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Abstract

The ability for autonomous robots to plan action sequences in order to manipulate their

environment to achieve a specific goal is of vital importance for agents which are deployed in

a vast number of situations. From domestic care robots to autonomous swarms of search and

rescue robots there is a need for agents to be able to study, reason about, and manipulate their

environment without the oversight of human operators. As these robots are typically deployed

in areas inhabited and organised by humans it is likely that they will encounter similar objects

when going about their duties, and in many cases the objects encountered are likely to be

arranged in similar ways relative to one another. Manipulation of the environment is an

incredibly complex task requiring vast amounts of computation to generate a suitable state of

actions for even the simplest of tasks. To this end we explore the application of memory based

systems to environment manipulation planning. We propose new search techniques targeted

at the problem of environmental manipulation for search and rescue, and recall techniques

aimed at allowing more complex planning to take place with lower computational cost. We

explore these ideas from the perspective of autonomous robotic systems deployed for search

and rescue, however the techniques presented would be equally valid for robots in other areas,

or for virtual agents interacting with cyber-physical systems.
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Chapter 1

Introduction

1.1 Introduction

Autonomous robotic systems have great promise in exploring areas which may prove dangerous,

inaccessible, or inhospitable to humans due to hazardous environments. Often, these

hazardous environments are the result of destructive events which may leave survivors

trapped in debris, resulting in a situation where search and rescue operations are launched in

order to discover and free them. While remote control systems exist for human operators to

guide a robot through the wreckage these solutions are not always viable options as a result

of communication difficulties.

Even in situations where communication is not an issue it is not always feasible for a single

robot to remove all obstructions that may be encountered during the search process. To

combat this, swarm robotics could be utilised in order to increase the number of agents in

a given scenario, not only allowing the location to be searched more efficiently, but also

increasing the range of actions that could be undertaken to aid exploration.

In this work we do not explicitly consider the case of multiple robots, but the techniques used

are motivated by their applicability to multi-robot systems. A number of techniques exist

for both multi-robot and human-robot collaboration and communication, a brief review of

which can be found in (Gildert et al., 2018). To this end we focus on the planning process

which would allow a collective to discover action sequences which can be used to clear an

obstruction, allowing previously inaccessible locations to be reached.

Traditionally, swarm robotics has considered collectives of small, relatively simple, independent

agents which produce a macro effect by following a set of rules which rely only on local

knowledge and communication. These approaches often take inspiration from biological

collectives, where the behaviour of individuals can be explained using very simple rules, yet

complex behaviours occur at the level of the collective.

In (Sharkey, 2007) this traditional approach is referred to as “Nature-inspired Minimalist
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1.1. Introduction 16

Swarm Robotics”, and is characterised by a minimalist approach with nature-inspired constraints.

A more relaxed approach is referred to as “Practical Minimalist Swarm Robotics” which takes

the same minimalist approach to system design, but is not constrained by biological influences.

A final approach is simply named “Scalable Swarm Robotics”, and is characterised simply by

decentralised design approaches which are independent of swarm size, giving rise to inherent

scalability.

As computation becomes cheaper, smaller, and more energy efficient, the ability for individuals

of a swarm to exhibit complex individual behaviours, while displaying simple inter-agent

behaviours, becomes more tractable. This would allow for collectives which are more

reminiscent of higher-order mammals than of the simple biological agents which formed

the basis of swarm robotics research.

Given the availability of cheap, power-efficient, high performance computing resources, it

is possible for individuals to reason more deliberatively about their environment. It is now

possible for simple agents to run on-board simulations of their environment, predicting

the outcomes of events before actions are executed, or detecting discrepancies in expected

behaviours. Examples of this include Winfield’s consequence engine (Winfield et al., 2014),and

Millard’s internal simulations for fault detection (Millard et al., 2014).

This can be extended to physics simulations in which agents can predict the state of the world

as a result of their potential interactions with objects in their environment. This ability for

robots to “imagine” the outcomes of their actions opens up an exciting opportunity for small,

cheap, energy-efficient robots to plan action sequences in order to overcome previously unseen

problems.

Although it is now computationally tractable to perform physics simulations onboard a mobile

robot the search space of possible action sequences is too large to be searched naively, requiring

approaches which can quickly disregard large areas of the search space which are unlikely to

contain a solution.

The work and proposed solutions we present here are guided by the idea of robots “imagining”

the consequences of actions, drawing parallels between this and the way collaborative action

planning takes place in natural collectives. While large swarms often behave in a completely

decentralised manner this is far less common in creatures which exhibit more complex

behaviours, and which typically consist of small enough group sizes that social hierarchies can

form and leadership can occur within the group.

If we look to humans as an inspiration of how collectives work to solve a problem we see that

leadership is often dynamic and depends on the problem being faced. Due to the range of

experiences that each member of a group might have the most suitable leader of a group will

likely change based on who has the most relevant knowledge for the current situation. It is

from this observation that we propose a system in which dynamic leadership can occur in a
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1.2. Contributions and Aims 17

swarm or multi-robot system, and present initial work demonstrating how the objects in the

world could be represented to allow for experience based action planning.

1.2 Contributions and Aims

In this work we explore a means of representing objects that a robot has encountered in a

way which allows for efficient recall of objects which behave in similar ways when a robot

interacts with them. It is our hope that the results presented here could be built upon by

future work, allowing search processes to be augmented with a memory system, allowing for

more sophisticated search techniques to be applied to environmental manipulation tasks.

The memory based system used to augment the search process deviates from typical machine

learning style object recognition, which is often based on vision alone, to increase knowledge

transferability regardless of visual similarities of objects. A great deal of work has been

completed in the fields of Simultaneous Localisation And Mapping (SLAM) (Smith et al.,

1990), image segmentation, and more recently into Object Based SLAM. As a result of the

substantial body of both historic and ongoing work in these areas we do not consider them

explicitly, instead assuming that an Object Based SLAM system is available to produce maps of

the environment.

With these points in mind we aim to address the following claim:

By using observations of interactions with objects in the world a low dimensional

representation can be produced which allows for efficient recall of objects which

have been observed to react similarly to one another.

It has recently been shown that MCTS can be augmented with a memory system in order to

improve search efficiency, for instance in AlphaGo (Silver et al., 2016). It has also been shown

that MCTS can be applied to single agent action planning in order to reach a goal where there

are constraints on available search time. To the best of our knowledge, however, no work has

previously been done to address robotics applications of MCTS for environmental interaction.

Given a suitable means to recall scenes which have already been encountered we believe

that MCTS could prove to be an incredibly powerful tool for solving complex action planning

problems. We present how such a system could be structured in chapter 3.

In this work we provide a number of contributions toward this solution, and evaluate the

hypothesis stated above. Specifically:

• We present an overall architecture which could be used to develop an autonomous

multi-agent system capable of capitalising on the experiences of each individual within

it to develop action plans for the collective in order to overcome an obstacle

17



1.3. Thesis Structure 18

• We develop a method of recalling objects based on the way they respond to interactions

by an agent, increasing the transferability of previously gained knowledge which relates

to those objects

• We provide a dataset of observed object interactions which can be used by the wider

research community as a basis for further work

1.3 Thesis Structure

The rest of this thesis is structured as follows.

In chapter 2 we review the current state of the art in the relevant literature. We discuss what

we believe to be shortcomings in the state of the art and identify the areas which we believe

could provide potential for current and future work.

In chapter 3 we discuss a proposed architecture which encompasses aspects of planning, recall,

and multi agent communication. We provided an overview of proposed techniques which

would work together to form a cohesive system, providing context and motivation for the

work we have carried out.

In chapter 4 we argue that traditional object recall techniques are not entirely applicable to

accelerating environmental interaction planning and do not lend themselves to knowledge

transfer as well as our proposed methods. We then present work in producing an embedding

space which is better suited to this task.

In chapter 5 we summarise the work completed, and evaluate our contributions to the state of

the art.

18



Chapter 2

Background & Related Work

In the following sections we will provide background for a number of existing techniques

and review some of the existing literature surrounding the areas of interest within our

proposed system. Where relevant each section includes a brief description of where we feel

the techniques or concepts could be useful. More details of where we believe these techniques

to be useful is provided in chapter 3.

We begin by describing Simultaneous Localisation and Mapping (SLAM). This is the process of

a robot producing a map of its environment, while simultanously tracking its own location

within that map. We explore the history of a number of SLAM techniques, and discuss some

more recent developments in the field which allow objects to be detected in the produced

map, resulting in a model of the environment which can be more freely reasoned about. We

finish off the discussion of SLAM by presenting a number of techniques which allow SLAM to

be deployed in multi-agent systems.

We then provide an overview of Markov Decision Processes (MDPs). These are a class of

problem which assume that the best action to take from any given state is determined entirely

by the state itself. The problem of planning action sequences to manipulate the environment

a robot is in can be seen as a MDP and as such a large amount of relevant work has been

done in the field. Here we present only the work that we believe to be directly relevant to

understanding the system proposed in chapter 3.

Next, we cover dimensionality reduction techniques. These techniques allow complex data

to be stored in far simpler forms, allowing for more efficient processing in many machine

learning contexts. We present a number of techniques which we later apply in chapter 4.

Finally, we present literature related to the recall of collections of objects (referred to as

“scenes” in this work). We discuss our motivation for the techniques we propose, and highlight

some relevant work from the field of machine learning.

19
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2.1 Simultaneous Localisation and Mapping (SLAM)/Object based

SLAM

In this section we describe the problem of SLAM, and a number of approaches which could

be used to build up a map for a swarm of robots to use with the techniques developed

later. Typically the driving force behind automated exploration using robots is that we are

completely unfamiliar with the environment being explored and that the area in question is

either dangerous, inaccessible, or inhospitable to humans.

SLAM presents a number of problems for robots which are required to explore these areas.

When a robot is attempting to build a 3D map it is necessary for it to produce a graph of

connected vertices which represent features in the environment. We can therefore observe

that it must be able to locate and position landmarks (vertices) in this map, which is a

relatively simple task if the robot can be sure of its location and has reliable range and bearing

information of identified landmarks.

Often, the purpose of robot exploration is either for a robot to be able to act independently for

extended periods of time in a potentially dynamic environment, or to gain information about

an environment which is not accessible to humans. Generally it is not possible for a robot to

be sure of its own location, either absolutely or in relation to a particular landmark or set of

landmarks due to sensor noise. It is also not possible to assume that the robot can track its

position by simply integrating its intended movements through space as environmental factors

(such as wind, water currents or wheel slippage) mean that these estimates of movement are

often incorrect.

We are therefore left with a situation in which we need to estimate the location of landmarks

in the environment from noisy sensor readings which have been taken at a noisy, estimated

location while maintaining as much accuracy as possible. Fortunately we can use our estimated

landmark locations to gain a more accurate estimation of our location which in turn makes

later landmark estimates more accurate. This observation was first made in a seminal work by

Smith and Cheeseman (Smith & Cheeseman, 1986) and has formed the basis of most of the

successful SLAM systems in use today.

Maps generated using SLAM based techniques can be augmented with information about the

objects which can be detected within the scene. This augmentation process is often known

as either semantic SLAM or, more recently, object(-based) SLAM. This section will begin by

briefly reviewing traditional SLAM, which produces static meshes, before moving on to review

some of the more recent literature which augments these meshes with semantic information

from a database of known objects. This identification of objects allows us to reason about the

environment and improve our knowledge of the world and its contents, including physical

attributes and potentially useful actions which can be performed on the object.

20
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2.1.1 Simultaneous Localisation and Mapping (SLAM)

The complexity of the SLAM problem arises as a result of uncertainty in both motion data and

observational sensor data. Our robot starts in an arbitrary location and can estimate how much

it moves, however the noise in this movement data means that as time progresses our robot

would become less and less certain of its actual location. At the same time as moving through

its environment our robot attempts to build up a map of features in the environment based

on data from its sensors, such as a cameras or laser scanners, basing its estimate of feature

locations in 3D space on its own estimated position and its sensor readings. By using each

of these estimates to improve the quality of each other and repeatedly adding information

gained from motion estimates and feature detection we are able to iteratively map and localise

far more accurately than would be possible by attempting to solve each of these problems

independently.

More formally, taking a probabilistic view, we are aiming to maximise

p(mT , lT |o1..T )

where mT and lT represent our current map and location, and ot represents the observations

we made of our environment at time t. One of the ways in which SLAM implementations can

be classified is on the way they represent the world, often either representing the world as a

grid, or as a continuous space containing points of interest.

When using a grid based implementation our map is simply a 2D or 3D grid representing a

discretised world with each cell being updated with our belief about its contents, for example

whether or not a cell contains something and, if so, its colour.

In continuous space implementations the world is represented as a collection of landmarks

with much the same information as the grid based methods, with the exception that each

landmark must also have a location and a record of the uncertainty associated with that

location. For our purposes a continuous space implementation would be far more suitable

as it allows for more fine-grained information about the location of features in space, thus

increasing the quality of any matching processes which will rely on the relative locations of

those features.

A seminal work in the SLAM field (Smith et al., 1990) proposed the use of an Extended

Kalman Filter (EKF) to track the estimated location and relative error of each environmental

feature and the robot location. New information from motion and observational sensors can

be incorporated gracefully using this method, however the computational cost of the EKF can

quickly become prohibitive in a real world environment and the Gaussian noise assumption

required to make use of EKFs can often be a limiting factor in EKF based SLAM methods.

EKF SLAM’s computational complexity and Gaussian noise assumption are well known to

be limiting factors in the robotics community and have been noted by a number of authors
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(Montemerlo et al., 2003; Bailey et al., 2006).

Since the early SLAM systems such as the one presented in (Leonard & Durrant-Whyte, 1991) a

great deal of work has been done to improve the quality of SLAM algorithms, some attempting

to improve the computational complexity and reliability of EKF based techniques (Paz et al.,

2008; Guivant & Nebot, 2001). Others have attempted to develop completely novel algorithms

such as FastSLAM (Montemerlo et al., 2003) and Decoupled Stochastic Mapping (Leonard &

Feder, 2000) which use different statistical techniques such as particle filters (Howard, 2006;

Pei et al., 2014) or correct earlier errors as new data is collected (Engelson & McDermott,

1992).

Object Based SLAM

A recent modification to traditional SLAM techniques is SLAM++(Salas-Moreno et al., 2013),

described by the authors as ‘SLAM at the level of objects’. As noted by the authors, many scenes

in the modern world consist of ‘repeated, domain-specific objects and structures’. These can

be detected during the SLAM process to produce a map of a scene which consists of distinct

objects rather than the indiscriminate point cloud usually produced by SLAM algorithms.

Without this point cloud segmentation it becomes considerably more difficult to reason about

the world our robot is in and our understanding of the physical properties of our robot’s

environment is highly limited.

At the time of writing the implementation used in (Salas-Moreno et al., 2013) relies on a

GPU implementation to provide sufficient computational power to perform in-the-loop object

detection, however as a new paradigm for the SLAM problem there will likely be much

improvement in the speed and accuracy of this style of technique in the coming years, with

algorithms becoming better suited to a wider array of tasks and environments.

It is also worth noting that, at present, the objects which can be detected by SLAM++ must

be scanned offline before the system is used for mapping and repeated structures cannot be

detected in an online manner, however the structure of the algorithm does not inherently

restrict this extension. The current use of Drost et al’s. Point Pair Features (Drost et al., 2010)

would likely make this extension expensive to perform in an online manner. In a complete

system an extended SLAM++ system would be highly beneficial to allow agents to gain

knowledge of the world during exploration and to predict and learn the physical properties of

objects discovered in novel environments, although new objects could be learnt in an offline

manner during a ‘reflection period’ between explorations.

More recently the requirement for a GPU implementation for a small database of objects has

been overcome in (Gálvez-López et al., 2015) where the authors present a monocular SLAM

system which is able to detect objects from a 500 item database in real time on a standard

CPU. Given the rate at which progress has been made in the field of object based SLAM it is not
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unreasonable to believe that, in the near future, techniques which perform object based SLAM

will be efficient enough to be used on mobile devices. Low powered, high speed, multi-core

processors are already commonplace today with many of them also incorporating graphics

pipelines and support for OpenCL allowing for efficient implementation of parallelizable

techniques.

As the field of robotics has progressed and the consumer market has provided greater demand

for augmented reality applications there has been a growing need for systems which are not

only able to build up sparse maps of their environment but also to understand and reason about

them (Conditt, 2015). The particular field of this we are interested in and will investigate in

greater detail is the augmentation of a SLAM map with higher level identified objects.

The shear magnitude of improvement in object based SLAM systems since the publication of

SLAM++ shows the level of interest in making use of these techniques. Recently a number of

techniques have been presented which allow object level SLAM to take place using a single

RGB camera (Davison et al., 2007) by using distinctive visual features, detected using machine

vision techniques such as SIFT (Lowe, 1999) or SURF (Bay et al., 2006), and which can be used

in pseudo-realtime with databases of hundreds of objects on a standard CPU (Pillai & Leonard,

2015; Gálvez-López et al., 2015). Each of these methods shows great improvement on the

results presented in (Salas-Moreno et al., 2013) increasing both the speed and practicality of

object based SLAM.

In the interest of making our system applicable to applications involving cheaper, lighter,

and more manoeuverable robots we assume the use of one of these monocular visual SLAM

systems. While we will work under this assumption it should be noted that this should not

restrict the applicability of any developed techniques to any other form of sensor (such as

RGB-D cameras, thermal imaging cameras or laser scanners) as long as a technique can be

implemented which reliably identifies objects in the robot’s environment.

Distributed SLAM (DSLAM)

While traditional SLAM typically takes place on a single agent, work has recently taken place

to distribute the mapping process across a swarm of agents, not only increasing mapping speed

but also potentially allowing access to areas which may have otherwise been inaccessible by

allowing the use of a heterogeneous agents in the swarm. In a DSLAM system each agent

explores it’s own local environment and shares the knowledge it has discovered with other

agents in the swarm.

Each of these individually shared maps are then combined using Data Fusion algorithms,

resulting in a single map containing data from multiple agents in the same environment.

As with most swarm algorithms there are both fully distributed algorithms and centralised

algorithms for the DSLAM problem. In both of these cases the aim is to solve the same problem
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and the choice of using a distributed or centralised technique can be decided by the need for

live human interaction or feedback and the computational requirement of the technique used.

One of the more well known D-SLAM techniques is DDF-SAM (Cunningham et al., 2010). DDF-

SAM breaks the problem of D-SLAM in to three components: local optimisation to produce a

per-agent graph of the environment, a communication module to propagate these condensed

graphs across the swarm, and a neighbourhood optimiser to combine multiple graphs in to a

single map. In (Carlone et al., 2010) the authors present an alternative method which makes

use of particle filter algoritms to fuse the maps produced by robots in a collective, without

requiring and estimation of their initial locations. (Andre et al., 2014) provides an overview

of several implementations of D-SLAM algorithms which have been released for the Robot

Operating System (ROS).

2.2 Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) are a class of decision problem in which we assume that

the optimal action at any given time is decided only by the current world state, without

considering the history of the world or the history of our actions (Bellman, 1957). Known

as the Markov assumption this holds for the situations we are interested in, any actions we

may have already performed have changed the state of the world and our available resources

and are irreversible. As such we gain no benefit from considering how the world used to be

or how much power we used to have, only the way that we and the world currently are. A

Markov decision problem can be fully defined by 4 components:

S : A set of world states

A : A set of actions

T (s, a, s′) : A probability function over states, actions and next states

R(s) : A reward function which provides feedback about the current state

Given a model containing these 4 components we aim to define an action policy, π(s), which

provides us with the best expected action to take in any provided world state.

In MDPs as defined above we work under the assumption that we can know the current world

state with absolute certainty. This is often not the case in real world scenarios as we are usually

unable to observe the entire world at once, and in a dynamic environment the state of the

world which is currently out of our field of perception is unlikely to remain constant, giving

rise to the aptly named concept of Partially Observable Markov Decision Processes (POMDPs)

(Brechtel et al., 2013). This extension requires the addition of an observation model, O(s, o),

to our definition of MDPs which provides the probability of making observation o while the

world is in state s. From this observation model it is possible to predict the world state that
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we are currently in based on the observations we can currently make, however there is an

inherent level of uncertainty that we must take into consideration.

A great deal of work has been done in the field of solving POMDP planning problems including

techniques which incorporate reinforcement learning (Wang et al., 2012), value iteration

(Brechtel et al., 2013) and Monte-Carlo tree search methods (Silver & Veness, 2010) with

several deployed examples of POMDP planning being performed on robots in real world

scenarios such as (Shaojun, 2014). The complexity of POMDPs can vary widely with an

investigation into why some POMDPs appear easier to generate solutions for being presented

in (Hsu et al., 2007).

2.2.1 Monte-Carlo Tree Search (MCTS)

MCTS is a method for planning action sequences which has gained popularity in MDPs and

POMDPs (Silver & Veness, 2010; Browne et al., 2012) lately due to its applicability in artificial

intelligence for gaming. Tree based methods for planning typically work in a similar manner,

with the world state being represented by a node in a search tree and the links between nodes

representing state altering actions, producing a new world state as a result.

As an example consider attempting to plan a sequence of moves to solve the ‘8-puzzle’. In this

puzzle we have a 3x3 grid containing 8 numbered tiles. We can use the remaining empty cell

to move tiles around the grid by shifting them in 1 of the 4 cardinal directions. The goal is to

move the tiles around the grid so that the empty space is in the lower right corner and the tiles

are ordered from 1-8 reading left-to-right, top-to-bottom. When planning move sequences it

is often more intuitive to consider moving the space in one of the available directions with

the side effect of moving a tile in the opposite direction. This is a commonly used convention

when discussing the 8-puzzle and is used here.

Traditional tree search methods explore trees in either a depth first or breadth first manner,

either expanding child nodes immediately as they are created or expanding nodes row by row,

gradually deepening the tree. In a number of cases we can find ourselves in infinitely deep

trees, for example when an action can restore the world to a state which has already been

visited in a node’s history, so a breadth first search is often used to ensure we do not fall into

these infinite expansions.

As an example consider a grid in the configuration of the root node shown in Figure 2.1. From

here we have 4 possible moves which would move the empty space in each of the 4 cardinal

directions, in turn moving a tile in the opposite direction. We simulate each of these 4 moves

to give us a new world state without making a move in the real world. This process then

continues on each of the modified states, expanding each branch of the tree until we generate

a node with the target state. When we reach a goal state we have found a sequence of actions

which will solve the puzzle from a given state by following the branches taken from the root
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Figure 2.1: An example of the root of a search tree for attempting to solve the 8-puzzle. We
observe a current world state and build a computational model of it. We then determine

which actions we can take to transform this state and simulate taking each of them to produce
a model of the transformed world state.

node to our final state.

While this exhaustive search procedure may work for small problems with a limited number

of moves available from each state it becomes infeasible for moderately complex problems.

As an exhaustive search considers all possible states without bias the number of nodes which

must be considered grows exponentially with the number of moves required for the simplest

solution. A common approach to resolve this issue is to attempt to focus the search on the

most promising branches, expanding nodes which we believe are ‘close’ to a goal state. This

is typically done by using a heuristic function which gives an estimated fitness value for the

current node, with nodes which we believe are ‘closer’ to a goal state having higher fitness

values than those that are further away. By choosing to expand the node with the highest

fitness we hope to ignore unnecessary branches of the search tree, turning our breadth-first

search into a best-first search (Russell & Norvig, 2013).

While heuristic based best first search methods can be very powerful they also come with the

non-trivial task of defining a suitable heuristic to produce a numeric value from the world state

which can be used to rank the currently known states. While this may be a relatively simple

task for some games it is often not possible to define an accurate heuristic function for a state,

especially in multi-player games. With this in mind Monte-Carlo based methods have gained

traction recently to estimate the value of a particular state by simulating random playouts

from tree nodes to terminal states or until some arbitrarily defined horizon is reached.

This is the basis behind Monte-Carlo Tree Search (Chaslot et al., 2008). We begin by picking the

tree node with the highest heuristic score which is calculated from success rates of simulations.

We then add a new child by simulating a playout which starts with the action we believe
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to be the most promising, breaking ties randomly. When we have reached a terminal state,

which may or may not be a goal state, we increment the number of simulations and successful

playouts of the child node we just added, and then backpropagate the playout result up the

tree, updating the statistics of each of the new node’s ancestors.

The most commonly used implementation of MCTS uses a multi-armed bandit approach to

choosing actions at each stage using a heuristic called Upper Confidence Bounds for Trees

(UCT) (Kocsis & Szepesvári, 2006), based on the UCB1 algorithm (Auer et al., 2002). This

approach uses the heuristic

UCT (i) =
si
ni

+ C

√
lnN

ni

where si represents the number of successful playouts which have involved child node i,

ni is the number of times child node i has been visited, N is the number of times the

current node has been visited and C is a constant balance factor. The left hand term of this

heuristic represents the expected success rate of the current node while the right hand term is

representative of the amount we have explored this node relative to others. The value of C

can adjust the balance between exploration and exploitation to make the most efficient use of

the resources we have available and is often determined empirically to best fit the problem

domain. When choosing which node to expand next we recursively take the branch which

leads to the child node with the highest UCT score until we reach a node that we wish to

expand.

Note that at any expansion phase of MCTS we only add 1 new persistent node to our tree

at a time, any nodes generated during playouts beyond this first node are discarded and

used entirely for payoff estimation. This approach means that resource usage is kept low in

less promising areas of the tree and is used instead for areas of the tree where we are more

confident that our solution exists, dedicating resources to where they are most effectively

used and making MCTS a very efficient and attractive option for low powered systems, or for

situations when the world state is complex.

While MCTS is typically used for action selection in problems which are discrete in both state

and action space techniques exist to allow its use in continuous scenarios (Couëtoux et al.,

2011).

2.2.2 Prediction

For any form of deliberative planning we are required to generate new states based on an

assumed world state and some sequence of actions. In order to do this we propose the

use of an on-board physics simulator which the agent can initialise with the world state,

apply actions, and observe predicted results without actually modifying its environment.
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Simulation of physical processes and expected behaviours has been utilised widely in the

robotics community and in combination with the field of artificial life. The most obvious use of

real world simulation in robotics is in performing experiments to test new control algorithms

without the expense, risk and time associated with deploying on physical robots, costs which

grow rapidly when we extend from single agents to swarm robotics.

A number of robot specific simulators have been developed such as V-REP (Rohmer et al.,

2013), Player/Stage (Gerkey et al., 2003) and Webots (Michel, 2004) which all have their

uses, however each of them have their own individual flaws and, perhaps most importantly

here, tend to struggle to simulate more than a hand full of entities at reasonable speeds.

The ARGoS simulator (Pinciroli et al., 2012) counters this as it is designed from the ground

up to be used for swarm robotics and has an architecture which enables dozens of robots to

be simulated faster than real time.

Similarly to the work presented in (Winfield et al., 2014; Vaughan & Zuluaga, 2006) the use of

a simulator on-board each agent to predict the utility of available actions can be used to allow

agents to explore novel solutions without physically interacting with the real world. In this

work we are interested in the use of physics simulations rather than simulations of other agents

as explored in (Weitnauer et al., 2010). The use of physics simulators for prediction within

robot controllers is gaining popularity as can be seen in (Ornan & Degani, 2013; Kroger et al.,

2008), and investigation into improving the reliability of simulations of uncertain terrains

is underway (Ferworn et al., 2013). The use of an on-board simulator to explore actions as

opposed to controllers and morphologies allows for far faster, cheaper, and safer exploration

of possibilities. The use of simulation for AI is widely practised but has only recently made its

way into robotics as CPUs have become small enough to be mobile whilst also being powerful

enough to run simulations faster than real time.

Due to the nature of these simulations it is possible to predict the change of both static and

dynamic environments. While the work presented here will only consider the application

of simulations to environments in which objects do not move independently the techniques

developed could be used in dynamic environments, subject to increased uncertainty. Given a

model of the behaviour of other autonomous agents in the environment, such as humans or

other robots, it is possible at each time step of the simulation to predict the next action of the

independent agents and simulate their movements, and how those movements could impact

the environment the robot is required to operate in. This technique of predicting the behviour

of other agents in onboard simulations of dynamic environments has gained a great deal of

interest in recent years, and is a key part of some seminal works on Ethical Robots (Winfield

et al., 2014).
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2.3 Dimensionality Reduction

In this section we provide a brief overview of the concept of associative memories, followed

by a Natural Language Processing technique which inspired our means of recalling individual

objects. We then provide an overview of each of the dimensionality reduction techniques we

have analysed: Principal Components Analysis (PCA), Sammon mapping, Isomap, Landmark

Isomap, Local Linear Embedding (LLE), Laplacian Eigenmaps, Kernel PCA, SNE, SymSNE and

tSNE. The key features of how each technique works are provided.

2.3.1 Associative Memory

Typical memory systems rely on address based lookup of data which has previously been

stored. While this can be a useful mechanism in many cases it has limited utility in the field of

cognitive robotics and AI. A more typical requirement in robotics and AI is to be able to recall

a piece of information based on some observation or concept. This style of memory is known

as either an associative memory or equivalently as content-addressable memory.

Many of these techniques rely on neural networks to perform most of the computation. Neural

networks provide a computationally efficient way of automatically learning relevant data

representations which are tied to the underlying computational methods of the network

architecture.

While many approaches have been investigated, perhaps most influentially the Hopfield

network (Hopfield, 1982) for example, the vast majority of approaches rely on a fixed size

pattern. This limitation provides two significant hurdles to our system by viewing memories

at varying levels of granularity. We first address scenes with varying numbers of objects then

move on to the storage of individual objects and the reuse of memories which contain similar

objects.

Firstly, the number of objects in a given scene will change between observations. This is

further complicated by the possibility of the most appropriate memory containing a different

number of objects to the current problem, for example an object may be present in the current

scene which will not impact the optimal solution. Since our scene and memories (referred to

as keys from here) will require a representation of the objects in the scene and their relative

locations, the size of the key will naturally be correlated to the number of objects represented

by the key. This issue is one which has been studied but no suitable solution has yet been

found which would lend itself to our system, although the concept of holographic reduced

representations proposed by Tony Plate (Plate, 2003) may provide useful inspiration. The

direct application of holographic reduced representations would likely not be useful in our

case, however, as the addition of new items tends to result in large shifts in the combined

representation, reducing the likelihood of a success match for similar scenes with different
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numbers of objects.

Secondly, the meshes associated with learned objects and used in physics simulations will

naturally have a varying number of vertices. This would further increase variation in the size

of the key and would provide further difficulty if the most appropriate memory to be recalled

contains objects which are distinct but respond to physical interaction similarly. To resolve

this issue would require a fixed length representation which is also able to convey similarity

between objects.

These problems both resemble issues which are commonly faced in natural language processing,

namely recall of documents and words which have similar semantic meaning. As such we

intend to investigate the potential to apply natural language processing recall techniques to

recall of physical objects.

In the document recall case a database is queried with a sample body of text which could

range from a single sentence to a multi-page document with the expectation that documents

which are based on similar subjects or have similar content should be returned.

Commonly a “bag-of-words” approach is used in these scenarios where an input vector consists

of, potentially, thousands of values with each entry representing the frequency of a single word

in the system’s vocabulary. These vectors are usually very sparse resulting in a large amount

of wasted memory and computation during the matching process. This approach would also

fail to recall documents where the wording used varies slightly such as “I walked down the

road" and “We went along a street" as similarity between words is not considered.

To address the problem of allowing the meaning of words to be compared the concept of word

embeddings has been proposed (Mikolov et al., 2013). A trained word embedding provides a

vector representation for each word based on the context the word is often found in during

training. For instance the words “man” and “woman” will often be surrounded by similar

words and so will be placed in similar areas in space. A more interesting property however is

that semantic relationships are also preserved owing to relative consistency in the meanings

of words as they are changed between forms. This uniformity in context change means that

v(run)− v(ran) ≈ v(pick)− v(picked) and v(king)− v(man) ≈ v(queen)− v(woman).

An analogous situation with object embeddings might be to transfer the expected behaviour

of a meterial between objects of differing shapes, allowing for inference of the semantics of

an object or its properties in the environment. Let us consider, for example, that an agent

has previously encountered a wooden sphere, and a rubber sphere. From this it maybe be

possible to extract a vector which represents the difference between wooden and rubber

objects vwr ≈ vr(sphere)− vw(sphere). Now, if our agent encounters a rubber box for the first

time, it may be possible to predict how it will react if existing knowledge of a wooden box

exists, predicting as vr(box) ≈ vw(box) + vwr, in much the same way as semantic meaning

can be transfered between words in the NLP case. While we do not explore this possibility
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in this work we believe that the potential to extend this work to explore the possibility of

semantic transfer of object properties is very powerful, and could provide increased confidence

in agents being deployed in novel environments.

In the simplest case this type of embedding for physical objects could allow our agents to

reuse solutions to problems which include similar objects to those in the current scene. It is

also possible, however, that correlations may exist between object differences in embedding

space and actions required in the solution space. If these correlations do exist the ability for

agents to modify recalled solutions based on the discrepancy between keys could provide a

significant speed up in the search process.

In a number of NLP techniques mathematical functions are used to combine multiple word

representations into a new vector. In these cases the function being used is often context

dependent and relies on certain structures in language, requiring the query being processed

to be parsed first so that the appropriate functions can be applied in the correct order. One

solution which is robust to these shortfalls is presented in (Le & Mikolov, 2014), in which

a technique is presented which learns vector representations of paragraphs by aggregating

individual word vectors.

In our case, however, there are no relationships between the objects in a scene, and as such

this method of combining individual object representations becomes infeasible. In situations

where objects can be found to be interacting in certain ways, for example if objects are stacked

or resting against each other, then similar techniques may prove to be useful, however we do

not consider them in this work.

Although using natural language processing techniques seems the most intuitive way to

combine representations of individual objects owing to its inspiration of the underlying

representation the problem of matching collections of oriented feature vectors is one which is

more closely related to the loop closure/kidnapped robot problems from SLAM and to sparse

correspondence of point cloud data. As such computer vision techniques may prove to be a

more effective field to take influence from.

2.3.2 Principal Components Analysis (PCA)

PCA (Hotelling, 1933) finds a linear subspace in which the principal axes are aligned along

the directions of highest variance in the data to be reduced. By discarding the dimensions of

this subspace which represent the lowest variance we can reduce the dimensionality of the

space while retaining as much information as possible.

PCA is a statistical analysis technique which maximises the amount of information retained

about a distribution of points. The data is first adjusted to have a mean of 0 by subtracting the

mean from each of the points in the distribution. We the calculate the covariance matrix of

this data, before performing Eigendecomposition on the covariance matrix.
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This Eigendecomposition provides us with a set of orthogonal axes and a set of Eigen values

which can be used to determine which of the axes represent the directions of highest variance

in the data. From these values we can calculate what proportion of the variance is captured by

each axis, and discard those which provide little to no value. The axes which represent only

negligible amounts of captured variance can often be attributed to noise in the data and so

can be removed to not only reduce the amount of data needed to be stored about each point,

but also to help generalisability of the captured model.

2.3.3 Sammon Mapping

One of the weaknesses of PCA is that it gives little focus to preserving small pairwise distances

which help define the structure of the data cloud. To combat this Sammon mapping (Sammon,

1969) produces a similar embedding to PCA while giving higher precedence to small pairwise

distances. In both PCA and Sammon mapping we minimise a cost function which contains a

sum of functions of pairwise distances. Sammon mapping scales each term in this summation

by the inverse of the initial pairwise distance.

2.3.4 Isomap

Isomap (Tenenbaum et al., 2000) aims solely to retain pairwise distances of points which

lie on a manifold in the original space. Isomap creates a graph of nearest neighbours and

uses the pairwise geodesic distance across this graph as target distances to retain in the low

dimensional embedding. This has the effect that curved manifolds can be “flattened” by the

embedding, however it is also possible for sections of the manifold to be connected incorrectly

resulting in many geodesic distances being underestimated and, ultimately, a poor embedding.

A common example of when Isomap produces high quality results is when applied to a “Swiss

roll” dataset. In this case the X and Y components of data points can be approximated by a

spiral, and the Z component is randomly distributed.

Since the data effectively lies on a plane which has been rolled up, Isomap can “unroll” the

data, forming a 2D distribution of points from the original 3D point cloud. This can both help

to reduce the amount of data stored, and help various machine learning techniques to process

the data more accurately, reducing the possibility of relationships being inferred as a result of

the extra dimensions in the original data.

2.3.5 Landmark Isomap

Landmark Isomap (Silva & Tenenbaum, 2003) aims to reduce the computational complexity of

standard Isomap by performing the most expensive operations on a subset of the data. A subset

of data points, referred to as landmarks, are selected and Multi-Dimensional Scaling (MDS)
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(Torgerson, 1952) is applied to produce a low dimensional embedding of the landmarks.

The distances of each point to these landmarks is then used to produce a low dimensional

embedding of the remaining points.

2.3.6 LLE

Local Linear Embedding (LLE) (Roweis & Saul, 2000) calculates the position of each point in

the high dimensional space as a linear combination of its nearest neighbours, working under

the assumption that the manifold on which the data lies is locally linear. A low dimensional

embedding is then found which aims to allow each of the embedded points to be reconstructed

from a linear combination of its neighbours using the same weights as were used in the higher

dimensional space.

2.3.7 Laplacian Eigenmaps

Laplacian eigenmaps (Belkin & Niyogi, 2003) attempt to maintain the distance between each

point and its nearest neighbours by producing a nearest neighbour graph before minimising

a cost function in which the distance of each edge to a neighbour in the low dimensional

embedding is weighted based on the same distance in high dimensional space. This can be

defined as an eigenproblem and solved appropriately.

2.3.8 Kernel PCA

Kernel PCA (Schölkopf et al., 1998) is, as its name suggests, a variant of PCA in which a kernel

is first applied before eigendecomposition is performed on the kernel matrix as opposed to the

covariance matrix as in PCA. It is the application of eigendecomposition in kernel space which

allows kernel PCA to perform non-linear mappings.

2.3.9 SNE

Stochastic Neighbor Embedding (SNE) (Hinton & Roweis, 2003) aims to preserve the probability

that a point will ‘select’ another point as its neighbour. The probabilities in the high

dimensional space are calculated using the similarity and distribution of points before a

low dimensional embedding is calculated which aims to preserve these by minimising the

sum of Kullback-Leibler divergences between the high and low dimensional distributions over

nearest neighbours.
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2.3.10 SymSNE

SymSNE (Cook et al., 2007) is very similar to standard SNE with the exception that pairwise

similarities are assumed to be symmetric and are calculated as the mean of the pairwise

similarities calculated in standard SNE.

2.3.11 tSNE

tSNE (van der Maaten & Hinton, 2008) builds on SNE by using the same symmetrical similarity

values used in SymSNE with the addition of using a student’s t-test in the low dimensional

space rather that a Gaussian as is typically used in SNE/SymSNE. This allows some of the

shortcomings of SNE/SymSNE to be overcome when aiming to optimise the cost function of

the low dimensional space.

Using the techniques presented here we will generate a number of embeddings from raw

observation data which can then be used to recall objects which have moved in similar ways as

a result of robot interactions. This will then allow scenes to be recalled which do not contain

the same objects but which do contain objects which we would expect to react in similar ways

when various actions are performed.

2.4 Scene Recall

He we provide an overview of a number of the techniques which could be used in order to

recall collections of objects, independent of the number of objects in the scene. We begin by

exploring a bio-inspired approach based on saccadic eye movements and leaky integrate-and-

fire neuron models. We then look at computer vision techniques which are used to identify

familiar scenes during loop closure, a common problem in SLAM.

2.4.1 Human Vision

Saccadic eye movements are a natural phenomenon when observing and processing visual

scenes. When processing a scene the eyes move between various areas of interest in order

to gather information about the environment. An article from 1997 (Gilchrist et al., 1997)

identified an individual without the ability to move their eyes and compensated for this by

performing saccadic style movements with their head when performing visual tasks, with little

discernible visual impairment. This suggests that saccadic eye movements form a core part of

our ability to process the environment.

The Leaky Integrate-and-Fire (LIF) model of neurons is a simple model of a neuron which

models the electrical properties of a biological neuron as a simple resistor-capacitor model. A

brief summary of the history the LIF model can be found in (Brunel & van Rossum, 2007).
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Generally, a LIF neuron can be modelled as a capacitor, representing the held charge in a

neuron, and a discharge resistor across the terminals of the capacitor, representing the leakage

of ions through the cell membrane, reducing the charge in the capacitor. Once the neuron

reaches a sufficient level of charge it produces an electrical spike, reducing its charge back to

some base level. As incoming spikes from other neurons arrive the level or charge increases,

eventually causing an output spike if the incoming spikes arrive at a sufficient rate.

2.4.2 Computer Vision

A number of techniques exist for analysing scenes in the field of computer vision. In many of

these techniques the analysis takes place in two parts. The first is a static analysis of a single

video frame, extracting features from a raw image feed. The second stage is to correlate these

features between frames, inferring information about how objects in the scene have changed,

or how the camera perspective changes over time.

In many cases, for instance in SLAM scenarios, it can be assumed that the scene will not

change much between frames, meaning that the location of detected features should not

change much between frames. In these cases the proximity of related features between frames

can be exploited to perform more computationally efficient comparisons. In both loop closure

and the kidnapped robot problem, however, we do not have this guarantee of proximity.

In the case of loop closure we are attempting to detect if the scene we are observing matches

part of a generated map which we have already visited before, enabling us to “close the loop”

on the map. Consider the case of a circular corridor for example. A robot could begin its

mapping process using SLAM, only to reach its starting point as part of this process. While

a combination of dead-reckoning and movement estimation from vision aim to minimise

positional error as part of the mapping process they are both noisy approximation methods of

positioning. They also provide relative movement information, meaning that errors gradually

accumulate over the course of the mapping process. As such we may have an estimate of

which part of the map we are currently close to, but it is common for the loop closure process

to assume no knowledge of location. (Eliazar & Parr, 2004) provides further discussion of this

problem, along with a SLAM algorithm which addresses the problem of loop closure, and a

survey of loop closure techniques can be found in (Lowry et al., 2016).

Similarly, the kidnapped robot problem addresses the problem of a robot which has a map of

various locations which is then moved to an unknown location, having no visual input during

the moving process. The problem is then to determine which part of the map it is in when

visual input returns. This is a very similar problem to loop-closure, with the guarantee that no

location information can be used.
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2.5 Summary

In this chapter we have presented an overview of the literature surrounding the ideas presented

in chapter 3 and provided background for the work to be presented in chapter 4. We recap the

relevant content in chapter 4. In the following chapter we describe the production of a dataset

which can be used for the creation of object embedding spaces, and present our work on it.
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Chapter 3

Proposed System & Planning Protocol

Here we detail the scenario which motivated this work and provide a high level architecture for

our proposed planning system. We provide context for the work presented later in this thesis

and justify our decisions to make use of the techniques used when exploring our hypothesis.

3.1 Problem Scenario

Consider a search and rescue situation in which a swarm of robots has been deployed in

order to find survivors in an environment which would prove dangerous for a human search

and rescue team. We are specifically concerned with cases where these search and rescue

operations take place in man-made areas, where it is likely that identifiable objects will be

present.

During the search process, the swarm is performing Simultaneous Localisation and Mapping

(SLAM) and is guided by a frontier-based approach to help ensure that the entire area is

explored without prior knowledge of the area. A new frontier to explore is discovered, however

access is blocked by a collection of objects. In this work we assume that these objects can be

identified individually using object-based SLAM techniques, such as SLAM++.

To enable further exploration the swarm must now develop a sequence of actions that can

be carried out by a subset of the robots present in order to clear the obstruction, and allow

exploration to continue. As the objects can be identified a physics simulation of the obstruction

can be initialised, allowing robots to predict the result of various interactions with the detected

objects.

With this knowledge it is possible for individual robots to begin executing planning procedures.

As the solution space is infinite it is important for robots to be able to search the space efficiently,

making naive search processes unsuitable for this application. Due to its inherant balancing

between exploration and exploitation we propose the use of Upper Conifdence Bounds for

Trees (UCT) for a best-first tree search as a planning algorithm. Similar search techniques
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have already been shown to have applications for real-time action planning scenarios in the

physical travelling sales person problem. Best first seach techniques, specifically Monte-Carlo

Tree Search, have also been shown to be a suitable candidate to be augmented with a memory

system to help with solving complex problems.

Without generalisability, however, there would be no benefit to adding a memory system as,

given the number of possible combinations of items and relative locations, it is highly unlikely

that matching memories would be found. As such, a fuzzy recall method is required for the

scene recall process. We begin by generalising the recall process for individual objects, before

extending to multi-object scenarios. In the case of single object recall we are interested entirely

in the way in which objects behave when they are interacted with, rather than based on visual

information or shape data.

We need only recognise that two books may be visually distinct but behave in very similar

ways when pushed to see that this is the case. Conversely, two equally sized boxes may look

visually similar, and have similar shape and size, but could respond very differently to being

interacted with if their densities are different, or if one has a higher coefficient of friction than

the other.

It could also be the case that objects which do not look alike, and which have different

shapes, could behave in very similar ways to interactions. Consider the case of a book with an

overhanging cover and a small box for instance; the overhanging cover of the book would

cause difficulties for shape matching algorithms, and the visual difference would result in poor

visual matching. Despite this, however, it is quite possible that they can be manipulated in the

same way to produce the same effect.

We propose the use of an Embedding Space to assist with this problem. Based on the idea

of neural word embedding spaces, spaces in which points which represent embedded items

with similar semantic meaning, we aim to develop a space in which objects which behave in

a similar manner to one another are in a similar region of the generated embedding space.

This can be seen as an unsupervised training technique, in which a database of objects to be

stored are presented and, by interacting with those objects, an agent can observe the way an

object responds to being interacted with in various ways. This will produce a large amount of

observation data for each object presented, which can then be used to create an embedding

space. This space is efficient to search, having captured the dynamic behaviour of the objects

in a relatively low dimensional space compared to raw observation of the objects, and has the

useful property that, by construction, objects close to a “query” object aught to behave in a

similar manner to it.

Given that the generation of this embedding space reduces the dimensionality of the object

space compared to the raw data obtained by observing how the object responds to being

interacted with we refer to points in it as “reduced response vectors” (RRVs). When executing

a recall process we can take the RRV of an object identified in the scene and use it to query an
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embedding space which contains all known objects. We know that any RRVs which are a close

match to the query object will behave in a similar way to the query object when interacted

with. As such, given that in all cases we are aiming to clear an obstruction, any information

that we have about moving an obstruction involving the recalled object is likely to be pertinent

to solving the same problem containing the query object.

With a means of capturing the similarity in behaviour of individual objects it is necessary to

expand this recall process to collections of objects in certain configurations, referred to as

“scenes”. Clearly, it is important to capture the location of objects in a scene for meaningful

recall to take place. The lack of a global coordinate frame means that we can consider only

relative positions of objects. With few guarantees on the structure of each scene it is not

possible to simply declare an object as the centre of a scene and use that as the basis of a

coordinate frame for all objects present. As such we consider the relative position between all

pairs of objects when defining a scene. Formally, given a set of objects O, in a scene S, with

pose p(o), a scene is defined as:

S = {∀a ∈ O,∀b ∈ O \ {a}|(a, b, p(a)− p(b))} (3.1)

It is important to note that, with this format, scenes are likely to contain differing numbers

of objects, resulting in different sized scene definitions. This introduces complexities when

recalling scenes as the most relevant memory is not guaranteed to have the same number of

objects as the query scene. Consider a query scene which contains an object which will not be

involved in the manipulation of other objects to clear an obstruction.

At the start of the search process there is no way of filtering this object from the query scene

as it is not known that the object will not play a part in later planning stages. It could be that

the most relevant memory is an almost identical scenario, differing only by the lack of the

uninvolved object. For situations such as this we must make use of recall techniques which

are agnostic to the exact number of items in a scene. We propose two possible solutions to

this problem.

The first takes inspiration from SLAM systems, specifically in the need for loop closure - the

ability of a robot to recognise when it has returned to a previously visited location in order to

“close the loop” in its internal map.

The other is a bio-inspired technique based on saccadic eye movements - the movement of

the focus of the eyes between areas of high information density when observing a scene. By

combining this with a leaky integrator style system, often used in spiking neural networks, we

can model each scene as a single leaky integrator. This allows us to declare a matching recall

in the case that an integrator passes a threshold, in effect causing the “neuron” to fire, or to

simply take the memory with the highest potential when some recall limit has been reached,

be that time based or otherwise.
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With the ability to recall scenes, the search process also needs a way to check if a goal state has

been reached. In our case, a goal state is any state in which a path is available from all robots’

locations to the opposite side of the obstruction. A standard path planning algorithm can be

used for this, with a goal state being one in which the path planning algorithm succeeds.

Path planning is a problem which has many possible solutions and which has been studied

extensively in computer science, and in robotics. As such, we do not consider any path

planning work here. For efficiency, we propose that a 2D path planning process be used, with

a 2D map being generated by simply discarding the Z component of all vertices in an objects

mesh to produce an X, Y projection of the objects in the scene.

The planning process we propose is based on best-first tree seach techniques, modified to be

more applicable to our problem domain. Often, best-first search is used in AI applications in

which a sequence of moves take place, with moves being performed by multiple “players”.

In these cases the order in which moves are played can imply information about opposing

players. As a result of this search nodes representing the same world state, reached through

different action sequences, are considered as distinct elements of the search tree.

In the case of a single agent, however, this is not the case. If a state is reached as a result of

two separate sequences of actions then there is no benefit to having them both in the search

tree. Only the sequence of actions which uses the fewest resources need be considered. Any

future nodes reachable from one node (A) are guaranteed to be reachable from another node

(B) as long as the world state in B is the same as that in A, and as long as the amount of

resources available at node B is greater than or equal to the resources available at node A.

We therefore propose the following modifications to a simple best-first tree search. When

building the search tree we build up a map from encountered world states to search nodes.

When a new node is added to the tree we first check to see if the world state is already

attributed to a search node. If not then we simply add the new node as usual, updating the

state to node map in the process.

If the new node represents an already encountered world state, however, then we need to

ensure that only the more optimal route to that world state is considered. We do so by

comparing the resources available in the existing node (E) with the new node (N). If E has

more resources available then we simply mark the action that generated N as invalid so that

it will not be expanded in future, and we discard the new node.

If N has more resources available, however, we must transfer the descendent nodes of E to

N . As the world states are the same, and the actions available from E are guaranteed to be

a subset of those from N , we can simply transfer each subtree leading from an action in N

to the equivalent action in E. The available resources in the descendants of N must now be

updated. Once this process is completed we can mark the action that generated E as invalid.

Finally, we back propagate from N and E to reflect the new location of the subtree, before
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updating the state to node map.

As this modification means that multiple routes can now lead to the same search node we

ostensibly convert a tree search in to a graph search process, where branches are pruned and

transplanted to other sections of the tree as appropriate. As such we refer to this process as

Transplanted Tree Search (TTS).

Best first searches (and therefore TTS) require a utility function which determines the

anticipated quality of a given state. When applying UCT this state score is then used to

balance exploration and exploitation in order to effectively cover the search space. In our case

we propose that the smallest gap along any path found from the current position of the robot

to the target location is used as a state utility function. A score of widthmin
widthrobot

is given to a state,

where widthmin represents the width of the smallest gap along a discovered path, or 0 when

no path is found, and widthrobot represents the width of the robot when travelling forwards.

By using this scoring mechanism a score of 0 is awarded to a state when no path is available,

and a score of ≥ 1 is given to a state in which a valid path is found.

While a simple binary score of 0 or 1, depending on the availability of a path which the robot

can traverse, could also be used it would not bias the search in the early stages. A binary score

would only provide any feedback when a valid solution is found, leaving all of the biasing in

the search process to the memory system.

In order to combine TTS and our proposed recall system to produce an experience based

version of TTS (which we refer to as EBTTS) we simply add a third term to the UCT function.

The standard UCT function is defined as

UCT (i) =
si
ni

+ C

√
lnN

ni

where i represents a given move, si is the expected “score” of the state which i leads to, ni
is the number of times we have explored the action, and N is the number of times we have

visited this node.

The first term in the UCT function exploits our existing belief about the state of the world after

we perform an action. The second term is used to bias the search to underexplored areas of

the search space. We can add a further bias to this function by simply recalling our knowledge

of previously encountered problems.

If we have previously encountered a similar problem then we already have some knowledge of

the utility of various actions in the previous problem. If the previous problem and the current

one are similar enough then we can reuse this knowledge to bias us toward actions in the

current problem which are more likely to lead toward a goal state. If we have encountered the

exact same problem before then we should give a higher priority to our existing knowledge

than if we have only encountered a slightly similar problem. As such, the experience based

UCT function (EBUCT) should takes the form
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UCT (i) =
si
ni

+ C

√
lnN

ni
+R q(s,m) e(i,m)

where R is a constant factor, used to balance the influence of recall, q(s,m) is the “quality” or

similarity of the most appropriate memory (m) relative to the current scene (s), and e(i,m) is

the expectated score of move i as stored in memory m.

Although not explored in this work it is expected that new memories would be retained

when a scene is encountered during the search process which is sufficiently different from

any other scenes currently in the agent’s memory. There a numerous ways which could be

used to determine when a sufficiently unique scene is encountered, however the analysis and

development of such techniques is beyond the scope of this thesis.
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Chapter 4

Object Recall

In this chapter we address the challenge of allowing an agent to recall objects which they

have experience of interacting with in a way which allows knowledge transfer between these

objects. As noted previously, for the problem domain we are concerned with, we are concerned

with the ability to recall objects which behave in similar ways when interacted with by the

agent.

We begin by introducing the motivation for the work in this chapter, before briefly recapping the

dimensionality reduction techniques presented in chapter 2. Then, we describe the benchmark

dataset which was created to facilitate this work and which is available for future work. We

then present the experimental methodology used to compare the generated embeddings.

Finally, we summarise our findings in this chapter.

The work presented in this chapter has previously been published in (Redpath et al., 2017).

4.1 Introduction

Robots often operate in structured environments when deployed for practical applications,

with those applications ranging from domestic assistance robots to search and rescue. As

these environments are predominantly man-made it is not uncommon for robots to operate in

environments in which they are surrounded by repeated, identifiable objects. Furthermore,

these objects are likely to be arranged in similar configurations to one another, for instance a

chair tucked under a table, or a book on a shelf. It therefore seems beneficial for robots to be

able to make use of these repeating objects and structures in order to help accelerate action

planning when new problems are encountered, if they have already solved a similar problem

in a similar environment.

In order to make use of these existing solutions the robot must be able to recall a collection of

objects in a specific configuration, known here as a “scene”. For our purposes a scene can be

fully defined by a set of objects, and their locations relative to one another. When attempting
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to recall these scenes, however, it is beneficial to be able to transfer solutions to guide searches

between scenes which not only contain the exact same objects, but also objects which react

in similar ways. A simple example of this could be a book and a box of similar size. The

objects would be identified as different types of object, however any solutions which contain a

book are likely to be beneficial to problems containing a box in a similar location. As such, it

is important that objects can be recalled based on the way they react to the robot’s actions,

rather than how they look or what their shape is explicitly.

With the requirement of recalling objects based on the way they respond to interaction in mind

we now aim to find a computationally efficient way in which to quantifiably compare two

objects in order to enable recall of complete scenes. The requirement of quantifiable similarity

is derived from a desire to adjust the impact recall has on biasing a search process based on

scene similarity. When similar scenes are found in memory they should have a greater impact

on the search process than scenes which have very poor similarity.

To this end we explore the application of a number of dimensionality reduction techniques to

raw observations of object movement in order to produce a lower dimensionality representation

of each object. This lower dimensionality representation can then be used to compare objects

in a generic manner which will allow extension of individual object recall to various forms of

scene recall. To the best of our knowledge, this is the first time work has been carried out to

explore the ability to recall objects based on how they react to robot manipulation.

As a result, this work gives rise to two key contributions. The first is a benchmark dataset

which can be used for any future efforts to explore this problem. The second is the exploration

of various dimensionality reduction techniques.

4.2 Related Work

In this section we provide a brief overview of each of the dimensionality reduction techniques

we have analysed: Principal Components Analysis (PCA), Sammon mapping, Isomap, Landmark

Isomap, Local Linear Embedding (LLE), Laplacian Eigenmaps, Kernel PCA, SNE, SymSNE and

tSNE. The key features of how each technique works are provided.

PCA (Hotelling, 1933) finds a linear subspace in which the principal axes are aligned along

the directions of highest variance in the data to be reduced. By discarding the dimensions of

this subspace which represent the lowest variance we can reduce the dimensionality of the

space while retaining as much information as possible.

One of the weaknesses of PCA is that it gives little focus to preserving small pairwise distances

which help define the structure of the data cloud. To combat this Sammon mapping (Sammon,

1969) produces a similar embedding to PCA however gives higher precedence to small pairwise

distances. In both PCA and Sammon mapping we aim to minimise a cost function which
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contains a sum of functions of pairwise distances. Sammon mapping scales each term in this

summation by the inverse of the initial pairwise distance.

Isomap (Tenenbaum et al., 2000) aims to retain pairwise distances of points which lie on a

manifold in the original space. Isomap creates a graph of nearest neighbours and uses the

pairwise geodesic distance across this graph as target distances to retain in the low dimensional

embedding. This has the effect that curved manifolds can be “flattened” by the embedding,

however it is also possible for sections of the manifold to be connected incorrectly resulting in

many geodesic distances being underestimated and, ultimately, a poor embedding.

Landmark Isomap (Silva & Tenenbaum, 2003) aims to reduce the computational complexity

of standard Isomap by performing the most expensive operations on a subset of the data. A

subset of datapoints, referred to as landmarks, are selected and MDS is applied to produce a

low dimensional embedding of the landmarks. The distances of each point to these landmarks

is then used to produce a low dimensional embedding of the remaining points.

Local Linear Embedding (LLE) (Roweis & Saul, 2000) calculates the position of each point in

the high dimensional space as a linear combination of its nearest neighbours, working under

the assumption that the manifold on which the data lies is locally linear. A low dimensional

embedding is then found which aims to allow each of the embedded points to be reconstructed

from a linear combination of its neighbours using the same weights as were used in the higher

dimensional space.

Laplacian eigenmaps (Belkin & Niyogi, 2003) attempt to maintain the distance between each

point and its nearest neighbours by producing a nearest neighbour graph before minimising

a cost function in which the distance of each edge to a neighbour in the low dimensional

embedding is weighted based on the same distance in high dimensional space. This can be

defined as an eigenproblem and solved appropriately.

Kernel PCA (Schölkopf et al., 1998) is, as its name suggests, a variant of PCA in which a kernel

is first applied before eigendecomposition is performed on the kernel matrix as opposed to the

covariance matrix as in PCA. It is the application of eigendecomposition in kernel space which

allows kernel PCA to perform non-linear mappings.

Stochastic Neighbor Embedding (SNE) (Hinton & Roweis, 2003) aims to preserve the probability

that a point will ‘select’ another point as its neighbour. The probabilities in the high

dimensional space are calculated using the similarity and distribution of points before a

low dimensional embedding is calculated which aims to preserve these by minimising the

sum of Kullback-Leibler divergences between the high and low dimensional distributions over

nearest neighbours.

SymSNE (Cook et al., 2007) is very similar to standard SNE with the exception that pairwise

similarities are assumed to be symmetric and are calculated as the mean of the pairwise

similarities calculated in standard SNE.
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tSNE (van der Maaten & Hinton, 2008) builds on SNE by using the same symmetrical similarity

values used in SymSNE with the addition of using a student’s t-test in the low dimensional

space rather that a Gaussian as is typically used in SNE/SymSNE. This allows some of the

shortcomings of SNE/SymSNE to be overcome when aiming to optimise the cost function of

the low dimensional space.

4.3 Description of Dataset Generation and Format

Here we describe how the dataset used was generated. We explain the setup of the simulations

which were used to create raw movement logs and the format of the data in the published

dataset, available at https://www.richardredpath.co.uk/research.html.

When carrying out this work we made use of three datasets to evaluate the techniques explored.

These datasets are designed to explore the behaviour of the embedding techniques on simple

objects with few different classes of object (referred to as the “primitive” set); complex objects

which are more representative of items which are likely to be encountered in deployed systems

(referred to as the “complex” set); and a combination of these two sets, allowing for analysis

of the techniqes on larger datasets which may contain a number of very similar objects along

with a number of very specific objects (referred to as the “combined” set).

The “primitive” set is a procedurally generated set of cuboids and spheres of various sizes. As

this set only contains two classes of object it has the benefit of allowing visual examination of

the results in order to gain greater insight in to the behaviour of any embedding techniques.

The “complex” set conatins meshes which were taken from the KIT object database (Kasper

et al., 2012). The KIT object database is a collection of OBJ mesh files of various household

objects which have been 3D scanned and so provides a highly detailed representation of a

large collection of real world objects. In order to increase computational efficiency and reduce

noise in the physics simulations the meshes in this dataset were heavily simplified using a

mesh simplification algorithm available at (Forstmann, 2016).

The “combined” set is simply the combination of these two sets.

All of the mesh files used for the creation of this dataset were in OBJ format. Each object

is loaded in to a simple scene in the V-REP simulator, which contained only a robot and the

object. The robot used is the default ePuck simulation provided with the V-REP simulator. As

objects are loaded their mass is determined using a denisty of 200 kg per cubic meter. The

object under observation is placed at the centre of the arena, with the robot placed 3m away

from the object. The relative position and orientation of the robot and object are detailed

below.

When the simulation starts the robot stays still for 5 seconds, which allows time for the object

to settle in to a stable position. After 5 seconds the robot begins to move forward at a constant
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speed with both wheels set to a target velocity of 2 radians per second. As the robot moves

forward it contacts the object, pushing it in the arena. In many cases it is likely the both the

object and the robot will be impacted by this interaction. The position, orientation, linear

velocity, and angular velocity of both the object and robot are logged at every time step, 50ms

in these simulations. We also log any times in which the robot and object make contact to

allow for more targeted processing.

While the robots used in these experiments do not have visual sensors of their own they are

used simply as an example of an agent interacting with its environment. As a SLAM system

would be required for any of the planning processes described in this work we assume that

such a system is also available for this training phase. It is expected that in any deployed

system a SLAM system would be available. There are many forms this system could take, with

an overview of some of the more common techniques presented in chapter 2.

To derive the inital location of the robot we consider the bounding box of each object, providing

a total of six faces which can be oriented downwards. For each of these six faces there are four

faces which are facing “outwards” from the object, giving a total of twenty four faces from

which can object can be approached. For each of these faces we position the robot a fixed

distance of 3m away from the bounding box and run 5 simulations per face: 1 with the robot

aligned with the center of the face, 2 at an offset of +/-20% of the face width, and 2 at an

offset of +/-40%. A graphical representation of this can be seen in Figure 4.1. This results in

a total of 120 interactions per object.

We capture the observation data for each run in two separate log files. The first is a csv file

which conatins the position, orientation, linear velocity and angular velocity of both the object

and robot at each time step. The second is a list of time steps during which a collision was

registered by the simulation’s physics engine.

Each of these logs is provided in three formats: one which contains the data for only the robot,

one for only the object, and one which contains the data for both robot and object.

The logs provide a means of tracking how an object and robot have moved over a 15 second

period, during which they interact, from a variety of starting configurations. We extract the

position and orientation of both the object and the robot at multiple time steps and use how

they both move to produce a low dimensional embedding space with the aim of capturing

similarity between how objects move. These logs are released to be used as a benchmark

dataset for future attempts at this problem.

4.4 Analysis of Recall Quality for Embeddings and Views

Here we look at the application of the techniques listed earlier, and which are described in

greater detail in chapter 2. We begin by defining the term “views” as we use it here and
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Figure 4.1: Simulation setup used to capture how objects move when interacted with. Robots
are initialised to each of the grey circle positions and objects are aligned such that the axes of

their bounding boxes align with the axes of the world. After 5 seconds of simulation the
robots begin to move forwards. Position, orientation, linear velocity and angular velocity are

all logged for both the robot and object every 50ms. The timestamp of the simulation in
which contact occurred between the robot and the object are also recorded.

present the views of the data which we explore.

4.4.1 Definition of Data Views

At the time that the work was carried out it was unclear which features of the object and

robot motion would be most important to produce a high quality embedding. We therefore

looked at various subsets of this data in order to determine which provided the highest quality

embeddings. Each of these subsets are referred to as a “view” of the data.

The features collected during simulated interactions were: position(p), orientation in Euler

angles (e), orientation as a quaternion (q), linear velocity (l), and angular velocity (a). Clearly,

the position and orientation of each object will be important for any scenario in which we

wish to manipulate objects in the environment and so they are included in all of the views

explored. As two forms of orientation dat were available both were explored. It was unclear
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if the addition of information regarding the linear and angular velocity of the objects in the

scene would be beneficial and so views were explored with and without these features.

This results in a total of eight views of the data, with each view containing positional data,

orientation data in either Euler angles or quaternion form, and optionally velocity data.

Each of these views are named based on the letters assigned above. As an example the view

which contains positional data, Euler angles, and angular velocity but not linear velocity

is referred to as “pea”. A summary of which views contain which features is provided in

Table 4.1.

View Position Euler Angles Quaternion Linear Velocity Angular Velocity
pe X X
pea X X X
pel X X X
pela X X X X
pq X X
pql X X X
pqa X X X
pqla X X X X

Table 4.1: Features included in each “view” of the data. A checkmark indicates that the
feature is present in the appropriate view. All views contain the position of the object and the
orientation of the object in either Euler angle or quaternion form. Each view may also contain

the linear and angular velocity of the object and robot.

4.5 Experimental Methodology

Here we present the methodology used to extract the data used as the basis for dimensionality

reduction. We then present the evaluation metric used to compare the performance of both

dimensionality reduction techniques and the views explored.

For each object in a dataset we extract the appropriate features for the view being explored,

as defined in Table 4.1. The data from these views is then filtered to only include snapshots of

the simulation data at multiple time points for every starting configuration. These extracted

features are then stacked to give a single point in “observation space”, which is used to

represent the object.

We then combine the filtered data for each object to produce a dataset which is used for

dimensionality reduction. To each of these sets we apply each of the dimensionality reduction

techniques investigated to the entire collection of points, resulting in a low dimensional

embedding space which contains a single point for each of the objects we are interested in.
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4.6 Evaluation Metric

As the aim of the created embedding spaces is to allow efficient comparison of objects we

quantify the performance of each technique as the average difference between an object’s

coordinate in observation space and the coordinates in observation space of each of its nearest

neighbours in the embedding space.

We quantify the error of a particular technique as:

E(t) =
∑
s∈S

∑
n∈N(s,t)

|o(s)− o(n)|
5

Here, S is the set of shapes the embedding space has been generated from, N(s, t) is the set

of 5 nearest neighbours of shape s in the embedding space generated by technique t and

o(s) is the position of shape s in observation space, i.e. the vector generated by stacking all

observations of the shape s. It was decided to use the 5 nearest neighbours for this dataset in

order to extend the neighbourhood outside of near identical objects, but without extending

excessively far in to a relatively small database of objects. It is likely that the most appropriate

neighbourhood side is dependent on the size of the training set, and the variety of objects in

it. Investigating a way to determine the ideal neighbourhood size is beyond the scope of this

work.

This error metric is show in Figure 4.2 and Figure 4.3. The points in the upper halves of

these images represent the observed behaviour of the objects, with the points in the lower

half representing the calculated embedding. In practice the observation points would be in a

high dimensional space, with the embedding points in a far lower dimensional space. The

light green point represents a single shape s from the equation above, with the darker green

points surrounding it representing its neighbours n. The nearest neighbours are taken in the

embedding space, and their corresponding points in the observation space are also highlighted.

The left hand diagram represents a successful embedding with the nearest neighbours in the

low dimensional space also being situated close to the query object in the high dimensional

space. The right hand image, however, gives an example of a poorly performing embedding,

with the nearest neighbours in the low dimensional space representing objects which do not

behave similarly to the query object when viewed in the observation space.

4.7 Results

We now present the results of the techniques explored to the primitive dataset, the complex

dataset and the combined dataset. In order to create these embeddings we utilised the Matlab

Toolbox for Dimensionality Reduction released along side (van der Maaten et al., 2009).

With no information about the spatial distribution of the observation space we apply a range
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Figure 4.2: A successful embedding.
The neighbours (dark green) of the
query object (light green) are close

together in both the observation
space (top) and embedding space

(bottom)

Figure 4.3: A poor embedding. The
neighbours (dark green) of the query
object (light green) in the embedding

space (bottom) do not represent
objects which are close together in
the observation space (top). This
indicates that information about

which objects behave in similar ways
has been lost during the embedding

process.

of techniques which are best suited to various types of data. This allows us to produce a

collection of low dimensional spaces which could potentially used for object recall. In all cases

we made use of the default parameter values of the Matlab toolbox.

Results for all three datasets (primitive, complex and combined) are provided in Figure 4.4,

Figure 4.5 and Figure 4.6 respectively. Results are rounded to integer values. As can be seen

from these PCA and Sammon Mapping both result in the lowest error scores (as defined in

section 4.6) with tSNE also having consistently low scores.

Vargha-Delaney A-test scores (Vargha & Delaney, 2000) were calculated and showed no

significant difference between any of the views of the data we looked at. That is to say, no

particular view of the data provided a significant benefit over any other once dimensionality

reduction had been applied.
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Figure 4.4: Embedding results for the Primitive dataset (lower scores are better). PCA,
Sammon mapping, and tSNE consistently perform well. KernelPCA, SNE and SymSNE have

high error scores in all cases when compared to the results of other methods.

Figure 4.5: Embedding results for the Complex dataset (lower scores are better). As in
Figure 4.4 PCA and Sammon mapping perform well. In this case, with more complex data,

tSNE does not seem to perform as well as it does in the Primitive dataset. This suggests that,
while tSNE performed well for simple shapes, it may be less applicable for real world

applications. KernelPCA, SNE and SymSNE, again, all have high error scores.

4.8 Distribution of Object Recall Quality

Having identified PCA as the most appropriate technique for dimensionality reduction we now

analyse the distributions of individual object recall for each view of the data when PCA is used.
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Figure 4.6: Embedding results for the Combined dataset (lower scores are better). As
expected, based on the results presented in the individual data sets (Figure 4.4 and

Figure 4.5), PCA and Sammon mapping perform best, followed by tSNE with KernelPCA, SNE
and SymSNE performing worst.

Primitive Complex Combined
PCA 0.092 0.168 0.295

Sammon 4.513 12.461 22.656
Isomap 0.462 1.372 2.989

Landmark Isomap 0.180 0.451 0.936
LLE 0.497 0.986 1.545

Laplacian 0.405 0.762 0.780
KernelPCA 0.140 0.298 0.484

SNE 16.986 36.327 58.334
SymSNE 16.073 35.353 56.476

tSNE 1.563 3.299 5.133

Table 4.2: Time taken (in seconds) for each technique to generate embeddings for each
dataset. Times are calculated using the Matlab ‘tic’ and ‘toc’ commands when generating

embeddings for all views of the respective datasets. Despite the quality of the embeddings
generated (presented in Figure 4.4, Figure 4.5 and Figure 4.6) Sammon mapping is far more

computationally expensive and so, in this case, we feel PCA is the most suitable option.

We also investigate the error distributions for each technique over the ‘pq’ view of the dataset.

Figure 4.7 shows the distribution of errors when each of the explored techniques is applied to

the ‘pq’ view of the data. As can be seen more clearly here Sammon mapping and PCA have

similar distributions of individual object recall error as well as there being very little difference

between their overall error scores.

Figure 4.8 shows how PCA performs when applied to each of the eight views of the combined

dataset. It can be seen more clearly here that the choice of orientation representation (Euler
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Figure 4.7: Distribution of individual object recall error using an embedding generated by
various techniques on the ‘pq’ view of the combined dataset. A-test scores show no significant

difference between PCA, Sammon mapping and tSNE or between KernelPCA, SNE and
SymSNE.

angles vs quaternion) and the inclusion of linear and/or angular velocity makes very little

difference to the quality of the generated embedding space. This is supported by A-test scores

which also show little difference between the views.

4.9 Runtime of Dimensionality Reduction Techniques

As the target application for these techniques is recall onboard a mobile robot, which may

have limited compute resources, we also analyse the run time of each technique. The values

provided in Table 4.2 are the total times required, in seconds, to produce the embedding of all

eight views of the data using each technique for each dataset.

It is not anticipated that embedding will need to be regenerated on a regular basis, however

each time a new object is discovered and added to the memory it may be necessary to add the
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Figure 4.8: PCA error distribution when embeddings are generated from each view of the
combined dataset. Here we see very little difference between the distributions of recall error.

A-test scores show that there is only a small difference between all of the views.

object to the embedding, which requires complete recalculation for many techniques.

Although PCA and Sammon mapping produce the best results in individual object recall, with

A-test scores showing no significant difference between them, it should be noted that the run

time of Sammon mapping is approximately 2 orders of magnitude slower than that of PCA.

The increased run time of embedding generation suggests that the difference in error score

between Sammon mapping and PCA is not significant enough for Sammon mapping to be

considered a more appropriate technique in this case.

4.10 Summary

In this chapter we have presented a new dataset which can be used to benchmark the problem

of object recall based on experience interactions. Prior to this work no benchmark set was

available as the problem had not been investigated.
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We have also presented the results of various dimensionality reduction techniques applied

to this dataset for the purposes of object recall. We have shown that PCA performed on the

position and orientation of a robot over multiple timesteps, including or excluding linear

and angular velocity data, produces the highest quality embedding spaces of the techniques

we have explored, and also requires the least computational time to produce. These results

provide a basis for future work which could allow for scene recall techniques which could be

used to accelerate expensive planning processes when robots encounter new problems.

We have also shown that the addition of information is not necessarily beneficial to producing

a higher quality embedding space, and that more complex techniques do not necessarily result

in higher quality embeddings.

We believe that this is an incredibly interesting area of research, and one which could provide

tremendous benefit to autonomous robotic systems where planning is required. This area

could provide even greater utility in scenarios where robots are deployed for extended periods

and are expected to learn about and adapt to their environment in an unsupervised manner.
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Chapter 5

Summary

In this thesis we have presented an analysis of multiple dimensionality reduction techniques

which can be used to produce relatively low dimensional embedding spaces for efficient recall

of individual objects. These embedding spaces are designed in such a way that knowledge

transfer can take place between objects, as the spaces are optimised to place objects together

based on the way they react to manipulation by a robot or other agent. Being able to recall

objects based on similarity of how those objects can be manipulated allows for knowledge

transfer of potentially useful actions between collections of recognised objects which are

positioned in similar layouts and has not previously been explored.

We have also proposed several changes to best first search techniques, primarily based around

Monte-Carlo Tree Search. These changes allow the application of best first search techniques

to more complex search problems and potentially make some previously compuationally

intractable problems solvable by manipulating the way the search space is explored, and by

biasing the search process towards areas of the seach space which were believed to be fruitful

when performing previous searches.

5.1 Contributions

The primary contributions from the work carried out in the production of this thesis are as

follows:

5.1.1 Object Embedding Dataset

Prior to the work carried out and presented here the problem of recalling objects based on the

way the can be manipulated and interacted with, to the best of our knowledge, had not been

explored. As a result there were no benchmark datasets or results to be used when this work

began. To this end, a dataset was developed which was used for the experiments presented in
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this work.

The dataset developed to carry out this work has been made publically available and can be

used in any future work to produce similar recall techniques.

5.1.2 Analysis of Dimensionality Reduction Techniques for Object Recall

The object recall dataset developed and presented above has been used to explore the

applicability of various dimensionality reduction techniques to the problem of individual

object recall. We have analysed the performance of these techniques to several views of the

objects in the embedding dataset and shown that Principal Components Analysis performed

on the position and orientation of a robot and object resulted in the strongest performing

embedding of the dataset of the techniques investigated.

We have also shown that there is no significant difference between which form of orientation

data is used (quaternion or Euler angle) and that the addition of linear and/or angular velocity

data provided no significant benefit to embedding quality.

5.1.3 Transplanted Tree Search (TTS)

We have proposed changes to Monte-Carlo Tree Search which allow its application to single

agent planning applications where a complete action sequence is required rather than

knowledge of the next move to take. These changes also remove the possibility of producing a

search tree which contains multiple routes to the same world state, and removes the potential

of infinitely deep action sequences which do not modify the state of the world but do use up

resources.

5.1.4 Experience Based Transplanted Tree Search (EBTTS)

Finally, we have presented a process we have termed “Experience Based Transplanted

Tree Search” (EBTTS). EBTTS extends TTS to also take in to account previously solved

or encountered problem to bias the search process of TTS towards areas of the search space

which are believed to be more likely to contain valid solutions.

5.2 Future Work

There are many potential future directions in which this work could be taken. There are still

many different dimensionality reduction techniques which may prove useful for object recall.

These include neural network based techniques, which may be more applicable to online
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adaptation, as well as many extra techniques which are prevalent in the field of machine

learning.

Building on the results presented here for single object recall it should also be possible to

explore various techniques which allow individual object embeddings to be combined to allow

scene recall to take place. Some proposed approaches to this problem have been presented

here, however they were not explored in detail and could provide an exciting opportunity for

later work.

Implementation of TTS and EBTTS, both proposed here, could be an extremely powerful tool,

allowing for expensive search processes to take place on resource constrained platforms such

as autonomous mobile robots. We believe that these techniques could prove to be incredibly

fruitful in allowing autonomous multi robot systems to explore more complex and challenging

environments than previously possible.
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