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Abstract 

Automated species identification has become a popular alternative to manual 

classification in the past few decades, as a result of advancement in digital image 

processing techniques and machine learning algorithms. This project aims to 
devise a new approach for the detection of leaf mines and fungal spots from digital 

images, and to investigate the possibility of monitoring the growth of leaf mines. 

Leaf-mining insects primarily belong to the orders of moths (Lepidoptera), flies 

(Diptera) and beetles (Coleoptera); or the suborders of sawflies (Symphyta) and 

wasps (Apocrita). Every spring and summer the larvae of leaf-mining insects feed 
on leaf tissues until maturity and vacate the mines as adults. As most species of 

leaf miners attack garden plants or crops, they are generally regarded as pests, 

despite rarely causing severe long-term detrimental effect on their host plants. 
Increase in human activities has led to the spread of these invasive species 

globally in recent years, and the demand for an effective classification system to 

monitor their distribution is rising consistently. 

Samples from three species of leaf-mining insects were included in this project: 
horse chestnut leaf miner (Cameraria ohridella), apple leaf miner (Lyonetia 

clerkella), and holly leaf miner (Phytomyza ilicis). Leaves with tar spots (Rhytisma 

acerinum) were also introduced as variations. The proposed method uses image 
processing techniques such as thresholding, conversion between colour spaces, 

edge detection, image segmentation, and morphological operations. This project 

also explores the use of machine learning algorithms as analytical monitoring and 
predictive tools, using the growth of C. ohridella leaf mines as an example. 
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Chapter 1 

Introduction 

Over the past few decades, with the development of new technologies and 

techniques, automated species identification using digital image processing has 
emerged as a powerful tool. Fundamentally, automated classification can be 

considered as a method to organise a data set, and interpreting them in a way so 

that information can be extracted and understood [1].  

Compared to the more traditional way of comparing data manually, automated 

species identification can be seen as the natural progression, with the additional 
benefit of its cost-effectiveness, and the possibilities to improve on accuracy and 

precision. Computerised methods require the expertise and efforts of engineers 

and scientists from a wide range of fields; and their collaborations throughout in 
recent years have resulted in some encouraging and promising results. Similar 

techniques are also applied in the analysis of magnetic resonance imaging (MRI) 

images and computed tomography (CT) scans for medical purposes, and for 
processing remote sensor data of geological elements. As a result, the popularity 

and demand for automated classifiers has been consistently on the rise. 

In the fields of entomology and zoology, routine species identification 

traditionally was mainly conducted under laboratory settings, with experts 
comparing specimens. While the conventional way is reliable, its cost-

effectiveness has come into question as it requires specialised knowledge and 

training [2]; and with more species of animals and plants being discovered in the 
past few decades, improvement on efficiency and accuracy was understandably 
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desired. While the beginning of digital image processing can be dated back to the 

1960s [3, pp. 3 – 7], research on automated species identification first dates back 
to the 1980s, as an alternative approach to manual species classification. Since 

then, with the rapid development of devices for capturing and displaying digital 

images, techniques for digital image processing and automated classification 
have been improving accordingly. Despite misgivings of some over its long-term 

efficacy, the popularity of computer-sided taxonomy (CAT) surges and such 

systems are much sought after.  

1.1 Computer-aided taxonomy 

Taxonomy, in its widest sense, is the practice of discovering and classifying 

individual species of plants and animals. Pioneers such as Adanson and Linné 

devised innovative systems to classify biological organisms, with the former 
applying clustering techniques [4] and the latter popularising a new way to name 

species, which made identification more efficient [5]. Centuries later Sokal and 
Sneath introduced polythetic classification, in which characteristics of taxonomic 

units were studied and taken into account during the identifying process [6]. 

In its early days, species identification was performed manually, which often 

included making observation and taking physical measurements. Morphological 

features such as shape, colour, sizes etc. have always played important roles in 
species identification. Manual classification requires the expertise of taxonomists 

or curators, and could become time-consuming when a large database is needed 

to provide ecological information [7]; the advance in technology, alongside the 
need for rapid field identification, gave rise to the first automated computer-aided 

taxonomy (CAT) identification systems. One of pioneering applications was 

DAISY (Digital Automated Identification System), a universal identification 
systems developed by O’Neill [8] in the mid-1990s, which is still in-use nowadays 

for monitoring agricultural crops and biodiversity [9]. 

Compared to the traditional approach, CAT systems have the advantage of its 

accessibility and usability outside a laboratory environment. While promising 

results have assured the ability of performing species identification using 
automated or computer-based systems, this approach has yet to emerge as the 
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typical way of routine identification, since procedures such as system training 

and image processing have not been widely adopted in biodiversity research.  

Gaston and O’Neill suggested that automated identification was considered by 

some as (1) difficult – complicated algorithms and processes are often 
incorporated; (2) labour intensive – traditionally the identification process 

required the expertise of taxonomists, however computer-based systems would 

have to be planned and developed by engineers; (3) threatening – it would take 
time for the taxonomic industry to embrace this modernised and diverse 

approach; (4) different – the traditional approach had been performed for decades 

and its viability was proven; and 5) expensive – a mix of hardware and software 
had to be invested into [10].   

It should be mentioned that another alternative to the traditional method is a 
molecular approach based on DNA full barcoding – by extracting, amplifying and 

sequencing the DNA (deoxyribonucleic acid) of organisms. DNA-based methods 

are considered important development in taxonomy and systematics, with 
molecular data being a vital part in the analysis of biodiversity [11]. DeSalle 

contended that even though there are problems with DNA barcoding applications, 

the use of DNA sequence information can contribute to refining species discovery 
[13]. However, Hebert et al. acknowledged the prevalence of misidentification due 

to the variation in molecular data across, especially beyond Order-level [12]. Will 
and Rubinoff argued that DNA barcoding should not replace morphology for 

species-level identification and classification, or this could potentially impede the 

understanding of biodiversity [11].  

1.2 Motivation for the project 

Taxonomic impediment refers to the gaps of knowledge in the taxonomic system, 

the shortage of skilled and trained taxonomists or curators, and how the ability 

to facilitate effective biodiversity management could be affected as a result [14]. 
The three main areas of taxonomy in biodiversity conservation, as decreed in the 

Darwin Declaration, are: identification, assessment and monitoring – including 

biological surveys and improvement in rapid assessment methods; conservation 
– the identification of taxa in need of conservation action; and sustainable use, 
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with the objective to achieve sustainable agriculture, horticulture and forestry, 

as well as biological and diseases control, and managing invasive species [14].  

Leaf miners are a group of invasive insects which feed on leaves of their host 

plants and are predominantly regarded as pests. The damage caused by leaf-
mining insects vary considerably regarding the species of leaf miners and host 

plants, as well as the environmental conditions and stages of development. Leaf 

miners generally damage the aesthetical value of the plants, and can lead to lower 
crop production.  

C. ohridella, for example, is a species of leaf-mining insects that has come to 
prominence in the past few decades. Its main host plant Acer hippocastanum is a 

common ornament tree of choice in urban areas, and when combined with the 

increase in human activities, this means the population of C. ohridella was 
allowed to spread rapidly across the Europe. C. ohridella has been observed to be 

feeding on secondary host plants in areas where horse chestnut plants, their 

primary host plant, are especially heavily infested [15] [16] [17]. This essentially 
poses a new threat to other species of chestnut and maple trees, as the expansion 

in areas infested by C. ohridella has increased significantly in the past few 

decades, both within the United Kingdom and across Europe. 

This thesis proposed an approach for measuring and monitoring the growth of 
these invasive species, based on the detection of leaf mines from digital images. 

This new approach can provide useful information for entomologists and 

biologists who study the insects and their host plants, thus fulfilling some of the 
goals illustrated in the Darwin Declaration. Effective pest control measures can 

be applied, benefitting the agricultural and gardening communities alike. 

Although the popularity of computer-aided taxonomy continues to rise, most 

existing automated identification systems for plants focus on the detection of 

bacteria, viruses or fungi in agricultural crops. Species identification system 
designed specifically for detecting or classifying leaf mines remained limited. 

Image-based automated classification systems have been developed for the 

following plant species: sugar beat [18], different species of crops native to Tamil 
Nadu [19], pomegranate [20], potato [21], orchard [22], maize [23], cucumber [24], 

chilli plants [25], wheat and grape [26], soybean [27], oil palm [28] etc.  
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The alternative approach of using DNA barcoding, meanwhile, involves 

recovering DNA from empty leaf mines and has only started to emerge in the past 
decade. This generally requires the laborious process of scraping out recently 

vacated leaf mines to collect larval skins and frass, which comes with the 

difficulties of determining precise plant – leaf miner interactions based on residue 
within leaf mines [29]. The success rate of this molecular approach in 

amplification varies, although molecular techniques for species identification are 

consistently advancing. Yet by contrast to the traditional method of comparing 
samples and computer-aided identification systems, the molecular approach 

tends to be more complex and costly [30].  

1.3 Aims and objects 

The aim of this project is to investigate methodologies and develop tools that could 
aid the development of a semi-automated system for detecting leaf mines on 

digital images of leaves. This incorporates various digital image processing 
techniques commonly used in automated classifiers and computer-aided 

taxonomy systems, which have been proved to be suitable for the purposes, but 

rarely used in the monitoring of leaf mines. Three species of leaf miners are 
considered, including the horse chestnut leaf miner (Cameraria ohridella), apple 

leaf miners (Lyonetia clerkella), and holly leaf miners (Phytomyza ilicis), as well 

as the fungi more commonly known as “tar spots” (Rhytisma acerinum). This 
project also proposes a method to monitor the growth of C. ohridella leaf mines, 

and investigate into the possibility of predicting the trend of growth of the larvae.  

The horse chestnut leaf miner Cameraria ohridella, as seen in figure 1.1, was 

initially chosen as a primary focus as samples are widely available compared to 

procuring images of fields of agricultural crops with various plant diseases. In 
order to ensure the proposed method is not overfitted to suit a single species, 

variation is then introduced by including specimens of apple leaf miners (Lyonetia 

clerkella), and holly leaf miners (Phytomyza ilicis). Each of these variations has 
different characteristics compared to C. ohridella – L. clerkella leaves gallery 

mines on surfaces of leaves, instead of blotch mines; and P. ilicis is a fly, unlike 

the other two, which are moths. This system is also modified to accommodate the 
fungus more commonly known as tar spots (Rhytisma acerinum).  
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Figure 1.1: Horse chestnut plant infested with C. ohridella 

 

 

1.4 Project overview 

Similar to many computer vision systems, the proposed leaf mine detection tool 

combines digital image processing, pattern recognition and artificial intelligence. 
It uses a range of image processing techniques commonly seen in other automated 

classifiers and computer-aided taxonomy systems such as intensity thresholding, 

conversion between colour spaces, morphological operations, edge detection, and 
other types of image segmentation. The segmentation results aid the process of 

feature extraction from image data, and the interpretation of these features 

shows that leaf mines or tar spots can be located on a digital image which shows 
the surface of a leaf. 

The use of neural networks, in conjunction with evolutionary algorithms, will be 
explored as a tool to aid the classification of leaf mine infestation. A reference 
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database serves as a training set for testing algorithms, before they are 

incorporated into the automated classification system. This provides an efficient 
and semi-automated way to measure infested areas and severity. The flow 

diagram in figure 1.2 describes how the proposed system detects damaged areas 

caused by leaf mines. 

In order to adapt to accommodate the further two species of leaf mines, as well as 

data collected with other methods, it is noted that certain modification has to be 
adapted. This is due to the shape, colour and sizes of the mines or spots, as well 

as the dimension of the digital images that are acquired with different methods. 

The system can potentially work similarly on mines of C. ohridella on various 
species of host plants if samples become available; assuming the same methods 

can be used to estimate a threshold when separating the leaf mines from the rest 

of the leaf. Based on observation, it can be speculated that the approach could be 
adjusted to suit other plant diseases. 

This project also proposes a method to monitor the growth rate of blotch leaf 
mines using feature extracted from images of leaf mines. The area of leaf mines 

is measured using the proposed system over a number of days, which can be 

shown to correspond to various growth stages of the larvae. C. ohridella mines 
are chosen for this purpose due to the amount of data available. The training of 

the dataset using neural network facilitates the investigation into the possibility 
of predicting the trend of growth of the larvae. 

 

 

Figure 1.2: Flow diagram of the proposed system 
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1.5 Implications and potential significance 

The accurate identification of leaf-mining insects is an ardour process – apart 

from during oviposition, adult leaf miners do not generally associate with their 

host plants [30]. Their larvae, meanwhile, are camouflaged to a certain degree 
during most of their life cycle. The leaf tissues provide a certain amount of 

protection against physical environment and predators, which complicates the 

management of these invasive pests. Nevertheless, the correction identification 
of leaf-mining species is important for the monitoring of the invasive species. 

By basing the approach on images of leaf mines, features of the mines can be 
extracted and used as the parameters to aid the classification of leaf miners. A 

challenge for efficient identification of leaf mines is the relationship between leaf 

miner and host plants. The size and shape of leaf mines vary, depending on their 
species, development stage, the condition of the host plants, and the external 

environment. For instance, the growth of a larva can be impeded by the edges or 
veins of the leaf; similarly, its growth can also be constricted by existing leaf 

mines or areas that are otherwise damaged. 

The proposed method facilitates the measurement of morphological properties of 

leaf mines, which are commonly used in many related research. The tools for 

detecting leaf mines from images are fundamental to any image-based 
classification system for the identification of leaf mines or leaf-mining insects, 

thus assisting the research into the behavioural development of leaf miners. 

1.6 Thesis structure  

In this report, chapters 2 provides the background information of the project, on 
the three species of leaf-mining insects, previous studies of automated species 

identification and other related research. Chapters 3 and 4 discuss the techniques 

of digital image processing and routine identification using machine learning 
respectively. Chapter 5 illustrates how the techniques have been incorporated 

and implemented in this project, and chapter 6 would provide insight to the data 
analysing methods. The report ends in chapter 7 with a conclusion and 

suggestions on side projects or future work. 
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Chapter 2 

Background  

Species identification using computer vision systems is becoming more significant 

in the fields of taxonomy and entomology. This chapter provides an overview of 
some existing computer-aided taxonomy systems designed to detect plant 

diseases using digital images. The majority of examples that will be discussed in 

this chapter incorporate image processing techniques, such as image 
segmentation and various morphological processes; feature extraction based on 

texture, colour etc.; before using machine learning algorithms such as neural 

networks as classifiers, and occasionally incorporating techniques from the fields 
of pattern recognition and artificial intelligence. 

This chapter also elaborates on the biological background of horse chestnut leaf 
miner (Cameraria ohridella), apple leaf miners (Lyonetia clerkella), holly leaf 

miners (Phytomyza ilicis), and the fungus more commonly known as tar spots 

(Rhytisma acerinum).  

2.1 Automated species identification 

Computer-aided taxonomy systems are being introduced as an alternative to the 

traditional species identification method of comparing samples manually, and as 
a response to the demand in routine identification for new species. CAT systems 

are seen as more efficient than manual classification based on morphological 

features or behavioural attributes, and as a less costly or complex approach 
compared DNA barcoding,  
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As mentioned in section 1.2, most plant-related computer-aided taxonomy 

systems or automated classifiers to date were developed for plant diseases; 

nonetheless, some of the techniques and methodologies are applicable for the 
detection of leaf mines from digital images. As a result, these CAT systems are 

significantly relevant to this current research project. Such systems usually 
incorporating image processing techniques, such as image segmentation and 

various morphological processes; feature extraction based on texture, colour etc.; 

and neural networks, which is often used as an automated classifier.  

For instance, Dhaygude and Kumbhar [18], Arivazhagan et al. [16], Iandge et al. 

[23] and Shen et al. [27] devised systems that convert images of diseased leaves 
from RGB (red, green and blue) colour model to HSI (hue, saturation and 

intensity), thereby masking or removing green pixels, which indicate areas as 

background, before segmenting the image into its binary equivalent and using 
neural networks as the classifier. In their investigation in leaf diseases caused by 

fungi, bacteria and viruses, Dhaygude and Kumbhar used sugar beets leaves [18]; 

Arivazhagan et al. incorporated 500 leaves from 30 different plant species native 
to Tamil Nadu, including banana, beans, jackfruit, lemon, mango, potato, tomato 

and sapota [16]. Iandge et al. proposed and experimentally evaluated a method of 

detecting leaf diseases automatically by means of neural network, using maize 
plants, which are prone to stem borer (Chilo partellus) infestation and brown 

stripe downy mildew disease [23]. Shen et al. devised a mechanism for grading 

damage of grey spots on leaves of soya bean plants by calculating the quotient of 
disease spots; it used Otsu’s method and the Sobel operator for image 

segmentation and edge detection respectively [27]. 

Some of these experiments focused on extracting certain features from digital 

images, and using them to help identify the diseases, such as Dhaygude and 
Kumbhar [18], Patil and Bodhe [31]. Hainruddin et al. used morphological 

processes and extracted features using an algorithm based on image texture and 

colour, corresponding to four types of macronutrient and micronutrient nutrient 
deficiencies in oil palm (Elaeis guineensis), based on the fertilisers used [28]. 

Husin et al. used 107 samples of chilli plants, of which 21 were healthy and 86 

were affected by insects, bacteria, fungi or viruses [32]. This system incorporates 
image processing techniques including Fourier filtering, edge detection and 



2. Background 
 

 
 

24 

morphological operations to enhance images and extract features from them; as 

well as a user interface constructed with LABVIEW for capturing images.  

Neural networks have been one of the most popular classifiers for computer-aided 

taxonomy systems, and these computational models are widely acknowledged as 

successful classifiers in many existing applications. Used by Arivazhagan et al. 
[16], Kulkarni and Patil [20], Iandge et al. [23], Wang et al. [26] [33] among others, 

neural networks are used in the classification stage. Iandge et al. achieved a high 
percentage of success in identifying a range of diseases of maize plants; and 

inferred that the diseased leaves show significant differences noticeable in neural 

outputs when compared to healthy equivalents [23]. Wang et al. achieved 
accuracy above 90% [26] [33]. Phadikar and Sil devised a software prototype 

system for detecting rice plant diseases leaf black (Magnaporthe grisea) and 

brown spot (Cochliobolus Miyabeanus) using SOM, an unsupervised learning 
technique [34]. Using SOM and digital images of rice plants, Phadikar and Sil 

achieved an accuracy of 70 – 92%.  

Occasionally used in conjunction with neural networks are other pattern 

recognition algorithms, such as the application of K-means clustering to separate 

pixels into groups before passing the segmented images through neural networks. 
Experiments of Al-Hiary et al. and Bashish et al. used this segmentation 

technique on leaf samples from the Al-Ghor area in Jordan, to detect and classify 

plant diseases such as early scorch, cottony mould, ashen mould, late scorch and 
tiny whiteness [35] [36].  

Although the computer-aided taxonomy systems described here were generally 

regarded as successful, some reported misclassification due to the inconsistency 

of symptoms in plant diseases and the number of features taken into 
consideration [19] [20] [26] [34]. Suggestions to improve classification accuracy 

include: increasing size of training samples [19], classifying pixels separately [37], 

and the development of hybrid algorithms of generic algorithms and neural 
networks [23] [35]. 

In the following chapter, basic digital image processing techniques are discussed, 
as well as their application in other fields, which can be applied computer-aided 

taxonomy systems to improve segmentation results. 
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2.1.1 Related research 

Considering automated species identification has been applied to numerous 

research areas, such as entomology, biodiversity, ecology, agriculture, there are 

approaches other than image-based systems. Acoustics, for instance, was chosen 
as the medium for identifying beetle larvae in imported goods by Schofield and 

Chesmore [38]. Acoustics have also been used in species identification in other 

animals such as birds [39] [40] [41], lemur [42] and grasshoppers [43].  

The application of image-based CAT systems is not limited to detecting plant 

diseases in agricultural and horticultural systems. The aforementioned DAISY 
project established the possibility of automating the routine identification 

process, and many insect-based automated systems have since been developed. 

These includes the classifiers for moths developed by Mayo and Watson [44], 
Bastista et al. [18], Wen et al. [22], Yu et al. [46], and Flandin [47]. Kang et al. 

proposed an identification process for seven species of butterflies [48], and Larios 

et al. devised a method to classify four stoneflies taxa [9]. 

In relation to CAT systems for plant diseases, there are existing mobile 

applications for plant identification using digital image processing and artificial 
intelligence, including: PlantSnap [50], PictureThis [51], My Garden Answers 

[52], iPlant [53], SmartPlant [54], Plantifier [55], Plant Identification [56], Smart 
Identifier: Plant+Insect [57], Pl@ntNet [58], Garden Flower Identification [59], 

Plant Identification & Info [60], and WildPlantID [61]. Such systems in general 

involve photos taken with smartphones, and often with a varying degree of user 
input. These applications often have the functionality to classify common house 

or garden plants, with additional care information; yet few focus on identifying 

pests or plant pathogens. Their target audience is mostly plant owners who wish 
to learn how to care for their plants at home, and entomologists or taxonomists 

who wish to study them, however. 

2.1.2 Leaf Watch 

Although not an automated classification systems, Leaf Watch is one of the very 
few projects that concerns horse chestnut leaf miners, and incorporates digital 
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image processing techniques with elements of classification [62]. It is a mobile 

application which allows users to upload photographs of horse chestnut leafs 

invested with leaf mines. The photographs, with the additional information of 
geographic information, form a database which helps with the classification of 

severity, in the form of a scoring system, as seen in figure 2.1 and table 2.1 [63] 
[64] [66]. Some screenshots of the mobile application are shown in figure 2.2. 

This project was a collaboration between the University of Hull and University of 
Bristol, led by Evans and Pocock [63] [65] [66] [67], with the group of participants 

who had very limited knowledge on either the leaf miners or the horse chestnut 

plant. Participants were provided damaged leaves of horse chestnut Aesculus 

hippocastanum and asked to identify, as well as score, the damage according to 

the diagram in figure 4.10 [68]. Figure 2.3 shows the results gathered by the Leaf 

Watch application in 2012. The numbers inside the pins represents the number 
of entries submitted to the application in the corresponding area. A grey pin 

denotes unknown amount of damage observed, a white pin indicates no damage 

(damage score = 0); and darker pins represent ascending damage scores from 1 to 
4 [66]. 

 

Figure 2.1: Scoring damage to horse chestnut leaves [63] 

 

Score Description of leaves 

  

0 The leaf is completely green, no visible evidence of moth attack. 

1 There are a couple of white or brown mines, showing little damage. 

2 Less than half of the leaf is covered with white or brown leaf mines. 

3 Around half of the leaf is covered with white or brown leaf mines. 

4 The white or brown mines definitely cover more than half the leaf. 
(In some cases the mines may cover the entire leaf.) 

  
 

Table 2.1: Interpretation of the scoring system of Leaf Watch [66] 
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(a) (b) (c) 

Figure 2.2: Screen shots of the Leaf Watch application [64] 

 

 

Figure 2.3: Leaf Watch results (2012) [66] 
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Like many observation type research, the damage scores were opinion-based and 

prone to bias as a result [22]. An alternative method to quantise the amount of 

damage is by calculating the percentage of area infested with leaf mines using 
image segmentation techniques, which will be elaborated in chapter 3. Table 2.2 

shows a grading system for grey leaf spot disease on soybean plantation which 
adopted a similar method [27].  

Regardless of the user-influenced classification method, Leaf Watch is a good 
example of how digital image processing techniques can be used on C. ohridella. 

 

 Disease level Ratio of lesion to leaf area  

    

 T0 t = 0  

 T1 0 < t ≤ 0.01  

 T2 0.01 < t ≤ 0.05  

 T3 0.05 < t ≤ 0.2  

 T4 0.2 < t ≤ 0.5  

 T5 0.5 < t ≤ 1  
   

 

Table 2.2: Rank table of soybean leaf spot disease [27] 

 

2.2 Introduction to leaf-mining insects and tar spots 

Larvae of insects belonged to the orders of moths (Lepidoptera), flies (Diptera) 

and beetles (Coleoptera), or the suborders of sawflies (Symphyta) and wasps 
(Apocrita) often begin their lives as eggs on the surface of leaves. As the larvae 

hatch, they start to feed on leaf tissues of their host plants. Subsequently, the 

larvae are protected from predators and are less susceptible to insecticides.  

Leaf miners cause damages to ornamental and horticultural plants alike, from 

lowering their aesthetical value to reducing crop production. As such, leaf-mining 
species are regarded as pests that cause significant economic impact [2] [69]. 

Therefore, the proposed method for monitoring their growth would be beneficial 
for the taxonomists who focus on defining and identifying the leaf miners, the 



2. Background 
 

 
 

29 

entomologists who are studying the behaviour of leaf-mining species and their 

relationship with the host plants, and the farmers who wish to control the 

infestation among their crops. 

2.2.1 Horse chestnut leaf miner 

Cameraria ohridella (Lepidoptera: Gracillariidae), more commonly known as the 

horse chestnut leaf miner, as the name would suggest mainly feeds on the 
common horse chestnut Aesculus hippocastanum. Figure 2.4 (a) shows an adult 

C. ohridella. One of its earliest sighting is believed to be near Lake Ohrid, 

Macedonia in 1984 [70]; since then, the population of C. ohridella has sprung 
across Central and Western Europe. Although its origin remains debatable [71], 

its expansion over the past three decades has been described by Valade et al. [72] 

as “explosive, progressive and highly invasive”, while the potential of infestation 
within or outside Europe was acknowledged by Lees et al. [71].  

The leaf mines start to appear in late Spring every year, in correspondence to the 
three main flight peaks of adult C. ohridella: between mid-April and early June, 

from late June to early August, and from mid-August to mid-September), but 

adult moths can appear till early October [73] [74]. The rate of parasitism does 
not increase with successive generations within the same year [73]. Later 

generations may have restricted area to feed on because of larvae from earlier 
generations on the same leaf, leading to a change in feeding pattern in terms of 

shape, area, height and width, etc. Generally favouring branches of low or 

medium height under shady areas and avoiding the canopy, female adult moths 
each can lay anywhere from 20 to around 80 eggs on the upper surfaces of leaves 

[75] [76] [77]. Figures 2.5 are examples of C. ohridella leaf mines on horse 

chestnut leaves. 

Depending on environmental factors, eggs hatch within 4 to 21 days [73] [76], 

with pupa stage lasting for 12 to 20 days during summer generations [76]. Figure 
2.4 (b) shows an egg on the surface of a horse chestnut leaf. As the larva feeds on 

saps through four instars (and an optional fifth), a mine is gradually formed on 

the upper surface of leaves. During the cylindrical feeding instar, the circular 
reddish-brown mine expands by about 4 to 7 square centimetres along the main 
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veins of the leaf [75]. Additionally, there are two non-feeding spinning stages, and 

a cocoon may not be necessary in earlier generations [76] [77] [78]. After 20 to 45 

days, the larva emerges as an adult moth, which lives for a few days. The complete 
life cycle of C. ohridella is between 6 to 11 weeks [76], repeating one to four times 

per year. Figure 2.6 shows the leaf mines in various stages. 

 

 

  

(a) (b) 

Figure 2.4: C. ohridella in different life stages  

(a) Adult moth at resting position [79] 

 (b) Ag egg, on the upper surface of a horse chestnut leaf [80] 

  

  

  

(a) (b) 

Figure 2.5: Infested Aesculus hippocastanum leaves 
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(a) (b) 

Figure 2.6: Growth of larvae 

(a) First larval instar, sap feeding with empty eggshell 

 and the beginning of the leaf mine [81] 

(b) Cameraria ohridella second spinning larval instar [82] 

 

 

 

Figure 2.7: Incremental distribution of Cameraria ohridella, 

1984 – 2007 [83] 
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Valade et al. [72] suggested the likelihood of moths originating from natural 

stands of A. hippocastanum; with population of C. ohridella having higher genetic 

diversity sampled from natural habitats, compared to planted trees. Given its 
main host plant, A. hippocastanum, has been a popular choice of ornamental tree 

for over a century, and that human-related activities are generally believed to 
encourage long-distance migration [72], mines of C. ohridella has been observed 

in over 30 European countries, as shown in the distribution map in figure 2.7.   

The damages caused by C. ohridella are believed to be of mainly aesthetical value, 

and long term heavy infestation are not considered detrimental to the plants’ 

general health [84] [85] [86] [87]. Damage that occurs later in the season tends to 
impact the performance of plants [88]. Percival et al. suggested C. ohridella might 

pose long-term harm on the reproductive capacity of infested trees, due to a 16 – 

98% loss in photosynthetic energy, caused by premature leaf loss due to damages 
caused by leaf mines [89]. The infestation of C. ohridella can also cause the 

production of seeds to diminish by up to 48% and halving each of their weight. In 

Albania, where horse chestnut is classified as an endangered species in the IUCN 
plant red list [90], further infestation of C. ohridella could case potential threat 

to biodiversity in the area.  

The discovery of ovipositing on other Aesculus and Acer plants, the infestation of 

the leaf-mining moths can potentially pose a renewed threat to the Acer genus 

across Europe. Aside from its primary host plant, the common horse chestnut 
Aesculus hippocastanum, larvae of C. ohridella also have the ability to feed on 

other horse chestnut and maple trees, especially in areas where the common 
horse chestnut plants are heavily infested [15] [16] [17].  

This has been observed in areas where the infestation of horse chestnut plants is 
particularly prevalent. For example, A larva of C. ohridella is able to feed and 

fully develop on A. turbinata (Japanese horse chestnut) [15] [16], A. octandra 

(American species yellow buckeye), A. glabra (Ohio buckeye), A. sylvatica 

(painted buckeye), A. pavia (red buckeye), A. platanoides (Norway maple) and 

Acer pseudoplatanus (sycamore maple) [15] [17] [91].  An example of C. ohridella 

infestation on A. pseudoplatanus is shown in figure 2.8. Other minor host plants 
include common red horse chestnut (Aesculus × carnea), Indian buckeye (A. 
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indica), Chinese buckeye (A. chinensis), California buckeye (A. californica); or 

occasionally plants outside plant genera Aesculus and Acer; they are non-

conductive to larval development and not seriously affected by C. ohridella [91]. 

However not all species that C. ohridella lay eggs on support larval development 

that would lead to damage of the plant. Certain Aesculus species are potentially 
more resistant to the leaf-mining insects, including, such as the genotype A. 

hippocastanum L. Mertelik06 (M06) [92]. It was suggested that the susceptibility 
and resistance of C. ohridella among the genus Aseculus varies, in relation to 

their genotypes [93] [94]. Of the 13 species of Aesculus native to the northern 

hemisphere, A. hippocastum is the most susceptible to C. ohridella, followed by 
A. turbinata and A. glabra, with A. flava (yellow buckeye), A. pavia and A. 

sylvatica being less likely to be affected [93] [95].  

Occasionally appearing alongside leaf mines caused by C. ohridella is an infection 

caused by the fungus Guignardia aesculi. This disease causes irregular brown 

and red lesions on the surfaces of the leaves, leading to the common name of horse 
chestnut leaf blotch, as shown in figure 2.9. At a glance the blotches may be 

mistaken for leaf mines caused by C. ohridella, yet they are not see-through when 

the leaf is held up to a light source (C. ohridella leaf mines on the other hand are 
see-through). The blotches appear as water-soaked spots in the beginning, before 

turning reddish-brown with yellow outlines which merge into the leaf tissue. The 

lesions are concentrated on the tips or edges on the leaves, and the larger spots 
can cause the leaves to distort or even drop prematurely [96] [97]. 

The pathogen is believed to be originating in North America and was introduced 

by accident into the United Kingdom and across Europe. Spores of the fungus 

emerge around April every spring and infect new leaves; and by May black spots 
scattered within the lesions are produced by the fruiting body pycnidia, which 

spread the disease throughout the season. Humidity favours the pathogen and 

the infection can be exacerbated by poor air circulation. The blotches are 
considered a primarily aesthetic issue which are not necessarily harmful to the 

health of the infected plants. Chemical management is rarely used to control the 

pathogen, unless tree growth is hindered by severe infections; removal of fallen 
leaves and improvements on air circulation will help reduce future infections.  



2. Background 
 

 
 

34 

 

 

 

 

Figure 2.8: C. ohridella mines on sycamore maple  

(Acer pseudoplatanus) [98] 

 

 

 

Figure 2.9: Horse chestnut leaf blotches [99] 
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Jagiełło et al. proposed a method to access the total amount of foliage damage 

caused by both C. ohridella and G. aesculi on horse chestnut saplings [100]. The 

saplings were planted specifically for the experiment, and they were 
photographed overhead over two months. The extent of damage was based on the 

classification among healthy, damage, and background areas. Jagiełło et al. 
suggested that a leaf mine infestation and fungal infection trigger similar defence 

response in the hose plants, but a different defence would be elicited when C. 

ohridella and G. aesculi coexist on the same plant [100].  

Currently due to lack of samples available, the horse chestnut leaf blotch, as well 

as C. ohridella mines on secondary host plants are not considered in this project, 
which focuses on C. ohridella mines exclusively on horse chestnut leaves.  

2.2.2 Apple leaf miner 

Lyonetia clerkella (Lepidoptera: Lyonetiidae), also known as the apple leaf miner, 

is a species of moth commonly found across Europe, as well as in Siberia, the Far 
East, northern Africa, the Middle East, Turkey and certain parts of Asia [101] 

[102]. L. clerkella mainly preys on fruit trees from in the Betulaceae (birch) and 

Rosaceae (rose) families [103], the latter includes Malus, more commonly known 
as apples (Malus pumila). It also affects Prunus (plum) plants, including Prunus 

avium (wild cherry); and occasionally Crataegus (hawthorn) [104]. 

Similar to other leaf-mining insects, L. clerkella does not cause significant 

damage to the health of plant, although it can dramatically decrease the aesthetic 
value of the infested trees, which are often planted as ornaments. In addition, as 

larvae tunnel between upper and lower epidermis of leaves, this can lead to 

defoliation and a loss of yields, especially in saplings and young trees. Pesticides 
are not considered useful pest control for L. clerkella [105]. 

Unlike the blotch mines of C. ohridella, the long, narrow and smoothly-curved 
mines of L. clerkella winds through the leaf, not impeded by leaf margin or 

venation [106] [107] [108], as shown in figure 2.10 (b). Each egg is laid with an 

ovipositor within the leaf cuticle, leaving a small scar without any visible egg 
shell. The initially transparent mine turns green and feeds on the leaf tissue, 
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forming a whitish mine, broken up with brown or black frass in the centre [106] 

[109]. Sections of the leaf can be cut off and die due to the mine crossing itself and 

throughout the leaf. When a larva finishes feeding, it emerges from the upper 
epidermis. A small silk cocoon is then spun by the maturing larva which suspends 

from the underside of the leaf, from which pupation takes place [103].  

Believed to be nocturnal, adult moths are silvery or white in colour (an example 

of which is shown in figure 2.10 (a), with an average wingspan of 7 – 9 mm [110]. 
Up to three generations of apple leaf miners appear every summer, with the last 

generation (from August to early October) being particularly noticeable with the 

huge number of caterpillars. Severe infestation can be cause parts of the leaves 
to die and fall out. During late Summer apple trees can be heavily infested, but 

can be prevented with the removal and destruction of damaged leaves. A map of 

distribution for L. clerkella leaf mines in the United Kingdom is shown in figure 
2.11. 

  

  

  

(a) (b) 

  

Figure 2.10:  

(a) Adult Lyonetia clerkella at resting position [110] 

 (b) Leaf mine of L. clerkella on Malus pumila [106] 
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Figure 2.11: Distribution map for L. clerkella in the United Kingdom [111] 

 

 

2.2.3 Holly leaf miner 

Unlike the horse chestnut and apple leaf miners, holly leaf miners, Phytomyza 

ilicis (Diptera: Agromyzidae), belongs to the order of diptera (flies). First 

described by de Meijere in 1926, the holly leaf miner, as its name would suggest, 

feeds mainly on holly plants from the genus Ilex [112]. It is widespread 
throughout Europe but can also be found in North America.  

There is only one generation per year, with up to three mines of a single leaf. 
Example of P. ilicis leaf mines are shown in figures 2.12 (a) and (b). Adult flies 

laying eggs as an ovipositor, at the base of petiole or midrib on the underside of 

holly leaves in June [113] [114]. As it hatches, the larva slowly feeds on and 
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tunnels in the midrib towards tip throughout the months of September to 

November, creating a yellowish linear blotch mine in an irregular shape [114]. 

The larva continues to mature, with its first moulting in December or January, 
and reaching a maximum size in March. During the last larval stage from March 

to May, it pupates within the cuticle [115]. Before its pupation, the larva makes 
a larger block mine in the parenchyma of the leaf. Dissimilar to the original mine, 

it does not have frass in its centre and has no discolouration at all [113]. P. ilicis in 

different life stages are shown in figure 2.13. 

Mines of P. ilicis, and therefore the holly leaves they are on, are prone to attacks 

by the Eurasian blue tit Cyanistes caeruleus, as well as a number of parasitic 
wasps. These attacks prevent the larvae from maturing into adults [116]. C. 

caeruleus opens a holly leaf by tearing with its beak, removing the larva in the 

process; the parasitic wasp Chrysocharis gemma, on the other hand, lays eggs 
through the cuticle of the leaf into the body of a larva, before the parasite feeds 

on the leaf miner and kills it; while Sphegigaster flavicornis attacks the pupa of 

a young leaf miner by laying eggs within the host pupa and feeding on it. A third 
species of wasps, Pleurotropis amyntas, though less common, targets both the 

pupa of P. ilicis and larvae of other parasitic wasps [116]. Though it lowers the 

aesthetical value of infested plants, infestation of P. ilicis has little impact on the 
trees’ health. Removal of affected leaves help control the damage but could lead 

to significant defoliation, which in turn is more damaging. Pesticides are not 

considered effective as they cannot penetrate the thick, glossy surface holly leaves 
and would simply run off the foliage. 

  

(a) (b) 

Figure 2.12: (a) – (b) Leaf mines of P. ilicis on Ilex aquifolium [112] [119] 
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Figure 2.13: Phytomyza ilicis  in different life stages: 

(a) adult & (b) larva [117] [118] 

 

2.2.4 Tar spots 

Rhytisma acerinum (Rhytismatales: Rhytismataceae) is a plant pathogen which 
mainly affects tree species in the genus Acer, more commonly known as maple 

[120]. Norway maple (Acer platanoides), silver maple (Acer saccharinum), 

sycamore maple (Acer pseudoplatanus) are often affected by the ascomycete 
fungus [121] [122]. R. acerinum, the teleomorph of the fungus lives parasitically 

on leaves as a local infection. Melasmia acerina is the anamorph of the pathogen, 

which favours young trees in humid environments.  

The fungus leaves yellow chlorotic spots on tree leaves in late spring and carry 

on evolving into black lesions with yellow borders on the upper epidermis. These 
spots are also known as stromata, and they continue to develop until the end of 

summer of early autumn [123]. Its brown-black appearance leads to the more 

commonly-known name of “tar spots”. Example of tar spots can be seen in figure 
2.14. On Norway maples, the spots are around 15 mm in diameters [123]. Infected 

leaves will fall and overwinter, with the fungus producing needle-liked spores 

internally. As spring approaches, the spores are ejected from the fallen leaves, 
before being carried to new host plants by wind, thus starting a new cycle.  

Although heavy infection often decreases their aesthetic value, the tar spots 
usually does not have adverse effects on the long-term health of the host plants, 
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as tar spots do not interfere the growth of buds. An accepted management method 

is to remove debris of fallen leaves bearing the spots during the winter months, 

before the fungus matures. This practice may reduce the reoccurrence of the 
disease in the following spring, but its effectiveness is somewhat dubious, since 

spores from other trees could easily be transmitted by wind.  

 

 
 

Figure 2.14: Rhytisma acerinum on Acer pseudoplatanus 

 

2.3 Summary 

This chapter provided an overview of related research in the development of 

automated identification of plant diseases using an image-based approach. Some 
of the digital image processing techniques and their use of neural networks as 

classifiers. Existing research on automatic species identification of leaf mines 
using digital image processing is limited; however, the techniques used in other 

leaf-based CAT systems are transferable because of the similarities in features 

such as colours and sizes. Similarly, the use of neural networks and other 
techniques from pattern recognition can be adapted to identify leaf mines.  

This chapter also detailed background information on the life cycles of horse 
chestnut leaf miner (Cameraria ohridella), apple leaf miners (Lyonetia clerkella), 
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and holly leaf miners (Phytomyza ilicis). The three species of leaf-mining insects 

described in this chapter all have distinct characteristics in terms of shape and 

appearance, which provide challenges for the detection of leaf mines. The mines 
of L. clerkella, unlike the blotch mines of C. ohridella and P. ilicis, are long and 

thin. P. ilicis leaf mines, meanwhile, are located on the glossy leaves of holly 
plants. Holly leaves are also wavy and has spiny edges, which tend to affect the 

image acquisition process. 

It was noted that infestation of the so-called horse chestnut leaf blotch 

(Guignardia aesculi) sometimes occurs alongside leaf mines caused by C. 

ohridella, and can be mistaken as each other due to their similar appearances. 
However, this is not explored further in this thesis as samples are not available. 

The plant fungus (Rhytisma acerinum) was also discussed in this chapter, as the 

fungus was introduced to explore the possibility of adapting the proposed 
approach for detecting fungal spots in additional to leaf mines. 
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Chapter 3  

Digital image processing 

Digital image processing can be defined as “the processing of digital images by 

means of a digital computer” [3, pp. 1 – 3]. One of its goals is to enhance objects 
of interest, while diminishing the less desirable features and background noises 

[3, pp. 689 – 690]. Image processing and image analysis are closely related to the 

fields of pattern recognition and artificial intelligences (AI), alongside the 
interdisciplinary area of computer vision [3, pp. 1 – 3] [124, pp. 291 – 292]. The 

fundamental steps of digital image processing are illustrated in figure 3.1. 

Many image-based computer-aided taxonomy systems incorporate a range of 

techniques, including image acquisition, restoration, enhancement, compression, 

representation, segmentation, description and object recognition [124, pp. 1 – 2]. 
The objective of this chapter is to discuss the scope of the field that is image 

processing, focusing on the basic techniques related to this thesis, such as image 

segmentation, which includes the techniques used to divide an image into 
constituent parts, and the application of morphological algorithms to extract 

useful information from digital images. 

3.1 Colour models 

Digital imaging can be divided into the following categories – binary, greyscale, 

colour, volume, range, and multispectral [125, pp. 20 – 22]. For the purpose of 
this thesis, only binary, greyscale and colour images are further discussed. An 

example of a colour image is shown in figure 3.2 (c), while (a) and (b) are the result 

of binary and greyscale transformation of (c), as performed in MATLAB. 
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Figure 3.1: Fundamental steps of digital image processing [3, pp. 25 – 28]  

 

Pixels in binary images take only two values – “0” (black) and “1” (white), making 

this format suitable for simple processing and extracting geometric properties 

from objects. As for greyscale images, each pixel value corresponds to the light 
intensity, and the brightness graduation can be differentiated, unlike in binary 

images. An 8-bit image has a brightness variation from 0 (black) to 255 (white).  

Colour image processing, on the other hand, consists of two predominant areas: 

pseudocolour and full-colour processing [3, pp. 394 – 395]. The basic principle of 

pseudocolour image processing is taking monochrome images and assigning 
colours to grey values based on a specified criterion [3, pp. 414 – 415]. The 

primary application of pseudocolour, or false colour, is for human visualisation 

and the analysis of greyscale events in images. Pseudocolour images are often 
used in multispectral image processing and in remote sensing to aid the process 

of feature extraction. An example of a colour image of a C. ohridella leaf mine is 

shown in figure 3.3 (a), while (b) and (c) are the result of greyscale and 
pseudocolour transformation of (a). 

As for full-colour processing, one of the major reasons of using colour images is 

that humans can generally differentiate thousands of colours and intensities, 

compared to a few dozen shades of grey [3, pp. 414 – 415]. Full-colour processing 
handles tasks by working with colour pixels directly as vectors, or processing as 

individual component images (full-colour images have at least three components, 

which can be modelled as separate monochrome images) [3, pp. 424 – 426]. 
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(a) 

 

 

(b) 

 

 

(c) 

 

Figure 3.2: (a) Binary, (b) greyscale, and (c) colour (original) image 

The original RGB image is a scanned picture of a horse chestnut leaf, 

cropped to focus on a single leaf mine. 
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(a) 

 

 

(b) 

 

 

(c) 

 

Figure 3.3: (a) Full-colour, (b) greyscale, and (c) pseudocolour image 

The original RGB image is a scanned picture of a horse chestnut leaf, 

cropped to focus on a single leaf mine. 
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Until relatively recently, full-colour images were mostly processed as individual 

component images due to the lack of availability of applicable sensors. This 

approach remains quite common in computer-aided taxonomy, as standard 
greyscale image processing methods can be applied to the component images 

individually, which then form a composite processed colour image [3, pp. 424 – 
426]. Various representations of images are shown in figure 3.4. 

Full-colour processing largely depends on the visible spectrum, referring to the 
segment of electromagnetic (EM) spectrum that can be detected by human eyes 

[3, pp. 395 – 401]. Although this is a fairly limited portion of the EM spectrum, 

the cones in human eyes are particularly sensitive to red, green and blue lights 
[3, pp. 395 – 401], thus the notion of primary colours is devised –  red (R), green 

(G), and blue (B) are known as primary colours of light. The secondary colours, 

magenta (M), cyan (C), and yellow (Y), are produced by adding the primary 
colours; while white light is produced by mixing all the primary colours, or mixing 

a pair of opposition primary and secondary colours in the right intensities. The 

primary and secondary colours of light and pigments are illustrated in figure 3.5. 
These observations underline the definition of colour models.  

Colour models, sometimes known as colour spaces or colour systems, are 
standardised ways in which colours can be represented systematically [3, pp. 401 

– 402]. They are largely composed within a specification under a coordinate 

system, where every colour is allocated a single point in a subspace in that 
system. Most colour models are either hardware oriented, or are specially 

designed for colour manipulation; for example, the RGB (red, green and blue), 
CMY (cyan, magenta and yellow), and similar models are better suited for 

generating colours, rather than describing them. The HSI (hue, saturation and 

intensity) or HSV (hue, saturation and value) models, on the contrary, are ideal 
for developing image processing algorithms that effectively describe colours.  

Compared to the RGB and its comparable models, the HSI model provides a 
practical description of colours in terms of how human eyes interpret colours – 

human eyes process colours according to the reflection of light when looking at a 

colour object, taking into account the hue, saturation and brightness [126], which 
is particularly important where subjective input from users is applicable.  
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 (a)  (b)    (c)   
 

Figure 3.4: Value at each pixel in (a) binary, 

(b) 8-bit greyscale, and (c) RGB colour images [125, pp. 20 – 23] 

 

 

 

(a) (b) 

Figure 3.5: Primary and secondary colours [3, pp. 395 – 400] 

(a) Primary and secondary colours of lights (additive primaries) 

(b) Primary and secondary colours of pigments (subtractive primaries) 
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3.1.1 RGB and CMY colour models 

Based on a Cartesian coordinate system, each colour within the RGB colour model 

can be represented in its primary spectral components of red, green and blue [3, 

pp. 406 – 407]. Assuming all colour values are normalised to be in the range of [0, 
1], colour C, can be represented by: 

𝐶 = 𝛼𝑅 + 𝛽𝐺 + 𝛾𝐵 (3.1) 

where a, b and g are coefficients, which illustrate proportions of the red, green 
and blue correspondingly. Consequently, each RGB image is comprised of three 

monochrome intensity images. When the coefficients add up to 1 (i.e. αR + βG +

γB = 1), this equation can be referred to as a unit trichromatic equation [127]. 

The secondary colours of light can be created by combining two of the primary 

colours – cyan (blue and green), magenta (red and cyan) and yellow (red and 

green). An RGB to CMY conversion can be performed with: 

𝐶
𝑀
𝑌

=
1
1
1
−

𝑅
𝐺
𝐵

 (3.2) 

Additionally, a fourth colour, black (K), is sometimes added to the CMY model, 
forming the CMYK colour model, which can be created by adding equal amounts 

of cyan, magenta and yellow. 

While the RGB colour model is mostly used for sensing and representing digital 

image due to its compatibility, the CMY (cyan, magenta and yellow) model, on 
the other hand, is widely used in colour printers, photocopiers and other devices 

that deposit colour pigments on paper. Both models are ideal for hardware 

implementations, due to the availability of compatible devices.  

3.1.2 HSI and HSV colour models 

As mentioned previously, colour models that use cylindrical coordinates, such as 

the HSI (hue, saturation and intensity), are more similar to how human eyes 
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perceive colours [126]. The graphical and cylinder representations of the HSI 

colour model are shown in figures 3.6 (a) and (b).  

Hue is the colour attribute that describes pure colour at their angular dimension 

(0 to 2π); saturation interprets the amount of pure colour diluted by white light, 

i.e. the amount of grey from 0% to 100%; value (or brightness) is an achromatic 
notion of intensity of the colour from 0% to 100% [3, pp. 418 – 424]. When 

considered collectively, hue and saturation can also be known as chromaticity; 
hence brightness and chromaticity together can characterise a colour, as shown 

in figure 3.7. Assuming the RGB values are normalised to the range [0, 1], and 

that the angle q is measured with respect to the red axis of the HSI space, as 
depicted in figure 3.7, the hue H component of each RGB pixel is given by [3, pp. 

407 – 414]: 

𝐻 =
					𝜃																𝑖𝑓	𝐵 ≤ 𝐺;
			360 − 𝜃				𝑖𝑓	𝐵 > 𝐺  and (3.3) 

𝜃 = cosCD
1
2 [ 𝑅 − 𝐺 + (𝑅 − 𝐵)]

[ 𝑅 − 𝐺 J + (𝑅 − 𝐵)(𝐺 − 𝐵)]D/J
 (3.4) 

The saturation S component can be obtained by: 

𝑆 = 1 −
3

𝑅 + 𝐺 + 𝐵
[min 𝑅, 𝐺, 𝐵 ] (3.5) 

As RGB images are made up of three constitute intensity images (which 
represents red, green and blue), intensity can be extract directly: 

𝑉 =
1
3
(𝑅 + 𝐺 + 𝐵) (3.6) 

The conversion between RGB and HSI models is widely adopted in different 
applications of colour image processing. Particularly with images of leaves, the 

main reasons of choosing HSI colour model over RGB to improve accuracy of 

lesion region segmentation include [27]: 
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1. Illumination change – image quality can hugely depend on lighting, which 

is unlikely to be controllable when collecting data in a natural condition 

2. Influence of vein – veins normally have shallower colouring than leaves, 
and the colour may change depending on stages of plant diseases 

3. Unstable lesion characteristics – symptoms of leaf diseases are developed 
throughout different stages of plant diseases and rely on influences from 

lighting, water, nutrition and other environmental factors  

Figure 3.8 (a) shows an image of an RGB image of a C. ohridella leaf. Figures 3.8 

(b) through (d) show its hue, saturation, and intensity component images. 

 

 

 

(a) Graphical explanation of hue, saturation and value 

 

 

 

(b) Cylinder representation of the HSI colour model 

 

Figure 3.6: Various representations of the HSI colour model  
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Figure 3.7: Hue and saturation in the HSI/HSV model [3, pp. 407 – 414] 

Hue is given by the angle from the red axis, 

and the length of the vector indicates the saturation. 
 

 

   RGB colour model HSI colour model 

   (R, G, B) (H, S, V) 

     

Primary 
colours 

Red  (1, 0, 0) (0, 100%, 100%) 

Green  (0, 1, 0) (2π /3, 100%, 100%) 

Blue  (0, 0, 1) (4π /3, 100%, 100%) 

     

Secondary 
colours 

Cyan  (0, 1, 1) (π , 100%, 100%) 

Yellow  (1, 1, 0) (π /3, 100%, 100%) 

Magenta  (1, 0, 1) (5π /3, 100%, 100%) 

     

 Black   (0, 0, 0) (0, 0%, 100%) 

 White  (1, 1, 1) (0, 0%, 100%) 

 
Table 3.1: Colours in RGB and HSI representations 
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(a) Original RGB image (b) Hue component image 

  

  

  

(c) Saturation component image (d) Intensity component image 

  

  

Figure 3.8: Example of RGB and HSI component images 

The original RGB image is a scanned picture of a horse chestnut leaf, 

cropped to focus on a single leaf mine. 
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3.1.3 Colour transformations 

As discussed in the introduction to section 3.1, full-colour image processing fall 

into two main categories – by processing each component image individually, and 

dealing with colour pixels directly as vectors, with the latter being more common 
due to the relatively low cost in comparison. For the results of individual colour 

component and directly processing colour pixels as vectors to be equivalent, all 

processes have to be applicable for both scalars and vectors; and it is necessary 
for the operations on each vector components to be independent of one another [3, 

pp. 424 – 426]. Full-colour images, including those in the RGB and HSI colour 

spaces, can be treated as individual component images. Earlier application of 
digital image processing often processed each RGB image as three monochrome 

intensity images (depicting red, green and blue respectively).  

In principle, human eyes respond to colours more accurately as objects tend to 

“stand out”; nevertheless, means of procuring and storing full-colour images tend 

to be more expensive. The amount of additional processing involved in 
interpreting the extra information carried by colour images and handling vector 

data can also be considered as a complication, due to the extra cost and longer 
processing time [129, pp. 21 – 22]. As such, colour images are often transformed 

into greyscale or binary images for further processing. Weeks et al., for instance, 

discarded red and green components from the RGB images, before isolating the 
green component and transposing it to a greyscale image [130]. 

When processing images of leaves infested with mines and diseases, the leaf 
mines and tar spots can be considered as the foreground “objects”, and the leaf 

itself can be treated as the background. These “mostly green pixels” do not 

contribute any significant information regarding the leaf mines or tar spots, they 
are regarded as irrelevant in further steps and can be removed. Discarding the 

green component of RGB images separates an image into regions according to 

their significance. The regions must be mutually exclusive, as each region is 
required to meet consistency conditions in specific regions [131].  

Similarly, segmentation can be performed on HSI images – hue is the only colour 
attribute, as saturation and intensity lack extra information [23], the background 
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can be effectively removed by maximising contrast between veins and leaf 

surfaces, thus changing the disturbance of illuminance [27]. 

3.2 Image segmentation 

Image segmentation forms the basis of image processing, and is usually an 

essential component of image analysis systems [132]. It is the process of 

subdividing an image into smaller components, so that regions of interest are 
identified or detected [3, pp. 689 – 690]. Different regions must not overlap each 

other and connected regions are heterogeneous [125, p. 369].  

Many algorithms of image segmentation concern either the discontinuity or 

similarity of intensity values [3, p. 689 – 690]. The former approach (edge-based 

segmentation) partitions an image based on sudden changes in intensity, such as 
edges; while the latter (region-based segmentation) partitioned an image 

according to predefined criteria, which includes thresholding [3, pp. 689 – 690] 

[46]. 

3.2.1 Intensity thresholding 

Intensity thresholding is an effective way to transform colour or greyscale images 

to their binary equivalents, by assigning pixels to two or more groups. It is 
particularly applicable for situations where the background on which the objects 

are is sufficiently constant in varying conditions. In computer vision and digital 

image processing, this is also referred to as Otsu’s method.  

Otsu’s method is a typical approach for global thresholding, which selects a 

relevant threshold of grey level to separate objects from their background, in this 
case between the logical value of ‘1’ and ‘0’ in pixels. It is an optimum thresholding 

method which aims at reducing the error by maximising between-class variance. 

[3, pp. 742 – 747] [133].  

A digital image can be represented by the two-dimensional function 𝑓 𝑥, 𝑦 , where 

x and y are the spatial coordinates, and the amplitude of f at any pair of 
coordinates (x, y) is the intensity at that certain point [3, pp. 1 – 3]. It can also be 

defined as a discrete representation of data that contains both spatial (layout) 
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and intensity (colour) information [124, pp. 1 – 2]. In order to transform a colour 

or greyscale image to a binary one, a threshold level is required to determine 

whether the pixels are image foreground or background. A general rule of 
intensity slicing is, with two colours assigned to each side of a threshold, any pixel 

below the plane will be coded in one colour, while any pixel above the plane will 
be coded with the other colour. 

A binary image is an image where each pixel is assigned to one of the two discrete 
logical values – ‘1’ or ‘0’; hence an image with only two distinct colours could be 

created. Binary images carry no textual content; yet they are very useful for 

shape, size and location of the regions in the image. Solomon and Breckon 
referred to pixels with the logical value ‘1’ as the image foreground pixels, and 

those having the logical value ‘0’ as the image background pixels [124, pp. 197 – 

198]. An object or a region in a binary image consists of a group of connected pixels 
– which means a foreground pixel must be connected to at least one neighbouring 

pixel to the north, east, south, or west to be considered as a pixel within the group.  

Using Otsu’s method, a full-colour or an intensity image can be transformed into 

a binary image using a threshold in the range [0, 1], by replacing all pixels with 

intensity greater than the threshold with ‘1’ (white), and all other pixels with ‘0’ 
(black) [134]. To create a binary image 𝑏 𝑥, 𝑦  from an intensity image f 𝑥, 𝑦 , 

using a threshold value of T, the process can be represented as [124, pp. 265 – 266]: 

𝑏	 𝑥, 𝑦 = 1
0					

𝑖𝑓	𝑓 𝑥, 𝑦 > 𝑇
𝑖𝑓	𝑓 𝑥, 𝑦 ≤ 𝑇	 (3.7) 

 

 

Figure 3.9: Geometric interpretation of intensity slicing [3, p. 415] 
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Figure 3.9 illustrates how intensity slicing can be interpreted as a 3D function: if 

greyscale, white and black can be given by 0, 𝐿 − 1 , 𝑓 𝑥, 𝑦 = 0  and 

𝑓 𝑥, 𝑦 = 𝐿 − 1  respectively; while the plane at f (x, y) = li serves as the threshold 

in this case.  

A frequently employed technique of intensity thresholding involves analysing the 

histogram of intensity levels in a digital image; if the image is composed of 
relatively uniformly illuminated objects and an evenly toned background, the 

minimum of distribution can be interpreted as an adequate threshold value [135]. 

For example, in figure 3.10, assuming the peak on the left of the idealised bimodal 
histogram corresponds to dark foreground objects, while the other peak is the 

result of the light background. The valley in between the peaks represents the 

relatively smaller number of pixels around the edge of the objects, from which the 
suitable threshold can be determined [129, pp. 81 – 83].  

Otsu’s method is also applicable for multilevel thresholding. This assigns pixels 
to more than two groups with a multimodal histogram. For an image 𝑓 𝑥, 𝑦  with 

two types of light object and a dark background, multilevel thresholding classifies 

a pixel 𝑥, 𝑦  as belonging to the background if 𝑓 𝑥, 𝑦 ≤ 𝑇D; and the two object 

classes if 𝑇D < 𝑓 𝑥, 𝑦 ≤ 𝑇J and 𝑓 𝑥, 𝑦 > 𝑇J respectively. The segmented image can 

be given by: 

𝑔 𝑥, 𝑦 =
𝑎
𝑏
𝑐
					

𝑖𝑓	𝑓 𝑥, 𝑦 ≤ 𝑇D
𝑖𝑓	𝑇D < 𝑓 𝑥, 𝑦 ≤ 𝑇J
𝑖𝑓	𝑓 𝑥, 𝑦 > 𝑇J	

 (3.8) 

where a, b, and c are three separate intensity values. Figure 3.11 shows an 

example of an intensity histogram that is partitioned by dual thresholds. The 

distances between the peaks in a multimodal histogram directly influence the 
accuracy of the thresholding (peaks that are further apart are more easily 

separated). Other factors that affects the accuracy of thresholding includes: the 

noise content; the size of the object(s) in relation to the background; the 
uniformity of the illumination; and the consistency of the reflective properties of 

the image [3, pp. 38 – 741]. Although theoretically Otsu’s method can be extended 

to an arbitrary number of thresholds, it becomes less reliable as number of classes 
increases. 
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Figure 3.10: An idealised bimodal histogram of intensity levels 

in an image, which can be partitioned by a signal threshold 

This histogram shows the number of pixels at 

each intensity value found in that image. 

The pixel intensities are grouped in two separate clusters, which  

indicates foreground (left) and background (right) pixels respectively. 

The optimum threshold for separating these two groups is between 

 the two peaks, at the minimum of this distribution. 

 

 

 

Figure 3.11: An idealised multimodal histogram of intensity levels 

in an image, which can be partitioned by dual thresholds 

This histogram has three dominant modes, for instance, 

two dark objects against a light background. 

Similar to the histogram in figure 3.10, the threshold values 

are given by the intensity values that separate the peaks.  
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When working with images of leaves, using basic thresholding technique with a 

single threshold, the intensity component of the HSI colour system can be 

transformed into binary images. The pixels are subdivided into “leaf” and 
“background” regions. For images with multiple leaf mines or tar spots, more 

than one thresholds may be needed.  

In cases where a whole leaf is present, potentially the system can be refined to 

compare lesion area with regard to the leaf – it is possible to devise a 
corresponding rank table for damage caused, with a simple estimation of 

percentage of area infested with leaf mines or plant pathogens.  

However, as difficulty in segmentation increases with the number of thresholds, 

other approaches may be more suited for partitioning an image into multiple 

classes. Liao et al. [136] suggested an improvement of Otsu’s method to optimise 
thresholding of an image – using the maximised intraclass variance, a recursive 

algorithm was put forward to obtain the optimal threshold efficiently. When the 

intensity distribution of the background and objects are significantly noticeable, 
it is possible to apply a global threshold to the whole image. To improve its 

performance, image smoothing and edges are often used to improve global 

thresholding results. 

3.2.2 Edge detection 

Edges are often used in conjunction with other segmentation algorithms, such as 

thresholding and smoothing. Edge detection is based on sudden local changes in 
intensity, and is closely associated with extraction of boundaries [137]. Strictly 

speaking, the boundary of a finite region is a “global” concept, meaning the entire 

image is considered; and an edge is a “local” concept, meaning it is only a small 
portion of the image [3, pp. 68 – 71]. However, for binary images, edges and 

boundaries are sometimes interchangeable depending on the operator and type 

of connectivity. The three fundamental steps of edge detection are: (1) image 
smoothing for noise reduction; (2) detection of edge points – a local operation 

where potential edge points are identified and extracted; and (3) edge localisation 

– narrow down the candidate edge points to the true edge points [3, pp. 700 – 
705].  
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In a binary image where objects are placed against a background, all pixels are 

assigned the number ‘1’ or ‘0’, for foreground and background pixels respectively. 

The fundamental principles to connecting the edges are: (1) the location of edge 
points locally, for instance within a 3	×	3 region; (2) the knowledge of points on 

the edge or boundary; and (3) a global approach that is suitable to the entire edge 

image [3, pp. 692 – 693].  

Edges (or edge segments) are defined as sets of connected edge pixels, which are 

pixels where the intensity of an image 𝑓 𝑥, 𝑦  changes suddenly; and edge 

detectors are methods conceived specifically to identify edge pixels [3, pp. 692 – 
738]. Ideally edges would be smooth and free of noise, yet blurriness and noise 

are inevitable in practice. The former depends on how the digital images are 

taken, such as the lenses of a digital camera; and the latter is limited by electronic 
components of the imaging systems used [3, pp. 700 – 705]. Figure 3.12 (a) shows 

the image extracted from figure 3.12 (b), which depicts a horizontal intensity 

profile. Figure 3.12 (b) shows the first- or second-order derivatives of the 
intensity. The intersection between the zero-intensity axis and the line between 

extrema of second derivatives is known as the zero-crossing of the second 
derivative [3, pp. 700 – 705].  

 

 

(a) (b)  

   

Figure 3.12: (a) An ideal vertical edge, 

and (b) its horizontal intensity profile [3, p, 703] 
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The following three operators use first-order derivatives to detect abrupt changes 

in intensity. A 3	×	3 region of an image is shown in figure 3.13. The Roberts cross-

gradient operators are one of the earlier attempts to use 2-D masks with diagonal 
preference [138].  It uses two masks of size 2	×	2, as illustrated in figure 3.14 (a), 

when considering a size 3	×	3 region. The Prewitt operators, on the other hand, 

provides a more accurate approximation than the Roberts operators [139]. The 

entire image can be filtered with two masks of size 3	×	3, both with a weight of 1 

in the centre coefficient, as shown in figure 3.14 (b). More complicated to 

implement than the Prewitt masks but superior in noise-suppression noises, the 
Sobel operators are often preferable when dealing with derivatives [3, pp. 706 – 

714] [140]. They use two 3	×	3 masks with a weight of 2 in the centre coefficient 

instead of 1, but both operators, shown in figure 3.15, give equal results for 
vertical and horizontal edges. For diagonal directions, the 3	×	3 masks have to be 

modified to improve performance, as shown in figure 3.15. 

 

Figure 3.13: A 3 × 3 region of an image 

(The z’s indicates the intensity values) 

 

 

(a) 

 

(b) 
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(c) 

 

Figure 3.14: Various masks to compute the gradient at z5 [3, p. 708] 

(a) Robert operators 

(b) Prewitt operators 

(c) Sobel operators 

 

 

 

(a) 

 

 

(b) 

 

Figure 3.15: The modified masks for detecting diagonal edges [3, p. 710] 

(a) The Prewitt mask 

(b) The Sobel mask 
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The Roberts, Prewitt and Sobel operators use one or more masks to filter an 

image. Though relatively simple to implement, they do not take into consideration 

the noise or edge characteristics. In an attempt to improve the above methods, 
Marr and Hildreth suggested that the change in intensity corresponds to image 

scale, hence edge detection calls for operators of different sizes; and that a rapid 
change in intensity would give a peak or trough in the first derivative, and a zero 

crossing in the second derivative, as seen in figure 3.16 [141]. Marr-Hildreth edge 

detector uses a Laplacian of a Gaussian (LoG) filter to find the zero crossings [3, 
pp. 714 – 725]. The LoG function can be expressed as: 

∇J𝐺(𝑥, 𝑦) =
𝑥J + 𝑦J − 2𝜎J

𝜎]
𝑒C

_`ab`
Jc`  (3.9) 

The Canny edge detector is the most complex of the techniques described in this 
chapter, but also has the best performance [142]. The three criteria of the Canny 

edge detector are (1) to lower the error rate; (2) ensure the edges are as close to 

the true edges as possible; and (3) only one point should be returned by the edge 
detector for each true edge point.  

Many common edge detection methods are affected by slight alterations in 
illumination of neighbouring pixels, causing disruption to the continuity in 

intensity values. Maintaining connectivity is essential in edge detection, hence 
edge detection is routinely followed by mathematical morphology to link the edge 

pixels, so meaningful edges and boundaries can be assembled.  

 

Figure 3.16: A 5 × 5 mask which is an approximation of the LoG 

function, also known as the Mexican hat operator because of its shape. 

In practice, the negative of the mask is used [3, p. 715]. 
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3.3 Morphological image processing 

Mathematical morphology is a useful tool when extracting components to 

represent the image or to describe its general shape [3, p. 630]. In terms of 

mathematical morphology, sets refer to objects in an image. For binary images, 
the sets are in a 2-dimensional space 𝑍J, where each element of the set refer to 

the (𝑥, 𝑦) coordinates of a pixel; and for greyscale images, the sets are in a 3-

dimensional space 𝑍J, where two components of each element corresponds to the 

coordinates, and the third refers to its intensity value [3, pp. 628 – 630].  

Morphological operations are formulated based on structuring elements – which 

are small sets of binary-valued array or sub-image [3, pp. 628 – 630]. When the 

image undergoes erosion, every detail less significant than the structuring 
element is filtered from the image [3, pp. 631 – 633]; whilst dilation is the 

complete opposite, where the shape of structuring element acts as a guide to 

thicken objects in a binary image [3, pp. 633 – 635].  

3.3.1 Basic morphological algorithms 

Erosion and dilation are the primary components of morphological image 

processing, and are the basis of other morphological algorithms [3, p. 630]. The 

erosion of set A by structuring element B at all points z is defined as [3, pp. 631 – 
633]: 

𝐴 ⊖ 𝐵 = 𝑧	 	 𝐵 h ⊆ 𝐴  (3.10) 

Figure 3.17 shows an example of the erosion of A by B, which is the set of values 

of z that satisfy equation (3.10).  

The dilation of set A by structuring element B is when 𝐵 and A overlap by at least 
one element, which can also be represented by [3, pp. 633 – 635]: 

𝐴 ⊕ 𝐵 = 𝑧	 𝐵 h ∩ 𝐴 ⊆ 𝐴  (3.11) 

Figure 3.18 shows an example of the dilation of A by B. As illustrated by figures 

3.17 and 3.18, erosion “filters” image details that are smaller than the structuring 
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element; while dilation does the opposite – it thickens objects, the manner of 

which is determined by the shape of the structuring element.  

Erosion and dilation are duals of one another: 

𝐴 ⊝ 𝐵 m = 𝐴m ⊕ 𝐵	 and 𝐴 ⊕ 𝐵 m = 𝐴m ⊝ 𝐵 (3.12 – 13) 

Equation (3.13) shows that the erosion of A by B is the complements of the dilation 

of Ac by 𝐵, and vice versa.  

 

(a) (b) 

Figure 3.17: Erosion [3, p. 631] 

(a) Set A, square structuring element B, and erosion of A by B (A⊖B) 

(b) Set A, rectangular structuring element B, and erosion of A by B (A⊖B) 

 

 

(a) (b) 

Figure 3.18: Dilation [3, p. 634] 

(a) Set A, square structuring element B, and dilation of A by B (A⊕B) 

(b) Set A, rectangular structuring element B, and dilation of A by B (A⊕B) 
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3.3.2 Morphological boundary extraction  

The algorithms discussed in this subsection are commonly used in conjunction 

with the image segmentation techniques in the previous section. When processing 

binary images, morphological algorithms are often for extracting boundaries and 
connecting components. An example of boundary detection is shown in figure 

3.19. The boundary of set A, 𝛽 𝐴  can be extracted by the erosion of A, by 

structuring element B, and subtracting the result from set A [3, pp. 642 – 643]: 

𝛽 𝐴 = 𝐴 − 𝐴⊖ 𝐵  (3.14) 

As mentioned previously, dilation bridges gaps between objects. Conditional 
dilation is frequently used in conjunction with boundary extraction to fill in holes, 

that area of background regions surrounded by connected borders of foreground 
pixels [3, pp. 643 – 645]. In binary images, all the pixels within the hole are 

replaced with ‘1’s, indicating the area as foreground. For instance, if elements in 

set A are 8-connected boundaries, and each of these boundaries encloses a hole, 
which is of background pixels.  Depicted in figure 3.20, the holes can be filled by 

[3, pp. 643 – 645]: 

𝑋o = 𝑋oCD	⨁	𝐵 ∩ 𝐴m          𝑘 = 1, 2, 3, …	 (3.15) 

where 𝑋s is an array of 0s the same size as set A, and B is the symmetric 

structuring element. When 𝑋o = 𝑋oCD, the process stops at iteration k. 𝑋o ∪ 𝐴, 
therefore, contains the pixels indicated by the boundary and the filled holes. 

When transforming a scanned image or digital photograph into a binary image, 
if the contrast between the objects on the image and their background is not 

significant enough, pixels within the object could be erroneously given the value 

of ‘1’ and vice versa. When the object(s) is known to be the focus of an image, a 

priori knowledge indicates it should in the middle of the image, instead of nearing 

the borders. With the additional information of edges and boundaries, the false 

background pixels within the object can be reassigned to foreground with the hole 
filling method, and the false foreground pixels outside the object can be 

reassigned to background.  
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(a) (b) (c) (d) 

    

Figure 3.19: Boundary detection using erosion [3, p. 642] 

(a) Set A, (b) structuring element B, (c) erosion of A by B, 

and (d) boundary given by the set difference between A and its erosion 
 

 

(a) (b) (c) (d) (e) 

     

Figure 3.20: Hole filling [3, p. 644] 

(a) Set A (shaded area), (b) complement of A, (c) structuring element B, 

(d) set k after the 8th iteration, (e) final result – the union of (a) and (d) 

 

Chen et al. proposed a method to extract the boundary of objects in binary images 

that can be adapted to improve the detection of leaf mines [143]. Although this 

approach was originally devised for extracting liver boundaries from computer 
tomography (CT) images, computer-aided diagnostic (CAD) tools are the 

counterparts of computer-aided taxonomy within the medical field, and this 

technique can be applied to images of leaf mines and plant diseases with slight 
modification.  

The detect-before-extract (DBE) method devised by Chen et al. identifies all 
boundary points of the liver based on the area bounded by ‘1’s before applying a 
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Catmull-Rom B-spline to generate an initial liver contour. Dilation and erosion 

are used before interpolation to refine the initial contour. The structuring 

elements proposed by Chen et al. are included in figures 3.21 (a) through (f). 

This approach further narrows down regions of interest by minimising inclusion 

of unwanted objects such as nearby organs (e.g. kidney), gastrointestinal tract, 
spinal cord, etc. It uses a priori knowledge to eliminate cornering regions. Using 

average grey-level (AG) and average feature (AF) maps formed using information 
contained within the remaining regions, modifications can be made to the initial 

contour to improve accuracy. Chen et al. suggested the correction be done 

iteratively using a deformable contour model. The model is subject to a set of 
constraints based on the differences of grey level and feature value of a particular 

pixel and average correspondence of a pixel from the normal liver region [143].  

 

 

 

(a) (b) (c) (d) 

    

 

 (e) (f)  

    

Figure 3.21: (a) – (d) Chen et al. proposed this set of structuring 

elements of morphological opening operations [142] 

(e) and (f) are the structuring elements of dilation and erosion operations 

 

 



3. Digital image processing 
 

 
 

68 

A similar approach can be applied to binary images to leaf mines – objects (i.e. 

leaf mines or tar spots) are bounded by ‘1’s, and morphological processes can be 

used before interpolation to refine the initial boundary. A pixel indicating the 
boundary, B, should satisfy the condition that any neighbourhood centred at B 

must contain at least a ‘1’ and a ‘0’, except when in a hollow within the object. 
Similarly, regions of interest can be slimmed down by minimising inclusion of 

unwanted objects, in the case of leaf mines, veins, minor blemishes on leaves or 

issues with the scanning process (e.g. dust trapped between the leaf and scanner 
glass). Diving the binary into 𝑀	×	𝑁 regions, as a result of a priori knowledge, it 

is only logical for the object (leaf mine or tar spot) to be roughly in the centre, 

meaning cornering regions can be eliminated. 

3.4 Summary 

This chapter elaborates on the basic image processing techniques that were used 
in the proposed system for detecting leaf mines and tar spots, including colour 

image processing, image segmentation using intensity thresholding, edge 
detection, and various morphological operations. Figure 3.22 shows the result of 

the various image segmentation techniques described in this chapter. Firstly, the 

RGB images were converted into HSI; then transformed into binary images using 
intensity thresholding. The edges of the objects in each image are obtained using 

the Sobel operators. The Sobel masks were chosen over the Roberts and Prewitt 

operators due to their noise-suppression qualities. The images on the left are 
scanned images of leaves of horse chestnut, crab apple and sycamore plants, 

which were cropped accordingly to focus of a single leaf mine or tar spot in each 

image. The edges are superimposed on the original RGB images, shown by the 
red lines. Their corresponding binary images, with the pixels within the edge 

filled using dilation, are shown on the right. 

The implementation of these techniques will be discussed in chapter 5. The 

relationship among colour models, as well as that between full-colour and 

greyscale images, is essential for the first steps of the proposed semi-automated 
identification system. Image segmentation and edge detection are fundamental 

elements in digital image processing, and the techniques introduced in this 

chapter represents the bases of the approach developed in the following chapters. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.22: Edge of leaf mines overlaid with their original RGB images 

and corresponding binary images 

(a) C. ohridella on a horse chestnut leaf 

(b) Phyllonorycter on a crab apple leaf 

(c) R. acerinum on a sycamore leaf 

The original RGB images are scanned pictures of 

(a) horse chestnut, (b) crab apple and (c) sycamore leaves respectively,  

which are then cropped accordingly to focus on individual lesion areas. 

The red lines represent the edge of the lesion area in each image, 

as computed in MATLAB. 
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Chapter 4 

Automated classification 

Within the discipline of pattern recognition [124, pp. 291 – 292], automated 

classification is typically incorporated in computer-aided taxonomy systems or 

routine identification alongside image processing techniques [144]. Some of the 
techniques discussed in the previous chapter help segment digital images into 

individual regions and extract attributes from them, so that specific objects or 

patterns can be identified. Choosing a suitable method is therefore vital to any 
classification system.  

This chapter provides an introduction to some of the common automated 
classification methods, which include the Bayes classifier, cluster analysis, neural 

networks, and evolutionary algorithms. A few of the pattern recognition 

algorithms discussed here will be further explored in chapter 6, to investigate the 
possibility of classifying leaf mines based on the morphological features extracted 

from images of leaves. It is worth mentioning some of the algorithms described in 

this chapter are not only efficient as the final classifier in routine identification, 
some are also used to sort pixels into various groups in the image processing 

stage. 

4.1 An overview of classification 

Despite being labelled as “automated”, most computer-aided taxonomy systems 

are in fact semi-automated. Fully automated systems are largely idealistic – these 
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hypothetical systems would have the capability of identifying all existing 
taxonomic species, achieving 100% accuracy infinite times and requiring no user 

inputs. Such systems would benefit any research in biodiversity; yet they are 

mostly theoretical [145]. Semi-automated classifiers depend on a certain degree 
of intercommunication with users apart from original input, including making 

interim decisions and training the system. Inputs from users help guide the 

classifier, to make accurate judgements throughout the process. 

Procedures in a typical classifier includes: class definition, which is problem 

specific and depends entirely on the project; data exploration, which determines 
the possibilities of using various features (both local and global) that could be 

used to distinguish between data samples; feature selection and extraction; 
building the classifier using a set of training data; testing the classifier, which 

utilises the remaining data as a testing set, with the results determining the 

reliability of the system [124, pp. 291 – 292]. Figure 4.1 shows an example of the 
processes involved in classifier design.  

 

 

 

Figure 4.1: Flow diagram representing main steps in 

classifier design [124, pp. 294 – 296]] 
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Figure 4.2: Tree of classification types [146, p. 56] 

 

 

Classification can be either exclusive or nonexclusive –  exclusive classification 
refers to the clear partition of a set of objects, so that objects of one subset are 

mutually exclusive to objects from another; while in nonexclusive classification, 

also known as overlapping classification, an object can simultaneously belong to 
multiple categories [146, pp. 55 – 58]. Figure 4.2 shows a decision tree that 

illustrates how classification can be divided into categories.  

Exclusive classification can further be divided into intrinsic and extrinsic – 

intrinsic classification is unsupervised, and relies only on the proximity matrix, 

which is the measurement of distance or similarity between items; while extrinsic 
classification is supervised, and uses both the proximity matrix and category 

labels on the objects. The classifier required by this project is exclusive and 

extrinsic. Intrinsic classification is subdivided into hierarchical and partitional. 
Hierarchical classification groups objects according to a hierarchy, and partitional 

classification sorts objects into a predetermined number of groups according to 

their similarity. Hierarchical and partitional are two main techniques for 
clustering analysis, which will be further discussed in the following section. 

4.2 Clustering analysis 

Clustering analysis groups or organises objects (sometimes knowns as 
“individuals” or “subjects” etc.) into subsets, based on context or indices of 
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proximity between pairs of objects [146, pp. 1 – 6]. A cluster can be defined as a 
set of objects that are similar; whereas entities from a different cluster are not 

alike, such that the distance between any two objects within the same cluster 

should be significantly less than the distance between an object within the cluster 
and any object in a separate cluster [146, pp. 1 – 6] [147]. An index of proximity, 

or affinity, between pairs of patterns must exist for viable clustering methods. 

Within the context of clustering, a set of objects can be divided into two standard 

formats – pattern or proximity matrices [146, pp. 8 – 10]. An 𝑛	×	𝑑 pattern matrix 

contains a set of n objects, each represented by a set of d measurements. Patterns 
and features are defined by row and columns respectively. A proximity matrix, on 

the other hand, is based on an index of proximity demonstrated by pairs of 

patterns [146, pp. 11 – 12]. It is the accumulation of proximity indices in which 
each row and column is a pattern, assuming all patterns have the same degree of 

proximity. As the proximity index is a measurement of association and 

interrelationship between patterns, it can either be a similarity or a dissimilarity. 
The proximity index between the ith and kth objects can be represented by 𝑑 𝑖, 𝑘  

must comply with these three properties [146, p. 14]: 

1. (a) 𝑑 𝑖. 𝑖 = 0, for all i for a dissimilarity 

 (b) 𝑑 𝑖. 𝑖 ≥ 𝑚𝑎𝑥o 𝑑(𝑖, 𝑘), for all i for a similarity 

2.  𝑑 𝑖. 𝑘 = 𝑑 𝑘. 𝑖 , for all (𝑖, 𝑘) 

3.  𝑑 𝑖. 𝑘 ≥ 0, for all (𝑖, 𝑘) 
 

(4.1) 

 

4.2.1 Applications of clustering 

Cluster analysis classify objects by exploring the structure of data, making it 
different from discriminant analysis, decision analysis or pattern recognition 

[146, pp. 1 – 6]. Decisions in pattern recognition are based on pattern class labels, 
whereas cluster analysis uses pattern class labels to verify classification results 

[146, pp. 241 – 245]. Clustering algorithms are considered more time-efficient, 

reliable and consistent compared to manual grouping processes, where individual 
analysts might identify and interpret data differently. However, clustering 

results can be misinterpreted because of certain factors, such as data type, 

normalisation, or scale.  
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Figure 4.3: Clustering methodology [146, p. 144] 

 

 

Clustering algorithms often include: data collection, which influences the 
methodology used to analyse the data; initial screening, such as normalisation, 

in order to prepare the data for further analysis; representation, whereupon the 

proximity index is chosen, and data is transformed and projected suitably; 
clustering tendency, an optional step which helps decide whether clustering 

would be suitable for the data; clustering strategy, choosing between hierarchical 

and partitional clustering ; validation, which evaluates clustering results; and 
interpretation, which draws conclusion about the data [146, pp. 135 – 137]. Figure 

4.3 shows the relationships among the major steps in cluster analysis. 

Cluster algorithms are paramount in solving problems in both image processing 

and pattern recognition. The applications of clustering often include feature 

selection [148], unsupervised learning [149], clustering of various kinds of data 
[150] [151], automatic indexing and classification [152] [153], speech recognition 

[154], image segmentation [155] and image registration [156]. The development 

of clustering methodology has been an interdisciplinary collaboration, including 
taxonomists and engineers. K-means clustering in particular, has been 

incorporated into CAT systems for sorting pixels into groups [35] [36]. 

4.2.2 Clustering algorithms 

Many clustering algorithms are based on two popular techniques: hierarchical 

and partitional. Hierarchical clustering is exclusive and intrinsic; whereas 
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partitional clustering algorithms are categorised as exclusive, intrinsic and 
partitional. Sneath and Sokal created the acronym SAHN (Sequential, 

Agglomerative, Hierarchical, Nonoverlapping) to refer to exclusive, intrinsic, 

hierarchical, agglomerative algorithms [6]. Each clustering technique is best 
suited for different domains of applications – agglomerative hierarchical 

clustering focuses on the proximity index among the objects; while iterative 

square-error partitional clustering is nonhierarchical, and deals with data that 
takes the form of a pattern matrix.  

A hierarchical clustering algorithm transforms a proximity matrix into a 
sequence of partitions, in which each partition is nested into the next [146, pp. 58 

– 60]. This method is often depicted using a dendrogram, as seen in figure 4.4, 
which lists the clusterings in a systematic manner, so that every level defines a 

clustering and helps identify clusters.  

Partitional clustering, on the other hand, organises n patterns within a d-

dimensional space into K clusters, to the effect that patterns within a particular 

cluster are more similar to each other than patterns in another cluster. A 
clustering criterion, either local or global, is chosen, after which all possible 

partitions containing K clusters are evaluated, and the partition that optimises 

the criterion is selected. A global criterion identifies any cluster by a prototype, 
assigning patterns to cluster as per the most similar prototypes; whereas a local 

criterion utilises local structures to form clusters [146, pp. 89 – 92].  

 

 
 

Figure 4.4: Example of a dendrogram [146, p. 59] 
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The square-error criterion is a popular strategy. Its objective is to minimise the 
square-error, or maximise the variation between clusters, for a particular 

partition with a fixed number of clusters [146, pp. 82 – 96]. Considering a set of 

n patterns, in d dimensions, that are partitioned into K clusters	 𝐶D, 𝐶J, … , 𝐶{ , 

there are 𝑛o patterns in cluster	𝐶o: 

𝑛o = 𝑛
{

o|D

 (4.2) 

and the mean vector of cluster 	𝐶o can be given by: 

𝐦(o) =
1
𝑛o

𝐱𝒊
(o)	

��

�|D

 (4.3) 

where 𝐱𝒊
(o) is the ith pattern in cluster 	𝐶o. The square-error, or within-cluster 

variation, for cluster 	𝐶o can be defined as the sum of the squared Euclidean 

distances between any two patterns in the same cluster, with 𝐦(o) as the cluster 
centre. 

𝑒oJ = (𝐱𝒊
o − 𝐦 o )� = 	 (𝐱𝒊

o − 𝐦 o )

��

�|D

 (4.4) 

Partitional clustering plays an important role in biology, social and behaviour 

sciences. When constructing taxonomies, partitional clustering techniques can 

efficiently represent and compress a large amount of data. Dendrogram are 
unsuitable for representing partitional clustering because of the large dataset 

[146, pp. 89 – 92].  

4.2.3 Image segmentation by clustering 

Apart from the image segmentation approaches described in the previous 

chapter, clustering is also a technique that is used to partition an image into 

regions. Compared to image classification, image segmentation is sometimes 
considered more difficult, as the number of classes is typically unknown, unlike 

in classification problems. For basic image segmentation, in which “light” and 
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“dark” objects are represented by background and foreground pixels respectively, 
the threshold can be chosen using a grey-label histogram [146, pp. 225 – 227]. 

This approach is similar to one-dimensional partitional clustering, meaning each 

pixel corresponds to a pattern, and pixels are separated into groups according to 
only grey values. The same concept can be further adapted to multiple 

dimensions, given pixels can be represented by corresponding d-dimensional 

feature vectors, including grey values, gradients, or textures. Texture, in 
particular, is suitable for clustering. 

In terms of machine vision and image processing, texture does not necessarily 
refer to the physical surface texture, but the spatial variation in pixel intensities 

in digital images [157]. The exact definition of texture is debatable [158], even 
though texture property is occasionally used as a guide to recognising image 

regions. It is a feature that plays an important role in image analysis, including 

several studies in automated inspection problems, which use textures to detect 
detects in images [159], textile [160] and lumber wood [161]. 

Common approaches of classification and segmentation of textures include: 
utilising grey-level histograms [162], in which channels respond to grey-level 

changes; and spatial filtering using partitional clustering, assessing a structure 

of n patterns in d-dimensional, where n is the number of pixels in an image, and 
d is the number of texture features [163] [164] [165] [166]. Another approach is 

the use of K-means clustering to minimise square-error. This method partitions 

the data according to a segmentation of the image. One of the statistics for 
assessing the validity of cluster k, 𝑆o is defined as: 

𝑆o =
min �

��o
(𝑚�

o − 𝑚�
� )J�

�|D

1
𝑛o

(𝑥��
o − 𝑚�

� )J�
�|D

��
�|D

D J (4.5) 

where 𝑛o is the number of patterns in this cluster	𝑚�
(o), is the cluster centre, d 

denotes the number of features and 𝑥��
(o) is the value of the jth feature for the ith 

pattern in cluster k [146, pp. 101 – 118, pp. 227 – 231]. A clustering is valid when 

the value of  𝑆o is greater than a threshold for all clusters. Generally, a larger 

number in 𝑆o indicates well-isolated clusters. 
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4.3 Neural networks 

As mentioned in chapter 2, neural networks are popular choice of tool for training 

the classifiers within computer-aided taxonomy systems. Neural networks have 
been used in conjunction with digital image processing since the early 1990s due 

to their adaptability in solving a wide variety of problems [167]. Egmont-Petersen 
et al. suggested that neural networks can be trained to perform various image 

processing tasks, such as preprocessing, feature extraction, segmentation, object 

recognition, image understanding, and optimisation [168].  

Although neural network algorithms do not accurately model biological 

connectionism, their development was inspired by networks of real neurons in the 
brain [169, pp. 2 – 6]. In a typical artificial neural network, a collection of neurons 

is connected by synapses, which allow signals to be transferred among neurons; 

although “neurons” and “synapses” in artificial neural networks are somewhat 
more straightforward than their biological equivalents [169, pp. 2 – 6].  

McCulloch and Pitts proposed a simple model of neuron, presented as a binary 
threshold unit. Figure 4.5 shows a schematic diagram of the McCulloch-Pitts 

neuron. It generates an output of either 0 and 1 when a weighted sum of inputs 

is computed by a neuron, according to a certain threshold [170]: 

𝑛� 𝑡 + 1 = 𝜃( 𝑤��𝑛� 𝑡 − 𝜇�)
�

 (4.6) 

The state of neuron i can be either firing and not firing; time t represents the time 

unit elapsing in each processing step; and 𝜃(𝑥) is the Heaviside function, also 

known as the unit step function: 

𝜃 𝑥 = 1				𝑖𝑓	𝑥 ≥ 0;
			0				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.7) 

The weight 𝑤� refers to the strength of synapse which connects neurons j and i. 

The McCulloch and Pitt model indicates that a simple neuron, in principle, can 

be used in universal computation for any suitable weights  𝑤��, meaning the 

McCulloch-Pitts neuron is capable of performing computation similar to any 
ordinary digital computing system [169, pp. 2 – 6].  
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A simple single layer feed-forward network, as well as ones with multiple layers, 
can be referred to as perceptrons. Figures 4.6 (a) and (b) show examples of a 

simple single layer feed-forward network and a two-layer network respectively. 

Rosenblatt, who coined the term, further proved that perceptrons are capable of 
learning, which meant they are able to simulate specific functions [171]. While 

neural structures in the brain are far more complex than artificial ones, they are 

mostly feed-forward. Meanwhile networks with loops of connections, whether 
direct or indirect (i.e. networks that are not considered feed-forward) are 

generally known as recurrent networks [169, pp. 90 – 92]. 

 

 

Figure 4.5: Schematic diagram of a McCulloch-Pitts neuron [169, p. 3] 

 

 

 

(a) (b) 

  

Figure 4.6: Feed-forward networks 

(a) A simple perceptron, and (b) a two-layer perceptron 
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4.3.1 Feed-forward networks 

In any feed-forward network, there is a set of input terminals, which feeds input 

patterns into the rest of the network; zero or more intermediate layer of hidden 
units; and a final output layer [169, pp. 90 – 92]. The hidden layer is known as 

such since it is concealed from the inputs and outputs. By definition connections 
in feed-forward networks are unidirectional, having asymmetric connection 

matrices 𝑤��. Simple perceptrons are feed-forward networks with a single layer; 

while an N-layer network has N layers of connections and N – 1 hidden layers, 
not counting the input terminals [169, pp. 90 – 92] [172, pp. 11 – 26]. For a simple 

perceptron,	𝑔 ℎ� , the activation function can be given by [169, pp. 90 – 92]: 

𝑂� = 𝑔 ℎ� = 𝑔( 𝑤�o
o

𝜉o) (4.8) 

where 𝜉o is a set of N inputs and 𝑂� is the output layer, which is an explicit 

function of the input. For a simple deterministic thresholding unit, 𝑔 ℎ = 𝑠𝑔𝑛 ℎ , 

with the assumption that the targets 𝜁o
� have values of ±1 [169, pp. 92 – 100]. A 

desired outcome is where the actual output pattern 𝑂�
� equals target pattern 𝜁o

� 

for each i and µ. An example of a two-layer feed-forward network is shown in 
figure 4.7. 

 

Figure 4.7: A two-layer feed-forward network; 

with the notation for units and weights [169, p. 116] 
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Each input pattern can also be represented by 𝜉o
�, where 𝜉� is a pattern vector in 

the same N-dimensional space; and the weights 𝑤�o become a weight vector, 

where 𝑤 = 𝑤D, 𝑤J, … , 𝑤� . If a plane in the 𝜉 space separates the patterns with 

𝜁� = +1 and  𝜁� = −1, the problem is said to be linearly separable, and thus can 

be solved by a simple perceptron [169, pp. 92 – 100] [173]. As for multi-layer 

networks, they can be made solve a particular function by changing the weights 
𝑤�o [169, pp. 115 – 120]. 

4.3.2 Training algorithms 

Through learning, whether supervised or otherwise, perceptrons can adjust 

themselves to produce desirable outcomes by sequentially modifying the network 
weight to produce such function through training, whether supervised or 

otherwise [172, pp. 11 – 26]. A network is typically trained over a number of 

training pairs, consisting of input and output vectors [172, pp. 43 – 59]. Initially 
weights are small random numbers, as the network could not learn if all the 

weights are of the same value and the desired outputs require unequal values. 

Training can be divided into two groups: supervised and unsupervised. With 

supervised learning, learning is based on comparing the output of the network in 
question, with known correct answers; while in unsupervised learning, the only 

information lies in the correlations of the input data with the network aiming to 

create categories via learning; and to produce output signals according to the 
input category [169, pp. 8 – 10]. Unsupervised learning is more akin to biological 

neural structures compared to supervised learning, as brains do not train by 

comparing actual outputs with desired answers, before feeding the errors back 
through the network [172, pp. 11 – 26]. 

In unsupervised learning a training set consists of only input vectors, and with 
the absence of target vectors, outputs are not compared with any desirable 

outcomes. The objective of these training vectors is to adjust network weights so 

that consistent outputs can be produced by extracting statistical properties of the 
training set and grouping similar vectors into classes [174]. The Gaussian 

mixture models and Kohonen networks are examples of unsupervised learning 

algorithms, where measurements are not accompanied by class labels. Many 
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training algorithms are inspired by and evolved from a particular unsupervised 
learning model proposed by Hebb, in which the weight is increased if both the 

input and output neurons are activated [175]. This strengthens the frequently 

used paths in the network and facilitates learning. 

In supervised training an input vector is coupled with a target vector to produce 

a training pair, with the latter representing the desired output [172, pp. 11 – 26]. 
When a network is trained with a number of training pairs, the difference 

between each actual output and their corresponding target output vectors are 

calculated, and fed back through the network to adjust the weight. This process, 
known as back propagation, will be further elaborated in section 4.3.3.  

Eventually the weights are modified for each vector and the error of the training 

set is minimised to an acceptable level [172, pp. 11 – 26]. A supervised learning 

algorithm consists of an instance of data i, an attribute vector	𝑋�, and target 

vector Y can be represented by: 

𝐸 =
1
2

(𝑦� − 𝑌�)J

�

 (4.9) 

where 𝑋� denotes an attribute vector which is processed with a network: in order 
to produce an output 𝑦�, which has the same form as target vector Y. Through the 

modification of the parameters of the network w (frequently by minimising the 

total square error).  

4.3.3 Back propagation 

Back propagation, sometimes known as error back propagation or back 
propagation of errors, was invented by Bryson and Ho [176], Werbos [177], Parker 

[178] and Rumelhart et al. [179] [180]. Back propagation is an algorithm that is 
based on a simple gradient descent which changes the weights 𝑤�� in a feed-

forward network, so that it can learn a training set of input-output pairs 𝜉o
�, 𝜁�

�  

[169, pp. 115 – 120]. It uses the forward coefficients 𝑊��, although errors d are 

being propagated backwards instead of signalling forwards. Back propagation can 

also be bidirectional, as depicted in figure 4.8.  
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Figure 4.8: Back propagation in a three-layer network [169, p. 118] 

 

 

 

Figure 4.9: Image recognition [172, p. 48] 

A pattern of ‘0’s and ‘1’s forming a binary image of the number ‘0’ 

is the set of inputs of this training pair; while the output could be 

a number representing zero or a second set of ‘0’s and ‘1’s. 

To train the network to recognise numbers 0 to 9, 

10 training sets are required. 

 

 

  



4. Automated classification 
 

 
 

84 

In general, back propagation takes the form [172, pp. 43 – 59]: 

∆𝑤�� = 𝜂 𝛿������×𝑉�����
���� ¡�

 (4.10) 

where p and q are the two ends of connection, referred to by output and input 
respectively; and V represents the suitable input-end activation from either a 

hidden unit or a real input. For the final layer of connections, 𝛿 can be given by: 

𝛿�
� = 𝑔¢(ℎ�

�) 𝜁�
� − 𝑂�

�  (4.11) 

As for other layers, 𝛿 has the form: 

𝛿�
� = 𝑔¢(ℎ�

�) 𝑊��𝛿�
�

�

 (4.12) 

For any network without backward or lateral connections, error propagation can 

be calculated after weights are initialised to small random values [169, pp. 115 – 

120]. Each pattern 	𝜉o
�, chosen and applied to the input layer (𝑚 = 0), such that 

𝑉�
s = 𝜉o

�										for	all	𝑘 (4.13) 

The signal propagated forwards through the network: 

𝑉�
§ = 𝑔 ℎ�

§ = 𝑔( 𝑤��
§𝑉�

§CD

�

) (4.14) 

for each i and m; and where 𝑉�§ is the output of the ith unit in the mth layer, 𝑉�s 

would be the same as the ith input 𝜉� and 𝑉�¨ would be the last output. The deltas 

for the final output layer can be calculated by comparing the actual outputs 𝑉�¨ 

and the desired outputs 𝜁�
� for pattern µ: 

𝛿�¨ = 𝑔¢(ℎ�
�) 𝜁�

� − 𝑉�¨  (4.15) 
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By propagating the errors backwards, deltas for previous layers can be calculated: 

𝛿�
§CD = 𝑔¢ ℎ�

§CD 𝑤��
§𝛿�

§

�

									for	𝑚 = 𝑀,𝑀 − 1,𝑀 − 2,… , 2 (4.16) 

The connection can be updated using the gradient descent algorithm: 

∆𝑤��
§ = 	𝜂𝛿�

§𝑉�
§CD										and										𝑤��

� ª = 	𝑤��
��� + ∆𝑤�� (4.17 – 18) 

4.3.4 Image processing using neural networks 

Convolutional neural network (CNN) is a class of deep neural networks which is 

commonly applied in visual image analysis. Unlike other neural networks 

discussed in the previous subsections, CNNs use a three-dimensional structure – 
width, length and depth [181]. This architecture allows the image to be scanned 

several pixels at a time, until the entire image is mapped. The resulted feature 

map contains features that belong to a required class and this first stage is known 
as convolution [181] [182] [183]. CNNs can perform numerous rounds of 

convolution before moving to the next layer, known as pooling. In the second 

layer, pooling produces a “summary” of the most important features on the image, 
by “downsampling” the dimensionality of each feature and keeping the most 

important information at the same time [181]. The fully-connected layer is similar 

to the one in regular neural networks, which determines the class of the image. 
A typical CNN structure is shown in figure 4.10. 

 

 

Figure 4.10: Typical CNN structure 
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CNNs use a three-dimensional matrix as an input feature map, with the size of 
the first two dimensions corresponding to the number length and width of the 

image in terms of pixels; and the third dimension has a size of 3 for full-colour 

RGB images, representing the three channels of red, green and blue [182]. 
Convolution then obtains tiles of the feature map, and applies filters accordingly 

to form new features, which then results in an output feature map, containing 

the convolved features. Size of the extracted tiles and the depth of the output 
maps are the parameters of the convolution process. 

Common algorithms for the pooling stage include max pooling and average 
pooling [182]. The former uses the maximum value for each tile, while the latter 

takes an average value in order to determine the presence of a certain feature. 
The resulting fully connected layers of a CNN perform classification based on the 

feature extracted with convolutions. In fully connected layers, every node in the 

first layer is connected to every node in the second layer. The performance of 
CNNs is dependent on the parameters chosen for the purpose, such as number of 

layers and the number of feature maps in each layer. The accuracy for 

classification can be achieved through experimentation with sets of parameters.  

As CNNs do not process entire images at the same time (unlike global 

thresholding), they are suitable for segmenting pixels into multiple classes. CNNs 
have been considered as an alternative to the image segmentation techniques 

described in chapter 3, in order to separate the pixels into three groups – leaf 

mines or tar spots; leaf; and the background (for example the background of a 
flatbed scanner). This will be further discussed in chapter 6. 

4.4 Evolutionary algorithms 

Evolutionary algorithms have been used for optimising image processing systems 
and neural networks [184] [185], or to perform clustering tasks [186]. They have 

also been implemented for segmentation purposes [187] and morphological 

classification of images [188]. Nickolay et al. proposed a method to optimise the 
parameters in image processing systems automatically using evolving 

algorithms, in order to increase the efficiency of the system and to simplify its 

usage [184].  
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Evolutionary algorithms (EAs) include a range of algorithms that are based on a 
major principle of evolution – “survival of the fittest”. It is a phrase coined by 

Spencer in the 1860s, itself derived from genetic inheritance and Darwinian strife 

for survival [189]. By incorporating mechanisms of natural selection and 
population genetics, evolutionary algorithms can be used as an optimisation 

process. Dasgupta and Michalewicz attributed the development of EA-based tools 

to independent sampling from individuals, selection processes which preserve 
useful solutions, and the ease to modify partial solutions with “genetic” operators 

[190, pp. 3 – 4].  

Generally speaking, an evolutionary algorithm maintains a population 𝑃 𝑡 =

𝑥D�, … , 𝑥��  for iteration t. Each individual represents a respective solution 𝑥�� , 
which is assigned a “fitness” according to user-specified criteria. By selecting the 

“fitter” individuals, a new population (iteration 𝑡 + 1) is calculated, with 

individuals of the new population undergoing certain genetic transformations to 
form new solutions [190, pp. 4 – 6].  

4.4.1 Genetic algorithms 

One of the main paradigms of evolutionary algorithms is genetic algorithms 
(GAs), in which a population of potential solutions are maintained to facilitate a 

multi-directional search [190, pp. 6 – 8]. Like most computational systems that 

drew inspiration from nature, GAs can be adopted to solve technological 
problems, as well as used to understand and answer questions about nature [191, 

p. 35]. 

Genetic algorithms incorporate selection, crossover and mutation, where 

information formation is encouraged and exchanged in multiple directions. 

Typical elements of a genetic algorithm include: populations of chromosomes, 
selection according to fitness, crossover to produce new offspring, and random 

mutation of new offspring. It uses fitness functions, which assigns a score, to each 

chromosome in the present population to indicating the fitness [191, pp. 8 – 10].  

For each iteration, a new population is created based on preceding generation 

according to these steps: (1) evaluation – individuals of existing population are 
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evaluated individually using a fitness function and assigned a value to denote 
their merit; (2) selection – individuals with better fitness are “selected” to create 

the next generation; and (3) mating – a new population is generated by applying 

genetic operators to selected individuals, including crossover and mutation.  
Generations are iterated until a satisfactory solution is reached.   

This technique, dating back to 1950s but further developed in the 60s and 70s, 
often operated on binary strings [192] [193], with series of mutations involving 

crossover operators (where ‘0” becomes ‘1’ and vice versa). Applications of genetic 

algorithms include: optimisation, such as numerical and combinatorial 
optimisation problems; automatic programming, in which GAs are used to evolve 

computer programming and design computational structures for specific tasks; 
machine learning, which includes classification and prediction tasks; evolution 

and learning, as a tool to study population genetics, and how species evolution 

affects each other; model and develop processes or systems in areas such as 
economics, ecology, sociology, immunology and robotics [191, pp. 15 – 16]. Pettey 

et al. proposed a new technique using genetic algorithms (GAs) as an alternative 

to k-means workload characterisation [194]. In this study, the GA-based 
technique outperformed k-means clustering models, which were discussed in 

section 4.2.2, by a factor of 10, successfully identifying both the number of 

workload classes and class centroids. 

4.4.2 Evolving neural networks 

Genetic algorithms have been incorporated into feed-forward neural networks to 

enhance network architectures, their learning and how the weights are 
calculated. Montana and Davis first used GA to evolve the weights in a fixed 

network, instead of back propagation [195]. Their results indicated that GA could 

outperform back propagation in certain problems, as well as the possibility to be 
used alongside back propagation to enhance its performance. Schaffer et al. 

suggested that GAs would be useful in finding weights in tasks, particularly for 

problems where back propagation is unsuitable [196].  

Evolving network architectures can be primarily divided into two categories: 

direct encoding and grammatical encoding. The former, devised by Miller et al., 
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uses simple fitness-proportionate selection and mutation in fast-forward neural 
networks [197]. Grammatical encoding, on the other hand, was first described by 

Kitano in the 1990s, as an alternative to direct-encoding [198].  

Another application of genetic algorithms in neural networking is to evolve 

learning rules for neural networks. Chalmers [199] initially studied fully 

connected single-layer feed-forward networks. During training, network weights 
are modified according to the performance on the training data. To modify the 

weight for a single-layer feed-forward network, from input unit i to output unit j, 

can be given by: 

𝑎�: activation of input unit i  

𝑜�: activation of output unit j 

𝑡�: training signal on output unit j 

𝑤��: current weight from i to j 

∆𝑤��: the change to make in weight 𝑤��,  

 and ∆𝑤�� = 𝑓(𝑎�, 𝑜�, 𝑡�, 𝑤��) 

Not only has genetic algorithms been used to optimise the performance of neural 

networks as classifiers, they have also been applied to image processing systems 
to optimise object recognition in a supervised learning context, which will be 

discussed in the next section. 

4.4.3 Image segmentation using genetic algorithms 

Genetic algorithms have been incorporated various computer vision systems to 

solve problems such as image segmentation, feature selection and object 

recognition. Unlike traditional image segmentation techniques, GAs can adjust 
to changes in image characteristics due to variable environmental conditions. 

GAs can provide adaptive capability within a computer vision by allowing the 

genetic system to modify a set of control parameters that affects the output of an 
existing system; by having the genetic component adjust the complex data 

structures within an algorithm or production rules for a computer vision 

application; or by allowing the genetic algorithm to make changes in the 
executable code of a program [200]. The performance of image segmentation can 
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be evaluated using global and local features of the image. An example of how 
image segmentation can be adapted using GAs is shown in figure 4.11. 

Bhanu et al. proposed a method involving a closed-loop feedback control which 
allows the system to be adaptable, and a genetic learning system that optimises 

segmentation performance [200]. It utilises both global characteristics of the 

whole image and local features of separate object regions within the image. The 
result image of an adaptive image segmentation techniques can be used in region 

labelling and feature extraction, before being passed onto object recognition and 

classification. A flow diagram of the proposed system is depicted in figure 4.12. 

 

 

Figure 4.11: Block diagram of the adaptable image 

segmentation process [200] 

 

 

 

Figure 4.12: Conceptual design of the multi-level computer 

vision process proposed by Bhanu et al. [200] 
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4.5 Probability in machine learning 

A selection of features is often used in image analysis and classification systems, 

as it provides a systematic way to compare data. Prominent features, such as the 
length or area of an object, are often employed as classification aids. The 

importance of each feature to the particular pattern class varies; and its 
effectiveness is dependent on its measurements, as well as the selection or 

number of features used.  

4.5.1 Bayes’ decision theory 

By combining information obtained from features and a priori probabilities using 
Bayes’ rule, the performance for object recognition can be enhanced [129, pp. 507 – 

509]. The a posteriori probability of class 𝐶� when feature x is observed, is given by: 

𝑃 𝐶�	|	𝑥 =
𝑝 𝑥	|	𝐶� 𝑃 𝐶�

𝑝 𝑥
 (4.19) 

𝑃 𝐶�  is the a priori probability of class	𝐶�, 𝑝 𝑥	|	𝐶�  is the class-conditional 

probability density for feature x in class 𝐶�, and 𝑝 𝑥  is the probability density of 

feature x, which can be represented by: 

𝑝 𝑥 = 𝑝 𝑥	|	𝐶� 𝑃 𝐶�
�

 (4.20) 

An increase in the number of features generally improves the performance of 

classification and lowers the classification errors. However, an error rate of 0 is 

not achieved by increasing the number of features indefinitely; when the total 
number of features exceeds an optimum, a percentage of features becomes 

statistically negligible and adds little valuable information. This introduces 
uncertainty to the system and inadvertently raises the error rates. Generally 

speaking, by increasing the number of training set patterns, a larger number of 

features can be used without compromising the classification performance [129, 
pp. 513 – 514] [201]. In data-dependent situations, certain features are more 

significant than others and have to be chosen via experimental tests [202].  
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4.5.2 Principal component analysis 

A way to narrow down the number of features for classification is principal 

component analysis (PCA). PCA is one of the earliest techniques of multivariate 
analysis [203]; and an approach to represent data, which is closely related to 

cluster analysis. Pearson and Hotelling [204] [205] developed PCA with the 
objective to reduce the dimensionality of a large set of interrelated data, without 

giving up the variation present in the data set [206].  

Correlated variables are condensed into single representation, known as the 

principal components (PCs), giving a satisfactory approximation of the original 

data. This essentially narrows down the number of components, as the first few 
PCs retain most of the variation present in all original variables [202], thus 

reducing the number of independent variables. As a multivariate method, PCA is 

suitable if the number of data is at least three or four times more than the number 
of components [207]; and Clemensat [208] suggested that PCA is more desirable 

if the number of data is more than ten times greater than the number of 

components. If correlation exists between any of the parameters, PCA can be a 
simpler and more effective way to classify the groups.    

In order to narrow down the number of features, the first step is to normalise, or 
standardise, the data set by subtracting the mean and dividing by the standard 

deviation, if the units of all original variables differ from one another. The 

normalised data has zero mean, and the standard deviation of the data is 1.  

The covariance matrix can be created by calculating the covariance of all original 
variable; and using the covariance matrix, eigenvalues and their corresponding 

eigenvectors can be obtained [203, pp. 8 – 22]. The eigenvalue of each eigenvector 

represents the quantity of variance it accounts for. A selection of eigenvalues is 
then chosen after arranging the eigenvector in a decreasing order of values, 

depending on cumulative variance or how accurate the approximation has to be. 

The more eigenvectors are used, the more variance are retained. As the first few 
PCs retain most of the variation present in all the original variables, there is 

negligible variance in the remaining PCs; taking all PCs into account, this allows 

the variance to be retained, even though the number of features are reduced [203]. 
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4.6 Summary 

The algorithms described in this chapter are often applied in conjunction with the 

digital image processing techniques introduced in the previous chapter. 
Clustering, neural networks, evolutionary and genetic algorithms, and 

probability-based classifiers are commonly used in computer-aided taxonomy 
systems and classifiers based on pictorial pattern recognition. Some of the pattern 

recognition algorithms, such as K-means clustering, convolutional neural 

networks, and genetic algorithms, can also enhance the image segmentation 
performance. The use of machine learning in segmentation is more complex than 

the thresholding and edge-based methods discussed in the previous chapter, and 

depending on the desired outcome, may produce superior results. 

In particular, neural networks have been acknowledged as an effective classifier 

for the routine identification of plant diseases using digital images, as supported 
by the examples included in section 2.1. The use of a two-layer feed-forward 

neural network will be further discussed in section 6.4.  
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Chapter 5 

Implementation 

While implementing any digital image processing system, the principal 
requirement is to acquire samples in the form of digital images, before preparing 

them for further processing. The system’s ability to analyse and interpret the 

images can be directly affected by their quality. For instance, if the images are 
out of focus, or if the lighting is insufficient, the system may not be able to 

accurately identify the objects in a particular image.  

This chapter introduces various methods for collecting data and discusses their 

relative merits. Gathering of mines of C. ohridella and other leaf-mining insects 

is restricted to the latter half of the year due to phenology, environmental factors, 
growth rates, etc. Apart from collecting leaves with C. ohridella leaf mines for 

growth rate monitoring, leaf mines of other species were photographed using a 

digital camera to develop a database of high-quality reference and test images. 
The images then went through the preprocessing and processing steps, such as 

cropping, colour transformation, segmentation, edge detection and feature 

extraction. 

5.1 Data collection 

The prerequisite for any system that involves digital image processing is the 

acquisition of images, which can be broadly defined as “generating digital images 
using sensed data” [3, p.52]. This involves capturing objects or elements using 

sensors and sources of illumination. The energy from an illumination source is 
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reflected or absorbed by the objects or elements; and the sensor, or an array of 

sensors, produces an output based on the corresponding amount of light received 

by the sensor. An analogue-to-digital converter (ADC) then transforms the output 
into a digital image [3, pp. 46 – 52] [209].  

For computer-aided systems using digital images, the most common image 
capturing methods are using suitable digital cameras and flatbed scanners. 

Photographing specimens or samples using digital cameras in a natural 
environment is one of the more popular methods to acquire images for digital 

image processing purposes [46] [210]. It had been used in a number of research 

approaches which investigate overall damage to agricultural plantations caused 
by leaf diseases [18] [21] [23] [25] [63]. Especially with the widespread availability 

of mobiles phones with camera functionality, digital photography seems to be a 

portable way to capture images in natural environment. However, live data 
collection is arguably more difficult and less likely to be controllable, hence 

limitations exist – the environmental, lighting and background conditions are 

difficult to control. Aside from digital cameras and smartphones, multispectral 
cameras or sensors placed in drones are occasionally used [211] [212]. Another 

data collection method is to take sample leaves from plants, place them on 

contrasting backgrounds and capture 2D images using digital cameras or flatbed 
scanners [22] [44] [45] [46] [47] [212]. In some cases, samples can be collected, 

sorted, preserved and retained for identification [213].  

In this project, both digital cameras and flatbed scanners were used. Leaves were 

collected around York, mainly around the University of York campus throughout 
the summer months in 2014 to 2019. Some samples were then captured using 

digital cameras (iPhones 5, 6 and 7; Nikon 1 J5) in various settings. The iSight 

cameras used have 8- and 12-megapixels digital CCD (charger coupled device) 
sensors, and the Nikon 1J5 has a 20.8 megapixel BSI-CMOS (back-illuminated 

complementary metal-oxide semiconductor) sensor.  

Leaves with existing C. ohridella leaf mines were also kept in airtight plastic 

containers indoor at room temperature, and scanned daily over a period of 7 to 10 

consecutive days using flatbed scanners (Canon CanoScan LiDE 110 and HP 
Photosmart 5520 e-All-in-One Printer). The leaves were scanned daily in order to 
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observe the growth of area of leaf mine overnight. The scanned images or 

photographs were then transferred to computers (Apple Mac mini and MacBook 

Pro, macOS 10.9 Mavericks to 10.15 Catalina) via a USB 2.0 interface or via 
AirDrop (over Wi-Fi and Bluetooth). The resolution of the flatbed scanners was 

set to 300 and 600 dpi (dots per inch) as a suitable compromise of image quality 
and file size. Other resolutions were tested and considered but the result was 

inferior at lower dpi settings.  

The first set of data was a set of 14 leaves of horse chestnut leaves collected in 

June 2014. Additional leaves were collected in the same method in throughout 

the summer months, and again in following summers. Several photographs of 
Lyonetia clerkella, Rhytisma acerinum and Phyllonorycter were also taken 

around the University of York, and were used for testing.  

5.1.1 Image acquisition using digital cameras 

Digital cameras mainly use either charger coupled device (CCD) or 
complementary metal-oxide semiconductor (CMOS) image sensors [125, p. 22] – 

23] [214, pp. 41 – 42]. Light enters the camera through the lens and falls on the 

image sensor. The resolution determines the amount of detail the camera is able 
to capture – higher resolution equates to an increase number of pixels, which also 

means the camera is more capable of capturing finer details. 

There are various ways for recording red, green and blue colours with a digital 

camera: (1) with three separate sensors, each having an individual filter; (2) by 
rotating a series of red, green and blue filters in front of the sole sensor, which 

records three images in rapid succession; (3) the sensor is separated into various 

red, blue and green pixels, and interpolation is used to estimate the true colour at 
that location [214, p. 45]. 

Factors such as lighting, background, orientation, and image quality can directly 
impact the accuracy of an automated identification system. These factors are 

more likely to be controllable under laboratory condition, with the aid of various 

tools including lighting equipment, plain backgrounds and overall set up. Some 
prefer to collect samples and store them in a controlled environment, as the 
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quality of images is more controllable in terms of lighting condition, position of 

the leaves in images, as well as the orientation. Controlling these factors 

improves the consistency of images and simplifies the image analysing process.  

When photographing leaf samples in an indoor setting, samples are 

conventionally placed upon a white background, and a camera is set up at a fixed 
distance, perpendicular to the object in question. A single light source is often 

used to provide light over the object. Such process relies on uniformity of lighting 
in a controlled environment. Assuming the light source, camera and objects are 

placed apart, the following issues may affect the result:  

• the variations in the angle of incidence mean parts of the leaf can be 

illuminated differently 

• the reflectivity of various parts of the leaf 

• parts of the objects and background are in the shadow 

• the distance among the background, camera and object, as well as the 
directions relative to them  

When photographing leaf samples in an outdoor setting using digital cameras, 

lighting becomes an even more complex issue. Sunlight is not a controllable light 
source, and its direction or intensity is not consistent. Artificial light sources, such 

as flashlight or light boxes, are more easily controlled. Additionally, in order to 
determine the precise distance between the camera and its object, both have to 

remain stationery, which is not particularly practical for handheld camera due to 

its weight or external factors such as wind. Despite these challenges, digital 
photography remains a highly favoured image acquisition method for many 

computer-aided taxonomy systems. This is due to the popularity of mobile phones 

with built-in digital cameras.  

5.1.2 Scanning mechanism  

Flatbed scanners, also referred to as reflective scanners, work by shining a white 

light source onto flat, opaque materials; and reading the intensity and colour of 

the light reflected from it [215]. Typically an object is placed on a glass window, 
face-down beneath the cover, which provides a controllable background; and as 

most leaves are primarily flat, scanning is an ideal way to digitalise such objects. 
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Flatbed scanners use the CCD array, with a fluorescent or xenon lamp to 

illuminate the document, and the image is reflected by mirrors. Since CCD 

elements are brightness sensitive, the pixels store only luminance information of 
the original image. As for the colour and chrominance information, three CCD 

elements for each pixel, and the red, green and blue components are combined to 
form an RGB scanned image [125, pp.22 – 23]. 

The colour depth, or bit depth, depends on the scanning array; high colour depth 
means that more colours are used and the quality of the scan will be better. The 

scanners used in this project, a Canon CanoScan LiDE 110 and HP Photosmart 

5520, can digitalise objects with a depth of 48-bit and 24-bit respectively; and 
both have an 8-bit output for greyscale images [216] [217]. The maximum size of 

the object is limited by the size of the glass window – for both scanners used in 

this project, the maximum scan size is 216 x 297 mm (8.5 x 11 in).  

Dots per inch (dpi) is the standard measure of spatial dot density of an image 

scanner or printer, which is the number of individual dots that can fit into a linear 
inch [3, pp. 59 – 65]. Dpi is different from pixels per inch (ppi) – an image of 

100	×	100 pixels, when printed in a 1 inch square, would have a resolution of 100 

ppi. For printing purposes, a higher dpi translates to better quality, as indicated 

by a larger number of dots. For scanned images, however, the dpi setting of the 
scanner correlates to the final size of the images in pixels. As the resolution of a 

digital image is measured in pixels, a higher dpi setting means more information 
is collected during the scanning process, hence a superior image quality. A setting 

of 300 dpi to 600 dpi would provide a quality scan with a reasonable file size. The 

maximum resolution for the Canon CanoScan and the HP Photosmart 5520 are 
2400 × 4800 dpi and 1200 × 2400 dpi respectively [216] [217]. 

Figure 5.1 (a) shows a cropped image (560	×	420 pixels) of a decimal one penny 

(1p) coin, scanned at 300 dpi. A standard 1p coin has a diameter of 20.3 mm 

(0.7992 inches), each side of a 1p coin has an area of 323.6547 mm2 (0.5017 square 
inches). Using the same approach described in this chapter, the estimated area 

of a 1p coin is 45564 pixels. This is indicated by the object area within the red 
outline in figure 5.1 (a). The green circle in figure 5.1 (b) has the same area and 

centre as the object in figure 5.1 (a), which has a radius of 120.4303 pixels.  
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(a) (b) 

 

Figure 5.1: A decimal one penny (1p) coin scanned at 300 dpi. 

The object outlined in red in (a) has the same area as the green circle 

 in (b). At 300 dpi, the area of each side of a 1p coin is approximately 

 45564 pixels, with a radius of 120.4303 pixels. 

 

 

Regarding the issues addressed in subsection 5.1.1, both the background and 
lighting elements are consistent in flatbed scanners; hence the result images are 

unlikely to be subjected to distortion, reflection or shadows, where compared to 

acquiring images with digital photography. 

5.1.3 Image compression and file formats 

Digital images contain large amount of data, leading to the necessity of image 

compression – the reduction of information while retaining an acceptable image 
quality [125, pp. 444 – 445]. A block diagram of general image compression is 

shown in figure 5.2. The higher quality, the larger amount of storage space and 

transmission bandwidth are required. Scanned images have a set numbers of dpi 
(dots per inch), which can be converted into ppi (pixels per inch), as demonstrated 

in section 5.1.2. Photos taken with smartphone cameras are typically around 8 to 

12 megapixels, while single-lens reflex cameras create images with 20, or 
sometimes up to 60 megapixels. Due to their large file sizes, images with more 

than 12 pixels are not likely to be practical for the proposed approach – the 

software and hardware used for developing the system may not be able to process 
them efficiently, and the processing time would be considerably longer. 
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Figure 5.2: Image compression [125, p. 447] 

 

Image compression can be divided into two groups – “lossy” and “lossless” [125, 

p. 447]. The former is known as irreversible compression, since parts of original 

image information is discarded during the process and could not be restored. In 
lossy compression, the reconstruction is an approximation of the original data, 

which is a trade-off for a higher compression ratio. Lossless compression is fully 

reversible, as all the information is preserved during the compression and 
decompression processes; none of the image data has been compromised, so that 

the reconstruction image is exactly identical to the original image.  

One of the most popular image file formats that utilises lossy compression is 

JPEG (Joint Photographic Experts Group, .jpg or .jpeg), or its successor 

JPEG2000 [125, pp. 639 – 640]. The compression process mainly includes the 
steps of: preprocessing – decomposing image components into rectangular tiles, 

dc-level shifting and component transformation; core processing – wavelet 
transformation, quantising coefficients and entropy coding; bit-stream formation 

– precincts and code blocking. It is the default image output format of both 

scanners used. It is a joint international standard for the image compression on 
both colour and grayscale still images [125, pp. 488 – 494], which employs block-

based discrete cosine transform (DCT), which allows the image to be cropped, 

rotated, transformed or converted into a greyscale image, as well as significantly 
reducing the file size. Block diagrams of JPEG encoder and decoder are shown in 

figures 5.3 and 5.4.  

PNG (Portable Network Graphics) is a bitmapped image format which uses 

lossless compression [3, p. 541]. PNG supports 16 million colours, and was 
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designed specifically for transferring images via the Internet. It uses a 2-stage 

compression process – pre-compression, involving filtering; and a non-patented 

lossless data compression algorithm known as Deflate. PNG is considered an 
ideal format for picture editing, as images can be fully reconstructed from the 

compressed data. The processing time of PNG images is considerably higher 
compared to JPEG images, due to the reduced compression ratio.  

 

 

Figure 5.3: Baseline JPEG encoder and decoder [125, p. 489] 

FDCT and IDCT refers to Forward and Inverse DCT respetively; 

quantised DCT coefficients are ordered according to a zigzag scan, 

which is based upon the observation that most of the 

high frequency coefficients are zero after quantisation. 

 

 

 

Figure 5.4: A general block diagram of the JPEG 2000 

encoder and decoder [218] 
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TIFF (Tagged Image File Format) supports all resolutions, sizes, and colour 

depths [3, p. 541]. The quality is preserved in TIFF images but its larger file size 

limits its use. Raw image files are data from image sensors of digital camera or 
scanners before they are processed. RAW files retain the information required to 

produce a viewable image but they cannot be printed or edited with a bitmap 
graphics editor. They support all colour spaces with more shades of colours 

compared to JPEG files (raw images supports 12 or 14 bits of intensity 

information per channel, while JPEG supports 8 bits or 256 shades).  

RAW image files contain data from the image sensor of a digital camera or an 

image scanner, with minimal compression. RAW images bypassed the processing 
steps of sharpening and noise reduction, which are typically automatically 

performed on JPEG images during the compression process. Unlike other image 

file formats, settings for white balance, colour saturation, contrast, and sharpness 
are not predetermined, either by the photographer or automatically, but instead 

are saved for further processing. Most RAW formats use lossless compression to 

reduce file size without compromising quality, but some use lossy compression for 
filtering and quantisation. Depending on the compression ratio, RAW files are 

approximately 2 – 6 times larger than their JPEG equivalent; for instance, using 

the Nikon 1 J5 and the Nikkor 10.0 – 30.0 mm VR lens at ISO 320, the file sizes 
for the RAW and JPEG images are 21.4 MB and 11.2 MB respectively at 5568 × 

3712 pixels (20.7 megapixels). RAW images are converted into TIFF or JPEG file 

formats for storage and processing using a RAW converter [219] [220]. 

With modern photo editing software, the processing time for RAW images have 

been significantly reduced. However, it is an additional step that would not be 
required otherwise when using ready-to-use image formats, such as JPEG. 

Moreover, raw image files are not standardised and numerous raw formats are 

currently in use, unlike the JPEG format. For the purpose of this project, the use 
of RAW image is impractical without specialist hardware and software.  

5.2 Image analysis 

The proposed detection tool for identifying C. ohridella leaf mines was developed 

in MATLAB (MATrix LABoratory) versions R2014a through R2018b, with the 
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addition of various Toolboxes, including the Image Processing Toolbox, the Deep 

Learning Toolbox (known as the Neural Network Toolbox in previous versions), 

and the Statistics and Machine Learning Toolbox (the successor of the Statistics 
Toolbox) [221] [222] [223]. Developed by Math Work Inc. for digital signal 

processing, MATLAB is a programming language that allows matrix and array 
calculation, graph plotting, algorithm implementation, etc., and facilitates a 

quick and easy visualisation of results [224]. The MATLAB image processing 

toolbox supports a wide range of image formats, and provides a diverse range of 
algorithms and functions aimed at image analysis. Subsequently, two more 

species of leaf mines were introduced: L. clerkella and P. ilicis; as well as the plant 

pathogen R. acerinum. 

In this chapter, pixels labelled “object area” indicate the pixels which can be 

regarded as leaf mines or tar spots, and the “leaf area” refers to the pixels which 
represents the leaf itself. In binary images, the pixels with a value of “1” (i.e. 

foreground) mainly includes the “object area” pixels, while the background pixels, 

with the value of “0”, includes the “leaf area”, and occasionally the area that is 
neither of the leaf or the “objects” (for instance, the background beneath the leaf).  

  

  
  

(a) (b) 

Figure 5.5: 2-D Cartesian coordinates in MATLAB [225] 
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Image data are represented in three numeric classes in MATLAB – double-

precision floating-point (double), 16-bit unsigned integer (uint16) or 8-bit 

unsigned integer (uint8) [226]; and any image can be interpreted as a two-
dimensional (2-D) function	𝑓 𝑥, 𝑦 , with x and y as spatial coordinates [3, pp. 1 – 

3], as shown in figure 5.5. For example, the intensity at coordinates 𝑥, 𝑦  can be 

given by 𝑓 𝑥, 𝑦  for a binary image with m rows and n columns. With double-

precision arrays, each colour component of an RGB image has the value between 

0 and 1; for instance, (0, 0, 0) corresponds to a pixel in black, and (1, 1, 1) 
corresponds to one in white [227]. 

5.2.1 Image preprocessing 

Image preprocessing involves the range of techniques to manipulate or improve 

image data, so that the images become better suited for further processing and 
specific applications. The goal for preprocessing is to enhance features vital to 

further processing, and suppress irrelevant or undesired information. 
Preprocessing methods include geometric transformations, such as rotation and 

scaling; image enhancement and restoration, both of which improve the 

appearance of an image visually [3, p. 25 – 28] [214] [228] [229].  

One of the first preprocessing steps is to perform some basic image editing and 

manipulations, such as resizing, cropping and rotating, on the scanned images 
and photographs. For instance, it is essential to crop images into smaller portions, 

which puts emphasis on the subject (leaf mines and tar spots) and improves the 

framing of the images.  

Cropping allows a smaller section of the original image to be focused on, while 

simultaneously reducing storage size and lowering processing time. It discards 
the parts of an image that are deemed unnecessary or undesirable for purpose, 

which could include background information that is irrelevant to the leaves, leaf 

mines and tar spots, as well as parts of the image that are blurry or rendered not 
suitable for further processing because of the image acquisition method. Leaf 

mines of C. ohridella are clearly visible on the upper surface of affected leaves, 

thus can easily be identified on upper surface of A. hippocastanum leaves. A 
similar approach can be used on leaves with tar spots – the dark spots are in 
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contrast to the green leaves, making them suitable for intensity thresholding and 

edge extraction. 

For scanned images of C. ohridella, there are usually multiple leaf mines on a 

single leaf, but some are not easily identified because of blurriness; or their 

location on the leaves (too close to the edges or leaf veins), or other issues 
encountered during the data collection or image acquisition stage.  

This process was manually performed on Preview and Photos (previously 

iPhotos), which are both image software for MacOS. The cropping was based on 

the a priori knowledge that the leaf mine(s) or tar spot(s) should be located in the 
centre of the image. Additional a priori knowledge is given by distinct differences 

in colour between the “leaf” and “object” areas in the image. All the species of leaf 

mines used in this project, as well as the tar spots, can easily be distinguished 
from the background by their colour.  

Unlike resizing, cropping does not change the resolution of the image, which is 
based on the digital camera used or the dpi setting of the scanner. Without 

altering the resolution, the size of each “object” area is not affected by the 

cropping, as it is only dependent of the number of pixels within that area. As with 
many image enhancing processes, cropping was performed based on visual 

interpretation, to ensure the “object” is in the centre of the cropped image.  

5.2.2 Image segmentation based on colour spaces 

After the scanned images or photographs have been prepared, they are stored in 

the same folder as other files that are run on MATLAB for ease of use. All the 

images acquired with the methods described in section 5.1 uses the RGB colour 
system by default, and are processed using the techniques discussed in chapter 3 

– from transforming into HSI colour space, to segmentation and edge detection. 

RGB images consist of three component images, one for each primary colour [3, 

p.402 – 406]. The three component images are monochrome intensity images 

(representing red, green, and blue) of the same dimension of their full-colour 
counterpart.Though normally combined on screens to form a composite colour 

image when presented on an RGB monitor, as shown in figure 5.6, it is possible 
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to process the red, green, and blue images on their own. Likewise, HSI images 

are composed of three stand-alone component images, for hue, saturation, and 

intensity. An image in RGB or HSI colour models is stored and represented as an 
m-by-n-by-3 data array, which defines red, green and blue (for an RGB image), or 

hue, saturation and intensity (for an HSI image). 

When segmenting images based on colours, the HSI colour model has the 

convenience of decoupling colour and intensity information – colours in an HSI 
image are represented in the hue component image, and saturation is often used 

as a masking image to separate regions of interest in the hue image. The intensity 

component contains no colour information, and is rarely used in segmentation. 
When smoothing the intensity component of HSI images, the hue and saturation 

of each pixel are not affected [3, pp. 439 – 445].  

Figure 5.7 (a) shows an image of an RGB image of a C. ohridella leaf. Figures 5.7 

(b) through (d) show the red, green, and blue components of this image. Figures 

5.7 (e) is the HSI equivalent of the image in figure 5.7 (a), using the processes 
described in chapter 3. Figures 5.7 (f) through (h) show the hue, saturation, and 

intensity components of the RGB image. 

 

 

 

Figure 5.6: RGB colour rendition of the original colour scene 

 using the three RGB component images [3, pp. 403 – 404] 
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(a) Original RGB image (b) Red component image 

  

(c) Green component image (d) Blue component image 

  

(e) HSI image (f) Hue component image 

  

(g) Saturation component image (h) Intensity component image 

  

Figure 5.7: Original RGB and HSI images, with its red, green, blue, 

hue, saturation and intensity compoment images 
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To investigate the benefits of masking different channels in RGB and HSI images, 

a simple system was devised and tested using images of leaves from various 

species affected by a range of pests and disease. As green is the dominant colour 
of a healthy leaf, green coloured pixels in the images mostly correspond to the 

“healthy” areas on the leaf. These areas do not add value to the leaf mines in 
question and removing the green coloured pixels can reduce processing time and 

improve efficiency.  

Since the hue component carries information of the pure colour of a pixel, by 

setting maximum and minimum values of hue, the colours within the range can 

be “masked” and removed from the picture. Iandge et al. adopted the concept of 
comparing the green component of “mostly green pixels” and the rest of the image 

[23] – if the green component of a certain pixel is smaller than that of the average 

of the “mostly green pixels”, the RGB component of the pixel would be set to zero 
(i.e. removed) and the rest of the image could be further processed – conversion 

to binary image and edge extraction for example.  

A full-colour photograph of an apple leaf is shown in figure 5.8 (a), and an example 

of a maple leaf is shown in figure 5.8 (b). These RGB images are used as the 

original inputs for the component images, binary masks, and histograms in 
figures 5.9 and 5.10. For the apple leaf image in figure 5.9 (a), its equivalent in 

the HSI colour space, and the three HSI component images are shown in figures 

5.9 (b), (d), (g), and (j). The combined histograms of the hue, saturation, and 
intensity components are shown in figure 5.9 (c), with each of them shown 

individually in figures 5.9 (f), (i), and (l). The data in all the histograms are 
normalised to the range of [0, 1]. Figures 5.9 (e), (h) and (k) shows the binary hue, 

saturation and intensity masks, which are generated with the hue, saturation, 

and intensity component images. 

Similarly, the RGB image of the maple leaf in figure 5.10 (a) is transformed into 

an HSI image, shown in figure 5.10 (b). The hue, saturation, and intensity 
components are shown in figures 5.10 (d), (g), and (j). The histogram in figure 5.10 

(c) is the amalgamation of the histograms in figures 5.10 (f), (i), and (l). The binary 

masks in figures 5.10 (e), (h), and (k) are produced with the same method as the 
ones in figures 5.9 (e), (h), and (k). 
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(a) Original image used in figure 5.9 – 

a photograph of a Prunus padus leaf with a Lyonetia clerkella leaf mine 

 

 

(b) Original image used in figure 5.10 – 

a photograph of an A. pseudoplatanus leaf with tar spots 

 

Figure 5.8: Original RGB images used in the follow figures 
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(a) Original RGB image (b) Same image in HSI colour space 

 

 

 

 (c) Histogram of all 3 component images of HSI colour space 

 

Figure 5.9 (a) – (c): L. clerkella leaf mine – segmentation and 

histograms using HSI colour space (part 1) 
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(d) Hue component image (e) Hue mask 

  

 

(f) Histogram of the hue component image 

Threshold values for creating the hue mask: 80° and 160° 

 

Figure 5.9 (d) – (f): L. clerkella leaf mine – segmentation and 

histogram using HSI colour space (part 2) 
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(g) Saturation component image (h) Saturation mask 

  

 

(i) Histogram of the saturation component image 

Threshold value for creating the saturation mask: 0.5176 

 

Figure 5.9 (g) – (i): L. clerkella leaf mine – segmentation and 

histograms using HSI colour space (part 3) 
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(j) Intensity component image (k) Intensity mask 

  

 

(l) Histogram of the intensity component image 

Threshold value for creating the intensity mask: 0.6588 

 

Figure 5.9 (j) – (l): L. clerkella leaf mine – segmentation and 

histograms using HSI colour space (part 4) 
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(a) Original RGB image (b) Same image in HSI colour space 

 

  

 (c) Histogram of all 3 component images of HSI colour space 

 

Figure 5.10 (a) – (c): Tar spots caused by R. acerinum –  

segmentation and histograms using HSI colour space (part 1) 
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(d) Hue component image (e) Hue mask 

 

 

 (f) Histogram of the hue component image 

Threshold values for creating the hue mask: 80° and 160° 

 

Figure 5.10 (d) – (f): Tar spots caused by R. acerinum –  

segmentation and histograms using HSI colour space (part 2) 



5. Implementation 
 

 
 

116 

  

  

(g) Saturation component image (h) Saturation mask 

 

  

(i) Histogram of the saturation component image 

Threshold value for creating the saturation mask: 0.3176 

 

Figure 5.10 (h) – (i): Tar spots caused by R. acerinum –  

segmentation and histograms using HSI colour space (part 3) 
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(j) Intensity component image (k) Intensity mask 

 

 

 (l) Histogram of the intensity component image 

Threshold value for creating the intensity mask: 0.6549 

 

Figure 5.10 (j) – (l): Tar spots caused by R. acerinum –  

segmentation and histograms using HSI colour space (part 4) 
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The binary masks are generated by thresholding the hue, saturation, and 

intensity component images respectively. The hue binary mask restricts the hue 

value to between 80° to 160° for the colour green. The binary masks are generated 
by thresholding the saturation and intensity component images. The threshold 
values are generally automatically in MATLAB using Otsu’s method – any pixel 

with a value greater than the threshold was set to 1’ (white), and the rest is set 

to ‘0’ (black) [3, pp. 443 – 445].  

Figures 5.11 (a) and (b) show the products of the saturation masks with the hue 

component images of figures 5.9 and 5.10. While capable of differentiating 
between “object” and “leaf” area, the backgrounds on which the leaves are placed 

upon are mistakenly grouped into the “object” area. This is mainly due to the 

chosen image acquisition method of digital photography, and can likely be helped 
with a smooth, solid background with adequate and constant lighting. Further 

thresholding techniques and edge detection has to be implemented in order to 

separate the background (where the leaf was laid upon), and the leaf itself. 

  

(a) Product of figures 5.9 (e) and (g)  (b) Product of figures 5.10 (e) and (g) 

  

Figure 5.11: The products of the binary masks generated by  

thresholding the saturation component images in  

figures 5.9 and 5.10, and their hue component images  
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(a) The original RGB image (b) The intensity image 

  

  

(c) The binary mask (d) RGB image with  

“masked” green pixels 

 

Figure 5.12: Masking the green pixels 

 

Figure 5.12 shows an example of the usage of a saturation mask (threshold value: 
0.3647) to remove the green pixels of a scanned image of a C. ohridella leaf mine. 

Unlike the photographs used in figures 5.8 through 5.11, the image shown in 

figure 5.12 (a) was a scanned image and cropped using the steps described in 
section 5.2.1. 

The image in figure 5.12 (a) was transformed into HSI colour space, and the 
intensity component, shown in figure 5.12 (b) was used for further processing. 

The saturation mask in figure 5.12 (c) was generated using the same method as 

the ones in figures 5.9 (h) and 5.10 (h). By selecting pixels which have low values 
in their blue and red channels, and have high values in the green channel, the 



5. Implementation 
 

 
 

120 

“mostly green pixels” can be removed, as shown in figure 5.12 (d). As the scanned 

image has uniformed background and lighting elements compared to the 

photographs used in figures 5.8 through 5.11, and because the scanned image was 
cropped before it was processed, the use of a saturation mask to remove the 

“background” pixels is more effective compared to the ones shown in figures 5.11 
(a) and (b). 

5.2.3 Image segmentation based on thresholding 

It is worth mentioning here that the image segmentation techniques described in 

sections 3.1 through 3.3, as well as in this chapter, are inter-related. Therefore, 
the implementation of these techniques overlaps. For instance, the saturation 

and intensity masks discussed in section 5.2.2 were obtained using thresholding; 

and edge detection techniques were used to refine the binary masks, which will 
be further discussed in section 5.2.4. As mentioned previously, the HSI colour 

model has the advantage of separating colour and intensity information, making 

it ideal for greyscale image processing compared to the RGB colour space. The 
previous section described the processes of converting full-colour RGB images 

into HSI images, and the use of their monochrome component images; this section 
involves the transformation of greyscale images into their binary equivalent. 

Intensity thresholding using Otsu’s method can be applied in MATLAB for global 

image thresholding and multilevel thresholding. The latter segments an image 
according to the threshold values determined using Otsu’s method [230].  

As with other image segmentation techniques, intensity thresholding divides an 
image into two (or more) sections; for binary images, the two sections are: image 

foreground, indicating the “object area”; and image background. When 

investigating the possibility of identifying leaf mines or tar spots, “object area” 
refers to an area with a leaf mine or tar spot; whereas the background, or “leaf 

area” refers to an area of the leaf not affect by leaf mines. Using Otsu’s method, 

by comparing the intensity of the pixel and the predetermined threshold value, a 
certain pixel location would be assigned the value of ‘1’ (white) or ‘0’ (black) using 

an intermediate output of a single global threshold. In this instance, all the pixels 

within the “object area” would ideally be identified as image foreground, while all 
other pixels would be classed as image background. 
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Suppose an intensity histogram that corresponds to a resulting image from the 

previous subsection, the intensity values of the foreground and background pixels 

can be separated into two main groups, as discussed in section 3.2.1. For example, 
the histogram in figure 5.10 (i) has two main modes, which corresponds to light 

objects on a dark background. The global threshold value is affected by the 
following factors: (1) the distance between the peaks; (2) the amount of noise 

present in the image; (3) relative sizes of background and objects; and (4) the 

uniformity of illumination and reflectance. If the intensity distributions of 
foreground and background pixels are adequately distinct, a single global 

threshold can be applied over the whole image. 

However, a constant threshold cannot be effectively applied over an entire image. 

An example of such scenario is the histogram in figure 5.8 (l). The three dominant 

modes of the histogram represent a more complex thresholding problem. The 
three classes, consisting of three intensity intervals, can be separated by dual 

thresholds. Figure 5.13 (b) shows the multilevel thresholding result of the 

intensity image in figure 5.13 (a) using two threshold levels. 

  

(a) Intensity image (b) Thresholding result 

  

Figure 5.13: Multilevel thresholding 
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Using this approach, it is possible to segment an image using an arbitrary 

number of thresholds. In theory, this would be an ideal way to improve the 

segmentation method for ambiguous areas; in practice, however, intensity 
thresholding becomes less reliable as number of threshold increases, and it 

becomes a pattern recognition problem [3, pp. 752 – 756].  

An original full-colour RGB image of a C. ohridella leaf mine is shown in figure 

5.14 (a), and figure 5.14 (b) depicts the thresholding result using dual thresholds, 
in an attempt to separate the pixels into three classes – leaf mine (shown in grey), 

the leaf itself (black), and the background (white). As seen in figure 5.14 (b), the 

background was successfully separated into a different group from the rest; 
however, some leaf pixels were erroneously classified as part of the leaf mine and 

vice versa. To reduce the average error incurred when separating pixels into 

different groups, the images are smoothed before thresholding; and to decrease 
to influence of background and object sizes, the shape of the histogram is 

improved by focusing on edges between objects and background; Laplacian 

operators are applied to extend the valley between the peaks on a histogram.  

  

(a) Original RGB image (b) Thresholding result 

  

Figure 5.14: Multilevel thresholding of a C. ohridella leaf mine  
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In addition to preprocessing techniques like image smoothing and the usage of 

edges, intensity thresholding can be improved with variable thresholding; for 

instance, image partitioning complements Otsu’s method by dividing the image 
into non-overlapping sub-images, and analysing the histogram of these sub-

images. An application of multivariable thresholding is in colour imaging, where 
the red, green and blue components form a composite RGB image. Each pixel of 

the RGB image can thus be characterised by three separate value 𝑟, 𝑔, 𝑏 , and be 

represented by the 3D vector 𝒛 = (𝑧D, 𝑧J, 𝑧±)�, with the RGB colours at a certain 

pixel being the components. To segment an image based on a parameter based on 

a specified colour range,  

𝑔 = 1
0			
𝑖𝑓	𝐷(𝒛, 𝐚) < T
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.1) 

where T is the threshold, 𝐷(𝒛, 𝐚) is the distance between an arbitrary colour point 

z, and the average colour within that specified colour range a.  

5.2.4 Edge-based segmentation 

In the previous section, it was noted that edge detection is often used in 

conjunction with thresholding. Unlike region-based approaches such as 
thresholding, edges partition an image based on sudden changes in intensity. The 

approaches of image segmentation were discussed in section 3.2. The combination 

of methods from both region-based and edge-based approaches improves 
segmentation performance. Image segmentation based on morphology is also 

discussed in this section. This approach combines merits of region-based and 

edge-based techniques.  

As mentioned in the previous section, some background pixels can be mistaken 

as “objects” and vice versa. These small “objects” could be dust or leaf lesion not 
related to the leaf mine or tar spot [196]. The falsely positive classified pixels are 

eliminated using morphological operations, as are objects on the border. An 

example is shown in figure 5.15. Objects connected with the border of the image 
are removed, as shown in figure 5.16. As a priori knowledge indicates that the 

leaf mine or tar spot of interest should be roughly in the centre of the image, 
therefore any objects connected to the border of the image can be removed [143].  
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The Sobel operator was chosen as a suitable edge operator for locating edge pixels 

following calibration and experiments. Pixels along the edge, E, has to satisfy the 

condition that any neighbourhood centred at E must contain at least a ‘1’ and a 
‘0’, which indicates a local change of intensity. The abrupt change of intensity 

often associates with some physical boundaries of various objects in binary 
images, hence this edge detection method is most suitable for images with sharp 

edges and little noise. 

 

  

(a) Binary image before removing 

a small object 

(b) Binary image after removing 

 a small object 

Figure 5.15: Removing a small object from a binary image 

 

 

 

Figure 5.16: A scanned image of a C. ohridella leaf mine 

The red line represents the edge of the leaf mine of interest. 

Note that the system excluded the mine at the bottom 

 of the image, due to its connection to the border of image 
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There are limitations to existing image segmentation methods: (1) the number of 

classes or regions is usually pre-defined, and (2) pre-processing techniques are 

incorporated to reduce or remove noise. Common edge detection methods are 
easily affected by the alteration in brightness of neighbouring objects, as edge 

detection cannot be achieved independently of direction. When the pixels of a 
binary image are divided into “object” (foreground) and background pixels, errors 

are inevitable. For example, stems or more prominent leaf veins can sometimes 

“blend into” lesions areas if the variance of colour is not significant, thus a pixel 
which should belong to the background could be mistaken as foreground and vice 

versa. Additionally, it is often necessary to connect all the edge pixels if continuity 

is affected by noise.  

Morphological operations are then used to enhance traditional edge detection 

methods – with the use of structuring elements, erosion removes pixels from the 
edge, whilst dilation adds pixels to the edge of the object. A structuring element 

is added to the input image for both erosion and dilation, and can be in the shapes 

of diamond, disk, line, octagon, rectangle, square, cube, cuboid, sphere or 
arbitrary [231]. Figure 5.17 shows the flat diamond structure element chosen 

after experimentation. For images with multiple objects or ones with many 

ambiguous areas, user interaction can be used to simplify this process. This 
method is suitable for analysing leaves with multiple leaf mines or tar spots.  

Figure 5.18 shows an example of how tar spots caused by R. acerinum are 
detected, in various stages. Figure 5.14 (a) shows the original RGB image and 

figure 5.18 (b) shows the hue component of full-colour in HSI colour space. Figure 
5.18 (c) shows the binary image after intensity thresholding, but before the 

“object” areas were filled; and the result of edge detection using the Sobel operator 

is shown in figure 5.18 (d). 

 

Figure 5.17: A flat diamond structure element object,  

containing 5 neighbours, the distance from the structuring 

 element origin to the points of the diamond is 1 
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(a) Original RGB image (b) Intensity image 

  

  

(c) Binary image, before the user 

 selects the areas to fill  

(d) Binary image, showing  

the segmentation results 

  

Figure 5.18: The process of identifying 5 spots caused by R. acerinum  

The RGB image in (a) is a scanned image of a sycamore leaf. 
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5.3 Feature extraction 

One of the objectives of this project is to extract features from images to facilitate 

classification in later stages. This is a systematic way to compare the samples, 

and to provide a quantitative approach for the classification stage and result 
analysis. Kang et al. [48] suggested that feature extraction on images allows 

suitable details to be identified and hence plays an essential part in automating 

species identification. Mayo and Watson [44] stated feature extraction is the most 
important factor for any image identification system involving machine learning; 

and O’Neill [2] indicated that feature extraction is particularly beneficial for 

analysing two-dimensional images. By extracting morphological features of 
corresponding domain and training the system, many automated systems went 

on being developed and succeed in identifying various animals and plant species.  

Features can be categorised as global or local – global features consider the entire 

image; whereas local features focus on smaller portions on the image [22]. Taking 

both global and local features into account allows the images to be considered as 
a whole, while details in smaller sections were not excluded. Global features 

include: eigenspace matching [232], colour histogram [233] and receptive field 

histograms [234]. Different from global features, Wen et al. [22] characterised 
local features as ones that base on smaller sections of the image, such as edge, 

corner, entropy, curvature, region and ridge. There is no definite solution to 
whether global or local features are more desirable, as this depends on the aims 

and approach of the research. Local features are highly compatible with images 

taken in non-controlled environment, as suggested by Larios et al. [49]; and this 
argument was supported by Wen et al. [22]. Due to local features being less prone 

to occlusion, hence the effect of scaling and rotation could be diminished.  Using 

exclusively local features, Wen et al. achieved an average success classification 
rate of 70% over six methods [22]. Mayo and Watson used a combined approach 

by incorporating local and global features [44], as did Flandin [47]. 

The geometric features obtained through the image processing section of the 

proposed system include: (1) area of leaf mine or tar spot (the total number of 

foreground pixels); (2) perimeter of leaf mine or tar spot (using edge detection 
methods); (3) centroid (the centre of the object in question); (4) length of major 
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and minor axis (the axes of the ellipse with the same central moments as the 

object); (5) orientation (the angle between the x-axis and major axis of the ellipse, 

for computing the distance among leaf mines). Perimeter and area, in particular, 
are the foundation in the analysis of growth rate.   

There are two main methods to calculate the area of an object using MATLAB – 
based on the perimeter of an object; and a weighted estimation based on the shape 

of the object. The perimeter of an object is the total distance between each 
adjoining pair of pixels surrounding the border of the object region. The area of 

the object, therefore is the total number of pixels within the border [235]. The 

green pixels in figure 5.19 (a) made up the area of the region; while the green 
pixels in figure 5.19 (b) indicates the border, which must be continuous.  

  

  

(a) (b) 

Figure 5.19: Calculating area and perimeter in MATLAB [232] 

 

 

(a) (b) 

Figure 5.20: (a) 4-connected connectivity and 

(b) 8-connected connectivity [234] 
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With the second method, the area of a particular object is estimated by consider 

any non-zero numeric input as ‘1’ [236]. It uses a 2	×	2 neighbourhood to 

determine the area of each pixel. Using this approach, the perimeter of an object 
based on connectivity between pixels, as demonstrated in figure 5.20. The 

connectivity used in two-dimensional images is either 4 or 8; with 4-connected 

connectivity, pixels are connected if their edges touch, and two or more adjoining 
pixels are considered part of the same object whether connected horizontally or 

vertically; whilst with 8-connected connectivity, pixels are connected if their 

edges or corners touch, and two or more adjoining pixels are counted as part of 
the same object if they are connected horizontally, vertically or diagonally [237]. 

The two methods may return slightly different results, as the first method returns 

the actual number of pixels of the object, while the latter provides an estimation 
of the total area of all objects in the image. 

5.4 Summary 

This chapter discussed the processes that were implemented in the proposed 
approach for detecting leaf mines and fungal spots from images. This includes the 

methodology in data collection; how the digital images were acquired; 

preprocessing techniques to prepare the images; various image segmentation 
methods, including the use of colour models, thresholding and edge detection; and 

how features could be extracted from the segmented images. Figure 5.21 shows a 

flow diagram of the image processing steps discussed in this chapter. 

Section 5.1 provided an overview of data collection methods, and a brief 

comparison between image acquisition using digital cameras and flatbed 
scanners. In general, flatbed scanners are well-adapted for providing consistency 

in background and lighting. The use of digital photography, meanwhile, is 

suitable for its usability in collecting samples in the natural environment. The 
preprocessing steps and various image segmentation methodologies were 

included in section 5.2. The morphological features extracted using the steps 

described in section 5.3, can then be used as parameters to possibly classifying 
leaf mines based the growth of infestation. This will be further discussed in the 

next chapter.   
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Figure 5.21: Flow diagram of the image processing section of the system 
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Chapter 6 

Data analysis 

The previous chapter described the implementation of digital image processing 

techniques in the proposed approach for detecting leaf mines and tar spots from 
digital images. This chapter presents the experimental results of the processes 

discussed in chapter 5, including data collection, image segmentation, edge 

detection, and feature extraction. By repeating the image processing steps, it is 
possible to measure the daily area of a certain leaf mine over several days. This 

chapter also investigates the possibility to estimate the growth of C. ohridella leaf 

mines, and the use of morphological features as parameters in a leaf mine 
classification system. 

Continuing from the last chapter, "object area" refers to the pixels representing 
the leaf mines or tar spots, and the "leaf area" indicates the pixels representing 

the leaves. All the samples of leaves in this chapter were digitised using the 

acquisition methods discussed in section 5.1; and that the preprocessing and 
segmentation steps described in section 5.2 have taken place. 

6.1 Segmentation results 

Figures 6.1 through 6.4 reiterate the segmentation results for three species of leaf 
mines – C. ohridella, L. clerkella, and P. ilicis; as well as the fungal R. acerinum. 

As mentioned in section 1.3, C. ohridella was originally chosen as a primary focus, 

with L. clerkella, and P. ilicis being introduced at a later stage to introduce 
variation and to avoid overfitting the approach for a single species of leaf mines. 



6. Data analysis 
 

 
 

132 

Likewise, samples of R. acerinum were collected to explore the plausibility of 

adapting the current method to detect damaged caused by a plant disease. The 

leaf mines or tar spots in figures 6.1 to 6.4 are indicated by the red lines. 

Figures 6.1 (a) and (b) reiterate the segmentation results of C. ohridella leaf 

mines on horse chestnut leaves. Figure 6.1 (a) shows the result of the detection of 
a single leaf mine. Figure 6.1 (b) shows the edges of multiple leaf mines, which 

involved an extra step that required user interaction, as mentioned in section 
5.2.4. The user input acted as a confirmation as to where the leaf mines might be 

located.  

Figure 6.2 (a) and (b) likewise display two examples of the edge detection results 

of R. acerinum on maple leaves. Figure 6.2 (a) shows the outcome with a single 

tar spot, and figure 6.2 (b) shows the result with two tar spots. For all the samples 
in figures 6.1 and 6.2, a flatbed scanner was used as the image acquisition 

method. 

The segmentation of L. clerkella and P. ilicis leaf mines proved to be more 

complicated due to the shape of the leaf mine or leaf, and issues caused by the 

image acquisition method. Unlike the samples used in figures 6.1 and 6.2, the 
original images for figures 6.3 and 6.4 were digital photographs. 

Figure 6.3 shows the segmentation result of three L. clerkella leaf mines on an 
apple leaf. The current samples of apple leaves were photographed outdoor under 

natural lighting, with a non-uniformed background. Apple leaf mines present an 

additional challenge for segmentation due to the shape (gallery mines instead of 
blotches mines), and the insufficiently distinct in intensity between the leaf mines 

and the leaf.  

Figure 6.4 displays the edge detection result of a P. ilicis leaf mine on a holly leaf. 

The colours within a holly leaf mine can differ depending on the developmental 
stage, which complicates the segmentation process. Additionally, holly leaves are 

not suitable for scanning due to their three-dimensional shape. However, they are 

also not suited for photographing due to their glossy appearance, which reflect 
light. These reasons lead to inaccuracy of the current edge detection method. 
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(a) (b) 

 

Figure 6.1: Segmentation results of C. ohridella leaf mines 

 

 

  

(a) (b) 

 

Figure 6.2: Segmentation results of R. acerinum tar spots 

 

In all figures the red lines indicate the edges of the leaf mines or tar spots. 
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Figure 6.3: Segmentation results of L. clerkella  leaf mines 

 

 

 

Figure 6.4: Segmentation results of a P. ilicis leaf mine 

 

In all figures the red lines indicate the edges of the leaf mines or tar spots. 
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6.2 Daily growth of C. ohridella leaf mines 

One of the objectives of this project is to extract features from digital images of 

leaves, and to explore the use of these features as parameters for an automated 

classifier for leaf mines. Feature extraction is a systematic way to compare the 
samples and to provide a quantitative approach for the classification stage.  

Specifically, for a system aimed at detecting leaf mines from digital images, 
morphological features are used as examples to explore some of the tools and 

methodologies in this section. Although additional features were briefly 

mentioned in section 5.3, only the perimeter and area are further discussed in 
this section. The chosen method determines the perimeter based on the continuity 

of pixels surrounding an object. From this, the area of the same object is the total 

number of pixels within that border. 

By repeating the processes described in chapter 5 daily over a number of days, it 

is possible to find out the area of a leaf mine on a succession of days. As mentioned 
in section 5.1, samples of horse chestnut leaves were kept in airtight plastic 

containers at room temperature. The method for image acquisition for these 

samples was scanning because of the consistent background and lighting. The 
leaves were put through a scanner every day to observe how much the leaf mines 

had changed overnight. The increase in area of a leaf mine can be presumed to be 
the ongoing damage caused by a larva. When the area of a leaf mine remains 

approximately constant, it could be due to one of the following reasons: (1) the 

larva is dead; or (2) it is in one of the non-feeding stages; or (3) it has reached 
maturity and left the leaf as an adult moth. 

Figure 6.5 shows the daily growth of a C. ohridella leaf mine (leaf mine #1 in the 
sample set). Noted that the leaf mine for day 3 appears to be smaller than the one 

on the previous day, but the area had in fact increased by 4.5 pixels. This is due 

to the manual cropping of the scanned image. However, this does not affect the 
area of the object as the resolution setting of the flatbed scanner is the same for 

all 8 days. As the area of the leaf mine grew by 0.0126% from day 2 to 3, this was 

possibly due to the larva being in a non-feeding stage. It is also noted that the 
edge detection on day 8 was slightly affected by the uneven colour of the mine. 
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Figure 6.6 shows another sample of C. ohridella leaf mine ((leaf mine #2). The 

area of leaf mine changes little from day 2 to day 4, supported by the evidence 

where the damaged area continued to grow from day 4 onwards; while from day 
7 to day 8 it could be the case where the larva had grown into an adult moth.  

    

    

Day 1 Day 2 Day 3 Day 4 

    

Day 5 Day 6 Day 7 Day 8 

    

(a) Daily development of a leaf C. ohridella leaf mine, 

with edges drawn in red 

 

 

(b) A graph representing the growth in area of the same  

leaf mine along with and dashed exponential trend line 

 

Figure 6.5: An example of a C. ohridella leaf mine  
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Day 1 Day 2 Day 3 Day 4 

    

Day 5 Day 6 Day 7 Day 8 

    

(a) Daily development of a leaf C. ohridella leaf mine, 

with edges drawn in red 

 

 

(b) A graph representing the growth in area of the same  

leaf mine 

 

Figure 6.6: An example of a C. ohridella leaf mine 

The estimate area of the leaf mine on day 8 was hindered by  

the image segmentation method used and could possibly be  

improved by procedures described in subsection 6.3.3. 

 



6. Data analysis 
 

 
 

138 

 
Date Area (pixels) Growth rate (%) 

   

06/06/14 (Day 1) 202.25 n/a 

07/06/14 (Day 2) 284.75 40.79% 

08/06/14 (Day 3) 376.25 32.13% 

09/06/14 (Day 4) 404.50 7.51% 

10/06/14 (Day 5) 808.50 99.88% 

11/06/14 (Day 6) 1275.20 57.72% 

12/06/14 (Day 7) 2119.30 66.19% 

13/06/14 (Day 8) 2120.80 0.07% 
 

 

Table 6.1: The area of the C. ohridella leaf mine #1 shown in figure 6.5 (a) 

 

Date Area (pixels) Growth rate (%) 

   

06/06/14 (Day 1) 272.00 n/a 

07/06/14 (Day 2) 356.50 31.07% 

08/06/14 (Day 3) 361.00 1.26% 

09/06/14 (Day 4) 491.00 36.01% 

10/06/14 (Day 5) 1045.00 112.83% 

11/06/14 (Day 6) 1506.90 44.20% 

12/06/14 (Day 7) 2161.20 43.42% 

13/06/14 (Day 8) 2631.00 21.71% 
 

 

Table 6.2: The area of the C. ohridella leaf mine #2 shown in figure 6.6 (a) 

 

 

Another example (leaf mine #3) is shown in figure 6.7 – in this instance, the area 

of the leaf mine had barely increased beyond day 4. As the mine appeared to be 

quite developed, it is possible to assume the larva had fully developed by that 
point and left the leaf as a result. The examples in figures 6.8 (leaf mine #4) and 

6.9 (leaf mine #5) show similar results. The area of the leaf mines on day 5 had 

slightly decreased from day 4, but this is more likely to be an error due to the 
image acquisition or segmentation process. More examples of C. ohridella leaf 

mines are shown in figures 6.10 through 6.18 (leaf mines #6 – 14). 
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Day 1 Day 2 Day 3 

   

Day 4 Day 5 Day 6 

 (a) Leaf mine example #3 

 

 

 

 

 (b) Area of horse chestnut leaf mine #3 on 6 consecutive days 

 

Figure 6.7: An example of a C. ohridella leaf mine 
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Date Area (pixels) Growth rate (%) 

   

14/06/14 (Day 1) 494.25 n/a 

15/06/14 (Day 2) 772.00 56.20% 

16/06/14 (Day 3) 1079.50 39.83% 

17/06/14 (Day 4) 1484.80 37.55% 

18/06/14 (Day 5) 1491.80 0.47% 

19/06/14 (Day 6) 1493.80 0.13% 
 

 

Table 6.3: Area of horse chestnut leaf mine #3 on 6 consecutive days 

 

   

Day 1 Day 2 Day 3 

   

Day 4 Day 5 Day 6 

Figure 6.8: Leaf mine example #4 

 

Date Area (pixels) Growth rate (%) 

   

14/06/14 (Day 1) 415.63 n/a 

15/06/14 (Day 2) 575.13 38.38% 

16/06/14 (Day 3) 858.50 49.27% 

17/06/14 (Day 4) 1227.80 43.02% 

18/06/14 (Day 5) 1223.80 -0.33% 

19/06/14 (Day 6) 1269.80 3.76% 
 

 

Table 6.4: Area of horse chestnut leaf mine #5 on 6 consecutive days 
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Day 1 Day 2 Day 3 

  

Day 5 Day 6 

Figure 6.9: Leaf mine example #5 

 

 

 

Date Area (pixels) Growth rate (%) 

   

14/06/14 (Day 1) 428.88 n/a 

15/06/14 (Day 2) 693.75 61.76% 

16/06/14 (Day 3) 1041.90 50.18% 

17/06/14 (Day 4) 1018.50 -2.24% 

18/06/14 (Day 5) 1045.80 2.67% 
 

 

Table 6.5: Area of horse chestnut leaf mine #6 on 5 consecutive days 
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Day 1 Day 2 Day 3 Day 4 

 

   

Day 5 Day 6 Day 7 Day 8 

Figure 6.10: Leaf mine example #6 

 

 

 

Date Area (pixels) Growth rate (%) 

   

06/06/14 (Day 1) 243.88 n/a 

07/06/14 (Day 2) 316.88 40.79% 

08/06/14 (Day 3) 404.88 32.13% 

09/06/14 (Day 4) 428.50 7.51% 

10/06/14 (Day 5) 586.13 99.88% 

11/06/14 (Day 6) 921.50 57.72% 

12/06/14 (Day 7) 1257.50 66.19% 

13/06/14 (Day 8) 2066.90 0.07% 
 

 

Table 6.6: Area of horse chestnut leaf mine #4 on 8 consecutive days 
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Day 1 Day 2 Day 3 

   

Day 4 Day 5 Day 6 

Figure 6.11: Leaf mine example #7 

 

   

Day 1 Day 2 Day 3 

Figure 6.12: Leaf mine example #8 

 

   

Day 1 Day 2 Day 3 

   

Day 4 Day 5 Day 6 

Figure 6.13: Leaf mine example #9 
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Day 1 Day 2 Day 3 Day 4 

Figure 6.14: Leaf mine example #10 

 

    

Day 1 Day 2 Day 3 Day 4 

   

 

Day 5 Day 6 Day 7 Day 8 

Figure 6.15: Leaf mine example #11 

 

    

Day 1 Day 2 Day 3 Day 4 

Figure 6.16: Leaf mine example #12 
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Day 1 Day 2 Day 3 

   

Day 4 Day 5 Day 6 

Figure 6.17: Leaf mine example #13 

 

   

Day 1 Day 2 Day 3 

  

Day 4 Day 5 

Figure 6.18: Leaf mine example #14 
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Overall, the proposed approach detects leaf mines of C. ohridella successfully 

from digital images. Further examples are included in appendix B. The accuracy 

of segmentation depends on the distribution of intensity levels in the images, 
which in turn relies on the image acquisition methods.  

6.3 Limitations 

This project proposed developed a method of detecting leaf mines using digital 
images of leaves from affected host plants. The results show that it is possible to 

locate leaf mines and fungal spots on scanned images and digital photographs, 

using a variety of digital image processing techniques. Similarly, it is a viable 
system to measure a few necessary morphological characteristics of leaf mines 

and tar spots.  

There are several factors that affect the process of the identification of leaf mines. 

For instance: (1) larvae tend to be inconspicuous during the early stages as they 

develop within leaf tissues; (2) the complicated task to identify the developmental 
stage of leaf mines at a particular time, or when the larvae evacuate the mines; 

(3) few easily recognisable morphological features in the mines; and (4) the lack 

of association between adult leaf-mining insects and their host plants until 
oviposition [30]. 

6.3.1    Challenges in data collection 

As the samples were collected from a natural environment, the precise 
developmental stage of an existing leaf mine at the time of collection is unknown. 

The exact stage of larvae growth could not be judged by its size or shape alone, 

nor when the larvae had vacated the mines. These factors are largely influenced 
by factors such as environmental conditions and behaviour of the adult moths.  

For the C. ohridella samples, storage conditions between collection and image 
acquisition also influence accuracy. The leaves were kept inside plastic boxes 

indoors overnight, at room temperate, hence the development of larvae could 

potentially be affected, as well as the conditions of the leaves themselves. It was 
noted that the condition of the samples deteriorates over time with this storage 
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method, with the leaves drying out, curling up or becoming too brittle to handle 

after approximately a week. Moreover, the daily handling of the samples also 

contributes to some damage of the leaves. In general, the usable timeframe for 
most leaves collection with the current method is around 6 to 10 days. Whether 

the samples should be protected from light, kept at a different temperature, or 
preserved in other ways, can be further investigated in the future. These 

considerations add to the challenge in their identification.  

As mentioned in section 2.2.1, the length of the larval stage for C. ohridella leaf 

miners lasts around 20 to 45 days, depending on the season and climate [76] [77] 

[78]. As the current collection and storage methods limit the use of a particular 
sample to 6 to 10 days, the data obtained cannot accurately represent the full 

larval stage of C. ohridella leaf mines. Additionally, it is impractical to determine 

the exact moment when the eggs were laid with the ovipositors. For experimental 
purposes, the date of sample collection was considered “day 1” throughout the 

experimental stage. Nevertheless, it was not possible to determine whether “day 

1” could be during the final instar, the day before the larva emerges from the 
mines, or even after the larva has vacated the mine.  

Moreover, the data collection process is generally restricted to the spring and 
summer months due to phenology. Different generations of leaf mines may 

behave differently; for instance, the growth of later generations C. ohridella larva 

may be restricted by existing leaf mines, which could potentially lead to different 
feeding patterns. Girardoz et al. argued that the rate of infestation of C. ohridella 

does not increase with successive generations in the same summer [73]. 

6.3.2    Image acquisition 

Some of the differences between using scanners and digital photography have 

been briefly discussed in section 5.1, such as lighting, image quality and file sizes. 

For digital scanners, it is relatively easy to control the background and keep the 
illumination source constant; however, there are several issues with this method. 

The maximum size of the scanned object depends on the glass window of the 

particular scanner. When focusing on a limited area within the leaf (i.e. a leaf 
mine or tar spot), this does not generally cause any issue as its size depends on 
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the dots per inch (dpi) setting, the number of pixels, and not the size of the whole 

leaf. Nonetheless, if the aim is to estimate the amount of damage on a leaf, the 

entire leaf must fit within the scanners’ range. 

As for image acquisition using digital photography, the image quality is 

determined by the equipment, source of lighting, time of day, background, the 
distance between the camera and objects, et cetera. For the identification of leaf 

mines and fungi, samples can either be photographed in their natural 
environment or collected from the plants for photographing in a more controlled 

environment. The latter conventionally involves placing a sample against a plain 

background, and a camera is set up at a fixed distance, perpendicular to the object 
in question, with a constant and controllable source of illumination. Ideally, the 

distance between the object and camera lens is uniform, as is the focus and 

lighting. An alternative is to produce samples under a laboratory environment. 
Still, it is problematic logistically to prepare different species of leaf-mining insects 

in order to obtain an adequate sample size, alongside the host plants for each 

species. It would be feasible to monitor and control the storage condition in which 
the plants and insects. Nonetheless, the developmental habit of the larvae may 

behave differently in a laboratory setting compared to their natural environment. 

It would also be challenging to portray and mimic the unpredictability of nature. 

The file size of images is another issue. As mentioned in section 5.1.3, image 

resolution generally correlates proportionally with the storage space and 
transmission bandwidth required. Scanned images can have a resolution from 72 

dpi, up to a range of thousands. Photos that are taken with smartphone cameras 
are likely to be around 8 to 12 megapixels, while digital single-lens reflex cameras 

create pictures can be up to 60 megapixels. The higher number in dpi or 

megapixels, the larger the file size and the longer it would take to be processed. 
It is essential to find a compromise between image quality and processing time. 

6.3.3   Errors in segmentation 

When the pixels of a binary image are divided into “object” area (image 

foreground pixels) and background pixels, it is inevitable there would be errors. 
For example, some stems or more prominent veins of the leaf can sometimes 
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“blended into” lesions areas if the variance of colour is not significant. Small 

objects are required to be eliminated as a form of noise reduction to improve 

accuracy, as are objects on the border.  

Some of the limitations of the current image segmentation methods were briefly 

discussed in sections 5.2.2 and 5.2.3. Most common edge detectors are 
independent of directions, and are highly susceptible to any change in the 

intensity of neighbouring objects as a result. Additional preprocessing techniques 
are necessary to filter noise. By incorporating pattern recognition techniques 

such as clustering and genetic algorithms, it is possible to make improvements in 

the current image segmentation method, as suggested in sections 4.2.3 
(clustering) and 4.4.3 (GAs). 

An alternative method for image segmentation is convolutional neural networks, 
which were suggested in chapter 4. The use of CNNs was dismissed originally as 

it is not essential for the detection of leaf mines or tar spots from cropped images. 

However, further refinement to the segmentation techniques discussed in 
sections 5.2.2 to 5.2.4 is required to improve performance, as the effectiveness of 

thresholding deteriorates with the increase of number of classes. Compared to 

traditional image segmentation techniques, CNNs are suited to segment images 
into multiple classes. For instance, a leaf image can be sorted into “object”, “leaf”, 

and “background” pixels using CNNs. This could possibly counter the issues 

caused by photographing samples at the natural habitat of leaf-mining insects 
and their host plants. 

6.4 Growth rate analysis 

As reviewed in chapters 1 and 2, management strategies for leaf-mining insects 
require an efficient way of monitoring their growth. The success of traditional 

chemical management is ambiguous due to the leaf mines being protected by the 

epidermis of the leaf. This section proposes a way to monitor and predict the 
growth of leaf mines based on the daily increase in size in digital images. As 

mentioned in the previous subsection, the current data collection method limits 

the usable period of each sample to a shorter portion of the larval stage of C. 

ohridella. It is also logistically difficult to collect enough samples from a large 
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variety of horse chestnut trees. Potentially, a substantial database can be created 

by placing horse chestnut plants in a greenhouse or a laboratory environment for 

constant monitoring. It is not known, however, whether their behaviour would 
differ in captivity. Regardless, the possibility of monitoring and predict the 

growth of leaf-mining insects will be explored in this section, using C. ohridella 
as an example.  

Some of the computer-aided taxonomy systems discussed in section 2.1 have used 
machine learning for solving related problems, with clustering and neural 

networks being some of the more popular classifiers of choice. Artificial neural 

networks, due to their adaptability, have been chosen as a viable method to 
predict the growth rate of C. ohridella leaf mines. The background of neural 

networks was discussed in chapter 4. ANNs are capable of learning and 

identifying correlated patterns, even when the relationship between input data 
and target values is unknown. The possibility of using a multilayer perceptron 

(MLP) neural network to optimise the data will be addressed in this section. The 

system was trained using back-propagation algorithms. MATLAB was once again 
used as the platform for implementation. 

6.4.1 Machine learning in MATLAB 

The proposed approach was implemented with MATLAB (version R2018b). The 
Deep Learning Toolbox (known as the Neural Network Toolbox in previous 

versions), and the Statistics and Machines Learning Toolbox (the successor of the 

Statistics Toolbox) was used to develop the proposed system.  

The Deep Learning Toolbox provides a framework to suitable for designing and 

implementing neural networks with various algorithms, models and applications 
[222]. It is compatible with shallow neural networks, deep neural networks, 

convolutional neural networks (CNNs) and long-short term memory networks 

(LTSMs). MATLAB can be used for creating a wide range of neural networks, 
from simple two-layer feed-forward networks to pattern recognition networks, as 

well as fitting and training ANNs. The toolbox also includes a graphical user 

interface (GUI) for curve-fitting, pattern recognition, clustering and time series 
tools. An example neural network created in MATLAB is displayed in figure 6.19.  
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Figure 6.19: Sample neural network in MATLAB [238] 

 

 

Figure 6.20: Workflow for training regression models [240] 

 

 

The Statistics Toolbox (precursor to the Statistics and Machine Learning Toolbox) 
of MATLAB provides another set of tools, functions and applications to analyse 

or model data, using statistics and machine learning [223]. The toolbox 

incorporates supervised and unsupervised machine learning algorithms, from 
support vector machines (SVMs), decision trees, k-nearest and k-means, 

hierarchical clustering, Gaussian mixture models, and hidden Markov models.  

The Regression Learner Application, which was first introduced with MATLAB 

R2017b), is a tool from the Statistics Toolbox for training and validate regression 
models. It supports various regression models and algorithms, including linear 

regression models, regression trees, Gaussian process regression models, support 

vector machines, and an assortment of regression trees [239]. It is suitable for 
data exploration, feature selection, validation, and result evaluation. The flow 

chart in figure 6.20 describes the working for training regression models using 

the Regression Learner Application [240]. 

6.4.2 Curve fitting 

The performance of any machine learning algorithm was based on the relevance 

of input and output variables used in the training process. The purpose for the 
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proposed ANN in this instance being the monitoring for leaf mines in terms of 

area, the input and output variables were chosen based on these practical 

considerations: (1) inputs should be relevant to the development of C. ohridella 

larvae; (2) the sensitivity of the output variables to the input should have the 

same order of magnitude for all input variables, and should be as high as possible 
to improve training effectiveness [241].  

After the samples were digitalised and segmented using the processes described 
in chapter 5, 15 leaf mines from 7 leaves were selected randomly. The area 

extracted from the images of leaves was regarded as the inputs of the growth rate 

predictor for training and predicting purposes. The area of the leaf mines ranges 
from approximately 200 to over 1000 pixels. Due to the nature of some of the input 

variables and the sensitivity to input data distribution, transformations were 

made to some of the data. For example, instead of the dates of image acquisition, 
these were substituted with numbers, with 1 being the day on which the sample 

was collected.  

Since the area of a leaf mine corresponds to the amount of damage caused by a 

larva, one can conclude that it can only increase (indicating further consumption 

of leaf tissue by the larva), or remain constant (for the reasons addressed in 
section 6.1). Based on this assumption, the area of a leaf mine cannot shrink 

overnight, therefore on days where the area of a leaf mine seemed to have be 

shrunk overnight, this should be attributed to an error in the segmentation 
process, and treated as an erroneous data point. For instance, based on the 

example shown table 6.4, the area for day 5 can be considered a miscalculation. 

It is necessary to adjust these erroneous data points (values outside a healthy 

growth trend), and to substitute missing data. This can be approached in the 
following ways, assuming the damaged caused by the leaf mine cannot be 

reversed overnight: (1) substitute with the same data as the previous day; (2) use 

the same data as the next day; (3) calculate the mean value of the data from the 
days before and after; and (4) estimate the data based on growth behaviour. 

Methods (1) to (3) can easily be implemented, but (4) is potentially more accurate 

if it is possible to simulate the growth rate of C. ohridella leaf mines. Regression 
models can be used estimate the erroneous or missing data.  
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Figures 6.21 and 6.22 shows two example using generalised linear regression to 

help model the growth in area of leaf mines. The data sets used in figures 6.21 

and 6.22 were shown in tables 6.1 (leaf mine #1) and 6.2 (leaf mine #2) 
respectively. In both instances, the higher-polynomial curve fits are more 

satisfactory than using a linear fit. 

Figure 6.23 shows the area plots of the 14 leaf mines in section 6.2. As discussed 

in subsection 6.3.1, the current data collection method limit the samples’ usable 
timeframe to around 6 to 10 days, which cannot accurately represent the full 

larval stage of C. ohridella leaf mines. As a result, the current data is inadequate 

to determine whether it is possible to predict the damage caused by C. ohridella 
leaf mines. The life cycle of C. ohridella was described in further details in section 

2.2.1. However, the method discussed in this section can be used an as example 

for fitting curves to the ongoing damage caused by C. ohridella leaf mines based 
on area.  

 

Figure 6.21: Fitting data with generalised linear regression (leaf mine #1) 
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Figure 6.22: Fitting data with generalised linear regression (leaf mine #2) 

 

 

Figure 6.23: The growth of 14 horse chestnut leaf mines 
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6.4.3 Performance analysis 

The neural network in figure 6.24 was chosen as the MLP for mapping between 

a set of 116 area data to a set of targets (days 1 to 8). The two-layer feed-forward 

neural network has 10 hidden neurons and a single hidden layer. 70% of samples 
(82 samples) were presented to the NN for training, 15% (17 samples) were used 

for measuring network generalisation, and the remaining 15% (17 samples) were 

used for testing. The testing data has no effect on training; their purpose is to 
independently measure the performance of the network during and after 

training. Figure 6.25 shows the regression result. The error histogram in figure 

6.26 shows the differences between target values and predicted values after 
training the perceptron [242]. The regression plots and error histogram after 

retraining are shown in figures 6.27 and 6.28. Additional regression plots and 

error histograms after further retraining are included in appendix C. 

 
 

Figure 6.24: Two-layer feed-forward neural network 
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Figure 6.25: Regression plots  

 

 

Figure 6.26: Error histogram 
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Figure 6.27: Regression plots after retraining 

 

 

Figure 6.28: Error histogram after retraining 
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Unsurprisingly, based on the considerations highlighted earlier in this chapter, 

it is not possible to effectively predict the growth rate of C. ohridella larvae using 

a multilayer perceptron neural network. However, this experiment illustrates the 
overall features and requirements for an ANN aimed at predicting the increase 

in damage caused by C. ohridella leaf mines. For example, if a predictor was 
successfully capable of forecasting the growth of C. ohridella leaf mines, its 

prediction performance can be evaluated by these error functions: the coefficient 

of correlation, the mean square error, and the average absolute error [243]. The 
prediction result using ANNs can also be compared to those obtained with a 

standard statistical regression method such as generalised linear regression, as 

shown in section 6.4.2, or multiple linear regression (MLR).  

6.5 Summary  

This chapter shows that leaf mines of C. ohridella and tar spots of R. acerinum 

can be successfully detected from scanner samples of horse chestnut and maples 

leaves respectively. The detection system can serve as a semi-automated tool for 
extracting morphological features commonly used in research projects, such as 

area and perimeter. Although the main unit of measurement is in pixels, its 

relationship between another unit, for examples, millimetres was established in 
chapter 5. This could possibly make the measurement process less labour and 

time consuming, thus facilitating future projects. Chapter 6 also addressed some 
of the limitations of the proposed system for detecting leaf mines and fungal spots. 

Possible improvements to each stage of the process were discussed in this chapter, 

as were potential solutions to counter some of the limitations.  

Additionally, this chapter investigated the use of multilayer perceptron neural 

networks for monitoring and predicting the growth in damages caused by C. 

ohridella leaf mines. By measuring the area of the leaf mines every day, it is 

possible to calculate the amount of growth overnight. While the experiment 

described in this chapter, due to the limitations of samples, did not allow the 
development of a neural network that is able to successfully carry this task, the 

methodology used in its development can serve as a guide to the development of 

feature-based intelligent algorithms for a variety of tasks related to the 
monitoring and classification of leaf-mining insects. 
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Chapter 7 

Conclusion 

Computer-aided taxonomy, in particular automated classification systems, are in 

high demand due to the discovery of new species. Automated species 
identification has become more established in entomology and taxonomy in the 

past few decades, as well as in agricultural engineering to monitor crop growth 

and enhance quality control. This thesis described previous studies on automated 
species identification and the use of methods to classify them. Although there 

were a small number of automated classification systems for plant diseases, 

research into leaf-mining insects is limited. Leaf miners are highly invasive 
species which attack a wide range of crops and ornamental plants. The larvae of 

leaf-mining insects feed on their host plants, and gradually forming blotch or 

gallery mines on the surface of leaves. The amount of damage caused by leaf 
miners vary, depending on their species, as well as the environmental conditions 

and stages of development. The increase in human activities in recent years has 

led to the wide-spread of infestation, meaning an effective way to detect and 
monitor their behaviour is becoming necessary. 

This project began with developing a semi-automated system to identify the leaf 
mines of Cameraria ohridella (horse chestnut leaf miner) using digital image 

processing techniques. The detection approach was also tested on two additional 
species of leaf-mining insects, Lyonetia clerkella (apple leaf miners) and 

Phytomyza ilicis (holly leaf miner), which presented specific challenges due to 

their shape and other characteristics. The plant pathogen Rhytisma acerinum 

was also introduced as a variation.  
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As part of the investigation into detecting leaf mines, different methods were 
trialled and tested for: (1) locating a leaf mine on a digital image, (2) finding the 

edge of the mine, (3) calculating the area of the leaf mine in pixels, and (4) 

extracting global and local features. Different data collection methods were 
compared, and a system was designed with MATLAB to locate leaf mines and tar 

spots in photographs and scanned images. Digital image processing techniques 

such as the conversion between colour models, image segmentation, and 
morphological operations were incorporated. The segmentation results and 

features extracted can then be used as parameters to possibly classifying leaf 
mines based the growth of infestation. 

The increase in area of a leaf mine can be presumed to be the ongoing damaged 
caused by a larva. Therefore, the image segmentation results serve as an 

alternative way to measure the size of a leaf mines in terms of area and perimeter. 

By repeating the leaf mine detection process over several consecutive days, it is 
possible to observe the growth of the infestation and infer its growth rate, as well 

as provide information that aids the behavioural study of leaf-mining insects. 

This thesis then explored the use of linear regression models and multilayer feed-
forward neural networks to measure the growth of C. ohridella leaf mines. The 

area and growth data were then used to train a multilayer perceptron neural 

network, to investigate the possibility of classifying leaf mines based on the 
growth of infestation. Their growth rate over several days can potentially be used 

as a variable for the classification of different species of leaf miners.  

This thesis addressed some of the challenges and limitations encountered during 

the process and highlighted the merits and disadvantages of different image 

acquisition methods. The tools for detecting leaf mines from digital images and 
for monitoring their growth aid in the automated classification of leaf mines, and 

act as the fundamental components of image-based automated classification 
system for leaf mines. The image processing section also serves as a semi-

automated tool for extracting morphological features commonly used in research 

projects, such as area and perimeter. Moreover, the proposed approach uses only 
digital images, unlike the traditional method, which relies heavily on the 

expertise of taxonomists, or DNA barcoding, which requires the complex process 

of scraping evacuated leaf mines to obtain the DNA. Because of this, DNA 
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barcoding is a way more complex method that is suitable for collecting live data 
in a natural environment, unlike photographing samples in a natural 

environment without removing the leaves from the plants. 

7.1 Future work 

Further data collection is required to create a broader database, and more species 
of leaf-mining insects or plant diseases can be incorporated in the future. The 

proposed leaf mine detecting system can potentially be adapted to suit a wider 
variety of leaf-mining insects. This would benefit a wider audience, as well as 

prevent overfitting of the proposed method. Alternative storage solution of 

samples is to be considered, alongside refinement of current image acquisition 
method. The improvement would include professional setup for digital 

photography, completing with a technique for colour calibration.  

Additionally, if samples of C. ohridella leaf mines on secondary host plants were 

to become available, the current feature extraction methods can be extended to 

cover a broader range of features, to distinguish among the leaf mines on different 
host plants. Similarly, a classifier for C. ohridella leaf mines and the horse 

chestnut leaf blotch could be helpful for botanists or taxonomists, provided that 

samples of the fungal spot are accessible. 

Alternative methods for image segmentation can be explored, such as the use of 

clustering algorithms and convolutional neural network. Improvement in data 
collection and image acquisition methods are also required. In the future, the 

system could be extended as a smartphone application, where users can analyse 
images from their devices and upload pictures onto an online database. 
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Appendix A  

MATLAB code 

Reading images 

% clear workspace and close existing figures 
clear; 
close ALL; 
 
% read image 
imOriginal = imread('filename.jpg'); 
 
% obtain the dimension of input image 
[height, width, dim] = size(imOriginal); 
 
% define variables 
nrows = height; 
ncols = width; 

 

Colour transformation (pp. 47 – 54, 107 – 109) 

% RGB component images 
imRed = imOriginal(:,:,1); 
imGreen = imOriginal(:,:,2); 
imBlue = imOriginal(:,:,3); 
 
% RGB to HSI transformation 
imHSV = rgb2hsv(imOriginal); 
 
% HSI component images 
hue = imHSV(:,:,1); 
saturation = imHSV(:,:,2); 
intensity = imHSV(:,:,3); 
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HSI binary masks (pp. 110 – 112) 

% assign low and high thresholds for each component 
% restrict hue value to between 80o to 160o for green colours 
hueThresholdLow = (80/360); 
hueThresholdHigh = (160/360); 
 
saturationThresholdLow = graythresh(saturation); 
saturationThresholdHigh = 1.0; 
 
intensityThresholdLow = graythresh(intensity); 
intensityThresholdHigh = 1.0; 
 
hueMask = (hue >= hueThresholdLow) & (hue <= 
hueThresholdHigh); 
 
saturationMask = (saturation >= saturationThresholdLow) & 
(saturation <= saturationThresholdHigh); 
 
intensityMask = (intensity >= intensityThresholdLow) & 
(intensity <= intensityThresholdHigh); 
objectMask = uint8(hueMask & saturationMask & intensityMask); 

 

Intensity thresholding (pp. 112 – 125) 

% for N threshold values 
level = multithresh(intensity,N); 
valuesMax = [level max(intensity(:))]; 
[quant_max, index] = imquantize(intensity,level,valuesMax); 
valuesMin = [min(intensity(:)) level]; 
quant_min = valuesMin(index); 
 
% segment image into N+1 levels 
seg_I = imquantize(intensity,level); 
 
for c = 1:ncols 
    for r = 1:nrows 
        if ((intensity(r,c) > 0) && (intensity(r,c) <= 
level(:,2))) 
            B(r,c) = 1; 
        elseif (intensity(r,c) > level(:,2)) 
            B(r,c) = 0; 
        end 
    end 
end 
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 Edge detection & morphological image processing (pp. 125 – 128) 

% remove connected components/objects with >1000 pixels 
imBinary = bwareaopen(B,1000); 
 
% edge detection using the Sobel operator 
[~,threshold] = edge(imBinary,'sobel'); 
fudgeFactor = 0.5; 
imBWs = edge(imBinary,'sobel',threshold*fudgeFactor); 
 
% create flat strel [1 1 1] 
se90 = strel('line',3,90); 
% create flat strel [1;1;1] 
se0 = strel('line',3,0); 
% dilate using both structuring elements in sequence 
imBWsdil = imdilate(imBWs,[se90 se0]); 
 
% user interaction 
% define regions to fill by selecting points using the mouse  
imBWsdil = imfill(imBWsdil); 
 % fill holes 
imBWsdil = imfill(imBWsdil,'holes'); 
 
% remove any objects connected to the border of the image 
imBWnobord = imclearborder(imBWsdil,4); 
 
% create diamond strelseD = strel('diamond',1); 
% smooth object by eroding the image twice (with diamond 
shaped strel) 
imBWfinal = imerode(imBWnobord,seD); 
imBWfinal = imerode(imBWfinal,seD); 

 

Feature extraction (pp. 129 – 131) 

% method 1: calculate the perimeter of an object 
imBWoutline8 = bwperim(imBWfinal,8); 
 
% method 2: calculate the area of an object 
imStat.Area = regionprops(imBWfinal,’area’); 
% concatenate structure array into a single matrix 
imArea = cat(1,imStat.Area.Area); 
 
% calculate centroids of objects in the image 
imStat.Centroid = regionprops(imBWfinal,’centroid’); 
% concatenate structure array into a single matrix 
imCentroid = cat(1,imStat.Centroid.Centroid); 



Appendix A 
 

 
 

165 

 
% calculate orientation of objects in the image 
imStat.Orientation = regionprops(imBWfinal,’orientation’); 
% concatenate structure array into a single matrix 
imOrientation = cat(1,imStat.Orientation.Orientation); 
 
% find the number of objects 
mCircle = size(imCentroid,Y); 
 
for s = 1:mCircle 
   imCircle(s).area = imArea(s); 
   imCircle(s).centroid = imCentroid(s,:); 
   imCircle(s).orientation = imOrientation(s); 
 
   % calculate radius of circle using area information 
   imCircle(s).radius = sqrt(imCircle(s).area/pi); 
   imCircle(s).xunit = imCircle(s).radius * cos(th) + 
imCircle(s).centroid(:,1); 
   imCircle(s).yunit = imCircle(s).radius * sin(th) + 
imCircle(s).centroid(:,2); 
end 

 

Curve fitting (pp. 153 – 156) 

% for days 1 to 8, day 1 = day of sample collection 
% day = [1 2 3 4 5 6 7 8]'; 
% area = [area data obtained in the previous section]'; 
 
% linear fit 
linearCoef = polyfit(day,area,1); 
linearFit = polyval(linearCoef,day); 
plot(day,linearFit,'LineStyle','--','Color',[0 0.4470 
0.7410]) 
 
% polynomial fit 
% P = degree of the polynomial 
[cubicCoef,stats,ctr] = polyfit(day,area,P);   
cubicFit = polyval(cubicCoef,day,[],ctr); 
plot(day,cubicFit,'LineStyle','--','Color',[0.4660 0.6740 
0.1880]) 
 
% logical regression 
[logitCoef,dev] = glmfit(day,[area test],'binomial','logit'); 
logitFit = glmval(logitCoef,day,'logit'); 
plot(day,logitFit,'LineStyle','--','Color',[0.8500 0.3250 
0.0980]); 
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Appendix B 

Additional data of C. ohridella leaf mines 

The growth data of leaf mine examples #7 to #14 in section 6.2 and 8 additional 

leaf mines are presented in this appendix. 

Leaf mine #7 

Day Area (pixels) Growth rate (%) 

   

Day 1 327.75 n/a 

Day 2 392.63 19.79% 

Day 3 534.38 36.10% 

Day 4 1040.90 94.79% 

Day 5 1334.90 28.24% 

Day 6 1383.10 3.61% 
 

 

Table B1: Area of horse chestnut leaf mine #7 on 6 consecutive days 

 

Leaf mine #8 

Day Area (pixels) Growth rate (%) 

   

Day 1 705.25 n/a 

Day 2 1041.50 47.68% 

Day 3 1533.80 47.27% 
 

 

Table B2: Area of horse chestnut leaf mine #8 on 3 consecutive days 
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Leaf mine #9  

Day Area (pixels) Growth rate (%) 

   

Day 1 284.75 n/a 

Day 2 323.75 13.70% 

Day 3 461.75 42.63% 

Day 4 1008.10 118.32% 

Day 5 1227.80 21.79% 

Day 6 1218.60 -0.75% 
 

 

Table B3: Area of horse chestnut leaf mine #9 on 6 consecutive days 

 

Leaf mine #10  

Day Area (pixels) Growth rate (%) 

   

Day 1 217.50 n/a 

Day 2 289.00 32.87% 

Day 3 445.38 54.11% 

Day 4 460.13 0.31% 
 

 

Table B4: Area of horse chestnut leaf mine #10 on 4 consecutive days 

 

Leaf mine #11 

Day Area (pixels) Growth rate (%) 

   

Day 1 283.00 n/a 

Day 2 364.75 28.89% 

Day 3 475.50 30.36% 

Day 4 572.38 22.48% 

Day 5 702.88 20.69% 

Day 6 766.00 8.98% 

Day 7 1293.80 68.90% 

Day 8 2063.50 59.49% 
 

 

Table B5: Area of horse chestnut leaf mine #11 on 8 consecutive days 
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Leaf mine #12 

Day Area (pixels) Growth rate (%) 

   

Day 1 328.13 n/a 

Day 2 329.13 0.30% 

Day 3 323.88 -1.60% 

Day 4 334.88 3.40% 
 

 

Table B6: Area of horse chestnut leaf mine #10 on 4 consecutive days 

 

Leaf mines #13 and #14 

Day Area (pixels) Growth rate (%) 

   

Day 1 282.25 n/a 

Day 2 349.75 23.91% 

Day 3 484.25 38.46% 
 

 

Table B7: Area of horse chestnut leaf mine #13 on 3 consecutive days 

 

Day Area (pixels) Growth rate (%) 

   

Day 1 215.25 n/a 

Day 2 270.25 25.55% 

Day 3 305.00 12.86% 
 

 

Table B8: Area of horse chestnut leaf mine #14 on 3 consecutive days 

 

Day Area (pixels) Growth rate (%) 

   

Day 4 1709.60 116.61% 

Day 5 2100.00 22.92% 

Day 6 2880.00 36.91% 
 

 

Table B9: Total area of leaf mines #13 and #14 for the next 3 days 
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The data of 8 additional leaf mines (examples #15 to #22) over 5 consecutive days 
are given in tables B10 through B17. The 8 mines came from two leaves, with leaf 

mines #15 to #19 on one leaf, and leaf mines #20 to #22 on the other. Figure B1 

shows the area plots of leaf mines #15 to #22.  

 

 
 

Figure B1: The growth of 8 horse chestnut leaf mines 

 

Leaf mine #15  

Day Area (pixels) Growth rate (%) 

   

Day 1 1095.10 n/a 

Day 2 1305.30 19.19% 

Day 3 1682.10 28.87% 

Day 4 2014.40 19.76% 

Day 5 2551.20 26.65% 
 

 

Table B10: Area of horse chestnut leaf mine #15 on 5 consecutive days 
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Leaf mine #16 

Day Area (pixels) Growth rate (%) 

   

Day 1 153.30 n/a 

Day 2 169.75 10.73% 

Day 3 232.50 36.97% 

Day 4 303.25 30.43% 

Day 5 398.63 31.45% 
 

 

Table B11: Area of horse chestnut leaf mine #16 on 5 consecutive days 

 

Leaf mine #17 

Day Area (pixels) Growth rate (%) 

   

Day 1 309.25 n/a 

Day 2 330.00 9.62% 

Day 3 450.38 32.85% 

Day 4 577.75 28.28% 

Day 5 732.88 26.85% 
 

 

Table B12: Area of horse chestnut leaf mine #17 on 5 consecutive days 

 

Leaf mine #18  

Day Area (pixels) Growth rate (%) 

   

Day 1 447.38 n/a 

Day 2 587.50 31.32% 

Day 3 770.00 31.06% 

Day 4 860.88 11.80% 

Day 5 1032.90 19.98% 
 

 

Table B13: Area of horse chestnut leaf mine #18 on 5 consecutive days 
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Leaf mine #19 

Day Area (pixels) Growth rate (%) 

   

Day 1 173.38 n/a 

Day 2 223.00 28.62% 

Day 3 248.25 11.32% 

Day 4 293.75 18.33% 

Day 5 366.88 24.89% 
 

 

Table B14: Area of horse chestnut leaf mine #19 on 5 consecutive days 

 

Leaf mine #20 

Day Area (pixels) Growth rate (%) 

   

Day 1 334.38 n/a 

Day 2 358.38 7.18% 

Day 3 419.63 17.09% 

Day 4 377.63 -19.54% 

Day 5 612.00 81.27% 
 

 

Table B15: Area of horse chestnut leaf mine #20 on 5 consecutive days 

 

Leaf mine #21 

Day Area (pixels) Growth rate (%) 

   

Day 1 257.25 n/a 

Day 2 299.75 16.52% 

Day 3 397.13 32.49% 

Day 4 383.25 -3.49% 

Day 5 741.50 93.48% 
 

 

Table B16: Area of horse chestnut leaf mine #21 on 5 consecutive days 

 
 



Appendix B 
 

 
 

172 

Leaf mine #22 

Day Area (pixels) Growth rate (%) 

   

Day 1 767.63 n/a 

Day 2 821.13 6.97% 

Day 3 818.00 -0.38% 

Day 4 822.00 0.49% 

Day 5 856.88 4.24% 
 

 

Table B17: Area of horse chestnut leaf mine #22 on 5 consecutive days 
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Appendix C 

Regression plots and error histograms 

The two-layer feed-forward network for the input-output fitting problem is shown 
in figure C1. Additional regression plots and error histograms after retraining are 

included in figures C2 to C7. The input is a set of 1 × 116 matrix, representing 

static data: 116 samples of 1 element. The input data came from 20 leaf mines 

located on 10 leaves. The target is a set of 1 × 116 matrix, representing the day 

data (days 1 to 8). As mentioned previously in section 6.3.1, the date of sample 
collection was considered “day 1”, the following day after was considered “day 2”, 

and so on. The MATLAB codes are also included in this appendix. 

 

Figure C1: The two-layer feed-forward network 
 

Import spreadsheet data into the MATLAB workspace 

% clear workspace and close existing figures 
clear; 
close all; 
  
% import Excel spreadsheet data using readtable 
T = readtable(‘areatable.xlsx’,’Range’,’A1:B117’); 
T1 = T.Area; 
T2 = T.Day; 
 
% start neural network GUI 
nnstart; 
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Solving an Input-Output Fitting problem (pp, 158 – 161) 

% input-output fitting problem with a neural network 
% script generated by Neural Fitting app 
 
% assuming these variables are defined: 
% 
%   T1 - input data. 
%   T2 - target data. 
 
x = T1'; 
t = T2'; 
 
% choose training function 
% Levenberg-Marquardt backpropagation is chosen for training 
trainFcn = 'trainlm'; 
 
% other training functions: 
% ‘trainbr’ – for challenging problems 
% ‘trainscg’ – for low memory situations 
 
 
% create a fitting Network 
% number of hidden neurons = 10 
hiddenLayerSize = 10; 
net = fitnet(hiddenLayerSize,trainFcn); 
 
% setup division of data for training, validation, testing 
% the samples are divided randomly 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
 
% train the network 
[net,tr] = train(net,x,t); 
 
% test the network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
 
% view neural network 
view(net) 
 
% plots 
% 
% figure, plotperform(tr) 
% figure, plottrainstate(tr) 
% figure, ploterrhist(e) 
% figure, plotregression(t,y) 
% figure, plotfit(net,x,t) 
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Figure C2: Additional regression plots after retraining 
 

 

Figure C3: Additional error histogram after retraining 
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Figure C4: Additional regression plots after retraining 
 

 

Figure C5: Additional error histogram after retraining 
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Figure C6: Input-output fitting using a two-layer 

 feed-forward nerual network 

 

 

 

Figure C7: Input-output fitting using a two-layer 

 feed-forward nerual network (after retraining) 
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Appendix D 

Taxa of leaf miners, tar spots and host plants 

Cameraria ohridella (Deschka & Dimić, 1986) [70] 

Kingdom: Animalia 

Phylum: Arthopoda 

Class: Insecta 

Order: Lepidoptera 

Family: Gracillariidae 

Genus: Cameraria 

Species: Cameraria ohridella  
 

Lyonetia clerkella (Linné, 1758) [5] 

Kingdom: Animalia 

Phylum: Arthopoda 

Class: Insecta 

Order: Lepidoptera 

Family: Lyonetiidae 

Genus: Lyonetia 

Species: Lyonetia clerkella 
 

Phytomyza ilicis (Curtis, 1846) [117] 

Kingdom: Animalia 

Phylum: Arthopoda 

Class: Insecta 

Order: Diptera 

Family: Agromyzidae 

Genus: Phytomyza 

Species: Phytomyza ilicis 
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Rhytisma acerinum (Schweinitz, 1832) [244] 

Kingdom: Fungi 

Phylum: Ascomycota 

Class: Leotiomycetes 

Subclass Leotiomycetidae 

Order:  Rhytismatales 

Family: Rhytismataceae 

Genus: Rhytisma 

Species: Rhytisma  acerinum   
 

Aesculus hippocastanum (Linné, 1758) [5] 

Kingdom: Plantae 

Clade: Angiosperms 

Clade: Eudicots 

Clade: Rosids 

Order: Sapindales 

Family: Sapindaceae 

Genus: Aesculus 

Species: Aesculus hippocastanum  
 

Malus pumila (Miller, 1768) [245] 

Kingdom: Plantae 

Clade: Angiosperms 

Clade: Eudicots 

Clade: Rosids 

Order:  Rosales 

Family: Rosaceae 

Genus: Malus 

Species: Malus  pumila  
 

Ilex aquifolium (Linné, 1758) [5] 

Kingdom: Plantae 

Clade: Angiosperms 

Clade: Eudicots 

Clade: Asterids 

Order:  Aquifoliales  
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Family: Aquifoliaceae 

Genus: Ilex 

Species: Ilex aquifolium  

 

Acer (Linné, 1758) [5] 

Kingdom: Plantae 

Clade: Angiosperms 

Clade: Eudicots 

Clade: Rosids 

Order:  Sapindales  

Family: Sapindaceae 

Subfamily: Hippocastanoideae 

Genus: Acer  
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