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Summary

Chatter or unstable relative vibration between the cutting tool and the workpiece is a
serious problem in the machining industry. It harmfully affects virtually all chip formation
processes, such as turning, milling, drilling, boring and grinding. Among other negative
consequences, these vibrations are responsible for deteriorating the surface quality and
dimensional accuracy of the final product, reducing the lifetime of the cutting tool, and
generating unpleasant noise. They are self-excited oscillations, which means that the
dynamic instability of the machining process originates and develops from within itself.
Avoiding chatter was tightly connected to severe limitations on productivity for a very
long time, and in fact, this approach remains the regular practice of several companies to
this day. Much research has been done in order to mitigate this issue by creating models
capable of predicting the boundaries between stable and unstable cutting processes. One
of the primary aims of such work is to avoid chatter without reducing productivity beyond
what is necessary.

This thesis focuses on the dynamic stability of one chip formation process in particu-
lar, namely surface grinding, and investigates the role of the specific energy in chatter
development. The specific energy is a fundamental quantity in grinding that defines a
relationship between the material removal rate and the corresponding power consump-
tion. The main novelty of this research lies in the proposal of a new mechanism by which
instability can occur. The literature is clear that wheel-related chatter is a consequence of
uneven wear around the circumference of the grinding wheel, which is almost exclusively
modelled as uneven material loss resulting in a non-circular wheel surface. While this
approach is certainly true to reality, wheel wear or grit dullness is reflected not only in a
reduced wheel radius but also in an increased specific energy. In other words, based on
the definition of the specific energy, a dull grain corresponds to a higher specific energy
than a sharp one. This research aims to explore the effect of a wear-induced variation in
specific energy on the dynamic stability of surface grinding.

The new chatter theory developed in this thesis is capable of capturing wheel-related
instability as a consequence of an uneven specific energy distribution around the circum-
ference of the grinding wheel. Stability boundaries and chatter frequencies are predicted
by the model and validated by experiments. Considering the relative simplicity of the
proposed theory, it provides remarkably accurate results. The main finding of this work
is a chatter-free zone corresponding to high productivity with virtually no coverage in
the literature, yet very promising potential in practice.
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Symbol Description
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Fj,n normal component of the cutting force acting on grit j
Fj,t tangential component of the cutting force acting on grit j
Fj,x x-component of the cutting force acting on grit j
fn natural frequency of the grinding wheel in Hz
Fn normal component of the total grinding force
Fn,c cutting component of the normal grinding force
Fn,ch chip formation component of the normal grinding force
Fn,pl ploughing component of the normal grinding force
Fn,sl sliding component of the normal grinding force
Ft tangential component of the total grinding force
Ft,c cutting component of the tangential grinding force
Ft,ch chip formation component of the tangential grinding force
Ft,pl ploughing component of the tangential grinding force
Ft,sl sliding component of the tangential grinding force
Fx x-component of the total grinding force
Fx,a Fx corresponding to the arithmetic mean of u in the grinding zone
Fx,d dynamic part of Fx
Fx,i Fx corresponding to one of the two averaging methods (i = a, w)
Fx,s static part of Fx
Fx,w Fx corresponding to the weighted mean of u in the grinding zone
G structural dynamics of the system (Chapters 4 and 5)

grinding ratio (Chapters 5 and 6)

ĜH doubly infinite open-loop transfer function matrix
gj unit step function selecting whether grit j is in or out of cut
GM gain margin
ĝp,p matrix elements according to Eqs. (4.55) and (4.85)
h total chip thickness
Ha transfer function between U and Φx,a

hd dynamic chip thickness
Hi transfer function between U and Φx,i

hj total chip thickness cut by grit j

ĥp,q matrix elements according to Eqs. (4.56) and (4.86)
hs static chip thickness
hs,max theoretical maximum of the static chip thickness
Hw transfer function between U and Φx,w

i imaginary unit (Chapters 4 and 5)
general index for a or w referring to the averaging method (Chapter 5)
integer counting wheel periods, only in Figure 5.21

I input function of the block diagram in Figure 4.5
I identity matrix
Ij integrand corresponding to grit j (Section 4.1.3)
j grit index
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Symbol Description

J transfer function between D and U
k modal stiffness of the grinding wheel (Chapters 4 and 6)

Taylor index (Chapter 4)
arbitrary integer identifying the pole-zero structure of Ti,o (Chapter 5)

K number of Taylor terms considered (Figure 4.11)
Kd dynamic cutting-force coefficient
KD,ch chip formation coefficient in Eq. (2.13)
KD,pl ploughing coefficient in Eq. (2.13)
KD,sl sliding coefficient in Eq. (2.13)
KL,ch chip formation coefficient in Eq. (2.12)
KL,sl sliding coefficient in Eq. (2.12)
Kn normal cutting-force coefficient
Ks static cutting-force coefficient
Kt tangential cutting-force coefficient
KW factor of proportionality in Eq. (2.9)
m modal mass of the grinding wheel
m1 physical mass of the grinding wheel labelled as GW-1 (Table 6.2)
m2 physical mass of the grinding wheel labelled as GW-2 (Table 6.2)
Mk kth-order raw moment of a normal distribution
n number of high spots on the surface of the wheel (Chapter 2)

Fourier index (Chapter 4)
N number of Fourier terms or harmonics considered (Chapter 4)

number of Nyquist encirclements (Appendix A)
p index identifying the harmonics in X
P total grinding power (Chapter 2)

number of poles of F encircled by Γs (Appendix A)
PM phase margin
q cutting-force exponent (Chapter 4)

auxiliary index defined as q = p− n (Chapter 4)
Qw instantaneous volumetric material removal rate
Qw,0 nominal volumetric material removal rate
r radius of the semicircular arc in the Nyquist contour (Figure 5.7)
rg half-length of the base of the triangular grain model (Figure 5.12)
Rg nominal grinding wheel radius
Rg,after grinding wheel radius after an experiment
Rg,before grinding wheel radius before an experiment
s complex Laplace frequency
t global time coordinate
T1 s-independent part of Ta,o
T2 s-dependent part of Ta,o
Ta,o To corresponding to the arithmetic mean of u in the grinding zone
Tc closed-loop transfer function
Tg rotation period of the grinding wheel
Ti,c Tc corresponding to either of the two averaging methods (i = a, w)
Ti,o To corresponding to either of the two averaging methods (i = a, w)
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Symbol Description

To open-loop transfer function
To open-loop transfer function matrix
u total specific grinding energy
U Laplace transform of u
uc specific cutting energy
uch specific chip formation energy
upast effect of the past on the specific energy, defined in Eq. (5.16)
upl specific ploughing energy
upres effect of the present on the specific energy, defined in Eq. (5.17)
usl specific sliding energy
vg circumferential speed of the grinding wheel
Vg volume of abrasive material removed from a single grain
vw feed rate (linear speed of the workpiece relative to the wheel)
Vw volume of workpiece material removed by a single grain
V ′w specific volume of workpiece material removed by a single grain
w grinding width (predominant meaning throughout the thesis)

index abbreviating ‘weighted mean’ (Chapter 5)
Ww Laplace transform of Vw
x general coordinate describing the displacement of the cutting tool
X Laplace transform of ξ (Chapter 4)

Laplace transform of x (Chapter 5)

X̂ vector collecting the harmonics in X
x0 steady-state displacement of the cutting tool
xp part of x corresponding to periodic forced vibration

x̂p elements of vector X̂ according to index p

x̂q elements of vector X̂ according to index q
y general spatial coordinate, used only in Figure 6.9
z general spatial coordinate, used only in Figure 6.9
Z total number of grits on the wheel (Chapters 4 and 5)

number of zeros of F encircled by Γs (Appendix A)
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Chapter 1

Introduction to modern
manufacturing

This thesis is concerned with the dynamics and stability of abrasive machining. To set
the scene for the research, the present chapter summarises the modern approaches to
the manufacturing of structural components, particularly focusing on the use of abrasive
operations and the vibration challenges that can arise.

In general terms, manufacturing is a process through which raw materials are transformed
into finished products. It is a highly versatile field of modern industry and an indispens-
able, yet often hidden part of life in the 21st century. The history of manufacturing
goes back thousands of years, and probably originated with prehistoric man’s need and
desire to modify the shapes and sizes of certain materials (e.g. a stone) in order to make
tools capable of performing specific functions (e.g. cutting animal hides) [1]. Manufac-
turing has come a long way since its inception and has grown both in productivity and
in sophistication since its early days. Modern manufacturing is one of the most essential
components of developed economies and societies, without which products and services
expected and regarded as natural by modern man – such as mobile phones, tablets, com-
puters, cars, aeroplanes, optical devices, prosthetic implants and pharmaceutical drugs
– would be impossible. Due to the significant advancement of the manufacturing sector,
especially over the past couple of centuries or so, the term ‘manufacturing’ has become
very broad and encompasses a wide range of engineering processes today (e.g. chemical
manufacturing, drug manufacturing, electronics manufacturing, etc.). Since this research
is concerned with the manufacturing of structural components, unless otherwise noted,
the term ‘manufacturing’ will be used in this particular sense throughout the rest of the
thesis. However, even such a focused view of manufacturing includes a number of engi-
neering processes in industry, therefore, it is helpful to put them into different categories
for the sake of clarity and understanding. The following section continues to discuss
modern manufacturing operations by classifying them according to additive, formative
and subtractive procedures.
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(a) (b) (c)

Figure 1.1: A schematic representation of modern manufacturing technologies:
(a) additive, (b) formative, and (c) subtractive processes

1.1 Additive, formative and subtractive processes

Manufacturing operations today can be fundamentally divided into additive, formative
and subtractive processes [2]. A schematic representation of these three categories is
given in Figure 1.1. Additive manufacturing (also known as 3D printing) is a relatively
modern procedure, dating back to the end of the 20th century, through which a mass of
raw material is transformed into a desired shape, typically layer by layer. The particles
of the starting material, most commonly in the form of a powder or a wire, are joined or
solidified together with more and more material being added in order to create a finished
product. 3D printing is an exceptionally diverse and versatile manufacturing operation,
capable of producing highly complex parts with very little waste. Formative processes,
such as bending, forging and casting, neither add material to nor remove material from the
workpiece. Their aim is to modify the shape of the base material by applying mechanical
forces to it (bending), or heating it up and hammering it (forging), or melting it, pouring
it into a mould and allowing it to cool down and solidify (casting). Typical examples of
products manufactured in formative ways are bended metal tubes, rings, flanges, gears,
firefighting equipment, fire hydrants, bronze plaques, etc. Since the in-depth study of
additive and formative processes is outside the scope of this work, they are mentioned
only for the sake of completeness and perspective. More information on 3D printing and
formative operations can be found in several technical books, such as those listed in [2–4].

The topic of this research lies within the sphere of subtractive manufacturing (also known
as machining), which is a collective term for a number of processes governed by the
principle of material removal, i.e., a solid block of raw material is cut by a machine
tool in order to achieve a desired shape. Due to their limited line of sight, subtractive
manufacturing operations are unable to create certain design features (e.g. lattices, hollow
parts and very intricate, organic geometries such as those presented in [5]), and they
also generate significantly more waste than additive processes, however, the physical
properties (e.g. strength) of printable materials may be less desirable (or even inadequate
for certain practical applications) than those of machinable materials [6]. Therefore, the
overall relationship between additive and subtractive manufacturing operations is not
primarily competitive but complementary [7].
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Figure 1.2: Conventional (left) and abrasive (right) cutting tools

1.2 Conventional and abrasive operations

Subtractive manufacturing processes can be further divided into three categories: conven-
tional, non-conventional and hybrid machining operations. Conventional or traditional
processes are characterised by direct contact between the tool and the workpiece. Regard-
ing the cutting tool, it is possible to distinguish between defined cutting edges (e.g. turn-
ing, milling, drilling) and non-defined cutting edges (e.g. grinding). In non-conventional
or non-traditional operations, the energy that is required for material removal is transmit-
ted without direct contact between the tool and the workpiece. Some of these processes
are ultrasonic machining (USM), laser beam machining (LBM), electron beam machining
(EBM), electrical discharge machining (EDM), and electrochemical machining (ECM) [8].
Hybrid operations aim to exploit the advantages of multiple machining processes, typi-
cally by combining a conventional and a non-conventional one to create a new machining
operation, such as laser-assisted turning or electrochemical milling [9].

However, the terminology describing all these different categories of subtractive man-
ufacturing tends to be rather loose in practice. For example, it is not uncommon in
the context of conventional processes (as defined in the previous paragraph) to refer to
machining with defined and non-defined cutting edges as conventional and abrasive oper-
ations, respectively. This means that grinding, for instance, is set apart from conventional
processes and regarded as an abrasive operation. The rest of the thesis adopts this ter-
minology in order to avoid lengthy definitions when it comes to characterising cutting
tools with defined and non-defined cutting edges.

Figure 1.2 is presented to visualise the difference between these two categories. It can be
seen that conventional cutting tools are typically marked by regular, well-defined shapes,
whereas abrasive cutting tools are usually characterised by irregular, ill-defined geome-
tries. In terms of their respective wear rates, abrasive tools – by virtue of being made
up of small particles bonded together with pores between them – tend to be structurally
weaker and thus more prone to material loss (i.e. wear) than conventional tools under
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similar machining circumstances, however, actual wear rates largely depend on the tool
and workpiece materials, cutting parameters, cooling conditions, etc. [10]. For example,
in grinding, the ratio between the amount of material removed from the workpiece and
the amount of material lost from the wheel can cover an extremely wide range of values
from less than unity to more than 60 000 (according to Malkin and Guo [11], p. 287).

Some of the most common conventional machining operations are turning, milling and
drilling. Turning is a process in which a single-point cutting tool plunges into and re-
moves material from a rotating workpiece. Turning tools typically move in the axial and
radial directions of a cylindrical workpiece. Milling is an operation where the rotating
component is the cutting tool, which removes material by advancing into the workpiece.
The feed direction in milling is usually perpendicular to the axis of the cutting tool.
Drilling is a process that uses a rotating drill bit to cut a circular hole in a stationary
workpiece. As opposed to milling, the feed direction in drilling is always parallel to the
axis of the cutting tool. Unlike turning, milling and drilling tools often have multiple
cutting edges. Typical parts machined by conventional operations are shafts, axles, pins,
screws, threaded rods, camshafts, pipes, valves, flanges, etc. Further information on
conventional processes can be found in a number of machining books, such as [12–14].

Examples of the most widely used abrasive operations include grinding, honing and pol-
ishing. Grinding is a collective term for machining processes that utilise small, abrasive
particles called grits or grains bonded into a wheel as a cutting medium to produce parts.
Each abrasive particle acts as a microscopic cutting tool with the potential to remove
material from the workpiece. Of all subtractive manufacturing operations (both conven-
tional and abrasive), this work focuses on grinding processes, therefore, a short historical
overview of grinding is provided in the next section.

1.2.1 The early days of grinding

Figure 1.3: Leonardo’s
mirror grinding machine [15]

Grinding is probably the oldest machining operation in
existence [16], dating back to prehistoric man and his
discovery of being able to sharpen his tools by rub-
bing them against hard, gritty surfaces like rocks and
sandstones. Metal grinding, along with the invention of
the grinding wheel, originated in ancient Egypt around
2000 BC. Up until the Industrial Revolution, grind-
ing was mainly used for sharpening and polishing tools,
weapons and armour. Early concepts of grinding ma-
chines were developed by Leonardo da Vinci (1452-
1519), whose famous mirror grinding machine is pre-
sented in Figure 1.3. Leonardo’s ideas were not put
into practice until the 19th century when the necessary
grinding wheel technology became available to be effec-
tively utilised by industrial grinding machines. The ad-
vancement of grinding technology continued in the 20th
century when superabrasives, such as diamond and cu-
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bic boron nitride (often abbreviated as CBN), were developed and first introduced to the
machining world, pushing and expanding the boundaries of efficiency and machinability.
This is a very brief account of the early days of grinding based on a short overview pro-
vided by Malkin and Guo [11], and serves the primary purpose of putting the subject at
hand in a historical perspective. More detailed surveys on the origin and development of
grinding can be found in the works of other authors, such as [17–21].

1.2.2 Grinding in the 21st century

As highlighted in [11], p. 1, approximately one quarter of all machining costs are at-
tributed to grinding operations in the 21st century, which is a significant share of the
manufacturing sector in developed countries. This means that more products than prob-
ably most people realise have been machined at least in part by grinding, or to put it
another way, could not have been adequately manufactured without abrasive processes.
The uniqueness of grinding lies in its cutting tool. Grinding wheels are made up of two
main components: abrasive particles and a bonding agent or matrix. The most common
abrasives today are aluminium oxide (Al2O3), silicon carbide (SiC), diamond and CBN,
the last two being superabrasive materials. There are six general bond types for con-
ventional abrasives: resinoid, shellac, oxychloride, rubber, silicate and vitrified, although
most conventional wheels have either resinoid or vitrified bonds (according to [11], pp.
11-30). Superabrasive wheels are typically produced with three bond types: resinoid,
vitrified and metal.

Grinding is commonly considered a finishing operation, capable of producing smooth
surfaces and observing fine tolerances. And indeed, when it comes to precision machining,
it is among the best and most widely implemented processes in industry (as stated in
[11], pp. 1-2). However, grinding is not limited to delicate finishing operations alone,
but is often used for stock removal as well. Such grinding processes – like creep-feed
grinding (CFG) and high-efficiency deep grinding (HEDG) to name a couple of them
– work with high depths of cut and low feed rates, and are able to reach such high
material removal rates that can only be matched by conventional machining operations.
Thus, once its full potential has been exploited, grinding is a very efficient and versatile
machining process. The versatility of grinding is also demonstrated by the numerous
wheel-workpiece arrangements available to the machinist. As illustrated in Figure 1.4,
some of the simplest and most common configurations are external and internal cylindrical
grinding, surface grinding and centreless grinding – all of which can also be either traverse
or plunge grinding, depending on the applied feed direction [22]. Apart from the principal
feed (i.e. the linear motion of the workpiece relative to the wheel in surface grinding,
and the rotational motion of the workpiece in cylindrical and centreless grinding), two
additional or secondary feed directions can be distinguished. In traverse grinding, this is
the crossfeed, and it is parallel to the workpiece surface and the wheel axis as well. In
plunge grinding, the secondary feed is the infeed, and it is perpendicular to the workpiece
surface and the wheel axis as well. Although the terms ‘crossfeed’ and ‘infeed’ are quite
descriptive of the motions that they represent, sometimes they are used interchangeably
with reference to the secondary feed direction.
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Figure 1.4: Common arrangements of the wheel (blue) and the workpiece (grey)

Besides achieving high material removal rates and producing outstanding surface quality
and dimensional accuracy, abrasive operations also excel at cutting difficult-to-machine
materials, such as hardened steels, ceramics and glasses (as asserted in [11], pp. 2-3).
However, despite its many advantages, grinding is often regarded by machinists as a
necessary evil rather than a potent and versatile machining operation. This is in part
owing to the fact that grinding is the least understood of all machining processes due to
its inherent complexities, such as the irregular geometry and significant wear of the tool,
which make it especially complicated to accurately predict the behaviour of grinding
operations. Much research has been done, particularly over the past few decades, in
order to transform the ‘black art’ of grinding (learning by experience and practice) into
an applied science (learning by theoretical research and practical validation) [11, 23, 24].
This work continues to improve on the predictability of grinding operations by focusing
on the above-mentioned complexities and addressing them by scientific means.

In conclusion, it can be seen that grinding has a long history and has come a long way
from being prehistoric man’s way of sharpening his tools to becoming modern man’s way
of manufacturing a multitude of parts, thus enabling him to build complex machines such
as gas turbines and aircraft engines.

1.3 Forced and self-excited vibrations

This research focuses on one of the most harmful phenomena in chip formation processes,
namely the onset of sustained relative vibration between the workpiece and the cutting
tool. Virtually all conventional and abrasive operations are affected by it, and as far as
grinding is concerned – which is the primary topic of this research, these vibrations can
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be either forced or self-excited in nature [25].

Forced vibrations are relatively easy to detect and suppress by locating and eliminating
their sources through frequency measurements. Typical causes of forced vibrations are
common machine faults, such as imbalance, misalignment, wear and looseness. The
detection and elimination of such vibration sources is one of the main purposes of machine
fault diagnosis and condition monitoring. More information on these topics can be found
in [26–30].

Self-excited vibrations (or chatter as they are often referred to) are much more complex
than forced vibrations, and suppressing them is significantly more complicated than lo-
cating and eliminating a machine fault. As Frederick Taylor famously put it in 1906,
“chatter is the most obscure and delicate of all problems facing the machinist, and [. . . ]
probably no rules or formulae can be devised which will accurately guide the machinist in
taking the maximum cuts and speeds possible without producing chatter” [31]. Machine
tool chatter is indeed an especially intricate problem and has been a topic of extensive
research since Taylor’s day up to the present time [32–35]. The primary motivation to un-
derstand the dynamics of chatter lies in the fact that unstable relative vibration between
the workpiece and the cutting tool has a strong negative effect on the entire machin-
ing process. Chatter deteriorates the surface quality and dimensional accuracy of the
workpiece, reduces the lifetime of the cutting tool, generates unpleasant noise, and limits
productivity on the manufacturing floor. Therefore, predicting and avoiding self-excited
machine tool vibrations is of critical importance when it comes to ensuring the stability,
efficiency and productivity of machining operations.

In general, there are four different types of machine tool chatter: frictional, regenerative,
mode-coupling and thermomechanical [36]. These mechanisms are not independent of
each other, and can generate different types of chatter at the same time. However, the
most common reason for unstable machine tool vibrations is the so-called regenerative
effect, which is an effect of the past, i.e., the vibrations of the system in the past influence
the vibrations of the system in the present in such a way that leads to instability (ac-
cording to Stépán [33], p. 136). In most machining processes, the tool removes material
from the workpiece in a gradual manner. This means that the machine tool will periodi-
cally cut a workpiece surface that was already cut at some point in the past. Therefore,
as a new workpiece surface is generated, or in other words, as the workpiece surface is
regenerated, the effect of the past (e.g. waviness on the workpiece surface) will influence
the present. For example, a wavy workpiece surface – which can be the result of tool
vibration in the past due to some external perturbation – and an oscillating cutting tool
in the present can produce a varying chip thickness, which ought to be constant under
ideal circumstances (as graphically illustrated in Figure 1.5). This will generate a varying
cutting force which will in turn disturb the tool displacement, resulting in a new, wavy
workpiece surface. Under certain conditions, which have to do with the phase angle dif-
ference between two successively generated workpiece surface waves, the above-described
regenerative vibration can get locked into a state of unstable growth. That is why chatter
refers to self-excited vibration – the excitation of the system originates and develops from
within the system itself. Investigating the conditions under which such a state of unstable
self-excitation can occur constitutes a major part of this work.
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Figure 1.5: Two successively generated workpiece surface waves: in phase with a
constant chip thickness (top) and out of phase with a varying chip thickness (bottom)

Similarly to conventional machining processes, grinding is also prone to regenerative
chatter. More than that, in the case of grinding, self-excited vibration can be even more
harmful due to the fact that grinding is often a finishing operation and thus responsible
for the final state (surface quality and dimensional accuracy) of the workpiece. Therefore,
grinding chatter has the potential to destroy a part at the final stage of its production.
Consequently, understanding the intricate nature of grinding chatter is of crucial impor-
tance when it comes to designing grinding processes. That is what this research seeks to
advance – the current knowledge of grinding with regard to dynamics and vibration in or-
der to enhance product quality, process efficiency and machine productivity by predicting
and avoiding grinding chatter.

The following chapter presents a brief overview of regenerative chatter in conventional
machining operations and a detailed, chronological review of the literature’s most relevant
papers on the historical development of regenerative chatter theories in grinding. Each
contribution is discussed and evaluated on an individual basis before it is placed in the
context of grinding dynamics at large. However, before moving on to the literature review
in detail, the knowledge gap and the research aims are foreshadowed in the next section
in order to briefly articulate the motivation for this work and the expected outcome of
the thesis.

1.4 Knowledge gap and research aims

In summary, this research is concerned with the dynamics and stability of abrasive ma-
chining in general, and the self-excited vibrations of grinding processes in particular.
Combining the inherent uncertainties of machining with thousands of irregular and ge-
ometrically ill-defined cutting edges with the intricacies of modelling and predicting re-
generative chatter vibrations, the resulting problem is highly complex yet very practical.
That is why a significant amount of research has been dedicated already to addressing
the issue of grinding chatter with the aim of avoiding or at least suppressing it as much
as possible. Despite the fact that a lot has been discovered about grinding chatter as
a result of persistent and hard work over many decades, the problem remains an active
area of research to this day.
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This thesis seeks to gain a better understanding of a fundamental aspect of grinding
chatter that is scarcely addressed in the literature and therefore constitutes a gap in
current knowledge, namely the specific mechanism by which wheel-related regeneration
occurs and thus wheel-related instability develops. The details of this statement are
presented at length in Chapters 2 and 3. Following a literature review (Chapter 2), the
aims and objectives of this research are revisited and expanded upon (Chapter 3), in
order to set out the original contributions of the remaining chapters.

9



Chapter 2

Literature review on regenerative
machine tool chatter

As it was stated in Section 1.3, virtually all chip formation processes are prone to expe-
riencing sustained relative vibration between the workpiece and the cutting tool. It has
also been mentioned that, with regard to grinding – which is the main topic of this work,
these harmful vibrations can be either forced or self-excited in nature [25]. This chapter
is dedicated to reviewing the literature on regenerative machine tool chatter (which is
the most common type of chatter in machining [33,36]) briefly for conventional processes
and more thoroughly for abrasive operations.

2.1 Chatter in conventional machining

Machine tool chatter in conventional operations has been a topic of extensive research
since the beginning of the 20th century. After the initial observations of Taylor [31],
a number of researchers attempted to explain and describe machine tool vibrations in a
systematic way [37–39], however, it was not until 1958 that a comprehensive mathematical
model of machine tool chatter was developed by Tobias and Fishwick [40]. Their theory
was also one of the first accurate models of self-excited vibration in orthogonal cutting,
along with the works of Tlusty and Polacek [41], and Merritt [42]. These authors are
among the most prominent pioneers of advanced research in machine tool chatter, having
built the foundations for those coming after them. Their fruitful labour has encouraged
several future researchers and initiated a substantial amount of work now published in
the literature on the origin and suppression of self-excited machining vibrations. Despite
Taylor’s rather negative presumption that “probably no rules or formulae can be devised
which will accurately guide the machinist in taking the maximum cuts and speeds possible
without producing chatter” [31], rules and formulae have in fact been discovered, governing
the behaviour of self-excited machining vibrations in a predictable way. Some of the
greatest researchers in the field have written many significant books and papers to provide
a physical explanation and a mathematical description for such an intricate phenomenon
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Figure 2.1: Example of a typical stability lobe diagram for turning [87]

as machine tool chatter. The most widely known and frequently cited sources include but
are not limited to the works of Altintas [35, 43–47], Budak [36, 43, 45–51], Tlusty [34, 41,
52–55], Marui [56–62], Ismail [53, 54, 63–66], Insperger [67–73], Stépán [33,67–70,72–77],
Schmitz [73, 78, 79], Tobias [32, 40, 80] and Ota [81–83]. Since the detailed discussion of
these publications (which are still only a small fraction of the entire body of work on
machining vibrations) is outside the scope of this research, a few large-scale reviews of
the literature will be presented later in this section, in order to provide some preliminary
insight into decades’ worth of hard work in this area. Although the references above
will not be revisited one by one, a number of them will be cited again to support the
main summarising statements that the present author has made regarding the historical
development and current state of research in machining dynamics.

It can be seen that the amount of work conducted in the field of machine tool chatter since
Taylor’s day is indeed vast. As demonstrated by the citations above, numerous in-depth
studies have been published on turning [83–85], milling [43,55,72] and drilling operations
[57, 59, 60], in order to gain a deeper understanding of the intricate nature of machining
vibrations. As a result of perseverance and success in research, not only have chatter
prediction and suppression techniques become widely available, but they have also been
growing more and more advanced and sophisticated in recent decades [86]. Consequently,
the maximum cuts and speeds possible without producing chatter have increased, which
is a major improvement since Taylor’s famous quote predicting the contrary. One of the
most often-used ways to demonstrate progress and development in machining stability is
the construction of so-called stability charts or stability diagrams. They were invented
to visualise the stability properties of machine tools, and have been around since the first
comprehensive chatter theories were formulated [40–42]. Because of their outstanding
utility and clarity, the usage of such graphical tools is common practice in machining
dynamics today [35]. Stability charts are usually two-dimensional figures that plot the
stability boundaries of a machining process against two cutting parameters, such as the
spindle speed and the depth of cut (an example of a typical stability lobe diagram is
presented in Figure 2.1). Sometimes multiple stability boundaries are plotted in the same
stability chart in order to demonstrate the effect of a third parameter under investigation.
Mathematically speaking, the dynamics of machining operations is governed by so-called
delay differential equations (DDEs), where the derivative of the unknown function at a
certain time is given in terms of the values of the function at previous times. For example,
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the general form of the DDE corresponding to Figure 2.1 can be written as

ẍ(t) + aẋ(t) + bx(t) = cx(t− τ). (2.1)

Similarly to the first appearance of stability lobe diagrams in the literature, a fundamen-
tally identical variation of Eq. (2.1) was first developed by the aforementioned pioneers
of rigorous chatter research, in order to capture the dynamics of machine tools by math-
ematical means [40–42]. In Eq. (2.1), the function x(t) describes the displacement of the
turning tool in time, the coefficients a, b and c are generalised system parameters, and τ
denotes the time delay which is equal to the rotation period of the workpiece. The dot
symbol represents the first and second derivatives of x with respect to time. It can be
seen that apart from the typical terms of an ordinary differential equation (ODE), the
time-delayed version of the tool displacement appears in Eq. (2.1) as well, indicating the
effect of the past on the behaviour of the system in the present (as discussed earlier in
Section 1.3). Although the equation of turning displayed above is considered a relatively
simple DDE, the stability analysis of Eq. (2.1) is still significantly more complicated than
that of an ODE [88]. The primary purpose of presenting an equation of motion so early
on is to put the dynamics of machining in a mathematical context. The stability of DDEs
can be assessed in a number of ways, which will be discussed in later chapters.

As mentioned earlier in this section, a few large-scale reviews of machine tool chatter are
presented now in order to provide a concise yet non-exhaustive overview of the topic.

In 1997, Ehmann et al. published a summary paper on modelling the dynamics of machin-
ing processes [89]. They critically reviewed the corresponding literature and identified
four general types of modelling approaches: analytical, experimental, mechanistic and
numerical. They also distinguished between three existing philosophies which relate the
dynamic cutting force to the instantaneous uncut chip cross section, the shear plane
area, and non-linear mechanisms. Each modelling approach considers one (or more) of
these philosophies in order to determine the dynamic cutting force. Citing the works of
several researchers, the authors carefully and systematically presented the evolution of
dynamic cutting process modelling up to 1997. They claim that, due to the complexity
of machining operations, the prevailing modelling approach in the 20th century relied
heavily on assuming a single, presumably dominant mechanism of the cutting process,
and testing the model against experimental data. However, as a result of such significant
simplification, a number of empirical coefficients were necessitated in order to make up
for the intentionally neglected modelling details. This problem called for a compromise
to be made between the accuracy and simplicity of the proposed model. It is also noted
by the authors that a combination of various modelling approaches was yet to be realised
in 1997. As a conclusion, the authors also included a brief assessment of perceived needs
and potential directions of research in the future. A graphical summary of their review
is presented in Figure 2.2.

In 2011, Quintana and Ciurana wrote an article in an attempt to review and summarise
the state of research on machine tool chatter, including both conventional and abrasive
operations [90]. The paper contains an introduction of considerable length, discussing the
history and relevance of chatter in machining. It also touches on the four mechanisms of
self-excitation (friction, thermomechanics, mode coupling, regeneration) and states that
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Figure 2.2: Chatter modelling approaches and philosophies as reviewed in [89]

surface regeneration is the most important cause of chatter. That is why – unless oth-
erwise specified – ‘chatter’ usually refers to regenerative chatter, which is a convention
that has been generally followed by the majority of publications on the subject. Con-
cluding the first section, the identification and purpose of stability lobe diagrams are
discussed in order to provide a sufficiently detailed background for the following chap-
ters. Having reviewed a great deal of literature, the authors arrived at a classification
of chatter prediction and suppression methods according to two main approaches. The
first one consists of methods that ensure a stable machining operation by considering the
so-called lobe effect and choosing stable cutting parameters accordingly. Regarding this
group, it is possible to differentiate between out-of-process and in-process methods. Out-
of-process approaches aim to identify the stability lobes and select a stable set of cutting
parameters before the machining operation begins. In-process methods, however, detect
chatter during the metal cutting process and correct the system parameters in order to
achieve a stable manufacturing operation. The second approach includes methods that
avoid chatter by changing the dynamics of the machine and thus manipulating the lobe
structure of the system in order to ensure stable machining conditions for a desired set
of cutting parameters. In this group, passive and active methods can be distinguished.
Passive strategies rely on the modification of certain machine tool elements in order to
change the dynamics of the system (e.g. variable pitch and variable helix tools). Active
strategies seek to suppress chatter by introducing active elements and system modifica-
tions, such as tunable vibration absorbers and spindle speed variation. The principal
lines of research as summarised by Quintana and Ciurana are presented in Figure 2.3.

In 2015, Insperger et al. presented a brief overview of the two intrinsic components of
machine tool chatter modelling, namely the regenerative time delay and the parametric
excitation of the cutting edges [91]. After a short introduction concerning the basics of
chatter in machining (e.g. surface regeneration and stability lobe diagrams), an important
qualitative difference is made between turning and milling operations in terms of their
respective mathematical models. In turning, regenerative chatter can be described by
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Figure 2.3: Principal lines of research on chatter suppression techniques [90]

time-invariant DDEs, i.e., the coefficients a, b and c in Eq. (2.1) are independent of time
t. The stability of such systems can be assessed by the classical D-subdivision method [33].
In milling, however, surface regeneration is coupled with the parametric excitation of the
cutting edges, which results in a DDE with time-periodic coefficients. This means that
b and c will appear in Eq. (2.1) as periodic functions of time, where the common time
period is equal to the principal period of the system, corresponding for instance to the
tooth-passing period for uniform-pitch tools and to the rotation period of the cutter for
variable-pitch tools. The stability analysis of milling processes is different from that
of turning operations and requires the application of the Floquet theory to adequately
predict the stability properties of a time-periodic system. Although – due to the presence
of parametric excitation – the stability lobe diagrams cannot be determined analytically
in milling, a number of numerical solutions have been formulated over the past few
decades in order to deal with the mathematical complexity of milling stability analysis.
Such techniques include but are not limited to the semi-discretisation method [92, 93]
and the multi-frequency solution [43, 94, 95]. A graphical summary of the two intrinsic
components of machine tool chatter modelling as reviewed by Insperger et al. is presented
in Figure 2.4. It is an interesting question whether grinding can be affected by parametric
excitation and thus the corresponding governing equation of motion can feature time-
periodic coefficients. Since a grinding wheel can be thought of as a milling tool with a
large number of microscopic cutting edges, the theoretical answer is yes, however the vast
number of cutting points may render this phenomenon negligible in practice. This issue
will be discussed later on in this thesis (Chapter 4).

Components of
chatter modelling

Surface
regeneration

Parametric
excitation

Delay differential equations

Time-periodic coefficients

Figure 2.4: Intrinsic components of machine tool chatter modelling [91]
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In 2016, a comprehensive review of chatter suppression techniques in metal cutting was
presented by some of the most respected and well-known experts in the field of machining
science [86]. Containing 358 references, it is potentially the most all-inclusive review on
chatter prediction and suppression methods today. The paper begins with an introduction
that summarises the main reasons for continued research on the subject of machine tool
chatter and classifies the available solutions developed to tackle the problem of self-
excited vibrations in machining processes. A graphical review of the existing chatter
suppression techniques listed by the authors is given in Figure 2.5. The most suitable of
these methods for a given scenario is to be selected based on three criteria: machinability
(which may limit the available range of spindle speeds), the relative location of chatter in
the stability diagram (which is defined by the ratio of the chatter frequency to the tooth
passing frequency), and the critical elements of the system (which can be the machine tool
structure, spindle, tool, toolholder, workpiece, etc.). The rest of the review elaborates
in great detail on the different chatter suppression techniques listed at the beginning of
the paper, and concludes with a very useful and concise table summarising the most
suitable chatter suppression methods depending on the origin of vibration in the system
and the qualitative location of chatter in the stability lobe diagram. Finally, the authors
highlight the ongoing necessity of improving the robustness and simplicity of existing
chatter suppression techniques, while acknowledging the fact that production engineers
already have a wide range of working solutions to industrial chatter problems.

Chatter suppression
techniques

Process parameter

selection

Regenerative effect

disturbance

Process damping

maximisation

System stiffness

enhancement

System damping

enhancement

Figure 2.5: Chatter suppression techniques in metal cutting [86]

The fact that such a vast amount of research has been published in machining dynamics
since Taylor’s day demonstrates both the complexity of machine tool chatter and the
necessity to predict and avoid it. There is still much to be discovered and understood,
however, Taylor’s initial presumption about a harmful yet rather elusive phenomenon
without rules or formulae has been thankfully allayed by human perseverance and skill.
The following section focuses on self-excited vibration in abrasive machining processes as
opposed to conventional operations, and presents a detailed review of grinding chatter in
particular, in order to provide an up-to-date historical background for this research.

2.2 Chatter in abrasive machining

As a result of extensive research in machining science, the 20th century brought signifi-
cant advancements and improvements in grinding technology, including the complex area
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of grinding dynamics. Taylor’s famous work titled On the art of cutting metals and pub-
lished at the very beginning of the century [31] was followed by a number of articles on
machining dynamics, addressing the intricate nature of machine tool chatter. However,
progress in understanding grinding dynamics and developing accurate chatter theories
was lagging behind the findings of similar works in conventional machining operations for
a number of years (as claimed by Stone [96], pp. 135-136). Again, this is in part due to
the inherent complexities involved in abrasive processes (i.e., irregular tool geometry and
significant tool wear), which made it difficult for grinding to keep up with conventional
machining. Nevertheless, grinding chatter has been a topic of substantial research for
decades, which is clearly reflected in the number and content of scientific papers available
on the subject.

In order to establish an initial, rudimentary understanding of self-excited vibration in
grinding, the problem is first discussed in the context of conventional chatter (reviewed
briefly in Section 2.1). When it comes to the physical explanation and mathematical
description of chatter, grinding exhibits some important differences from turning and
milling. Based on the review of Insperger et al. [91], these differences will be investigated
with regard to surface regeneration and parametric excitation. Similarly to turning and
milling operations, surface regeneration is the leading cause of chatter in grinding pro-
cesses as well [25]. However, due to the fact that grinding wheels wear significantly faster
than conventional tools, surface waves can develop not only on the workpiece but also on
the grinding wheel. This unique and rather complex phenomenon called ‘double regener-
ation’ sets grinding apart from other machining operations both physically (as described
above) and mathematically (i.e., an additional time delay is necessary to describe the
effect of wheel regeneration). In terms of parametric excitation, it is an interesting ques-
tion whether individual grit impacts can be responsible for such an effect. The literature
predominantly (if not without exception) assumes that parametric excitation is negligi-
ble in grinding. However, it is important to verify such an assumption, even if it sounds
intuitive to most researchers. Since a grinding wheel can be thought of as a milling tool
with many cutting edges, presumably there exists a certain number of grits above which
the effect of parametric excitation or the intermittent nature of the grinding process can
be neglected. Chapter 4 is dedicated to answering this question and considering its con-
sequences. Section 2.2.1 presents some of the most pivotal chatter theories in grinding
and attempts to trace the development of grinding dynamics over the past few decades.

2.2.1 Review of chatter theories

One of the first research papers addressing the issue of regenerative chatter in grinding
operations was published by Hahn in the 1950s [97]. He considered a single-degree-of-
freedom model of internal cylindrical grinding (illustrated in Figure 1.4b) with a perfectly
wear-resistant wheel, thus allowing surface regeneration to occur only on the workpiece.
Hahn also assumed a line contact between the wheel and the workpiece (instead of a finite
area), therefore, in principle, his theory is equally applicable to turning processes. Hahn
based his stability analysis on the proportionality between the instantaneous depth of cut
and the instantaneous grinding force, and derived a second-order differential-difference
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equation (or delay differential equation in modern terms) to determine the stability of
the system. He showed that the time delay or the time period of the rotating workpiece
has a significant impact on the distribution of stable and unstable parameter regions,
and concluded that as long as the unstable zones are avoided (or the stable zones are
favoured), productivity can be increased without compromising the dimensional accuracy
and surface quality of the final product. Hahn’s contribution is pivotal not only to the
understanding of grinding chatter but also to the initiation of further in-depth research
in the dynamics of abrasive machining.

Only a few years after the foundational work of Hahn, the experiments of Landberg [98]
demonstrated that grinding wheels do not necessarily wear evenly over time and surface
regeneration can affect not only the workpiece but the grinding wheel as well. Although
his measurements clearly supported the existence of high spots or uneven wear around the
circumference of the grinding wheel, he provided no physical explanation as to how such
surface waves gradually develop. He proved the presence of wheel-related instability by
recording a vibration frequency that was a multiple of the wheel speed and the multiplier
was equal to the number of waves on the surface of the wheel. Additionally, Landberg’s
experiments also revealed that the amplitude growth of grinding vibrations is exponential
in nature. Therefore, Landberg’s work is significant, because it builds on and advances
the existing understanding of grinding chatter by establishing a link between grinding
dynamics and surface topography with regard to both the wheel and the workpiece.

Building on the experimental foundation laid by Landberg that grinding wheels do not
necessarily wear evenly [98], Gurney postulated his theory as to how uneven wheel wear
can lead to unstable vibration in grinding [99]. He called his explanatory mechanism
‘surface wave instability’, carefully and purposefully differentiating it from the concept
of regenerative chatter for two reasons. First, the physics behind surface wave instability
– Gurney states – is different from the mechanisms that govern regenerative chatter. In
order to substantiate his claim, the author provides the following rationale. The initial
irregularities on the surface of the grinding wheel can be expanded into a Fourier series,
where each term is responsible for vibration at an integer multiple of the wheel speed. For
example, considering only one Fourier term at a vibration frequency nωg (where n is an
integer and ωg is the wheel speed), there will be n high spots on the surface of the wheel,
resulting in a periodic variation in the grinding force (n times per wheel revolution).
If the maximum grinding force occurs when a high spot is cutting, then the high spot
will wear more and the irregularity of the wheel surface will decrease. However, if the
maximum grinding force occurs when a low spot is cutting, then the low spot will wear
more and the irregularity of the wheel surface will increase. This is also a self-excited
vibration, but – according to the author – it is different from surface regeneration.

The second reason Gurney gives why surface wave instability is distinct from regenerative
chatter has to do with their respective time scales. While chatter builds up in a matter of
seconds, surface wave instability takes minutes to develop. In his mathematical analysis,
Gurney considered cylindrical plunge grinding and derived the corresponding equation
of motion, which is a non-autonomous DDE with a single time delay equal to the rota-
tion period of the workpiece. The author also presented a couple of stability diagrams
depicting the ‘depth of cut coefficient’ or ‘cutting force coefficient’ against the vibration
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frequency. Gurney’s experiments are in acceptable agreement with his theory, and they
also demonstrated a rather interesting phenomenon: as the waves on the surface of the
wheel grow under unstable grinding conditions, they do not remain stationary but slowly
precess around the circumference of the wheel. In terms of his explicit distinction between
surface wave instability and regenerative chatter, it is an interesting but rather puzzling
idea (even in light of the author’s justification), therefore, it will be readdressed in the
context of a different chatter theory later on in this section. Nevertheless, Gurney’s work
is of great significance, being one of the earliest contributions to physically explaining
and mathematically describing wheel-related instability in grinding operations.

The next big step in the development of grinding chatter theories was taken by Snoeys and
Brown [100], who investigated the dominating parameters in both wheel- and workpiece-
related regenerative chatter. They created a mechanical model of external cylindrical
plunge grinding and constructed a block diagram in order to represent the mathematical
model of the problem in a graphical way. Their block scheme clearly indicates that wheel-
and workpiece-related regenerative chatter are not studied separately but in relation to
one another. Then the transfer function of the process is derived, which is defined as the
ratio of the instantaneous depth of cut to the instantaneous infeed, in order to investigate
the stability properties of the system. The main grinding parameters appearing in the
transfer function and thus influencing stability are identified as the cutting stiffness, wheel
wear resistance, contact stiffness and machine stiffness. Snoeys and Brown provided a set
of very helpful tables summarising the dominating grinding parameters with respect to
regenerative chatter along with their respective ranges of practical values. They also drew
attention to a couple of geometrical limitations to grinding chatter, namely transverse feed
filtering and filtering due to the finite length of contact. Transverse feed filtering happens
because the actual width of contact is reduced by applying a transverse feed. Filtering
due to the finite length of contact is a result of high frequency vibrations being filtered out
or cut off from the surface of the wheel or the workpiece. Snoeys and Brown performed
a number of experiments to verify their theoretical findings. They managed not only
to validate their model but also to demonstrate – similarly to Gurney’s research [99] –
that wheel undulations slowly precess or travel around the circumference of the grinding
wheel. Additionally, they concluded that most grinding operations take place under
unstable conditions, in which case the growth rate of chatter becomes more important
and more interesting than stability itself. The work of Snoeys and Brown is of central
significance – it is one of the first research papers discussing both wheel and workpiece
regenerative chatter in the same model.

By the end of the 1960s, the fundamental grinding parameters governing self-excited
vibration had been identified, and the first chatter theories had been developed and
experimentally validated. The idea of ‘double regeneration’ or simultaneous surface re-
generation on both the wheel and the workpiece was taken further on by Thompson, who
confirmed and deepened the scientific understanding of grinding chatter by several of his
works [101–105]. Before the primary years of his contribution to double regeneration
though, Thompson published a substantial piece of work on the dynamic behaviour of
surface grinding [106,107]. His theory predicts the possibility of unstable grinding vibra-
tions and reveals some important facts about the frequency of these oscillations. First,
the unstable vibrations of a surface grinder can occur at only one frequency. Second,
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Case
Natural

frequency [Hz]

Chatter frequency [Hz]

Theory Experiment

#1 190.19 223.66 221.19

#2 249.87 276.61 277.36

#3 312.10 333.95 334.57

Table 2.1: Summary of Thompson’s results at ωg = 3000 rpm [107]

this single chatter frequency is always higher than the system’s uncoupled fundamental
resonant frequency. Third, the self-excited vibrations – which correspond to surface lobes
on the grinding wheel – can be represented as a sum of two frequency components: the
lobe frequency and the precession frequency. The lobe frequency is always an integer
multiple of the wheel speed, corresponding to the number of wheel lobes that develop
under unstable cutting conditions. The precession frequency is a small part of the overall
chatter frequency and describes the rate at which surface lobes travel around the circum-
ference of the grinding wheel. In order to validate his mathematical model, Thompson
performed some surface grinding experiments and recorded data for three different test
conditions. His theoretically predicted and experimentally determined chatter frequen-
cies are summarised and compared in Table 2.1. The two being in good agreement,
Thompson’s results are both clear and reliable, contributing to the overall understanding
of wheel-related surface regeneration in grinding.

The literature on grinding chatter was thoroughly reviewed by Inasaki et al. [25]. Theirs
is a pivotal paper that not only summarises and clarifies the findings of the 20th century,
but also advances research and knowledge by addressing the origin and suppression of
grinding chatter in a systematic way. The authors restate and emphasise the difference
between forced and self-excited vibrations in order to provide a solid and clear starting
point. Before getting on to the stability analysis, they draw attention to the well-known
feature of grinding chatter that surface regeneration can affect both the workpiece and
the wheel. Agreeing with Snoeys and Brown, they arrive at the conclusion that even
though wheel-related chatter develops much more slowly than workpiece-related chatter,
most grinding operations are unstable with regard to wheel-related chatter. Building on
the work of Snoeys and Brown, the authors point out some of the key grinding parameters
that govern process stability. After discussing the negative effects of grinding chatter on
the dimensional accuracy and surface quality of the final product, they present different
ways to monitor, detect and suppress chatter vibrations in grinding systems, which is
one of the main accomplishments of their paper. Among other conclusions, they state
that although the mechanisms of self-excited vibration in grinding have been made clear
from a theoretical point of view, there are still many complications involved (such as the
identification and variation of machine characteristics and grinding parameters), which
make it difficult to accurately assess machining stability. Nevertheless, the paper of
Inasaki et al. has been recognised as one of the most fundamental and most often-cited
works in the history of grinding chatter research.
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At this point, it is timely to revisit Gurney’s distinction between surface wave instability
and regenerative chatter [99], because interestingly, Inasaki et al. make no difference
between the two. More than that, they cite Gurney’s work as a publication on wheel
regenerative chatter without any reference to his distinction or terminology. Inasaki
presents wheel-related instability in grinding as a phenomenon that takes much longer to
develop than workpiece regeneration, but is still a result of the well-known regenerative
effect. The significant difference between the time scales of wheel- and workpiece-related
instability was noted by Gurney as well, however, he understood it as evidence against
surface regeneration. Agreeing with Inasaki, many other prominent authors also consider
the regenerative effect as the most common and most important reason for wheel-related
instability in grinding [100–108]. Therefore, due to a lack of sufficient literature-based
conviction that there is a significant qualitative difference between surface wave insta-
bility and regenerative chatter, the two will be treated as identical in this work. This
is common practice in the literature, and strong deviations (such as Gurney’s) from the
well-established and widely accepted theoretical models and explanatory mechanisms are
relatively rare. Nevertheless, such exceptions are still welcome as they can provide fresh
and valuable insight into the nature of grinding chatter.

In 2006, a new theory of wheel regenerative chatter was developed and tested by Li
and Shin [108]. Summarising the experimental findings of researchers before them [107,
109,110], the authors reiterate the following well-established facts of surface grinding: (1)
chatter develops very slowly and occurs even at very low feed rates; (2) at the early stages
of chatter, it is not easy to differentiate it from forced vibration or to see chatter marks
on the surface of the workpiece; and (3) as chatter becomes more severe, waves on the
grinding wheel can be detected and chatter marks on the workpiece can be observed. The
most novel contribution of Li and Shin’s work is their description of the grinding force as a
function of not only the instantaneous chip thickness but also the uneven grit dullness or
uneven grit wear around the circumference of the grinding wheel. With the help of their
new surface grinding model, the authors managed to shed light on certain measurement
results in the literature that previous chatter theories were unable to explain.

Li and Shin listed five such experimental observations: (1) with regard to wheel regen-
erative chatter, there is no difference between continuous grinding, interrupted grinding
and grinding a series of workpieces; (2) the single dominant chatter frequency is approx-
imately an integer multiple of the wheel speed; (3) the precession of wheel undulations is
very slow, i.e., the single dominant chatter frequency is almost exactly an integer multi-
ple of the wheel speed; (4) more than one chatter frequency can appear under unstable
grinding conditions, all of which are approximately integer multiples of the wheel speed;
and (5) as chatter grows, harmonics of the chatter frequencies can be observed.

The model proposed by Li and Shin is numerical in nature. Their approach is similar to
a finite element method, since it discretises time and thus the positions of the wheel and
the workpiece as well. As it was stated before, the novel idea behind Li and Shin’s theory
is that the grinding force does not depend on the instantaneous chip thickness alone, but
is also influenced by how dull or worn the cutting points currently are. The underlying
principle is that a duller grain produces a higher grinding force, because it has a larger
specific energy. The specific energy is a fundamental quantity in grinding. It defines a
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relationship between the material removal rate and the corresponding power consumption.
Or equivalently, it is a measure of how much energy is required to remove a unit volume
of workpiece material. Practically speaking, a high specific energy is unwanted, because
it is an indication of a challenging grinding process.

Considering grit dullness or grit wear when it comes to calculating the grinding force
results in a more accurate and thus more realistic model of wheel regenerative chatter.
Li and Shin also performed a number of surface grinding experiments and successfully
validated their theory. They compared their predicted and measured chatter frequencies
for a number of different grinding scenarios and found them to be in good agreement
with each other. Therefore, the work of Li and Shin makes a substantial contribution
to grinding dynamics, however, their paper is surprisingly undercited and lacks any real
follow-up research. According to the present author’s judgement, their new chatter theory
not only deserves more attention and credit, but also merits further exploration and
investigation. Consequently, one of the main directions of this study is to build and
improve on the findings of Li and Shin. As a result of this specific focus, the trend of
relevant research papers after 2006 is presented only in essence, summarising the most
significant accomplishments without much regard for minor details.

Regenerative chatter in grinding is an actively studied topic of research to this day. Mod-
ern stability theories are becoming more and more accurate and sophisticated, describing
and explaining the dynamics of grinding processes in greater detail than ever before.
Current grinding models address more problems and offer more solutions than the ‘mere’
suppression of self-excited vibration. Grinding chatter today is often considered along-
side a number of other complicating factors, such as non-linear behaviour [111–114], self-
interrupted grinding [115], workpiece imbalance [116], and parallel grinding [117]. The
list goes on, demonstrating the fact that the development of grinding dynamics models
and stability theories has come a long way since Hahn first published his paper on regen-
erative chatter. Nevertheless, there is a real sense in which the fundamentals of grinding
dynamics are still unclear. This is due to the fact that the two inherent complexities of
grinding, namely the ill-defined and uncertain geometry and the significant wear of the
wheel, continue to pose major challenges to researchers today. These two difficulties are
considered and discussed in greater detail in the following sections.

Concluding this overview of existing chatter theories in the literature, Table 2.2 sum-
marises the general flow of the most important accomplishments in grinding stability
analysis up to Li and Shin’s work at the beginning of the 21st century, which serves as a
foundational paper to this research.

2.2.2 Effect of wheel wear

Before Li and Shin’s work [108], chatter theories considered wheel wear as material loss
from the grinding wheel resulting in a reduced wheel radius, which is exactly what hap-
pens in real life. Therefore, wheel wear is often measured by the so-called grinding ratio or
G-ratio, which is defined as the volume ratio of the material removed from the workpiece
to the material removed from the wheel. Material loss from the grinding wheel (or simply
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Author(s) Year(s) Main accomplishment(s)

R. S. Hahn 1954
Workpiece regeneration described, stable and
unstable parameter regions calculated

P. Landberg 1957

Wheel-related instability discovered, vibration
frequencies under unstable grinding conditions
observed to be integer multiples of the wheel
speed, exponential growth of unstable vibra-
tions recorded

J. P. Gurney 1965
Surface wave instability formulated, preces-
sion of wheel undulations measured

R. Snoeys, D. Brown 1969
Wheel and workpiece regeneration combined,
dominating grinding parameters determined

R. A. Thompson 1971
Important stability properties of surface grind-
ing (such as chatter frequency and lobe preces-
sion) predicted and validated

R. A. Thompson 1974-1992

Different aspects of the doubly regenerative
effect (such as chatter growth, contact stiff-
ness and wave filtering) investigated and un-
derstood

I. Inasaki et al. 2001
Origin and suppression of grinding chatter
thoroughly reviewed and systematically pre-
sented

H. Li, Y. C. Shin 2006

New wheel regenerative chatter theory devel-
oped and tested: wheel-related instability can
be induced by the combined effect of dis-
tributed radial wear and distributed grit dull-
ness around the circumference of the wheel

Table 2.2: Summary of pivotal chatter theories in grinding up to Li and Shin’s work

wheel wear) can generally be classified as either attritious or fracture wear [118–121].

Attritious wear is a consequence of abrasive particles rubbing against the surface of the
workpiece, resulting in the flattening or dulling of the grains (as depicted in Figure 2.6a).
The amount of wear – measured by the collective area of wear flats on the surface of the
wheel – is directly related to the grinding forces: the duller the wheel, the higher the
forces. Malkin and Cook [120] found this relationship to be linear in nature: the wear
flat area is proportional to the grinding force. However, they also observed a break in this
linear relationship, which they attributed to the presence of a harmful phenomenon called
grinding burn. Due to the friction between the wheel and the workpiece, wear flats can
generate excessive heat and cause thermal damage to the workpiece. This happens when
the collective area of wear flats reaches a critically high value. Additionally, grinding
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grainpore bond
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Figure 2.6: Grains affected by (a) attritious wear, (b) grain fracture, and
(c) bond fracture

burn not only damages the workpiece but also significantly increases the grinding forces,
which has the potential to expedite the onset of chatter. Therefore, grinding burn is to be
avoided by all means. Similarly to the grinding forces, the specific energy is also affected
by wheel wear – dull grains require more energy to remove the same amount of workpiece
material than sharp ones do. In summary, attritious wheel wear has an overwhelmingly
negative effect on the grinding process as it reduces efficiency by causing potential burn,
producing high grinding forces and increasing the specific energy.

Fracture wear refers to breakage across a grain or across the bond. These two types
of fracture wear are called grain fracture and bond fracture, respectively, and they are
illustrated in Figures 2.6b and 2.6c. Grain fracture is partial, i.e., only part of the grain is
broken off, while bond fracture is total – an entire grain is dislodged and lost as a result.
When it comes to typical wear volumes, the amount of fracture wear far outweighs that
of attritious wear, however, attritious wear is the most important form of wear as it is
directly related to the grinding forces and workpiece burn, thus controlling both grain
and bond fracture wear [121]. But unlike attritious wear which is typically undesirable,
fracture wear can be beneficial. A partially fractured grain is left with new and sharp
cutting edges, while an entirely dislodged grain is replaced by a new, sharp grit. In both
cases, fracture wear contributes to an advantageous phenomenon called self-sharpening,
a process by which the grinding wheel sharpens itself as it wears.

However, the self-sharpening effect is neither sufficient nor reliable enough to keep the
wheel sharp in an accurate and controlled fashion. Therefore, another sharpening method
needs to be employed in order to get rid of dull particles and expose fresh grits from the
surface of the wheel. This process is called dressing, and it serves three main purposes
in grinding: (1) it sharpens the wheel by dislodging worn grains and exposing sharp
ones, (2) it cleans the wheel by removing built-up workpiece material from the pores,
and (3) it trues the wheel by restoring its intended, original shape. Naturally, the dresser
material has to be significantly harder than the wheel material. This is usually achieved
with diamond dressers. There are fundamentally two types of dressing: intermittent and
continuous. Intermittent dressing means that the wheel is dressed periodically, after a
certain amount of grinding time and accumulated wear. Continuous dressing, however,
indicates that the wheel is being dressed throughout the entire grinding process. In
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this way, the cutting properties of the wheel can be kept under control and relatively
constant, but the downside of it is that the wheel is consumed much faster, which means
more frequent wheel changes and higher grinding costs.

When it comes to chatter models, wheel wear had only been considered as a change in
grinding wheel radius until Li and Shin introduced their new theory in 2006 [108]. Even
though their approach takes both wheel radius variation and grain dullness variation into
account, it suggests that it is possible to model wheel wear (and thus wheel regenerative
chatter) solely based on the grain dullness variation (or specific energy variation) of a
perfectly circular circumference, without changing the radius of the grinding wheel. Li
and Shin did not consider a self-sharpening wheel, but regarded it as continuously dulling,
assuming an approximately linear relationship between the degree of wheel wear and the
magnitude of the resulting grinding forces. Despite the significant potential of their new
theory, it has received little to no follow-up research. Therefore, the fundamental way to
go about wheel wear modelling in terms of grinding chatter has not changed significantly
over the past decades. This is in part owing to the fact that old wheel wear theories
are reliable and functional, and also that apart from Li and Shin’s contribution, the
fundamental approach to grinding chatter modelling has not seen a working alternative.
However, their work shows that the common understanding of wheel wear with regard
to grinding chatter is not yet complete and leaves much to be discovered. Consequently,
this research aims to focus on and continue the work that Li and Shin began, in order to
shed some more light on the fundamental causes of chatter in grinding.

2.2.3 Effect of wheel geometry

As it was demonstrated in Figure 1.2, unlike conventional cutting tools, abrasive wheels
have no clear, well-defined geometry. Within certain limits, they are made up of ran-
domly shaped, sized, oriented and distributed particles. However, the uncertainty of
wheel geometry has been somewhat mitigated in recent years by new technologies such
as grain shape control (e.g. 3MTM CubitronTM II Abrasives) and wheel texture customi-
sation [122]. Nevertheless, despite some remarkable advancements in abrasive tooling,
the accurate modelling of wheel geometry and the resulting grinding forces remains a
significant challenge to this day.

One of the complicating factors in understanding and modelling grinding at a micro level
is that not all the specific grinding energy is spent on actual cutting. The total specific
grinding energy is distributed among three mechanisms: sliding, ploughing and chip for-
mation [11]. Sliding refers to wear flats rubbing against the surface of the workpiece.
In this case, valuable grinding energy is consumed and wasted on heat generation, with-
out any material being removed from the workpiece. Ploughing describes a process by
which material is displaced but not removed from the workpiece. Again, grinding en-
ergy is consumed by material displacement, but no material is actually removed from the
workpiece. Chip formation is the ultimate goal of grinding. It is a mechanism by which
material is actually removed from the workpiece in the form of tiny chips. Therefore, as
far as material removal is concerned, all the grinding energy that is spent on sliding and
ploughing is essentially wasted. After Malkin and Guo (as presented in [11], p. 132), the
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(a) (b) (c)

Figure 2.7: Three separate grains demonstrating the three grinding mechanisms:
(a) sliding, (b) ploughing, and (c) chip formation

total specific grinding energy can be expressed as the sum of its three components, i.e.,
chip formation (uch), ploughing (upl) and sliding (usl):

u = uch + upl + usl. (2.2)

For the sake of clarity, the three grinding mechanisms described above are presented in
Figure 2.7 for three separate grains, however, one grain often contributes to all three
grinding mechanisms over a single cutting path.

The complexities of the wheel geometry give rise to grinding forces that are rather difficult
to predict accurately. Therefore, the next section reviews and discusses a number of
existing grinding force models along with their applications to chatter theory.

2.2.4 Review of force models

The literature presents three main approaches when it comes to modelling wheel geome-
try and the resulting grinding forces: idealised models, empirical models and stochastic
models. The terminology describing these three categories is primarily of the present
author, therefore, the following subsections are dedicated to explaining and summarising
them by reviewing the relevant papers and presenting the corresponding grinding force
models.

2.2.4.1 Idealised models

Idealised models are built on solid theoretical foundations, but also make a number of
assumptions and simplifications in order to deal with the uncertainty of grinding wheel
topography. Although these models often consider micro-level grinding (e.g. chip for-
mation, ploughing and sliding mechanisms), they tend to excessively simplify or even
altogether neglect the randomness of grinding wheel geometry. They describe a deter-
ministic system, attempting to approximate the stochastic one as closely as possible while
keeping the model simple enough and relatively easy to work with. Ultimately, it is a
compromise between accuracy and simplicity. Based on Malkin and Guo’s theory [11],
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this section presents the main steps of creating an idealised model in order to demonstrate
the advantages and limitations of this approach.

As it was stated before, the total specific grinding energy is the ratio of the total grinding
power to the volumetric material removal rate according to

u =
P

Qw

, (2.3)

where u is the total specific grinding energy, P is the total grinding power, and Qw is the
volumetric material removal rate. The total grinding power consists of three components,
corresponding to the three grinding force components: tangential, normal and axial.
However, the normal and axial contributions to the grinding power are usually negligible
relative to the tangential one. Also, due to the fact that the wheel speed is typically much
higher than the workpiece speed, the power consumption corresponding to the tangential
contribution can be calculated by multiplying the tangential grinding force component
by the circumferential speed of the grinding wheel. Thus the total grinding power can be
approximated as

P = Ftvg, (2.4)

where Ft is the tangential grinding force component, and vg is the circumferential speed
of the grinding wheel. It is important to note that the total grinding power described
above is always negative, as Ft always acts against vg, hindering the grinding action and
drawing power away from the grinding process. This mathematical fact simply means
that electric power has to be constantly supplied to the grinding machine in order to
sustain operation.

Based on experimental observations, it was proposed that the grinding force (and thus
the specific energy) can be considered as a sum of cutting and sliding components [120].
The cutting force component is responsible for displacing or removing material from
the workpiece, whereas the sliding force component is a result of abrasive particles rub-
bing against the workpiece without actually displacing or removing any material from
it. Consequently, the tangential grinding force component can be expressed as a sum of
the tangential cutting force component (Ft,c) and the tangential sliding force component
(Ft,sl) according to

Ft = Ft,c + Ft,sl, (2.5)

where Ft,sl is dependent on the collective area of wear flats, the average contact pressure
between the wear flats and the workpiece, and the coefficient of friction between the
wear flats and the workpiece. Since wheel wear only affects the sliding component of
the grinding force and the cutting component is constant for a given set of grinding
conditions, it is possible to derive the constant cutting component of the grinding force.
Combining Eqs. (2.3) and (2.4), and considering that the volumetric material removal
rate Qw is the product of the grinding width w, depth of cut δ and feed rate vw, the
cutting component of the tangential grinding force can be written as

F ′t,c = uc
vw
vg
δ, (2.6)

where the prime symbol indicates that the specific grinding force (grinding force per unit
grinding width) is used. The specific cutting energy denoted by uc is the sum of the
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specific chip formation and ploughing energies uch and upl. Equation (2.6) is one of the
simplest ways to formulate the cutting component of the tangential grinding force. It was
also found that, unlike F ′t,c, the cutting component of the total specific grinding energy
uc is not independent of the grinding conditions, but is a function of the specific material
removal rate (material removal rate per unit grinding width). Experiments reveal that
the specific cutting energy increases hyperbolically as the specific material removal rate
decreases [123–125]. This is the so-called ‘size effect’, and suggests that only part of the
specific cutting energy is actually related to chip formation. Thus there must be at least
one other grinding mechanism to absorb the rest of the specific cutting energy. This
is the mechanism of ploughing, and it was described in Section 2.2.3 and illustrated in
Figure 2.7.

The expressions listed above are primarily concerned with the tangential component of
the grinding force. However, the normal component can also be of interest, especially
when it comes to determining the resultant grinding force in a specific direction. The
sliding components of the tangential and normal grinding forces are connected by the
coefficient of friction (µ) between the wear flats and the workpiece according to

µ =
Ft,sl
Fn,sl

. (2.7)

A similar relationship can be established between the cutting components of the tangen-
tial and normal grinding forces Ft,c and Fn,c, however, both Ft,c and Fn,c consist of chip
formation and ploughing components denoted by Ft,ch, Ft,pl, Fn,ch and Fn,pl, respectively.
Experiments show that the chip formation components Ft,ch and Fn,ch increase linearly
with the specific material removal rate, while the ploughing components Ft,pl and Fn,pl
remain approximately constant, i.e., they are independent of the specific material removal
rate [123–125]. This is another way to come to the same conclusion that the specific chip
formation energy uch is constant, while the specific ploughing energy upl changes hyper-
bolically with the specific material removal rate. Consequently, Ft,c and Fn,c are constant
only for a given set of grinding conditions [11]. Although it is possible to establish a
relationship between them, the physical meaning behind the ratio of Ft,c to Fn,c is not
significant enough in terms of grinding chatter to be discussed in this review.

Therefore, it can be seen that an idealised approach does not consider the uncertainty
of grinding wheel topography, but assumes an ideal scenario and focuses on a quali-
tative description of the grinding forces, rather than being concerned with individual
abrasive particles. Consequently, the results are less accurate than those produced by
more complex and more sophisticated methods, however, an idealised model provides a
grinding force expression that is capable of describing self-excited vibration in a simple
yet theoretically well-founded way.

2.2.4.2 Empirical models

Empirical models are significantly different from idealised ones. They tend to provide
more accurate results than idealised models do – at the expense of relying on a number
of empirical constants, often with limited understanding of the physics behind them. This
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section presents the most widely accepted grinding force models in the literature, which
are used to this day to assess the stability properties of grinding processes.

The following model proposed by Inasaki et al. [126] defines the tangential component of
the grinding force as proportional to the specific material removal rate vwδ according to

F ′t = u

(
vw
vg
δ

)ε
, (2.8)

which is very similar to the idealised force model presented before, apart from two main
differences. Inasaki et al. do not consider the three grinding mechanisms separately, but
describe the tangential component of the grinding force based on what they simply call
the ‘specific grinding energy’ in one of their related articles [127]. The other difference
is that the relationship between the grinding force and the specific material removal rate
is no longer linear, however, the exponent of non-linearity ε in Eq. (2.8) is estimated
to be 0.9 by the authors [127], which is not far from a linear relationship. The biggest
advantage of this empirical model relative to the idealised one is that it is able to capture
the grinding force characteristics of a non-linear system as well. Recent publications have
shown little interest in Inasaki’s force model, however, it is still used at times due to its
relative accuracy and remarkable simplicity, especially when it comes to exploring certain
aspects of grinding which are already complicated regardless of the applied force model,
such as regenerative chatter in parallel grinding [117].

One of the most frequently used grinding force models was developed by Werner [128].
Articles to date demonstrate the validity and reliability of his work by successfully ap-
plying it to a number of problems in grinding dynamics [115, 129–133]. In terms of the
three grinding mechanisms, Werner considered sliding and chip formation but neglected
the effect of ploughing, assuming a high enough specific material removal rate for the
size effect to be negligible [11]. The grinding force model proposed by Werner can be
formulated as

F ′n = KWC
γ
s

(
vw
vg

)2ε−1

d1−εe δε, (2.9)

where de is the equivalent wheel diameter [11], and KW [force/grain] is a factor of pro-
portionality that defines the grinding force acting on a single grain. The coefficient Cs
[grains/area] is the so-called static cutting edge density, denoting the number of grains
over a unit area of the grinding wheel surface. The exponent γ converts the static cutting
edge density to a dynamic cutting edge density (i.e. Cd = Cγ

s ), which represents the den-
sity of active grains in the grinding process. It is important to note that active grains are
not necessarily cutting grains, but grains that become cutting grains when they reach the
grinding zone. Since the number of active grains can never exceed the number of all grains
(i.e. Cd ≤ Cs), the exponent γ ranges from 0 to 1. The product of KW and Cγ

s , whose SI
unit is [N/m2] or [J/m3], is closely related to the sliding and chip formation components
of the specific grinding energy. The experimental parameter ε ranges from 0.5 to 1, and
indicates the ratio between the sliding and chip formation mechanisms in the grinding
process. It is equal to 1 when sliding is negligible compared to chip formation, and 0.5
when sliding is significantly more dominant than chip formation. Substituting these two
extreme values of ε into Eq. (2.9), the resulting grinding force expressions correspond to
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pure chip formation and pure sliding, respectively:

F ′n,ch(ε→ 1) = KWC
γ
s

vw
vg
δ, (2.10)

F ′n,sl(ε→ 0.5) = KWC
γ
s (deδ)

1/2. (2.11)

It can be seen that ε = 1 provides an expression similar to Eqs. (2.6) and (2.8), whereas
in the case of ε = 0.5, the contact length (deδ)

1/2 appears in the grinding force expression,
indicating the dominance of sliding in the grinding process.

According to the results of Mishra and Salonitis [134], the empirical constants KW , Cs
and γ can be replaced by a single factor, leaving only two experimental parameters to
be determined, however, this simplification does not address the issue that Werner’s
grinding force model does not make a clear physical distinction between sliding and chip
formation. Nevertheless, Werner’s formula remains one of the most often-used force
models in grinding chatter theory [115,129–133].

The problem of separating the sliding and chip formation mechanisms was resolved by
Lichun et al. [135], who proposed a grinding force model similar to that of Werner:

F ′n = KL,ch
vw
vg
δ +KL,slC

β
s

(
vw
vg

)α
d

1−α
2

e δ
1+α
2 , (2.12)

where KL,ch and KL,sl are factors of proportionality, and α and β are empirical expo-
nents. Treating KL,slC

β
s as a single parameter, three experimental coefficients remain in

Eq. (2.12) instead of two as in Werner’s model. Although sliding and chip formation have
been successfully separated, ploughing is still not considered by the authors. Recent arti-
cles demonstrate that Lichun’s grinding force expression is not a particularly widespread
one, as it is barely used to study regenerative chatter. One example of Lichun’s model
being applied to self-excited vibration is the work of Yan et al. on plunge grinding [114].

A new grinding force model was developed by Durgumahanti et al. [136], considering all
three grinding mechanisms, including ploughing:

F ′n = KD,ch
vw
vg
δ +KD,pl

(
vw
vg

)D1

dD2
g δD3(deδ)

1/2 +KD,sl
vw
vg

(
δ

de

)1/2

, (2.13)

where dg is the grain diameter, and KD,ch, KD,pl, KD,sl, D1, D2 and D3 are experimental
parameters. This particular grinding force model is more sophisticated than the previous
three, however, it requires six empirical constants, which makes its application especially
laborious in practice. Similarly to Lichun’s grinding force expression, Durgumahanti’s
model is rarely used to study regenerative chatter, primarily because of its heavily em-
pirical nature. Nevertheless, Yan et al. have applied it to plunge grinding [116], but they
neglected the ploughing component of Eq. (2.13) and considered only sliding and chip
formation to formulate their grinding force expression.

Reviewing the literature, it can be concluded that even though the grinding force models
of Inasaki, Lichun and Durgumahanti are still used at times, the majority of modern
research papers prefer Werner’s model when it comes to investigating regenerative chatter
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in grinding. However, certain publications are so focused on the intricacies of self-excited
vibration that they intentionally apply the simplest grinding force models in order to
concentrate more fully on chatter [137,138].

It can be seen that empirical models – with the help of experimental constants – are able
to capture something of the inherent randomness of grinding. They generally provide
more accurate force results than idealised approaches, however, due to the very nature
of empirical models, they are based not only on theoretical considerations but also on
experimental observations. Because of this, an empirical model – although fairly accu-
rate and reliable – is somewhat restricted in its usage when it comes to theoretical and
practical applications, since the experimental constants required by the model need to be
determined in advance. Despite this rather limiting difficulty, certain empirical models
are still widely applied to grinding chatter theories due to the favourable trade-off they
produce between accuracy and simplicity.

2.2.4.3 Stochastic models

The third and last category of grinding force models investigated in this review is that of
stochastic approaches. Stochastic grinding force models are today’s most sophisticated
ways of connecting the grinding forces with the surface topography of the grinding wheel.
The main idea behind stochastic models is the replacement of oversimplified scenarios and
experimental constants (pertaining to idealised and empirical models respectively) with
probability distributions. The affected parameters include the shape, size and orientation
of abrasive grains and their distribution on the surface of the grinding wheel.

One of the first in-depth studies on the stochastic nature of grinding was published by Hou
and Komanduri [139], who determined the number and minimum diameter of contacting
and cutting grains and the average chip volume by statistical methods and compared
them with experimental results reported in the literature. They did not consider the
shapes and orientations of individual grains or their distribution on the surface of the
grinding wheel, but focused only on the grit size distribution and its effect on other
parameters, such as the number of contacting and cutting grains and the average chip
volume. They found that only a small fraction of grains contribute to chip formation,
and a large number of grains merely plough, slide or do not even come into contact with
the workpiece at all. The analytical model developed by Hou and Komanduri is based on
a number of assumptions and it is regarded by the authors as a ‘first approximation’ of
the stochastic nature of grinding processes. Despite their important findings, no grinding
force model is presented in their paper.

The random distribution of abrasive grains on the surface of the grinding wheel was
considered by Chang and Wang [140]. They developed a stochastic grinding force model
based on the convolution of a single-grit force expression and a random grain distribution
function, and verified it by experimental methods. The grinding force model presented
by Chang and Wang does not consider the shape, size and orientation distributions
of individual grains, but assumes the same single-grit force expression for each grain.
Practically speaking, the random grain distribution function and a couple of grinding
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coefficients are to be determined by experimental means, which makes Chang and Wang’s
approach a semi-analytical theory.

The stochastic distribution of abrasive grains was also investigated by Stȩpień [141], how-
ever, his study assumes a uniform grit distribution along the axial and circumferential
coordinates of the grinding wheel, and considers only the radial distribution of grains as
random or irregular. The probabilistic grinding force model proposed by Stȩpień takes
the shapes of abrasive grits into account as well, but does not consider their sizes and
orientations. The parametric expression describing the profile of each abrasive grit is
capable of generating an infinite number of grain shapes, however, the scenarios investi-
gated by the author focus only on two profiles – rounded and triangular. Although the
grain profile is a legitimate variable in Stȩpień’s model, it is identical for each grit of the
grinding wheel, resulting in a uniform grain shape distribution instead of a stochastic
one. Additionally, the identical grit profiles are constant in time as well, i.e., grit wear
is not considered by the author. Stȩpień’s findings agree with the observation that the
actual contact length between the grinding wheel and the workpiece is longer than the
geometric contact length, which has been generally attributed to the presence of elastic
deformation between the grinding wheel and the workpiece [142–146]. Since the paper
does not focus on grinding dynamics, no force model is presented by the author.

Aslan and Budak measured the topography of the grinding wheel using an optical method
[147]. Besides the number of active grains, the authors determined the shapes and ori-
entations of abrasive grits as well. After identifying the number of active grains and
measuring the rake angle and edge radius distributions of abrasive grits, a force model
analogous to milling is presented. The chip formation and ploughing force components
are considered, but sliding is neglected in the model. The tangential and normal com-
ponents of the total grinding force are expressed as a sum of individual grain forces
and validated by experimental means. The paper does not provide sufficient informa-
tion whether the stochastic distribution of abrasive grits on the surface of the grinding
wheel was investigated beyond measuring the number of active grains and considering
the average distance between two neighbouring grits. Consequently, the grinding force
model proposed by Aslan and Budak is a semi-analytical approach, because it requires
the experimental identification of the grinding wheel topography.

One of the most detailed and up-to-date grinding force models was developed by the same
authors, Aslan and Budak, as a continuation of their semi-analytical approach from the
previous year [148]. It is described by the authors as a significant improvement compared
to earlier cutting models of abrasive machining. Their theory is based on the calculation
of individual grain forces by taking into account both the primary and secondary shear
zones, thus modelling the chip flow and the pressure distribution on the grit rake face.
Once the topography of the grinding wheel (i.e. the height, width, rake angle, oblique
angle and edge radius distributions of abrasive grits) and the coefficient of friction between
the chip and the grit rake face are determined, the grain forces can be calculated. The
tangential and normal components of the total grinding force are obtained by integrating
the individual grain forces over the number of active grits. If the distance between two
neighbouring grains is smaller than the grit size, then the two grains intersect each other
and a single grain with multiple cutting edges is created. The grinding model developed
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Grinding
force model

Characteristic
approach

Accuracy Simplicity
Application
to chatter

Idealised
Simplifying
assumptions

Low High Occasionally

Empirical
Experimental
constants

Medium Medium Frequently

Stochastic
Probability
distributions

High Low Rarely

Table 2.3: Three types of grinding force models

by Aslan and Budak is capable of modelling such a complex phenomenon by considering
both the grain size and the distribution of abrasive grits on the surface of the wheel.
Therefore, the authors take into account all the stochastic grain parameters mentioned in
this section (shape, size, orientation and distribution), however, all of them are measured
by experimental methods, which means that Aslan and Budak’s improvement of their
own theory is detailed and realistic but remains a semi-analytical grinding force model.

Stochastic models that build on solid theoretical foundations yet preserve the inherently
random nature of grinding are superior to both idealised and empirical approaches in
accuracy and reliability. However, when it comes to complexity and applicability to
chatter theories, stochastic models are at a serious disadvantage. This is probably the
main reason why they are generally avoided and replaced by simpler approaches in the
literature, even though one of the core elements of a good grinding chatter theory is the
applied force model.

Additional stochastic models have been developed in recent years concerning different
research areas in grinding, such as grain wear [149] and microgrinding [150], however,
due to the fact that modern grinding chatter theories tend to avoid stochastic grinding
force models, these publications are not discussed in detail in this review.

In order to summarise the three types of grinding force models reviewed in this section,
Table 2.3 presents the main characteristics of each one. In conclusion, it can be stated
that the majority of research papers on grinding chatter prefer empirical approaches,
Werner’s force model in particular, as a good balance between accuracy and simplicity.

2.3 Summary of the literature review

In this chapter, the literature on regenerative machine tool chatter was reviewed. Al-
though much remains to be discovered and understood still, conventional machining has
been the focus of rigorous and fruitful research ever since the dangers and intricacies of
self-excited vibration were first addressed at the beginning of the 20th century. Follow-
ing a brief overview of regenerative chatter in conventional machining, a more thorough
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review of the literature was provided on regenerative chatter in abrasive machining. Hav-
ing considered the chronological development of the most pivotal chatter theories, it was
found that, although much has been achieved and clarified in an absolute sense, the cur-
rent understanding of regenerative chatter in abrasive processes still falls short of that
in conventional operations. This is primarily due to the inherent complexities involved
in abrasive machining, namely the significant wear and irregular geometry of abrasive
cutting tools in general, and – as far as this thesis is concerned – grinding wheels in
particular.

Therefore, these two aspects of grinding were addressed in more detail in this chapter. In
terms of wheel wear, it was demonstrated that material loss from the grinding wheel can
be either attritious or fracture wear, the latter of which contributes to the self-sharpening
of the wheel. Since this effect alone is not enough to keep the grinding wheel sharp, an
additional process called dressing is required. With regard to self-excited vibration, wheel
wear results in a unique phenomenon in grinding, which sets it apart from conventional
machining. This is the so-called doubly regenerative effect, which means that surface
regeneration occurs not only on the workpiece but on the grinding wheel as well. It was
also highlighted that the vast majority of chatter theories in the literature consider wheel-
related instability to be the consequence of distributed radial wear alone. Although Li
and Shin proposed an alternative approach by introducing the regenerative mechanism
of distributed grit dullness [108], their contribution has received little attention. In terms
of the geometry of the wheel at a micro level, the three grinding mechanisms of sliding,
ploughing and chip formation were discussed and related to chatter theory.

Furthermore, since the wear and geometry of the wheel have a direct impact on the
grinding force (which is of critical importance in chatter research), a number of grinding
force models were reviewed. They were classified according to three categories (idealised,
empirical and stochastic models) and evaluated according to four properties (character-
istic approach, accuracy, simplicity, and frequency of application in chatter research).
Depending on the level of accuracy required and the degree of complexity tolerated,
different grinding force models are at the researcher’s disposal.

Based on the present literature review, the following chapter elaborates on the gap in
knowledge that was briefly articulated in Section 1.4, and presents the aims and objectives
of the thesis in detail.
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Chapter 3

Aims and objectives of the thesis

As it was demonstrated by the works of previous authors in Section 2.2.1, grinding chatter
has been the subject of careful and extensive research since the 1950s. Somewhat lagging
behind conventional machining operations due to its inherently more complex nature,
grinding chatter is an actively pursued area of academic and industrial interest to this
day. Much has been accomplished over the past 70 years in the field of grinding dynamics
in terms of predicting and suppressing chatter vibrations, nevertheless, the complexity of
the problem leaves much to be discovered still – even at a fundamental level. Therefore,
instead of following the research trend set by recent papers on grinding chatter and
considering the problem alongside some other complicating factor (such as workpiece
imbalance or non-linear behaviour), this work goes back to the fundamental mechanisms
responsible for regenerative chatter in grinding in order to understand them better. It
focuses on a particular explanation for the origin of unstable grinding vibrations that
has received little attention ever since it was articulated and published in 2006 by Li
and Shin [108]. As it was discussed in detail in Section 2.2.1, these authors went beyond
the classical understanding of wheel-related grinding chatter, namely that wheel-related
instability is a result of distributed radial wear quantified by physical surface waves around
the circumference of the grinding wheel. They argued that besides this well-established
principle, there is another mechanism responsible for the onset of chatter vibrations
in grinding. This mechanism is associated with distributed grit dullness quantified by
specific energy waves around the circumference of the grinding wheel. Li and Shin’s new
approach, although closely related to the idea of radial wear, is fundamentally different
from previous grinding chatter theories published in the literature.

3.1 Proposal of a new regenerative mechanism

Figure 3.1 presents three approaches to describing the mechanism behind chatter in grind-
ing. It can be seen that the primary difference between them is the mechanism by which
regeneration progresses and instability develops.

In the classical case, physical surface waves are forming and growing on the wheel under

34



Figure 3.1: Three approaches describing the regenerative mechanism leading to chatter:
physical wheel surface, specific energy distribution

unstable circumstances, so the periodic grinding force variation necessary for chatter to
occur is generated by a non-circular wheel surface producing a varying depth of cut or
chip thickness – depending on the applied grinding force model. Even if the specific en-
ergy is constant and evenly distributed around the circumference of the grinding wheel,
instability can still develop solely as a result of the physical shape of the wheel being un-
even and wavy. This is the classical approach to wheel-related grinding chatter modelling,
and it is depicted in Figure 3.1a.

The novelty of Li and Shin’s idea lies in the fact that instability can be generated in
another way as well. According to their new theory, not only the radial wear but also the
grit dullness can be described as a quantity distributed around the circumference of the
grinding wheel. Therefore, besides physical surface waves, specific energy waves can be
forming and growing under unstable circumstances as well, so the grinding force variation
necessary for chatter to occur can be generated by a combination of two phenomena:
a varying chip thickness and a varying specific energy. It is fairly straightforward to
conclude that the phase difference between the physical surface waves and the specific
energy waves cannot be arbitrary, since a more worn section of the wheel corresponds
to both increased radial wear and increased grit dullness. Therefore, due to the fact
that severe wear is indicated by valleys in the physical surface waves and peaks in the
specific energy waves, the two are treated as constantly out of phase in Li and Shin’s
model, according to Figure 3.1b. As for the relative dominance of these two mechanisms,
the original authors refer to [120, 151] and state that the effects of radial wear and grit
dullness on the grinding forces are comparably significant.

However, neither of their references is concerned with grinding chatter in particular,
therefore, the relative significance of these two mechanisms with regard to chatter has not
been established until now. Although it is possible to compare some classical approaches
with Li and Shin’s theory and assess the relative significance of distributed radial wear
and distributed grit dullness in a preliminary fashion, a rigorous analysis comparing the
two mechanisms has not been performed yet. This is the first main gap in knowledge that
has been exposed by the literature review. Filling this gap would provide the researcher
with valuable information as to which regenerative mechanism is more dominant in a
given grinding scenario, and whether one is negligible relative to the other.
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Furthermore, since Li and Shin formulated their new theory considering both distributed
radial wear and distributed grit dullness, the significance of distributed grit dullness alone
(i.e. in an absolute sense, isolated from distributed radial wear) has not been assessed yet
either. This is the second main gap in knowledge exposed by a thorough review of the
literature. Similarly to the first one, it is possible to collect some preliminary information
regarding the dominance of distributed grit dullness by comparing a few classical theories
with Li and Shin’s model, but, as of today, a meticulous analysis that considers distributed
grit dullness in isolation from distributed radial wear cannot be found in the literature.
Filling this gap would provide valuable insight into the significance of distributed grit
dullness as a wheel regenerative mechanism, which is not part of mainstream grinding
chatter research to this day.

In summary, two main gaps in knowledge have been exposed by the literature review.
No rigorous analysis has been published until now that can provide clear and reliable
information on:

1. The relative significance of distributed radial wear and distributed grit dullness with
regard to process stability.

2. The dominance of distributed grit dullness and its capacity to generate wheel-related
instability on its own.

This thesis addresses the second gap. It begins to investigate the effect of distributed
grit dullness alone, and aims to determine its significance with regard to grinding chatter
– whether it is a mechanism strong enough to generate wheel-related instability on its
own or it merely supports and contributes to the effect of distributed radial wear as
a secondary mechanism. In order to test this, the effect of distributed radial wear is
disregarded in this study by assuming a perfectly circular wheel throughout the entire
grinding process. Only the specific energy is allowed to change around the circumference
of the wheel according to Figure 3.1c. Therefore, the primary aim of this thesis is to
formulate and test this new regenerative mechanism in such a way that the final piece of
work is both clear and repeatable.

3.2 Selection of a suitable grinding process

In order to isolate the problem of wheel-related instability induced by specific energy
waves around the circumference of the grinding wheel, single-pass surface grinding is
considered to eliminate the potential for workpiece regeneration as much as possible.
Using surface grinding instead of cylindrical grinding removes the regenerative effect as-
sociated with the rotating workpiece. Also, considering only a single wheel pass instead
of multiple ones prevents a kind of workpiece regeneration that is initiated by recutting
the same workpiece surface multiple times. This type of workpiece regeneration is similar
to that in cylindrical grinding, but it is interrupted rather than continuous, which is typ-
ically a hindrance to chatter development, but it can still lead to instability. Therefore,
using single-pass surface grinding instead of any other grinding operation immediately
eliminates two potential sources of workpiece regeneration from the system, however, a
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third one remains inherently in the process. Theoretically speaking, single-pass surface
grinding is capable of experiencing workpiece regeneration and workpiece-related insta-
bility in the same way as a milling process can, i.e., through one tooth cutting a wavy
workpiece surface left behind by the previous tooth. Although this kind of workpiece
regeneration is unlikely to occur in grinding due to the large number of cutting edges
inherently involved in the process, it is still useful not only to keep it in mind but also to
confirm that it is truly negligible for all practical purposes. This investigation is another
objective of this work.

3.3 Summary of aims and objectives

The aim of this research is to develop a new grinding chatter theory based on the wheel
regenerative mechanism of distributed grit dullness alone, apart from any effect of dis-
tributed radial wear, and calculate its stability predictions for single-pass surface grinding.

The objectives of this work are to:

1. Confirm the predominant assumption of the literature according to which the effect
of parametric excitation on grinding stability is negligible due to the large number of
cutting edges. This objective is equivalent to checking whether workpiece regeneration
is truly negligible in single-pass surface grinding.

2. Construct a mechanical model that is capable of describing distributed grit dullness
as the sole regenerative mechanism in the grinding system.

3. Develop a mathematical model of the problem by deriving the equation of motion that
governs the dynamics of the grinding process.

4. Determine the stability properties of the governing equation of motion and present
the results in the form of stability diagrams and, in the case of instability, chatter
frequencies.

5. Perform enough surface grinding experiments to test the theoretical model against
experimental data in such a way that is repeatable and informative with regard to the
validity of the proposed model.

6. Compare and discuss the theoretical and experimental results with reference to their
novelty, impact and the future work to which they potentially lead.

3.4 Structure of the rest of the thesis

The two main objectives presented in Sections 3.1 and 3.2 – namely exploring the pos-
sibility of workpiece regeneration in single-pass surface grinding, and formulating a new
chatter theory based on the wheel regenerative mechanism of distributed grit dullness
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Workpiece
regeneration

Wheel
regeneration

Research question to be answered

Chapter 4 Considered Neglected Can workpiece-related instability occur?

Chapter 5 Neglected Considered Can wheel-related instability occur?

Table 3.1: Theoretical investigations for single-pass surface grinding

alone – constitute the theoretical backbone of this work and define the topics of the
following two chapters as well. Therefore, Chapter 4 is dedicated to investigating the
possibility of workpiece regeneration in single-pass surface grinding, while Chapter 5
contains the analytical formulation of a chatter theory based on the new regenerative
mechanism proposed in Section 3.1. These two theoretical scenarios are summarised in
Table 3.1 in order to articulate the main objectives of this research in a clear and concise
fashion. After all the theoretical work, Chapter 6 presents a detailed report on a number
of surface grinding experiments performed to test the validity of the proposed chatter
theory. The thesis is concluded in Chapter 7 with a comprehensive discussion about the
obtained results and a list of potential opportunities for future work.
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Chapter 4

Workpiece regeneration in
single-pass surface grinding

As it was stated in Chapter 3, the primary objective of this chapter is to answer the
question whether single-pass surface grinding can be affected by workpiece regeneration
in such a way that leads to stability issues in practical applications. Having eliminated
two potential sources of workpiece regeneration from the process by considering surface
grinding instead of cylindrical grinding and a single pass instead of multiple passes, the
only remaining possibility for workpiece regeneration to occur is to have rapid surface
regeneration take place in the grinding zone as one cutting edge machines the workpiece
surface left behind by another, just like it happens in milling [43, 46, 47]. Although such
a phenomenon is unlikely to develop due to the large number of grains on the wheel,
this chapter is dedicated to providing a mathematically well-founded argument for this
suspicion.

In order to simplify the problem under consideration, wheel wear and thus wheel regen-
eration are neglected in this study, and the grinding wheel is assumed to behave like a
milling tool with many cutting edges. Because of this assumption, an important dis-
tinction can be made right at the start with regard to the distribution of grains around
the circumference of the grinding wheel: they can be either regular (evenly spaced) or
irregular (randomly spaced). Therefore, the rest of this chapter is divided into two main
parts accordingly. Although a regular grit distribution describes an impractical scenario,
as grains are typically randomly spaced on the wheel, it is still helpful to consider the
simpler case first and build the more complicated theory on that. After investigating
these two scenarios, the chapter is concluded with a summary of the main results.

4.1 Regular grain distribution

Therefore, for the sake of simplicity, a regular grain distribution is considered first. The
flow of this particular investigation is as follows. In order to assess whether workpiece
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Figure 4.1: A two-dimensional, single-degree-of-freedom mechanical model of single-pass
surface grinding (up-grinding)

regeneration can lead to instability in single-pass surface grinding, the equation of mo-
tion of the system has to be derived. The formulation of the equation of motion depends
heavily on the force expression employed, however, since the grinding wheel is modelled
as a milling tool in this study, the typical force models reviewed in Section 2.2.4 cannot
be used here. This is not a big issue though, as milling force models are well estab-
lished in the literature [35]. They are based on the chip thickness (whereas grinding
force models usually rely on the depth of cut), which can vary according to the oscilla-
tions of the cutting tool. Therefore, researchers differentiate between static and dynamic
chip thicknesses [35]. The static chip thickness corresponds to steady-state machining
conditions, so it is unaffected by the unwanted vibrations of the cutting tool, while the
dynamic chip thickness is the part of the total chip thickness that is originating from tool
vibration. Thus the total chip thickness is a sum of its static and dynamic components.
Consequently, in order to derive the equation of motion of the system for the purpose of
assessing process stability, the chip thickness has to be determined first, then the cutting
force second. Therefore, the structure of this section follows the flow described above,
starting with the formulation of the chip thickness expression.

4.1.1 Mechanical model

Before constructing the mathematical representation of the problem, a mechanical model
has to be created that is capable of capturing the phenomenon under investigation. Thus
the mechanical model serves the purpose of simplifying the system to the greatest pos-
sible degree suitable for analysing workpiece regeneration in single-pass surface grinding.
Therefore, a single-degree-of-freedom mechanical model of the system is considered and
presented in Figure 4.1. It can be seen that the grinding wheel of radius Rg is allowed
to oscillate relative to the workpiece only in the direction of the depth of cut. The dis-

40



Rg

ϕ

hs(ϕ)

hs,max

Figure 4.2: Variation of the static chip thickness in the grinding zone

placement of the centre of the wheel is described by the general coordinate x, and it is
zero when the spring force is zero. The modal parameters of the grinding wheel, namely
its modal mass, modal damping and modal stiffness, are denoted by m, c and k, respec-
tively. Since the damping and stiffness characteristics of the wheel are described by a
single constant each, it can be seen that both of them are assumed to be linear in the
proposed model. The workpiece is fed to the wheel at a depth of cut of δ and a feed rate
of vw. Due to the fact that single-pass surface grinding is considered, the length of the
workpiece is assumed to be infinite. The wheel rotates at a speed of ωg in a clockwise
direction, so combined with the direction of the feed rate, the resulting configuration is
up-grinding (i.e. the circumferential speed of the wheel is opposite to the linear speed of
the workpiece). The variables corresponding to the contact zone will be addressed and
explained later. It is important to note at this stage that a possible way to improve the
proposed mechanical model is to extend it to multiple degrees of freedom.

4.1.2 Mathematical model

The mathematical model of the system is constructed in four stages, corresponding to the
following four subsections. First, the static chip thickness is formulated based on steady-
state machining conditions, then, considering the potential vibrations of the grinding
wheel, the dynamic chip thickness is derived. Combining the two yields the total chip
thickness, which is necessary to determine the grinding force. Once the grinding force
has been obtained, the equation of motion can be formulated with relative ease.

4.1.2.1 Static chip thickness

The variation of the static chip thickness in the grinding zone is presented in Figure
4.2. It can be seen that the change is sinusoidal with respect to the angular coordinate
ϕ, which describes the angular location of a particular chip thickness on the workpiece
relative to the point where the grains enter the grinding zone (as shown in Figure 4.1 as
well). Therefore, the static chip thickness cut by a single grit can be approximated as

hs(ϕ) = hs,max sinϕ, (4.1)

where hs,max corresponds to the theoretical maximum of the static chip thickness at
ϕ = π/2, and it can be determined by calculating the distance travelled by the workpiece
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over one grit-passing period τ . Since the grains are assumed to be evenly distributed
around the circumference of the wheel, the grit-passing period is constant and can be
simply calculated as the wheel period Tg divided by the number of grits Z, where the
grain density corresponds to a two-dimensional model of the grinding wheel, according
to Figure 4.3. Therefore, the theoretical maximum of the static chip thickness is

hs,max = vwτ = vw
Tg
Z

=
2πvw
ωgZ

. (4.2)

Substituting Eq. (4.2) into Eq. (4.1), the variation of the static chip thickness in the
grinding zone can be obtained as

hs(ϕ) =
2πvw
ωgZ

sinϕ. (4.3)

4.1.2.2 Dynamic chip thickness

Considering Figure 4.2, it is fairly easy to see that if the grinding wheel moves upward
(i.e. in the positive x-direction), then the chip thickness decreases, but if it moves down-
ward (i.e. in the negative x-direction), then the chip thickness increases. Therefore, the
dynamic chip thickness can increase in two ways. First, the grinding wheel is displaced
in the negative x-direction at the current time t, and second, the grinding wheel was
displaced in the positive x-direction one grit-passing period before the current time, i.e.,
at t− τ . Therefore, the dynamic chip thickness can be written as

hd(x, ϕ) = (x(t− τ)− x(t)) cosϕ, (4.4)

where the cosine term projects the vibration of the wheel into the direction of the chip
thickness. Thus the dynamic chip thickness varies with ϕ just as the static component,
however, the two are 90 degrees out of phase with each other – when one is zero, the
other reaches its minimum or maximum value and vice versa. There is a significant
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difference between the static and dynamic components of the chip thickness though –
the static chip thickness is independent of time, while the dynamic chip thickness is time
dependent through the vibration of the grinding wheel.

For the sake of completeness, it is noted that the vibration of the grinding wheel changes
not only the chip thickness but also the angles at which the cutting edges enter and exit
the grinding zone (and consequently the contact angle ϕc as well, according to Figure
4.1). However, taking this rather complex effect of arguably minor importance into ac-
count at this stage is outside the scope of this investigation. That is because the primary
mechanism potentially responsible for workpiece regeneration in single-pass surface grind-
ing is the variation of the chip thickness in the grinding zone, not the variation of the
grinding zone itself. Therefore, the angles characterising the contact zone are assumed
to be constant throughout this study.

Adding Eqs. (4.3) and (4.4) together, the total chip thickness – accounting for both
steady-state grinding and wheel vibration – becomes

h(x, ϕ) =
2πvw
ωgZ

sinϕ+ (x(t− τ)− x(t)) cosϕ. (4.5)

4.1.2.3 Grinding force

According to the classical milling theory [43, 46, 47], the force acting on a single tooth
depends on four main factors: (1) the chip thickness, (2) the chip width, (3) the so-
called normal and tangential cutting-force coefficients, and (4) whether the tooth under
consideration is in or out of cut – this is typically controlled by a unit step function that
is equal to one when the tooth is in cut and zero when it is out of cut. In order to apply
a milling force model to grinding, the grits on the wheel have to be considered like the
teeth of a straight-fluted milling tool according to Figure 4.3. Granted that the grains
are assumed to be straight and elongated in the axial direction so that the wheel looks
like a milling tool with many small cutting edges, the normal and tangential components
of the total force acting on a single grit can be formulated as

Fj,n(t) = gj(t)Knwh
q
j(t), (4.6)

Fj,t(t) = gj(t)Ktwh
q
j(t), (4.7)

where the general subscript j identifies each grain and thus runs from one to the total
number of grits on the wheel. The potentially non-linear dependence of the grinding
force on the total chip thickness is indicated by the cutting-force exponent q. The chip
width is denoted by w, and it is identical to the grinding width according to Figure 4.3
(depending on how much of the wheel is engaged, the grinding width can be less than or
equal to the wheel width). The normal and tangential cutting-force coefficients Kn and
Kt are well-established quantities in milling and define a relationship between the chip
cross section and the cutting forces. The unit step function selecting whether grit j is in
or out of cut is denoted by gj and defined as

gj(t) =

{
1 if ϕen ≤ ϕj(t) mod 2π ≤ ϕex,

0 otherwise,
(4.8)
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Figure 4.4: Defining ϕj for up-grinding (left) and down-grinding (right)

where ϕen and ϕex are the entering and exiting angles, i.e., the angles at which the grains
enter and exit the grinding zone. It is important to note that, although ϕen and ϕex
are simple to calculate, they differ for up-grinding and down-grinding. This difference
is graphically illustrated in Figure 4.4. The instantaneous angular position of grain j
around the circumference of the grinding wheel is ϕj and can be obtained as

ϕj(t) = ωgt+ j
2π

Z
. (4.9)

It can be seen that ϕj increases linearly with time, therefore, the modulo operation is
required to determine whether grit j is in or out of cut. This is denoted by ‘mod’ in
Eq. (4.8).

Depending on whether up-grinding or down-grinding is considered, the coordinate systems
corresponding to ϕ and ϕj may differ. Keeping in mind that ϕ is used to describe the
variation of the chip thickness in the grinding zone and ϕj identifies the angular location
of grit j around the circumference of the wheel, the traditional way of defining the origin
of ϕj is presented in Figure 4.4 for up-grinding and down-grinding. This is a typical
convention for milling [93], and will be used for grinding as well. Therefore, considering
Figure 4.4, it is easy to see that the relationship between ϕ and ϕj can be established
according to

ϕ =

{
ϕj for up-grinding,

π − ϕj for down-grinding,
(4.10)

which means that, substituting Eq. (4.10) into the trigonometric expressions in Eq. (4.5)
and utilising the well-known identities

sin(π − ϕj) = sinϕj, (4.11)

cos(π − ϕj) = − cosϕj, (4.12)

the total chip thickness cut by grit j becomes

hj(t) =
2πvw
ωgZ

sinϕj(t)± (x(t− τ)− x(t)) cosϕj(t), (4.13)

where the ± symbol corresponds to up-grinding and down-grinding, respectively. This
notation will be used throughout this chapter. It can be seen that, although the total
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chip thickness still depends on the angular location of grain j in the grinding zone, this
angular dependence has been replaced by time dependence through the rotational speed
of the grinding wheel.

In order to describe the vibrations of the wheel in the x-direction, the x-component
of the grinding force needs to be calculated by projecting the normal and tangential
components into the direction of the depth of cut. It is important to note that, although
the normal component of the grinding force always points towards the centre of the wheel,
the tangential component always acts against the rotation of the wheel and therefore its
direction depends on whether up-grinding or down-grinding is considered. Paying careful
attention to these details, the grit force in the x-direction can be obtained as

Fj,x(t) = ±Fj,n(t) cosϕj(t)∓ Fj,t(t) sinϕj(t), (4.14)

where the top and bottom signs correspond to up-grinding and down-grinding, respec-
tively. Substituting Eqs. (4.6) and (4.7) into Eq. (4.14), the grit force in the x-direction
becomes

Fj,x(t) = ±gj(t)whqj(t)(Kn cosϕj(t)−Kt sinϕj(t)). (4.15)

Summarising the individual grit forces, it is possible to obtain the total grinding force in
the x-direction:

Fx(t) = ±w
Z−1∑
j=0

gj(t)h
q
j(t)(Kn cosϕj(t)−Kt sinϕj(t)). (4.16)

It can be seen that the grains are summarised not from one to the total number of grits
but from zero to the total number minus one. That is because this formulation ensures
that the angular position of the first grain at the beginning of each simulation is zero
regardless of the total number of cutting points. In other words, this little mathematical
manoeuvre provides a constant and consistent reference point for future calculations.

4.1.2.4 Equation of motion

The equation of motion of the single-degree-of-freedom oscillatory system presented in
Figure 4.1 can be formulated as

mẍ(t) + cẋ(t) + kx(t) = Fx(t), (4.17)

where the dot symbol indicates the time derivatives of x(t). Dividing both sides by the
modal mass of the grinding wheel, it is possible to get

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) =

1

m
Fx(t), (4.18)

where ζ = c/(2mωn) and ωn =
√
k/m are the damping ratio and natural angular fre-

quency of the wheel, respectively. It is important to recognise that Eq. (4.18) is a
non-linear delay differential equation with respect to x, because the grinding force is
a non-linear function of the chip thickness whose dynamic component depends on the
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vibration of the grinding wheel. Therefore, in order to prepare the equation of motion for
a linear stability analysis, the chip thickness has to be linearised around the steady-state
oscillations of the system. To separate the steady-state solution from all other sources of
vibration, the displacement of the grinding wheel is assumed to have the form

x(t) = xp(t) + ξ(t), (4.19)

where xp(t) is a τ -periodic function corresponding to forced vibration caused by the
periodic excitation of the cutting edges, and ξ(t) is a small perturbation having the
potential to grow into unstable self-excited vibration (i.e. chatter). This decomposition
is a well-established method in classical milling stability theory [93].

Therefore, the chip thickness is to be linearised around the steady-state solution xp(t),
or equivalently, around ξ(t) ≡ 0. Substituting Eq. (4.19) into Eq. (4.13) and utilising the
fact that xp(t) is τ -periodic, i.e., xp(t) ≡ xp(t− τ), the chip thickness expression becomes

hj(t) =
2πvw
ωgZ

sinϕj(t)± (ξ(t− τ)− ξ(t)) cosϕj(t). (4.20)

Calculating the linear approximation, i.e. the first order Taylor expansion of hqj(t) around
ξ(t) ≡ 0, it is possible to obtain

hqj(t) ≈
(

2πvw
ωgZ

sinϕj(t)

)q
± q

(
2πvw
ωgZ

sinϕj(t)

)q−1
(ξ(t− τ)− ξ(t)) cosϕj(t). (4.21)

Substituting Eq. (4.21) into the grinding force expression in Eq. (4.16), it is clear that
– similarly to the chip thickness – the grinding force will also have static and dynamic
components. Therefore, the linearised grinding force in the x-direction can be decomposed
as

Fx(t) = Fx,s(t) + Fx,d(t), (4.22)

where the static and dynamic grinding force expressions are

Fx,s(t) = ±
(

2πvw
ωgZ

)q
w
Z−1∑
j=0

gj(t)(sinϕj(t))
q(Kn cosϕj(t)−Kt sinϕj(t)), (4.23)

Fx,d(t) = q

(
2πvw
ωgZ

)q−1
w

Z−1∑
j=0

gj(t)(sinϕj(t))
q−1(Kn cosϕj(t)−Kt sinϕj(t))×

× (ξ(t− τ)− ξ(t)) cosϕj(t). (4.24)

It can be seen that the static force is independent of the small perturbation ξ, while the
dynamic force depends on it. This is in fact the basis on which the static and dynamic
grinding force components have been separated.

Substituting Eqs. (4.19) and (4.22) into Eq. (4.18), the linearised equation of motion
becomes

ẍp(t) + 2ζωnẋp(t) + ω2
nxp(t) + ξ̈(t) + 2ζωnξ̇(t) + ω2

nξ(t) =
1

m
(Fx,s(t) + Fx,d(t)). (4.25)

Due to the fact that instability is caused by the perturbation term ξ and not the periodic
motion xp, the periodic solution can be detached from Eq. (4.25) without altering the
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stability properties of the system. Considering the steady-state part of the equation of
motion, i.e. ξ(t) ≡ 0 and thus Fx,d(t) ≡ 0, the undisturbed oscillations of the structure
are described by the equation

ẍp(t) + 2ζωnẋp(t) + ω2
nxp(t) =

1

m
Fx,s(t). (4.26)

Therefore, subtracting Eq. (4.26) from Eq. (4.25), the unwanted vibrations of the grinding
wheel – expressed purely as a function of ξ – have the form

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) = KsKd(t)(ξ(t− τ)− ξ(t)), (4.27)

whereKs andKd are the static and dynamic cutting-force coefficients respectively, defined
as follows:

Ks =
wq

m

(
2πvw
ωgZ

)q−1
, (4.28)

Kd(t) =
Z−1∑
j=0

gj(t)(sinϕj(t))
q−1 cosϕj(t)(Kn cosϕj(t)−Kt sinϕj(t)). (4.29)

It is important to note that, as their names suggest, the static cutting-force coefficient
is constant, while the dynamic cutting-force coefficient is a τ -periodic function of time.
Also, comparing Eqs. (4.23) and (4.24), it can be seen that the static grinding force
is dependent on whether up-grinding or down-grinding is considered (i.e. the ± signs
remain in the force expression), however, the dynamic grinding force is independent of
the surface grinding configuration (i.e. the ± signs cancel out). Therefore, up-grinding
and down-grinding differ only in terms of the entering and exiting angles as far as surface
grinding stability is concerned.

Concluding the derivation of the equation of motion, it can be seen that Eq. (4.27) is
a delay differential equation with time-periodic coefficients, reflecting a combination of
workpiece regeneration and parametric excitation in the system (more information on
this complex phenomenon can be found in Section 2.1 and Figure 2.4).

4.1.3 Stability analysis

The stability properties of Eq. (4.27) are investigated in this section. Due to the complex-
ity of the equation of motion – i.e. surface regeneration coupled with parametric excita-
tion, resulting in a delay differential equation with time-periodic coefficients – Eq. (4.27)
has no analytical solution in its current form. The problem can be reduced to a delay
differential equation with constant coefficients if the parametric excitation of the cutting
edges is negligible. This is usually the case when the number of cutting edges is high and
the radial immersion is large [93]. In grinding, the number of cutting edges is very high
indeed, however, the radial immersion can be very low, which means that neglecting the
intermittent nature of the process by replacing the time-periodic term with a constant is
not always justified. Therefore, further analysis is warranted.
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The primary issue presented by Eq. (4.27) can be mitigated by approximating the time-
periodic coefficient Kd(t) by its Fourier series. Depending on the number of harmonics
or Fourier terms considered, a desired ratio between the accuracy and simplicity of the
solution can be obtained in a controlled fashion. This is a well-established method when
it comes to assessing the stability of time-periodic systems [35]. Therefore, the dynamic
cutting-force coefficient can be represented by its Fourier series in the form

Kd(t) =
N∑

n=−N

cne
i 2πnt

τ , (4.30)

where N is the number of harmonics considered, and the Fourier coefficients denoted by
cn can be calculated as

cn =
1

τ

∫ τ

0

Kd(t)e
−i 2πnt

τ dt. (4.31)

Due to the fact that the Fourier coefficients play a key role in the stability analysis of
the system, they have to be calculated explicitly by evaluating the integral in Eq. (4.31).
Therefore, substituting Eq. (4.29) into Eq. (4.31), the Fourier coefficients become

cn =
1

τ

∫ τ

0

Z−1∑
j=0

gj(t)(sinϕj(t))
q−1 cosϕj(t)(Kn cosϕj(t)−Kt sinϕj(t))e

−i 2πnt
τ dt. (4.32)

Since the grit index j does not appear between the integral and the sum, i.e. inside the
integral yet outside the sum, the order of integration and summation does not change the
value of cn. Therefore, swapping the integral and the sum, the same Fourier coefficients
can also be obtained as

cn =
1

τ

Z−1∑
j=0

∫ τ

0

gj(t)(sinϕj(t))
q−1 cosϕj(t)(Kn cosϕj(t)−Kt sinϕj(t))e

−i 2πnt
τ dt. (4.33)

The difficulty of evaluating the integral above lies in the fact that the general coordinate
ϕj(t) and thus the integrand itself is different for each j. This problem can be visualised
by replacing the integrand with the symbol Ij(t) corresponding to a particular grain and
expanding the first few terms of the sum according to

cn =
1

τ

∫ τ

0

I0(t)dt+
1

τ

∫ τ

0

I1(t)dt+
1

τ

∫ τ

0

I2(t)dt+
1

τ

∫ τ

0

I3(t)dt+ . . . (4.34)

In order to obtain an explicit expression for the Fourier coefficients, the sum of the
integrals above has to be calculated, which is currently hindered by the fact that the
integrands are different in each term of the sum. However, considering Eq. (4.9), it can
be seen that the general coordinates ϕj(t) and thus the integrands Ij(t) are merely offset
versions of one another. Therefore, since the offset between two neighbouring grits is
constant as long as a regular grain distribution is assumed, the integrands can be made
identical by shifting the limits of integration in each term. The main idea is that –
according to Eq. (4.9) – grit j + 1 is always one grit-passing period ahead of grit j, i.e.,
ϕj+1(t) = ϕj(t+ τ). This mathematical manipulation transforms Eq. (4.34) into

cn =
1

τ

∫ τ

0

I0(t)dt+
1

τ

∫ 2τ

τ

I0(t)dt+
1

τ

∫ 3τ

2τ

I0(t)dt+
1

τ

∫ 4τ

3τ

I0(t)dt+ . . . (4.35)
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Considering every term of the sum, the Fourier coefficients become

cn =
1

τ

∫ τ

0

I0(t)dt+ · · ·+ 1

τ

∫ Zτ

(Z−1)τ
I0(t)dt =

1

τ

∫ Zτ

0

I0(t)dt =
1

τ

∫ Tg

0

I0(t)dt. (4.36)

Changing the variable of integration from t to ϕ0(t), where the relationship between the
two is established by Eq. (4.9), i.e. ϕ0(t) = ωgt, it is possible to get

cn =
1

ωgτ

∫ 2π

0

I0(ϕ0)dϕ0 =
Z

2π

∫ 2π

0

I0(ϕ0)dϕ0. (4.37)

Substituting the integrand back into Eq. (4.37), the Fourier coefficients can be written
as

cn =
Z

2π

∫ 2π

0

g0(ϕ0)(sinϕ0)
q−1 cosϕ0(Kn cosϕ0 −Kt sinϕ0)e

−inZϕ0dϕ0. (4.38)

And finally, applying the effect of g0(ϕ0) to Eq. (4.38), the Fourier coefficients can be
obtained in the explicit form

cn =
Z

2π

∫ ϕex

ϕen

(sinϕ0)
q−1 cosϕ0(Kn cosϕ0 −Kt sinϕ0)e

−inZϕ0dϕ0. (4.39)

Based on the number of harmonics or Fourier terms considered in Eq. (4.30), the literature
distinguishes between zero-frequency (N = 0) and multi-frequency (N ≥ 1) solutions [35],
which are discussed in detail in Sections 4.1.3.1 and 4.1.3.2.

4.1.3.1 Zero-frequency solution

The simplest way to assess the stability properties of Eq. (4.27) is to consider only the
constant term of the Fourier series of the dynamic cutting-force coefficient. According
to Eq. (4.30), that is Kd(t) ≡ c0. As long as the depth of cut is large enough, this is a
good approximation for grinding, since the intermittent nature of the cutting process is
negligible. In order to simplify the system even further, the relationship between the chip
thickness and the grinding force is assumed to be linear, i.e., the cutting-force exponent
q is considered to be one in Eqs. (4.6) and (4.7). Since the exact value of the cutting-
force exponent is of no major concern in this particular investigation, this is a reasonable
simplification. However, it is important to note that as a result of this assumption, the
feed rate vw is not going to feature in the stability analysis. That is because the static
cutting-force coefficient expressed in Eq. (4.28), which contains the feed rate for q 6= 1,
reduces to w/m for q = 1. Therefore, substituting Kd(t) ≡ c0 and q = 1 into Eq. (4.27),
the equation of motion of the system can be simplified to

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) =

wc0
m

(ξ(t− τ)− ξ(t)), (4.40)

where the constant Fourier term is identical to the zeroth Fourier coefficient:

c0 =
Z

2π

∫ ϕex

ϕen

cosϕ0(Kn cosϕ0 −Kt sinϕ0)dϕ0 =

=
Z

4π
(Kn(ϕc + cosϕc sinϕc)∓Kt(sinϕc)

2), (4.41)
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1

m(s2 + 2ζωns+ ω2
n)

wc0

e−τs

I(s) Φx(s) X(s)

+ +

+

−

Figure 4.5: Block diagram representation of Eq. (4.42)

and the ∓ symbol corresponds to up-grinding and down-grinding, respectively. Since the
parametric excitation of the cutting edges has been eliminated, the stability analysis of
Eq. (4.40) is fairly straightforward. It can be carried out using the Nyquist criterion
(discussed in detail in Appendix A), which determines the stability of a system in the
frequency domain. Therefore, taking the Laplace transform of Eq. (4.40) with zero initial
conditions, the frequency domain representation of the equation of motion reads as

(s2 + 2ζωns+ ω2
n)X(s) =

wc0
m

(e−τs − 1)X(s), (4.42)

where s is the complex Laplace frequency, and X(s) is the Laplace transform of ξ(t).
The block diagram representation of Eq. (4.42) is given in Figure 4.5, where the Laplace
transform of the grinding force is denoted by Φx(s), and the input function I(s) – normally
describing the forced vibration of the system – is set to zero in order to investigate the
stability properties of the regenerative process. Considering the fact that Figure 4.5
depicts a positive feedback system, the open-loop transfer function of the corresponding
negative feedback system can be written as

To(s) =
wc0(1− e−τs)

m(s2 + 2ζωns+ ω2
n)
. (4.43)

Applying the Nyquist criterion to Eq. (4.43), the stability boundaries of the system can
be calculated. Before that however, the multi-frequency solution is derived in order to
present the two sets of results together.

4.1.3.2 Multi-frequency solution

The multi-frequency solution considers a number of harmonics in Eq. (4.30), therefore, it
is inherently more accurate and more complex than the zero-frequency solution. Substi-
tuting Eq. (4.30) into Eq. (4.27), and continuing to assume a linear relationship between
the chip thickness and the grinding force, i.e. q = 1, the equation of motion becomes

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) =

w

m
(ξ(t− τ)− ξ(t))

N∑
n=−N

cne
i 2πnt

τ , (4.44)

where the Fourier coefficients can be calculated as

cn =
Z

2π

∫ ϕex

ϕen

cosϕ0(Kn cosϕ0 −Kt sinϕ0)e
−inZϕ0dϕ0. (4.45)

50



Although the integral above can be evaluated in closed form, the result is rather lengthy,
therefore, it is not presented here. Similarly to the zero-frequency solution, the stability
analysis of Eq. (4.44) can be carried out using the Nyquist criterion. Therefore, taking
the Laplace transform of Eq. (4.44) with zero initial conditions, it is possible to get

X(s)

G(s)
=

∫ ∞
0

(
w(ξ(t− τ)− ξ(t))

N∑
n=−N

cne
i 2πnt

τ

)
e−stdt, (4.46)

where G(s) = 1/(m(s2 + 2ζωns+ω2
n)) is the transfer function of the structural dynamics

of the system, defining a relationship between the grinding force and the wheel vibration
in the frequency domain according to Figure 4.5. The right-hand side of Eq. (4.46) can
be rearranged to obtain

X(s)

G(s)
= w

N∑
n=−N

cn

(∫ ∞
0

ξ(t− τ)ei
2πnt
τ e−stdt−

∫ ∞
0

ξ(t)ei
2πnt
τ e−stdt

)
. (4.47)

Utilising the frequency shifting property of the Laplace transform, according to which∫ ∞
0

f(t)eate−stdt = F (s− a), (4.48)

where a is arbitrary and F (s) is the Laplace transform of f(t), it is possible to get

X(s)

G(s)
= w

N∑
n=−N

cn

(
e−τ(s−i

2πn
τ )X

(
s− i2πn

τ

)
−X

(
s− i2πn

τ

))
, (4.49)

which can be further simplified to

X(s)

G(s)
= w(e−τs − 1)

N∑
n=−N

cnX

(
s− i2πn

τ

)
. (4.50)

Although Eq. (4.50) defines a closed-form expression for the wheel vibration X, the cor-
responding open-loop transfer function is not straightforward to calculate, because the
arguments of X are not identical, but offset versions of one another. Therefore, in order to
obtain the open-loop transfer function from Eq. (4.50), further mathematical manipula-
tions are required. The following steps are largely based on the harmonic transfer function
approach introduced by Sims to determine the stability of variable helix tools [152].

Introducing the grit-passing frequency ωp = 2π/τ = Zωg, and substituting s = iω,
which gives the Fourier transform or frequency response of the system, Eq. (4.50) can be
rearranged as

X(iω) = w
(
e
−2πi ω

ωp − 1
)
G(iω)

N∑
n=−N

cnX(iω − inωp). (4.51)

It can be seen in Eq. (4.51) that the wheel vibration X at any frequency ω contains
components from a number of harmonics. In other words, the wheel vibration at any fre-
quency depends on the same vibration at a number of other frequencies as well. Therefore,
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generalising Eq. (4.51) by substituting ω = ω+pωp, the frequency response of the system
can be calculated at any harmonic according to

X(iω + ipωp) = w

(
e
−2πiω+pωp

ωp − 1

)
G(iω + ipωp)

N∑
n=−N

cnX(iω + ipωp − inωp). (4.52)

Introducing q = p− n, so that n = p− q, it is possible to get

X(iω + ipωp) = w

(
e
−2πiω+pωp

ωp − 1

)
G(iω + ipωp)

N∑
p−q=−N

cp−qX(iω + iqωp). (4.53)

Using the index notations

x̂p(iω) = X(iω + ipωp), (4.54)

ĝp,p(iω) = w

(
e
−2πiω+pωp

ωp − 1

)
G(iω + ipωp), (4.55)

ĥp,q = cp−q, (4.56)

x̂q(iω) = X(iω + iqωp), (4.57)

Eq. (4.53) can be written in the compact form

x̂p(iω) = ĝp,p(iω)
N∑

p−q=−N

ĥp,qx̂q(iω), (4.58)

where both p and q run from −∞ to +∞. For the sake of clarity and understanding,
Eq. (4.58) is presented in matrix form as well:

...
x̂−1
x̂0
x̂1
...

=



. . .
...

...
... . .

.

· · · ĝ−1,−1 0 0 · · ·
· · · 0 ĝ0,0 0 · · ·
· · · 0 0 ĝ1,1 · · ·

. .
. ...

...
...

. . .





. . .
...

...
... . .

.

· · · ĥ−1,−1 ĥ−1,0 ĥ−1,1 · · ·
· · · ĥ0,−1 ĥ0,0 ĥ0,1 · · ·
· · · ĥ1,−1 ĥ1,0 ĥ1,1 · · ·

. .
. ...

...
...

. . .





...
x̂−1
x̂0
x̂1
...

. (4.59)

It can be seen that x̂p(iω) and x̂q(iω) represent the same column vector with different
indices. Therefore, a new closed-form expression has been derived for the wheel vibration
X, but this time, the arguments of X are identical. The cost of this transformation
was that ĜH(iω) = ĝp,p(iω)ĥp,q, which is the open-loop transfer function of the positive
feedback system, is now a doubly infinite matrix. Although this is a major increase in
complexity, Sims lays out a number of ways to simplify ĜH(iω), such as exploiting its
periodicity and symmetry, and truncating it based on the high-frequency behaviour of
G(iω). These are not presented here at length, the details are provided in [152].

Having derived the open-loop transfer function of the system for both the zero-frequency
and the multi-frequency solutions, the following section presents and discusses the sta-
bility results obtained by these two approaches.
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m [kg] ζ [%] fn [Hz] Kn [N/m2] Kt [N/m2] Rg [mm]

5 5 200 2× 108 6× 108 110

Table 4.1: Modal and cutting parameters corresponding to Figures 4.6 and 4.7

4.1.4 Stability results

The stability boundaries corresponding to a regular grain distribution are presented in
Figures 4.6 and 4.7 for two rather extreme depths of cut (0.02 and 6 mm) in order to
demonstrate the effect of radial immersion on process stability. Every other parame-
ter is identical in the two cases. These constants are summarised in Table 4.1, where
fn = ωn/(2π) is the natural frequency of the grinding wheel in Hertz. The normal and
tangential cutting-force coefficients were chosen based on the ones reported in [153] for
milling. The only parameter that varies in each subplot is the number of cutting edges:
three values have been considered (50, 100 and 500), all of which are much lower than
what is expected in practice. However, they were selected in this way for a reason, i.e., to
demonstrate the overall effect of Z as clearly as possible. It can be seen that increasing
the number of cutting edges stabilises the process relatively quickly. Although the ab-
solute stability limit (corresponding to a width of cut below which the process is stable
irrespective of the wheel speed) moves slightly downwards, the biggest lobe rises and
moves to the left, resulting in an overall increase in stability. Therefore, considering the
general trend demonstrated by each subplot in Figures 4.6 and 4.7, it can be concluded
that single-pass surface grinding is always stable with respect to workpiece regenerative
chatter, due to the fact that the number of cutting edges is in the order of thousands or
even tens of thousands in practice.

Although the primary objective of this section has been achieved, it is interesting to note
the effect of radial immersion on process stability. It can be seen that for a low depth of
cut, there is a significant difference between the zero-frequency and multi-frequency solu-
tions. That is because for a low radial immersion, the intermittent nature of the grinding
process cannot be neglected, i.e., the effect of parametric excitation is so dominant that
approximating the dynamic cutting-force coefficient by the constant term of its Fourier
series yields a highly inaccurate result. However, for a low depth of cut, there is no major
difference between up-grinding and down-grinding operations – the stability diagrams are
nearly identical in the two scenarios. Considering the high radial immersion case, the dif-
ference between the zero-frequency and multi-frequency solutions is not very significant,
indicating the fact that the effect of parametric excitation is negligible, i.e., assuming
a constant dynamic cutting-force coefficient gives a fairly accurate result. In this case,
however, there is a more prominent difference between up-grinding and down-grinding –
the former is a more stable configuration. Furthermore, low immersion grinding is signif-
icantly more stable with respect to workpiece regeneration than high immersion grinding
(note the scales of the width of cut axes in Figures 4.6 and 4.7). But since the overall
conclusion of this section is that workpiece-related instability does not affect single-pass
surface grinding in practice, the stability results summarised in Figures 4.6 and 4.7 are
not discussed in any further detail.
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Figure 4.6: Stability boundaries corresponding to a regular grain distribution for a
depth of cut of 0.02 mm: Z = 50, Z = 100, Z = 500

Figure 4.7: Stability boundaries corresponding to a regular grain distribution for a
depth of cut of 6 mm: Z = 50, Z = 100, Z = 500
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Although an irregular grain distribution certainly disturbs the regenerative effect and
increases stability even further, it is presented in the next section for the sake of com-
pleteness and practical understanding, as it provides much more realistic insight into the
inherently random nature of grinding than a regular grain distribution model does.

4.2 Irregular grain distribution

This investigation follows the same flow of thought as that corresponding to a regular
grain distribution. Since the mechanical models are identical in the two cases (i.e. Figure
4.1 can describe both regular and irregular grain distributions), the mathematical model
of the problem is considered right away.

4.2.1 Mathematical model

Due to the fact that the derivation of the equation of motion was presented at length in
Section 4.1, the following analysis focuses on explaining the differences between the two
scenarios instead of repeating the same steps in detail. Based on Eq. (4.27), the equation
of motion corresponding to an irregular grain distribution can be formulated as

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) = Ks

Z−1∑
j=0

Kd(t)(ξ(t− τj)− ξ(t)), (4.60)

where the static and dynamic cutting-force coefficients, Ks and Kd(t), are defined as

Ks =
wq

m

(
2πvw
ωgZ

)q−1
, (4.61)

Kd(t) = gj(t)(sinϕj(t))
q−1 cosϕj(t)(Kn cosϕj(t)−Kt sinϕj(t)). (4.62)

There are three main differences between Eqs. (4.27) and (4.60). First, the time delay is
no longer uniform but stochastic across the cutting edges. Second, as a result of this, the
difference of the current and delayed positions of the grinding wheel cannot be taken out
of the sum. And third, the instantaneous angular position of grain j becomes

ϕj(t) = ωgt+ j
2π

Z
+ ρj, (4.63)

where ρj is a random constant for each grain, which can be generated according to
a number of probability distributions, such as uniform or normal. Chosen from the
symmetric interval ρj ∈ (−π/Z,+π/Z), the total range of ρj is equal to the pitch angle
between two grits corresponding to a regular grain distribution, i.e., 2π/Z.

4.2.2 Stability analysis

Similarly to the regular grain distribution case, Eq. (4.60) has no analytical solution in its
current form, but this problem can be resolved by considering the Fourier series approxi-
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mation of the dynamic cutting-force coefficient again, which is a Tg-periodic function now
due to the stochastic distribution of the cutting edges around the circumference of the
grinding wheel. Therefore, taking the Fourier series approximation of Kd(t), it is possible
to get

Kd(t) =
N∑

n=−N

cne
i 2πnt
Tg , (4.64)

where the Fourier coefficients can be found in the form

cn =
1

Tg

∫ Tg

0

Kd(t)e
−i 2πnt

Tg dt. (4.65)

Substituting Eq. (4.62) into Eq. (4.65), the Fourier coefficients can be calculated as

cn =
1

Tg

∫ Tg

0

gj(t)(sinϕj(t))
q−1 cosϕj(t)(Kn cosϕj(t)−Kt sinϕj(t))e

−i 2πnt
Tg dt. (4.66)

Changing the variable of integration from t to ϕj, where the relationship between the two
is established by Eq. (4.63), it is possible to get

cn =
1

ωgTg

∫ 2π+j 2π
Z

+ρj

j 2π
Z

+ρj

gj(ϕj)(sinϕj)
q−1 cosϕj . . .

. . . (Kn cosϕj −Kt sinϕj)e
−in(ϕj−j 2πZ −ρj)dϕj. (4.67)

The current limits of integration show that each grain (regardless of its starting point)
is to be considered for one full revolution of the grinding wheel. Due to the fact that
gj(ϕj) = 0 unless ϕen ≤ ϕj mod 2π ≤ ϕex, it is possible to write

cn =
ein(j

2π
Z

+ρj)

2π

∫ ϕex

ϕen

(sinϕj)
q−1 cosϕj(Kn cosϕj −Kt sinϕj)e

−inϕjdϕj. (4.68)

For the sake of clarity with regard to future calculations, the Fourier coefficients are
represented from now on in the short form

cn = Cne
in(j 2πZ +ρj), (4.69)

where the parameter Cn is independent of j and stands for

Cn =
1

2π

∫ ϕex

ϕen

(sinϕj)
q−1 cosϕj(Kn cosϕj −Kt sinϕj)e

−inϕjdϕj. (4.70)

It can be seen that the Fourier coefficients are dependent on j for an irregular grain
distribution, while Eq. (4.39) shows that they were independent of j in the regular case.
Based on the number of harmonics or Fourier terms considered, one can again distinguish
between zero-frequency and multi-frequency solutions.
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4.2.2.1 Zero-frequency solution

Neglecting all harmonics and considering the constant Fourier term alone, the equation
of motion becomes

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) =

wc0
m

Z−1∑
j=0

(ξ(t− τj)− ξ(t)), (4.71)

where the relationship between the chip thickness and the grinding force has been assumed
to be linear again, so the constant Fourier coefficient can be calculated as

c0 =
1

2π

∫ ϕex

ϕen

cosϕj(Kn cosϕj −Kt sinϕj)dϕj =

=
1

4π
(Kn(ϕc + cosϕc sinϕc)∓Kt(sinϕc)

2), (4.72)

which is exactly the same as Eq. (4.41), except for the multiplication by Z, which is
retained in Eq. (4.71) in the form of a sum. Similarly to the regular grain distribution
case, the stability of the system will be assessed by the Nyquist criterion. Therefore,
taking the Laplace transform of Eq. (4.71), it is possible to get

(s2 + 2ζωns+ ω2
n)X(s) =

wc0
m

(
Z−1∑
j=0

e−τjs − Z

)
X(s). (4.73)

Therefore, the open-loop transfer function of the negative feedback system reads as

To(s) =
wc0

(
Z −

∑Z−1
j=0 e

−τjs
)

m(s2 + 2ζωns+ ω2
n)

. (4.74)

Comparing Eqs. (4.43) and (4.74), it can be seen that the main difference between the
two transfer functions lies in the exponential term that contains the time delay. Similarly
to the regular grain distribution case, the stability results corresponding to Eq. (4.74)
will be presented together with those of the multi-frequency solution.

4.2.2.2 Multi-frequency solution

Considering multiple harmonics in Eq. (4.64) and substituting it back into Eq. (4.60),
the equation of motion of the system has the form

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) =

w

m

Z−1∑
j=0

N∑
n=−N

cne
i 2πnt
Tg (ξ(t− τj)− ξ(t)), (4.75)

where the cutting-force exponent q has been assumed to be one again. Substituting
Eq. (4.69) and rearranging Eq. (4.75), it is possible to get

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) =

w

m

N∑
n=−N

Cn

Z−1∑
j=0

ein(j
2π
Z

+ρj)einωgt(ξ(t− τj)− ξ(t)). (4.76)
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Taking the Laplace transform of Eq. (4.76), and substituting G(s) = 1/(m(s2 + 2ζωns+
ω2
n)) for the structural dynamics of the system again, the equation of motion becomes

X(s)

G(s)
=

∫ ∞
0

(
w

N∑
n=−N

Cn

Z−1∑
j=0

ein(j
2π
Z

+ρj)einωgt(ξ(t− τj)− ξ(t))

)
e−stdt. (4.77)

Taking all the time-independent terms out of the integral, Eq. (4.77) can be written as

X(s)

G(s)
= w

N∑
n=−N

Cn

Z−1∑
j=0

ein(j
2π
Z

+ρj) . . .

. . .

(∫ ∞
0

ξ(t− τj)einωgte−stdt−
∫ ∞
0

ξ(t)einωgte−stdt

)
. (4.78)

Utilising the frequency shifting property of the Laplace transform again, the integrals
above can be evaluated such that Eq. (4.78) becomes

X(s)

G(s)
= w

N∑
n=−N

Cn

Z−1∑
j=0

ein(j
2π
Z

+ρj)(e−τj(s−inωg)X(s− inωg)−X(s− inωg)). (4.79)

Substituting s = iω in order to get the Fourier transform, i.e., the frequency response of
the system, it is possible to obtain

X(iω) = wG(iω)
N∑

n=−N

Cn

Z−1∑
j=0

ein(j
2π
Z

+ρj) . . .

. . . (e−τj(iω−inωg)X(iω − inωg)−X(iω − inωg)). (4.80)

Factoring out X(iω − inωg), Eq. (4.80) can be further simplified to

X(iω) = wG(iω)
N∑

n=−N

CnX(iω − inωg)
Z−1∑
j=0

ein(j
2π
Z

+ρj)(e−τj(iω−inωg) − 1). (4.81)

Substituting ω = ω + pωg, Eq. (4.81) can be generalised according to

X(iω + ipωg) = wG(iω + ipωg) . . .

· · ·
N∑

n=−N

CnX(iω + ipωg − inωg)
Z−1∑
j=0

ein(j
2π
Z

+ρj)(e−τj(iω+ipωg−inωg) − 1). (4.82)

Introducing q = p− n again, so that n = p− q, it is possible to get

X(iω + ipωg) = wG(iω + ipωg) . . .

· · ·
N∑

p−q=−N

Cp−qX(iω + iqωg)
Z−1∑
j=0

ei(p−q)(j
2π
Z

+ρj)(e−τj(iω+iqωg) − 1). (4.83)
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Using the index notations

x̂p(iω) = X(iω + ipωg), (4.84)

ĝp,p(iω) = wG(iω + ipωg), (4.85)

ĥp,q(iω) = Cp−q

Z−1∑
j=0

ei(p−q)(j
2π
Z

+ρj)(e−τj(iω+iqωg) − 1), (4.86)

x̂q(iω) = X(iω + iqωg), (4.87)

Eq. (4.83) can be written in the compact forms

x̂p(iω) = ĝp,p(iω)
N∑

p−q=−N

ĥp,q(iω)x̂q(iω), (4.88)

X̂(iω) = ĜH(iω)X̂(iω), (4.89)

where, similarly to the regular grain distribution case, the open-loop transfer function
ĜH(iω) is a doubly infinite matrix that can be simplified according to the principles
mentioned in Section 4.1 and described in greater detail in [152].

4.2.3 Results and observations

The stability boundaries corresponding to an irregular grain distribution are presented
in Figure 4.8 for the same grinding parameters as those listed in Section 4.1.4. These
calculations are computationally expensive, significantly more than the regular grain
distribution case, that is why the stability diagrams are presented for only one depth of
cut and that is why the resolution of the stability boundaries is noticeably lower than that
corresponding to a regular grain distribution. Nevertheless, the overall conclusion that
can be drawn from Figure 4.8 is the same as that pertaining to Figures 4.6 and 4.7, i.e.,
increasing the number of cutting points to practical values stabilises the process to such
an extent that workpiece regeneration cannot be the source of instability in single-pass
surface grinding.

Additionally, the presented theory is in agreement with the well-known stabilising effect of
an irregular cutting edge distribution. In milling, for example, the stability of the process
can be improved by using variable pitch tools [50, 51, 154], which is fundamentally the
same idea – the regenerative effect is disrupted by an uneven distribution of cutting points
around the circumference of the tool. The difference in stability between a regular and
an irregular grain distribution is presented in Figure 4.9. It can be seen that an irregular
grain distribution results in a significantly more stable process than a regular one.

Thirdly, the author has noticed that increasing the number of irregularly distributed
cutting edges gives more consistent stability boundaries. In other words, two randomly
generated grain distributions produce two different stability diagrams, and increasing
the number of cutting points reduces the difference between these two sets of stability
boundaries. This somewhat intuitive result is demonstrated in Figure 4.10. However, the
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Figure 4.8: Stability boundaries corresponding to an irregular grain distribution for a
depth of cut of 6 mm: Z = 50, Z = 100, Z = 500

Figure 4.9: Stability boundaries for Z = 50 (up-grinding, multi-frequency):
regular grain distribution, irregular grain distribution

fact that a higher number of grits corresponds to more consistent stability boundaries
suggests that, for a large enough number of cutting edges, the stability of the process
no longer depends on the actual layout of grains, but can be characterised solely by the
statistical parameters of the normal distribution from which the individual samples are
randomly drawn. Recognising this, it is possible to avoid having to generate a specific
layout of cutting edges before each simulation. This would favourably impact the amount
of resources necessary to perform computationally expensive calculations. Therefore,
although this is somewhat of a tangent since the main point of this chapter has already
been established, this idea is briefly explored now, because the application of stochastic
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Figure 4.10: Stability diagrams for two different grain densities – the different colours
indicate different random realisations corresponding to the same pitch angle
distribution parameters: µ = 2π/Z, σ = π/Z (up-grinding, zero-frequency)

time delays is much broader than grinding. Taking the simpler case, i.e. the zero-
frequency solution, the stochastic sum in Eq. (4.74) can be manipulated in such a way
that the statistical parameters of the random distribution will eventually appear in the
open-loop transfer function of the system. Considering the fact that the randomness of
the grain distribution is characterised by τj = φj/ωg, where φj is the pitch angle of grit
j, the stochastic sum in Eq. (4.74) can be expanded into a Taylor series according to

Z−1∑
j=0

e
−
φj
ωg
s

=
Z−1∑
j=0

∞∑
k=0

(−φjs)k

ωkgk!
=
∞∑
k=0

(−s)k

ωkgk!

Z−1∑
j=0

φkj ≈ Z
∞∑
k=0

(−s)k

ωkgk!
Mk(µ, σ

2), (4.90)

where Mk(µ, σ
2) is the kth-order non-central or raw moment of the normal distribution

characterised by its mean µ and variance σ2. The above expansion of the exponential
function was calculated at s = 0, which corresponds to the midpoint of the numerical
Nyquist contour (as presented in Appendix A) and therefore is a reasonable location for
the Taylor series. The approximation at the end of Eq. (4.90) is accurate if the number
of samples (i.e. cutting edges) is large enough, which is always true for realistic grinding
processes. If the probability density function of the normal distribution is in the form

f(φj |µ, σ2) =
1√

2πσ2
e−

(φj−µ)
2

2σ2 , (4.91)

then the formal definition of the kth-order non-central or raw moment reads as

1

Z

Z−1∑
j=0

φkj ≈Mk(µ, σ
2) =

∫ ∞
−∞

f(φj |µ, σ2)φkj dφj. (4.92)

These moments can be calculated relatively easily with the help of symbolic software
such as Wolfram Mathematica. The description of random time delays as presented here
has promising theoretical and practical implications when it comes to determining the
stability of stochastic systems in general. Therefore, the solution of the stochastic delay
problem as defined by Eqs. (4.90) to (4.92) is explored briefly in the following section.
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k Mk(µ, σ
2)

(−s)k
ωkgk!

Mk(µ, σ
2)

0 1 1

1 µ −s
ωg
µ

2 µ2 + σ2 s2

2ω2
g

(µ2 + σ2)

3 µ3 + 3µσ2 −s3
6ω3
g

(µ3 + 3µσ2)

4 µ4 + 6µ2σ2 + 3σ4 s4

24ω4
g

(µ4 + 6µ2σ2 + 3σ4)

Table 4.2: The first few terms of the infinite series in Eq. (4.93)

4.2.4 Solution of the stochastic delay problem

According to the final observation of the previous section, the solution of the stochastic
delay problem is presented here. Substituting Eq. (4.90) into Eq. (4.74), the open-loop
transfer function of the system corresponding to the zero-frequency solution becomes

To(s) =
wc0Z

(
1−

∑∞
k=0

(−s)k
ωkgk!

Mk(µ, σ
2)
)

m(s2 + 2ζωns+ ω2
n)

, (4.93)

where the constant Fourier coefficient c0 is given in Eq. (4.72). In order to visualise the
infinite series in Eq. (4.93), its first few terms are summarised in Table 4.2. Therefore,
the open-loop transfer function can be expanded as

To(s) =−
wc0Z

−s
ωg
µ

m(s2 + 2ζωns+ ω2
n)
−

wc0Z
s2

2ω2
g

(µ2 + σ2)

m(s2 + 2ζωns+ ω2
n)
−

−
wc0Z

−s3
6ω3
g

(µ3 + 3µσ2)

m(s2 + 2ζωns+ ω2
n)
−
wc0Z

s4

24ω4
g

(µ4 + 6µ2σ2 + 3σ4)

m(s2 + 2ζωns+ ω2
n)

− . . . (4.94)

Due to the fact that the infinite series is a result of a Taylor expansion, To(s) is expected to
converge to its analytical form as more and more terms are considered. However, when it
comes to numerical calculations, the infinite series in Eq. (4.94) has to be truncated after a
certain number of terms. Figure 4.11 presents several stability boundaries corresponding
to different lengths of truncation, i.e., to different degrees of accuracy.

It can be seen that the rate of convergence depends on the standard deviation σ. De-
creasing σ increases the rate of convergence, i.e., the number of Taylor terms necessary
for an acceptable solution is lower. Also, the overall speed of convergence seems to be
rather slow, which is indicated by the fact that considering more terms noticeably alters
the solution. This suggests that many more Taylor terms would be required to obtain an
accurate solution. However, comparing Figures 4.8a and 4.11, it is clear that the author’s
new approach provides a qualitatively good result without having to generate an actual
layout of abrasive grits. This saves a lot of time and computational resources. Since this
particular problem is not part of the main topic of this work, it is not investigated here
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Figure 4.11: Stability boundaries calculated by the author’s new approach for Z = 500
and µ = 2π/Z, considering the first K terms of the infinite series in Eq. (4.94)

(irregular grain distribution, up-grinding, zero-frequency)

any further but reserved for future research instead. Nevertheless, it has been shown that
the stochastic delay problem can be solved, and the proposed method is a promising way
to calculate the dynamic stability of stochastic time-delay systems in general.

4.3 Summary of results

The primary aim of this chapter was to answer the question whether workpiece-related
instability or workpiece-related regenerative chatter can occur in single-pass surface grind-
ing. In terms of the layout of the cutting edges around the circumference of the grinding
wheel, two fundamental cases were investigated: regular and irregular grain distributions.

As for the regular grain distribution, two rather extreme radial immersion values were
considered. One was very small, the depth of cut was 0.02 mm for a wheel radius of
110 mm, which is typical of finishing operations in grinding. The other was fairly large,
the depth of cut was 6 mm for the same wheel radius, which is not unusual in creep-
feed grinding (CFG) and high-efficiency deep grinding (HEDG). The effect of parametric
excitation was clearly visible in the low depth of cut case, however, in terms of process
stability, it was concluded that the very high number of cutting edges makes it impossible
for single-pass surface grinding to experience workpiece-related regenerative chatter in
practice.

Concerning the stability properties of an irregular grain distribution, the obtained results
were not unexpected. Due to the fact that the uniformity of the time delay (and therefore
the regenerative effect) has been disrupted by a random layout of cutting edges, the
system is more stable with regard to workpiece regeneration than the one corresponding
to a uniform grit distribution. Additionally, grinding is a stochastic process by nature,
so an irregular grain distribution provides a more realistic description of the problem as
well. Considering these two consequences of stochastic modelling, the conclusion drawn
from the regular grain distribution case was confirmed again: single-pass surface grinding
cannot experience workpiece-related instability, as long as practically realistic grinding
parameters are considered.
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In summary, it can be stated that workpiece regenerative chatter (the type that occurs
in milling) cannot develop in practical grinding processes due to the very high number
of cutting points on the wheel. Although this result may be somewhat intuitive, per-
haps even obvious to experts in the field of machining vibrations, the author deemed the
presentation of a robust mathematical analysis of the problem necessary to make sure
that workpiece regeneration is truly negligible in single-pass surface grinding. Further-
more, considering the stochastic nature of grinding and approaching it by probabilistic
means has opened the door to new possibilities in chatter modelling, including a potential
direction for the future of this work.

Consequently, for the purposes of this investigation, there is no need to consider and
model each grain individually. This simplification will fundamentally affect the grinding
force, because it will no longer be calculated as a sum of chip-thickness-based grit forces,
but it will depend on the depth of cut, according to the vast majority of grinding force
models in the literature (as presented in Section 2.2.4). Therefore, the next chapter
neglects workpiece regeneration altogether and focuses entirely on wheel regeneration
based on the new regenerative mechanism proposed in Section 3.1.
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Chapter 5

Wheel regeneration in single-pass
surface grinding

No grinding wheel is perfectly wear resistant in real life. Even the hardest superabra-
sives experience some level of wear after a certain amount of grinding time. Therefore,
wheel wear is a natural phenomenon in grinding, and can be especially extensive when
conventional abrasives are used. And where there is wheel wear, there is a possibility of
wheel regeneration as well. Having concluded in Chapter 4 that workpiece regeneration
cannot cause instability in single-pass surface grinding, this chapter focuses on wheel
regeneration based on the new regenerative mechanism proposed in Section 3.1.

When it comes to the literature of wheel-related grinding chatter, wheel wear has been
modelled in one of two ways so far: as distributed radial wear around the circumference of
the grinding wheel in the vast majority of cases [25, 100, 106, 107], and as a combination
of distributed radial wear and distributed grit dullness by Li and Shin [108]. More
information on these papers can be found in Section 2.2.1. Although considering wheel
wear in these two ways has been partially successful in predicting wheel-related chatter
in grinding, the isolated effect of distributed grit dullness – for the main purpose of
assessing its dominance in chatter development – has not yet been studied to such an
extent as to produce a well-known and often-cited research article. Therefore, the new
grinding chatter theory presented in this chapter – isolating the regenerative mechanism
of distributed grit dullness and considering its effect on process stability – is the author’s
primary contribution to knowledge in this thesis.

Although the graphical representation of the mechanical model is identical to that in
Figure 4.1, there are three important differences between the two models, which are
highlighted in Sections 5.1.1, 5.1.2 and 5.1.3. They address the grinding force model (as
it is no longer chip thickness based but depends on the depth of cut), the wheel wear model
(explaining how the regenerative mechanism of distributed grit dullness is implemented),
and the wheel vibration model (describing how the new regenerative mechanism can lead
to instability). Having established these three important aspects of the new theory, the
mathematical model of the problem is derived, starting with the relationships between
individual variables and combining them all together in order to obtain the governing
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equation of motion of the system. Then process stability is assessed using the Nyquist
criterion, followed by a detailed discussion of the obtained results and a brief summary
of the most important findings of this investigation.

5.1 Mechanical model

The mechanical model of the system is identical to the one presented in Figure 4.1, apart
from three main differences regarding the ways in which the grinding force, the wheel
wear and the wheel vibration are considered. These new models are discussed in detail
in the following three subsections.

5.1.1 Grinding force model

Based on the findings and conclusions of Chapter 4, the cutting edges no longer need
to be modelled individually in order to study chatter in single-pass surface grinding.
This provides an opportunity for simplifying the grinding force significantly. Instead
of calculating it as a sum of chip-thickness-based grit forces, it can be expressed as a
function of the depth of cut, according to the vast majority of grinding force models in
the literature. In order to keep the theory as simple as possible, an idealised model will be
used, which is one of the most basic ways to describe the grinding force (as discussed in
detail in Section 2.2.4.1). Additionally, as an attempt to simplify the model even further,
the three grinding mechanisms (sliding, ploughing and chip formation) are not separated
either, but treated as a single variable characterising the entire cutting action. Therefore,
the grinding force model employed in this chapter can be expressed as

Ft = wu
vw
vg
δ, (5.1)

where Ft is the tangential component of the total grinding force, w is the grinding width,
u is the specific energy, vw is the feed rate, vg is the circumferential speed of the wheel,
and δ is the depth of cut. Considering Figure 4.1, the x-component of the total grinding
force can be calculated as

Fx = Fn cosα∓ Ft sinα, (5.2)

where the ∓ symbol corresponds to up-grinding and down-grinding, respectively, and
α is the so-called grinding force angle, indicating the angular position of the resultant
grinding force in the cutting zone, where the actual grinding force is distributed in reality.
The grinding force angle can be calculated by imagining the contact arc as a curved
beam loaded with a sinusoidal distributed force system corresponding to the static chip
thickness distribution in the cutting zone (as shown in Figure 4.2). Integrating and
equating the distributed force on the two sides of ϕ = α, it is possible to formulate
an expression for the grinding force angle. Mathematically speaking, the resultant of the
distributed force between 0 and α has to be equal to the resultant of the same distributed
force between α and ϕc, in order to find the angular position of the concentrated force
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that is equivalent to the distributed one. This can be written as∫ α

0

sinϕdϕ =

∫ ϕc

α

sinϕdϕ. (5.3)

Evaluating the two integrals, it can be seen that the grinding force angle depends on the
contact angle alone:

α = arccos
(

cos2
ϕc
2

)
. (5.4)

Introducing the grinding force ratio µ = Ft/Fn, which is closely related to the coefficient
of friction, the x-component of the total grinding force can also be expressed as

Fx = Ft

(
1

µ
cosα∓ sinα

)
. (5.5)

It can be seen that the terms within the parentheses connect the x-component and the
tangential component of the total grinding force, such that a new force ratio can be intro-
duced according to µx = Fx/Ft. Substituting Eq. (5.1) into Eq. (5.5), the x-component
of the grinding force becomes

Fx = µxwu
vw
vg
δ. (5.6)

According to the experiments of Malkin and Guo in [11], p. 126, the grinding force ratio
µ (and consequently µx as long as α does not change) remains approximately constant
up to the point of burn as the grinding wheel wears. Therefore, the grinding force model
to be employed in this chapter has been established in Eq. (5.6). It is no longer based
on the chip thickness, but depends on the depth of cut. This is a fundamental deviation
from Li and Shin’s theory, whose grinding force model is based on the chip thickness and
analogous to milling with a large number of cutting edges [108].

5.1.2 Wheel wear model

As it was stated at the beginning of this chapter, the proposed chatter theory considers
wheel wear as grit dullness without radial wear, which can be captured by the specific
energy. This is because the specific energy describes how much energy is required to
remove a unit volume of workpiece material. Consequently, it is lower for sharper grains
and higher for duller grains. Due to the fact that grit dullness is the sole mechanism
responsible for the regenerative effect in this model, the variation of the specific energy
needs to be quantified both in space (around the circumference of the grinding wheel) and
in time (as it develops during grinding). This results in a two-variable description of the
specific energy, which constitutes a rather complex mathematical problem when coupled
with the stability analysis of a delay differential equation. However, the system can be
simplified, because the spatial and temporal variables of the specific energy function are
not independent of one another. Time is the only truly independent variable in the model,
because space (i.e. the angular coordinate running along the circumference of the grinding
wheel) depends on time through the constant rotational speed of the wheel. Therefore,
the two variables of the specific energy can be reduced to one. This can be achieved by
losing the spatial coordinate altogether and specifying that the specific energy u at time
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u(t), u(t− Tg)

u(t− 2τg)

u(t− Tg + 2τg)
ωg

Figure 5.1: Defining the specific energy u around the circumference of the wheel
(assuming a regular grain distribution, the grit-passing period is denoted by τg)

t corresponds to the point (or grit) on the grinding wheel that is just leaving the cutting
zone. This convention is illustrated in Figure 5.1. It can be seen that the specific energy
at any other angular location on the wheel can be obtained by shifting u(t) in time. In
simple terms, as far as u(t) is concerned, whatever comes right after the angular location
where the grains exit the cut is in the ‘immediate past’, and whatever comes right before
it is in the ‘distant past’. Therefore, it naturally follows that the spatial distribution of
the specific energy around the entire circumference of the grinding wheel can be obtained
by considering u(t) over a complete wheel rotation period.

Therefore, the wheel wear model has been established: grit dullness is captured by the
specific energy that is described by the solely time-dependent function u(t). Regarding
the specific energy, the following assumptions are made. First, due to the high density of
cutting edges on the wheel and the rapid rate at which they leave the grinding zone, the
specific energy is assumed to be a continuous function of time. Second, as far as the axial
direction is concerned, the specific energy is assumed to be constant along the width of
the wheel. This is a reasonable approximation for the scenario under study, where the
feed direction is perpendicular to the axial direction. However, in the case of crossfeed,
where the feed direction is parallel to the axial direction, the variation in wear along the
width of the wheel cannot be neglected. And third, the specific energy is assumed to
increase inside the grinding zone as a result of wear, and remain constant outside. In
other words, no grain gets sharper during grinding, which means that the self-sharpening
property of grinding wheels is not considered in the proposed model.

5.1.3 Wheel vibration model

One of the most crucial aspects of the proposed chatter theory is the modelling of how the
new regenerative mechanism, i.e. the variation of the specific energy in space and time,
influences the displacement of the grinding wheel in such a way that the wheel vibration
in turn affects the specific energy, creating a closed loop.
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δ0

δ

ϕc

ϕc,0
δ

δ0

ϕc

ϕc,0

The wheel has moved down:

x < x0
δ > δ0
ϕc > ϕc,0

The wheel has moved up:

x > x0
δ < δ0
ϕc > ϕc,0

Figure 5.2: Depth-of-cut-based wheel vibration model (x, δ and ϕc are instantaneous
parameters, while x0, δ0 and ϕc,0 correspond to steady-state grinding)

It is clear that the displacement of the grinding wheel changes both the chip thickness
and the depth of cut in reality. As it was stated in Section 5.1.1, the grinding force model
is based on the depth of cut, not the chip thickness, since there is no need to consider
individual cutting edges for the practical purposes of this investigation. Therefore, the
effect of wheel vibration on the chip thickness is neglected in the model. Furthermore,
the displacement of the grinding wheel is assumed to disturb the nominal depth of cut
in such a way that the entering angle for up-grinding and the exiting angle for down-
grinding remain constant, and the exiting angle for up-grinding and the entering angle for
down-grinding change as a result of wheel vibration. This concept is visualised in Figure
5.2. It is important to note that this is a significant simplification in the model, which
means that, in terms of improving the accuracy of the proposed theory, reconsidering this
particular assumption is of high priority.

Consequently, the regenerative effect occurs in this model as follows. As a result of some
external disturbance, the grinding wheel begins to oscillate relative to the workpiece.
This changes the nominal depth of cut and thus the material removal rate in such a way
that both of these parameters will vary in time. Since the material removal rate is not
constant anymore, different parts of the grinding wheel will remove different amounts of
workpiece material. This leads to different levels of wear around the circumference of the
wheel, which is quantified by the specific energy as described in Section 5.1.2. Due to
the fact that the grinding force depends on the specific energy, a varying specific energy
results in varying grinding forces, which lead to a time-dependent variation in wheel
displacement (i.e. wheel vibration) according to the dynamics of the structure. This
creates a closed loop: some initial disturbance in the displacement of the grinding wheel
causes it to vibrate again. Depending on the magnitude and phase difference between
the oscillations of the wheel, the grinding process can be either self-attenuating (stable)
or self-amplifying (unstable).

The following section establishes five mathematical relationships between the grinding
parameters mentioned above, i.e., between the wheel vibration, depth of cut, material
removal rate, specific energy, grinding force and wheel vibration again. From this, the
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governing equation of motion of the system is determined for the purpose of assessing the
stability of the grinding process.

5.2 Mathematical model

Having established the grinding force, wheel wear and wheel vibration models, the math-
ematical model of the system can be formulated. Five relationships are derived in this
section, all of which are necessary to obtain the equation of motion and determine the
stability of the process. These five relationships are established between (1) the wheel
vibration and the depth of cut, (2) the depth of cut and the material removal rate, (3)
the material removal rate and the specific energy, (4) the specific energy and the grind-
ing force, and (5) the grinding force and the wheel vibration. The following subsections
discuss these five relationships in detail.

5.2.1 Wheel vibration and depth of cut

The relationship between the displacement of the grinding wheel and the variation of the
depth of cut can be established as

δ(t) = δ0 − x(t), (5.7)

where δ(t) is the variation of the depth of cut in time, δ0 is the desired or nominal
depth of cut corresponding to steady-state grinding, and x(t) describes the displacement
or vibration of the grinding wheel in time. It can be seen that the origin of the general
coordinate x is set in such a way that x(t) ≡ 0 corresponds to steady-state grinding. This
is a convention chosen by the author to simply the analysis. Since the spring depicted in
Figure 4.1 is assumed to be linear (hence the characterisation of it by a single constant),
the origin of x can be offset freely without affecting the accuracy of the model. Therefore,
the displacement of the grinding wheel is always measured relative to stable, chatter-free
machining.

5.2.2 Depth of cut and material removal rate

The amount of workpiece material that has just been removed by the grain exiting the
current cut at time t is denoted by Vw(t). Therefore, similarly to the definition of the
specific energy described in Section 5.1.2, the time-dependent material removal rate also
corresponds to different grains as they are constantly leaving the grinding zone. It can be
calculated by integrating the static chip thickness cut by a single grain along the entire
contact length characterised by the constant grinding wheel radius and the time-varying
contact angle between the wheel and the workpiece. (Note that the chip thickness is
assumed to be unaffected by wheel vibration. Wheel vibration is accounted for by the
time-varying contact angle.) Since the entering angle is assumed to be zero for up-grinding
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regardless of the displacement of the grinding wheel, the exiting angle is always equal to
the contact angle. Also, due to the fact that the amount of workpiece material removed
by a single grit is independent of the grinding configuration, it can be formulated as

Vw(t) = w

∫ ϕc(t)

0

hs(ϕ)Rgdϕ (5.8)

for both up-grinding and down-grinding. The grinding width is denoted by w, and the
static chip thickness hs(ϕ), visualised in Figure 4.2, is expressed in Eq. (4.3). The re-
maining variables featuring in Eq. (5.8) are defined according to Figure 4.1. Evaluating
the integral in Eq. (5.8), it is possible to get

Vw(t) = wvwτgRg(1− cosϕc(t)), (5.9)

where τg is the constant grit-passing period, assuming a regular grain distribution around
the circumference of the grinding wheel. The product vwτg is the so-called feed per grit, a
term equivalent to the feed per tooth in milling. Substituting the time-dependent contact
angle

ϕc(t) = cos−1
(

1− δ(t)

Rg

)
(5.10)

into Eq. (5.9), the amount of workpiece material removed by a single grain over one
grinding wheel revolution becomes

Vw(t) = wvwτgδ(t). (5.11)

Therefore, the relationship between the depth of cut and the material removal rate has
been established. When δ(t) < δ0 (i.e. the grinding wheel has moved up), the material
removal rate is less than nominal. When δ(t) > δ0 (i.e. the grinding wheel has moved
down), the material removal rate is greater than nominal. When δ(t) = δ0 (i.e. the
grinding wheel is in its steady-state position), the material removal rate is nominal.

Due to the fact that a 2D model is considered and thus no grinding parameter changes
in the axial direction, the specific material removal rate (material removal rate per unit
grinding width) is introduced in such a way that the specific material removed by a single
grit over one grinding wheel revolution can be calculated as

V ′w(t) =
Vw(t)

w
= vwτgδ(t), (5.12)

where the prime symbol indicates that the quantity in question is divided by the grinding
width. It is important to point out that, although the grinding force model is based on
the depth of cut, the material removal rate requires the chip thickness as well, because it
corresponds to a single grain. That is why the grit-passing period remains in Eq. (5.12).

5.2.3 Material removal rate and specific energy

Although, logically speaking, there is an intermediate step between the material removal
rate and the specific energy, i.e. the extent of wheel wear and its connection to each
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of these two quantities, it is possible to formulate a direct relationship between the
material removal rate and the specific energy if the increase in specific energy over one
grinding wheel revolution is expressed as a direct function of the material removal rate.
As the grinding wheel rotates and the cutting edges exit the grinding zone continually
and periodically, the specific energy of each exiting grain can be formulated as a sum of
two terms: (1) the specific energy corresponding to the same grain one wheel rotation
period earlier, and (2) an increase in specific energy caused by grit wear in the grinding
zone. The mathematical representation of this modelling approach can be written as

u(t) = u(t− Tg) + ∆u(t), (5.13)

where the specific energy increase is a function of the current time, because it corresponds
to the exiting angle, where the current time is measured.

Assuming a linear relationship between the material removal rate and the specific energy
increase supported by the experiments of Li and Shin [108], the evolution of the specific
energy can be expressed as

u(t) = u(t− Tg) + CdV
′
w(t), (5.14)

where Cd, introduced by the present author, is the so-called coefficient of dulling. It
measures the rate at which the specific energy increases as a result of material removal.
It is important to remember that both u and V ′w pertain to individual grains, nevertheless,
they are assumed to be continuous functions of time due to the large number of cutting
edges on the wheel. The reason V ′w is used in Eq. (5.14) instead of Vw is that increasing the
grinding width (and thus the material removal rate) does not increase the specific energy
that characterises the entire grinding width at a particular angular location on the wheel.
That is because the wider the cut, the more cutting edges are engaged, so the additional
wear resulting from an increase in grinding width (and material removal rate) will be
distributed among a higher number of cutting edges. This leads to an approximately
constant specific energy distribution along the axial direction of the grinding wheel, just
as it was assumed in Section 5.1.2. Therefore, the relationship between the material
removal rate and the specific energy has been established.

5.2.4 Specific energy and grinding force

Since the different grains in the grinding zone can be worn to different degrees, their
respective specific energies can be different as well. Not only that, but the specific en-
ergy changes in time as well, as the grits become duller. This creates the potential for a
time-varying specific energy distribution in the grinding zone. Therefore, in order to de-
rive a relationship between the specific energy and the grinding force, the specific energy
distribution in the grinding zone has to be determined at every instant of time. That is
because the grinding force depends on the specific energy according to Eq. (5.6). There-
fore, formulating the time-varying specific energy distribution in the grinding zone and
integrating it along the entire contact length, it is possible to calculate the instantaneous
grinding force. In order to describe the specific energy distribution in the grinding zone
at the current time, an additional independent variable needs to be introduced. While
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u(t, τ)

Figure 5.3: Specific energy distribution u(t, τ) in the grinding zone – the time delays
corresponding to three different cutting edges are indicated in square brackets

it would be natural to use an angular coordinate such as ϕ in Figure 4.1, another time
coordinate will be employed for this task. That is because the compatibility thus achieved
between the global time coordinate t and the new, local time coordinate τ will simplify
future calculations. (It is very important to note the difference between τ and τg in this
chapter: τ is a local time coordinate fixed to the grinding zone, and τg is the constant
grit-passing period assuming a regular grain distribution.) Therefore, the specific energy
distribution in the grinding zone at the current time will be described by the two-variable
function u(t, τ). This concept is illustrated in Figure 5.3. Since the new time coordinate
is local, i.e., it measures the time elapsed since a grain currently in cut entered the grind-
ing zone, it can assume any value between 0 and τc, where τc denotes the amount of time
the currently exiting grain has taken to pass through the grinding zone.

It is clear that τc is state dependent in reality, because wheel vibration changes the depth
of cut and consequently the contact length as well. It can be calculated as τc = ϕc/ωg,
where ϕc is the state-dependent contact angle and ωg is the constant rotational speed
of the grinding wheel. The current model does not take the practical variation of τc
into account, but considers a quasi-steady cutting time instead, denoted by τc,0, which
corresponds to the steady-state contact angle ϕc,0 and the steady-state depth of cut δ0.
This is to simplify the time delay in the system from being both distributed and state
dependent to being distributed only. This is a reasonable simplification assuming that
the oscillations of the grinding wheel are small enough so that τc ≈ τc,0 for each grain.

The cutting edges in the grinding zone are worn in different measures as a result of two
causes – one is an effect of the past, the other is an effect of the present. On the one
hand, the grains left the grinding zone at different times and removed different amounts
of workpiece material during the previous cut – this is an effect of the past. On the other
hand, depending on their instantaneous locations in the grinding zone at the current
time, the grits have removed different amounts of workpiece material during the current
cut – this is an effect of the present. Both of these causes need to be taken into account,
therefore, u(t, τ) can be formulated as a sum of two terms according to

u(t, τ) = upast(t, τ) + upres(τ), (5.15)

where upast(t, τ) carries all the information pertaining to the previous cut, and upres(τ)
represents all the wear accumulated during the current cut.
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The effect of the past can be established by considering the fact that each grain currently
in cut left the grinding zone at different times during the previous cut. According to
Figure 5.3, it can be calculated as

upast(t, τ) = u(t− Tg + τc,0 − τ). (5.16)

As explained earlier, it can be seen that the state-dependent τc has been replaced by its
quasi-steady equivalent τc,0 to simplify the time delay.

The effect of the present can be formulated as a function of the local time coordinate
alone. It does not depend on the global time coordinate, because it only measures the
increase in specific energy as a result of grit wear accumulated during the current cut,
which can be quantified by the local time coordinate alone. Therefore, the effect of the
present can be determined as the coefficient of dulling times the amount of workpiece
material removed by a single grain up to its current location in the grinding zone:

upres(τ) = Cd

∫ τ

0

hs(ωg τ̃)Rgωgdτ̃ = CdvwτgRg(1− cos(ωgτ)). (5.17)

Therefore, substituting Eqs. (5.16) and (5.17) back into Eq. (5.15), the time-varying
distribution of the specific energy in the grinding zone can be written in the form

u(t, τ) = u(t− Tg + τc,0 − τ) + CdvwτgRg(1− cos(ωgτ)). (5.18)

One of the simplest ways to determine the grinding force is to consider the average of the
specific energy distribution in the grinding zone and substitute it into Eq. (5.6), so that

Fx,a(t) = µxw

(
1

τc,0

∫ τc,0

0

u(t, τ)dτ

)
vw
vg
δ(t), (5.19)

where τc ≈ τc,0 has been assumed again in order to simplify the time delay. Substituting
Eq. (5.18) into Eq. (5.19), the average grinding force can be calculated as

Fx,a(t) =
µxwvwδ(t)

vgτc,0

∫ τc,0

0

u(t− Tg + τc,0 − τ)dτ + Ca, (5.20)

where Ca is the time-independent part of the average grinding force and contains the
constants coming from upres(τ). It is interesting to see, therefore, that the effect of the
present as described earlier in this section has no dynamic impact on the system – it
merely offsets the time-varying part of the average grinding force, which does not change
the dynamic behaviour of the system provided that the stiffness of the wheel (represented
by a spring in Figure 4.1) is linear. That is because τc has been replaced by τc,0, which is
a reasonable simplification in the model. Consequently, the constant Ca will be dropped
for future calculations.

It can be seen that Eq. (5.20) is non-linear as a result of containing the depth of cut
δ and the specific energy u, both of which ultimately depend on the wheel vibration x.
Therefore, in order to simplify this complexity, the depth of cut is assumed to stay nominal
in the grinding force expression. It is important to note that the wheel vibration that
disturbs the depth of cut still changes the material removal rate which in turn affects the
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specific energy. Therefore, the grinding force is still varied by the wheel vibration, but this
variation occurs through the specific energy alone. In other words, the regenerative effect
has not been eliminated by this assumption. So, replacing δ(t) with δ0, the simplified
grinding force expression becomes

Fx,a(t) =
µxwvwδ0
vgτc,0

∫ τc,0

0

u(t− Tg + τc,0 − τ)dτ + Ca. (5.21)

Another way to calculate the resultant grinding force is to consider the weighted average
of the specific energy distribution in the grinding zone. The weight function is the distri-
bution of the material removal rate, since a higher material removal rate corresponds to
a greater grinding force, provided that the specific energy does not change. Therefore, in
order to determine the resultant grinding force, the weight function has to be formulated
first. The infinitesimal material removal rate can be written as

dQw(ϕ) = wvw sinϕRgdϕ. (5.22)

Substituting ϕ = ωgτ into Eq. (5.22), it is possible to obtain the weight function

dQw(ωgτ) = wvw sin(ωgτ)vgdτ. (5.23)

Thus, considering that Qw = wvwδ, the corresponding grinding force expression becomes

Fx,w(t) =
µx
vg

∫ Qw,0

0

u(t, τ)dQw, (5.24)

whereQw,0 = wvwδ0 is the nominal material removal rate. Using the steady-state quantity
instead of the instantaneous one corresponds to the assumption that τc ≈ τc,0. Substi-
tuting Eq. (5.23) into Eq. (5.24), the resultant grinding force reads as

Fx,w(t) = µxwvw

∫ τc,0

0

u(t, τ) sin(ωgτ)dτ. (5.25)

And finally, substituting Eq. (5.18) into Eq. (5.25), it is possible to get

Fx,w(t) = µxwvw

∫ τc,0

0

u(t− Tg + τc,0 − τ) sin(ωgτ)dτ + Cw, (5.26)

where – similarly to Eq. (5.20) – Cw is the time-independent part of the grinding force.
Although Eq. (5.26) is linear just like Eq. (5.21), the integral is more complicated to
evaluate. Therefore, two relationships have been established between the specific energy
and the grinding force, corresponding to two averaging methods: the arithmetic mean
and the weighted mean.

5.2.5 Grinding force and wheel vibration

The relationship between the grinding force and the wheel vibration is identical to
Eq. (4.18), so it can be written as

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) =

1

m
Fx,i(t), (5.27)

where i = a, w indicates the averaging method of the applied grinding force model.
Therefore, the relationship between the grinding force and the wheel vibration has been
established according to the classical Newtonian equation of motion.
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5.2.6 Equation of motion

Combining Eqs. (5.7), (5.12), (5.14), (5.21), (5.26) and (5.27) together, it is possible to
obtain the equation of motion of the system. Due to the fact that the concentrated and
distributed time delays appear in the specific energy, it is easier to formulate the equation
of motion for this variable instead of the wheel vibration, which would be the more
conventional approach. The wheel vibration and its derivatives featuring in Eq. (5.27)
can be expressed as relatively simple functions of the specific energy and its derivatives,
assuming a linear relationship between x and u. This assumption follows directly from
Eqs. (5.7), (5.12) and (5.14). Since two alternative grinding force expressions have been
derived, two equations of motion can be formulated as well. Considering the arithmetic
mean of the specific energy distribution in the grinding zone, the equation of motion is

ü(t) + 2ζωnu̇(t) + ω2
nu(t) = ü(t− Tg) + 2ζωnu̇(t− Tg) + ω2

nu(t− Tg)−

− µxCdwv
2
wτgδ0

mvgτc,0

∫ τc,0

0

u(t− Tg + τc,0 − τ)dτ, (5.28)

while the weighted mean approach gives the equation

ü(t) + 2ζωnu̇(t) + ω2
nu(t) = ü(t− Tg) + 2ζωnu̇(t− Tg) + ω2

nu(t− Tg)−

− µxCdwv
2
wτg

m

∫ τc,0

0

u(t− Tg + τc,0 − τ) sin(ωgτ)dτ. (5.29)

It can be seen that there are two time delays in the system. One is a concentrated long
delay denoted by Tg, which is equal to the rotation period of the grinding wheel. The
other is a distributed short delay denoted by τc,0, which is equal to the contact time
under steady-state grinding conditions, measuring the amount of time a grain takes to
pass through the contact zone.

It is important to recognise that the new chatter theory can distinguish between up- and
down-grinding configurations only through the grinding force ratio µx. That is because
the grinding force model presented in Section 5.1.1 is based not on the chip thickness
(unlike the one in Chapter 4) but on the depth of cut (according to the vast majority of
grinding force models in the literature). Therefore, the grinding configuration (i.e. up- or
down-grinding) does not feature in the equation of motion apart from the aforementioned
parameter µx. The effect of the grinding configuration on this particular parameter is
presented in Figure 5.4, which plots the change in µx as a function of the contact angle
ϕc for both up- and down-grinding. These graphs were calculated based on Eqs. (5.4)
and (5.5). It can be seen that the grinding force ratio corresponding to the up-grinding
configuration is always below its down-grinding counterpart. This is because µx measures
the ratio between Fx and Ft, and the x-component of Ft always acts against the x-
component of Fn in up-grinding, whereas in down-grinding the x-component of Ft always
acts in the same direction as the x-component of Fn. Consequently, the x-component of
the total grinding force (Fx) is always smaller in up-grinding than in down-grinding, which
is reflected in Figure 5.4 in graphical form. Due to the fact that µx is only a constant
multiplier in the grinding force, it does not produce a qualitative difference in stability
between the two configurations. Therefore, only one of them, namely up-grinding, will
be considered in the rest of this chapter.
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Figure 5.4: The grinding force ratio as a function of the contact angle for µ = 0.4

The following section discusses the stability analysis of the system and presents the main
results of the proposed theory.

5.3 Stability analysis

The stability of the system will be assessed by the Nyquist criterion (more details con-
cerning this approach are provided in Appendix A). Therefore, the Laplace transform of
each relationship derived in Section 5.2 is required in order to construct a block diagram
and determine the open-loop transfer function of the system. The following subsections
discuss these steps in detail.

5.3.1 Laplace transforms

The Laplace transforms of the five state variables are denoted by L{x}(s) = X(s),
L{δ}(s) = D(s), L{V ′w}(s) = W ′

w(s), L{u}(s) = U(s) and L{Fx,i}(s) = Φx,i(s), where
s is the complex Laplace frequency. The relationships between these state variables can
be established in the frequency domain as follows. Taking the Laplace transforms of
Eqs. (5.7), (5.12), (5.14), (5.21), (5.26) and (5.27) respectively, gives:

D(s) =
δ0
s
−X(s), (5.30)

W ′
w(s) = vwτgD(s), (5.31)

U(s) = e−TgsU(s) + CdW
′
w(s), (5.32)

Φx,a(s) =
µxwvwδ0e

−Tgs(eτc,0s − 1)

vgτc,0s
U(s) +

Ca
s
, (5.33)

Φx,w(s) =
µxwvwe

−Tgs(eτc,0sωg − ωg cos(ωgτc,0)− s sin(ωgτc,0))

s2 + ω2
g

U(s) +
Cw
s
, (5.34)
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(s2 + 2ζωns+ ω2
n)X(s) =

1

m
Φx,i(s), (5.35)

where steady-state initial conditions have been assumed, i.e., x(0) = ẋ(0) = 0. Having
established these relationships between the state variables in the frequency domain, the
block diagram of the system can be constructed.

+

− +

+δ0
s D(s) U(s) Φx,i(s)

Ci
s

X(s)

X(s)

J(s) Hi(s) G(s)

Figure 5.5: Block diagram describing wheel regeneration in single-pass surface grinding

5.3.2 Block diagram

Combining Eqs. (5.30) to (5.35), the block diagram of the system can be created according
to Figure 5.5, where the transfer functions J(s), Hi(s) and G(s) are defined as follows.
Between the depth of cut and the specific energy:

J(s) =
U(s)

D(s)
=

Cdvwτg
1− e−Tgs

, (5.36)

between the specific energy and the grinding force:

Ha(s) =
Φx,a(s)− Ca

s

U(s)
=
µxwvwδ0e

−Tgs(eτc,0s − 1)

vgτc,0s
, (5.37)

Hw(s) =
Φx,w(s)− Cw

s

U(s)
=
µxwvwe

−Tgs(eτc,0sωg − ωg cos(ωgτc,0)− s sin(ωgτc,0))

s2 + ω2
g

, (5.38)

and between the grinding force and the wheel vibration:

G(s) =
X(s)

Φx,i(s)
=

1

m(s2 + 2ζωns+ ω2
n)
. (5.39)

Therefore, the open- and closed-loop transfer functions of the negative feedback system
depicted in Figure 5.5 can be written as

Ti,o(s) = J(s)Hi(s)G(s), (5.40)

Ti,c(s) =
Ti,o(s)

1 + Ti,o(s)
, (5.41)

where the denominator of Eq. (5.41) is the characteristic function, such that

Fi(s) = 1 + Ti,o(s) = 0 (5.42)

is the characteristic equation of the system.
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Poles Zeros

J(s) s = kiωg, k ∈ Z None

Ha(s) s = 0 s = 2πki/τc,0, k ∈ Z

Hw(s) s = ±iωg No closed-form solution

G(s) s = −ζωn ± ωn
√
ζ2 − 1 None

Table 5.1: Poles and zeros of each term in Ti,o(s)

5.3.3 Nyquist criterion

The stability of the grinding system is assessed by the Nyquist criterion, which is described
in Appendix A. The pole-zero structure of the open-loop transfer function Ti,o(s), which
is required for the Nyquist criterion, is summarised in Table 5.1. Since Ti,o(s) is a product
of three individual transfer functions, its poles and zeros can be obtained by calculating
the poles and zeros of each of its terms separately. It can be seen that the zeros of
Hw(s) cannot be expressed in closed form. However, this is not a major issue, since the
zeros of Ti,o(s) are not strictly required for the Nyquist criterion, only its poles (as it is
indicated in Eq. (5.42), the poles of Ti,o(s) and the poles of the characteristic function
Fi(s) are identical). In other words, the Nyquist contour is allowed to pass through any
zero of Ti,o(s), it only has to bypass its poles (the zeros of Ti,o(s) and Fi(s) are different).
Although the pole-zero structure of either open-loop transfer function is suitable for
stability analysis by the Nyquist criterion, only one of the two will be looked at in detail
in this thesis. Due to the fact that the grinding force expression corresponding to the
arithmetic mean of the specific energy distribution in the grinding zone is the simpler of
the two, only Ta,o(s) will be considered from now on. The detailed analysis of the other
force expression and open-loop transfer function (corresponding to the weighted mean)
is outside the scope of this work. Nevertheless, a brief numerical simulation is presented
in Appendix B to compare the results provided by the two grinding force expressions.

A visual representation of the pole-zero structure of Ta,o(s) is shown in Figure 5.6. Since
the Nyquist contour cannot pass through any pole of Ta,o(s), the ones located on the
imaginary axis are bypassed in such a way that they are excluded from the right half-
plane enclosed by the Nyquist contour according to Figure 5.7. Therefore, since the poles
of Ta,o(s) and Fa(s) are identical (as shown in Appendix A), the number of poles of Fa(s)
encircled by the Nyquist contour is zero. Consequently, the criterion for assessing stability
is relatively simple: if the Nyquist plot of Ta,o(s) encircles the (−1, 0) point in a clockwise
direction, then the system is unstable – if it does not, the system is stable. The Nyquist
plot of Ta,o(s) cannot encircle the (−1, 0) point in an anticlockwise direction, because the
number of zeros of Fa(s) encircled by the Nyquist contour cannot be negative.

Due to the so-called filtering effect [100], vibrations and corresponding wave patterns
with a wavelength shorter than the contact length between the workpiece and the grind-
ing wheel are strongly attenuated and thus are unlikely to form. Therefore, the purely
imaginary frequencies of the Nyquist contour are considered only between −2πi/τc,0 and
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Figure 5.7: Definition of the Nyquist
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+2πi/τc,0. According to [155], pp. 632-633, the infinite semicircle part of the Nyquist
contour typically maps to a single point, therefore, it is disregarded in numerical simula-
tions.

Figures 5.8 and 5.9 present two Nyquist plots of Ta,o(s) for two different spindle speeds
– every other parameter is identical in the two cases. The image of a semicircular arc of
infinitesimal radius in the s-plane appears to be a semicircular arc of infinite radius in the
Ta,o(s)-plane, although this cannot be stated as a fact without sufficient mathematical
proof. However, it is not necessary to know the actual shape of these sections of the
Nyquist plot, as long as the starting and finishing points are known. What matters is that
the starting and finishing points are connected at infinity in a known direction. But for the
sake of simplicity and convenience, they will be called semicircles, keeping in mind that
this term is an approximation. Considering the fact that a pole bypassed by the Nyquist
contour indicates an asymptote in the Nyquist plot, it is relatively straightforward to
conclude that the two endpoints of each infinite semicircle are exactly 180◦ apart.

Since each semicircle of the Nyquist plot is infinite in radius regardless of their presented
radii in Figures 5.8 and 5.9, each closed semicircle covers half of the Ta,o(s)-plane, i.e.,
encircles either the (−1, 0) or the (+1, 0) point in a clockwise direction. Consequently, the
primary way to assess stability is defined by the angular orientation of each semicircle.
If at least one of them encircles the (−1, 0) point, the system is unstable, otherwise it is
stable. This concept is visually illustrated in Figure 5.10.

It can be seen in Figure 5.8 that none of the infinite semicircles encircles the (−1, 0)
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Figure 5.8: Stable grinding process – Nyquist contour (left) and Nyquist plot (right)
for δ0 = 3 mm, Rg = 100 mm, ζ = 0.05, ωn = 300 Hz, ωg = 1500 rpm,

µx = 1, w = 20 mm, vw = 56 mm/min, m = 1 kg, Z = 10 000
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Figure 5.9: Unstable grinding process – Nyquist contour (left) and Nyquist plot (right)
for δ0 = 3 mm, Rg = 100 mm, ζ = 0.05, ωn = 300 Hz, ωg = 2500 rpm,

µx = 1, w = 20 mm, vw = 56 mm/min, m = 1 kg, Z = 10 000
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Figure 5.10: Stability according to the angular orientation of a single infinite semicircle
in the Ta,o(s)-plane: the (−1, 0) point is not encircled, the system is stable (a); the
(−1, 0) point is encircled, the system is unstable (b); the infinite semicircle passes

through the (−1, 0) point, the system is marginally stable (c,d)

point – the Nyquist plot of Ta,o(s) forms a ‘wedge’ in the direction of the (−1, 0) point.
Therefore, the system parameters corresponding to Figure 5.8 result in a stable grinding
process. Figure 5.9 presents a scenario where a number of infinite semicircles encircle the
(−1, 0) point – the wedge corresponding to the stable process turns into an ‘overlap’ of
infinite semicircles in the direction of the (−1, 0) point. Therefore, the system parameters
corresponding to Figure 5.9 result in an unstable grinding process. It can be concluded
from Figures 5.8 and 5.9 that there exists a limit case between the stable and unstable
scenarios, where one pair of infinite semicircles are touching (i.e. closing the wedge
without overlapping) and every other pair forms a wedge. This special case corresponds
to a marginally stable process.

It is important to note that up to this point the stability of the system has been assessed
based on the infinite semicircles of the Nyquist plot alone, hence the absence of axis
scales in Figures 5.8 and 5.9. However, that is not the only way to encircle the (−1, 0)
point. Process instability can also occur as a result of the finite parts of the Nyquist plot
encircling the (−1, 0) point, which – in the absence of infinite encirclements – is the only
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way for the system to become unstable. In order for this to happen, certain grinding
conditions (reflected in the grinding parameters) need to be satisfied. Therefore, the
following section investigates how different grinding parameters influence the Nyquist
plot, and consequently, process stability in general. (The reason infinite semicircles were
considered separately from the finite sections of the Nyquist plot is that they cannot be
treated as truly infinite in numerical simulations.)

5.3.4 Parameter study

In order to study the effects of different grinding parameters on process stability, it is
helpful to see them all in the open-loop transfer function:

Ta,o(s) =
µxCdwv

2
wτgδ0e

−Tgs(eτc,0s − 1)

mvgτc,0s(1− e−Tgs)(s2 + 2ζωns+ ω2
n)
. (5.43)

Substituting τg = Tg/Z, δ0 = Rg(1 − cosϕc,0), vg = ωgRg, ϕc,0 = ωgτc,0 and ωg = 2π/Tg
into Eq. (5.43), it is possible to get

Ta,o(s) =
µxCdwv

2
wT

2
g

(
1− cos

(
2π τc,0

Tg

))
e−Tgs(eτc,0s − 1)

2πmτc,0Zs(1− e−Tgs)(s2 + 2ζωns+ ω2
n)

. (5.44)

The grinding parameters featuring in Eq. (5.44) can be divided into two main categories.
The first group contains the constant multipliers of Ta,o(s), such as w, vw and Z. These
parameters can only scale the Nyquist plot without altering its shape. The second group
of variables belong to the s-dependent part of Ta,o(s) in such a way that they cannot
be separated from every s. These parameters, e.g. ζ, ωn and Tg, can not only scale
the Nyquist plot, but they can also change its shape. For the sake of clarity, these two
groups of variables can be written in the form Ta,o(s) = T1(first group of parameters) ×
T2(s, second group of parameters), where the product of the two functions T1 and T2 make
up the total open-loop transfer function Ta,o(s). It can be seen that T1 is independent of
s, while T2 depends on it.

As it was stated in Section 5.3.3, the grinding system can become unstable through not
only infinite but also finite encirclements of the (−1, 0) point. It is clear that scaling
the Nyquist plot, i.e. changing any parameter in the first group, has no effect on the
stability of the system with respect to infinite encirclements. These sections of the Nyquist
plot can alter stability only through the second group of grinding parameters. This
theoretical result has important practical implications: if a process is unstable through
infinite encirclements, then certain grinding parameters (including the width of cut and
the feed rate) are ineffective to stabilise the system. Parameters from the second group
(such as the wheel speed and the depth of cut) have to be modified in order to achieve
stable operation. However, this does not mean that the parameters in the first category
have no influence on stability at all. Since they can scale the Nyquist plot, they can
alter process stability through finite encirclements. Figure 5.11 demonstrates this idea.
It shows the effect of the coefficient of dulling Cd, which is from the first group, on the
Nyquist plot. It can be seen that increasing this parameter beyond a certain threshold
destabilises the system through finite encirclements.

83



Figure 5.11: Effect of Cd on the Nyquist plot and thus process stability for
δ0 = 3 mm, Rg = 100 mm, ζ = 0.05, ωn = 300 Hz, ωg = 1500 rpm,
µx = 1, w = 20 mm, vw = 56 mm/min, m = 1 kg, Z = 10 000

The practical values of the grinding parameters in Eq. (5.44) are either known or relatively
easy to estimate, except for one. The coefficient of dulling is a new quantity introduced
by the author to describe grit wear, i.e., to define a relationship between the material
removal rate and the specific energy. However, due to the novelty of this parameter, the
practical values of Cd are still unknown. Therefore, the rest of this section is dedicated to
deriving a formula for the coefficient of dulling that is able to provide some insight into
the realistic values of this parameter. According to Eqs. (5.13) and (5.14), the coefficient
of dulling has been defined as

∆u = CdV
′
w. (5.45)

It is important to note that in this section V ′w no longer corresponds to a single wheel
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Figure 5.12: Two-dimensional wheel (left) and grain (right) models

rotation (note that the time dependence has been dropped on both sides). That is because
the primary goal here is to obtain a relationship between a certain amount of workpiece
material removed by a single grain (V ′w) and the resulting specific energy increase on
that grain (∆u). Since the relationship between these two quantities is assumed to be
linear, the coefficient of proportionality (Cd) will not be affected. Therefore, in order to
estimate the practical values of Cd, an experimental relationship has to be established
between the material removal rate and the specific energy. Although the author is not
familiar with such a direct experimental relationship in the literature, it is fairly common
to measure the relationship between the wear-flat area and the specific energy. The
wear-flat area is a fraction measuring the total area of wear flats relative to the total
wheel surface area (i.e. circumference × width). According to the experiments presented
by Malkin and Guo (in Figure 5-19 on p. 142 of [11]), there is a linear relationship
between the wear-flat area A [%] and the specific energy u [J/mm3]. Considering these
grinding experiments, ∆A ≈ 0.6% produces ∆u ≈ 178 J/mm3. This is an important
result, because the relationship between the wear-flat area and the material removal rate
is fairly straightforward to establish. In order to obtain this relationship (between the
wear-flat area and the material removal rate), the grinding wheel and its cutting edges
are modelled according to Figure 5.12. Since the wear-flat area is a fractional or relative
value, it is possible to apply it to a single grain. Considering a regular grain distribution
and a triangular grain shape (straight and elongated in the axial direction), it is possible
to determine the amount of material removed from a single grain that corresponds to a
given wear-flat area. This quantity, divided by the grinding width, is denoted by V ′g and
can be formulated as

V ′g =
A2r2g

tan(α/2)
. (5.46)

Again, this parameter does not correspond to a single wheel revolution, but measures the
accumulated wear on a single grain of a given wear-flat area. Therefore, multiplying V ′g
by the grinding ratio G, the accumulated workpiece material removed by a single grain
becomes

V ′w =
GA2r2g

tan(α/2)
. (5.47)
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m [kg] 1

ζ [%] 1

fn [Hz] 300

Rg [mm] 100

w [mm] 20

Z [–] 10 000

Cd [J/m3/m2] 4× 1021

µ [–] 0.4

vw [mm/min] 56

Table 5.2: Numerical parameters used to determine process stability in this chapter

Substituting Eq. (5.47) into Eq. (5.45), the coefficient of dulling can be calculated as

Cd =
∆u tan(α/2)

(∆A)2Gr2g
. (5.48)

It is important to remember that ∆A ≈ 0.6% producing ∆u ≈ 178 J/mm3 is specific
to a given grinding process, therefore, these two values are not absolute. Neverthe-
less, as an initial approximation, these two numbers provide a realistic estimate of Cd.
Substituting α = 60◦, G = 100 and rg = 0.08 mm into Eq. (5.48), a typical value is
4.46× 1021 J/m3/m2.

Therefore, a more practical understanding of the process variables has been established.
The numerical parameters that will be used to determine the stability properties of the
system in Section 5.3.6 are summarised in Table 5.2. However, before moving on to
analysing process stability in detail, the definition and calculation of the chatter frequency
will be discussed in the following section to pave the way for the construction of stability
charts and frequency diagrams.

5.3.5 Chatter frequencies

The chatter frequency is a fundamental concept in machining dynamics. It is the vibration
frequency of a marginally stable system occurring at the boundary of stability. Such
oscillations are characterised by a constant amplitude and, depending on the specific
machining operation considered, one or more vibration frequencies (e.g. there is a single,
well-defined chatter frequency in unstable turning, while multiple chatter frequencies can
arise in unstable milling [68]). In unstable grinding, both a single and multiple chatter
frequencies have been reported in the literature [106–108].

Although the chatter frequency is formally understood as the vibration frequency of a
marginally stable system, it is possible to define it in unstable processes as well. In fact,
what is typically meant by the term ‘chatter frequency’ in practice is the vibration fre-
quency of an unstable system. The main difference between these two states of stability
is found in their respective vibration amplitudes: while marginally stable oscillations are
characterised by a constant amplitude, the magnitude of unstable vibrations grows expo-
nentially. However, according to elementary vibration theory (e.g. [156], pp. 28-33), the
degree of stability or instability of a linear dynamical system, which is characterised by
the damping ratio, has no significant effect on the vibration frequency as long as the ab-
solute value of the damping ratio is small. Therefore, since the literature is clear that the
absolute value of the damping ratio is very small with respect to wheel-related instability
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Figure 5.13: Nyquist plots corresponding to (a) stable, (b) marginally stable and
(c) unstable grinding operations (ωg = 2000 rpm, every other parameter is identical to

the ones listed in Table 5.2)

in grinding (i.e. self-excited vibration takes a long time to develop [25]), the concept
of the chatter frequency will be, as it usually is, applied to unstable processes as well.
Nevertheless, the rest of this subsection discusses the numerical process of calculating the
chatter frequency using the formal definition, i.e., considering marginally stable grinding
operations alone.

According to the Nyquist criterion, the marginally stable system is such that the Nyquist
plot passes through the (−1, 0) point any number of times without actually encircling it.
In order to visualise this idea, three Nyquist plots corresponding to stable, marginally
stable and unstable grinding are presented in Figure 5.13. It can be seen that in the
marginally stable case (Figure 5.13b), the Nyquist plot passes through the (−1, 0) point
twice. These two crossings correspond to a pair of complex conjugate frequencies of the
Nyquist contour with zero real parts, since the Nyquist plot is always symmetric about the
real axis (as it is mapped from the Nyquist contour shown in Figure 5.7), and the infinite
semicircle part of the Nyquist contour has been disregarded in numerical simulations
(according to the justification given in Section 5.3.3). Therefore, the frequencies to which
these two crossings belong are in fact one and the same physical frequency, however, in
the Nyquist plot they appear as one positive and one negative frequency with the same
absolute value. This is the chatter frequency of the system at the boundary of stability.
For a given set of numerical parameters that result in a marginally stable process, the
chatter frequency can be determined with relative ease: first, every point of the Nyquist
plot that is located on the real axis (where the imaginary part is zero) has to be collected
along with their respective frequencies, then the one with the lowest real part (which
will be −1) has to be selected. The frequency associated with this point is the chatter
frequency. For the scenario corresponding to Figure 5.13b, it is fc = 333.74 Hz.

Note: Considering the three examples given in Figure 5.13, it is possible to determine the
stability of the system based on the point marked by a green circle in each Nyquist plot.
This point satisfies two conditions: (1) its imaginary part is zero, i.e., it is located on
the real axis, and (2) its real part is the lowest of all points satisfying the first condition,
i.e., it is located farthest to the left of the origin. The location of this point indicated
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by a green circle relative to the (−1, 0) position marked by a red cross can be used to
determine not only absolute stability, but relative stability as well. If the green circle is
situated to the right of the red cross (i.e., the system is stable), the distance between these
two points provides information on how stable the process is or how quickly it reaches
steady-state cutting conditions again after perturbed. A longer distance corresponds to
a greater degree of stability and a faster settling time. If the green circle is located
to the left of the red cross (i.e., the system is unstable), the distance between these
two points provides information on how unstable the process is or how quickly it loses
stability after perturbed. A longer distance corresponds to a greater degree of instability
and a faster loss of stability. The idea of determining relative stability in this way is
fundamentally identical to the concept of the gain margin (as presented in [155], pp. 643-
650). Furthermore, the phase margin can also be extracted and used to determine the
relative stability of the system (according to the previous reference). These two methods
(i.e. calculating relative stability based on the gain and phase margins) will be revisited
in Sections 5.3.6 and 6.5 for further investigation.

Therefore, the concept of the chatter frequency has been established, and the numerical
process of determining it has been explained. The following section presents the main
theoretical predictions of the proposed model in the form of absolute and relative stability
charts and frequency diagrams.

5.3.6 Stability charts and frequency diagrams

Figure 5.14 presents the stability diagram of the system as a function of the wheel speed
and the depth of cut, along with three Nyquist plots corresponding to three points of
different stability properties. It can be seen that there are two sets of stability boundaries.
The stable and unstable areas are indicated by grey and white colours, respectively. The
stability boundary that separates two unstable regions implies a change in the nature of
instability due to a qualitative difference between the Nyquist plots on the two sides of
this stability boundary. On the outer side (marked by point A), the process is unstable
through at least one infinite encirclement of the (−1, 0) position. The area between this
stability boundary and the stable zone (where point B lies) is also unstable, however, this
kind of instability is the result of finite encirclements of the (−1, 0) position. Whatever
lies in the grey region (e.g. point C) is stable, i.e., the Nyquist plot does not encircle
the (−1, 0) position at all. These three points will be used later on as examples of
qualitative differences between ‘infinitely unstable’ (A), ‘finitely unstable’ (B), and stable
(C) parameter regions.

In order to have a deeper understanding of the dynamics of the grinding process, it
is helpful to consider the chatter frequencies as well, which also translate into lobes or
surface waves on the wheel. Figure 5.15 presents a stability chart in colour, differentiating
between the same three kinds of stability areas as those shown in Figure 5.14: (1) a colour
map of infinitely unstable grinding operations, (2) the region of finitely unstable processes
in dark grey, and (3) the stable zone in light grey. Since the infinite encirclements
of the (−1, 0) point are related to integer multiples of the wheel speed in the s-plane
(as shown in Figure 5.9), the chatter frequencies in the infinitely unstable region will
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Figure 5.13: Stability chart and Nyquist plots for three test points of different stability
properties A(ωg = 3100 rpm, δ0 = 21 mm), B(ωg = 3100 rpm, δ0 = 20 mm) and

C(ωg = 3100 rpm, δ0 = 19 mm)

biggest impact when the depth of cut is large and the spindle speed is low. Since these
are the parameters that define the top left corner of Fig. 5.14, the expected pattern of the
colour map is disrupted there. The dark grey region corresponds to instability through
finite encirclements, therefore, the vibration frequencies at the onset of chatter are not
necessarily integer multiples of the spindle speed.

Another important aspect of stability analysis in general is the calculation of the chatter
frequencies at the absolute stability boundary. Due to the fact that the stable zone is
defined by an upper and a lower stability boundary, two frequency diagrams demonstrate
the chatter frequencies of the marginally stable system: one corresponding to the upper
boundary and another corresponding to the lower boundary. Furthermore, the chatter
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Figure 5.14: Stability chart and Nyquist plots for three test points of different stability
properties: A(ωg = 3100 rpm, δ0 = 21 mm), B(ωg = 3100 rpm, δ0 = 20 mm) and

C(ωg = 3100 rpm, δ0 = 19 mm)

be approximately integer multiples of the wheel speed as well. Therefore, the number
of specific energy waves on the wheel corresponding to a particular chatter frequency,
which can be calculated as chatter frequency per wheel speed, will be an approximately
integer number. A few of these lobe numbers are indicated in Figure 5.15. It can be
seen that the structure of the colour map is disrupted around the top left quarter of the
stability diagram – the infinitely unstable zone that is smoothly connected to the stability
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Figure 5.15: Stability chart presenting three types of stability regions: infinitely
unstable (colour map), finitely unstable (dark grey), and stable (light grey)

boundaries and consists of vertically elongated regions of constant lobe numbers changes
to horizontally elongated ones. Not only that, but the number of unstable lobes in this
area is also reduced relative to the expected pattern. This is a result of the filtering
effect, which prevents the formation of wheel lobes with a wavelength shorter than the
contact length between the workpiece and the grinding wheel [100]. The filtering effect is
stronger (i.e. the filter attenuates a wider range of frequencies) when a particular grain
spends more time in the grinding zone. This can happen in two ways: (1) the contact
length is bigger, which is equivalent to the depth of cut being larger for a given wheel
radius, and (2) the spindle speed is lower. Therefore, the filtering effect has the biggest
impact when the depth of cut is large and the spindle speed is low. Since these are the
parameters that define the top left corner of Figure 5.15, the expected pattern of the
colour map is disrupted there. The dark grey area corresponds to instability through
finite encirclements, therefore, the vibration frequencies at the onset of chatter are not
necessarily integer multiples of the spindle speed in this region.

Another important aspect of stability analysis in general is the calculation of the chatter
frequencies at the absolute stability boundary. Due to the fact that the stable zone is
defined by an upper and a lower stability boundary, two frequency diagrams demonstrate
the chatter frequencies of the marginally stable system: one corresponding to the upper
boundary and another corresponding to the lower boundary. Furthermore, the chatter
frequencies can be displayed in two different ways: relative to the natural frequency (Fig-
ure 5.16) and relative to the wheel speed (Figure 5.17). Two main observations can be
made regarding these diagrams. First, Figure 5.16 shows that the chatter frequencies are
slightly below/above the natural frequency when the system becomes unstable through
the upper/lower stability boundary. Second, Figure 5.17 demonstrates that the chatter
frequencies are approximately integer multiples of the wheel speed, and the lobes of the
stability diagram correspond to different wave patterns on the grinding wheel. Decreasing
the wheel speed increases the number of lobes forming on the wheel, which is consistent
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Chatter frequencies corresponding to the upper stability boundary:

Stability chart corresponding to the absolute stability boundary:

Chatter frequencies corresponding to the lower stability boundary:

Figure 5.16: Chatter frequencies relative to the natural frequency (ωn = 1885 rad/s)

with the first observation, namely that the chatter frequencies do not deviate largely
from the natural frequency of the system. It is worth noting that the expected number
of wheel lobes remains approximately constant within each stability lobe, and jumps to
another approximately integer value at the points where the stability lobes are connected.
The fact that the chatter frequencies are not exactly integer multiples of the wheel speed
(or the wheel lobes are not exactly integer numbers) is probably owing to the presence
of ‘wheel lobe precession’ first measured by Gurney in 1965 [99] and first modelled by
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Chatter frequencies corresponding to the upper stability boundary:

Stability chart corresponding to the absolute stability boundary:

Chatter frequencies corresponding to the lower stability boundary:

Figure 5.17: Chatter frequencies relative to the wheel speed

Thompson a few years later [106,107]. According to this phenomenon, the waves on the
wheel under unstable grinding conditions do not remain stationary, but slowly precess or
travel around the circumference of the wheel. The precession frequency is typically very
low, so the overall chatter frequency is nearly an integer multiple of the wheel speed in
practice.

Figures 5.16 and 5.17 are also clear that only one chatter frequency is expected for a
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given scenario. This result is in agreement with Thompson’s theoretical and experimental
findings [106,107]: his model predicted that surface grinding vibration can occur at only
one frequency, and his measurements demonstrated the truth of this result, as in each
case the grinding vibrations consisted almost entirely of a single pure tone. However, Li
and Shin’s numerical model – considering both distributed radial wear and distributed
grit dullness – predicted a number of chatter frequencies around the natural frequency
of the system, all being integer multiples of the wheel speed, which were also verified by
grinding experiments [108]. Since the new chatter theory presented in this thesis does not
predict more than one chatter frequency, it is in disagreement with Li and Shin’s model
in this regard. However, it is important to remember Thompson’s findings as well and
point out that the literature reports not only theories but also experiments that produce
different results – some predict and measure only one frequency, others more. Therefore,
it appears that the number of chatter frequencies arising at the onset of chatter depends
on the grinding process itself. The deeper analysis of this variation is outside the scope
of this work, but constitutes a potential direction for future research.

As it was noted in Section 5.3.5, the relative stability of a second-order system (e.g.
a mass-spring-damper system such as the one under investigation) can be calculated
based on the gain and phase margins in the Nyquist plot. This concept is revisited
now for further study. The gain margin (GM) indicates the amount of gain by which
the open-loop transfer function can be increased in order for the closed-loop system to
become marginally stable. It is usually expressed in decibels. Therefore, if the gain
margin is greater/less than zero, the process is stable/unstable, respectively. The phase
margin (PM) marks the amount of open-loop phase lag the closed-loop system can tolerate
before becoming marginally stable. It is usually expressed in degrees. If the phase
margin is greater/less than zero, the process is stable/unstable, respectively. The gain and
phase margins are formally defined and graphically presented in a number of textbooks
(e.g. [155], pp. 643-650), therefore, they are not discussed here in any more detail.

A colour map of the gain margin distribution for a number of wheel speeds and depths
of cut is presented in Figure 5.18 along with the absolute stability boundary indicated in
white. It can be seen that the gain margin increases towards the centre of the stable zone,
and connects seamlessly to the finitely unstable region. However, the gain margin jumps
in two places: (1) between infinite and finite encirclements, i.e., at the stability boundary
between points A and B in Figure 5.14, and (2) in the infinitely unstable zone, where the
dominant infinite encirclement (i.e. the biggest one relative to the others) switches to
another one. This switch happens at the same numerical parameters at which the number
of wheel lobes changes in Figure 5.15, because the dominant infinite encirclement played
a key role in determining the number of lobes forming on the wheel under infinitely
unstable grinding conditions. It is very important to note that in the infinitely unstable
zone, the gain margin should theoretically be negative infinity. It is only because of the
numerical scheme employed (i.e. ε > 0 in Figure 5.7) that the gain margins corresponding
to this region appear to be finite. This means that in the infinitely unstable zone, the
gain margin alone cannot provide sufficient information on the relative stability of the
process – the phase margin is necessary as well.

A colour map of the phase margin distribution is given in Figure 5.19 for the same
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stable

Figure 5.18: Gain margin distribution in the stability diagram

stable

Figure 5.19: Phase margin distribution in the stability diagram

numerical parameters. Similarly to Figure 5.18, the absolute stability limit is marked in
white. It can be seen that the phase margin increases towards the centre of the stable
region and decreases away from it. Both of these gradients result in a smooth relative
stability map – jumps only occur when the dominant infinite encirclement switches to
a new one. These jumps in phase margin happen in the same places as those in lobe
number (Figure 5.15) and gain margin (Figure 5.18). Due to the fact that the phase
margin calculated in the infinitely unstable zone, unlike the gain margin, is unaffected by
the issue that ε (as defined in Figure 5.7) cannot be truly zero in numerical simulations, it
provides a reliable measure of relative stability even in this computationally challenging
region. Furthermore, the phase margin (PM) is closely related to the damping ratio (ζ)
of the process. The relationship between these two quantities can be approximated as
PM = 100ζ (according to [155], p. 648), where the phase margin has to be substituted in
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degrees. Since the damping ratio of a real grinding process is relatively easy to measure,
this approximation provides a simple way to compare theoretical and experimental results.
Therefore, the concept of relative stability in general and the phase margin approach in
particular will be put to practical use in the context of grinding experiments in Chapter 6.

5.3.7 Numerical validation

In order to test the theoretical validity of the frequency-domain solution discussed in
Section 5.3, a number of time-domain simulations are presented here. Applying the
central difference scheme to the equation of motion, Eq. (5.28) can be solved for a given
set of grinding parameters. Figure 5.20 shows three numerical simulations corresponding
to the three grinding scenarios marked by points A, B and C in Figure 5.14.

Figure 5.20: Numerical simulations corresponding to three different grinding scenarios

It can be seen that the grinding process identified by point C is stable, while the other two
cases are unstable. Furthermore, scenario A is more unstable than scenario B, because
A loses stability faster than B, i.e., A reaches a higher variation in specific energy than
B over the same amount of grinding time (or equivalently, A reaches the same variation
in specific energy as B over a shorter amount of grinding time). Also, according to
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Figure 5.21: Linear (left) and polar (right) plots of the specific energy variation for two
successive grinding wheel rotations depicted in different colours

Figure 5.15, the grinding process corresponding to point A is predicted to be unstable
with five specific energy waves around the circumference of the wheel. The numerical
simulation in Figure 5.20a verifies this result, which can be visualised by plotting the
specific energy variation onto the surface of the grinding wheel in the form of a polar
diagram. Considering the simulated specific energy variation in time along with the
rotational speed of the grinding wheel, the number of specific energy waves on the wheel
is illustrated in Figure 5.21. Two observations can be made regarding this diagram: (1)
the number of wheel lobes is indeed five, according to the analytical prediction shown in
Figure 5.15, and (2) the specific energy distribution on the grinding wheel is not identical
for two successive wheel rotations. In other words, the specific energy waves do not remain
stationary, but travel around the circumference of the grinding wheel. This phenomenon
has been discussed before as ‘wheel lobe precession’. Therefore, what has been merely
suggested by non-integer lobe numbers, has now been verified by numerical simulations:
the specific energy waves slowly precess or travel around the circumference of the wheel
during grinding, and the proposed model is capable of capturing this phenomenon.

Furthermore, to compare the analytical and numerical results for a larger number of
grinding processes, Figure 5.22 presents the analytical stability boundary along with
several numerical simulations, indicating stability and instability with green and red
colours, respectively. It can be seen that, as far as the theoretical model is concerned, the
frequency- and time-domain results are in agreement, which means that the numerical
simulations have validated the analytical analysis.
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Figure 5.22: Comparison between analytical and numerical results: analytical
stability boundary, × stable numerical simulation, × unstable numerical simulation

5.4 Summary of results

A new grinding chatter theory has been formulated in this chapter, focusing on wheel
regeneration and wheel-related instability in single-pass surface grinding. Having estab-
lished the mechanical and mathematical models, the Nyquist criterion was employed to
assess the stability properties of the system. The primary results of this analysis were
stability boundaries and chatter frequencies, which were presented in stability charts and
frequency diagrams.

Considering the fact that grinding is described in the literature as typically unstable
with respect to wheel regeneration [25], the most important result of the new model
is the prediction of a stable region, which is rather narrow for low wheel speeds and
depths of cut, but grows wider as these two grinding parameters increase. However,
the depths of cut for which the proposed chatter theory predicts stable machining are
quite high (certainly too high for finishing operations), which means that even if the
presented model is tested and found to be valid, the stable depths of cut may be too
large for practical processes, including roughing operations. When the radial immersion
is low, which is typical of finishing cuts, the new chatter theory predicts grinding to be
unstable with respect to wheel regeneration. This is in accordance with the predominant
stance of the relevant literature. However, if the grinding parameters corresponding to
the theoretically stable region turn out to be practically feasible, then the predictions of
this new model are very promising indeed in terms of chatter-free grinding.

The chatter frequencies predicted by the proposed theory are in agreement with classical
chatter theories in machining, both conventional and abrasive. That is to say that the
theoretical chatter frequencies produced by the presented model are around the natural
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frequency of the system and slightly above it for the lower stability boundary. Practically
speaking, the upper stability boundary is of lesser interest due to machine limitations,
nevertheless, the chatter frequencies predicted at this boundary are slightly below the
natural frequency of the system. It was also noted that the chatter frequencies are ap-
proximately integer multiples of the wheel speed, and the lobes of the stability diagram
govern the number of specific energy waves forming on the surface of the grinding wheel.
Within each stability lobe, the chatter frequencies change in such a way that, combined
with the corresponding variation in wheel speed, the chatter frequency remains approx-
imately the same integer multiple of the current wheel speed. At the points where the
stability lobes connect, the expected number of specific energy waves forming on the
wheel jumps to a different value. The overall trend is that decreasing the wheel speed
increases the number of specific energy waves on the surface of the grinding wheel. This is
consistent with the fact that the chatter frequency remains close to the natural frequency
of the system.

In summary, the new grinding chatter theory proposed in this chapter gives very promising
results regarding the stability of surface grinding processes. The stable region predicted
by the model can be of great benefit to the manufacturing sector. Although this result is
potentially exciting, it is nevertheless based on a large number of assumptions. For the
sake of completeness, these are re-listed in Appendix B.

All the theoretical results in Chapters 4 and 5 – such as stability boundaries, chatter
frequencies and numerical simulations – have been obtained with the help of MATLAB.
The code that the author wrote and used in this chapter to determine the stability
boundaries of single-pass surface grinding is provided in Appendix C.

The following chapter presents and discusses a number of surface grinding experiments
in order to test the validity of the new chatter model developed in this thesis.
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Chapter 6

Surface grinding experiments

For the purpose of testing the new chatter theory formulated in Chapter 5, some sur-
face grinding experiments were performed on a Makino G7 5-axis horizontal machining
centre, which is illustrated in Figure 6.1. In six main parts, this chapter describes the
experimental procedure and signal processing methodology designed and implemented to
collect, analyse and evaluate data from a number of surface grinding experiments, and
discusses the obtained results in detail.

The first section deals with the modal analysis of the structure. The grinding machine was
tap tested in order to determine its modal parameters, which are necessary for calculating
its stability properties. The second part of this chapter presents the preparations leading
up to the actual experiments. A sensitivity analysis was performed in order to assess how
process stability changes in response to different system parameters being varied. The
third and fourth sections are of primary importance as they discuss the core experiments
designed to test the validity of the proposed chatter theory, based on two main aspects
of grinding dynamics: chatter frequencies and stability boundaries. The fifth part of this
chapter is concerned with the concept of relative instability. The negative damping ratios
of a number of unstable surface grinding experiments are calculated and compared with
the corresponding theoretical predictions. The sixth and final section summarises all the
practical results reported in this work.

6.1 Modal analysis of the structure

Modal analysis is the study of the dynamic properties of a system in the frequency domain.
It is based on the response of a mechanical structure to a given form of excitation. The
response of the system can be recorded as a displacement, velocity or acceleration signal,
while the source of excitation is typically a force signal. The outcome of modal analysis
is the ratio between the input and output signals, also known as the frequency response
function (FRF), which defines a frequency-dependent relationship between two points of
a structure. In other words, the FRF provides valuable information as to how the system
behaves at different frequencies of excitation. Depending on the response signal, FRFs
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Figure 6.1: Makino G7 machining centre

can be classified as receptance (displacement per force), mobility (velocity per force) or
inertance (acceleration per force).

One of the most common and widely applied methods of modal analysis is tap testing or
impact hammer testing. In the simplest case, the structure is excited with an impulse
hammer recording the force signal at one point, while another sensor captures the re-
sponse of the system at another point. The ratio of the output signal to the input signal
constitutes the FRF of the structure between those two points. This is the approach that
was employed to obtain the modal parameters of the Makino G7 grinder (i.e. natural
frequencies, damping ratios and modal masses). Therefore, this section is dedicated to
describing the tap testing procedure and summarising its results.

6.1.1 Equipment

The tap testing equipment consisted of four main components:

1. Hammer: Kistler 9722A500 + soft PVC tip (Sensitivity: 11.63 mV/N)

2. Accelerometer: Kistler 8776A50M1 (Sensitivity: 101 mV/g)

3. Data acquisition system: National Instruments 9234

4. Computer + software: CutPro Tap Testing and Modal Analysis Modules (more infor-
mation on these two modules is available at www.malinc.com)

6.1.2 Setup

The tap testing setup is presented in Figure 6.2. It can be seen that the accelerometer
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point and direction
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Figure 6.2: Tap testing setup

was attached to the bottom (or 6 o’clock position) of the grinding wheel, while the point
of impulse excitation was chosen to be at the top (or 12 o’clock position) of the grinding
wheel. Two 3MTM CubitronTM II wheels were tested, the physical properties of which are
summarised in Table 6.1.

Because of the two diametrically opposite grooves in the tool holder, also known as ‘dogs’
(highlighted in Figure 6.2), which are used to align the tool holder and prevent it from
slipping inside the spindle, the modal properties of the structure were expected to be
somewhat different depending on the alignment of these grooves. Therefore, as shown
in Figure 6.3, the tap testing procedure was performed for a horizontal and a vertical
alignment as well, in order to capture this potential difference.

Wheel
identifier

Outer �
[mm]

Inner �
[mm]

Width
[mm]

Grit
number

Mass
[kg]

GW-1 220 32 15 60/80 0.847

GW-2 220 32 10 60/80 0.551

Table 6.1: Physical properties of two 3MTM CubitronTM II grinding wheels
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Figure 6.3: Cross section of the tool holder at the grooves:
horizontal (left) and vertical (right) alignments

As it was mentioned earlier in Section 6.1.1, CutPro was used for recording and analysing
the data. Five tests were averaged in each case in order to reduce measurement errors
and improve accuracy. The frequency range was set between 10 and 5000 Hz along with
a sampling rate of 51,200 Hz and a frequency resolution of 0.5 Hz. CutPro calculates the
window size for the fast Fourier transform (FFT) based on the sampling rate and the
frequency resolution, and applies an exponential window function, which typically decays
from unity to 0.05 in the total sample time (according to the work of Altintas [35], p. 98,
upon which CutPro is based).

6.1.3 Results

In order to establish the fact that the dynamics of the structure consisting of the spindle,
tool holder and grinding wheel can be accurately characterised by a single set of modal
parameters, a coherence chart is presented in Figure 6.4 corresponding to one of the
tap testing scenarios. The coherence can be used to estimate the causality between the
input and output signals. In other words, the coherence provides a quantifiable measure
of reliability: when the coherence is close to one, the results are reliable, but when
it is far from one, the causality between the input and output signals is inadequate.
Figure 6.4 indicates the reliable range of data between two red lines, along with three
reliable peaks, the highest of which is clearly the dominant mode. Consequently, it is
a reasonable simplification to characterise the dynamics of the system by a single set of
modal parameters related to the highest peak.

The dominant modal parameters of the structure corresponding to two grinding wheels
and two spindle positions are summarized in Table 6.2, where fn is the single dominant
natural frequency of the system, and ζ, k and m are the corresponding damping ratio,
modal stiffness and modal mass, respectively.
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Figure 6.4: Cross-spectrum and coherence diagrams corresponding to GW-2
and a horizontal alignment of tool holder grooves

Based on the differences in second moment of area between the two spindle positions
and in mass between the two grinding wheels, the following predictions can be made
even before tap testing the structure: (1) a horizontal alignment of tool holder grooves
produces a higher second moment of area in the direction of excitation and therefore a
higher bending stiffness, resulting in a higher natural frequency than a vertical alignment,
and (2) a heavier grinding wheel acts as a bigger lumped mass at the end of the tool holder,
resulting in a lower natural frequency than a lighter wheel. Both of these predictions
are clearly supported by the measurement results recorded in Table 6.2. The natural
frequency of the structure corresponding to the heavier wheel (i.e. GW-1) is lower for
both spindle positions. Also, a horizontal alignment of tool holder grooves results in a
higher natural frequency for each wheel due to a higher bending stiffness. It is interesting
to note that for the vertical alignment (i.e. when the structure is more compliant), the
weight of the wheel has a more significant impact on the dominant natural frequency of the
system. This observation is rather intuitive, however, the numerical difference between
the two scenarios is quite substantial. The four natural frequencies corresponding to the
two grinding wheels and the two alignments of tool holder grooves are summarised in
Table 6.3, along with the difference in natural frequency between the two wheels for each
alignment of tool holder grooves.

103



Horizontal GW-1 GW-2

fn [Hz] 445.55 449.81

ζ [%] 4.52 4.24

k [N/m] 4.06 × 107 3.79 × 107

m [kg] 5.176 4.750

Vertical GW-1 GW-2

fn [Hz] 432.31 445.71

ζ [%] 5.06 4.67

k [N/m] 3.26 × 107 3.29 × 107

m [kg] 4.416 4.191

Table 6.2: Modal parameters corresponding to two grinding wheels (m1 = 0.847 kg,
m2 = 0.551 kg) and two spindle positions (according to Figure 6.3)

fn [Hz] GW-1 GW-2 Difference

Horizontal 445.55 449.81 4.26

Vertical 432.31 445.71 13.40

Table 6.3: Natural frequencies corresponding to the four test cases

Due to the fact that the proposed chatter theory is based on a single-degree-of-freedom
model of surface grinding and requires a set of modal parameters (natural frequency,
damping ratio, modal mass) that are independent of the angular position of the spindle,
the variation of the modal parameters with respect to the angular position of the spin-
dle will be neglected. Similarly, the modal properties of the spindle are affected by the
mass of the grinding wheel as well. However, for the sake of simplicity, this variation
in spindle dynamics is also neglected. Therefore, in order to obtain the necessary mod-
elling parameters, the four sets of tap testing results corresponding to different grinding
wheels and spindle positions (Table 6.2) are replaced by their average values (Table 6.4).
These modal parameters will be used later on to predict stability boundaries and chatter
frequencies that belong to the Makino G7 grinder.

However, it is important to keep in mind that these two simplifications concerning the
angular position of the spindle and the weight of the grinding wheel will introduce some
modelling inaccuracies into the theory, the extent of which is difficult to assess at this
stage. Therefore, in case of a significant discrepancy between the theoretical and practical
results, these two modelling assumptions are to be revisited for further consideration.

6.2 Preparation for grinding experiments

In order to conduct some experiments that are capable of testing the presented theory in
a reliable way, the dynamic behaviour of the grinding system under investigation must
be assessed. This includes two main sets of studies: a stability analysis and a number
of sensitivity analyses corresponding to different modal and grinding parameters. The
stability analysis consists in a stability diagram specific to the dynamics of the Makino
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fn [Hz] ζ [%] k [N/m] m [kg]

443.34 4.62 3.60 × 107 4.633

Table 6.4: Modal parameters obtained by averaging the ones listed in Table 6.2

unstable

stable

unstable

Figure 6.5: Stability map of the Makino G7 grinder for Rg = 110 mm,
vw = 250 mm/min and G = 100

G7 grinder, and it serves the purpose of determining some test points that can be used to
check the validity of the proposed chatter theory. The sensitivity analyses are performed
to confirm whether the stability properties of these test points (i.e. the ones obtained
from the stability analysis) are robust enough to remain approximately unchanged in the
face of small variations in certain modal and grinding parameters.

6.2.1 Stability of the Makino G7 grinder

Based on the modal parameters measured and reported in Section 6.1, the stability
diagram of the Makino G7 grinder corresponding to a certain set of grinding parameters is
presented in Figure 6.5. This chart is a relatively accurate representation of the stability
properties of the G7, however, certain cutting parameters – such as the grinding ratio
and the feed rate – can assume a very wide range of values in practice, and thus have
a significant impact on the stability boundaries. The effects of these parameters are
demonstrated in Section 6.2.2.

6.2.2 Sensitivity of the Makino G7 grinder

Four parameters are expected to undergo different degrees of variation: the natural fre-
quency, the wheel radius, the grinding ratio and the feed rate. The natural frequency
can change for a number of reasons – it is affected by the alignment of the tool holder
grooves, the mass of the wheel, and it can also change slightly as a result of removing and
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Figure 6.6: Sensitivity of the stability boundaries to the (a) natural frequency,
(b) wheel radius, (c) feed rate and (d) grinding ratio – unless otherwise noted, every
figure corresponds to fn = 443.34 Hz, Rg = 110 mm, vw = 250 mm/min and G = 100

reclamping the same grinding wheel, as it modifies the contact conditions between the
spindle and the tool holder. The wheel radius changes due to dressing and wheel wear,
the latter of which is tightly connected to the grinding ratio. Depending on the grinding
conditions and the material properties of the wheel and the workpiece, the grinding ratio
can vary from less than unity to tens of thousands in practice, which covers an extremely
wide range of possible values. The feed rate is another one of those grinding parameters
that can assume a very wide range of values based on the particular grinding operation
employed. In creep-feed grinding, it can be as low as 50 mm/min, whereas in speed-stroke
grinding, it can be as high as 120 000 mm/min. The following paragraphs discuss four
sensitivity studies corresponding to these four parameters.

Figure 6.6a presents the sensitivity of the stability boundaries to the natural frequency of
the grinding system. Having performed a modal analysis of the structure, it is possible to
estimate the amount of variation expected in the natural frequency. Therefore, a deviation
of 5% from the average natural frequency was selected, which is a significantly wider range
than the one defined by its actual variation recorded in Table 6.2. Nevertheless, the
variation in process stability as a result of a 5% variation in natural frequency – although
clearly detectable – is not substantial. Consequently, taking into account the fact that
the expected variation in natural frequency is less than 3%, the stability properties of the
system predicted for fn = 443.34 Hz are robust and reliable.

Figure 6.6b presents the sensitivity of the stability boundaries to the radius of the grinding
wheel. The reasoning behind the selection of a wheel radius range of ±10 mm is the
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reverse of that corresponding to the natural frequency. This is the wheel radius range
that yields an admissible variation in process stability. Therefore, considering the fact
that the initial radius of the grinding wheels tested in this study was 110 mm, it was
important to remember that as the wheel radius decreased due to dressing and wear,
it had to be kept above 100 mm at all times by implementing new grinding wheels on
demand. This was to ensure that the stability properties of the system did not change
significantly as the wheel size decreased during experiments.

Figure 6.6c presents the sensitivity of the stability boundaries to the feed rate, which can
cover an extremely wide range of values depending on the particular grinding operation
implemented. One of the things that is immediately noticeable here is the nature of the
effect that the feed rate has on the stability boundaries. While the natural frequency
and the wheel radius merely shifted the boundaries, the feed rate can shrink and expand
the stable zone. It is also important to note that at the lower end of practical feed rates,
the actual value of the feed rate has little impact on the stability boundaries. However,
considering a certain range of wheel speeds and depths of cut, there exists a feed rate at
which the stable region disappears completely. Therefore, the feed rate has the potential
to substantially alter the stability boundaries, which means that the grinding process is
rather sensitive to this particular parameter.

Figure 6.6d presents the sensitivity of the stability boundaries to the grinding ratio.
Similarly to the feed rate, the grinding ratio also shrinks and expands the stable zone,
however, the overall effect of the grinding ratio is opposite to that of the feed rate:
decreasing the grinding ratio reduces process stability. It can also be seen that for high
grinding ratios, i.e. when the wear resistance of the grinding wheel is high, the stability
boundaries are almost entirely independent of the grinding ratio. In fact, they seem to be
tending to a specific set of boundaries independent of the grinding ratio itself. However,
this is a rather unreasonable observation, since G→∞ is indicative of a perfectly wear-
resistant grinding wheel, in which case no wheel regeneration and thus no wheel-related
instability can occur. This train of thought suggests an increasing stable zone for an
increasing grinding ratio.

Since Figure 6.6d seems to contradict this line of reasoning, the stability boundaries of
the system were calculated for a number of extremely high grinding ratios as well in
order to see if there is any improvement in process stability. The results are presented
in Figure 6.7a. It can be seen that the widening part of the stable zone (also shown
in Figure 6.6d) is almost unchanged, however, a new stability feature develops as the
grinding ratio reaches extremely high values: a lobe-like stability structure arises from
the horizontal axis resembling that of conventional machining depicted in Figure 2.1.
Endlessly increasing the grinding ratio to unrealistically high values causes the stable
zone to expand through these lobes, eventually covering the entire domain of simulated
grinding parameters. Therefore, Figure 6.7a is evidence that the original conviction of
G→∞ resulting in an ever-expanding stable zone was correct.

It is important to note that Figure 6.7a holds some interesting prospects for superabra-
sives with extremely high grinding ratios. Stable regions that do not feature for lower
G-ratios (i.e. for conventional abrasives) seem to appear above G = 1000. The further
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Figure 6.7: Stability boundaries corresponding to extreme grinding ratios – other
parameters are fn = 443.34 Hz, Rg = 110 mm and vw = 250 mm/min

investigation of this particular topic is outside the scope of this study, but potentially
constitutes a branch of this research that is worth pursuing in the future. The other fea-
ture clearly visible in Figure 6.6d has to do with the lower end of grinding ratios: when
the G-ratio is small, the stability of the system depends heavily on the actual value of the
grinding ratio, as it is demonstrated in Figure 6.7b for G ≤ 10. It can be seen that the
stable region begins to rapidly disappear around G = 6.5. Between 6.5 and 6, it almost
completely vanishes from the simulated domain of grinding parameters. Therefore, for a
wheel that is soft relative to the workpiece, the stability boundaries are not robust even
against a small variation in the grinding ratio. Consequently, the stability diagram of the
system may need to be recalculated depending on the actual value of the grinding ratio,
however, Figure 6.6d provides some valuable insight into the system’s overall sensitivity
to realistic grinding ratios.

Since all these sensitivity studies focused on a single parameter, it is important to re-
member that they may influence one another. In other words, changing one of these
parameters may affect the sensitivity of the system to another parameter. Therefore,
it is crucial to keep in mind that the sensitivity analyses above are rudimentary stud-
ies, and further stability diagrams need to be constructed based on the real parameters
corresponding to the actual grinding experiments.

6.2.3 Test plan for grinding experiments

There are two main aspects of process stability that need to be considered when it comes
to checking the validity of the grinding chatter model proposed in this thesis: chatter
frequencies and stability boundaries. That is because the presented theory predicts both
chatter frequencies for unstable grinding scenarios and stability boundaries separating
stable and unstable parameter domains. Therefore, in order to test the proposed model,
both of these areas need to be addressed in the experiments. Sections 6.3 and 6.4 provide
detailed reports on these two aspects of grinding stability.
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grinding wheel

table 1 mm

Figure 6.8: 3MTM CubitronTM II grinding wheel and its abrasive grits

6.2.3.1 Equipment

Apart from the G7 itself, the primary piece of equipment used in the experiments was
a force dynamometer (Kistler Type 9129AA). That is because the main signal to be
recorded was the grinding force between the wheel and the workpiece. The theoretical
model presented in this thesis captures the regenerative effect through the variation of
the grinding force as a result of wheel wear, therefore, measuring the grinding force in the
experiments provides a direct relationship between the model and the experiments. The
grinding power is automatically monitored and recorded by the G7, however, it is not
used in this work, as it is secondary to the grinding force in terms of reliability when it
comes to testing the proposed chatter model. In other words, a peak in the power signal
has a significantly larger number of potential sources than a peak in the force signal does,
which means that the grinding power provides less clear and less specific information with
regard to process dynamics than the grinding force does. Similarly to the modal analysis
of the structure, the appropriate hardware (computer-based data acquisition system) and
software (DynoWare) are included in the measurement kit.

The cutting tool employed in the experiments was a 3MTM CubitronTM II grinding wheel
with the physical parameters of GW-1 listed in Table 6.1. It is important to note that
this wheel contains a large number of triangular grains (as shown in Figure 6.8), which
corresponds to the theoretical model of the grinding wheel presented in Figure 5.12.
The tested workpiece materials were Inconel 718 (nickel-chromium-based superalloy) and
Custom 465 (stainless steel). The workpieces were prepared as 100 × 50 × 15 mm blocks
in order for them to stay within the measurement range of the dynamometer.

The Makino G7 was equipped with RBM’s Intelligent Fluid Delivery and Recycling sys-
tem (IFDR). The programmable coolant nozzle (35 mm wide with an aperture width of
1.5 mm) allowed the machine to make full use of its VIPER grinding capabilities. The
application of the coolant was available at different pump pressures (from 30 to 70 bar)
through a range of nozzle configurations. The coolant temperature was kept between 18
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Figure 6.9: Experimental setup for recording and analysing the grinding force

and 22 ◦C. For the experiments discussed in this chapter, Master Chemical’s TRIM C272
coolant emulsion was used and held at a concentration between 6 and 8%. The filtra-
tion of the coolant was integrated into the RBM system itself by means of hydrocyclone
technology.

The dressing configuration was unidirectional, i.e., the circumferential speed of the grind-
ing wheel was in the same direction as that of the dressing roll. The wheel was dressed on
a flat diamond crush roll (150 mm in diameter, manufactured by Tyrolit) at a dressing
roll speed of 3000 rpm, with a dressing speed ratio of 0.8 (roll to wheel), using a dressing
feed rate of 0.0012 mm/rev.

6.2.3.2 Setup

Once the force dynamometer is installed and the workpiece is fixed, the test setup looks
relatively simple as it can be seen in Figure 6.9. The dynamometer was connected to
a computer-based data acquisition system, from which the grinding force signal was
taken to MATLAB for further analysis. In accordance with the theoretical model, the
grinding force component to be analysed is Fx, which is perpendicular to the workpiece
surface. As indicated in Figure 6.9, it is positive if the workpiece is pressed against the
dynamometer. Therefore, the term ‘grinding force’ will refer to this direction and sign
convention throughout the rest of this chapter.

According to the fact that the chatter model proposed in Chapter 5 was considered in an
up-grinding configuration, the experiments were performed in an up-grinding configura-
tion as well, i.e., the circumferential velocity of the grinding wheel was opposite to the
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Figure 6.10: A schematic representation of the experimental setup (up-grinding
configuration, the feed motion is performed by the grinding wheel)

feed velocity of the workpiece. This is shown in Figure 6.10, which presents a schematic
drawing of the experimental setup and demonstrates how the test cuts were performed.

6.3 Tests for chatter frequencies

One of the most common ways to test a machine tool vibration model is to compare
the theoretical chatter frequencies predicted by the model with experimental results,
primarily because of the accuracy and simplicity of measuring vibration frequencies in
practice. Therefore, the first line of argument for or against the validity of the new theory
presented in Chapter 5 will be based on a comparison between predicted and measured
chatter frequencies. This section summarises a number of machining experiments in an
attempt to put the proposed grinding dynamics model to the test.

Three sets of experiments have been carried out and organised into the following three
subsections. The first one presents a brief report on some initial grinding experiments
that served the main purpose of generating detectable chatter in the first place. These
tests proved to be informative yet unsuccessful in terms of identifying chatter frequencies
in a reliable manner. The details of these experiments are summarised in Section 6.3.1.
The other two sets of experiments described in Sections 6.3.2 and 6.3.3 were able to
produce detectable chatter vibrations and thus yielded useful results. Due to the facts
that chatter takes time to develop and the measurement range of the dynamometer is
limited, it was necessary to perform interrupted grinding, i.e., to take multiple cuts or
wheel passes. This opens up two possibilities with regard to machining: the workpiece
surface can be ground with or without recutting the workpiece surface that was machined
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chatter frequency

at 455.09 Hz

Figure 6.11: Time-domain (left) and spectrogram (right) representations of the grinding
force corresponding to an unstable experiment (labelled as CFG-1 later on in this

section), and the identification of the measured chatter frequency

during the previous wheel pass. Grinding with and without recutting the same workpiece
surface will be referred to as regular surface grinding and creep-feed grinding, respectively.
The term creep-feed grinding – being the name of an industrially recognised grinding
process – indicates that not only is there a difference in cutting strategy and machining
configuration, but the feed rates are lower and the depths of cut are higher as well
compared to regular surface grinding. The following three subsections present these
three sets of grinding experiments in detail.

However, before discussing the process of finding the most suitable methodology designed
by the author to test the theoretical chatter frequencies, it is helpful to provide an example
of an unstable experiment where the measured chatter frequency is clearly visible. Figure
6.11 is given for this purpose and shows the typical pattern of instability in a spectrogram.
The spectrogram presents the evolution of the grinding force spectrum in time, where
the third dimension is a colour map, corresponding to the normalised amplitude, which
is defined relative to the zero-frequency component or average grinding force.

6.3.1 Brief report on unsuccessful experiments

The first set of experiments performed was meant to be an initial, rudimentary experi-
ment, aiming to assess the most suitable methodology for generating and detecting chatter
in surface grinding. In an attempt to accelerate the development of self-excited vibrations,
Inconel 718 was chosen to be machined at a feed rate of 300 mm/min and at different
depths of cut between 1 and 3 mm. Two wheel speeds were tested: 3000 and 4000
rpm. Considering the diameter of the grinding wheel (220 mm), the corresponding cut-
ting speeds were 35 and 46 m/s, respectively. This workpiece material coupled with the
above-mentioned choice of grinding parameters proved to be unsuccessful in producing
and detecting chatter, because such a scenario was too aggressive for the grinding wheel
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no sign of chatter

Figure 6.12: Time-domain (left) and spectrogram (right) representations of the grinding
force over a single wheel pass (ωg = 4000 rpm, δ0 = 3 mm, vw = 300 mm/min)

(Q′w = 5 . . . 15 mm2/s). As a result, the wheel was continually wearing, breaking down
and self-sharpening at such a rapid rate that the wheel surface had no time to regenerate,
and thus chatter development was stalled. It can be seen in the time-domain represen-
tation of the signal (presented in Figure 6.12) that the grinding force varies significantly
even within a single wheel pass. It increases as the wheel wears, then decreases as the
wheel breaks down and new cutting edges are exposed. This cycle repeats itself multiple
times over a single wheel pass, disrupting the regenerative effect and thus preventing
self-excited vibrations from developing. The spectrogram shows this clearly: there is
no sign of chatter, even though it is expected to occur and exponentially grow in time
around 1.07fn = 476 Hz according to the proposed model. Although the applied grinding
conditions did not produce chatter, which is beneficial from a practical point of view, the
result is ultimately unfavourable, because the deterioration of the grinding wheel surface
was neither controllable nor predictable during the process. In the end, these initial ex-
periments – although unsuccessful in terms of generating and detecting chatter – proved
to be informative and helpful in preparing the following set of experiments reported and
discussed in Sections 6.3.2 and 6.3.3.

6.3.2 Regular surface grinding (RSG)

Building on the informative findings reported in Section 6.3.1, the second set of grinding
experiments was performed using a different, more easily machinable workpiece material
(Custom 465 instead of Inconel 718) and taking significantly lower depths of cut (from
0.01 to 0.03 mm instead of 1 to 3 mm), in order to create an environment that is less
hostile to the grinding wheel. A higher feed rate of 5000 mm/min was chosen to ensure
efficient grinding conditions, because if the material removal rate is too low, the so-called
size effect causes the specific energy to become extremely large, and the dominant grinding
mechanism will no longer be chip formation but ploughing [11]. In order to avoid such
an unfavourable scenario, a high enough feed rate had to be chosen, so that even at low
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depths of cut, the material removal rate may stay high enough for the size effect to remain
negligible. The width of cut was kept constant at 5 mm (i.e. at one third of the entire
wheel width) throughout the experiments in order to save workpiece material and reduce
the grinding forces.

These grinding experiments were still exploratory, which means that the methodology
presented in this section does not yet fit with an important assumption of the proposed
theory. The chatter model developed and documented in this work assumes continuous
grinding, where it is not possible to recut a workpiece surface that has already been
ground. Yet the grinding experiments reported in this section were performed by recutting
the same workpiece surface multiple times. Theoretically speaking, this particular setup
allows for workpiece regeneration to occur, which the proposed model does not take
into account. Being aware of this important difference, the second set of machining
experiments – termed regular surface grinding (RSG) – takes another step forward in the
pursuit of generating and detecting self-excited grinding vibrations in a controlled and
repeatable fashion. Nevertheless, it is essential to keep in mind that the grinding setup
described in this section does not exactly correspond with the theory to be tested, and
therefore must be treated with caution when it comes to comparing its results with the
model.

The test points of the RSG experiments are summarised in Table 6.5, where vg is the
circumferential speed of the wheel, δ0 is the incremental depth of cut (the total depth of
cut is 3 mm in all six cases), Q′w is the specific material removal rate, Rg,before and Rg,after

are the wheel radii before and after each experiment, ωg is the rotational speed of the
wheel, and G is the grinding ratio. In terms of theoretical stability, the grinding process
is predicted to be unstable for every test point listed in Table 6.5. In fact, considering
wheel speeds ranging from 500 to 5000 rpm and depths of cut ranging from 0 to 5 mm,
no stable region can be found. That is why no stability diagram is presented here.

The rest of this section is divided into two parts: the first half considers the first case (i.e.
RSG-1) in detail, while the second half summarises the main results of all six without
repeating a meticulous analysis for each scenario.

Case
identifier

vg
[m/s]

δ0 [mm] ×
� of passes

Q′w
[mm2/s]

Rg,before

[mm]
Rg,after

[mm]

ωg
[rpm]

G
[–]

RSG-1 23 0.01 × 300 0.83 109.208 109.079 2011 3.391

RSG-2 34 0.01 × 300 0.83 106.264 106.148 3055 3.876

RSG-3 23 0.02 × 150 1.67 105.642 105.386 2079 1.768

RSG-4 34 0.02 × 150 1.67 108.109 107.865 3003 1.812

RSG-5 23 0.03 × 100 2.5 105.022 104.678 2091 1.324

RSG-6 34 0.03 × 100 2.5 106.881 106.561 3038 1.398

Table 6.5: Test cases corresponding to regular surface grinding discussed in Section 6.3.2
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6.3.2.1 Results of RSG-1

The first RSG experiment was performed at a circumferential wheel speed of 23 m/s and
an incremental depth of cut of 0.01 mm (further details corresponding to this experiment
are given in Table 6.5). Since the total depth of material removed was 3 mm, this
particular test case included 300 wheel passes. The evolution of the grinding force in
time is presented in Figure 6.13, capturing Fx(t) near the beginning and the end of the
experiment. It can be seen that the grinding force significantly increases as a result of
wheel wear: the maximum force between 2 and 3 minutes of grinding time is around 80 N,
whereas between 15 and 16 minutes, it is about 120 N – one and a half times higher.

In order to investigate the evolution of the frequency content of the grinding force in time,
the FFT of every 35th pass has been calculated and presented in Figure 6.14 in the form
of a waterfall diagram (1 pass is equivalent to 100 mm of grinding length and 1.2 s of
grinding time). Selecting every 35th pass has the advantage of covering almost the entire
range of 300 passes with a sampling density that is both informative and clear. It can be
observed that a single frequency is dominant among all the other peaks. The magnitude
of this frequency component is not constant in time, but shows a significant variation as
the grinding wheel wears and its topography changes. In order to gain more insight into
the evolution of this frequency in time, Figure 6.15 is presented to see the variation of its
magnitude on a much finer scale. Every recorded wheel pass has been considered in this
diagram, except for those corresponding to either incomplete or inconsistent time signals.
Such passes (namely 1, 97, 98, 198, 199, 200, 235 and 295) were counted as anomalies,
unable to provide an accurate frequency peak that is representative of the grinding process
at that particular point in time. Therefore, each data point corresponds to a single wheel
pass, resulting in nearly 300 samples altogether, based on which the amplitude variation of
the frequency component in question can be more accurately determined. Three features
are especially noteworthy in Figure 6.15:

1. Up to about pass 175, the magnitude of the investigated frequency (i.e. 468.75 Hz
according to Figure 6.14) exhibits an approximately exponential increase, which is
indicative of the fact that the frequency component under consideration is the chatter
frequency of the grinding process. This observation agrees well with Thompson’s work
on grinding chatter [106,107], who documented – both theoretically and experimentally
– the presence of a single chatter frequency in surface grinding that is always higher
than the system’s uncoupled resonant frequency (in this case 443.34 Hz). The ratio of
the chatter frequency to the natural frequency is 468.75/443.34 = 1.0573, which is of
the same order of magnitude as those recorded by Thompson in Table 2.1.

2. There is a clear decline in the magnitude of the chatter frequency after pass 175. This
phenomenon is possibly caused by wheel self-sharpening. In other words, as the wheel
wears and unstable lobes form around its circumference, the self-sharpening property
of the grinding wheel can work against the progression of instability, slowing it down
by exposing a new wheel surface in place of the old one. Since this is a possible
explanation instead of a definite one, the declining side of the data is not investigated
any further.

3. There are waves in the signal, disturbing the monotonic nature of both the increasing
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Figure 6.13: Grinding force near the beginning and the end of RSG-1

development of
chatter frequency

at 468.75 Hz

Figure 6.14: Evolution of the grinding force in the frequency domain for RSG-1

decline possibly due to
wheel self-sharpening

waviness possibly due to wheel lobes
being either amplified or attenuated
depending on the phase of the wheel

at the beginning of each pass

Figure 6.15: Variation in the magnitude of the chatter frequency component for RSG-1
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and the declining sections of the recorded data. This is probably due to the fact that
the phase of the grinding wheel was not identical at the beginning of each pass. As a
result of such an irregularity in the process, the wheel lobes can be either amplified or
attenuated, depending on the angular position of the grinding wheel at the moment of
each wheel-workpiece engagement. Therefore, instability can be either accelerated or
decelerated by taking multiple cuts instead of grinding continuously. Consequently, the
rate at which the system loses its stability – as it is defined by the fitted exponential
in Figure 6.15 – is only a rudimentary value influenced by a number of irregular
wheel-workpiece engagements and therefore cannot be used to accurately determine
the relative stability of the system.

6.3.2.2 Summary of RSG cases

Having discussed the results of RSG-1 in detail, the aim of this section is to summarise
all six RSG cases listed in Table 6.5 with regard to the chatter frequency and its develop-
ment in time. Figure 6.16 presents the magnitude of the chatter-frequency component as
a function of the specific material removed for each RSG case, along with the magnitude
of the zero-frequency component (which corresponds to the average grinding force) in
order to provide a quantifiable measure of comparison to determine whether the chatter-
frequency component is large enough for the grinding process under investigation to be
characterised as unstable. The evolution of the chatter-frequency component is repre-
sented by a blue line, the variation of the zero-frequency component is indicated by a
dotted line, and the exponential fitted to each chatter peak curve is plotted in red. Due to
the fact that the total depth of cut is 3 mm in each case and one data point corresponds
to one pass in Figure 6.16, the resolution of the chatter-frequency curves decreases as
the incremental depth of cut increases (i.e. the total number of passes decreases). This
is clearly visible in Figure 6.16: RSG-1 and RSG-2 have a significantly higher resolution
than RSG-5 and RSG-6, with RSG-3 and RSG-4 situated halfway between them.

It can be seen that four cases out of six, namely RSG-1, RSG-2, RSG-4 and RSG-6, exhibit
chatter development characteristics that are very clearly exponential in nature. In terms
of the other two cases, RSG-3 and RSG-5, growth in chatter amplitude is unmistakable,
however, the exponential nature of the growth is less obvious. There is an unusual jump
in RSG-3 between two successive grinding passes, which is an anomalous phenomenon
compared with the other cases, and it makes the fitted exponential a relatively coarse
approximation of the increasing section of the chatter-frequency curve. In RSG-5, it is
difficult to judge the extent of the supposedly exponential part of the chatter-frequency
curve, which means that the quality of the fitted exponential – similarly to RSG-3 – is
substandard with regard to the actual curve to which it is fitted. Nevertheless, it can be
stated that the general trend of each chatter-frequency curve is very similar to that of
RSG-1 discussed in detail in Section 6.3.2.1.

It is crucial to keep in mind that all RSG cases hold the potential for workpiece regener-
ation and thus workpiece-related instability, which cannot be taken into account by the
proposed chatter model. Consequently, the RSG cases take a step further from the first
set of grinding experiments described in Section 6.3.1, but they are still only part of the
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Figure 6.16: Variation in chatter amplitude for all RSG cases: amplitude variation
of the zero-frequency component, amplitude variation of the chatter-frequency

component, exponential fitted to the chatter-frequency curve

process aiming to develop a suitable methodology for generating and detecting chatter in
surface grinding. Therefore, the RSG cases presented in this section cannot yet provide a
satisfactory point of comparison between theoretical and experimental results due to their
inherent potential to be affected by workpiece regeneration. Nevertheless, the difference
between the predicted and measured chatter frequencies is summarised in Table 6.6 for
the sake of completeness. It can be seen that the differences between the theoretical and
experimental chatter frequencies vary from rather small to relatively large.

Two cases stand out from the rest, namely RSG-1 and RSG-5, because the predicted chat-
ter frequencies are not only further from the experimental values, but they also deviate in
the negative direction. Furthermore, the theoretical chatter frequency in RSG-1 is almost
exactly the natural frequency, while in RSG-5, it is clearly below the natural frequency.
This kind of behaviour goes against fundamental and well-established regenerative chat-
ter theory [25], and in fact against the proposed model itself (for small depths of cut, the
chatter frequencies are expected to be higher than the natural frequency, according to
Figure 5.16). The author suspects the following reason for this discrepancy. Figures 6.6c
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Case
identifier

Chatter frequency Peak
ratio [–]Theory [Hz] Experiment [Hz] Difference [%]

RSG-1 443.66 468.75 −5.35 0.33

RSG-2 463.78 457.76 1.31 0.67

RSG-3 456.61 450.44 1.37 1.00

RSG-4 459.85 450.44 2.09 1.00

RSG-5 430.26 452.88 −4.99 0.75

RSG-6 464.20 455.32 1.95 0.75

Table 6.6: Comparison between theoretical and experimental chatter frequencies (RSG)

and 6.6d show that the combination of a relatively high feed rate and an extremely low
grinding ratio produces a highly unstable grinding process. Consequently, the numerical
simulations (such as those presented in Figure 5.20) corresponding to these highly un-
stable cases lose stability very quickly. As a matter of fact, MATLAB runs out of its
numerical capacities and starts producing infinite results after 5 to 14 seconds of grinding
time, depending on the actual RSG case considered. Therefore, it is possible that highly
unstable processes combined with MATLAB’s numerical limitations are responsible for
the inaccurate chatter frequencies. Later findings (such as those reported in Table 6.8)
seem to support this suspicion, as less unstable grinding simulations give theoretically
admissible and experimentally expected frequency values. On the other hand, RSG-4
and RSG-6 are more unstable than RSG-1 (as far as the feed rate and the grinding ratio
are concerned), yet these two scenarios provide relatively accurate theoretical predictions
of the chatter frequency. As this is a counterexample to the explanation given above,
the author remains unconvinced of the exact reason for the discrepancy regarding RSG-1
and RSG-5. Therefore, further study is warranted, but since this issue does not persist
in the third and final experimental methodology (presented in Section 6.3.3), it is not
investigated any further in this work.

Another important property of the chatter-frequency curve is the ratio of its steady-
state magnitude (after the exponential trend is broken) to that of the zero-frequency
component (i.e. the average grinding force), or equivalently, the steady-state value of the
normalised amplitude (first introduced in Figure 6.11). Based on this quantity (termed
as ‘peak ratio’ in Table 6.6), it is possible to assess the severity of instability in relation
to the average grinding force. Although the author is aware of no established threshold
of the peak ratio published in the literature separating stable and unstable processes,
it gives a quantifiable measure of instability that can be used to judge the intensity of
chatter in the grinding process. Also, if the peak ratio is ‘small enough’ (the in-depth
analysis of which is outside the scope of this work), then the grinding process can be
characterised as stable. For the purposes of this particular study, the measured peak
ratios are assessed on a case by case basis for lack of a well-established standard. All six
peak ratios listed in Table 6.6, ranging from 1/3 to 1, are considered by the author to be
indicative of unstable grinding operations with different levels of chatter vibration.
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In summary, the RSG cases serve as the next step after the first set of grinding exper-
iments described in Section 6.3.1 to develop a suitable methodology for generating and
detecting chatter in surface grinding. However, they are not yet satisfactory in terms
of their capacity to provide an adequate point of comparison between theoretical and
experimental findings. This is owing to the fact that the RSG experiments are inherently
exposed to workpiece regeneration, which the proposed chatter model does not take into
account. The following section presents the next and final step in the pursuit of a suit-
able experimental methodology that is able to eliminate workpiece regeneration from the
grinding process.

6.3.3 Creep-feed grinding (CFG)

The elimination of the potential for workpiece regeneration from the grinding process
can be achieved by machining the workpiece without recutting the same surface. This
was carried out by preparing the workpiece in such a way that each pass can be done
on a fresh, smooth surface. Due to the fact that only one third of the total wheel width
was used for grinding in order to save more workpiece material and decrease the grinding
forces, a number of steps were prepared on the workpiece to keep the passive or non-
cutting section of the wheel width from interacting with any other part of the workpiece.
This methodology provides a way to approximate the single-pass grinding scenario mod-
elled by the proposed chatter theory even more accurately, as the potential for workpiece
regeneration has been eliminated. The interrupted nature of the grinding process – which
is the only main difference now remaining between the theoretical model and the experi-
mental setup – has been shown to be inconsequential in terms of significantly suppressing
wheel-related grinding chatter [108]. Therefore, this approach has been judged by the
author as an adequate method to test the chatter frequencies predicted by the presented
model.

Due to the fact that the number of steps that can be prepared on the workpiece is
limited (leaving enough space for clamping and using 5 mm of the total wheel width, the
maximum number of steps along the width of a 100 × 50 × 15 mm block is eight), the
depth of cut had to be increased in order to keep the total amount of workpiece material
removed approximately the same as in regular surface grinding for the sake of consistency.
Therefore, the depths of cut were increased from 0.01 . . . 0.03 mm to 0.25 . . . 0.5 mm. In
order to remain consistent in terms of the specific material removal rate as well, the feed
rate was reduced from 5000 mm/min to 300 mm/min.

Similarly to the structure of Section 6.3.2, the rest of this section is divided into two
parts: the first one analyses one case in detail, and the second one summarises the results
of all six grinding scenarios listed in Table 6.7. In terms of theoretical stability, no stable
region can be found for the parameter domain ωg = 500 . . . 5000 rpm and δ0 = 0 . . . 5 mm.
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Case
identifier

vg
[m/s]

δ0 [mm] ×
� of passes

Q′w
[mm2/s]

Rg,before

[mm]
Rg,after

[mm]

ωg
[rpm]

G
[–]

CFG-1 23 0.25 × 8 1.25 104.492 104.266 2102 1.349

CFG-2 34 0.25 × 8 1.25 103.770 103.669 3129 3.039

CFG-3 23 0.375 × 8 1.875 103.120 102.875 2130 1.892

CFG-4 34 0.375 × 8 1.875 102.476 102.325 3168 3.088

CFG-5 23 0.5 × 8 2.5 101.831 101.495 2157 1.864

CFG-6 34 0.5 × 8 2.5 101.180 100.949 3209 2.727

Table 6.7: Test cases corresponding to creep-feed grinding discussed in Section 6.3.3

6.3.3.1 Results of CFG-1

The first CFG experiment was carried out at a circumferential wheel speed of 23 m/s
and an incremental depth of cut of 0.25 mm (further details regarding this experiment
are provided in Table 6.7). As it was stated before, every CFG test case involved 8
wheel passes, therefore, the total depth of workpiece material removed in CFG-1 was
8 × 0.25 mm = 2 mm (1 pass is equivalent to 100 mm of grinding length and 20 s of
grinding time). The evolution of the grinding force in time is presented in Figure 6.17,
capturing Fx(t) during the first two and last two passes of the grinding wheel. It can be
seen that there is no significant increase in the magnitude of the grinding force as there
was in regular surface grinding, however, it is noteworthy that the grinding force becomes
more even with time.

In terms of the frequency content of the grinding force, two important features need to be
mentioned with reference to regular surface grinding – one similarity and one difference.
Figure 6.18 highlights the evolution of two dominant frequency components in the signal,
where the first is larger than the second. Similarly to regular surface grinding, the larger
frequency component exhibits an approximately exponential increase before it breaks off
and settles, indicating that this frequency component is in fact the chatter frequency
of the system under the specified grinding conditions. A higher-resolution graph of the
chatter peak variation is presented in Figure 6.19 in order to further justify this conclusion.
However, with regard to the frequency content of the grinding force, there is a significant
difference between the results corresponding to creep-feed grinding and regular surface
grinding. In Figure 6.18, another frequency component arises at exactly two times the
chatter frequency. This is the second harmonic of the chatter frequency, which was present
in some of the RSG cases as well, although it certainly was not as dominant there as it is
here in creep-feed grinding. Observing harmonics of the chatter frequency as instability
grows is not a novel discovery, however, according to Li and Shin, it is a phenomenon that
was unexplained in grinding prior to their new wheel regenerative chatter theory [108].
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Figure 6.17: Grinding force during the first two and last two wheel passes in CFG-1

development of
chatter frequency

at 455.09 Hz
second harmonic of
chatter frequency

at 910.18 Hz

Figure 6.18: Evolution of the grinding force in the frequency domain for CFG-1

decline possibly due to
wheel self-sharpening

waviness possibly due to wheel lobes
being either amplified or attenuated
depending on the phase of the wheel

at the beginning of each pass

Figure 6.19: Variation in the magnitude of the chatter frequency component for CFG-1
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The three observations discussed in Section 6.3.2.1 regarding the evolution of the chatter
peak hold true for creep-feed grinding as well, therefore, they are not repeated in this
section.

6.3.3.2 Summary of CFG cases

Similarly to the RSG cases, Figure 6.20 shows the magnitude of the chatter-frequency
component along with the magnitude of the zero-frequency component (or the average
grinding force) as a function of the specific material removed for each CFG scenario.
However, unlike in the case of regular surface grinding, the resolution of the chatter-
frequency curves remains the same for each depth of cut due to the fact that one data
point always corresponds to one second of grinding time. The vertical grid lines are drawn
in such a way that they separate individual wheel passes, therefore, the horizontal axis
is divided into eight sections in each case.

Figure 6.20: Variation in chatter amplitude for all CFG cases: amplitude variation
of the zero-frequency component, amplitude variation of the chatter-frequency

component, exponential fitted to the chatter-frequency curve
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It can be seen in Figure 6.20 that the magnitude of the chatter-frequency component is
significant in each grinding scenario, indicating the presence of unstable vibrations. The-
oretically speaking, the growth of these unstable vibrations is expected to be exponential
in nature, and this is in fact clearly visible in all cases, although one experiment seems to
lack the same degree of clarity that the others have. The last scenario, namely CFG-6,
appears to be an anomaly compared with the other cases, as chatter – although certainly
present – not only takes a significantly longer time to manifest but also develops after
a series of variations in its amplitude, which is an unusual phenomenon in light of the
other five cases. This waviness is probably owing to the same effect as that noted in
Figures 6.15 and 6.19, namely that wheel lobes (i.e. specific energy waves) can be either
amplified or attenuated depending on the phase of the grinding wheel at the beginning
of each pass. Therefore, since instability took such a long time to set off, it is possible
that the phase of the wheel during the first three or four passes was such that chatter de-
velopment was hindered rather than facilitated by the interrupted nature of the grinding
process. However, it works somewhat against this line of reasoning that the changes in
chatter amplitude occur not only at the beginning of passes but during grinding as well.
Nevertheless, the exponential increase in the chatter-frequency component is visible in
CFG-6 as well, but it is less clear and less smooth than in the other cases.

It is important to note that (apart from CFG-6) the rate at which visible instability
developed is quite similar in each case in terms of how much workpiece material had to
be removed for chatter to become clear. This was not the case in regular surface grinding,
where the differences were more significant between the first two and the last four sets of
grinding experiments.

It is also important to remember that, unlike in the RSG cases, the potential for workpiece
regeneration and workpiece-related instability has been eliminated from the CFG setup.
Therefore, the chatter frequencies corresponding to the CFG scenarios (listed in Table
6.8) are more reliable when it comes to testing the proposed chatter model than those
belonging to regular surface grinding. It can be seen that the differences between the
predicted and measured chatter frequencies are around 1%, which is strong evidence for
the validity of the presented theory. Also, there are no anomalies this time, every CFG
case follows the same pattern, namely a small difference between the theoretical and
experimental results with the predicted chatter frequencies being slightly higher than the
measured ones.

The peak ratios (discussed in Section 6.3.2.2 and defined as the ratio between the steady-
state magnitudes of the chatter- and zero-frequency components) are similar to those
corresponding to regular surface grinding, therefore, the author considers them indicative
of unstable grinding operations again with different levels of self-excited vibration.

In summary, it can be concluded that the grinding chatter theory developed in Chapter 5
is supported by the experimental chatter frequencies reported in this section. Therefore,
in terms of the predicted chatter frequencies, the presented model is both accurate and
reliable.
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Case
identifier

Chatter frequency Peak
ratio [–]Theory [Hz] Experiment [Hz] Difference [%]

CFG-1 460.07 455.09 1.09 0.75

CFG-2 470.75 468.90 0.39 1.00

CFG-3 465.95 460.82 1.11 0.75

CFG-4 476.88 474.55 0.49 0.60

CFG-5 472.17 466.54 1.21 0.53

CFG-6 483.48 480.73 0.57 0.75

Table 6.8: Comparison between theoretical and experimental chatter frequencies (CFG)

6.4 Tests for stability boundaries

Another widespread method for testing the validity of a chatter model is to compare the
stability boundaries predicted by the model with experimental results. Therefore, this
will be the second line of argument for or against the reliability of the proposed chatter
theory. The concept of the peak ratio will be critical here, as it will be the primary
way of quantifying the difference between stability and instability. Although, as it was
mentioned before, the author is aware of no peak-ratio-based theory published in the
literature that establishes a clear and well-founded difference between stable and unstable
grinding operations, differentiating between the two is typically fairly straightforward.

As it was stated in Section 6.3, the peak ratio is the steady-state value of the normalised
chatter amplitude, which is the ratio between the chatter- and zero-frequency compo-
nents of the grinding force spectrum. While in the previous section the stability analysis
was based on tracking the magnitudes of these two frequency components in time, this
section introduces a change in illustration methodology. Instead of looking at only two
frequency components of the grinding force spectrum, all frequencies are going to be pre-
sented in a predetermined vicinity of the natural frequency, where the chatter frequency
is expected to show up if the process is unstable. The magnitude of each frequency
component will be normalised by the average grinding force, resulting in the normalised
amplitude mentioned earlier. All of these frequencies will be plotted in time, producing
a spectrogram such as that in Figure 6.11. This change in illustration methodology is
introduced for the following reasons: (1) the spectrogram is more general than the pre-
vious approach, because a wide range of frequencies are visible (and thus available for
inspection) at the same time instead of just a few components, (2) the spectrogram can
be quickly generated and easily automated, whereas the first methodology proved to be
slow and cumbersome, which is far from ideal, especially when it comes to assessing the
stability properties of several grinding experiments on the spot, and (3) it is faster and
easier not only to create a spectrogram but also to draw conclusions from it by simple
visual inspection. Therefore, once the analyst understands and recognises the spectral
signs of grinding chatter, the spectrogram is a more practical tool for stability analysis
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than looking at individual frequency components separately. In terms of the waterfall
diagrams, such as those presented in Figures 6.14 and 6.18, the spectrogram is simply a
two-dimensional representation of the same information, where the third dimension has
been replaced by a colour map. One disadvantage of the spectrogram is that the trend
of chatter development is not as clearly visible as in the case of the waterfall diagram.
Overall, however, the arguments in favour of the spectrogram outweigh those against
it. For this reason, the author will predominantly use spectrograms for data analysis
throughout the rest of this chapter.

This section is divided into two parts: the first half presents a brief report on some unsuc-
cessful experiments, while the second half summarises a number of grinding experiments
set up in a CFG configuration. Regular surface grinding experiments (as defined in Sec-
tion 6.3.2) were not performed in this case, since creep-feed grinding has already been
established in Section 6.3.3 as the more capable approach when it comes to testing the
presented chatter theory.

6.4.1 Brief report on unsuccessful experiments

Shifting the focus from the chatter frequencies to the stability boundaries, a new ex-
perimental methodology was employed as well, primarily as an attempt to save more
workpiece material. Instead of preparing eight steps on the workpiece as before, which
does indeed waste a significant amount of workpiece material, the following experimental
strategy was implemented by the author: besides the test wheel, a so-called cleaning
wheel was used as well with the sole purpose of cleaning the workpiece surface after every
pass of the test wheel in order to remove any potential waves from the workpiece sur-
face and thus eliminate the possibility of workpiece regeneration. Using this approach,
the workpiece required no meticulous preparation whatsoever, and the whole experiment
was much simpler as a result. Due to the fact that a different parameter domain was
necessary to test the predicted stability boundaries (i.e. different from the one used for
testing the chatter frequencies), the depth of cut had to be increased to 0.75 . . . 1.75 mm.
Therefore, in order to keep the specific material removal rate consistent with the previous
experiments, the feed rate was reduced to 100 mm/min.

Figure 6.21 shows eight pairs of grinding parameters (wheel speeds and depths of cut)
that were tested for stability. It is important to note that, as it was concluded in Section
6.2.2 and presented in Figure 6.7b, the stability boundaries are very sensitive to low values
of the grinding ratio. This observation is confirmed again in Figure 6.21, which presents
two sets of stability boundaries corresponding to the minimum and maximum values of
the grinding ratio (0.986 and 3.857) measured for the eight experiments under discussion.
As it is clearly visible, the stable and unstable regions can vary significantly depending
on the actual value of the grinding ratio. Therefore, in order to accurately compare the
theoretical and practical results, each experiment would have to be marked in a slightly
different stability diagram defined by the specific grinding ratio corresponding to that
experiment. However, since the main point of this particular section (i.e. why these
experiments were unsuccessful) can be articulated without such a detailed analysis, the
presentation of the results in Figure 6.21 is not refined any further. Nevertheless, it is
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Figure 6.21: Theoretical stability boundaries and experimental test points
for Rg = 110 mm and vw = 100 mm/min

Figure 6.22: Evolution of the grinding force in the frequency domain for vg = 23 m/s
and δ0 = 0.75 mm – the three wheel passes are separated by dashed lines

undoubtedly clear that unstable scenarios are always expected, only the number of them
can vary with the grinding ratio.

However, every experiment carried out using this new methodology produced stable re-
sults – even those that were predicted to be unstable by the chatter model under scrutiny.
That is to say, the magnitude of the chatter-frequency component was insignificant in
each case (e.g. Figure 6.22). It can be seen that none of the peaks around the expected
location of the chatter frequency is large enough to indicate instability.

As this was a highly unexpected set of results, the author became suspicious of the new
methodology employed. Removing and reclamping the test wheel before each pass (in
order to use the cleaning wheel) turned out to have an adverse effect on the develop-
ment of chatter. That is probably due to the fact that removing and reclamping the test
wheel slightly changes the dynamics of the system between individual passes, which can
be strong enough a disturbance that it is capable of breaking up the process of chatter
development. Disturbing the regenerative effect is in fact a well-known method for sup-
pressing chatter in machining [25,86], however, the way it was achieved in this particular

127



case (i.e. stopping and restarting the machine after every pass) is obviously not a feasible
approach to ensuring stable grinding operation. This explanation seems to be confirmed
by the fact that repeating some of these experiments with recutting the same workpiece
surface multiple times (just as in Section 6.3.2) produced unstable results. Nevertheless,
this set of unsuccessful experiments served the purpose of narrowing down the exper-
imental methodologies capable of generating and detecting chatter. Consequently, the
author reverted to the previous approach described in Section 6.3.3, despite the fact that
it took more time and cost more material to prepare the workpiece.

6.4.2 Creep-feed grinding (CFG)

This section presents and analyses a number of creep-feed grinding experiments performed
using the methodology described in Section 6.3.3, which was tested and proved to be
adequate for capturing wheel-related chatter in surface grinding. However, when it comes
to selecting the initial test points, the flow of this investigation follows on from the
unsuccessful experiments reported in Section 6.4.1, and builds on the data obtained there.
Having measured the grinding forces corresponding to several other CFG cases as well,
a thorough data analysis is performed in order to test the stability boundaries predicted
by the proposed model. Finally, the results are summarised and presented at the end of
the section.

6.4.2.1 New grinding wheel

Due to some expected yet unfavourable limitations with regard to both equipment and
time, the author was unable to continue using the exact same type of grinding wheel as
before, i.e., the one identified as GW-1 in Table 6.1. Two very similar grinding wheels were
available to mitigate this issue, whose physical properties are listed in Table 6.9. The
thicker wheel identified as GW-3 is approximately 37% heavier than GW-1, therefore,
employing this wheel would inherently change the modal parameters of the structure.
However, considering the modal characteristics of the system corresponding to GW-1
and GW-2 (discussed in Section 6.1) and the sensitivity of the stability boundaries to
the natural frequency (presented in Section 6.2.2), it can be concluded that the difference
between GW-1 and GW-3 in terms of their respective modal parameters is negligible as far
as this study is concerned. The grinding wheel identified as GW-4 has the same thickness
as GW-1, however, it uses slightly finer grains of the same shape (80/80 instead of 60/80,

Wheel
identifier

Outer �
[mm]

Inner �
[mm]

Width
[mm]

Grit
number

Mass
[kg]

GW-3 220 32 20 60/80 1.159

GW-4 220 32 15 80/80 0.835

Table 6.9: Physical properties of two additional 3MTM CubitronTM II grinding wheels
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which indicates a smaller and more consistent grain size). Practically speaking, either of
these two new wheels is adequate to replace GW-1. Nevertheless, based on the fact that
employing GW-3 would slightly alter the modal characteristics of the system, ideally
calling for the modal analysis to be repeated, and that the grain size is a changeable
parameter in the proposed model, the author decided to use GW-4 for the rest of his
experiments.

6.4.2.2 Initial test points

Keeping in mind that even a small change in a low grinding ratio has the potential to
significantly alter the predicted stability boundaries, the first challenge was to make sure
that theoretically stable grinding scenarios can be realised in practice. The reason this is
not a straightforward task is that the grinding ratio is – to some degree at least – an un-
controlled parameter in the experiments. That is to say, performing the same experiment
over and over again can give different grinding ratios, and consequently, different stability
boundaries as well. Therefore, considering the manner in which decreasing the grinding

Figure 6.23: Initial test points selected to be theoretically stable

Figure 6.24: Initial test points confirmed to be theoretically stable
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ratio reduces stability according to Figure 6.23, four test points were selected that are
most likely to be stable (i.e. to remain stable for the longest as the G-ratio decreases),
based on the stability boundaries calculated previously in Section 6.4.1. Since each test
point corresponds to a different wheel radius and grinding ratio in reality, the predicted
stability boundaries will be different in each case. For the sake of accuracy, this differ-
ence is taken into account in each scenario. Therefore, after performing the experiments
corresponding to these four test points, measuring the wheel radii and calculating the
grinding ratios, the actual stability boundaries were predicted. They are summarised in
Figure 6.24, along with the test points themselves in matching colours. It can be seen
that all four grinding processes are predicted to be stable, therefore, the first obstacle has
been overcome: a number of practical grinding configurations have been identified that
are expected to be stable according to the theoretical model.

6.4.2.3 Data analysis

The details of 20 more surface grinding experiments are listed in Table 6.10. Additionally,
the stability properties of all 30 creep-feed grinding experiments are summarised in Figure
6.25 along with three sets of theoretical stability boundaries. Due to the fact that every
experiment corresponds to a unique set of stability boundaries (since the wheel radius and
the grinding ratio will be different in each case), it would be impractical to show every
experiment in its own stability diagram. Nevertheless, it is useful to see the results of
all creep-feed grinding experiments in a single figure, therefore, the wheel radius and the
grinding ratio corresponding to the three sets of theoretical stability boundaries presented
in Figure 6.25 have been chosen as follows. The wheel radius was set to 105 mm, which is
the mean between the initial 110 mm and the minimum 100 mm (Section 6.2.2 provides
more details on how the minimum wheel radius was determined). Since the stability
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Figure 6.25: Theoretical (lines) and experimental (circles) stability properties of all
creep-feed grinding tests (no stability boundary is visible for G = 0.842, because the

entire parameter region presented above is unstable for this grinding ratio)
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Case
identifier

vg
[m/s]

δ0 [mm] ×
� of passes

Q′w
[mm2/s]

Rg,before

[mm]
Rg,after

[mm]

ωg
[rpm]

G
[–]

CFG-7 16 1.25 × 3 2.08 106.622 106.260 1433 1.549

CFG-8 19 1.75 × 2 2.92 107.645 107.316 1686 1.575

CFG-9 22 2.25 × 1 3.75 108.251 108.134 1941 2.829

CFG-10 25 2.75 × 1 4.58 108.855 108.651 2193 1.973

CFG-11 13 2.75 × 2 4.58 109.046 108.088 1138 0.842

CFG-12 16 2.75 × 2 4.58 105.999 105.192 1441 1.027

CFG-13 19 2.75 × 2 4.58 104.537 103.786 1736 1.119

CFG-14 22 2.75 × 2 4.58 103.069 102.545 2038 1.625

CFG-15 25 2.75 × 2 4.58 101.584 101.089 2350 1.745

CFG-16 28 2.75 × 2 4.58 107.642 107.314 2484 2.483

CFG-17 31 2.75 × 2 4.58 106.930 106.653 2768 2.959

CFG-18 34 2.75 × 2 4.58 106.206 106.019 3057 4.411

CFG-19 37 2.75 × 2 4.58 109.164 108.962 3237 3.973

CFG-20 13 1.25 × 4 2.08 105.687 105.180 1175 1.489

CFG-21 16 1.25 × 4 2.08 105.020 104.468 1455 1.376

CFG-22 17 1.25 × 4 2.08 102.744 102.276 1580 1.659

CFG-23 18 1.25 × 4 2.08 102.001 101.574 1685 1.831

CFG-24 19 1.25 × 4 2.08 104.228 103.830 1741 1.922

CFG-25 22 1.25 × 4 2.08 103.492 103.121 2030 2.076

CFG-26 22 1.75 × 3 2.92 108.137 107.774 1943 2.132

CFG-27 19 1.75 × 3 2.92 107.130 106.620 1694 1.533

CFG-28 22 1.5 × 4 2.50 105.586 105.160 1990 2.127

CFG-29 22 1.375 × 4 2.29 104.443 104.081 2011 2.319

CFG-30 19 1.375 × 4 2.29 103.069 102.690 1760 2.245

Table 6.10: Additional creep-feed grinding tests (the first six are listed in Table 6.7)

boundaries do not vary significantly between Rg = 110 and 100 mm, the average of these
two extreme values is able to represent the wheel radius during each experiment relatively
accurately. The grinding ratio was set to three different values (hence the three sets of
stability boundaries): the overall minimum and maximum (0.842 and 4.411), and the
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average of all 30 creep-feed grinding experiments, which is 2.093. Presenting the results
in this way provides an opportunity to see the stability properties of all 30 experiments
in a single diagram without losing many of the details that characterise each experiment.
Figure 6.25 shows the stability of each grinding experiment by a circle in colour. Stable
and unstable processes are marked by green and red circles, respectively. However, there
were some instances where it was ambiguous to decide whether the process was stable
or unstable. In fact, these cases appeared to be marginally stable, transitioning from
one state to the other, and are indicated by yellow circles in Figure 6.25. Before moving
on to discussing the results in detail, three spectrograms are presented in Figure 6.26,
corresponding to stable, transitional and unstable processes, in order to demonstrate how
the stability of each experiment was assessed based on an inspection of the spectrogram.

It can be seen that CFG-23 is a stable grinding process throughout all four wheel passes,
showing no sign of chatter in the presented time interval. The experiment identified as
CFG-30 exhibits some transitional characteristics. Chatter seems to be developing, but
the process is very slow – by the fourth wheel pass, the normalised amplitude is still
moderate around the natural frequency. Experiment CFG-24 is clearly unstable. The
rate at which instability occurs is significantly faster than in the case of CFG-30. The
transition occurs during the third pass, and chatter is fully developed by the fourth. These
experimental observations put two important aspects of grinding stability into focus.
First, transitional behaviour suggests that the grinding parameters under investigation
correspond to an unstable process that is very close to the stability boundary. That
is why it appears to be stable for a long period of time. This inference prompts the
question whether the processes tested and found to be stable are truly stable or they
would eventually become unstable, provided that the experiments are run long enough.
This is a valid point and will be discussed in Chapter 7. Second, instability happens at
different rates depending on where the grinding process is located relative to the stability
boundary. In order to investigate this idea of relative instability even further, and test its
validity against experimental data, the spectrograms of three unstable processes situated
at different distances from the stability boundary are presented in Figure 6.27 for closer
examination.

It is clear that the phenomenon of relative instability is supported by the experiments.
The test point located closest to the theoretical stability boundary (CFG-24, the one
discussed earlier) begins its transition during the third pass, the second closest (CFG-29)
between the first and second passes, and the test point that is farthest from the stability
boundary (CFG-25) starts transitioning right at the beginning, during the first pass.
This is a strong indication that a practical stability boundary exists away from CFG-25
in the directions of CFG-24 and CFG-29 – exactly the direction in which the theoretical
stability boundary was predicted by the proposed chatter model. More details concerning
the experimental results summarised in Figure 6.25 are now discussed in Section 6.4.2.4.

6.4.2.4 Results

Apart from the six unstable experiments discussed in detail in Section 6.3.3, two main
conclusions can be drawn from Figure 6.25, corresponding to two groups of test points:
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Figure 6.26: Stable, transitional and unstable grinding processes and their
corresponding spectrograms – the four wheel passes are separated by dashed lines

those located between δ0 = 1 and 2 mm, and those at δ0 = 2.75 mm.

As it was stated in Section 6.4.2.3, the cluster of experimental data points in Figure
6.25 located between δ0 = 1 and 2 mm clearly indicate the existence of a practical
stability boundary. Although it is important to keep in mind that the presented stability
boundaries correspond to the average and maximum G-ratios of all creep-feed grinding
tests performed, the evidence for a practical stability boundary is obvious, even if it
does not coincide exactly with the theoretical predictions. The transition between stable
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Figure 6.27: Unstable grinding processes and their spectrograms corresponding to
different degrees of instability – the four wheel passes are separated by dashed lines

and unstable grinding can be seen mainly in two directions, which are marked by blue
lines in Figure 6.28. One of the difficulties in finding the practical stability boundary is
the variation of the grinding ratio between individual experiments. Since the grinding
ratio changes the location of the stability boundary, different G-ratios result in different
stability boundaries. Therefore, determining the experimental stability boundary with
precision is possible only if the grinding ratio is kept under sufficient control. Based on
the author’s machining experiments, this is not always an easy task. The further analysis
of the factors that influence the grinding ratio in practice and the conditions under which
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Figure 6.28: Two lines of transition between stable and unstable grinding, indicating
the existence of a practical stability boundary

it can be kept approximately constant is outside the scope of this work, nevertheless,
it can be a real challenge when it comes to grinding with low G-ratios. In summary of
Figure 6.28, it can be concluded that a practical stability boundary has been found in a
location that is qualitatively in agreement with the proposed chatter theory.

With regard to the chatter frequencies corresponding to the three unstable scenarios
indicated in Figure 6.28, a somewhat unexpected phenomenon can be observed. The
difference between the theoretical and experimental chatter frequencies is more signifi-
cant for each test point than it was for the six shallow cuts (compare Tables 6.8 and
6.11). Furthermore, it can be noticed that the differences between the theoretical and
experimental chatter frequencies are approximately equal to the respective wheel speeds.
In order to investigate this issue more deeply, a number of simulations are presented in
Figure 6.29. Keeping the wheel speed constant, the theoretical chatter frequencies are
plotted as a function of the depth of cut for these three test points. It can be seen that,
upon reaching a particular depth of cut, all three sets of predictions jump to a value that
is significantly higher than the predictions before. Therefore, the difference that can be
observed between the theoretical and experimental chatter frequencies also exists in the
purely theoretical model itself. This phenomenon is further confirmed by Figure 5.15,

Case
identifier

Chatter frequency Peak
ratio [–]Theory [Hz] Experiment [Hz] Difference [%]

CFG-24 494.82 463.26 6.81 0.78

CFG-25 508.53 473.02 7.51 0.73

CFG-29 503.81 468.22 7.60 0.69

Table 6.11: Comparison between additional chatter frequencies (CFG)
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Figure 6.29: Predicted chatter frequencies against the depth of cut:
× simulation, × experiment, stability boundary, critical depth of cut

which shows that increasing the depth of cut at a given wheel speed can cause a jump
to occur in the chatter frequency (or lobe number). It is also interesting to note that the
depth of cut at which the jump happens depends on the relative stability of the process.
Considering that CFG-24 is the least unstable and CFG-25 is the most unstable of the
three cases according to Figure 6.27, and noting the distance between each experimental
test point and the corresponding stability boundary in Figure 6.29, the proposed chatter
theory suggests that the critical depth of cut at which the jump in chatter frequency
occurs increases as the grinding process becomes more unstable. Nevertheless, it is clear
that the location of the jump is incorrectly predicted by the model, and it is not obvious
which assumptions are responsible for this error. Additional work is necessary to improve
the chatter frequency predictions of the presented theory.

Concerning the test points at δ0 = 2.75 mm, a rather unexpected result can be observed:
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Figure 6.30: Hot workpiece material stuck to the circumference of the wheel during
grinding (left) and the resulting surface finish at two different magnifications (right)

Figure 6.25 shows that every experiment turned out to be stable (with one exception of
transitional behaviour), while a mixture of stable and unstable processes were predicted.
There is no significant difference between these scenarios in terms of their respective
spectrograms – each, except for the transitional one, corresponds to stable grinding.
Even the transitional case is located between two stable experiments, suggesting no clear
stability boundary at this particular depth of cut. Considering the fact that grinding is
described in the literature as typically unstable with respect to wheel regeneration [25],
this result was highly unexpected. However, having observed the grinding processes in
question during cut, a reasonable explanation can be given as to why they were all stable.
Due to the high depth of cut, so much heat was generated in the process (especially at
higher wheel speeds) that the chips were slightly melted and got stuck to the grinding
wheel. This phenomenon manifested itself as a constant glow around the circumference
of the wheel throughout the entire process (as captured by Figure 6.30). Since wheel-
related regenerative chatter is dependent on the wheel surface being able to regenerate
and evolve, the process of surface regeneration and chatter development was probably
stalled by workpiece material clogging up and covering the grinding wheel. Although the
process was dynamically stable, such a grinding scenario is highly unfavourable and to
be avoided in practice. That is because, due to workpiece material being stuck to the
grinding wheel and covering its grits, chip formation is hindered, the grains are dragging
the workpiece material instead of properly cutting it, workpiece material is continually
being redeposited onto the machined surface, and the resulting surface finish is entirely
unacceptable (as it is clearly visible in Figure 6.30). Therefore, it is potentially due to this
phenomenon, which was not considered in the model, that there is a significant mismatch
between the theoretical predictions and the experimental observations.

In conclusion, Figure 6.25 reveals three key pieces of information regarding the stability
of the grinding experiments performed and the validity of the chatter theory proposed.
First, the experiments between CFG-1 and CFG-6 were unstable processes as the author’s
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model had predicted. Second, the experiments between δ0 = 1 and 2 mm show clear lines
of transition between stable and unstable operations, and therefore indicate the presence
of a stability boundary, whose location is in qualitative agreement with the theoretically
calculated stability boundary. And third, the test points at δ0 = 2.75 mm do not support
the predicted results, due to an unexpected phenomenon that was not considered in the
model. Therefore, the overall conclusion concerning Figure 6.25 is that the creep-feed
grinding experiments performed by the author are largely in support of the proposed
chatter theory and present a strong case for its validity.

6.5 Analysis of relative instability

As it was demonstrated in Chapter 5, the proposed model is capable of predicting the
relative instability of a given grinding process based on the gain and phase margins of
the system. The aim of this section is twofold: to calculate the relative instability of
some of the experiments discussed in this chapter, and to compare them with the corre-
sponding theoretical results. Due to the fact that creep-feed grinding (as an experimental
methodology described in Sections 6.3 and 6.4) has been shown to be the most suitable
configuration for testing the new chatter model, only CFG cases will be covered in this
section.

In the first half of this analysis of relative instability, the first six CFG scenarios will
be investigated. Transforming the horizontal axes in Figure 6.20 from specific material
removed [mm2] to actual grinding time [s], it is possible to measure the rate of chatter
development, i.e., the rate at which the amplitude of the chatter-frequency component of
the grinding force spectrum increases with time. This analysis provides valuable insight
into the relative instability of each process. Although the fitted exponentials quantifying
the rate of chatter development are rather inaccurate at times (as it was pointed out
earlier in this chapter), they can still be used for a rudimentary approximation of relative
instability. Considering that each fitted exponential has the form Fx(t) = aebt, the
damping ratio of each process can be calculated according to the formula b = −ζωc,
where ζ is the damping ratio and ωc is the chatter frequency in rad/s. This expression is
based on elementary vibration theory (e.g. [156], pp. 28-33). Therefore, extracting the
coefficients a and b along with the experimental chatter frequencies from the recorded
data, it is possible to calculate the damping ratio corresponding to each of the six grinding
scenarios presented in Figure 6.20. These results are summarised in Table 6.12.

It can be seen that the damping ratios are negative, which is indicative of instability.
Also, it is noteworthy that the damping ratios are very low. In other words, instability
developed very slowly. This observation corresponds not only to the first-hand experience
of the author that it took quite a while for chatter to become detectable, but also to the
position of the literature according to which wheel-related instability takes a long time
to build up [25]. It is interesting to see that (apart from CFG-3 and CFG-6, the latter of
which was already regarded as an anomaly earlier in Section 6.3.3.2) the damping ratios
are not only of the same order of magnitude, but also quite close to one another. This
means that these processes become unstable at relatively similar rates. With regard to
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Case
identifier

Fitted exponential:
Fx(t) = aebt, b = −ζωc

Chatter frequency Damping
ratio ζ [%]

a [N] b [rad/s] fc [Hz] ωc [rad/s]

CFG-1 0.5897 0.06999 455.09 2859.4 −0.002448

CFG-2 0.5601 0.0681 468.90 2946.2 −0.002311

CFG-3 2.541 0.1141 460.82 2895.4 −0.003941

CFG-4 2.406 0.08221 474.55 2981.7 −0.002757

CFG-5 5.073 0.0863 466.54 2931.4 −0.002944

CFG-6 2.387 0.02801 480.73 3020.5 −0.000927

Table 6.12: Experimental damping ratios corresponding to the first six CFG cases (the
graphs to which the exponentials are fitted are presented in Figure 6.20)

Table 6.12, it is important to keep in mind that the damping ratios listed there are only
rudimentary approximations of relative instability because of two main reasons: (1) the
fitted exponentials are not very accurate representations of the practical nature of chatter
growth, i.e., they do not always fit the chatter-amplitude curves very well, and (2) the
damping ratios were calculated assuming damped harmonic oscillations with negative
damping, which is a rather simplistic approach.

After determining the experimental damping ratios, it is helpful to compare them with
those predicted by the proposed theory in order to test the accuracy of the model. This
can be done by calculating the phase margin in each case, and provided that it is expressed
in degrees, dividing the phase margin by 100 gives a relatively good approximation of the
theoretical damping ratio (i.e. PM = 100ζ according to [155], p. 648). These results are
summarised in the third column of Table 6.13. It is rather surprising to see how vastly

Case
identifier

Experimental
damping ratio [%]

Theoretical damping ratio [%]

(0.6, 178) (0.6, 17.8) (0.6, 1.78)

CFG-1 −0.002448 −59.4849 −10.7593 −5.1059

CFG-2 −0.002311 −41.4407 −33.973 −33.1883

CFG-3 −0.003941 −55.6265 −14.5101 −9.7682

CFG-4 −0.002757 −44.2191 −35.3523 −34.4213

CFG-5 −0.002944 −62.0563 −17.5389 −12.4579

CFG-6 −0.000927 −47.2764 −36.3642 −35.2082

Table 6.13: Comparison between experimental and theoretical damping ratios for three
different wheel wear rates captured by (∆A [%], ∆u [J/mm3]) pairs
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different these values are from the experimental ones: the predicted damping ratios are
at least four orders of magnitude larger than the measured ones. This means that the
new model grossly overestimates the rate of stability loss. It is helpful to remember that
an overly rapid rate of chatter development and stability loss was already encountered in
Section 6.3.2.2 with reference to a couple of inaccurate chatter frequency predictions, and
the two phenomena are probably connected. Considering the vast number of modelling
assumptions made during the formulation of the theory (listed in Appendix B), this
particular error can come from several potential sources.

One possible explanation is that the coefficient of dulling used in the theoretical analysis
was too high, i.e., the wear rate of the grinding wheel was too fast. The coefficient
of dulling was introduced by the author in Section 5.2.3 as a way of quantifying wheel
wear by an increase in specific energy. According to Eq. (5.48), the coefficient of dulling
depends on a number of parameters, such as the change in wear-flat area (∆A) and the
corresponding change in specific energy (∆u), the grinding ratio (G), and the geometry
of abrasive grits (α and rg). The grinding ratio and the grain geometry are relatively easy
to determine, but measuring the relationship between the wear-flat area and the specific
energy is a rather laborious task, which lies outside the scope of this work. Therefore, as
it was explained in Section 5.3.4, the author utilised the experiments presented by Malkin
and Guo (in Figure 5-19 on p. 142 of [11]) in order to calculate a practical estimate of
the coefficient of dulling. However, the relationship between ∆A and ∆u depends on the
material properties of the wheel and the workpiece, which means that the accurate value
of the coefficient of dulling related to the author’s experiments is unknown. Therefore,
the last two columns of Table 6.13 list a number of damping ratios corresponding to two
other (∆A, ∆u) pairs, in order to see whether a more wear-resistant grinding wheel, or
equivalently, a lower coefficient of dulling (namely one tenth and one hundredth of the
original value) has any significant impact on the predicted damping ratios. Expectedly,
the theoretical damping ratio changes with the coefficient of dulling: a lower coefficient of
dulling corresponds to a smaller damping ratio (in an absolute sense) and thus to a slower
loss of stability as a consequence. Nevertheless, the difference between the experimental
and theoretical damping ratios remains substantial – the two are still at least three orders
of magnitude apart. Another possible reason for such a major discrepancy is the effect of
process damping, which was probably present in the experiments, yet it was unaccounted
for in the model. However, considering the fact that the chatter frequencies and the
stability boundaries are predicted remarkably accurately by the proposed model, the
origin of this particular issue is not discussed any further in this thesis, but it is of high
priority to address and clarify it in future research.

What can be said, however, is that both the measured and the originally predicted
results indicate a certain degree of similarity relative to one another. In other words,
the way the experimental damping ratios relate to each other is somewhat similar to the
way the theoretical damping ratios relate to one another. For example, CFG-3 is more
unstable than CFG-2 and CFG-4, both experimentally and theoretically. Although this
correspondence between the measured and predicted results is clearly not true for any pair
of grinding processes listed in Table 6.13, it still holds in a number of cases nonetheless.
This observation warrants further analysis despite the fact that the theoretical model
grossly overestimates the numerical value of the damping ratio. It would be interesting
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Figure 6.31: Variation in chatter amplitude for three CFG cases: amplitude
variation of the zero-frequency component, amplitude variation of the

chatter-frequency component, exponential fitted to the chatter-frequency curve

to see whether the predictions exhibit the same qualitative trend as the experiments in
the case of grinding processes whose relative instability properties can be measured with
greater confidence than the ones just looked at.

As the first six CFG cases point to such an inference, three more scenarios are investi-
gated now in order to test this hypothesis. These cases (CFG-24, CFG-25 and CFG-29)
were presented in Figure 6.27 as three unstable processes with different degrees of insta-
bility. The advantage of looking at these three scenarios specifically is that their relative
instability in relation to one another has already been established in Section 6.4.2.4. The
following analysis aims to test the theoretical model against these three experimental
scenarios using the original wheel wear rate (i.e. ∆A = 0.6% and ∆u = 178 J/mm3). In
order to measure the damping ratios corresponding to these three cases, a data analysis
identical to that in Figure 6.20 has been performed and presented in Figure 6.31. It can
be seen that the fitted exponentials somewhat inaccurately yet clearly reflect the same
qualitative trend as that shown in Figure 6.27: CFG-24 is the least unstable and CFG-25
is the most unstable of the three grinding processes. The theoretical damping ratios are
calculated based on the phase margin again, and tested against the corresponding ex-
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Case
identifier

Fitted exponential:
Fx(t) = aebt, b = −ζωc

Chatter
frequency
ωc [rad/s]

Damping ratio ζ [%]

a [N] b [rad/s] Experiment Theory

CFG-24 1.232 0.01762 2910.7 −0.000605 −0.9057

CFG-29 4.857 0.02859 2941.9 −0.000972 −5.9808

CFG-25 6.118 0.03364 2972.1 −0.001132 −10.0187

Table 6.14: Comparison between experimental and theoretical damping ratios for three
CFG cases at the original wheel wear rate (i.e. ∆A = 0.6% and ∆u = 178 J/mm3)

perimental results. This comparison is summarised in Table 6.14, where the three cases
are listed in increasing order of relative instability. It is clear that the theoretical model
significantly overestimates the experimental damping ratios, however, the predictions
demonstrate the same trend in relative instability as that captured by the measurements.
Therefore, although the new chatter model does not provide accurate results when it
comes to the actual damping ratios, it gives a reasonably good approximation of the
degree of instability in a relative sense, i.e., regarding the way the relative instability of
a particular process relates to that of another.

In summary, it can be stated that the proposed theory faces some challenges in the area
of relative instability. The numerical values of the damping ratios are not predicted
correctly, nevertheless, the model provides useful information on how unstable a given
grinding process is relative to another.

6.6 Summary of grinding experiments

After measuring the modal parameters of the structure and determining the stability and
sensitivity of the actual grinding machine, the author designed and performed two sets
of experiments in order to test the chatter frequencies and stability boundaries predicted
by the proposed chatter theory.

In terms of the predicted chatter frequencies, they are in very good agreement with the
practical results for a given wheel speed up to a certain depth of cut. According to Figure
6.25, nine unstable scenarios were tested: six at relatively low depths of cut and three
at higher ones. The theoretical predictions corresponding to the six shallow cuts were
very accurate – Table 6.8 shows that the difference between the predicted and measured
chatter frequencies was around 1% in each case. However, the theoretical predictions
corresponding to the three deep cuts were not so accurate – Table 6.11 demonstrates that
the difference between the predicted and measured chatter frequencies was around 7% for
each test point. Since this was a somewhat unexpected result, the author designed and
ran a few more simulations (presented in Figure 6.29) in an attempt to find the origin of a
potential problem. It was interesting to see the outcome of these simulations: for a given
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wheel speed, the theoretical predictions are correct up to a certain depth of cut, above
which they suddenly jump to a value that is significantly higher than the measured chatter
frequency. The magnitude of this jump, or the difference between the two predictions
before and after it, is equal to the rotational speed of the wheel. Considering Figure
5.15 as well, such a jump in chatter frequency is not entirely unexpected, but it does
not take place in practice where it is predicted by the model. In terms of locating the
source of this issue, it is not straightforward to identify the assumptions most likely to
be responsible for this particular type of inaccuracy in the model. Further research is
warranted to track down the origin of this error.

As for the predicted stability boundaries, their qualitative trend is clearly verified by the
experiments. The measured test points revealed two lines of transition between stable
and unstable grinding processes, indicating the existence of an experimental stability
boundary, which matches the theoretical prediction relatively well. But considering the
collective understanding of wheel regenerative chatter in the literature, the very fact that
a stability boundary has been found is a substantial result in itself. This confirms the
hypothesis that grinding can in fact be stable with regard to wheel regeneration. The
practical implications of this conclusion are very promising when it comes to increasing
productivity and preserving surface quality at the same time. Although both the wheel
speed and the depth of cut have lower and upper limits in practice, it is nonetheless
clear that a stable region has been found within these practical limits, which is at least
uncommon if not unheard of as far as the literature is concerned.

Regarding relative instability, the predictions of the presented model have been falsified
in one respect and verified in another. When it comes to the numerical values of the
theoretical damping ratios, they are clearly shown to be inaccurate by the experiments.
The stability boundary is reasonably accurate, but in the chatter regime the rate of
exponential growth is much slower than expected. This suggests a form of non-linear
energy dissipation. Energy dissipation because there is more damping (but no change
in the oscillatory frequency), and non-linear because it is only present in the unstable
regime and does not affect the stability boundary. This strongly suggests that ploughing
effects (i.e. process damping) start to take hold. Nevertheless, in terms of assessing how
unstable a given grinding process is relative to another, the proposed model provides
qualitatively accurate results. This means that although the new chatter theory cannot
predict a reliable damping ratio in an absolute sense, it is nonetheless capable of selecting
the most favourable (i.e. the most stable or the least unstable) scenario from a number
of grinding processes.

Overall, considering the simplicity of the model and the number of assumptions made
during the formulation of the theory, it can be concluded that the experimental results
are in remarkably good agreement with the predictions of the new chatter model. Prac-
tically speaking, the most important outcome of these experiments is the confirmation
of theoretical stability, i.e., choosing the wheel speed and the depth of cut carefully, it is
possible to avoid wheel regenerative chatter in single-pass surface grinding, and by ex-
tension, in multi-pass surface grinding as well, since the interruptions hinder rather than
promote chatter development. Since the literature regards grinding as typically unstable
with respect to wheel regeneration [25], this is a very significant result.

143



Chapter 7

Conclusions and future work

In this thesis, the dynamic stability of surface grinding was reviewed and investigated in
great detail. Considering the role of the specific energy in process stability, a new chatter
theory was formulated based on a novel description of the regenerative mechanism. The
model developed by the author was tested against experimental data and found to be an
accurate way of predicting grinding chatter.

The final chapter summarises the overall flow of this work, discusses the most important
findings, and presents some potential directions for future research.

7.1 Summary and discussion

Starting with the broadest possible context, Chapter 1 gave a concise overview of mod-
ern manufacturing, tracking its origin and development in the course of human history.
Having considered additive, formative and subtractive processes along with conventional
and abrasive operations, Chapter 1 concluded with a short introduction to forced and
self-excited machining vibrations, preparing the way for an in-depth literature review on
the harmful phenomenon of regenerative machine tool chatter.

Chapter 2 provided a brief overview of self-excited vibrations in conventional machining,
and a detailed, chronological review of regenerative chatter in grinding. It was found
that, as a result of wheel wear, grinding processes can experience not only workpiece-
related chatter, but wheel-related chatter as well. When it comes to this unique type
of regeneration in grinding, the vast majority of papers in the literature attribute it
to distributed radial wear or physical surface waves around the circumference of the
grinding wheel. It was not until 2006 that a couple of researchers named Li and Shin
proposed an alternative description of the regenerative mechanism. They postulated
that wheel regenerative chatter is a consequence of two fundamentally distinct yet closely
related phenomena. Preserving the significance of distributed radial wear or physical
surface waves, their grinding chatter theory also included the possibility of distributed
grit dullness or specific energy waves around the circumference of the grinding wheel.
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With the help of their new model, the authors were able to shed some light on a number
of experimental observations reported in the literature, which previous grinding chatter
theories could not explain. However, despite Li and Shin’s outstanding contribution
to the field of grinding dynamics, grinding chatter research after 2006 has returned to
the original, less accurate way of accounting for wheel regeneration, namely to a purely
radial-wear-based approach.

In response to the knowledge gap revealed by the literature review, the present author
proposed a new regenerative mechanism in Chapter 3, disregarding radial wear altogether
and considering grit dullness alone in an attempt to assess its significance and also to find
out why Li and Shin’s improved model of wheel regeneration has not gained much traction
in the literature. In order to isolate the problem of wheel regeneration, the author sought
to consider a grinding process that cannot experience workpiece regeneration in practice.
Single-pass surface grinding was found to be a suitable candidate for this purpose, because
the two most common sources of workpiece-related instability (i.e. a rotating workpiece
and multiple wheel passes) are absent in this configuration. Nevertheless, short workpiece
regeneration (the type that occurs in milling) can still develop in single-pass surface
grinding as a result of grits cutting the paths of previous grits in the grinding zone.

Chapter 4 was written to investigate the possibility of this phenomenon. It was found
that this type of workpiece regeneration cannot happen in practice, because of the very
large number of cutting edges on the wheel. Therefore, single-pass surface grinding was
selected as a suitable process to isolate wheel regeneration and formulate a purely grit-
dullness-based description of the regenerative mechanism. Furthermore, it is important
to remember that the theoretical methodology derived and employed in this study is
applicable to other stochastic problems as well, and thus provides a valuable contribution
to the stability analysis of stochastic time-delay systems in general.

Chapter 5 presented the formulation of the new grinding chatter theory in detail. The
primary results were stability charts and frequency diagrams. It has been found that
the proposed model predicts stable operation for a certain range of wheel speeds and
depths of cut, even though the literature states that grinding is typically unstable with
respect to wheel regeneration. Therefore, this is a very promising theoretical result with
potentially far-reaching practical implications. As for the predicted chatter frequencies,
the presented model is in agreement with classical chatter theories in both conventional
and abrasive machining when it comes to the ratio of the chatter frequency to the natural
frequency, nevertheless, it gives only one chatter frequency for a particular unstable
scenario. Regarding this result, the literature itself is divided, as both a single chatter
frequency and multiple chatter frequencies have been predicted, measured and reported
by various authors.

In order to test the new chatter theory, the author performed a number of surface grinding
experiments to establish a case for or against the proposed model (Chapter 6). Since the
theory predicts both stability boundaries and chatter frequencies, the experimental pro-
cedure was designed and carried out in such a way as to provide information about these
two areas as well. Starting with the chatter frequencies, the measurements demonstrated
that the predictions of the model are remarkably accurate for low depths of cut. However,
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above a certain radial immersion, the theoretical chatter frequencies suddenly jump to a
value that is significantly higher than the predictions before. The difference in chatter
frequency before and after this jump is in fact equal to the rotational speed of the grinding
wheel. However, the author’s experimental observations did not support this prediction.
Nevertheless, since such a jump in chatter frequency is consistent with the theory itself, it
is reasonable to maintain the possibility that the jump exists in practice as well, but the
model does not predict its location correctly. The reason for this particular inaccuracy is
unclear, because it is difficult to associate this error with any of the modelling assump-
tions for certain. Concerning the stability boundaries, sufficient evidence has been found
that the predicted boundaries accurately estimate the real lines of transition between
stable and unstable surface grinding. This is a very significant result, because it means
that chatter-free operation is possible for practical grinding parameters. The depths of
cut for which the process was found to be stable is quite high (certainly higher than
what is typical of finishing operations), but creep-feed grinding and high-efficiency deep
grinding processes could benefit greatly from the predictions of this new theory. Also, the
experiments demonstrated that stability is a relative concept in grinding, i.e., besides the
stability boundaries themselves, the degree of instability is of great practical importance
as well, providing valuable information about the amount of grinding time available in an
actually unstable process that can still produce an acceptable surface finish. Considering
the idea of relative instability, the rate of chatter development in the experiments was
much slower than predicted, which suggests a form of non-linear energy dissipation in the
system. The author strongly suspects that unmodelled ploughing effects (which amount
to process damping) are responsible for this phenomenon.

Therefore, the proposed chatter model with the new regenerative mechanism has been
validated to such a degree that it can be trusted in practical applications. Consequently,
the regenerative mechanism of distributed grit dullness (even in the absence of distributed
radial wear) is capable of describing and accounting for wheel regenerative chatter or
wheel-related instability in single-pass surface grinding. Therefore, the phenomenon of
specific energy waves is significant enough that neglecting it is not advised. This of
course depends on the particular problem under investigation, but when it comes to
a sophisticated description of wheel regenerative chatter, the variation of the specific
energy (or cutting-force coefficient) is to be considered. It is somewhat puzzling why Li
and Shin’s theory has received so little attention in the literature. The author’s best
explanation is that the chatter models relying on a purely radial-wear-based approach
were accurate enough for their intended purposes, and did not require the level of detail
that Li and Shin’s theory provides. Nevertheless, it was demonstrated in this thesis
that, depending on the problem at hand, the regenerative mechanism of distributed grit
dullness can be of major theoretical and practical significance.

Having discussed the main findings of this research at length, the following section sum-
marises them in a clear and concise fashion.
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7.2 Conclusions of the thesis

It can be concluded that:

1. Workpiece regeneration cannot lead to workpiece-related instability in single-pass sur-
face grinding. This is because of the large number of cutting edges inherently involved
in practical grinding processes. This result is the answer to the first research question
in Table 3.1. This conclusion is drawn on the basis of a new mathematical model,
which has been developed by the author and is described in Chapter 4. In solving
this mathematical model, a new and alternative approach to handling stochastic time
delays has been introduced (Sections 4.2.3 and 4.2.4). This poses a computationally
efficient way to calculate the dynamic stability of stochastic time-delay systems in
general.

2. Grit dullness alone, in the absence of radial wear, can lead to wheel-related instability
in single-pass surface grinding. This finding is the answer to the second research
question in Table 3.1. This conclusion is drawn on the basis of a new mathematical
model, again developed by the author, and described in Chapter 5. The model has been
experimentally validated using extensive machining experiments, signal processing and
data analysis, as presented in Chapter 6.

This second conclusion raises some important issues from the perspective of both indus-
trial users and academic researchers.

First, although the previous literature puts forth grinding as typically unstable with
respect to wheel regeneration, this research has shown that stable parameter zones do in
fact exist for large depths of cut. This is an unprecedented result not only in terms of
novelty, but also in terms of industrial impact. Further work is needed to explore the
parameter spaces in which this stability occurs, as it could pave the way for enhanced
efficiency and productivity in industrial practice. However, further work is also needed to
understand how this prediction is influenced by the underpinning modelling assumptions,
and the extent to which these assumptions are valid.

Second, the model provides valuable information on chatter avoidance as well, i.e., which
grinding parameters can be changed in order to stabilise an unstable system. This is very
important, because depending on the nature of instability, changing certain grinding
parameters has no stabilising effect on the process (Section 5.3.4). Again, the sensitivity
of this result requires further exploration.

Third, the new theory suggests that increasing the grinding ratio to that of superabrasives
results in stable machining not only for deep cuts, but for finishing operations as well.
Further work is needed to experimentally validate the stable zones arising at low depths
of cut (Figure 6.7a), as these parameter spaces can be of much benefit to industry. That
is because process stability is crucial when it comes to taking shallow cuts in grinding,
which are typically responsible for the final state of the workpiece. Furthermore, these
stable regions are of interest to academia as well, indicating a closer relationship between
superabrasive wheels and conventional cutting tools than previously thought.
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7.3 Future work

As a result of reviewing the relevant literature, two main gaps in knowledge have been
identified: (1) the relative significance of distributed radial wear and distributed grit
dullness with regard to process stability has not yet been assessed, and (2) the dominance
of distributed grit dullness and its capacity to generate wheel-related instability on its
own has not yet been investigated. Since this thesis addressed only the second gap and
concluded that the regenerative mechanism of distributed grit dullness can account for
wheel-related chatter all by itself, the most natural, large-scale way to continue this work
is to focus on the first gap and study how the two regenerative mechanisms compare with
one another in terms of their relative dominance and stability predictions.

This direction of future research could also serve to assess the validity of the author’s
new approach depicted in Figure 3.1c. Although Li and Shin’s model (shown in Figure
3.1b) is more realistic in the sense that it considers two separate but related effects of
wheel wear as regenerative mechanisms, both of which are undeniably present in practice,
these authors provided no information on the relative dominance between them. That
work has been started by the present author, who isolated the lesser-known of these
two mechanisms and began to study it on its own. The remaining suggestions for future
research are concerned with the continuation and improvement of the new grinding chatter
model developed in this thesis.

Regarding the first conclusion in Section 7.2, the theoretical result at the end of Chapter 4,
proposing a computationally efficient way of dealing with stochastic time-delay systems
in general, has some promising applications outside the field of grinding dynamics as well.
Therefore, the formulation of a more complete theory is encouraged.

Concerning the second conclusion, there are a number of opportunities for future work.
Although the proposed model has been validated to an extent that it is reliable in practice,
considering the number of grinding experiments performed and reported in Chapter 6,
it is clear that more experimental work is required to test more of the predicted results.
Even though two very important lines of transition have been measured between stable
and unstable processes, which coincide remarkably well with the lower stability boundary,
more data points are needed to establish the transition in higher resolution.

Because of an unexpected phenomenon at large depths of cut, the experiments that were
designed to test the upper stability boundary gave unreliable results. Therefore, another
natural way to continue this work in the future is to reconsider the grinding parameters
and retest the upper stability boundary.

Due to the observed phenomenon of relative stability, the question arose in Chapter 6
whether the grinding experiments judged to be stable were truly stable or they were sim-
ply not run long enough to show detectable signs of instability. Although the author kept
the specific material removed approximately constant precisely for the sake of avoiding
such a suspicion and therefore has much confidence that the stable processes will remain
stable even if run for a longer time, it would still be reassuring to see this confirmed
by experimental data. The difficulty of performing long machining experiments is that
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the methodology described in Chapter 6 would require more than one block of workpiece
material, which would involve the swapping of test pieces in between two wheel passes
of the same experiment, and that may introduce some uncontrolled variations into the
system. In light of the precautions taken by the author, the potential issue of stable
operations turning out to be unstable is of minor concern, yet it is still worth checking
in the future.

Another important topic of future work could be the establishment of a peak ratio thresh-
old separating stable and unstable experiments that would allow an informed decision
to be made with regard to grinding stability in practice. Although it is typically fairly
straightforward to judge whether a process is stable or unstable just by looking at the
corresponding spectrogram, it would still be helpful to have a clear and systematic way
of characterising the stability of grinding experiments based on the measured peak ratio.

The new theory predicts a jump in the chatter frequency at a certain depth of cut (Figure
6.29). Although the experiments have shown that the location of this jump is predicted
inaccurately by the current model, the jump itself is still expected in practice. Therefore,
it would be useful to perform some tests designed to find the experimental location
where the lobe number (chatter frequency per wheel speed) jumps from one integer to
another. Regarding the validity of the proposed model at this stage, these are the main
experimental directions for future work.

In terms of theoretical directions, there are some obvious ways to improve the current
model by revisiting its assumptions listed in Appendix B. For example, similarly to Li and
Shin’s theory, distributed grit dullness can be considered along with distributed radial
wear. This would provide an opportunity to compare the two models, and assess the
significance of distributed grit dullness not only in an absolute sense, but relative to the
effect of distributed radial wear as well. Or, regarding the grinding force expression, the
idealised model can be replaced with a more sophisticated one, such as an empirical or
even a stochastic grinding force model. Moreover, when it comes to the specific energy,
the accuracy of the model can be improved by treating the three grinding mechanisms
separately. This would allow for the effect of ploughing to be considered, which is probably
responsible for the discrepancy between the theoretical and experimental results with
regard to the rate of chatter growth. The self-sharpening property of grinding wheels
can be taken into account as well, by allowing the specific energy to decrease or even
drop instantly after a certain amount of grit wear, simulating the loss of a dull grain
and the exposure of a sharp one. There are several other opportunities to improve the
current theory by reconsidering more of the modelling assumptions. The ideas mentioned
above are only a select few, addressing some of the most obvious ways to arrive at a more
sophisticated grinding chatter theory.

And finally, concerning the sensitivity of the stability boundaries to the grinding ratio, it
was interesting to see that increasing the G-ratio to extremely high values – pertaining
to superabrasives in practice – causes a lobe-like stability structure to arise from the
horizontal axis, indicating the fact that superabrasives can be stable even at low depths
of cut, where conventional abrasives are typically unstable. This prediction has some
very important practical implications in terms of stabilising finishing operations, which
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are responsible for the surface quality and dimensional accuracy of the final product.
Therefore, testing this theoretical result against experimental data would be yet another
useful way to continue this work.
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[69] Gradǐsek, J., Kalveram, M., Insperger, T., Weinert, K., Stépán, G., Govekar, E.,
and Grabec, I. (2005) On stability prediction for milling. International Journal of
Machine Tools and Manufacture, 45(7-8), 769–781.

[70] Mann, B. P., Insperger, T., Bayly, P. V., and Stépán, G. (2003) Stability of up-
milling and down-milling, Part 2: Experimental verification. International Journal
of Machine Tools and Manufacture, 43(1), 35–40.
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Appendix A

The Nyquist stability criterion

The Nyquist criterion is a robust method for assessing the stability properties of a dy-
namical system in the frequency domain. It was developed by Harry Nyquist in 1932, and
remains a fundamental approach to investigating the stability of linear control systems
to this day [157]. It can be applied in five steps as follows.

1. Initially, the mathematical description of the problem is required in the form of ei-
ther a governing equation of motion or a number of expressions defining individual
relationships between the system variables. This is typically calculated in the time
domain first, and constitutes the starting point of the Nyquist stability criterion.

2. Since the Nyquist criterion operates in the frequency domain, the time-domain rep-
resentation of the system has to be transformed into the frequency domain. This is
usually done by the Laplace transform.

3. Based on the frequency-domain representation of the system, a block diagram can be
constructed describing the flow of information between individual process variables.
In dynamical systems that can be stable or unstable depending on the actual process
parameters used, the block diagram typically contains a feedback loop, indicating that
the current state of the system is influenced by its previous state as well.

4. Considering the block diagram, the open-loop transfer function of the system is fairly
straightforward to determine. When it comes to the Nyquist stability criterion, the
open-loop transfer function is typically calculated for a negative feedback loop. Since
it is the sole direct input of the Nyquist criterion, the open-loop transfer function is
all that is needed to assess the stability of the system.

5. The Nyquist stability criterion is based on Cauchy’s theorem, more commonly known
as the principle of the argument [158,159]. According to Dorf and Bishop’s summary
of the theorem in [155], p. 629, it can be stated as follows: “If a contour Γs in the
s-plane encircles Z zeros and P poles of F (s) and does not pass through any poles
or zeros of F (s) and the traversal is in the clockwise direction along the contour,
the corresponding contour ΓF in the F (s)-plane encircles the origin of the F (s)-plane

162



N = Z − P times in the clockwise direction.” A graphical illustration of Cauchy’s
theorem is presented in Figure A.1.

Re

Im

Re

Im

Γs ΓF

s-plane F (s)-plane

Figure A.1: A visual illustration of Cauchy’s theorem (Z = 3, P = 1, N = 2)

In the statement above, F (s) is the characteristic function, which gives the character-
istic equation of the negative feedback system in the form

F (s) = 1 + To(s) = 0, (A.1)

where To(s) is the open-loop transfer function. Since the characteristic function is the
denominator of the closed-loop transfer function, the system is stable if and only if
F (s) has no zeros with positive real parts. Due to the fact that the zeros of F (s) can
be not only difficult to calculate but also infinite in number, it is often impractical
or even impossible to compute them directly. Therefore, the Nyquist criterion was
developed to determine process stability without having to calculate all the zeros of
F (s). According to Cauchy’s theorem, if the contour Γs is chosen in such a way that it
encloses the entire right-hand side of the s-plane, the contour ΓF in the F (s)-plane will
provide sufficient information to determine the number of zeros of F (s) with positive
real parts, assuming that the number of poles of F (s) encircled by Γs is known. And
since the poles of F (s) are typically much easier to compute than its zeros, this is a
major reduction in the complexity of the stability analysis. Therefore, the Nyquist
stability criterion is a special application of Cauchy’s theorem, in which case Γs and
ΓF are called the Nyquist contour and the Nyquist plot, respectively.

Note: As illustrated in Figure A.2, the Nyquist contour consists of two parts: (1) the
imaginary axis and (2) a semicircular arc of infinite radius that encloses the entire
right-hand side of the s-plane. The infinite semicircle part of the Nyquist contour is
usually disregarded in numerical simulations, as it typically maps to a single point in
the Nyquist plot (according to [155], pp. 632-633).

Since Eq. (A.1) shows that the only difference between the characteristic function
F (s) and the open-loop transfer function To(s) is an offset of one, it is possible to
reformulate Cauchy’s theorem for To(s). In that case, it is not the encirclements of the
origin of the F (s)-plane that are to be counted, but the encirclements of the (−1, 0)
point of the To(s)-plane. Every other aspect of the analysis is the same.
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Figure A.2: Nyquist contour (left) and Nyquist plot (right)

According to [155], p. 633, the Nyquist criterion can be summarised as follows: “A
feedback control system is stable if and only if, for the Nyquist plot of To(s), the
number of anticlockwise encirclements of the (−1, 0) point is equal to the number of
poles of To(s) with positive real parts.” That is because for a stable system Z = 0,
so the condition for stability becomes N = −P , where the negative sign indicates
anticlockwise encirclements of the (−1, 0) point.

It is important to note that the Nyquist stability criterion can be extended to Multiple-
Input-Multiple-Output (MIMO) systems as well. The result is the generalised Nyquist
criterion [160], according to which the characteristic function can be calculated as

F (s) = det(I + To(s)), (A.2)

where I is the identity matrix and To(s) is the open-loop transfer function matrix. The
rest of the analysis is identical to that of a Single-Input-Single-Output (SISO) system.
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Appendix B

Summary of modelling assumptions

Throughout the formulation of the new grinding chatter theory presented in Chapter 5,
the following modelling assumptions have been made:

1. A single-degree-of-freedom mechanical model of single-pass surface grinding is consid-
ered. Relative vibration between the wheel and the workpiece is allowed only in the
direction of the depth of cut (i.e. normal to the workpiece surface). That is because
wheel vibration in this direction has a direct effect on surface quality and dimensional
accuracy. Wheel vibration in the direction of the feed rate (i.e. tangential to the
workpiece surface) may have some effect on wheel vibration in the normal direction,
but it is assumed to be small. This justification for single-degree-of-freedom modelling
is largely based on Gurney’s reasoning, who considered cylindrical plunge grinding
and captured the relative motion between the wheel and the workpiece with a single
variable [99]. A more sophisticated description of the wheel and the workpiece may
necessitate the employment of two absolute coordinates instead of a single relative one
(as in the work of Yan et al. on cylindrical traverse grinding [161]), but the dominance
of normal vibrations is widely accepted in chatter modelling. 〈used on p. 66 〉

2. A two-dimensional model of surface grinding is considered. This is a reasonable sim-
plification since no grinding parameter varies significantly in the axial direction of the
wheel. Such two-dimensional approaches are utilised in many grinding chatter theo-
ries, because they are sophisticated enough to describe the regenerative effect relatively
accurately [100, 106, 108, 161, 162]. Nevertheless, more advanced grinding chatter the-
ories have been developed as well, typically to capture self-excited vibration alongside
some other complicating factor (e.g. workpiece imbalance). For example, the three-
dimensional model of external cylindrical plunge grinding created by Yan, Xu and
Wiercigroch is often used in their publications [116,130,132]. 〈used on p. 66 〉

3. Linear damping and stiffness characteristics are assumed in the model. Therefore, each
of these two components (i.e. dashpot and spring) is described by a single constant
(c and k) in Figure 4.1. This is a typical approach in grinding chatter theory. Even
non-linear models tend to make this assumption, focusing on other sources of non-
linearities, such as the grinding force and large-amplitude vibrations [111–114]. 〈used
on p. 66 〉
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4. Workpiece regeneration is neglected based on the findings reported in Chapter 4.
According to the author’s understanding of the relevant literature, the kind of short
workpiece regeneration that is typical in milling (which is the only type that can
occur in single-pass surface grinding) is scarcely, if ever, considered in grinding chatter
theories. The phenomenon of workpiece regeneration is usually taken into account on a
significantly larger time scale, such as the rotational or linear period of the workpiece in
cylindrical grinding [101] or multi-pass surface grinding [106], respectively. Therefore,
the regenerative effect in the proposed model is restricted to wheel regeneration alone.
〈used on p. 65 〉

5. Distributed radial wear is neglected, i.e., a perfectly circular wheel is assumed through-
out the entire grinding process. Therefore, the only mechanism responsible for wheel
regeneration is the presence of distributed grit dullness characterised by specific energy
waves around the circumference of the grinding wheel. This is a significant departure
from mainstream grinding chatter research. A combination of these two sources of
wheel regeneration (i.e. distributed radial wear and distributed grit dullness) was
addressed in the work of Li and Shin [108], apart from which the literature focuses
predominantly on distributed radial wear as the sole source of wheel regeneration in
grinding (as presented in detail in Section 2.2). 〈used on p. 67 〉

6. Individual cutting edges are not treated separately in the grinding force model, i.e.,
the formulation of the cutting force is based on the depth of cut instead of the chip
thickness. This is a typical approach in grinding force modelling, although there are
several chip-thickness-based methods as well (a few of which are mentioned in Section
2.2.4) that seek to capture the behaviour of individual cutting edges. Such models
pay much attention to the accurate formulation of a single-grit force expression, then
summarise them over all active grains in the grinding zone. 〈used on p. 66 〉

7. Grains are modelled as evenly distributed triangles around the circumference of the
grinding wheel. The grits are assumed to be straight and elongated in the axial
direction of the wheel, in accordance with the two-dimensional nature of the model
(Assumption 2). This approach is used only for the calculation of two parameters:
the grit-passing period and the coefficient of dulling, i.e., the grinding force model
remains a depth-of-cut-based one, as it was stated in Assumption 6. When it comes
to grain models, triangular shapes are often employed, but rounded profiles are also
used in process modelling [141]. An irregular grit distribution is typically considered
in stochastic force models alone, which are rarely applied to grinding chatter problems
(as discussed in Section 2.2.4.3 and summarised in Table 2.3). 〈used on p. 85 〉

8. An idealised grinding force model is employed, which is one of the simplest ways to
calculate the grinding force (more details on idealised grinding force models can be
found in Section 2.2.4.1). The number of empirical constants is reduced to a minimum,
and the stochastic nature of the process is neglected. As it was shown in Section
2.2.4, this is not the most widely used type of force model in chatter research, but the
simplicity of this approach makes it easier to focus on the new regenerative mechanism,
which is the primary objective of this work. 〈used on p. 66 〉

9. The model makes no distinction between the three grinding mechanisms (i.e. sliding,
ploughing and chip formation), so they are not treated separately in the formulation
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of the specific energy. Similarly to Assumption 8, this modelling choice serves the
purpose of shifting the focus towards the new regenerative mechanism by simplifying
a secondary aspect of the problem. Nevertheless, most grinding chatter theories use
empirical force models (according to Table 2.3), which tend to distinguish between
the three grinding mechanisms. Consequently, depending on the sophistication of the
empirical force model to which it is compared, this particular simplification constitutes
a certain degree of departure from typical chatter research. 〈used on p. 66 〉

10. The grinding force is calculated by integrating the specific energy distribution in
the cutting zone according to two averaging methods: the arithmetic mean and the
weighted mean. Since this approach is closely tied to the novelty of the thesis, it
does not appear in the literature in analytical form. The work of Li and Shin [108]
bears the closest resemblance to it, but theirs is a numerical model that was created
by discretising the circumference of the grinding wheel. In contrast, the current the-
ory assumes a continuous specific energy distribution around the circumference of the
grinding wheel (based on the large number of cutting edges inherently involved in the
process) and addresses the problem in an analytical fashion. 〈used on p. 74 〉

11. Of the two averaging methods mentioned in Assumption 10, the arithmetic mean is
chosen for its simplicity to assess stability. The weighted mean is not investigated in
detail in this thesis, however, a simple simulation is presented here to compare the
two approaches. Figure B.1 shows the specific energy distribution around the circum-
ference of the grinding wheel for both averaging methods. Three main observations
are made regarding these results: (1) both methods predict instability for the grinding
parameters considered, (2) the number of specific energy waves on the wheel is slightly
different in the two cases (five and six for the arithmetic mean and weighted mean

[deg] [deg]

u(t) u(t)

Figure B.1: Specific energy distribution around the circumference of the grinding wheel
for two ways of averaging the specific energy in the cutting zone (ωg = 3100 rpm,

δ0 = 21 mm, every other parameter is listed in Table 5.2)
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approaches respectively), which is directly related to the theoretical chatter frequency,
and (3) the rate of chatter development predicted by each method is significantly dif-
ferent: the arithmetic mean produced detectable instability (i.e. a chatter amplitude
of approximately 20 N in the grinding force spectrum) after 1.39 minutes of grinding
time, whereas the weighted mean took 2.65 hours of grinding time to reach the same
level of unstable vibration. Since the two approaches show not only similarities but
considerable differences as well, the in-depth analysis of the weighted mean method is
encouraged in future research. 〈used on p. 79 〉

12. The ratios between the cutting force components (i.e. µ = Ft/Fn and µx = Fx/Ft) are
assumed to remain constant throughout the entire machining process. In other words,
the cutting force components are assumed to grow in proportion to one another. Since
the ratios between the cutting force components change in the presence of grinding
burn (as demonstrated in [11], p. 126), this assumption means that grinding burn
cannot be adequately accounted for by the proposed model. However, this limitation
is typical in chatter theories, as the effect of grinding burn is usually neglected. 〈used
on p. 67 〉

13. The specific energy is a single-variable function of time. At the current time, it corre-
sponds to the grain that is just leaving the grinding zone (as illustrated in Figure 5.1).
This modelling choice simplifies the description of the specific energy (which varies in
both space and time) without limiting the accuracy of the model. Therefore, strictly
speaking, this is not so much an assumption as an important aspect of modelling to
keep in mind. More details can be found in Section 5.1.2. 〈used on p. 68 〉

14. The specific energy function is constant along the axial direction of the grinding wheel.
This assumption is a direct consequence of the two-dimensional description of the
grinding system (Assumption 2). 〈used on p. 68 〉

15. The self-sharpening property of the grinding wheel is neglected. This assumption is
often made in chatter analysis, although some models take the self-sharpening effect
into account (e.g. [163]). With regard to the current theory, this means that the
specific energy never decreases. It increases inside the grinding zone as a result of grit
wear, and remains constant outside. 〈used on p. 68 〉

16. The relationship between the material removal rate and the specific energy increase is
assumed to be linear, just as in Li and Shin’s model [108]. 〈used on p. 72 〉

17. Wheel vibration does not change the chip thickness, only the depth of cut. This
corresponds to the fact that the grinding force is based on the depth of cut instead of
the chip thickness (Assumption 6). Furthermore, wheel vibration affects the depth of
cut as if the yet-to-be-ground workpiece surface were oscillating relative to a stationary
grinding wheel (according to Figure 5.2). This assumption simplifies the formulation
of the time-varying cutting force expression. Such a description is not particularly
common in grinding chatter research, but it is still capable of accounting for the
regenerative effect. Therefore, it is a compromise between accuracy and simplicity.
〈used on p. 69 〉

18. The grinding parameters pertaining to the cutting zone (e.g. depth of cut, entering and
exiting angles, contact angle, etc.) are assumed to be their steady-state versions when
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it comes to calculating the specific energy distribution in the grinding zone and the
resulting cutting force. This assumption is rather substantial, but it does not eliminate
the regenerative effect from the model. The grinding force can still vary, because the
specific energy distribution in a nominal-sized cutting zone is still influenced by the
depth-of-cut-dependent material removal rate. In other words, the grinding zone is
assumed to be of nominal size only in the calculation of the cutting force. That is
to simplify the grinding force expression in order to avoid having to deal with the
complexities of a non-linear force model. 〈used on p. 73 〉

19. Because of the filtering effect, the Nyquist contour is calculated only up to ±2π/τc,0,
which is the frequency corresponding to the nominal contact time (i.e. the amount
of time a grain takes to pass through the contact zone under steady-state grinding
conditions). Since wave patterns with a higher frequency are unlikely to form, the
Nyquist contour is capped at this critical frequency. This is a reasonable simplification
considering the practical limitations of wave formation on the grinding wheel. 〈used
on p. 79 〉
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Appendix C

MATLAB code for stability analysis

The following code calculates the stability boundaries of single-pass surface grinding based
on the author’s new theory presented in Chapter 5.

clear;clc

%% Grinding parameters according to Table 5.2:

% Modal parameters of the wheel:

m = 1; % modal mass [kg]

zeta = 0.01; % damping ratio [1]

wn = 300*2*pi; % natural frequency [rad/s]=[Hz]*2*pi

% Wheel and workpiece parameters:

Rg = 100/1000; % wheel radius [m]

w = 20/1000; % grinding width [m]

Z = 10000; % number of cutting points on the wheel [1]

Cd = 4e21; % coefficient of dulling [J/m^3/m^2]

mu = 0.4; % coefficient of friction (=Ft/Fn) [1]

vw = 56/1000/60; % workpiece feed [m/s]=[mm/min]/1000/60

%% Limits and resolution of the stability map:

wg_min = 500/60*2*pi; % minimum wheel speed [rad/s]=[rpm]/60*2*pi

wg_max = 5000/60*2*pi; % maximum wheel speed [rad/s]=[rpm]/60*2*pi

wg_n = 1000; % wheel speed resolution [1]

wg_v = linspace(wg_min,wg_max,wg_n); % vector of wheel speeds

doc_min = 0.03/1000; % minimum depth of cut [m]

doc_max = 30/1000; % maximum depth of cut [m]

doc_n = 500; % depth of cut resolution [1]

doc_v = linspace(doc_min,doc_max,doc_n); % vector of depths of cut
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X = zeros(wg_n,doc_n); % x-axis of the stability map (wheel speed)

Y = zeros(wg_n,doc_n); % y-axis of the stability map (depth of cut)

enc = zeros(wg_n,doc_n); % encirclements of the (0,0) position

%% Numerical simulation:

for wg_k = 1 : wg_n % for-loop for the wheel speeds

for doc_k = 1 : doc_n % for-loop for the depths of cut

% Calculated parameters:

wg = wg_v(wg_k); % current wheel speed [rad/s]

doc = doc_v(doc_k); % current depth of cut [m]

Tg = 2*pi/wg; % wheel period [s]

tau_g = Tg/Z; % grit-passing period [s] (regular grain distribution)

vg = wg*Rg; % wheel circumferential speed [m/s]

phi_c0 = acos(1-doc/Rg); % nominal contact angle [rad]

tau_c0 = phi_c0/wg; % nominal grit contact time [s]

cos_a = (1+cos(phi_c0))/2; % cos of the grinding force angle

sin_a = sqrt(1-cos_a^2); % sin of the grinding force angle

mux = -sin_a + 1/mu*cos_a; % =Fx/Ft (up-grinding)

wmax = 2*pi/tau_c0; % limit frequency due to the filtering effect

% Generation of the Nyquist contour according to Figure 5.7:

eps = 1e-3; % detour radius around each pole (tending to zero)

n_w = 150; % base frequency resolution (within wg)

dw = (wg-2*eps)/n_w; % frequency step size [rad/s]

n_a = 25; % base angular resolution (within pi/2)

da = pi/2/n_a; % angular step size [rad]

% Creating the base Nyquist element between two poles:

ang = (da:da:pi/2-da); % angle vector

uha_x = eps*cos(ang); % upper half-arc (x)

uha_y = eps*sin(ang); % upper half-arc (y)

lha_x = eps*cos(fliplr(-ang)); % lower half-arc (x)

lha_y = eps*sin(fliplr(-ang))+wg; % lower half-arc (y)

mid_x = linspace(0,0,n_w+1); % middle part (x)

mid_y = (eps:dw:wg-eps); % middle part (y)

base_x = [uha_x,mid_x,lha_x]; % base Nyquist element (x)

base_y = [uha_y,mid_y,lha_y]; % base Nyquist element (y)

% Building the Nyquist contour from its base elements:

kmax = floor(wmax/wg); % kmax*wg is just below (or equal to) wmax

s_x = base_x;

s_y = base_y;

for k = 1 : kmax-1

s_x = [s_x,base_x];

s_y = [s_y,base_y+k*wg];

end
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% Completing the Nyquist contour all the way to wmax:

s_x = [s_x,uha_x,linspace(0,0,round((wmax-(kmax*wg+eps))/dw))];

s_y = [s_y,uha_y+kmax*wg,linspace(kmax*wg+eps,wmax,round((wmax-...

(kmax*wg+eps))/dw))];

% Including negative frequencies (going from negative to positive):

s_x = [fliplr(s_x),s_x];

s_y = [-fliplr(s_y),s_y];

% Total length of the Nyquist contour:

s_n = length(s_x);

% Stability analysis:

F = zeros(1,s_n/2); % half of the char. func. (due to symmetry)

for s_k = 1 : s_n/2

s = s_x(s_k)+1i*s_y(s_k); % complex Laplace frequency

J = Cd*vw*tau_g/(1-exp(-s*Tg)); % Eq.(5.36)

Ha = mux*doc*w*vw/tau_c0/vg*exp(-s*Tg)*(exp(s*tau_c0)-1)/s; % Eq.(5.37)

G = 1/m/(s^2+2*zeta*wn*s+wn^2); % Eq.(5.39)

F(s_k) = 1 + J*Ha*G; % Eq.(5.42)

end

F2 = [F,fliplr(conj(F))]; % completing the characteristic function

X(wg_k,doc_k) = wg*60/2/pi; % x-axis: wheel speed [rpm]

Y(wg_k,doc_k) = doc*1000; % y-axis: depth of cut [mm]

enc(wg_k,doc_k) = encirclements(F2); % encirclements around (0,0)

end % end of the for-loop for doc

disp(wg_k/wg_n*100) % counter

end % end of the for-loop for wg

%% Stability boundaries:

figure

contour(X,Y,enc,[1,1],‘k’)

pbaspect([2 1 1])

xlim([wg_min*60/2/pi,wg_max*60/2/pi])

ylim([doc_min*1000,doc_max*1000])

xlabel(‘Wheel speed [rpm]’)

ylabel(‘Depth of cut [mm]’)
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%% The ‘‘encirclements’’ function:

function enc = encirclements(F) % F = characteristic function

L = length(F);

% Potential origin-crossing (1st test):

if sum(F==0) > 0 % if there is at least one F=0

disp(‘Origin-crossing!’)

enc = NaN;

return

end

ph = angle(F); % phase angle of each element of F: (-pi,+pi]

dph = zeros(3,L); % phase angle differences

dph(1,1:end-1) = -diff(ph);

dph(1,end) = ph(end)-ph(1);

dph(2,:) = dph(1,:)+2*pi;

dph(3,:) = dph(1,:)-2*pi;

% Potential origin-crossing (2nd test):

int = (-pi<dph)&(dph<pi); % permissible interval

if sum(sum(int,1)) < L % if there is at least one empty set

disp(‘Origin-crossing!’)

enc = NaN;

return

end

DPH = sum(dph.*int,1); % real phase angle differences

enc = round(sum(DPH)/(2*pi)); % rounded to avoid numerical inaccuracies

end
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