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Abstract 

Meckel-Gruber syndrome (MKS) and Joubert syndrome (JBTS) are rare autosomal 

recessive genetic disorders caused by genetic defects in proteins responsible for primary 

cilia formation, maintenance or function. Primary cilia regulate essential cellular and 

developmental processes and have a complex compartmentalized organization. This project 

focuses on transmembrane proteins (TMEMs) that form the “MKS/JBTS functional module” 

at the ciliary transition zone compartment. These include TMEM17 TMEM67, TMEM138, 

TMEM216, TMEM231 and TMEM237 that, when mutated, cause MKS or JBTS. The detailed 

biochemical and genetic interactions that form this functional module remain unclear. 

This project describes biochemical and cell biological approaches to understand the 

functional roles of ciliary TMEMs. Biochemical interactions were defined through a series of 

co-immunoprecipitation assays of epitope-tagged and endogenous ciliary TMEM proteins. 

This showed that TMEM17 interacts with TMEM138, TMEM237, TMEM216, TMEM67 and 

the intraflagellar transport protein IFT88. Tandem affinity purification (TAP) followed by 

mass spectroscopy confirmed that TMEM17 interacted with TMEM237. In addition, 

reciprocal biochemical interactions confirmed novel interactions between TMEM237-

TMEM216 and TMEM237-TMEM17. TMEM17 also interacted with the pre-mRNA splicing 

factors (PRPF8 and PRPF6) that do not have an established role in the ciliary apparatus. 

Genetic interactions were also determined between ciliary TMEMs and other ciliary 

proteins (RPGRIP1L, CEP290 and IFT88) chosen because they localize to different ciliary 

compartments and appear to form distinct functional modules. Genetic interactions were 

inferred from co-localization studies in 3D reconstituted confocal microscopy images 

following a series of RNAi knockdowns. This highlighted the significance of the TMEM17-

TMEM67 genetic interaction in organizing ciliary sub-compartments. Finally, both 

biochemical and genetic interactions delineated the existence of a novel complex between 

TMEM237, TMEM17 and TMEM138 with the ciliary protein IFT88. These results provide new 

insights into how ciliary trafficking and ciliogenesis could be mediated through interactions 

with TMEM components at the ciliary transition zone. 
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Chapter 1 Introduction 

1.1 History of cilia 

The cilium or flagellum is the oldest known cellular organelle and was first observed 

at the end of the seventeenth century by the Dutch microscope maker Antoni van 

Leeuwenhoek. The first time that he saw ciliated protozoa he described them as having ‘thin 

little feet’ as defined in Leeuwenhoek’s 1677 paper (Lane, 2015, Dobell, 1932). The term 

“cilium” (from the Latin, meaning hair or eyelash), was most likely used by Otto Müller in 

1786 (Beales and Jackson, 2012, Müller, 1786). Cilia were originally defined by their motile 

function and this was thought to be the only function of these little hair-like structures. In 

1834, Purkinje and Valentin were the first to describe ciliary motility in mammals in which 

cilia found lining most of the respiratory tract moved mucus out of the airways (Wang et al., 

2010, Purkinje JE, 1834). It was not until the end of the nineteenth century, that 

Zimmermann (1898) first observed another class of solitary cilium in mammalian cells, 

referring to them as central flagella (Bloodgood, 2010, Zimmermann, 1898). They were 

renamed “primary cilia” in 1968 (Sorokin, 1968); Zimmermann was also the first scientist to 

hypothesize a sensory function for these organelles but they received little attention 

thereafter (Bloodgood, 2010, Zimmermann, 1898). In the 1950s, interest in cilia rapidly grew 

and increased further from the late 1970s. A ground-breaking observation in 1976 was the 

association of motile cilia with primary ciliary dyskinesia (PCD) by Bjorn Afzelius (Afzelius, 

1976, Praveen et al., 2015). Considerable progress was made at that time in understanding 

ciliary structure by using electron microscopy techniques (Satir, 2017, Moser et al., 2014). 

Although motile cilia were studied intensively in previous decades, primary ‘non-

motile’ cilia were widely considered to play a very minor role in cellular events and were 

thought to be a vestigial structure (Ke and Yang, 2014). However, in the last twenty years, 

research has emphasized the importance of primary cilia, which are now thought to play an 

essential role in sensing and transducing cellular signals. For instance, primary cilia, also 

called sensory cilia, play a crucial role in vertebrate development (Chih et al., 2011) and can 

sense and mediate a wide variety of signals such as Sonic hedgehog (SHH) signalling, 
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Wingless-type MMTV integration site (Wnt) signalling and other paracrine signalling 

pathways (Lee et al., 2012). Therefore, primary cilia appear to perform crucial functions for 

human health and their dysfunction causes human disease. 

 
1.2 The classification of cilia 

Cilia, with their hair-like structure, are highly conserved microtubule-based 

organelles that protrude from the surface of most vertebrate animal cells (Czarnecki and 

Shah, 2012) and are conserved in a wide variety of eukaryotic species throughout their 

evolution (Sasai and Briscoe, 2012). Primary cilia occur on the apical surface of most 

mammalian cells in G0/G1 of the cell cycle (Szymanska and Johnson, 2012) and their 

structure is distinct from the surrounding cytosol and plasma membrane (Yoder, 2007). 

Although cilia are present in many eukaryotic animal cells (Takeda and Narita, 2012), they 

appear to have been lost in many seed plants, most Fungi and Amoebozoa even though 

spermatozoa in some of these species have motile cilia in the form of flagellae (Nevers et 

al., 2017). Cilia are classified according to their microtubule components and functions as 

described in Figure1.1 and discussed below in sections (1.2.1) and (1.2.2). 
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Figure 1. 1: A comparison of the cross-sectional diagram of motile and primary cilia and 
system location. Examples of tissue and cell types associated with disorders of each type of 

cilium indicate in tables. Examples of cell types harbouring each type of cilium show in black 

rectangles. References are giving in the text. (A) Two cross-sectional views of motile cilia 

seen from the proximal end containing the canonical nine doublet microtubules and two 

central pair microtubules features with outer/inner dynein arms and radial spokes (left 

panel) and nodal cilium seen from the proximal end containing a 9 + 0 arrangement that 

lack the central pair of microtubules (left panel). (B) A cross-sectional view of a sensory non-

motile cilium showing the nine doublet microtubules and lack of dynein arms and central 

pair microtubules (right panel). The figure is adapted from (Bernabe-Rubio and Alonso 

2017). 

 
1.2.1 Motile cilia  

An organized microtubule-based axoneme is the core of a motile cilium. Most motile 

cilia consist of a so-called “9+2” configuration of microtubules by which nine peripheral 

microtubules surround a central inner pair (Chilvers and O'Callaghan, 2000, Fretzayas and 

Moustaki, 2016). The nine peripheral doublets connect to the central pair by radial spokes; 

this connection is called nexin links (Fretzayas and Moustaki, 2016) as shown in Figure 1.1 A. 

Motile cilia have also motor proteins, the outer and inner dynein arms, link to the outer 

microtubules and provide energy for cilia motility and only present in specific tissue or cells 

(Hsiao et al., 2012, Satir and Christensen, 2007) ( see Figure 1.1 A). Each cell can display up 

to 200–300 motile cilia, enabling a powerful and co-ordinated motion of the extracellular 
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fluid (van Reeuwijk et al., 2011) or move mucus such as a ciliated epithelium cell which 

beats in a coordinated fashion providing the respiratory epithelial defence mechanisms 

(Fretzayas and Moustaki, 2016). In general most motile cilia or flagella only move back and 

forth with a whip-like motion (Hirokawa et al., 2006). They are found on multiciliated cells: 

epithelial cells in the lungs and brain ependymal cells, in the olfactory bulb, and in the 

female reproductive system as well as in male sperm cells; Figure 1.1 shows some examples 

of tissues and  phenotypic manifestations of the disease in each types of cilium (Huang et 

al., 2009b) and the figure is adapted from Bernabe-Rubio and Alonso (2017). 

Since the structures of the motile cilia are known to be conserved, many studies 

have identified a clear link between motile ciliary function and human inherited disease: 

Mutations that affect proteins that are components of specific ciliary compartments (such 

as the basal bodies, microtubules and intraflagellar transport) tend to manifest as inherited 

disease phenotypes that reflect the function of both the disrupted compartment and the 

category of cilium. For example, mutations in dynein arms in motile cilia, or components 

that assemble dyneins, result in a more limited range of disease phenotypes, specifically 

primary ciliary dyskinesia (PCD) (MIM: 244400) (Ostrowski et al., 2011) that is distinct to the 

broader and more severe phenotypes of other ciliopathy phenotypes (see section 1.6.1.1; 

Figure 1.7). In addition, 50% of PCD patients have situs inversus totalis and, less commonly, 

heterotaxy and congenital heart disease which reflect a dysfunction of embryological nodal 

cilia (Leigh et al., 2009) that are critical for left-right axis determination (Garcia-Gonzalo et 

al., 2011). Situs inversus totalis (type 1) is also called situs inversus dextrocardia and is 

characterized by a complete left-right mirror reversal of the visceral organs: the heart and 

other internal organs. This is usually a recessive disorder: PCD in association with situs 

inversus totalis, known as Kartagener syndrome. Situs inversus type 2 is characterized by 

levocardia, when the heart lies on the left side of the body and the liver and spleen lie on 

the right and is usually associated with cardiac anomalies (Abdullah et al., 2015). 

Furthermore, male infertility is a common clinical feature of most PCD patients 

(Bisgrove and Yost, 2006) which reflects defects in sperm tail axonemes. Moreover, most 

PCD patients (70-80%) present in the neonatal period with respiratory distress, indicating 



 5 

that motile cilia are essential for pulmonary mucus clearance of fetal lung fluid (Leigh et al., 

2009, Hossain et al., 2003). 

Motile cilia have sensory functions, in addition to motility, in order to detect the 

external environment. (Braiman and Priel, 2008, Gheber et al., 1995) and Braiman and Priel, 

2008 supported this notion by indicating that motile ciliary beat changes in response to 

viscous load, phorbol esters and adenosine triphosphate (ATP). However, these 

observations do not provide an explanation of any underlying mechanisms. Shah et al. 

(2009) suggested that motile cilia had a sensory function by demonstrated that motile cilia 

of human airway epithelia have a unique chemosensory role. They indicated that motile cilia 

co-localized to these cells and express sensory bitter taste receptors. These receptors 

increased intracellular Ca
2+ 

concentration and stimulated ciliary beat frequency; according 

to Mitchison and Valente (2017), the associations between motile and non-motile sensory 

ciliopathies are unclear, but clinical investigations indicated overlapping features that 

include embryonic left-right axis patterning, infertility and congenital hydrocephalus. 

Therefore, motile and non-motile cilia are now thought to act as the “antennae” of the cell 

(Ke and Yang, 2014). It is notable that both motile and primary cilia share some ciliary 

components. Proteomic analyses of mammalian primary cilia (or sensory cilia) (see section 

1.2.2) versus motile cilia have identified about 152 shared ciliary proteins (Narita et al., 

2012). For instance, they possess the same intraflagellar transport system (see section: 

1.2.4.5 and 1.2.4.5.1) though they differ in their axonemal structure and motility. 

1.2.2 Sensory primary cilia 

In contrast to motile cilia, most primary (non-motile or sensory) cilia lack the 

additional central pair of microtubules, have a “9+0” axonemal arrangement of 

microtubules, and are devoid of inner and outer dynein arms. They usually found to be 

present at a ratio of one per cell, for example in photoreceptor cells and epithelial cells 

(Figure 1.1 B). The primary cilium has a conserved basic morphology, but this varies 

considerably in shape and size. For instance, it measures 1 to 5 μm in length and 0.2 μm in 

width (Scherft and Daems, 1967) and recently, Dummer et al. (2016) reported that the 

length of the cilium can vary between 1 and 9 μm within various cell types, including kidney 

epithelial cells ( 5–6 μm) (Besschetnova et al., 2010), neurons (4–9 μm)(Broekhuis et al., 
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2013, Miyoshi et al., 2014), vascular endothelial cells (1–5 μm)(Van der Heiden et al., 2008), 

osteoblasts (3–4 μm)(Delaine-Smith et al., 2014, Qiu et al., 2012), and chondrocytes (2 

μm)(Wann and Knight, 2012). Primary cilia are required for mechano-sensory functions that 

detect both environmental and intercellular stimuli (Leightner et al., 2013); for instance, 

those on the dendritic knob of the olfactory neuron are essential for chemo-sensing 

functions and also act as a mechano-sensory system in cerebral-spinal fluid in the nervous 

system (Satir and Christensen, 2007). It performs diverse biological roles, principally to 

control and maintain cellular and tissue homeostasis (Cardenas-Rodriguez and Badano, 

2009). Primary cilia also mediate chemosensory, mechanosensory and photosensory roles 

(Goetz and Anderson, 2010), particularly during embryonic development. They are critical 

for the development and function of many tissue types and cells including stem, neurons, 

epithelial, endothelial, connective tissue and muscle cells (Satir et al., 2010, Abou Alaiwi et 

al., 2009, Anderson et al., 2008). As a consequence, cilia mediate diverse signalling 

pathways that include SHH, non-canonical and canonical Wnt, PDGF, Hippo and Notch (see 

section 1.5). 

In addition, the role of primary cilia is well-established in and essential for 

photoreception. In the photoreceptor, the cells in the retina that respond to light, primary 

cilia are specialized structures with four distinct compartments, including distal 

cilium/axoneme, the so-called connecting cilium (comprising the transition zone), basal 

body, and periciliary complex/ciliary pocket. The light-detecting protein machinery passes 

through the connecting cilium on its way to the outer segment, so defects in cilia-mediated 

transport are associated with blindness. For instance, Centrosomal protein of 290 kDa 

(CEP290) and Retinitis pigmentosa GTPase regulator (RPGR) are central proteins in the 

connecting cilium of the photoreceptor (Rachel et al., 2012) and mutations in the genes that 

encode them are major causes of ciliopathies (see section 1.6) with retinal involvement, 

ranging from leber congenital amaurosis (LCA) to multiorgan Joubert syndrome (JBTS) 

(Hollander et al., 2006, Sayer et al., 2006, Valente et al., 2006). Therefore, studying primary 

cilia provides critical information to understand the pathogenesis of the different 

phenotypes that characterize human ciliopathies (Cardenas-Rodriguez and Badano, 2009). 
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There are other specific types of non-motile cilia with a microtubule structure similar 

to motile cilia that adopt the 9+2 configuration, such as olfactory neurons (associated with 

anosmia) and kinocilium of hair cells (linked to deafness disorder) (Falk et al., 2015, Pruski and 

Lang, 2019, Bernabe-Rubio and Alonso, 2017). 

1.2.3 Other cilia types 
 

Nodal cilia have a 9+0 microtubule arrangement that includes nine peripheral 

doublets and dynein arms but lacks the central pair of microtubules (Baker and Beales, 

2009, Fretzayas and Moustaki, 2016) (Figure 1.1 A, right panel). Nodal cilia are motile and 

are present in the ventral embryonic nodes of vertebrates. Hirokawa et al. (2006) 

discovered the nodal monocilia movement which was described as "vigorously rotating" or a 

clockwise rotation: a sloping rotational movement that is essential for establishing left–right 

asymmetry by generating leftward flow of extraembryonic fluid as well as determining of 

the laterality of visceral organs in mammals during embryogenesis (Bernabe-Rubio and 

Alonso, 2017, Shinohara et al., 2015, Yoshiba and Hamada, 2014). Although nodal cilia have 

both motility and sensory functions, some nodal cilia in the peripheral region of the ventral 

node are immotile and act as a sensor for the direction of flow (Tabin and Vogan, 2003). 

Herein the core structure and function of primary cilia are described in detail, as this 

type of cilia module is the main focus of this project. 
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1.2.4 The core structure of sensory primary cilia 

 

Figure 1. 2: Architecture of a primary (9+0) cilium. The microtubule-based axoneme of the 

primary cilium originates from the basal body (Mother centriole) which is organized in 

cylinders of nine microtubule triplets. The mother centriole converts into the axonemal 

doublet microtubular structure and forms the transition zone. The ciliary gate consists of 

transition fibres and transition zone sections. The transition zone is characterized by the 

presence of Y-links, which connect the axoneme to the ciliary membrane and are located at 

the beginning of the axoneme. Transition fibres connect the distal basal body to the base of 

the ciliary membrane and plays key roles in ciliary assembly and trafficking. A cup-like 

structure, the ciliary pocket, is a depression of the plasma membrane surrounding the 

axoneme in which the primary cilium is rooted and the cilium is covered by the ciliary 

membrane. Adapted from (Malicki and Johnson, 2017, Garcia-Gonzalo and Reiter, 2017, 

Molla-Herman et al., 2010). 
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1.2.4.1 Basal body 

Cilia have been dissected into at least two distinct sub-structural zones, including the 

basal body and the transition zone (Czarnecki and Shah, 2012) (Figure 1.2). The basal body is 

derived from the cytosolic microtubule-organizing centre and mother centriole during 

interphase. During cell division, the mother centriole migrates to the apical surface of the 

cell and acts as the basal body to assemble primary cilia during interphase (Kobayashi and 

Dynlacht, 2011). According to Malicki and Johnson (2017), the mother centriole matures 

into the basal body by the addition of distal accessory appendages, which are thought to 

then form the transition fibres that root the transition zone to the ciliary membrane in the 

mature cilium. The basal body is composed of microtubules, which are assembled as a set of 

nine triplets in a structure 0.5 μm long, and 0.2 μm in diameter (Ovalle, 2013). Each triplet 

contains three microtubules, categorized A, B and C, attached to each other along their 

lengths. The basal body plays several roles important to ciliary activity, providing the 

template for building the axoneme, dictating the orientation and position of the cilium for 

the correct movement of extracellular fluids, regulating the entry of proteins into the cilium 

and playing a role in cell division (Marshall, 2008). Furthermore, there is a fundamental 

relationship between the cell cycle and the basal body–centriole transition, since the 

mother centriole is converted into a basal body and mediates assembly of a primary cilia in 

interphase. The conversion between centrioles and basal bodies is therefore reversible and 

cell cycle dependent, but the mechanistic basis of this functional relationship remains 

unclear (Kobayashi and Dynlacht, 2011). 

Recent studies have indicated that basal body/centriole assembly is tightly regulated 

by the spindle assembly abnormal protein 6 (SAS-6), Polo-like kinase 4 (PLK4), and the SCL-

interrupting locus protein (STIL, also known as SAS-5). These key players also play important 

roles in regulating centriole duplication during early S phase (Yamamoto and Kitagawa, 

2019). SAS-6 is a basal body protein and considered a marker of the new-born centriole 

which regulates assembly of all types of cilia. SAS-6 plays a role in establishment of 

centriolar nine-fold symmetry (cartwheel) and the formation of a procentriole-like structure 

(PCL) (Blachon et al., 2009) which is the first structure of the centriole to be assembled. 

Centrosomal protein 135 (CEP135) and STIL amongst other proteins are also associated with 

the PCL (Nakazawa et al., 2007, Kitagawa et al., 2011, Lin et al., 2013). SAS-6 and CEP135 can 
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self-assemble in vitro to generate the cartwheel (Guichard et al., 2017). SAS-6 is also 

necessary for centriolar duplication and function; its functional disruption causes cilia-

related disorders in eukaryotes (Marques et al., 2015) as well as centriole reduplication and 

de novo assembly of centrioles in cells (Peel et al., 2007). In Caenorhabditis elegans (C. 

elegans), SAS-6 is required for the central tube formation, which is functionally related to 

the cartwheel that appears at the beginning of centriole formation (Pelletier et al., 2006). 

According to Qiao et al. (2012) mutations in the SAS-6 coiled-coil domain (CCD) disrupt 

centriolar recruitment and function in C. elegans embryos. In addition, SAS-6 is functionally 

related to a number of protein kinases that regulate cell cycle processes, such as PLK, the 

master key regulator of centriole duplication that plays roles in centrosome function (Lee et 

al., 2014). SAS-6 requires PLK4 to phosphorylate components in the procentriole 

in Drosophila and human cells (Dzhindzhev et al., 2014); centriolar biogenesis is triggered by 

active PLK4 which recruits and phosphorylates STIL, which then recruits SAS-6 (Arquint et 

al., 2012, Moyer et al., 2015). 

Recently Denu et al. (2019) indicated that PLK4 (UniProt ID: O00444) maintains 

centriolar satellite integrity by phosphorylation of centrosomal protein 131 (CEP131). These 

satellites are essential for the recruitment of proteins involved in microtubule organization 

(Dammermann and Merdes, 2002), ciliogenesis (Lopes et al., 2011), and centriole 

duplication (Kodani et al., 2015). 

 In addition, the basal body consists of several other hundred proteins that are 

implicated in the generation of cilia, such as CEP290 which works with and functionally 

overlaps with Talpid3. Both play distinct roles in ciliary vesicle formation through regulation 

of centriolar satellite accretion and Rab8a (Kobayashi et al., 2014). The centrosomal protein 

Talpid3 is essential for primary cilia formation and is involved in both ciliogenesis and HH 

signalling (Keeling et al., 2016, Yin et al., 2009). 

In addition, Gerhardt et al. (2015) found that there are different proteasomal 

components localized to the basal body of cilia and that they play a role in ciliary function. 

They identified a proteasomal 19S subunit component, PSMD2, at the basal body and 

showed its interaction with retinitis pigmentosa GTPase regulator interacting protein 1-like 

(RPGRIP1L). Their data showed RPGRIP1L deficiency causes decreased proteasomal activity 
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at primary cilia, but the functional consequence of this association was not clear because 

the target(s) of potential protein degradation in the ciliary apparatus were not identified. 

1.2.4.2 Ciliary pocket 

Ciliogenesis, initiates when Golgi-derived ciliary vesicles attach to the distal ends of 

the mother centriole (Keeling et al., 2016). The extended centriole vesicle builds a ciliary 

membrane, which fuses with the cell membrane, forming a cup-like structure called the 

ciliary pocket in which the primary cilium is rooted (van Reeuwijk et al., 2011). Ciliary 

proteins are transported from the basal body to the ciliary pocket. Transmembrane proteins 

are then transported into the ciliary membrane and cytosolic proteins are transported by 

intraflagellar transport (Szymanska and Johnson, 2012). Molla-Herman et al. (2010) used 

mIMCD-3 kidney epithelial cells as a model to study the structure of the primary cilium in 

kidney epithelial cells. Transmission electron microscopy (TEM) showed the basal body was 

located underneath the base of this depression. A ciliary pocket was present with low 

frequency in kidney epithelial cells but was linked with nearly all primary cilia in retinal 

pigment epithelial cells. Recent insights have suggested that the ciliary pocket mediates 

ciliary endocytic activity which suggests dynamic and intense vesicular trafficking activity 

through endocytic recycling of transmembrane proteins, specifically ciliary receptors 

(Malicki and Johnson, 2017) (see section: 1.2.4.5.1 and 1.5). In addition, the ciliary pocket 

appears to interact with the actin cytoskeleton (Malicki and Johnson, 2017) (Figure 1.2) but 

the functional relevance of this for ciliary trafficking is unclear. 

1.2.4.3 Transition zone 

A short region of length 0.5 μm in most mammalian cilia is called the ciliary 

transition zone. It is located between the basal body and the axoneme (Gerhardt et al., 

2016). TEM studies of cilia have hinted at the exquisite morphology and organization of the 

transition zone (Goncalves and Pelletier, 2017, Czarnecki and Shah, 2012). The transition 

zone has been suggested to act as a “ciliary gate” (Sanchez and Dynlacht, 2016) that 

mediates selective permeability during trafficking into and out of the cilium. The ciliary gate 

consists of at least 2 structures that include the transition zone, transition fibres (TFs) and 

perhaps nuclear pore components (Malicki and Johnson, 2017). The ciliary transition zone 
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forms when the basal body transitions into an axoneme, which forms the skeleton of the 

cilium (Lodish et al., 2007). The beginning of the TFs is formed by terminating the C 

microtubules of the basal body, whilst the nine sets of A and B tubules extend through the 

transition zone and help to form the axoneme (Lodish et al., 2007). Even though the 

transition zone is a region between the basal body and the axoneme, it is a highly complex 

structure that contains many proteins that contribute to the generation, function and 

maintenance of the cilia (Szymanska and Johnson, 2012). It plays a key role in regulating 

ciliary protein composition in many cell types, including mammalian cells, unicellular 

organisms such as Chlamydomonas and invertebrates such as C. elegans (Garcia-Gonzalo et 

al., 2011). 

Transmembrane proteins and cytoplasmic proteins are selectively loaded on to the 

intraflagellar transport complexes because the access into and out of cilia is strictly 

controlled. Therefore, the proteins are not free to diffuse from the plasma membrane 

through the ciliary pocket into the ciliary membrane (Garcia-Gonzalo and Reiter, 2012). 

Sections through the transition zone have revealed Y-shaped linkers between the 

microtubules and the ciliary membrane that appear to be associated with characteristic 

bumps known as the ciliary necklace, that are revealed by freeze-fracture EM to be on the 

external surface of the ciliary membrane at the transition zone. The Y-shaped linkers are 

also associated with the TFs, and in combination these are proposed to act as the filter for 

the ciliary gate (Bisgrove and Yost, 2006). The TFs also encourage ciliogenesis by recruiting 

intraflagellar transport components to the basal body (Garcia-Gonzalo and Reiter, 2012) 

(Figure 1.2). 

1.2.4.4 Diffusion barrier  

As noted above, a diffusion barrier is located at the base of the cilia, the ciliary gate 

(Figure 1.2). The effectiveness of this barrier is that it restricts movement between the 

ciliary membrane and the plasma membrane. Hu and Nelson (2011) hypothesized that once 

membrane proteins are transported into the ciliary membrane, they are prevented from 

diffusing into the surrounding apical plasma membrane by a physical barrier. 
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There are two factors that affect ciliary trafficking by promoting retention inside 

cilia; a lipid barrier at the base of the cilia and a diffusion barrier- the septin-based gate. 

Vieira et al. (2006) proposed that there are distinct lipid barriers between cilia and rest of 

the plasma membrane, whilst  Hu et al. (2010) and Chih et al. (2011) indicated that the base 

of cilia contains a septin (SEPTs), a group of GTP-binding proteins that oligomerize to form 

cytoskeletal filaments and higher-order structures. In particular, a member of the septin 

family Septin-2 contributes to the diffusion barrier at the base of primary cilia and it 

essential for retaining ciliary membrane proteins in the primary cilium ((Hu et al., 2010). Hu 

et al. (2010) showed that SEPT2 depletion caused loss of ciliary membrane protein 

localization and SHH signal transduction, as well as repressing ciliogenesis. SEPT7 and SEPT9 

appear to be present along most of the length of the primary cilium (Ghossoub et al., 2013). 

 

In addition, cilia were shown to use the septin-dependent diffusion barrier and 

transition zone proteins as a gate to regulate membrane protein passage, since proteins in 

the MKS module contain transmembrane or lipid-binding domains and these proteins are 

largely immobile at the transition zone, implying that this module forms a barrier and 

regulates the ciliary gate (Takao and Verhey, 2016). This observation was supported with 

the assembly of protein scaffolds that included the B9 domain containing proteins Meckel-

Gruber syndrome type1 (MKS1), Tectonic-1 (TCTN1) and Tectonic-2 (TCTN2) as well as 

TMEM231 at the transition zone. These components appeared to localize with SEPT2 and 

formed the “ciliary gate” by contributing to transition zone barrier function (Mukhopadhyay 

et al., 2017, Francis et al., 2011). 

 

1.2.4.5 The axoneme and intraflagellar transport  

 

Cilia require large protein complexes and motors for the distal addition of tubulin 

and extension of the ciliary membrane. The basal body acts as the matrix for microtubule 

nucleation for the growth of the axoneme and connects the base of the cilium to its tip. This 

axoneme, a complex cylindrical structure, is encased by ciliary membrane that harbours 

receptors for crucial signalling cascades (Rohatgi and Snell, 2010) continuous with the 

plasma membrane of the cells (Figure 1.2). The ciliary axoneme is composed of nine 

doublets of fused microtubules arranged in a ring. The axoneme is arrayed in the 9+0 
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configuration in primary cilia or the 9+2 configuration in motile cilia, as discussed above (see 

section 1.2; Figure 1.1) (Plotnikova et al., 2009). These structural differences dramatically 

affect the mechanics of each. For instance, the ciliary axoneme location on the plasma 

membrane as it emerges from the cell and its orientation in three-dimensional space has a 

critical role in the proper function of both motile cilia and nodal cilia (Farnum and Wilsman, 

2011). 

 

Intraflagellar transport, a microtubule-based conveying system, is responsible for the 

bidirectional motility of proteins along the ciliary axonemal microtubules (Singla and Reiter, 

2006). During ciliogenesis, the intraflagellar transport system traffics tubulin as well as other 

ciliary building blocks (Chih et al., 2011). Therefore, both intraflagellar transport and 

microtubule assembly help the axoneme to elongate (Conduit et al., 2012). In addition, 

small GTPases of the Rab family regulate membrane trafficking. Rab8 is essential for 

membrane trafficking from the trans-Golgi network and recycling of endosomes to the 

plasma membrane. Briefly, active forms of Rab8 control the transport of proteins and 

membrane receptors into the primary cilium. The intraflagellar transport system continues 

the trafficking of these proteins up and down the ciliary axoneme (Hsiao et al., 2012). 

Therefore, Rab8 together with the intraflagellar transport system is essential for ciliogenesis 

(Pedersen and Rosenbaum 2008; Patrussi and Baldari 2016), (see section 1.4). 

 

1.2.4.5.1 Trafficking in and to the primary cilium 

The intraflagellar transport system is involved in cilia assembly, ciliary sensory 

perception, and cilia signalling (Yoder, 2007). Its particles carry ciliary receptors and 

channels, and deliver signals that emerge from the cilia into the cytoplasm in response to 

environmental stimuli (Yoder, 2007). For example, the glioma-associated oncogene 

homologue (GLI) family of zinc finger transcription factors control the output of the SHH 

pathway. GLI2 and GLI3 were shown to be recruited to the tip of primary cilia by 

intraflagellar transport upon SHH stimulation (Rohatgi et al., 2007, Chen et al., 2009). 

Accordingly, the role of intraflagellar transport is not limited to constructing cilia and 

intraflagellar transport appears to play a distinguishable function in signal transduction 

events. The knock-out of intraflagellar transport proteins in various mouse models 

demonstrates their importance in the assembly, production, maintenance and the transport 
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of other proteins into and out of cilia (Garcia-Gonzalo and Reiter, 2012). For example, mice 

with an alteration in the Ift88 gene have renal abnormalities and retinal degeneration due 

to defects in photoreceptor outer segment development (Pazour et al., 2002). 

Researchers have used the 2 flagella of the unicellular green algae Chlamydomonas 

reinhardtii as a model to investigate how ciliary proteins are transported. The ciliary 

intraflagellar transport system consists of two multi-subunit particles that consist of 

intraflagellar transport-B (IFT-B) for anterograde transport and intraflagellar transport-A 

(IFT-A) for retrograde transport (Figure 1.3). The intraflagellar transport particles move 

between the ciliary membrane and the axonemal microtubules. IFT-B transports proteins 

toward the ciliary tip in a process driven by the kinesin-2 motor, whilst IFT-A transports the 

proteins towards the ciliary base in a process driven by the cytoplasmic dynein 2/1b motor 

(Follit et al., 2009). Intraflagellar transport protein trafficking is of crucial importance in the 

control of cilium length which depends upon the balance between IFT-B anterograde and 

IFT-A retrograde trafficking (Ishikawa and Marshall, 2011, Hirano et al., 2017). 

All IFT-B proteins, that were initially identified in Chlamydomonas, have also been 

subsequently described in mouse by biochemical methods (co-immunoprecipitation and 

mass spectrometry). For instance, studies of mouse mutant or knock-out models have 

established the critical role of kinesin-2 and most of the IFT-B proteins in the SHH pathway. 

Analysis of mouse ciliary mutations in Ift172, Ift88, Ift52, Ift57, and Ift46 as well as genetic 

inactivation of kinesin-2 resulted in a range of phenotypes, including absence of cilia, loss of 

SHH-dependent ventral neural cell types and lack of all response to the SHH ligand (He et al., 

2017, Goetz and Anderson, 2010). Furthermore, this study also revealed that genetic 

inactivation of mouse IFT-A proteins caused embryonic lethality. IFT-A subunits have been 

suggested to promote trafficking of G protein-coupled receptors (GPCRs) into primary cilia 

(Mukhopadhyay et al., 2010) as well as regulate SHH signalling pathway through 

intraflagellar transport machinery at the primary cilium (Liem et al., 2012). The IFT-A 

complex was not only involved in intraflagellar transport and ciliogenesis, but may also bind, 

anchor and transport ciliary precursors in the cell body towards the ciliary base (Zhu et al., 

2017). Novel functions were also described for WD Repeat Domain 35 (Wdr35), an IFT-A 
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subunit, that appears to mediate fusion of Rab8 vesicles at the nascent cilium, protein exit 

from the cilium, and centriolar satellite organization (Fu et al., 2016). 

 

Figure 1. 3: List of intraflagellar transport complex ciliary proteins. The intraflagellar 

transport complex is composed of sub-complex A (IFT-A), connected to a dynein motor for 

transport towards the ciliary base (retrograde transport), and sub-complex B (IFT-B) linked 

to a kinesin motor for transport towards the ciliary tip (anterograde transport). The IFT-A 

and IFT-B complexes assemble to form intraflagellar transport particles (Nachury, 2014). 

 

 

1.2.5 Centriolar satellites  

Centriolar satellites are small granules that cluster around centrosomes and contain 

proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis 

(Tollenaere et al., 2015). The first component of centriolar satellites, Pericentriolar Material 

1 (PCM1), was identified by (Kubo et al., 1999). This study described PCM1 as specific 

component of centriolar satellites, morphologically characterized as electron-dense 

granules 70–100 nm in diameter, scattered around centrosomes. PCM1-containing 

centriolar satellites moved along microtubules toward centrosomes in an ATP-dependent 
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manner (Kubo et al., 1999), suggesting that centriolar satellites have a possible association 

with centriolar replication. 

 A previous study in 2011 suggested that centriolar satellites might function in 

communication between the centrosomes and the cytoplasm and appear to surround the 

core of the centrosome in most animal cells as “busy orbits around the centrosome” (Barenz 

et al., 2011). Recently several studies have identified many new centriolar satellite 

components, however the regulatory mechanisms that control centriolar satellite status and 

function are not yet understood, and further components need to be identified in order to 

fully understand the mechanisms that mediate satellite formation (Kim et al., 2012, 

Quarantotti et al., 2019, Tollenaere et al., 2015). Defects in centriolar satellite components 

are linked to a wide spectrum of human diseases (Tollenaere et al., 2015). For instance, 

CEP290, a gene which encodes a centrosomal protein involved in ciliary assembly and ciliary 

trafficking, interacts with the centriolar satellite protein PCM1, which is implicated in BBS4 

function (Kim et al., 2008). CEP290 co-immunoprecipitated with PCM1 (Chang et al., 2006) 

and depletion of CEP290 disrupted subcellular distribution and protein complex formation 

of PCM1. The association of both CEP290 and PCM1 was required for ciliogenesis, since both 

proteins were required for the ciliary localization of Rab8 (Kim et al., 2008). 

1.3 The functional significance of the ciliary transition zone 

Significant progress has been made during the past decade in understanding the 

constituents and architecture of the primary cilia, particularly the transition zone, and to 

comprehending the functions of transition zone proteins. The disruption of transition zone 

proteins by mutations cause a group of inherited conditions: the ciliopathies (Leightner et 

al., 2013). Mutations can disrupt the control of protein entry and exit from the cilium, the 

trafficking of proteins to the cilium, and in the regulation of signalling pathways. Figure 1.4 

summarizes the localization of ciliary proteins based on the results of different research 

teams who investigated the composition of protein complexes at the transition zone and 

other ciliary compartments. 

Sang et al. (2011) identified and showed the localization of NPHP1, NPHP4, and 

RPGPIP1L at the transition zone and described a compartment that they named the 
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nephronophthisis NPHP module. Garcia-Gonzalo et al. (2011) showed the importance of 

CEP290 in cilia formation, identified mutations in TCTN1 as a cause of Joubert syndrome, 

and showed the physical interaction between these proteins in the Joubert (JBTS) module. 

For example, TCTN1 is required for the transition zone localization of MKS1 and 

TMEM67/Meckel. Also, RPGRIP1L regulated the transition zone amount of NPHP4 by 

ensuring the correct amount of CEP290/NPHP6 at the transition zone (Wiegering et al., 

2018a). 

Moreover, RPGRIP1L localizes independently (Figure 1.4) and influences proper 

transition zone localization of the NPHP1-4 and MKS/B9 complexes. The third module, the 

MKS module, described by Williams et al. (2011), showed that MKS1, coiled-coil and C2 

domain-containing protein 2A (CC2D2A), and TCTN2 are involved in neural tube 

development and the SHH pathway. Other CEP290-dependent transition zone proteins 

include transmembrane proteins such as Tmem17, Tmem138, and Tmem231 (Li et al., 2016) 

delineating a possible new compartment of the cilium that was termed the inversin 

compartment. Although many proteins were found to be localized to this compartment, 

their function remains unclear. In a fourth study, Huang et al. (2011) identified mutations in 

the novel gene TMEM237 as a cause of Joubert syndrome-related disorders. Their research 

on C. elegans, zebrafish and ciliated mouse (mIMCD-3) cells showed that TMEM237 

localized to the transition zone and had biochemical and genetic interactions with several 

other ciliary TMEM proteins, including TMEM216 and TMEM67. They also confirmed that 

TMEM237 requires RPGRIP1L for correct localization to the transition zone. Subsequent 

studies suggested that RPGRIP1L functions at the base of a hierarchy during assembly of the 

transition zone (Wiegering et al., 2018a), thereby regulating the proper number of 

components of the NPHP module at the ciliary transition zone. However, there are some 

obvious inconsistencies between the studies. These differences could be due to the fact that 

the 4 groups used different tissues or cell-lines with different cilia structures with possible 

inconsistencies in the dynamic nature of ciliogenesis or ciliary trafficking. 
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Figure 1. 4: An overview of the primary cilium, transition zone molecular organization and 
ciliary protein complexes. (A) Key structures of cilia and the transition zone. Ciliary receptor 

(purple) is trafficked into the cilium (green arrow) through a permeability barrier (pink). (B) 
Models of hierarchical transition zone protein organisation within functional modules (MKS, 

NPHP, assembly modules) at the transition zone. The MKS module consists of core, 

intermediate and peripheral layers. RPGRIP1L localizes independently and influences proper 

transition zone localization of the NPHP and MKS complexes. Selective permeability barriers 

prevent trafficking of key signalling proteins (red crosses) to maintain 

compartmentalization. Smoothened (SMO) (light purple) plays a role in an intercellular 

communication in development Localized lipid composition in the ciliary membrane is 

indicated by a brown-magenta gradient, adapted from (Hartill et al., 2017). 

 

1.4 Ciliogenesis  
 

Recent evidence suggests that cilium assembly and disassembly links to the cell cycle 

(Ke and Yang, 2014), as well as vesicular trafficking and ciliary extension (Avasthi and 

Marshall, 2012). As previously noted, the formation of primary cilia depends on the cell 

cycle and is initiated in G1 by the addition of Golgi-derived vesicles to the distal end of the 

mother centriole (Sanchez and Dynlacht, 2016). When a cell forms a primary cilium in G0, 
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the centrosome migrates to the cortex of the cell. Then, Golgi-derived vesicles produce a 

centriolar vesicle that caps the distal end of the mother centriole. Once docked, the 

extended centriolar vesicle forms a ciliary membrane, which fuses with the cell membrane, 

forming the ciliary pocket. Early studies confirmed that polarized vesicular transport 

involving Rab8 and its guanine nucleotide-exchange factor (GEF) Rabin8 is essential for 

primary ciliogenesis. For example, Knodler et al. (2010) have suggested that Rab GTPases 

coordinate with each other in the regulation of vesicular trafficking during primary 

ciliogenesis. 

The trafficking pathway of Rab8-dependent primary cilium assembly in RPE cells was 

investigated by Westlake et al. (2011), who suggested that a Rab11–Rab8 cascade functions 

in primary cilium assembly. They proposed that Rab11 delivers Rabin8 to the centrosome to 

activate Rab8 and Rab11 vesicles are converted into the Rab8 ciliary compartment 

(Westlake et al., 2011). According to Knodler et al. (2010), Rab11 is enriched at the base of 

primary cilia and inhibition of its function by a dominant-negative mutant or siRNA blocks 

ciliogenesis. Activated Rab8 participates in the formation of primary cilia and regulates the 

transport of Smoothened (SMO) and fibrocystin receptors (Boehlke et al., 2010, Follit et al., 

2010). Rabin8 has been shown to associate with the BBSome, a basal body protein complex 

implicated in Bardet-Biedl Syndrome, and to regulate cilia formation. BBSome proteins 

modulate the activity and the ciliary entry of Rab8, through its interaction with Rabin8 via 

BBS1 (Nachury et al., 2007). Recently, Lu et al. (2015) suggested that Rab-GTPase functioned 

at a later stage of ciliary vesicle membrane elongation. They found that Rab8 was 

unessential for initial docking of ciliary vesicles to the mother centriole and, interestingly, 

Rab8 was recruited to ciliary vesicles after the recruitment of other ciliary proteins linked to 

ciliary vesicle formation, including the endocytic transport regulator EH Domain Containing 

1(EHD1), the ciliary transition zone protein B9D2 (B9 domain-containing protein 2) and 

Golgi-associated IFT20. 

Another study demonstrated that the centrosome then differentiates into the basal 

body and localizes at the base of the primary cilia, which results in early formation of the 

ciliary bud. The ciliary bud is continuous with the centriole and surrounded by the ciliary 

vesicle. The ciliary bud then extends by microtubule assembly and the ciliary vesicle merges 

with the plasma membrane (Conduit et al., 2012). CEP110, CEP97, and CEP290 play a vital 
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role in centrosome duplication and cytokinesis: these proteins interact with each other at 

the mother centriole/basal body to regulate ciliary assembly (Tsang et al., 2008). In addition, 

the centriolar kinesin Kif24 was found to control the stability of CP110 at the distal end of 

the mother centriole localized in the centrosome/basal body. This is a key spindle assembly 

checkpoint protein, whose insufficiency leads to cell cycle dysregulation and ciliogenesis 

defects (Kobayashi and Dynlacht, 2011). 

A normal differentiated cell has a pair of centrioles within the centrosome that differ 

functionally and morphological (Pierce and Nachury, 2013). A normal centriole number is 

maintained by duplication and segregation mechanisms synchronized to the cell cycle. 

However, additional centrioles within the centrosome can result in super-numerary cilia on 

the cell surface, so that the cell then exhibits a “cilia-diluted” phenotype with reduced 

signalling molecules (Mahjoub and Stearns, 2012). This phenotype has been suggested to 

cause a signalling dysfunction that underlies oncogenesis. Avasthi and Marshall (2012) have 

suggested that accurate timing also plays a crucial part in cilia formation during cell cycle 

regulation and blocking cancer phenotypes, emphasizing that it is essential to understand 

the inductive cues that link ciliogenesis to the cell cycle (Sanchez and Dynlacht, 2016). 

1.4.1 Cilia disassembly  

Disassembly of cilia occurs prior to mitosis. Cells re-enter the cell cycle in G1 and 

then the centrioles duplicate in S-phase and the basal body detaches itself from the plasma 

membrane (Santos and Reiter, 2008). The scaffolding protein neural precursor cell 

expressed, developmentally down-regulated 9 (NEDD9)/HEF1, vital for ciliary disassembly, 

interacts with Aurora kinase A (AURKA) at the mother centriole and controls the 

disassembly of cilia by inducing phosphorylation and thereby activation of Histone 

deacetylase 6 (HDAC6), a tubulin deacetylase that triggers ciliary disassembly (Pugacheva et 

al., 2007). AAURKA, polo-like kinase 1 (PLK1), and never in mitosis gene a-related kinase 1 

(NIMA) also have non-mitotic functions by inducing cell cycle progression through the 

stimulation of primary cilia disassembly (Ke and Yang, 2014). Other proteins have been 

identified that regulate ciliary disassembly, including the basal body and ciliary necklace 

protein Pitchfork (Pifo) which activates AURKA, resulting in ciliary disassembly (Kinzel et al., 

2010). Furthermore, the inhibition of ciliogenesis by nudE neurodevelopment protein 1 
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(NDE1) stimulates and accelerates cell cycle re-entry (Kim and Tsiokas, 2011). Moreover, the 

activity of Dynein light chain Tctex-type 1 (DYNLT1) (also known as TCTEX1), a cytoplasmic 

dynein subunit regulates ciliary disassembly and S-phase entry (van Reeuwijk et al., 2011). 

More recent studies have tested the hypothesis that the regulation of 

DYNLT1/TCTEX1’s ciliary resorption function is linked to the G1-S transition during the cell 

cycle (Saito et al., 2017). This work showed that phospho- (T94) DYNLT1/TCTEX1 was 

recruited to the ciliary transition zone during the G1-S transition and that this regulated 

actin polymerization which appeared to control ciliary resorption (Saito et al., 2017, Li et al., 

2011). The molecular mechanism of this regulatory process involved the direct binding of 

DYNLT1/TCTEX1 to F-actin, forming multivalent, cooperative protein-protein interactions 

with three actin polymerization regulators including Annexin A2 (ANXA2), actin-related 

protein 2/3 complex subunit 2 (ARPC2) and cell division control protein 42 homolog 

(CDC42). Furthermore, cytochalasin D, an inhibitor of actin polymerization, suppressed 

ciliary resorption mediated by DYNLT1/TCTEX1, whereas stimulating actin polymerization by 

over-expression of CDC42 prevented resorption defects caused by knockdown of 

DYNLT1/TCTEX1. This was supported by previous work from this group, showing that 

knockdown of DYNLT1/TCTEX1 blocked both ciliary resorption and G1-S progression (Li et al. 

2011). Their finding suggested that when the phosphomimic mutant T94E, Tctex1
T94E

, was 

overexpressed in the human immortalized retinal pigmented epithelial (RPE1) cells, it 

represented a functionally active form of Tctex-1 in ciliary disassembly which accelerated 

cilium disassembly and S-phase entry (Saito et al., 2017, Li et al., 2011). 

1.5 Primary cilium-dependent signalling mechanisms 
 

The primary cilium plays a vital role in sensing the extracellular environment by 

conveying the signalling events from extracellular space into the cell (Ke and Yang, 2014). 

The ciliary compartment harbours many receptors and components of key signalling 

cascades, including Hedgehog, non-canonical Wnt, Hippo, Notch, planar cell polarity (PCP), 

fibroblast growth factors (FGF), mechanistic target of rapamycin (mTOR), platelet-derived 

growth factor receptor α (PDGFRα), transforming growth factor (TGF)-β and Hippo signalling 

(Ke and Yang, 2014, Eggenschwiler and Anderson, 2007). Cilia therefore play critical roles in 

signalling pathways that are important for both embryonic development and tissue 
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homeostasis. In addition, cilia regulate proliferation, differentiation, transcription, 

migration, polarity and tissue morphology. Therefore, disruption of ciliary function has 

severe consequences (van Reeuwijk et al., 2011). Receptors are enriched at the primary 

cilium and many events of signalling mechanisms are concentrated at the cilium, making it 

an importance structure for receiving and transducing a variety of signals (Hsiao et al., 

2012). 

 

1.5.1 SHH signalling and the primary cilium  

Primary cilia are essential for SHH signalling in vertebrates, with the pathway in mice 

and zebrafish found to have fundamental roles in both embryonic development and cancer. 

The mammalian SHH signalling pathway controls processes associated with tumorigenesis 

and vertebrate cells rely on primary cilia to respond to Hedgehog family ligands (Huangfu et 

al., 2003, He et al., 2017). Hedgehog signalling is essential for stem cell maintenance and 

embryonic development (Jiang and Hui, 2008, Beachy et al., 2004) and many consequences 

of perturbation of primary ciliary proteins can be explained by dysregulation of SHH 

signalling (He et al., 2017). For instance, during embryonic development the SHH pathway is 

a critical component of neural tube closure and organ patterning. Disruption of these 

embryonic processes causes neural tube defects that are a clinical feature of severe 

ciliopathies such as Meckel-Gruber syndrome. Moreover, absence of cilia in the chick blocks 

the ability of cells to receive Hedgehog signals (Yin et al., 2009). SHH signalling can be 

regulated by either preventing accumulation of SMO within the cilium or by inhibiting its 

activation (Rohatgi et al., 2009). SHH signalling proteins are enriched in cilia and these 

proteins alter their localization within the cilium in response to ligand (Goetz and Anderson, 

2010). For instance, SHH signalling and ciliogenesis defects have been reported in the 

Tmem231 knock-out mouse. These defects included disruption of a complex of 9 proteins 

(including TMEM231, B9D1 (B9 domain-containing protein 1) and CC2D2A: see Figure 6.1) at 

the transition zone and a reduction in cilia formation. This study highlighted the importance 

of SHH signalling, particularly in early embryonic developmental processes, in maintaining 

and regulating transition zone cilia sup-compartments (Chih et al., 2011). This study also 

contributed to the emerging understanding that the transition zone is a key regulator of 

cilium composition and signalling by establishing diffusion barriers that restrict cytosolic 
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protein entry in a size-dependent manner and the lateral exchange of proteins between 

ciliary and non-ciliary membranes (Chih et al., 2011). Taking this into account, more 

emphasis is now being placed on understanding the molecular mechanisms underlying the 

signalling pathways responsible for primary ciliary-related diseases. 

 SHH, the secreted ligand protein, plays an important role in activation of the glioma-

associated oncogene (GLI) family of transcriptional regulators (Wilson and Stainier, 2010). 

GLI proteins work as either transcriptional activators or truncated transcriptional repressors. 

The formation of either repressor or activator forms of GLI3 can be controlled by their 

interaction with suppressor of fused (SUFU) protein. Prior studies have proposed that SUFU 

function can either stimulate GLI proteins in the cytoplasm or repress GLI transcriptional 

activity in the nucleus (Humke et al., 2010). SHH signalling is therefore regulated by the 

dynamic association between SUFU and the GLI proteins, which will be discussed in the 

following sections. 

 Ramsbottom and Pownall (2016) argued that input from other environmental signals 

should be considered to understand a potential general mechanism of how SHH signalling is 

regulated during the cellular response. They believed that multiple levels of regulation of 

specific signals will influence SHH signalling. For instance, Notch enhances the effect of SHH 

by up-regulating SMO activity (Stasiulewicz et al., 2015). The latter study found that Notch 

signalling modulates SHH signalling by regulating the localization of key ciliary components 

of its transduction machinery; they showed in vivo evidence supporting a novel role for the 

Notch pathway in modulating ciliary architecture and localisation of SMO in cilia 

(Stasiulewicz et al., 2015). Furthermore, supporting data from others, Kong et al. (2015) also 

demonstrated that Notch activity plays an essential role in the SHH pathway by regulating 

the subcellular localization of the receptor Patched1 (PTCH1), influencing the ciliary 

trafficking of PTCH1 and SMO and the downstream activation of GLI transcription factors. 

Together, these data provide important insights into the interactions between Notch and 

SHH signalling pathways in cilia. 
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1.5.1.1 In the absence of SHH signalling  

Cubitus interuptus (Ci) in Drosophila and GLI proteins in vertebrates are 

transcriptional regulators that act as repressors in the absence of SHH signalling (Wilson and 

Stainier, 2010). The process begins when a GPCR, the seven-pass transmembrane protein, 

SMO, is repressed by Patched (PTCH) resulting in repression of target gene transcription 

(Humke et al., 2010). PTCH1 is the SHH receptor and is a 12-pass transmembrane receptor 

protein that is localized within the ciliary membrane of vertebrates (Ingham et al., 1991). In 

the absence of SHH ligands, SUFU interacts with all three GLI proteins and mediates their 

nuclear export (Haycraft et al., 2005). SUFU restricts GLI3 in the cytoplasm and converts its 

function to a repressive form. Protein kinase A (PKA) starts a phosphorylation cascade 

(Humke et al., 2010), with both GLI2 and GLI3 phosphorylated at the basal body by PKA. PKA 

prepares GLI2 and GLI3 for additional phosphorylation by glycogen synthase kinase 3β 

(GSK3β) and casein kinase 1 (CK1). This process delivers a high-affinity binding site for β-

transducin repeat-containing protein (TrCP). Then β-TrCP induces the SCF (Skp1/Cullin1/F-

box) ubiquitin ligase complex to target full-length, 190 kDa GLI3 and 185 kDa GLI2 for the 

ubiquitin-proteasome pathway. Phosphorylation selects GLI3 for ubiquitination, and the N-

terminal repressor forms of 83 kDa GLI3 (GLI3R) and 78 kDa GLI2 (GLI2R) are produced. The 

C-terminus is thought to be completely degraded (Wen et al., 2010). Figure 1.5 shows a 

simplified diagram of SHH signalling pathway in the presence or absence of SHH. 

1.5.1.2 In the presence of SHH signalling  

SHH signalling triggers the activities of GLI proteins by translocating these proteins to 

the nucleus and activating target genes. This process occurs as a result of the activity of 

SMO (Wilson and Stainier, 2010). First of all, the secreted SHH binds to the receptor PTCH1. 

PTCH1 releases SMO from inhibition, and the latter translocates into the primary cilium 

(Chen et al., 2009). The accumulation of SMO drives an increased level of the GLI proteins: 

SMO activates the production of the three GLI protein transcription factors (GLI complex) by 

relieving the inhibition of SUFU. This means that the presence of SHH protein causes the 

dissociation of the SUFU-GLI complex and allows GLI to enter the nucleus and initiate 

transcription of a target gene. In addition, SHH signalling causes the dissociation of SUFU 

from GLI3 through the action of a kinesin motor (KIF3A), which prevents the formation of 
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the repressor isoform and allows GLI3 to enter the nucleus (Humke et al., 2010). The full-

length GLI3FL isoform, in the presence of signalling, is altered into transcriptional activator 

protein isoforms (GLI3A), although the biochemical mechanism of this activation process is 

still ambiguous in flies as well as mammals (Tukachinsky et al., 2010) (Figure 1.5). 

 

 
Figure 1. 5: A simplified diagram of SHH signalling pathway. Pathway OFF, in the absence 

of SHH ligand: PTCH1 inhibits the activity of SMO, which stops the suppressor of SUFU 

complex from entering the nucleus and promotes GLI3 nuclear accumulation, resulting in 

low expression of SHH target genes (right panel). Pathway ON, in the presence of SHH 

ligand: SHH binding to PTCH1 activates the SHH signalling pathway by promoting GLI1/2 

expression by entering the nucleus (left panel). 

 

1.5.1.3 Basal body proteins required for SHH signalling  

Genetic studies have indicated that basal body proteins are required for SHH 

signalling. Mutations in the centrosomal/basal body protein Talpid3 are associated with cilia 

loss and disruption of the SHH signalling pathway in mouse mutant embryos, which results 

in developmental abnormalities in the limbs: a polydactyly ciliopathy phenotype (Goetz and 

Anderson, 2010). Furthermore, CEP290, a basal body and transition zone protein (Goncalves 

and Pelletier, 2017, Garcia-Gonzalo et al., 2011, Arts et al., 2007), has been suggested to 

control the transport of distinct SHH signalling proteins. 
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Shimada et al. (2017) examined the SHH signalling pathway in JSRD patient and 

control fibroblasts using serum-starved cells with the SMO agonist SAG and defined the 

expression of PTCH and GLI1/2. SAG-dependent expression of PTCH and GLI1 was high and 

cilia number was lower in JSRD fibroblasts compared to the control cells. In addition, 

Kilander et al. (2018) showed that a rare human CEP290 variant disrupted the molecular 

integrity of the primary cilium and impaired SHH machinery. Cells expressing R1747Q 

mutant Cep290 in mouse revealed a defect in SHH signalling response, mis-localisation of 

the SMO receptor and dysregulation of ciliary protein mobility. Therefore, they 

demonstrated that CEP290 is essential for positioning the molecular components that are 

necessary for correct processing of SHH signalling in the primary cilium. 

A further example is RPGRIP1L, which localizes to both the ciliary transition zone and 

basal body (Goncalves and Pelletier, 2017, Arts et al., 2007, Garcia-Gonzalo et al., 2011). 

Recently Lin et al. (2018) argued that RPGRIP1L is a central protein of the transition zone. A 

mouse knock-out of Rpgrip1l had defective patterning of the neural tube and the limbs, as 

well as a disrupted ratio of GLI3 activator to GLI3 repressor, suggesting that Rpgrip1l is 

required for SHH signalling (Vierkotten et al., 2007). 

1.5.1.4 Intraflagellar transport system and SHH signalling  

Intraflagellar transport proteins are required for cilia assembly and play a crucial role 

in embryonic development in vertebrates. Early studies showed that mouse 

ethylnitrosourea (ENU) mutants in genes encoding Intraflagellar transport proteins had 

perturbed SHH signalling (Huangfu et al., 2003) with low production of GLI protein activators 

and repressors (Chen et al., 2009). In addition, any disruption of Intraflagellar transport 

appeared to inhibit the formation of GLI3R and reduced GLI2/3A function in embryos 

(Huangfu et al., 2003, Huangfu and Anderson, 2005, Liu et al., 2005). It is notable that GLI3 

processing appears to mainly affect limb development, and for proper digit number and 

identity the appropriate ratio of GLI3FL and GLI3R must be maintained (Wen et al., 2010). 

Many genetics studies have suggested that IFT proteins are essential for SHH 

signalling. In mouse for instance, many mutations in IFT components resulted in embryonic 

mid or late-gestation arrest with mis-patterning of SHH-dependent tissues (Bangs and 
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Anderson, 2017) such as the neural tube and limb buds. In humans, mutations in IFT genes 

cause ciliopathies that often affect the skeletal system such as Jeune asphyxiating thoracic 

dystrophy, cranioectodermal dysplasia (CED) and short-rib polydactyly syndrome (Gilissen et 

al., 2010, Arts et al., 2011, Schmidts et al., 2013, Gholkar et al., 2015, Moosa et al., 2016). 

Yuan et al. (2016) demonstrated that IFT80, an Intraflagellar transport protein in IFT-B, is 

required for osteoblast differentiation by balancing canonical Hh–Gli and non-canonical Hh–

Gαi–RhoA pathways and represent a therapeutic target for craniofacial and skeletal 

abnormalities. They showed that loss of IFT80 prevents SMO localization to the cilium 

resulting in inhibition of canonical HH signalling and increased noncanonical HH-GI-RHO Hh–

Gαi–RhoA–stress fibre signalling by increasing SMO and Gαi binding. 

1.5.2 Wnt signalling pathways 

Signalling by the Wnt family of glycoproteins also appears to be mediates, in part, by 

primary cilia. The Wnt signalling pathway is a conserved pathway in many species, ranging 

from flies to human (Pala et al., 2017). Wnt was named by a fusion of the name of the 

Drosophila segment polarity gene wingless and its vertebrate homolog, integrated or int-1 

(Wodarz and Nusse, 1998, Komiya and Habas, 2008). Wnt signalling functions in a range of 

cellular processes, including cell migration, PCP, neural patterning, skeletal system 

development, and organogenesis (Pala et al., 2017, Corbit et al., 2008, Ross et al., 2005, 

Simons et al., 2005). Mutations in this signalling pathway result in developmental disorders 

and cancer. 

 Wnt signalling can be divided into β-catenin dependent (canonical) and β-catenin 

independent (non-canonical) signalling (Park et al., 2019, Oh and Katsanis, 2013, Berbari et 

al., 2009). In recent years, canonical and non-canonical Wnt signalling pathways have been 

shown to be associated with the primary cilium, which has been suggested to act as a switch 

between the 2 (May-Simera and Kelley, 2012, Goggolidou et al., 2014). For instance, primary 

cilia modulate the balance between canonical and non-canonical signalling responses in the 

injured kidney (Saito et al., 2015), with renal repair and progressive renal fibrosis linked to 

increased canonical and decreased non-canonical Wnt signalling. Simons et al. (2005) first 

demonstrated that Inversin (INVS), which localized in cilium, acts as a molecular switch 

between types of Wnt signalling pathways by inhibiting the canonical Wnt pathway during 
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renal development by targeting DVL1 for degradation. They demonstrated that fluid flow 

increases INVS levels in ciliated tubular epithelial cells and therefore regulates the switch 

between Wnt pathways. They concluded that this inhibition or modulation of canonical Wnt 

signalling is required for normal kidney development. This is supported by the observation 

that ciliopathy patients with mutations in INVS developed NPHP type 2, an autosomal 

recessive cystic kidney disease. Moreover, a study suggested that PCP is also involved in the 

switch between canonical and non-canonical Wnt signalling (Eggenschwiler and Anderson, 

2007). PCP signalling appears to act as a molecular switch from canonical to PCP signalling in 

renal cystic disease and more recent work has indicated that PCP signalling is necessary for 

vertebrate renal tubular formation and is disrupted in renal cystic disease (Papakrivopoulou 

et al., 2014). 

In relation to Wnt signalling, primary cilia have been demonstrated to play a 

significant role in cystic renal disease (Goggolidou et al., 2014) and it has been discovered 

that many of the proteins needed for the correct formation and function of kidney 

structures are located in the cilia. 

1.5.2.1 Canonical Wnt signalling and cystic kidney disease 

Canonical Wnt signalling control of cell proliferation and differentiation is critical for 

early kidney development. Mutations in this pathway are implicated in cancer development 

and renal cyst formation. Numerous studies have suggested that the loss of cilia leads to 

increased canonical Wnt signalling that causes severe disruption in early development 

(Eggenschwiler and Anderson, 2007). More recent studies have shown that the signalling 

pathways that require the primary cilium in the kidney are LKB1/AMPK, regulator of cell 

metabolism, growth and proliferation, Wnt and SHH developmental signalling pathways. 

These signalling pathways are dysregulated in renal cystic disease (Avasthi et al., 2017) and 

ciliopathies have been implicated in the negative regulation of the canonical Wnt pathway 

(Lancaster et al., 2011, Corbit et al., 2008, Simons et al., 2005). However, it remains unclear 

if disrupted Wnt signalling causes or is a consequence of defective ciliogenesis. There is also 

evidence of an association between PCP-related mechanisms and the cause of renal disease. 

Therefore, it is vital to understand the regulation of this pathway in order to develop 
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treatments for these diseases (Lancaster et al., 2011). Table 1.1 lists some important 

components in renal ciliopathies that are involved in Wnt signalling. 

A parallel group of studies also highlighted the connections between cilia and the 

canonical Wnt pathway by demonstrating that nephrocystin 2 (also called INVS) localized to 

cilia and physically interacted with the core Wnt pathway component DVL1 (Wallingford and 

Mitchell, 2011, Simons et al., 2005, Otto et al., 2003, Watanabe et al., 2003). Therefore, 

DVL1 is believed to act as a molecular switch to activate canonical or non-canonical 

signalling (Oh and Katsanis, 2013). Knock-out of DVL orthologues cause disorders that 

resemble human ciliopathies in animal models. For instance, the knock-down of all three 

zebrafish DVL (1-3) genes led to defects in asymmetric basal body localization in floor plate 

cells. This occurs because DVL is important for zebrafish convergence-extension cell 

movements, which is a polarized cell movement during embryonic development (Mahuzier 

et al., 2012, Angers et al., 2006). When an embryo is restructured to converge (narrow) and 

elongate along the mediolateral axis and extend (elongate) along a intercalate toward the 

midline (convergence), leading to extension of the anterior/posterior axis, this is achieved 

by regulation of cellular movement (Veeman et al., 2003, Wallingford et al., 2002). This 

developmental process is regulated by the non-canonical Wnt/PCP pathway during 

vertebrate gastrulation (Wallingford and Habas, 2005, Myers et al., 2002). 

Important mediators of Wnt signalling include the Dishevelled (DVL) proteins, 

classified into Dishevelled1 (DVL1), Dishevelled 2 (DVL2) and Dishevelled3 (DVL3) in 

mammals. The canonical Wnt pathway has a two-state model of activation (with Wnt ligand 

binding) and inactivation (without Wnt), which then controls subcellular β-catenin levels 

and localization (Figure 1.6). In the activated state, a canonical Wnt ligand binds to the 

seven-pass transmembrane receptor Frizzled (FZD) in the presence of the single-pass low-

density lipoprotein receptor-related protein 5 or 6 (LRP5 or LRP6), which are co- receptors in 

vertebrates (He et al., 2004). This creates a Wnt–FZD–LRP5/6 trimeric complex that recruits 

and binds the cytoplasmic protein DVL and Axin. In turn, this triggers the activation of the 

canonical Wnt signalling pathway and initiates signal transduction. Signal transduction 

appears to be largely mediated through DVL and ultimately effected through β-catenin-

mediated transcription. DVL also inhibits the large multiprotein β-catenin destruction 
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complex, that includes glycogen synthase kinase-3 beta (GSK3 β), adenomatous polyposis 

coli (APC), casein kinase 1 (CK1) and Axin, all of which act a repressor for β-catenin by 

targeting it for degradation (Avasthi et al., 2017). As a result, the active state of Wnt/β-

catenin signalling triggers the stabilization and accumulation of cytoplasmic β-catenin, 

inhibition of β-catenin phosphorylation and activation of the transcriptional factors of Wnt 

target genes (MacDonald and He, 2012). When the pathway is inactive, cytoplasmic β-

catenin is targeted through phosphorylation for proteasomal degradation (Goggolidou and 

Wilson, 2016) by two proteins, Axin and APC. They also facilitate the amino-terminal 

phosphorylation of β-catenin via the kinases Glycogen synthase kinase-3β (GSK3β) and 

casein kinase Iα (CKIα). Phosphorylated β-catenin is recognized by the E3 ubiquitin ligase β-

Trcp and is ubiquitinated and degraded by the proteasome, resulting in low levels of free β-

catenin in the cytoplasm and nucleus (MacDonald et al., 2009). 

 Surprising, de novo and heterozygous mutations in human Disheveled-1 (DVL1), a 

key component of the Wnt/PCP pathway, cause the rare developmental disorder autosomal 

dominant Robinow syndrome type 2 (MIM: 616331) (White et al., 2016) that affects the 

development of many parts of the body, particularly the skeleton (specifically, short-limbed 

dwarfism). However, it is seemingly unrelated to ciliopathies and maybe as a simple of 

different patterns of inheritance; perhaps it’s the difference between gain-of-function 

mutations in RS2 and loss-of-function mutations as the predominant cause for recessive 

ciliopathies. 
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Figure 1. 6: Summary of the canonical Wnt signalling pathway. Wnt pathway activation: 

Wnt ligand binds to FZD which results in a signal to activate FZD and LRP: this causes CK1 

and GSK3 to phosphorylate LRP. Dishevelled and Axin are recruited to LRP and FZD: β-

catenin accumulates in the cytoplasm and moves into the nucleus enabling target genes to 

be expressed (top panel). Wnt pathway inactivation: β- catenin is bound by a destruction 

complex which result in its phosphorylation, targeting it for ubiquitination and degradation. 

As a result, it is not free to move into the nucleus (bottom panel). 
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1.5.2.2 Non-canonical Wnt signalling (Planar Cell Polarity/PCP) 

Non-canonical Wnt signalling organizes cell movements and establishment of tissue 

polarity (Tanaka et al., 2011). The non-canonical or β-catenin-independent pathways are 

divided into the Wnt/planar cell polarity (PCP) and the Wnt/Ca

2+

pathways, although both 

are less well understood than the canonical pathway. Several studies have proposed that 

normal ciliogenesis is essential for PCP signalling (Wheway et al., 2018, Gomez-Orte et al., 

2013, Hua and Ferland, 2018) since ciliogenesis depends on cell polarity being correctly 

established during migration of the basal body to the apical cell surface to define apicobasal 

polarity (Jones et al., 2008). A recent study by Hua and Ferland (2018) hypothesized that 

polarity-driven pathways are not only necessary for the construction of a primary cilium but 

are also important for the assembly of other polarized cellular protrusions. Hua and Ferland 

(2018) suggested that ciliogenesis is a consequence of polarity, in which they considered 

cilia proteins as global regulators to establish polarity. They hypothesized that PCP signalling 

is essential for ciliogenesis, in which this signalling affects the assembly of a polarized cilium, 

further highlighting the potential links between polarity and ciliogenesis proteins. 

PCP is also required for the directional beating of motile cilia which generates 

directional fluid flow in different tissues (Wallingford and Mitchell, 2011). INVS localizes to 

primary cilia of renal tubular cells and is important in regulating the process of mitotic cell 

division in this tissue. Disruption or loss of INVS and IFT88 was shown to cause defects in 

mitotic spindle orientation which result in incorrect orientation of cell division, consistent 

with defects in PCP. Studies also showed Vangl, a PCP protein, was disrupted in some animal 

models of PKD (Kunimoto et al., 2017, Saburi et al., 2008, Simons et al., 2005, Otto et al., 

2003, Karner et al., 2009). 

In addition, PCP proteins have been demonstrated to play a direct function in cilia 

with Vangl2, Fat4, and Fuzzy localizing to the cilia basal body (Papakrivopoulou et al., 2014, 

Ross et al., 2005, Saburi et al., 2008, Zilber et al., 2013). One principle function of the PCP 

pathway is the mediation and regulation of actin-dependent polarized cell behaviour such 

as ciliogenesis (Park et al., 2006) and morphogenic cell movements (Wallingford et al., 

2000). DVL2 is required to control basal body docking (Wallingford and Mitchell, 2011), 

ciliogenesis and planar cell polarity (Park et al., 2008, Wallingford and Habas, 2005). In 
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addition, DVL plays a role in influencing both the planar orientation and assembly of motile 

cilia in multi-ciliated cells (Wallingford and Mitchell, 2011, Park et al., 2008, Mitchell et al., 

2009, Hirota et al., 2010). DVL2 is only localized to the basal bodies of cilia, suggesting 

divergent functions (Vladar et al., 2012). 

Wnt stimulates Wnt-Frizzled (FZD) signalling independent of LRP5/6, resulting in the 

activation of DVL. DVL and Disheveled-associated activator of morphogenesis 1 (DAAM1) 

mediate activation of RHO, which in turn activates RHO kinase (ROCK) and leads to 

cytoskeletal rearrangements through downstream phosphorylation of DVL (Sharma et al., 

2018, Habas and He, 2007). DAAM1 also mediates actin polymerization through the actin 

binding protein profilin (Komiya and Habas, 2008). DVL mediates activation of RAC, which in 

turn activates JNK. These events regulate tissue polarity in Drosophila and gastrulation 

movements and cardiogenesis in vertebrates (Komiya and Habas, 2008). Less is understood 

about the Wnt/Ca

2+ 

signalling pathway. One key difference with the other Wnt pathways is 

that Wnt ligand binding to the FZD receptor activates phospholipase C via G proteins, 

resulting in excessive intracellular Ca

2+

 
levels and activation of downstream effectors such as 

protein kinase C (PKC). The Wnt/Ca

2+

 
pathway appears to play an important role in 

development and is implicated in cancer (Kohn and Moon, 2005), but the molecular 

mechanisms that mediate and regulate this pathway remain unclear. 

1.5.3 Similarities in SHH and Wnt signalling mechanisms at the cell surface 
 

The SHH and the canonical Wnt signalling pathways both rely on serpentine 

receptors including SMO and Frizzled for pathway initiation. Both pathways also rely on the 

regulation of proteosome-dependent events including processing of GLI3 and regulation of 

β-catenin degradation (Eggenschwiler and Anderson, 2007). The Wnt and SHH ligands are 

unrelated classes of proteins, but both are lipid-modified, probably by the action of enzymes 

that are associated with each other (Nusse, 2003). In the absence of ligand, both pathways 

use the protein kinases GSK3 and CK1 to facilitate proteolysis of transcription factors such as 

β-catenin for Wnt and GLI for SHH (Nusse, 2003). In contrast, in the presence of ligand their 

signal prevents phosphorylation-dependent proteolysis of GLI or β-catenin and switches a 

DNA-binding protein from a transcriptional repressor to a transcriptional activator 
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(Kalderon, 2002). Selected examples of key proteins or receptors in SHH and Wnt signalling 

pathways are listed in Table 1.1. 

 

Table 1. 1: List of key proteins or receptors in SHH and Wnt signalling pathways. 

SHH 
components 

Function and diseases associated 

GLI GLI proteins localize to cilia in vertebrate limb bud cells; these 

proteins are required to recruit SUFU to cilia 

SUFU A cytoplasmic protein suppressor of Fused and a major Hedgehog 

regulator in mammals; it inhibits GLI proteins by preventing their 

nuclear translocation. 

SMO Accumulates in the ciliary membrane when cells receive the 

Hedgehog signal and an essential positive mediator of the HH signal. 

PTCH1 A tumour suppressor gene inhibits the activity of SMO Somatic 

mutations in the PTCH1 gene are the main cause Gorlin syndrome and 

basal cell carcinomas (BCC).  
Wnt 

components 
Function and diseases associated 

INVS Mutated in NPHP type 2; required for normal renal development and 

establishment of left-right axis; acts as a molecular switch between 

canonical and non-canonical Wnt signalling pathways 

DVL Key effector molecule of the Wnt signalling pathway transduces 

signals into three separate branches, the canonical, non-canonical and 

Ca
2+

 pathways. 

AHI1 Encodes jouberin; binds to b-catenin; deficiency in kidney tissue can 

impair Wnt and cause cystic kidney disease.  

APC Tumour suppressor gene; component of Wnt/β-catenin signalling; 

Mutations of the APC gene cause hereditary familial adenomatous 

polyposis (FAP) colorectal cancers. 

 

1.5.4 Hippo signalling  
 

Several studies have indicated that the actin cytoskeleton is involved in the 

regulation of ciliogenesis. YAP (Yes-associated protein) and its paralogue TAZ 

(transcriptional coactivator with PDZ-binding motif) are transcriptional coactivators of the 

Hippo pathway (Kim et al., 2015). Both are regulated by actin cytoskeleton architecture that 

in turn regulates ciliary vesicle trafficking and ciliogenesis (Kim et al. 2015). Mechano-

transduction by YAP/TAZ can independently function without the Hippo pathway but it 

requires Rho GTPase and actin cytoskeletal tension; Rho GTPases regulate the actin 

cytoskeleton and promote cell proliferation (Jaffe and Hall, 2005). 
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Habbig et al. (2011) demonstrated that the cilia-associated protein, NPHP4 

negatively regulates the Hippo pathway and promoted nuclear targeting of TAZ. More 

recent work has shown that the mammalian Ste20-like 1 and 2 (MST1/2) in mammals, a 

Hippo signalling mediator kinase, co-localized to the base of cilia and was required for 

ciliogenesis. MST1/2 is required for phosphorylation of AURKA to prevent it from 

complexing with HDAC6 to disassemble cilia, as described previously (see section 1.4.1). 

NPHP ciliary proteins bound MST1/2 at the basal body and promoted ciliogenesis by 

targeting ciliary cargoes into IFT for transport into the cilium(Wheway et al., 2018, Kim et 

al., 2014). 

1.5.5 Notch Signalling  
 

Notch signalling is initiated when Notch receptors bind to their membrane-bound 

ligands (for example, Jagged and Delta-like) which induce cleavage and release of the Notch 

intracellular domain (NICD). This is the intracellular part of the receptor that translocates to 

the nucleus to regulate gene transcription (High and Epstein, 2008). Cilia appear to mediate 

Notch signalling by regulating cell differentiation and proliferation, for example during skin 

development (Ezratty et al., 2011), although the mechanistic details remain unclear. Notch 

signalling components associate with ciliated areas of the heart during development and 

defective Notch signalling leads to cardiac phenotypes reminiscent of cilia-related 

phenotype (High and Epstein, 2008). Notch signalling may also be involved in the 

establishment of the left-right axis which is evolutionary conserved among vertebrates. In 

the murine embryonic node and the zebrafish embryo, Notch signalling activates nodal 

expression as an essential step during left-right patterning (Krebs et al., 2003). Furthermore, 

Lopes et al. (2010) demonstrated that decreased Notch signalling resulted in shorter cilia 

whilst hyperactivation resulted in longer cilia. As a result, short cilia generated a weaker 

fluid flow inside the embryonic node/Kupffer's vesicle as well as ultimately in left-right 

defects, indicating that proper cilia length regulation is crucial for the establishment of left-

right asymmetries. 
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1.6 Ciliopathies: clinical aspects and molecular mechanisms 

Ciliopathies refer to a group of developmental disorders that are characterized by 

multi-organ system disorders, resulting in very significant morbidity and mortality for many 

patients, particularly in the perinatal and paediatric age ranges. These result from defects in 

cilia structure and function, caused by a variety of different inherited mutations that occur 

in more than 150 different genes (Wheway et al., 2019). In addition, autosomal dominant 

polycystic kidney disease (ADPKD) is considered to be an adult-onset ciliopathy. The 

aetiology of this class of genetic conditions is caused by defects in the structure or function 

of the primary cilium, and it is strongly associated with defects in ciliary signal- transduction 

proteins and pathways (Reiter and Leroux, 2017) or with defects in the formation of the 

cilium (Shaheen et al., 2013a), particularly those forming the ciliary transition zone. 

Ciliopathies show a very wide range of clinical phenotypes and but also have considerable 

phenotypic overlap (Ke and Yang, 2014), although cystic kidney disease appears to be an 

invariable clinical feature of many of these conditions (Tables 1.2 and 1.3). These conditions 

range from relatively mild, organ-specific conditions such as retinitis pigmentosa and other 

inherited retinal conditions, to perinatal-lethal disorders such as Meckel- Gruber syndrome 

that involve defects in multiple organs including the brain (see details in Figure 1.7). 

Defects of primary cilia and their related proteins cause the dysregulation of cell 

proliferation and embryonic development that lead to phenotypes that include Bardet-Biedl 

Syndrome (BBS), Senior-Løken Syndrome (SNLS), Alström Syndrome (ALMS), Oral-Facial-

Digital Syndrome Type I (OFD I), Jeune Syndrome (also known as asphyxiating thoracic 

dystrophy; JATD), EIIis-Van Creveld Syndrome (EVC), LCA (Tobin and Beales, 2009), 

polycystic kidney disease (PKD) (Nonaka et al., 1998), randomization of left-right asymmetry 

leading to heterotaxy and congenital heart defects (Eley et al., 2005), nephronophthisis 

(NPHP) (Sang et al., 2011), sensorineural deafness (Eley et al., 2005), Joubert syndrome 

(JBTS) (Gerdes et al., 2009) and Meckel-Gruber syndrome (MKS) (Sang et al., 2011). 
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Figure 1. 7: Scale of the severity of primary ciliopathies. Distribution of known ciliopathy 

disorders across a spectrum of severity based on the major organ(s) involved, from 

relatively mild to lethal. For example, BBS is among the mildest ciliopathies (see section 

1.6.1.4). Joubert syndrome is a moderately severe disease amongst the range of ciliopathies 

(Rachel et al., 2012)(see section 1.6.1.2) while the lethal ciliopathy, MKS comes at the end of 

this spectrum (see section 1.6.1.1). Image adapted from (Mitchison and Valente, 2017). 

Since there are hundreds of ciliary proteins, defining the clinical overlap of 

phenotypes between the many ciliopathies remains a significant challenge while mutations 

in many of the same genes are responsible for the phenotypic overlap in the ciliopathies. 

This refers to pleiotropic ciliopathy conditions for which mutations in individual genes can 

be associated with ciliopathies with dramatically different phenotypes. For instance, 

mutations in the ciliary protein CEP290 affect many tissues resulting in a very wide range of 

phenotypes that include neurodevelopmental phenotypes (as part of Joubert syndrome), 

renal cystic dysplasia and renal failure, obesity, polydactyly or retinitis pigmentosa. 

Tables 1.2 and 1.3 show examples of phenotypic overlaps between the ciliopathies 

caused by mutations in many ciliary genes (Gerdes et al., 2009). For example, significant 

genetic overlap is noted between MKS and JBTS (Waters and Beales, 2011)(Table 1.2 and 

1.3) and the pleiotropic autosomal recessive ciliopathy Bardet-Biedl Syndrome type 14 

(BBS14) showed significant phenotypic and molecular overlap with other ciliopathies (Leitch 

et al., 2008). This last study described phenotypic overlap between BBS and MKS which 

showed that mutation in MKS-related genes (including CEP290, TMEM67 and MKS1) were 

also a rare cause of BBS. The most significant example of pleiotropy in the ciliopathies is the 

identification of more than 80 mutations in the TMEM67 gene associated not only with MKS 

but also with a specific sub-type of JBTS, cerebellar vermis hypoplasia-oligophrenia-

congenital ataxia-coloboma-hepatic fibrosis (COACH) syndrome (see section 1.6.3.1) 

involving liver fibrosis in which missense mutations predominate (Novarino et al., 2011, 

Brancati et al., 2009, Iannicelli et al., 2010). The question remains; how could mutations in 



 39 

individual genes produce such pleiotropic phenotypic effects in patients? The reasons for 

the overlap in phenotypes remain unclear but it may be that all these conditions represent a 

spectrum of the same underlying disorder, due to a congenital dysfunction of embryonic 

signalling, overlaid by tissue-specific differences, and the effect of modifier alleles. To 

illustrate, given the complexity of ciliopathy phenotypes, Louie et al. (2010) anticipated the 

role of modifiers in phenotypic expressivity of ciliopathies. This is the action of pleiotropy-

modifier genes that cause individuals that are discordant for a modifier allele to show a 

range of phenotypes. Their data suggested the involvement of a hypomorphic mutation in 

AHI1 as a modifier of retinal degeneration in the context of causative mutations leading to 

NPHP.  

A previous report Leitch et al. (2008) hypothesized that MKS might represent a more 

severe variant of BBS. Mutation of MKS1 (MIM: 609883) was associated with a novel 

phenotype; seizures in BBS-affected subjects with mutations in BBS1 (MIM:209901), BBS9 

(MIM:607968), or BBS10 (MIM:610148), which indicated that the MKS gene was modifying 

the effect of mutations in the BBS genes and might represent a more severe variant of BBS. 

A similar effect was presented by Zaki et al. (2011), who reported significant clinical 

variability among siblings who carry the same genetic mutations in two consanguineous 

Egyptian families, each with non-overlapping ciliopathy spectrum disorders; family number 

1 had one child affected by NPHP and polydactyly but not the Molar Tooth Sign (MTS), while 

another affected child displayed only the MTS of JBTS but not NPHP. In a second branch of 

this family two other children were affected by NPHP but not the MTS. Family number 2 had 

one child who displayed typical features of BBS but not the MTS, while the other two 

children presented the MTS without typical features of BBS. These families underline the 

degree of phenotypic variability that can be seen within the ciliopathy spectrum, suggesting 

genetic modifiers as a possible explanation for these differences. 

NPHP has less severe involvement of organ systems, principally the kidney and retina 

(Hildebrandt and Zhou, 2007), causing end stage renal failure in the paediatric or juvenile 

age ranges, and is therefore has a milder phenotype than BBS or MKS. JBTS, MKS, and NPHP 

have a high degree of genetic and phenotypic overlap depending on allelic effects, genetic 

background and genetic complexity due to extreme genetic heterogeneity (Leightner et al., 
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2013). In addition, BBS has more multi-organ involvement, which makes it an informative 

phenotype to study the effect of ciliary dysfunction in many different organ systems (Tobin 

and Beales, 2009), but without the significant early embryonic lethality in MKS or severe 

structural neurodevelopmental defects in JBTS. Both MKS and JBTS are the most severe 

types of ciliopathies (Figure 1.7): MKS invariably causes intrauterine or neonatal death 

shortly after birth (Tobin and Beales, 2009, Hildebrandt and Zhou, 2007). However, the 

variability of the MKS phenotypes may also display the possible effect of strong modifier 

alleles. For example, in one MKS family, five affected foetuses had a broad variability of 

central nervous system involvement ranging from severe enchephalocele to completely 

normal despite the fact that all five fetuses had biallelic pathogenic TMEM67 mutations 

(Ben-Salem et al., 2014, Smith et al., 2006). This variability indicates that other genetic 

variants could modify or influence the phenotype caused by pathogenic mutations in the 

causative ciliopathy gene (Ware et al., 2011, Consugar et al., 2007). 

 Previous studies by (Williams et al., 2011, Jensen et al., 2015, Yee et al., 2015) 

signified some components of different complexes, including the transition zone and BBS 

have overlapping functions in ciliogenesis in C. elegans and mice model organisms; these  

observations imply that the type of alleles, the modifiers that present in different genetic 

backgrounds, overlapping protein functions, and cell -type specificity can all influence the 

phenotypic outcome which such genetic complexities may underline human ciliopathies 

(Reiter and Leroux, 2017). 

Given the examples above, understanding the disease mechanism of ciliopathies 

requires insights into ciliary interaction networks (van Reeuwijk et al., 2011) and the 

structure-function relationships between ciliary proteins. Although the majority of genes 

that are mutated as causes of ciliopathies appear to have been identified (Tables 1.2 and 

1.3), surprisingly little is known about the structure of ciliary proteins and their organization 

within ciliary compartments. Therefore, the biggest challenge to the ciliary biology field is to 

understand the intricate organization and ultrastructure that underlies the functional 

complexity of ciliary-related processes. 
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Table 1. 2: Common clinical features of the ciliopathies and phenotypic overlap in the 
ciliopathies, modified from (Waters and Beales, 2011). 

Phenotype MKS JBTS NPHP BBS LCA SLS 
Cerebellar  ✔ ✔ ✔   

Obesity  ✔  ✔   

Polydactyly ✔ ✔ ✔    

Renal disease ✔ ✔ ✔ ✔  ✔ 

Situs inversus ✔ ✔ ✔ ✔  ✔ 

Retinopathy  ✔ ✔ ✔ ✔ ✔ 

Hepatic disease ✔  ✔ ✔  ✔ 

 

Table 1. 3: Genetic pleiotropy and phenotypic overlap in a range of ciliopathies, modified 
from (Waters and Beales, 2011, Rachel et al., 2012). 

Phenotype MKS JBTS NPHP BBS LCA SLS OFD COACH 
CEP290 ✔ ✔ ✔ ✔ ✔ ✔   

RPGRIP1L ✔ ✔ ✔  ✔   ✔ 

TMEM67 ✔ ✔ ✔ ✔    ✔ 

TMEM216 ✔ ✔     ✔  

BBS (2,4,6) ✔   ✔     

MKS1 ✔   ✔     

NPHP (1,4,5)   ✔   ✔   

NPHP3 ✔  ✔   ✔   

CC2D2A ✔ ✔      ✔ 

 

 

1.6.1 Ciliopathy phenotype and mechanisms of disease 
 

1.6.1.1 Meckel–Gruber Syndrome (MKS) 

 

Meckel–Gruber Syndrome (MKS) (MIM:249000) is a rare autosomal recessive 

disorder, first described in 1822 by Johann Meckel. MKS is a genetically heterogeneous 

severe ciliopathy with a wide variety of overlapping phenotypic features with JBTS and 

other ciliopathies. It is an important systemic malformation syndrome leading to death of 

the fetus in utero or shortly after birth (Paavola et al., 1995) and it is the most severe 

ciliopathy (Leightner et al., 2013) (Figure 1.7). MKS is characterized by developmental 

defects of the central nervous system including occipital encephalocele, bilateral renal cystic 

dysplasia, hepatic ductal proliferation, fibrosis and cysts, and polydactyly (Smith et al., 2006) 
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(see details in Figure 1.8). MKS is considered to be the most frequent syndromic cause of 

neural tube defects (Simpson et al., 1991). 

 

The most common clinical features of MKS comprise a triad that consist of occipital 

encephalocele, post-axial polydactyly, and bilateral enlarged multicystic kidneys. These 

clinical features are useful for ultrasound diagnosis before the 14
th

 gestational week. The 

genetic heterogeneity of MKS has been established by the description, to date, of mutations 

in at least 13 MKS disease genes. These genes include MKS1, TMEM216 (as a cause of MKS 

type 2), TMEM67 (MKS3), CEP290 (MKS4), (RPGRIP1L), (MKS5), CC2D2A (MKS6), NPHP3 

(MKS7), Tectonic2 (TCTN2) (MKS8), B9D1 (MKS9), B9D2 (MKS10), TMEM237, C5orf42 and 

TMEM231 (MKS11) (Shaheen et al., 2013a) (Table 1.4). Worldwide, the occurrence of this 

disorder is 1 per 13,250-140,000 live births (Kheir et al., 2012), but can be higher in specific 

ethnic groups with higher rates of consanguinity or endogamy. Szymanska et al. (2012) 

estimated that the frequency of MKS was as high as 1 in 3000 in consanguineous Pakistani 

families, caused by extensive genetic heterogeneity and allelism. For example, 3 different 

causal homozygous founder mutations in CEP290 were identified in the same ethic group. 

The incidence of MKS in the Finnish population, which has high levels of endogamy, has 

been estimated to be 1 in 9000 births (Barisic et al., 2015) and appears to be caused by 

founder mutations in MKS1 (the “Finn major” mutation) and CC2D2A (MKS6) (Tallila et al., 

2008, Kyttala et al., 2006) (Table 1.4). 
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Figure 1. 8: Clinical features of Meckel–Gruber syndrome (MKS). (A) Typical external 

features for a fetus with MKS at gestation age 16/40, showing typical clinical features 

comprising occipital encephalocele, massive flank masses due to bilateral renal cystic 

dysplasia, postaxial hexadactyly of all limbs, and a typical Potter’s sequence facies with a 

slanting forehead and flattened nose. (B, C) Ultrasound findings at 14+/40 weeks of 

gestation for MKS showing (B) encephalocele (arrowheads), and (C) large cystic kidneys 

(arrowhead). (D) Massive swelling of the abdomen of a fetus at gestation age 18+/40 with 

MKS due to grossly enlarged, cystic kidneys. (E) Hematoxylin-eosin staining of MKS fetal 

kidney at gestation age 18+/40 showing cystic dysplasia, comprising large, fluid- filled cysts, 

small cysts, and cystic swelling of the proximal tubules and glomeruli, with the absence of 

normal renal parenchyma. (F) Immunohistochemical staining of MKS fetal liver at gestation 

age 18+/40 for cytokeratin-19, showing the retention of embryonic bile duct structures (the 

ductal plate malformation) without the formation of patent bile ducts (arrowhead). PV, 

hepatic portal vein. Images (A-F) adapted from (Hartill et al., 2017) with the kind permission 

of Dr. Riitta Salonen (Rinnekoti Foundation, Helsinki, Finland) from the Robert J. Gorlin Slide 

Collection. JBTS, Joubert syndrome. (G- I) Facial features of some MKS patients MKS_F1, F2, 

and F8, respectively, showing: microcephaly, sloping forehead, hypertelorism, micrognathia, 

potter-like facies, and severe occipital encephalocele (black arrows). (J, K) Representative 

hand and foot images showing postaxial polydactyly in MKS_F2. (L, N) Antenatal ultrasound 

for MKS_F12 patient showed encephalocele (white arrow) and enlarged polycystic kidney 

(dashes arrows) (G-N) adapted from (Shaheen et al., 2013b). 
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 Table 1. 4: List of gene mutated in human MKS. 

Locus 
 

Gene Aliases 
 

Founder mutation Reference 

MKS1 

 

MKS1 MKS, BBS13, JBTS28 

 

Finnish c.1408-

35_1408-7del29 

(Kyttala et al., 2006) 

MKS2 

 

 

TMEM216 JBTS2, CORS2 

 

 

Ashkenazi c.218G>T 

(p.R73L) 

(Valente et al., 2010) 

MKS3 

 

TMEM67 JBTS6, NPHP11, 

Meckelin, MKS3, 

TMEM67 

Pakistani c.1575+1G>A (Smith et al., 2006) 

MKS4 CEP290 KIAA0373, 3H11AG, 

JBTS5, SLSN6, LCA10, 

BBS14, NPHP6, MKS4 

 (Baala et al., 2007) 

MKS5 RPGRIP1L KIAA1005, JBTS7, CORS3, 

FTM, NPHP8, MKS5 

European c.1843A>C 

(p.T625P) 

(Delous et al., 2007) 

MKS6 CC2D2A KIAA1345, JBTS9, MKS6 Finnish c.1762C>T (Tallila et al. 2008) 

MKS7 NPHP3 SLSN3, NPHP3, NPH3, 

RHPD1, MKS7 

 (Bergmann et al. 2008) 

MKS8 TCTN2 C12orf38, TECT2, 

JBTS24, MKS8 

 (Shaheen et al. 2011) 

MKS9 B9D1 MKSR1, JBTS27, MKS9  (Hopp et al. 2011) 

MKS10 B9D2 MKSR2, MKS10  (Dowdle et al. 2011) 

MKS11 TMEM231 JBTS20, MKS11  (Shaheen et al. 2013) 

MKS12 KIF14 KIAA0042  (Filges et al. 2014) 

MKS13 TMEM107 JBTS29, PRO1268  (Shaheen et al., 2015) 

 

1.6.1.2 Joubert syndrome (JBTS) 

JBTS is a rare, recessive ciliopathy with overlapping phenotypic features, first 

identified in 1969 by Marie Joubert (MIM: 213300) (Joubert et al., 1968). The incidence of 

this condition is estimated to be 1:100.000 (Parisi, 2009). It is characterized by a distinctive 

brain malformation, known as the “molar tooth sign” (MTS) visible on brain magnetic 

resonance imaging, and variable multi- organ involvement (Parisi et al., 2007). The common 

syndromic features in many patients are retinal dystrophy, renal defects, cystic dysplastic 

kidneys, and congenital hepatic fibrosis (Romani et al., 2013) (see details in Figure 1.9). 

Mutations in at least 27 causative genes for JBTS have been recognized and reported to the 

present date (see Table 1.5). For instance, AHI1 (Abelson helper integration-1), encoding the 

protein jouberin, is the most frequently mutated gene in 10-15% of cases of autosomal 

recessive JBTS (Wolf et al., 2007). Jouberin is localized to basal bodies and cell-cell junctions 

(Tuz et al., 2013) and is essential for cerebellar and cortical development in humans since 

AHI1 mutations cause both abnormal cerebellar development and axonal decussation 
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(Ferland et al., 2004). It is notable that there is a significant genetic overlap between JBTS 

and MKS, since mutations in at least 12 genes seem to cause either JBTS or MKS (Slaats et 

al., 2016). Tables 1.2 and 1.3 summarize the ciliary genes that have been identified to have 

causal mutations for MKS and JBTS, as well as those that display genetic pleiotropy between 

the two conditions. 

 

 

Figure 1. 9: Clinical features of Joubert syndrome (JBTS). Brain MRI sections in patients with 

JSRD. (A) mid-sagittal T1-weighted image shows a thin midbrain with corresponding 

enlargement of the interpeduncular fossa (open arrowhead). There is concurrent superior 

vermian dysplasia (thin arrows); (B) parasagittal T1-weighted image shows thickened and 

maloriented superior cerebellar peduncle (thick arrowheads); (C) axial T1-weighted image 

confirms the deepened interpeduncular fossa (open arrowhead) and abnormal superior 

cerebellar peduncles (thick arrowheads), comprising the "molar tooth sign"; (D) coronal 

FLAIR image shows midline cerebellar cleft (black arrows) indicating agenesis of the inferior 

vermis. Images (A-D) adapted from (Brancati et al., 2010). 
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Table 1. 5: List of selected genes mutated in human JBTS and MKS. 

Locus 
 

Gene 
 

Aliases 
 

Founder 
mutation 

Reference 

JBTS1 AHI1    

JBTS2 TMEM216 HSPC244 Ashkenazi 

p.R73L 

(Valente et al., 2010) 

JBTS4 NPHP1 JBTS4, NPH1, SLSN1  (Parisi et al., 2004) 

JBTS5 CEP290 3H11Ag, JBTS5, LCA10, BBS14, 

NPHP6, CT87, MKS4, POC3, 

SLSN6, rd16 

 (Sayer et al., 2006) 

JBTS6 TMEM67 JBTS6, MECKELIN, MKS3, 

NPHP11, TMEM67 

 (Baala et al., 2007) 

JBTS7 RPGRIP1L JBTS7, CORS3, FTM, NPHP8, 

MKS5 

 (Delous et al., 2007) 

JBTS8 ARL13B ARL2L1, JBTS8  (Cantagrel et al., 

2008) 

JBTS9 CC2D2A Mks6, JBTS9  (Noor et al., 2008) 

JBTS14 TMEM237 ALS2CR4, JBT14  (Huang et al., 2011) 

JBTS16 TMEM138 HSPC196  (Lee et al., 2012) 

JBTS20 TMEM231 UNQ870/PRO1886, ALYE870, 

JBTS20, MKS11, PRO1886 

 (Srour et al., 2012) 

JBTS21 CSPP1 CSPP, JBTS21  (Tuz et al., 2014) 

 

1.6.1.3 Nephronophthisis 

NPHP (MIM: 256100) is an autosomal recessive cystic kidney disease first described 

by Smith and Graham in 1945. It is the most frequent genetic cause of end-stage renal 

disease (ESRD) in children and young adults (O'Dea et al., 1996, Waters and Beales, 2011). 

Previous studies have identified mutations in over 20 genes that are associated with this 

ciliopathy, although there is considerable genetic pleiotropy and phenotypic overlap with 

other ciliopathies. NPHP is primarily a kidney disease, but it can be associated with retinitis 

pigmentosa (SLS) and cerebellar vermis aplasia (JBTS) in approximately 15% of patients 

(Hildebrandt and Zhou, 2007). Mutations in NPHP genes have also been found in patients 

with MKS (Fleming et al., 2017) and an association with hepatic fibrosis in NPHP type 11 is 

consistently observed with TMEM67 mutations (Otto et al., 2009), more usually a cause of 

MKS. Consistent with this genetic finding, mutations in this the NPHP group of genes are 

proposed to cause defects in the non-canonical Wnt and SHH signalling pathways 

(Hildebrandt et al., 2009). 
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1.6.1.4 Bardet-BiedI syndrome (BBS) 

BBS (MIM: 209900) is an autosomal recessive rare, heterogeneous disorder that 

affects many parts of the body. Its prevalence in Europe and North America is estimated to 

be below 1 in 100,000 (Forsythe and Beales, 2013). BBS is among the mildest ciliopathies 

(see Figure 1.7), and the major features of this syndrome are loss of vision, obesity (with 

hypogonadism in males), developmental delay (intellectual impairment) and post-axial 

polydactyly, and genital and renal malformations (Mitchison and Valente, 2017, Khan et al., 

2016). Mutations in 21 genes have been recognized as causal for BBS, although there is 

considerable phenotypic overlap and genetic pleiotropy with other ciliopathies such as 

NPHP and MKS (Suspitsin and Imyanitov, 2016, Redin et al., 2012). Mutations in the majority 

of BBS genes lead to problems in the structure and function of cilia or ciliary-related 

signalling processes. Ten BBS proteins (BBS1, 2, 4, 5, 6, 7, 8, 9, 17 and 18) appear to 

contribute to the formation of a multiprotein complex called the BBSome. The BBSome has 

been proposed to work as an adapter for IFT complexes that cross the transition zone 

barrier to transport ciliary proteins between the ciliary membrane and the plasma 

membrane (Nachury et al., 2007). A second complex of additional BBS proteins, containing 

BBS6, BBS10 and BBS12, forms a possible chaperonin complex that is assumed to mediate 

BBSome assembly (Seo et al., 2010). 

1.6.2 Primary cilia and oncogenesis 
 

Recent work connected dysfunction of primary cilia with tumour formation. These 

studies have been shown that primary cilia could play a critical role in tumorigenesis and 

tumour progression by acting as a “tumour suppressor organelle”. For example, the 

incidence of primary cilia was reduced in cholangiocarcinoma (CCA) in vivo as well as in vitro 

(Gradilone et al., 2013) and the molecular mechanisms and significance of this effect remain 

to be elucidated (Gradilone et al., 2017). However, some insights have recently emerged 

which have shown that ciliary number was decreased in ovarian cancer cells, in a 

mechanism linking ciliogenesis with over-expression of Aurora A kinase (AURKA), a protein 

implicated in cilia assembly (see section 1.4.1) (Gradilone et al., 2017, Egeberg et al., 2012). 

In addition, the ciliary-associated gene, von Hippel Lindau (VHL) is a tumour suppressor, 

dysregulated in VHL disease and clear cell renal carcinoma (Arjumand and Sultana, 2012). 
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Furthermore, Esteban et al. (2006) suggested that VHL regulates ciliogenesis in the renal 

epithelium and is involved in microtubule stabilization and subsequent cilia maintenance. 

Thoma et al.(2010) suggested that VHL is involved in the regulation of microtubule dynamics 

and confirmed the previous suggestion that VHL interacts with the ciliary motor kinesin-2 

(Mans et al., 2008, Lolkema et al., 2007) as well as potentially being implicated in 

maintenance of the primary cilium. In support of this observation, human renal cell 

carcinomas (RCC) tumours lacking functional VHL displayed reduced ciliary frequency 

compared with matched, normal tissues (Basten et al., 2013). The molecular mechanism 

that explains these observations has been suggested to be control of microtubule growth by 

VHL during ciliogenesis (Schermer et al., 2006). In this study, VHL was shown to be essential 

for the oriented growth of microtubules toward the cell periphery, a prerequisite for the 

formation of cilia. VHL interacts with the kinase that phosphorylates components of a cell 

polarity complex (Par3, Par6, and atypical protein kinase C aPKC), implying that VHL links the 

polarity complex proteins to microtubule capture and ciliogenesis. 

 

1.6.3 Ciliopathy proteins and functions: Ciliopathy-associated genes encoding 
ciliary transition zone transmembrane proteins 

A number of protein complexes that include MKS, JBTS, and NPHP proteins have 

been defined by biochemical or genetic means, but the ultrastructure that underlies this 

functional complexity is unknown. Three studies (Chih et al., 2011, Garcia-Gonzalo et al., 

2011, Sang et al., 2011) suggested 3 core ciliopathy-associated multiprotein modules within 

the transition zone, including MKS, NPHP and JBTS, each of which are composed of proteins 

that are involved in ciliary assembly and the selective permeability of the “ciliary gate” in 

the transition zone. However, the organization of these proteins within this ciliary 

compartment remains to be determined. In particular, the complexes have been suggested 

to regulate ciliary membrane protein composition (Garcia-Gonzalo et al., 2011, Garcia-

Gonzalo and Reiter, 2012), with each of the 3 modules mediating protein translocation 

event during SHH signalling (Sang et al., 2011). The following section describes the functions 

of selected examples of proteins that are components of the MKS, JBTS and NPHP functional 

modules and Figure 1.10 shows 2 examples of important ciliary transmembrane proteins. 
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Figure 1. 10: Domain structure of transition zone components: TMEM67 and TMEM17. 
Numbering indicates the amino-acid residue. (A) Reference TMEM67 sequence is NCBI 

accession number NP_714915.3. Schematic diagrams of conserved domains and structural 

motifs within TMEM67: TMEM67 N-terminus includes a signal peptide (outlined rectangle 

yellow) in the extracellular loops, conserved cysteine residues (outlined rectangle orange), 

and coiled-coil domain (outlined rectangle blue) in the C-terminus. Strongly predicted 

transmembrane alpha-helices are shown as grey rectangles with black outlines; weakly 

predicted ones are shown in grey only. Plasma membrane (PM): Regions of β-sheet 

periodicity (grey), seven predicted transmembrane helices (grey). (B) TMEM17 sequence is 

NCBI accession number NP_498542.2 and the predicted transmembrane helices are shown 

as grey rectangles with black outlines. Red symbols show epitopes of antibodies (Ab) used in 

this research thesis. 

 

1.6.3.1 TMEM67 

Transmembrane protein 67 (TMEM67, MIM: 609884) mutations are the most 

frequent cause of MKS, and mutations in this gene cause 16% of all MKS cases (Iannicelli et 

al., 2010). The Frizzled-like orphan receptor TMEM67 is a 995 amino-acid transmembrane 

protein with structural similarity to Frizzled receptors (Smith et al., 2006) (Figure 1.10; Table 

1.6). In both mouse and human kidney cell-lines, TMEM67 (also known as meckelin) 

localized at the base of the primary cilium (Smith et al, 2006). Subsequent studies implicated 

TMEM67 as a component in a complex containing TCTN1, TCTN3 and six MKS proteins 
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(MKS1, TMEM216, CEP290, CC2D2A, B9D1 and TCTN2) (Garcia-Gonzalo et al., 2011). This 

complex localized to the ciliary transition zone and regulated ciliogenesis and ciliary 

membrane composition in a tissue-dependent manner, suggesting that TMEM67 is a 

membrane ciliary protein that contributes to selective permeability at the ciliary transition 

zone (Leightner et al., 2013). In addition, as part of determining the MKS complex of 

proteins at the transition zone, TMEM67 is essential for other components such as MKS1. 

Protein-protein interaction studies show that MKS1 interacts with TMEM67 and both are 

required for mother centriole migration to the apical membrane and the subsequent 

formation of the primary cilia (Dawe et al., 2007). In addition, mutations in TMEM67 cause 

the related ciliopathies JBTS (Baala et al., 2007), COACH syndrome (Joubert syndrome with 

congenital hepatic fibrosis) (see section 1.6), BBS syndrome (Leitch et al., 2008) and NPHP 

(Otto et al., 2009). TMEM67 has similar protein domains to the frizzled group of 

transmembrane receptors that are involved in Wnt and PCP signalling (Tobin and Beales, 

2009) (see section 1.5.2). TMEM67 has 7 predicted transmembrane domains and an N-

terminal extracellular cysteine-rich region, possibly an ectodomain, as well as a highly 

conserved intracellular coiled-domain at the C-terminus (Smith et al., 2006). 

The suggested role of TMEM67 in the PCP pathway was derived from zebrafish 

embryo “morphant” phenotypes following morpholino oligonucleotide (MO) knockdown of 

mks3 (the zebrafish orthologue of human TMEM67). The morphant phenotypes included 

defects in gastrulation movements that included a shortened body axis, broad notochords 

and misshapen somites that are suggestive of defects in the PCP pathway (Leitch et al., 

2008, Badano et al., 2006). TMEM67 may also have a role in the basal-body/centrosome 

compartment since it appears to have a significant role in controlling primary ciliary length 

and number through modulating centrosome duplication (Tammachote et al., 2009). For 

instance, mutations in Tmem67 lead to cilium elongation in renal collecting duct cells and 

PKD in the rat wpk model (Tammachote et al., 2009) but loss of cilia in other tissues, 

indicating that TMEM67 mediates tissue-specific ciliogenesis. 

1.6.3.2 TMEM216 

Transmembrane protein 216 (TMEM216, MIM: 613277) encodes a tetraspanin-like 

transmembrane protein, characterized by 4 predicted transmembrane domains. TMEM216 
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localizes to the base of primary cilia, most likely at the transition zone (Hartill et al., 

2017)(Table 1.6). Knockdown or loss of this gene in mutant fibroblasts resulted in defects in 

ciliogenesis and docking of the centrosome to the apical cell surface in polarized cells (Lee et 

al., 2012, Valente et al., 2010) suggesting that TMEM216 is required for centrosome/basal 

body docking to initiate ciliogenesis at the transition zone (Garcia-Gonzalo et al., 2011, 

Szymanska and Johnson, 2012). TMEM216 appears to be part of the MKS complex that 

mediates the link between the transition zone and the ciliary membrane (Kim et al., 2018). 

Mutations in TMEM216 cause pleiotropy between both JBTS (JBTS type 2) and MKS (MKS 

type 2) (Edvardson et al., 2010, Valente et al., 2010), as well as an intermediate phenotype 

known as “cerebello-oculorenal syndrome 2” (CORS2). CORS2 was the original locus name 

but that the associated phenotype is better described as COACH. 

1.6.3.3 TMEM231 

Transmembrane protein 231 (TMEM231, MIM: 614949) is a pleiotropic ciliopathy 

gene for which mutations cause variable phenotypic consequences. Shaheen et al. (2013a), 

first identified a splicing mutation in TMEM231 in 2 consanguineous families with 

phenotypes ranging between JBTS and MKS syndromes. Affected children had the typical 

constellation of JBTS features that included oculomotor apraxia, molar tooth sign on brain 

MRI, breathing abnormalities and developmental delay. Other affected individuals had early 

lethality, occipital encephalocele, polydactyly and PKD consistent with MKS (Table 1.6). 

TMEM231 mutations were subsequently associated with both MKS (Hopp et al., 2011) and 

JBTS type 14 (Srour et al., 2012), further emphasizing the genetic pleiotropy between these 

conditions and shared molecular patho-mechanisms for these two phenotypes (Shaheen et 

al., 2013a). TMEM231 encodes a tetraspanin-like transmembrane protein that localizes to 

the transition zone (Reiter et al., 2012). 

The first clues about function came from studies of the TMEM231 orthologue in C. 

elegans (Roberson et al., 2015). This study investigated whether TMEM231 localization to 

the transition zone was conserved in this organism and if TMEM231 localization required 

other transition zone proteins. This study confirmed that TMEM231 was a component of the 

MKS complex since it interacted with both B9D1 and MKS1. Thus, TMEM231 localised to the 

transition zone and controlled ciliary protein composition and function (Roberson et al., 
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2015). In parallel, Chih et al. (2011) confirmed that TMEM231, B9D1, CC2D2A and TMEM17 

localized at the ciliary transition zone and formed a multiprotein complex. Furthermore, this 

study demonstrated that the localizations of these proteins are dependent on one another 

and on the septin SEPT2. It also demonstrated that knock-outs of both the B9d1 and 

Tmem231 genes in mice caused defects in SHH signalling and ciliogenesis, suggesting that 

TMEM231 contributes to selective permeability at the ciliary transition zone. 

Roberson et al. (2015) also described mutations in TMEM231 causing both 

orofaciodigital syndrome type 3 (OFD3) and MKS, further supporting the hypothesis that 

TMEM231 is a member of the MKS complex and that the basis of genetic pleiotropy in 

ciliopathies may be due to a shared molecular pathogenesis. This is supported by a loss-of-

function Tmem231 mutation in homozygous mutant mouse embryos (Roberson et al., 

2015). This revealed polycystic kidneys, polydactyly and hepatic ductal plate malformations, 

which are all clinical signs characteristic of MKS-like phenotypes. In support of a functional 

role for Tmem231 in regulating ciliary composition, in particular the MKS complex, loss of 

Tmem231 in the mutant resulted in increased accumulation of NPHP1 at the transition zone, 

as well as loss of the MKS complex (specifically, MKS1 and TMEM67) from the transition 

zone (Roberson et al., 2015). These data indicate that TMEM231 is required for the 

assembly of the MKS complex at the transition zone. 

1.6.3.4 CEP290 

 

Centrosomal protein 290 (CEP290, MIM: 610142) encodes a large multi-domain 

transition zone /centrosomal protein and its localization to the centrosome is dynamic and 

dependent on the cell cycle (Sayer et al., 2006) (Table 1.6). CEP290 localizes, in particular, to 

mother and daughter centrioles as well as pericentriolar satellites. However, CEP290 is also 

a component of the transition zone and may contribute to selective permeability at the base 

of the cilium (Betleja and Cole, 2010). Surprisingly, CEP290 also contains a nuclear 

localization signal and may also localize to the nucleus (Baala et al., 2007, Sayer et al., 2006, 

Valente et al., 2010), but the functional purpose of this localization remains unclear. 

In photoreceptors, CEP290 localizes to the connecting cilium and appears to function 

in controlling entry and trafficking of ciliary proteins as well as regulating cilium assembly 

(Chang et al., 2006, Barbelanne et al., 2013). Consistent with these functions, mutations in 
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CEP290 have been implicated in retinal degeneration in human ciliopathies and mouse 

models (Chang et al., 2006). Moreover, loss of this gene causes supernumerary centrioles in 

kidneys in a Cep290 mouse knock-out (Slaats et al., 2015). Mutations in CEP290 causes a 

broad range of human ciliopathies, including the second major cause of MKS (Sayer et al., 

2006), JBTS (Valente et al., 2006), NPHP, BBS, Leber congenital amaurosis (LCA type 10) and 

Senior-Løken syndrome (SLS) (Dooley et al., 2018) (Figure 1.7). As an example of phenotypic 

range, SLS is characterized by severe loss of vision and renal failure (kidney cyst formation 

and end-stage renal disease) (Coppieters et al., 2010). 

 

1.6.3.5 TMEM17 

Transmembrane protein 17 (TMEM17, MIM: 614950) encodes a small tetraspanin-

like transmembrane protein (TMEM), 198 amino acid residues in length (Figure 1.10; Table 

1.6). TMEM17 may localize to the ciliary necklace alongside TCTN and TMEM231 in mIMCD-

3 cells (Satir, 2017), and consistent with this localization TMEM17 biochemically interacts 

with components of a TMEM complex that included TCTN2, TCTN3, TMEM67, TMEM231 

and TMEM237 (Garcia-Gonzalo and Reiter, 2012). TMEM17 is required for localization of 

TMEM231 and B9D1 to the ciliary transition zone (Chih et al., 2011). Despite the evidence 

that TMEM17 is implicated in the MKS module, the expression pattern and 

clinicopathological relevance of this ciliary gene is still unclear. Mutations in TMEM17 have 

not yet been conclusively implicated in a human ciliopathy. In a single family, a homozygous 

missense mutation in TMEM17 was reported as causal for Oral-Facial-Digital syndrome type 

6 (OFD6) and patient fibroblasts had ciliogenesis defects (Li et al., 2016). 

1.6.3.6 TMEM138 

Mutations in the transmembrane protein 138 (TMEM138, MIM: 614459) are 

implicated in JBTS (Chih et al., 2011, Lee et al., 2012) but have not been described as a cause 

of MKS (Szymanska et al., 2014) (Table 1.6). Lee et al. (2012) revealed that TMEM138 and 

TMEM216 have an interdependent role in ciliary assembly since the genes are adjacent and 

co-regulated, and mutation in either of these genes causes JBTS. TMEM138 is required for 

ciliogenesis in both mIMCD-3 cells and in patient-derived mutated fibroblasts (Lee et al., 

2012). Interestingly, TMEM138 interacts genetically with CEP290 but not with other 
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components of either the MKS or the NPHP modules (Li et al., 2016), but the functional 

significance of this interaction is unclear. 

1.6.3.7 TMEM237 

Transmembrane protein 237 (TMEM237, MIM: 614423), a MKS complex component, 

is a ciliopathy protein associated with JBTS-related disorders and is localized to the 

transition zone. Mutations in this gene result in defective ciliogenesis and deregulation of 

Wnt signalling (Huang et al., 2011) (Table 1.6). Consistent with the functional roles of other 

TMEMs, TMEM237 also appears to be required for regulation of the protein composition of 

the ciliary membrane. Biochemical interactions showed that TMEM237 is necessary for 

TMEM231, B9D1 and B9D2 to localize to the ciliary transition zone (Chih et al., 2011), whilst 

within the transition zone RPGRIP1L was required for the proper localisation of TMEM237 to 

the ciliary transition zone of mIMCD-3 cells (Huang et al., 2011). 

1.6.3.8 RPGRIP1L 

RPGRIP1-Like (RPGRIP1L (also known as MKS5 or NPHP8)), MIM: 610937) is located 

at the ciliary transition zone. Mutations in RPGRIP1L causes JBTS (Arts et al., 2007) and MKS 

(Delous et al., 2007) (Table 1.6). C. elegans genetic studies suggest that it is a “master 

regulator” of ciliogenesis for both the MKS and JBTS complexes. RPGRIP1L appears to be a 

key structural component of the ciliary transition zone, in particular the Y-shaped axoneme-

to-membrane linkers, and it is essential for the correct localization of NPHP1, NPHP4, 

TMEM17 and TMEM138 (Jensen et al., 2015). In contrast, a second study has suggested that 

RPGRIP1L controls ciliary length and ciliary signalling by regulating proteasomal activity at 

the cilium (Gerhardt et al., 2016, Gerhardt et al., 2015, Liu et al., 2014) although the 

mechanistic basis of this regulation remains unknown. 

Table 1. 6: List of ciliary genes and encoded proteins investigated in this project describing 
the associated human syndromic disorders. 
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OMIM Gene name 
used in this 

project 

Cytogenetic 
location 

Related ciliopathies Protein-Sub-cellular ciliary localization Function Renal Phenotypes Category 

 

614950 TMEM17 2p15 (OFD6) Transition zone (Chih et al., 2011) Ciliogenesis (Li et al., 2016)   

609884 TMEM67 

 

8q22.1 COACH, JBTS6, 
MKS3, NPHP11, 

RHYNS, modifier of 
BBS14 

Transition zone (Williams et al., 2011, 
Garcia-Gonzalo et al., 2011) 

Ciliogenesis (Abdelhamed et al., 2015) required for 
centriolar migration to the apical membrane (Dawe et al., 

2007) 

Renal cystic dysplasia, (micro)cystic 
kidneys, nephronophthisis 

Neurodevelopmental 
ciliopathy 

614459 TMEM138 

 

11q12.2 
 

JBTS16 Ciliary axonemes / Basal body 
(Lee et al., 2012) 

Ciliogenesis (Lee et al., 2012) Renal cystic dysplasia, 
nephronophthisis 

 

613277 TMEM216 11q12.2 JBTS2, MKS2 Post-Golgi vesicles along microtubules, 
Golgi apparatus, and surrounding the 

base of cilium (Lee et al., 2012) 

Ciliogenesis (Lee et al., 2012) Renal cystic dysplasia, cystic kidneys, 
nephronophthisis 

 

614949 TMEM231 16q23.1 JBTS20, MKS11 Transition zone (Chih et al., 2011) Organizing the MKS complex and controlling ciliary 
composition (Roberson et al., 2015) 

Retinal and kidney involvement  

614423 TMEM237 2q33.1 JBTS14 Transition zone                      (Huang et 
al., 2011) 

Ciliogenesis and function as a module with TMEM216, and 
TMEM67 to regulate Wnt signalling (Huang et al., 2011). 

Cystic kidneys  

610142 CEP290 12q21.32 JBTS5, SLSN6, LCA10, 
MKS4, BBS14, 

Centriolar satellites (Tsang et al., 2008, 
Kim et al., 2008), Transition zone 

(Garcia-Gonzalo et al., 2011, Craige et 
al., 2010) 

Ciliary assembly and ciliary trafficking (Coppieters et al., 
2010) 

Multicystic dysplastic kidneys, 
nephronophthisis 

 

610937 RPGRIP1L 16q12.2 JBTS7, MKS5, COACH Basal body (Arts et al., 2007) 
Transition zone (Williams et al., 2011) 

Ciliogenesis: Assemble of the vertebrate ciliary transition 
zone/ Regulate proteasomal activity at the base of primary 

cilia  (Wiegering et al., 2018b) 

  

613979 *PRPF6 20q13.33 *RP60 Proximal/basal body of primary cilia 
and nuclear speckles in mIMCD-3/Base 

of the retinal photoreceptor 
connecting cilium and nuclei of *INL 

(Wheway et al., 2015) 

Cell division (Neumann et al., 2010) Ciliogenesis (Wheway 
et al., 2015) 

 Isolated retinal 
ciliopathy 

607300 *PRPF8 17p13.3 *RP13 Proximal/basal body of primary cilia 
and nuclear speckles in mIMCD-3  
/Base of the retinal photoreceptor 

connecting cilium and nuclei of *INL 
(Wheway et al., 2015) 

Implicating in the process of centriolar under-duplication 
(Balestra et al., 2013). Important effectors of cell division 

(Neumann et al., 2010). Ciliogenesis (Wheway et al., 2015) 

  

603191 C21orf2 21q22.3 *JATD, *RDMS, *axial 
SMD 

Basal body in mIMCD-3/RPE1 
(Wheway et al., 2015)/ the connecting 

cilium of the cone and rod 
photoreceptors (Wang et al., 2016) 

Ciliogenesis (Suga et al., 2016) Role in cilia formation and/or 
maintenance 

Ciliopathies with major 
skeletal involvement 

*Oral-Facial-Digital type 6 (OFD6), *Pre-mRNA processing factor 8 (PRPF8), Pre-mRNA processing factor 6 (PRPF6), *Retinitis pigmentosa 60 (RP60), *Retinitis pigmentosa 13 (RP13), * Inner 
nuclear layer (INL) *Jeune asphyxiating thoracic dysplasia (JATD), *Retinal dystrophy with macular staphyloma (RDMS), *Axial spondylometaphyseal dysplasia (axial SMD), Progesterone 
Immunomodulatory Binding Factor 1 (PIBF1). (Falk et al., 2015, Wheway et al., 2019). Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns 
Hopkins University (Baltimore, MD), (Andreu-Cervera et al.). World Wide Web URL: https://omim.org/. 
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1.7 Therapies for ciliopathies 
 

There are considerable limitations and challenges to gene therapies that face 

researchers, such as the complex pleiotropy of ciliopathies. These are very heterogeneous 

conditions which may be attributed to allelic heterogeneity, locus heterogeneity, reduced 

penetrance, variable expressivity, impact of modifier genes and/or environmental factors 

(as is the case in cystic kidney diseases; (Lemaire and Parekh, 2017, Konig et al., 2018). This 

complexity must be overcome (McIntyre et al., 2013). Therefore, Gainotti et al. (2018) 

claimed that clinicians should encourage patients to describe their own phenotype. The 

earlier involvement of patients and more specific diagnoses are needed to enable delivery 

of effective care and treatments (James et al., 2010, Groopman et al., 2018). 

Modern next-generation sequencing (NGS) of gene panels is used instead of testing 

single ciliopathy genes, since these genes have the large phenotypic overlap between 

different diseases and wide genetic heterogeneity. Arts and Knoers (2013) argued that such 

testing will promote diagnostics, prognosis, and genetic counselling. However, significant 

consideration must be taken to improve the issues in bioinformatic analysis and variant 

interpretation. Furthermore, strict ethical regulation will be required to enable our 

understanding of conditions such as renal ciliopathies to be improved. A number of ethical 

issues remain to be resolved such as what to do with incidental genetic findings, identified 

by genomic sequencing but unrelated to the disease being investigated, which have major 

implications for both patients and their relatives. For renal ciliopathies, should exomes be 

sequenced or should a selected set of known ciliopathy genes be included in an NGS panel 

in order to avoid this ethical issue? What should be done if variants of unknown significance 

are identified (Arts and Knoers, 2013)? 

Recently, Wheway et al. (2019) reported a comprehensive overview discussing the 

opportunities and challenges for molecular understanding of ciliopathies. This shed the light 

on some approaches to data analysis within the UK, the EU, the USA, China, Saudi Arabia 

and other countries. For instance, the Saudi Human Genome Program was established in 

December 2013 to sequence 100,000 individuals. The database was set up with a specific 

focus on understanding the most common Saudi Arabian rare inherited diseases since 

consanguineous marriage between cousins is very common. Additional genome projects are 

the USA's $215 million Precision Medicine Initiative set up in January 2015, and China's 
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Genomic Medicine Initiative, launched in 2016, which aimed to sequence 1 million 

genomes. It should be noted that whilst these current genome programmes have different 

specific aims they share some similarities. If these global efforts were combined into one 

platform, in which data and resources could be shared worldwide including standardizing 

phenotypic descriptions, data standards, analysis pipelines and mechanisms for data-sharing 

and discovery, then this would contribute to increased diagnostic outputs and may facilitate 

targeted therapies for ciliopathy patients (Wheway et al., 2019). 

Over the past two decades, there were no approved drugs or therapeutic 

interventions available for the syndromic ciliopathies, as is the case for most rare genetic 

disorders. Recently however, there has been extensive discussion and review of gene 

therapy studies that demonstrate the introduction of wild-type genes through viral 

transduction can correct cilia dysfunction, including immotility, defective 

ciliogenesis/maintenance and altered protein trafficking. Several studies have highlighted 

promising approaches to the development of effective treatments for one of the multiorgan 

disorders ciliopathies: childhood blindness (Shivanna et al., 2019, McIntyre et al., 2013). 

Since ciliopathies are in most instances due to loss of wild-type protein, gene therapies 

consisting of gene replacement or augmentation are realistic prospects for disease 

processes that are degenerative or later onset. The exceptions are, of course, neurological 

manifestations or the structural neurodevelopmental anomalies observed in ciliopathies 

which are too severe to benefit from this approach. This is exemplified by recent current 

clinical trials for CEP290-related disorders that target retinal degeneration. CEP290-

associated disease caused by the IVS26 c.2991+1655 A>G mutation, which is a single 

common nucleotide change in intron 26, caused the introduction of an aberrant exon that 

reduces the amount of CEP290 protein. Garanto et al. (2016) reported the development of a 

gene-editing approach for therapeutic treatment of CEP20. This and subsequent studies 

(Gerard et al., 2012, Collin et al., 2012) have shown that transfection of naked antisense 

oligonucleotides (AONs) restored normal CEP290 splicing in cultured cells of LCA patients 

with homozygous intronic CEP290 mutations. The AONs treatment strategy has been 

developed using oligonucleotides that bind to their target mRNA in a complementary 

fashion and subsequently can interfere with pre-mRNA splicing. 

 In addition, Garanto et al. (2016) developed the strategy using naked and adeno-

associated virus (AAV)-packaged AONs which were replication-defective, followed by AAV 
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transduction into retinal cells. Their results indicated the efficacy of using AAV-mediated 

delivery of AONs in CEP290-mutated patients for whom protein levels were restored. In a 

humanized Cep290 mouse model that carries the LCA mutation, AON treatment reduced 

the amount of aberrant Cep290 transcripts. A similar technique used intraretinal injection of 

AAV vectors carrying full-length Bbs4 to slow progression of retinal degeneration in Bbs4 

knock-out mice. This treatment prevented photoreceptor death and improved both retinal 

electrophysiological responses and visually-guided behaviours in the Bbs4 mutants 

(McIntyre et al., 2013, Simons et al., 2011). Recently, however, adverse events occurred 

during AAV treatment. Several issues related to AAV gene transfer treatment were 

discussed in detail by Colella et al. (2018), including immunogenicity, potency and efficacy, 

genotoxicity, and persistence side effects. For instance, the random integration of AAV 

vector genomes into the host DNA could result in gain-of-function mutations that could 

alter cellular homeostasis and cell function, suggesting an issue of AAV-related genotoxicity. 

On the other hand, recent research has revealed a therapy to slow cyst growth in 

adult patients with the ciliopathy ADPKD using the cAMP-targeting drug tolvaptan (Torres et 

al., 2017). Tolvaptan, a vasopressin 2 receptor blocker, has been shown to slow the growth 

in total kidney volume. The V2 receptors targeted by tolvaptan reduce cAMP levels, renal 

weight, cystic volume, fibrosis, and apoptotic and mitotic indices. (Torra, 2008, Torres et al., 

2012). However, the treatment was associated with adverse events. For instance, the sort-

term effectiveness of tolvaptan was tested in clinical trials (Sans-Atxer and Joly, 2018). 

Patients who were at risk of or with evidence of rapidly progressing disease received 

tolvaptan and their symptoms included thirst, polyuria, nycturia and polydipsia (Sans-Atxer 

and Joly, 2018, Torres et al., 2017). The long-term effectiveness of the drug remains to be 

determined (Torres et al., 2017). Despite the risks of this drug, it helps in slowing the 

progression of ADPKD in these patients. It is worth mentioning that nephronophthisis 

patients could benefit from this treatment since the ADPKD and nephronophthisis-

associated genes are involved in similar ciliary pathways (Arts and Knoers, 2013). 

As an alternative approach, drug screening and early preclinical testing (Kim et al., 

2018) has identified a potential lead compound, eupatilin, for treatment of retinal 

degeneration, which is a notable example of using a small molecule as a therapeutic 

intervention for a genetic disorder. Importantly, preclinical studies showed clinical efficacy 

in the rd16 mouse model of CEP290-related retinal degeneration. The rd16 mouse has a 
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Cep290 in-frame deletion, and homozygotes exhibit blindness due to complete 

degeneration of photoreceptors (Chang et al., 2006). In the normal transition zone, CEP290 

forms a complex with NPHP5 and facilitate the function of the ciliary transition zone. In the 

rd16 photoreceptor, the lack of full-length CEP290 appears to be rescued by eupatilin 

through direct binding to NPHP5, leading to partial restoration of function for the complex 

and NPHP5. This prevented retinal degeneration in the rd16 model (Kim et al., 2018) but it is 

unclear if this intervention will be effective for other CEP290 in-frame deletions or for null 

mutations that cause complete absence of the protein. 

In 2009, Chin and colleagues showed successful ex vivo gene therapy when ciliary 

beating was rescued in recovered in DNAI1-deficient human airway epithelial cells after 

lentivirus transduction. Respiratory epithelial cells were harvested from PCD patients with 

DNAI1 mutations, and a wild-type copy of DNAI1 was introduced by lentiviral transduction. 

This example demonstrated a gene therapy technique that was sufficient to repair 

endogenous machinery in existing cilia and suggested that gene augmentation is a viable 

future approach (Chhin et al., 2009, McIntyre et al., 2013).  

More recent studies (McIntyre et al., 2012, Lehman et al., 2008) have revealed that 

restoration of cilia function is possible using adenovirus-mediated gene delivery for gene 

and cell-based therapies. In this study, the Ift88Tg737Rpw homozygous mouse model of human 

ciliopathies (Lehman et al. 2008) has olfactory sensory neurons (OSNs) in the nasal cavity 

that were unable to build or maintain cilia due to a hypomorphic mutation of Ift88. 

McIntyre et al. (2012) performed adenoviral-mediated gene delivery that resulted in 

restoration of Ift88 expression and was sufficient to produce functional olfactory cilia. 

Again, this work demonstrates that gene augmentation is a therapeutic approach worth 

future investigation. 

To sum up, as mentioned in this section that the NGS and high-throughput 

technologies in the last decade has significantly improved the understanding of the 

biological basis of ciliopathy disorders. Ongoing projects are needed to better understand 

the molecular causes of disease, and to determine the possible reasons for the extensive 

overlap in their symptoms and genetic aetiologies. This knowledge is essential before the 

potential of targeted therapeutic interventions can be realized for this group of important 

genetic conditions. 
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1.8 An overview of recent research projects ’the research rationale’ 
and aims of investigation 

The specialized proximal region of the primary cilium known as the transition zone 

has been a focus of study in recent years, but there is still little known about the 

biochemical and genetic interactions in the transition zone that could underlie ciliopathy 

disease mechanisms. Further detail about these transition zone interactions could therefore 

provide new insights into the pathogenic mechanisms of cystic kidney disease in 

ciliopathies, as well as provide further understanding of the molecular architecture, 

interactions and functions of the ciliary proteins in this compartment. 

 A previous study has highlighted the potential genetic interactions between C. 

elegans and mammalian transition zone components, that presumably influence the 

function of macromolecular complexes that are required for early stages of ciliogenesis 

(Williams et al., 2011). Williams et al. (2011) showed that transition zone modules such as 

MKS and NPHP are likely to share common biological functions within predicted 

macromolecular complexes signifying a common cellular mechanism as the basis of their 

etiology. This hypothesis was supported by a previous study, again in C. elegans (Williams et 

al., 2008), which demonstrated that B9 domain-containing proteins (including MKS1, B9D1 

and B9D2 as components of the MKS module), functionally interact with components of the 

NPHP module in particular NPHP1 and NPHP4. These genetic interactions were essential for 

ciliogenesis and will be placed in context with my own work in Chapters 4 and 5. 

One of the overall aims of this project therefore is to determine whether similar 

genetic interactions occur between selected transmembrane ciliary transition zone genes. 

Ciliary transition zone proteins for this project comprised the transmembrane proteins 

TMEM17, TMEM67, TMEM138, TMEM216, TMEM218, TMEM231 and TMEM237 from the 

MKS complex. The reasons for considering the selected transition zone proteins is that most 

of these proteins are required for primary cilia formation and have medical relevance 

(pathogenic mutations in the encoding genes have been described as causes of MKS or JBTS; 

see section 1.6) as well as available of relevant reagents. For example, TMEM67 and 

TMEM216 are essential for basal body docking, ciliogenesis and PCP and they are mutated 

in Joubert syndrome and Meckel-Gruber syndrome (Dawe et al., 2007, Dawe et al., 2009, 
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Valente et al., 2010). Mapping the locations of these transition zone proteins using 

biochemical approaches for characterizing protein-protein interactions will enhance our 

knowledge to clarify the potential relations leading to their tethering and anchoring 

functions. 

A standard biochemical method, co-immunoprecipitation, was used at the beginning 

of the study to identify the interacting proteins since protein-protein interactions are crucial 

in many biological processes in living cells (Lin and Lai, 2017). This relied on the availability 

of specific antibody reagents. As the study developed, I also used over-expression of 

Strep/FLAG (SF-TAP) tag construct contains a 3xFLAG tag (SF-TAP-tagged proteins) in order 

to develop mass spectrometry-based proteomics of TMEM proteins. This approach has been 

used in previous studies to gain insights into ciliary protein function. In this work, I used a 

MS-based comparative proteomics approach to investigate the expressed selected ciliary 

transition zone proteins as well as the purified N-terminal region of the TMEM67 protein. 

RNA interference (RNAi)-based gene knockdown “reverse genetics” approaches 

allow for rapid and efficient assessment of potential genetic interactions of ciliopathy genes. 

My work leads on from a whole genome short interfering RNA (siRNA) reverse genetics 

screen (Wheway et al., 2015) that sought to identify regulators of ciliogenesis and cilia 

maintenance, which exemplified the utility of using acute knockdown as an approach to gain 

insights into mechanism but without complete ablation of protein levels. This study 

identified 194 candidate genes for ciliogenesis and ciliopathies from an initial screen in the 

mouse inner medullary collecting duct (mIMCD-3) ciliated cell-line that was further refined 

by studies in the hTERT-RPE1 cell-line. In Chapter 4, I summarize a number of experiments 

targeting ciliated cell line mIMCD-3 with the aid of RNAi which aims to analyse the 

organization of components of the ciliary transition zone, basal body and axoneme. Thus, I 

hypothesize that even partial reduction of TMEM gene expression using siRNA approaches 

will give rise to quantifiable defects in ciliary incidence or organization. 
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1.8.1 Specific objectives of the study comprised: 

1. Sanger sequencing for causative mutations in TMEM218 and TMEM17, in a large 

cohort of MKS patients and families already pre-screened and confirmed to be 

mutation-negative in known MKS genes. 

2. Biochemical characterization of TMEM proteins including protein purification and 

protein colocalization identifying new interacting proteins of TMEMs and protein-

protein complexes involved in facilitating ciliogenesis at the ciliary transition zone; 

and detecting potential ligands of the orphan receptor TMEM67. 

3. RNA interference-based studies to characterize genetic and potential functional 

interactions between TMEM genes in order to identify novel ciliopathy genes and 

mediators of ciliogenesis. 
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Chapter 2 Mutation Screening of TMEM17 and TMEM218 
 

2.1 Introduction 
 

The ciliopathy MKS syndrome is a lethal neurodevelopmental condition that is 

characterized by occipital encephalocele, PKD and polydactyly (see section 1.6.1.1). MKS 

syndrome comprises the severe end of a phenotypic spectrum that includes JBTS syndrome 

and the two conditions are allelic at several loci such as TMEM216, which is mutated as a 

cause of both of these pleiotropic ciliopathies. Homozygous missense mutations were found 

in TMEM216 in patients with JBTS and related disorders (JSRD), while frameshift mutations 

were found in TMEM216 in two Palestinian families with MKS (Waters and Beales, 2011, 

Valente et al., 2006). These pleiotropic ciliopathies have defects in particular molecular 

complexes and structures that are critical for ciliogenesis and cilia maintenance (see section 

1.6). Many studies have identified ciliopathy disease genes; Table 1.2 and Table 1.3 show 

some examples, but more recent findings have described only private mutations in single 

families (Hartill et al., 2017). 

To substantiate the role of these putative ciliary genes in ciliopathy disease, and to 

try to establish if there are any genotype-phenotype correlations, I sequenced two such 

genes, TMEM17 (NM_198276.3) and TMEM218 (NM_001258241.2). 

 

Therefore, a cohort of families affected with MKS, already known to be mutation-

negative for variants in the known ciliary MKS genes (Table 2.1), were selected for further 

molecular genetic studies. In this chapter, I therefore screened the ciliary genes TMEM17 

and TMEM218, since mutations in both genes have been implicated in ciliopathies (Vogel et 

al., 2015, Li et al., 2016) although neither encoded TMEM protein has been functionally 

characterized. Furthermore, both TMEM218 and TMEM17 are considered to be potential 

regulators during the formation of the primary cilia compartment in C. elegans (Li et al., 

2016). In this study, the transition zone proteins RPGRIP1L and CEP290 appear to function 

as assembly factors for TMEM17, TMEM218 and other proteins in the MKS module. 

TMEM17 and TMEM218 are therefore strong functional candidate disease genes for new 

genetic causes of ciliopathies. I therefore prioritized sequencing of cases that were 

mutation-negative for known MKS genes (n=36), from a larger cohort of MKS patient DNA 

samples (n=395). These had already been screening for pathogenic variants in the following 
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ciliopathy genes: MKS1, TMEM216, TMEM67, RPGRIP1L, CEP290, CC2D2A, NPHP3, 

TMEM138, TMEM231, TMEM237, C2orf42, TULP3, KIF7, EXOC3L4, TXNDC15, CSPP1, 

TTC21B, INPP5E, TCTN1, TCTN3, DLL1, TMEM107 and CEP41. Most of these genes are 

known to be involved in the formation and assembly processes of the transition zone. 

The tetraspan transmembrane 17 protein (TMEM17; Figure 1.10) is characterized by 

4 hydrophobic, putative transmembrane domains. The encoded protein is thought to 

regulate ciliogenesis, but there is little mechanistic insight into this process other than the 

observation that Tmem17 is necessary for Tmem231 and B9d1 to localize to the transition 

zone in mouse ciliated cells (Chih et al., 2011). Both human proteins TMEM216 and 

TMEM80 also contain a so-called “transmemb_17 domain” (Lee et al., 2012), highlighting 

the close sequence similarities between these proteins. 

The transmembrane protein 218 protein (TMEM218) encodes a small protein with 3 

predicted transmembrane domains that is conserved across metazoans, including C. elegans 

and humans. Subsequent work by (Li et al., 2016) and colleagues, as mentioned in (see 

section 1.6.3.5 ), identified one private mutation in TMEM218 in a family with OFD6 (Li et 

al., 2016); they studied the composition, assembly and function of the C. elegans transition 

zone. They found that Tmem218 localized at the transition zone protein of C. elegans which, 

in addition to genetic interactions with other ciliary gene mutations, suggested that 

Tmem218 is a new MKS module component (Li et al., 2016). This study suggested but did 

not confirm that a private mutation in human TMEM218 may be causative for retinal 

degeneration and may be a possible rare cause of NPHP, since the main pathogenic features 

of the Tmem218-/- knockout mice were progressive cystic kidney disease and retinal 

degeneration (Vogel et al., 2015). 

The aim of this chapter was therefore to screen for recessive mutations in the 

TMEM17 and TMEM218 ciliary genes as possible causes of MKS. This aim was addressed by 

carrying out Sanger sequencing of “mutation negative” MKS patients for predicted causative 

mutations in TMEM17 and TMEM218. 
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2.2 Materials and methods 

In this Chapter, unless stated otherwise all reagents were kept on ice. Relative 

centrifugal force (rcf) is expressed as xg. 

2.2.1 Patient DNA 

Families with affected foetuses or children diagnosed with Meckel-Gruber or 

Meckel-Gruber-like syndromes were ascertained and recruited to the study following 

informed consent for research. DNA samples were obtained from NHS diagnostic centres for 

UK families and patients, or from referring clinicians and collaborators for non-UK 

individuals. Ethical approval for the study entitled “Molecular genetic investigations of 

autosomal recessive conditions”, was granted by the South Yorkshire Research Ethics 

Committee on 18th February 2011 for five years (REC ref. number 11/H1310/1). NHS 

Permission for Research at Leeds Teaching Hospitals NHS Trust was granted on 29th April 

2011 (LTHT R&D number CG11/9764) (see Appendix A.1). 

2.2.2 Primer design	

PCR primers were designed to amplify the exons and flanking intronic sequences of 

TMEM17 and TMEM218 using Primer3 software (http://bioinfo.ut.ee/primer3/). Primers 

were designed for regions across intron-exon boundaries to avoid amplification from 

contaminating genomic DNA. Primers were designed to avoid common single nucleotide 

polymorphisms (SNPs) and parameters were set to produce primers with an optimum 

annealing temperature of approximately 60°C and with products of between 250-600 base 

pairs (bps). Data were visualized using SeqScape software or SnapGene Viewer software. 

Primer sequences used in this Chapter are listed in Appendix A.2. 

2.2.3 Polymerase chain reaction (PCR) 

2.2.3.1 Standard PCR 

PCR reactions were set up in a total volume of 10 μl containing 20-50 ng genomic 

DNA with the following reagents at the specified concentrations: 10 μM of forward and 

reverse primers (Sigma-Aldrich), 0.1 unit of Taq DNA polymerase (ABgene), 0.25 μM 
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deoxynucleotide triphosphates (dNTPs) (Thermo Fisher Scientific) and 1x PCR reaction 

buffer (75 mM Tris-HCl buffer (pH8.8) (Sigma-Aldrich), 20 mM (NH4)2SO4, 0.01% Tween-20 

and 1.5 mM MgCl2). Reactions were performed in a Veriti Thermal Cycler (Thermo Fisher 

Scientific). Thermal cycling was performed on this mixture with an initial denaturing step at 

95°C for 5 minutes, followed by 45 cycles of 94°C for 15 seconds, the appropriate annealing 

temperature (55-65°C) for 15 seconds, and 72°C for 30 seconds (extension). The final 

extension step was performed at 94°C for 30 seconds. PCR products were visualized by 

agarose gel electrophoresis (see section 3.2.3.5). 

2.2.3.2 Hot-Shot PCR master mix 

If the standard method did not give successful PCR results, Hot-Shot Diamond PCR 

Master Mix (Clent Life Science) was used as an alternative. 20 ng of genomic DNA was 

amplified in a 10 μl reaction volume, and combined with 0.5 μl of each 10 μM forward and 

reverse primers and the 5 μl Hot-Shot Diamond PCR Master Mix (Clent Life Science). This 

was made up to 10 μl with distilled water (dH2O). After gentle mixing, the mixture was 

subjected to the same thermocycling conditions as in the standard PCR method. 

2.2.4 Purification with ExoSAP 

Prior to sequencing, DNA samples were purified with ExoSAP-IT® (Affymetrix, 

Thermo Fisher Scientific) which contains both exonuclease I and shrimp alkaline 

phosphatase to remove unused primers and unincorporated dNTPs. For 2.5 μl of PCR 

product, 1 μl of ExoSAP-IT was added. Samples were incubated on a thermocycler for 30 

minutes at 37°C and then inactivated for 15 minutes at 80°C. 

2.2.5 Sanger sequencing 
 

ExoSAP-IT purified PCR products were sequencing using the BigDye® Terminator v3.1 

Cycle Sequencing Kit (Thermo Fisher Scientific). This method is suitable for testing a small 

number of exons and samples. Cycle sequencing was performed in 10 μl reactions consisting 

of 1 μl of the ExoSAP-IT purified product, 0.5 μl BigDye® terminator v3.1 (Applied 

Biosystems), 1.5 μl 5x BigDye® sequencing buffer (Applied Biosystems), 1 μl forward or 

reverse primer at a final concentration of 2 μM, and 6 μl dH2O, giving a final reaction 
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volume of 10 μl. The mixture was kept on ice during the reaction set-up. Sequencing 

reactions were performed in a Veriti Thermal Cycler (Thermo Fisher Scientific).�Denaturation 

was at 96°C for 1 minute, followed by 45 cycles of 96°C for 10 seconds, annealing at 50°C for 

15 seconds, and extension at 60°C for 4 minutes. Temperatures were ramped at 1°C 

/second. Sequencing products were ethanol precipitated by adding 5 μl 125 mM 

ethylenediaminetetraacetic acid (EDTA) (pH 8.0) (Sigma-Aldrich) and 60 μl of absolute 

ethanol to each product, followed by mixing and centrifugation at 3000 xg for 30 minutes at 

4°C. The plate was then inverted onto tissue and spun upside down at 200 xg for 5 seconds. 

Next, 60 μl of 70% (v/v) ethanol was added and the plate was centrifuged at 3900 xg for 15 

minutes. Then the plate was inverted and spun at 200 xg for 5 seconds. The plate was then 

left to air dry for 30 minutes at RT under foil or placed on a hot block at 37°C for 15 minutes. 

The purified reactions were dissolved in 10 μl of deionized HiDi-formamide loading buffer 

(Applied Biosystems; Thermo Fisher Scientific) and sequenced at 60°C on an ABI 3130xl 

Genetic Analyzer (Applied Biosystems) using polymer POP7 (Applied Biosystems). Data was 

analysed using Sequence Analysis v5.2 and SeqScape v2.5 software (Applied Biosystems). 

 

2.3 Screening results 
 

Mutational screening of TMEM17 and TMEM218 was performed by direct Sanger 

sequencing of PCR products of the coding exons from families with MKS. Sequencing results 

for “mutation negative” MKS patients of TMEM17 and TMEM218 are listed in Table 2.1, 

respectively. Sequencing was designed to cover all coding exons and about 30 bp of intronic 

sequence that flanked each exon. Both the exonic sequence of TMEM17 and TMEM218 in 

the selected MKS patients did not indicate any biallelic variants that could be interpreted as 

pathogenic. Furthermore, sequencing of parental DNA samples, under the assumption that 

they were carriers for an autosomal recessive condition, did not carry any heterozygous 

variants that could be interpreted as pathogenic. 

 In total, n=36 affected individuals or parents were sequenced for TMEM17 (Table 

2.1). Figure 2.1 shows exemplar results for TMEM17 sequencing. Specifically, the figure 

provides examples of Sanger sequencing electropherograms that demonstrate several 

TMEM17 variants in MKS families. In particular, pathogenic biallelic mutations were not 

identified in TMEM17, but a G>C nucleotide substitution c.59G>C (p.Ser20Thr) resulted in 
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heterozygous variants in sample 35 (Figure 2.1 D; substitution indicated by red box). This 

individual was already identified to carry a homozygous INPP5E mutation (Table 2.1). The 

same individual had a homozygous G>A nucleotide substitution c.54G>A causing a 

synonymous variant p.Val18= (Figure 2.1 C). This variant replaced a GTG codon (encoding 

valine) with GTA (encoding valine) (Figure 2.1 C). Furthermore, a novel heterozygous 

missense TMEM17: NM_198276.3:c.76G>A: (p.Gly26Ser) variant was identified in individual 

sample ID 222, 291 and 222 (Figure 2.1 H). Individual 222 was affected with corpus callosum 

agenesis, unilateral multicystic kidneys, epileptic (Table 2.1). Moreover, a second novel 

heterozygous missense TMEM17: NM_198276.3: c.64T>A: (p.Ser22Thr) variant was 

identified in individual 364 (Figure 2.1 I; Table 2.1). 

Screening also identified several known variants in TMEM17. The G>A nucleotide 

substitution c.12G>A (p.Pro4=) resulted in recurrent heterozygous variants in 9 candidates 

(Table 2.1 and Figure 2.1 A; substitution indicated by red box). The A>G nucleotide 

substitution c.216A>G (p.Leu72=) resulted in heterozygous variants in 9 candidates (Table 

2.1 and Figure 2.1 B). Affected individual had a C>T nucleotide substitution c.24C>T resulting 

in the synonymous change p.Arg8= (Figure 2.1 E) and affected individual 278 had a C>T 

nucleotide substitution c.264C>T also resulting in the synonymous change p.Thr88= (Figure 

2.1 F). Sequence analysis of TMEM17 and TMEM218 were performed for all family members 

when high-quality DNA were available, or for at least one parent in each family to screen for 

possible carrier status (see Table 2.1). In general, Agilent Bioanalyzer traces were poor with 

either severe fragmentation or low DNA concentration for some samples that had failed 

PCRs, so further analyses were discontinued for these samples, (see trace examples in 

appendix A.3). Mutation analysis of TMEM218 was performed in n=7 MKS patients. 

However, the sequencing results did not reveal any variants that could be interpreted as 

pathogenic (Table 2.1). 

Table 2. 1: Summary of all sequence variants identified in TMEM17 (NM_198276.3) and 
TMEM218 (NM_001258241.2). Sanger sequencing results of consanguineous and non- 

consanguineous patients with MKS and MKS-like phenotypes are listed, showing clinical 

data for the affected fetus or patient with variants listed by dbSNP ID number. 
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Sample 

 
Consang
uineous? 

Variants in known 
ciliopathy genes (zygosity) 

Gene 
screened 

Rsnumber and variant 
type\class 

RefSeqID: Mutation Predicted 
amino acid 

change 
HGVSp 

Phenotype of affected proband 

ID 
 

Ethnicity family 
relationshi

p 

OE PK PD DPM MCDK BM other 

1 Pakistani Mother + Not determined TMEM17 Not determined Not determined Not 
determined 

       
TMEM218 

8 Pakistani Father + Not determined TMEM218 Not determined Not determined Not 
determined 

       

14 Pakistani Father + Not determined TMEM17 rs11676567(Synonymous) NM_198276.3: c.12G>A (exon 1) p.Pro4=        
rs4672527 (Synonymous) NM_198276.3: c.216A>G (exon 3) p.Leu72= 

35 Gujarati 

 

Mother 

 

- INPP5E 
c.1750C>T p.H584Y (het) 

TMEM17 Rs753028662                 
(Indel Insertion and 

Deletion) 

t NM_198276.3:c.-20_-2= Not 
determined 

       

rs758254535 (Synonymous) NM_198276.3: c.54G>A (exon 1) p.Val18= 

rs72885228 (Missense) NM_198276.3: c.59G>C (exon 1) p.Ser20Thr 

113 Pakistani Mother + IFT144                      
c.910G>A p.V304I (het) 

TMEM17 rs11676567 (Synonymous) NM_198276.3: c.12G>A (exon1) p.Pro4=        
rs4672527 (Synonymous) NM_198276.3: c.216A>G(exon3) p.Leu72= 

TMEM218 Not determined Not determined Not 
determined 

129 
 
 

134 

Pakistani Father +  TMEM17 Not determined Not determined Not 
determined 

       
TMEM218 

Pakistani Affected 
fetus 

+ RPGRIP1L c.1350+86G>A 
(hmz) 

TMEM17 Not determined Not determined Not 
determined 

       

CEP290 
rs71082425 

(Intron variant) (Insertion) 
NG_008417.1:g.18170_181

71insG 
136 Brazilian Affected 

patient 
 Not determined TMEM17 Not determined Not determined Not 

determined 
  +    Two accessory 

spleens, 
adrenal 

hypoplasia, 
anencephaly, 

thymic 
hypoplasia 

138 Brazilian Affected 
patient 

 Not determined TMEM17 Not determined Not determined Not 
determined 

       

140 Brazilian Affected 
patient 

 Not determined TMEM17 Not determined Not determined Not 
determined 

       
TMEM218 

175 Bangladesh Affected 
fetus 

- 

 

CSPP1 
c.2219G>A p.R740H (het) 

TMEM17 Not determined Not determined Not 
determined 

+  + + +  small 
disrupted left 

cerebral 
hemispheredy

smorphic 
facies part of 

the hard 
palate, 

postaxial large 
cystic 

dysplasia, 

CEP164 
c.3268T>C p.Y1090H (het) 
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bowed limbs 
curved femora 

and only 11 
thoracic 
vertebral 

bodies 
(autopsy) 

200 
 
 
 
 
 
 
 
 

201 

No 
information 

Father - TMEM67 
c.1810A>G p.Met604Val 

(het) 

TMEM17 rs11676567 (Synonymous) NM_198276.3: c.12G>A (exon1) p.Pro4=        

CC2D2A 
c.685_687delGAA 
p.E229del (het); 

c.3893T>A p.V1298D (het) 

rs4672527 (Synonymous) NM_198276.3: c.216A>G (exon3) p.Leu72= 

No 
information 

Mother - Not determined TMEM17 Not determined Not determined         

211 No 
information 

Mother - Not determined TMEM17 rs4672527 (Synonymous) NM_198276.3: c.216A>G (exon3) p.Leu72=        

216 Spanish Father - TMEM67 
c.1810A>G p.Met604Val 

(hmz) 

TMEM17 Not determined Not determined Not 
determined 

       

220 No 
information 

Mother - TMEM67 
c.1810A>G p.Met604Val 

(hmz) 

TMEM17 Not determined Not determined Not 
determined 

       

222 No 
information 

Affected - Not determined TMEM17 rs17854454 
(Missense variant) 

NM_198276.3:c.76G>A (exon1) p.Gly26Ser     +  corpus 
callosum 
agenesis, 
unilateral 

multicystic 
kidneys, 

epileptic?? 
229 No 

information 
Mother + INPP5E 

c.1897_1898delCA,p.Q633E
fsX (het) 

TMEM17 Not determined Not determined Not 
determined 

       

232 No 
information 

Mother - Not determined TMEM17 rs11676567 (Synonymous) NM_198276.3: c.12G>A (exon1) p.Pro4=        

234 
 
 

237 

No 
information 

Mother + Not determined TMEM17 Not determined Not determined Not 
determined 

       

No 
information 

Unaffected 
twin 

+ Not determined TMEM17 rs1216848114 
(Synonymous) 

NM_198276.3: c.24C>T (exon1) p.Arg8=        

242 Spanish Affected 
fetus 

- TTC21B                        
c.2588G>A p.R863Q (het) 

TMEM17 Not determined Not determined Not 
determined 

  +    encephalocele 

245 No 
information 

Father -  TMEM17 rs11676567 (Synonymous) NM_198276.3: c.12G>A (exon1) p.Pro4=        

278 No 
information 

Unaffected 
sibling 

- CEP290 
c.678_680delGA 

p.E227SfsX2 (het) 

TMEM17 rs772164894 (Synonymous) NM_198276.3:c.264C>T (exon3) p.Thr88=        

287 No 
information 

Affected 
fetus 

- DLL1 
c.1802_1804del, 

p.D601_I602delinsV (het) 

TMEM17 Not determined Not determined Not 
determined 
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291 Pakistani Mother + Not determined TMEM17 rs17854454 
(Missense variant) 

NM_198276.3:c.76G>A (exon1) p.Gly26Ser        

293 No 
information 

Mother + CEP290 
c.954delT p.S318fs16X (het) 

 

TMEM17 Not determined Not determined Not 
determined 

       

295 No 
information 

Affected 
baby 

+ Not determined TMEM17 Not determined Not determined Not 
determined 

       

305 Turkish Father + Not determined TMEM17 rs6713096 (Synonymous) NM_198276.3:c.237T>C 
(exon3) 

p.Ile79=        

327 Pakistani Father + Not determined TMEM17 Not determined Not determined Not 
determined 

       

361 Dutch Affected - Not determined TMEM17 Not determined Not determined Not 
determined 

+   +  + structural 
brain 

malformations
, very large 

kidneys with 
cystic 

dysplasia, 
small uterus, 

lung 
hypoplasia 

 
364 No 

information 
Mother No 

informati
on 

Not determined TMEM17 rs11676567 (Synonymous) NM_198276.3: c.12G>A (exon1) p.Pro4=        
rs4672527 (Synonymous) NM_198276.3: c.216A>G 

(exon3) 
p.Leu72= 

rs78110679 
(Missense variant) 

NM_198276.3:c.64T>A 
(exon1) 

p.Ser22Thr 

rs17854454 
(Missense variant) 

NM_198276.3:c.76G>A 
(exon1) 

p.Gly26Ser 

rs6713096 
(Synonymous) 

NM_198276.3:c.237T>C 
(exon3) 

p.Ile79= 

365 No 
information 

Father No 
informati

on 

PIBF1                     
c.1567C>A, p.H523N (het) 

TMEM17 rs11676567 (Synonymous) NM_198276.3: c.12G>A (exon1) p.Pro4=        

CEP290                  
c.5850delT p.F1950LfsX15 

(het) 

rs4672527 (Synonymous) NM_198276.3: c.216A>G 
(exon3) 

p.Leu72= 

366 No 
information 

Affected 
fetus 

No 
informati

on 

Not determined TMEM17 Not determined Not determined Not 
determined 

       

375 Pakistani Father + Not determined TMEM17 Not determined Not determined Not 
determined 

       

391 Pakistani Father + KIF7 
c.2654C>T p.A885V (het) 

TMEM17 rs11676567 (Synonymous) NM_198276.3: c.12G>A 
(exon1) 

p.Pro4=        

TCTN3 
c.1074T>G,p.Y358X (hmz) 

393 No 
information 

Mother - Not determined TMEM17 Not determined Not determined Not 
determined 

       

Abbreviations: + indicates the presence of consanguinity and – indicates non-consanguineous families; hmz, homozygous; het, heterozygous; OE, occipital encephalocele; PK, polycystic 
kidneys; PD, polydactyly; DPM, ductal plate malformation; MCDK, multicystic dysplastic kidney; BM, brain malformations; + indicates the presence of a clinical feature. 
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Figure 2. 1: Examples of electropherograms showing variants in TMEM17 identified in 

selected MKS families multiple. Blue highlighting and the red box indicate the position and 
identity of the variant compared to the reference sequence. The ID number indicates the 
individual sequenced (either affected patient/fetus or parent; refer to Table 2.1 for further 
details). (A) Sanger sequencing electropherograms to show the c.12G>A variant in TMEM17 
for individuals ID 1, 113, 200, 211,222, 232, 245, 364, 365, 366 and 391. (B) TMEM17 
c.216A>G variant in individuals ID 14, 113, 200, 211, 305, 327, 364, 365 and 366. (C, D) 
TMEM17 c.54G>A and c.59G>C variants for individual ID 35. (E) TMEM17 c24C>T variant in 
individual ID 237. (F) TMEM17 c.264C>T variant in individual ID 278. (G) TMEM17 c.237T>C 
variant in individuals 305 and 364. (H) TMEM17 c.76G>A variants for individuals ID 291, 222, 
and 364. (I) TMEM17 c.64T>A for individuals ID 364. MKS samples were also screened for 
TMEM218, but no further variants were identified in predicated open reading frame of this 
gene for individuals ID 1,8,113,129,136, and 138. 

 

2.4 Discussion 

 
TMEM17 and TMEM218 represent potential functional candidate genes for MKS, 

since mutations are a possible cause for OFD6 and other ciliopathies. Vogel et al. (2015) 

suggested that TMEM218 has a role in maintaining normal structure and function in the 

kidney and retina of mice and it is possible that human TMEM218 mutations will be 

associated with human ciliopathies in the future. Other groups have strong data that places 

TMEM17 at the transition zone and that mutations in TMEM17 are likely to be found in 

human patients with ciliopathies (Chih et al., 2011). The selected samples from MKS families 

examined here were confirmed to be mutation-negative in the known MKS genes. Despite 

poor coverage of some exons, due to low DNA quality and yield, there were no biallelic 

variants identified that could be interpreted as pathogenic mutations in these genes (Table 

2.1). It remains possible that pathogenic mutations in this cohort were missed because they 
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occur in the gene promoter or deeper in introns or non-coding regions that were not 

covered by the exon-based sequencing. 

Furthermore, fetal DNA or DNA derived from post mortem tissue samples, typically 

extracted from formalin-fixed paraffin embedded (FFPE) clinical material, was often of poor 

quality and quantity. Indeed, the number of high-quality DNA samples screened was limited 

to 36 or 7 DNA samples for TMEM17 and TMEM218, respectively. 

 

2.4.1 Further investigations and experimental limitations 

Intronic variants can affect gene expression levels by introducing or eliminating 

enhancer activity, or variants in the promoter can affect gene expression. These possibilities 

were not fully explored in the mutation screens because sequencing primers were designed 

to cover all coding exons and about 30 bp of intronic sequence that flanked each exon, and 

they are not a routine part of diagnostic or research gene screening. Furthermore, families 

apparently confirmed to be mutation negative by whole exome sequencing, could have 

harboured variants in the intronic sequences or promoters of known MKS genes and have 

been misidentified as false negatives. In the future, better WES reagents with more 

complete coverage of non-coding sequences or whole genome sequencing (WGS) may be 

able to identify “missing mutations” in these MKS families that could then be uploaded to 

the Matchmaker Exchange website (http://www.matchmakerexchange.org) via Decipher 

(https://decipher.sanger.ac.uk), in an attempt to identify other families with similar 

phenotypes and variants in the same gene. However, the work in this chapter confirms that 

these families are likely to be mutation negative for TMEM17 and TMEM218, two genes 

that are strong functional candidates for ciliopathies. 

In a very recent study, Shamseldin et al. (2020) identified a single-nucleotide 

homozygous variant in TMEM17 (NM_198276:c.302G > T:p.Gly101Val) in a Saudi Arabian 

child with Joubert syndrome. The authors suggest that this is a probable pathogenic 

TMEM17 mutation, sufficient to explain the clinical phenotype in this family. The functional 

study of (Chih et al., 2011) strongly implicates TMEM17 as a functional candidate gene, and I 

would recommend that TMEM17 is included in all targeted sequencing panels for MKS, JBTS 

and other ciliopathies.  
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Chapter 3 Construction and expression of TMEM plasmids 

and purification of the TMEM67 N-terminal region (Nt-

TMEM67) in mammalian cell lines 
 

3.1 Introduction 

 

This chapter describes the production and use of expression constructs for a 

selection of genes that encode members of ciliary transition zone complexes. These genes 

were selected from the current literature (Huang et al., 2011, Williams et al., 2011, Chih et 

al., 2011, Li et al., 2016); therefore, TMEM17, TMEM67, TMEM138, TMEM216, TMEM231, 

and TMEM237 were studied. All of the selected ciliary transition zone genes encode 

proteins that have important biological function and are mutated as a cause of ciliopathies 

including JBTS, JSRDs, and MKS (Ben-Salem et al., 2014, Leightner et al., 2013) (see Table: 

1.4, 1.5, and 1.6). The initial biochemical characterization of these TMEM proteins, and the 

description of their protein-protein interactions in complexes, therefore provides insights 

into how ciliogenesis is facilitated at the ciliary transition zone and could further explain the 

pathogenic mechanisms in ciliopathies and cystic kidney disease. 

 

To accomplish these goals, “Gateway” cloning technology (Invitrogen Life 

Technologies) was used to make expression constructs by cloning selected complementary 

DNA (cDNAs) encoding transition zone TMEM proteins into multiple vector systems. 

“Gateway” cloning technology is based on a site-specific recombination system which 

involves a 2-step process. The first step is cloning the gene of interest into an “Entry” vector 

using a BP clonase reaction (Figure 3.1). This involves the BP clonase catalysing the 

recombination of the attB sites flanking the insert PCR products or sub-cloning DNA and the 

attP sites of the donor vector. As a by-product of this reaction, the entry clone contains the 

DNA of interest flanked by attL sites and the gene for kanamycin resistance. The ccdB gene 

was excised from the donor vector. The next step is sub-cloning the gene of interest from 

the Entry clone into a “Destination” vector using the LR clonase reaction to produce the 

expression clone (Figure 3.1). 
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The full-length open reading frame (ORF) cDNA for selected TMEM genes were 

cloned into “Gateway” destination vectors to enable fusion with an N- or C-terminus of an 

epitope tag, Strep/FLAG (SF-TAP) tag or eYFP. Constructs encoding either SF-TAP, eYFP or 

3xFLAG-tagged TMEMs were transfected into HEK-293 and mIMCD-3 cells and the 

exogenous expression of each protein was verified by western blot (WB). The HEK-293 cell 

line was used in this study (Table 3.1) due to its high transfection efficiency (Liste-Calleja et 

al., 2015). Then, the subcellular localization of each TMEM was examined by confocal 

fluorescence microscopy using the ciliated mIMCD-3 cells (see section 4.3.1) followed by co-

immunoprecipitation experiments (see section 4.3.2) in order to identify protein-protein 

interactions by biochemical methods. In this study, Entry clones including TMEM17, 

TMEM138, TMEM216, TMEM231 and TMEM237 were the kind gift of Prof. Ronald 

Roepman, Radboud University Medical Centre, Nijmegen, The Netherlands, whilst TMEM67 

was purchased as a Gateway PLUS shuttle plasmid construct for TMEM67 (NM_153704.5) 

from GeneCopoeia. The manufacturer’s protocol was followed for all cloning steps (see 

section 3.2.3.1). 

The SF-TAP-tag construct contains a 3xFLAG tag: the GW331 and GW306 Destination 

vectors were used to produce SF-TAP N-terminal fusions, and the GW332 and GW311 

vectors for C-terminal fusions (Table 3.2). These vectors were suitable for studying the 

subcellular localization of ciliary proteins due to the small epitope size compared to green 

Fluorescent Protein (GFP) (Appendix B.1). Analysis by the SignalP program 

http://www.cbs.dtu.dk/services/SignalP/ of TMEM17, TMEM138, TMEM216, TMEM231 and 

TMEM237 protein sequences did not show any evidence of a predicted signal peptide 

though this was not considered unusual since the first transmembrane helix can be used as 

a signal peptide during membrane insertion of type 2 and multi-span membrane proteins      

(H. Lodish, 2007, Zimmermann et al., 2011). Therefore, these TMEMs were N- terminal 

tagged. No evidence of mis-localization for these N-terminal tagged TMEMs was observed 

and alternative C-terminal tagged versions were therefore not constructed. In the case of 

TMEM67, this receptor protein has a clear prediction of a signal peptide and it was 

therefore C-terminal tagged. The GW315 vector was used for eYFP C-terminal fusions while 

GW332 was used for Strep/FLAG C-terminal tagging (Table 3.2). 
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 In this chapter, I also describe the expression and purification of the extracellular N-

terminal region of TMEM67, a ciliary-associated transmembrane protein which is essential 

to a wide range of cell biological processes, particularly Wnt signal transduction pathways 

(see section 1.6.3.1). Therefore, in this Chapter, I hypothesized that the extracellular domain 

is critical for cell surface expression and secretion (Figure 1.10). This domain may not only 

be essential for junctional localization but may also have a role in ligand binding and/or 

protein-protein interaction networks. Immunodetection of the TMEM67 extracellular N-

terminal (Nt) domain indicates that it is localized in the cellular and ciliary membranes 

(Dawe et al., 2007). The domain is rich in cysteine residues, similar to the cysteine-rich 

domain of Frizzled receptors (Dawe et al., 2007). Abdelhamed et al. (2015) suggested that 

TMEM67 binds to the Wnt5a ligand using the extracellular cysteine-rich domain to mediate 

downstream non-canonical Wnt signalling, with ROR2 acting as a co-receptor. The 

extracellular cysteine-rich domain is encoded by exons 8 to 15, spanning amino acids 30-187 

of the protein, in which most missense mutations cluster that cause a range of ciliopathies 

(Iannicelli et al., 2010). 

The main purpose for producing purified N-terminal (Nt)-TMEM67 was to generate 

“Affimers”, artificial non-antibody binding proteins (Roovers et al. 2007; Tamaskovic et al. 

2012; Sha et al. 2017) specific for the extracellular domain of TMEM67. These are useful in 

localization studies or as potential chaperones for the optimization of protein crystallization. 

Antibodies have long been vital tools for research, however concerns have been raised over 

their lack of validation and renewability (Bordeaux et al., 2010; Bradbury and Plückthun, 

2015). By contrast, the purification success rate of Affimers is more than 95%, their 

concentration range is between 50-100 mg/l, they are cheap and easy to produce and 

purify, and they can have high specificity for the target protein (Tiede et al., 2014). Nt-

TMEM67 was able to be secreted into culture medium via a secretion leader and could be 

detected by immunofluorescence images and immunoblotting analysis. 

 

  Membrane proteins have proven to be difficult to study. Transmembrane proteins 

are embedded in a complex and dynamic lipid bilayer that makes them difficult to extract 

and purify from cells by mechanical methods or chemical buffers. This section highlights the 

issues associated with biochemical isolation and purification of the transmembrane protein 
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TMEM67, as well as providing an overview of the techniques used to successfully purify the 

extracellular domain of TMEM67 (see section 3.3). 

The aims of this chapter were to: 

• Produce expression constructs using ‘Gateway’ cloning for analysis of the subcellular 
localization and biochemical interactions of TMEM proteins. 

• Optimise and utilise a method for generating stably-transfected mammalian cell 
lines for protein expression. 

• Develop an artificial binding protein reagent (Affimer), for the N-terminal extracellular 
domain of TMEM67 for in vivo or ex vivo detection of ciliary localization. 
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3.2 Materials and methods 

 
Unless otherwise stated, all common chemicals and reagents were purchased from 

Sigma-Aldrich, Invitrogen, Dako, Bio-Rad, Roche and Thermo Fisher Scientific. Corning® 

tissue culture plastics were purchased from Sigma-Aldrich unless otherwise specified. Cell 

culture work was performed under sterile conditions in a NuAire Labgard 437 ES Class II 

Biosafety Cabinet. Unless otherwise stated, solutions were made up in dH2O or deionised 

water (DI water) (Milipore) and stored at room temperature (RT) between 20- 22°C. General 

solutions such as Dulbecco's phosphate-buffered saline (DPBS) (Sigma-Aldrich #P4417) was 

made by dissolving one tablet in 200 ml dH2O at RT to obtain 1x DPBS solution. DPBS-T was 

prepared by adding 0.1% (v/v) Tween20 (Sigma-Aldrich) to 1x DPBS. In this Chapter, unless 

stated otherwise all solutions were kept on ice. PCR reagents and programmes were 

described in more detail elsewhere (see section 2.2.3). Buffers used in this study are listed 

and detailed in the next section. 

 

3.2.1 Buffers used in this study 

 
3.2.1.1 CHAPS Lysis buffer* 
 
TrisCl pH7.6 50 mM  

NaCl 150 mM 

CHAPS  10 mM  

 
3.2.1.2 NONIDET-P40 (NP40) Lysis buffer* 
 

Tris-HCl pH8  20 mM  

NaCl 150 mM 

Glycerol (Sigma-Aldrich) 10 % 

EDTA 0.5 M 

NP40 (IPEGAL CA-630) (Sigma-Aldrich) 1 % (v/v) 

 
* x100 dilution of “Halt” Protease/Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific 
#78442) supplemented buffers immediately before use 
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3.2.2 Cell culture 

 
mIMCD-3 and HEK-293 cell lines were used in this study Table 3.1. Early passage cells 

were obtained from the American Tissue-type Cell Collection (ATCC) and cultured according 

to standard mammalian tissue culture protocols provided by the supplier, employing sterile 

technique. mIMCD-3 cells were maintained in Dulbecco's Modified Eagle Medium: Nutrient 

Mixture F-12 (DMEM/F-12) while HEK-293 cells were maintained in Dulbecco's Modified 

Eagle's Medium (DMEM). All culture medium was supplemented with 10% (v/v) foetal calf 

serum (FCS) (Sigma-Aldrich #7524) unless stated otherwise and 1% penicillin and 

streptomycin (P/S) (Thermo Fisher Scientific #15140122). The latter was used as a bacterial 

and fungal antibiotic to avoid contamination but was not added to the medium during cell 

transfection in order to avoid toxicity effects. Cells were grown in Corning® 25cm2 (T25), 75 

cm2 (T75), and 150 cm2 (T150) cell culture flasks (Sigma-Aldrich respectively #430639, 

#431464U, #430825). 

 

Table 3. 1: Cell lines, origin, medium, and suppliers used in this thesis. 

Cell line 

(Suppliers) 

Origin Split frequency Culture medium 

(Suppliers) 

mIMCD-3 
(CRL-2123, ATCC) 

Mouse kidney, 
medulla/collecting duct 

(epithelial adherent) 

Twice/week* 
(1 in 10) 

DMEM/F12 
(GIBCO) 

 
HEK-293 
(ATCC) 

Human embryonic kidney 
(epithelial non-adherent) 

Twice/week* 
(1 in 10) 

DMEM  
(Sigma-Aldrich) 

* Split frequency and ratio were for T75 flasks but can be scaled up or down to 
accommodate flask size. 

3.2.2.1 Harvesting and passage of cells 
 

In general, a T75 flask was used when culturing cells. Cells were sub-cultured at 72 

hours intervals (when monolayers were 90% confluent) by removing the old culture medium 

and gently washing with 10 ml of 1x DPBS (Sigma-Aldrich #D8537) modified without calcium 

chloride and magnesium chloride. Cells were then detached using 1x trypsin-EDTA solution 

(0.5 g/L trypsin and 0.2g/L EDTA), stock 10x (Sigma-Aldrich #T4174) diluted 1:10 in DPBS to 

1x concentration. Cells then were briefly incubated in a cell incubator (Sanyo MCO 20A/C 

set at 37°C with 5% CO2) until cells rounded and began to detach from the substrate during 
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light microscopic observation (4-15 minutes). Trypsin was then inactivated with 10 ml of 

culture medium and the cells pelleted by centrifugation for 5 min at 200 xg, RT. The cell 

pellet was resuspended in 10 ml fresh medium. Cell suspension was dispensed into fresh 

flasks containing culture medium at a ratio of 1:10. The flask was gently rocked back and 

forth, side to side, to distribute the cells evenly. Then flask was placed in a horizontal 

position in the incubator. 

3.2.2.2 Cell count and viability 

Before placing cells into plates or flasks for experimental work, a Countess 

automated cell counter was used to calculate the viable cell density in order to determine 

the number of cells in the cell suspension and allow an accurate cell per volume seeding 

density. This used the Trypan Blue exclusion method. In a micro-centrifuge tube, 10 μl of cell 

suspension was mixed with 10 μl 0.4% trypan blue (Thermo Fisher Scientific #T10282). 10 μl 

of this mixture was then loaded onto a CountessTM cell counting chamber slide (Invitrogen™ 

#C10228) and inserted into the Countess Automated Cell Counter for analysis. 

3.2.2.3 Freezing cell lines 

Mycoplasma testing was performed prior to freezing or every 3 months. Supernatant 

was collected from confluent cells, centrifuged for 5 minutes at 400 xg RT and 1 ml of the 

supernatant was collected and stored at - 20°C prior to examination by Dr Sarah Perry, 

Senior Laboratory Manager, Leeds Institute of Medical Research. 

Cells were harvested (see section 3.2.2.1) and resuspended in chilled freezing 

solution [70% FCS, 20% medium, 10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich #D4540)]. 

The suspension was added to 1 ml cryovials (Thermo Fisher Scientific # 368632); T25, T75, 

and T150 flasks were enough to generate 1, 3, and 7, 1 ml cryovials per flask respectively. 

The vials were slowly frozen to -80°C overnight in a Mr Frosty container (Thermo Fisher 

Scientific # 5100-0001). On the following morning, the vials were moved to a liquid nitrogen 

cryo-store for long-term storage. 
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3.2.2.4 Thawing frozen cells  

Vials were defrosted at 37°C in a water bath for 1 minute, and then disinfected 

thoroughly using 70% ethanol (Sigma-Aldrich # 32221). The contents were transferred into 

15 ml centrifuge tube (Sigma-Aldrich #430790) and gradually diluted by drop-wise addition 

of 10 ml of warmed growth medium followed by centrifugation for 5 minutes at 200 xg, RT 

to remove any traces of DMSO. Spent medium was removed by aspiration and cells 

resuspended with 5 ml fresh growth medium then added to a T25 flask. The flask was tilted 

to evenly disperse cells and placed in the incubator. 

3.2.3 Microbiology 

Luria Bertani (LB) broth was made up with 20 g LB powder (Sigma-Aldrich) in 1 litre 

of dH2O and autoclaved in a bench top autoclave (Prestige Medical, Coventry UK) in a 

dedicated microbiology lab. Agar plates were made by dissolving 15 g of agar powder 

(Merck) into 1 litre LB. This was autoclaved in a bench top autoclave (Prestige Medical, 

Coventry UK) and cooled to around 50°C. Ampicillin (final concentration 50 µg/ml) or 

kanamycin (final concentration 50 µg/ml) was added to the mixture from stock solutions 

(100 mg/ml, kept frozen at -20°C until immediately before use). Approximately 25 ml of the 

prepared agar was plated per 100 mm x 15mm polystyrene Petri dish, left to cool and then 

stored upside-down at 4°C for up to a month wrapped in Parafilm. 

 3.2.3.1 Gateway Cloning 
 

“Gateway” cloning technology (Thermo Fisher Scientific) is a universal cloning 

method that based on the highly specific integration and excision reactions of 

bacteriophage λ into and out of the Escherichia coli genome at specific sites of 

recombination (“att” sites). This technology allows shuttling of a gene of interest into 

multiple vector systems (Figure 3.1). The BP Clonase II reaction generates “Entry” constructs 

which were either received as gifts or purchased (Section 3.2), and this reaction is not 

described further in this study. The LR Clonase gateway reaction was performed as 

described in the manufacturer’s protocol to sub-clone cDNAs into the “Destination” vectors 

GW306, GW311, GW315, GW331 and GW332 (see Table 3.2 for further details). The 

following components were added and mixed in a 1.5 ml Eppendorf micro-centrifuge tube 
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at RT: 150 ng of Entry clone, 150 ng Destination vector, 2 μl 5x LR Clonase™ Reaction Buffer, 

and 4 μl 1x TE buffer pH8.0 (10 mM Tris-HCl,1 mM EDTA; Thermo Fisher Scientific). The LR 

Clonase enzyme mix was thawed on ice for 2 minutes and vortexed briefly once. 2 μl of LR 

Clonase™ enzyme added to each reaction and mixed by vortexing briefly. The mixture 

reaction was then incubated for 1 hour at RT. Afterward, 1 μl proteinase K solution (2 μg/μl) 

(Roche) was added to each reaction and vortexed briefly twice to terminate the reaction 

and incubated at 37°C for 10 minutes. The reaction generates an expression clone with the 

DNA of interest flanked by attB sites and the ccdB gene excised from the Destination vector 

(Figure 3.1). All cDNA clone sequences were confirmed by Sanger sequencing. For primer 

sequences see Appendix B.2. 

 

Table 3. 2: Gateway vectors (GW) used in this study. Abbreviation: Cytomegalovirus 

(CMV); Ampicillin (Amp); Neomycin (Neo). 

GW vector Tags Description 

GW 306 p3xFLAG_CMV/DEST 
(tag at N-terminus) 

Mammal; CMV; 3xFLAG; Amp; 8025 

GW 311 pDEST-510 
(tag at C-terminus) 

Mammal; CMV; Amp/Neo; based on 
pDEST47; 7569 

GW315 pDEST-504 
(tag at C-terminus) 

Mammal; CMV; Amp/Neo; e YFP; 7569 

GW331 Strep/FLAG 
(tag at N-terminus) 

Mammal; CMV; Amp; Nt-TAP 

GW332 Strep/FLAG (tag at C-terminus) Mammal; CMV; Amp; Ct-TAP 
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Figure 3. 1: Gateway cloning methods. The Gateway LR reaction (grey arrows) was 
performed in this study which allows the gene of interest within an Entry clone to be 
combined with the Destination vector to create the desired expression clone. In this study, 
full-length cDNAs of the selected TMEM genes were successfully Gateway cloned with N- or 
C-terminal SF-TAP- eYFP or 3xFLAG epitope tags for use in expression studies. Schematics of 
the N-terminal TAP TMEM138, TMEM216, and TMEM237 constructs are shown in Appendix 
B.1. 

3.2.3.2 Transformation 

Frozen α-Select Chemically Competent cells (50 μl, Bioline) were thawed on wet ice. 

In a micro-centrifuge tube, 10 to 50 ng of plasmid DNA were added into the competent 

cells. The mixture was incubated for 30 minutes on ice, then the tube was placed in 42°C 

water bath for 45 second, without shaking; the tube that contained the transformed cells 

was then replaced on ice for 2 minutes. 150 μl super optimal broth with catabolite 

repression (SOC) recovery medium (New England Biolabs) (without antibiotics) was added 

into the transformed cells. The tube was then placed on a temperature-controlled shaker at 

37°C for 1 hour at 270 revolutions per minute (rpm) to allow recovery of cells after heat 

shock and transformation. 
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100 μl and 50 μl aliquots of the bacteria were plated by spreading onto selective LB 

agar plates containing the appropriate antibiotic(s) at 50 μg/ml (see section 3.2.3) and 

incubated at 37°C overnight and inverted to prevent water condensation from accumulating 

and disturbing colony growth. 

Isolated colonies were picked using a plastic loop and grown in Corning 50 ml 

centrifuge tubes (#CLS430828) or 30 ml universal containers plain label (#SL7504) 

containing Luria-Bertani (LB) medium with appropriate antibiotic (see section 3.2.3). The 

bacterial culture medium was then placed in a temperature-controlled shaker at 37°C, 230 

rpm, overnight unless otherwise stated. The following day, overnight cultures were used to 

inoculate a larger culture volume at a 1/200 dilution. Cultures were grown at 37°C, 230 rpm 

overnight. 

The culture was harvested in a bench-top micro-centrifuge at 12000 xg for 3 

minutes, RT. After the culture had been pelleted, QIAprep Spin Miniprep Kit (QIAGEN) was 

carried out using 1.5 ml of the culture to isolate plasmid DNA following the manufacturer's 

instructions. The plasmid was then digested to confirm the size of the insert, followed by a 

sequencing reaction. For high-copy plasmids, 1 ml of bacterial culture was transferred to 

aerated conical flasks containing 200 ml broth and expanded for 16 hours on a temperature-

controlled shaker for 2 hours, 270 rpm at 37°C. A QIAfilter Plasmid Midi and Maxi Kit 

(QIAGEN) was used to isolate plasmid DNA following the manufacturer's instructions. DNA 

plasmid concentrations were determined by photo spectrometric means using the 260/280 

nm measurements on a NanoDrop ND-1000 spectrophotometer. 

3.2.3.3 Small and large-scale plasmid DNA purification 

Mini and maxi-prep followed the same basic protocol with changes in volumes and 

times as indicated by mini/maxi protocol. Briefly, a colony grown on LB plates was picked 

and grown overnight at 37°C, 230 rpm in 5 ml of LB with the appropriate selection 

antibiotic. Plasmid purification was performed using QIAGEN Plasmid QIAprep Midi and 

Maxi Kit (QIAGEN) according to the manufactures’ instructions. DNA was eluted in the 

appropriate volume of 1x TE buffer and stored at -20°C. 
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3.2.3.4 Restriction endonuclease digests 

All restriction endonucleases used were purchased from New England Biolabs, or 

Promega and used with the appropriate NEB buffer and bovine serum albumin (BSA) 

according to the manufacturer’s instructions in a total volume of 50 μl: 1 U restriction 

enzyme(s), 500 ng DNA, 1x NEBuffer, 1x BSA, dH2O added to 50 μl. All digests in this study 

were performed in a heat block at 37°C. In general, up to 500 ng of DNA was used for 

digestion. The unit number required of the restriction enzymes was calculated based on the 

amount of DNA but in general 10-20 units were added per μg of DNA in each reaction. The 

samples were cleaved with a restriction enzyme having a known restriction site position, 

followed by sequencing analysis methods (see section 2.2.5). The restriction enzymes used 

in this study are shown in section 3.3.1. 

3.2.3.5 Agarose gel electrophoresis 

Plasmid DNA, PCR products, and digested PCR products were separated using 

agarose gel electrophoresis. The gel was composed of molecular biology grade agarose 

powder (Bioline) and suspended in 1x TRIS-acetate-EDTA (TAE) buffer [2M Tris HCl, 50 mM 

EDTA (pH 8), 0.97 M glacial acetic acid (Sigma-Aldrich)] at the requisite concentration and 

boiled until the agarose dissolved. The agarose concentration varied from 0.7% to 4% (w/v) 

depending on the predicted size of the DNA fragments. The agarose gel was then cooled 

and mixed with 0.5 μg/ml of ethidium bromide (Sigma-Aldrich) or 5 μl/100 ml of Midori 

Green (Geneflow). A multiwall comb was then inserted and the gel was allowed to solidify. 

DNA samples were mixed with an appropriate volume of 10x DNA loading buffer [30% (v/v) 

glycerol (Sigma-Aldrich), 0.25% (w/v) Orange G (Sigma-Aldrich)]. DNA samples were loaded 

alongside 1 kb DNA Ladder (Promega) or Easy Ladder I (Bioline) depending on the estimated 

size of the products. Electrophoresis was performed in a Mini-Sub Cell GT apparatus (Bio-

Rad) in 1x TAE buffer and the DNA samples were run at 90 volts (v) for 45 minutes. Bands 

were visualised on a UV transilluminator and displayed using Image Lab (v. 4.0) analysis 

software (Bio-Rad). 
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3.2.4 Preparing plasmid DNA-lipid complex for transient mammalian cell 

transfection 

 
1 μg plasmid DNA was mixed with 100 μl of Opti-MEM reduced serum medium 

(Gibco #31985-047) in a centrifuge tube. 10 μl of the transfection reagent, Lipofectamine 

2000 (Thermo Fisher Scientific) was mixed with 90 μl of Opti-MEM medium in a centrifuge 

tube. Both centrifuge tubes were mixed thoroughly and incubated for 20 minutes at RT. The 

transfection mixture was then added into 70% confluent cells containing 1.8 ml of Opti-

MEM medium/well. Cells were then incubated in an atmosphere of 5% CO2 at 37°C in full 

humidity 98%. To remove transfection complexes, the medium was replaced with fresh 

medium the next morning and the cells were incubated for an additional 56 hours. Cells 

were then visualized and analysed using confocal microscopy or western blotting. 

3.2.5 Immunofluorescence 

3.2.5.1 Preparation of slides and staining for confocal microscopy visualization 
 

Coverslips (22x22mm) (Scientific Laboratory Supplies #MIC3346) were sterilized by 

sequential washing with 70% ethanol, and absolute acetone, followed by air-drying in a 

laminar flow hood. The sterilised coverslips were placed into each well in Corning® Costar® 

6-well flat-bottom plates (Sigma-Aldrich #3506). An average yield of cells from a confluent 

culture was subsequently seeded into each well; 80% confluency was achieved by plating 

1x105 cells per well, 48 hours prior to transfection (see section 3.2.2.2) and growth medium 

was added to a total volume of 2 ml/well and the plate was placed horizontally in the 

incubator overnight (see section 3.2.2.1). Following DNA transfection (see section 3.2.4), 

after the incubation period, the transfected cells were washed 3 times with 1x DPBS (Sigma-

Aldrich #P4417, see section 3.2.1). After aspirating the DPBS, the cells on the coverslips 

were fixed with ice cold methanol (Sigma-Aldrich #32213) and incubated for 5 minutes in a 

freezer. Alternatively, cells were fixed with 4% (w/v) para-formaldehyde (PFA) (Sigma-

Aldrich) was dissolved in 1x DPBS for 20 minutes at RT; afterwards, the PFA/DPBS solution 

was aspirated and cells were permeabilized by treatment with 0.1% (v/v) Triton x-100 

(Sigma-Aldrich) in DPBS for 5 minutes in order to facilitate antibody penetration. The fixed 

cells were washed 3 times with 1x PBS, blocked in a solution of [1% (w/v) Marvel non-fat 

dried milk (Marvel) diluted in DPBS-0.01% (w/v) Tween-20 (DPBS-T)] on a plate mixer for 15 
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minutes. The blocking solution was clarified by centrifugation immediately before use to 

remove any particulates. 

Cells adhering to the cover-slips were labelled with labelling solution as follows. 

Briefly, primary antibodies, which were optimized (Table 4.1 in Chapter 4) were diluted in 

the 1% (w/v) “Marvel” blocked milk solution and centrifuged at 1000 xg for 2 minutes to 

precipitate any insoluble substance. Cells were incubated for 1 hour in a humidity chamber 

in a dark cabinet by inverting the coverslips into 100 μl of the diluted primary antibody 

solution. The coverslips were then washed 3 times with 1x DPBS-T. Fluorophore-conjugated 

secondary antibodies (1:500) were also diluted in blocking solution and clarified by 

centrifugation (Table 4.2 in Chapter 4). Cover-slips were inverted onto 100 μl of the 

secondary antibody solution and incubated in a humidified chamber in darkness for 1 hour. 

Coverslips were then washed 3 times with DPBS-T and once with dH2O. A 50 μl drop of 

Mowiol® (Sigma-Aldrich) mounting solution was placed in the centre of each marked slide. 

The coverslips were removed with forceps and the underside (non-cell side) was gently 

wiped. Then the coverslip was carefully mounted, cell-side down, onto the mounting 

solution. Slides were left to allow the Mowiol to solidify overnight in the dark. The cells were 

visualized using a confocal laser-scanning microscope (Nikon A1R) using 60x and/or 100x oil-

immersion objectives. 

 

3.2.5.1.1 Confocal microscopy 

 
Confocal images of immunofluorescent staining of ciliated cell-line (see section 

3.2.5.1) were visualized using a 100x oil-immersion objective using a Nikon A1R confocal 

microscope, processed by NIS-Elements Confocal 4.5 (Nikon) software. Slides were viewed 

using wide-field epifluorescence with DAPI blue filter, violet diode (laser excitation (λex) = 

340-380 nm and emission λem 400 nm); FITC green filter, argon laser (λex = 460-500 nm and 

λem 505 nm); TRITC red filter, HeNe543 laser (λex = 528-553 nm and λem 565 nm). Confocal 

images were processed using Nikon EZ-Cl 3.50 software. 
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3.2.6 SDS-PAGE western blot analysis of cell lysates 

3.2.6.1 Lysate preparation  

Confluent transfected and non-transfected HEK-293 cells were washed with cold 1x 

DPBS (Sigma-Aldrich #P4417) and pelleted by centrifugation. Cells then were incubated for 

10 minutes at 4°C in an appropriate cold lysis buffer. The lysis buffers contained a variable 

degree of detergents, salts, and enzymatic inhibitors, including Protease/phosphatase 

Inhibitor Cocktail (Thermo Fisher Scientific). Lysed cells were scraped off the plate, 

transferred into a micro-centrifuge tube and kept on ice. To break apart cells and solubilize 

proteins, cells were then sonicated for 10 seconds at 40% power using a Sanyo Soniprep 150 

Sonicator to ensure total cell lysis and membrane disruption, reduction of sample viscosity 

and increased protein yield. Subsequently, the cell lysates were micro-centrifuged for 10 

minutes at 12000 xg, 4°C. When the lysate was not required immediately, the supernatant 

was frozen at -80°C. 

3.2.6.2 Protein blotting 

Each protein sample was mixed with an equal volume of 2x sodium dodecyl sulphate 

(SDS) loading buffer [100 mM Tris-HCl pH 6.8; 4% (w/v) SDS (BDH); 20% (v/v) glycerol 

(Sigma-Aldrich); 20 mM β – mercaptoethanol (BDH); 0.004% (v/v) Bromophenol Blue 

(Sigma-Aldrich)] and 40 μl/sample of the mixture was heated at 95°C for 5 minutes. An XCell 

SureLock electrophoresis tank (Invitrogen) was filled with 1x NuPAGE® MES-SDS running 

buffer (Thermo Fisher Scientific). Approximately 20 μl of a heated protein sample was 

loaded into 4-12% Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

(Life Technologies). Precision Plus Protein™Standards ‘All Blue’ (Bio-Rad) were loaded onto 

the gel as a size standard during electrophoresis. Samples were run and separated at 120 v 

for 90 minutes. After gel electrophoresis, western blotting was performed to transfer 

proteins from the gel to a polyvinylidene fluoride (PVDF) membrane (Life Technologies 

#LC2005). The membrane was activated by immersing in absolute methanol (Sigma-Aldrich 

#32213) for a few seconds before use. A sandwich was made between the SDS-PAGE gel and 

the activated membrane and 2 filter papers and 8 sponges. The prepared sandwich was 

then placed into an XCell SureLock electrophoresis tank (Invitrogen) filled with 1x NuPAGE 
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transfer buffer (Invitrogen) supplemented with 10% (v/v) methanol (Sigma-Aldrich #32213) 

while the surrounding tank was filled with water. The transfer sandwich was run at 30 v for 

90 minutes. 

3.2.6.3 Membrane blocking and antibody incubations 

After the transfer, the membrane was incubated in 50ml of a blocking buffer (5% 

(w/v) non-fat dried marvel milk or 5% BSA containing 1x DPBS with 0.1% (v/v) Tween® 20 

(1x DPBS-T) for an hour at RT. The membrane then was incubated with primary antibodies, 

at the appropriate dilution and buffer with gentle agitation overnight at 4°C (Table 4.3 in 

Chapter 4). Following washes with 1x DPBS+ 0.1% Tween 20 (DPBS-T) (3x, 10 minutes), 

Horseradish peroxidase (HRP)-conjugated secondary antibody (Dako) was applied at 1:5000 

dilution in blocking buffer with gentle agitation for an hour at RT to detect protein bands 

and the biotinylated protein markers. The membrane was washed with PBS-T (3x, 10 

minutes) and the molecular weights of bands were estimated relative to the protein 

markers over the 10 to 250 kDa range by treating the membrane with SuperSignal West 

Femto Maximum substrate (Thermo Fisher Scientific) to target antigens and develop the 

immune-positive bands. Protein bands were quantified by densitometry using Image Lab 

Software (Bio-Rad). 

3.2.7 pSecTag2A_Nt-TMEM67 production and purification 

 
3.2.7.1 Generation of stable cell lines 
3.2.7.1.1 pSecTag2A_Nt-TMEM67 linearization and purification from agarose gels 

pSecTag2A_Nt-TMEM67 plasmid was linearized with PuvI before transfection to 

increase the chances of productive integration and the linearized plasmid was run on 

agarose gels as described (see section 3.2.3.5). Following electrophoresis, the agarose gels 

were visualised on a UV transilluminator in a dark room. The desired DNA fragments were 

excised from the gel with a clean scalpel. To maintain DNA integrity, UV exposure was kept 

to a minimum. DNA extraction was performed using the QIAquick gel extraction kit 

(QIAGEN), following the manufacturer’s instructions. The DNA was eluted in 50 μl TE buffer. 

The eluted DNA was transferred to a fresh micro-centrifuge tube and the purified DNA 
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quantified using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific) then 

stored at -20°C. 

3.2.7.1.2 Calcium chloride eukaryotic cell transfection 

 
First, calcium chloride transfection solutions were prepared as follows: 2M CaCl2 

(100 ml) was made up by dissolving 29.4 g CaCl2 powder in 100 ml dH2O and the pH was 

checked to be near-neutral. The solution was filter sterilized using a 0.2 µm Millipore 

“Millex” sterile syringe-driven filter. 2x HBS (100 ml) was made up with 1.6 g NaCl, 1.3 g 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 0.07 g Na2HPO4.2H2O in 100 

ml dH2O (adjusted to pH 7 and filter-sterilized). Second, HEK-293 cells were plated in a 

Corning® Costar® 6-well flat-bottom plate (Sigma-Aldrich #3506). Cells at 20% confluence 

were grown and incubated for 1-2 hours at 37°C, 5% CO2 to allow cell adhesion and 

spreading. 25 μg of pSecTag2A_Nt-TMEM67 was mixed with dH2O to a volume of 493 μl. 61 

μl of 2 M calcium chloride solution was added to the DNA mixture. 500 μl of freshly thawed 

2x HEPES-Buffered Saline (HBS) pH7 was added to the DNA mixture drop-wise with constant 

mixing at RT. The mixture was vortexed briefly and incubated for 20 minutes, RT, to allow 

plasmid DNA/calcium phosphate precipitates to form. The DNA-calcium chloride mixture 

was then distributed evenly over the adhered cells prepared in fresh DMEM growing 

medium (see section 3.2.2). The cultures were incubated at 37°C in 5% CO2, avoiding any 

spiralling or swirling motion when putting the plate back, and then the medium was 

replenished after 24 hours. A time course was performed over 16 hours, 24 hours, 40 hours 

and 48 hours in order to determine the optimal times for transfection. 

 
3.2.7.1.3 Zeocin selection of HEK-293 cells clones expressing pSecTag2A_Nt-TMEM67 and 

antibiotic kill curve 

 
HEK-293 cells were subjected to increasing amounts of a selection antibiotic, 

Zeocin™ (InvivoGen), to determine the minimum concentration that kills all untransfected 

cells in a specific period of time in order to optimize the protocol for generation of stably-

transfected cell lines. HEK-293 culture medium [DMEM (Sigma # RNBG7140) + 10% fetal 

bovine serum (FBS) + 1% P/S (Gibco)] was prepared and used as growing medium (Table 3.1) 

and HEK-293 selection medium [DMEM (SIGMA # RNBG7140) + 10% FBS + 1% P/S (Gibco) + 

200 µg/ml Zeocin™] respectively. 
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A kill curve was performed by seeding the transfected cells (see section: 3.2.2.2 and 

3.2.4) at a density of 1 x 105 cells/ml and plated in Corning® Costar® 6-well flat-bottom plate 

(Sigma-Aldrich #3506). The cells were directly cultured in DMEM growing medium as 

described above containing increasing amounts of Zeocin™ (10, 50, 100, 200 and 500 μg/ml) 

in order to determine the optimal antibiotic concentration for generating stably-transfected 

cell-lines. The medium was replaced every 2 - 3 days for a week and the cultures were 

examined every day for signs of toxicity. According to the curve (Figure 3.5 A), the 

concentration of 200 μg/ml was chosen which showed complete cell death as the minimum 

antibiotic concentration to use for selection. 

The pSecTag2A vector contains a Zeocin resistance gene that was used to select for 

cells with a genome-integrated construct, to ensure that selection clones will be populated 

by stably-transfected pSecTag2A_Nt-TMEM67 cells alone. Cells were counted (see section 

3.2.2.2) and seeded at a density of 2.5x106 cells in 10 ml selection media (200 μg/ml Zeocin) 

into round Corning 100 mm x 20mm dishes. Selection media was changed every 3-4 days, 

for 20 days, until cells formed only single colonies. Single colonies consist of several hundred 

cells growing in a cluster on the plastic substrate. Only colonies with a significant gap 

between other colonies were chosen for manual picking. Colonies were picked and removed 

from the dish by using normal sterile blue (P1000) pipette tips with the narrow end cut off. 

These colonies were transferred into 24-well plates, with one colony per well in 1 ml 

medium. These cells were grown for approximately 15-20 days, refreshing the selection 

medium every 3-4 days, until the colonies had become confluent. Afterwards, the surviving 

clones were transferred into T25, T75 or T150 cell culture flasks (Sigma-Aldrich respectively 

#430639, #431464U, #430825) for expansion. Transfected cells were maintained under 

Zeocin selection of 10 μg/ml for several additional days to maintain selection but to ensure 

cell recovery and were then grown in normal medium. Successful generation of the protein 

of interest was confirmed using a dot immunoblot assay (dot-blot) and western blotting (see 

section 3.2.7.1.4; Figure 3.5). 

3.2.7.1.4 Dot-blots 

The expression capability of the purified pSecTag2A_Nt-TMEM67 was validated 

using the dot blot assay. 200 μl of the media was vacuum aspirated onto a 0.45 μm 
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nitrocellulose membrane by using a 24-well dot-blot manifold. Before the membrane dried 

completely, 400 μl of 1x DPBS (Sigma-Aldrich #P4417, see section 3.2) was poured into the 

manifold and the membrane was rinsed in DPBS, blocked in 5% (w/v) Marvel non-fat milk 

and incubated with the primary antibody anti-c-myc mouse monoclonal (Cell signalling 

#96811). Thereafter, the membrane was washed with DPBS-T and incubated in 1:10000 

dilution of horseradish peroxidase- conjugated anti-mouse secondary antibody (Dako 

#P0447) for 1 hour at RT. Excess block and antibody were removed through washes with 

DPBS-T. Chemiluminescent HRP-tagged antibodies were visualized using SuperSignal West 

Femto Maximum substrate (Thermo Fisher Scientific) and detected using a ChemoDoc MP 

Imaging System with Image Lab (v. 4.0) software (Bio-Rad) (see section 3.2.6.3). 

3.2.7.2 Chromatography columns used in this study 
 

His SpinTrap columns (GE Healthcare #GE28-9321-71) were used according to the 

manufacturer’s instructions to confirm the production of a stable clonal cell-line expressing 

the protein of interest by western blotting (Figure 3.5 C). An AKTA purification system at 

Leeds Institute of Medical Research was initially used and then subsequently an AKTA 

chromatography system at the Protein Production Facility, University of Leeds, under the 

supervision of Dr Brian Jackson, using the following purification columns to purify Nt-

TMEM67: 

3.2.7.2.1 Affinity chromatography 

 
Tissue culture medium containing secreted protein was filtered and applied to a 1 ml 

Ni2+ Sepharose HisTrap HP column (GE Healthcare) on an AKTA purifier Fast Protein Liquid 

Chromatography (FPLC) system, equilibrated and washed with phosphate buffer (20 mM 

sodium phosphate, 0.5 M NaCl) and His-tagged protein was directly eluted using 0.5 M 

imidazole in phosphate buffer (20 mM sodium phosphate, 0.5 M NaCl, 500 mM imidazole). 

The maximum binding capacity was 50 mg His-tagged protein per ml resin. 1x DPBS was 

used as a wash buffer and the column then was then washed with 20 ml of the binding 

buffer (20 mM sodium phosphate, 500 mM NaCl, pH7.4) and 400 ml of the medium was 

loaded with a repeat wash and load. Elution fractions were then buffer-exchanged with 10 

mM ammonium acetate. The peak fractions were collected, and mixed with an equal 

volume of (2x sodium dodecyl sulphate (SDS) loading buffer [100 mM Tris-HCl pH 6.8; 4% 
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(w/v) SDS (BDH, Poole.UK); 20% (v/v) glycerol; 20 mM β – mercaptoethanol (BDH, Poole, 

UK); 0.004% (v/v) bromophenol Blue (Sigma-Aldrich)] and analysed by SDS-PAGE alongside 

“All Blue” (Bio-Rad #161-0373) molecular weight marker, whole cell extract and wash 

fractions. Proteins were then immunoblotted to PVDF membrane (see Section 3.2.6.2), 

incubated with an anti-cmyc-tag monoclonal antibody (Cell Signaling #96811) (1∶1000, 

overnight at RT) followed by a polyclonal goat anti-mouse HRP-conjugated secondary 

antibody (Dako #P0447) (1∶10000, 1 hour, RT). Western blots were visualized on a 

ChemiDoc MP Imaging System with Image Lab (v. 4.0) software (Bio-Rad). 

In subsequent experiments, the purification and elution protocols were optimized by 

using Opti-MEM reduced serum medium and a gradient elution method on the FPLC system 

in order to minimize contaminating bovine serum proteins (Figure 3.8). The elution buffer 

comprised an increasing gradient of imidazole (0 to 500 mM) in phosphate buffer, [20 mM 

sodium phosphate NaH2PO4, 500 mM NaCl, 500 mM imidazole, pH 7.4], visualised using 

Coomassie Blue staining and examined by western blotting with an anti-c-myc antibody as 

described above (Figure 3.8 B). 

3.2.7.2.2 Ion exchange chromatography 

 
The column was washed with a wash buffer [20 mM Tris pH 7.4]. The peak (elution 

1-12 in total of ~22 ml) eluates from N-NTA column affinity purification were pooled and 

applied to a HiTrapQ HP Column (GE Healthcare) after concentration and buffer exchange to 

remove salt using Pierce protein concentrator PES, 10K MWCO (Thermo Fisher Scientific). 

Fractions were eluted from the ion exchange column by an increasing gradient of NaCl up to 

1 M [20 mM Tris pH 7.4, 1 M NaCl]. 

3.2.7.2.3 Gel filtration chromatography 

The fractions were concentrated using a spin column (cut off 10K) to a volume of 2 

ml. Gel filtration chromatography on a Superdex 75 FPLC column (GE Healthcare) was used 

to further separate proteins on the basis of size and shape. The elution buffer [NaP buffer 

pH 7.4 (500 mM NaCl)] was used. Gels were also stained with InstantBlue stain (Expedeon) 

(see section 3.2.7.3.1), so that excised bands could be used directly for protein identification 

studies by MS. 
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3.2.7.3 Preparation of proteins for mass spectroscopy analysis (MS) 
 

3.2.7.3.1 Coomassie Blue protein staining and InstantBlue staining solution 

 
In order to visualise Nt-TMEM67 protein resolved on an SDS-PAGE gel, the gel was 

stained with Coomassie Blue staining solution (50% methanol (Sigma-Aldrich #32213), 0.6% 

Coomassie Brilliant Blue R-250 and 10% (v/v) acetic acid). The gel was fixed for 1 hour at RT 

in the reagent. The gel was then destained in 50% (v/v) methanol and 10% (v/v) acetic acid 

with several changes of destaining solution until the bands were visible and then 

photographed on the ChemoDoc MP Imaging System with Image Lab software (Bio-Rad). 

Commassie Blue was used after Affinity purification and Ione exchange chromatography. 

The InstantBlue staining solution (Expedeon) however, was used to stain the gel 

after gel filtration chromatography. 20 ml InstantBlue staining was added to cover the gel 

and left for 15 minutes at RT with gentle shaking. 

The gel was sliced and the desired bands were excised from the gel with a clean 

scalpel. The samples were transferred to a fresh micro-centrifuge tube and stored at -20°C. 

Samples were sent for mass spectrometry (MS) analysis to the Biomolecular Mass 

Spectrometry Facility, University of Leeds, unless stated otherwise. 

3.2.7.3.2 Methanol/chloroform protein precipitation 

 
The experiment was performed at RT. Four volumes of methanol (Sigma-Aldrich 

#32213) were mixed with 1 volume of the protein sample, vigorously for 60 seconds. 

Afterwards, 1 volume of chloroform was added and the mixture was vortexed for 60 

seconds. Three volumes of dH2O were then added to the mixture and vortexed for 60 

seconds. The mixture was subsequently centrifuged at 1000 xg for 5 minutes. The mixture 

resolved into 3 phases. The proteins remained at the phase boundary between the upper 

aqueous methanol layer and the lower chloroform layer. The upper fluid phase was 

carefully removed and another 4 volumes of methanol (Sigma-Aldrich #32213) was added to 

wash the precipitate. The mixture was spun at for 15 minutes at 13000 rpm. The 

supernatant was discarded without disturbing the pellet, and the protein pellet was air 

dried and then stored at -80°C. 
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3.2.7.3.3 Acetone protein precipitation 

 This was performed at 4°C. Four volumes of ice-cold acetone were added to the 

protein sample and the mixture was briefly vortexed. The mixture was incubated at -20°C 

for 1 hour then centrifuged at 13,000-15,000 xg for 10 minutes, 4°C. The supernatant was 

removed carefully to avoid dislodging the protein and the protein pellet was air-dried. The 

protein was dissolved in PBS, transferred to a fresh micro-centrifuge tube and stored at -

20°C. The sample was sent for MS analysis to the Biomolecular Mass Spectrometry Facility, 

University of Leeds. 

3.3 Results 

3.3.1 Construction of a series of TMEM gene-based Gateway vectors 

 
The selected TMEM Entry clones were the full open reading frame (ORF) cDNAs of 

each gene, from the ORFeome Consortium (Invitrogen Life Technologies Inc). In this study, 

only LR reactions were performed using LR Clonase II Plus enzyme mix (Invitrogen) 

according to the manufacturer’s instructions (see section 3.2.3.1). The method of Gateway 

cloning is shown in Figure 3.1. LR reactions were achieved and successful cloning was 

confirmed by restriction enzyme digestion analysis. The PstI enzyme was used to validate 

3xFLAG-TMEM216, SF-TAP-TMEM216 and SF-TAP-TMEM138 constructs whilst BamHI was 

used to validate the 3xFLAG-TMEM237 and SF-TAP-TMEM237 constructs. The entire cDNA 

in each entry clone was sequenced, after validation by restriction digestion analysis, using 

the T7 and SP6 sequencing primers to cover the entire cloned insert for the selected 

proteins (data not shown). Each of the constructs was transfected into HEK-293 cells (see 

section 3.2.4) to confirm protein expression by western blotting (see section 3.2.6.2). Whole 

cell extracts from transfected constructs were prepared (see section 3.2.6.1) and cells were 

then extracted under mild conditions with CHAPS buffer (see section 3.2.1.1), 

electrophoresed on a 10% SDS-PAGE gel, followed by transfer to a PVDF membrane 

(Invitrogen #LC2005) (see section 3.2.6.3). The expression of the selected TMEM proteins 

were detected by either rabbit polyclonal anti-His6 polyhistidine tag antibody (Cell 

signalling) against the expressed protein or mouse monoclonal anti-FLAG antibody (Sigma 

#F3165) against epitope-tagged proteins. The results showed that all TMEM proteins 

(TMEM17, TMEM138, TMEM216, TMEM231 and TMEM237) were successfully expressed 
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and clearly detected at their predicted molecular weight (Figure 3.2). In the case of 

TMEM67, an antibody against SF-TAP/FLAG-tagged TMEM67 detected 2 bands, 1 at about 

150 kDa and 1 at 25 kDa, whereas the predicted size of TMEM67 is 111 kDa. The difference 

between the predicted and actual detected sizes of TMEM67 can be explained by the 

presence of possible post-translational modifications in the N-terminal extracellular region 

of the protein. The band at the lower 25 kDa molecular weight may be due to post-

translational cleavage of the N-terminal extracellular region as a separate ectodomain. 

Validated expression vectors were used for analysis of subcellular localization of TMEM 

proteins (Chapter 4). 

 

 
Figure 3. 2: WB analysis of extracts from HEK-293 cells using anti-FLAG antibody (1:2500). 

Constructs encoding TMEMs were transfected into HEK-293 cells, which were lysed after 48 
hours and extracts examined by SDS-PAGE and WB using an anti-FLAG antibody (1:2500). 
The expected molecular weight (kDa) of each protein is indicated to the left of each blot. 
WB (left) detected 23 and 19 kDa bands, the expected sizes for tagged TMEM17 and 
TMEM138 respectively. Tagged TMEM216, TMEM231 and TMEM237 (middle) corresponded 
to bands of the expected sizes of 16, 36 and 45 kDa respectively. The band of ca. 150 kDa for 
TMEM67 (red arrow) is the expected molecular weight of the full-length protein with 
probable post- translational modifications (right). The smaller 25 kDa band (green arrow) 
indicates the presence of a possible cleaved ectodomain or non-specific band. 
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3.3.2 Nt-TMEM67 production and purification 

 
A construct was made using the pSecTag2A expression vector (Figure 3.3 A). This 

construct includes the Ig K-chain leader sequence for extracellular secretion, the cDNA 

encoding Nt-TMEM67, a c-myc epitope, a polyhistidine tag, and Zeocin resistance gene and 

ampicillin resistance genes for selection in mammalian and bacterial cells, respectively 

(Figure 3.3 B). The construct was stably transfected into the HEK-293 cell line (Thomas and 

Smart, 2005) (see section 3.3.2.1). This expression system allows high yield and correct post-

translational modification of Nt-TMEM67, an extracellular part of the receptor, which is 

secreted into the cell culture medium. Three column chromatography methods were used 

in order to purify the overexpressed protein from conditioned medium, including affinity 

column chromatography (HisPrep FF 16/10 column), ion exchange (HiTrapQ HP 1ml column) 

and gel filtration (HiLoad 16/600 Superdex 75) columns (see section 3.2.7.2). 
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Figure 3. 3: TMEM67 vector and sub-cloned domain. (A) pSecTag2A vector map and 
sequence alignment of TMEM67 CRD expressed protein. (B)The sequence of Nt-TMEM67 
sub-cloned to the vector. The protein sequence contains: initiator codon; Ig kappa light 
chain leader peptide for secretion; TMEM67 N-terminal region (amino acids 39-478); c-myc 
epitope; Hisx6 epitope; termination codon. Alternating exons are marked in black and blue 
text, with residues crossing exon-intron boundaries in red. The predicted molecular weight 
for this 440- residue sequence is 49 kDa (Figure 3.5 C). 

 
Generating the Nt-TMEM67 stable cell line required several steps, including 

transfection of the plasmid construct (pSecTag2A_Nt-TMEM67) into the HEK-293 cell-line, 

followed by selection and expansion of clonal populations of the cells (Figure 3.4). 
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Figure 3. 4: Workflow for production of the stably-transfected Nt-TMEM67 HEK-293 cell-line. The schematic details workflow steps that 
include transfection, seeding of multi-well plates, isolation and expansion of selected colonies and adaptation of selected mono-clonal colonies 
to serum-free medium. The final analysis step comprises the collection and processing of cell culture medium by dot-blotting using standard 
western blotting methodology. 
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3.3.2.1 Optimization of stable transfection and secreted protein expression 

To optimize the efficiency of stable transfection and secreted protein expression, a 

kill curve for transfected HEK-293 cells was performed in order to determine the optimal 

concentration of Zeocin antibiotic for efficient transfected cell selection. The kill curves 

indicated that 200 μl/ml of Zeocin was the optimal concentration to be used for the 

generation of stably transfected cells (Figure 3.5 A). These experiments showed that cells 

that did not express the pSecTag2A constructs with the selection marker died, leaving only 

single colonies of cells expressing the Zeocin resistance gene in these constructs. Single 

clones were isolated and examined by dot-blot and western blotting to determine the 

quality and yield of secreted Nt-TMEM67 protein. 

First, 200 μl of serial dilutions of colony growth medium were loaded as described in 

(see section 3.2.7.1.4). The c-myc tagged recombinant protein was immunodetected (see 

section 3.3.2.7.3) and the result of dot-blots indicated that colony number 34 had the 

highest expression of N-TMEM67 (Figure 3.5 B). In addition, recombinant protein was 

purified from medium from colony 34 using a His SpinTrap column (GE Healthcare #GE28-

9321-71) following the manufacturer's instructions. Purified Nt-TMEM67 was examined by 

SDS-PAGE and western blotting. This confirmed that a band of 50 kDa was expressed at the 

expected molecular weight of Nt-TMEM67 (Figure 3.5 C). 
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Figure 3. 5: Stably-transfected HEK-293 cell line validation. (A) The bar graph represents 
the kill curve method that was used to determine the concentration of Zeocin antibiotic 
required to kill cells within a period of time. The horizontal axis shows the Zeocin 
concentration whilst the vertical axis shows the living cells/ml. 200 μg/ml of Zeocin 
concentration was selected. (B) Dot blot analysis of pSecTag_Nt-TMEM67 secreted protein. 
Dot blotting was used to analyse the expression level of different clones after selective 
growth. Each colony was identified by a number. 200 μl stable medium was added to each 
well. “C” indicates negative control blots for un-transfected medium. WBs were performed 
with Ms anti-c-myc and Rb anti-His6 antibodies. Colony 34 was selected as the clone with 
optimal epitope-tagged protein expression. (C) WBs with Ms anti-c-myc and Rb anti-His 
after SpinHis column purification indicated the correct size of expressed Nt-TMEM67 (50 
kDa). 

Intracellular localisation studies by indirect immunofluorescence were also 

performed using either anti-c-myc or anti-His antibodies to visualize protein expression in 

stably transfected HEK-293 cells. High levels of over-expressed Nt-TMEM67 protein were 

observed in cells, probably concentrated in the ER (Figure 3.6 A). 
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Figure 3. 6: Validation using immunofluorescence and western blotting for the whole cell 
extracts and secreted protein from colony 34. (A) Cells from colony 34 expressing Nt-
TMEM67 were examined using immunofluorescence with Ms anti c-myc (in red) or Rb anti 
N-TMEM67 (in green) and compared with un-transfected HEK-293 cells. DAPI (Sigma-
Aldrich) staining is shown in blue. Scale bar 10 μm. (B) HEK-293 cells expressing Nt-TMEM67 
analysed by WB. Both anti-c-myc and anti-TMEM67 confirmed protein expression at the 
expected molecular weight of 50 kDa in conditioned serum-free medium (SF), while anti c-
myc antibody also detected Nt-TMEM67 in whole cell extract (WCE). 
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3.3.2.2 Affinity purification of His-tagged secreted protein 

6xHis tagged secreted protein was initially affinity purified from 10% FBS DMEM 

serum tissue culture medium conditioned by stably-transfected HEK-293 cells (Nt-TMEM67 

colony number 34) as described previously (see section 3.3.2.1). There were very likely to be 

different species present because of glycosylation and this was reflected by the western 

blots of the protein preparations from eluted fractions (Figure 3.7). Subsequent LC-MS 

analysis indicated that bovine serum proteins (albumin, alpha-2-HS-glycoprotein and 

serotransferin) were a major contaminant in the pooled eluted fractions with the highest 

expression of Nt-TMEM67 (Appendix B.3.1) This precluded the definitive confirmation of 

correct protein expression by MS analysis since the contaminating serum proteins inhibited 

the generation of peptides from the human Nt-TMEM67 protein during trypsin digestion of 

the sample. 

In summary, stably-transfected cells from colony 34 expressed and secreted Nt-

TMEM67 directly into the tissue culture medium as expected, based on 

immunofluorescence microscopy and western blotting (Figure 3.6 A). However, affinity 

purification using a Ni-NTA column did not adequately remove contaminating serum 

proteins of bovine origin from the medium used to grow the cells. This prevented the 

identification of Nt-TMEM67 peptides even as minor species in these elutes. 
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Figure 3. 7: Affinity purification of stabled pSecTag2A_Nt-TMEM67 extracted from HEK-
293 cells. (A) Purification of His6 polyhistidine-tagged Nt-TMEM67 with 500 mM imidazole in 
the sample and binding buffer using an FPLC system. The chromatogram shows fractions 
comprising flow-through (fractions 1–18) and proteins eluted with increasing imidazole 
concentrations to a maximum of 500 mM (fractions 9–15). The concentration (Conc; green) 
trace indicates the increasing imidazole concentration in the buffer flowing through the 
column. (B) SDS-PAGE gel of (His)6- Nt-TMEM67. L: Ladder; W: whole cell extract. Lanes 
from 9-15 showed the target Nt-TMEM67 detected with anti-c-myc. at the expected 
molecular weight of 50 kDa.  
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In subsequent experiments, the purification and elution protocols were optimized by 

using Opti-MEM reduced serum medium and a gradient elution method on the FPLC system 

in order to minimize the contaminating bovine serum proteins (Figure 3.8). Nt-TMEM67 

protein was successfully eluted from the column by competitive displacement using an 

elution buffer, comprising an increasing gradient of imidazole (0 to 500 M) in phosphate 

buffer. The peak fraction of eluted protein was at approximately 0.1 M imidazole and the 

eluted fractions were collected (Figure 3.8 A), visualised using Coomassie Blue staining (not 

shown) following resolution on SDS-PAGE gels and finally examined by WB with an anti-c-

myc antibody (Figure 3.7 B). The result indicated that contaminating proteins were still 

present in the peak eluted fractions (Figure 3.8 A, B). 
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Figure 3. 8: Affinity purification of pSecTag2A_Nt-TMEM67 extracted from HEK-293. (A) A 
HisPrep FF 16/10 column was used. The conductivity trace (green) indicates the increase of 
imidazole concentration in the buffer flowing through the column. Absorbance (blue trace) 
was monitored at 280 nm (mAU, ultraviolet absorbance units). The peak shows proteins 
eluted when the imidazole concentration was increased from 0 to 500 mM. (B) SDS-PAGE 
and WB analysis of (His)6- Nt-TMEM67 in numbered eluted fractions. L: Ladder; W: Whole 
cell extract. Eluates containing the target protein were revealed by western blotting with 
anti-c-myc antibody. Lanes from 9-15 contain Nt-TMEM67 (marked by red arrow) indicating 
expression at the expected molecular weight of 50 kDa. Other bands of higher or lower MW 
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were also seen and are likely to represent Nt-TMEM67 degradation products or non-specific 
labelling of contaminating proteins. 

 
3.3.2.3 Ion exchange purification 
 

To purify recombinant Nt-TMEM67 from contaminating proteins, ion exchange 

chromatography was used to further separate proteins on the basis of differences in charge. 

As a result, 4 elution peaks were observed (Figure 3.9 A); Samples from peaks were tested 

by SDS-PAGE (see section 3.2.6.2) and analysis using an anti-c-myc antibody confirmed that 

recombinant protein was present in fractions 9 to 20 (Figure 3.9 A, B). Coomassie Blue gel 

was stained for one-hour Blue staining then destained for two hours; an arrow indicated 

predicted band since it was difficult to identify the Nt-TMEM67 band in the blue gel. In 

addition, the SDS-PAGE result showed that peak 1 (samples from fractions 5 to 7) contain 

truncated forms of the target Nt-TMEM67 and correspond to non-specifically bound 

protein, whilst peaks 2 and 3 (fractions 9-10 and 12-16, respectively) correspond to the 

enriched specifically bound Nt-TMEM67. Peak 4 (fraction 24) failed to visualise any bands on 

SDS-PAGE and Coomassie Blue gels. Therefore, peaks 2 (9-10) and 3 eluting at approx. 150 

mM NaCl were selected for further analysis. Peak 2 and 3 fractions containing purified Nt-

TMEM67 protein were pooled, concentrated and buffer exchanged into 1xDPBS (Sigma-

Aldrich #P4417). 
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Figure 3. 9: Ion exchange purification of pSecTag2A_Nt-TMEM67. (A) HiTrap Q column 1ml 
purification of Nt-TMEM67 protein upon applying a NaCl gradient up to 1 M. Absorbance 
(blue trace) was monitored at 280 nm (mAU, ultraviolet absorbance units). NaCl 
concentration is indicated by the orange trace. Four elution peaks were observed; Peak 1: 
samples (5-7); Peak 2: samples (9-10); Peak 3: samples (12-16); Peak 4: sample (24). (B-C) 
selected fractions analysed by SDS-PAGE followed by Coomassie Blue staining. Four elution 
peaks were observed; Peak 1: samples (5-7) contain truncated forms of the target Nt-
TMEM67 and corresponds to non-specifically bound Nt-TMEM67; Peak 2: samples (9-10); 
Peak 3: samples (12-16) correspond to the enriched specifically bound Nt-TMEM67; Peak 4: 
(24) failed to visualise any bands on SDS-PAGE and Coomassie Blue gels. Peak 2 and 3 
eluting at approx. 150 mM NaCl were selected for further analysis. Lane B/C indicates input 
material before the elution of affinity-purifed protein. Lane A/C indicates input material 
after the elution of affinity-purified protein; L, protein ladder; F/T, flow-through. The arrow 
indicates the relative positions of the eluted Nt-TMEM67 protein in the gels. 
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3.3.2.4 Gel filtration 

Coomassie Blue staining after ion exchange chromatography indicated that 

contaminating protein was still present in peak fractions that contained Nt-TMEM67 (Figure 

3.9 B). Gel filtration chromatography on a Superdex 75 FPLC column was used to further 

separate proteins on the basis of size and shape. The result showed that gel filtration 

chromatography resolved the peak pooled ion exchangechromatography fractions into 

three main peaks (Figure 3.10 A). Selected fractions from these elutions were analysed by 

SDS-PAGE and western blotting using an anti-c-myc antibody. Gels were also stained with 

Instant Blue (Expedeon) so that excised bands could be used directly for protein 

identification studies by MS. Arrows indicate the relative and predicted positions of the 

eluted Nt-TMEM67 protein in the gels: this indicates that peak 2 (Figure 3.10 B-C) 

corresponded to the enriched, specifically bound Nt-TMEM67. Therefore, fractions were 

collected for further analysis by MS, and Instant Blue gel bands corresponding to the 

enriched bound Nt-TMEM67 were excised for MS studies (see section next section). 

3.3.2.5 Mass Spectrometry (MS) 

SDS-PAGE gels stained with Instant Blue had bands between 46 to 58 kDa excised for 

protein identification by MS. Samples were subjected to tryptic digestion and the peptides 

identified by MS were matched to a protein sequence database containing all human 

protein entries (SwissProt database). Potential matches were analysed in the program 

“Peaks” using a range of statistical parameters to remove poor matches. With reduced 

stringency search parameters, lower ranking spectrum matches to TMEM67 protein were 

identified, although there were a number of additional matches to other human proteins 

(data not shown). These results indicated that a high level of background contaminating 

protein still remained within the Nt-TMEM67 preparation (see Appendix B.3.2). 
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Figure 3. 10: Size exclusion gel filtration purification of pSecTag2A_Nt-TMEM67. (A) HiLoad 
16/600 Superdex 75 column purification of Nt-TMEM67 protein. The absorbance was 
monitored at 280 nm, mAU (ultraviolet absorbance unit). Three elution peaks were 
observed. (B) Selected fractions analysed by SDS-PAGE and western blotting with an anti-c-
myc antibody. (C) SDS-PAGE followed by Coomassie Blue staining. W: whole cell extract; L: 
protein ladder; lane A/C indicates input material after the elution of the ion exchange 
concentrated sample; only peak 2 (fractions 12-16) contained Nt-TMEM67 as confirmed by 
western blotting. The arrows indicate the relative and predicted positions of the eluted Nt-
TMEM67 protein in the gels. 

 

3.4 Discussion 

Construction of an expression vector is a basic tool for production of desired 

proteins. Six transition zone TMEM proteins were selected to study in this project, 
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comprising the Frizzled-like orphan receptor TMEM67 and the tetraspan-like proteins 

TMEM216, TMEM138, TMEM237, TMEM17 and TMEM231. The ciliary TMEM proteins were 

tagged at either the C- or the N- terminus with TAP (streptavidin/FLAG) or FLAG using the 

“Gateway” cloning system. HEK-293 cells were used to confirm the expression of these 

constructs and the WB results showed that the generated constructs were successfully 

expressing the full-length protein (Figure 3.2). Afterward, immunofluorescence methods 

were performed to confirm whether these selected proteins are ciliary proteins localized at 

the ciliary Basal body/transition zone; the confocal imaging confirmed the sub-cellular 

localization of epitope-tagged TMEM to the basal body (Chapter 4). 

In addition, Figures 3.3-3.10 illustrate the purification of the extracellular domain of 

TMEM67, an integral transmembrane protein implicated in ciliary signal transduction 

pathways. In order to purify the selected protein for functional and structural studies, the 

first step was to generate an expression system where the protein was secreted by the cell 

line into the tissue culture medium. The cell line chosen for over-expression was human 

HEK-293, and the protein was expressed as a secreted protein used Ig K-chain sequence in 

the pSecTag2 A vector. 

To improve yield and reduce background, a variety of purification methods were 

employed, including affinity, ion exchange and size exclusion gel filtration column 

purifications. Using these in combination reduced the background and showed significant 

improvements in purification (Figures 3.7-3.10) compared to preliminary analysis. Notably, 

protein yields improved after gel filtration purification. The next step was to confirm the 

identity of the protein by MS analysis. 

The yield of the protein was not sufficient for MS identification and unfortunately 

was also of insufficient yield and purity for crystallization trials. Such studies are critical to 

obtain x-ray data providing a picture of the tertiary structure of the protein. Optimization of 

expression, solubilisation and purification were all issues during this project. In conclusion, 

the expressed and secreted Nt-TMEM67 protein had a predicted size of 50 kDa and the anti-

c-myc western blots showed a major band at 50 kDa, but it was not possible to purify 

enough of this protein for MS analysis. Due to time constraints it was not possible to further 
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optimize this part of the study and to determine why protein was undetectable by MS 

analysis. 

3.4.1 Further investigations and experimental limitations 
 

One of the aims for this chapter was to purify Nt-TMEM67 for analysis by MS and 

crystallography. However, as noted above this work could not be satisfactorily completed in 

the time available. Some of the challenges discussed in this chapter could be fully resolved 

through the optimal use of cell lines, epitope tags and buffers. One of the current challenges 

for Nt-TMEM67 and other cysteine-rich proteins is low protein yield because disulphide 

bridges in extracellular proteins tend to result in protein aggregation (Moghadam et al., 

2015). To overcome these expression problems in the future, it will be important to choose 

the right expression system for each particular transmembrane protein. In this instance, 

TMEM67 cDNA cloning into insect cell expression constructs, such as FastBac, followed by 

protein production using baculovirus expression systems may be the best way forward to 

ensure sufficient yield and purity for subsequent structural and biochemical studies. As an 

alternative, a number of proteins have been successfully expressed with a SUMO-tag. It has 

been reported that a SUMO-tag does not adversely affect protein function and can be used 

to dramatically improve both solubility and protection from proteolytic degradation, 

therefore improving protein expression (Malakhov et al., 2004, Butt et al., 2005). 
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Chapter 4 Biochemical interactions and localization of ciliary 
TMEM proteins 
 

4.1 Introduction 
 

Several recent large-scale proteomics studies (Boldt et al., 2016, Mick et al., 2015, 

Gupta et al., 2015) have described many interacting ciliary proteins that are organized into 

larger multi-subunit complexes, all of which are important for cilia formation and function. 

Amongst its various functions the transition zone establishes a diffusion barrier between the 

cilium and the cytoplasm, thus compartmentalizing the cilia from the cell body (see section 

1.2.4.4). Genetic and cell biology analyses have shown that the small tetraspanin-like 

transmembrane proteins (TMEMs) TMEM17, TMEM67, TMEM138, TMEM216, TMEM231, 

and TMEM237 localize to the transition zone of cilia in C. elegans, and most of the 

mammalian orthologues localize to the transition zone in mammalian ciliated cells (Yee et 

al., 2015, Li et al., 2016). However, the relationship between function and localization is 

poorly understood for these ciliary TMEMs (Blacque and Sanders, 2014). In this chapter, I 

therefore investigated the potential functional relationships between these ciliary TMEMs 

and other components of three functional modules that localize to the transition zone. 

 

A small evolutionarily conserved ciliary sub-compartment, transition zone plays an 

essential role in building cilia by acting as a ‘gate’ to control ciliary composition and function 

(Goncalves and Pelletier, 2017, Dean et al., 2016). Two conserved and redundant modules, 

including the so-called NPHP and MKS/JBTS modules, have been characterized by both 

genetic and biochemical approaches and have been suggested to contribute to a gating 

function (see section: 1.2.4.4 and 1.3). However, the precise mechanisms underlying their 

functions remain largely unclear and elusive. The ciliary TMEMs are part of the MKS/JBTS 

module. The MKS module includes TMEM67 (see section 1.6.3.1) TMEM216 (see section 

1.6.3.2), and TMEM231 (see section 1.6.3.3). I also selected the two JBTS proteins TMEM237 

(see section 1.6.3.7) and TMEM138 (see section 1.6.3.6). TMEM17, a CEP290-dependent 

transition zone protein that requires CEP290 and other MKS and NPHP module components 

for transition zone localisation and functions, was also included because it is a suitable 

candidate disease gene for ciliopathies (see section 1.6.3.5). These proteins have important 
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biological functions, and mutations in the genes that encode these proteins, are implicated 

in the pathogenesis of a wide range of human ciliopathies (see section 1.6). 

 

In order to establish functional relationships between the ciliary TMEMs listed 

above, their localization to the transition zone was examined and confirmed by their 

endogenous and exogenous expression in ciliated mIMCD-3 cells using immunofluorescence 

confocal microscopy (Figures 4.4 and 4.5). A common approach to studying these organelles 

in vitro is to use immunofluorescent-labelled antibodies directed against the ciliary TMEMs. 

ARL13B and acetylated α-tubulin staining were used as reliable ciliary markers, since they 

labelled the majority of cilia (Figure 4.3). The basal body markers γ-tubulin and the poly-

glutamylated tubulin (clone GT335) were successful in mIMCD-3 cells following methanol 

fixation (Table 4.1). Poly-glutamylated tubulin also marks the proximal region of the ciliary 

axoneme. Sources of all primary and secondary antibodies, as well as the optimized 

dilutions, are listed in Tables 4.1 and 4.2. Subsequently, the protein–protein interaction 

network of the selected ciliary TMEMs was characterized by co-immunoprecipitation 

(Figures 4.6-4.9) and tandem affinity purification followed by mass spectrometry (see 

appendix C; Table C.1) to identify large numbers of potential protein–protein interactions. 

 

The aims of this chapter were to: 

• Perform immunofluorescence localization analysis of endogenous and exogenous 

ciliary TMEMs. 

• Functionally characterize the selected ciliary TMEMs through biochemical methods 

by using co-immunoprecipitation and tandem affinity purification/mass 

spectrometry analyses. 

 

4.2 Materials and methods 
 

Several analytic techniques described in Chapter 3 as also applicable to this study, 

including cell culture, immunofluorescence confocal microscopy, western blotting, protein 

extraction and whole cell lysate preparations. In addition, this chapter focuses on 2 

biochemical methods to analyse protein-protein interactions, specifically co-

immunoprecipitation and Strep-tag/FLAG tandem affinity purification (SF-TAP) coupled with 
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mass spectrometry (MS) analysis. In this study, biological replicates describe a repeat of the 

entire experiment in which each replicate was from the same HEK-293 cell line, but grown, 

harvested, and processed independently of each other with a different passage number, as 

described previously (Blainey et al., 2014). 

 
4.2.1 Co-immunoprecipitation 

 
Co-immunoprecipitation is often used for the analysis of interactions of multiple 

proteins and their functions. In this protocol, unless stated otherwise, all solutions were 

kept on ice. HEK-293 cells were grown on a 6-well plate or T75 flask (see section 3.2.2.1). 

Cells were then transfected with constructs (expressing SF-TAP or eYFP-tagged TMEM17, 

TMTM138, TMEM231, TMEM237 and TMEM67) using the transfection reagent 

Lipofectamine 2000 (Thermo Fisher Scientific) for 72 hours (see section 3.2.4). Lysates were 

prepared as described previously (see section 3.2.6.1); cells were extracted using four mild 

buffer conditions supplemented with protease inhibitors as follows: CHAPS buffer, Nonidet 

P-40 B (NP40) B buffer, radio-immunoprecipitation assay (RIPA) buffer, and hydrophobic 

buffer, or unless stated otherwise. Lysates then were pre-cleaned by incubating with 25 μl 

50% (v/v) protein A agarose beads for 30 minutes at 4°C. Lysates were then cleared by 

centrifugation at 500 xg for 5 minutes at 4°C. The supernatant was incubated with rabbit 

antisera overnight at 4°C on a tube rotator. 

25 μl of Protein-A-Agarose (Roche # PROTAA-RO) were washed 3 times with the 

incubation buffer. Beads were added to the lysates to capture the immunocomplexes and 

incubated for 3 to 6 hours at 4°C on a tube rotator, followed by washing 3 times in wash 

buffer. Beads were re-suspended in 30 μl of 2% SDS and incubated for 15 minutes and then 

spun at high speed (12000 xg) for a further 2 minutes. The supernatant was re- suspended 

in 2x SDS-PAGE loading buffer and denatured for 5 minutes, at 95°C. Immunoprecipitants 

were resolved on an SDS gel and transferred to PVDF membrane (Invitrogen #LC2005). The 

membrane was blocked with 5% (w/v) non-fat dried milk (Marvel) in 1x DPBS with 0.1% 

(v/v) Tween-20 (DPBS-T). The membrane was then incubated with primary antibody 

followed by secondary antibody in 5% non-fat dried milk in DPBS-T. The blot was developed 

with SuperSignal West Femto Maximum substrate (Thermo Fisher Scientific). The molecular 

weights were determined using ChemoDoc MP Imaging System with Image Lab software 
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(Bio-Rad). Figure 4.1 shows a schematic diagram of the protocol, outlining the different 

experimental steps. 

 

4.2.1.1 Buffers used in coimmunoprecipitation methods 
 
4.2.1.1.1 CHAPS buffer 
 

• Lysis buffer* 
TrisCl pH7.6 50 mM  

NaCl 150 mM 

CHAPS (Sigma #C-5070)  10 mM  

 
• Incubation buffer*  

TrisCl pH8 20 mM  

NaCl 30 mM 

EDTA  0.5 mM  

Glycerol 10% (v/v) 

 
• Wash buffer*  

TrisCl pH8 50 mM  

NaCl 150 mM 

EDTA  0.5 mM  

NP40 (IPEGAL CA-630) (Sigma-Aldrich) 0.1% (v/v) 

 
4.2.1.1.2 NP40 (B) buffer 
 

• Lysis, incubation, wash buffer, (All -in- One Buffer)* 
Tris-HCl pH8  50 mM  

KCl 80 mM 

Glycerol (Sigma-Aldrich) 10 % 

EDTA 10 mM 

NP40 (IPEGAL CA-630) (Sigma-Aldrich) 1 % (v/v) 

NaVO4 10 mM 

NaF 10 mM 
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4.2.1.1.3 Hydrophobic buffer 
 

• lysis/incubation buffer* 
Tris-HCl pH8  20 mM  

NaCl 25 mM 

Glycerol (Sigma-Aldrich) 10 % (v/v) 

EDTA 2 mM 

n-dodecyl-ß-D-maltoside (βDM) 0.05% (w/v) 

Ethanol 10 % (v/v) 

 
4.2.1.1.4 RIPA buffer 
 

• lysis /incubation buffer* 
Tris-HCl pH8  10 mM  

NaCl 140 mM 

Sodium deoxycholate 0.1 % 

EDTA 1 mM 

SDS 0.1 %  

Triton X-100 1 % 

PMSF 1 mM 

 
* x100 dilution of “Halt” Protease/Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific 
#78442) or 1x protease inhibitor cocktail (Cell signaling #5872S) supplemented buffers 
immediately before use. 
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Figure 4. 1: Schematic representation of co-immunoprecipitation protocol. HEK-293 cells were transfected with Nt and Ct-terminal SF-TAP-tagged 
TMEM and lysed to produce whole cell extracts. These were processed for immunoprecipitations with rabbit polyclonal antibodies and protein A-Sephrose 
(see section 4.2.1) to isolate co-immunoprecipitated interacting proteins. Proteins were then subsequently identified by LC-MS  (see section 4.3.3). 
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4.2.2 Tandem affinity purification 
 

Tandem Affinity Purification (TAP) is a mass spectrometry (MS)-based approach 

(Rigaut et al., 1999), one of the most effective affinity purification approaches to identify 

stable protein-protein interactions (Dedecker et al., 2015). HEK-293 cells containing SF-

TAP/FLAG-tagged proteins were generated by transiently transfecting them using 

Lipofectamine 2000. Subsequently, a TAP assay was performed as described previously 

(Klymenko et al., 2006). 

For a T75 flask, either 100 μl Strep-Tactin Superflow beads (IBA Lifesciences, 

Goettingen, Germany) or 50 μl FLAG beads, as appropriate, were washed three times with 1 

ml of ice-cold TAP wash buffer (see section 4.2.2.1) and once with 1 ml ice-cold 1x DPBS. 

The buffer was then removed. All the following steps were carried out at 4°C. Transfected 

cells were extracted under mild buffer conditions using TAP lysis buffer supplemented with 

protease inhibitors (see section 4.2.2.1). 

The Strep-Tactin Superflow beads were added to cell lysate samples in a 1.5 ml 

centrifuge tube for Strep-tag affinity purification. Binding was performed for 3 hours with 

end-over-end mixing. The unbound material was discarded following centrifugation of the 

beads at 5000 xg for 5 minutes and the beads were transferred to a new 1.5 ml centrifuge 

tube. The native complex was eluted by incubation in 200 μl ice-cold D-desthiobiotin elution 

buffer (IBA Lifesciences Goettingen, Germany) (see section 4.2.2.1) for 15 minutes with end-

over-end mixing. Beads were pelleted by centrifugation at 5000 xg for 5 minutes and the 

supernatant was transferred to a new 1.5 ml centrifuge tube. Subsequently, 50μl of washed 

anti-FLAG M2 affinity gel beads (Sigma Aldrich) were added to the elute and incubated for 3 

hours with end-over-end mixing. Beads were pelleted at 5000 xg and washed 3 times with 

500 μl ice-cold wash buffer (see section 4.2.2.1) and once with 1x DPBS. The bound proteins 

were eluted with 200 µl ice-cold FLAG peptide elution buffer [200 μg/ml FLAG peptide 

(Sigma Aldrich #F3290-4MG) in 1x DPBS] for 15 minutes. 

The elution was tested by western blotting and followed by protein precipitation as 

described in Table 4.3. Precipitated proteins were sent for MS to the Medical Proteome 

Centre Institute for Ophthalmic Research University of Tubingen. The samples were 

processed by Dr. Karsten Boldt and Nicola Horn. Analysis of MS, the results and the number 
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of the biological replicates performed for each sample are explained in detail in the results 

section (4.3.3). Results of the three biological replicates were analysed together. 

 

4.2.2.1 Buffers used in TAP method 
 
4.2.2.1.1 TAP buffer 

• TAP lysis buffer* 
 
Tris-HCl pH8  50 mM  

NaCl 125 mM 

NP40 1% 

Glycerol 5% 

MgCl2 1.5 mM 

NaVO4 1 mM  

NaF 25 mM 

 
• Elution buffer* 

 
Tris-HCl pH8  100 mM  

NaCl 150 mM 

D-desthiobiotin (Sigma-Aldrich) 5 mM  

EDTA 1 mM 

 
• Wash buffer* 

 
TBS (10x)  1 ml  

Protease/Phosphatase Inhibitor 50 µl 

NP40 0.1% (v/v)  12 µl 

A tablet/10 ml Roche protease inhibitor 
 
* x100 dilution of “Halt” Protease/Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific 
#78442) or 1x protease inhibitor cocktail (Cell signaling #5872S) supplemented buffers 
immediately before use. 
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Figure 4. 2: Schematic representation of Streptavidin-II/FLAG TAP workflow for characterizing TMEM complexes. The TAP procedure 
includes expression, extraction and purification from whole cell extracts of epitope-tagged TMEMs and associated interacting proteins.   
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4.2.2.2 Methanol/chloroform protein precipitation 
 

The experiment was performed at RT. Four volumes of methanol (Sigma-Aldrich 

#32213) were mixed vigorously with 1 volume of the protein sample for 60 seconds. 

Afterwards, 1 volume of chloroform was added, and the mixture was vortexed for 60 

seconds. Three volumes of dH2O were then added to the mixture and vortexing for 60 

seconds. The mixture was subsequently centrifuged at 1000 xg for 5 minutes. The mixture 

was in 3 layered phases. The proteins remained at the phase boundary between the upper 

aqueous methanol layer and the lower chloroform layer. The upper fluid phase was 

carefully removed and another 4 volumes of methanol were added to wash the precipitate. 

The mixture was centrifuged at 14000 xg for 15 minutes. The supernatant was discarded 

without disturbing the pellet and the protein pellet was air dried and then stored at - 80°C. 

 

4.2.3 Antibodies used in this chapter 
 
Table 4. 1: List of primary antibodies used for immunofluorescence studies. Table includes 
the species the antibody was raised in, dilutions of antibodies used in this study, and the 
antibody supplier. The fixation methods were either 4% (w/v) para-formaldehyde (PFA; 
Sigma-Aldrich) for cilia markers, or absolute methanol (Sigma-Aldrich #32213) to visualize 
the basal body markers. 

Antigen Host/Clone species Dilution (1:x) Supplier 
Acetylated-α-

tubulin 
Mouse monoclonal 

(Clone 6-11B-1; Isotype IgG2b) 
(1:1000) Sigma-Aldrich 

γ-tubulin Goat polyclonal (1:50) Santa Cruz 
FLAG Mouse monoclonal 

(Clone M2; Isotype IgG1) 
(1:2500) Sigma-Aldrich 

#F9291-1MG 
ARL13B Rabbit polyclonal (1:1000) Proteintech # 17711-1-AP 

Poly-glutamylated 
tubulin 

Mouse monoclonal 
(Clone GT335; Isotype IgG1κ) 

(1:1000) Enzo Life Science 

TMEM231 Rabbit polyclonal (1:200) Gift of Dr. Brian Chih 
TMEM67 (R24) Rabbit polyclonal (1:200) In-house to Johnson lab 

TMEM17 Rabbit polyclonal (1:200) Gift of Dr. Brian Chih 
 
Table 4. 2: List of secondary conjugated antibodies and stains used for 
immunofluorescence study. 

Antibody Species Dilution (1:x) Supplier 
Alexa Fluor 568- anti Mouse IgG Goat (1:500) Invitrogen #A11004 
Alexa Fluor 488- anti Rabbit IgG Goat (1:500) Invitrogen #A11034 

DAPI  (1:1000) Sigma-Aldrich 
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Table 4. 3: List of antibodies used for co-immunoprecipitation and WB studies. 

Antigen Host/Clone species Dilution (1:x) Supplier 
FLAG Mouse monoclonal 

(Clone M2; Isotype IgG1) 
(1:2500) Sigma-Aldrich 

 #F9291-1MG 
TMEM231 Rabbit polyclonal (1:200) Gift of Dr. Brian Chih 

TMEM67 (R24) Rabbit polyclonal (1:200) In-house to Johnson lab 
TMEM17 Rabbit polyclonal (1:200) Gift of Dr. Brian Chih 

IFT88 Rabbit polyclonal (1:200) Proteintech #13967-1-AP 
Adenylyl cyclase III (ACIII) Rabbit polyclonal (1:200) Santa Cruz Biotechnology  

(sc-588) 
TMEM237 Rabbit polyclonal (1:200) Abcam #633634 
TMEM216 Rabbit polyclonal (1:200) In-house to Johnson lab 

PRPF8 Rabbit polyclonal (1:200) Santa Cruz Biotechnology 
(sc-30207) 

TMEM107 Rabbit polyclonal (1:200) Gift of Dr. Oliver Blacque 
TXNDC15 Rabbit polyclonal (1:200) Atlas #HP A015483 

Aquaporin2 Rabbit polyclonal (1:200) Abcam #ab62628-100 
 
Table 4. 4: List of Secondary conjugated antibodies used for western blotting. HRP: 
horseradish peroxidase. 

Secondary antibody Conjugate Dilution (1:x) Supplier 
Goat anti Mouse immunoglobulin HRP 1:10000 Dako #P0447 
Goat anti Rabbit immunoglobulin HRP 1:10000 Dako #P0448 

 
4.2.4 Validation of ciliary markers 
 
Two ciliated mIMCD-3 cell-lines (see section 3.2.2) were used to determine endogenous and 

exogenous localization of selected TMEM proteins to the base of cilia or transition zone. 

One cell-line was stably transfected and expressed the ciliary marker 5HT6 serotonin 

receptor-RFP. These lines were used to confirm the correct localization of commercial ciliary 

markers, for acetylated α-tubulin (a marker of the ciliary axoneme) and ARL13B (a marker of 

the ciliary membrane), to primary cilia (Figure 4.3). The 5HT6-RFP cell line demonstrated 

variable localization to most but not all cilia. 
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Figure 4. 3: Subcellular localization of acetylated α- tubulin and ARL13B in mIMCD-3 cells stably expressing the ciliary marker 5HT6-RFP. (A) 
The stably-transfected ciliated mIMCD-3 5HT6-RFP cell-line, marking cilia in red, had co-localization of acetylated α- tubulin (green) with most 
but not all cilia. Examples of primary cilia localization are indicated by white arrowheads. The left-hand panels show stable transfected mIMCD-
3 5HT6-RFP (red). The middle panels showed the location of endogenous marker proteins acetylated α- tubulin (green). In merged images, the 
DAPI counterstain (blue) revealed the position of nuclei. Merged images showed that acetylated α-tubulin was a robust marker of primary cilia. 
Scale bars = 10 μm. (B) Primary cilia were detected using an antibody against ARL13B (green) on mIMCD-3 cells stably expressing 5HT6-RFP 
(red), both localizing to the cilium. Nuclei were stained with DAPI (blue). The left-side panels show stable transfected mIMCD-3 5HT6-RFP (red). 
The middle panels showed the location of endogenous marker proteins ARL13B (green). The presence of primary is indicated by white 
arrowheads. Merged images showed that ARL13B was a robust marker of primary cilia. Scale bars = 10 μm. All images are confocal maximum-
intensity z-projections. 
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4.3 Results 
4.3.1 Characterization of endogenous and epitope-tagged TMEM protein 
localization using immunofluorescence confocal microscopy 
 
 4.3.1.1 Sub-cellular localization of endogenous TMEMs 
 

For the sub-cellular localization of endogenous TMEM17, TMEM67 and TMEM231, 

mIMCD-3 cells were split and cultured as described in (see section 3.2.2.1) and subjected to 

serum starvation for a further 72 hours prior to fixation. This was in order to inhibit cell 

cycle entry and promote ciliation, since cilia are found on most cells in G0 and G1 and to 

lesser extent in S/G2 (Plotnikova et al., 2009). Ciliated cells were then washed, fixed with 

absolute methanol and stained as described in (see section 3.2.5.1). Endogenous TMEM17 

and TMEM231 (Figure 4.4) were stained with the primary antibodies, anti-rabbit TMEM17 

(1:200), anti-rabbit TMEM67 (R24) (1:200), and anti-rabbit TMEM231 (1:200) and with 

rabbit anti-sera as a negative control (Table 4.1). Immunofluorescence of anti- rabbit 

secondary fluorophores were incubated (Table 4.2), analysed and visualized using a Nikon 

A1R laser scanning confocal microscope equipped with 568, 488, and 405 nm lasers using oil 

immersion objectives (see section 3.2.5.1.1). 

Confocal microscopy images were taken using a 100x oil-immersion objective and 

showing almost exclusive localization of endogenous TMEM17, TMEM67 and TMEM231 to 

the base of primary cilia. Maximum intensity projections (MIPs) of confocal z-stacks were 

used to visualize protein sub-cellular localization. Nikon.nd2 files for full z-stacked images 

were used for co-localization correlation studies with ciliary markers. The result showed 

that the endogenous TMEM17, TMEM67 and TMEM231 all co-localized with the ciliary 

marker poly-glutamylated tubulin (GT335), consistent with localization to the ciliary 

transition zone in the ciliated mIMCD-3 cells (Figure 4.4). 
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Figure 4. 4: Co-localization of endogenous TMEM 17, TMEM67 and TMEM231. The left-
hand panels show mIMCD-3 cells labelled with the endogenous basal body/proximal ciliary 
marker poly-glutamylated tubulin (GT335; red). The middle panels show the location of 
endogenous ciliary TMEM67 (A), TMEM17 (B), and TMEM231 (C), labelled with specific 
rabbit antibodies (green). Merged images are shown on the right with nuclei stained with 
DAPI (blue) and co-localization of proteins indicated by white arrowheads and shown in 
magnified insets. Scale bar = 10 μm. 
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4.3.1.2 Over-expressed N-terminus FLAG-tagged TMEM17 and TMEM67 
localize to the ciliary apparatus in ciliated mIMCD-3 cells 
 

For the sub-cellular localization of epitope-tagged TMEM proteins, mIMCD-3 cells 

were split and cultured as described in (see section 3.2.2.1). Then cells were transfected 

with N-terminal SF-TAP-tagged TMEM17, N-terminal SF-TAP-tagged TMEM231, and C-

terminal tagged TMEM67-SF-TAP constructs and subjected to serum starvation for a further 

72 hours prior to fixation (see section 3.2.5.1). Ciliated mIMCD-3 cells were washed and 

fixed as described (see section 3.2.5.1) with absolute methanol. 5HT6-RFP mIMCD-3 cells 

were fixed with 4% PFA then permeabilized with 1.0% (v/v) Triton x100 as described in 

section (3.2.5.1). Nuclei were counterstained with DAPI. In Nt-TAP-TMEM17, Nt-TAP-

TMEM231 experiments, cells were incubated with mouse monoclonal anti-FLAG (1:2500) for 

1 hour then the fluorescently labelled secondary antibody was added and incubated for 1 

hour (see Tables 4.1 and 4.2). 

 Confocal microscopy images were taken using a 100x objective showing almost 

exclusive localization of the exogenous TMEMs to the endogenous markers γ-tubulin or 

5HT6-RFP labelled cilia. The result showed that exogenous over-expressed TMEM17 co-

localized with γ-tubulin, whereas exogenous over-expressed TMEM231 did not (Figure 4.5). 

In addition, transfection of TMEM67 tagged at the C-terminus with enhanced yellow 

fluorescent protein (eYFP) (C-eYFP-TMEM67; YFP fluorescence was excited with a λex 514 

nm and λem 527 nm band-pass filter) showed that the tagged protein co-localized to the 

base of cilia marked in mIMCD-3 cells stably-transfected with 5HT6-RFP (Figure 4.5). 
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Figure 4. 5: Co-localization of exogenous epitope-tagged TMEM17, TMEM231 and 
TMEM67 at the base of primary cilia. mIMCD-3 cells were transiently transfected with 
FLAG-tagged N-TAP-TMEM17 and FLAG-tagged N-TAP-TMEM231 (green) while C-eYFP-
TMEM67 was expressed in stable 5HT6 RFP mIMCD-3 cells. Cells were stained with γ-tubulin 
(red) against the basal body of the primary cilia and DAPI to visualize nuclei (blue). (A) Right 
merged image shows the co-localization of N-TAP-TMEM17 (green) to γ-tubulin (red). (B) 
Right merged image shows TMEM231 co-localization to peripheral cell membrane. (C) Right 
merged image shows C-eYFP-TMEM67 co-localization to cilia marker 5HT6-RFP (red). All 
images are confocal maximum-intensity z projections (MIPs). Scale bars = 10 μm. 
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4.3.2 Identifying novel TMEM protein-protein interactions using co-
immunoprecipitation technique in HEK-293 cells 

The specificity of the interactions between TMEM17, TMEM67, TMEM138 and 

TMEM237 were examined by co-immunoprecipitation assays (see section 4.2.1). Briefly, SF-

TAP or 3xFLAG- tagged TMEM17, TMEM67, TMEM138 and TMEM237 were over-expressed 

in HEK-293 cells and pulled down or immunoprecipitated from whole cell extracts (WCE). 

Mock- transfected cells and irrelevant IgG antibodies were used as negative controls. 

Membrane proteins are difficult to purify since they are often expressed at low levels and 

they require detergents to become soluble in an aqueous solution (Lin and Guidotti, 2009). 

Therefore, in this study, a series of different buffers were used to solubilize selected ciliary 

TMEMs. The buffers contained varying non-ionic detergent concentrations and comprised 

CHAPS buffer (Sigma #C-5070), NP40 (B) buffer, RIPA buffer and hydrophobic buffer that 

had reduced ionic strength. The buffers were used to identify proteins that interacted with 

different affinities with the expressed TMEM proteins. When possible, a positive control was 

developed which consisted of pull-down of the epitope-tagged TMEM with the cognate 

antibody against the endogenous protein. Comparison of different lysis buffers indicated 

that the most efficient extraction of the selected ciliary TMEM proteins was achieved with 

CHAPS buffer. 

4.3.2.1 Co-immunoprecipitation using CHAPS buffer results 
 

Non-ionic detergents, such as CHAPS, solubilize the plasma and intracellular 

membranes, and break many weak intermolecular bonds (Labeta et al., 1988). CHAPS is 

ideal for co-immunoprecipitation analysis since it maintains intermolecular interactions 

following transmembrane and cytosolic protein extraction (see section 4.2.1.1.1) CHAPS 

buffer. Using this buffer condition, the results showed that TMEM237 pulled down 

TMEM216, TMEM17 and TMEM67 (Figure 4.6 A, B), and also co-immunoprecipitated with 

IFT88 (Figure 4.6 C). In addition, TMEM138 interacted with TMEM17 (Figure 4.6 D) and 

TMEM237, although no interaction was detected between TMEM138 and either TMEM67 

or TMEM216 (Figure 4.6 E)
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Figure 4. 6: Co-immunoprecipitation assays of TMEM237 and TMEM138 identify 
interacting proteins using CHAPS buffer. (A-C) SF-TAP-TMEM237 cell lysates 
immunoprecipitated with rabbit polyclonal antibodies and western blotted with a mouse 
anti-FLAG monoclonal antibody against the SF-TAP tag. Molecular weight markers (kDa) are 
indicated on the left and whole cell extract (WCE) was used as a band positive marker. (A) 
Equal amounts of TMEM237 WCE, extracted using CHAPS buffer, were used in each co-
immunoprecipitation experiment (1-6). The following rabbit polyclonal antibodies were 
used: Lane 1, no antibody; lane 2, pre-immune serum (PI); lane 3, aquaporin 2 irrelevant 
antibody; lane 4, Rb anti-TMEM67; lane 5, Rb anti-TMEM216; lane 6, Rb anti-TMEM237. 
Western blotting was performed to detect TMEM237. The result showed that pull-down of 
TMEM237 validated the experimental technique and TMEM237 co-immunoprecipitated 
with TMEM216. (B) Co-immunoprecipitation assay of TMEM237 with the indicated rabbit 
antisera using CHAPS buffer. The following polyclonal antibodies were used: Lane 1, no 
antibody; lane 2, Rb anti-TMEM237; lane 3, Rb anti-TMEM216; lane 4, Rb anti-TMEM17; 
lane 5, Rb anti-TMEM67. Western blotting was performed to detect TMEM237. The result 
showed that TMEM237 co-immunoprecipitated with TMEM216, TMEM17, and TMEM67. (C) 
Co-immunoprecipitation assay of TMEM237 with a negative control (un-transfected cells) 
and the indicated rabbit antisera Rb anti-IFT88 using CHAPS buffer. Western blotting was 
performed to detect TMEM237. The result showed that TMEM237 co-immunoprecipitated 
with IFT88. (D-E) Equal amounts of SF-TAP-TMEM138 cell lysate were used in 
immunoprecipitation experiments. (D) Polyclonal antibodies used as follows: Lane 1, no 
antibody; lane 2, aquaporin 2 irrelevant antibody; lane 3, Rb anti-TMEM17. Western 
blotting was performed to detect TMEM138. The result revealed that TMEM138 interacted 
with TMEM17. (E) Polyclonal antibodies used as follows: Lane 1, no antibody; lane 2, 
preimmune serum; lane 3, aquaporin 2 irrelevant antibody; lane 4, Rb anti-TMEM67; lane 5 
Rb anti-TMEM216; lane 6, Rb anti-TMEM237. Western blotting was performed to detect 
TMEM138. The result showed that TMEM138 interacted with TMEM237. (TMEM237 (A-C), 
n = 3; TMEM138 (D&E), n = 2 (biological replicates/CHAPS buffer)). 

 
4.3.2.2 Co-immunoprecipitation using NP40 (B) buffer results 
 

NP40 is a soluble non-ionic detergent that is less harsh than ionic detergents such as 

SDS. NP40 preserves proteins in their native conformation and minimizes denaturation of 

antibody binding sites. NP-40 is thought to solubilize the plasma and intracellular 

membranes and to break weak intermolecular bonds, resulting in an increase of the target 

antigen concentration within the lysate (DeCaprio and Kohl, 2017). This present protocol 

was adapted and modified from (Lane, 1999). NP40 (B) buffer was used for cell lysis, 

incubation and washing as described above (see section 4.2.1.1.2). 

The results in (Figure 4.7 A) indicated that TMEM138 co-immunoprecipitated with 

TMEM67 and IFT88 (n=1, biological replicate). Figure 4.7 B indicated that there was a 

potential interaction between TMEM216 with TMEM237 and that the anti-TMEM216 
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antibody immunoprecipitated epitope-tagged TMEM216 (n=1, biological replicate), thus 

validating the specificity of this antibody. Similarly, in Figure 4.7 C the antibody specificity 

against TMEM17 was validated. Furthermore, TMEM17 was shown to interact with 

TMEM216, TMEM67, TMEM237 and IFT88 (n=1, biological replicate). 

 

 

 
 
Figure 4. 7: Co-immunoprecipitation assays of TMEM138, TMEM216, and TMEM17 
identify selected TMEM proteins as potential interactants using NP40 (B) buffer. (A) SF-
TAP-TMEM138 cell lysates were incubated with the indicated rabbit polyclonal antibodies 
and probed with anti-FLAG antibody against the SF-TAP tag. Molecular weight markers (kDa) 
are indicated on the left. PI indicates pre-immune negative control. TMEM138 co-
immunoprecipitated with TMEM67 and IFT88. (B) SF-TAP-TMEM216 cell lysates were 
incubated with the indicated rabbit polyclonal antibodies and probed with anti-FLAG 
antibody. Whole cell extract (WCE) was used as a band positive marker. Lane 1 (control) is 
WCE from un-transfected cells and lane 3 is irrelevant (irr.) antibody. TMEM216 co-
immunoprecipitated with TMEM237. (C) SF-TAP-TMEM17 cells lysates were incubated with 
the indicated rabbit polyclonal antibodies and probed with anti-FLAG antibody. Whole cell 
extract (WCE) was used as a band positive marker and un-transfected cells were a negative 
control. TMEM17 co-immunoprecipitated with TMEM216, TMEM67, TMEM237 and IFT88. 
TMEM138 (A), TMEM216 (B), and TMEM17 (C) experiments with NP40 (B) buffer are based 
on only one biological replicate (n=1). 
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4.3.2.3 Co-immunoprecipitation using a hydrophobic buffer result 
 

To test the specificity of the TMEM17 interactions with other ciliary TMEM proteins, 

an optimised hydrophobic buffer was used for additional co-immunoprecipitation assays of 

TMEM17 with the rabbit polyclonal antibodies against TMEM231, TMEM216 and TMEM67 

(see section 4.2.1.1.3). The final concentration of components of this buffer were optimized 

to enhance potential hydrophobic interactions between TMEMs (Valente et al., 2010). 

Although this buffer enabled anti-TMEM17 to immunoprecipitate epitope-tagged TMEM17 

as expected, only low levels of TMEM216 were co-immunoprecipitated (Figure 4.8). Since 

TMEM17 was shown to interact with TMEM216, TMEM67, TMEM237 and IFT88 in NP40 

buffer (Figure 4.7), this suggests that the TMEM17-TMEM216 interaction is strongly 

hydrophobic. Data represents one biological replicate. 

 

 
Figure 4. 8: Co-immunoprecipitation identifies TMEM216 as a TMEM17 interacting protein 
using hydrophobic buffer. SF-TAP-TMEM17 cell lysate was incubated with the indicated 
rabbit polyclonal antibodies and probed with anti-FLAG antibody against the SF-TAP tag. 
Molecular weight markers (kDa) are indicated on the left and whole cell extract (WCE) was 
used as a band positive marker. No Ab (lane 1) indicates no antibody negative control; lane 
2 is irrelevant (irr) antibody against aquaporin 2 as a negative control. TMEM216 was weakly 
co-immunoprecipitated by TMEM17, suggesting a strong hydrophobic interaction between 
these proteins that is maintained in this buffer (n=1 biological replicate). 
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4.3.2.4 Co-immunoprecipitation using RIPA buffer results 
 

The standard RIPA buffers contain non-ionic and ionic detergents and are usually 

used to solubilize nuclear membrane and insoluble proteins while maintaining antibody-

antigen binding (Lane, 1999, DeCaprio and Kohl, 2017). The RIPA lysis buffer used in this 

study is a commercial preparation (see section 4.2.1.1.4). With this buffer condition, co-

immunoprecipitation confirmed the interaction between TMEM17 and TMEM67 (n=1, 

biological replicate) (Figure 4.9) as previously identified using NP40 (B) (Figure 4.7 C). 

 

 

 
Figure 4. 9: Co-immunoprecipitation identifies TMEM67 as a TMEM17 interacting protein 
using RIPA buffer. SF-TAP-TMEM17 cell lysate was incubated with the indicated rabbit 
polyclonal antibodies and probed with anti-FLAG antibody against the SF-TAP tag. Molecular 
weight markers (kDa) are indicated on the left and whole transfected cell extract (WCE) was 
used as a band positive marker. Control (lane 3) is WCE from un-transfected cells as a 
negative control. TMEM17 co-immunoprecipitated TMEM67 compared to the control. Data 
represent one independent experiment. 

  
4.3.3 Identifying novel TMEM protein-protein interactions using (TAP-MS) 
technique in HEK-293 cells 
 

A Streptavidin-II/FLAG TAP experiment was performed to identify interacting 

partners of TMEM17, TMEM138, TMEM231 and TMEM237, as described previously (see 

section 4.2.2), using TAP-tagged constructs (see section 3.3.1) to pull-down peptides which 

were then interrogated by MS. The pulled-down peptides were matched to corresponding 
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proteins. The results were initially filtered on the basis of n ≥ 2 peptides and absence in a 

negative control dataset of pull-downs of RAF1-CTAP. 

Table C.1 in the appendix C shows the results of the Nt-TAP-TMEM17 experiment, 

identifying a number of pulled-down peptides in four biological replicates. Pull-down of 

TMEM17 validated the experimental technique. The top hits in Nt-TAP-TMEM17 

experiments were pre-mRNA-processing-splicing factor 8 (PRPF8; Q6P2Q9), pre-mRNA-

processing factor 6 (PRPF6; O94906) and other background proteins (Table C.1). The latter 

included chaperone proteins such as heat shock protein HSP 90kDa-beta (P08238) and heat 

shock 70 kDa protein (P08107), and cytoskeletal proteins that included the major 

constituent of microtubules tubulin beta chain (P07437), cytoplasmic actin 1 (P60709) and 

vimentin (P08670) (Table C.1). TMEM17 appeared to have a number of interesting 

interacting partners, consistent with hypothesized ciliary functions for these proteins that 

were identified in a whole genome reverse genetics screen (Wheway et al., 2015), including 

PRPF8, PRPF6, and C21orf2 (Table C.1). Table C.1 shows that purified Nt-TAP-TMEM237 was 

identified as a pulled-down protein, validating the specificity of the experimental technique 

and that expression of the bait cognate protein could be detected. In particular, this TAP 

experiment identified an interaction between TMEM237 and TMEM17 in one biological 

replicate, which confirmed the previously presented co-immunoprecipitations (Figure 4.6 B; 

Figure 4.7 C). However, the TAP experiment pulled-down a number of background proteins 

such as beta-tubulin (P07437). TAP experiments on purified Nt-TAP-TMEM231 also 

identified the cognate bait protein, also validating the experiment approach. Although this 

TAP experiment identified several background cytoskeletal proteins shared with other 

experiments in this series, including beta-tubulin (P07437) and cytoplasmic actin 1 (P60709), 

there were no significant interactions and unique peptides identified that was only in one 

biological replicate. Furthermore, Nt-TAP-TMEM138 and Nt-TAP-TMEM216 TAP 

experiments failed to identify the cognate bait proteins TMEM138 and TMEM216, 

respectively, indicating these experiments were unreliable (see Table C.1; Appendix C). In 

addition, an attempt to identify TAP interactions with Ct-TAP-TMEM67 were not successful, 

most likely because tagging TMEM67 with a bulky C-terminal TAP fusion was incompatible 

with the solubilisation buffer using in this protocol. The whole cell solubilization protocols 

for TMEM67 therefore need to be optimised in order to preserve the integrity of TMEM67 

protein-protein interactions and complexes. 
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4.4 Discussion 

This project aimed to explore the potential role of TMEM17, TMEM67, TMEM138, 

TMEM216, TMEM231, and TMEM237 proteins in mammalian kidney cells by addressing the 

biochemical interactions between ciliary TMEMs in order to determine the potential 

components of a multi-subunit complexes at the ciliary transition zone region. We first 

examined the expression and localization of the selected transition zone TMEMs using 

immunofluorescence microscopy for localizations of endogenous and epitope-tagged (SF-

TAP and eYFP) proteins, as well as western blot analyses (see section 3.3.1). Since the over-

expressed proteins were confirmed by western blotting and localized to the expected 

locations in the cilium, I then used co-immunoprecipitation assays to further investigate the 

possible functional relationships between these proteins. 

4.4.1 Co-localization studies 

The overexpression of exogenous ciliary proteins can be used to test their possible 

localization to cilia, particularly in the absence of specific antibody reagents, but this may 

also cause artefactual localizations. However, this approach is useful to increase the 

detection limit by using antibodies with high specificity or by tagging the protein of interest 

with a suitable epitope. Immunofluorescent analysis showed the endogenous co-localization 

to base of cilia of the ciliary TMEM17, TMEM67, TMEM231 (and TMEM237; data not shown) 

and the presence of the FLAG and the eYFP tags (Figure 4.5) by antibody staining. For 

instance, endogenous TMEM17 appeared to co-localize with the basal body marker poly-

glutamylated tubulin (GT335) (Figure 4.4), which was reiterated following moderate 

transient over-expression of SF-TAP-tagged TMEM17 (Figure 4.5). This suggests that over-

expression of TMEM17, and possibly other TMEMs, did not disrupt the normal correct 

localization of the transmembrane protein at the base of primary cilia. In addition, 

endogenous expression studies confirmed the co-localization of TMEM67 in mIMCD-3 cells 

with poly-glutamylated tubulin (GT335) at the base of cilia, as has been reported previously 

in ciliated mIMCD-3 cells (Arts et al. 2007). Surprisingly, the known transition zone ciliopathy 

protein SF-TAP-TMEM231 did not appear to be localized at a discrete ciliary structure but 

occurred in perinuclear and cytoplasmic regions (Figure 4.5). Endogenous TMEM231 

localization was determined by optimizing the titre (in serial dilution experiments) and 
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fixation conditions of the anti-TMEM231 antibody in order to reduce non-specific binding 

and background staining (Figure 4.4). However, unlike endogenous TMEM231, the 

exogenous over-expressed TMEM231 did not appear to localize to the base of cilia. 

Although cells with higher expression levels of this protein appeared to have disrupted this 

expected localization, the loss of ciliary localization even at moderate expression levels 

could be explained by the interference of the epitope tag at the N-terminus of the protein 

with correct localization. This could be due to incorrect targeting away from the ciliary 

membrane at the transition zone or disrupted folding of the tagged protein. 

By contrast, confocal micrographs taken 72 hours after co-transfection of TMEM67 

tagged at the C-terminus with eYFP (Ct-eYFP-TMEM67) demonstrated that it localized 

correctly to the expected regions at the base of cilia in mIMCD-3 cells (Figure 4.5), where it 

colocalised with 5HT6-RFP. Prior to this experiment ciliary-specific antibodies, including 

against acetylated α-tubulin and ARL13B (Figure 4.3), were used to confirm that 5HT6-RFP 

was indeed correctly localizing to primary cilia in this stably-transfected mIMCD-3 cell-line. 

However, not all cilia identified with the endogenous markers also expressed detectable 

levels of 5HT6-RFP (Figure 4.3), indicating that tagged serotonin receptor is not always 

correctly localized to cilia. 

4.4.2 Biochemical characterization  
 

 Co-immunoprecipitation assays have been successfully used to study the direct or 

indirect interactions of transition zone TMEMs, with results dependent on the type of buffer 

used in the assay. Buffers of different ionic strength and detergent properties yielded 

different results. The salt concentration can be increased (up to 500 mM) or decreased 

(lower than the isotonic physiological concentration of 130 mM), since high salt 

concentration tends to weaken the binding (Arnold and Linke, 2008) whereas 

concentrations lower than 130 mM will increase non-specific interactions (Gerace and 

Moazed, 2014). In this project, I used four different salt concentrations, two of which were 

lower than 130 mM, comprising: 25 mM NaCl, 80 mM KCl, 140 mM NaCl and 150 mM NaCl 

for hydrophobic buffer, NP40 (B) buffer, RIPA buffer and CHAPS buffer, respectively. 
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In this project for co-immunoprecipitation of TMEMs, I used several mild lysis buffers 

with a non-ionic detergent to reduce the probability of interfering with protein-protein 

interactions. The majority of protein-protein interactions were shown with CHAPS buffer 

and NP40 (B) buffer conditions (salt concentrations 150 mM and 80 mM, respectively), 

whereas hydrophobic buffer only showed a single interaction (between TMEM17 and 

TMEM216; Figures 4.6-4.8). RIPA buffer contains both non-ionic and ionic detergents 

(including SDS) and can therefore denature the protein of interest and is more likely to 

disrupt protein-protein interactions. However, the interaction between TMEM67 and 

TMEM17 was maintained in RIPA buffer (Figure 4.9), indicating that this is a stronger 

interaction that is not easily disrupted by detergents. The data suggests a possible new 

model for the formation of transition zone ciliary complexes, highlighting the importance of 

the TMEM17-TMEM67 interaction. Epitope-tagged TMEM17, TMEM138, TMEM216 and 

TMEM237 were used for efficient and specific co-immunoprecipitation experiments, which 

included the pull-down of the cognate bait protein thereby validating the experimental 

approach in all cases. Epitope-tagged TMEM231 (data not shown) did not co-

immunoprecipitated or pulled down other TMEMs. Finally, an anti-TMEM138 antibody was 

not available at the time these experiments were performed. In this project, however the A 

simplified summary of co-immunoprecipitation results is shown in Figure 4.10. 

 
Figure 4. 10: Summary of co-immunoprecipitation results. Double sided arrow represents 
reciprocal interactions, for example between TMEM17 and TMEM237. Red asterisks 
indicate novel interactions between ciliary TMEMs and other ciliary proteins. 

 
Novel interaction partners were also identified in this study, which may suggest that 

selected TMEMs play novel roles together as a complex during signal transduction, 
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trafficking and maintenance of the primary cilia. The identification of novel interaction 

partners provides an immediate lead into biological function and possible insights into 

disease mechanisms. Co-immunoprecipitation assays and TAP-MS studies provided 

information about complex composition and organization between the selected TMEMs. 

These studies assumed that two proteins share the same function if they interact with each 

other or they have related roles and work as a complex. In addition, however, these studies 

showed that not all selected TMEMs interacted with each other even though they co-

localized in the same ciliary sub-compartment; therefore, the results perhaps not do 

support the former hypothesis, and based on my data not all the TMEMs appear to 

biochemically interact. 

The STRING (http://string-db.org/) database by (Szklarczyk et al., 2015) was used in 

this study to explore predicted protein interaction networks including direct (physical) and 

indirect (functional) associations for TMEM138, TMEM17, TMEM216 and TMEM237 and to 

show global significance of the various pulled-down proteins. The functional partners 

predicted by STRING are based on co-expression analysis, evolutionary signals across 

genomes, automatic text-mining of the biomedical literature and orthology-based transfer 

of evidence across organisms. The STRING analyses (Figure 4.9) provided a summary of 

potential functional partner proteins that were identified in this project by biochemical 

assays for Homo sapiens TMEM17, TME138, TMEM216 and TMEM237. However, these did 

not identify a common shared functional pathway. 

4.4.2.1 Interactions between SF-TAP TMEM17 and ciliary transition zone TAP-
tagged proteins were confirmed by biochemical studies in HEK-293 cells 

To further investigate interactions with TMEM17 in protein complexes, systematic 

proteomic analyses using co-immunoprecipitation and pull-down experiments followed by 

MS were used to identify interacting proteins. Co-immunoprecipitation analysis showed that 

SF-TAP-TMEM17 interacted with TMEM216 (n=2, biological replicates), TMEM67 (n=3), 

TMEM237 (n=1) and IFT88 (n=1) (Figures 4.7; 4.8 C; 4.9). Furthermore, rabbit anti-TMEM17 

pulled down epitope-tagged TMEM17 in these co-immunoprecipitation experiments, 

confirming the specificity of the antibody. TMEM17 interacted with TMEM216, TMEM237 

and IFT88 in both NP40 (B) buffer and RIPA buffers, whereas TMEM17 also appeared to only 
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interact with TMEM216 using hydrophobic buffer (with a low salt concentration) which 

suggests that the TMEM17-TMEM216 interaction is maintained irrespective of the salt 

concentration and even in the presence of SDS, a strong ionic detergent. This indicates that 

a TMEM17 and TMEM216 complex is mediated by strong hydrophobic interactions. 

TMEM17 interactions with TMEM67 and TMEM216 were summarized in the STRING 

networks, revealing other interactions with ciliary proteins (figure 4.11 C, D) such as 

TMEM67, TMEM216 and TMEM237 that are consistent with a previous study (Gupta et al. 

2015). 

Next, therefore, the possible functional interactions between TMEM17 and the 

associated proteins were investigated using TAP-MS. The TAP experiments indicated that 

the cognate TMEM17 bait protein was pulled-down, validating the experimental approach, 

and that TMEM17 interacted with two pre-mRNA processing factors (PRPF6 and PRPF8), and 

C21orf2 (Tables C.1) (Figure 4.11). Interestingly, C21orf2, PRPF6 and PRPF8 were all 

validated hits in a whole genome reverse genetics screen of ciliogenesis modulators 

(Wheway et al., 2015). C21orf2 was implicated in ciliogenesis (Lai et al., 2011), whereas 

PRPF6 and PRPF8 were found to be key effectors of cell division in the Mitocheck screen 

(Neumann et al., 2010) and were implicated in the ubiquitin-dependent regulation of the 

spliceosome. This result suggested that PRPFs affect ciliogenesis through regulation of 

correct splicing of transcripts encoding α-tubulin, a structural component of the cilium  

(Song et al., 2010, Pelisch et al., 2013). These results could provide insights into the function 

of ciliogenesis of the identified proteins and demonstrate their involvement in molecular 

processes of cilia biology and other related cell biological processes. 

A further interesting interaction of TMEM17 was with membrane-associated 

progesterone receptor component 1 (PGRMC1; Table C.1), although the peptide counts in 

the TAP pull-downs are low. This result is supported by entries in the neXtProt 

knowledgebase: https://www.nextprot.org/entry/NX_Q86X19/interactions 

https://www.nextprot.org/entry/NX_O15173/interactions, and is consistent with the 

results of a previous study (Gupta et al. 2015). The neXtProt knowledgebase 

(https://www.nextprot.org), is an integrated ive resource platform of human proteins 

annotating their function, subcellular location, expression, interactions and role in diseases 

(Zahn-Zabal et al., 2020). However, these are preliminary data and the biochemical 
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interaction between TMEM17 and PGRMC1 will need to be demonstrated through 

additional experimental work. 

In summary, the result of a series of in vitro SF-TAP binding and co-

immunoprecipitation studies demonstrated robust interactions between TMEM17 and 

TMEM67 (Figure 4.7; Figure 4.9). Therefore, I suggest that these two transition zone 

proteins may work together to form a complex that is required for correct structure and 

function of the primary cilia. 

 

4.4.2.2 Interactions between SF-TAP TMEM237 and ciliary transition zone TAP-
tagged proteins were confirmed by biochemical studies in HEK-293 cells 
 

Epitope-tagged TMEM237 had a reciprocal interaction with TMEM216 (Figures 4.6 A, 

B; 4.7 B) in both CHAPS and NP40 (B) buffers, but also interacted with TMEM17 (Figure 4.8) 

and TMEM67 (Figure 4.6 B). Systematic TAP/MS to identify protein-protein interactions 

confirmed reciprocal biochemical interactions between TMEM237 and TMEM17 (Table 

4.14). Furthermore, this interaction is identified in the neXtProt knowledgebase and is 

consistent with a previous study (Gupta et al., 2015). However, TMEM237 interactions with 

TMEM216 and TMEM67 are novel. These results provide insights into the network of 

TMEM237, since the proteins may work together as a complex in the transition zone, 

providing mechanistic insight into to the composition of the MKS module. TMEM237 

interactions with TMEM67, TMEM138 and TMEM216 were summarized by STRING 

networks, but this also revealed other interactions with other important ciliary proteins 

(Figure 4.11 G, H) such as TMEM67, TMEM216 and TMEM231 that are supported by the 

Gupta et al. (2015) study. In contrast, TMEM216 interactions with TMEM237 were not 

supported by Gupta et al. (2015), but did identify interactions with other ciliary proteins 

(Figure 4.11 E, F) including TMEM67, a self-interaction with TMEM216, RPGRIP1L and 

CEP290. 

In addition, a novel interaction was identified between epitope-tagged TMEM237 

and IFT88 (Figure 4.6 C); TMEM138 and TMEM17 co-immunoprecipitation experiments also 

supported an interaction with IFT88 (Figure 4.7 A, C). This suggests that the three ciliary 

proteins TMEM237, TMEM17 and IFT88 could interact as a complex, since the TMEM17 and 

TMEM237 interaction is confirmed by reciprocal biochemical interaction assays. Little is 
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known about how IFT-B and its component IFT88 mediate ciliary protein trafficking, and 

how entry into and exit from cilia of IFT particles via the transition zone are regulated 

(Nakayama and Katoh, 2018). My data suggests that these processes could be mediated, at 

least in part, through interactions between TMEMs (TMEM237, TMEM17 and TMEM138) 

and the motor protein IFT88. How the small TMEMs assemble and work together with the 

motor protein IFT88 to mediate ciliary trafficking or ciliogenesis is unknown. Therefore, the 

next chapter I examined each one in siRNA knockdown studies in order to gain some 

preliminary functional insights. 

 

4.4.2.3 Interactions between SF-TAP TMEM138 and ciliary transition zone TAP-
tagged proteins were confirmed by biochemical studies in HEK-293 cells 

Co-immunoprecipitation assays of TMEM138 using two different buffers, containing 

either CHAPS or NP40 (B) as described previously (see section: 4.4.1 and 4.4.2), yielded 

different results in whole cell lysates from mammalian HEK-293 cells. The buffers have 

different ionic strengths and detergents which were used to crudely assess the specificity 

and strength of protein-protein interactions between ciliary TMEMs. Co-

immunoprecipitation assays showed that epitope-tagged TMEM138 interacted with 

TMEM17, TMEM237, TMEM67 and IFT88 (Figure 4.10). The assays indicated that TMEM138 

interacted with TMEM17 and TMEM237 (see section 4.4.1; Figure 4.6 D, E), an interaction 

that was maintained in a high ionic strength buffer (CHAPS buffer). In contrast, epitope-

tagged TMEM138, co-immunoprecipitated with TMEM67 and IFT88, was maintained in a 

low ionic strength buffer (NP40 (B) buffer) (see section 4.4.2; Figure 4.7 A). The TMEM138 

interactions with TMEM67 and TMEM237 were shown in a STRING network which revealed 

other interactions with important ciliary proteins (Figure 4.11 A, B) such as TMEM67, 

TMEM237 and TMEM231. 

The interaction between TMEM138 and TMEM17 was identified in previous study 

(Gupta et al., 2015), whereas the TMEM138 interactions with TMEM237, TMEM67 and 

IFT88 were not identified in any recent studies. This suggests that these are novel 

interactions need further investigation. TMEM138 co-immunoprecipitated with TMEM237 

and TMEM67, suggesting it is part of the MKS/JTSB protein complex and work as group to 

support ciliary or transition zone function. In addition, the intraflagellar transport protein 
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IFT88 is an essential component of primary cilia, shuttling ciliary cargo proteins signals along 

the axoneme in an anterograde direction and is required for ciliary maintenance (see 

section 1.2.4.5.1 in Chapter 1). TMEM138 co-immunoprecipitated with IFT88, consistent 

with the previous results in the above section (4.4.2.2). That is a novel interaction with the 

motor protein IFT88 suggesting that the indicated TMEMs may play a role in restricting 

IFT88 to the ciliary axoneme segment. If so, this indicates the trafficking in cilia is highly 

regulated by involving TMEM138, along with TMEM17 and TMEM237 in ciliary trafficking or 

ciliogenesis. This findings re uncover unexpected diversity in the mechanisms that traffic 

and localize TMEMs and IFT88 to cilia both within and across cell types, highlighting the 

essential contribution of this process to cellular functions. Accordingly, TMEM138, and 

TMEM237 appear to play a crucial role in trafficking and/or axoneme stabilities as shown in 

Chapter 5. 

 

4.4.3 Further investigations and experimental limitations 

Do biochemical interaction studies that confirm an in vitro interaction between 

TMEM17 and TMEM67 (Figure 4.7 C; Figure 4.9) support the hypothesis that there is a 

direct or indirect functional relationship between TMEM17 and TMEM67, and a given 

network can be viewed as potential functional module? In my opinion, further studies 

focused on the identification of component members of the TMEM17-TMEM67 network 

would substantiate this complex or module, and will help to understand their specific 

functions and their role in the pathogenesis of ciliopathies. Therefore, further investigations 

were carried out in Chapter 5. Importantly, however, at least three biological replicates of 

TAP and co-immunoprecipitation studies of TMEM67 and TMEM17 should be achieved in 

order to substantiate the existence of this module. 

In addition, in this study, I constructed TMEM231 expression constructs with N-

terminal epitope tags and confirmed expression by western blotting and TAP pull-downs. 

However, notable differential expression was observed and epitope-tagged TMEM231 

localized to the cell membrane which is a common artefact following the over-expression of 

some membrane proteins or fusion with different epitopes. Therefore, the level of 

expression could be modulated by using a different promoter in the expression construct, or 
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the composition of residues in epitope-tagged TMEM231 could be altered to ensure better 

trafficking of TMEM231 to the cilium and normal localization to the transition zone. 

Additional co-immunoprecipitation studies of IFT88 should be performed in order to 

more fully understand its roles in a potential complex with TMEM17, TMEM138 and 

TMEM237. The introduction of sequence variants that model ciliopathy patient mutations in 

the expressed TMEMs could provide further insights into mechanisms of molecular 

pathogenesis in ciliopathies. Finally, in this study, co-immunoprecipitation experiments 

were performed multiple times for four different buffers in order to standardize the right 

conditions for each that demonstrate the presence or absence of an interaction. However, 

one limitation should be noted which is that only one biological replicate was performed for 

some of the coimmunoprecipitation and TAP-MS experiments (see sections 4.3.2.2, 4.3.2.3, 

4.3.2.4, 4.3.3). Unfortunately, time limitations precluded further validation which is 

significant issue to be addressed in future studies. Therefore, in future studies, three 

biological replicates should be conducted to fully validate an interaction which would 

prevent false positive results due to the co-immunoprecipitation of non-specific interacting 

proteins. The use of proper controls and the ability to perform these experiments in 

triplicate can allow for the identification of even low-abundance and weak interactors as 

significate. 

Further studies are also needed to confirm the co-immunoprecipitation experiments. 

The studies on the coimmunoprecipitations have discovered that TMEMs proteins formed a 

single, monodisperse complex and some novel interactions. Using a high-confidence 

proteomic network analysis would be beneficial to confirm the results. Future studies 

should use the proximity-dependent biotin identification (BioID) approach to generate 

proximity interaction maps for TMEM proteins, which may will confirm existing interactions 

and identify new interactions, regulators and mechanisms that contribute to the functional 

modules that are critical for transition zone sub-compartment and cilium biogenesis. I would 

perform BioID in two conditions, namely non-ciliated cells and serum-starved ciliated cells 

to observe any differences in the interaction between them which could provide insights 

into novel regulators of ciliogenesis. The analysis of BioID was used previously in human 

cells to screen for interactors of most known transition zone modules by (Gupta et al., 2015) 

(see section 6.2). 
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Figure 4. 11: The STRING network view and schematic outlines of data derived from the 
co-immunoprecipitation and (TAP-MS) studies. Panels (A), (C), (E), and (G) show STRING 
network analysis which indicate connections between the proteins associated with 
TMEM138, TMEM17, TMEM216, and TMEM237. Panels (B), (D), (F), and (H) summarize all 
of the biochemical interactions described in this chapter. Schematic outlines indicate: solid 
black lines indicate interactions determined by co-immunoprecipitation assays, dashed lines 
indicate interactions identified by TAP-MS pulldowns. Red asterisks indicate novel 
interactions between ciliary TMEMs or ciliary proteins predicted in this project. Note: 
epitope-tagged TMEM231 did not co-immunoprecipitate or pull-down other TMEMs, and 
therefore its networks are not shown.   



      
 

 

148 

 

Chapter 5 Functional characterization of putative ciliary 
genes using siRNA 
 

5.1 Introduction 

Many proteins linked to ciliopathies are specifically localized at the ciliary transition 

zone as mentioned and described in detail in Chapter 1. For instance, mutations in the 

TMEM67, TMEM216, TMEM237 and TMEM231 genes are known to cause ciliopathies, but 

the function of these TMEMs is unclear and it is unknown how the mutations in these genes 

disrupt ciliary structure or function. Recent findings in biomedical and genetic research have 

suggested that transition zone proteins work as a complex and this concept was confirmed 

in the biochemical interaction results in the previous Chapter 4. Additionally, (Vieillard et al., 

2016) have shown that the MKS module proteins co-localize and together contribute to the 

construction of the transition zone in several organisms, from C. elegans to mammals. 

Therefore, for further investigation and to begin to understand the potential 

function of the selected ciliary TMEMs, small interfering RNAs (siRNAs) were designed 

against TMEM17, TMEM138, TMEM231 and TMEM237 (Table 5.1). Here, I hypothesize that 

altering the expression of the selected TMEMs causes reduction in primary cilia length or 

number in association with deregulation of primary cilia sub-compartments including the 

basal body, transition zone and axoneme in ciliated cells. Figure 5.1 summarizes the possible 

effects on ciliary sub-compartment organization, cilia morphology and cilia length after 

knockdown of the selected ciliary TMEM genes. Figure 5.1 illustrates the idea that mild 

ciliary defects cause a slight reduction in axoneme length and some co-localization between 

the transition zone and axoneme, whereas more severe defects cause a greater decrease in 

axoneme length and greater co-localization between the transition zone and axoneme, as 

well as the transition zone and basal body. 

To test this hypothesis, the knockdown experiments were performed to infer 

synthetic genetic interactions that could predict a structural or organizational function for 

selected ciliary transition zone components in 3 different sub-compartments of the ciliary 

apparatus in mIMCD-3. The ciliary apparatus in these cells is 1 to 10 μm in length (Gerhardt 

et al., 2016) and the separate sub-compartments were visualized separately. g-tubulin was 
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used as a marker of the basal body and acetylated a-tubulin was used to mark the ciliary 

axoneme. Finally, antibodies against TMEM67, RPGRIP1L and CEP290 were used to mark the 

transition zone for each of the ciliary module associated with these proteins. 

The experimental approach in this chapter was quantifying co-localization of TMEMs 

with components of the ciliary apparatus, using imaging data to integrate this into a 

descriptive genetic interaction network that provided insights into the functional 

relationships between these ciliary proteins. The efficiency of knockdowns was evaluated by 

immunoblotting, when suitable antibodies against the target protein were available (Figure 

5.9). Significant increases and decreases in the co-localization of ciliary sub-compartments 

were associated with knockdown of some of the selected genes. In addition, knockdowns 

caused distinct ciliary phenotypes including changes in numerical incidence (Figure 5.4 C, E). 

These results suggest that ciliary trafficking and maintenance were disrupted and/or suggest 

that TMEM knockdowns perturbed ciliary protein-protein localization. 

 

Figure 5. 1: Schematic that summarizes how knockdown of selected ciliary TMEM genes 
affects the relative positioning of ciliary structural sub-compartments, primary cilia 
morphology and length. Black arrowheads indicate ciliary axoneme (red), transition zone 
(green) and basal body (blue). Mild ciliary defects cause a slight decrease in axoneme length 
and some co-localization between the transition zone and axoneme (yellow). More severe 
defects cause a greater decrease in axoneme length and greater co-localization between the 
transition zone and axoneme (yellow), and transition zone and basal body (turquoise).   
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The overall aim in this chapter was to understand how ciliary TMEMs function in 

primary cilia and investigate and support the previous results in Chapter 4, specifically by 

investigating the genetic interactions between selected transition zone ciliary genes: 

• Evaluate the knockdown of ciliary TMEM genes by reverse and forward transfection 

of siRNA and examine the effect on ciliary sub-compartments and phenotypes. 

• Quantify co-localization of ciliary sub-compartments (basal body, transition zone and 

axoneme) after siRNA knockdown. 

5.2 Materials and methods 
 

Thermo Scientific Dharmacon was the supplier for “SMARTpool” siRNA reagents. 

Each gene was targeted by a pool of 4 duplexes per well, including N-TARGETplus individual 

or “SMARTpool” pooled siRNAs targeting the mouse genes Tmem17, Tmem67, Tmem138, 

Tmem216, Tmem231 and Tmem237 (sequences listed in Table 5.1). The medium or low GC 

non-targeting scrambled siRNA duplexes (Dharmacon) were used as negative controls. 
Unless otherwise stated, siRNA solutions were made up in 5x siRNA buffer (GE Healthcare 

Dharmacon #B-002000-UB-100) diluted to 1x with RNase-Free water (GE Healthcare 

Dharmacon #B-003000-WB-100). siRNAs were re-suspended in 1x siRNA buffer to a stock 

concentration of 2 μM for a 96-well plate reverence transfection experiments and 20 μM for 

a 6-well plate forward transfection experiments. Following agitation on a rotary shaker for 

an hour, aliquots of 2 μM and 20 μM were prepared and stored at -20°C to avoid freeze-

thaw degradation. Mouse mIMCD-3 cells were used in this study as a model of ciliated cell 

line (see section 3.2.2). In this study, technical replicates describe repetitions of the same 

sample using different fields of view from the same sample well or plate as described 

previously (Blainey et al., 2014). 
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Table 5. 1: Sequences of siRNA duplexes used in siRNA analysis. 

Target mouse gene Gene 
ID 

Gene accession siRNA sequence (5’ to 3’) 

Plk1 18817 NM_011121 CCAACCAAAGUGGAAUAUGA 
GCAAUUACAUGAGUGAGCA 
GCAAGAUCGUGCCUAAGUC 
UCACUCUCCUCAACUAUUU 

Ift88 21821 NM_009376 CGGAGAAUGUUGAAUGUUU 
GCUUGGAGCUUAUUACAUU 
CGUCAGCUCUCACUAAUAA 
GUAGCUAGCUGCUUUAGAAA 

Rpgrip1l 244585 NM_173431 GGAUCAAGCUAUUCGACUU 
CAGCACAGAUUACGAAACA 
GAAUACUGGUUCCGAUUAA 
CAAUAAAGAUCUAGACCGA 

Tmem17 103765 NM_198276 GGUAAGACAAUGCACGGAA 
UAUGCUGAGUGGUGAACGA 
GAUUGAAGCGAUCCGGUUA 
GUAUGGCACUUCAGACGAA 

Tmem67 329795 NM_177861 GCAGUAAGUGGACGAGAAA 
CCUUAAAAGAGAAGCGGAA 
UGACUUAACUGCCGAAGGA  

Tmem138 72982 NM_016464 GGGUCAUGAACGUGCGAUG 
CCGAAUGGCUCCUGUUAUC 
CAUGCAAGUCCGAAGGUGA 
AGGUUAGCCUGUAGAGAGA 

Tmem231 234740 NM_001077416 
 

CGUGCUUGCUGGCGGGUAA 
CCUUCAAAGCACCGAGGGA 
GCUGAAGCUCCGUUCGUGA 
CCAGGGAGAGAUACGGAAA 

Tmem237 381259 NM_001044385 UCUCUACUACGGAACGAAA 
UAUCAGUAGCAAUCCGGAA 
AGGCAUGGAUCUUAGUGAA 
CGAUAUUCCACUUAGUCAU 

Scrambled 
negative control 

N/A N/A UGGUUUACAUGUCGACUAA 
UGGUUUACAUGUUUUCUGA 
UGGUUUACAUGUUGUGUGA 
UGGUUUACAUGUUUUCCUA 

* N/A: Not Applicable 
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5.2.1 siRNA knockdown	
5.2.1.1 Cell plating, transfection, fixation, data imaging and analysis of reverse 
transfection experiments in 96-well culture plates) 

The reverse genetics visual screen was performed as described previously (Wheway 

et al., 2015). A PerkinElmer 96-well plate was used in this study. 2.5 μl/well of 2 μM siRNA 

was pipetted and placed in the bottom of each well (50 nM siRNA in 100 μl liquid). 17.3 μl 

Opti-MEM medium was mixed with 0.2 μl/well Lipofectamine RNAiMAX transfection 

reagent (Invitrogen) and incubated for 5 minutes at RT. The 17.5 μl mixture was then added 

to the well and incubated for 20 minutes in a NuAire Labgard 437 ES Class II Biosafety 

Cabinet. During the incubation of the reagent in the plate, a T75 flask Corning® #431464U of 

80 % confluent low-passage (P17-25) culture of mIMCD-3 cells were trypsinized and 

centrifuged as described in (see section 3.2.2.1). The supernatant was aspirated and the cell 

pellet re-suspended in 10 ml of Opti-MEM reduced serum (Gibco #31985-047), antibiotic-

free medium and gently pipetted. The Trypan Blue dye exclusion CountessTM cell counting 

described in (see section 3.2.2.2) was used to calculate cell concentration and viability. 

80 μl mIMCD-3 cells at a density of 105 cells per ml in Opti-MEM were seeded per 

well to a plate. The plate was incubated for 60 minutes in a NuAire Labgard 437 ES Class II 

Biosafety Cabinet, followed by further incubation in a cell culture incubator (Sanyo MCO 

20A/C set at 37°C with 5% CO2) for 72 hours. Subsequently, transfection medium was 

detached from the plate by inverting the plate and blotting on clean tissue paper to remove 

excess liquid. Plates were processed for fixation and immunofluorescence staining as 

described in (3.2.5.1); however, in this experiment a 96 well plate was used, therefore the 

number of reagents and solution used to stain, fix and wash the cells were reduced. Briefly, 

cells were washed 3 times with 100 μl 1x DPBS, using a Star-pet-E 8-channel electronic 

pipette. 50 μl ice cold absolute methanol was dispensed against the left side of each well 

and the plate was placed in a freezer at -20 °C for 5 minutes. The plate was inverted and 

blotted to remove methanol and washed with 50 μl 1x DPBS. For immunofluorescence 

staining, 100 μl 1% Marvel dried milk/DPBS (w/v) blocking solution was added for each well 

for an hour. Primary and secondary antibodies are listed in Table 2; antibodies were 

prepared and diluted in the blocking milk solution and clarified by centrifugation at 12000 

xg for 5 minutes at RT. 50 μl of the primary antibody solution was added to each well and 
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incubated for an hour at RT. Cells were washed twice with 100 μl 1x DPBS per well. 

Secondary antibody solution combined with either DAPI or TOTO3 was added and incubated 

for 1 hour at RT in the dark. The cells were washed twice with 100 μl 1x DPBS per well and 

the plate was stored with filtered 100 μl 1x DPBS per well at 4 °C for up to a week before 

imaging. 

5.2.1.1.1 “Operetta” High-Content Imaging system analysis 

siRNA reverse transfection was analysed by high content imaging using an Operetta 

High-Content Imaging system (Perkin-Elmer Inc.) and images were then transferred to 

“Columbus” Harmony software (Perkin-Elmer Inc.) for further analysis; the visual screen was 

performed using an amended protocol (Wheway et al., 2015) to meet the scope of the co-

localization investigation. Wells were imaged using a 60x air objective lens, detecting 4 

colours in 4 separate focal planes to obtain high resolution for each colour channel (at 405 

nm, 488 nm, 594 nm and 633 nm). The bottom of each well was sensed automatically by the 

Operetta infra-red focusing laser and focal planes for each colour channel were calculated 

relative to this value. Ten fields of view (each 510x675 μm) were imaged per well, with an 

estimated total of 4000 cells detected and examined per well. In this assay, acetylated α-

tubulin (Sigma-Aldrich # 070M4755) was used as a ciliary axoneme marker. C-TMEM67 (In-

house to Johnson lab) or CEP290 or RPGRIP1L were used as transition zone markers. γ-

tubulin (Santa Cruz # c-20) was used as basal body marker. DAPI (Sigma-Aldrich) was used to 

determine cell and nuclear boundaries. Primary and secondary antibodies used in this 

analysis are listed in Table 5.2. siRNA pool targeting mouse Plk1 was used as a positive 

transfection control and siRNA pool targeting mouse Ift88 was used as positive controls for 

effects on ciliogenesis compared to a negative control, 2 duplicate Dharmacon scrambled 

non-targeting siRNAs. The data shown in section (5.3.1.1) is from only one biological 

replicate and 2 technical replicates. Sequences of control siRNA duplexes are given in Table 

5.1.�

5.2.1.1.2 Image analysis 

Appendix D.1 lists and explains the modified PerkinElmer image analysis algorithms 

that were used in this the study of ciliary sub-compartments axoneme, transition zone, and 

basal body. The analysis was based on the fluorescent staining comprising the red channel 
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that visualized the ciliary axoneme marker; green for transition zone markers, and far-red 

for the basal body (Figure 5.2 A). The analysis quantified the degree of co-localization 

between green with red, or far red with red, or green with far red, in order to calculate the 

overlap between sub-compartments. Border objects were excluded and only whole cells 

were analysed. Nuclei were detected as blue (DAPI) fluorescent regions. Ciliary axonemes 

labelled with acetylated α- tubulin on whole cells were detected using a modified ‘find 

spots’ algorithm, identifying fluorescent spots of area in the 546 nm colour channel as 

shown in appendix D.1. Transition zones labelled with the TMEM67 C-terminus antibody 

(R24), on every ciliary axoneme on every cell, were detected using a modified ‘find spots’ 

algorithm, identifying green fluorescent spots in the 488 nm colour channel as shown in 

appendix D.1. Basal bodies labelled with γ-tubulin, on every ciliary axoneme on every cell, 

were detected using a modified ‘find spots’ algorithm, identifying far red (DRAQ5) 

fluorescent spots as shown in appendix D.1. The number of whole cells and percentage of 

whole cells with a single cilium was calculated. 

5.2.1.2 Cell plating, transfection, fixation, data imaging and analysis of forward 
transfection experiments 

Prior to each experiment, a T75 flask Corning® #431464U of 80 % confluent low-

passage (P17-25) culture of mIMCD-3 cells were trypsinized and centrifuged as described in 

(3.2.2.1). The supernatant was aspirated and the cell pellet re-suspended in 10 ml of Opti-

MEM reduced serum (Gibco #31985-047), antibiotic-free medium and gently pipetted. 2.5 x 

105 cells/well were seeded onto sterile glass coverslips in 6-well culture plates while gently 

swirling as described in (3.2.5.1), using the Trypan Blue dye exclusion method (3.2.2.2) to 

determine cell concentration and viability. Plates were processed for knockdowns (forward 

transfection); 5 μl (20 μM) of siRNA were mixed with 196 μl Opti-MEM medium and 

incubated for 5 minutes at RT. In a separate tube, 5 μl Lipofectamine RNAiMAX transfection 

reagent was mixed with 196 μl Opti-MEM medium and incubated for 5 minutes at RT. The 

contents of both tubes were combined and vortexed briefly and incubated for 20 minutes at 

RT. The mixture was then added drop-wise to the 50% confluent cells on the coverslips. 

Subsequently the cells were incubated for 72 hours at 37°C, 5% CO2. Plates were processed 

for fixation and immunofluorescence staining as described in (3.2.5.1). 
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5.2.1.2.1 ‘Volocity x 64’ 3D Imaging system analysis 

siRNA forward transfection was first imaged by confocal microscopy to generate 

Nikon.nd2 files for 3D image data. The resulting images are optically sectioned into Z-stacks 

that can be combined to generate a maximum intensity projection image.(Dunn et al., 

2011).  All confocal Nikon.nd2 images were obtained with identical gain, offset, and laser 

power settings. The primary cilia sub-compartments were marked as follows: ciliary 

axoneme labelled with gold (Alexa Fluor 555) fluorescent spots. Transition zones labelled 

with C-TMEM67 (R24) or CEP290 or RPGRIP1L, identifying green (Alexa Fluor 488) 

fluorescent spots. Basal bodies labelled with γ-tubulin, identifying far red (Alexa Fluor 633) 

fluorescent spots.  Second, for the quantitative analysis of the fluorescence, Volocity x64 

(PerkinElmer Inc.) software was used to measure the fluorescence intensities of the basal 

body, transition zone, and axoneme ciliary sub-compartments. For example, fluorescence-

density differences were calculated by outlining each ciliary axoneme and obtaining the 

area of each cilium and the raw integrated densities of the acetylated α-tubulin by using 

these features in the software. Volocity x64 analysed the 3D image data and transformed 

the observations of primary cilia staining of the sub-compartments into quantitative results. 

The analysis protocol was created by adding pre-configured measurement tasks 

specifically for quantifying co-localization between cilia stained sub-compartments, and 

then applying (8-10) 3D images to the software as a batch process. The co-localizations 

between transition zone and axoneme, transition zone and basal body, and axoneme and 

basal body were measured separately to generate Pearson's coefficient values. The data 

was then exported into Microsoft Excel for graphical and statistical analysis. The effect of 

the knockdown on ciliary phenotype data such as morphology and co-localization of 

markers was graphed in Microsoft Excel; the statistical significance of pair-wise comparisons 

was calculated using Student’s t test (two-tailed, two sample equal variance). The effect of 

siRNA knockdown on cilia number was assessed by calculating the percentage of cells with a 

single cilium and was measured using Fiji software as described in (Appendix D.3), with the 

statistical significance of this effect assessed by t-test. The effectiveness of siRNA 

knockdowns was determined by western immunoblotting (Figure 5.9). 
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5.2.1.2.2 Image analysis 

The details of quantitative co-localization image analysis using Volocity x64 are 

provided in Appendix D.1. The Nikon.nd2 images were analysed by Volocity x64. In any 

given image slice, fields of view were stitched together. Fluorescence co-localization 

analysis, using Pearson’s correlation coefficient, was used to determine the degree that 2 

ciliary sub-compartments associated with the same primary cilia structure after knockdown, 

compared to the scrambled negative control. Pearson’s correlation coefficient described the 

correlation of the intensity distribution between channels: the values ranged between −1.0 

and 1.0, where 0 indicated no significant correlation, −1.0 indicates complete negative 

correlation and 1 a strong positive correlation (Zinchuk et al., 2007). 

5.2.2 Antibodies 
 
Table 5. 2: List of the primary and secondary antibodies with experimental conditions 
used in the study. 

Primary Antibodies Concentration (1:x) Supplier Cat. Number 

Rabbit anti C-TMEM67 (R24) 1:200 In-house to 
Johnson lab 

N/A 

Rabbit anti RPGRIP1L 1:100 Proteintech 55160-1-AP 

Moues anti CEP290 1:500 Gift of Ciaran 
Morrison 

N/A 

Rabbit anti IFT88 1:200 Proteintech 13967-1-AP 

Moues Acetylated α-tubulin 1:1000 Sigma-Aldrich 070M4755 

Goat anti γ-Tubulin 1:50 Santa Cruz C-20 

Secondary Antibodies Concentration Supplier Cat. Number 

AlexaFluor594 chicken anti-mouse IgG 1:500 Molecular Probes A-21201 

CF405M donkey anti goat IgG 1:500 Biotium 20398 

AlexaFluor488 donkey anti-rabbit IgG 1:500 (forward transfection) Biotium A-21206 
1:2000 (reverse transfection) 

AlexaFluor555 donkey anti-mouse IgG 1:500 (forward transfection) Life technologies A-31570 
1:2000 (reverse transfection) 

AlexaFluor633 donkey anti-goat IgG 1:500 (forward transfection) Invitrogen A-21082 
1:2000 (reverse transfection) 

DAPI (5 mg/ml) 1:500 (forward transfection) Sigma-Aldrich MBD0015 
1:2000 (reverse transfection) 

TOTO3 (1 mM) 1:5000 Life Technologies T3604 
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5.2.3 siRNA validation 
 

mIMCD-3 cells were cultured and prepared (see section 3.2.2.1) for siRNA 

transfection in Opti-MEM low-serum transfection medium as described in section (5.2.1.2). 

72 hours later, cell lysates were prepared as described in section (3.2.6.1) from Tmem17, 

Tmem231, Tmem237, Rpgrip1l and Ift88 siRNA-treated cells. Protein samples underwent 

SDS-PAGE and were transferred onto a PVDF membrane as described in section (3.2.6.3). 

The transferred protein was probed with specific rabbit polyclonal primary antibodies (Table 

5.2) followed by an HRP enzyme-conjugated secondary antibody (Chapter 4; Table 4.4), the 

data shown in section (5.4) is from only one biological replicate. Band intensities were 

measured using Image Lab software (Bio-Rad) and the gene silencing effect was evaluated 

by comparing the relative protein expression of the sample with scrambled negative 

control. 

 
5.3 Results from forward and reverse TMEM knockdowns 
 5.3.1 siRNA reverse transfection using “Operetta” high content imaging 
 
5.3.1.1 TMEM67 module 

The primary screen identified some significant alterations between transition zone 

and axoneme co-localizations following knockdowns with siRNAs for Rpgrip1l, Tmem231, 

Ift88 and Plk1 compared to the scrambled siRNA negative control (Figure 5.2). Two wells 

were tested for the scrambled siRNA negative control and the positive control for 

transfection efficiency control (Plk1), the positive control for cilia number (Ift88) and two 

experimental samples of each gene of interest in order (Figure 5.2 B). Figure 5.3 shows the 

calculation of Pearson's coefficient for the co-localization of the axoneme acetylated α-

tubulin and TMEM67 transition zone compartments after the knockdown of Rpgrip1l, 

Tmem231, Plk1, and Ift88. The cilia numbers were comparable to siRNA knockdown of Ift88, 

a key regulator of ciliogenesis and a positive control (Pazour et al., 2000, Wheway et al., 

2015) (Figure 5.2 C). Furthermore, Plk1 siRNA knockdown was used as a positive control for 

effect on cell number and as a measure of the efficiency of transfection, with the result 

showing fewer cells following knockdown as expected (Figure 5.2 C). In addition, the results 

identify potential synthetic genetic interactions between acetylated α-tubulin and TMEM67 
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after knockdown of both Tmem231 or Rpgrip1l. However, Pearson's coefficients calculated 

after knockdown of either Rpgrip1l orTmem231 were close to 0 (Figure 5.3). This indicates a 

poor co-localization between axoneme and transition zone compared to the scrambled 

siRNA negative control. However, high content imaging only provides an un-deconvoluted 

epifluorescence microscopy image that does not consider the 3-dimensional structure of the 

cilia being imaged. This could artificially increase co-localization values. To address this 

potential analysis artefact, a subsequent confirmation study using confocal microscopy was 

performed. Three-dimensional images were reconstructed using “Volocity x64” software 

(PerkinElmer Inc.) in order to generate more accurate co-localization values. 
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Figure 5. 2: Sample of Columbus images and field of view for Operetta siRNA study in 
mIMCD-3 cells. (A) Four panels show antibody staining performed in this study. DAPI (blue) 
stains nuclear boundaries. Acetylated α-tubulin (gold) stains ciliary axoneme. Antibody 
against the TMEM67 C-terminus (green) stains the transition zone. γ-tubulin (far red) stains 
the basal body. (B) Ten fields of view were imaged per well with an approximate total of 
8000 cells detected and analysed per well and two wells were tested for each gene). (C) Left 
panel shows negative control siScrambled. Middle panel shows the positive control for cilia 
loss siIft88 indicates fewer cilia (acetylated α-tubulin, gold) than the negative control 
siScrambled. Right-hand panel shows transfection efficiency control siPlk1 with noticeable 
cell loss compared to siScrambled negative control. Scale bar= 20 μm. The data is shown n=1 
biological replicate and n=2 technical replicates. 
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Figure 5. 3: Calculated mean Pearson's coefficient for the co-localization of the axoneme 
acetylated α-tubulin and TMEM67 transition zone compartments after the knockdown of 
Rpgrip1l, Tmem231, Plk1, and Ift88. The Pearson's coefficients were calculated using data 
generated using the Operetta/Columbus high-content imaging platform (PerkinElmer). 
Pearson's coefficients were close to 1 for the scrambled siRNA negative control, indicating a 
high degree of co-localization between the axoneme and TMEM67. For Rrpgrip1L, Tmem231 
and Ift88 knockdowns, Pearson's coefficients were close to 0, indicating poor or weak co-
localization between axoneme and transition zone. Statistical significance of pairwise 
comparisons are indicated (Student’s t-test: *, p<0.05); error bars show standard deviation 
for 2 technical replicates. 

 
5.3.2 siRNA forward transfection for TMEM Volocity 64x analysis 
5.3.2.1 TMEM67 module 

Confocal microscopy images were taken with an oil immersion 100x objective on a 

Nikon A1R instrument, to visualize the localization of basal body, transition zone and ciliary 

axoneme after knockdown by transfection of siRNA for Tmem17, Tmem67, Tmem138, 

Tmem231, and Tmem237 into mIMCD-3. Figure 5.4 A shows an example of the 

immunofluorescence staining performed for the TMEM67 module. As previously mentioned 



      
 

 

161 

 

in section (5.2.1.2.2), Pearson's coefficients were used to calculate the degree of co-

localizations between the sub-compartments with ranges between 1 and zero (1 being 

perfect co-localisation, and zero indicating absence of co-localization). 

Knockdown of TMEM67 was used as a positive control for Volocity analysis since the 

transition zone was stained with TMEM67 and the knockdown was performed for one 

biological replicate to examine any changes in ciliary sub-compartments. The result 

demonstrated that only transition zone and acetylated α-tubulin sub-compartments had a 

reduced level of co-localization compared to negative control (Figure 5.4 B; Figure 5.5). 

Pearson's coefficients were close to 1, indicating a high degree of co-localization between 

axoneme and TMEM67 for the negative control scrambled siRNA treated cells, whereas 

Pearson's coefficients were close to 0, indicating absence of co-localization, following 

Tmem67 knockdown. 

 Volocity analysis also indicated that knockdown of Tmem231 caused 2 structural 

defects in ciliary sub-compartments localization: TMEM67 transition zone and both 

acetylated α-tubulin and γ-tubulin basal body sub-compartments mislocalized and 

overlapped more compared to the negative control (Figure 5.4 B; Figure 5.5) following 

knockdown of Tmem231. The bar graph (Figure 5.4 B) quantified co-localization between 

the ciliary sub-compartments following knockdown of Tmem231. Pearson's coefficient was 

0.15, which indicated that the transition zone overlaps with the axoneme, as well as the 

transition zone overlapping with the basal body, compared to the scrambled negative 

control siRNA. 

The bar graph (Figure 5.4 D) quantified co-localization between the ciliary sub-

compartments following knockdown of Tmem17. First, the Pearson's coefficient for co-

localization between the transition zone (marked by TMEM67) and the basal body (marked 

by γ-tubulin) were close to 0 when compared to negative control. This indicates that these 

sub-compartments are distinct and separated by a structural gap following Tmem17 knock-

down. Second, there was poor co-localization between acetylated α-tubulin and the basal 

body following Tmem17 knockdown (Pearson's coefficients also close to 0) indicating that 

these sub-compartments were also more separated compared to the negative control 
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(Figure 5.4 D; Figure 5.5). This suggests that TMEM17 is an important protein that maintains 

ciliary structural integrity. 

Volocity analysis showed that knockdown of Tmem138 expression resulted in a 

defect between the TMEM67 transition zone and acetylated α-tubulin sub-compartments. 

The sub-compartments mislocalized and were more detached than in the negative control 

(Figure 5.4 D; Figure 5.5), indicating gaps between the transition zone and axoneme. In 

addition, Volocity analysis indicated that knockdown of Tmem237 expression developed 

defects in TMEM67 transition zone and the basal body γ-tubulin sub-compartments (Figure 

5.4 D; Figure 5.5). Pearson's coefficient was close to 0, which indicated poor co-localization, 

suggesting a gap between these sub-compartments compared to the scrambled siRNA 

negative control. 

In summary, the Volocity analyses indicated that the knockdown of Tmem67 (Figure 

5.4 B), Tmem231 (Figure 5.4 B), Tmem17 (Figure 5.4 D), Tmem138 (Figure 5.4 D) and 

Tmem237 (Figure 5.4 D) had a significant effect on ciliary sub-compartments and disrupted 

co-localization between them. Also, the knockdown of these genes had an important effect 

on cilia length or incidence (Figure 5.4 C, E). Consistent with these findings the ciliary sub-

compartments were altered, such that significant increases or decreases in TMEM67 co-

localization with either acetylated α-tubulin and/or γ-tubulin were observed following 

knockdowns of TMEM17, TMEM67, TMEM138, TMEM231 and TMEM237. 

Consistent with these findings in the TMEM67 module, this raises the question of 

how TMEM17, TMEM67, TMEM138, TMEM231 and TMEM237 proteins are functionally 

connected. Moreover, these TMEM proteins had different disrupted network properties and 

had distinct effects on the localization of the transition zone marker TMEM67. This suggests 

that the TMEM17, TMEM67, TMEM138, TMEM231 and TMEM237 proteins may mediate 

transition zone structural organization and that they are arranged into a hierarchical 

network of interactions. This point is expanded in the Discussion in Chapter 6. 
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Figure 5. 4: TMEM67 module results: sub-cellular localization of endogenous ciliary sub- 
compartments in mIMCD-3 cells following siRNA knockdowns. (A) The sub-compartments 
were triple stained with antibodies against acetylated α-tubulin (red) for the axoneme, 
TMEM67 (green) at the transition zone and γ-tubulin at the basal body (purple). Cells were 
counterstained with DAPI (blue). Insets show details of the cilium sub compartments 
indicated by the arrowhead. Scale bar= 20 μm. (B) Calculated mean Pearson's coefficient for 
the co-localization of the ciliary sub-compartments after the knockdown of Tmem67 and 
Tmem231.The bar graph quantifies co-localization between the indicated ciliary sub-
compartments following knockdown of Tmem67, the positive control for this data-set, and 
Tmem231. The Pearson's coefficients were generated using Volocity. Statistical significance 
of pairwise comparisons are indicated (Student’s t-test: *, p<0.05, *** p<0.001 and **** 
p<0.0001) which indicated by red asterisk; error bars show standard deviation for one 
biological replicate and 8 technical replicates. (C) Quantification of morphological defects in 
mIMCD-3 cells after knockdown of Tmem67 and Tmem231. A reduction in cilia incidence 
after the knockdown of Tmem67 and Tmem231 is shown. (D) Calculated mean Pearson's 
coefficient for the co-localization of the ciliary sub-compartments after the knockdown of 
Tmem17, Tmem138, Tmem231 and Tmem237. Error bars show standard deviation for 2 
biological replicates and six technical replicates. (E) Quantification of morphological defects 
in mIMCD-3 cells after knockdown of Tmem17, Tmem138 and Tmem237. A reduction in cilia 
incidence was seen after the knockdown of these genes. 
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Figure 5. 5: Schematic drawing of primary cilia showing some structural defects after 
knockdown of Tmem67, Tmem231, Tmem17, Tmem138 and Tmem237 in mIMCD-3 cells. 
Black arrowheads indicate ciliary axoneme (acetylated α-tubulin; red), transition zone 
(TMEM67; green) and basal body (γ-tubulin; blue). Red arrowheads indicate how gene 
knockdown affects the relative positioning of ciliary structural sub-compartments. Tmem67 
knockdown caused a decrease in the co-localization between the transition zone marker 
TMEM67 and acetylated α-tubulin which generated a gap between these sub-
compartments. Tmem231 knockdown caused an increase in the co-localization between the 
transition zone marker Tmem67 and acetylated α-tubulin, as well as Tmem67 and the basal 
body (marked by γ-tubulin). This increase suggests an overlap between these sub-
compartments which is indicated by yellow and turquoise, respectively. Tmem17 
knockdown resulted in a decrease in the co-localization between Tmem67 at the transition 
zone and the basal body marked by γ-tubulin sub-compartments, as well as decreased 
axoneme (acetylated α-tubulin) and basal body (γ-tubulin) co-localization. Tmem138 
knockdown decreased the association between the transition zone (Tmem67) and 
acetylated α-tubulin. Tmem237 knockdown resulted in a decrease in the co-localization 
between TMEM67 and basal body (γ-tubulin). 

 
5.3.2.2 RPGRIP1L module 

Confocal microscopy images were taken with an oil immersion 100x objective on a 

Nikon A1R instrument, to visualize the localization of basal body, transition zone and ciliary 

axoneme after knockdown by transfection of siRNA for Tmem17, Tmem67, Tmem138, 

Tmem231 and Tmem237 into mIMCD-3. Figure 5.6 A displays an example of the 

immunofluorescence staining for RPGRIP1L. As detailed above (see section 5.2.4.1), 
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Pearson's coefficients were the method for evaluating co-localization of ciliary sub-

compartments. 

In this experiment Tmem17, Tmem67, Tmem138, Tmem231 and Tmem237 were 

knocked-down and the relative localization of RPGRIP1L was compared to γ-tubulin at the 

basal body and acetylated γ-tubulin at the ciliary axoneme. The Volocity analysis results 

indicated that knockdown of these genes had no significant effect on the co-localization of 

these sub-compartments (Figure 5.6 B). This suggests that loss of the Tmem17, Tmem67, 

Tmem138, Tmem231 and Tmem237 components has no effect on RPGRIP1L positioning, 

implying that RPGRIP1L is higher in an organizational hierarchy than the TMEM proteins and 

that it is required for the correct formation of a normal transition zone. 
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Figure 5. 6: RPGRIP1L module results: sub-cellular localization of endogenous ciliary sub- 
compartments in mIMCD-3 cells following siRNA knockdowns. (A) The sub-compartments 
were triple-stained with antibodies against acetylated α-tubulin (red, axoneme), RPGRIP1L 
(green, transition zone), and γ-tubulin (basal body, blue) as markers. Insets show details of 
the cilium sub compartments indicated by the arrowhead. Scale bar= 20 μm. (B) Calculated 
mean Pearson's coefficient for the co-localization of the ciliary sub-compartments after the 
knockdown of Tmem17, Tmem67, Tmem138, Tmem231 and Tmem237. The Pearson's 
coefficients were generated using Volocity and showed no significant changes in the co-
localization between axoneme and transition zone, transition zone and basal body, 
axoneme and basal body compared to the scrambled siRNA control. Error bars show 
standard deviation for one biological replicate and three technical replicates. 
 
5.3.2.3 CEP290 module 

Confocal microscopy images were taken with an oil immersion 100x objective on a 

Nikon A1R instrument, to visualize the localization of basal body, transition zone and ciliary 

axoneme after knockdown by transfection of siRNA for Tmem17, Tmem138, Tmem231, and 

Tmem237 into mIMCD-3. The transition zone was visualized by immunofluorescent staining 

for CEP290 using a mouse monoclonal antibody (the gift of Ciaran Morrison, University of 

Cork). However, this meant that the monoclonal antibody against acetylated α-tubulin was 

not used in this series of experiments. Instead IFT88 was used as a ciliary axoneme marker 
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since it has been recognized to be located both at the ciliary base and tip (Appendix D.4). 

Figure 5.7 A shows an example of the immunofluorescence staining that was performed in 

this module. Pearson's coefficients were used as explained in the above sections. 

Volocity analysis in this module indicated that knockdown of Tmem17 expression 

caused a clear defect in ciliary sub-compartment localization: specifically, the CEP290 

transition zone and the γ-tubulin basal body sub-compartments were mis-localized and 

overlapped to a greater extent than the scrambled non-targeting negative control (Figure 

5.7 B; Figure 5.8). The bar graph (Figure 5.7 B) quantifies co-localization between the ciliary 

sub-compartments following knockdown of Tmem17. Volocity analysis also indicated that 

knockdown of Tmem138 expression caused 2 mis-localization defects:  IFT88 at the 

axoneme and the CEP290 localized to the transition zone sub-compartments were mis-

localized and overlapped to a greater extent than the negative control. In addition, both 

IFT88 and γ-tubulin at the basal body sub-compartment were mis-localized and overlapped 

to a greater extent than the negative control (Figure 5.7 B; Figure 5.8). The bar graph (Figure 

5.7 B) quantifies the co-localization between the ciliary sub-compartments following 

knockdown of Tmem138. 

Volocity analysis following Tmem231 knockdown indicated the presence of a 

different mis-localization defect of ciliary sub-compartments. CEP290 and IFT88 were mis-

localized but were more separated compared to the negative control (Figure 5.7 B; Figure 

5.8). The bar graph (Figure 5.7 B) quantifies co-localization between the ciliary sub-

compartments following knockdown of Tmem231 and suggested that a gap formed 

between the transition zone and the basal body. A similar mis-localization defect was also 

observed following Tmem237 knockdown, however it appeared to be less significant than 

Tmem231 knockdown. 

In summary, the results from Volocity analysis indicated that the knockdown of 

Tmem17, Tmem138, Tmem231, and Tmem237 (Figure 5.7B; Figure 5.8) had a significant 

effect on primary cilia organization and caused mis-localization between the ciliary basal 

body, transition zone and axoneme sub-compartments. Remarkably, significant increases or 

decreases were shown in CEP290 co-localization with either IFT88 and/or γ-tubulin 

following knockdowns of Tmem17, Tmem138, Tmem231 and Tmem237, indicating that their 
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knockdown (Figure 5.7 B) had a significant effect on ciliary sub-compartments. Significant 

changes in the co-localization between axoneme and transition zone were also seen when 

Tmem138, Tmem231 and Tmem237 were knocked down. Specifically, there were changes in 

the co-localization between transition zone and basal body when Tmem17 was knocked- 

down, and alterations in the co-localization between axoneme and basal body when 

Tmem138 was knocked down. These findings suggest that TMEM17 and TMEM138 are both 

important proteins that maintain ciliary structural integrity by constraining the localization 

of CEP290. 
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Figure 5. 7: CEP290 module results: sub-cellular localization of endogenous ciliary sub- 
compartments in mIMCD-3 cells following siRNA knockdowns. (A) The sub-compartments 
triple stained with antibodies against IFT88 (green, axoneme), CEP290 (red, transition zone), 
and γ-tubulin (basal body, far red) markers. Cells were counterstained with DAPI (blue). 
Insets show details of the cilium sub compartments indicated by the arrowhead. Scale bar = 
20 μm. (B) Calculated mean Pearson's coefficient for the co-localization of the ciliary sub-
compartments after the knockdown of Tmem17, Tmem138, Tmem231 and Tmem237 using 
Volocity. Statistical significance of pairwise comparisons are indicated (Student’s t-test: *, 
p<0.05, ** p<0.001 and **** p<0.0001) which indicated by red asterisk; error bars show 
standard deviation for one biological replicate and 6 technical replicates. Pearson's 
coefficients showed significant changes in the co-localization between axoneme and 
transition zone when cells treated with the knockdowns of Tmem138, Tmem231, and 
Tmem237. Pearson's coefficients also showed significant changes in the co-localization 
between transition zone and basal body when TMEM17 was knocked down. Pearson's 
coefficients showed significant changes in the co-localization between axoneme and basal 
body when TMEM138 was knocked down. All knock downs were compared to the 
scrambled siRNA control. 
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Figure 5. 8: Schematic drawing of primary cilia showing some structural defects after 
knockdown of Tmem17, Tmem138, Tmem231, and Tmem237 in mIMCD-3 cells. Black 
arrowheads indicate ciliary axoneme (visualized by IFT88; red), transition zone (CEP290; 
green) and basal body (γ-tubulin; blue). Red arrowheads indicate the effect of knockdown 
on the relative positioning of ciliary structural sub-compartments. Knockdown of Tmem17 
caused an increase in the co-localization between the transition zone (CEP290) and the 
basal body (γ-tubulin), indicated by the turquoise overlap. Knockdown of Tmem138 
increased co-localization between the transition zone (CEP290) and the axoneme (IFT88) as 
well as the basal body (γ-tubulin), indicated by the pink and yellow overlaps, respectively. 
Knockdown of either Tmem231 or Tmem237 resulted in a decrease in the co-localization 
between transition zone and axoneme sub-compartments, suggesting that gaps may form 
between these sub-compartments. 

 

5.4 siRNA validation results 
 

siRNA validation experiments were performed as described in (5.2.3). Gene 

knockdown of Rpgrip1l, Ift88, Tmem17, Tmem67, Tmem231 and Tmem237 were 

demonstrated by the analysis of Operetta and Volocity results. However, validation of 

knockdown efficacy by western blotting was limited to Rpgrip1l, Ift88, Tmem17 and 

Tmem237 (Figure 5.9) due to the availability of antibodies. Quantitative analysis of the 

RPGRIP1L, IFT88, TMEM17 and TMEM237 band intensities included normalization for 

protein loading as determined from the intensity of β-actin bands. Band intensities were 

quantified using Image Lab software (Bio-Rad). Normalized band intensities for Rpgrip1l, 

Ift88, Tmem17 and Tmem237 siRNA knockdowns were all <70% of bands in the scrambled 

non-targeting negative control. 
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Significant reductions of Ift88, Tmem237, Rpgrip1l, Tmem17 protein levels were 

23%, 35%, 50% and 77%, respectively. The rabbit polyclonal antibodies against IFT88, 

TMEM237, RPGRIP1L appeared to work well in western blots and gave strong signals at the 

expected molecular weights of 94 kDa, 45.5, 151 kDa, but for both bands were observed at 

about 100 kDa that were ablated by the cognate siRNA knockdown. These antibodies were 

therefore likely to be highly specific against the target protein. The rabbit polyclonal 

antibody against TMEM17 did not give a strong signal in western blots, although it did 

produce a band at 23 kDa at the expected size for TMEM17. An antibody against TMEM231 

did not produce any specific bands at the correct predicted molecular weight for TMEM231 

(data not shown) and analyses with this antibody were not continued. 

 

 

 
 
 
Figure 5. 9: Western blotting showing loss of protein after siRNA knockdown. Western 
blotting was used to demonstrate the effect of siRNA knockdown of Rpgrip1l (A), Tmem17 
(B), Ift88 (C), and Tmem237 (D) in HEK-293 cells compared to the scrambled non-targeting 
negative control. β actin was used as a loading control and relative reduction in expression 
(ratio) was compared to siScrambled knockdown. Molecular weights of proteins: RPGRIP1L 
(150 kDa); IFT88 (94 kDa); TMEM17 (23 kDa); TMEM237 (45.5 kDa); β actin (45 kDa). Slices 
from separate parts of the blot were spliced together as shown by a vertical white line on 
each figure (B-D). The data shown is from only one biological replicate. 
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5.5 Discussion 
 

One of the central questions in this chapter is what the molecular mechanism is 

underlying primary ciliary sub-compartment organization and whether ciliary defects arise 

from disruption in the assemblies or modules of the selected TMEM proteins. Furthermore, 

do the genetic interactions support the results of biochemical interactions in Chapter 4 that 

have also been determined in the same ciliated model system? 

Increasing evidence has indicated that the transition zone is organized into multiple 

protein modules with distinct functions, such as the MKS and NPHP modules, which are 

composed of proteins mutated in the ciliopathies Meckel-Gruber syndrome and 

nephronophthisis as details in Chapter 1. Therefore, a selection of antibodies raised against 

transition zone proteins were used in order to understand their genetic interaction within 

the ciliary transition zone compartment and their association with other primary cilia sub-

compartments including the ciliary axoneme and ciliary basal body. The disruption of some 

of these sub-compartments is thought to underlie a wide spectrum of ciliopathies. To 

determine whether TMEM17, TMEM67, TMEM138, TMEM231 and TMEM237 are essential 

regulators of transition zone organisation and function, and whether or not they work as a 

complex to build primary cilia or do relative functions together, mIMCD-3 cells were 

transfected either with control non-targeting small interfering (si)RNA or siRNAs against 

Tmem17, Tmem67, Tmem138, Tmem231 or Tmem237. 

In the first instance, high content imaging with an Operetta High-Content Imaging 

system was used. A series of experiments in the TMEM67 module successfully confirmed 

that knock-downs had detectable structural effects on ciliary compartments. It also enabled 

staining and imaging protocols to be optimized (Figure 5.2; Figure 5.3) Following this, 3 

dimensional reconstructions were performed from confocal microscopy images and co-

localization was analysed with Volocity x64 software. The extent of co-localization between 

ciliary sub-compartments was quantitated by calculated Pearson’s correlation in each image 

and then deriving statistical outputs as shown in Figures 5.4 B & D; Figure 5.6 B; and Figure 

5.7 B. For co-localization studies, special consideration needed to be made to find software 

that could take advantage of high-quality confocal images at high resolution in order to 

perform proper co-localization analyses for sub-cellular compartments. 
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 For Volocity x64 analysis, mIMCD-3 cells were used as a standard model ciliated cell-

line since it is easy to grow and has a high transfection efficiency. Three separate data-sets 

or modules were generated and selected for analysis of the ciliary sub-compartments: the 

TMEM67 module (using an antibody against the C-terminal region), the RPGRIP1L module 

and the CEP290 module. γ-tubulin was selected as a well-established basal body marker that 

is known to be essential for centriole assembly and structural maintenance (Pearson et al., 

2009, Dupuis-Williams et al., 2002, Dutcher et al., 2002). Acetylated a-tubulin antibody was 

used as well-established axoneme markers in investigations of the TMEM67 module and 

RPGRIP1L module, whilst IFT88 was used for the CEP290 module as an axoneme marker 

because of the limitations of available antibodies and its localization validated to the cilia by 

immunofluorescence staining (Figure D.3 in the appendix D). Using siRNA, we examined a 

group of 6 TMEM proteins, 5 of which are mutated as causes of ciliopathies. The 

efficiency of each siRNA was tested, firstly, by confirming that they all decreased cilia 

incidence and, secondly, by performing western blotting for those that had antibodies 

available for the cognate proteins. 

Although 3D reconstruction in Volocity allowed co-localization volumes to be 

determined for protein localizations, this image analysis did not allow the reliable 

measurement of cilia length. However, the knockdown of all ciliary TMEMs tested in this 

chapter caused a significant decrease in cilia incidence. Since cilium length is a key 

determinant of normal cilium structure and function, cilium length was also measured in 

order to validate positive and negative modulators because length increase or decrease is a 

highly specific indicator for normal or abnormal ciliary structure. However, the morphology 

of primary cilia in mIMCD-3 cells was challenging to measure in single z-slices or in 

maximum intensity projections. In both instances, the true length of cilia was likely to be 

under-estimated since they project vertically from the apical cell surface in the mIMCD-3 

cell line. For this reason, co-localization measurements were performed on 3D 

reconstructions from confocal z-stacks (in the Nikon.nd2 file format) using Volocity 

software. 

 Our experiments identify some novel roles for the selected TMEM proteins in 

transition zone structural stability and ciliogenesis. This chapter therefore extends our 

understanding of how molecular components within the cilium associate in structural 
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compartments within the cilium. Further discussion of the data-sets for each transition zone 

modules is presented below. 

 

5.5.1 TMEM67 module 
 
The data presented here implicate TMEM67 as an indispensable regulator of ciliary 

transmembrane expansion and compartmentalization of signalling receptors, with potential 

involvement in ciliopathies and other human diseases as has been reported previously. 

(Barker et al., 2014) identified a core group of 6 proteins that have critical conserved 

functions including TMEM67, CCD2A, B9D1, B9D2, AHI1 and a single TCTN family member. 

The 6 proteins are associated in MKS and JBST syndromes which highlights their importance 

for cilia function. The knockdown of Tmem67 was investigated and subsequently used as a 

positive control in this study. In a separate experimental series, Tmem67 knock-down was 

used as a positive control in order to confirm that robust data was generated in the mIMCD-

3 model system. siRNA Tmem67 caused considerable changes in the localization of ciliary 

sub-compartments, including transition zone, basal body and ciliary axoneme (Figure 4 B). 

siRNA Tmem67 causes defective localization of primary ciliary sub-compartments which 

results in a disruption in the expected pattern of ciliary marker staining, suggesting a 

possible structural dissociation between the axoneme and the transition zone (Figure 5.5). 

As an additional positive control to demonstrate efficacy of knockdown, siRNA 

against TMEM67 caused a significant decrease in cilia incidence (Figure 5.4 B). Therefore, 

this data showed that loss of mammalian TMEM67, which localizes to the ciliary transition 

zone, resulted in defective ciliogenesis and significant disturbances and disorganization of 

ciliary compartments.  Also, the result showed that siRNATmem67 caused a loss of primary 

cilia. Our results show that inhibition of TMEM proteins affects the correct localization of 

TMEM67 in the proper ciliary structural compartment at the transition zone (Figures 5.4-

5.8). Specifically, it was found that the knockdown of Tmem17, Tmem138, Tmem237 and 

TMEM231 caused defective organization of ciliary sub-compartments in this module 

indicating that these proteins control or have functional roles in maintaining the structure 

or stability of the ciliary axoneme, transition zone and basal body sub-compartments. 

Furthermore, cilia incidence decreased after the knockdown of Tmem17, Tmem138, 
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Tmem237 and Tmem231, suggesting that loss of function of these proteins could be 

essential for triggering the destabilization of structure of the primary cilium. 

As noted in Chapter 4, there appears to be a strong biochemical interaction between 

TMEM67 and TMEM17. TMEM17 was identified as an interactor with TMEM67 by 

coimmunoprecipitation in multiple experiments over a variety of conditions. Although 

TMEM17 was considerably less abundant in TAP purification than other unrelated ciliary 

proteins, it may still participate in TMEM complex function (Chapter 4). Supporting a 

functional relationship between TMEM67 and TMEM17, the siRNA results confirmed that 

the knockdown of Tmem17 mis-localized Tmem67 at the transition zone vs basal body and 

the axoneme vs basal body sub-compartments. Therefore, both biochemical and genetic 

interactions demonstrate that TMEM67 and TMEM17 form a functional complex required to 

organise ciliary sub-compartments. In contrast, Tmem138 knockdown in mIMCD-3 cells did 

not appear to affect similar compartments to Tmem17. However, the knockdown of 

Tmem138 affected the relative positioning of the transition zone and ciliary axoneme in the 

TMEM67 module which may indicate that TMEM138 is working within the TMEM67 

complex at the transition zone.  

In addition, Chapter 4 showed that TMEM138 biochemically interacted with 

TMEM67, suggesting that these proteins also form a complex that facilitates transition zone 

formation and composition. In contrast to other TMEMs, TMEM231 knockdown appeared to 

have a significant and consistent effect on increasing co-localization of TMEM67 between 

the transition zone vs axoneme, as well as the transition zone vs basal body compartments. 

This suggests that the loss of Tmem231 increases the spread of TMEM67 in the transition 

zone across greater proportions of the basal body and axoneme. One conclusion from this 

result is that TMEM231 is higher in the organizational hierarchy than TMEM67, suggesting a 

specific role for TMEM231 in ciliogenesis within this module. 

 

5.5.1.1 Loss of TMEM17 arrests ciliogenesis and disrupts ciliary structure at the 
stage of transition zone assembly 
  
  TMEM67 is a ciliary receptor that localizes to the transition zone and ciliary 

membrane. TMEM67 is a key regulator of ciliary structure and function that is essential for 

ciliogenesis and regulating ciliary membrane composition (Leightner et al., 2013). Like 
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TMEM67, TMEM17 is a ciliary TMEM protein required for ciliogenesis (Li et al., 2016). 

Analysis of pixel co-localization using Pearson's coefficient showed that Tmem17 knock-

down had the most significant effect on the localization of the basal body relative to both 

the transition zone and axoneme in comparison to the scrambled control (Figure 5.4 D). In 

addition, cilia number was reduced (Figure 5.4 E). The knockdown of Tmem17 reduced the 

localization of TMEM67 at the transition zone with the basal body marker (g-tubulin), 

suggesting that TMEM17 is required for correct TMEM67 localization. Furthermore, there 

also appeared to be reduced co-localization between the axoneme and basal body when 

Tmem17 was knocked down suggesting a possible transition zone structural defect (Figure 

5.4 D). The identification of genetic interactions and functional similarities between 

TMEM67 and TMEM17 suggests that TMEM17 is required by TMEM67 to organize the 

structure and function of the primary cilia. TMEM67 and TMEM17, in fact, have been 

recognized as a distinct group of proteins that interact with TMEM237 and tectonic proteins 

(TCTNs) at the transition zone (Goncalves and Pelletier, 2017). However, this work did not 

investigate if there were functional interactions between these proteins at the cellular level. 

 

5.5.1.2 TMEM138 is required for proper formation and function of primary cilia 
 

A further investigation was carried out into the effect of TMEM138 inhibition to see 

whether knockdown of Tmem138 induced co-localization changes in cilia compartments. 

Mutations in Tmem138 cause a human ciliopathy, Joubert syndrome, suggesting that 

TMEM138 is required for ciliogenesis. Knockdown of Tmem138 caused a significant 

disturbance to co-localization between the ciliary axoneme and transition zone sub-

compartments (Figures 5.4 D & 5.5) in addition to a significant decrease in cilia incidence 

(Figure 5.4 E). This implies that loss of TMEM138 severely impaired the ability of the 

mIMCD-3 cells to produce a normal transition zone/microtubule axoneme ciliary structure. 

In contrast, loss of Tmem138 did not significantly affect the transition zone vs basal body 

and axoneme vs basal body compartments but did result in a slight change in axoneme vs 

basal body co-localization at the base of many cilia compared to the more uniform ciliary 

distribution in control cells. Therefore, transition zone organization was disrupted when 

cells were treated with siRNA against Tmem138, which was significantly different from that 

found in controls in only one compartment. This result indicates a close genetic interaction 
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between TMEM138 and TMEM67 since these proteins are related and required for 

ciliogenesis. However, little is known about the mechanistic relationship between these 

proteins during ciliogenesis. 

 

5.5.1.3 Loss of TMEM237 causes ciliogenesis defects in mammalian mIMCD-3 
cells 
 

Mutation in TMEM237 causes Joubert syndrome type 14. This component of the 

transition zone in primary cilia is required for ciliogenesis and involved in regulating Wnt 

signalling pathways (Oh and Katsanis, 2013). Knockdown of Tmem237 in mIMCD-3 cells also 

had a significant effect on ciliary compartments, specifically co-localization between the 

transition zone vs basal body (Figure 5.4 D). The observed significant decrease in co-

localization implied disruption of Tmem237 expression produced structural defects 

consistent with ciliary dysfunction (Figure 5.4 D). In addition, Tmem237 knockdown caused 

a significant decrease in cilia incidence (Figure 5.4 E). These observations suggest that loss of 

TMEM237 arrested ciliogenesis at the stage of transition zone assembly. These data define a 

role for TMEM237 in regulating the basal body and transition zone sub- compartments and 

in the correct formation of primary cilia in mIMCD-3 cells. 

 

5.5.1.4 Knockdown of TMEM231 expression causes structural defects in ciliary 
compartments 
 

In contrast to the above findings, analyses of genetic interactions in mIMCD-3 cells 

indicated that disruption of TMEM231 significantly increased the relative co-localizations of 

ciliary compartments, meaning that ciliary compartments were more overlapped than in the 

negative control. Changes in basal body vs transition zone and axoneme vs transition zone 

compartments were observed following Tmem231 knockdown (Figure 5.4 D), causing 

increased transition zone co-localization with both the basal body and axoneme 

compartments. This indicated that knockdown of Tmem231 facilitated ciliary basal body, 

transition zone and axoneme organization suggesting that TMEM231 has a fundamental 

role in determining ciliary compartments and ciliary organization. 
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5.5.2 RPGRIP1L module 
 
RPGRIP1L localises to the transition zone and is implicated in ciliopathies  (Watnick and 

Germino, 2003). For instance, Delous et al. (2007) showed that mutations in RPGRIP1L cause 

the complex multiorgan syndromes of cerebello-oculo-renal syndrome (CORS) and MKS. 

They showed that foetuses with MKS and in Rpgrip1l-/- mice had a complete loss of 

RPGRIP1L function with neural tube defects and embryonic lethality. RPGRIP1L is suggested 

to form the linker protein between two ciliary modules, the small NPHP complex and the 

large MKS complex (Barker et al., 2014). To determine whether RPGRIP1L and associated 

ciliary components are important for cilia function and correct organisation, knockdown of 

selected ciliary TMEMs was performed. Our data show that knockdowns of all the selected 

TMEMs, that we assumed play roles in cilia formation to regulate the stability of the ciliary 

axoneme during maintenance and resorption of cilia, did not disrupt the localization of 

RPGRIP1L. A possible explanation is that RPGRIP1L functions as a cilium-specific scaffold that 

regulates cilium stability and is not affected by the presence or absence of the TMEMs. C. 

elegans localization dependency data has indicated that the relative position of RPGRIP1L in 

the organizational hierarchy is at the top of the model of the MKS module (Lambacher et al., 

2016) and therefore RPGRIP1L localisation is unaffected because of its position. Such an 

explanation suggests that RPGRIP1L may retain the ability to stabilize the co-localisation of 

TMEMs at the transition zone. To conclude, this module showed that RPGRIP1L remained 

tethered at the cilia base and was not disrupted by knockdown of selected TMEMs (Figure 

5.6 B) and ensured that ciliary axoneme and basal body were maintained and stabilized as 

separate compartments. 

 

5.5.3 CEP290 module 
 

CEP290 is an appropriate candidate marker for the transition zone because it is 

implicated it in Y-link formation and localised to the region between the microtubule 

doublets and the ciliary membrane (Craige et al., 2010). Mutations in CEP290 are 

responsible for about 50% of JBTS but they are rarely detected in LCA, SLS, MKS, BBS and 

OFD (Waters and Beales, 2011)(Chapter 1). These mutations, including nonsense, splice-site 

or frameshift  usually cause loss of protein function and are interpreted as null alleles 

(Coppieters et al., 2010). CEP290 interacts with a number of proteins within a complex 
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(Figure 1.4 B). According to (Murga-Zamalloa et al., 2010) the CEP290 complex includes 

retinitis pigmentosa GTPase regulator (RPGR), NPHP6 and NPHP8/RPGRIP1L. Hypomorphic 

mutations in NPHP6 and NPHP8/RPGRIP1L disrupt their association with proteins within this 

complex, such as RPGR, which may explain the phenotypic heterogeneity that is associated 

with CEP290 mutation (Murga-Zamalloa et al., 2010, Chang et al., 2006) (Murga-Zamalloa et 

al., 2009). Previous localization data has suggested distinct roles for CEP290 compared to 

other MKS/NPHP proteins at the transition zone (Schouteden et al., 2015). This study 

indicated that CEP290 serves as a core component of the central cylinder and acts as an 

inner scaffold for transition zone assembly, whereas MKS/NPHP proteins function in the 

assembly of peripheral Y-links in C. elegans (Li et al., 2016).  

We therefore chose CEP290 as a third transition zone marker, distinct to TMEM67 

and RPGRIP1L, for further analysis. In addition, IFT is required for ciliary localization of 

proteins and signalling pathways to produce normal mature cilia (Chih et al., 2011). IFT88 

was selected to serve as an axoneme marker, since IFT is a dynamic process that is required 

for protein trafficking up and down ciliary microtubules. In this data-set endogenous IFT88 

strongly labelled the base of primary cilia. The genetic interactions between TMEMs and 

CEP290 were then examined. In mIMCD-3 cells, we confirmed the localization of CEP290 to 

the basal body and transition zone of cilia (Figure 5.7 A), as reported in previous studies 

(Yang et al., 2015). Mis-localisation of CEP290 was caused by the knockdown of Tmem17 

and Tmem138, suggesting that these proteins are involved in regulating the stability of 

axoneme and transition zone sub-compartments in this module. For example, siRNA against 

Tmem138 increased the co-localization between CEP290 and IFT88 as well as the co-

localization between IFT88 and γ-tubulin which resulted in disruption of ciliary sub-

compartments (Figure 5.7 B; Figure 5.8). Distinct from TMEM138, TMEM17 knock-down 

increased the co-localization between CEP290 and the γ-tubulin basal body compartment 

(Figure 5.7 B; Figure 5.8). Our data suggests that in this module TMEM17 and TMEM138 

have a role in regulating ciliogenesis and their depletion results in defective cilia. 

Furthermore, although knockdown of Tmem237 inhibited the formation of cilia and resulted 

in defects in the TMEM67 module, knockdown of the same gene in the CEP290 module did 

not have an effect. This suggests that TMEM237 plays a different role in transition zone 

interaction networks in these 2 modules (Figure 5.7 B; Figure 5.8). 
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To conclude, knockdown of some of the selected TMEM genes in TMEM67 and 

CEP290 modules completely disrupted transition zone organization. In addition, TMEM 

proteins in the RPGRIP1L module were only mildly perturbed, since RPGRIP1L appears to be 

a master regulator of transition zone organization and is at the top of the organizational 

hierarchy. It will be interesting to try to detect other known ciliary transition zone in the 

primary cilium and determine how they are regulated during the process of knockdowns 

with the selected TMEMs. Such studies may benefit from higher resolution techniques such 

as fluorescence resonance energy transfer or electron microscopy to identify close 

associations between specific proteins and effects on ciliary ultrastructure. 

 

5.5.3.1 Knockdown of TMEM17, TMEM231, TMEM237 and TMEM138 
expression causes structural defects in ciliary sub-compartments in the CEP290 
module 

In this experiment TMEM17, TMEM138, TMEM231 and TMEM237 were knocked-

down and the relative localization of CEP290 at the transition zone was compared to γ-

tubulin at the basal body and IFT88 at the ciliary axoneme. In a similar result to that seen for 

TMEM67 co-localizations (Figure 5.4 B), TMEM17 knockdown had the most significant effect 

on the co-localization of the basal body and the transition zone marked by CEP290 (Figure 

5.7 B; Figure 5.8). As expected, there was very little co-localization between IFT88 and the 

basal body. However, knockdown of all TMEMs other than Tmem17 caused significantly 

increased co- localization between IFT88 and CEP290 (Tmem138 knockdown), or 

significantly decreased co-localization between IFT88 and CEP290 (Tmem231 and Tmem237 

knockdowns). This contrasts with the observation that knockdown of Tmem231 and 

Tmem237 gave no obvious ciliary phenotype defect when RPGRIP1L was examined (Figure 

5.6 B). To conclude, the IFT88 and CEP290 modules did not match the effect on co-

localization seen in either the TMEM67 module or the RPGRIP1L module. Knockdown of 

Tmem17 has a very significant effect on co-localization of CEP290 by moving its position at 

the transition zone towards and overlapping with γ-tubulin, while no evidence of ciliary 

phenotype defects in IFT88 and CEP290, and IFT88 and γ-tubulin, compartments were seen 

(Figure 5.7 B; Figure 5.8). Furthermore, knockdown of Tmem138 significantly disturbed the 

localization of CEP290 in IFT88 vs CEP290 and IFT88 vs basal body compartments, which 

suggests that TMEM138 dislocates CEP290 localization and moves CEP290 toward IFT88 or 
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γ-tubulin (Figure 5.7 B; Figure 5.8). Moreover, knockdown of Tmem231 reduced the 

localization of CEP290 with IFT88 which generated a substantial gap between them, with no 

major effect on other compartments (Figure 5.7 B; Figure 5.8). Finally, similarly to 

Tmem231, the effect seen for Tmem237 knockdown suggested that it has an important 

influence on co-localization of CEP290 in only the IFT88 vs CEP290 compartment (Figure 5.7 

B; Figure 5.8). 

5.5.4 Future investigations and experimental limitations 

Previous quantitative co-localization studies have lacked a unified approach for 

interpretation of results (Zinchuk et al., 2013). To address this issue, in this work the degree 

of co-localization was described using subjective qualifiers between 1.0 and -1.0 to convey 

information. Co-localization was described using custom terminology, such as close to 1, or 

0 to indicate TMEM protein overlap or complete separation with sub-cellular 

compartments. This establishes a simple, consistent and objective set of variables. RPE1 

cell-line is widely used for studies of ciliogenesis and ciliary function. This is an alternative 

model system to mIMCD-3 cells which would facilitate co-localization studies using confocal 

microscopy to provide insights into the arrangement and organization of the ciliary 

apparatus. This would considerably aid efforts to elucidate the mechanisms of ciliary 

assembly, maintenance and function affected by these genes by providing a different model 

system in which to confirm my initial findings. Furthermore, whilst 3D imaging by using 

confocal microscopy techniques provides high quality and interpretable data, a higher 

resolution for specific protein localisation is required for better analysis of ciliary 

organisation. A super-resolution microscopy technique, such as direct Stochastic Optical 

Reconstruction Microscopy (dSTORM) or stimulated emission depletion (STED) microscopy 

would provide this in future work. 

One major limitation of the siRNA validation studies was the availability of suitable 

antibodies for western blot or immunofluorescence analysis. Consequently, it was not 

possible to validate all siRNA knockdown experiments. An alternative technique such as 

qPCR could be used to validate the effects of siRNA-based gene silencing on target gene 

expression. Also, it would be useful to identify and include positive controls for the siRNA 

validation by western blotting, such as siMks1, a positive control for a ciliogenesis defects 
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(Wheway et al. 2015). This study also has potential limitations when I performed only one 

biological replicate in TMEM67 module for Tmem67 and Tmem231 experiments and in the 

entire RPGRIP1L module and CEP290 module experiments. To verify the dynamic nature of 

the siRNA, 2-3 independent and complementary biological replicates should perform since a 

higher number of robust biological replicates will increase the power of the analysis and 

result in quality research. Therefore, at least three biological replicates should be performed 

and averaged for each gene in the CEP290 and RPGRIP1L modules to generate more robust 

datasets and strengthen the conclusions of this work. 

Finally, generating TMEM mutants should be considered. Although TMEM-based 

siRNA knockdown is a quick method to inhibit the function of selected TMEMs, models 

containing genomic mutants, in particular modelling know pathogenic mutations identified 

from ciliopathy patients, would be useful to confirm the effects of complete loss of function 

of these proteins. To generate TMEM mutants, the CRISPR-Cas9 methodology could be 

utilized to create indels (insertions-deletions) or knock-ins of missense mutations in specific 

TMEM genes.  
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Chapter 6 Final Discussion  
 

6.1 Summary of aims and key findings 
 

Ciliopathies comprise an ever-expanding group of heterogeneous inherited 

developmental disorders with variable phenotypes that result in the abnormal formation or 

function of cilia (see section 1.6). Cilia are essential organelles because they perform 

significant cellular functions. They regulate biological processes such as cellular homeostasis 

and provide a discrete compartment to harbour components of key developmental 

signalling pathways. The proteins encoded by ciliopathy disease genes mainly localize to the 

anchoring structure of the ciliary axoneme, known as the basal body, or to an adjacent sub-

compartment known as the transition-zone comprising the first 0.2 to 0.5 μm of the 

proximal ciliary axoneme (see section: 1.2.4.1 and 1.2.4.3). Recent studies have highlighted 

the importance of the transition-zone as the key regulator of cilium composition and 

signalling by the establishment of diffusion barriers that restrict both cytosolic protein entry 

in a size-dependent manner, and the lateral exchange of proteins between ciliary and non-

ciliary membranes. 

The characterization of these proteins and the multi-subunit complexes in which 

they interact provides insights into their potential roles in ciliary organization and function. 

This is a significant and topical area of study that may explain the pathogenic mechanisms 

that underlie ciliopathies and renal cystic disease. Therefore, this project aimed to examine 

the role of the transition-zone by characterizing the biochemical and genetic functions of 

the TMEM proteins found there using biochemical, genetic, and cell biology techniques. The 

overall aim of this project was to understand, identify and characterise TMEM functions 

involved in ciliogenesis and human ciliopathies. For this study, the ciliary transition zone 

proteins TMEM17, TMEM67, TMEM138, TMEM216, TMEM231 and TMEM237 were 

selected in order to better understand the molecular architecture and function of this 

specialized proximal region of the primary cilium. To accomplish this aim, I had 3 main 

objectives: 
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Objective 1: Screening for mutations in TMEM218 and TMEM17 as novel causes of MKS 

To begin to address this question, I sequenced coding exons in TMEM17 and 

TMEM218 for patients and families who had been diagnosed with MKS but were mutation 

negative in the known MKS disease genes at the time of the study. In summary, the results 

were as follows: 

• There were no novel biallelic variants identified that could be interpreted as 
pathogenic mutations in TMEM17 and TMEM218. 

• Screening identified two novel heterozygous missense variants in TMEM17 
comprising: c.76G>A:p.(Gly26Ser) and c.64T>A:(p.Ser22Thr). The screening also 
identified several known variants in TMEM17 including: c.59G>C (p.Ser20Thr), 
c.54G>A (p.Val18=), c.12G>A (p.Pro4=), c.216A>G (p.Leu72=), c.24C>T (p.Arg8= ), 
c.264C>T (p.Thr88=). 

• There were no variants identified in TMEM218 in those samples that could be 
interpreted as pathogenic. 

Objective 2: To perform functional characterization of TMEMs using established 
biochemical and cell biology techniques, identifying new interacting ciliary proteins and 
complexes. 

The investigations of TMEM17, TMMEM67, TMEM138, TMEM216, TMEM231 and 

TMEM237 in transition zone function and maintenance provided insights into their roles 

during embryonic development and the molecular basis of ciliopathies. Over-expression of 

epitope-tagged and TAP-tagged selected ciliary TMEMs allowed the identification of 

protein-protein interactions within the ciliary transition zone using systematic proteomic 

analyses to investigate indirect and reciprocal interactions between TMEMs. This delineated 

a hierarchical network of biochemical interactions between the TMEMs as follows: 

• Immunofluorescence confocal microscopy confirmed the sub-cellular localization of 
endogenous and epitope-tagged TMEMs to the transition zone. 

• Novel biochemical interactions of ciliary TMEMs comprise: interactions of TMEM17 
with IFT88 and a reciprocal interaction with TMEM237, as well as verification of 
known interactions with TMEM67 and TMEM216 and TMEM231; interactions of 
TMEM237 with TMEM67 and IFT88, a reciprocal interaction with TMEM216, as well 
as verification of a known interaction with TMEM17; interactions of TMEM138 with 
TMEM67, TMEM237 and IFT88, as well as verification of a known interaction with 
TMEM17. 
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• Systematic proteomic analyses using TAP identified the following indirect 
interactions and reciprocal interactions: interaction of TMEM17 with PRPF8, PRPF6 
and C21orf2; interaction of TMEM237 with TMEM17. 

A second aspect of Objective 2 was to clone and express the N-terminal domain of 

TMEM67 (Nt-TMEM67) in order to produce protein for X-ray crystallography trials and for 

production of an “Affimer” artificial non-antibody binding protein. The overall objective of 

this work was to use structural biology methods to identify potential ligands of the orphan 

receptor TMEM67 and to determine the role of missense variants and mutations in the Nt-

TMEM67 domain. Unfortunately, the yield of purified Nt-TMEM67 was not sufficient for MS 

identification and crystallization trials. 

Objective 3: To perform RNA interference-based studies to characterize genetic and 
potential functional interactions between ciliary TMEMs and to quantify their relative co-
localizations at the basal body, in the transition zone and in the axoneme. 

• Confirmed that knock-down of TMEM17, TMEM67, TMEM138, TMEM231 and 
TMEM237 caused significant reductions in cilia incidence. 

• Knock-down of TMEM17, TMEM138, TMEM231 and TMEM237 significantly mis-
localized TMEM67. These results indicate that TMEMs are potential mediators that 
may link TMEM17, TMEM138, TMEM231, and TMEM237 with TMEM67 in common 
molecular pathways, suggesting potentially new interactions and localization-based 
functions; it may there are both physical and genetic interactions between TMEMs 
and the TMEM67 that may link in common molecular pathways such as Wnt 
signalling. 

• Knock-down of the selected TMEMs did not have any significant effect on the co-
localization of RPGRIP1L with ciliary sub-compartments. This means that RPGRIP1L is 
the sole protein responsible for TMEMs recruitment to cilia. In addition, it implying 
that RPGRIP1L is higher in an organizational hierarchy than the TMEMs and 
RPGRIP1L has critical functionality at the transition zone beyond being a mediator of 
ciliogenesis, possibly it functions as a cilium-specific scaffold that regulates cilium 
stability and is not affected by the presence or absence of the TMEMs. 

• Knock-down of Tmem17, Tmem138, Tmem231 and Tmem237 significantly mis-
localized CEP290, implying that these TMEMs are responsible for CEP290 
recruitment to the transition zone of cilia involved in regulating the stability of 
axoneme and transition zone sub-compartments in this module. All of which work as 
a mediator of primary cilia formation and may reveal new compartment-specific 
biological functions or/and these observations suggest that CEP290’s role may be 
ciliogenesis pathway-specific. In addition, the transition zone proteins TMEMs are 
required for primary cilium formation and mediate the correct organization of the 
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IFT88 and CEP290 modules. Such modules (CEP290) and (TMEM67), work togather 
as ciliary gatekeeper modules, anticipated functions in mIMCD-3 are by facilitating 
entry into the out of cilia at the transition zone by blocking unauthorized entry of 
proteins or preventing diffusion of those proteins into ciliary membrane. 

These results raise questions of whether these biochemical and/or genetic 

interactions are limited to the mIMCD-3 kidney epithelial cell-line. Furthermore, why would 

the loss of a single transmembrane protein have such a profound consequence on different 

ciliary sub-compartments? Do TMEM17, TMEM 138, TMEM216, TMEM231 and TMEM237 

act as a co- receptor for TMEM67, previously described as a possible Frizzled-like receptor 

for Wnt5a (Abdelhamed et al., 2015). If so, what is the molecular basis of these 

interactions? A novel interaction between TMEM components of the ciliary transition zone 

and an IFT-B component, IFT88, was also identified here. Previous studies have only 

suggested an interaction with IFT-A components (Scheidel and Blacque, 2018), 

strengthening the link between transition zone and IFT activities. 

The overall conclusion of this work is that the TMEM17, TMEM67, TMEM216, 

TMEM138, TMEM231 and TMEM237 proteins are necessary for the proper functions of 

primary cilia but have specialized, discrete functions. In particular, multiple approaches 

demonstrated that TMEM17 is a robust interaction partner of TMEM67. In addition, IFT-B 

mediates ciliary protein trafficking through interactions between its component IFT88 and 

possibly 3 TMEMs that include TMEM17, TMEM138 and TMEM237. These provide new 

insights into the organization of the ciliary transition zone and the disease mechanisms of 

human ciliopathies. 

6.2 How do the key findings complement those from other studies? 
 
 The most recent research on ciliopathies has shifted towards a focus on ciliary 

transition zone proteins since many of these components are mutated as a cause of 

ciliopathies (see section 6.1) (Ishikawa and Marshall, 2011). Hence, in this project selected 

ciliary transition zone genes that are implicated in defects in signal transduction pathways, 

and the maintenance and formation of cilia, were studied. Figure 6.1 reviews the 

biochemical and genetic interactions of ciliary proteins within ciliary sub-compartments, 

focusing on those documented to occur in the transition zone from previous studies and 

comparing these with the results of the current study. It should be noted that not all of the 
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proteins represented in Figure 6.1 are exclusively located in the transition zone, but may 

also be found at the basal body. The following provides an overview of previous research 

studies. 

Sang et al. (2011) provided an initial basis for choosing the protein-protein 

interactions and functional modules of most relevance for the current study; Sang et al. 

(2011) investigated 3 ciliated model cell-lines comprising NIH 3T3 fibroblasts, mIMCD-3 

kidney epithelial cells and human retinal pigment epithelial (RPE) cells using a tandem 

affinity G-LAP-Flp purification strategy followed by MS identification of protein species. The 

authors used disease proteins NPHP1, NPHP2/Inversin, NPHP3, NPHP4, NPHP5/IQCB1, 

NPHP6/CEP290, NPHP8/RPGRIP1L, AHI1/Jouberin and MKS1 for the identification of 

interacting proteins but did not included TMEMs in their study. They demonstrated that 

RPGRIP1L localised at the ciliary transition zone and interacted with NPHP1 and NPHP4, an 

interaction confirmed by a subsequent study (Williams et al., 2011). This study described 2 

separate functional modules in C. elegans. The MKS/MKSR module contained MKS1, 

MKSR1/B9D1, MKSR2/B9D2, MKS3/TMEM67 and MKS6/CC2D2A, whereas the NPHP 

module contained NPHP1 and NPHP4 (Williams et al., 2011). Their analyses revealed that 

RPGRIP1L was functionally linked to both modules. 

Garcia-Gonzalo et al. (2011) also used standard ciliated model cell-lines to identify 

genetic and biochemical analyses. This study identified mutations in TCTN1, encoding the 

transmembrane protein Tectonic-1, that localized to the ciliary transition zone and 

interacted with CC2D2A, MKS1, B9D1, Tectonic-2/TCTN2, Tectonic-3/TCTN3, CEP290, 

TMEM67 and TMEM216. Furthermore, Tectonic-1 was required for transition zone 

localization of MKS1 and TMEM67. Interestingly, CEP290 was identified as a Tectonic-1 

interactor by MS analysis and chromatography, but not by coimmunoprecipitation assay, 

whereas TMEM67 and TMEM216 coimmunoprecipitated with Tectonic-1 but were not 

detected by MS analysis. Therefore, the authors proposed that CEP290, TMEM67 and 

TMEM216 serve as sub-stoichiometric or peripheral components of the Tectonic complex. 

In a parallel study, Huang et al. (2011) identified TMEM237 as a ciliopathy gene using 

next generation DNA sequencing. They found mutations in TMEM237 as a cause of JBTS 

type 14. The model systems used in this study comprised mIMCD-3 ciliated cells, C. elegans, 
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and Danio rerio (zebrafish) to investigate the biochemical and genetic interactions of 

TMEM237 and other ciliary proteins. First, Huang et al. (2011) confirmed the localization of 

TMEM237 to the transition zone and demonstrated that TMEM237 functionally interacted 

with TMEM216, B9D1, B9D2 and NPHP4 at the transition zone in C. elegans. Second, this 

study indicated that TMEM237 required RPGRIP1L for localization to the transition zone in 

both the mIMCD-3 cell and C. elegans models. Third, in Rpgrip1l zebrafish mutants, both 

TMEM237 and TMEM216 failed to localize to the transition zone. Based on these findings, 

Huang et al. (2011) suggested that RPGRIP1L has a structural role in mediating the 

scaffolding or bridging between interacting ciliary proteins. The authors speculated that 

TMEM237, TMEM216, TMEM67 and possibly other TMEMs form a receptor-coreceptor 

complex at the transition zone that may help in mediating signaling pathways. 

Chih et al. (2011) focused on the characterization of the complex of B9 domain-

containing proteins using RNAi screening, proteomics, cell biological and mouse genetics 

approaches. Chih and colleagues identified B9D1-interacting proteins using TAP/MS assays 

which included B9D2, TCTN1, TCTN2, MKS1, AHI1, CC2D2A, TMEM231, TMEM17 and 

KCTD10. In addition, they carried out gel filtration chromatography on lysates of mIMCD-3 

and embryos at 13.5 days of gestation and identified that TMEM231, TMEM17, MKS1, 

CC2D2A, AHI and TCTN1 were in a high molecular weight complex. Furthermore, siRNA 

assays indicated that all of the members of the B9D1 complex co-localized with TMEM231, 

and that siRNA knockdowns of B9d1, Tmem17 and Cc2d2a disrupted Tmem231 localization 

to the transition zone. 

In a subsequent study, Gupta et al. (2015) generated a protein interaction map of 

the human centrosome-cilium interface using in vivo proximity-dependent biotinylation 

(BioID) in ciliated hTERT-RPE1 cells. The MS identification of bait interactions showed that 

TMEM17 interacted with TMEM237, which is consistent with the TAP interaction data 

presented in the current study using mIMCD-3 cells (Figure 6.1 J). Gupta et al., (2015) 

showed that transition zone baits in ciliated and non-ciliated cells comprised of membrane-

associated TMEM17, TMEM67, TMEM216 and TMEM237. These results are also consistent 

with the co-immunoprecipitation and TAP interactions presented here, which demonstrated 

that TMEM237 interacted with TMEM17, TMEM216 and TMEM67 (Figure 6.1 J); TMEM216 
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interacted with TMEM237 (see Figure 6.1 H); TMEM67 interacted with TMEM17 (see Figure 

6.1 F); and TMEM17 interacted with TMEM67, TMEM216 and TMEM237 (see Figure 6.1 D). 

The TMEM67 and TMEM237 interactions are therefore consistent with the hierarchy of 

interactions within the transition zone reported in previous studies (Garcia-Gonzalo et al., 

2011, Williams et al., 2011). 

In a parallel proteomics study, Yang et al. (2015) reconstructed a molecular map of 

important proteins in the transition zone, the transition fibers and the basal body by STED 

super-resolution microscopy. (Yang et al., 2015) selected and imaged components known to 

be associated with the 3 major multiprotein complexes of the transition zone sub-

compartment including CEP290, RPGRIP1L, MKS1, TMEM67 and TCTN2. They found that 

TMEM67 and TCTN2 localized at the same axial level as RPGRIP1L and MKS1 and they 

suggested that these proteins may interact directly with each other because of this. Yang 

and colleagues also suggested that these proteins may serve regulatory roles for tissue-

specific ciliogenesis, suggesting that mutation in TCTN2 affects ciliogenesis in a tissue-

dependent manner whereas mutation in TMEM67 has slightly different ciliogenic defects, 

TMEM67 mutations are milder than those in TCTN2 (Garcia-Gonzalo et al., 2011), because 

mouse Tctn2 mutant embryos lacked nodal cilia, while cilia in neural tubes were almost 

absent, morphologically defective or failed to elongate axonemes. In contrast, in the mouse 

Tmem67 mutant embryonic kidneys developed cysts and kidney tubules displayed few, 

morphologically defective cilia. This study also showed that CEP290 localised at a different 

axial level, appearing to bridge the basal body and other transition zone proteins. Hence, 

they determined there are at least 2 layers of proteins at the transition zone: one containing 

RPGRIP1L and MKS1, and the other comprising CEP290. TMEM67 and TCTN2 localised at the 

ciliary membrane, corresponding to the ciliary necklace, at the same axial level as RPGRIP1L 

and MKS1. In summary, mapping the localizations of RPGRIP1L and CEP290 provided 

insights into the potential tethering and anchoring functions of these important ciliary 

proteins. 

Lambacher et al. (2016) focused on TMEM107 as a novel transition zone protein and 

investigated its function. First, they identified mutations in TMEM107 as a cause of OFD and 

JBTS in patients. Second, studies in C. elegans revealed that TMEM107 controlled ciliary 
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composition by demonstrating that TMEM107 genetically interacted with NPHP4. 

Lambacher et al. (2016) speculated that this interaction could regulate cilium formation and 

assembly of ciliary membrane with the Y-shaped linkers. Also, they predicted the position of 

TMEM107 at an intermediate level within a hierarchical organization, suggesting the 

existence of a new module at the transition zone containing only TMEM107 that is 

intermediate between 2 layers. The top layer is a module containing TMEM17, TMEM237, 

TMEM67, MKS1 and CC2D2A. The lower layers included TMEM216, B9D1, B9D2 and 

TMEM231, with RPGRIP1L at the root of the hierarchy. This study expanded the MKS 

module and provided insights into transition zone subdomain architecture in worms 

(summarized in Figure 6.1). 

Li et al. (2016) provided fundamental insights into the assembly pathway of the 

ciliary transition zone and identified 2 genes, TMEM218 and TMEM80, as novel MKS module 

components in C. elegans. Additionally, they also identified TMEM138 and CDKL1-4 as 

components of a CEP290-associated module. Moreover, they confirmed the connection of 

TMEM17 to human ciliopathies when they showed that a private mutation in TMEM17 was 

a probable cause of OFD type 6. In addition, Li et al. (2016) also identified possible private 

mutations for TMEM138 and TMEM231. In this study, CEP290 was considered to be the 

core of its own NPHP5-6 network, but was part of an MKS module as described by Garcia-

Gonzalo et al. (2011). Li et al. (2016) suggested the existence of an RPGRIP1L- and CEP290-

dependent assembly pathway for building a functional transition zone. Finally, they drew a 

proposed module for the transition zone based on their findings and some major direct and 

indirect connections between different modules or proteins (summarized in Figure 6.1). In 

particular, Li et al. (2016) showed in C. elegans that TMEM218 interacted with NPHP4 but 

not TMEM216, and its localization at the transition zone depended on RPGRIP1L and MKS 

module proteins including TMEM216. They indicated that TMEM218 required CEP290 for 

assembly at the transition zone, and both CDKL1 and TMEM138 required CEP290 for their 

transition zone localisation although their function is independent of either the MKS or 

NPHP modules. Moreover, they showed that the newly identified transition zone 

component TMEM80 required TCTN1, TCTN2, and CC2D2A for its correct localisation. 
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The current project is a continuation of these studies by providing a systematic 

analysis and collation of localization data, genetic analyses through siRNA knockdowns and 

biochemical interaction patterns (through co-immunoprecipitations and TAP assays), 

revealing a map of transition zone protein interactions (summarized in Figure 6.1). This 

network involves many known ciliopathy proteins and reveals notable novel interactions. In 

this project, TMEM17 was the transition zone protein that had most interactions, in 

comparison to TMEM67, TMEM138, TMEM216, TMEM231 and TMEM237. This result is 

consistent with the previous study of Gupta et al. (2015) which showed that TMEM17 had 

the most transition zone protein interactors from a broad selection of ciliopathy proteins 

(ranked by decreasing numbers of baits as: MKS1, B9D2, RPGRIP1L, TCTN1, RPGRIP1, 

DYNIT1, TCTN2,TMEM67, RPGR, LCA5, NEK8, NPHP4 and AHI1). 

 

6.3 Biochemical and genetic interactions of TMEM proteins in the 
ciliary transition zone and implications for ciliary sub-compartment 
organization 
 

The general aim of the project was to examine in greater detail the ciliary 

interactions among multiple proteins within the ciliary transition zone. In the first instance, 

N-TAP (streptavidin-FLAG)-tagged ciliary transition zone proteins were successfully 

generated, including TMEM17, TMEM138, TMEM216, TMEM231 and TMEM237, as well as 

C-TAP (streptavidin-FLAG)- and eYFP-tagged TMEM67. Co-immunoprecipitation experiments 

were then performed to investigate if the selected ciliary transition zone TMEMs formed a 

biochemical network required for proper cilia formation and function. TAP-tagged TMEMs 

were exogenously over-expressed in HEK-293 cells and were pulled-down with specific 

antibodies. In addition, to assess the nature of the ciliary organisation defects following 

depletion of specific TMEMs, specific analyses for siRNA knock-down assays were 

developed. Disruption of ciliary organization and localization of marker proteins following 

knock-downs was quantified by Volocity 64x analyses. 

To illustrate both approaches, TMEM67 and TMEM17 localization to the ciliary 

transition zone was confirmed (Figure 4.4 B; Figure 4.5 A) and results from co-

immunoprecipitations (Figures 4.7 C; 4.9) confirmed an interaction between TMEM67 and 

TMEM17. Furthermore, siRNA knockdown was used to delineate the interactions with the 
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TMEM67 module, at both the genetic and biochemical levels. This is important because 

TMEM67 mutations are associated with a number of ciliopathies, including MKS3, and 

TMEM67 is a key player in the Wnt signalling pathway and could act as a component of 

selective permeability at the transition zone (Leightner et al., 2013). TMEM17, a newly 

identified protein, was described as a cilium-associated protein (Li et al., 2016) and a 

homozygous missense private mutation in a single family has been described as causative 

for Oral-Facial-Digital syndrome type 6 (OFD6) (Li et al., 2016) (see section 1.6.3.5; Figure 

1.10). 

 In this thesis, comparison of ciliary organization between a specific siRNA 

knockdown and a scrambled siRNA negative control revealed re-organization and changes in 

localization of the ciliary axoneme marked by acetylated α-tubulin and the basal body. A 

decreased association of the ciliary transition zone with the basal body following 

knockdown of TMEM17 was noted (Figure 5.4 D). Possible interpretations of this result may 

be that the transition zone and axoneme move away from their correct positions, in order 

to maintain the new structure, which allows this compartment to be functional and to be 

connected to the axoneme and basal body. This is an unexpected and novel result that 

emphasizes the importance of TMEM17 in organizing the ciliary transition zone in mIMCD-3. 

Furthermore, these results indicate that TMEM17 is required for the correct localization of 

TMEM67 at the ciliary transition zone. By contrast, in C. elegans, (Lambacher et al., 2016) 

indicated that in the MKS module, TMEM17 is not required for the localization of other 

transition zone proteins. Two possible explanations for the difference in TMEM17 function 

in the mammalian compared to the nematode transition zone are the molecular assembly 

hierarchies. The differences in biochemical and genetic interactions for the MKS modules 

are likely due to differences in cilia structure and assembly in mammals and C. elegans. 

Some C. elegans and mammalian ciliary genes are highly conserved (for example, TMEM67 

and the B9 domain proteins), but there are many that are not (for example, CEP290). This 

may be because C. elegans does not have SHH or Wnt signalling and therefore may have a 

reduced need for defined ciliary sub-compartments. 

In the TMEM67 module, the effect of TMEM138 depletion was also studied. This 

indicated that the ciliary transition zone protein TMEM138 is necessary for the structural 
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organization of primary cilia compartments. Co-immunoprecipitation results revealed that 

TMEM138 interacted with TMEM67, TMEM17, IFT88 and TMEM237 using buffers with 

different ionic strength and different detergents (CHAPS and NP40; Figure 4.6 D E; Figure 4.7 

A). In addition, disordered organization and localization of the transition zone and axoneme 

was observed following TMEM138 knockdown (Figure 5.4 D), suggesting that the transition 

zone-axoneme compartments move away from each other and form a gap (Figure 5.5). This 

implies that TMEM138 is an essential ciliary protein required for proper localization of 

ciliary compartments. 

With regard to the functional roles of TMEM216, it appears to cooperate with 

TMEM237 and TMEM67 in maintaining normal ciliary functions (Huang et al., 2011). In 

addition, TMEM216 serves as a possible co-receptor that regulates the RhoA pathway 

(Valente et al., 2010) and mediates the cytoskeletal rearrangements needed for basal body 

docking during ciliogenesis (Valente et al., 2010). Co-immunoprecipitation assays confirmed 

a reciprocal interaction: TMEM216 interacted biochemically with TMEM237 (Figure 4.6 A, B; 

Figure 4.7 B). TMEM237 is required for ciliogenesis in mammalian cells, zebrafish and C. 

elegans. Mutations in TMEM237 causes failure of cilia formation and deregulation of both 

canonical and noncanonical/PCP Wnt signalling pathways (Huang et al., 2011). Co-

immunoprecipitations demonstrated that TMEM237 interacted with TMEM216 in a 

reciprocal co-immunoprecipitation (Figure 4.6 A, B; Figure 4.7), which extended the 

previous observations of (Huang et al., 2011) that TMEM237 interacted functionally with 

TMEM216 at the transition zone in mIMCD-3 cells. In addition, and consistent with a 

previous study (Youn and Han, 2018), the co-immunoprecipitation results indicated that 

TMEM237 genetically interacted with the TMEM67 module, and its knockdown resulted in a 

stronger defective phenotype at the transition zone/basal body compartment (Figure 5.4 D; 

Figure 5.5). These results support a possible function of TMEM237 and other transition zone 

proteins in basal body anchoring and in establishing a ciliary gate during ciliogenesis. 

In the TMEM67 module, I also examined the possible roles of the ciliary transition 

zone protein, TMEM231. This is mutated as a cause of JBTS type 20 and MKS type 11 (Youn 

and Han, 2018). I observed significant and striking phenotypes across the TMEM67 module 

following TMEM231 depletion, resulting in disruptions to the organization of the transition 
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zone and basal body, as well as their positioning relative to the ciliary axoneme. These 

results emphasize the importance of TMEM231 in organizing these ciliary compartments, 

suggesting that it prevents aberrant extension of the transition zone in order to maintain 

connection to the axoneme and basal body (Figure 5.4 B; Figure 5.5). 

RPGRIP1L plays a central role in anchoring other MKS and NPHP proteins (Williams et 

al., 2011) and mutations in this gene are causative of a range of ciliopathies. Previous 

studies have shown that RPGRIP1L localises at the base of primary cilia and describe it to be 

either a basal body protein (Arts et al., 2007, Delous et al., 2007, Vierkotten et al., 2007) or a 

transition zone protein. Gerhardt et al. (2015) observed that RPGRIP1L localised at the 

transition zone during G0 and at both centrosomes during mitosis in mouse embryonic 

fibroblasts (MEFs), suggesting that its localization is dependent on the cell cycle but not 

providing detail into the molecular mechanism that could regulate this intriguing switch in 

localization and potential function. In support of this observation, Gerhardt et al. (2015) also 

described the surprising biochemical interaction of mouse RPGRIP1L with PSMD2, a 

component of the proteasomal 19S subunit. They suggested that RPGRIP1L could regulate 

the activity of a ciliary-specific proteasome, presumably associated with RPGRIP1L 

localization at the centrosome rather than the transition zone, that could regulate cilia-

mediated signalling. Izawa et al. (2015) suggested that the key mechanism in controlling 

ciliogenesis by RPGRIP1L in the Gerhardt et al. (2015) study was ubiquitination/de-

ubiquitination of key ciliogenesis proteins at the ciliary base including the ubiquitin E3 

ligases Von Hippel-Lindau tumor suppressor (pVHL) and mindbomb E3 ubiquitin protein 

ligase 1 (MIB1) (Thoma et al., 2007, Huang et al., 2009a).  Correct proteasomal function is 

essential for proper development and function of multiple organs (Rubinsztein, 2006, 

Breusing et al., 2009, Wang and Robbins, 2014). Gerhardt et al. (2015) suggested that the 

disruption of protein degradation could also result in ciliopathies, but the mechanistic 

details of this process remain unclear. 

Data in this thesis indicated that RPGRIP1L localized to the transition zone as 

expected, but after TMEM17, TMEM231, TMEM237 and TMEM67 depletions there was no 

disruption of localizations of other sub-compartments including the transition zone (Figure 

5.6). This suggests that RPGRIP1L is higher in an organizational hierarchy than the TMEM 
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proteins and that it is required for the correct formation of a normal transition zone, as 

suggested in previous studies (Yang et al., 2015). 

Basal bodies are believed to associate with membrane compartments in the early 

stages of cilia formation and to initiate axonemal growth (Goggolidou et al., 2014). Some 

studies suggest that CEP290 localizes to the basal body/centriole and centriolar satellites 

and that CEP290 could mediate basal body organization as well as regulation of ciliogenesis 

(May-Simera and Kelley, 2012, Murga-Zamalloa et al., 2011). Mutations in CEP290 cause 

nephronophthisis (Sayer et al., 2006) and a broad range of other ciliopathies including JBTS, 

BBS, LCA, SLS and MKS (Valente et al., 2006, Baala et al., 2007, Perrault et al., 2007) which 

affect distinct functions at the transition zone and centriolar satellites (Kobayashi et al., 

2014, Klinger et al., 2014).  On the other hand, a previous study (Craige et al., 2010) and a 

more recent study Yang et al. (2015) indicate that CEP290 organizes a discrete module in 

the transition zone by tethering ciliary membranes to axonemal microtubules. CEP290 was 

therefore potential candidate protein for further investigation in this project. IFT88 has 

been used as an axoneme marker in a previous study (Yang et al., 2015) and was used for 

this purpose in work here where ciliary marker choice for immunofluorescence microscopy 

was limited. My aim for studying IFT88 and CEP290 was to gain insights into how selected 

TMEMs affected CEP290 and IFT88 localization, and whether transition zone TMEMs affect 

the potential function of an IFT-B component (see section 1.2.4.5.1). Furthermore, a recent 

study on IFT-A components Scheidel and Blacque (2018) identified functional interactions 

between ciliopathy-associated IFT-A and transition zone MKS modules. They showed that 

the localization of TMEM216, TMEM67 and RPGRIP1L in the MKS module was disrupted, for 

example in ift-121/139 and ift-43/139 double mutant worms and ift-43/139 and ift-121/139 

double mutants, respectively. In contrast, CEP290 localization was unaffected in mutants, 

even in the ift-43/121/139 triple mutant. Furthermore, this study showed that IFT140 

regulated the transition zone restriction of MKS module components and exclusion of 

periciliary membrane proteins, and that IFT-43/121/139 control their entry and 

removal. These findings demonstrate that the IFT-A complex regulates ciliogenesis and the 

transition zone gating system. 
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The siRNA studies in this thesis suggest that TMEM17, TMEM138, TMEM231 and 

TMEM237 all have significant roles in cilia formation in both the TMEM67 and CEP290 

modules. For example, TMEM17 is required for CEP290 localization in primary cilia: siRNA 

depletion of Tmem17 caused CEP290 mis-localization at the base of primary cilia in this 

module, resulting in aberrant co-localizations between the axoneme and basal body 

compartments (Figure 5.7 B; Figure 5.8). Tmem138 knockdown resulted in defects in 

localization of IFT88 vs CEP290, as well as IFT88 vs basal body, causing aberrant co-

localizations and gaps between these compartments (Figure 5.7 B; Figure 5.8). These results 

reveal an important function of TMEM138 in cilia biology in this cellular model. Similarly, 

knockdown of Tmem231 and Tmem237 mislocalized cilia sub-compartments (Figure 5.7 B; 

Figure 5.8). Therefore, the transition zone proteins TMEM231 and TMEM237 are required 

for primary cilium formation and mediate the correct organization of the IFT88 and CEP290 

modules. Co-immunoprecipitation studies also demonstrated a novel interaction between 

some of the transition zone proteins (TMEM17, TMEM138 and TMEM237) and the IFT-B 

component IFT88 (Figure 4.6 C; 4.7 A, C). This suggests that these protein work as a complex 

and warrants further study in order to understand the functional purpose of this complex 

on, for example, transition zone gating. 

The siRNA results also suggested that TMEM ciliary components within these 

modules mediate partially separate ciliary functions: inactivating one selected component 

from an MKS module such as TMEM17 appears to be sufficient to fully disrupt another 

component, such as TMEM67 in the same module, and may be sufficient to fully disrupt the 

whole module. 

 

Overall, this project provides a better understanding of functional roles and 

interactions of ciliary TMEMs, providing further mechanistic understanding of the ciliopathy 

disease state. This may inform the design of future therapeutic interventions. The fact is 

that defining the mechanism of disease is a first step towards therapy. I demonstrated that 

TMEMs mutations using siRNA-based genetics experiments lead to the disruption of the cilia 

sub-compartments in ciliated kidney cells (mIMCD-3), thereby gaining potential insights into 

pathomechanisms of cystic kidney disease or ciliopathy disease progression. Specifically, 

the mis-localization of Tmem67 or Cep290, but not Rpgrip1l, when ciliary TMEMs are 
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ablated by RNAi provides insights into the hierarchy of transition zone proteins and may 

allow the best ciliary proteins to be more effectively prioritized during the development of a 

new targeted therapies. 

The coimmunoprecipitation and TAP-MS experiments have identified roles for 

unexpected interactions between ciliary transition zone proteins and, for example, splicing 

factors. The identification of new disease gene functions, and its interactions or complexes 

that related to the ciliary transition zone, may enable the future rational design of 

preventative treatments or new therapeutic interventions for cystic kidney disease which 

would have a major impact on the quality of life for patients and their relatives. For 

example, by understanding how the ciliary transition zone and associated ciliopathy 

proteins regulate ciliary sub-compartments and structure, this thesis work could lead to the 

design of small molecules that can advantageously increase or decrease permeability at the 

ciliary base, and thereby improve some of the progressive post-natal ciliopathy pathologies. 

Also, since the disrupted localizations of ciliary compartments resulted from the absence of 

transition zone proteins, they could, in principle, be corrected by gene replacement. For 

example, the restoration of a specific ciliary sub-compartments may be sufficient as an 

appropriate therapeutic target that leads to the prevention of progression of renal disease. 

In summary, the novel biochemical and genetic interactions between ciliary 

components that have been identified in this thesis, will enable us to better understand the 

pathogenesis and relationship between cilia and cystic diseases. This may contribute to new 

therapeutic strategies, since at the present time hemodialysis and renal replacement 

therapy remain the only effective treatments for end-stage kidney disease. 

 

6.3.1 Future plan  
 

The data in section (4.4.2.1) supports biochemical and genetic interactions between 

TMEM237, TMEM17 and TMEM138 and IFT88, linking transition zone components with the 

IFT-B complex. This is an interesting and unexpected observation, and in further 

investigations I would assess the following hypothesis: do transition zone TMEMs affect 

ciliary trafficking by IFT88 (and the IFT-B complex)? I would plan for a systematic mapping of 

TMEMs interaction network in living cells using BioID. The map would provide new insights 

or confirm the functional role of these TMEMs and IFT88 in cilia and disease. Also, I would 



      
 

 

200 

 

combine that with a CRISPR-Cas9 knock-out screen in which each TMEM gene tested in this 

thesis was targeted by different guide RNAs to order to ablate every gene. I would then use 

a high-content imaging approach, similar to the design of the siRNA experiments in Chapter 

5, in order to gain new insights into ciliary functions and better understand the molecular 

mechanisms underlying ciliopathies. Finally, Cep290-/- and Tmem67-/- mouse models, 

would be required to determine fully the in vivo effects of TMEM genes ablation and 

functional module disruption in physiologically-relevant kidney tissue. 

 
6.4 Biochemical and genetic interactions between ciliary transition 
zone transmembrane proteins identify a TMEM17-TMEM67 
functional module in mammalian cells  

Further research is required to gain insights into the biological functions of these 

ciliary genes that are mutated as a cause of ciliopathies. It was investigated here how 

ciliopathy-associated genes interact to support ciliogenesis, and the effect of gene knock-

down on ciliary organization was examined. Firstly, TMEM17 mutation screening was 

performed in a cohort of 36 patients with MKS that were negative for mutations in other 

known MKS genes. I confirmed that these individuals did not have sequence variants in 

TMEM17 that could be interpreted as pathogenic. Secondly, the biochemical interaction 

between TMEM67 and TMEM17 was confirmed using a series of co-immunoprecipitations 

with FLAG-tagged constructs (Figure 4.7 C; Figure 4.9). The biochemical interaction was 

further supported by evidence for a genetic interaction between TMEM17 and TMEM67 

using siRNA knockdowns (Figure 5.4 D). 

One possible explanation is that the interaction between TMEM17 and TMEM67 at 

the transition zone is required to regulate ciliary complexes in response to cilia formation. 

Since knock-down of Tmem17 resulted in mis-localization of ciliary compartments, this 

suggests that the interaction with TMEM17 blocks the cues for correct localization of 

TMEM67 to the ciliary transition zone. A second interpretation, not mutually exclusive to 

this first, is that TMEM67 is a receptor that involved in non-canonical Wnt signalling 

(Abdelhamed et al., 2015). I speculate that TMEM17 may work as co-receptor for TMEM67, 

and may function to coordinate signalling pathways with TMEM67. A third explanation is 



      
 

 

201 

 

that disruption or loss of TMEM17 changes the conformation and available binding sites of 

transition zone ciliary components in such a way as to prevent or block the interaction of 

TMEM17 with TMEM67. This would restrict the binding of TMEM17 with TMEM67, creating 

only a small pool of TMEM17-bound TMEM67. For instance, some variants in the predicted 

transmembrane helices of TMEM17 might alter hydrophobic interactions with TMEM67 in 

the ciliary membrane that may contribute to disruption of cilia signalling pathways such as 

Wnt signal transduction as a cause of ciliopathy phenotypes. 
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Figure 6. 1: Schematic of biochemical and genetic interaction networks for ciliary 
transition zone proteins based on previous studies and this thesis. The published study and 
model systems used to generate these data are shown above each representation of the 
ciliary transition zone. Each transition zone schematic indicates of the composition of the 
identified ciliary proteins and their interaction networks in this sub-compartment. Pink dot 
indicates transition zone ciliary components identified by different studies; a double violet 
line indicates a genetic interaction; a black line indicates a biochemical interaction identified 
by co-immunoprecipitation assay; a dashed line indicates a biochemical interaction 
identified by a TAP/MS assay; a grey oval indicates two grouped modules. For the 
Lambacher et al. (2016) study, the grey box indicates co-evolution relationships between 
MKS components using differential Dollo parsimony and the green triangle indicates a 
phylogenetically-conserved role for C. elegans TMEM107 in organising an MKS submodule 
with TMEM231 and TMEM17. Published studies are: Sang et al. 2011, Garcia- Gonzalo et al. 
2011, Williams et al. 2011, Huang et al. 2011; Chih et al. 2011, Gupta et al. 2015, Lambacher 
et al. 2016 and Li et al. 2016. Findings from the current project (2020) are summarized in the 
lowest schematic. 

 

6.5 Final remarks 
 

As highlighted throughout this project, this research aimed to understand and 

identify the relationship between many of the disease-related ciliary transition zone genes 

that are mutated in this group of ciliopathies. This project has developed an approach to 

combining complementary methods of functional genomics with proteomics in order to gain 

new insights into the function of the ciliary transition zone sub-compartment. This approach 

has demonstrated that TMEM67, RPGRIP1L and CEP290 are essential for assembly of cilia 

compartments in mouse ciliated mIMCD-3 cells. They also interact, at genetic and 

biochemical levels, with other proteins in the transition zone including IFT88, TMEM17, 

TMEM231, TMEM138 and TMEM237. These studies suggest that the selected ciliary 

proteins work together as a complex or a series of potentially interlocking complexes. 

Individually, each of these proteins is located within MKS/JBTS complexes that 

transduce Sonic Hedgehog and probably other ciliary-related signalling events. The 

specificity in localization and function of these proteins indicate that they are fundamental 

to mediating these processes. However, there is little insight into the mechanistic detail of 

these processes and there must be significant effort invested into system biology 

approaches (for example, affinity proteomic and reverse-genetics screens, super-resolution 

microscopy/(STORM) and cellular cryoEM approaches) to understand the relevance of 

transition zone proteins for ciliogenesis and the pathomechanisms of ciliopathies. For 
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example, in the future if “Affimer” artificial binding reagents were generated for TMEM67 

or other selected TMEMs, these could be used as direct replacements for antibodies. 

Affimers, because of their smaller size, are useful for super resolution microscopy studies of 

intracellular signalling and the interactions of extracellular receptors, as well as the overall 

organization and localization of ciliary transition zone proteins. As an example of this 

approach, Shi et al. (2017) indicated that NPHP1, TMEM231, and RPGRIP1L form nested 

rings comprised of nine- fold doublets using super-resolution microscopy.  

 In a further recent advance using cryoelectron tomography (cryoET), SunSun et al. 

(2019) determined the architecture of primary cilia on epithelial kidney cells (the LLC-PK1 

and mIMCD-3 cell-lines). Surprisingly, this data demonstrated that the architecture of 

primary cilia differed extensively from the commonly acknowledged 9+0 paradigm (Sun et 

al., 2019). It seems likely that 3D structural studies and mapping the organization of the 

ciliary transition zone will reveal further surprises and provide new exciting insights into the 

functional roles of TMEMs in cilia formation and maintenance.
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Appendix A 
 
A.1 Ethical Approval 
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A.2 Primer sequences 
Primer sequences used in this chapter. Primer sequences were checked using a BLAST tool 
(http://blast.ncbi.nlm.nih.gov/Blast) to ensure specific binding and avoidance of SNPs. 
Primers covered the open reading frames including the protein-coding exons for TMEM17 
(NM_198276.3) and TMEM218 (NM_001258241.2). Primers were ordered from Sigma-
Aldrich. 
 

Primer Sequence 5’-3’ 
TMEM17 exon1 Fw GGAACCACGGAGCCTCG 
TMEM17 exon1 Rv TAGGTACGGGCAAATTCTGG 

TMEM17 exon2-3 Fw AAAATTTGGTGTTTTACTGAGCC 
TMEM17 exon2-3 Rv CTGTGCTCTTTCTGCCACAC 
TMEM17 exon4 Fw TTGGAATCACTCACAGAGCC 
TMEM17 exon4 Rv AACACTTGCTTTGTCCCTTTTC 

 
Primer Sequence 5’-3’ 

TMEM218 exon6 Fw TAAGGGACTCTGGGACTGGA 
TMEM218 exon6 Rv TGTTTAGTGAGCATCAGCGA 
TMEM218 exon7 Fw GGAAGAGACTGTCCAGACCTAA 
TMEM218 exon7 Rv GACGGATGTGCAGACCAA 
TMEM218 exon8 Fw CCCACTCATCATGGAGTTCA 
TMEM218 exon8 Rv TAGTGCCTTCCTGCTCATCA 

 
A.3 Examples of high and poor-quality Sanger sequences 
 
Example 1: A high quality sequence with accurate base-called (Raw data were collected on 
an electronic .zip folder (see supplement 1). 
  

 
 
Example 2: Poor quality sequence, for which samples were excluded or re-sequenced (Raw 
data were collected on an electronic .zip folder (see supplement 1). 

 

 
 



      
 

 

214 

 

Appendix B 
 
B.1 Examples of the expression vectors generated in this study using TAP_GW331. 
Representation of the N-terminal TAP TMEM138, TMEM216, and TMEM237 constructs, 
respectively. The TMEM genes are shown in pink. Restriction enzyme sites are shown by 
grey lines. Images adapted from SnapGene (http://www.snapgene.com). 
 
B.1.1: N-TAP_GW331/TMEM138 
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B.1.2: N-TAP_GW331/TMEM216 

 
 
 
B.1.3: N-TAP_GW331/TMEM237 
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B.2 Sequencing Primers 
List of forward (Fw) and reverse (Rv) universal primer sequences used in this study. 
 

Name Primer sequence 
T7 TAA-TAC-GAC-TCA-CTA-TAG-GG 

SP6 ATT-TAG-GTG-ACA-CTA-TAG 
M13 Fw TGT-AAA-ACG-ACG-GCC-AGT 
M13 Rv CAG-GAA-ACA-GCT-ATG-ACC 

BGH TAG-AAG-GCA-CAG-TCG-AGG 

 
B.3 MS results 
B.3.1: protein list from experiment 1. (Raw data were collected on an electronic .zip folder 
(see supplement 2). 

 
 
B.3.2: Table 1: MS results following affinity purification of Nt-TMNEM67. Only proteins that 
were identified in experiments 1 and 2 are listed. (Raw data were collected on an electronic 
.zip folder (see supplement 2). 
 

Protein ID description 
Accession 
number 

 
MW 

#Peptides 
(experiment 1) 

#Peptides 
(experiment 2) 

Nucleobindin-1 OS=Homo sapiens 
GN=NUCB1 PE=1 SV=4 

Q02818 53879 17 11 

Pyruvate kinase PKM OS=Homo 
sapiens GN=PKM PE=1 SV=4 

P14618 57937 9 16 

Heterogeneous nuclear 
ribonucleoprotein L OS=Homo sapiens 

GN=HNRNPL PE=1 SV=2 

P14866 64133 4 6 

Elongation factor 2 OS=Homo sapiens 
GN=EEF2 PE=1 SV=4 

P13639 95338 2 6 
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Appendix C 
Table C.1: Proteins associated with peptides pulled-down in a TAP experiment, identified by mass spectrometry, including Nt-TAP-TMEM17 
constructs biological replicates (rep.) n=4, Nt-TAP-TMEM138 (n=2), Nt-TAP-TMEM216 (n=1), Nt-TAP-TMEM231 (n=1), and Nt-TAP-TMEM237 
(n=1). A table to show the full mass-spectrometry results demonstrating the pulled down proteins and number of peptides associated. Some 
cilia related proteins interactions are highlighted in green. (Raw data were collected on an electronic .zip folder (see supplement 2). 

Protein ID description 
 

 

Accession 
number 

 

 
MW 

 

TMEM17 TMEM67 TMEM138 TMEM216 TMEM231 TMEM237 
#Peptides 

(rep. 1) 
#Peptides 

(rep. 2) 
#Peptides 

(rep.3) 
#Peptides 

(rep. 4) 
#Peptides 

 (rep.1) 
#Peptides 

 (rep.1) 
#Peptides 
 (rep. 2) 

#Peptides 
(rep.1) 

#Peptides 
(rep.1) 

#Peptides 
(rep.1) 

Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2 P07437 50 
kDa 

2 17 14 0 0 15 0 0 8 2 

Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 
P60709 42 

kDa 
4 5 16 0 0 8 0 0 2 0 

78 kDa glucose-regulated protein OS=Homo sapiens 
GN=HSPA5 PE=1 SV=2 

P11021 72 
kDa 

0 2 11 0 0 5 0 0 0 2 

Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 
SV=1 

P68363 50 
kDa 

0 15 12 11 0 9 0 0 5 0 

Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 
PE=1 SV=1 

P68104 50 
kDa 

2 5 11 0 0 10 0 0 2 2 

Heat shock 70 kDa protein 1A/1B OS=Homo sapiens 
GN=HSPA1A PE=1 SV=5 

P08107 70 
kDa 

2 2 13 15 0 8 0 0 2 0 

Transmembrane protein 17 OS=Homo sapiens GN=TMEM17 
PE=2 SV=2 

Q86X19 23 
kDa 

4 4 3 3 0 0 0 0 0 2 

Polyubiquitin-B OS=Homo sapiens GN=UBB PE=1 SV=1 
P0CG47 26 

kDa 
2 2 2 2 0 3 0 0 0 0 

Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1 
 

P00738 45 
kDa 

2 0 0 0 0 0 2 2 2 2 

GTP-binding nuclear protein Ran OS=Homo sapiens GN=RAN 
PE=1 SV=3 

P62826 24 
kDa 

3 0 3 0 0 0 0 0 0 0 

Sodium/potassium-transporting ATPase subunit alpha-1 
OS=Homo sapiens GN=ATP1A1 PE=1 SV=1 

P05023 113 
kDa 

2 0 3 2 0 0 0 0 0 0 

40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 
SV=3 

P62269 18 
kDa 

2 2 2 3 0 0 0 0 0 0 

transport protein Sec61 subunit alpha isoform 1 OS=Homo 
sapiens GN=SEC61A1 PE=1 SV=2 

P61619 52 
kDa 

3 0 0 2 0 0 0 0 0 0 

Collagen alpha-1(I) chain OS=Homo sapiens GN=COL1A1 PE=1 
SV=5 

P02452 139 
kDa 

2 0 0 0 0 0 0 2 0 0 

Histone H2B type 1-J OS=Homo sapiens GN=HIST1H2BJ PE=1 
SV=3 

P06899 14 
kDa 

0 6 4 0 0 7 0 0 0 0 

Heterogeneous nuclear ribonucleoprotein U OS=Homo sapiens 
GN=HNRNPU PE=1 SV=6 

Q00839 91 
kDa 

0 8 4 0 0 6 0 0 0 0 

ATP synthase subunit alpha, mitochondrial OS=Homo sapiens 
GN=ATP5A1 PE=1 SV=1 

P25705 60 
kDa 

0 3 16 0 0 0 0 0 0 0 

Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2 
P62805 11 

kDa 
0 6 2 7 0 7 0 0 0 0 

Heat shock cognate 71 kDa protein OS=Homo sapiens 
GN=HSPA8 PE=1 SV=1 

P11142 71 
kDa 

0 5 14 0 0 6 0 0 0 0 
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Pre-mRNA-processing-splicing factor 8 OS=Homo sapiens 
GN=PRPF8 PE=1 SV=2 

Q6P2Q9 274 
kDa 

0 58 2 7 0 0 0 0 0 0 

Poly [ADP-ribose] polymerase 1 OS=Homo sapiens GN=PARP1 
PE=1 SV=4 

P09874 113 
kDa 

0 7 3 3 0 11 0 0 0 0 

Histone H1.2 OS=Homo sapiens GN=HIST1H1C PE=1 SV=2 
P16403 21 

kDa 
0 6 2 0 0 9 0 0 0 0 

Histone H2A.Z OS=Homo sapiens GN=H2AFZ PE=1 SV=2 
P0C0S5 14 

kDa 
0 3 2 4 0 3 0 0 0 0 

Histone H3.1 OS=Homo sapiens GN=HIST1H3A PE=1 SV=2 
 

P68431 
(+3) 

 

15 
kDa 
 

0 
3 
 

2 0 0 3 0 0 0 0 

Nucleophosmin OS=Homo sapiens GN=NPM1 PE=1 SV=2 P06748 
33 

kDa 
0 7 

 
5 4 0 6 0 0 0 0 

Polyubiquitin-B OS=Homo sapiens GN=UBB PE=1 SV=1 
P0CG47 

(+3) 
26 

kDa 
0 2 

 
0 2 0 0 0 0 0 0 

Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Homo 
sapiens GN=HNRNPC PE=1 SV=4 P07910 

34 
kDa 

0 
4 

0 4 0 2 0 0 0 0 

Heterogeneous nuclear ribonucleoprotein M OS=Homo 
sapiens GN=HNRNPM PE=1 SV=3 P52272 

78 
kDa 

 

0 
2 
 

6 6 0 0 0 0 0 0 

40S ribosomal protein S4, X isoform OS=Homo sapiens 
GN=RPS4X PE=1 SV=2 
 

P62701 
 
 

30 
kDa 

 

0 5 
 
 

0 3 0 4 0 0 0 0 

Lamina-associated polypeptide 2, isoforms beta/gamma 
OS=Homo sapiens GN=TMPO PE=1 SV=2 P42167 

51 
kDa 

0 
2 

3 0 0 0 0 0 0 0 

Histone H2B type 1-K OS=Homo sapiens GN=HIST1H2BK PE=1 
SV=3 

O60814(+7) 
 

14 
kDa 

 

0 
2 
 

2 0 0 2 0 0 0 0 

Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B PE=1 
SV=1 

P68371 
 

50 
kDa 

0 
2 

3 0 0 2 0 0 0 0 

Ig kappa chain V-I region Lay OS=Homo sapiens PE=1 SV=1 
P01605 

 
12 

kDa 
0 

2 
0 0 0 0 0 2 0 0 

Reticulocalbin-2 OS=Homo sapiens GN=RCN2 PE=1 SV=1 
Q14257 

 
37 

kDa 
0 

2 
0 0 0 0 0 0 0 0 

60S ribosomal protein L4 OS=Homo sapiens GN=RPL4 PE=1 
SV=5 

P36578 
 

48 
kDa 

0 
3 

0 0 0 0 0 0 0 0 

RuvB-like 1 OS=Homo sapiens GN=RUVBL1 PE=1 SV=1 
Q9Y265 

 
50 

kDa 
0 2 

 
5 3 0 0 0 0 0 0 

60S ribosomal protein L7 OS=Homo sapiens GN=RPL7 PE=1 
SV=1 

P18124 
 

29 
kDa 

0 3 
 

2 2 0 0 0 0 0 0 

40S ribosomal protein S2 OS=Homo sapiens GN=RPS2 PE=1 
SV=2 

P15880 
 

31 
kDa 

0 2 
 

0 3 0 0 0 0 0 0 

CAD protein OS=Homo sapiens GN=CAD PE=1 SV=3 
P27708 

 
243 
kDa 

0 6 
 

0 0 0 0 0 0 0 0 

40S ribosomal protein S8 OS=Homo sapiens GN=RPS8 PE=1 
SV=2 

P62241 
 

24 
kDa 

0 2 
 

2 0 0 2 0 0 0 0 

Histone H1.0 OS=Homo sapiens GN=H1F0 PE=1 SV=3 
P07305 

 
21 

kDa 
0 2 

 
0 0 0 3 0 0 0 0 

60S ribosomal protein L8 OS=Homo sapiens GN=RPL8 PE=1 
SV=2 P62917 

28 
kDa 

0 2 
 

3 2 0 0 0 0 0 0 

60S ribosomal protein L3 OS=Homo sapiens GN=RPL3 PE=1 
SV=2 P39023 

46 
kDa 

0 2 
 

0 0 0 2 0 0 0 0 

ATP-dependent RNA helicase A OS=Homo sapiens GN=DHX9 
PE=1 SV=4 Q08211 

141 
kDa 

0 2 
 

0 5 0 0 0 0 0 0 
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40S ribosomal protein S3a OS=Homo sapiens GN=RPS3A PE=1 
SV=2 P61247 

30 
kDa 

0 2 
 

0 2 0 0 0 0 0 0 

60S ribosomal protein L15 OS=Homo sapiens GN=RPL15 PE=1 
SV=2 P61313 

24 
kDa 

0 2 
 

0 2 0 0 0 0 0 0 

60S ribosomal protein L23 OS=Homo sapiens GN=RPL23 PE=1 
SV=1 P62829 

15 
kDa 

0 2 
 

2 0 0 0 0 0 0 0 

Transcription factor A, mitochondrial OS=Homo sapiens 
GN=TFAM PE=1 SV=1 Q00059 

29 
kDa 

0 2 
 

0 0 0 2 0 0 0 0 

Serine/arginine-rich splicing factor 7 OS=Homo sapiens 
GN=SRSF7 PE=1 SV=1 Q16629 

27 
kDa 

0 2 
 

0 0 0 0 0 0 0 0 

E3 ubiquitin-protein ligase TRIM21 OS=Homo sapiens 
GN=TRIM21 PE=1 SV=1 P19474 

54 
kDa 

0 5 
 

0 0 0 0 0 0 0 0 

60S ribosomal protein L18 OS=Homo sapiens GN=RPL18 PE=1 
SV=2 Q07020 

22 
kDa 

0 2 
 

0 0 0 0 0 0 0 0 

60S ribosomal protein L19 OS=Homo sapiens GN=RPL19 PE=1 
SV=1 P84098 

23 
kDa 

0 2 
 

0 0 0 0 0 0 0 0 

Multiple PDZ domain protein OS=Homo sapiens GN=MPDZ 
PE=1 SV=2 O75970 

222 
kDa 

0 2 
 

0 0 0 0 0 0 0 0 

60S ribosomal protein L10 OS=Homo sapiens GN=RPL10 PE=1 
SV=4 P27635 

25 
kDa 

0 2 
 

0 4 0 0 0 0 0 0 

Ig kappa chain V-II region RPMI 6410 OS=Homo sapiens PE=4 
SV=1 
 

P06310 
 
 

15 
kDa 
 

0 0 
 
 

0 0 0 0 0 0 2 
 
 

2 

Glyceraldehyde-3-phosphate dehydrogenase OS=Homo 
sapiens GN=GAPDH PE=1 SV=3 

P04406 
 
 

36 
kDa 

 

0 0 
 
 

0 0 0 8 0 0 3 
 
 

0 

Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2 
P27824 

 
68 

kDa 
0 0 

 
4 3 0 0 0 0 5 

 
0 

Transmembrane protein 231 OS=Homo sapiens 
GN=TMEM231 PE=1 SV=1 

Q9H6L2 
 

36 
kDa 

0 0 
 

0 0 0 0 0 0 10 
 

0 

Iron-responsive element-binding protein 2 OS=Homo sapiens 
GN=IREB2 PE=1 SV=3 

P48200 
 

105 
kDa 

0 0 
 

0 0 0 0 0 0 2 
 

0 

Ig kappa chain V-I region Lay OS=Homo sapiens PE=1 SV=1 
P01605 

 
12 

kDa 
0 0 

 
0 0 0 0 0 0 2 

 
2 

Transmembrane protein 237 OS=Homo sapiens 
GN=TMEM237 PE=1 SV=2 

Q96Q45 
 

46 
kDa 

0 0 
 

0 0 0 0 0 0 0 9 
 

Hemopexin OS=Homo sapiens GN=HPX PE=1 SV=2 
P02790 

 
52 

kDa 
0 0 

 
0 0 0 0 2 0 0 2 

 

Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1 
Q5D862 

 
248 
kDa 

0 0 
 

0 0 0 6 0 0 0 2 
 

Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 
P00450 

 
122 
kDa 

0 0 
 

0 0 0 0 0 0 0 0 
 

60 kDa heat shock protein, mitochondrial OS=Homo sapiens 
GN=HSPD1 PE=1 SV=2 P10809 

61 
kDa 

0 0 
 

4 
 

10 0 28 0 0 0 0 
 

Heat shock protein HSP 90-beta OS=Homo sapiens 
GN=HSP90AB1 PE=1 SV=4 P08238 

83 
kDa 

0 0 
 

18 
 

0 0 10 0 0 0 0 
 

Stress-70 protein, mitochondrial OS=Homo sapiens GN=HSPA9 
PE=1 SV=2 P38646 

74 
kDa 

0 0 
 

18 
 

0 0 0 0 0 0 0 
 

Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2 P27824 
68 

kDa 
0 0 

 
6 
 

4 0 0 0 0 0 0 
 

Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 P08670 
54 

kDa 
0 0 

 
17 

 
6 0 3 0 0 0 0 

 

Elongation factor 2 OS=Homo sapiens GN=EEF2 PE=1 SV=4 P13639 
95 

kDa 
0 0 

 
14 

 
5 0 0 0 0 0 0 
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Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 P06733 
47 

kDa 
0 0 

 
13 

 
4 0 0 0 0 0 0 

 
Heterogeneous nuclear ribonucleoprotein A1 OS=Homo 
sapiens GN=HNRNPA1 PE=1 SV=5 

P09651 
 

39 
kDa 

0 0 
 

7 
 

2 0 10 0 0 0 0 
 

Splicing factor, proline- and glutamine-rich OS=Homo sapiens 
GN=SFPQ PE=1 SV=2 P23246 

76 
kDa 

0 0 
 

5 
 

3 0 0 0 0 0 0 
 

Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 P29401 
68 

kDa 
0 0 

 
3 
 

0 0 0 0 0 0 0 
 

Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 SV=4 P14618 
58 

kDa 
0 0 

 
14 

 
2 0 8 0 0 0 0 

 

Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1 P14625 
92 

kDa 
0 0 

 
8 
 

4 0 0 0 0 0 0 
 

14-3-3 protein epsilon OS=Homo sapiens GN=YWHAE PE=1 
SV=1 P62258 

29 
kDa 

0 0 
 

12 
 

0 0 6 0 0 0 0 
 

Plasminogen activator inhibitor 1 RNA-binding protein 
OS=Homo sapiens GN=SERBP1 PE=1 SV=2 Q8NC51 

45 
kDa 

0 0 
 

4 
 

0 0 0 0 0 0 0 
 

Elongation factor Tu, mitochondrial OS=Homo sapiens 
GN=TUFM PE=1 SV=2 P49411 

50 
kDa 

0 0 
 

3 
 

4 0 3 0 0 0 0 
 

Heterogeneous nuclear ribonucleoprotein H OS=Homo sapiens 
GN=HNRNPH1 PE=1 SV=4 P31943 

49 
kDa 

0 0 
 

7 
 

5 0 3 0 0 0 0 
 

Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3 P19338 
77 

kDa 
0 0 

 
8 
 

6 0 12 0 0 0 0 
 

Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo 
sapiens GN=HNRNPA2B1 PE=1 SV=2 P22626 

37 
kDa 

0 0 
 

4 
 

3 0 9 0 0 0 0 
 

Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 
PE=1 SV=4 P30101 

57 
kDa 

0 0 
 

4 
 

3 0 0 0 0 0 0 
 

T-complex protein 1 subunit beta OS=Homo sapiens GN=CCT2 
PE=1 SV=4 P78371 

57 
kDa 

0 0 
 

3 
 

0 0 0 0 0 0 0 
 

Pre-mRNA-processing factor 6 OS=Homo sapiens GN=PRPF6 
PE=1 SV=1 O94906 

107 
kDa 

0 0 
 

21 
 

50 0 0 0 0 0 0 
 

High mobility group protein B1 OS=Homo sapiens GN=HMGB1 
PE=1 SV=3 P09429 

25 
kDa 

0 0 
 

5 
 

0 0 0 0 0 0 0 
 

Prelamin-A/C OS=Homo sapiens GN=LMNA PE=1 SV=1 P02545 
74 

kDa 
0 0 

 
2 
 

0 0 3 0 0 0 0 
 

C-1-tetrahydrofolate synthase, cytoplasmic OS=Homo sapiens 
GN=MTHFD1 PE=1 SV=3 P11586 

102 
kDa 

0 0 
 

6 
 

3 0 3 0 0 0 0 
 

T-complex protein 1 subunit theta OS=Homo sapiens GN=CCT8 
PE=1 SV=4 P50990 

60 
kDa 

0 0 
 

4 
 

3 0 0 0 0 0 0 
 

Tyrosine--tRNA ligase, cytoplasmic OS=Homo sapiens GN=YARS 
PE=1 SV=4 P54577 

59 
kDa 

0 0 
 

2 
 

0 0 2 0 0 0 0 
 

Transcription intermediary factor 1-beta OS=Homo sapiens 
GN=TRIM28 PE=1 SV=5 Q13263 

89 
kDa 

0 0 
 

3 
 

0 0 0 0 0 0 0 
 

Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens 
GN=PPIA PE=1 SV=2 P62937 

18 
kDa 

0 0 
 

6 
 

3 0 0 0 0 0 0 
 

Heat shock protein HSP 90-alpha OS=Homo sapiens 
GN=HSP90AA1 PE=1 SV=5 P07900 

85 
kDa 

0 0 
 

9 
 

0 0 5 0 0 0 0 
 

Glutamate dehydrogenase 1, mitochondrial OS=Homo sapiens 
GN=GLUD1 PE=1 SV=2 P00367 

61 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Fructose-bisphosphate aldolase A OS=Homo sapiens 
GN=ALDOA PE=1 SV=2 P04075 

39 
kDa 

0 0 
 

10 
 

0 0 3 0 0 0 0 
 

40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 
SV=2 P23396 

27 
kDa 

0 0 
 

3 
 

0 0 5 0 0 0 0 
 

Nucleoside diphosphate kinase B OS=Homo sapiens GN=NME2 
PE=1 SV=1 P22392 

17 
kDa 

0 0 
 

3 
 

0 0 0 0 0 0 0 
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T-complex protein 1 subunit gamma OS=Homo sapiens 
GN=CCT3 PE=1 SV=4 P49368 

61 
kDa 

0 0 
 

2 
 

2 0 0 0 0 0 0 
 

Transitional endoplasmic reticulum ATPase OS=Homo sapiens 
GN=VCP PE=1 SV=4 P55072 

89 
kDa 

0 0 
 

12 
 

0 0 2 0 0 0 0 
 

T-complex protein 1 subunit epsilon OS=Homo sapiens 
GN=CCT5 PE=1 SV=1 P48643 

60 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25A5 PE=1 
SV=7 P05141 

33 
kDa 

0 0 
 

5 
 

8 0 3 0 0 0 0 
 

T-complex protein 1 subunit delta OS=Homo sapiens GN=CCT4 
PE=1 SV=4 P50991 

58 
kDa 

0 0 
 

3 
 

2 0 0 0 0 0 0 
 

Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 
SV=3 P60174 

31 
kDa 

0 0 
 

8 
 

2 0 2 0 0 0 0 
 

Creatine kinase B-type OS=Homo sapiens GN=CKB PE=1 SV=1 P12277 
43 

kDa 
0 0 

 
6 
 

0 0 2 0 0 0 0 
 

Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 Q06830 
22 

kDa 
0 0 

 
8 
 

5 0 2 0 0 0 0 
 

Exportin-2 OS=Homo sapiens GN=CSE1L PE=1 SV=3 P55060 
110 
kDa 

0 0 
 

3 
 

4 0 0 0 0 0 0 
 

Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5 P32119 
22 

kDa 
0 0 

 
5 
 

0 0 2 0 0 0 0 
 

T-complex protein 1 subunit zeta OS=Homo sapiens GN=CCT6A 
PE=1 SV=3 P40227 

58 
kDa 

0 0 
 

5 
 

0 0 0 0 0 0 0 
 

ATP-dependent RNA helicase DDX1 OS=Homo sapiens 
GN=DDX1 PE=1 SV=2 Q92499 

82 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Prothymosin alpha OS=Homo sapiens GN=PTMA PE=1 SV=2 P06454 
12 

kDa 
0 0 

 
2 
 

2 0 0 0 0 0 0 
 

Ubiquitin-like modifier-activating enzyme 1 OS=Homo sapiens 
GN=UBA1 PE=1 SV=3 P22314 

118 
kDa 

0 0 
 

4 
 

0 0 2 0 0 0 0 
 

Malate dehydrogenase, mitochondrial OS=Homo sapiens 
GN=MDH2 PE=1 SV=3 P40926 

36 
kDa 

0 0 
 

5 
 

0 0 0 0 0 0 0 
 

Elongation factor 1-gamma OS=Homo sapiens GN=EEF1G PE=1 
SV=3 P26641 

50 
kDa 

0 0 
 

8 
 

2 0 0 0 0 0 0 
 

Protein SET OS=Homo sapiens GN=SET PE=1 SV=3 Q01105 
33 

kDa 
0 0 

 
4 
 

2 0 4 0 0 0 0 
 

Phosphoglycerate kinase 1 OS=Homo sapiens GN=PGK1 PE=1 
SV=3 P00558 

45 
kDa 

0 0 
 

6 
 

0 0 0 0 0 0 0 
 

Heterogeneous nuclear ribonucleoprotein K OS=Homo sapiens 
GN=HNRNPK PE=1 SV=1 P61978 

51 
kDa 

0 0 
 

9 
 

4 0 2 0 0 0 0 
 

Annexin A5 OS=Homo sapiens GN=ANXA5 PE=1 SV=2 P08758 
36 

kDa 
0 0 

 
3 
 

0 0 7 0 0 0 0 
 

D-3-phosphoglycerate dehydrogenase OS=Homo sapiens 
GN=PHGDH PE=1 SV=4 O43175 

57 
kDa 

0 0 
 

5 
 

4 0 0 0 0 0 0 
 

Carbonic anhydrase 2 OS=Homo sapiens GN=CA2 PE=1 SV=2 P00918 
29 

kDa 
0 0 

 
5 
 

0 0 0 0 0 0 0 
 

40S ribosomal protein SA OS=Homo sapiens GN=RPSA PE=1 
SV=4 P08865 

33 
kDa 

0 0 
 

3 
 

2 0 0 0 0 0 0 
 

Complement component 1 Q subcomponent-binding protein, 
mitochondrial OS=Homo sapiens GN=C1QBP PE=1 SV=1 Q07021 

31 
kDa 

0 0 
 

3 
 

3 0 0 0 0 0 0 
 

Apoptosis-inducing factor 1, mitochondrial OS=Homo sapiens 
GN=AIFM1 PE=1 SV=1 O95831 

67 
kDa 

0 0 
 

3 
 

0 0 0 0 0 0 0 
 

RNA-binding protein FUS OS=Homo sapiens GN=FUS PE=1 
SV=1 P35637 

53 
kDa 

0 0 
 

3 
 

3 0 0 0 0 0 0 
 

14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 
SV=1 P63104 

28 
kDa 

0 0 
 

3 
 

0 0 3 0 0 0 0 
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Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1 PE=1 
SV=2 Q15365 

37 
kDa 

0 0 
 

5 
 

5 0 0 0 0 0 0 
 

Proliferation-associated protein 2G4 OS=Homo sapiens 
GN=PA2G4 PE=1 SV=3 Q9UQ80 

44 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

40S ribosomal protein S10 OS=Homo sapiens GN=RPS10 PE=1 
SV=1 P46783 

19 
kDa 

0 0 
 

2 
 

0 0 2 0 0 0 0 
 

Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 P07737 
15 

kDa 
0 0 

 
4 
 

3 0 0 0 0 0 0 
 

L-lactate dehydrogenase B chain OS=Homo sapiens GN=LDHB 
PE=1 SV=2 P07195 

37 
kDa 

0 0 
 

7 
 

7 0 0 0 0 0 0 
 

Protein-L-isoaspartate(D-aspartate) O-methyltransferase 
OS=Homo sapiens GN=PCMT1 PE=1 SV=4 P22061 

25 
kDa 

0 0 
 

6 
 

6 0 0 0 0 0 0 
 

Peroxiredoxin-6 OS=Homo sapiens GN=PRDX6 PE=1 SV=3 P30041 
25 

kDa 
0 0 

 
6 
 

0 0 0 0 0 0 0 
 

Transgelin-2 OS=Homo sapiens GN=TAGLN2 PE=1 SV=3 P37802 
22 

kDa 
0 0 

 
3 
 

2 0 0 0 0 0 0 
 

L-lactate dehydrogenase A chain OS=Homo sapiens GN=LDHA 
PE=1 SV=2 P00338 

37 
kDa 

0 0 
 

4 
 

2 0 0 0 0 0 0 
 

Guanine nucleotide-binding protein subunit beta-2-like 1 
OS=Homo sapiens GN=GNB2L1 PE=1 SV=3 P63244 

35 
kDa 

0 0 
 

3 
 

0 0 2 0 0 0 0 
 

Lamin-B1 OS=Homo sapiens GN=LMNB1 PE=1 SV=2 P20700 
66 

kDa 
0 0 

 
2 
 

2 0 0 0 0 0 0 
 

Thioredoxin-dependent peroxide reductase, mitochondrial 
OS=Homo sapiens GN=PRDX3 PE=1 SV=3 P30048 

28 
kDa 

0 0 
 

3 
 

0 0 0 0 0 0 0 
 

U1 small nuclear ribonucleoprotein 70 kDa OS=Homo sapiens 
GN=SNRNP70 PE=1 SV=2 P08621 

52 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Spliceosome RNA helicase DDX39B OS=Homo sapiens 
GN=DDX39B PE=1 SV=1 Q13838 

49 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB PE=1 
SV=3 P31946 

28 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Elongation factor 1-beta OS=Homo sapiens GN=EEF1B2 PE=1 
SV=3 P24534 

25 
kDa 

0 0 
 

3 
 

0 0 0 0 0 0 0 
 

Protein arginine N-methyltransferase 5 OS=Homo sapiens 
GN=PRMT5 PE=1 SV=4 O14744 

73 
kDa 

0 0 
 

4 
 

3 0 0 0 0 0 0 
 

60S ribosomal protein L13 OS=Homo sapiens GN=RPL13 PE=1 
SV=4 P26373 

24 
kDa 

0 0 
 

2 
 

0 0 2 0 0 0 0 
 

10 kDa heat shock protein, mitochondrial OS=Homo sapiens 
GN=HSPE1 PE=1 SV=2 P61604 

11 
kDa 

0 0 
 

2 
 

4 0 0 0 0 0 0 
 

Thioredoxin OS=Homo sapiens GN=TXN PE=1 SV=3 P10599 
12 

kDa 
0 0 

 
2 
 

0 0 0 0 0 0 0 
 

Cofilin-1 OS=Homo sapiens GN=CFL1 PE=1 SV=3 P23528 
19 

kDa 
0 0 

 
3 
 

3 0 0 0 0 0 0 
 

40S ribosomal protein S28 OS=Homo sapiens GN=RPS28 PE=1 
SV=1 P62857 8 kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Y-box-binding protein 3 OS=Homo sapiens GN=YBX3 PE=1 
SV=4 P16989 

40 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Ras-related protein Rab-1A OS=Homo sapiens GN=RAB1A PE=1 
SV=3 P62820 

23 
kDa 

0 0 
 

4 
 

0 0 0 0 0 0 0 
 

Glutathione S-transferase P OS=Homo sapiens GN=GSTP1 PE=1 
SV=2 P09211 

23 
kDa 

0 0 
 

4 
 

0 0 0 0 0 0 0 
 

Nucleoside diphosphate kinase A OS=Homo sapiens GN=NME1 
PE=1 SV=1 P15531 

17 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Protein C21orf2 OS=Homo sapiens GN=C21orf2 PE=1 SV=1 O43822 
28 

kDa 
0 0 

 
6 
 

9 0 0 0 0 0 0 
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Protein deglycase DJ-1 OS=Homo sapiens GN=PARK7 PE=1 
SV=2 Q99497 

20 
kDa 

0 0 
 

4 
 

0 0 0 0 0 0 0 
 

40S ribosomal protein S11 OS=Homo sapiens GN=RPS11 PE=1 
SV=3 P62280 

18 
kDa 

0 0 
 

2 
 

3 0 0 0 0 0 0 
 

Serine/arginine-rich splicing factor 2 OS=Homo sapiens 
GN=SRSF2 PE=1 SV=4 Q01130 

25 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Hypoxanthine-guanine phosphoribosyltransferase OS=Homo 
sapiens GN=HPRT1 PE=1 SV=2 P00492 

25 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Heterogeneous nuclear ribonucleoprotein D0 OS=Homo 
sapiens GN=HNRNPD PE=1 SV=1 Q14103 

38 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Phosphatidylethanolamine-binding protein 1 OS=Homo 
sapiens GN=PEBP1 PE=1 SV=3 P30086 

21 
kDa 

0 0 
 

3 
 

0 0 0 0 0 0 0 
 

Hydroxyacylglutathione hydrolase, mitochondrial OS=Homo 
sapiens GN=HAGH PE=1 SV=2 Q16775 

34 
kDa 

0 0 
 

3 
 

0 0 0 0 0 0 0 
 

Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 
PE=1 SV=2 P18669 

29 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Tropomyosin alpha-4 chain OS=Homo sapiens GN=TPM4 PE=1 
SV=3 P67936 

29 
kDa 

0 0 
 

2 
 

0 0 3 0 0 0 0 
 

Nascent polypeptide-associated complex subunit alpha, 
muscle-specific form OS=Homo sapiens GN=NACA PE=1 SV=1 E9PAV3 

205 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Adenosylhomocysteinase OS=Homo sapiens GN=AHCY PE=1 
SV=4 P23526 

48 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

60S acidic ribosomal protein P2 OS=Homo sapiens GN=RPLP2 
PE=1 SV=1 P05387 

12 
kDa 

0 0 
 

3 
 

2 0 0 0 0 0 0 
 

Eukaryotic initiation factor 4A-II OS=Homo sapiens GN=EIF4A2 
PE=1 SV=2 Q14240 

46 
kDa 

0 0 
 

3 
 

0 0 0 0 0 0 0 
 

Zyxin OS=Homo sapiens GN=ZYX PE=1 SV=1 Q15942 
61 

kDa 
0 0 

 
2 
 

0 0 0 0 0 0 0 
 

40S ribosomal protein S14 OS=Homo sapiens GN=RPS14 PE=1 
SV=3 P62263 

16 
kDa 

0 0 
 

2 
 

3 0 0 0 0 0 0 
 

Phosphoserine aminotransferase OS=Homo sapiens GN=PSAT1 
PE=1 SV=2 Q9Y617 

40 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

60S ribosomal protein L12 OS=Homo sapiens GN=RPL12 PE=1 
SV=1 P30050 

18 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

14-3-3 protein gamma OS=Homo sapiens GN=YWHAG PE=1 
SV=2 P61981 

28 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Small nuclear ribonucleoprotein Sm D2 OS=Homo sapiens 
GN=SNRPD2 PE=1 SV=1 P62316 

14 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Ran-specific GTPase-activating protein OS=Homo sapiens 
GN=RANBP1 PE=1 SV=1 P43487 

23 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3 P49327 
273 
kDa 

0 0 
 

4 
 

0 0 0 0 0 0 0 
 

60S ribosomal protein L22 OS=Homo sapiens GN=RPL22 PE=1 
SV=2 P35268 

15 
kDa 

0 0 
 

2 
 

0 0 2 0 0 0 0 
 

14-3-3 protein eta OS=Homo sapiens GN=YWHAH PE=1 SV=4 Q04917 
28 

kDa 
0 0 

 
3 
 

0 0 0 0 0 0 0 
 

Myristoylated alanine-rich C-kinase substrate OS=Homo 
sapiens GN=MARCKS PE=1 SV=4 P29966 

32 
kDa 

0 0 
 

2 
 

2 0 0 0 0 0 0 
 

BUB3-interacting and GLEBS motif-containing protein ZNF207 
OS=Homo sapiens GN=ZNF207 PE=1 SV=1 O43670 

51 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

ATP synthase subunit d, mitochondrial OS=Homo sapiens 
GN=ATP5H PE=1 SV=3 O75947 

18 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

GrpE protein homolog 1, mitochondrial OS=Homo sapiens 
GN=GRPEL1 PE=1 SV=2 Q9HAV7 

24 
kDa 

0 0 
 

2 
 

6 0 0 0 0 0 0 
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Nuclear autoantigenic sperm protein OS=Homo sapiens 
GN=NASP PE=1 SV=2 P49321 

85 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Proteasome subunit alpha type-5 OS=Homo sapiens 
GN=PSMA5 PE=1 SV=3 P28066 

26 
kDa 

0 0 
 

2 
 

0 0 0 0 0 0 0 
 

Non-POU domain-containing octamer-binding protein 
OS=Homo sapiens GN=NONO PE=1 SV=4 Q15233 

54 
kDa 

0 
 

0 
 

0 
 

 0 2 
 

0 
 

0 
 

0 
 

0 
 

Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 P07355 
39 

kDa 
0 
 

0 
 

0 
 

0 0 15 
 

0 
 

0 
 

0 
 

0 
 

Polypyrimidine tract-binding protein 1 OS=Homo sapiens 
GN=PTBP1 PE=1 SV=1 P26599 

57 
kDa 

0 
 

0 
 

0 
 

0 0 3 
 

0 
 

0 
 

0 
 

0 
 

Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=2 P04083 
39 

kDa 
0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Heterogeneous nuclear ribonucleoprotein M OS=Homo 
sapiens GN=HNRNPM PE=1 SV=3 P52272 

78 
kDa 

0 
 

0 
 

0 
 

0 0 8 
 

0 
 

0 
 

0 
 

0 
 

40S ribosomal protein S19 OS=Homo sapiens GN=RPS19 PE=1 
SV=2 P39019 

16 
kDa 

0 
 

0 
 

0 
 

2 0 2 
 

0 
 

0 
 

0 
 

0 
 

Protein S100-A7 OS=Homo sapiens GN=S100A7 PE=1 SV=4 P31151 
11 

kDa 
0 
 

0 
 

0 
 

0 0 6 
 

0 
 

0 
 

0 
 

0 
 

40S ribosomal protein S7 OS=Homo sapiens GN=RPS7 PE=1 
SV=1 P62081 

22 
kDa 

0 
 

0 
 

0 
 

0 0 4 
 

0 
 

0 
 

0 
 

0 
 

Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1 P06702 
13 

kDa 
0 
 

0 
 

0 
 

0 0 7 
 

0 
 

0 
 

0 
 

0 
 

Filaggrin OS=Homo sapiens GN=FLG PE=1 SV=3 P20930 
435 
kDa 

0 
 

0 
 

0 
 

0 0 4 
 

0 
 

0 
 

0 
 

0 
 

Heterogeneous nuclear ribonucleoprotein H3 OS=Homo 
sapiens GN=HNRNPH3 PE=1 SV=2 P31942 

37 
kDa 

0 
 

0 
 

0 
 

0 0 3 
 

0 
 

0 
 

0 
 

0 
 

Involucrin OS=Homo sapiens GN=IVL PE=1 SV=2 P07476 
68 

kDa 
0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Calmodulin-like protein 5 OS=Homo sapiens GN=CALML5 PE=1 
SV=2 Q9NZT1 

16 
kDa 

0 
 

0 
 

0 
 

0 0 4 
 

0 
 

0 
 

0 
 

0 
 

Cystatin-A OS=Homo sapiens GN=CSTA PE=1 SV=1 P01040 
11 

kDa 
0 
 

0 
 

0 
 

0 0 6 
 

0 
 

0 
 

0 
 

0 
 

Calmodulin OS=Homo sapiens GN=CALM1 PE=1 SV=2 P62158 
17 

kDa 
0 
 

0 
 

0 
 

2 0 2 
 

0 
 

0 
 

0 
 

0 
 

40S ribosomal protein S16 OS=Homo sapiens GN=RPS16 PE=1 
SV=2 P62249 

16 
kDa 

0 
 

0 
 

0 
 

2 0 2 
 

0 
 

0 
 

0 
 

0 
 

Serpin B3 OS=Homo sapiens GN=SERPINB3 PE=1 SV=2 P29508 
45 

kDa 
0 
 

0 
 

0 
 

0 0 9 
 

0 
 

0 
 

0 
 

0 
 

Caspase-14 OS=Homo sapiens GN=CASP14 PE=1 SV=2 P31944 
28 

kDa 
0 
 

0 
 

0 
 

0 0 6 
 

0 
 

0 
 

0 
 

0 
 

Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1 P05109 
11 

kDa 
0 
 

0 
 

0 
 

0 0 6 
 

0 
 

0 
 

0 
 

0 
 

Cathepsin D OS=Homo sapiens GN=CTSD PE=1 SV=1 P07339 
45 

kDa 
0 
 

0 
 

0 
 

0 0 4 
 

0 
 

0 
 

0 
 

0 
 

Heterogeneous nuclear ribonucleoprotein A3 OS=Homo 
sapiens GN=HNRNPA3 PE=1 SV=2 P51991 

40 
kDa 

0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Neuroblast differentiation-associated protein AHNAK 
OS=Homo sapiens GN=AHNAK PE=1 SV=2 Q09666 

629 
kDa 

0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Flap endonuclease 1 OS=Homo sapiens GN=FEN1 PE=1 SV=1 P39748 
43 

kDa 
0 
 

0 
 

0 
 

0 0 3 
 

0 
 

0 
 

0 
 

0 
 

Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 
SV=2 P04792 

23 
kDa 

0 
 

0 
 

0 
 

0 0 4 
 

0 
 

0 
 

0 
 

0 
 

Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 P35579 
227 
kDa 

0 
 

0 
 

0 
 

0 0 7 
 

0 
 

0 
 

0 
 

0 
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Zinc-alpha-2-glycoprotein OS=Homo sapiens GN=AZGP1 PE=1 
SV=2 P25311 

34 
kDa 

0 
 

0 
 

0 
 

0 0 3 
 

0 
 

0 
 

0 
 

0 
 

40S ribosomal protein S15a OS=Homo sapiens GN=RPS15A 
PE=1 SV=2 P62244 

15 
kDa 

0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Galectin-7 OS=Homo sapiens GN=LGALS7 PE=1 SV=2 P47929 
15 

kDa 
0 
 

0 
 

0 
 

0 0 4 
 

0 
 

0 
 

0 
 

0 
 

Non-histone chromosomal protein HMG-14 OS=Homo sapiens 
GN=HMGN1 PE=1 SV=3 P05114 

11 
kDa 

0 
 

0 
 

0 
 

0 0 3 
 

0 
 

0 
 

0 
 

0 
 

14-3-3 protein sigma OS=Homo sapiens GN=SFN PE=1 SV=1 P31947 
28 

kDa 
0 
 

0 
 

0 
 

0 0 3 
 

0 
 

0 
 

0 
 

0 
 

Protein-glutamine gamma-glutamyltransferase K OS=Homo 
sapiens GN=TGM1 PE=1 SV=4 P22735 

90 
kDa 

0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Glutamine synthetase OS=Homo sapiens GN=GLUL PE=1 SV=4 P15104 
42 

kDa 
0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Fatty acid-binding protein, epidermal OS=Homo sapiens 
GN=FABP5 PE=1 SV=3 Q01469 

15 
kDa 

0 
 

0 
 

0 
 

0 0 3 
 

0 
 

0 
 

0 
 

0 
 

Protein S100-A14 OS=Homo sapiens GN=S100A14 PE=1 SV=1 Q9HCY8 
12 

kDa 
0 
 

0 
 

0 
 

0 0 3 
 

0 
 

0 
 

0 
 

0 
 

Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 SV=1 P01834 
12 

kDa 
0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Protein S100-A6 OS=Homo sapiens GN=S100A6 PE=1 SV=1 P06703 
10 

kDa 
0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Proteasome subunit alpha type-4 OS=Homo sapiens 
GN=PSMA4 PE=1 SV=1 P25789 

29 
kDa 

0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1 PE=1 
SV=1 P01857 

36 
kDa 

0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

Cornifin-B OS=Homo sapiens GN=SPRR1B PE=1 SV=2 
P22528 

(+1) 
10 

kDa 
0 
 

0 
 

0 
 

0 0 2 
 

0 
 

0 
 

0 
 

0 
 

ATP synthase subunit beta, mitochondrial OS=Homo sapiens 
GN=ATP5B PE=1 SV=3 P06576 

57 
kDa 

0 0 0 8 
 

0 0 0 0 0 0 

RuvB-like 2 OS=Homo sapiens GN=RUVBL2 PE=1 SV=3 Q9Y230 
51 

kDa 
0 0 0 6 

 
0 0 0 0 0 0 

Exportin-1 OS=Homo sapiens GN=XPO1 PE=1 SV=1 O14980 
123 
kDa 

0 0 0 4 
 

0 0 0 0 0 0 

Probable ATP-dependent RNA helicase DDX17 OS=Homo 
sapiens GN=DDX17 PE=1 SV=2 Q92841 

80 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

116 kDa U5 small nuclear ribonucleoprotein component 
OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 Q15029 

109 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

T-complex protein 1 subunit alpha OS=Homo sapiens GN=TCP1 
PE=1 SV=1 P17987 

60 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

Tubulin beta-2B chain OS=Homo sapiens GN=TUBB2B PE=1 
SV=1 Q9BVA1 

50 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

Peptidyl-prolyl cis-trans isomerase B OS=Homo sapiens 
GN=PPIB PE=1 SV=2 P23284 

24 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

Histone H2B type 1-L OS=Homo sapiens GN=HIST1H2BL PE=1 
SV=3 

Q99880 
(+8) 

14 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

U5 small nuclear ribonucleoprotein 200 kDa helicase OS=Homo 
sapiens GN=SNRNP200 PE=1 SV=2 O75643 

245 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

Histone H1.4 OS=Homo sapiens GN=HIST1H1E PE=1 SV=2 P10412 
22 

kDa 
0 0 0 3 

 
0 0 0 0 0 0 

Inosine-5'-monophosphate dehydrogenase 2 OS=Homo 
sapiens GN=IMPDH2 PE=1 SV=2 P12268 

56 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

ATP-dependent RNA helicase DDX39A OS=Homo sapiens 
GN=DDX39A PE=1 SV=2 

O00148 
(+1) 

49 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 
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Methylosome protein 50 OS=Homo sapiens GN=WDR77 PE=1 
SV=1 Q9BQA1 

37 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

Dystonin OS=Homo sapiens GN=DST PE=1 SV=4 Q03001 
861 
kDa 

0 0 0 3 
 

0 0 0 0 0 0 

Calreticulin OS=Homo sapiens GN=CALR PE=1 SV=1 P27797 
48 

kDa 
0 0 0 3 

 
0 0 0 0 0 0 

Voltage-dependent anion-selective channel protein 2 
OS=Homo sapiens GN=VDAC2 PE=1 SV=2 P45880 

32 
kDa 

0 0 0 2 
 

0 0 0 0 0 0 

Serpin H1 OS=Homo sapiens GN=SERPINH1 PE=1 SV=2 P50454 
46 

kDa 
0 0 0 2 

 
0 0 0 0 0 0 

Ig kappa chain V-II region Cum OS=Homo sapiens PE=1 SV=1 
P01614 

(+3) 
13 

kDa 
0 0 0 2 

 
0 0 0 0 0 0 

Acidic leucine-rich nuclear phosphoprotein 32 family member 
A OS=Homo sapiens GN=ANP32A PE=1 SV=1 P39687 

29 
kDa 

0 0 0 2 
 

0 0 0 0 0 0 

ATP synthase subunit delta, mitochondrial OS=Homo sapiens 
GN=ATP5D PE=1 SV=2 P30049 

17 
kDa 

0 0 0 2 
 

0 0 0 0 0 0 

40S ribosomal protein S13 OS=Homo sapiens GN=RPS13 PE=1 
SV=2 P62277 

17 
kDa 

0 0 0 2 
 

0 0 0 0 0 0 

Membrane-associated progesterone receptor component 1 
OS=Homo sapiens GN=PGRMC1 PE=1 SV=3 O00264 

22 
kDa 

0 0 0 2 
 

0 0 0 0 0 0 

Putative pre-mRNA-splicing factor ATP-dependent RNA 
helicase DHX15 OS=Homo sapiens GN=DHX15 PE=1 SV=2 O43143 

91 
kDa 

0 0 0 2 
 

0 0 0 0 0 0 

Histone-binding protein RBBP4 OS=Homo sapiens GN=RBBP4 
PE=1 SV=3 

Q09028 
(+1) 

48 
kDa 

0 0 0 2 
 

0 0 0 0 0 0 

Matrin-3 OS=Homo sapiens GN=MATR3 PE=1 SV=2 P43243 
95 

kDa 
0 0 0 2 

 
0 0 0 0 0 0 

Putative RNA-binding protein Luc7-like 2 OS=Homo sapiens 
GN=LUC7L2 PE=1 SV=2 Q9Y383 

47 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

Eukaryotic initiation factor 4A-I OS=Homo sapiens GN=EIF4A1 
PE=1 SV=1 

P60842 
(+1) 

46 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

ELAV-like protein 1 OS=Homo sapiens GN=ELAVL1 PE=1 SV=2 Q15717 
36 

kDa 
0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

Rootletin OS=Homo sapiens GN=CROCC PE=1 SV=1 Q5TZA2 
229 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

60S ribosomal protein L9 OS=Homo sapiens GN=RPL9 PE=1 
SV=1 P32969 

22 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

MARCKS-related protein OS=Homo sapiens GN=MARCKSL1 
PE=1 SV=2 P49006 

20 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

Cyclin-dependent kinase 1 OS=Homo sapiens GN=CDK1 PE=1 
SV=3 P06493 

34 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

40S ribosomal protein S9 OS=Homo sapiens GN=RPS9 PE=1 
SV=3 P46781 

23 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

Serine/arginine-rich splicing factor 3 OS=Homo sapiens 
GN=SRSF3 PE=1 SV=1 P84103 

19 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

Histone H3.3 OS=Homo sapiens GN=H3F3A PE=1 SV=2 P84243 
15 

kDa 
0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

FACT complex subunit SSRP1 OS=Homo sapiens GN=SSRP1 
PE=1 SV=1 Q08945 

81 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

Solute carrier family 45 member 4 OS=Homo sapiens 
GN=SLC45A4 PE=1 SV=2 Q5BKX6 

84 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 
SV=1 P02765 

39 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

60S ribosomal protein L13a OS=Homo sapiens GN=RPL13A 
PE=1 SV=2 P40429 

24 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
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Mitogen-activated protein kinase kinase kinase 2 OS=Homo 
sapiens GN=MAP3K2 PE=1 SV=2 Q9Y2U5 

70 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

Zinc finger Ran-binding domain-containing protein 2 OS=Homo 
sapiens GN=ZRANB2 PE=1 SV=2 O95218 

37 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

DNA-dependent protein kinase catalytic subunit OS=Homo 
sapiens GN=PRKDC PE=1 SV=3 P78527 

469 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
 

Single-stranded DNA-binding protein, mitochondrial OS=Homo 
sapiens GN=SSBP1 PE=1 SV=1 Q04837 

17 
kDa 

0 
 

0 
 

0 
 

2 
 

0 0 
 

0 
 

0 
 

0 
 

0 
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Appendix D 
 
D.1 Cilia compartments axoneme, transition zone, and basal body recognition protocol: 
 
(Nuclei – DAPI; Cilia axoneme – Alexa Fluor 546; Transition zone – Alexa Fluor 488; Basal 
body – DRAQ5).  
 
D.1.1 Example: Analysis sequence cilia axoneme and transition zone co-localization Red 
and Green. 

1. Input image  
1. Stack Processing: Individual Planes 
2. Flatfield Correction: None 

2. Find nuclei  
1. Channel: DAPI  
2. ROI: None 
3. Method: B       Output Population: Nuclei 

i. Common threshold: 0  
ii. Area: >50 μm2  
iii. Split factor: 7 
iv. Individual threshold: 0.4  
v. Contrast: >0.1  

3. Find cytoplasm  
1. Channel: DRAQ5  
2. Nuclei: Nuclei  
3. Method: B  

i. Common Threshold: 0.1 
ii. Individual Threshold: 0.1 

4. Calculate Image         
1. Method: By Formula     Output Image: R 

i. Formula: 1.0*A  
ii. Channel A: Alexa 546 
iii. Negative Values: Set to Zero 
iv. Undefined Values: Set to Local Average 

5. Calculate Image (2)         
1. Method: By Formula     Output Image: G 

i. Formula: 1.0*A  
ii. Channel A: Alexa 488 
iii. Negative Values: Set to Zero 
iv. Undefined Values: Set to Local Average 

6. Calculate Image (3)         
1. Method: By Formula     Output Image: RG 

i. Formula: A*B  
ii. Channel A: R 
iii. Channel B: G 
iv. Negative Values: Set to Zero 
v. Undefined Values: Set to Local Average 
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7. Calculate Image (4)         
1. Method: By Formula     Output Image: R^2 

i. Formula: A*A  
ii. Channel A: R 
iii. Negative Values: Set to Zero 
iv. Undefined Values: Set to Local Average 

8. Calculate Image (5)         
1. Method: By Formula     Output Image: G^2 

i. Formula: A*A  
ii. Channel A: G 
iii. Negative Values: Set to Zero 
iv. Undefined Values: Set to Local Average 

9.  Find spots 
1. Channel: Alexa 546         
2. ROI: Nuclei  
3. Method: A     Output Population: Cilia 

i. Relative Spot Intensity: >0.035 
ii. Splitting Coefficient: 0 Calculate Spot Properties 

10. Select Population  
1. Population: Cilia         
2. Method: Filter by Property    Output Population: Cilia 

i. Spot Area [px2]: >=45    Selected 
11. Calculate Intensity Properties 

1. Channel: RG 
2. Population: Cilia Selected 
3. Region: Spot         
4. Method: Standard Sum     Output Properties: RGi merge 

12. Calculate Intensity Properties (2) 
1. Channel: R 
2. Population: Cilia Selected 
3. Region: Spot         
4. Method: Standard Mean Sum     Output Properties: Ri 

13. Calculate Intensity Properties (3) 
1. Channel: G 
2. Population: Cilia Selected 
3. Region: Spot         
4. Method: Standard Mean Sum     Output Properties: Gi 

14. Calculate Intensity Properties (4) 
1. Channel: R^2 
2. Population: Cilia Selected 
3. Region: Spot         
4. Method: Standard Sum                Output Properties: R^2i 

15. Calculate Intensity Properties (5) 
1. Channel: G^2 
2. Population: Cilia Selected 
3. Region: Spot         
4. Method: Standard Sum                 Output Properties: G^2i 

16. Calculate Properties 
1. Population: Cilia Selected  
2. Method: By Formula                     Output Properties: Pearson Up 
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i. Formula: M - (G*s) - (R*h) + (C*R*G) 
ii. Variable C: Spot Area [px2] 
iii. Variable G: Gi Mean 
iv. Variable H: Gi Sum 
v. Variable M: RGi Merge Sum 

vi. Variable R: Ri Mean 
vii. Variable S: Ri Sum 

17. Calculate Properties (2) 
1. Population: Cilia Selected  
2. Method: By Formula                     Output Properties: Pearsons Down 

i. Formula: (q-(2*R*s)+(C*R*R)) *(f-(2*G*h) + (C*G*G)) 
ii. Variable C: Spot Area [px2] 
iii. Variable F: G^2i Sum 
iv. Variable G: Gi Mean 
v. Variable H: Gi Sum 

vi. Variable Q: R^2i Sum 
vii. Variable R: Ri Mean 

viii. Variable S: Ri Sum 
18. Calculate Properties (3) 

1. Population: Cilia Selected  
2. Method: By Formula                     Output Properties: Pearsons Coefficient 

i. Formula: A/sqrt(B) 
ii. Variable A: Pearsons Up 
iii. Variable B: Pearsons Down 

19. Define Results 
1. Method: List of Outputs  
2. Population: Cilia 

i. Apply to All:  
ii. Relative Spot Intensity:  
iii. Corrected Spot Intensity: 
iv. Uncorrected Spot Peak Intensity: 
v. Spot Contrast: 

vi. Spot Background Intensity: 
vii. Spot Area [px2]: 

viii. Region Intensity: 
ix. Spot To Region Intensity: 
x. Cilia Selected: 

3. Population: Nuclei 
i. Number of Objects 

ii. Apply to All:  
iii. Relative Spot Intensity:  
iv. Number of Spots: 
v. Number of Spots per Area of Cell: 

4. Population: Cilia Selected 
i. Number of Objects 

ii. Apply to All:  
iii. Relative Spot Intensity:  
iv. Corrected Spot Intensity: 
v. Uncorrected Spot Peak Intensity:  

vi. Spot Contrast:  
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vii. Spot Background Intensity: 
viii. SpotArea[px2]: 

ix. Region Intensity: 
x. Spot To Region Intensity: 

xi. RGi merge Sum: 
xii. Ri Mean: 

xiii. Ri Sum: 
xiv. Gi Mean: 
xv. Gi Sum: 

xvi. R^2i Sum: 
xvii. G^2i Sum: 

xviii. Pearson Up: 
xix. Pearson Down: 
xx. Pearson Coefficient: 

xxi. Mean+StdDev 
5. Population: Cilia: None 
6. Population: Nuclei: None 
7. Population: Cilia Selected: ALL 

D.1.2 Example: Analysis sequence transition zone and Basal body co-localization Green 
and Far-red for TMEM67 experiment 

1. Input image  
1. Stack Processing: Individual Planes 
2. Flatfield Correction: None 

2. Find nuclei  
1. Channel: DAPI  
2. ROI: None 
3. Method: B       Output Population: Nuclei 

i. Common threshold: 0  
ii. Area: >50 μm2  
iii. Split factor: 7 
iv. Individual threshold: 0.4  
v. Contrast: >0.1  

3. Find cytoplasm  
1. Channel: DRAQ5  
2. Nuclei: Nuclei  
3. Method: B  

i. Common Threshold: 0.1 
ii. Individual Threshold: 0.1 

4. Calculate Image         
1. Method: By Formula        Output Image: R 

i. Formula: 1.0*A  
ii. Channel A: DRAQ5 
iii. Negative Values: Set to Zero 
iv. Undefined Values: Set to Local Average 

5. Calculate Image (2)         
1. Method: By Formula        Output Image: G 

i. Formula: 1.0*A  



      
 
 
 

 

232 

ii. Channel A: Alexa 488 
iii. Negative Values: Set to Zero 
iv. Undefined Values: Set to Local Average 

6. Calculate Image (3)         
1. Method: By Formula        Output Image: RG 

i. Formula: A*B  
ii. Channel A: R 
iii. Channel B: G 
iv. Negative Values: Set to Zero 
v. Undefined Values: Set to Local Average 

7. Calculate Image (4)         
1. Method: By Formula       Output Image: R^2 

i. Formula: A*A  
ii. Channel A: R 
iii. Negative Values: Set to Zero 
iv. Undefined Values: Set to Local Average 

8. Calculate Image (5)         
1. Method: By Formula     Output Image: G^2 

i. Formula: A*A  
ii. Channel A: G 
iii. Negative Values: Set to Zero 
iv. Undefined Values: Set to Local Average 

9.  Find spots 
1. Channel: DRAQ5         
2. ROI: Nuclei  
3. Method: A       Output Population: γ-Tubulin 

i. Relative Spot Intensity: >0.03 
ii. Splitting Coefficient: 1 Calculate Spot Properties 

10. Select Population  
1. Population: γ-Tubulin        
2. Method: Filter by Property       Output Population:  γ-Tubulin        

i. Spot Area [px2]: >=25    Selected 
11. Calculate Intensity Properties 

1. Channel: RG 
2. Population:  γ-Tubulin Selected 
3. Region: Spot         
4. Method: Standard Sum        Output Properties: RGi merge 

12. Calculate Intensity Properties (2) 
1. Channel: R 
2. Population: γ-Tubulin Selected  
3. Region: Spot         
4. Method: Standard Mean Sum      Output Properties: Ri 

13. Calculate Intensity Properties (3) 
1. Channel: G 
2. Population: γ-Tubulin Selected  
3. Region: Spot         
4. Method: Standard Mean Sum       Output Properties: Gi 

14. Calculate Intensity Properties (4) 
1. Channel: R^2 
2. Population: γ-Tubulin Selected 
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3. Region: Spot         
4. Method: Standard Sum        Output Properties: R^2i 

15. Calculate Intensity Properties (5) 
1. Channel: G^2 
2. Population: γ-Tubulin Selected 
3. Region: Spot         
4. Method: Standard Sum          Output Properties: G^2i 

16. Calculate Properties 
1. Population: γ-Tubulin Selected  
2. Method: By Formula                     Output Properties: Pearson Up 

i. Formula: M - (G*s) - (R*h) + (C*R*G) 
ii. Variable C: Spot Area [px2] 
iii. Variable G: Gi Mean 
iv. Variable H: Gi Sum 
v. Variable M: RGi merge Sum 

vi. Variable R: Ri Mean 
vii. Variable S: Ri Sum 

17. Calculate Properties (2) 
1. Population: γ-Tubulin Selected  
2. Method: By Formula                     Output Properties: Pearsons Down 

i. Formula: (q-(2*R*s) + (C*R*R)) *(f-(2*G*h) + (C*G*G)) 
ii. Variable C: Spot Area [px2] 
iii. Variable F: G^2i Sum 
iv. Variable G: Gi Mean 
v. Variable H: Gi Sum 

vi. Variable Q: R^2i Sum 
vii. Variable R: Ri Mean 

viii. Variable S: Ri Sum 
18. Calculate Properties (3) 

1. Population: γ-Tubulin Selected  
2. Method: By Formula                     Output Properties: Pearsons Coefficient 

i. Formula: A/sqrt(B) 
ii. Variable A: Pearsons Up 
iii. Variable B: Pearsons Down 

19. Define Results 
1. Method: List of Outputs  
2. Population: γ-Tubulin         

i. Apply to All:  
ii. Relative Spot Intensity:  
iii. Corrected Spot Intensity: 
iv. Uncorrected Spot Peak Intensity: 
v. Spot Contrast: 

vi. Spot Background Intensity: 
vii. Spot Area [px2]: 

viii. Region Intensity: 
ix. Spot To Region Intensity: 
x. γ-Tubulin Selected: 

3. Population: Nuclei 
i. Number of Objects 

ii. Apply to All:  
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iii. Total Spot Area: 
iv. Relative Spot Intensity:  
v. Number of Spots: 

vi. Number of Spots per Area of Cell: 
4. Population: γ-Tubulin Selected 

i. Number of Objects 
ii. Apply to All:  
iii. Relative Spot Intensity:  
iv. Corrected Spot Intensity: 
v. Uncorrected Spot Peak Intensity:  

vi. Spot Contrast:  
vii. Spot Background Intensity: 

viii. Spot Area [px2]: 
ix. Region Intensity: 
x. Spot To Region Intensity: 

xi. RGi merge Sum: 
xii. Ri Mean: 

xiii. Ri Sum: 
xiv. Gi Mean: 
xv. Gi Sum: 

xvi. R^2i Sum: 
xvii. G^2i Sum: 

xviii. Pearson Up: 
xix. Pearson Down: 
xx. Pearson Coefficient: 

xxi. Mean+StdDev 
5. Population: Cilia: None 

i. Population: Nuclei: None 
ii. Population: γ-Tubulin Selected: ALL 

 
D.2 Steps of quantitative co-localization analysis using Volocity 64x: 

1. Image acquisition 

1.1 Open an image and select two channels to be analysed. The two channels have 
different colours, easy to visualize. 

1.2  Select the object, name the population, and select colour  
1.3 Click measure t select the features of the population  
1.4 Choose intensity and volume measurements 
1.5 Drag and drop a second task to select a second object and follow the above steps 
1.6 Remove Noise from objects 
1.7 Calculate object co-localization: according to manufacturing-based definition of this 

calculation described as the detection of signal at the same voxel location in each of 
two channels. The two channels are made up of images of two different 
fluorochromes taken from the same sample area. 

2. Background correction 

2.1 Set thresholds 



      
 
 
 

 

235 

2.2 Enter the required values manually into the Threshold Maximum and Minimum 
boxes for each channel or drag the slider controls on the scatter plot 

2.3  Select Automatic Thresholding from the Co-localization menu to generate 
thresholds automatically. 

3. Coefficients calculations 
 

3.1 Pearson’s correlation coefficient calculates the intensity values over a determined 
threshold in both channels. 

3.2 Interpreting obtained results correlation of the intensity distribution between 
channels 

Exemplar workflow for siRNA scrambled control data 

Select all imagesà 1. measurements (Finding)àFind objectsà Focus on one channel, 

transition zone (FITC)àMeasure (make the following measurement: Intensity and volume 

measurement)à Settingàminimum object size (0.3 μm3)à Exclude object by size (>7 

μm3)à 2. Find second objectsà Focus on one channel, axoneme (TexasRed)àMeasure 

(make the following measurement: Intensity and volume measurement)à 

Settingàminimum object size (0.2 μm3)à Exclude object by size (>9 μm3)à 3.Calculate 

object co-localization: Inpat [Channel 1 FITC ;Channel 2 TexasRed] (Choose two channels 

‘two compartments’ ex transition zone and axoneme)à Measurement ‘Auto-threshold ‘à 

Display àFITC focus finalà Pearson’s correlationàSave settingàSave protocolàrunà 

FileàExport dataà Excel analysis (TMP downloaded text).* Repeat same steps for the 

remaining compartments ex transition zone and basal body and axoneme and basal body). 

 
D.3 Cilia/cells counting methods after volocity measurement: 
I used Fiji software to count cells and cilia instead of volocity 64x, as follows 

• Image à Colour à Split Channels à Select Cilia Channel àMaximum Intensity Z-
projection (Image/Stacks/ Z Project / ✔ Max Intensity) à Analysis à 3D Objects 
Counter (Threshold (Filter)/ ✔objects/ ✔ Statistics/ ✔Summary) 

  
1. Example of objects counter setting (cilia selection) as follows 
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2. Example of objects counter setting (cell selection) as follow  
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D.4: Validation of subcellular localization of IFT88 in mIMCD-3 cells stably expressing the 
ciliary marker 5HT6-RFP prior to using IFT88 as an axoneme marker. The use of IFT88 was 
to test co-localization in cilia with other ciliary-specific antibodies in order to define the 
organization of the CEP290 module. Merged images below show the stably-transfected 
ciliated mIMCD-3 5HT6-RFP cell-line, marking cilia in red, had co-localization of c-YFP-IFT88 
(green) In merged images, the DAPI counterstain (blue) revealed the position of nuclei. Scale 
bars = 10 μm. YFP-IFT88 does appear to co-localize with cilia. 
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List of commercial suppliers 
 

ATCC 
LGC, Queens Road, Teddington, Middlesex 
TW11 0LY, UK 
atcc@lgcstandards.com 

https://www.lgcstandards-
atcc.org/en/Guides/Guides.aspx 

 

Bio-Rad DCTMLaboratories Ltd 
The Junction, Station Road, Watford, 
Hertfordshire, WD17 1ET, UK 
Contact_NorthEurope@bio-rad.com 

https://www.bio-rad.com 

Cell Signaling Technology, Inc. 
3 Trask Lane 
Danvers, MA 01923 
orders@cellsignal.com 
 
https://www.cellsignal.com 

Roche 
Roche Diagnostics Limited, Charles 
Avenue, Burgess Hill, West Sussex, RH15 
9RY, UK 
burgesshill.communicationsteam@roche.
com 

https://www.roche.co.uk 

 
Sigma-Aldrich Company Ltd. 
The Old Brickyard, New Rd, Gillingham, 
Dorset, SP8 4XT 
ukcustomerrelations@merckgroup.com 
 
https://www.sigmaaldrich.com/united-
kingdom.html 
 

Agilent Dako 
5301 Stevens Creek Blvd 
Santa Clara, CA 95051 
United States 
contact_us@agilent.com 
 
https://www.agilent.com 

Thermo Fisher Scientific                                   
Life Technologies Ltd 
3 Fountain Drive 
Inchinnan Business Park 
Paisley PA4 9RF, UK 
ukorders.lifesci@thermofisher.com 

https://www.thermofisher.com/uk/en/home.
html 

GE Healthcare 
GE Healthcare Life Sciences 
Amersham Place 
Little Chalfont 
Buckinghamshire 
HP7 9NA UK 
 
https://www.gelifesciences.com/en/gb 
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