Niño event on African and Amazonian forests.  

In sum, (1) tropical forests have a potentially important role to play in slowing 

climate change, to the extent that atmospheric CO2 increases continue to support 

enhanced autotrophic carbon uptake, and yet (2) climate change itself threatens to stop, 

and even reverse, the tropical carbon sink and in so doing may damage the integrity of 

tropical forests themselves.  There are several ways to reduce the scientific uncertainties 

surrounding these changes and threats.  Arguably, one of the simplest is to try to exploit 

natural variations in the climate to quantitatively assess how higher temperature and water 

availability affect tropical forests over shorter, measurable periods.  Using the recent 

record extreme high temperature anomalies across the tropics that were associated with 

the 2015-16 El Niño event in combination with measurements from networks of long-term 

monitoring plots across large areas of tropical forest may significantly improve our 

understanding of how the biome responds to large-scale perturbation.  Quantifying how 

the tropical biome responds to such large-scale perturbation is an important component to 

help us understand the contemporary carbon cycle, with implications for the future 

temporal evolution of the tropical forest carbon sink. 

1.1 Tropical forests on two continents 

Tropical forests are ecosystems characterised by dense, tall, closed canopies 

dominated by trees (Putz and Redford 2010).  They occur in the region surrounding the 

equator from the Tropic of Cancer in the Northern Hemisphere at 23.43702° North, to 



Chapter 1 

 
 
 

17 

the Tropic of Capricorn in the Southern Hemisphere at 23.43702° South.  Tropical forests 

occur on four continents, but this thesis and literature review contends with tropical forests 

in two major regions; Africa and South America.  Tropical forests on these two continents 

differ in terms of climate, paleoclimate, structure and floristics. 

1.1.1 Climate  

Temperatures vary by continent.  Africa is on average the coolest of the major tropical 

regions, due to lowland forested regions being at higher altitudes (Malhi and Wright 2004).  

South American tropical forests are warmer and recent trends indicate temperatures are 

rising faster in South American than in African tropical forest regions (Hubau et al. 2020). 

Tropical forests are generally hot and wet, but total annual rainfall and rainfall 

seasonality vary regionally.  The tropical moist forest biome is largely constrained by total 

annual rainfall.  Africa is on average the driest major tropical region with approximately 

1800 mm yr-1 precipitation while South America has approximately 2400 mm yr-1 (Malhi 

and Wright 2004).  The intertropical convergence zone, where northern and southern trade 

winds meet and produce a narrow zone of low pressure, dominates the precipitation 

regimes of the tropics.  Rainfall varies with latitudinal distance from the equator and dry 

seasons are strongest and longest further from the equator, at the edge of the tropical 

forest biome.  Precipitation is also highly regional due to orography, coastline shape and 

distance from the sea (McGregor and Nieuwolt 1998).  About 90 % of African tropical 

forests receive less than 2,000 mm yr-1 precipitation, the approximate amount to sustain 

high levels of photosynthesis throughout the year (Guan et al. 2015).  By contrast just 41 

% of South American forests have precipitation below 2,000 mm yr-1.  So African tropical 

forests tend to be drier than South American tropical forests. 

There can be strong seasonality of rainfall in the tropics and African forests may have 

two dry and two wet seasons.  The intensity, length and arrival date of seasonal rainfall is 

becoming more variable with increases in interannual variability of seasonality over the dry 

tropics (Feng et al. 2013).  The hydrological cycle of the Amazon is intensifying with wet 

seasons getting wetter, particularly in the Northwest Amazon (Gloor et al. 2013), and the 

dry season getting drier in the Amazon (Fu et al. 2013).  In Africa the dry season in the 

Congo basin is increasing in length with earlier onset due to long-term drought (Jiang et al. 

2019).  The Amazon and Congo basins are hydrologically connected and floods in the 
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Amazon tend to coincide with droughts over the Congo and vice versa (Eltahir et al. 2004).  

Overall, there are greater seasonal water deficits in South America than in Africa (Hubau 

et al. 2020).  

1.1.2 Paleoclimate 

The palaeoclimate history of South America and Africa differ considerably and the 

species present today reflect these environmental changes of the past.  In Amazonia, 

according to oxygen isotope records from the centre of the eastern Amazon, the climate 

was drier during the last glacial with less plant transpiration and water recycling, but the 

tropical forest remained (Wang et al. 2017).  Pollen records also suggest that forests of the 

western Amazon were resilient to past climate change with only a few species 

replacements and minor fluctuations in abundance in the Mid-Holocene Dry Event 

(Nascimento et al. 2019).  So, tropical forests probably persisted across Amazonia, 

despite drier conditions, with any forest changes restricted to forest fringes (Malhi et al. 

2014).  African climate has oscillated between wetter conditions in interglacial periods, and 

cooler and drier conditions in glacial periods (deMenocal 2004), when forests retreated to 

refugia (Malhi et al. 2014).  The paleo-filtering of African species may have eliminated 

much of the most mesic-adapted biodiversity and the lower plant diversity of African 

forests today reflects their more variable climate history (Parmentier et al. 2007).  African 

tropical forest diversity is actually similar to or higher than that of the Amazon when 

comparing equivalent forests with similar dry season lengths (Parmentier et al. 2007), 

suggesting that in Africa most wet-adapted species have been lost and the dry-adapted 

species remain and perhaps these xeric lineages have diversified, conferring drought 

resistance.   

1.1.3 Structure 

Neotropical forests tend to have more smaller stems in a given area than African 

forests (Lewis et al. 2013).  Amazonian forests have approximately 600 trees per hectare 

greater than 100 mm diameter while African forests have about 425 (Lewis et al. 2013, 

Hubau et al. 2020).  So, African tropical forests are more dominated by large trees 

(Enquist et al. 2020) and thus while tree biodiversity is lower, carbon density is greater in 

Africa (Sullivan et al. 2017).  South American plots have lower carbon storage per unit 

area than African forests (Sullivan et al. 2017) but both diversity and carbon vary greatly 
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within South America.  Carbon residence times are also shorter in South American forests 

compared to African forests (Galbraith et al. 2013, Hubau et al. 2020).  South American 

forests tend to have higher recruitment, higher stem mortality and faster stem turnover 

than African forests.  So overall, high biomass is typically found in forests in Africa, high 

diversity in South America and low diversity in Africa, although carbon storage and tropical 

tree species diversity vary widely across the tropical biome and within continents.  

1.1.4 Floristics 

Forest composition and diversity differs in Africa and South America.  Evidence from 
pollen and molecular studies suggests that most extant tropical genera first appeared after 

the supercontinent Gondwana split (Donoghue and Donoghue 2008), so species on each 

continent represent evolutionary responses to the physical environment on each continent.  

Indeed, forest plots from different continents tend not to share genera (Dexter et al. 2015), 

and only 4 % of species are shared between Africa, America and Asia (Slik et al. 2015) 

with the most speciose tropical families overlapping across continents (Gentry 1988).  The 

Dipterocarpaceae dominate in Asian forests but are very rare in South American and 

African forests (Dexter et al. 2015).  In Amazonia areas with geologically younger soils 

tend to have more phylogenetically diverse and species-rich tree communities (Honorio 

Coronado et al. 2015) with local communities assembled from lineages that span the 

whole Amazon (Dexter et al. 2017).  Seasonally dry neotropical forests have more closely 

related species from lineages that tend to be geographically more restricted (Dexter et al. 

2017, Slik et al. 2018).   

There are some phylogenetic links between African and South American forests.  

The genera present in Africa and South America are similar due to the shared origin and 

Cenozoic plate of these tropical forests alongside some transatlantic dispersal (Slik et al. 

2018).  South American tropical forests can be divided into humid forests and dry forests, 

with dry tropical forests relatively compositionally distinct (Slik et al. 2018).  Within Africa 

forests are compositionally very similar and this is thought to be because of the 

paleoclimate history of the continent and repeated retreat of the forest to refugia.   

There is also contemporary evidence of the composition of ecosystems moving 

towards drought tolerance.  Forest composition in Amazonia has shifted to include more 

dry affiliated genera (Esquivel-Muelbert et al. 2019) and drought-induced mortality in 
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Amazonia has been greater for wetter-affiliated genera (Esquivel-Muelbert et al. 2017).  

Additionally trees are distributed according to drought sensitivity in Panama (Engelbrecht 

et al. 2007) and in West Africa drier forests are responding more to changes in climate 

than wetter forests (Aguirre-Gutiérrez et al. 2019).  In West Africa deciduous species have 

increased in response to long-term drought (Fauset et al. 2012), and these forests have 

undergone a series of other trait-based changes including an increase in nitrogen-fixing 

species and light-demanding species (Aguirre-Gutiérrez et al. 2019).  In South America as 

mortality rates in the wet-affiliated genera increase, the shift towards drought resistance 

is among newly recruited trees, but this shift to potentially greater drought-tolerance is not 

yet evident in community composition (Esquivel-Muelbert et al. 2019).  On both continents 

a long-term carbon sink has persisted even as species composition has shifted (Brienen et 

al. 2015, Hubau et al. 2020).   

1.1.5 Soils 

Soils of tropical moist forests are typically weathered and nutrient poor as erosion 

and leaching are promoted by hot and humid climates (Richards et al. 1996).  Though 

nutrient poor, the dominant soils under tropical forests are often deep and store water 

effectively making them physically good for tree growth.  With a relatively closed nutrient 

cycle, it is often the trees that supply the forest with nutrients through litterfall, throughfall 

and stemflow (Vitousek and Sanford 1986).  Rapid decomposition and efficient uptake by 

plants and microorganisms makes the nutrients available to return to the vegetation, but 

nutrient cycling is diverse among tropical forests (Vitousek and Sanford 1986).   

South America has a strong east to west soil gradient with more fertile soils in the 

west than the east Amazon (Quesada et al. 2012).  In the western Amazon soils are 

younger and have higher nutrient availability and cation exchange capacity due to 

relatively recent deposition from Andean uplift (Hoorn et al. 2010, Quesada et al. 2010).  In 

the eastern Amazon soils are more weathered (Quesada et al. 2010).  The Amazon soil 

gradient is an important determinant for vegetation.  Africa does not have a strong soil 

fertility gradient (Lewis et al. 2013), but regions of the Ivory Coast, Ghana and Nigeria tend 

to have relatively more nutrient rich soils than the rest of the continent (IUSS Working 

Group WRB 2006) and East African forests tend to have younger more fertile soils than 

Central African forests (Lewis et al. 2013).  
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1.2 Uptake, storage and release of carbon with global change 

There has been a strong global carbon sink in forests in recent decades, especially 

in tropical forests (Pan et al. 2011), but there is evidence that the carbon sink capacity in 

South America (Brienen et al. 2015) and Africa (Hubau et al. 2020) has recently saturated.  

Growth rates in the Amazon have stalled while biomass mortality has increased, reducing 

carbon residence times (Brienen et al. 2015) with some evidence that carbon losses have 

increased in Africa since 2010 (Hubau et al. 2020).   

Forests are under increasing anthropogenic pressure; carbon dioxide 

concentrations are rising, temperatures are rising, and precipitation patterns are changing, 

all of which affect the processes of photosynthesis and respiration.  These three pressures 

will be focused on here, but it is important to note the other global change effects on 

tropical forests: increasing nutrient deposition (Lewis et al. 2004), increasing solar 

radiation (Willson and Mordvinov 2003) (especially at higher elevations (Cabrol et al. 

2014)), increasing liana loads (Phillips et al. 2002, Schnitzer and Bongers 2011, Jones et 

al. 2017), shifting fire regimes (Aragão et al. 2018, Yin et al. 2020) and land use change 

including deforestation and forest degradation (Barlow et al. 2016).   

1.2.1 Carbon dioxide 

The global atmospheric concentration of CO2 reached 399.4 ppm in 2015 (Le 

Quéré et al. 2016)  and 402.8 in 2016 (Le Quéré et al. 2018) and continues to rise.  This 

rise is strongly correlated with the increase in global consumption of fossil fuels with 

significant contributions from the clearing of forests, especially in the tropics (Le Quéré et 

al. 2016).  Atmospheric increases in CO2 increase annual global temperatures, and 

atmospheric concentrations of other greenhouse gases, e.g. water vapour and methane 

are also changing, feeding back to further alter climate. 

Across multiple scales, photosynthesis increases with increasing atmospheric 

carbon dioxide concentration.  Higher concentrations of CO2 reduce the competition from 

O2 for the active site of RuBisCO and reduce photorespiration.  A synthesis of results from 

CO2 fertilisation experiments showed an increase of 5.0 ± 1.2 % in tropical carbon stocks 

per 100 ppm of CO2, but included no data from mature tropical forests (Terrer et al. 2019).  

Long term tropical plots in Africa and Amazonia link increased CO2 to large increases in 

productivity (Hubau et al. 2020).  Currently increased uptake from CO2 fertilisation is 
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greater than the negative impacts of rising temperatures (Piao et al. 2013) and drought 

(Gloor et al. 2015, Jiang et al. 2019).  Long-term observations of increases in tropical 

greenness measured by satellites in areas without major land-use-change (Nemani 2003, 

Smith et al. 2016) and in central Africa this decade (Chen et al. 2019) also indicate 

increases in tropical forest productivity.  Thus, the increased carbon sink capacity is 

widespread. 

As well as direct fertilization effects, higher CO2 also often leads to large decreases 

in leaf conductance (Field et al. 1995) and increases in water use efficiency and at both 

the leaf and canopy scale (Bonan et al. 2014) . The increased water used efficiency 

gained under higher CO2 may buffer plants to drought (Keenan et al. 2013), but it is likely 

the coincident negative effects of temperature and drought could outweigh this positive 

effect of CO2 as illustrated by the saturation of the tropical carbon sink (Hubau et al. 2020). 

1.2.2 Temperature 

Global and regional temperatures are increasing, and in 2016 the world was about 

a degree warmer than the 20th century average temperature (NOAA 2018).  Basal 

respiration increased with temperature, but shows some acclimation at both short- and 

long-term scales (Tjoelker et al. 2001, Wythers et al. 2005).  However, warming increases 

autotrophic respiration rates (Lloyd and Farquhar 2008) and could compromise forest 

carbon sinks (Clark et al. 2003, Anderegg et al. 2015a).  Tree growth models also suggest 

maximum temperatures increase respiration and so can have a strong negative effect on 

stem growth (Schippers et al. 2015).  Vegetation productivity and respiration both increase 

with higher precipitation and thus can offset each other when it is wetter and hotter (Wang 

2013).  With the higher temperatures and variable precipitation of El Niño it is difficult to 

predict a respiration response.  If trees have already acclimated to increasing 

temperatures, there should be very little, if any, temperature driven respiration increases 

seen in the plot data. 
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Figure 1.1 | Mean annual temperature in tropical forests of South America and Africa 
Mean annual temperature (CRU 4.03 (University of East Anglia Climatic Research Unit et al. 
2020)) of tropical moist forest region (Olson et al. 2001) for the thirty year reference period 
1989-2018.  

 

Tropical forest productivity responses to temperature are complex; to an extent 

increasing temperature should increase productivity.  If plants can tightly regulate stomatal 

conductance and increase water use efficiency then they should be able to perform better 

under high temperatures, but higher temperatures also pose greater risks of thermal 

damage (Schreiber and Berry 1977) and greater hydraulic risks, as vapour pressure 

deficits increase with temperature (Trenberth et al. 2014).  Warmer climates have higher 

productivity across tropical elevation gradients (Raich et al. 1997, Fyllas et al. 2017) and 

more widely across ecosystems (Del Grosso et al. 2008), but tropical forest responses to 

temperature have not been well-documented.  In tropical forests, 30-year mean maximum 

temperatures predict aboveground biomass as maximum temperatures limit productivity, 

particularly in the hottest forests (Sullivan et al. 2020).   

The full impact of high temperatures and increased atmospheric CO2 on tropical 

ecosystems is unlikely to result from direct thermal effects alone, but also from interactions 

with other environmental variables.  Notably, increasing temperatures increase vapour 

pressure deficits and decrease the amount of plant-available water, while transpiration 

rates from plant canopies increase.  Temperature increases alone can lead to water 

deficits but the frequency of severe droughts is also increasing in many regions as a result 

of climate change (IPCC 2012, Settele et al. 2014, Trenberth et al. 2014).  Although 
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episodic mortality occurs in the absence of climate change, studies suggest that at least 

some of the worlds forested ecosystems may already be responding to climate change 

(Allen et al. 2010, Hubau et al. 2020), raising concerns that forests may become 

increasingly vulnerable to higher background tree mortality rates in response to warming 

and drought, even in environments that are not normally considered water limited.  This 

would lead to the loss of sequestered forest carbon and associated atmospheric feedback.  

If climate change increases drought duration and intensity, drought induced mortality is 

likely to increase (Allen et al. 2015), Figure 1.2).  

1.2.3 Drought 

Anomalous droughts can threaten the tropical forest carbon sink.  Increasing plant-

available water is usually beneficial for tropical forests, except where soils are saturated 

(Sousa et al. 2020), or productivity is light-limited (Schuur 2003).  In these regions drought 

can increase productivity (Sousa et al. 2020).  Lack of water mostly impacts forests 

through tree mortality and water deficits increase mortality risk for most of the climate 

space (Allen et al. 2010, Phillips et al. 2010b).  There is also evidence that larger trees 

might be more vulnerable to drought as they face greater hydraulic challenges (Bennett et 

al. 2015).  So, it is expected that regions with more anomalous drought should have 

greater biomass mortality and a disproportionate number of large trees dying. 

Responses to increased vapour pressure deficits also suggest that strong droughts 

reduce aboveground growth.  VPD is higher in tropical canopies than in the relatively 

buffered understory (Fetcher et al. 1985) and tropical trees respond to VPD by closing 

stomata, decreasing midday xylem pressure and leaf conductance on (Fetcher 1979).  

Tropical drought experiments also suggest strongly reduced water pressures and lower 

conductance during high VPD episodes (Rowland et al. 2015).  So, forests may be able to 

withstand short periods of drought, by reducing growth when hydraulic demands are high.   

Hydraulic pressures in forests are greatest for taller trees with exposed crowns as 

they experience greater vapour pressure deficits and more solar radiation (Roberts et al. 

1990a).  These large trees may lose their leaves in drought and their drought 

deciduousness may change the structure of tropical forests during the drought.  Small 

trees could benefit from the drought deciduousness of larger trees as they are released 

from competition for light (Slik 2004).  Understory trees could also have a relative 
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advantage during drought with lower leaf temperatures, vapour pressure deficits, and wind 

speeds.  Thus, if the extra light more than compensates for the higher air temperatures in 

El Niño, growth and recruitment of small trees may increase.  In a meta-analysis of forests, 

the growth rate of small trees increased in response to drought, and was presumed to be 

due to increased solar radiation reaching the understory from increased deciduousness of 

large trees during drought, although that study included no plots in Africa (Bennett et al. 

2015).  Furthermore, a recent analysis of the carbon sink contribution of different size 

classes of trees in African forests highlights the aperiodic growth of understory trees and 

shows a large relative response to small changes in the growing conditions of small 

understory stems (Hubau et al. 2019), consistent with the idea that small trees could 

benefit in drought. 

1.2.4 Drought Metrics 

Defining drought is vital to assessing its impact on tropical forests.  A recent meta-

analysis of drought found ecologists consistently struggle to quantify drought (Slette et al. 

2019), and in this thesis I use a drought metric to allow comparisons across regions and 

continents.  Standard indices of drought include Palmer’s Drought Severity Index (PDSI), 

standardised precipitation index (SPI), standardised precipitation evapotranspiration index 

(SPEI) and maximum cumulative water deficit (MCWD). 

The PDSI uses a temperature and water balance model to quantify long-term 

drought, but does not capture droughts shorter than 12 months, and PDSI is not 

comparable across regions.  The SPI is closely related to soil moisture in the short term 

and groundwater storage in the long term but cannot incorporate changes in 

evapotranspiration.  The SPEI takes into account evapotranspiration as well as 

precipitation so captures the main impacts of increased temperatures on water demand 

but requires a long base period of fifty or more years. 

Another useful metric to compare precipitation seasonality and intensity of dry 

seasons is MCWD.  Water deficit is the difference between monthly rainfall and monthly 

evapotranspiration which can be approximated as about 100 mm month-1 (Aragão et al. 

2007) or estimated on a monthly basis with seasonally estimated evapotranspiration.  

Cumulative water deficit is calculated beginning with the wettest month of the year and the 



Chapter 1 

 
 
 

26 

maximum or most negative value is assigned to that hydrological year.   The maximum 

cumulative water deficit, MCWD, is calculated as in (Aragão et al. 2007): 

if WDn-1 – ETn + Pn < 0; 

then WDn = WDn-1 – ETn + Pn; 

else WDn = 0. 

Where WD=water deficit, n= month, ET=evapotranspiration, P=precipitation   

MCWD is a useful indicator of water stress as it captures duration and intensity of 

drought through accumulated water stress across dry seasons, although it does not 

include local soil characteristics that determines water storage capacity or temperature or 

overlying vegetation characteristics that may alter evapotranspiration.  MCWD is 

commonly used in tropical forest ecology and reflects the distribution of tropical forests 

better than annual rainfall (Zelazowski et al. 2011).  The analytical priorities of this thesis 

involve comparing droughts across regions with more than one dry season, and comparing 

droughts pantropically, so MCWD is the best drought intensity metric for these purposes.  

The assumption of 100 mm month-1 evapotranspiration for tropical forests in Africa 

and South America is based on measurements from Amazonia (Aragão et al. 2007, 2014), 

more limited measurements from West Africa (Kume et al. 2011) and use in past studies 

on both continents (Phillips et al. 2009, James et al. 2013, Hubau et al. 2020).  With 

constant evapotranspiration MCWD represents a precipitation-driven dry season water 

deficit.  This thesis uses MCWD with 100 mm month-1 to calculate water deficits in Africa 

and South America. 

1.3 What kills trees? 

Logically, factors that tend to increase growth also tend to decrease mortality, and 

conversely factors that decrease growth tend to increase mortality.  Increased tree size or 

age brings increased mortality risks through greater hydraulic challenges, increased risk of 

embolism, and greater pest and pathogen pressure (Ryan et al. 2006, Zhang et al. 2009, 

McDowell and Allen 2015).  At the inter-species level trees that grow fast tend to die 

sooner, completing their life cycle more quickly, as the faster a plant grows the faster it 

may get to the risk zone (Sterck et al. 2016).  
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Widespread global warming is a robust climate prediction and temperature impacts 

tree mortality.  Few studies disentangle the impact of temperature from the impact of 

drought and hardly any of these studies focus on the tropics.  Temperature impacts on 

vegetation are largely through vapour pressure deficits as they increase nonlinearly with 

temperature (Breshears et al. 2013).  Trees die faster from hotter drought (McDowell and 

Allen 2015).  Experimentally increased temperatures made trees die faster in the 

southwestern US (Adams et al. 2009), temperature was significantly correlated with tree 

mortality rates in the Western US (van Mantgem et al. 2009) and tree ring records from the 

same region indicate maximum temperatures are closely associated with tree mortality 

(Williams et al. 2013).  However, it is unlikely such large temperature related mortality 

increases will occur in non-conifers (McDowell et al. 2016). 

Trees have many adaptations to persist in drought, for example wood density and 

deciduousness (Condit 1998).  Presumably following a severe drought, the surviving 

individuals have adaptations that are advantageous and will be inherited by the next 

generation (Allen et al. 2010).  Hence drought resistance might increase over time and 

areas exposed past strong drought may contain species adapted avoid cavitation.  

However, the adaptation of a tree species to a new local climate may be too slow if 

generation time is long and climate change is rapid.  

Wood density is a key functional trait that varies within individuals and species as 

wood acts as a mechanical support, water store and sap flow conduit.  Wood traits are 

based on functional trade-offs as one of the main roles of the wood is providing 

mechanical stability whilst plants compete for light, and transport water in spite of hazards 

such as pathogens, pests, water deficits and cavitation.  Experimental evidence from non-

tropical trees suggests that plants with greater drought tolerance, i.e. those that can 

withstand more negative xylem pressure without cavitation, are those of greater wood 

density (Hacke et al. 2001).   

Plants at the greatest risk of drought mortality tend to be tall trees of old-growth 

forests, with implications for terrestrial carbon storage (McDowell and Allen 2015).  Trees 

that are tall with isohydric stomatal regulation, low hydraulic conductance, and high leaf 

area are most likely to die from future drought stress (Anderegg et al. 2014).  In addition, in 

closed-canopy forests the taller trees have a more challenging hydraulic environment as 

crowns are exposed to higher solar radiation and higher leaf-to-air vapour pressure deficits 
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than the relatively buffered understory (Roberts et al. 1990a).  Tree mortality occurs when 

an essential metabolic resource need is not met.  Drought induced mortality at the regional 

scale is often associated with increased temperature (Allen et al. 2010) and the 

hypotheses of carbon starvation (failure to maintain metabolism due to prolonged negative 

carbon balance) and hydraulic failure (desiccation from failed water transport) have 

stimulated debate (Sevanto et al. 2014).   

Several other factors cause tree mortality in tropical forests.  Lightning is thought to 

be a major cause of tree mortality for tropical forests in Panama, responsible for 40 % of 

large tree mortality (Yanoviak et al. 2019) and as lightning incidence increases in El Niño 

(Guha et al. 2017), lightning may be responsible for increased tree mortality in El 

Niño.  Drought typically makes trees more susceptible to pests and pathogens (Mattson 

and Haack 1987), though outbreaks in the tropics are not usually severe because of high 

tree species diversity (Anderegg et al. 2015b).  Tree mortality is stochastic and it is 

possible that any extra mortality during the El Niño may be just as stochastic (Mori 2019), 

so rather than predominant mortality of certain species, size classes or functional types, 

the trees that die might continue to be random.  Trees may die via senescence but tree life 

histories vary and some trees can potentially be very long lived (Issartel and Coiffard 2011, 

Lindenmayer and Laurance 2017). 
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Figure 1.2 | Hypothesized tree mortality threshold 
Warming alone can drive climate to exceed the mortality threshold, without declines in 
precipitation.  Adapted from (Allen et al. 2010). 

 

1.3.1 Carbon starvation 

When water is limiting and evaporative demands high, plants rely on stored carbon 
(Jackson 2005) and keep their stomata closed to avoid water loss and so must rely on a 

limited supply of stored carbohydrates.  Hot and dry conditions often make it impossible for 

leaves to maintain hydraulic safety while opening stomata, so leaves may be unable to 

simultaneously maintain a positive carbon balance while regulating temperatures through 

transpirative cooling.  Vapour pressure deficits increase with temperature as the water 

potential gradient between atmosphere and leaf mesophyll increases, so with rising 

temperatures, droughts that previously would have been tolerable may become deadly 

(Trenberth et al. 2014).  Some support for carbon starvation is that surviving plants exhibit 

the same carbohydrate storage patterns as dying plants, supporting the idea that carbon 

starvation is a threat to survival during drought (McDowell 2011).   
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1.3.2 Hydraulic Failure 

Reduced soil water supply plus high evaporative demand causes xylem vessels to 

fill with air and cavitate, stopping water flow and desiccating plant tissues (McDowell et al. 

2008).  Hydraulic failure can lead to plant mortality and is likely if drought is sufficiently 

intense that plants run out of water before they run out of carbon.  Hydraulic safety 

margins vary with species because vessel architecture varies and areas exposed to past 

strong drought may contain species adapted avoid cavitation.  Carbon metabolism and 

hydraulics are coupled so there is higher risk of mortality for species that maintain narrow 

margins of hydraulic safety (McDowell 2011).  Species that maintain narrow margins of 

hydraulic safety might be deciduous or drought deciduous, sacrificing leaves in drought, 

have denser wood and xylem structure that avoids embolism or are able to release stored 

water to maintain xylem tension (Meinzer et al. 2009).  On the other hand, drought tolerant 

canopy trees tend to have wide hydraulic safety margins (Ziegler et al. 2019).   

1.4 El Niño 

The El Niño Southern Oscillation is a climate phenomenon responsible for much of 
the inter-annual variation in climate and weather globally.  During El Niño sea surface 

temperatures and atmospheric pressures shift in the Pacific Ocean, weakening easterly 

trade winds and influencing regional weather patterns.  Normally, in non-El Niño years, 

there are high sea surface temperatures in the western Pacific (Glantz 2001) but during an 

El Niño event the weaker trade winds cause warmer waters and associated rainfall move 

to the central Pacific and the Western coast of South America.  Atmospheric circulation is 

altered via the Walker Cell and dry weather prevails in much of the tropics (McGregor and 

Nieuwolt 1998).  In the opposite phase, La Niña, trade winds strengthen and warm waters 

are pushed further east (McGregor and Nieuwolt 1998).  Of course, each El Niño event is 

unique, varying in spatial extent, intensity and duration, and occurring at the same time as 

other climatic events.  Hence, not all of the possible El Niño climate impacts occur in all 

events, and impacts may not be confined to the regions indicated in the figures below.  
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1.4.1 Temperature impacts 

 

Figure 1.3 | Typical temperature impacts of El Niño 
Regions that tend to be hotter during an El Niño year are shaded in red.  Adapted from (Met 
Office 2020) 

 
Almost all tropical regions experience higher temperatures during El Niño events 

(Figure 1.4), independent of any change in rainfall (Malhi and Wright 2004) and 

temperature peaks are associated with the last three very strong El Niño events in 1982-

83, 1997-98 and 2015-16 across the tropics (Liu et al. 2017).  Land surface temperature 

peaks about 3 months after sea surface temperatures peak in the Niño 3.4 region 

(Trenberth et al. 2002). High temperatures particularly affect the Amazon (Malhi and 

Wright 2004), but stronger temperature anomalies are associated with locations closer to 

the equator for all continents (Malhi and Wright 2004).  West African tropical forests are 

also typically hotter during an El Niño, but for a shorter period of time and it is notable that 

the Congo is not highlighted as a region with typical temperature increases in El Niño 

(Figure 1.4).  There is some evidence that El Niño temperature anomalies are increasing as 

global temperatures rise, with the most severe El Niño events for more than a century 

being the most recent (Fedorov and Philander 2000).  

1.4.2 Precipitation impacts 

 
Figure 1.4 | Typical precipitation impacts of El Niño 
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Regions that tend to be drier during an El Niño year are shaded in brown.  Adapted from 
(Met Office 2020) 

 

Precipitation in a typical El Niño year is similar to a non-El Niño year with global 

mean precipitation only 2 mm yr-1 (0.2 %) above normal (Dai and Wigley 2000).  However, 

El Niño has large impacts on tropical precipitation, and in many tropical areas 30-60 % of 

interannual precipitation variation is explained by El Niño (Dai and Wigley 2000).  El Niño 

usually causes dry conditions in all seasons for a band of the tropical zone across South 

America, Africa, India and Southeast Asia (Dai and Wigley 2000).  Particularly dry 

conditions are associated with El Niño in the northeast Amazon and east Africa (Figure 

1.4).  Strong precipitation anomalies in Southern Brazil have been linked to El Niño (Grimm 

et al. 1998), and drying can even begin the year before a defined El Niño event.  El Niño 

droughts are stronger and more consistent than the wetting that occurs in opposite La 

Niña phase (Grimm et al. 1998).  El Niño is also the main cause of droughts in Africa 

(Masih et al. 2014) and can cause droughts beyond the El Niño year itself.  Analysis of  El 

Niño events between 1960 and 1998 found stronger precipitation anomalies in South 

America than in Africa (Malhi and Wright 2004).  There is some evidence that rising 

temperatures are increasing the variability of El Niño precipitation impacts, intensifying 

both the extreme wetting and extreme drying associated with El Niño (Collins et al. 2010, 

Liu et al. 2019, Zheng et al. 2019). 

1.4.3 Fires 

Perhaps the greatest El Niño impact to the global carbon cycle comes from 
increased fire frequency, particularly in fragmented landscapes.  Greater aridity during El 

Niño increases the flammability of tropical forests and, with an ignition source, forest fires 

become more likely (Chen et al. 2017).  Natural fires in moist tropical forests are rare and 

typically start near forest edges (Fonseca et al. 2017) where the microclimate is hotter and 

drier and human activity in adjacent land increases the chance of ignition occurring 

(Cochrane 2001).  El Niño fires are most prevalent in Southeast Asia (van der Werf et al. 

2004).  Carbon emissions from fire during El Niño events are substantial and can account 

for more than 60 % of the CO2 released to the atmosphere (van der Werf et al. 2004).  Fire 

is not assessed here, nor in later chapters, but its significance is noted. 

1.4.4 The tropical carbon cycle during El Niño 
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El Niño events can temporarily cause high rates of CO2 release to the atmosphere 

and it is thought that the majority of this extra atmospheric CO2 is due to reduced terrestrial 

uptake in tropical ecosystems that have experienced increased temperatures, droughts, 

fire and increased cloud cover (Malhi et al. 2002a).  As such, El Niño events determine 

much of the interannual variation in the global carbon cycle (Wang et al. 1999).  The exact 

mechanisms of this reduction in the tropical carbon sink are uncertain but could include; 

reduced photosynthesis, higher rates of biomass mortality and therefore increased 

necromass, increased fire frequency or intensity a combination of these factors (Malhi et 

al. 2018).  Whether temperatures or drought drive these processes is also unknown, as is 

whether particular regions are responsible for most of this El Niño CO2-release (Malhi et 

al. 2018).  Tropical forests have been approximately net neutral for the last three decades, 

but during strong El Niño events, the tropics become a major net source (Mitchard 2018). 

1.4.5 The 1982-83 El Niño 

Atmospheric measurements of CO2 concentration indicate that the 1982-83 El Niño 

led to a supplemental 6 Gt C in the atmosphere (Gaudry et al. 1987).  The 1982-1983 El 

Niño caused drought in West Africa (Masih et al. 2014) and was the worst dry season 

since records began in Panama (Leigh et al. 1990) causing increased tree mortality but 

just for a short time as forests recovered by the wet season of 1984 (Leigh et al. 1990).  

Large, uncontrolled fires across East Kalimantan, Borneo were caused by the 1982-83 El 

Niño (Leighton and Wirawan 1986) and floods and destruction occurred in northern Peru 

(Caviedes 1984). 

1.4.6 The 1997-98 El Niño 

Prior to the very strong El Niño of 2015-2016, the last very strong El Niño was in 

1997-98.  Conditions were then unprecedented with record global air temperatures, 

extreme droughts in the tropics (e.g. (Nakagawa et al. 2000, Williamson et al. 2000b, Slik 

2004)), major forest fires across Southeast Asia (Page et al. 2002, Fuller et al. 2004, van 

der Werf et al. 2004) and parts of Amazonia, and a global carbon anomaly of 2.13 ± 0.79 

Pg C (van der Werf et al. 2004).  Whilst drying had been observed in West Africa over the 

preceding 30 years and the 1982-1983 El Niño caused drought in the region (Masih et al. 

2014), the 1997-98 El Niño did not seem to have an impact (Nicholson et al. 2000).  Thus, 
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the very strong El Niño of 1997-98 had limited impacts in West Africa, but widespread 

impacts across the tropics. 

1.4.7 The 2015-16 El Niño 

Climate change in combination with the El Niño of 2015-16 meant ecosystems 
experienced the hottest temperatures for 125,000 years (Hoffman et al. 2017).  Early 

research focused on South America indicates that the 2015-16 El Niño was longer in 

duration, warmer and there was a greater extent of extreme drought in Amazonia than 

1997-98 (Jiménez-Muñoz et al. 2016).  Yet, drought locations in 2015-16 were not 

consistent with 1997-1998; the drought typically seen with El Niño was only in eastern 

Amazonia whilst in western Amazonia there was an unusual wetting (Jiménez-Muñoz et al. 

2016).  Temperatures in tropical Africa in 2016 were 0.5 oC above the 1981-2010 mean, 

with similar temperature anomalies in tropical South America and Asia (Liu et al. 2017) 

and emissions from fire were the largest in Southeast Asia since 1997 (Huijnen et al. 

2016).  These new extremes of temperature and regional precipitation shifts indicate that 

the impacts of the 2015-16 El Niño might contrast with previous drought impacts.   

1.5 Capturing the impacts of the 2015-16 El Niño with long-term forest 

plots 

Long-term remeasurements of plot networks can capture ecological changes that 

span decades and large areas. The RAINFOR (Malhi et al. 2002b, Brienen et al. 2015)  

and AfriTRON (Lewis et al. 2009, 2013, Hubau et al. 2020) networks bring together 

resources and people to tackle new questions with long-term data over a large 

geographical extent.  Following the methodology of (Phillips et al. 2010a), plots (1 hectare) 

are usually located on homogenous soil, relatively accessible with little human disturbance 

and have long term institutional support (RAINFOR manual includes plot establishment 

protocol (Phillips et al. 2010a)).  When plots are established or remeasured, all trees 

greater than 10 cm diameter are identified to species, tagged and measured at 1.3 m 

above the ground unless, to avoid deformities or buttresses, another point of 

measurement is deemed more appropriate (Phillips et al. 2010a).  This repeated 

methodology builds long-term datasets, forming a baseline against which the type and 

pace of ecological change can be evaluated, impacts interpreted, and future responses 
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predicted.  Monitoring a plot for an extended period provides evidence of change in 

species composition, size distributions and demographic rates over time.   

In regions with seasonal rainfall, timing of remeasurement is important.  Ideally 

censuses should take place over whole year intervals, and at the time of year when there 

is least interannual variation in soil water availability. Therefore, in principle, for plots in 

areas that experience severe interannual variation in rainfall due to El Niño events, the 

best time of year to remeasure is during the wet season (Phillips et al. 2010a) but plots 

can be particularly difficult to access during the wet season so may be measured in the dry 

season.  A reasonable compromise here that is often adopted is to avoid measuring at the 

end of the dry season, and thereby avoid diameter differences driven by seasonal 

hydrostatic variation masking growth signals.  

The last very strong El Niño in 1997-98 was not captured by long term monitoring 

networks – neither RAINFOR nor AfriTRON formally existed at that point, and the density, 

frequency and consistency of measurement methodology of tropical permanent sampling 

plots ware all less than today.  But across the AfriTRON and RAINFOR networks many 

plots have been censused in 2014-15 and new emergency censuses were undertaken to 

remeasure some of them again in 2016-17, i.e. shortly before and shortly after the El Niño, 

specifically to capture the impact of a strong El Niño event.  Plots therefore have more 

than two censuses before the El Niño census so long term plot trends and demographic 

rate changes can be specifically compared to the El Niño census interval.  Moreover, using 

this set of measurements the potentially shifting baseline of community changes with 

underlying climate change can be accounted for when testing for effects of the recent 

climate anomalies.   

Long-term plot data spanning the El Niño allow the resistance of tropical forests to 

climate change to be assessed, and the spatial coverage of the networks allows 

assessment of the climate anomaly across different baseline climates.  Given that these 

networks that did not exist in the same capacity to assess the 1997-98 El Niño, for the first 

time, multiple census intervals exist allowing the impact of the 2015-16 El Niño on forest 

stands across the two largest areas of tropical forests on Earth to be assessed, across 

Africa and South America. 

1.6 Aims and Objectives 
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The impact of the 2015-16 El Niño on tropical forests will depend on the strength of 
the climate anomaly in terms of temperature, precipitation and drought.  Forests are large 

carbon stores as trees uptake carbon through photosynthesis and can store it within 

tissues for their lifetime.  But drought and increasing temperature alter forest structure.  

Climate change over last few decades combined with the recent El Niño event mean 

ecosystems are experiencing the hottest temperatures for 125,000 years (Hoffman et al. 

2017) .  By combining plot data with climate data in this thesis I aim to assess the impact 

of the 2015-16 El Niño on: (1) intact tropical forest aboveground biomass and carbon 

stocks (2) stand-level structural and dynamic properties of biomass and carbon, i.e. the 

gains of carbon to the system from tree growth and recruitment and carbon losses from 

the system from tree mortality, and (3) changes in the aboveground biomass and the 

carbon sink over the El Niño. 

Tropical forests of Africa and South America will be examined, first separately and 

then together to see if similar biomass and forest dynamics responses occur despite 

fundamentally different baseline climate and species composition.  Using a series of 

objectives these aims will ultimately test and quantify the impact that the 2015-16 El Niño 

had an on tropical forests. 

1.6.1 Objectives 

1 Assess the climate and climate change over 2015-16 in the tropical forest biome 
1.1 Characterise the tropical biome in the 2015-16 El Niño in terms of temperature, 

precipitation and departure from norms.  

2 Assess how monitored plots’ temperature and precipitation regime changed 
over 2015-16  

2.1 Compile climate data at each plot during El Niño: anomalies and extremes of 

temperature precipitation and climate water deficit. 

2.2 Define the climate anomaly for each plot compared to the long-term mean.  

2.3 Differentiate between temperature and moisture anomalies. 

3 Quantify the impacts of the 2015-16 El Niño on intact tropical forests in terms of 
aboveground biomass, carbon balance and stem dynamics 

3.1 Assess net aboveground biomass change. 

3.2 Assess growth impacts by comparing the El Niño census interval to all previous 

census intervals combined. 



Chapter 1 

 
 
 

37 

3.3 Assess mortality impacts by comparing the El Niño census interval to all previous 

census intervals combined. 

3.4 Link ecological impacts of the 2015-16 El Niño to climate anomaly. 

3.5 Test simply whether changes in growth and mortality are quantitatively related to the 

changes in local climate. 

4 Resolve whether baseline climate confers resistance to climate anomalies 
4.1 Compare baseline climate and impact of El Niño at each plot. 

4.2 Determine whether ecosystems have acclimated to warmer temperatures or are more 

vulnerable because they are nearer a high temperature threshold. 

4.3 Does temperature suppress the tropical biome? 

5 Determine whether responses to El Niño vary by continent 
5.1 Compare climate baseline and anomaly for South America and Africa. 

5.2 Compare relative growth and mortality impacts for South America and Africa.  

1.7 Thesis Outline 

As aforementioned, the aims of this thesis are to quantify the climate anomaly of the 

2015-16 El Niño and associated ecological impacts.  This chapter has provided an 

overview of the literature to give context to the research, a rationale for the project and the 

aims and objectives to be addressed.  The rest of this thesis consists of four chapters: 

three research manuscripts and a discussion.   

The climate anomalies, baseline climate and ecological impacts of the 2015-16 El 

Niño in Africa are examined in Chapter 2, to achieve objectives 1-4 for Africa.  The climate 

anomalies, baseline climate and ecological impacts of the 2015-16 El Niño in South 

America are examined in Chapter 3, to achieve objectives 1-4 for South America.  In 

Chapter 4 the climate anomalies and ecological responses of the two continents are 

assessed and compared in terms of magnitude, meeting objective 5. 

The main findings from chapters 2-4 are drawn together and discussed in Chapter 

5.  Chapter 5 contains further in-depth critical analysis of the results and further places 

them in the context of the literature.  The key aims of the thesis are then re-examined to 

see if they have been achieved, and problems encountered during the research are 

discussed.  Finally, the overall conclusions from the thesis are summarised. 
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Resistance of African tropical forests to an extreme 
climate anomaly 

Abstract  

The response of tropical forests to environmental change is a critical uncertainty in 

predicting future climate change impacts.  The 2015-16 El Niño Southern Oscillation 

resulted in record high temperatures and low precipitation in the tropics with substantial 

impacts on the global carbon cycle.  Yet the role of African tropical forests is uncertain, 

particularly as their responses to temperature and short-term drought have yet to be 

determined using on-the-ground measurements.  African tropical forests may be 

particularly sensitive because they exist in relatively dry conditions compared to 

Amazonian or Asian forests, or alternatively, they may be more resistant, because of an 

abundance of drought-adapted species.  Here responses of structurally intact old-growth 

lowland tropical forests are reported from six countries within the African Tropical 

Rainforest Observatory Network (AfriTRON).  One-hundred long-term inventory plots were 

measured at least twice prior to and once following the 2015-16 El Niño event.  These 100 

plots experienced the highest temperatures and driest conditions on record (+0.9°C and -

76mm stronger maximum climatological water deficit than the mean conditions of 1980-

2010).  The record temperature did not significantly reduce carbon gains from tree growth 

or significantly increase carbon losses from tree mortality, but the record drought did 

significantly slow carbon gains from tree growth.  Overall, the long-term increase in live 

biomass of these forests was reduced by 35 % due to the El Niño event, but these plots 

remained a carbon sink (0.52 ± 0.20 Mg C ha-1 yr-1), despite extreme environmental 

conditions.  Analyses suggest African tropical forests may be more resistant to climatic 

extremes than Amazonian and Bornean forests. 
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2.1 Introduction 

Tropical forests are a critical component of the global carbon cycle because they 

are extensive (Saatchi et al. 2011), carbon-dense (Sullivan et al. 2017) and highly 

productive (Malhi 2012).  So, consistent impacts on these forests can have global 

consequences (Lewis 2006).  Their global importance is seen via atmospheric 

measurements of CO2, showing a near neutral exchange of carbon across the terrestrial 

tropics, hence the large carbon losses from deforestation and degradation are almost 

entirely offset by the significant carbon uptake from intact tropical forests and tropical 

forest regrowth (Gaubert et al. 2019).  Independently, ground observations of structurally 

intact old-growth tropical forests also show this uptake, with forest biomass carbon 

increasing across remaining African (Lewis et al. 2009, Hubau et al. 2020), Amazonian 

(Brienen et al. 2015), and Asian (Qie et al. 2017) forests.  Yet, unlike in Amazonia (Brienen 

et al. 2015, Feldpausch et al. 2016) and Asia (Qie et al. 2017) the impact of a severe 

drought or a drought and high-temperature event in African tropical forests has not been 

documented using ground data. 

High temperatures test the physiological tolerance of tropical trees.  Above optimal 

temperatures plants reduce their carbon uptake (Lloyd and Farquhar 2008).  This includes 

closing stomata to avoid water loss, reducing internal CO2 concentrations and reducing 

carbon assimilation in the leaf (Slot and Winter 2017).  Higher temperatures increase 

vapour pressure deficits (Trenberth et al. 2014) and alongside reduced precipitation 

increase the chance of hydraulic failure (Rowland et al. 2015).  Individually or in 

combination these impacts can slow growth and may eventually kill trees (McDowell et al. 

2018).  As well as reduced carbon uptake, plants use more carbon under higher 

temperatures: respiration rates tend to increase with short-term increases in temperature 

at both the leaf-level (Heskel et al. 2016) and in tropical forest communities (Clark et al. 

2010), again reducing tree growth, and potentially leading to tree death via carbon 

starvation (Galbraith et al. 2010).  Recent analyses of tropical forest plot data showed 

increased temperatures over the prior five years were associated with lower levels of 

carbon uptake from tree growth and higher levels of carbon loss from tree mortality (Hubau 

et al. 2020).  Thus, with high temperature anomalies reduced tree growth and increased 

tree mortality are expected.  

Drought also impacts trees as water deficits can slow tree growth, and if of sufficient 

strength or duration, can kill trees, either via hydraulic failure or carbon starvation.  

Hydraulic failure of the xylem has been found across species and biomes in response to 
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drought, whilst carbon starvation has been documented in some locations (Adams et al. 

2017b).  Inventory plot observations before, during and after droughts show the impacts of 

drought in Asia and Amazonia.  In Asia, the 1997-98 El Niño temporarily halted the carbon 

sink in Bornean forests by increasing tree mortality (Slik 2004, Qie et al. 2017).  In 

Amazonia, severe droughts in 2005 and 2010 elevated tree mortality and in 2010 also 

significantly reduced tree growth (Phillips et al. 2009, Feldpausch et al. 2016).  The 

Amazon carbon sink was reversed by the 2005 drought, and while the sink later recovered 

it has since been consistently weaker than before the drought (Brienen et al. 2015), due to 

high-temperature impacts (Hubau et al. 2020).  But while the impacts of short-term drought 

in their long-term context have been elucidated in Amazonia and Asia, in Africa so far 

there is a lack of any ground-based assessment of large-scale drought impacts due to a 

paucity of observations. 

While the broad responses of African tropical forests to temperature and drought 

anomalies can be hypothesised from first principles and the responses of other continents, 

considerable uncertainties remain.  On the one hand, there are grounds for expecting 

them to be especially vulnerable.  African forests are already remarkably dry compared to 

Amazonian and Asian tropical forests, with almost 90% receiving <2000 mm yr-1 

precipitation (Malhi and Wright 2004), the approximate amount necessary to maintain 

photosynthesis throughout the year (Guan et al. 2015).  This low rainfall suggests African 

tropical forests may already be close to their physiological and ecological limits.  As well as 

being drier they are also, on average, less species-rich than forests in Amazonia and Asia 

(Slik et al. 2015, Sullivan et al. 2017), and this lower diversity could conceivably drive 

lower resistance to climate anomalies (Tilman and Downing 1994). 

Alternatively, the relatively dry conditions of African tropical forests may, counter-

intuitively, actually confer drought resistance.  African climate has oscillated between 

wetter conditions in interglacial periods, and cooler and drier conditions in glacial periods 

(deMenocal 2004), so the paleo-filtering of African species may have eliminated much of 

the most mesic-adapted biodiversity.  African tropical forest diversity is actually similar to 

or higher than that of the Amazon when comparing equivalent forests with similar dry 

season lengths (Parmentier et al. 2007), suggesting most wet-adapted species have been 

lost and either the dry-adapted species remained or these lineages have diversified more, 

potentially conferring drought resistance.  Indeed, long-term drought in West Africa led to 

tropical forests in Ghana increasing the abundance of deciduous species (Fauset et al. 

2012, Aguirre-Gutiérrez et al. 2019).  Similarly, the relatively cool conditions of African 
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tropical forests might imply resistance as they are further from a potential high temperature 

threshold for photosynthesis, or, if the temperature tolerance of species is based on local 

conditions, they might be more vulnerable.  Overall, African tropical forests could plausibly 

be more or less vulnerable to temperature and drought anomalies than Amazonian or 

Asian tropical forests.   

Understanding how intact African forests respond to climate anomalies is vital, not 

least because they have been providing a substantial long-term carbon sink, reducing the 

rate and magnitude of climate change (Lewis et al. 2009, Hubau et al. 2020).  

Understanding the impacts of environmental change on African tropical forests is also 

important because of unique aspects of their structure.  African forests typically have high 

aboveground biomass, and so high carbon storage per unit area - on average one-third 

more than Amazon forests (Feldpausch et al. 2012, Lewis et al. 2013, Sullivan et al. 

2017).  African forests are also composed of a smaller number of stems, approximately 

425 ha-1 (≥10 cm diameter), compared to approximately 600 ha-1 in Amazonia and Asia 

(Lewis et al. 2013), so are unusually dominated by large trees.  Hence, even small 

decreases in growth of the large dominant trees or modest increases in the mortality of 

these trees could lead to large carbon stock reductions and a loss of the carbon sink.   

The 2015-16 El Niño event provides a first opportunity to assess the impact of high 

temperatures and strong water deficits on African tropical forests.  While three very strong 

El Niños have occurred in the last 50 years, 1982-83, 1997-98 and 2015-16, only the latter 

occurred after a network of long-term inventory plots had been established in Africa and 

was poised to capture an El Niño event.  Therefore, climate data is combined with 

measurements from 100 African Tropical Rainforest Observation Network (AfriTRON) 

long-term inventory plots to address the following questions: (1) Did African tropical forests 

experience unprecedented temperature anomalies in the 2015-16 El Niño? (2) Did African 

tropical forests experience unprecedented drought in the 2015-16 El Niño? (3) Which 

climate anomalies drove forest responses to the 2015-16 El Niño? and (4) What were the 

overall impacts on the monitored old-growth structurally intact tropical forests?   

2.2 Methods 

2.2.1 Climate Analysis 

Here, the climate of the 2015-16 El Niño Southern Oscillation event is defined as 

the twelve-month period from May 2015 to April 2016.  These twelve months capture the 
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two dry seasons per year African forests typically experience (Jun-Aug and Jan-Mar), and 

include peak temperatures which started in March 2015, as land surface temperature 

anomalies in Africa lag sea surface temperature anomalies that began in November 2014 

(Liu et al. 2017), by four months (Malhi and Wright 2004).  These twelve consecutive 

months are also those with the greatest SST anomalies (Liu et al. 2017).  The same May-

April twelve consecutive months are used to characterise the 1982-83 and 1997-98 El 

Niño events.  To estimate the El Niño climate of African tropical forests here ‘tropical 

forest’ is defined as the Tropical and Subtropical Moist Broadleaf Forest Biome from the 

WWF Terrestrial Ecoregions of the World map (Olson et al. 2001).  Analyses are restricted 

to mainland Africa.  

2.2.2 Temperature, Precipitation and Drought Estimation 

Each of the 1982-83, 1997-98 and 2015-16 El Niño events are first compared with 

the climate of the prior decade over African forests.  This requires a continuous record 

from the early 1970s to 2017. Mean monthly temperatures (0.25 o resolution) from the 

ERA-Interim reanalysis dataset are used for dates from 1979 to 2017 (Dee et al. 2011).  

For the years 1970 to 1978 monthly temperature is extracted from the 0.5 o resolution 

CRU ts.4.01 dataset (Harris et al. 2014).  The CRU dataset was resampled to match the 

resolution of ERA-I and harmonised to Celsius units.  ERA-I and CRU are correlated for 

each month for the overlapping time period (1979-2016, i.e. January CRU vs. January 

ERA-I etc.) using all African tropical forest pixels, and the fit is used to correct the CRU 

data to match ERA-I (monthly correction coefficients, Figure A2.1).  The 1970 to 2017 

temperature record includes the monthly adjusted CRU data (1970 to 1978) and ERA-I 

monthly records from 1979 to 2017.   

Each El Niño event is then compared with the prior decade but only for the 

monitored plot locations, by downscaling the climate data to 1 km2 using WorldClim v2 

(Fick and Hijmans 2017).  Downscaling is achieved by resampling the 1970-2017 

temperature record to match the resolution of WorldClim.  Then the static 1970-2000 

WorldClim temperature is used to correct the 1970-2017 record for each plot location by 

calculating the mean monthly temperature (μ) for the CRU-ERA-I record for the period 

1970-2000.  The monthly difference (Tdiff = Tμ - TWorldClim) of the mean climate, Tdiff is then 

used to create a plot-level monthly temperature 1970-2017: Tplot = T – Tdiff.  Temperature 

values were then additionally adjusted for any difference in altitude between the plot and 

the altitude of the 1 km grid cell used for WorldClim interpolation, using a lapse rate, so 
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that Tplotalt = Tplot + 0.005 × (AWorldClim – Aplot), where T is temperature (°C) and A is altitude 

(m).   

Similarly, continuous precipitation records are required from 1970 to 2017.  The 

0.25 o resolution data from the Tropical Rainfall Measurement Mission (TRMM product 

3B43 V7) is used from 1998 to 2017 (Huffman et al. 2007).  Prior to 1998 monthly rainfall 

is extracted from the Global Precipitation Climatology Centre (GPCC) database (0.5 o 

resolution, Version 7; (Schneider et al. 2011)), chosen as it has more African weather 

stations than CRU.  The GPCC dataset is regridded to match the resolution of TRMM.  

TRMM and GPCC were then correlated for the overlapping time period (1998-2003, i.e. 

January TRMM vs. January GPCC) for all African tropical forest pixels, and the fit is used 

to correct the GPCC data to match TRMM (monthly correction coefficients, Figure A2.2).  

Hence, data from 1998-2017 are TRMM and prior to this, adjusted GPCC data.   

Precipitation data extraction for plot locations followed a procedure similar to that 

used for temperature: downscaling to 1 km2 resolution using WorldClim (v2 (Fick and 

Hijmans 2017)). The GPCC-TRMM precipitation record is resampled to match the 

resolution of WorldClim, and the mean (μ) GPCC-TRMM precipitation for the period 1970-

2000 calculated for each month.  As TRMM is known to overestimate precipitation in the 

driest months, and underestimate high rainfall events (Aragão et al. 2007), the monthly 

difference (Pdiff = Pμ  - PWorldClim) of the mean climate is calculated, and Pdiff used to adjust 

monthly precipitation 1970-2017: Pplot = P - Pdiff.   

The drought intensity experienced by plots was estimated as the maximum 

cumulative water deficit (MCWD) as defined in Chapter 1 (Aragão et al. 2007).  A constant 

monthly evapotranspiration of 100 mm is assumed (as in Hubau et al. 2020) so that 

MCWD is temperature independent, to assist discrimination between temperature and 

drought driving changes in growth and mortality.   

For the pre-El Niño monitoring period of a plot the mean of the annual MCWD 

values is calculated, i.e. the baseline climate state.  For the 2015-16 El Niño census 

interval the maximum annual MCWD value is selected, as it is the most extreme climate 

conditions within the El Niño sampling window for each plot that are interesting.   

2.2.3 Plot Data Collection and Analysis 

One hundred long-term inventory plots from AfriTRON (Lewis et al. 2009, 2013, 

Hubau et al. 2020) are analysed.  Of the 100 plots, I remeasured 11 plots in Ghana and 8 

plots in Liberia.  I conducted the initial quality control assessment of these plots and 21 



Chapter 2 

 
 

44 

more and conducted the final quality control checks on all 100 plots.  These 100 

permanent sample plots are located in lowland (all <800 m), closed canopy, old-growth, 

structurally intact tropical forests.  All plots have been inventoried at least twice prior to the 

2015-16 El Niño event, and once afterwards.  The 100 plots are in 26 distinct clusters 

across 6 countries: Cameroon, Democratic Republic of the Congo, Gabon, Ghana, Liberia 

and Republic of the Congo.  The plots were established between 1979 and 2012, but only 

censuses from 1984 onwards are included to avoid potential impacts of the 1982-1983 El 

Niño.  Median plot size is 1 ha, mean 0.90 ha (range 0.2-1 ha); mean initial census is 

January 2006 (July 1986 to April 2012),  mean pre-El Niño census is April 2014 (range 

March 2013 to October 2015), and mean post-El Niño census is February 2017 (range 

October 2016-March 2017).  The mean monitoring length pre-El Niño was 8.3 years and 

the mean length of the El Niño interval was 2.7 years.  Data are curated at ForestPlots.net 

(Lopez-Gonzalez et al. 2011) version 2019.1 downloaded on 19 March 2019.   

In each plot all trees ≥100 mm diameter are measured, tagged with a unique 

identifier, and identified to species, where possible.  Tree diameter was measured at 1.3 m 

along the stem from the ground, or above buttresses, if present, using standardised 

methods (Phillips et al. 2010a).  In some cases the point of diameter measurement (POM) 

had to be moved due to upward growth of buttresses or deformities.  For these trees a 

single common estimate of growth before and after the POM-change was calculated, i.e. 

as if the tree had always been measured at the same POM (Talbot et al. 2014).  Stems 

that reached a diameter ≥100 mm during the census interval were recorded as new 

recruits. 

Field data were checked against standard rules to identify potential errors, 

identically for all 100 plots, consistent with previous large-scale analyses (Lewis et al. 

2013, Brienen et al. 2015, Qie et al. 2017, Hubau et al. 2020).  Trees that increased in 

diameter >40 mm yr-1 or shrunk >5 mm over an interval were assessed, to determine if 

they may have been inaccurately measured in the field.  For example, fast-growing 

species in a canopy gap could grow >40 mm yr-1, or a rotten trunk could shrink >5 mm in 

an interval, but for those deemed potentially inaccurate the diameter was either 

interpolated or extrapolated using known measurements from the same stem from other 

censuses (0.03 % of all measurements).  When only one accurate measurement was 

available growth was estimated by applying the mean growth rate (for diameter classes 

100-199 mm and 200-399 mm) or median growth rate, for size classes with few stems (for 

diameters 400+ mm), (0.4 % of all measurements). 
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Tree aboveground mass is estimated using the allometric equation: 

 AGB = 0.0673 × (ρ D2H)0.976  (Chave et al. 2014), 

where ρ is stem wood density (g cm−3), D is stem diameter (cm) at 1.3 m or above 

buttresses, and H is height (m).  Wood density measurements were compiled for 730 

African species from 608 published sources, mostly were sourced from the Global Wood 

Density Database on the Dryad digital repository (datadryad.org) (Zanne et al. 2009, 

Chave et al. 2009) and each individual stem in a plot was matched to a species-specific 

mean wood density value, where possible.  Species in both the tree inventory and wood 

density databases were standardized for orthography and synonymy using the African 

Plants Database (ville-ge.ch/cjb/bd/africa/) to maximize matches (Lewis et al. 2009).  For 

incompletely identified individuals or individuals belonging to species not in the wood 

density database, the mean wood density value for genus is used if available, then family.  

For unidentified individuals, the mean wood density value of all individual trees in the plot 

is used (Lewis et al. 2009, Lopez-Gonzalez et al. 2011). 

Tree heights were measured in 93 of the 100 plots; typically the 10 largest trees 

and 10 trees in each of the diameter classes 100-199 mm, 200-299 mm, 300-399 mm, 

400-499, and 500-599 mm, with trees selected only when the top was visible (Sullivan et 

al. 2018).  Three-parameter regional height-diameter Weibull equations were fit, using the 

local.heights function in the BiomasaFP R package, i.e. a fit for each plot with tree height 

data (Lopez-Gonzalez et al. 2015), and fits for each plot are in Table A2.1.  For the other 7 

plots, parameters were chosen from the appropriate region utilising the other plots’ height 

data from that region: West Africa (Upper Guinea), West Central Africa (Western Congo) 

and East Central Africa (Eastern Congo) (Feldpausch et al. 2012).  The parameters (Table 

A2.1) were used to estimate tree height from tree diameter for all stems for input into the 

allometric equation, above. 

The aboveground biomass in live stems (AGB) was estimated, in Mg dry mass ha-1, 

at each census of each plot; the additions of biomass to each plot over the census interval, 

as aboveground woody productivity (AGWP), in Mg dry mass ha-1 yr-1, and the losses of 

AGB from the plot, termed AGB mortality, also in Mg dry mass ha-1 yr-1, all calculated from 

tree-level AGB using the BiomasaFP R package (Lopez-Gonzalez et al. 2015).  Plot-level 

carbon gains are increasingly underestimated as census length increases because trees 

that die have grown since they were last measured and unobserved recruits increase with 

census length.  Unobserved recruits are trees that recruit into the system (i.e. cross the 
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100 mm diameter measurement threshold) and then die within that same census interval, 

so would be missed by the next plot remeasurement.  To avoid census-interval effects 

carbon gains were estimated following Talbot et al. (Talbot et al. 2014), thus the carbon 

additions from trees that recruited and then died within the same interval (unobserved 

recruitment), and the carbon additions from trees that grew before they died within an 

interval (unobserved growth) were accounted for.  Carbon losses are affected by similar 

processes, where the growth prior to tree death within the interval (unobserved growth), 

and the deaths of stems that were newly recruited within the interval (unobserved 

mortality) must be added.  These usually add <3 % to plot-level carbon gains and losses 

and increase with census interval length.  A mean of 1.4 % was added to plot-level carbon 

gains and losses and of 427 intervals, 40 % added <1 % and the maximum added to a plot 

was 16 %.   

An analogous set of parameters to AGB carbon gains and carbon losses were 

calculated on a stems basis.  Again, to avoid census-interval effects stem recruitment and 

stem mortality were estimated following Talbot et al. 2014.  Time-weighted recruitment and 

mortality which represent the entire period of plot sampling are calculated and reduce the 

impact of the variability of recruitment and mortality over shorter timescales.  The trees 

that recruited (unobserved recruitment) and then died (unobserved mortality) within the 

same interval are accounted for.  Stem density (the number of stems ha-1 at a census), 

stem recruitment (the number of new stems added in a census interval), and stem 

mortality (the number of stems lost in a census interval) were estimated. 

The BiomassaFP R package (Lopez-Gonzalez et al. 2015) is used to calculate 

AGB, AGWP, AGB mortality, stem density, stem recruitment and stem mortality, including 

the calculation of the census interval corrections.  Pre-El Niño means of these variables for 

each plot are time-weighted based on the census interval lengths within the pre-El Niño 

total census period.  Throughout this thesis AGB, AGWP and AGB mortality are expressed 

in carbon terms as net carbon stocks, carbon gains and carbon losses and to convert 

biomass to carbon I use the mean carbon fraction for tropical angiosperms, 45.6 % (Martin 

et al. 2018).  Plot-level per-capita stem mortality rates were calculated as annual mortality 

with units of percentage per year using the equation: 

Nst-1 = (1 - ma) Nst  (Kohyama et al. 2018) 

where Ns is the number of surviving trees and ma is annual mortality.  
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The difference between the mean of the pre-El Niño monitoring period and the 

mean of the El Niño census interval for the net change in carbon stocks is termed ∆ net 

carbon, for carbon gains is ∆ carbon gains and for carbon losses is ∆ carbon losses, and 

equivalents for stems are ∆ net stems, ∆ recruitment and ∆ mortality for each plot.  All 

analyses are weighted by sampling effort because larger plots and those monitored for 

longer are likely better estimates of carbon gains, carbon losses, and stem recruitment and 

mortality.  An empirically estimated optimum weighting is used to weight each plot, using 

plot area and pre-El Niño monitoring length.  Linear models are fitted that combine plot 

area and pre-El Niño monitoring length with differing root transformations, with the root 

transformation that removes any pattern in the residuals being chosen as the weighting 

function.  When variables require weighting by both monitoring length and area, 

subtracting one avoids double-accounting (sensu (Lewis et al. 2009)).  Selected weights 

were: Δ net carbon, Monitoring length1/4 + Area1/7 - 1; Δ carbon gains, Monitoring length1/3; 

Δ carbon losses, Monitoring length1/3; Δ net stems, Monitoring length1/3; Δ recruitment, 

Monitoring length1/4; and no weighting for Δ stem mortality.  These weightings show no 

pattern in the residuals and suggest that the cube root best captures how monitoring 

length is related to sampling error.  Area is only included in the net carbon weighting and 

has a very small power, indicating that the sampling error associated with area is small in 

this dataset.  As most plots are relatively similar in size and census monitoring length, 

omitting weighting did not impact the main results. 

The impacts of climate (temperature, MCWD and their interaction) on biomass 

carbon (Δ net carbon, Δ carbon gains, Δ carbon losses) and stems (Δ net stems, Δ 

recruitment, Δ mortality) were tested using linear models, Kendall’s Tau correlation tests, t-

tests and multiple linear regression using multi-model inference.  I parse the potentially 

complex ecosystem response to the El Niño climate anomaly by using simple linear 

models of climate drivers and carbon and stem responses.  In addition to the linear models 

I use one-tailed Kendall’s Tau correlation tests which are suitable for nonparametric data 

and robust to the effects of outliers (Croux and Dehon 2010) to test for a negative impact 

of the El Niño on carbon and stem dynamics.  Correlation tests can show a significant 

relationship even when the linear model is not significant as the ranking effect of in the 

correlation test reduces the impact of outliers.  Overall impacts are calculated using paired 

t-tests which compare carbon and stem dynamics pre-El Niño and during the El Niño at 

the individual plot level.  Multi-model inference is used to understand which of the 

underlying variables and interactions were most important.  Baseline climate was included 
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in models to test whether plots that were already hotter (pre-El Niño temperature) or plots 

that were already drier (pre-El Niño MCWD) were more or less resistant to environmental 

change (trees in hotter or drier baseline climates may contain more hot or dry adapted 

species, but also may be closer to physiological temperature or moisture thresholds).  

Interactions were included in the models as one might expect, for example, greater 

impacts in locations that are hotter pre-El Niño and experience a greater temperature 

anomaly and so greater impacts on forests.  Additionally, locations that are drier pre-El 

Niño and experience a greater MCWD anomaly and high temperatures may see greater 

impacts on forests as both changes may exacerbate water deficits.  Variables were 

standardised using the scale function from the base R package by subtracting the mean 

and dividing by their standard deviation.  Scaling of variables allows accurate effect size 

comparisons as when variables differ by orders of magnitude, one variable may have a 

greater impact purely because of its magnitude.  Linear models with interactions were built 

with the scaled variables and multi-model inference was performed using the dredge and 

then model.avg functions of the MuMIn R package (Barton 2019).  All possible 

combinations of effect terms was calculated and restricted to a 95% confidence set (AIC 

weightings of models sum to 0.95) thereby excluding highly unlikely models.  Model 

averaged coefficients of terms with limited support exhibit shrinkage towards zero.  We 

then model averaged the coefficients of terms (using the AIC weights of each model), 

meaning terms with limited support exhibit shrinkage towards zero (Symonds and 

Moussalli 2011).  This multi-model inference was performed using the dredge and 

model.avg functions of the MuMIn R package (Barton 2019).         

2.3 Results 

2.3.1 Climate 

The 50-year climate record shows that the long-term climate trends across African 

tropical forests are rising temperatures, decreasing precipitation and stronger seasonal 

moisture deficit (Figure 2.1).  The three very strong El Niño events over the past 50 years 

are superimposed on these trends (Figure 2.1). Consequently, the 1982-83, 1997-98 and 

2015-16 El Niño events each increased temperatures by 0.3, 0.3 and 0.6 oC respectively, 

compared to the temperature of the prior decade, indicating that the 2015-16 anomaly was 

larger than the previous two strong El Niño events (Table 2.1).  Given the rising 

temperatures, the mean non-El Niño temperature in the 2010s is greater than the peak 

temperature during both the 1982-83 and 1997-98 El Niño events (Figure 2.1).  Thus, in 
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the 2010s African forests experienced ongoing temperatures higher than the strongest El 

Niños of the past, and record temperatures in 2015-16 (Figure 2.1). 

Across the African tropical forest domain the three El Niños also decreased 

precipitation, by ~100 mm yr-1, and increased drought compared to the prior decade, 

measured as MCWD, by ~30 mm yr-1 (Figure 2.1, Table 2.1).  These impacts are 

superimposed on the long-term trends of declining precipitation and stronger MCWD-

drought, with some evidence that the 2015-16 event was the most extreme, particularly for 

the plot locations (Figure 2.1, Table 2.1).  Overall, the precipitation changes were less 

extreme than the change in MCWD-drought, which in turn were less extreme than the 

temperature changes (Figure 2.1, Table 2.1).   

In the 2015-16 El Niño the 100 plots experienced record mean annual temperatures 

of 25.0 ± 0.03 oC (95 % CIs), low total annual precipitation, average 1498 ± 24 mm, and a 

record low MCWD, with mean -261 ± 2 mm (Figure 2.1, Table 2.1).  Comparing the plot 

census interval that captures the 2015-16 El Niño with the plot pre-El Niño census period, 

96 of the 100 plots had higher mean monthly temperature over the El Niño census interval 

compared to their pre-El Niño census period, higher by a mean of +0.31 ± 0.04 oC (paired 

t-test p<0.0001).  All 100 plots had more negative MCWD (mean -99 ± 12 mm, p<0.0001, 

Figure 2.2), and 65 plots also had lower total annual precipitation (mean -46 ± 34 mm yr-1, 

p<0.01, Figure 2.2).  These anomalies are smaller than those for the 12-month El Niño 

year because the plot El Niño mean census length was 2.7 years, so the climate anomaly 

is diluted by the inclusion of months of more usual conditions.  The 100 AfriTRON plot 

locations are hotter, wetter and less droughted than the region as a whole because the 

region also includes currently degraded fringes of the biome.  Both the plots and region 

have similar trends of increasing temperature and decreasing rainfall (Figure 2.1).   
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Table 2.1 | Climate anomalies of three very strong El Niños for the African tropical forest region 
and plot locations. The 2015-16 El Niño was the hottest of the three most recent very strong El 
Niño events both absolutely and anomalously, in the region and the 100 plots.  The drought was 
also the strongest MCWD drought of the three El Niño events, but of a similar magnitude as 
previous El Niño drought anomaly.  A May to April year is used for climate analyses and 
displayed in the tables are means and 95 % confidence intervals. 
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Region  

1982-83 23.5 ± 
0.02 

0.33 ± 
0.02 

0.08 ± 
0.02 

1513 ± 
7 

-95 ± 10 -84 ± 11 -220 ± 1 -31 ± 1 2 ± 2 

1997-98 23.6 ± 
0.02 

0.32 ± 
0.02 

0.26 ± 
0.02 

1520 ± 
8 

-83 ± 11 -78 ± 12 -230 ± 1 -37 ± 2 -8 ± 2 

2015-16 24.3 ± 
0.02 

0.57 ± 
0.02 

0.92 ± 
0.02 

1444 ± 
9 

-109 ± 
13 

-153 ± 
12 

-302 ± 1 -31 ± 2 -79 ± 2 

Plot 
Locations 

 

1982-83 24.0 ± 
0.03 

0.36 ± 
0.04 

0 ± 0.04 1523 ± 
22 

-206 ± 9 -179 ± 9 -245 ± 3 -87 ± 3 -61 ± 4 

1997-98 24.3 ± 
0.03 

0.37 ± 
0.05 

0.28 ± 
0.05 

1482 ± 
23 

-236 ± 9 -220 ± 
10 

-205 ± 3 -39 ± 4 -20 ± 4 

2015-16 25.0 ± 
0.03 

0.47 ± 
0.05 

0.90 ± 
0.05 

1498 ± 
24 

-175 ± 
11 

-204 ± 
10 

-261 ± 2 -46 ± 3 -76 ± 3 
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Figure 2.1 | Plot locations within African tropical forest region (A) and climate for plot 
locations and the African tropical forest region (B, C, D) 
Temperatures were the highest recorded and water deficits the lowest recorded in both African 
tropical forests and in plot locations in 2015-16.  Precipitation was also low.  Plot locations 
within African tropical forests (A), and the horizontal line indicates the equator.  African tropical 
forests (grey) are delimited by the Tropical and Subtropical Moist Broadleaf Forest Biome from 
the WWF Terrestrial Ecoregions of the World (Olson et al. 2001).  Mean annual temperature 
(B), total annual precipitation (C) and maximum cumulative water deficit, MCWD, (D), values 
averaged for El Niño years May-April.  n=100 plots, located in thirty 0.25 o grid cells.  Black 
lines are for plot locations, grey lines for the forest region. Grey vertical shading indicates the 
1982-83, 1997-98, and 2015-16 very strong El Niño events. 
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Figure 2.2 | Climate anomalies of 100 long-term inventory plots.   

All plots warmed by about the same amount in the 2015-16 El Niño, but water deficits were 
greater in the wettest plots.  Plot census interval pre-El Niño and El Niño temperature (A), plot 
census interval monthly precipitation (B), and plot census interval maximum cumulative water 
deficit MCWD (C).  Black lines are significant linear models (A; p < 0.0001, B; p < 0.0001, C: p 
< 0.0001), grey lines indicate 1:1 relationship.  Pre-El Niño and El Niño are defined by plot 
census dates.  
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2.3.2 Drivers of Biomass Carbon Dynamics 

The record high temperatures of the 2015-16 El Niño had no detectable effect on 

forest carbon gains, losses or the carbon sink over the period of monitoring; higher 

temperatures were correlated with higher carbon gains (one-tailed Kendall’s Tau; p<0.05, 

Figure 2.3C), but were not correlated with losses (p=0.4, Figure 2.3F) or the strength of 

the carbon sink (p=0.5, Figure 2.3A).  Considering drought, forests experiencing stronger 

MCWD showed a small but significant reduction in carbon gains (p<0.05, Figure 2.3D), 

and a larger but non-significant increase in carbon losses (p=0.4, Figure 2.3F), leading to 

a significant reduction in the carbon sink in the most strongly droughted plots (p<0.05, 

Figure 2.3B).  Thus, relative to pre-El Niño, forests subjected to a 100 mm increase in 

MCWD water deficit lost 0.3 Mg C ha-1 yr-1, dominated by carbon losses.  Drought and not 

temperature drives the biomass changes seen in plots.  Multi-model inference and model 

averaging confirms Δ MCWD is more important than Δ temperature in determining 

El Niño carbon dynamics responses (Figure 2.7). 
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Figure 2.3 | Temperature (left) and drought (right) impacts on aboveground biomass 
carbon dynamics of 100 long-term forest plots 
Temperature anomalies do not reduce carbon gains or increase losses, but drought anomalies 
reduce carbon gains.  The net carbon change (A, B), carbon gains from tree growth and 
recruitment (C, D) and carbon losses from mortality (E, F) of the censuses capturing the El 
Niño event minus pre-El Niño plot monitoring period for 100 long-term inventory plots.  The 
intensity of temperature change, Δ temperature (T) (A, C, E) is mean monthly temperature in 
El Niño minus mean monthly temperature pre-El Niño, using the census dates of the plot 
censuses.  Relative intensity of the change in dry season strength is calculated as Δ maximum 
cumulative water deficit (MCWD) (B, D, F) which is the difference between maximum MCWD 
in El Niño and mean MCWD in pre-El Niño.  Point shading from light to dark denotes greater 
weighting, with plots and line of best fit weighted by an empirically derived combination of pre-
El Niño plot monitoring length and plot area for each response variable.  Net change is in grey, 
gains are in green, losses orange.  Solid lines represent significant linear models (p<0.05).  P-
values of linear models and slopes of significant lines are as follows: A: p=0.8, B: y=-0.002x 
+0.2, p<0.05, C: p=0.2, D: y= -0.002x +0.2, p<0.05, E: p=0.9, F: p=0.06. 
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2.3.3 El Niño impact on Biomass Carbon Dynamics 

Plot-level carbon dynamics over the 2015-16 El Niño were similar to those pre-El 

Niño.  Carbon gains from tree growth and the recruitment of new trees were 1.4 % lower in 

the interval spanning the 2015-16 El Niño (mean 2014.3 to 2017.1) compared to the pre-El 

Niño census period (mean 2006.0 to 2014.3), a non-significant difference (2.54 ± 0.14, 95 

% CI, to 2.51 ± 0.14 Mg C ha-1 yr-1, paired t-test using weighted data, p=0.2, Figure 2.5).  

However, growth responses by size class indicate that small trees grew less in El Niño.  

Small trees had significantly lower median growth rates in the El Niño compared to the 

pre-El Niño measurement period (trees 100-199 mm diameter had a diameter decrease of 

0.15 ± 0.11 mm yr-1, p<0.01, a 0.11 % decrease), as did the medium size-class trees (200-

399 mm diameter (decrease of 0.17 ± 0.14 mm yr-1, p<0.05, a 0.06 % decrease).  The 

median growth rate of large trees (400+ mm diameter) was also lower, but did not 

significantly decrease (0.14 ± 0.21, p=0.2, a 0.02 % decrease).  Hence the growth of 

smaller trees appeared to be more negatively impacted by the El Niño conditions than the 

large trees. There was a non-significant 15 % increase in carbon losses from mortality in 

the El Niño compared to the pre-El Niño census period (1.74 ± 0.11 to 1.98 ± 0.19 Mg C 

ha-1 yr-1, paired t-test using weighted data, p=0.9, Figure 2.3).  Both trends combined to 

reduce the carbon sink by an average of 35 %, however, this was only a marginally 

significant reduction (0.81 ± 0.13 to 0.52 ± 0.20 Mg C ha-1 yr-1, paired t-test using weighted 

data, p=0.07, Figure 2.5).  Furthermore, despite the extreme conditions the 100 plots 

remained a net carbon sink over the 2015-16 El Niño census interval, at 0.52 ± 0.20 Mg C 

ha-1 yr-1.  Overall, the El Niño had modest impacts on the carbon dynamics of the 100 plots 

studied, while the trends were in the directions predicted no statistically significant 

changes were documented.  Drought significantly impacted the carbon sink in plots (Figure 

2.3), but not enough plots were severely droughted for that trend to drive the mean sink 

strength across the 100 plots down to zero, or to reverse it.  Trends in net carbon, carbon 

gains and carbon losses were robust to the El Niño climate anomaly (Figure 2.4).  
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Figure 2.4 | Trends in net aboveground biomass carbon, carbon gains to the system from 
woody productivity and carbon losses from biomass mortality, for 100 long-term plots in 
Africa.   
African tropical forests maintained their carbon uptake through the 2015-16 El Niño with no signs 
of a large or protracted impact of the El Niño on the carbon dynamics of African forests.  The red 
line indicates the start of the 2015-16 El Niño climate anomaly and the shading of the confidence 
cloud indicates number the of plots included in the analysis, with a darker shading for more plots.  
This figure was produced using R code from Brienen et al. 2015 and Hubau et al. 2020. 
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Figure 2.5 | Carbon (A) and stem dynamics (B), pre- (lighter shading) and during the 
2015-16 El Niño (darker shading) 
Carbon losses increase but not significantly from the pre-El Niño monitoring period to the El 
Niño census interval, stem mortality significantly increases reducing net stems.  Pre- and El 
Niño carbon (A) and stems (B).  Lighter shading is pre- El Niño and darker shading is during 
the El Niño.  n=100 plots and error bars represent 95% confidence intervals.  Significant 
differences are defined by paired t-tests with ** indicating p<0.01. 
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Figure 2.6 | Temperature (left) and drought (right) impacts on stem dynamics of 100 long-
term forest plots 
Recruitment increases with hotter temperature anomalies and decreases with stronger 
drought anomalies.  The net stem change (A, B), stem gains from recruitment (C, D) and stem 
losses from mortality (E, F) of the censuses capturing the El Niño event minus pre-El Niño plot 
monitoring period for 100 long-term inventory plots.  The intensity of temperature change, Δ 
temperature (T) (A, C, E) is mean monthly temperature in El Niño minus mean monthly 
temperature pre-El Niño, using the census dates of the plot censuses.  Relative intensity of the 
change in dry season strength is calculated as Δ maximum cumulative water deficit (MCWD) 
(B, D, F) which is the difference between maximum MCWD in El Niño and mean MCWD in 
pre-El Niño.  Point shading from light to dark denotes greater weighting, with plots and line of 
best fit weighted by an empirically derived combination of pre-El Niño plot monitoring length 
and plot area for each response variable.  Net change is in grey, gains are in green, losses 
orange.  Solid lines represent significant linear models (p<0.05).  P-values of linear models 
and slopes of significant lines are as follows: A: p=0.2, B: p=0.2, C: 5x -1.9, p<0.01, D: y= -
0.02x +1.7, p<0.001, E: p=0.6, F: p=0.3. 
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2.3.4 Stem Dynamics 

An analysis of stem dynamics, rather than biomass carbon dynamics, and the 

potential drivers of change shows, surprisingly, stem recruitment increasing with 

increasing temperature (Kendall’s Tau, p<0.01, Figure 2.6C) and, as expected, decreasing 

with more negative MCWD (p<0.05, Figure 2.6D).  Indeed, recruitment is the process most 

responsive to climate anomaly, responding positively to temperature and negatively to 

drought (Figure 2.7).  Somewhat surprisingly, stem mortality showed no significant 

relationship with either temperature or drought anomalies (Figure 2.6).  The increase in 

stem recruitment with temperature could have been driven by recruitment of stems with 

low wood density, which might have benefited from more light reaching the understory, but 

there is no evidence of this as the median wood density of recruits did not change 

between pre- and El Niño intervals (0.63 g cm-3 pre-El Niño, 0.62 g cm-3 El Niño, paired t-

test, p=0.5). 

Considering the dynamics of the 100 plots together, there was a non-significant 

decrease in stem recruitment during the El Niño event, with recruitment declining by 4 % 

(pre-El Niño 5.9 ± 0.35 stem ha-1 yr-1 (95 % CI), El Niño 5.7 ± 0.37 stem ha-1 yr-1; paired t-

test on weighted data, p=0.8, Figure 2.5).  However, stem mortality significantly increased 

by 26 % (pre-El Niño 5.0 ± 0.26 stems ha-1 yr-1, El Niño 6.3 ± 0.39 stem ha-1 yr-1, p<0.01).  

Together these led to a switch from an increase of 0.8 ± 0.34 stems ha-1 yr-1 pre-El Niño to 

decline of 0.5 ± 0.46 stems ha-1 yr-1, and a significant decrease in stem density over the El 

Niño (p<0.01, Figure 2.5). 
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Figure 2.7 | Effect sizes of change in carbon and stems in 100 African tropical forest plots over 
the 2015-16 El Niño  
Temperature and drought anomalies increased carbon losses, reducing net carbon, with a stronger 
impact of drought than temperature.  Climate anomaly impacts on stems were more variable.  Points 
show coefficients from linear models with multi-model inference.  Coefficients are standardised so 
that they represent change in the response variable for one standard deviation change in the 
explanatory variable.  Net change is in grey, gains are in green, losses orange.  Error bars show 95 
% CIs.  The models explained 11 %, 8 % and 11 % of variation in Δ net carbon, Δ carbon gains and 
Δ carbon losses, and 18 %, 31 %, 13 % of variation in Δ net stems, Δ recruitment and Δ mortality, 
respectively.  Coefficients are listed in tables A2.2 for carbon and A2.3 for stems. 

 

A significant increase in stem mortality but no simultaneous increase in biomass 

carbon losses (Figure 2.5) implies a loss of smaller trees, which is what was found.  

Mortality rate increased overall, an increase of 0.3 ± 0.2 %, from 1.2 % to 1.5 %, (paired t-

test, p<0.001), and increases were similar for small  (100-199 mm diameter: 0.3 ± 0.2 % 

from 1.3 % to 1.7 %, p<0.01), medium (200-399 mm diameter: 0.3 ± 0.2 % from 1.2 % to 

1.5 %, p<0.01), and large trees (400+ mm diameter: 0.4 ± 0.3 % from 1.4 % to 1.8 %, 

p=0.07).  There are very few stems greater than 400 mm diameter, so the 0.4 % increase 

is an increase of 5 dead stems per year in the 2.7-year interval.  Hence, most of the 

mortality is in smaller trees, explaining the significant increases in stem mortality without a 

large increase in carbon losses.  Furthermore, the median diameter of dying trees 

decreased significantly from 190 mm diameter pre-El Niño to 174 mm in the El Niño 

census interval, a decline of 16 ± 14 mm (paired t-test, p<0.05), so more trees died in the 

El Niño interval but they tended to be smaller, minimising any increased carbon losses 

during the interval.  When broken down by size class, the median diameter of dying trees 

in the smallest size class, 100-199 mm diameter, decreased by 4 ± 4 mm (135.7 to 131.7, 
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p=0.06), while the median diameter of the other size classes did not change (200-399 mm 

diameter: 271 to 273 mm, p=0.6, 400+ mm diameter; 582 to 578 mm, p=0.9).  The median 

size of surviving trees overall also does not change (179 to 179 mm diameter, p=0.95) and 

there is no change in the median wood density of dying (0.64 to 0.63 g cm-3, p=0.6) nor 

surviving trees (0.65 to 0.65 g cm-3, p=0.7).  Thus, overall, stem mortality significantly 

increases over the El Niño census interval and it was predominantly smaller trees that 

died.   

2.4 Discussion 

African tropical forests experienced record temperature and drought in the 2015-16 

El Niño, yet the 100 inventory plots monitored through this extreme climate anomaly 

maintained net carbon uptake over the 2.7-year period they were measured, at 0.52 ± 0.20 

Mg C ha-1 yr-1.  This suggests that African forests are resistant to short-term extreme 

anomalies, because the carbon sink is maintained, albeit at a lower rate.  Yet, the extreme 

anomaly was shorter than the 2.7-year monitoring period.  Assuming that the pre-El Niño 

sink continued prior to the El Niño event, and returned to this level afterward, suggests 

that there was a stronger impact of the anomaly on forest carbon dynamics than is 

apparent from the dataset.  If the pre-El Niño sink occurred at all times except the El Niño 

12 months, then the forests were still a sink, 0.11 Mg C ha-1 yr-1 , but this value is 

indistinguishable from zero, i.e. the sink turned off, but these forests did not become a 

temporary carbon source.  If the impacts were concentrated in just the strongest dry 

season months, then these forests were a short-term source of 0.47 Mg C ha-1 yr-1 for 

those three months.  Under this potential scenario the immediate return of the forest to 

being a strong sink after being a very temporary source could then be interpreted as 

African tropical forests being resilient rather than resistant to environmental change.  

However, the lack of strong correlations between the carbon sink and temperature or 

drought anomalies suggest such extreme short-term carbon flux changes are unlikely.  

Furthermore, if these forests exhibited a large source and then recovered with a large sink 

they would show a signature of high carbon losses and an increase in carbon gains over 

the 2.7-year period, which was not found.  Consistent with this interpretation of the results, 

independent data from remotely sensed CO2 suggests that the regions of tropical forest 

where the plots are located were an ongoing sink throughout 2015 and 2016 (Palmer et al. 

2019) or a modest source that is not driven by very short-term impacts of strong responses 

to drought (Liu et al. 2017).  This independent evidence, and the fact that these forests 

have been a sink over 2.7 years while experiencing unprecedented heat and drought 
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conditions, reinforces the conclusion that African forests were resistant to the 2015-16 

extreme climate anomaly.  Thus, overall the analyses suggest that the carbon sink in 

African tropical forests was reduced by the 2015-16 El Niño event, but the record 

temperature and drought conditions did not cause the forests to lose aboveground 

biomass carbon.   

2.4.1 Forest Responses 

African forests appear to be more resistant to droughts than Amazonian or Bornean 

forests.  The African data shows that the carbon impact of the drought in Africa was a 

reduction of 0.29 Mg C ha-1 yr-1 or 0.2 % of aboveground carbon stocks (pre-El Niño net 

carbon 0.81 Mg C ha-1 yr-1, El Niño net carbon 0.52 Mg C ha-1 yr-1, initial aboveground 

biomass carbon 164 Mg C ha-1).  Assuming the same biomass to carbon conversion of 

45.6% as in this chapter and continental mean aboveground biomass stocks (Sullivan et 

al. 2017), then droughts in Amazonia had much larger impacts: during the 2005 drought 

they lost 0.73 Mg C ha-1 yr-1 or 0.5 % of their aboveground biomass carbon, from 0.41 Mg 

C ha-1 yr-1 pre-drought, to a loss of 0.32 Mg C ha-1 yr-1 (Phillips et al. 2009)).  During the 

2010 drought they lost even more carbon: 0.81 Mg C ha-1 yr-1, 0.6 % of aboveground 

biomass carbon, from 0.61 Mg C ha-1 yr-1 pre-drought, to a loss of 0.20 Mg C ha-1 yr-1 

drought (Feldpausch et al. 2016)).  In Borneo the 1997-98 El Niño caused a loss of 1.44 

Mg C ha-1 yr-1, 0.7 % of aboveground biomass carbon, from 0.52 Mg C ha-1 yr-1 pre-El 

Niño, to a loss of 0.94 Mg C ha-1 yr-1 (Qie et al. 2017)).  So, sample size is sufficient to 

detect a shutdown or reversal of the sink because n=100 plots in Africa, larger than the 55 

plots from Amazonia remeasured to capture the 2005 drought, showing a shut-down of the 

sink (Phillips et al. 2009), and similar to the 97 plots showing a shut-down of Amazon sink 

in response to the 2010 drought (Feldpausch et al. 2016), and much larger than the 19 

plots used to show a reversal of the sink during the 1997-98 El Niño in Bornean forests 

(Qie et al. 2017).  Thus, the response of African tropical forests to recent droughts is at 

least 50 % less on both an absolute and relative basis than forests in Amazonia and 

Borneo.  

The El Niño census interval is likely to have captured the impact of the climate 

anomaly on forest dynamics.  Most trees die within a few months of tropical drought events 

(Phillips et al. 2009, Qie et al. 2017) and our El Niño census window was 2.7 years long, 

similar to the 2.0 year interval in Phillips et al. (2009) and the 3.5 year interval in Qie et al. 

(2017) that did detect a carbon sink shutdown in Amazonian and Asian forests 
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respectively.  There is no evidence of a lagged response to drought on carbon gains in 

Amazonia or Africa (Hubau et al. 2020), no long-term increase in carbon losses from 

mortality in African forests implying a lack of response to past droughts (Hubau et al. 

2020), nor rising carbon losses from mortality after the specific 1997-98 El Niño in African 

forests (Hubau et al. 2020).  Furthermore, while remotely sensed data do not show a 

return to pre-El Niño carbon stocks in African forests, there was no continued reduction in 

stocks (Wigneron et al. 2020) and atmospheric and land surface model data tend to show 

some recovery of stocks (Bastos et al. 2018), both inconsistent with a hypothesised lagged 

tree mortality response to the 2015-16 El Niño event humid African forests.  

Why then were the El Niño impacts small for African tropical forests?  Muted African 

forest responses to the 2015-16 El Niño might be expected as some of the strongest water 

deficit anomalies occurred in the wettest plots (Figure 2.2) while peak temperature 

increases across African tropical forests were relatively short-lived.  Nevertheless, these 

were unprecedented conditions regionally, and they failed to cause intact African tropical 

forests to lose any biomass on average.  Additionally, the region-wide measurements 

suggest that African forests themselves are likely to be more drought-adapted than either 

Amazonian or Southeast Asian forests - due to past biogeographic history having favoured 

the persistence, expansion, and perhaps diversification of more drought-adapted species 

(deMenocal 2004, Parmentier et al. 2007), alongside adaptation to the relatively dry 

contemporary conditions across the continent (Malhi and Wright 2004).  A recent analysis 

using inventory data also suggests that African forests are more drought-resistant, but not 

more heat-resistant than Amazonian forests (Hubau et al. 2020). 

Plot measurement of only the live biomass monitors only the stocks of live carbon 

but there is also a flux of carbon to the atmosphere from necromass and soils, 

heterotrophic respiration.  From an atmospheric perspective the full impact of the reduction 

in the live carbon sink from slowing carbon gains is experienced immediately, but the 

contribution from rising carbon losses is delayed because dead trees do not decompose 

instantaneously, meaning that the contribution of biomass losses to the net biome 

response to the El Niño is also likely to be muted.  Additionally, soil carbon fluxes to the 

atmosphere in intact tropical forests are typically lower during drought conditions 

(Davidson et al. 2000, Rubio and Detto 2017) suggesting that the overall net biome 

response in African forests is muted because a small decrease in forest growth (i.e., 

reduced net primary productivity) may be somewhat offset by lower a soil carbon flux from 

lower heterotrophic respiration.  Consistent with this, remotely sensed CO2 data suggests 
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that the regions of tropical forest where the plots are located were an ongoing sink 

throughout 2015 and 2016 (Palmer et al. 2019).  This independent evidence, and the fact 

that these forests have been a sink over 2.7 years while experiencing unprecedented heat 

and drought conditions, reinforces the conclusion that African forests were resistant to the 

2015-16 extreme climate anomaly. 

With relatively few stems and high biomass per hectare, African tropical forests are 

more dominated by large trees than those typically found in Amazonia or Asia (Lewis et al. 

2013).  Because of their structure, there is likely to be more severe asymmetric 

competition in African forests than in Amazonia or Asia, and small trees are much more 

subordinate in these ecosystems.  In Africa in the 2015-16 El Niño, the response of large 

dominant trees was variable and not strongly directional, whereas small trees grew less 

and died more, perhaps due to more limited access to water than the large trees.  These 

impacts on small trees show that African forests were suffering in the El Niño but 

responses were modest overall because large trees disproportionately influence forest 

stocks and total biomass (Enquist et al. 2020).  African forests are structurally unique, 

possibly due to megafauna maintaining their large trees, and their large, long-lived trees 

may buffer ecosystem responses to environmental change (Enquist et al. 2020).  Thus 

intriguingly, it may be the existence of a more complete megafauna that is conferring 

resistance to record-breaking climate anomalies.   

The 2015-16 El Niño did not cause widespread mortality of large trees, because 

stem mortality rates did not significantly increase for the largest size class (pre-El Niño 

1.4%, El Niño 1.8 %, paired t-test, p=0.07), unlike the increases seen as a result of 

previous droughts observed in Amazonia and Southeast Asia (Phillips et al. 2010b), 

experimental droughts in eastern Amazonia (Nepstad et al. 2007) and a meta-analysis, 

which included no plots in Africa (Bennett et al. 2015).  Measurements are unlikely to have 

missed post-El Niño mortality given the El Niño 2.7-year census window, as most trees die 

within a few months of tropical drought events (Phillips et al. 2009, Qie et al. 2017).   No 

increase in large tree mortality implies that rates of hydraulic failure only increased slightly, 

if at all, in African tropical forests in the 2015-2016 El Niño, again unusual when compared 

to Amazonian and Asian forests (Choat et al. 2012, Rowland et al. 2015).  The lack of 

increase in large tree mortality further explains the limited impacts of the El Niño on African 

forest carbon stocks. 

2.4.2 Regional Carbon Implications 
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A recent assessment of the long-term carbon sink in African forests is 0.46 Pg C yr-

1 (0.37-0.56 95 % CIs) for the years 2000-2010 (Hubau et al. 2020), and the results 

suggest the sink reduced by 35 % over the 2.7 year El Niño census period, hence over the 

2.7-year period the sink is estimated as 0.30 Pg C yr-1 (0.46 x (1-0.35)).  The reduced sink 

captured by plot measurements is supported by a recent satellite-derived estimation of the 

carbon sink in African forests (Palmer et al. 2019).  Palmer et al. (2019) analysed 

atmospheric CO2 data to show that while Africa as a whole was a large source of carbon 

to the atmosphere over the El Niño, this was due to carbon release from Northern Africa.  

For the Congo Basin, in particular the West of the Congo Basin where most of the plots 

are located, the CO2 data shows a carbon sink in this region in both 2015 and 2016, 

consistent with the ongoing carbon sink in 2015 and 2016 found here using the plot 

inventory data.  

By contrast, Liu et al. (2017), also analysing atmospheric CO2 data combined with a 

vegetation model came to a different conclusion, showing a source of 0.8 ± 0.2 Pg C yr-1 in 

the El Niño of 2015-16, compared the 2010-11 strong La Niña year for African forests.  Liu 

et al.’s (2017) result is due to high surface temperature anomalies driving an increase in 

ecosystem respiration, which is not what was found here.  Respiration increases in the plot 

data would manifest as reductions in carbon gains, yet carbon gains declined by just 1.4 

%, not enough to stop or reverse the sink in the plots.  While the flux identified by Liu et al. 

could come from soils, typically carbon releases are lower in dry periods due to lower 

biological activity (Saleska 2003).  It should be noted that the Liu et al. respiration term is 

the residual after accounting for the estimates of the net biome exchange of carbon (from 

GOSAT and OCO-2), gross primary productivity and fire losses, thus is likely to be highly 

uncertain and potentially dominated by systematic errors in other terms.  

In summary, this chapter shows that the unprecedented 2015-16 climate anomaly, 

including record air temperatures and water deficits, was insufficient to reverse the long-

standing net carbon sink into intact forest biomass.  This surprising resistance of 

structurally intact African forests and their continued carbon sink is also seen from at least 

one recent study of atmospheric CO2 concentration data over Africa (Palmer et al. 2019), 

and when African forest responses are compared to the responses of Amazonian and 

Bornean forests to a strong drought (Phillips et al. 2009, Feldpausch et al. 2016, Qie et al. 

2017).  Resistance to rapid environmental change might be due to one of more of (i) the 

species present, as African forests are floristically distinct (Slik et al. 2018), (ii) their 

structure, as African tropical forests are dominated by large trees (Lewis et al. 2013), 
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which in turn may be a result of their retained megafauna (Enquist et al. 2020), (iii) the fact 

that African tree species have tolerated more extreme environmental change in glacial-to-

interglacial cycles (Parmentier et al. 2007), or (iv) that the environmental conditions in 

African forests today are not as hot, nor warming as fast as Amazonian forests.  Detection 

of the resistance of African tropical forests to unprecedented climate conditions was only 

possible because the AfriTRON ground monitoring network was already in place.  Further 

progress will be made on understanding changes in African tropical forests if this network 

of plots continues to be monitored and is expanded to under-sampled areas alongside 

integration with new remote-sensing technologies.
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Drought and temperature sensitivity of South 
American tropical forests during an extreme climate 

anomaly 

Abstract 

South American tropical forests have provided a long-term carbon sink, but this sink is 

sensitive to drought, with past droughts in Amazonia in 2005 and 2010 causing biomass 

loss.  While this implies that the increased frequency of droughts associated with climate 

change threatens the future of these forests, there is also evidence of communities shifting 

to become more drought-tolerant, so forests may already be adapting to climate change.  

One way to assess these differing hypothesised responses to ongoing climate change is 

to analyse the impacts of the 2015-16 El Niño Southern Oscillation, which resulted in 

record tropical warmth and altered precipitation and its impact across neotropical 

forests.  Here responses of 137 long-term intact tropical forest inventory plots are reported 

across seven South American countries, each measured prior to and following the 2015-

16 El Niño event.  While the climatology of these forest plots varied, overall they 

experienced their highest recorded temperatures and strong water deficits (on average 

+1.2 °C and -57 mm stronger maximum climatological water deficit than the mean 

conditions of 1980-2010).  During the record temperatures of the 2015-16 El Niño, the 137 

forest plots went from being a significant carbon sink pre-El Niño to small source in the 

census that captures the El Niño.  High temperature anomalies significantly increased 

carbon losses from tree mortality but did not significantly reduce carbon gains from tree 

growth, and the high drought anomalies significantly increased losses from mortality but 

did not reduce carbon gains from tree growth.  The climatically hottest forests were 

significantly more prone to El Niño depression of carbon gains and the driest forests were 

significantly more prone to El Niño enhanced carbon losses from mortality of biomass and 

decreased recruitment.  During the El Niño stem mortality rates increased for all trees, with 

no evidence of size selective mortality.  The net biomass sink declined by 0.7 ± 0.4 Mg C 

ha-1 yr-1 during the 2015-16 El Niño, similar to the impacts of the 2005 and 2010 droughts.  
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Thus, there is no evidence of shifts in species composition having provided drought 

resistance, rather the fact that carbon losses increased with temperature and the 

temperature threshold for rapid declines in biomass carbon gains highlight the vulnerability 

of many South American tropical forests to changing climate.  Future extreme droughts are 

not guaranteed but high temperatures are, and as the extreme climate anomalies of the 

present become the normal climate of the future, every degree of warming may reduce the 

net carbon sink in South American tropical forests.   

3.1 Introduction 

Intact tropical forests are a key component of the Earth system, storing and 

sequestering large amounts of carbon, mean 1.19 ± 0.41 Pg C yr-1 from 1990-2007 (Pan 

et al. 2011).  The most extensive and diverse tropical forests in the world are found in 

South America (e.g. (Ter Steege et al. 2013)) and measurements from long-term inventory 

plots suggest that Amazonian forests in particular have contributed a major carbon sink for 

decades, but that this carbon sink is declining (Brienen et al. 2015), and may cease in the 

future (Hubau et al. 2020).  The declining sink is driven by a stalling of past increases of 

woody productivity and strongly accelerating tree mortality (Brienen et al. 2015) which are 

related to the impacts of increasing air temperatures, drought and internal forest dynamics 

(Hubau et al. 2020).  In the short-term, the carbon sink in South American tropical forests 

is known to be vulnerable to both droughts (Phillips et al. 2009, Feldpausch et al. 2016, 

Hubau et al. 2020) and high air temperatures (Hubau et al. 2020).  With record high 

temperatures on top of a long warming trend and a sequence of droughts, the 2015-16 El 

Niño provides a novel opportunity to assess tropical forest vulnerability to heat and to 

drought. 

Tropical forest responses to temperature are likely to be complex.  Potentially, 

increasing temperature should increase productivity since ecosystems in warmer climates 

tend to have higher productivity in terms of net primary production (Schuur 2003, Del 

Grosso et al. 2008), and this appears to hold across local tropical elevation gradients so is 

unlikely to simply be related to longer growing seasons (Raich et al. 1997, Fyllas et al. 

2017, Malhi et al. 2017).  If plants can tightly regulate stomatal conductance and increase 

water use efficiency then they should be able to perform better under high temperatures.  

However, higher temperatures also pose greater risks of thermal damage (Schreiber and 

Berry 1977) and greater hydraulic risks, as vapour pressure deficits (VPD) increase with 

temperature (Trenberth et al. 2014).  At the top of the canopy VPD is greatest and 

decreases closer to the ground (Roberts et al. 1990b), so larger trees and taller forests are 
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more sensitive to VPD anomalies (Giardina et al. 2018).  As temperatures increase, there 

must be a temperature beyond which productivity decreases in the lowland tropics.  While 

tropical forest responses to drought have been well-documented, responses to 

temperature have not.  Work so far has focused on mortality and associated hydraulic 

challenges (McDowell et al. 2018), largely neglecting potential simultaneous changes in 

productivity and growth (Bonal et al. 2016).  Assessment of how South American tropical 

forests respond to recent, exceptional temperature anomalies can help fill this knowledge 

gap. 

Droughts are likely to detrimentally affect all trees in a forest.  Most tropical forests 

are water limited for most of the year, so from first principles increasing moisture is very 

likely to be beneficial.  Lack of water impacts biomass primarily by tree mortality, and water 

deficits increase mortality risk for individual trees for most of the climate space (Allen et al. 

2010, Phillips et al. 2010b).  There is also evidence that the enhanced mortality risk with 

drought is unevenly distributed, with larger trees often more vulnerable to drought as they 

face greater hydraulic challenges (Bennett et al. 2015).  So, it is expected that regions with 

more anomalous drought will have greater biomass mortality and a disproportionate 

number of large trees dying.  Exceptions are likely though, notably in forests that typically 

have saturated soils – whether due to climatic reasons, where productivity is usually light-

limited (Schuur 2003, Zuleta et al. 2017), or to edaphic factors where forests may exhibit 

some resistance to drought via lower tree mortality or higher recruitment (Sousa et al. 

2020).   

The 2015-16 El Niño is the third very strong drought in a decade in South America.  

Typical South American tropical forests are sensitive to drought (Nepstad et al. 2007, 

Phillips et al. 2009, Feldpausch et al. 2016).  Indeed, the carbon sink of South American 

tropical forests has been paused by at least two severe droughts in the last twenty years.  

Thus, a long-term pattern of net carbon sequestration in intact Amazonian forests was 

temporarily halted due to the 2005 drought (Phillips et al. 2009) but then recovered, at a 

lower strength, soon after the climate anomaly (Brienen et al. 2015).  The 2010 drought 

again reversed the baseline net sink, partly via increased mortality but also via reduced 

woody productivity (Feldpausch et al. 2016).  For the Amazon region the 2010 drought 

was severe over a more extensive area than the 2005 drought (Lewis et al. 2011).  The 

droughts of 2005 and 2010 were both non-El Niño droughts, and differ in spatial pattern to 

typical El Niño droughts which tend to be severe and widespread for the central Amazon 

(Jiménez-Muñoz et al. 2016).  The last very strong El Niño in 1997-98 increased mortality 
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rates in Amazonia (Williamson et al. 2000a), there was also a very strong El Niño in 1982-

83 and El Niño events tend to increase flower and seed production in Panama (Wright and 

Calderón 2006).  Yet, with record hot temperatures and extreme drought and with a novel 

spatial pattern (Jiménez-Muñoz et al. 2016), the 2015-16 may have had the greatest 

impacts on Amazonian forests.  

In spite of the recent impacts of severe droughts, other evidence points to 

considerable potential drought resistance in neotropical forests.  In large parts of 

Amazonia, temperatures increased 1-2 oC and precipitation declined during the Mid-

Holocene Dry Event approximately 9,000 to 4,000 years ago (Dick et al. 2013, Nascimento 

et al. 2019).  Pollen records suggest that forests of the western Amazon were resilient to 

this long-term climate change with only a few species replacements and minor fluctuations 

in abundance (Nascimento et al. 2019).  There is also contemporary evidence of very 

recent increases in temperature resistance (Yamori et al. 2014) and increases in drought 

resistance, as species composition has shifted towards more dry affiliated genera across 

Amazonia (Esquivel-Muelbert et al. 2019) and drought-induced mortality in Amazonia has 

been greater for wetter-affiliated genera (Esquivel-Muelbert et al. 2017).  So, this chapter 

assesses whether South American tropical forests are becoming more drought-tolerant.  

The level of drought and mean temperature prior to the climate anomaly, i.e. the 

baseline conditions, are likely important in determining forest responses to El Niño 

(Esquivel-Muelbert et al. 2019).  If a universal temperature threshold for photosynthesis 

exists, forests closer to this threshold - those which are hotter and drier, may be expected 

to suffer more from a hot, dry climate anomaly.  Alternatively, local adaptation of 

communities that have hotter or drier baseline climates might mean they do not suffer 

proportionately more from a hot dry climate anomaly.  So, it is important to consider 

baseline climate when analysing ecosystem responses to climate anomalies.  Most 

analyses focus on the impacts of the climate anomaly alone (Bonal et al. 2016) and, in 

terms of plots, thus far there has not been enough temporal data nor replication to assess 

the importance of baseline conditions. 

During the 2015-16 El Niño there were extreme temperatures and reduced 

precipitation across the tropics (Chapter 2 and Liu et al. 2017).  In tropical South America 

in 2015, the mean annual precipitation was the lowest and the temperature highest on 

record (Jiménez-Muñoz et al. 2016).  Early studies analysing reanalysis precipitation 

datasets (Jiménez-Muñoz et al. 2016) suggested that the 2015-16 El Niño drought was 

limited to the eastern Amazon, yet, (Yang et al. 2018a) found decreased precipitation 



Chapter 3 

 71 

across a much broader area, and river discharge across the whole Amazon Basin was 

40% lower than average between December 2015 and February 2016 (Van Schaik et al. 

2018).  Thus, there is still some uncertainty about the nature and extent of the 2015-16 

climate anomaly across South American forests.  Long-term measurements of forests are 

vital to help verify and understand the impact of the climate anomaly on South American 

tropical forests, but so far there is a lack of a large-scale field-based analysis of the impact 

of these unprecedented conditions. 

Here, 137 long-term monitoring plots from across the RAINFOR network (Malhi et 

al. 2002b) are measured and analysed to assess the impact of the 2015-16 El Niño on 

South American tropical forests.  These plots span Amazonia but also include forests at 

the fringes of the moist forest biome, encompassing forest communities in regions that are 

transitional with dry forests and Cerrado.  With the largest on-the-ground dataset yet 

mobilised to address the impact of a single tropical drought, I investigate the impact of the 

2015-16 El Niño high temperatures and drought on the temporal patterns of net 

aboveground biomass, productivity and biomass mortality of South American tropical 

forests.  Therefore, climate data is combined with measurements from long-term inventory 

plots to address the following questions: (1) Did South American tropical forests 

experience unprecedented temperature anomalies in the 2015-16 El Niño? (2) Did South 

American tropical forests experience unprecedented drought in the 2015-16 El Niño? (3) 

How did the climate anomaly of 2015-16 compare to the extreme Amazon droughts of 

2005 and 2010? (4) Which climate anomalies drove forest responses to the 2015-16 El 

Niño? (5) Were hotter forests more resistant or more vulnerable to the climate anomaly? 

(6) Were drier forests more resistant or more vulnerable to the climate anomaly? and (7) 

What were the overall impacts on the monitored old-growth structurally intact tropical 

forests?   

3.2 Methods 

Methods follow this in Chapter 2, to allow comparability, with changes or additional 

methods detailed below.   

3.2.1 Climate Data 

For temperature I used the ERA5 dataset (Copernicus Climate Change Service 

Climate Data Store (CDS) 2020) instead of ERA-I as used in Chapter 2, because the new 

ERA5 product has higher spatial (30 km) and temporal (1-hour) resolution.  I also use the 

latest CRU monthly temperature data, version ts.4.03, instead version ts.4.01 used in 
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Chapter 2.  Temperature products were combined as in Chapter 2, by matching 

overlapping months.  Thus, in this chapter the temperature record for South America is a 

combination of the CRU ts.4.03 (1970-1978) and ERA5 (1979-2018) products rather than 

the combination of CRU ts.4.01 (1970-1978) and ERA-I (1979-2017) in Chapter 2.  For 

precipitation I used the same products for this analysis as in the Chapter 2 analysis; GPCC 

(1970-1997) and TRMM (1998-2018).   

The climate of the 2015-16 El Niño Southern Oscillation event is defined as the 

twelve-month period from May 2015 to April 2016, as for Africa in Chapter 2.  These 

twelve consecutive months are also those with the greatest SST anomalies (Liu et al. 

2017) and include peak temperatures for South America, as land surface temperature 

anomalies in South America lag sea surface temperature anomalies that began in 

November 2014 (Liu et al. 2017), by two months (Malhi and Wright 2004).  These same 

May-April twelve consecutive months are also used to characterise the 1982-83 and 1997-

98 El Niño events. 

I analyse how carbon gains from productivity change with baseline temperatures.  

To compare results with the maximum temperature thresholds for carbon stocks found in 

(Sullivan et al. 2020) I used an additional temperature dataset to calculate maximum daily 

temperature.  Data from WorldClim version 2 (Fick and Hijmans 2017) were extracted at 

plot locations and annual mean temperature (BIO1) and mean diurnal temperature range 

(BIO2) for 1970-2000 were used to calculate mean daily maximum temperature (BIO1 + 

BIO2/2) as an alternative long-term climate baseline in addition to pre-El Niño 

temperature. 

The South American tropical forest region is defined using the Tropical and 

Subtropical Moist Broadleaf Forest Biome from the WWF Terrestrial Ecoregions of the 

World map (Olson et al. 2001), as for Africa in Chapter 2.  The 137 South American forest 

plots include transitional forests at the edge of the moist tropical forest biome, which are 

sometimes beyond the limits of the Olsen polygon.  Therefore, for maps visualising the 

climate anomaly a wider region is used - locations that have > 1000 mm yr-1 precipitation 

and are <1000 m above sea level.  So in Figure 3.1 and Table 3.1 the region is the same 

as in Chapter 2, and in further figures, just for visualisation, the area is expanded to 

include drier forest regions. 

3.2.2 Plot Data Collection and Analysis 
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Long-term inventory plots were censused using standard RAINFOR methodology 

(Phillips et al. 2010a).  All permanent sample plots used in the analysis are located in 

lowland (all <1000 m, 131 plots <800 m as for Africa in Chapter 2), closed canopy, old-

growth, structurally intact tropical forests, had been censused at least twice prior to the 

2015-16 El Niño event, and were censused once afterwards.  The 137 plots meeting these 

criteria are distributed across 57 distinct clusters in seven countries: Bolivia, Brazil, 

Colombia, French Guiana, Guyana, Peru and Venezuela.  I conducted the final quality 

control checks on all 137 plots.  I include only plot censuses from 1984 onwards, as in 

Chapter 2, to exclude the impacts of the 1982-83 El Niño.  Median plot size is 1 ha, mean 

0.98 ha (range 0.2 - 6.25 ha); mean initial census is May 2004, mean pre-El Niño census 

is September 2014, and mean post-El Niño census is May 2017.  The mean pre-El Niño 

monitoring length was 12.8 years and the mean length of the El Niño interval was 2.5 

years, similar to mean census interval lengths for Africa in Chapter 2.  Data are curated at 

ForestPlots.net (Lopez-Gonzalez et al. 2011) version 2019.1 downloaded on 19 August 

2019. Tree heights were measured in all 137 plots; and methods for tree height are 

identical to Chapter 2.   

As in Chapter 2, the mean of the El Niño census interval minus the mean of the pre-

El Niño monitoring period and the result is ∆ net carbon, ∆ carbon gains and ∆ carbon 

losses for each plot.  Net carbon and carbon losses are for all plots (n=137).  In this 

Chapter, as the mean El Niño census was slightly later post-El Niño, and El Niño carbon 

gains impacts are more likely to be seen with shorter census intervals, ∆ carbon gains 

were restricted to plots that have been censused within one year of the maximum climate 

anomalies, so to be included they must have been measured before February 2017 (n=62 

plots).  Again, as in Chapter 2, the plots are weighted following the same procedure, but 

this resulted in slightly different weightings than for Africa.  Selected weights were: Δ net 

carbon, Monitoring length1/3 + Area1/3 - 1; Δ carbon gains, Monitoring length1/6 + Area1/5 - 1; 

Δ carbon losses, Monitoring length1/3 + Area1/3 - 1. 

Analyses in this chapter are very similar to the analyses performed in Chapter 2, but 

here in Chapter 3 I analyse data from 137 South American forest plots and the climate 

data at these plot locations.  Additionally, to investigate temperature thresholds for carbon 

gains in this chapter I perform breakpoint regressions using the segmented R package 

(Muggeo 2003), bootstrapped with one hundred repetitions.  As a high temperature 

threshold for photosynthesis exists theoretically, one could presume that two linear models 

would capture the temperature productivity relationship, a model prior to the temperature 
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threshold and a second beyond the temperature threshold both with different slopes.  By 

fitting a breakpoint to the data I capture a potential temperature threshold.  For the 

segmented analysis the breakpoint is estimated by the bootstrap restarting algorithm 

(Wood 2001).  I test if the linear models either side of the breakpoint are significant and 

use Davies’ test to determine whether lines on either side of the break point have 

significantly different slopes (Davies 1987, 2002).   

3.3 Results 

It was considerably hotter by 0.8 ± 0.04 oC (95 % CIs) and drier by -304 ± 16 mm yr-

1 across the South American tropical forest region during the 2015-16 El Niño compared to 

the previous decade (Figure 3.1, Table 3.1).  The 50-year climate record shows that the 

long-term climate trends across South American tropical forests are rising temperatures 

and decreasing precipitation and seasonal moisture deficits (Figure 3.1).  The three very 

strong El Niño events over the past 50 years are superimposed on these trends, so that 

the 2015-16 El Niño event led to record high temperatures and low precipitation and 

moisture deficits for South American tropical forests (Figure 3.1).  The 1982-83, 1997-98 

and 2015-16 very strong El Niño events each increased temperatures by 0.3, 0.8 and 0.8 
oC, reduced precipitation by 138, 212 and 304 mm and decreased MCWD by 37, 45 and 

60 mm, respectively, compared to the climate of the prior decade, indicating that the 2015-

16 anomaly was larger than the previous two El Niño events in terms of drought (Figure 

3.1, Table 3.1).  The El Niño events have higher temperature anomalies than the non-El 

Niño droughts of 2005 and 2010, with 0.3, 0.8 and 0.8 oC compared to 0.3 and 0.1 oC 

(Table 3.1).  The El Niño events also had greater decreases in precipitation, 138, 212 and 

304 mm compared to increased precipitation during the non-El Niño droughts in 2005 and 

2010, +67 and +63 mm.  Mean water deficits are also much stronger for El Niño droughts 

with -37, -45 and -60 mm compared to -9 and 3 in non-El Niño droughts across the South 

American tropical forest region. 

The 137 South American forest plot locations are hotter, drier and more droughted 

than the region as a whole because some of the plots are located outside of the core 

tropical forest region, in drier forests.  Both the plots and region have similar trends of 

increasing temperature and decreasing rainfall (Figure 3.1).  In the 2015-16 El Niño the 

137 plot locations experienced record mean annual temperatures of 26.1 ± 0.03 oC, record 

low total annual precipitation, mean 1573 ± 20 mm, and low, but not record low, MCWD 

with mean -283 ± 2 mm (Table 3.1, Figure 3.3).  Comparing the plot census interval that 

captures the 2015-16 El Niño with the plot pre-El Niño census period, 128 of the 137 plots 
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had higher mean monthly temperature over the El Niño census interval compared to their 

pre-El Niño censuses, higher by a mean of +0.49 ± 0.06 oC (paired t-test, p<0.05).  Plots 

had greater water deficits during the El Niño census interval compared to their pre-El Niño 

monitoring period, 102 of the 137 plots had more negative MCWD, and 79 of the 137 plots 

had droughts greater than -25 mm (mean plot MCWD anomaly -48 ± 12 mm, paired t-test, 

p < 0.001), 107 plots also had lower total annual precipitation (mean -15 ± 4 mm yr-1, 

paired t-test, p < 0.0001).  The anomalies of temperature and MCWD were significantly 

correlated, as the temperature anomalies at plots increased water deficit anomalies 

became increased (r=-0.17, p< 0.05), and the anomalies of MCWD and precipitation were 

correlated; as precipitation anomalies increased, MCWD anomalies increased (r= 0.42, p< 

0.0001).  The mean El Niño census length of all plots was 2.5 years, so the climate 

anomalies corresponding to census measurement dates are smaller than those for the 12-

month El Niño year because the climate anomaly is diluted by the inclusion of months of 

more usual conditions (Figure 3.3).   
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Table 3.1 | Climate anomalies of five drought events, including three very strong El Niño events, for the 
South American tropical forest region and plot locations.  The 2015-16 El Niño was the hottest and driest 
drought event on record, both absolutely and anomalously, hotter and drier than the other two most recent 
very strong El Niño events and hotter and drier than two extreme droughts in the decade.  The drought 
was also the strongest   A May-April year is used for climate analyses and n=137 plot locations.  
Displayed in the table are means and 95 % confidence intervals. 
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Region  

1982-83 El 
Niño 

24.1 ± 
0.03 

0.3 ± 
0.03 

0.1 ± 
0.04 

2130 ± 
9 

-138 ± 
14 

-98 ± 14 -220 ± 1 -37 ± 
2 

-24 ± 
2 

1997-98 El 
Niño 

24.7 ± 
0.03 

0.8 ± 
0.04 

0.7 ± 
0.04 

2008 ± 
10 

-212 ± 
14 

-220 ± 
14 

-241 ± 1 -45 ± 
2 

-45 ± 
2 

2005 24.4 ± 
0.03 

0.3 ± 
0.04 

0.3 ± 
0.04 

2280 ± 
11 

67 ± 16 52 ± 15 -203 ± 1 -9 ± 2 -8 ± 2 

2010 24.4 ± 
0.03 

0.1 ± 
0.04 

0.3 ± 
0.04 

2309 ± 
11 

63 ± 16 81 ± 15 -194 ± 1 3 ± 2 2 ± 2 

2015-16 El 
Niño 

25.2 ± 
0.03 

0.8 ± 
0.04 

1.1 ± 
0.04 

1955 ± 
11 

-304 ± 
16 

-273 ± 
15 

-255 ± 1 -60 ± 
2 

-59 ± 
2 

Plot 
locations  

 

1982-83 

 

25.0 ± 
0.03 

0.3 ± 
0.03 

0.04 ± 
0.04 

1902 ± 
18 

-136 ± 
26 

-16 ± 27 -236 ± 1 -7 ± 2 4 ± 2 

1997-98  25.7 ± 
0.03 

0.9 ± 
0.04 

0.8 ± 
0.04 

1659 ± 
17 

-324 ± 
25 

-259 ± 
26 

-269 ± 1 -26 ± 
2 

-29 ± 
2 

2005 

 

25.3 ± 
0.03 

0.2 ± 
0.04 

0.3 ± 
0.04 

1896 ± 
22 

55 ± 30 -22 ± 30 -245 ± 1 -4 ± 2 -5 ± 2 

2010 

 

25.4 ± 
0.03 

0.2 ± 
0.04 

0.4 ± 
0.04 

1960 ± 
22 

134 ± 
31 

42 ± 30 -246 ± 1 -4 ± 2 -6 ± 2 

2015-16 

 

26.1 ± 
0.03 

0.8 ± 
0.04 

1.2 ± 
0.04 

1573 ± 
20 

-279 ± 
30 

-345 ± 
28 

-283 ± 2 -45 ± 
2 

-42 ± 
2 
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Figure 3.1 | Climate for plot locations (black) and the South American tropical forest region (grey) 

South American tropical forests (grey) are delimited by the Tropical and Subtropical Moist Broadleaf 
Forest Biome from the WWF Terrestrial Ecoregions of the World (Olson et al. 2001).  Mean annual 
temperature (A), total annual precipitation (B) and maximum cumulative water deficit, MCWD (C), values 
averaged for El Niño years May-April.  n=137 plots.  Black lines are for plot location, grey lines for the 
forest region. Grey vertical shading indicates the 1982-83, 1997-98, and 2015-16 very strong El Niño 
events and the vertical grey lines indicate the 2005 and 2010 droughts. 

 

drier 
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1982-83 1997-98 2015-16 

2005 2010 
Figure 3.2 | Intensity of droughts and locations 
of forest monitoring plots in South America.  
Drought anomaly maps for El Niño (top) and non-El 
Niño (bottom) droughts.  El Niño drought anomalies 
(A-C) are May-April climate years compared to the 
decade prior, non-El Niño drought anomalies (D and 
E) are reproduced from (Lewis et al. 2011) where 
October-September years are compared to October 
2000 - September 2009, excluding 2005.  Plot 
locations are marked as they were analysed in 
previous studies, 2005 n=55 (Phillips et al. 2009), 
2010 n=97 (Feldpausch et al. 2016), and in this 
chapter 2015-16 n=137.  Core Amazonia is 
delineated by the black polygon.  The shaded area is 
limited to locations that have > 1000 mm yr-1 
precipitation and are <1000 m above sea level. 
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Of the five drought events examined in this chapter, the 2015-16 drought was the 

most extensive Amazonian drought (Figure 3.2).  The total area that experienced a 

drought greater than 25 mm, i.e. Δ MCWD < -25, within core Amazonia, was: 4.2 million 

km2 in the 2015-16 El Nino (Figure 3.2C), 4.0 million km2 in the 1982-83 El Nino (Figure 

3.2A), 3.9 million km2 in the 1997-98 El Nino (Figure 3.2B) and as reported in (Lewis et al. 

2011): 2.5 million km2 in 2005 (Figure 3.2D) and 3.2 million km2 in 2010 (Figure 3.2E).  El 

Nino droughts are also more intense within Amazonia.  The mean MCWD of pixels with Δ 

MCWD < -25 was -125 ± 1 mm in the 2015-16 El Niño (Figure 3.2C), -102 ± 1 mm in the 

1982-83 El Niño (Figure 3.2A), -110 ± 1 mm in the 1997-98 El Niño (Figure 3.2B), and -85 

± 0 mm in 2005 (Figure 3.2D) and -73 ± 0 mm in 2010 (Figure 3.2E).  So, when comparing 

drought across Amazonia, El Niño droughts are more extensive and more intense than 

non-ENSO droughts. 

For the South American tropical forest region, in 2015-16 the epicentre of the 

drought was the north-east Amazon (Figure 3.2), while much of the south-west Amazon 

was wetter than the preceding decade.  No plots were located at the epicentre of the 

2015-16 drought and changes in net carbon reflect the distribution of drought with 47 % 

negative responses for plots east of -63o and 60 % negative to the west (Figure 3.10).  

This is due to carbon losses from aboveground biomass mortality being tightly linked to 

drought intensity, whilst carbon gains responses are more variable.  The spatial pattern of 

droughts indicates that El Niño droughts have strong drying concentrated in the north and 

east Amazon, with limited drought in the south (Figure 3.2 panels A, B and C), whereas 

the non-El Niño droughts had drought in the south Amazon in 2005 (Figure 3.2D) and in 

the north and south Amazon in 2010 (Figure 3.2E).  

The spatial pattern of drought, and locations of plots within that drought space 

dictate the drought-response captured by plot measurements.  Of the 137 plots measured 

to capture the 2015-16 El Niño in this chapter, 73% experienced drought, while 67 % of 

the published plots measured to capture the 2010 drought experienced drought 

(Feldpausch et al. 2016) and 73 % of the published plots measured to capture the 2005 

drought experienced drought (Phillips et al. 2009).  The mean drought of the 137 plots in 

2015-16 was -44 ± 12 mm, and by extracting the annual MCWD anomaly at plot locations 

(Figure 3.2), the mean MCWD anomaly at the 55 plots in Phillips et al. 2009 was -51 ± 12 

in 2005 and at the 97 plots in Feldpausch et al. 2016 was -42 ± 11 in 2010.  These 

percentages and mean MCWD anomalies suggest a similar proportion of plots were 
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droughted in the droughts of 2005, 2010 measured at the plots monitored at published 

locations, even though the published plot locations change and drought changes spatially. 

 

 

Figure 3.3 | Intensity of temperature (left) and drought (right) anomalies in 2015-16 

The first row (A-B) is the anomaly for the El Niño year (May 2015 – April 2016) relative to the preceding 
decade (May 2005 - Apr 2015).  The second row (C-D) is the anomaly for (September 2014 – May 2017) 
relative to (May 2004 - August 2014), the mean plot measurement dates.  Plot locations are marked by 
black circles.  The shaded area is limited to locations that have > 1000 mm yr-1 precipitation and are 
<1000 m above sea level. 
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Figure 3.4 | Carbon (A) and stem dynamics (B), pre- (lighter shading) and during the 2015-16 El 
Niño (darker shading) 

Carbon losses significantly increase from the pre-El Niño monitoring period to the El Niño census 
interval, reducing net carbon uptake, stem mortality also increases reducing net stems.  Pre- and El 
Niño carbon (A) and stems (B).  Lighter shading is pre-El Niño and darker shading is during the El 
Niño.  n=137 plots and error bars represent 95% confidence intervals.  Box around net carbon bars in 
panel A highlights that they are the same as the pair of bars with a box in Figure 3.5.  Significant 
differences are defined by paired t-tests with ** indicating p<0.01 and *** indicating p<0.001 
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Figure 3.5 | Carbon dynamics, pre- and during the 2015-16 El Niño and in the context of 
2005 and 2010 Amazon drought-responses 

Declines in net carbon over three extreme droughts, including the 2015-16 El Niño, are 
similar.  Pre-drought (lighter shading) and drought (darker shading). comparisons of n=137 
plots, of which 75 % experienced drought more severe than the long term mean, and 
comparisons to the 2005; data from (Phillips et al. 2009) n=55 plots, 73 % of which 
experienced drought, and 2010; data from (Feldpausch et al. 2016) n=97, 67 % of which 
experienced drought.  Error bars represent 95% confidence intervals.  Box around 2015-16 
bars in panel A highlights they are the same as the pair of bars with a box in Figure 3.4. 
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Over the censuses spanning the 2015-16 El Niño (mean 2014.7 to 2017.3) 

compared to the pre-El Niño period (mean 2004.3 to 2014.7) the carbon sink declined by 

129 % (net carbon 0.5 to -0.1 Mg C ha-1 yr-1, Δ net carbon -0.7 ± 0.4 Mg C ha-1 yr-1, paired 

t-test, p < 0.01, Figure 3.4A).  Seventy out of 137 plots had a net loss of aboveground 

biomass.  The net change in carbon is composed of two process components; a significant 

increase in carbon losses due to biomass mortality (by 35 %, from 2.0 to 2.7 Mg C ha-1 yr-

1, Δ carbon losses +0.7 ± 0.5, p < 0.01) and no change in carbon gains from tree growth 

and new tree recruitment (from 2.4 to 2.4 Mg C ha-1 yr-1, Δ carbon gains -0.1 ± 0.2, p= 

0.4).  Hence, during the record temperatures of the 2015-16 El Niño, the 137 forest plots 

went from being a significant carbon sink pre-El Niño to small source in the census that 

captures the El Niño. 

Prior to the 2015-16 El Niño plots recorded a long-term net increase in 

aboveground biomass carbon, weighted by sampling effort, of 0.5 ± 0.1 Mg C ha-1 yr-1, 

between 2004.3 and 2014.7, consistent with the long-term Amazon carbon sink.  By 

contrast, during the 2015-16 El Niño net the carbon balance declined significantly in 

monitored plots, to a small source, of -0.1 ± 0.2 Mg C ha-1 yr-1, a difference of -0.7 ± 0.4 

Mg C ha-1 yr-1.  The net carbon balance also significantly declined in previous droughts in 

South America, in 55 monitored plots in 2005  (-0.7 ± 0.6 Mg ha-1 yr-1 data from (Phillips et 

al. 2009)) and in 97 plots in 2010 ((-0.8 ± 0.2 Mg ha-1 yr-1 data from (Feldpausch et al. 

2016)), both times from a carbon sink to a small, non-significant, source (Figure 3.5).   

Comparing the 2015-16 El Niño and 2005 and 2010 droughts, the change in net 

aboveground biomass carbon is similar (independent t-tests; 2005 vs 2010 p=0.7, 2005 vs 

2015-16 p=0.08, 2010 vs 2015-16 p=0.6, Figure 3.5B).  Net aboveground biomass pre-

drought was also similar (2005 vs 2010 p=0.4, 2005 vs 2015-16 p=0.4, 2010 vs 2015-16 

p=0.4, Figure 3.5A), as was net aboveground biomass in the interval that captures the 

drought (2005 vs 2010 p=0.9, 2005 vs 2015-16 p=0.8, 2010 vs 2015-16 p=0.6, Figure 

3.5A).  In South America, there were similar water deficits at the actively monitored plot 

locations during the last three extreme droughts in 2005, 2010 and 2015-16, and the 

response of aboveground vegetation to these three extreme droughts where the plots 

were monitored was consistent. Of course, the drought was more extensive and more 

extreme in 2015-16 compared to previous droughts so the overall impact on the region 

may have been much larger in 2015-16 compared to previous drought events. 

 
  



Chapter 3 

 84 

 

Figure 3.6 | Temperature (left) and drought (right) impacts on aboveground biomass carbon 
dynamics 

Temperature anomalies and drought anomalies increase carbon losses and reduce net carbon.  The net 
carbon change (A, B), carbon gains from tree growth and recruitment (C, D) and carbon losses from 
mortality (E, F) of the censuses capturing the El Niño event minus pre-El Niño plot monitoring period for 
137 long-term inventory plots.  The intensity of temperature change, Δ temperature (T) (A, C, E) is mean 
monthly temperature in El Niño minus mean monthly temperature pre-El Niño, using the census dates of 
the plot censuses.  Relative intensity of the change in dry season strength is calculated as Δ maximum 
cumulative water deficit (MCWD) (B, D, F) which is the difference between maximum MCWD in El Niño 
and mean MCWD in pre-El Niño.  Point shading from light to dark denotes greater weighting, with plots 
and line of best fit weighted by an empirically derived combination of pre-El Niño plot monitoring length 
and plot area for each response variable.  Net change is in grey, gains are in green, losses orange.  Solid 
lines represent significant linear models (p<0.05).  There are fewer points in C and D than in the other two 
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rows as carbon gains are restricted to plots that were measured within one year of the maximum climate 
anomaly, so to be included they must have been measured before February 2017.  Slopes, intercepts and 
p-values for significant  linear models are as follows: A: y= -1.45x + 0.1, p < 0.05, B: y= -0.01x - 0.3, p < 
0.05, E: y= 1.5x + 0.08, p < 0.05, F: y= 0.005x + 0.4, p < 0.05. 

 

 

Figure 3.7 | Baseline temperature (left) and baseline drought (right) and anomalies of 
aboveground biomass carbon dynamics 

Carbon gains significantly decrease with baseline temperature so plots with higher baseline temperatures 
had significantly lower carbon gains and baseline drier plots had significantly higher carbon losses and 
reduced net carbon.  The net carbon change (A, B), carbon gains from tree growth and recruitment (C, D) 
and carbon losses from mortality (E, F) of the censuses capturing the El Niño event minus pre-El Niño plot 
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monitoring period for 137 long-term inventory plots.  The pre-El Niño temperature (T) (A, C, E) is the mean 
of mean monthly temperature in the monitoring period prior to the El Niño, using the census dates of the 
plot censuses.  The pre-El Niño maximum cumulative water deficit (MCWD) (B, D, F) is the mean MCWD 
in the monitoring period prior to the El Niño.  Point shading from light to dark denotes greater weighting, 
with plots and line of best fit weighted by an empirically derived combination of pre-El Niño plot monitoring 
length and plot area for each response variable.  Net change is in grey, gains are in green, losses orange.  
Solid lines represent significant linear models (p<0.05).  Slopes, intercepts and p-values for significant 
linear models are as follows: B: y= -0.4x + 0.005, p < 0.001, C: y= 2.7x - 0.1, p < 0.05, F: y= 0.004x - 0.1, 
p < 0.01. 

 

 

Figure 3.8 | Temperature-productivity thresholds  

Temperatures increase productivity to a point, beyond which carbon gains decline with increasing 
temperatures.  Baseline temperature and baseline carbon gains (A), long-term daily maximum 
temperature (from WorldClim v2) and baseline carbon gains (B), El Niño temperature and El Niño carbon 
gains (C), and long-term daily maximum temperature and El Niño carbon gains (D).  Gains are shown in 
green, consistent with other figures.  Point shading from light to dark denotes greater weighting, with plots 
and lines of best fit weighted by an empirically derived combination of pre-El Niño plot monitoring length 
and plot area.  Significantly different slopes either side of breakpoint according to Davies’ test A; p<0.05, 
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B: p<0.001, C: p<0.01, D: p<0.001, the linear models before and after the breakpoint are only sometimes 
significant, solid lines indicate significant linear models A: before breakpoint p=0.4, after breakpoint p=0.2, 
B: p<0.05, p<0.01, C: p<0.0001, <0.0001, D: p=0.6, p<0.0001.  Slopes of linear models before and after 
breakpoint, respectively A: y=0.08x + 0.6, y= -0.29x +10, B: y=0.09x -0.2, y= -0.5x +18, C: y=0.08x + 0.7, 
y= -0.77x +23, D: y=0.07x +0.8, y= -0.6x +22.   

 
Temperature anomalies increase carbon losses from biomass mortality (two-tailed 

Kendall’s Tau, p<0.05, Figure 3.6E).   Temperature anomalies have no effect on carbon 

gains from aboveground woody productivity (p=0.99, Figure 3.6C) and temperature 

anomalies drive greater losses in net aboveground biomass carbon, but not significantly 

(linear model is significant p<0.05, but Kendall’s Tau is not p=0.06, Figure 3.6A).  Relative 

to pre-El Niño, forests subjected to a 0.5 oC increase in temperature lost 0.6 Mg C ha-1 yr-1 

(Figure 3.6A). 

Drought anomalies impact carbon losses from biomass mortality such that 

anomalously drier plots have greater increases in carbon losses (two-tailed Kendall’s Tau, 

p < 0.001, Figure 3.6F), but drought anomalies have no significant effect on carbon gains 

(p=0.5, Figure 3.6D).  As drought impacts losses but not gains, net aboveground biomass 

carbon significantly reduced with drought anomaly over the El Niño i.e. the stronger the 

MCWD anomaly the more negative the net carbon response (p < 0.05, Figure 3.6B).  

Relative to pre-El Niño, forests subjected to a 100 mm increase in MCWD lost 0.9 Mg C 

ha-1 yr-1.   

Plots with hotter baseline climates pre-El Niño have reductions in carbon gains 

during the El Niño (p= 0.05, Figure 3.7C) and in a multivariate model with both baseline 

temperature and Δ temperature, baseline temperature has a negative effect on Δ carbon 

gains and Δ temperature has a positive effect (Figure 3.9).  For Δ net carbon, both 

baseline climate and anomalies have negative effects, thus hotter and drier forests tended 

to lose more biomass carbon.  Plots with stronger baseline water deficits lost more 

aboveground biomass carbon through mortality (p < 0.01, Figure 3.7F) and lost 

aboveground biomass carbon overall (p < 0.01, Figure 3.7B).  So, drier plots with stronger 

dry seasons tended to lose more biomass carbon in the El Niño.  There was no threshold 

effect for drought and carbon losses (pre- El Niño Davies’ test p=0.4, El Niño p=0.3) unlike 

temperature and carbon gains.  

The climatically hottest forests are significantly more prone to El Niño depression of 

carbon gains (Figure 3.7C) and the driest forests are significantly more prone to El Niño 

enhanced carbon losses from mortality of biomass and decreased recruitment (Figure 

3.7F).  As a consequence, these drier fringe forests, typically outside the core Amazon 
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area (Figure 3.2), significantly lost biomass during the El Niño period (Figure 3.7).  While 

Figure 3.7 shows the mean climate of the census monitoring period pre-El Niño, these 

results also hold when I use a full 30-year climate record at plots.  The driest quartile of 

plots pre-El Niño had significantly lower Δ net carbon (mean carbon losses of driest 

quartile of plots: -1.8 ± 0.6 Mg C ha-1 yr-1, mean of wettest quartile: 0.1 ± 0.7 Mg C ha-1 yr-

1, t-test; p<0.01).  This was because the driest quartile of plots pre-El Niño had significantly 

higher Δ carbon losses than the wettest quartile of plots in the El Niño, (mean of driest 

quartile 1.4 ± 0.5 Mg C ha-1 yr-1, mean of wettest quartile -0.2 ± 0.3 Mg C ha-1 yr-1, p<0.05), 

and no difference in Δ carbon gains (p=0.2).  The carbon dynamics of the hottest quartile 

of plots did not significantly differ from the coldest quartile of plots (Δ net carbon; p=0.9, Δ 

carbon gains; p=0.2, Δ carbon losses; p=0.4), possibly because the temperature range (-

0.5 to 1.2 oC, n=137) of the plots is much smaller than the MCWD range (-252 to 106 mm).  

Drier forests lost the most biomass in the 2015-16 El Niño. 

Considering temperature and carbon gains relationships for both the pre-El Niño 

monitoring period (Figure 3.8A) and El Niño interval (Figure 3.8C), with increasing 

temperature carbon gains increase to a point, beyond which carbon gains decrease.  

Break-point regressions indicate temperature thresholds of 25.9 ± 0.5 °C (95% CI) mean 

monthly temperature for the pre-El Niño mean carbon gains, (lines either side of 

breakpoint have significantly different slopes according to Davies’ test, p<0.05, Figure 

3.8A), and 26.6 ± 0.4 °C for the carbon gains of the El Niño census interval (Davies’ test, 

p<0.01, Figure 3.8C).  Peak carbon gains are approximately 2.75 Mg C ha-1 yr-1, although 

both linear models either side of the breakpoint are significant only for the El Niño carbon 

gains, implying a strong reduction in carbon gains beyond the ~26 °C threshold.  The 

breakpoints of the pre-El Niño carbon gains and pre-El Niño mean temperature (Figure 

3.8A) and El Niño carbon gains and El Niño mean temperature (Figure 3.8C) are not 

significantly different (p=0.3), and during the El Niño a greater number of plots have mean 

annual temperatures beyond the breakpoint than pre-El Niño.  These relationships are 

maintained when computed using mean daily maximum temperature instead of mean 

monthly temperature; pre-El Niño carbon gains have a breakpoint at 30.8 ± 0.2 °C 

(p<0.001, Figure 3.8B) and during El Niño carbon gains have a breakpoint at 30.3 ± 0.3 °C 

(p<0.001, Figure 3.8D), again these are not significantly different breakpoints (p=0.3).  

Though, in this instance the linear models either side of the break points are both 

significant only for the pre-El Niño carbon gains.  Overall, when considering the 137 plots 

together, there is no impact of temperature anomaly on carbon gains because reductions 
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in plots that exceed the breakpoint temperature threshold are compensated by cooler plots 

where the higher El Niño temperature boosts carbon gains (Figure 3.6). 

 

 

Figure 3.9 | Effect sizes of change in carbon in South American tropical forest plots over the 
2015-16 El Niño 

Temperature anomalies increased carbon gains, baseline drought increased carbon losses, 
temperature and drought anomalies interacted to reduce carbon gains where it was both 
anomalously hot and dry.  Points show coefficients from linear models with multi-model inference.  
Coefficients are standardised so that they represent change in the response variable for one 
standard deviation change in the explanatory variable.  Net change is in grey, gains are in green, 
losses orange.  Error bars show 95 % CIs.  The models explained 11 %, 30 % and 8 % of variation in 
Δ net carbon, Δ carbon gains and Δ carbon losses. 

 

  



Chapter 3 

 90 

Stem mortality rates increased from the pre-El Niño monitoring period to the El Niño 

census interval, an increase of 0.6 ± 0.3 %, from 2.1 % to 2.8 %, (paired t-test, p<0.0001).  

This occurred in every size class, but especially in the large (400+ mm diameter: 1.2 ± 0.6 

% from 2.4 % to 3.2 %, p<0.0001) and medium trees (200-399 mm diameter: 0.9 ± 0.3 % 

from 1.7 % to 2.7 %, p<0.0001), more so than in small trees (100-199 mm diameter: 0.5 ± 

0.4 % from 2.5 % to 3.0 %, p<0.05).  There are many more trees in this smallest size class 

so even though the proportional change is smaller, the absolute number of dead trees is 

larger.  There was no significant change in the size of dying trees overall (median diameter 

change pre-El Niño to El Niño +1.0 ± 5.9 mm, paired t-test, p=0.2), nor for each size class 

(100-199 mm diameter; +0.5 ± 1.5 mm, p=0.7; 200-399 mm diameter, +2.4 ± 3.0 mm, 

p=0.5; 400+ mm diameter, +3.6 ± 5.9 mm, p=0.2).  So, during the El Niño stem mortality 

rates increased for all trees, with no compelling evidence of size selective mortality. 

The size of live trees also did not change overall (median diameter change pre-El 

Niño to El Niño +3.9 ± 1.7 mm, p=0.2), but live trees in the larger size class increased in 

diameter (400+ mm diameter; +20.2 ± 17.3, p<0.05, 200-399 mm diameter, +4.6 ± 4.5 

mm, p=0.05), while the smallest size class did not change (median diameter, 100-199 mm 

diameter; +1.8 ± 0.5, p=0.2).  The wood density of dying trees did not change overall 

(median wood density -0.002 ± 0.02 g cm-3, p=0.8), but increased for dying trees in the 

largest size class (400+ mm diameter; +0.04 ± 0.04 g cm-3, p<0.05) and did not change for 

trees in the smaller size class (100-199 mm diameter; -0.0004 ± 0.02 g cm-3, p=0.9, 200-

399 mm diameter; +0.006 ± 0.01 g cm-3, p=0.8).  Thus, more higher wood density trees 

died in the largest size class, potentially due to hydraulic constraints of height as these 

large trees with high wood density are likely to be the tallest trees in the plot.  There was 

no change in the median wood density of live trees overall (-0.005 ± 0.03 g cm-3, p=0.5), 

nor for trees of any size class (100-199 mm diameter; -0.002 ± 0.02 g cm-3, p=0.8; 200-

399 mm diameter; -0.004 ± 0.03 g cm-3, p=0.7; 400+ mm diameter, +0.02 ± 0.007 g cm-3, 

p=0.2).  Growth rates declined significantly in the El Niño, and median growth rates were 

significantly lower for all size classes (; 100-199 mm diameter; -0.15 ± 0.11 mm yr-1, paired 

t-test, p<0.05; 200-399 mm diameter, -0.20 ± 0.15 mm yr-1, p<0.05; 400+ mm diameter, -

0.25 ± 0.22 mm yr-1, p<0.05) so trees grew more slowly, but it was not great enough to 

translate into significantly lower biomass gains overall.  These size class analyses indicate 

that across the 137 plots, on average, trees of all sizes were detrimentally impacted by the 

El Niño and there is no evidence of predominant large tree mortality as seen in previous 

drought studies.   
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Figure 3.10 | Aboveground carbon 

change in neotropical moist forests   

Negative impacts of the El Niño 
predominate in the central and 
southern Amazon.  Arrows represent 
the direction of measured change and 
approximate location of each plot.  
Orange arrows indicate negative 
effects on biomass stocks (for 
example, decreasing net change, 
increasing losses) and green arrows 
indicate positive effects on biomass 
stocks (for example, increasing 
productivity).  (A) Δ net carbon, El 
Niño – pre-El Niño aboveground net 
carbon.  (B) Δ carbon gains, El Niño – 
pre-El Niño aboveground carbon 
gains.  (C) Δ carbon losses, El Niño – 
pre-El Niño aboveground carbon 
losses.  There are fewer arrows in (B) 
than in the other two panels as carbon 
gains are restricted to plots that were 
measured within one year of the 
maximum climate anomaly, so to be 
included they must have been 
measured before February 2017. 
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3.4 Discussion 

The 2015-16 El Niño caused hotter temperatures across the neotropics and 

anomalous drought particularly in east Amazonia, while some locations were wetter than 

average.  The record temperatures and drought led to increased carbon losses from 

biomass mortality, particularly in forests where the long-term climate was already relatively 

hot or dry (Figure 3.7).  The results show clearly that the long-term climate conditions of 

forests strongly modified their biomass responses to the climate anomaly itself (Figure 3.7, 

Figure 3.8, Figure 3.9) and that there is a compounding effect of drought such that both 

baseline drought and drought anomaly increase biomass mortality.  Baseline temperatures 

dictate forest response to temperature anomaly.  Temperature switching occurs with stable 

or increasing temperatures increasing productivity in cooler forests and beyond a 

temperature threshold productivity declines with increasing temperatures in hotter forests.  

With widespread heat and variable drought, the 2015-16 El Niño was a good natural 

experiment with the opportunity to parse the effects of temperature and drought. 

The 2015-16 El Niño was the hottest drought on record, with record low 

precipitation, and the drought was also widespread with 4.2 million km2 of in Amazonia 

exposed to dry season anomalies that exceeded -25 mm.  Compared to the very strong El 

Niño events of 1982-83 and 1997-98 and the major droughts of 2005 and 2010, the 2015-

16 El Niño was hotter, had lower precipitation, slightly more negative MCWD (Figure 3.1, 

Table 3.1), and a greater area of drought (Figure 3.9).  Several other studies also point to 

the 2015-16 El Niño drought as being the most extreme drought across South America for 

at least 50 years (Jiménez-Muñoz et al. 2016, Panisset et al. 2018).  The 2015-16 El Niño 

drought was widespread according to observations of river discharge and terrestrial water 

storage (Yang et al. 2018a) and remotely sensed precipitation (Panisset et al. 2018), with 

some indication that the strongest drought in 2015-16 was limited to the eastern Amazon 

(Jiménez-Muñoz et al. 2016).  The spatial pattern of precipitation anomalies in the 2015-16 

El Niño were remarkably similar to CMIP5 RCP8.5 projected precipitation changes for 

2100 (Duffy et al. 2015).   

 The 2015-16 El Niño climate anomaly reduced the net biomass sink of South 

American tropical forests by 129 % over the average 2.5-year census interval, a similar 

impact to previous (2005, 2010) drought-responses (Figure 3.10C).  This 129 % loss 

translates to a reduction in net aboveground biomass of 0.7 Mg C ha-1 yr-1, 

indistinguishable from the reduction of 0.8 Mg C ha-1 yr-1 in the 2010 drought (Feldpausch 

et al. 2016), and the reduction of 0.7 Mg C ha-1 yr-1 in the 2005 drought, (Phillips et al. 
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2009), (Figure 3.5B).  Measurements of the live carbon sink highlight a reduction in the live 

carbon biomass sink due to mortality, but these carbon losses will not enter the 

atmosphere immediately as carbon moves to the necromass pool and is decomposed over 

time.  Soil carbon fluxes to the atmosphere in intact tropical forests are typically lower 

during drought conditions (Davidson et al. 2000, Rubio and Detto 2017). 

The net exchange from all processes including fire and land use change (Palmer et 

al. 2019) suggest that South America remained a net carbon sink (0.26 Pg C) in 2015 and 

was a small net source of 0.2 Pg C in 2016 (Palmer et al. 2019), so about zero over the 

2015-16 El Niño.  In this chapter South American tropical forests were found to be a sink 

prior to the El Niño and a small source during the El Niño.  Liu et al. 2017 suggest that El 

Niño impacts on South American forests dominated the global carbon cycle.  Compared to 

the La Niña year of 2011, in 2015 South American forests were a source of 0.9 Pg C due 

to reduced productivity or possibly higher respiration costs during the El Niño (Liu et al. 

2017).  This is much smaller than the impacts detected in this chapter and whereas Liu et 

al. attribute the decline in growth to lower precipitation, results in this chapter indicate that 

declines in growth are linked to temperature, potentially highlighting problems with their 

underlying model which calculates respiration as a residual term.  The 2015-16 El Niño 

affected trees of all sizes, rather than a disproportionate negative impact on large trees 

according to LiDAR (Leitold et al. 2018) and consistent with the size class analysis in this 

chapter that found growth was suppressed and mortality rates increased across size 

classes.   

Relative to the pre-El Niño monitoring period, a total impact of –1.44 Pg C (–2.26 to 

–0.61) is estimated by scaling the mean net carbon impact (-0.7 ± 0.4 Mg C ha-1 yr-1) and 

confidence intervals by the total droughted area (~8.2 × 108 ha across South America, 

~4.2 × 108 ha in Amazonia), and census interval (2.5 years), using the same methods as 

(Phillips et al. 2009, Feldpausch et al. 2016).  This is similar to the estimated total impacts 

of the 2005 drought, –1.21 Pg C (–2.01 to –0.57), and -1.07 Pg C(-2.04 to -0.24) in the 

2010 drought (Phillips et al. 2009, Feldpausch et al. 2016).  The estimated impact for 

2015-16 may be conservative however because no plots monitored impacts at the drought 

epicentre.   Carbon losses have been extremely high at the epicentre of droughts (Yang et 

al. 2018b) (Amazon 2005, lost 2.4 ± 1.8 Mg C ha-1) so the location of plots within the 

drought space can dictate the strength of the forest response captured.  Nevertheless, 

while there were only 55 plots sampled for the 2005 drought, for 2015-16 a total of 137 
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plots were available, so this increase of more than 100 % in sample size provides 

confidence in the robustness of the 2015-16 analysis. 

On-the-ground analysis of long-term forest plots revealed that high temperature 

anomalies increased biomass carbon losses (Figure 3.6E).  While tropical forests in South 

America are known to be temperature sensitive to long-term temperatures (Hubau et al. 

2020, Sullivan et al. 2020), previous Amazon analyses did not examine the extent to which 

the impacts of anomalies interacted with climate baselines, and whether or not there were 

clear thresholds in terms of forest responses to climate.  Biomass mortality has never-

before been linked to such a short 2.5-year temperature anomaly in any previous studies 

of short-term climate anomalies in South America, nor in Africa in Chapter 2.  In a warming 

world, sensitivity to rising temperatures means that these forests are vulnerable.  There is 

no significant change in productivity with temperature overall (Figure 3.6C), but this masks 

the fact that in cooler sites productivity actually increased while in hotter sites productivity 

was suppressed, so that there is an interaction between forests’ long-term climatologies 

and the temperature response of their short-term biomass dynamics.  This switch in the 

response of neotropical forest productivity during the 2015-16 anomaly contingent on 

baseline temperature is mechanistically consistent with findings from two other analyses 

which use pan-tropical plot data (Hubau et al. 2020, Sullivan et al. 2020).  Hotter tropical 

forests have lower carbon gains. 

In South American tropical forests analysed in this chapter, the drier the long-term 

climate regime the greater the impact of a given increase of MCWD, and the hotter the 

long-term climate the lower the productivity and the higher the mortality.  Furthermore, 

comparing the extreme quartiles, showed that drier plots had greater carbon losses and 

more negative net carbon than the wetter plots.  Stronger MCWD anomalies had the 

greatest effects in forests with drier baseline climates.  In these environments where water 

is so limiting the expectation might be for drought-tolerant species to be abundant 

(Engelbrecht et al. 2007, Esquivel-Muelbert et al. 2016).  However, results point toward 

those forests which are climatologically close to the limits of the closed canopy tropical 

biome being more vulnerable to climate anomaly, as they are drier and possibly because 

they are closer to a potential temperature threshold.  The climate changes where it is 

already hot and dry are driving biomass changes greater than the adaptive capacity of 

these ecosystems. 

Temperature thresholds indicate that baseline temperatures are very important for 

drought responses in South America.  Leaf and canopy level measurements from Tapajos, 
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Brazil have suggested that South American tropical forests might be close to a high 

temperature threshold (Doughty and Goulden 2008) as net ecosystem exchange declined 

when air temperatures were above approximately 28 oC.  In this chapter, analysis using 

baseline mean monthly temperatures also suggest the existence of a productivity-

temperature threshold, but that it might be lower, 25.5-27.0 °C  (Figure 3.8 panels A and 

C).  In terms of maximum rather than mean temperatures, Sullivan et al. (2020) derived a 

threshold for mean long-term daily maximum temperatures of 31.7-32.6 oC above which 

long-term carbon stocks decline.  In this chapter, analysing quasi-annual departures in 

productivity, I find that short-term woody productivity declines above mean daily maximum 

temperatures of 30.0-31.0 °C (Figure 3.8 panels B and C).  This chapter looks at the 

adaptability of the in situ species, so temperature thresholds are expected to be lower than 

the Sullivan et al. (2020) analysis which includes species composition differences.  The 

temperature thresholds in this analysis are not statistically distinguishable between pre-El 

Niño and El Niño, but in the El Niño higher temperatures mean more plots exist beyond 

the threshold.   

The nature of the 2015-16 El Niño climate anomaly in South America meant it was 

a natural experiment with the potential to test the vulnerability or resistance of tropical 

forests to drought and heat.  Temperatures were higher everywhere, but drought varied, 

and some places were wetter.  Analyses presented in this chapter suggest that South 

American tropical forests are vulnerable to temperature anomalies due to increased 

carbon losses and reduced carbon gains and are vulnerable to drought anomalies due to 

increased carbon losses.  While measuring El Niño impacts from the ground up provides 

unique insight, each drought has its own climate and spatial signature and each drought 

impacts plots which have different recent climate and disturbance histories, so caution is 

warranted when comparing drought resistance at different times.  Nevertheless, this 

chapter indicates a consistent drought response with no indications of either drought-

resistance having increased over time due to the vulnerable trees already dying, species 

adaptation or shifts in community composition, or drought resistance having decreased 

with greater impacts of more recent droughts, despite repeated droughts.  The committed 

carbon impacts of the 2005, 2010 and 2015-16 droughts total 3.72 Pg C.  The Amazon 

carbon sink strength is approximately 0.45 Pg C yr-1 (for the years 2000-2010 (Hubau et 

al. 2020)), so a decade of the Amazon carbon sink (4.5 Pg C) is almost completely wiped 

out by the impact of three severe droughts.  This chapter in sum presents strong evidence 

of the vulnerability of South American tropical forests, particularly given the ongoing 

increase in global temperatures, since higher temperatures increased carbon losses and 
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restricted carbon gains, and it was the hotter drier forests that were the most impacted by 

the 2015-16 climate anomaly. 
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Contrasting responses of African and South 
American tropical forests to an Extreme Climate 

Anomaly 

Abstract 

Intact tropical forests are an important component of the global carbon cycle as they 

uptake and store carbon from the atmosphere and have been functioning as a carbon sink 

for decades.  Evidence suggests that while they are still carbon sinks, per unit area levels 

in both African and South American tropical carbon sinks have recently saturated.  

Superimposed on these trends, in hot or dry conditions, such as El Niño events, the 

carbon sink of intact tropical forests can be compromised.  However, African and South 

American tropical forests may respond differently to these extreme climate anomalies 

because of systematic differences: African forests typically exist in both drier and cooler 

climates than South American forests, and African forests tend to be less dynamic, more 

dominated by a smaller number of large trees and are more carbon-dense than South 

American forests, also containing fewer species.  Here climate data is combined with 

measurements from 237 long-term plots to compare El Niño responses of these 

fundamentally different forests on two continents.  Higher temperature anomalies 

increased carbon losses, which is worrying given rising global temperatures.  The 

response of carbon losses and net carbon to temperature anomaly were universal and 

could be predicted by the response of the other continent.  Stronger drought anomalies 

also increased carbon losses, and per unit increase in drought anomaly, the increase in 

carbon loss was the same for both continents, however, South American tropical forests 

lose more carbon given the same drought anomaly.  These results provide further 

evidence to suggest that South American tropical forests are vulnerable to both increasing 

temperatures and drought which drive increasing tree mortality rates.  South American 

tropical forests, compared to African tropical forests, have species diversity but not drought 
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resistance, whereas of African tropical forest appear to have greater drought-resistance in 

El Niño climate anomalies, possibly due to their biogeographic history and current species 

composition.   

4.1 Introduction 

The tropical carbon sink is already vulnerable to high temperatures and periodic 

droughts, with its long-term future threatened by anthropogenic climate change (Hubau et 

al. 2020).  The carbon sink is vulnerable because high temperatures and drought can 

cause hydraulic failure (Rowland et al. 2015, Choat et al. 2018) or carbon starvation 

(McDowell et al. 2018), killing trees.  These same factors can also lead to reduced tree 

growth (Feldpausch et al. 2016).  With anthropogenic temperature increases it is very 

likely there will be greater impacts of climate anomalies on tropical forests as warming 

increases vapour pressure deficits (Trenberth et al. 2014), and in combination with 

droughts, could cause widespread suppression of growth and increased tree mortality.  

One method of reducing the uncertainty in the magnitude of the future carbon sink is to 

assess how tropical forests respond to extreme climate anomalies in the shorter-term. 

With a hotter baseline, and warming more quickly (Hubau et al. 2020), the South 

American tropical carbon sink might be most vulnerable to climate anomaly.  African 

tropical forests are generally drier (Malhi and Wright 2004), cooler because they exist at 

higher elevations (Banin et al. 2012, Hubau et al. 2020), and have greater seasonal water 

deficits than forests in South America (Hubau et al. 2020).  The forests of the two 

continents are connected by hydrology, and the Amazon basin, measured by discharge 

from the Amazon River, is usually wetter when the Congo basin, measured by discharge 

from the Congo River, is drier and vice versa (Eltahir et al. 2004).  Seasonality is 

intensifying in both continents, with the intensity of the Amazon wet season increasing 

(Gloor et al. 2013) and the length of the dry season increasing in the Amazon (Fu et al. 

2013) and the Congo (Jiang et al. 2019).  The two continents’ forests have different 

baseline climates so may respond differently to a common climate anomaly perturbation.   

The tree species that compose the forests of Amazonia and Africa are different, 

which may alter forest responses to climate anomalies.  Critically, the neotropics and 

Afrotropics also have contrasting long-term climate histories. South American tropical 

forests have persisted through glacial and interglacial periods with minimal changes in 

species and abundance according to pollen records (Dick et al. 2013, Nascimento et al. 

2019).  On the other hand, in glacial periods African tropical forests contracted to a small 
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number of refugia, as most of the continent was too dry for tropical forest species to 

persist.  Hence the species-pool in African tropical forests has been filtered (deMenocal 

2004), perhaps leading to the loss of the wet-adapted species and the adaptation and 

proliferation of the dry-adapted species.  While South American forests are generally more 

diverse per unit area (Sullivan et al. 2017) and have more species in total (Slik et al. 2018) 

than African forests, for forests with similar dry season lengths, diversity is equivalent for 

African and South American tropical forests, and African forests may even be more 

diverse (Parmentier et al. 2007).  

There are also continental differences in terms of forest structure.  African tropical 

forests have fewer trees per hectare than forests in South America, with approximately 

425 trees ha-1 greater than 10 cm diameter in African forests versus 600 ha-1 in 

Amazonian forests (Banin et al. 2012, Lewis et al. 2013, Hubau et al. 2020).  African 

tropical forests are more dominated by large trees (Feldpausch et al. 2012, Lewis et al. 

2013, Enquist et al. 2020) and for this reason carbon density is greater in Africa (Sullivan 

et al. 2017) and these large trees may buffer African tropical forests to climate change 

(Enquist et al. 2020).  Carbon residence times are also longer in Africa (Galbraith et al. 

2013, Hubau et al. 2020) where forests have lower carbon gains from recruitment, lower 

stem mortality and slower stem turnover.  So, South American forests are more dynamic 

with faster turnover, higher recruitment and mortality.   

Recent drought history of the continent may also differ.  There have been at least 

two other severe droughts in the Amazon in the last twenty years.  These droughts 

increased aboveground biomass mortality in 2005 (Phillips et al. 2009) and 2010, and in 

2010 decreased productivity (Feldpausch et al. 2016); on both occasions pausing the 

intact forest carbon sink of the Amazon.  Analysis of South American tropical forests and 

the 2015-16 El Niño in Chapter 3 indicates that South American forests are sensitive to 

both temperature and drought anomalies, with climate anomalies increasing carbon losses 

and reducing carbon gains.  African tropical forests have experienced long-term decreases 

in precipitation and soil moisture since the 1980s, with dry season lengthening in the 

2000s (Jiang et al. 2019).  The abundance of deciduous species has increased in tropical 

forests in Ghana due to long-term drought in West Africa (Fauset et al. 2012, Aguirre-
Gutiérrez et al. 2019).  Analysis of the impacts of the 2015-16 El Niño climate anomaly in 

Chapter 2 indicate that African forests are sensitive to drought anomalies, but not to 

temperature anomalies, so African tropical forests may be more resistant to and less 

impacted by climate anomalies than South American forests.  
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Given the differences in baseline climate, long-term climate history, forest ecology 

and drought history, one might expect responses to the El Niño to differ between the two 

continents.  On the other hand, it can be hypothesised that both continents’ forests will 

have similar responses to environmental change because the physiological responses of 

photosynthesis and respiration to higher temperatures and periodic water shortages may 

be similar for all tropical rainforest trees.  Therefore, it is imperative to compare the two 

continents.  Assessments should also be per unit of temperature or drought increase, 

should consider the different baseline climate conditions and should report relative 

changes given the differences in aboveground biomass and other parameters between the 

two continents.  Previous chapters in this thesis have indicated drought anomalies 

increase carbon losses of tropical forests in Africa and South America but point towards 

South American vulnerability and African tropical forest resistance to temperature 

anomalies.  In this chapter whether these El Niño impacts differ by continent is analysed, 

the climate drivers are parsed and whether continent-specific responses are a result of the 

climate anomaly, baseline climate, forest structure or species composition is examined.  

Therefore, climate data is combined with measurements from long-term inventory plots 

across two continents to address the following questions: (1) Did tropical forests 

experience unprecedented temperature anomalies in the 2015-16 El Niño and does this 

vary by continent? (2) Did tropical forests experience unprecedented drought in the 2015-

16 El Niño and does this vary by continent? (3) What were the overall impacts on the 

monitored old-growth structurally intact tropical forests and does this vary by continent? (4) 

Which climate anomalies drove forest responses to the 2015-16 El Niño and does this vary 

by continent? and (5) Were drier forests more resistant or more vulnerable to the climate 

anomaly?  

4.2 Methods 

Methods as in Chapter 2 apart from changes or additional methods detailed here.   

4.2.1 Climate Data 

Methods for the temperature record match Chapter 3.  So, the temperature record 

for South America is identical to Chapter 3, and for comparison, in this chapter the ERA5 

and CRU ts.4.03 temperature products are also used for Africa.  Thus, the temperature 

record for Africa slightly differs from Chapter 2.  The ERA5 product has higher spatial 

resolution than ERA-Interim, and the CRU product is a newer version of the same product.  

For analysis the El Niño year is May-April.   
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4.2.2 Plot Data Collection and Analysis 

Long-term inventory plots were censused using standard RAINFOR methodology 

(Phillips et al. 2010a).  All permanent sample plots used in the analysis are located in 

lowland, closed canopy, old-growth, structurally intact tropical forests, had been censused 

at least twice prior to the 2015-16 El Niño event, and were censused once afterwards.  

The 237 plots meeting these criteria are distributed across 88 distinct clusters in seven 

countries on two continents: Bolivia, Brazil, Colombia, French Guiana, Guyana, Peru, 

Venezuela, Cameroon, Democratic Republic of the Congo, Gabon, Ghana, Liberia and 

Republic of the Congo.  To support temporal consistency among plots and avoid potential 

impacts of the 1982-83 El Niño, only censuses from 1984 onwards are included.  Median 

plot size is 1 ha, mean 0.96 ha; mean initial census is October 2003, mean pre-El Niño 

census is July 2014, and mean post-El Niño census is April 2017.  The mean pre-El Niño 

monitoring length was 10.8 years and the mean length of the El Niño interval was 2.75 

years.   

In all analyses the plots are weighted because larger and longer monitored plots 

are likely better estimates of carbon gains and losses.  Using the same approach as in 

Chapters 2 and 3, but analysing the combined Africa and South America dataset, an 

empirically estimated weighting is used that combines plot area and pre-El Niño monitoring 

length.  Residuals from linear models are related to plot area and to pre-El Niño monitoring 

length and the necessary root transformations are chosen to remove the pattern in the 

residuals.  Selected weights for pooled data from both continents were: Δ net carbon, 

Monitoring length1/3 + Area1/2 - 1; Δ carbon gains, Monitoring length1/3 + Area1/6 - 1; Δ 

carbon losses, Monitoring length1/3 + Area1/4 – 1; Δ net stems, Monitoring length1/3 + 

Area1/2 - 1; Δ recruitment no weighting and Δ stem mortality, Area1/6.   

The data from both continents was pooled totalling 237 plots, allowing extra 

statistical power and a greater range of baseline climate, drought and temperature change 

during the El Niño.  Analytical methods are described in Chapter 2 and Chapter 3.  Here, 

in Chapter 4, linear models were fitted to the pooled dataset i.e. all 237 plots from two 

continents.  Analysis of covariance was used to test whether continent regression lines 

differed in slope or intercept (McDonald 2014).  Analysis of covariance tests two null 

hypotheses: (1) that the slopes of the regression lines are equal and (2) that the intercepts 

of the regression lines are the same.  I used the Anova function and Type II approach from 

the R package car (Fox et al. 2020).  I tested for the slope interaction first, and only if the 

slope was not significant did I test for different intercepts.  The best model is selected by 
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Anova and plotted, and if the best model includes a continent interaction then a blue line is 

plotted for Africa and a red line for South America. 

4.3 Results 

Tropical forests on both continents were hotter in the 2015-16 El Niño with variable 

drought.  Temperatures in the 2015-16 El Niño year increased by a mean of 0.8 ± 0.0 oC 

across African and South American tropical forests, compared to the decade prior.  South 

American tropical forests had significantly hotter temperature anomalies as there was a 

significant difference between the temperature anomalies of the two continents, a mean of 

0.6 oC, in African tropical forests and 0.8 oC in South American tropical forests, a 

difference of 0.2 ± 0.0 oC (t-test, p<0.0001).  Precipitation in the 2015-16 El Niño year 

decreased by a mean of -93 ± 0.1 mm yr-1 across the two continents, compared to the 

decade prior.  South American tropical forests had significantly greater precipitation 

anomalies as precipitation declined by 121 mm yr-1 in South American tropical forests and 

by just 16 mm yr-1 in African tropical forests, a difference of 104 ± 9 mm (p<0.0001).  

Maximum cumulative water deficits, MCWD, in the 2015-16 El Niño year decreased by a 

mean of 39 ± 0.4 mm across the two continents, compared to the decade prior.  South 

American forests also had significantly more negative MCWD anomalies, with a mean 

decrease of 41 mm in South America and 33 mm in Africa, a difference of 8 ± 3 mm 

(p<0.0001).  So, South American tropical forests had greater temperature and drought 

anomalies in the 2015-16 El Niño. 

Considering the 237 forest plots monitored over the 2015-16 El Niño, compared to 

the monitoring period pre-El Niño, the South American (n=137) plots warmed significantly 

more than African (n=100) plots; mean temperature change in South America +0.47 ± 0.05 
oC, Africa +0.34 ± 0.03 oC; (t-test, p<0.001).  Forest plots in South America had 

significantly greater precipitation decreases, a mean precipitation change of 176 ± 48 mm 

yr-1; Africa -46 ± 34 mm yr-1 (p<0.0001).  MCWD decreases were significantly less in South 

America than in Africa; mean MCWD change in South America -44 ± 12 mm; Africa -99 ± 

12 mm (p<0.0001), because the African plots cover the core of the closed canopy tropical 

forest biome and the main droughted area, whereas the main droughted area was not 

sampled in South America in 2015-16.  The range of climate anomalies at plots also 

differs; African plots are warming but by a narrow range of 0 - 0.6 oC whereas South 

American plots are warming by twice that range, 0 - 1.2 oC.  However, the range of plot 

precipitation anomalies is similar for South America (-864 to +493 mm yr-1) and Africa (-
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847 to +277 mm yr-1).  Plot MCWD anomalies show all African plots to be drier in the El 

Niño (Δ MCWD -217 to -3 mm), whereas the range is 61% larger in South American plots 

due to a number of plots wetting over the El Niño (Δ MCWD -252 to +106 mm).  

Combining the plot data from both continents shows that over the El Niño census 

interval (average July 2014 to April 2017), compared to the prior period over which the 

plots were monitored (mean 10.8 years), the El Niño period was hotter by a mean of 0.41 

± 0.04 oC, had lower rainfall by 120 ± 32 mm yr-1 and had stronger drought, with MCWD 

lower by 67 ± 9 mm.  There are no significant interactions of continent with climate.  Linear 

models are significant for the pooled data for all 237 plots for climate anomaly compared to 

baseline climate (Figure 4.1), when comparing climate anomalies (Figure 4.2) and when 

comparing baseline climate (Figure 4.3). 
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Figure 4.1 | Climate anomalies of 237 long-term forest plots  
All plots warmed and dried by approximately the same amount in the 2015-16 El Niño.  Plot census 
interval pre-El Niño and El Niño temperature (A), plot census interval monthly precipitation (B), and plot 
census interval maximum cumulative water deficit MCWD (C).  Pre-El Niño and El Niño are defined by 
plot census dates.  Black lines indicate significant linear models (A; p < 0.0001, B; p < 0.0001, C: p < 
0.0001), grey lines indicate 1:1 relationship.  A: y= 1.03x – 0.33, B: y=0.87x + 10, C: y= 0.96x -81.  
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Figure 4.2 | El Niño climate anomalies at 237 plots    
Plots with drier climate anomalies were also hotter in the 2015-16 El Niño.  Solid lines indicate 
significant linear models, p<0.05.  A: y= 0.001x + 0.37, p<0.0001, B: y=-0.08x – 58, p<0.0001, C: 
y= -31x + 36, p<0.0001.   
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Figure 4.3 | Mean pre-El Niño climate at 237 plots   

Drier plots tend to also be cooler.  Solid lines indicate significant linear models, p<0.05.  n=237 
plots.  A: y= -0.003x + 26, p<0.0001, B: y=-0.22x + 2478, p<0.0001, C: y= 8.1x - 503, p<0.0001.   
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Figure 4.4 | Carbon (A) and stem dynamics (B), pre- (lighter shading) and during the 2015-
16 El Niño  

Carbon losses significantly increase from the pre-El Niño monitoring period to the El Niño 
census interval, reducing net carbon uptake.  Stem mortality also significantly increases, reducing 
net stems.  Pre- and El Niño carbon (A) and stems (B).  Lighter shading is pre-El Niño and darker 
shading is during the El Niño.  n=237 plots and error bars represent 95% confidence intervals.  
Significant differences are defined by paired t-tests with ** indicating p<0.01 and *** indicating 
p<0.001. 

 

For the 237 plots combined there was a significant decrease in net carbon from 

0.61 ± 0.14 Mg C ha-1 yr-1 in the pre-El Niño monitoring period to 0.15 ± 0.29 Mg C ha-1 yr-1 

in the El Niño census interval, a decrease of 0.46 ± 0.30 Mg C ha-1 yr-1 (paired t-test with 

weighted data, p<0.01, Figure 4.4A).  This is driven by a significant increase in above 

ground carbon losses from 1.87 ± 0.14 Mg C ha-1 yr-1 to 2.37 ± 0.28 Mg C ha-1 yr-1, an 

increase of 0.49 ± 0.31 Mg C ha-1 yr-1 (p<0.01) as carbon gains do not change 

significantly, from 2.49 ± 0.09 Mg C ha-1 yr-1 to 2.50 ± 0.11 Mg C ha-1 yr-1 (p=0.9).   

Climate anomalies affected carbon dynamics with greater losses of carbon in hotter 

and drier plots (Figure 4.5).  Greater temperature anomalies were associated with 

significantly increased carbon losses (one-tailed Kendall’s tau, p<0.05, Figure 4.5E), and 

these increased losses with temperature drove losses of net carbon (linear model is 

significant but correlation test is not, p=0.2, Figure 4.5A), as there are no significant 

* 
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changes in carbon gains (p=0.6, Figure 4.5C).  Stronger MCWD anomalies were 

associated with significantly greater reductions in carbon gains (linear model is not 

significant but correlation test is, p<0.05, Figure 4.5D), significantly greater increases in 

carbon losses (p<0.01, Figure 4.5F) and thus significantly greater reductions in net carbon 

(p<0.01, Figure 4.5B).  Notably there is an interaction of continent with MCWD and carbon 

losses (Figure 4.5F).  Slopes are similar (ANOVA, p=0.6), but intercepts are significantly 

different (p<0.01), with greater carbon losses per unit of drought in South America.  There 

is also an interaction of continent with MCWD and net carbon (Figure 4.5B), again slopes 

are similar (p=0.4) but intercepts are significantly different (p<0.01), with greater reductions 

in net carbon per unit of drought in South America.  Model averaging also highlights the 

importance of continent interactions.  There is a significant effect of Δ MCWD and its 

interaction with continent on net carbon, carbon gains and carbon losses, and a significant 

effect of the interaction of Δ temperature with Δ MCWD and their interaction with continent 

on net carbon, carbon gains and carbon losses (Figure 4.10).  So, both drought and 

temperature explain the loss of net carbon across the 237 plots during the El Niño.  

Carbon responses to temperature are conserved across continents, but carbon responses 

to drought differ for both carbon losses and net carbon. 

Pre-El Niño baseline climate was also important as stronger pre-El Niño drought 

was associated with greater losses of carbon in El Niño (Figure 4.6) whilst baseline 

temperature had no effect.  Overall, drier pre-El Niño MCWD was associated with greater 

increases in carbon losses in El Niño (p<0.01, Figure 4.6F), lower net carbon (p<0.01, 

Figure 4.6B), but no change in carbon gains (p=0.9, Figure 4.6D).  Continent interacts with 

pre-El Niño MCWD and carbon losses (Figure 4.6F) and slopes are significantly different 

(p<0.01).  For each unit of baseline drought, carbon losses in Africa are stable but carbon 

losses in South America increase with drier baseline climate.  There is also an interaction 

of continent with pre-El Niño MCWD and net carbon, (p<0.01, Figure 4.6F), and slopes are 

significantly different. 

With increasing temperature carbon gains increase until a point, beyond which 

carbon gains decrease.  So, with all plots from both continents, temperature thresholds for 

carbon gains exist for both the pre-El Niño monitoring period (Figure 4.7A) and El Niño 

census interval (Figure 4.7C).  Break point regressions indicate temperature thresholds of 

23.9 ± 1.5 °C (95% CI) mean monthly temperature for the pre-El Niño mean carbon gains, 

(lines either side of breakpoint have significantly different slopes according to Davies’ test, 

p<0.05, Figure 4.7A), and 26.6 ± 0.6 °C for the carbon gains of the El Niño census interval 
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(Davies’ test, p<0.01, Figure 4.7C).  Peak carbon gains are approximately 2.75 Mg C ha-1 

yr-1, as in Chapter 3, and the linear models either side of the breakpoint are significant for 

both the pre-El Niño (Figure 4.7A) and El Niño carbon gains (Figure 4.7C).  The 

breakpoints of the pre-El Niño carbon gains and pre-El Niño mean temperature (Figure 

3.8A) and El Niño carbon gains and El Niño mean temperature (Figure 3.8C) are 

significantly different (p<0.0001), and the pre-El Niño threshold is lower than the results for 

the South America plots in Chapter 3.  Temperature thresholds also exist when mean daily 

maximum temperature is used instead of mean monthly temperature; pre-El Niño carbon 

gains have a breakpoint at 30.8 ± 0.5 °C (p<0.001, Figure 4.7B) and during El Niño carbon 

gains have a breakpoint at 30.8 ± 0.4 °C (p<0.001, Figure 4.7D), which again are not 

significantly different breakpoints (p=0.8).  Apart from the pre-El Niño threshold (Figure 

4.7A) the temperature thresholds are in line with temperature thresholds found in Chapter 

3.  For the mean daily maximum temperature (Figure 4.7 panels B and D) the linear 

models before the break points are not significant.  Carbon gains increase until the 

temperature threshold, then decrease with a steeper line beyond the threshold, but most 

points are still before the temperature threshold so there is no relationship with 

temperature anomaly and carbon gains overall (Figure 4.5C).  There were no threshold 

effects for drought and carbon losses (pre- El Niño Davies’ test p=0.4, El Niño p=0.8) 

unlike temperature and carbon gains.  
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Figure 4.5 | Temperature (left) and drought (right) impacts on aboveground biomass carbon 
dynamics.   

Temperature and drought anomalies significantly increase carbon losses and reduce net carbon, with 
the drought impact greater per unit of drought in South America than in Africa.  The net carbon change 
(A, B), carbon gains from tree growth and recruitment (C, D) and carbon losses from mortality (E, F) of 
the censuses capturing the El Niño event minus pre-El Niño plot monitoring period for 237 long-term 
inventory plots.  The intensity of temperature change, Δ temperature (T) (A, C, E) is mean monthly 
temperature in El Niño minus mean monthly temperature pre-El Niño, using the census dates of the 
plot censuses.  Relative intensity of the change in dry season strength is calculated as Δ maximum 
cumulative water deficit (MCWD) (B, D, F) which is the difference between maximum MCWD in El 
Niño and mean MCWD in pre-El Niño.  Point shading from light to dark denotes greater weighting, with 
plots and line of best fit weighted by an empirically derived combination of pre-El Niño plot monitoring 
length and plot area for each response variable.  Net change is in grey, gains are in green, losses 
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orange.  Solid lines represent significant linear models (p<0.05).  Analysis of covariance was used to 
test whether continent regression lines differed in slope or intercept and where either or both differed a 
blue line is plotted for Africa and a red line for South America.  Otherwise, when the best model does 
not include a continent interaction, a single line is plotted.  A: -2.1x +0.4, p<0.001, B: slopes are the 
same as the continent interaction is not significant p=0.4, but intercepts differ between continents 
p<0.01, Africa: y=-0.008x + 0.5 and South America: y=-0.008 -0.9 with p<0.001, C: p=0.6, D: p=0.2, E: 
y=1.9x -0.3, p<0.001, F: slopes are the same as the continent interaction is not significant p=0.6, but 
intercepts differ between continents p<0.01, Africa: y=0.005x - 0.3 and South America: y=0.005 +0.7 
with p<0.01. 
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Figure 4.6 | Baseline temperature (left) and drought (right) and aboveground biomass carbon 
dynamics.  
Baseline temperature does not influence carbon dynamics, but baseline drought increases carbon losses 
and reduces net carbon in South American forest plots.  The net carbon change (A, B), carbon gains from 
tree growth and recruitment (C, D) and carbon losses from mortality (E, F) of the censuses capturing the 
El Niño event minus pre-El Niño plot monitoring period for 237 long-term inventory plots.  The pre-El Niño 
temperature (T) (A, C, E) is the mean of mean monthly temperature in the monitoring period prior to the El 
Niño. The pre-El Niño maximum cumulative water deficit (MCWD) (B, D, F) is the mean MCWD in the 
monitoring period prior to the El Niño.  Point shading from light to dark denotes greater weighting, with 
plots and line of best fit weighted by an empirically derived combination of pre-El Niño plot monitoring 
length and plot area for each response variable.  Net change is in grey, gains are in green, losses orange.  
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Solid lines represent significant linear models (p<0.05).  Analysis of covariance was used to test whether 
continent regression lines differed in slope or intercept and where either or both differed a blue line is 
plotted for Africa and a red line for South America.  Otherwise, when the best model does not include a 
continent interaction, a single line is plotted.  A: p=0.5, B: Significant continent interaction, p<0.01, Africa: 
y= 0.0004x -0.3 and South America: y= -0.007x +0.8 with p<0.01, C: p=0.1, D: p=0.3, E: p=0.4, F: 
Significant continent interaction, p<0.01, Africa: y= -0.0003x +0.2 and South America: y= 0.005x -0.6 with 
p<0.05. 

 

 

Figure 4.7 | Temperature-productivity thresholds  

Temperatures increase productivity to a point, beyond which carbon gains decline with increasing 
temperatures.  Baseline temperature and baseline carbon gains (A), long-term daily maximum 
temperature (from WorldClim v2) and baseline carbon gains (B), El Niño temperature and El Niño carbon 
gains (C), and long-term daily maximum temperature and El Niño carbon gains (D).  Gains are shown in 
green, consistent with other figures.  Point shading from light to dark denotes greater weighting, with plots 
and lines of best fit weighted by an empirically derived combination of pre-El Niño plot monitoring length 
and plot area.  Slopes are significantly different either side of breakpoint according to Davies’ test A; 
p<0.05, B: p<0.001, C: p<0.01, D: p<0.001, the linear models before the breakpoint are significant, in A; 
p<0.05, and C: p<0.0001, but not B: p=0.9, and D: p=0.7, the linear models after the breakpoint are all 
significant A; p<0.05, B: p<0.001, C: p<0.001, D: p<0.0001.  Solid lines indicate significant linear models, 
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p<0.05.  Slopes of linear models before and after breakpoint, respectively A: y=0.16x - 1, y= -0.13x +6, B: 
y=-0.002x +2.7, y= -0.5x +17, C: y=0.04x + 1.6, y= -0.75x +23, D: y=0.007x +2.4, y= -0.8x +26.   

 
 

The changes in stem dynamics over the 2015-16 El Niño mirrored the overall 

changes in carbon dynamics for the 237 plots combined.  There was a significant 

decrease in net stems from an increase of 0.72 ± 0.14 stems ha-1 yr-1 in the pre-El Niño 

monitoring period to a decrease of 2.83 ± 0.63 stems ha-1 yr-1 in the El Niño census 

interval, a decrease of 2.55 ± 1.31 stems ha-1 yr-1 (paired t-test with weighted data, 

p<0.001, Figure 4.4B).  This is driven by a significant increase in losses from stem 

mortality from 8.80 ± 0.33 stems ha-1 yr-1  to 11.66 ± 0.62 stems ha-1 yr-1, an increase of 

2.83 ± 1.44 stems ha-1 yr-1 (p<0.001) as stem gains from recruitment do not change 

significantly, from 9.45 ± 0.38 stems ha-1 yr-1 to 9.02 ± 0.44 stems ha-1 yr-1 (p=0.5).   

Stem dynamics also responded to climate (Figure 4.8).  Greater temperature 

anomalies were associated with increased stem gains (one-tailed Kendall’s tau, p<0.01, 

Figure 4.8C) and increased stem losses (significant linear model but not significant 

correlation test, p=0.1, Figure 4.8E), and with both increased gains and losses there was 

no change in net stems with temperature (p=0.7, Figure 4.8A).  Stronger MCWD 

anomalies were associated with increases in stem losses (p<0.001, Figure 4.8F), and 

reduced stem gains (p<0.0001, Figure 4.8D) and greater losses of net stems (p<0.0001, 

Figure 4.8B).  There is an interaction of continent with MCWD and stem losses (Figure 

4.8F).  Slopes are similar (ANOVA, p=0.06), but intercepts are significantly different 

(p<0.001), with greater stem losses per unit of drought in South America, and the same for 

net carbon (p=0.2, p<0.05, Figure 4.8B).  Model averaging shows a significant effect only 

of the interaction of Δ temperature with Δ MCWD and on stem gains from recruitment 

(Figure 4.10).  So, it is drought impacts alone, and not temperature, that explains the net 

loss of stems seen across the 237 plots during the El Niño. 

Baseline climate also influences stem dynamics (Figure 4.9).   Hotter forests pre-El 

Niño had greater stem gains in El Niño (p<0.001, Figure 4.9C), and increased net stems 

(p<0.01, Figure 4.9A), as stem losses in the El Niño did not change with temperature 

anomaly (p=0.1, Figure 4.9E).  Although there was no change overall with stem losses and 

temperature anomaly, there is a significant interaction with continent; slopes are similar 

(p=0.8), but intercepts are significantly different (p<0.05, Figure 4.9E), so for forests with 

the same baseline temperature, South American forests lost proportionally more stems.  

Plots that were drier, with more negative MCWD pre-El Niño, had greater stem losses in 
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the El Niño (p<0.001, Figure 4.9F), greater reductions in stem gains (p<0.0001, Figure 

4.9D) and reduced net stems (p<0.0001, Figure 4.9B).  There is an interaction between 

continent, pre-El Niño MCWD and stem gains as slopes are significantly different (p<0.05, 

Figure 4.9D) and forests in Africa have stable stem gains across a range of baseline 

drought while forests in South America have increased gains with lower baseline drought 

and decreased gains with higher baseline drought.   For net stems there is also a 

continent interaction, as again net stems are stable across a range of baseline drought in 

Africa, and greater reductions in net stems for South America are associated with stronger 

baseline drought (p<0.01, Figure 4.9B). 
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Figure 4.8 | Temperature (left) and drought (right) impacts on stem dynamics of 237 long-
term forest plots.  
Stem gains and stem losses increase significantly with temperature anomaly, stem gains decrease 
and stem losses increase with drought anomaly, with net stem losses.  The net stem change (A, B), 
stem gains from recruitment (C, D) and stem losses from mortality (E, F) of the censuses capturing the 
El Niño event minus the pre-El Niño plot monitoring period.  The temperature change, Δ temperature 
(T) (A, C, E) is mean monthly temperature in the El Niño census interval minus the mean monthly 
temperature pre-El Niño, using the census dates of the plot censuses.  Relative intensity of the change 
in dry season strength is calculated as Δ maximum cumulative water deficit (MCWD) (B, D, F) which is 
the difference between maximum MCWD in El Niño and mean MCWD in pre-El Niño.  Point shading 
from light to dark denotes greater weighting, with plots and line of best fit weighted by an empirically 
derived combination of pre-El Niño plot monitoring length and plot area for each response variable.  
Net change is in grey, gains are in green, losses orange.  Solid lines indicate significant linear models 
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p<0.05.  Analysis of covariance was used to test whether continent regression lines differed in slope or 
intercept and where either or both differed a blue line is plotted for Africa and a red line for South 
America.  Otherwise, when the best model does not include a continent interaction, a single line is 
plotted.  A: p=0.1, B: slopes are the same as the continent interaction is not significant p=0.2, but 
intercepts differ between continents p<0.05, Africa: y=-0.007x + 0.4 and South America: y=-0.007x -
0.6 with p<0.01, C: y=0.7x -0.3, p<0.05, D: y=-0.003x +0.2, p<0.05, E: y=1.5x-0.04, p<0.001, F: slopes 
are the same as the continent interaction is not significant p=0.06, but intercepts differ between 
continents p<0.001, Africa: y=-0.003x - 0.001 and South America: y=-0.003x +0.6 with p<0.05. 
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Figure 4.9 | Baseline temperature (left) and drought (right) and stem dynamics.  

Stem gains and net stems increase with baseline temperature, stem losses also increase with baseline 
temperature, with greater losses in South America for the same baseline temperature.  Stem losses 
increase with baseline drought and stem gains decrease, especially in South America.  The change in net 
stems (A, B), stem gains from recruitment (C, D) and stem losses from mortality (E, F) of the censuses 
capturing the El Niño event minus pre-El Niño plot monitoring period for 237 long-term inventory plots.  
The pre-El Niño temperature (T) (A, C, E) is the mean of mean monthly temperature in the monitoring 
period prior to the El Niño. The pre-El Niño maximum cumulative water deficit (MCWD) (B, D, F) is the 
mean MCWD in the monitoring period prior to the El Niño.  Point shading from light to dark denotes 
greater weighting, with plots and line of best fit weighted by an empirically derived combination of pre-El 
Niño plot monitoring length and plot area for each response variable.  Net change is in grey, gains are in 
green, losses orange.  Solid lines represent significant linear models (p<0.05).  Analysis of covariance was 
used to test whether continent regression lines differed in slope or intercept and where either or both 
differed a blue line is plotted for Africa and a red line for South America.  Otherwise, when the best model 
does not include a continent interaction, a single line is plotted.  A: y=0.2x -5, p<0.05, B: Significant 
continent interaction, p<0.01, Africa: y= 0.0004x -0.3 and South America: y= -0.007x +0.8, with p<0.01, C: 
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y=0.2x-5, p<0.01, D: Significant continent interaction, p<0.05, Africa: y= -0.0003x +0.02 and South 
America: y= -0.003x +0.7, with p<0.001, E: slopes are the same as the continent interaction is not 
significant p=0.8, but intercepts differ between continents p<0.05, Africa: y=0.1x – 2.6 and South America: 
y=0.1x +0.5 with p<0.05, F: y= 0.003x -0.1, p<0.0001. 
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Figure 4.10 | Effect sizes of change in carbon and stems in tropical forest plots over the 2015-16 El Niño 

Drought significantly reduced carbon gains and recruitment, and there was an interaction of continent with temperature and drought.  Points show 
coefficients from linear models with multi-model inference and error bars show 95 % CIs.  Coefficients are standardised so that they represent change in the 
response variable for one standard deviation change in the explanatory variable.  Net change is in grey, gains are in green, losses orange.  Error bars show 
95 % CIs.  The full models explained 22 %, 19 % and 13 % of variation in Δ net carbon, Δ carbon gains and Δ carbon losses and 25 %, 23 % and 18 % of 
variation in Δ net stems, Δ recruitment and Δ stem mortality, respectively, as proportional changes (%). 
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Figure 4.11 | Temperature (left) and drought (right) impacts on per capita stem mortality 
rate.   
Stem mortality rate significantly increases with temperature.  There is a continent interaction and 
mortality rate significantly increases with drought in South America but not in Africa.  Solid lines 
indicate significant linear models p<0.05.  Analysis of covariance was used to test whether continent 
regression lines differed in slope or intercept and where either or both differed a blue line is plotted for 
Africa and a red line for South America.  Otherwise, when the best model does not include a continent 
interaction, a single line is plotted.  A: y=0.7x +0.2, p<0.05, B: Significant continent interaction, 
p<0.001, Africa: y= -0.003x +0.7 and South America: y= -0.008x -0.5, with p<0.05. 

 

Annual mortality rate increases across all plots from 1.7 ± 0.1 % in the pre-El Niño 

monitoring period to 2.3 ± 0.2 % in the El Niño census interval (Wilcoxon signed rank test, 

p<0.0001).  Mortality rates respond to climate anomalies (Figure 4.11) as forests 

experiencing stronger temperature anomalies have significant increases in mortality rate 

(one-tailed Kendall’s tau, p<0.05, Figure 4.11A).  Forests experiencing stronger MCWD 

anomalies have significant increases in mortality rate too (p<0.05, Figure 4.11B), but there 

is also a significant interaction of continent with Δ MCWD and mortality rate (ANOVA, 

p<0.001, Figure 4.11B), such that mortality rates increase with drought in South America 

and decrease in Africa (p<0.05, Figure 4.11B), although this could be a function of the 

greater spread of the South American Δ MCWD data.   

Mortality rate significantly increases for every size class (Table 4.1).  For the 

smallest size class (trees with diameter 100-199 mm) mortality rates were 0.4 ± 0.02 % 

higher in El Niño than pre-El Niño (Wilcoxon signed rank test, p<0.01), for the medium size 
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class (trees with diameter 200-399 mm) mortality rates were 0.7 ± 0.2 % higher (p<0.0001) 

and for the largest size class (trees with diameter 400+ mm) mortality rates were 0.9 ± 0.4 

% higher (p<0.0001).  So, there is no evidence of size-selective mortality, rather mortality 

increases for trees of all sizes. 

Table 4.1 | Mean plot-level per capita stem mortality rates of 237 plots 

 Mortality rate (%) 

Diameter (mm) Pre-El Niño El Niño 

100-199  2.0 ± 0.2 2.5 ± 0.3 

200-399 1.5 ± 0.1 2.2 ± 0.2 

400+ 2.0 ± 0.2 2.7 ± 0.32 

 

Median growth rates were significantly lower for trees of all sizes during the El Niño.  

For the smallest size class (trees with diameter 100-199 mm) median growth rates were 

0.15 ± 0.08 mm yr-1 less in El Niño than pre-El Niño (paired t-test, p<0.001), for the 

medium size class (trees with diameter 200-399 mm) growth rates were 0.19 ± 0.11 mm 

yr-1 less (p<0.001) and for the largest size class (trees with diameter 400+ mm) growth 

rates were 0.21 ± 0.15 mm yr-1 less (p<0.01).   

4.4 Discussion 

Intact tropical forests in Africa and South America differ in composition, structure, 

climate and biogeographic history.  Yet, long-term forest plot responses to the temperature 

anomaly of the 2015-16 El Niño are conserved across continents.  Responses to drought 

differ between the two continents and are moderated by baseline drought and its 

interaction with continent.  A stronger baseline drought increases carbon losses in the El 

Niño, indicating that plots with stronger dry seasons are more vulnerable to drought, rather 

than more resistant. 

In the 2015-16 El Niño, for both Africa and South America, there were greater 

drought-induced changes in carbon losses than carbon gains.  Greater responses of 

carbon losses from biomass mortality, stem mortality and mortality rates, compared to 

carbon gains from woody productivity and recruitment, indicate that both continents 

suffered a severe drought.  Carbon losses increase with increasing pre-El Niño MCWD in 

South America, but do not in Africa.  This may be a consequence of species composition 

resulting from their contrasting paleoclimate and biogeographic histories.  Species filtering 

in Africa through glacial-interglacial periods (deMenocal 2004) likely selected for the 
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drought-tolerant species which remained and may have diversified.  The lack of species 

filtering through glacial-interglacial periods in South America implies minimal changes in 

the survival of species and abundance there today (Dick et al. 2013, Nascimento et al. 

2019).  South American tropical forests, compared to African tropical forests, have species 

diversity but not drought resistance.   

Temperature anomaly impacts are via carbon losses and net carbon, so the 

temperature impact is through tree mortality rather than growth, as there is no overall 

carbon gains response with temperature.  As in Chapter 3, it is just the temperature 

anomaly, and not the pre-El Niño temperature that is linked to increasing carbon losses 

(Figure 4.5, Figure 3.6).  Recent work suggests that hydraulic safety margins are the best 

determinant of vulnerability to mortality in severe drought (Powers et al. 2020).  It is likely 

that hydraulically vulnerable species are more prevalent in South America than Africa as 

the species pool has not been filtered to the same extent through glacial-interglacial 

periods (deMenocal 2004).   Temperature has been linked to tree mortality (Anderegg et 

al. 2013) experimentally (Adams et al. 2017a) and in the field in the Southwestern USA 

and in the tropics (Adams et al. 2009, Williams et al. 2013, Hubau et al. 2020).  An effect 

of temperature reducing carbon gains was not seen here overall (Figure 4.5C), unlike in 

other studies (Clark et al. 2013, Hubau et al. 2020).  This may be because of smaller 

sample sizes, or a long census interval that captures the El Niño, or perhaps productivity 

was reduced but the effect was dwarfed by the increased productivity of recruits which 

increased with temperature (Figure 4.9C).  The temperature thresholds analysis indicates 

that productivity was reduced at plots with mean monthly temperatures above 26.6 oC, or 

daily maximum temperatures above 30.8 oC (Figure 4.7).  South American tropical forests, 

with hotter baseline temperatures and warming more quickly (Hubau et al. 2020), and 

hotter El Niño temperature anomalies shown in this chapter, are closer to a potential 

physiological temperature threshold than African tropical forests.  Baseline temperatures 

do not have an effect on carbon losses across continents, but temperature anomalies 

increase carbon losses and reduce net carbon. 

Hotter temperature anomalies are exacerbated in drier plots.  In wetter plots there is 

more latent heating, and less sensible heating, so some of the heat energy is dissipated in 

the state change of evaporating water.  In drier plots there is more sensible heating, and 

less latent heating, so temperatures will increase even more in the drier plots (Wilson et al. 

2002, McGloin et al. 2019).  Forest plots of the same temperature are drier in South 

America (Figure 4.3A), so greater sensible heating is likely taking place in South America, 
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which might help to explain the increases in mortality with drought as the drought effect 

might be exacerbated by temperature even though the temperature effect is not 

significant.  These drier locations may also have very hot days and very cold nights, and 

less cloud cover, all of which could increase the desiccation effect. 

The spatial distribution of plots means potential spatial autocorrelation.  Spatial 

autocorrelation should be investigated, but may not cause bias (Diniz-Filho et al. 2003).  

Some forest plots exist within clusters and can be within 1 km of each other, within the 

same climate grid cell, and so it is possible that they may have experienced the same 

climate anomaly.  One would expect plots with the same climate anomaly to respond 

similarly in terms of carbon gains or losses, and if so, clusters may artificially inflate the 

statistical power of the current analysis.  A possible solution is analysing at the cluster 

scale rather than the plot scale however, plots within a cluster can be very different to one-

another, e.g. monodominant and multi-species plots exist in close proximity and analysing 

at the cluster level would lose some important information as to how plots that are 

climatologically and compositionally similar respond to perturbation slightly differently.  In 

the overall analysis I used paired t-tests testing for changes at each individual plot, so the 

main results are unlikely to change even when accounting for any spatial correlation.   

There is a greater El Niño impact in South America than Africa, driven by carbon 

losses.  Using microwave satellite data to measure aboveground carbon Wigneron et al. 

2020 suggest South American tropical forests were a greater source of CO2 than African 

tropical forests from 2014 to 2017.  They also find that the carbon uptake of both 

continents had not recovered from the 2015-16 El Niño by 2017 due to tree mortality, both 

consistent with the findings in this chapter.  As suggested in previous chapters of this 

thesis, most of the land carbon emissions in 2015-16 were not from closed canopy forests, 

so remotely sensed CO2 indicating Africa dominated global emissions does not conflict 

with results in this chapter (Palmer et al. 2019).  A third study that used remotely sensed 

CO2 also found South America to be the largest carbon source of the tropical continents 

using (Liu et al. 2017).  In Chapter 2 it was drought anomalies that reduced carbon gains 

and, in this chapter, for a combined set of plots from Africa and South America, 

temperature and drought anomalies increased carbon losses, but the drought effect was 

stronger in South America than in Africa.  

Temperature responses are universal across tropical forests on two continents.  

Given rising global temperatures, that temperature is driving increased carbon losses from 

biomass mortality is very concerning.  As global temperatures continue to rise tropical 
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forests are likely to lose increasing amounts of carbon.  Drought responses vary by 

continent, with higher carbon losses from mortality in South America than in Africa, 

probably due to the species present and the contrasting paleoclimate history of the 

continents.  Hence, the high species diversity and higher species richness of South 

American forests does not confer resistance to either drought or high temperatures. 
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Conclusions 

5.1 Research Synthesis 

This thesis investigates the climate of the 2015-16 El Niño and associated impacts 

on aboveground biomass carbon and stem dynamics for intact forests in two distinct 

tropical regions – Africa and South America.  The primary goals of the research were to: 

quantify the climate and climate change caused by the 2015-16 El Niño in the tropical 

forest biome (1) and at monitored plots (2), understand changes in aboveground biomass, 

carbon balance and stem dynamics (3), determine whether baseline climate confers 

resistance to climate anomaly (4) and establish if responses to the climate anomaly vary 

by continent (5).  To achieve these objectives, I collected field data from 20 plots in Africa, 

compiled census measurements from a further over 217 long-term forest plots in Africa 

and South America and combined these plot measurements with climate data.  I quantify 

the impact of the climate anomaly on the aboveground biomass carbon balance of intact 

forests and evaluate the impacts of the El Niño event on long-term processes; multi-year 

impacts on growth and mortality.   

Notably, I show for the first time that drought reduced growth in Africa.  Studies tend 

to link drought to increased carbon losses rather than reduced carbon gains (Bonal et al. 

2016), and the results of Chapter 2 are important because it is the first formal assessment 

of drought responses in Africa.  In Africa, plots remained a carbon sink despite extreme 

temperatures and drought anomalies but African forests are not completely resistant to 

drought as drought anomalies reduced carbon gains, a reduction of 0.2 Mg C ha-1 yr-1 for a 

drought anomaly of -200 mm (Figure 2.3).  These results significantly advance 

understanding of how African tropical forests respond to temperature and moisture 

anomalies as the carbon sink impacts are now quantified; a net carbon loss of one-third.  

In South America the net carbon impact was nearly four times greater, a 130 % decrease 

in net carbon from a sink pre-El Niño, to a small but not significant source during the El 

Niño.  In South American tropical forests temperature and drought anomalies both 
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increased carbon losses and reduced net carbon but did not affect growth (Chapter 3).  

Additionally, I present the first evidence that baseline climate moderates forest responses 

to climate anomaly.  Baseline temperatures are particularly important in South America 

where productivity at cooler plots is stable or increases in the El Niño, but productivity 

decreases at hotter plots.  This indicates that some tropical forests in South America are 

close to the limits of their thermal tolerance and suggests that high temperatures without 

drought could cause widespread tree mortality.  There is also a compounding effect of 

drought in South America, as plots that are the baseline driest and have stronger MCWD 

anomalies in the El Niño have greater reductions in carbon gains and greater increases in 

losses (Figure 4.10).  These drier plots are not more resistant because they are already 

dry but are in fact more impacted by El Niño drought.  Continent effects are exerted via 

baseline MCWD, with seasonally drier forests in South America having greater El Niño 

carbon losses, but across a range of baseline drought El Niño carbon losses are stable in 

Africa (Figure 4.6).   

In tropical forests across two continents net carbon decreased with both temperature 

and drought anomalies as carbon losses increased (Figure 4.5, Table 5.1) and carbon 

gains decreased beyond temperature thresholds (Figure 4.7).  That tropical forests are 

vulnerable to both temperature and drought anomalies is a critical finding because future 

droughts will be periodic, but temperatures are certainly rising, and tropical forests are 

likely to lose carbon with temperature increases alone.  Furthermore, temperature 

responses to the El Niño are conserved across continents but continents differ in their 

response to drought, as carbon losses and stem mortality are greater in South America.  

Similar temperature responses across both continents perhaps indicates that a shared 

physiological mechanism is determining this temperature threshold, perhaps directly via 

the photosynthetic enzymes or indirectly through reduced stomatal conductance.  There 

are large increases in carbon losses from biomass mortality in South America for the driest 

plots, contrasting with the remarkable stability of the African tropical carbon sink (Figure 

4.6).  The contrasting continental responses are possibly due to the presence of more 

drought-adapted species in Africa than in South America as a result of hotter drier climate 

in the past interglacials in Africa selecting for drought-tolerant species.   
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Table 5.1 | Summary of the key impacts of the 2015-16 El Niño climate anomaly on carbon 
dynamics of tropical forests 
P-values are from linear models and one-tailed Kendall’s Tau correlation tests, respectively, and are only 
reported when p<0.05, ns=nonsignificant.   

Key Impacts Africa South America Combined 
Temperature anomaly 
on net carbon ns, ns p<0.05, ns p<0.001, ns 

Temperature anomaly 
on carbon gains 

ns, p<0.05 (gains 
increase) ns, ns ns, ns 

Temperature anomaly 
on carbon losses ns, ns p<0.05, p<0.05 p<0.001, p<0.05 

Drought anomaly on net 
carbon p<0.05, p<0.05 p<0.05, p <0.05 p<0.01, p<0.01 

Drought anomaly on 
carbon gains p<0.05, p<0.05 ns, ns ns, p<0.05 

Drought anomaly on 
carbon losses ns, p<0.05 ns, p<0.001 ns, p<0.01 

Baseline temperature on 
net carbon  ns, ns ns, ns ns, ns 

Baseline temperature on 
carbon gains ns, ns p<0.05, ns ns, ns 

Baseline temperature on 
carbon losses ns, ns ns, ns ns, ns 

Baseline drought on net 
carbon  ns, ns p<0.001, p<0.001 p<0.0001, p<0.001 

Baseline drought on 
carbon gains ns, ns ns, ns ns, ns 

Baseline drought on 
carbon losses ns, ns p<0.01, p<0.01 p<0.0001, p<0.001 

 

5.1.1 Climate and climate change in the tropical forest biome 

The 2015-16 El Niño caused unprecedented high temperatures, low precipitation 

and strong water deficits across the tropical biome.  Temperature increases were 

widespread but there was a greater spatial variability of drought across the tropics, with 

most areas drying but some areas wetting in the El Niño.  Regions that dried included 

West Africa and the Western Congo basin, whilst some parts of the Eastern Congo were 

wetter.  The Northeast and Eastern Amazon dried whilst the southwest Amazon was 

wetter.  Spatial signatures of the 2015-16 El Niño drought differed from the 2005 and 2010 

Amazon droughts but were similar to past El Niño droughts.  In 2005 the drought epicentre 
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was in the Southwest Amazon and in 2010 the drought was more widespread across the 

Southern Amazon. 

The long-term forest plots had slightly hotter climates than the tropical moist forest 

region as a whole, and during the El Niño had similar temperature increases compared to 

the region but were more droughted perhaps because El Niño droughts coincided with dry 

seasons.  Plots in South America were drier than the region. The MCWD reduction was on 

average twice as much in the African plots as the South American plots.  MCWD increases 

uniformly across South American plots but the wettest plots in Africa experienced the 

greatest drought.  The hotter temperatures and variable drought among plots likely well 

reflect climate of the future.   

5.1.2 Temperature and drought impacts on carbon and stem dynamics  

The long-term increase in live aboveground biomass of African forests was reduced 

in the El Niño event, by 35 % (Figure 2.5), but plots remained a carbon sink despite 

extreme environmental conditions.  The South American tropical carbon sink declined by 

129 % (Figure 3.4), from a significant sink pre-El Niño, to a small but not significant source 

in the plot census interval capturing the El Niño.   

Drought anomalies reduced net carbon stocks in Africa, as they reduced carbon 

gains and increased carbon losses (Figure 2.3).  Temperature anomalies in Africa 

increased carbon gains but did not negatively impact carbon dynamics.  In South America 

both temperature and drought anomalies reduced net carbon (Figure 3.6) due to 

temperature and drought anomalies increasing carbon losses from aboveground biomass 

mortality.   Temperature and drought anomalies in South America did not impact carbon 

gains.  So, drought significantly reduced carbon losses on both continents and gains only 

in Africa, whereas for temperature, carbon losses only increased in South America.  

Overall, these trends led to reduced carbon stocks by a mean of 75 % across both 

continents (Figure 4.4).  

5.1.3 Baseline climate can modulate climate anomaly response 

Baseline climate modulates carbon responses in South America but has minimal 

impact for African tropical forests (Figure 4.6).  In colder forests productivity increased with 

greater temperature anomalies and in hotter forests productivity decreased with greater 

temperature anomalies (Figure 4.7).  The threshold was a maximum temperature of 30.8 

oC and the decline after this threshold was much greater than the increase in productivity 
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up until that point.  Also, in South America in the El Niño plots with baseline stronger water 

deficits lost more aboveground biomass carbon (Figure 4.6) and there was a compounding 

effect of drought such that both baseline drought and drought anomaly increased biomass 

mortality (Figure 4.5).  

5.1.4 Are El Niño responses to temperature and drought consistent across 
two continents? 

Forest responses to the El Niño are similar across the two continents for 

temperature anomaly and carbon losses but marginally significant for temperature 

anomaly and net carbon and not for temperature anomaly and carbon gains (Figure 4.5, 

Table 5.1).  The responses of one continent can be predicted based on the other, 

suggesting a convergence of temperature-response, at least to an El Niño temperature 

anomaly.  This is the first evidence of a universal tropical forest response to temperature 

anomaly which allows calculations such as for a 1 oC anomaly net carbon losses are 1.7 % 

ha-1 yr-1. 

 There is a significant effect of continent on the relationships between MCWD 

anomaly and net carbon, pre-El Niño MCWD and net carbon, and pre-El Niño MCWD and 

carbon losses from aboveground biomass mortality (Figure 4.5, Figure 4.6).  So, for the 

same drought anomaly, South American forests lose 0.4 % more carbon. 

Drought significantly increased stem losses in both continents, as did temperature.  

Temperature anomaly increased stem gains, so there was no overall impact of 

temperature on net stems, but drought anomaly did reduce net stems.  Drought reduces 

net stems by 1 % more in South America for the same drought anomaly. 

5.2 Research Implications 

Overall, the results from the inventory plots indicate that intact tropical forests have 

some resistance to El Niño climate anomalies.  Even in the most impacted 10% of the 237 

plots monitored as part of this study lost only 6.0 ± 1.1 % of their aboveground biomass 

carbon.  El Niño is a quasi-regular climate phenomenon that recurs, so exposure to this 

type of drought in the past may have allowed adaptation, hence the resistance to El Niño 

droughts. 

Results comparing the continents shows African forests are more resistant to El 

Niño events due to greater drought-resistance (lower carbon losses), and no baseline 

climate impact on carbon gains (Chapter 2).  Results in this thesis point towards the 
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vulnerability of South American tropical forests, particularly those that have hotter and drier 

climates.  Intact forest plots in South America with higher mean temperatures respond 

more negatively to warming than their cooler counterparts and forests with greater 

seasonal water deficits respond more negatively to drought (Chapter 3).  The 

compounding effects of baseline climate and anomaly in South America suggests that 

anthropogenic warming is increasingly detrimental for forests, and that it is very important 

to limit global temperature increases to less than 1.5 oC.  With 1.5 oC warming the net 

carbon impacts in South America will be a loss of at least -2.1 Mg C ha yr-1 (Figure 3.6A) 

as this is calculated without the effect of baseline climate.  To ensure that tropical forests 

to continue to perform their climate regulating functions, net zero emissions must be 

reached as soon as possible.   

Newer dynamic global vegetation models (DGVMs) try to represent the varied plant 

functional types tropical forests trees (Fisher et al. 2018).  This thesis has demonstrated 

that there are distinct continental differences in how tropical forests are responding to 

changing climate, specifically in how African and South American forests respond to 

drought.  These functional differences could likely be incorporated into models without 

adding substantial complexity and may provide notable improvements to accuracy of 

model outputs.  Results in this thesis could be used to test the capacity of DGVMs to 

accurately represent tropical forests, firstly by testing whether DGVMs are able to produce 

the contrasting continental responses to the 2015-16 El Niño – a reduction of the carbon 

sink by one-third in Africa and its shut-down in South America.  Now data is available to 

compare against model outputs, this simple set up may be a useful way to explore model 

responses to forcing.  Different mortality dynamics for Africa and South America could be 

investigated by altering mortality losses on the two continents.  This might lead to an 

earlier ending of the carbon sink in Amazonia than in Africa, as predicted by Hubau et al. 

(2020) as mortality losses determine carbon residence time in models (Galbraith et al. 

2013).  I also show a threshold for reductions in carbon gains when temperatures are 

exceeded, and this should be easy to explore with models.  Further challenges for DGVMs 

might include incorporating the elasticity of resistance with to changing species 

composition.  Results in this thesis can help test the ability of models to accurately 

represent the intact tropical biome, and models could help address the longer-term 

implications of my findings.   
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5.3 Future Directions 

Continued investment in monitoring plot networks across Africa and South America 

is vital to understand how forests will continue to respond to climate in a changing world.  

As plots continue to be measured, and there is more than one post-El Niño 

remeasurement census, resilience can be formally assessed.  Resilience is the capacity of 

an ecosystem to recover from a disturbance, after incurring losses, whereas resistance is 

the capacity of an ecosystem to endure disturbance without loss.  With multiple post-El 

Niño censuses forest recovery from disturbance can be measured, rather than just the 

impact of the disturbance.  So, it can be understood whether those forests which are more 

resistant are also more resilient.  Especially important will be assessing whether, and how 

quickly, South American tropical forests recover from large biomass carbon losses and 

whether the carbon sink decline identified and predicted in Hubau et al. 2020 will continue 

into the future.  These plot networks must also be ready to capture the next large El Niño 

event which will likely bring record temperatures given ongoing warming. 

Forest plot responses to an extreme climate anomaly can be used to test the 

diversity-resistance paradigm, as biodiversity is thought to increase ecosystem resistance 

to climate anomaly perturbation, with evidence to support this idea from grasslands (Isbell 

et al. 2015).  In this thesis, tropical forests in Africa, which are typically less species-rich, 

are more resistant to climate anomaly than their typically more diverse South American 

counterparts.  Resistance of African tropical forests and vulnerability of some South 

American forests contrasts with what would be expected with diversity and resistance, but 

it would be valuable to understand this pattern within each continent. 

In analyses presented in this thesis there is an increase in stem recruitment with 

temperature, not just of light wooded species that tend to grow quickly, but species of all 

wood densities.  During drought, small trees might benefit from light release as the larger, 

dominant trees lose their leaves or die.  Understanding the species composition of these 

recruits and testing if there is a compositional shift occurring in the forest understory will be 

valuable as this may affect the climate vulnerability of the long-term carbon sink.  Also 

important is understanding the composition of the overstory; the percentage of deciduous, 

semideciduous or brevideciduous species, which large trees in the overstory are likely to 

die in temperature and drought anomalies and whether the deaths of trees in the overstory 

can be linked to the increase in stem recruitment.  Climate driven compositional changes 
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may confer greater resistance to extreme climate events and there have been long-term 

climate driven shifts in the floristic composition of tropical forests in the Amazon and 

Ghana (Fauset et al. 2012, Esquivel-Muelbert et al. 2019, Aguirre-Gutiérrez et al. 2019).  

Compositional changes may modify carbon responses, so understanding which species do 

well and which suffer is important for understanding if forests have the capacity to future-

proof themselves.  

There has been a long-term increase of carbon losses from tree mortality in South 

America, and an increase in carbon losses in Africa after 2010 in the most intensively 

monitored plots (Hubau et al. 2020).  So, the intact tropical carbon sink has saturated and 

is decreasing but there is still a large sink, especially in Africa.  African productivity is still 

rising with indications that temperature has not yet limited growth in Africa.  Results 

presented in this thesis, overall, support the results in Hubau et al. 2020 with Africa being 

more resistant to drought than the Amazon and temperature anomalies having consistent 

impacts on gains and losses across both continents.  This thesis provides some evidence 

that forests, at least in Africa, are resistant to climate anomalies. 

5.4 Summary 

This thesis shows that intact tropical moist forest plots in Africa and South America 

responded differently to the 2015-16 El Niño climate anomaly.  In Africa plots remained a 

carbon sink despite extreme temperatures and drought anomalies, although the sink was 

reduced by 35 % because drought reduced carbon gains from tree growth.  In South 

America plots were a carbon sink prior to the El Niño but the sink reduced 129 % to be a 

small, but not significant, source during the El Niño interval, because both temperature 

and drought increased carbon losses from biomass mortality.  Baseline climate 

exacerbated the carbon losses in South American forests but not in African forests – the 

first evidence that baseline climate is important when considering climate anomalies.  

Overall, with the pooled data from both continents, temperature anomalies increased 

carbon losses.  Forests on both continents were vulnerable to temperature, with no effect 

in Africa alone perhaps because baseline temperatures are not yet hot enough.  Drought 

also increased carbon losses, and for the same amount of drought carbon losses were 

greater in South America.  These results significantly advance understanding of how 

African and South American tropical forests respond to high temperature and water deficit 

anomalies.  Both continents are already sensitive to drought, but South American forests 

are more drought-sensitive, and carbon losses of both continents are temperature-
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sensitive.  Responses to the 2015-16 El Niño climate anomaly show that the net carbon 

sink in intact tropical forests in Africa and South America may decline further in the hotter 

and periodically drier climates of the near future. 
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Appendices 

Figure A2.1 | Monthly correlation coefficients for temperature 
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Figure A2.2 | Monthly correlation coefficients for precipitation 
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Table A2.1 | Parameters used to estimate tree height from tree diameter 
Plot Code a b c 

ANK-01 52.7 0.05 0.72 

ANK-02 52.7 0.05 0.72 

ANK-03 52.7 0.05 0.72 

ASN-02 52.7 0.05 0.72 

BOB-01 52.7 0.05 0.72 

BOB-02 52.7 0.05 0.72 

BOB-03 52.7 0.05 0.72 

CAP-09 52.7 0.05 0.72 

CAP-10 52.7 0.05 0.72 

CVL-01 52.7 0.05 0.72 

CVL-11 52.7 0.05 0.72 

DAD-03 52.7 0.05 0.72 

DAD-04 52.7 0.05 0.72 

DJK-01 44.6 0.05 0.83 

DJK-02 44.6 0.05 0.83 

DJK-03 44.6 0.05 0.83 

DJK-04 44.6 0.05 0.83 

DJK-05 44.6 0.05 0.83 

DJK-06 44.6 0.05 0.83 

DJL-01 44.6 0.05 0.83 

DJL-02 44.6 0.05 0.83 

DJL-03 44.6 0.05 0.83 

DJL-04 44.6 0.05 0.83 

DJL-05 44.6 0.05 0.83 

DJL-06 44.6 0.05 0.83 

DNG-01 44.6 0.05 0.83 

DNG-02 44.6 0.05 0.83 

GBO-02 52.7 0.05 0.72 

GBO-04 52.7 0.05 0.72 

GBO-08 52.7 0.05 0.72 

GBO-11 52.7 0.05 0.72 

GBO-15 52.7 0.05 0.72 

GBO-19 52.7 0.05 0.72 

HAB-03 44.6 0.05 0.83 

HAB-06 44.6 0.05 0.83 

HAB-07 44.6 0.05 0.83 

IVI-01 44.6 0.05 0.83 



 

157 

 

IVI-02 44.6 0.05 0.83 

KOL-01 44.6 0.05 0.83 

KOL-02 79.2 0.04 0.55 

KOL-03 79.2 0.04 0.55 

KOL-04 44.6 0.05 0.83 

KSN-01 48.2 0.05 0.71 

KSN-02 48.2 0.05 0.71 

KSN-05 48.2 0.05 0.71 

KSN-06 48.2 0.05 0.71 

LTL-01 79.2 0.04 0.55 

MDC-01 44.6 0.05 0.83 

MDC-02 44.6 0.05 0.83 

MDC-03 44.6 0.05 0.83 

MDC-04 44.6 0.05 0.83 

MDC-05 44.6 0.05 0.83 

MDJ-01 44.6 0.05 0.83 

MDJ-03 44.6 0.05 0.83 

MDJ-07 44.6 0.05 0.83 

MDJ-10 44.6 0.05 0.83 

MNG-03 44.6 0.05 0.83 

MNG-04 44.6 0.05 0.83 

NNN-01 44.6 0.05 0.83 

NNN-02 44.6 0.05 0.83 

NNN-03 44.6 0.05 0.83 

NNN-04 44.6 0.05 0.83 

NNN-05 44.6 0.05 0.83 

NNN-06 44.6 0.05 0.83 

NNP-01 44.6 0.05 0.83 

NNP-02 44.6 0.05 0.83 

NNP-05 44.6 0.05 0.83 

OVG-01 44.6 0.05 0.83 

SAN-22 44.6 0.05 0.83 

SAN-24 44.6 0.05 0.83 

SNG-01 48.2 0.05 0.71 

SNG-02 48.2 0.05 0.71 

SNG-03 48.2 0.05 0.71 

SNG-04 48.2 0.05 0.71 

SNG-05 48.2 0.05 0.71 

SNG-06 48.2 0.05 0.71 
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SNG-07 48.2 0.05 0.71 

SNG-08 48.2 0.05 0.71 

SNG-09 48.2 0.05 0.71 

YGB-08 48.2 0.05 0.71 

YGB-14 48.2 0.05 0.71 

YGB-15 48.2 0.05 0.71 

YGB-16 48.2 0.05 0.71 

YGB-17 48.2 0.05 0.71 

YGB-18 48.2 0.05 0.71 

YGB-24 48.2 0.05 0.71 

YGB-25 48.2 0.05 0.71 

YGB-26 48.2 0.05 0.71 

YGB-27 48.2 0.05 0.71 

YGB-28 48.2 0.05 0.71 

YOK-06 48.2 0.05 0.71 

YOK-07 48.2 0.05 0.71 

YOK-08 48.2 0.05 0.71 

YOK-09 48.2 0.05 0.71 

YOK-10 48.2 0.05 0.71 

YOK-16 48.2 0.05 0.71 

YOK-17 48.2 0.05 0.71 

YOK-18 48.2 0.05 0.71 

YOK-19 48.2 0.05 0.71 

YOK-20 48.2 0.05 0.71 
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Table A2.2 | Coefficients of model-averaged multiple regression models of net carbon, carbon 
gains and carbon losses 

 Δ net carbon Δ carbon gains Δ carbon losses 

Variable Estimat
e 

SE Z P Estimat
e 

SE Z P Estimat
e 

SE Z P 

Intercept -0.69 0.5
7 

1.2
0 

0.2
3 

-0.10 0.1
3 

0.7
5 

0.4
5 

0.65 0.5
3 

1.2
2 

0.2
2 

Pre-El Niño 
temperatur
e 

0.00 0.3
0 

0.0
1 

0.9
9 

0.01 0.0
7 

0.1
8 

0.8
5 

0.04 0.3
0 

0.1
5 

0.8
8 

Pre-El Niño 
MCWD 

-0.04 0.4
0 

0.0
9 

0.9
3 

-0.01 0.0
9 

0.1
4 

0.8
9 

-0.05 0.3
7 

0.1
2 

0.9
0 

Δ 
temperatur
e 

-0.34 0.6
8 

0.5
0 

0.6
2 

0.04 0.1
1 

0.3
8 

0.7
1 

0.50 0.7
7 

0.6
4 

0.5
2 

Δ MCWD -1.18 0.7
1 

1.6
5 

0.1
0 

-0.25 0.1
6 

1.5
1 

0.1
3 

0.96 0.7
1 

1.3
3 

0.1
8 

Interaction: 
Δ 
temperatur
e and Δ 
MCWD 

-0.22 0.5
1 

0.4
2 

0.6
7 

0.02 0.0
8 

0.2
4 

0.8
1 

0.38 0.6
4 

0.5
9 

0.5
5 

Interaction: 
Δ 
temperatur
e and pre-
El Niño 
temperatur
e 

-0.01 0.5
5 

0.0
6 

0.9
5 

0.00 0.0
2 

0.2
4 

0.9
8 

0.01 0.1
3 

0.0
7 

0.9
4 

Interaction: 
Δ MCWD 
and pre-El 
Niño 
MCWD 

0.21 0.5
5 

0.3
7 

0.7
1 

0.02 0.0
8 

0.2
5 

0.8
0 

-0.17 0.4
9 

0.3
4 

0.7
3 
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Table A2.3 | Coefficients of model-averaged multiple regression models of net stems, recruitment 
and stem mortality 

 Δ net stems Δ recruitment Δ mortality 

Variable Estimat
e 

SE Z P Estimat
e 

SE Z P Estimat
e 

SE Z P 

Intercept -0.75 0.6
7 

1.1
0 

0.2
7 

0.26 0.4
3 

0.5
9 

0.55 1.24 0.4
5 

2.7
2 

<0.0
1 

Pre-El Niño 
temperatur
e 

-0.19 0.4
9 

0.3
9 

0.7
0 

0.27 0.3
9 

0.6
8 

0.49 0.56 0.5
3 

1.0
4 

0.30 

Pre-El Niño 
MCWD 

-0.76 0.6
5 

1.1
5 

0.2
4 

-0.75 0.4
5 

1.6
4 

0.10 0.47 0.4
9 

0.9
6 

0.34 

Δ 
temperatur
e 

0.08 0.6
8 

0.1
1 

0.9
1 

0.79 0.7
0 

1.1
3 

0.26 0.06 0.3
9 

0.1
6 

0.87 

Δ MCWD -0.82 0.6
4 

1.2
7 

0.2
0 

-1.01 0.4
5 

2.2
2 

<0.0
5 

-0.10 0.3
3 

0.3
0 

0.76 

Interaction: 
Δ 
temperatur
e and Δ 
MCWD 

0.26 0.5
6 

0.4
6 

0.6
5 

0.82 0.6
0 

1.3
5 

0.18 0.00 0.0
7 

0.0
5 

0.96 

Interaction: 
Δ 
temperatur
e and pre-
El Niño 
temperatur
e 

0.13 0.4
5 

0.3
0 

0.7
6 

0.03 0.1
7 

0.1
5 

0.88 -0.15 0.3
9 

0.3
8 

0.70 

Interaction: 
Δ MCWD 
and pre-El 
Niño 
MCWD 

1.52 0.9
3 

1.6
2 

0.1
1 

0.88 0.6
4 

1.3
7 

0.17 -0.16 0.4
9 

0.3
2 

0.75 

 

 
 

 

 


