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Abstract

The ever-increasing urban population and vehicular traffic without a corresponding expansion
of infrastructure have been a challenge to transportation facilities managers and commuters.
While some parts of transportation infrastructure have big data available, so many other
locations have sparse data. This has posed a challenge in traffic state estimation and prediction
for efficient and effective infrastructure management and route guidance. This research
focused on traffic prediction problems and aims to develop novel spatial-temporal and robust
algorithms, that can provide high accuracy in the presence of both big data and sparse data in
a large urban road network.

Intelligent transportation systems require the knowledge of current traffic state and
forecast for effective implementation. The actual traffic state has to be estimated as the
existing sensors do not capture the needed state. Sensor measurements often contain missing
or incomplete data as a result of communication issues, faulty sensors or cost leading to
incomplete monitoring of the entire road network. This missing data pose challenges to traffic
estimation approaches. In this work, a robust spatio-temporal traffic imputation approach
capable of withstanding high missing data rate is presented. A particle-based approach
with Kriging interpolation is proposed. The performance of the particle-based Kriging
interpolation for different missing data ratios was investigated for a large road network.

A particle-based framework for dealing with missing data is also proposed. An expression
of the likelihood function is derived for the case when the missing value is calculated based on
Kriging interpolation. With the Kriging interpolation, the missing values of the measurements
are predicted, which are subsequently used in the computation of likelihood terms in the
particle filter algorithm.

In the commonly used Kriging approaches, the covariance function depends only on the
separation distance irrespective of the traffic at the considered locations. A key limitation of
such an approach is its inability to capture well the traffic dynamics and transitions between
different states. This thesis proposes a Bayesian Kriging approach for the prediction of urban
traffic. The approach can capture these dynamics and model changes via the covariance



x

matrix. The main novelty consists in representing both stationary and non-stationary changes
in traffic flows by a discriminative covariance function conditioned on the observation at each
location. An advantage is that by considering the surrounding traffic information distinctively,
the proposed method is very likely to represent congested regions and interactions in both
upstream and downstream areas.
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Chapter 1

Introduction

1.1 Motivation

The ever-increasing human and vehicular population in the urban areas with limited road
infrastructure is giving rise to more congestion with its associated social and economic
problems. Some of these include environmental pollution, safety issues, economic loss,
increase in travel time, stress and sometimes loss of life. Congestion has been a major
concern to the authorities as it has been on the increase with no sign of decreasing so long as
population continues to increase. According to [3] congestion was estimated to cost UK over
£15 billion/year in 1998, representing 1.55% of GDP. A study released by INRIX in 2014
indicated this figure would increase to more than £300 billion (a 63% increase in annual cost)
cumulatively between 2013 and 2030 [4]. The situation is the same in other countries, and
the estimates were 1.3% and 0.9% of GDP for France and Germany respectively [5].

A 2009 report by The Texas Transportation Institute shows that the situation is worse in
the US with an estimated cost of $87 billion [6]. This is equivalent to 0.6% of US GDP in
2007. The same report released in 2015 showed an increase of 82.3% to $159 billion in 5
years [7]. The total travel cost was 6.9 billion hours and 3.1 billion excess gallons of fuel.
A more recent study conducted by INRIX in 2016 [8], covering a total of 1,064 cities in 38
countries, which was published in February 2017 shows an even worse scenario. On average,
the cost of congestion in 2016 across three countries, US, UK and Germany was close to
£350 billion ($450 USD) equivalent to £756 ($971) per capita. The cost for the UK alone
was £30.6 billion (which averages at £968 per driver) with drivers wasting an average of 32
hours. In addition to these financial costs, the other costs are not quantified such as emotional,
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stress, pollution and other problems caused by delay. Surely, a situation like this requires
serious effort to tackle because if left unattended, it could become worse in 50 years’ time.

Congestion, which results from a mismatch between supply (road capacity) and demand
(human and vehicular traffic) could be tackled in two ways [9], [5]: build more roads and/or
optimize the usage of existing roads using Intelligent Transportation Systems (ITS). The
first solution is more difficult to achieve as it is very costly, and there are limited available
spaces for expansion, leaving the later option. ITS require knowledge of past, present and
future traffic states. The past traffic state is readily available via measurements made with
inductance loops, magnetic loops, video cameras, floating car data, social media data sources.
The present and future traffic state could be estimated and predicted respectively using past
measurements and some computer simulation and traffic modelling techniques.

One of the major challenge faced in traffic prediction is the issue of missing or sparse data.
Traffic measurements are generally captured with different types of sensors and transmitted
through a communication infrastructure for processing and utilization. These infrastructures
are subject to failure and malfunction, occasionally leading to incomplete/missing data,
sometimes more than 40% [10]. The problem of sparse data is caused by the high cost
of installing and managing traffic measurement devices, making it impractical to cover all
locations needed for effective observation of the full road network.

Researchers resorted to various methods and approach to address these challenges of miss-
ing/sparse data, which can typically be subdivided into model-based approaches, data-driven
approaches or a combination of both. An overview of the different modelling methodologies
is given in [11, 12]. These modelling methodologies include microscopic, macroscopic and
mesoscopic approaches. Microscopic traffic models [11–14] describe the motion of each
individual vehicle with a high level of detail.

In macroscopic models [15, 16], traffic state is represented by aggregating behaviour
of the traffic, usually in terms of the average speed and the average density over a given
period. Mesoscopic models [11] employs some features of the microscopic and macroscopic
approaches by utilizing varying levels/degrees of detail to model traffic behaviour. This is
achieved by modelling some locations with aggregated measurements as in macroscopic, and
the remaining locations are modelled down to the details of individual vehicles as is done in
the case of microscopic.

Macroscopic models are enough to produce acceptable estimation accuracy when com-
pared to the computational overhead of the microscopic models. Hence, they are proffered
choice for most practical purposes such as traffic control/management, road pricing and
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changes in infrastructure. Most traffic estimation approaches are model-based [17], while the
new trend is to develop data-driven approaches [18].

Data-driven methods rely on historical data or streaming/real-time data. Within the last
decade, there has been growing interest in applying Kriging for various traffic state prediction:
directional traffic volume using global position system (GPS) data [19], annual average traffic
count interpolation using origin-destination data [20], estimating annual average daily traffic
[21, 22], traffic volume prediction [23, 24], and traffic volume imputation [25].

We are in the era of big data where traffic measurements (vehicle counts, occupancy
and average speed), recorded by inductive loop detectors, floating car data, automatic
vehicle identification, acoustic sensors, video/image processors, cellular geolocation systems,
the Global Position System (GPS), social media and weather information are now widely
available. To increase the accuracy of parameter and state estimation in this era of big data,
there is a great need to fuse these homogeneous and heterogeneous data. Many pieces of
research have focused on this direction for the last ten years.

1.2 Traffic Measurement and Estimation

The knowledge of historical, present and future traffic state is required for effective traffic
management and control. The actual traffic state measured with sensors which often contain
errors and missing data. The result of this is that the actual traffic state is not known Hence,
the need for estimation and prediction In estimation, the current state is inferred from the
physical model and/or current and past measurements. In prediction, the future traffic state is
forecast. The research conceptual model is shown in figure 1.1.

Observations from numerous sensors and other sources are usually fused to decrease the
impact of uncertainty in measurements. A comprehensive review of sensor data fusion for
ITS was presented by [26] while [27] gave a conceptual and ideological review of data fusion
in general. The terms multi-sensor and data fusion mean different things but sometimes used
interchangeably. Multi-sensor data fusion deals with combining more than one sensor in
order to obtain more accurate data of the event or object under observation. This could be
necessary when the monitored events are affected by the spatial location of the sensor or
when the object has features that a given sensor may not capture. Data fusion deals with the
combination of data from single or multiple sources. Thus, data fusion involves combining
data from different sources and events to generate more useful data, while multi-sensor fusion
involves combining data from different sensors about the same object or event [27]. Multi-
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Figure 1.1 Conceptual Model

sensor data fusion is defined as a way of combining data from different sensors and events
for obtaining a more representative and accurate state of the phenomena under investigation.
Traffic state estimation requires observations from different locations of the road network
and hence, fusing these different data sources is inevitable for improved accuracy. A review
of data fusion in traffic estimation is covered in Chapter 2.

1.3 Problem Definition

As discussed in Chapter 2, several open issues are still the focus of research in traffic state
estimation and prediction. Some of these challenges include the following:

1. Big and sparse data: While some parts of transportation infrastructure have “big data”
available, so many other locations have sparse data. This has posed a challenge of how
to design an algorithm that will give consistent performance in both scenarios of traffic
state estimation and prediction for efficient and effective infrastructure management
and route guidance.
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2. Large-scale road networks: One of the challenges facing data fusion in ITS is how
to combine the data from various sensors to handle spatial measurements taken at
points and sections with temporal ones taken at discrete time step or aggregated over
a period of time for consistent performance in both constrained/unconstrained flow
situations and different road network configuration such as motorways, arterial/urban
roads [28, 29].

3. On-line / off-line prediction: Efficient traffic control requires real-time/online predic-
tion of traffic state. The continuous increase in historical and real-time data requires a
fast algorithm that would handle big data in real-time.

Some notable works on data fusion application in traffic management include [30–38]. A
comprehensive literature review carried out by [27, 26, 39, 40] indicated that there are many
challenges facing data fusion, especially in traffic management. These challenges include:

i. Obtaining data with the necessary accuracy to make the application effective.

ii. Dynamic and real-time issues associated with data quality as traffic flow changes.

iii. Processing framework - whether central or decentralized.

iv. Data imperfection - sensor data are not always a correct representation of the actual
state.

v. Outliers and spurious data - inconsistent readings.

vi. Data correlation - the dependence or independence of different sensor data in distributed
sensing.

vii. The development of methods to combine sensor or hard data with human-generated or
soft data.

viii. Conflicting data - some sensor data may conflict with others.

ix. Data modality - sensor data from different sensors (heterogeneous data such as audio,
visual, text).

x. Data association - being able to associate data to a particular target, especially in
multi-target tracking.

xi. Data alignment/registration - transforming different sensor data to a common frame of
reference.
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xii. Static vs dynamic phenomena - combining time-varying and time-invariant data.

xiii. Data dimensionality - converting the data to lower dimension for improved bandwidth
utilization.

The focus of this research is the development of efficient sensor data fusion techniques
and algorithms that will tackle challenges i - v above.

1.4 Aim and Objectives

The main objective of this research is the development of algorithms and approaches for
online traffic state prediction and filtering in urban cities. This will be achieved via the
following specific objectives:

1. To develop robust spatio-temporal responsive algorithms for traffic state prediction
that could give consistent performance in the presence of both big and sparse data.

2. To develop robust prediction algorithms that will yield consistent performance in both
constrained/unconstrained flow situations and different road network configuration
such as motorways, arterial/urban roads by applying parallel processing.

3. To develop robust algorithms for both online/off-line prediction.

4. To validate the proposed algorithms using both synthetic and real data and hence
determine the optimal parameters for different scenarios.

1.5 Key Contributions

This work builds on the existing approaches by employing a discriminative covariance model
conditioned on the observation at each location. Thus, the proposed approach can account
for congested regions and interactions in the upstream and downstream of the congestion.
Normally, the covariance function is only dependent on the separation distance irrespective of
the traffic situation at the locations. This makes it impossible for the model to capture traffic
dynamics and transitions from free-flow to congested state, congested state to free-flow, etc.
Our proposed approach can capture these dynamics and model it into the covariance matrix.

The main contributions of the thesis are the following:
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• An approach to tackle the problem of missing and sparse data in traffic estimation is
proposed. This approach entails interpolating the missing values using Kriging with a
level of confidence assigned to the predicted values by computing their interpolation
error variance.

• A multi-step ahead traffic estimation approach that captures the dynamic and stochastic
nature of traffic using discriminative covariance functions conditioned on the data at
each location is developed.

• An approach that reduces the computational overhead of large-scale road networks
by using column-based matrix decomposition to select the most influential segments
based on the road network is proposed. Missing measurements are then imputed using
Kriging prior to particle filter measurement update step. This reduces the effect of
higher missing data ratio in traffic estimation.

• A traffic estimation approach that captures the dynamic and stochastic nature of traffic
using discriminative covariance functions conditioned on the data at each location is
formulated.

• A robust spatio-temporal traffic imputation approach adaptive to stationary and non-
stationary traffic data capable of withstanding high missing data ratio is implemented.

• A multi-model Bayesian Kriging approach is developed for traffic state estimation.
Generally, a given dataset could be represented by different models. Traditional
Kriging makes use of the “best” model that explains the whole dataset. This often leads
to over-fitting and underfitting with different scenarios. Using a weighted average of
all the models has been shown to outperform a single model. This is evident in the
results.

1.6 Publications

Conference papers The main results of this PhD research are disseminated through the
following peer reviewed publications. K. J. Offor, M. Hawes, and L. S. Mihaylova (2018).
"Short Term Traffic Flow Prediction with Particle Methods in the Presence of Sparse Data,"
2018 21st International Conference on Information Fusion (FUSION), Cambridge, July 2018,
pp. 1185-1192. doi: 10.23919/ICIF.2018.8455496.
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K. J. Offor, P. Wang, and L. S. Mihaylova (2019). "Multi-Model Bayesian Kriging for
Urban Traffic State Prediction," 2019 Sensor Data Fusion: Trends, Solutions, Applications
(SDF), Bonn, Germany, 2019, pp. 1-6. doi: 10.1109/SDF.2019.8916655

Journal Papers
K. J. Offor, L. Vaci, and L. S. Mihaylova (2019). "Traffic Estimation for Large Urban Road
Network with High Missing Data Ratio,” Sensors, vol. 19, no. 12, p. 2813, 2019. doi:
10.3390/s19122813

1.7 Thesis Outline

The current chapter discussed the motivation Section 1.1, problem formulation Section 1.3,
objectives for the research Section 1.4, key contributions Section 1.5 and publications Section
1.6. The remainder of the thesis is organised as follows:

Chapter 2 presents the theoretical background of intelligent transportation systems and
review of related works. Section 2.1 presents a brief overview of intelligent transportation
systems and traffic estimation approaches. Section 2.2 presents traffic flow models such
as microscopic flow models Section 2.2.1, macroscopic traffic flow models Section 2.2.2,
and mesoscopic flow models Section 2.2.3. Section 2.3 presents traffic state estimation
approaches such as neural networks NN Section 2.3.1, deep learning Section 2.3.2, Kalman
filters (KF) Section 2.3.3, principal component analysis (PCA) Section 2.3.4, support vector
machine/regression Section 2.3.5. Finally, Section 2.4 presents a review of related works as
it relates to this work with special emphasis on Kriging and PF state-of-the-art Section 2.4.1.

Chapter 3 presents short term traffic flow prediction with particle methods in the presence of
sparse data. Section 3.1 provides the contextual significance of the proposed idea. Section 3.2
discusses the traffic flow and measurement model used in this work. Traffic state interpolation
and prediction using Kriging and particle filters (PF) are presented in Sections 3.3 and 3.4,
respectively. Performance evaluation is presented in Section 3.5, Results and discussion are
3.6 with conclusions being drawn in Section 3.7.

Chapter 4 expands the work presented in Chapter 3. Section 4.1 introduces the concept
with a brief review of existing literature. This is followed by the presentation of traffic flow
and measurement model used in this work in Section 4.2. Recursive Bayesian estimation
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and particle filters (PF) are presented in Section 4.3. The proposed method was discussed in
Section 4.3.3. Section 4.4 discusses the performance evaluation with experimental/simulation
design in 4.4.1 and results and discussion presented in Section 4.4.2. Section 4.5 concludes
the chapter.

Chapter 5 explores the use of multi-model Kriging methods for urban traffic estimation.
Section 5.1 explores the contextual background of the chapter. Section 5.2 gives a brief
overview of the related works. Section 5.3 presents the formulation of the problem of interest.
Section 5.4 presents the experimental setup and performance evaluation. Finally, Section 5.5
concludes this chapter.

Chapter 6 concludes the thesis in Section 6.1 with recommendations for future work in
Section 6.2





Chapter 2

Review of State-of-the-Art

This chapter presents a review of relevant literature and state-of-the-art approaches in traffic
estimation and control. First, the theoretical background of intelligent transportation systems
and the analysis of related works are presented. Second is a brief overview of intelligent
transportation systems and traffic estimation approaches. Thirdly, traffic flow models, namely:
microscopic flow models, macroscopic traffic flow models, and mesoscopic flow models. In
the following Sections, traffic state estimation approaches such as Kriging, neural networks,
deep learning, Kalman filters, particle filters, principal component analysis, and support
vector machine/regression were presented. Finally, a review of related works as it relates to
this thesis with particular emphasis on Kriging and PF state-of-the-art was discussed.

2.1 Brief Overview of Intelligent Transportation Systems

Extensive research in traffic modelling began in 1933 with Greenshields’ [41] formulation
of the famous traffic theory called the fundamental diagram. He studied the relationship
between the velocity, v of vehicles and the average distance, x between two consecutive
vehicles. This model was later extended to involve other variables such as density, ρ and
flow, q. The fundamental diagram is now expressed in terms of a plot of flow - density,
Figure 2.1, speed - density Figure 2.2 and speed-flow Figure 2.3. In the figures shown, ρc,
ρ j and ρm is the critical, jam and maximum density respectively, v f and vm is free-flow and
maximum speed respectively and qm is the maximum flow. At low traffic density, there is
free flow, Figure 2.1 and 2.2 and as the the density increases, flow rate rises while speed
drops until the capacity is reached (critical density). Corresponding increase in density after
the critical density results to decrease in flow and speed Figure 2.3 until the flow and speed
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Figure 2.1 A flow - density
diagram

Figure 2.2 A speed - density
diagram

Figure 2.3 A speed - flow dia-
gram

becomes zero at the jam density (ρ j). This was followed by the formulation of other traffic
flow models such as microscopic, macroscopic and mesoscopic in the 1950s. These traffic
flow models were developed to estimate and forecast the state of traffic in a road network.
This review will be carried out under the following sections, traffic flow models, traffic state
estimation, and prediction methods.

2.2 Traffic Flow Models

Traffic flow model, as used in transportation engineering, is a mathematical model that
describes the interactions between commuters such as pedestrians, cyclists, motorcyclists,
motorists together with their vehicles and the transportation infrastructure such as the road
network, traffic signs and control devices. Traffic modelling helps to understand the evolution
of traffic and then use the formulation to estimate and forecast traffic state for management
of traffic. In [42, 11, 12], an overview of different modelling approaches was given. These
include the microscopic, macroscopic and mesoscopic. Some work combines these models
to form a hybrid model.

2.2.1 Microscopic Traffic Models

In microscopic modelling, the behaviour of individual vehicles with other vehicles and the
road network is modelled separately. This modelling in effect mirrors the dynamic behaviour
of each successive vehicle called car-following models [13, 11, 12, 14]. The vehicle in front
is called the leader, while the one behind is called a follower. Three parameters: position of
the vehicle, x, its velocity, v = dx/dt and its acceleration a = dv/dt are used to model the
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behaviour of each individual vehicle. Microscopic traffic models are classified into three
broad categories, namely car-following, cellular-automata and lane-change models.

The car-following model is based on the idea that a vehicle will maintain a minimum
spatial and temporal separation between it and vehicles it is following. This is also divided
into three different models. The first of this model was proposed in [13] and assumes that a
vehicle will change its speed to maintain a minimum safe distance to the ones preceding it.
Gipps [14] improved the model proposed in [13] by introducing acceleration and deceleration.
The acceleration models the desire of the vehicle to maintain a maximum speed limited by
the legal speed limit and vehicle’s capability while the deceleration models the willingness
of the driver to slow down to maintain a safe distance with the vehicles ahead of it. Newell
(2002) revised his model from 1961 (Newell, 1961) by assuming that the follower driver
chooses a velocity based on time spacing and acceleration based on the speed difference,
which is proportional to his deviation from an equilibrium curve with relaxation time. A
comprehensive review of car-following models is presented in [43].

The cellular automata (CA) model was proposed by [44] and was later adapted for real
application by [45–48] to address these limitations. The CA model vehicles evolution either
deterministically or stochastically and could be applied to single lanes as well as multi-lane
networks. A set of rules govern the evolution and interaction of vehicles. One of the rules,
called randomisation, models three different human driving behaviours namely retarded
(noisy) acceleration, overreactions at braking, and fluctuations at maximum speed [47].

In cellular automata, the street is divided into cells i of length ∆x, the time t is divided
into j intervals of 1s duration. At any time ∆t, each cell i is either empty or occupied by one
vehicle with speed v j given by Equation (2.1),

v j = α̂ j
∆x
∆t

, (2.1)

where: α̂ j ∈ {0,1,2, ..., v̂max} is a quantity which takes a discrete value between zero and the
maximum velocity, v̂max.

The space and time are in discrete form such that v positions of the cars in all cells are
updated in parallel using rules (i) to (iv) [47, 49]:

1. Motion: Advance each vehicle by v̂ j cells and check if it has reached its maximum
velocity v̂max
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2. Acceleration: If v < vmax and there is enough head way, increase the velocity to
v = v+1, else

3. Deceleration: If the vehicle is too fast, slow down

4. Randomization: If above steps yields v > 0, reduce the velocity by one with probability
p.

5. Particle propagation: Move each particle v sites ahead.

Lane changing models involve the decision of a driver to change lane either mandatory
or discretionary without affecting vehicles in the destination lane. A lane change becomes
compulsory, especially when there is a lane closure and discretionary is a driver does so
to improve perceived driving/road condition [50]. An extensive review of lane changing
models is presented in [51, 52]. Two different models, lane selection and gap models, were
identified. The first, lane selection model is based on two sets of rules (mandatory and
discretionary part). The driver selects any lane from a set of available lanes based on a set of
rules deterministically. Among the notable works in this deterministic rule-based process
are [53–55]. To address the stochastic nature of traffic, [56] introduced a random variable to
capture the trade-off between various factors that affects lane choices at any point in time.
This was further improved in [57] where a three-level selection process was used to capture
the mandatory and optional rules. The second step, the lane change execution, is modelled
using gap acceptance models which describes how a driver decides to execute the lane change
to ensure the safety of road users. A state-of-the-art review of lane changing models is in
[58].

2.2.2 Macroscopic Traffic Models

Macroscopic traffic models use aggregated values (average speed, and average density) of
traffic flow over a given space to describe the behaviour. The first macroscopic model was
proposed independently in 1955 by Lighthill and Whitham [59], and in 1956 by Richards
[60]. Hence, the model is named after the three as the Lighthill-Whitham-Richards (LWR)
model. The LWR is based on first-order kinematic wave theory and describes the dynamics of
traffic flow using partial differential equations. This is known as the conservation of vehicles
equation (2.2). The flow is expressed to depend on the occupancy of the sending segment and
not the receiving segment. Newell [61] showed that using the above approach to compute flow
assumes that traffic cannot flow to the receiving segment that is free if the sending segment is
congested. Thus, the simulation does not lead to convergence and appropriate solution. An
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attempt to solve these problems and ensure that occupancy of segments remained within zero
and maximum value were proposed by [62, 63] by introducing constraints on the flow.

A higher-order macroscopic flow model was proposed by Payne in 1971 to address the
problem of infinite deceleration and acceleration caused by the wrong assumption of instant
speed change after a change in density. As this approach did not lead to convergence, the Cell
Transmission Model (CTM) was proposed by Daganzo [16] to address the non-convergence.
Another macroscopic model called METANET was proposed by Messmer and Papageorgiou
[15]. Recently in [64], a variable-length CTM is introduced with three lumped state variables.
The road network under consideration is subdivided into two cells with variable length, the
densities of these two cells are then lumped, and the third state variable is used to account for
the position of the congestion wavefront.

δρ

δ t
+

δq
δ s

= 0, (2.2)

where ρ is density (veh/km), q is flow (veh/hr), s is distance (in km) and t is time (in hrs)

One major drawback of the macroscopic flow model is that it cannot adequately model
lane behaviour, headway and speed choice at random cross-sections. However, for most
practical purposes such as traffic management, road pricing and changes in infrastructure,
the macroscopic model is enough to produce acceptable estimation and prediction. Among
the most used macroscopic models are the cell transmission model (CTM), stochastic com-
positional model (SCM).

The cell transmission model (CTM), based on the macroscopic traffic flow model was
proposed by Daganzo [16, 65]. In CTM, the road is divided into segments called cells. Each
cell is then modelled by three states,

1. Ni(t), the maximum number of vehicles admissible in cell i at time t,

2. Qi(t), the maximum number of vehicles that can flow into cell i at time t, and

3. ni(t) the actual number of vehicles in cell i at time t.

The first cell is called the inflow while the last cell is the outflow. Traffic evolution yi(t) from
cell i−1 to i within a discrete time step ∆t is the minimum of three parameters, ni−1(t), the
number of vehicles in previous cell i−1 at time t, Qi(t) the maximum number of vehicles
that can flow into cell i at time t, and the available empty space in cell i at time t denoted by
Ni(t)−ni(t). The CTM has been applied successfully in literature for traffic estimation [38].
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Boel and Mihaylova [66] extended it to factor in the stochastic nature of traffic by modelling
the sending and receiving functions as a random process and dynamically capturing the
average velocity in each cell. The (SCM) was successfully combined with particle filter by
[2] to improve on-line estimation.

2.2.3 Mesoscopic Traffic Models

These models use probability distribution functions to describe the behaviour of vehicles
in aggregated terms similar to macroscopic models but also define the behavioural rule for
individual vehicles as in microscopic. Examples include the gas kinetic model [11, 67–69].
The mesoscopic model is most suited for applications that requires capturing some details
of the interaction between groups of vehicles and not individual vehicles as in microscopic.
Notable mesoscopic models which have been adopted by the Federal Highway Administration
(FHWA) are the DynaMIT [70] and DYNASMART [71]. A recent work by Jamshidnejad
[72] modelled vehicle emission and flow using the mesoscopic model and reported a higher
performance compared to using either the macroscopic or microscopic model.

2.3 Traffic State Estimation Approaches

The last three decades have witnessed a growing demand for short term traffic state forecast-
ing. This is of interest to either traffic management officers or road users to enable them to
plan their journey and for safety purposes. Research in this field which dates to 1979 [73] has
focussed in different areas such as travel time, speed, traffic density/congestion, traffic flow
or a combination of these. The goal of traffic state estimation is to use different approaches
in determining the current state of traffic conditions from noisy measurements. In contrast,
traffic state prediction seeks to use a combination of techniques to forecast the future traffic
condition using either traffic models, historical data or combination of both. Traffic state
estimation and prediction could be carried out using either model-based approach, data-
driven approach or a combination of these two. The first makes use of the traffic flow models
presented in section 2.2, the second approach uses historical data to estimate the current state
of traffic and predict a future state. At the same time, the third combines the two approaches.
A comprehensive review of research in these areas up to 2014 was done by [74, 28, 75].
Various methods/techniques have been used to achieve these such as linear regression and its
variants. The Box-Jenkins technique [73], autoregressive integrated moving average [76],
and dynamic linear models [77]. The Bayesian inference based methods: Kalman filter and
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its variants [78–80], particle filter [2, 81]. And the Dimensionality reduction / coordinate
transformation methods: principal component analysis [82], support vector machine [83],
support vector regression [84].

Travel time prediction using instantaneous approach was investigated by [85, 86]. This
assumes a stationary traffic condition for an indefinite period. In [87], a state-space neural
network (SSNN) was used to train data offline to predict travel time in the presence of
missing data. Because the training was performed offline, it was affected by changes in traffic
conditions with substantial training time, and they proposed an online learning system to
address these [88]. Ladino et al. [35] used clustered time series data and the Kalman filtering
algorithm to predict travel time. They used k-means for the clustering and dictionary learning
approach to correct the missing data problem. They reported a prediction accuracy of more
than 35% in 90% of the cases. The research did not consider the effect of constraints like
incidents, weather and road works. In [89] historical data and gradient boosting regression
tree methods were used to predict travel time. This section will present a review of some
important research in these areas and highlight their strengths and weaknesses.

2.3.1 Neural Networks (NN)

The neural network uses the principle of information transmission in human neurons. It is
composed of an input neuron and an output neuron connected via weighted hidden neurons.
As the data is transferred from one neuron to the other, they are scaled according to the
weight assigned to the neurons [90, 91]. Neural networks have been used extensively
in traffic estimation. Multivariate and univariate traffic data estimation using NN with
genetic algorithm optimisation was investigated by [92]. Zheng et al. [93] combined the
backpropagation algorithm and the radial basis function models in a Bayesian way to predict
traffic flow and reported an improved performance over a single model. Instead of treating
the NN as a “black box”, [94, 87] proposed the notion of state-space NN (SSNN) where
the model is based on the traffic-related data of recurrent neural network. The problem of
missing data was solved in [87] using simple imputation algorithm. In [95], lane changing
behaviour in a dual carriageway was modelled using a NN.

Another extension of NN called ensemble neural network (ENN) combines many NN
models to achieve better prediction results. Three standard ensemble methods are the Basic
Ensemble Method (BEM) which uses the arithmetic average of the different models. The
Generalised Ensemble Method (GEM) which uses a weighted sum of the various NN models
and the Bagging (Bootstrap Aggregating) which replaces a subset of the training data with
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a random combination of the training data itself. In [96], the performance of Radial Basis
Function (RBF) NN was compared with bagging RBF ENN for short term traffic flow
prediction and concluded that the ensemble method outperforms the single model. A more
recent study proposed in [97] uses least squares support vector regression (LSSVR) with the
Gaussian kernel function and improved harmony search algorithm for short-term traffic flow
prediction. The root mean squared error (RMSE) shows that the method outperforms five
other methods compared in the study.

2.3.2 Deep Learning

Deep learning is a branch of machine learning based on the idea that observed data are related
to some multiple underlying layers of abstraction. It models a system using many layers to
connect the intrinsic relationships to provide a better representation of the interactions. The
levels of abstraction have been modelled in different methods such as Convolutional Neural
Networks (CNN) [98], Deep Neural Networks (DNN) [99] and Deep Belief Networks (DBN)
[100]. They have been applied mostly in speech recognition, computer vision [101] and
Natural Language Processing (NLP) [102]. The authors in [103] proposed a deep learning
approach to estimate traffic flow. They used a stacked auto-encoder model to extract the
correlated features of the data, which is subsequently trained using a greedy layer-wise
unsupervised learning algorithm. They reported that the method outperformed existing
similar methods. Deep learning with an l1 regularisation fitting and tanh layers sequence
was proposed by [99] for short-term prediction of traffic flow. They reported improved
performance and observed that more recent observations (less than 40 minutes) have a higher
contributing effect to the model than older observations.

2.3.3 Kalman Filters and Variants

The Kalman filter (KF) is the best estimator of linear systems. It was proposed by Rudolf
Kalman [104]. It consists of two basic steps, the prediction step and measurement update
step. It works with the basic assumption that the model is linear with a zero-mean Gaussian
noise. When the model is linear, it gives an optimal solution, and when the model is non-
linear, it gives a sub-optimal solution. The extended Kalman filter was proposed to solve
the estimation problem for non-linear models by linearising it. The linear approximation
introduces some errors in the estimation and propagates it through the iteration process
leading to less accurate solutions. Julier and Uhlmann [105, 106] proposed the unscented
Kalman filter to address this problem. In Unscented Kalman Filter (UKF), some sample
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locations called sigma points are chosen carefully to capture the true mean and covariance of
the Gaussian random process.

2.3.4 Principal Component Analysis

PCA tries to solve the estimation problem by coordinate transformation (reducing) the dimen-
sion of the input vector to a lower-dimensional output axis. The transformed dimensions are
called the principal components. The PCA is sensitive to outliers. The basic idea is to reduce
the dimension of the dataset by the removal of redundant and correlated data that gave rise to
the higher dimensionality input by orthogonal projections. This is achieved by computing
the variances of the components and assigning the one with the highest variance as the first
principal component, the component with the next highest variance and orthogonal to the
preceding one becomes the second principal component and so or until all the components
are accounted for. One major issue with PCA is that principal components are skewed in the
presence of large anomalies in the data [107, 108].

Tsekeris, [109] proposed the use of PCA for analysis of spatio-temporal traffic data. They
reported that using the approach yielded a considerable reduction in complexity to a small
set of eigen flows, thereby leading to the identification of error-prone links and the spatio-
temporal stationary variations in traffic flow with abnormal events. Foerster [82] combined
PCA and hierarchical cluster analysis (HCA) to estimate the correlation and redundancy
of traffic data and concluded that the 11.5% of the sensors accounted for more than 50%
of useful data. One drawback of the research is that there is no validation to show that the
sensors will give optimal results. In the work of [110] PCA was used to unmask the hidden
structures in a traffic dataset and applied compressive sensing to estimate missing data by
exploiting the identified hidden trend. They were able to achieve 20% estimation error with
80% of the data missing (the Pareto principle of 80 / 20 rule).

An extension of the PCA called robust PCA (RPCA) was investigated in recent times
by [111–113]. The authors of [113] used RPCA to separate abnormal traffic flow pattern
caused by faulty sensors and incidents, and then detect the causes of the anomaly. RPCA was
employed in video and image processing by [112] where they were able to detect objects in a
cluttered background.
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2.3.5 Support Vector Machine/Regression

Support vector machines are methods used in classification and regression analysis of data for
prediction purposes. Vapnik proposed the idea in 1962, but the first application to machine
learning was implemented in 1992 by Boser, Guyon and Vapnik [114]. Cortes and Vapnik
proposed the current form of Support Vector Machine (SVM) in 1995 [115]. The basic idea of
SVM is the transformation of input dataset into a higher or infinite-dimensional feature-space
and then separating the features into hyperplanes that are maximised to optimise the solution.
SVM finds its use in sparse data, computer vision [116], over-fitting and mapping non-linear
data into a linear higher dimensional feature-space by the use of kernels and then solving the
optimisation problem. Polynomial, linear and radial basis functions are the frequently used
kernel functions. A general tutorial of the use of SVM was given by [117–119].

In the field of traffic engineering, several pieces of research have been conducted using
SVM. Bin et al. [83] used SVM in predicting travel time by separating the dataset into
four hyperplanes and then using historical travel time information of preceding vehicles
in the next segment and the travel time of the vehicle in question in the current segment
to predict the travel time of the vehicle in the following segment of a road network. They
used the RBF kernel and concluded that SVM outperforms Artificial Neural Network (ANN)
by 5% to 7% depending on the pattern used. Another variant of SVM used in regression
analysis is the Support Vector Regression (SVR). Some notable works in SVR include
[120, 121, 84, 122, 123]. The traditional SVR uses inequality constraints to evaluate the loss
function for the maximisation of the hyperplane margins. Another variant of SVR that uses
the least-squares approach for the evaluation of the loss function called least squares SVM
(LSSVM) was used by [124]. They applied fruit fly optimisation algorithm (FOA)in LSSVM
to optimise the loss function. They concluded that it outperforms three other variants, namely
the radial basis function (RBF) neural network, single LSSVM model, and LSSVM combined
with particle swarm optimisation (PSO) algorithm. They also showed that the LSSVM with
FOA converges quicker than PSO.

2.4 Review of Related Works

As the core of this theses is based on Kriging and Particle filter; the remaining part of this
chapter is devoted to a detailed review of related works using these techniques. The classic
method of computing variance in Kriging is biased as it underestimates the true variance,
[125] proposes using parametric bootstrapping for the computation of Kriging variance.
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2.4.1 Kriging and State-of-the-Art Review

Kriging is a point-based estimation method that relies on the basic idea that spatial obser-
vations are correlated and decreases as the distance increases. It uses a weighted sum of
variations (called semi-variogram) between input points with measurements to compute
the values of output locations without measurements. The method which was originally
developed for gold mining in South Africa by Krige [126] and formalised by Matheron [127]
has become the choice algorithm in spatial interpolation. Three basic types of Kriging exist
based on the trend of µ(r) term in the equation, (2.3). If it is constant within a given range,
Ordinary Kriging [21] is used. A Simple Kriging [21] is used if the trend is not constant
but known while Universal Kriging [21] is used if the trend is not known. Kriging differs
from the Moving Average (MA) in the way weighting factors are calculated. MA computes
the weight as a function of the distance between measurement points and the point where
estimation is required, whereas Kriging uses semi-variograms between the points to compute
the weights. Different types of functions are used for the computation of semi-variograms,
namely Exponential, Gaussian, Circular, and Spherical model [21].

To use Kriging in spatial interpolation, the area of interest is divided into different
windows and bins. Each window contains points with known observation locations and
the points where estimation is needed. The measurement, z(r) with position vector (r) is
decomposed into two parts called residuals ε(r) and drift µ(r), equation (2.3).

z(r) = µ(r)+ ε(r), (2.3)

where µ(r) is the average value of measurements, and ε(r) is zero-mean valued random error
quantity. A detailed description of the Kriging procedure is given in Algorithm 2, Section
3.3.6.

Kriging has been applied in the field of traffic engineering for state estimation [128, 19,
21, 23] and crash detection [129]. Braxmeier et al. [128, 19] employed Kriging with moving
neighbourhood to estimate the spatial location of traffic using data from GPS equipped
vehicles. Manepalli and Bham [129] compared Kriging and empirical Bayes in assessing
road crashes and reported that Kriging performed better when the prediction term is less
than three years. Wang and Kockelman [21] applied Ordinary Kriging with exponential
model function to estimate annual average daily traffic and reported an error of 31%. The
limitation of previous traffic estimation/prediction using Kriging algorithms has focused
on only spatial interpolation. Kriging method could be extended/modified to handle spatio-
temporal prediction. For instance, [130] employed what he called modified Taylor Kriging
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to predict wind speed and reported 18.6% increase in performance compared to ARIMA.
Other authors [131–134] have applied a modified form of Kriging to achieve spatio-temporal
forecasting. This research will investigate the use of Kriging in performing traffic prediction
forward in time augmented with spatial estimation, which will be used as a form of virtual
sensor to replace faulty sensors or missing data.

The Kriging algorithm [126] is a point-based estimation method which relies on exploiting
the spatial correlation, of the data points. The Kriging algorithm attempts to interpolate the
values at an unobserved location using statistics of the spatial variation between pairs of
observed locations in a given region. In [135] regression, Kriging was used to estimate radon
concentration in an area with limited measurements. The author computed the reliability of
the results by using 90% confidence interval. The result of the RMSE indicated an average
error of 25%.

In [136] effects of traffic volume and its composition on speed and passenger car unit
(PCU) factors for individual types of a vehicle under mixed-traffic conditions were examined
using Kriging. They first predicted the speed of vehicles using regression Kriging and then
used the predicted speed to compute the PCU under different traffic volume conditions,
except the congested state. This was attributed to a lack of data. In [137], the performance
of Kriging using the bootstrap method, conditional simulation and the classic method was
compared. The report showed that there is no significant difference in performance to warrant
using a bootstrap method or conditional simulation.

In [138] a semi-parametric bootstrap for spatially correlated functional data is proposed.
The method allows for the evaluation of the uncertainty of a predicted curve, that ensures
the maintenance of the spatial dependence structure in the bootstrap samples. Two main
issues were specifically addressed in the extension. The first is how to specify and estimate
the spatial dependence structure and, the second is how to order the function curves to
obtain functional quantiles. Tapoglou [139] combined ANN and Kriging for temporal and
spatial prediction of groundwater levels, respectively. In [140], the problem of growing
complexity in computation with increasing datasets is proposed by using Markov-Cube
Kriging (MCK). MCK can address spatio-temporal missing data, mismatch and misalignment
in large spatio-temporal datasets. MCK utilises Gaussian Markov random field (GMRF)
priors to model multi-level interactions across space and time, uses a Bayesian hierarchical
model to incorporate covariates, time-space heterogeneity, and physically meaningful prior
information into the model.

Kriging interpolation is usually achieved by choosing a drift function which is then
fitted into a covariance model. The covariance function models the spatial correlation of the
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data points and could be either Matern, rational quadratic, exponential, spherical, or power
[141] with some parameters to be fitted. The computation of the covariance matrix scales to
order n3. This becomes computationally intractable for a large non-stationary dataset as the
different covariance structures must be inferred [142]. Three different approaches have been
proposed in the literature to address this problem.

The first is covariance tapering [143]. This is achieved by ignoring (setting them equal
to zero) the uncorrelated distant covariance functions resulting in a sparse matrix. The
likelihoods are then computed using sparse matrix algorithms. Tapering only the model
covariance matrix results to estimation bias when the taper range is small compared to the
correlation range. When the model and sample covariance matrix is tapered, the bias is
eliminated with a slight increase in the variance. The work assumes a stationary, isotropic
system with zero mean and fails to converge if the assumptions are not met. The second
method represents the covariance function by a low-rank matrix or a limited number of basis
functions [144–148]. A nugget effect is added to account for local unstructured noise.

The third approach is windowing and binning, which divides the entire region into
subregions with each bin treated separately. Some limitations of binning include: the mean
computation does not account for redundancy among nearby observations. The mean could
be computed from a different number of measurements across grid-cells, and the grid cells
that may not contain observations in a given time window are not accounted for. Binning
also fails to capture the correlation of distant locations resulting in a global sub-optimum
solution. Tadic [149] proposed to solve this problem with the use of local covariance
structures by an arbitrary selection of the sampling function, limiting the radius around
estimation locations and adjusting the number of sampled points to a fraction of available
measurement. Braxmeier [128] takes into consideration the inhomogeneous and anisotropic
nature of time-series data in estimating road traffic parameters. The method considered only
rush hour data set of only 30 minutes duration.

The classical Kriging method uses a generative model of the covariance function to
estimate the weights. This approach is not dependent on the data or site but the joint
probability of the locations. Bayesian Local Kriging (BLK) as proposed by [150] uses a
discriminative model of the covariance function which are conditioned on the data to estimate
the weights. This approach works well for both stationary and non-stationary system or
observations. Their model addressed two assumptions usually made in Kriging: stationarity
and homoscedasticity. The first problem was solved by using a discriminative covariance
function conditioned on the data while the former was addressed by using a set of L local
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covariance functions. They considered a case where the regression part of the function is the
same for all L local models.

Addressing the stationarity assumption, [145] proposed a fully Bayesian model based on
non-stationary Matérn covariance function with random components and parameters. The
parameters were assumed to vary smoothly across space as linear combinations of spatial
basis functions. The problem of the large spatial area is addressed by combining a low-rank
component with a tapered remainder component. The first component allows for flexible
modelling of medium-to-long-range dependence via a set of spatial basis functions. In
contrast, the second provides for modelling of local relationship using a compactly supported
covariance function. Similar to the above, [151] addressed non-stationarity by modelling and
estimating two parameters: range, which determines the variation distance and directionality,
which determines the direction of variation in space by using Mahalanobis distance.

In [143], a method called tapering is used for large scale datasets to improve computa-
tional efficiency. This is achieved by ignoring (setting them equal to zero) the uncorrelated
distant covariance functions resulting in a sparse matrix. The likelihoods are then computed
using sparse matrix algorithms. Tapering only the model covariance matrix results to es-
timation bias when the taper range is small compared to the correlation range. When the
model and sample covariance matrix is tapered, the bias is eliminated with a slight increase
in the variance. The work assumes a stationary, isotropic system with zero mean and fails
to converge if the assumptions are not met. In [152], a semi-parametric Gaussian process
with additive components that could to model large or massive spatial datasets is proposed.
The covariance structure of the GP consists of two parts. The first assumes a specific flexible
covariance parameter that can achieve dimension reduction. The second covariance structure
is parametric and simultaneously induces sparsity.

In [147] and [153, 154], a multi-resolution approximation using many linear combination
basis functions was proposed to address computational complexity of large datasets. The
novelty lies in the use of multiple basis functions computed at lower resolutions closer to
observation locations and then combining them to capture the different covariance functions
with varying properties. The division is achieved by dividing the spatial domain recursively
into small regions and smaller sub-regions until the fine-scale dependencies are captured.
Nychka [147] used radial basis functions (RBF) and a particular type of Gaussian Markov
random field (GMRF) called spatial autoregressive (SAR) model to model the spatial corre-
lation among the coefficients. At the same time, Katzfuss [154] automatically determines
the appropriate basis/covariance function. Whereas in [153], it was assumed that the sub-
domains are independent, [154] assumed depended sub-domains and performed full-scale
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approximation. As the computations are done locally in parallel, it is possible to fuse multi-
sensor data sources, in which case, the different covariance functions are used for each data
source. Although both mentioned that the approach could be extended to non-stationary
functions, it was not implemented, nor was there a derivation for such.

The Kriging weight is only a function of the distance between the points. It does not
incorporate the heteroscedastic/stochastic nature of the data. In [21, 155], it was shown
that local accuracy of estimation using ordinary Kriging weights is affected by data values.
The use of interpolation variance was used by [156] to correct the smoothing effect of the
Ordinary Kriging variance. A modified-nugget effect was proposed by [155] to account for
location-dependent non-constant variances.

The ordinary Kriging variance is given by

σ
2
eu
= γu−wT b−λ . (2.4)

The heteroscedastic variance is dependent on the data values and is given by

s2
u =

n

∑
i=1

λi(zi− zu). (2.5)

For the variance to be positive, all the Kriging weights must be positive. These are
corrected to be positive using one of three approaches proposed by [157]

First approach removes all negative weights by setting them to zero. The new weights
then become:

λ
∗
i =

λi

∑
n
j=1 λ j

. (2.6)

The second approach removes the sample with the largest negative weight:

λ
∗
i =

λi + c
∑

n
j=1 λ j + c

, (2.7)

where c =−min(λi, i = 1, ...n) for min(λi > 0)

Third approach is implemented in two steps
The first step is the same as in first approach. The second step is implemented using the



26 Review of State-of-the-Art

conditional statement: if λi > 0 and Cov(u−ui)< c̄ and λi < λ̄ , then set λi = 0 and the new
set of weights become (2.6), where Cov(.) is the covariance function, λ̄ = 1

n− ∑
n−
j=1 |λ j| and

c̄ = 1
n− ∑

n−
j=1Cov(u−ui), and n− is number of locations with negative weights.

The new Kriging interpolated values now become:

Z∗u =
n

∑
i=1

λ
∗
i Zi. (2.8)

In [158, 134] Semantic Kriging was employed to predict spatial and temporal missing
attributes in GIS. In [159], the performance of semantic Kriging was compared with five
other spatial estimation methods, namely simple co-Kriging, inverse distance weighting,
multilayer perceptron, Bayesian network, Nearest neighbours. The results showed that the
Semantic Kriging outperforms the other methods. The basic idea of Semantic Kriging is the
inclusion of the semantics knowledge of the surrounding area to capture their correlations
better. For road traffic prediction, there is the possibility that different road features such
as intersections, shopping centres, bus stops, nearby parks, etc. affect traffic flow. Thus,
computing the Kriging weights as dependent only on the distance between interpolating and
interpolation points could potentially limit the accuracy. The contribution of the surrounding
features could be modelled deterministically or learned from data. The measured data could
be used to compute the correlation of the points and use this to capture the features of the
locations.

The classic method of computing variance in Kriging is biased as it underestimates the
true variance, [125] proposes using parametric bootstrapping for the computation of Kriging
variance. In [137], the performance of Kriging using the bootstrap method, conditional
simulation and the classic method was compared. The report showed that there is no
significant difference in performance to warrant using a bootstrap method or conditional
simulation. The use of Euclidean distance in computing separation between locations fails to
accurately describe the spatial range in a road network. Zou [23] introduced road network
distance to describe the spatial distance between road links for solving the problem of the
invalid spatial covariance function in Kriging caused by the non-Euclidean distance metric.
They called it approximate road network distance (ARND), based on the isometric embedding
theory.
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2.4.2 Particle Filter in Traffic Estimation: State-of-the-Art Review

The particle filter estimates the state of traffic by taking a sufficient number of random
samples from the pdf with assigned weight to each particle. When a new measurement
becomes available, it is used to compute what is known as likelihoods, and a normalised
form of the weights is calculated. The new state of the system is then updated with the
calculated weights. The importance weights tend to degenerate as the number of iterations
increase. This problem is solved by resampling the weights. This involves replacing particles
with low weights with a replica of those with high weights. The particle filter has been
applied extensively in traffic state estimation and prediction. Mihaylova et al. [2] proposed
estimating freeway traffic using the PF and extended form of CTM called SCM and compared
the performance with UKF. The result indicated that the PF is of better quality in terms of
RMSE with synthetic and real data. The particle filter was also employed in a distributed
manner in what is called Parallelized Particle Filter (PPF) and Gaussian Sum Particle Filter
(GSPF) by [160] to speed up estimation across a large road network.

PFs have been used with both microscopic, hybrid and macroscopic traffic models for
traffic state estimation and prediction in real-time scenarios. If platoons of vehicles travelling
at similar velocities are instead considered this model becomes a hybrid model rather than a
microscopic model [2]. A key component of intelligent driver assistance systems in vehicles
will be the ability to track the changes in location/motion of both the vehicle and those in
the surrounding area. The work in [161] and [162] consider this issue. In both PFs are used
to estimate the current states of the vehicles and also to make long term predictions (in this
scenario, meaning 1-2 seconds). In [162], the high dimensionality problem is also addressed
using principal component analysis.

On the other hand, [163] considers the problem of estimating the traffic states on arterial
roads based on sparse probe vehicle data. Coupled Hidden Markov models (probabilistic
graphical model) are used to model the evolution of the traffic states. A PF is used both in
estimating the current states and predicting future states (over the short term) based on the
data received up to the present time.

PFs can also be used for traffic state/model parameter estimation, with the estimates
then being used in the models detailed in the next chapter. For example, in [2] PFs are used
with the compositional model (CM), which is an example of a macroscopic traffic model.
The state vector of interest is the number of vehicles within a segment of road, along with
their corresponding average speeds. This is achieved with the help of the measurements of
vehicle numbers and average speeds crossing the segment boundaries. Synthetic and real
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data (from Ghent in Belgium) showed that the PF has a more accurate tracking performance
than a UKF. As a result of this, it is suggested that PFs are an appropriate choice for online
traffic control strategies. PFs have also been implemented using both first order, [164, 165],
second-order macroscopic traffic models [166], Hybrid approaches to modelling [167] and
dynamic Bayesian networks [168].

PF-based methods can also be extended to consider multiple models to both estimate
the traffic state and detect the traffic incidents [169]. Here an augmented state vector is
considered. This contains information about the traffic state (continuous model) and model
variable (discrete model) that gives details about the number of lanes open at a given time.
An incident can then be detected if there is a significant disagreement between the predicted
states and the measurements made (more accurate than detecting incidents in a dedicated
algorithm). The dynamics of the highway can then be altered to account for this, allowing
an improved performance compared to a model purely calibrated for ideal traffic conditions.
Simulation results have indicated a right accuracy level is achievable. However, the authors
suggest parallelisation may be required for large scale road networks. An efficient version of
this algorithm has also been recently proposed in [170].

In [171], it is argued that it is difficult to model the transition between states exactly.
Therefore, instead of using a state transition model (i.e.p(xk|xk−1)), historical data sequences
are used. In other words, the change in the state of a particle is determined by comparing the
state of the particle to those in the historical sequences. The corresponding change in state
is then made. Also, the resampling used to avoid degeneracy has been altered. Instead of
replicating the particles with high weights, the particles with low weights are instead replaced
with particles from similar sequences of historical data (e.g. same time of day for a set day).
Analysis from a test site between Richmond and Virginia Beach has shown improved results
as compared to two variations of the KF and the k nearest neighbours’ method.

In [160] Gaussian sum PF (GSPF) was implemented for traffic estimation in a parallelised
form. In this form, the mean and covariance are transmitted between subnetworks, like the
second parallelised PF method described above. The results presented show that the GSPF
(or parallelised from) is more accurate than comparable PFs (or parallelised PFs). As for PFs,
computation savings are made by using the parallelised form of the GSPF.
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2.5 Performance Measures

This section presents a common performance measure used in all the chapters of the report.
The root mean squared error (RMSE) (2.9) and normalised RMSE (2.10) were used to
compare the proposed methods in this research with some existing methods and ground truth
datasets.

RMSE =

[
1
Nt

Nt

∑
i=1

[zi− ẑi]
2

]1/2

, (2.9)

NRMSE =
RMSE

zmax− zmin
, (2.10)

where, zi is the ground truth or actual measurement, zi is the predicted value, zmax is the
maximum value of the measurement, zmin is the minimum value and Nt is the number of test
dataset.

2.6 Summary

The formulation of the traffic theory called fundamental diagram by Greenshields led to
extensive research in traffic modelling in 1933. Greenshields was concerned with the rela-
tionship between the velocity of vehicles and the average distance between two consecutive
vehicles. The model was later taken further to involve other variables like density and flow.
In the 1950s, the formulation of other traffic flow models like microscopic, macroscopic,
and mesoscopic started to emerge. Estimation and prediction of the state of traffic in a road
network were their primary objective.

The microscopic model deals with the behaviour of individual vehicles in relations to
the other vehicles and the road network. In this type of model, the variables are modelled
separately. The vehicle in front is called the leader with the one in the rear is called a follower.
There are three parameters used in this model type. They include the position, velocity
and the acceleration of the vehicle. The microscopic model can be further classified into
car-following, cellular automata, and lane-change models.

The car-following model centres on the idea that a vehicle will maintain a minimum safe
distance between it and the one it is following. The car-following model further divides into
three, the first proposing that a vehicle will change its speed to maintain a minimum safe
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distance to the ones in front of it. This model was improved upon by Gipps when introduces
acceleration and deceleration. While the former suggests that a vehicle will maintain a
maximum speed limited by the legal speed limit and vehicle’s capability, the latter indicates
that the vehicle will slow down to maintain a safe distance with it and those in front of it.
Newell gives a revised approach that the follower-driver chooses a velocity based on time
spacing and acceleration based on the speed difference, which corresponds to his deviation
from an equilibrium curve with relaxation time.

The cellular automata model was adopted to address the limitations of the car-following.
It can be applied to both single and multi-lane road network. It observes some set of rules in
the evolution and interactions of vehicle, one of which is referred to as randomisation. These
rule models three different human driving behaviours, namely, retarded (noisy) acceleration,
overreactions at braking, and fluctuations at maximum speed. In this type of model, the
street is divided into cells and the time into intervals of duration. The lane-changing model
deals with the decision of the driver to switch lane either mandatory or discretionary without
affection vehicles in the target lane. By mandatory lane-changing, it is meant when there
is the closure of a lane while discretionary is for the driver to improve perceived driving or
road condition.

Named after its three independent proponents, Lighthill-Whitham-Richards (LWR) in
1955 and 1956, the macroscopic traffic models make use of aggregated values like average
speed and density of traffic flow over a given space to determine traffic behaviour. Based
on first-order kinematic wave theory, the LWR uses partial differential equations to describe
traffic flow such that it is expressed to depend on the occupancy of the sending segment
and not the receiving segment. Newell had a different view that traffic cannot flow to the
receiving segment that is free if the sending segment is congested. An attempt to solving this
problem will, therefore, lead to constraints on the traffic flow.

Payne proposed a higher-order macroscopic traffic flow model in 1971, an approach
which still did not lead to convergence, to address the issue of infinite acceleration and
deceleration occasioned by the wrong assumption of instant change in speed after a change
in density. This further led to the proposition of the Cell Transmission Model by Daganzo
in a bid to address the non-convergence issue. Messmer and Papageorgiou also proposed
another macroscopic traffic flow model call METANET.

Failure to effectively model the lane behaviour, headway, and choice of speed at random
cross-sections is a significant setback of the macroscopic traffic flow models. However, it is
enough to produce acceptable estimate and prediction for most practical purposes like traffic
management, road pricing, and changes in infrastructure. The commonly used macroscopic
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traffic flow models are the Cell Transmission Model (CTM) and the Stochastic Compositional
Model (SCM).

The mesoscopic traffic models use indefinite distribution functions to determine vehicular
behaviour in gross terms like the macroscopic models and define the behavioural rule for
individual vehicles as in microscopic traffic models. The mesoscopic traffic models are most
suitable for capturing interactions among a group of vehicles. An example of this model
is the gas kinetic model, and notable ones that have been applied by the Federal Highway
Administration (FHWA) are the DynaMIT and DYNASMART.

Traffic state estimate and prediction use three approaches: the first uses traffic flow
models, the second uses historical data to estimate the current state of traffic and forecast
future state, and the third combines both approaches. Research up to 2014 shows various
techniques/methods that have been applied to achieve these. They are linear regression and
its variants: Box-Jenkins technique, autoregressive integrated moving average and dynamic
linear models; Bayesian inference based methods: Kalman filter and its variants, particle
filter; Dimensionality reduction/coordinate transformation methods: principal component
analysis, support vector machine, and support vector regression.

Travel time prediction is an important aspect that has been investigated into using a state-
space neural network to train data offline to predict time travel in the presence of missing
data. But because this was carried out offline, there were impacts caused by changes in traffic
conditions with considerable training time. So, an online learning system was then proposed
to address these. Ladino et al. were worthy of note. They used clustered time series data
and Kalman filtering algorithm to predict travel time and the k-means for the clustering and
dictionary learning approach to correct the missing data problem. They reported a prediction
accuracy of more than 35

The neural network has been widely used in traffic estimation. With genetic optimisation,
NN can be used in the estimation of multivariate or univariate traffic data. Composed of
input neurons and output neurons that are linked through weighted hidden neurons, the NN
make use of the transmission of information in the human neurons. The issue of missing
data was solved using simple imputation algorithm. Reports further show that lane changing
behaviour on a dual carriageway was modelled using the NN. Another extension of the NN
is the ensemble neural networks (ENN). It combines many NN models to achieve better
prediction results. Three familiar ensemble neural methods are Basic Ensemble Method
(BEM), Generalized Ensemble Method (GEM), and the Bagging (Bootstrap Aggregating).

Deep learning is a branch of machine learning based on the observation of the relatedness
between data and some multiple underlying layers of abstraction. It models a system using
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many layers to link the intrinsic relationship to give a better representation of the interaction.
Proposals have been put forward to use deep learning approach for traffic flow estimation
as it uses a stacked auto-encoder model to extract the correlated features of the data, which
is subsequently trained using a greedy layer-wise unsupervised learning algorithm. This
method has been reported to outperform similar existing ones.

The principal component analysis seeks to solve the problem of estimation by reducing
the dimension of the input vector to a lower-dimensional output axis. What is referred to as
the principal component is the transformed dimension. The objective of the PCA approach
is to use orthogonal projection and reduce the dimension of the dataset by removing the
unnecessary and correlated data that warranted an increase in the dimensional input. In recent
time, an extension of PCA called Robust PCA was investigated. It aims to separate abnormal
traffic flow pattern caused by sensors and incidents that are faulty and then identify the cause
of the anomaly.



Chapter 3

Traffic State Estimation with Particle
Methods in the Presence of Sparse Data

3.1 Introduction

Traffic state estimation and forecasting is an essential part of the Intelligent Transportation
System (ITS) for effective traffic monitoring and control. Most traffic estimation approaches
are model-based [17], while the new trend is to develop data-driven approaches [33, 18].
Traffic modelling methods are used to understand the evolution of traffic and estimate the
traffic state [73, 1, 41, 11].

An overview of different models is given in [42, 11, 12]. These include microscopic,
macroscopic and mesoscopic models. Microscopic traffic models [13, 11, 12, 14], describe
the motion of each individual vehicle with a high level of detail. Macroscopic models
[15, 16] represent the aggregated behaviour of the traffic, usually in terms of the average
speed and the average density. Mesoscopic models [172] use varying levels/degrees of detail
to model traffic behaviour. Some areas are modelled with aggregated measurements as in
macroscopic models and at other areas the detail goes down to individual vehicles as in
microscopic models. Due to its computational efficiency for most practical purposes such as
traffic management, road pricing and changes in infrastructure, the macroscopic model is
enough to produce acceptable estimation.

The cell transmission model (CTM) [16] models traffic flow using macroscopic details by
dividing the road into contiguous segments called cells. An extension of CTM, the stochastic
compositional model (SCM) for traffic flow [1] uses probability distributions known as
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sending and receiving functions, which control the number of vehicles that could leave from
one cell to the next, to model the stochastic nature of traffic state evolution.

The SCM was employed with the particle filter (PF) for estimating traffic state in motor-
ways in [2]. Measurements at the boundaries were used to estimate the traffic state within
the segments. It was reported that estimation accuracy is affected at boundaries without
measurements.

A major challenge in traffic prediction is the problem of missing or sparse data. Com-
munication infrastructure upon which traffic measurements are transmitted for processing
and utilisation often experience failure leading to missing data, which could be more than
40% in some cases [10]. The cost of installing and managing traffic sensing devices is high,
making it impractical to cover all locations needed for effective observation of the full road
network resulting in sparse data. In [173], a method of detecting outliers or missing data
using kNN is proposed. Various methods and approaches have been applied by researchers
to address these problems such as missing data imputation [35], compressive sensing and
historical averages [174], Kriging interpolation [23].

In [175], a review of three different missing data imputation methods, interpolation,
prediction and statistical learning is presented. The interpolation method uses the historical
average of measurements from a given sensor at similar times of day (e.g. all weekdays at 9
am) to help cope with missing data. Prediction methods use a deterministic mathematical
description to model the relationship between historical and future data. The statistical
methods differ from the other two by modelling the stochastic nature of the traffic pattern
into the imputation algorithm.

This chapter presents an approach to combine Kriging and particle filtering to address
the challenge of sparse traffic data. It uses Kriging to compute missing values at unobserved
locations, which are subsequently used in the computation of likelihood terms in the particle
filter algorithm. This approach combines the benefits of Kriging, which is a powerful
geospatial method and a particle filter, which can capture the stochastic variations in traffic
flow.

3.2 Traffic Evolution and Measurement Model

3.2.1 Traffic Flow Model

Consider a system with the following state equation
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xk = f (xk−1)+ηηηk, (3.1)

and observation equation
zk = g(xk)+ξξξ k. (3.2)

Here f (.) and g(.) are the state and observation model functions, xk is state vector, zk is the
measurement vector, ηηηk and ξξξ k are the state and observation errors, respectively and k is
discrete time index.

The stochastic compositional model (SCM) for traffic flow [1], which is an adaptation of
the cell-transmission model [16], uses sending and receiving functions to model the stochastic
nature of traffic state evolution. The sending functions represent the vehicles that can leave
a cell while the receiving functions determine the vehicles that are allowed to enter a cell.
Figure 3.1 shows how the road is divided into n segments, also called cells, with length Li

and li lanes. The number of vehicles crossing the boundary between segments i and i+1
at time k is represented by Qi,k. Ni,k represents the number of vehicles in segment i with
average speed given by vi,k.
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Figure 3.1 SCM road network showing segments and measurement points [1].

The overall state vector at time tk is given by xk = [xT
1,k,x

T
2,k, ...,x

T
n,k]

T where xi,k =

[Ni,k,vi,k]
T is the local state vector at segment i.

The evolution of traffic state within the segments is modelled with equations (3.3) to
(3.5).

x1,k+1 = f1(Qin
k ,v

in
k ,x1,k,x2,k,ηηη1,k). (3.3)

xi,k+1 = fi(xi−1,k,xi,k,xi+1,k,ηηη i,k). (3.4)
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xn,k+1 = fn(xn−1,k,xn,k,Qout
k ,vout

k ,ηηηn,k). (3.5)

The boundary conditions are the number of vehicles entering the first segment (inflow)
Qin

k , with average speed vin
k and the number of vehicles leaving the last segment (outflow)

Qout
k , with corresponding average speed vout

k within the time interval ∆tk = tk+1− tk. These
are not estimated but supplied to the model by traffic sensors as boundary conditions. The
reader is referred to as the Algorithm 1 for a detailed algorithm.

3.2.2 Measurement Model

For a road segment with n boundaries, the traffic state at a boundary j ∈J = 1,2, ...,n
is sampled at discrete time steps ts, s = 1,2, ..., to give z j,s = (Q j,s,v j,s)

T . The matrix of
measurements taken at all of the n boundaries is given by Zs = [zT

1,s,z
T
2,s, ...,z

T
n,s]

T . The
sampling interval ∆ts is usually split into q state update time steps ∆tk. That is, ∆ts = q∆tk.

With the assumption of Gaussian noise, the measurement z j,s can be expressed as:

z j,s =

 Q j,s

v j,s

+ξξξ s. (3.15)

Here, Q j,s is the number of vehicles crossing segment j within time step s with average speed
v j,s and ξξξ s = [ξQ j,s,ξv j,s]

T is the measurement error.

3.3 Spatial Traffic Flow Estimation Using Kriging

The Kriging algorithm [126] is a point-based estimation method which relies on exploiting
the spatial correlation, of the data points. The Kriging algorithm attempts to interpolate the
values at an unobserved location using statistics of the spatial variation between pairs of
observed locations in a given region.

3.3.1 Random Set

Let Z(r) be a non-stationary set of m measurements Z(r) = [zT (r1),zT (r2), . . . ,zT (rn)]
T ,

in this work average vehicle speeds v(r) or vehicle counts N(r), observed in segments
i = 1, . . . ,n at locations ri = (r1,r2, . . . ,rn), where ri = (rx

i ,r
z
i )

T . Note that location of each
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Algorithm 1 Stochastic Compositional Model (SCM) Algorithm [1]

1. Forward wave: for i = 1, 2, ..., n,

Si,k = max(Ni,k
vi,k.∆tk

Li
+ηSi,k,Ni,k

vmin.∆tk
Li

) (3.6)

then make Qi,k = Si,k

2. Backward wave: for i = n,n−1, ...,1,

Nmax
i+1,k = (Li+1li+1,l)/(Al + vi+1,ktd) (3.7)

Ri,k = Nmax
i+1,k−Ni+1,k +Qi+1,k, (3.8)

if Si,k < Ri,k, Qi,k = Si,k (3.9)
else Qi,k = Ri,k, vi,k = Qi,kLi,k/(Ni,k∆tk) (3.10)

3. Recalculate the number of vehicles in each segment
for i = 1,2, ...,n,

Ni,k+1 = Ni,k +Qi−1,k−Qi,k (3.11)

4. Update the density

ρi,k+1 = Ni,k+1/(Lili,k+1) (3.12)

ρ
antic
i,k+1 = φρi,k+1 +(1−φ)ρi+1,k+1 (3.13)

where φ is a weighting coefficient

5. Recalculate the average speed of the vehicles in each segment

vinterm
i,k =

{vi−1,kQi−1,k+vi,k(Ni,k−Qi,k)
Ni,k+1

, for Ni,k+1 ̸= 0

v f , otherwise

vinterm
i,k+1 = max(vinterm

i,k+1 ,vmin) (3.14)

vi,k+1 = βk+1vinterm
i,k+1 +(1−βk+1)ve(ρantic

i,k+1)+ηvi,k+1
where:

βk+1 =

{β I i f |ρantic
i+1,k+1−ρantic

i,k+1|≥ρthreshold

β II otherwise
.

where β is a weighting coefficient.
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sensor is uniquely defined by the segment topology (Fig. 3.1). Then, according to equation
(3.16),

z(r)∼N
(
µµµ(r),C(r)

)
(3.16)

the random set of variables z(r) can be approximated by a Gaussian process which is uniquely
defined by the drift, i.e. the mean field µµµ(r) = E[z(r)], and the corresponding covariance
C(rT,r) =

(
z(r)− µµµ(r)

)T(z(r)− µµµ(r)
)
. Individual samples z(ri) of the set (3.16) can be

also expressed as
z(ri) = µ(ri)+δ (ri) (3.17)

with drift µ(ri) and residual δ (ri). Based on the degree to which the moments, in this
work mean and variance of the random set z(r) are dependent (or independent) on a spatial
relationship between points ri = (r1,r2, . . . ,rn), the 1st or the 2nd-order of stationarity can be
recognised. While, the 1st-order stationary random set assumes a constant mean E[z(r)] =
µµµ(r) = µ , the 2nd-order stationary random field assumes a linear drift between the increments
E[z(r)] = µµµ(r) = ∑

N
n=0 αnf(r). In the rest of this sequel, it is assumed that the random set

z(r) is intrinsic and stationary on the 2nd-order.

3.3.2 Covariance

By assuming that random variables z(r) are 2nd-order stationary and isotropic, the covariance
function C(ri,r j) in (3.16) reads as follows:

C(ri,r j) = E
[
(z(ri)−µ)T (z(r j)−µ)

]
,

C(ri,r j) = E
[
(z(ri)−µ)T (z(ri +h)−µ)

]
.

(3.18)

The role of covariance function C(ri,r j) is to model the correlation between measurements
z(ri) and z(r j) observed at locations ri and r j based on their separation distance called a lag h.
Since the correlation between two random variables solely depends on their spatial distance,
and not at all on their location, the lag can be conveniently expressed as an Euclidean l2
norm, defined as h = ||r j− ri||2. Above statements can be summarized into the following
equalities, i.e. the isotropy assumptions:

h = r j− ri =⇒ ||h||2 = h =⇒
C(ri,r j) =C(ri,ri +h) = C(h).

(3.19)

For a straight stretch of motorway (Fig. 3.1) this is equivalent to the path length through the
road network.
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The process of covariance function C(ri,r j) modelling requires to find a covariance curve
that has the best fit to the empirical data (3.18), possibly being a subject to constraints. The
covariance models to choose from include exponential, spherical, Gaussian, linear or power
model [21]. In this work, the best fit for the dataset was achieved by the exponential model
given by

C(ri,r j) =

c− c0 i f |r j− ri|= 0,

(c− c0)e−
3|r j−ri|

a } i f |r j− ri|> 0,
(3.20)

where c0 is the nugget, a is the range and c is sill.

3.3.3 Variogram

The nature of the 2nd-order intrinsic stationary and isotropic random process z(r) (5.1) can
be also described by a variogram

γγγ(ri,r j) =
1
2

Var[z(ri)− z(r j)],

γγγ(ri,r j) =
1
2

Var[z(ri)− z(ri +h)],
(3.21)

in which the equalities (3.19), established for covariance function C(ri,r j), also apply to the
variogram γγγ(ri,r j). The variogram shows how the dissimilarity between z(ri) and z(ri +h)
evolves with a separation h. The variogram, unlike the covariance, does not require the
knowledge of the mean µµµ(r). In practice, this mean is not known and has to be estimated
from the data, which introduces a bias.

The model of the variogram γγγ(ri,r j), or so called a theoretical variogram, is obtain
from the data by the curve fitting. By using the exponential curve the theoretical variogram
γγγ(ri,r j) can be computed as:

γγγ(ri,r j) =

0 i f |r j− ri|= 0,

a+(c−a)
(
1− e−

3|r j−ri|
b

)
i f |r j− ri|> 0.

(3.22)

The variogram can be in terms of covariance function reconstructed by elements as:

γ(ri,r j) = c−C(ri,r j). (3.23)
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γ(ri,r j) =
1
2

Var[z(r j)− z(ri)]

=
1
2
(
σ(ri,ri)+σ(r j,r j)−2σ(ri,r j)

)
=

1
2
(
σ

2(ri)+σ
2(r j)−2σ(ri,r j)

)
,

= σ
2−σ(ri,r j).

(3.24)

Note, that by assuming an isotropic covariance matrix the following equalities σ(ri,ri) =

Var(z(ri)) = σ(h = 0) = σ2 and σ2(ri) = σ2(r j) = σ2 were used in the calculations (3.24),
where σ2 is the still.

3.3.4 Interpolation of the Random Set

Typically, one is not only interested in describing the random set z(r) from the observed
locations ri = (r1,r2, . . . ,rm), but the interest is to predict the values of this random set of
observations at the n new (unobserved) locations ru = (r1,r2, . . . ,rn) with u = (1, . . . ,n), i.e.
to find z(ru) = [z(r1),z(r2), . . . ,z(rn)] such that z(ru)⊂ z(r). In general, the process of the

Figure 3.2 Interpolation at point z(ru) within the set z(r).

interpolation can be described in these three steps:



3.3 Spatial Traffic Flow Estimation Using Kriging 41

1. Construct an estimator E[ẑ(r)] = µ̂µµ(r) of the drift E[z(r)] = µµµ(r) for the random set
z(r) (3.16).

2. Compute an interpolation error εεε(ru) = z(ru)− ẑ(ru) in terms of mean E
[
εεε(ru)

]
and

variance Var
[
εεε(ru)

]
. Interpolate the value of ẑ(ru) at locations ru such that mean of

the squared deviations Var
[
εεε(ru)

]
will be minimal.

3. Finally, the interpolated values ẑ(ru) alongside with their corresponding confident
intervals are given as

[
ẑ(ru)+Var

[
εεε(ru)

]
, ẑ(ru)−Var

[
εεε(ru)

]]
.

The interpolation technique utilized in this work is based on Kriging, discussed in Sec. 3.3.6,
which yields a predictor of the value ẑ(ru) of z(ru), i.e. a single element of z(ru), for the
location ru = [rx

u,r
z
u]

T based on the knowledge of the random field variables z(r) expressed
either by covariance function C(ri,r j) (3.18). In order to obtain ẑ(ru) at the unobserved
location ru, the distance measure h = ri− ru, between all observed locations ri and the point
of an interest ru, is used to calculate variance C(ri,ru) on the basis of theoretical covariance
(3.20).

3.3.5 Nugget, Sill and Range

If a graph of the lag and variogram of the measurements are plotted, then Figure 3.3 is
generated. Three points on the graph are useful in the computation of the model variogram
for finding the Kriging weight. The variogram increases with the lag between points up to a
point where it flattens out and remains constant. All pairs of location within the range are
correlated while locations beyond than the range are not. The distance at which this flattening
start is called the range and the value of the variogram at that point is called the sill. All
points at a location less than the range are correlated, and all points with separation more
than the range are not correlated. At a lag distance of zero γ(0) is expected to be zero. This
is not so in practice but exhibits what is known as nugget effect. This is attributed to either
error in the measurements or when the spatial variation is less than the sampling rate.

The computed empirical semi-variogram from the given number of observed locations
is used to determine the parameters (nugget, range and sill in the chosen variogram model.
To obtain values at unobserved locations, the values of these parameters are then used to
calculate the co-variogram matrix between all the observed locations and the unobserved
locations required to find the Kriging weights. The variogram models to choose from are
exponential, spherical, Gaussian, linear or power model [21]. The exponential model was
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Figure 3.3 Plot of empirical variogram γ and lag h

used in this work because it gives the best fit for the dataset. This is given by,

γ(h) = c0 + c{1− e−
h
a}, (3.25)

where c0 is the nugget, and c = sill− c0 is the maximum of the correlated variance and a is
the range.

3.3.6 Ordinary Kriging

The underlying idea of Kriging is to obtain the response z(ru), interpreted as a random vari-
able positioned at the location ru, by interpolating random variables z(r)= [z(r1),z(r2), . . . ,z(rm)]

T

from (3.16), i.e. observations z(ri), i = 1, . . . ,m at locations ri. The Kriging predictor in-
corporates the covariance structure among the observation points z(ri) into the weights
w(ru) = [w1(ru),w2(ru), . . . ,wm(ru)]

T for predicting ẑ(ru) as a linear combination:

ẑ(ru) =
m

∑
i=1

wi(ru)z(ri) = wT (ru)z(r). (3.26)

In order to assess the accuracy of the Kriging prediction ẑ(ru) w.r.t the real (true) value z(ru)

an error ε(ru) is declared
ε(ru) = z(ru)− ẑ(ru). (3.27)

The following criteria, evaluated in terms of mean E
[
ε(ru)

]
and variance Var

[
ε(ru)

]
=

σ2
ε (ru) of the prediction error ε(ru) (3.27), apply to any type of Kriging interpolation:
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• Lack of bias, implies that E
[
ε(ru)

]
= 0 and therefore E

[
ẑ(ru)

]
= E

[
z(ru)

]
. Thus, the

Kriging interpolation is said to be globally unbiased (3.28).

E[z(ru)− ẑ(ru)] = 0 (3.28)

• Minimum variance, implies that the mean of the squared deviations Var[ε(ru)] =σ2
ε (ru)

must be minimal (3.29),

min
1T w=1

Var[z(ru)− ẑ(ru)] or min
1T w=1

σ
2
ε (ru), (3.29)

subject to

m

∑
i=1

wi = 1T w =
[

1 . . .1
] w1

...
wm

= 1. (3.30)

The ordinary Kriging model was initially developed in spatial statistics by Krige [126]
and subsequently extended by Matheron [127] and Cressie [176]. The goal of the ordinary
Kriging is to interpolate a value of the function z at an unobserved location ru by computing
a linear combination (3.26) of the observations z(ri) at locations ri. Kriging weights w(ru)

are chosen such that the mean squared prediction error σ2
ε (ru) (3.29), also known as Kriging

variance or Kriging error is minimized as min
1T w=1

σ
2
ε (ru) overall z(ru) (3.29) subject to the

condition of unbiased E[z(ru)− ẑ(ru)] = 0 (3.28) and ∑
m
i=1 wi = 1T w = 1 (3.30).

σ
2
ε (ru) =Var[z(ru)− ẑ(ru)]

=Var
[
z(ru)

]
+wT (ru)Var

[
z(r)

]
w(ru)

−b
(
ri,ru

)T w(ru)−b
(
ri,ru

)
wT (ru)

=b
(
ru,ru

)
+wT (ru)C

(
ri,r j

)
w(ru)

−b
(
ri,ru

)T w(ru)−b
(
ri,ru

)
wT (ru)

=σ
2(ru)+

m

∑
i=1

m

∑
j=1

wi(ru)w j(ru)C(ri,r j)

−2
m

∑
i=1

wi(ru)b(ri,ru).

(3.31)
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Note that the Kriging variance σ2
ε (ru), introduced in (3.31), differs from the variance of the

Kriging predictor ẑ(ru) itself (3.32).

Var(ẑ(ru)) = Var
m

∑
i=1

wiz(ri) =
m

∑
i=1

m

∑
j=1

wiw jC(ri,r j). (3.32)

The minimization of the Kriging variance (3.31) can be in terms of covariance model
expressed as (3.33)

min
1T w=1

{
Var

[
z(ru)

]
+wT (ru)Var

[
z(r)

]
w(ru)

−b
(
ri,ru

)T w(ru)−C
(
ri,ru

)
w(ru)

T
}

min
1T w=1

{
σ

2(ru)+
m

∑
i=1

m

∑
j=1

wi(ru)w j(ru)C(ri,r j)

−2
m

∑
i=1

wi(ru)C(ri,ru)
}
,

(3.33)

where matrix C(ri,r j) is the covariance between the individual samples given by,

C(ri,r j)

 C(r1,r1) . . . C(r1,rm)
... . . . ...

C(rm,r1) . . . C(rm,rm)

 , (3.34)

and column vector b(ri,ru) is a covariance function between samples and the point to
interpolate.

b(ri,ru) =

 b(r1,ru)
...

b(rm,ru)

 . (3.35)

Equation (3.33) is minimized by introducing a Lagrange multiplier, −2λ with the con-
straint wT 1 = 1, where 1 is a vector of ones.

MSE = γ(yu)+wT Aw−2wT b+2λ (wT 1−1). (3.36)

By partial differentiation wrt w we get:

∂MSE
∂w

= 2Aw−2b+2λ1 = 0. (3.37)
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This implies that:
Cw = b−λ1. (3.38)

The Lagrange multiplier, λ is computed by solving equation (3.38) by direct substitution
of values,

λ1 = b−Cw
λC−11 = A−1b−w
λ1T C−11 = 1T C−1b− 1T w︸︷︷︸

1

λ = 1T C−1b−1
1T C−11 .

(3.39)

The weights w(ru) for ordinary Kriging can be found from the following system of m
linear equations (3.40), known as the Kriging equation.

w(ru) = C(ri,r j)
−1b(ri,ru)−µ1. (3.40)

Algorithm 2 gives a summary of this Kriging interpolation procedure.

After computing the weights, estimated values at unknown location are given by (3.26)
and their variance computed as:

σ2
eu

= Var[zu− ẑu]

= γu +wT Cw−2wT b
= γu +wT (b−λ1)−2wT b
= γu−wT b−λ .

(3.41)

Equation (3.41) provides useful information about how confident the results are with the
estimation accuracy. This information is used to compute the weighting factor to improve
the computation of particle predictor likelihood.

The next section describes traffic estimation using Bayesian inference and particle filtering
approaches. It presents a method of improving the particle filter likelihood computation
using Kriging to estimate any missing measurements.
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Algorithm 2 Kriging Algorithm for Spatial Interpolation [177]

1. Determine location of all sensors (measurement/input points)

2. Compute the distance (lag, h) between all measurement locations
For u = 1 to U , U number of unknown locations to be computed
Do the following

(a) Determine the measurement locations that will contribute to the interpolation at
each unknown location yu.

(b) Compute the distance between all measurement locations in the above step.

(c) Compute the empirical semivariogram of all the contributory measurement loca-
tion pairs above.

(d) Fit the exponential semi-variogram model to obtain the nugget, sill and range.

(e) Compute the distances of point yu to all the measurement locations identified in
step (a).

(f) Compute the semivariogram of the distances above.

(g) Compute the vector w containing the weight factors of the point u using (3.40).

(h) Compute the estimated value of this point u using (3.26).

3.4 Traffic Estimation via Bayesian Inference and Particle
Filtering

3.4.1 Bayesian Estimation of Traffic State

In Bayesian estimation the posterior probability density function (PDF) p(xk|Zk) of the
traffic state xk at time tk is evaluated, given a set of measurements Zk = {z1:k}, collected up
to time tk using Bayes’ rule as:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
. (3.42)

The likelihood, p(zk|xk) is defined by the observation model (3.2), and p(zk|Zk−1) is a
normalizing constant. The prior or state prediction p(xk|Zk−1) is updated recursively using
the Chapman-Kolmogorov equation given by [178]:
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p(xk|Zk−1) =
∫
Rnx

p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (3.43)

When the system model (3.1) is linear, equations (3.42) and (3.43) are analytically
tractable and the Kalman filter [104] is used to obtain optimal solutions under certain
constraints. When the system is highly non-linear, the recursive solution becomes expensive
to compute, and numerical approximations methods such as the extended Kalman filter
[105, 106] and particle filter [178, 179, 2] are often employed to obtain acceptable solutions.

3.4.2 Particle Filtering for Traffic State Estimation

The particle filter estimates the traffic state by taking enough random samples from the PDF
with assigned weights. When a new measurement becomes available, it is used to compute
what is known as the likelihood and a normalised form of the weights computed. The new
state of the system is then updated with the computed weights. Degeneracy can be avoided
by re-sampling, i.e. removing particles with low weights and replicating those with high
weights [178].

Improved Likelihood Computation

The likelihood function term p(zk|xk), is computed when a new measurement arrives. For
the multivariate Gaussian distribution, the PDF is given by:

p(zk|xk) =
1√

2π|R|
e−0.5υυυR−1υυυT

, (3.44)

where R is the covariance matrix of the measurement data, |R| ≡ det(R) is the determinant
of R and υυυ is the difference between the PF predicted value (z̄s) and measurement (zs), given
by:

υυυ = zs− z̄s. (3.45)

The measurement matrix zs can be expressed as,
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zs =


zmeas

s measurement from sensor;

ẑkrig
s ◦βββ s estimated by Kriging

 , (3.46)

where ẑkrig
s represents the value estimated by Kriging (when measurement is not available), ◦

is the Hadamard product, βββ s = [βs,1,βs,2, ...,βs,n]
T is a weighting factor introduced to vary

the level of confidence placed on the Kriged values. The value of β is 1 if estimator is fully
confident about the Kriging result and less than 1 otherwise.

The modified particle filter procedure is shown in Algorithm 2.

3.5 Performance Evaluation

3.5.1 Investigation with Synthetic Data

Here, the performance of the particle filter with Kriging for traffic state estimation is evaluated
using synthetic data from a 4km stretch of the motorway over a period of three hours. This is
split into eight segments, each with a length of 0.5km and three lanes. For more details on
the process for obtaining the synthesised data, see [2]. The benchmark for comparison is the
Kriging model which has been reported in literature [136, 19]. These approaches used the
traditional Kriging method without modification.

The modelling consists of periods of normal flow and congestion which was modelled by
random changes (increase and decrease) in the inflow between time interval of (1.12≤ t <
1.17)hours and (1.70≤ t < 1.82)hours and outflow speed (decrease) between (2.40≤ t ≤
2.65)hours.

To test the effect of assigning different values between 0 and 1 to βββ s, the simulation
was repeated three times each with 200 independent Monte Carlo runs. First, by using all
the measurements available at the segment boundaries. Second, removing measurements
at two locations (boundary segments) and interpolating them using Kriging with equal
weights assigned to the interpolated measurement and actual measurement in the likelihood
computation. Lastly, by assigning a weight of 0.2 to the Kriging interpolated values.

In order to test the prediction accuracy for different levels of sparsity, three statistical
measures namely the root mean squared error (RMSE) (2.9), the absolute percentage error
(APE) (3.47)and the mean absolute error (MAE) (3.48) were computed. Note, zi is the ground
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Algorithm 3 PF Algorithm for Prediction with Improved Likelihood [2]

1. Initialization
At k = 0; define all boundary conditions: number of samples, weight of samples as
below,
For i = 1, ...Np, Np number of particles;

• generate Np samples {x(i)0 } from the initial distribution p(x0)

• initialize the particle weights w(i)
0 = 1

Np
.

End for

2. Start the iteration for k = 1,2, ...

(a) Prediction stage
For i = 1, ...,Np,
sample x(i)k ∼ p(xk|x

(i)
k−1) according to SCM model equations

End for

(b) Use measurements to compute likelihoods and update the weights
This step is performed when the sampling time ts equals the iteration count tk
i. Estimate missing measurements with Kriging using Algorithm 1
ii. Compute the likelihoods
Use model (3.15) to compute the likelihood, p(zs|x(i)s ) of the particles
iii. Update the weights of the particles using the likelihood p(zs|x(i)s ) calculated
from model (3.15)
For i = 1, ...,Np

ω
(i)
s = ω

(i)
s−1 p(zs|x(i)s )

End For
iv. Normalize the weights: ω̂

(i)
s = ω

(i)
s

∑
Np
i=1 ω

(i)
s

.

(c) Update the predicted states (Output): x̂s = ∑
N
i=1 ω̂

(i)
s x(i)s

(d) Re-sample the weights (Selection) only when tk = ts
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truth or actual measurement, ẑi is the estimated value and mr is the number of independent
Monte Carlo runs.

APE =
mr

∑
i=1

|[zi− ẑi]|
zi

∗100, (3.47)

MAE =
1

mr

mr

∑
i=1
|[zi− ẑi]|. (3.48)

The RMSE and APE for 200 independent Monte Carlo runs were plotted in Figures 3.4
and 3.5, respectively. The results show that there was an improvement in the estimation
accuracy when the Kriging interpolated values were assigned weights. The results for the two
Kriged examples reach the same accuracy for location 4. When the middle sensor is removed,
there is still information up and downstream from the missing sensor. As a result, more
information can be applied to the interpolation process allowing a more accurate estimate.
Instead, when there is no sensor downstream; for example, there is less information; therefore,
the interpolation is less accurate.

Figure 3.4 The root mean squared error (RMSE) of speed over locations
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Figure 3.5 The absolute percentage error (APE) of speed over locations

The results in Figures 3.6 and 3.7 show that estimation accuracy is better when all the
measurements are used in computing the likelihood, followed by that computed with Kriging
interpolated measurements. The accuracy of the estimation performed without using any
measurement is the least as can be seen in the figures. The results show improvement of 23%
to 36.34% at different segments in RMSE values for the synthetic data used.

Figures 3.8 and 3.9 shows the plot of velocity and flow at segments boundaries 2 to
6. Segments 1 and 8 were not included as they were the inflow and outflow segments. It
is evident that the estimation when all measurements (second plot from bottom) are used
provides the best accuracy, followed by that where Kriging was used to estimate the missing
measurements (third plot from bottom). The least accurate result was obtained when the
missing values were not included in the likelihood computation (first plot from the top). This
is apparent during congestion between time interval (2.40≤ t ≤ 2.65) hours.

Another observation from the figures is that the estimation accuracy is consistent under
free-flow conditions and begins to get worse as congestion sets in. During the period when
the network is congested from time interval (2.40 ≤ t ≤ 2.65) hours the estimate without
the full measurements used in the likelihood computation could not capture the decrease in
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Figure 3.6 The mean absolute error (MAE) of flow for locations

Figure 3.7 The mean absolute error (MAE) of speed for locations

speed. Incorporating the Kriged values improves the accuracy a little while the estimate with
full measurements is closest to the true value.
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Figure 3.8 Traffic flow of segments 2 to 6

3.5.2 Investigation with Real Data

The modified algorithm was further tested with real data from the E-17 motorway in Belgium
[2], which is usually congested. The test data consist of a day measurement recorded by
sensors installed at locations CLOF to CLO9 as shown in Figure 3.10. Measurements
at location CLOE to CLOB were removed and then interpolated using Kriging with the
following parameters, free flow speed v f ree = 120 km/h, minimum speed vmin = 7.4 km/h,
critical density ρcrit = 20.89 veh/km/lane, jam density ρ jam = 180 veh/km and a β = 0.5.
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Figure 3.9 Speed of vehicles across segments 2 to 6

Figures 3.11 to 3.13 show the plot of the estimated traffic flows and the ground truth. The
estimates follow the pattern of measured states at most of the points as seen from the plot.
The speed-flow and flow-density diagrams are plotted in Figures 3.14 and 3.15. The shape of
the figures resembles the fundamental diagram of traffic flow, confirming the validity of the
approach.
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Figure 3.10 Schematic diagram of the E17 motorway between Ghent and Antwerp Kruibeke,
Belgium [2]

3.5.3 Multi-Step Ahead Prediction Using Particle Filter

The particle filter estimates the state of traffic by taking a sufficient number of random
samples from the posterior density function (pdf) with assigned weight to each particle.
When a new measurement becomes available, it is used to compute what is known as
likelihoods and a normalized form of the weights computed. The new state of the system
is then updated with the computed weights. The importance weights tend to degenerate as
the number of iterations increase. This problem is solved by re-sampling the weights. This
involves replacing particles with low weights with a replica of those with high weights. The
procedure is outlined below with a detailed explanation of each step.

3.5.4 Description of Experiment

As mentioned in section 3.5.3, the particle filter algorithm was used for the one-step-ahead
prediction of the traffic states, namely (speed, flow and density). Figure 3.10 [2] shows the
road network (the E17 motorway between Ghent and Antwerp in Belgium) used for the study.
It was divided into six segments, labelled CLOF to CLO9. Measurements were received
every minute at the boundaries. The research used particle filtering to estimate the traffic
volume or flow, speed and density over the road network. For the purpose of estimating the
traffic state, only measurements at CLOF and CLOA were used while the traffic states at
CLOE to CLOB were estimated using the proposed algorithm. Traffic flow in all on-ramp and



56 Traffic State Estimation with Particle Methods in the Presence of Sparse Data

Algorithm 4 PF Algorithm for Prediction

1. Initialization
At k = 0; Define all boundary conditions: number of samples, weight of samples as
below,
For i = 1..to..Np, Np number of particles;

• generate Np samples from the initial distribution p(x0)

• initialize the particle weights w(i)
0 = 1

Np

2. Start the Iteration for k = 1,2, ...,Np

(a) Prediction Stage
Predict the speed, flow and density using equations (3.6) to (3.14)
For i = 1, ...,Np, sample xi

k ∼ p(xk|xi
k−1)

(b) Use Measurements to Compute Likelihoods and update the weights
This step is performed when the sampling time ts equals the iteration count tk
i. Compute the likelihoods
Use equation 3.15 to compute the likelihood, p(zs|x(i)s ) of the particles
ii. Update the weights of the particles using the likelihood
ωωω

(i)
s =ωωω

(i)
s−1 p(zs|x(i)s )

iii. Normalize the weights:
For i = 1 , .... Np,

ω̂̂ω̂ω
(i)
s = ωωω

(i)
s

∑
N
i=1 ωωω

(i)
s

,

End For

(c) Update the predicted values (Output): x̂s = ∑
N
i=1 ω̂ωω

(i)
s x(i)s

(d) Re-sample the weights (Selection) only when tk = ts
When some weights degenerates (become too low or too high) suppress or multi-
ply the low/high weights to obtain N random samples approximately distributed
according to p(xi

s|Zs)

(e) M-step Ahead Prediction
For prediction, based on the particles obtained in re-sampling step, evaluate
the pdf of x̄k+M+1|k+1 with the augmented state model Āx̂k + B̄ŵk where M is
prediction step and Ā and B̄ are the augmented state and noise matrix respectively

(f) Increment the iteration count k, and return to step (1)
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Figure 3.11 Predicted states and actual measured states at CLOC

off-ramps were assumed negligible in order to ensure the conservation of vehicle equation. In
this report, the algorithm was modified to perform one-step-ahead prediction and the results
compared with unscented Kalman predictor.

3.6 Results and Discussion

This section presents the result of simulation carried out using particle filter algorithm and
the modified version of the cell transmission model (called stochastic compositional model,
SCM) (see Algorithm 1 for details) [1].
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Figure 3.12 Predicted states and actual measured states at CLOD

3.6.1 Validation Using Root Mean Square Error

The results of the particle filter and unscented Kalman filter were compared for 1 step ahead
prediction. The simulation was run from 5:40 am to 11:30 pm for 100 Monte Carlo times
each and the mean of the errors plotted. Another observation from the simulation was that the
number of times the simulation was run does not affect the prediction or estimation accuracy
of the UKF whereas the accuracy of PF gets better by repeating the simulation several times
and taking the mean. This could be attributed to the fact that the PF uses a stochastic model
to sample the PDFs, whereas UKF uses a deterministic sigma point. The root mean squared
(RMSE) error metric was used to evaluate the accuracy of the prediction.

Figures 3.16 and 3.17 shows the speed and flow RMSE for multiple steps ahead prediction
of using modified particle filter algorithm. It is observed that the error increases as the
prediction horizon increases.
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Figure 3.13 Predicted states and actual measured states at CLOE

3.6.2 Comparison with Existing Work

The method proposed in this section is compared with the work of [174] using the root mean
squared error. The results for the traffic flow is shown in Table 3.1. In [174], compressive
sensing is used to fill the missing data in the particle filter update step. This is abbreviated
as PFCS (particle filter with compressive sensing). The RMSE of the traffic flow at cell
boundaries CLOB to CLOE was computed, as shown in the table. It could be observed that
the proposed method outperformed the compressive sensing approach.

Table 3.1 Minimum, maximum, mean and percentage improvement

CLOB CLOC CLOD CLOE
RMSE Proposed (veh/h) 98 101 107 96
RMSE PFCS (veh/h) 154 152 150 148
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Figure 3.14 Speed-flow diagram for the PF with Kriging estimated measurements at CLOE,
CLOD, CLOC and CLOB

3.7 Summary

This chapter proposed a novel approach to tackle the problem of missing and sparse data in
traffic estimation. This approach entails interpolating the missing values using Kriging with
a level of confidence assigned to the Kriged values by computing their interpolation error
variance. This level of confidence is then used to compute the weight to be assigned during
the computation of innovation terms used in PF. This was tested using simulated and real
data by assigning fixed test-values to the weighting factor. From the results presented benefit
of adjusting the weighting of interpolated values as compared to actual measurements has
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Figure 3.15 Flow-density diagram for the PF with Kriging estimated measurements at CLOE,
CLOD, CLOC and CLOB

offered an improvement. In chapter 4, this will be extended to a large road network with
varying levels of missing data.

The next chapter extends the approach presented in this chapter to a large-scale road
network. It also considers a scenario where some lanes are closed as a result of incidence or
road work resulting in congestion. An approach to tackle the effect of the congestion on a
large-scale road network is presented and analysed.
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Figure 3.16 Plot showing RMSE of speed at Segment CLOA

Figure 3.17 Plot showing RMSE of flow at Segment CLOF



Chapter 4

Traffic Estimation for Large Urban Road
Network with High Missing Data Ratio

4.1 Introduction

Intelligent Transportation System (ITS) require accurate traffic state for effective traffic
monitoring and control. Traffic states are usually estimated from noisy sensor measurements
using various approaches, which can typically be subdivided into model-based approaches,
data-driven approaches or a combination of both. An overview of the different modelling
methodologies is given in [11, 12]. These modelling methodologies include microscopic,
macroscopic and mesoscopic approaches. Microscopic traffic models [11–14] describe the
motion of each individual vehicle with a high level of detail.

In macroscopic models [15, 16], traffic state is represented by aggregating behaviour
of the traffic, usually in terms of the average speed and the average density over a given
period. Mesoscopic models [11] employs some features of the microscopic and macroscopic
approaches by utilising varying levels/degrees of detail to model traffic behaviour. This is
achieved by modelling some locations with aggregated measurements as in macroscopic, and
the remaining locations are modelled down to the details of individual vehicles as is done in
the case of microscopic.

Macroscopic models are enough to produce acceptable estimation accuracy when com-
pared to the computational overhead of the microscopic models. Hence, they are proffered
choice for most practical purposes such as traffic control/management, road pricing and
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changes in infrastructure. Most traffic estimation approaches are model-based [17], while the
new trend is to develop data-driven approaches [18].

Data-driven methods rely on historical data or streaming/real-time data. Within the last
decade, there has been growing interest in applying Kriging for various traffic state prediction:
directional traffic volume using global position system (GPS) data [19], annual average traffic
count interpolation using origin-destination data [20], estimating annual average daily traffic
[21, 22], traffic volume prediction [23, 24], and traffic volume imputation [25].

Kriging is one of the leading data-driven methods originally employed in geostatistics
or spatio-temporal analysis. Kriging exploits the spatial correlation (either covariance or
variogram) using a weighted sum of observed data points to interpolate the values at locations
of interest. It was initially used for Copper mining by Krige [126] and was developed further
by Matheron [127]. Since then, it has been applied in other fields such as spatial analysis,
computer experiments. In recent times, the method has been applied in traffic prediction
[19].

One of the major challenges faced in traffic prediction is the issue of missing or sparse data.
Traffic measurements are generally captured with different types of sensors and transmitted
through a communication infrastructure for processing and utilisation. These infrastructures
are subject to failure and malfunction, occasionally leading to incomplete/missing data,
sometimes more than 40% [10]. The problem of sparse data is caused by the high cost
of installing and managing traffic measurement devices, making it impractical to cover all
locations needed for effective observation of the full road network.

To address these challenges of missing/sparse data, researchers resorted to various
methods and approaches such as missing data imputation [35], compressive sensing and
historical averages [174], Kriging interpolation [23]. In [2], particle filter (PF) with the
stochastic compositional model (SCM) as the proposal distribution was used to estimate
traffic state in freeways/motorways. Boundary measurements (inflow and outflow) were
used to estimate the traffic state within the segments. The study reported that missing
boundary measurements affected the estimated accuracy. A solution to the problem of
missing data in particle filter technique was proposed in [180] where Kriging methods were
used to interpolate the missing data which is subsequently used for the computation of the
PF likelihood for traffic state estimation. This approach was limited to a small road network
and a few missing data.

This present work extends the approach of [180]. In the previous work, a small road
network of 8 segments was considered whereas this present work considered a larger road
network of several kilometres with 1000 segments under the influence of missing data and/or
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sensor failure. The task of training such large segments would be resource-intensive, hence
the reduced measurement space proposed by [181] was used to select the most influential
segments in the road network. The drawback of [181] is that the most influential segments
are selected based on available measurements. This would mean that if some interconnected
and more correlated segments have missing data, they won’t be used leading to information
loss. To address this, the most probable segments are first selected using the column-based
matrix decomposition (CBMD). Then when there are missing measurements in the segments,
Kriging is used to estimate the measurements before the measurement update step (see
Section 4.3.3).

A review of three different missing data imputation methods was presented by [175].
These include interpolation, prediction and statistical learning. The interpolation method
imputes missing measurement at the location by averaging all historical measurements at
that location at similar times of the day. Prediction methods use a deterministic mathematical
description to model the relationship between historical and future data. The statistical
methods, on the other hand, treat the traffic as a random variable and tries to capture the
stochastic nature of the traffic pattern into the imputation algorithm.

In [147], [153, 154], a multi-resolution approximation using linear combinations of basis
functions was proposed to address computational complexity of large datasets. The novelty
lies in the use of multiple basis functions computed at lower resolutions closer to observation
locations and then combining them to capture the different covariance functions with varying
properties. The division is achieved by dividing the spatial domain recursively into small
regions and smaller sub-regions until the fine-scale dependencies are captured.

Nychka [147] used radial basis functions (RBF) and a special type of Gaussian Markov
random field (GMRF) called spatial autoregressive (SAR) model to model the spatial correla-
tion among the coefficients while Katzfuss [154] automatically determines the appropriate
basis/covariance function. Whereas in [153], it was assumed that the sub-domains are inde-
pendent, [154] assumed depended sub-domains and performed full-scale approximation. As
the computations are done locally in parallel, it is possible to fuse multi-sensor data sources,
in which case, the different covariance functions are used for each data source. Although
both mentioned that the approach could be extended to non-stationary functions, it was not
implemented, nor was there a derivation for such. The different methods of missing traffic
data imputation considered small road network in the range of a few kilometres.
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4.2 Model Description

Consider a general discrete time state space system of a form,

xk+1 = fk(xk)+gk(vk) or p(xk+1|xk), (4.1)

zk = hk(xk)+wk or p(zk|xk), (4.2)

where fk and gk are nonlinear functions of the target state vector xk and process noise
vk, respectively. Variable hk represents a nonlinear relationship between sensor output zk

and target state vector xk affected by a measurement noise wk. Also p(xk+1|xk) is the
probability density function of the new state xk+1 given the previous state xk, and p(zk|xk) is
the likelihood function of the measurement zk given the state xk.

4.2.1 Stochastic Compositional Traffic Flow Model

In this work, a stochastic compositional model (SCM) [1] is considered for modelling of
a motorway/freeway vehicle traffic evolution expressed as p(xk+1|xk) in (4.1). This cell-
transition model incorporates traffic speed and uses forward and backward waves to describe
the complex relationship between traffic behaviour, especially for a large road network. SCM
utilises sending and receiving functions which model the stochastic nature of traffic state
evolution. The vehicles that are able to leave a cell are represented by receiving functions
while those that are allowed to enter a cell are determined by the receiving functions. The
receiving functions are usually less than or equal to the sending functions to obey the law of
conservation of vehicles.
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Figure 4.1 SCM road network showing segments and measurement points.
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In SCM, the road network is divided into a given number of cell, n, also called segments.
Each segment has a length Li and number of lanes li as shown in Fig. 4.1, where i = (1, . . . ,n).
At any given time period k, a certain number of vehicles Qi,k crosses the boundary between
two segments i and i+ 1. The number of vehicles in a given cell i within the same time
period k is represented by Ni,k with their average speed given by vi,k. Observe that in Fig. 4.1
there is a lane closure which differs from Fig. 3.1 without a lane closure.

The overall state vector at time k is given by xk = [xT
1,k,x

T
2,k, . . . ,x

T
n,k]

T where xi,k =

[Ni,k,vi,k]
T is the local state vector at segment i. Equations (3.3) to (3.5) models traffic state

evolution within the cells.

4.2.2 Traffic Measurement Model

Consider the road network shown in Fig. 4.1 divided into different segments with n bound-
aries. The traffic state at a boundary j ∈J = 1,2, ...,n is sampled at discrete time steps ts,
s = 1,2, ..., to give z j,s = (Q j,s,v j,s)

T . The measurements at all the boundaries are collected
into a matrix given by Zs = (zT

1,s,z
T
2,s, ...,z

T
n,s)

T . The relationship between the sampling
interval ∆ts and the state update time step ∆tk (4.1) is such that sampling interval is split
into q state update time steps. That is, ∆ts = q∆tk. The measurement model and noise is
represented by equation (3.15) with error ξξξ s = (ξQ j,s,ξv j,s)

T .

4.3 Recursive Bayesian Estimation

4.3.1 Bayesian Estimation

Consider a general discrete time state space system represented as in (4.1) and (4.2). The
goal of Bayesian estimation is to infer the state variable xk as defined in Section 4.2.1 with
the available sensor measurements z1:k. By using the Bayesian framework, this estimation
problem relates to the recursive evaluation of the probability density function (PDF) p(xk|z1:k)

in two consecutive steps, the prediction and the measurement update of the state vectors.

p(xk−1|z1:k−1)
Prediction−−−−−→

Update
p(xk|z1:k−1) (4.3)

p(xk|z1:k−1)
Measurement−−−−−−−→

Update
p(xk|z1:k) (4.4)
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The prediction state density p(xk|z1:k−1) of state xk is calculated from the prior PDF
p(xk−1|z1:k−1) by using Chapman-Kolmogorov equation

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (4.5)

Equality (4.5) follows the 1st order Markov property which assumes that p(xk|z1:k−1) only
depends on state xk and xk−1 at time k and k− 1 respectively. The measurement update
p(xk|z1:k) is computed from the prior distribution (4.5) and measurements z1:k by a Bayesian
formula which results in

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(4.6)

The 1st order Markov property for equation (4.6) implies that p(xk|z1:k) only depends on
measurement zk at time k.

4.3.2 Developed Particle Filter for Large Scale Road Nework

Arguably, the most popular algorithm for nonlinear recursive estimation is the particle filter
(PF), extensively evaluated in [182]. PF represents any arbitrary probability density function
p(xk|z1:k) by samples or particles xl

k, where l = 1, . . . ,Np is the number of particles. i.e.

xl
k ≈ p(xk|z1:k), (4.7)

The particles are used to form an approximative distribution as

p(xk|z1:k)≈ p̂(xk|z1:k) =
Np

∑
i=1

wl
k|kδ (xk− xl

k), (4.8)

where p̂(xk|z1:k) is an approximated distribution, δ (xk− xl
k) is a the Dirac delta function and

wl
k|k the weights of the particles satisfying ∑

Np
l=1 wk|k = 1. The time update of the Bayesian
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Algorithm 5 Particle Filter for Traffic State Estimation with Kriging Estimated Measure-
ments [2]

1. Road network approximation
Use compressed sensing to select m most significant locations out of the n segments to
be used for the measurement update step as defined in Section 4.3.3.

2. Initialization
At k = 0; define all boundary conditions: number of samples, weight of samples as
below,
For l = 1, ...Np, Np number of particles;

• generate Np samples {x(l)0 } from the initial distribution p(x0)

• initialize the particle weights w(l)
0 = 1

Np
.

End for

3. Start the iteration for k = 1,2, ...

(a) Prediction stage
For l = 1, ...,Np,
sample x(l)k ∼ p(xk|x

(l)
k−1) according to SCM model equations

End for

(b) Measurement Update:
This step is performed when the sampling time ts equals the iteration count tk as
defined in Section 4.2.2
i. Estimate missing measurements in the m most significant locations with
Kriging using equations (3.26).
ii. Compute the likelihoods
Use model (3.15) to compute the likelihood, p(zs|x(l)s ) of the particles
iii. Update the weights of the particles using the likelihood p(zs|x(i)s ) calculated
from model (3.15)
For l = 1, ...,Np

ω
(l)
s = ω

(l)
s−1 p(zs|x(l)s )

End For
iv. Normalize the weights: ω̂

(l)
s = ω

(l)
s

∑
Np
l=1 ω

(l)
s

.

(c) Update the predicted states (Output): x̂s = ∑
Np
l=1 ω̂

(l)
s x(l)s

(d) Re-sample the weights (Selection) only when tk = ts
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recursion (4.1) is in case of PF evaluated as

p(xk|z1:k−1)

≈
∫

p(xk|xk−1)
Np

∑
l=1

wl
k−1|k−1δ (xk−1− xl

k−1)dxk−1,

≈
Np

∑
l=1

wl
k−1|k−1

∫
p(xk|xk−1)δ (xk−1− xl

k−1)dxk−1,

≈
Np

∑
l=1

wl
k−1|k−1 p(xk|xk−1).

(4.9)

The particles xl
k−1 in above equations (4.9) are sampled from proposal distribution π(xk|xl

k−1),
i.e. xl

k−1 ≈ π(xk|xl
k−1). Proposal distribution is very often defined by the state transition PDF,

that is π(xk|xl
k−1) = p(xk|xi

k−1). In this case, the weights updates result to

wl
k|k−1 =

p(xk|xl
k−1)

π(xk|xl
k−1,zk)

wl
k−1|k−1,

=
p(xk|xl

k−1)

p(xk|xl
k−1)

wl
k−1|k−1 = wl

k−1|k−1.

(4.10)

The measurement update p(xk|z1:k) (4.2) is computed by a Bayesian formula (4.6), which
can be in terms of the particles xl

k represented as

p(xk|z1:k) ∝p(zk|xk)p(xk|z1:k−1),

≈
Np

∑
l=1

wl
k|k−1 p(zk|xk)δ (xk− xl

k).
(4.11)

Similarly, the particle filter weights are updated as

wl
k|k =

wl
k|k−1 p(zk|xl

k)

∑
Np

l′=1
wl′

k|k−1 p(zk|xl′
k )

. (4.12)

Denominator in (4.6) and (4.12) is only a normalizing factor independent of xk thus can be
safety omitted if the distribution is numerically normed as shown by (4.11) and (4.12).

wl
k|k ∝wl

k|k−1 p(zk|xl
k),

≈wl
k|k−1 p(zk|xl

k).
(4.13)
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The MC recursion tends to degrade over time as all relative weights would tend to zero
except for one that tends to one. Therefore, when particle depletion ratio reaches 0.5, a
Sampling Importance Resampling (SIR) or Sampling Importance Sampling (SIS) techniques
are applied in the recursion.

4.3.3 Column Based Matrix Decomposition and Improved Likelihood
Computation

For a large road network with many segments, using all the measurements in the particle
filter measurement update step becomes computationally intensive. Column based matrix
decomposition approach similar (as earlier stated in Section 4.1) to the work of [181] is
employed to select the most probable segments that would give acceptable accuracy.

The idea is to select m most influential segments from all available segments n using
CBMD and then estimating missing measurements (if any) of the most influential segments
using Kriging for improved particle likelihood computation. Let Zn ∈ Rk×n represent a set
of all segments or measurement locations in a given time period, where the rows, k is the
number of time instances at which the measurements were taken and columns n number of
road segments.

The goal of CBMD is to approximate the measurements Zn with a subset of measurements
Zm ∈Rk×m where m < n is a subset of the measurements using singular value decomposition
(SVD) as [183]:

Zm = ZnΦΦΦ (4.14)

where ΦΦΦ∈Rn×m is the transformation matrix that expresses every column of all measurement
Zn in terms of the basis in Zm. Having computed the SVD, the right singular matrix is used
to assign a probability Pzi to each selected location according to:

Pzi =
1
r

r

∑
j=1

v2
i, j, i = 1, ...,n (4.15)

where vi, j is the ith element of the jth right singular vector and r is the rank of the matrix.
From the probabilities computed, m locations with the highest probabilities are chosen as
the reduced measurement to approximate the entire network which is used in computing the
particle filter likelihood during the measurement update step.
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The likelihood function term p(zk|xk) in equation (4.12), is computed when a new
measurement arrives. The performance of the PF degrades substantially when there is a
missing measurement. For the multivariate Gaussian distribution, the PDF is given by:

p(zk|xk) =
1√

2π|R|
e−0.5υυυR−1υυυT

, (4.16)

where R is the covariance matrix of the measurement data, |R| ≡ det(R) is the determinant
of R and υυυ is the difference between the PF predicted value (z̄s) and measurement (zs), given
by:

υυυ = zs− z̄s. (4.17)

The measurement matrix zs can be expressed as,

zs =

{
zmeas

s measurement from sensor;
ẑkrig

s estimated by Kriging.
(4.18)

where ẑkrig
s represents the value estimated by Kriging (when measurement is not available).

Note that the sampling time index ts is split into q update time indices tk as mentioned in
Section 4.2.2. The measurement update state of the PF is performed only when tk ≡ ts. The
modified particle method is presented in Algorithm 1.

4.4 Performance Evaluation

A road network with 1000 segments was simulated using SUMO software [184] to validate
the proposed method. The segments are spaced 0.5km apart and measurements (number
of vehicles crossing each segment boundary with their average speed) taken every second.
Traffic signs were installed at some locations to model the effect of congestion.

This is an extension of the previous work [180] where a smaller number of segments
was considered. The aggregate traffic flow and speed were sampled every 60seconds and
the results collected over a period of 10800 seconds (3hrs). Two types of vehicles, bus and
passenger car was defined with the parameters as in Table 4.1. The vehicles were added
randomly into the network through the inflow boundary every one second and they travel
through the network until they get to the last boundary when they leave the network. As
a vehicle crosses each induction loop, it is counted with its speed. The average speed of
the vehicles arriving at an induction loop over a period is recorded as the average speed.
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Table 4.1 SUMO simulation parameters

Car Bus
Max speed 25 m/s 20 m/s
Acceleration 1.0 m/s2 0.8 m/s2
Deceleration 4.5 m/s2 4.5 m/s2
Sigma (driver perfection) 0.5 0.5
Length 5 m 10 m
Minimum Separation 2.5 m 3 m

The entire statistics, flow, occupancy, and speed are collected in an output file for further
processing.

Figure 4.2 Spatio-temporal evolution of traffic flow for the 100 segments.

4.4.1 Simulation Design

To simulate different scenarios such as congestion and free flow, (i) the number of lanes
were decreased from 3 to 2, and (ii) the rate of vehicle injection into the network is varied at,
different time periods. Figures 4.2 and 4.3 show the spatio-temporal evolution of the traffic
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and their corresponding average speed, respectively, for a 100-segment section. The average
speed of the vehicles varies around 100km/h when the flow was around 2000veh/h. Between
time interval [1.5h, 1.7h], the flow was increased slightly to cause congestion, this resulted to
a decrease in the average speed as can be seen in the first spike from Fig. 4.3.

Figure 4.3 Spatio-temporal evolution of traffic speed for the 100 segments.

Observe that the effect was felt closer to the inflow boundary. The vehicles speed
increases marginally as they move into the network. Between time interval [1.6h, 1.9h] the
flow was decreased, leading to an increase in the average speed. Finally, the number of lanes
in segments 10 to 14 were reduced from 3 to 2 between time interval [2.4h, 2.4h] while
maintaining vehicle injection rate. This results in a substantive decrease in speed as can be
seen (cone-shaped) in Fig. 4.3. As the vehicles pass the segments with closed lanes, there is
an increase in their speed again.

4.4.2 Results and Discussion

In order to test the prediction accuracy for different levels of sparsity, a statistical measure,
namely the root mean squared error (RMSE) (2.9), was computed. Note, zi is the ground
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truth or actual measurement, ẑi is the estimated value and mr is the number of independent
Monte Carlo runs. The measurements at some boundaries were randomly removed each time
and then estimated using the proposed method. Different missing data rates (from 10, 20, ...,
70%) were investigated by randomly removing measurements at some locations using leave
one out cross-validation. This was repeated for 100 Monte Carlo runs and the average value
used.

Figures 4.4 and 4.5 shows the average estimation error for the different missing data
ratios and number of segments. It would be observed that the prediction error increases with

Figure 4.4 RMSE of speed at different missing data ratios.

the missing data rate. This is expected as less data is available for the computation. This
effect could be reduced further by incorporating a mechanism known as multi resolution
approach [154].

The plot also shows that the higher the number of segments used, the better the accuracy.
This could be attributed to the fact that there is better information exchange within the network
and hence, on average, more segments with available data are used for the higher dimensional
segments’ scenario. This agrees with [160] where estimation accuracy in the presence of
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Figure 4.5 RMSE of flow at different missing data ratios.

sparse sensor data was improved by exchanging particle weights between segments. For
instance, a 10-segment network with 70% missing data ratio will result in using only 3 data
points to estimate the remaining seven missing locations. The chances of these 3 locations
correlating with the other 7 are lower compared to when 30 out of 100 data points are
available.

Figures 4.6 and 4.7 show the spatio-temporal evolution of the traffic flow and the corre-
sponding average speed for the 100-segment scenario. The number of vehicles crossing each
boundary in space and their associated average speed is represented by the colour bar and the
z-axis.

Compared to the ground truth shown in Figures 4.2 and 4.3, it is evident that the esti-
mated number of vehicles crossing segment boundaries and the associated speeds have been
estimated with good accuracy. Observe also that the estimated flow and speed captured the
periods where there is a drop in the number of vehicles and a decrease in speed.
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Figure 4.6 Estimated flow for the 100 segments with 30% missing data.

Figure 4.7 Estimated speed for the 100 segments with 30% missing data.



78 Traffic Estimation for Large Urban Road Network with High Missing Data Ratio

The box plot of the flow and speed is shown in Figs. 4.8 and 4.9, respectively. The
figures show that the absolute error of estimated speed is in the range of 0 to 4km/h with
some outliers. This is comparable to what is obtained in the literature.

Figure 4.8 Box Plot of Flow over locations.

4.5 Summary

This chapter presented a traffic estimation for a large road network with different missing
data ratios. The computational overhead of the large network was addressed by using a
method called reduced measurement space proposed by [181] to select the most influential
and information-rich segments in the road network. These are subsequently used in the
particle filter measurement update step. Missing data in the selected segments are imputed
using Kriging. A 1000-segment road network was simulated using SUMO. Different missing
data ratios ranging from 10% to 70% were tested for different sizes of road network ranging
from 100 to 1000 segments.
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Figure 4.9 Box Plot of speed over locations.

The results indicate that considering a larger number of segments would reduce the
overall estimation error even when the missing data ration is high. From the foregoing results
and discussion, it is recommended that the best estimation accuracy would be obtained when
the entire road network is considered at once. The effects of computational overhead could
further be reduced by using a distributed approach with a central control unit.

What happens when road incidents result in lane closures and or increased demand
beyond road capacity leading to congestion? A multi-model Bayesian Kriging approach is
developed in the following Chapter 5, to capture the traffic dynamics, especially the effects
of congestion caused by lane closures or excessive demand above road capacity.





Chapter 5

Bayesian Kriging with Local Covariance
Functions for Urban Traffic State
Prediction

5.1 Introduction

Intelligent Transportation System (ITS) requires knowledge of past, present and future traffic
states for effective traffic monitoring and control. The past traffic state is readily available via
measurements made with inductance loops, magnetic loops, video cameras, and social media
data sources. The present and future state could be estimated and predicted respectively
using past measurements and some computer simulation and traffic modelling techniques.

Kriging has been applied in the field of traffic engineering for state estimation [128, 19,
21, 23, 180], missing data imputation [185, 175, 186] and crash detection [129]. Braxmeier et
al. [128, 19] employed Kriging with a moving neighbourhood to estimate the spatial location
of traffic flows using data collected by vehicles equipped with Global Positioning System
(GPS) signal receivers. Manepalli and Bham [129] compared Kriging and empirical Bayes
in estimating road crashes and reported that Kriging performed better when the prediction
term is less than three years. Wang and Kockelman [21] applied Ordinary Kriging with
exponential model function to estimate the annual average daily traffic and reported an
error of 31%. In [180] Kriging method and particle filtering were employed for traffic state
estimation. Missing values were interpolated using Kriging, and the results were used in the
weighting of the particle filter likelihood.
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The Kriging method can also handle spatio-temporal prediction. For instance, [130]
employed the modified Taylor Kriging to predict wind speed and reported an increment
of 18.6% in performance compared to ARIMA. Other authors [132–134] have applied a
modified version of Kriging to achieve spatio-temporal forecasting. A similar approach to
[180] was applied in [187] to a large-scale road network with a high missing data ratio. In
the work, column-based matrix decomposition (CBMD) was employed to select a subset of
the segments that are more influential in improving computational overhead of processing
large networks.

Most of the Kriging methods for traffic estimation assume a stationary covariance function
with constant mean. In practice, traffic data is heteroscedastic and anisotropic in nature.
Modelling the covariance function as constant over the entire region can produce local bias
[150]. In [21] and [155], it was shown that the local estimation errors by using the ordinary
Kriging weights are affected by data values. Interpolation variance was used in [156] to
correct the smoothing effect of the ordinary Kriging variance. A modified-nugget effect was
proposed in [155] to account for location-dependent non-constant variances.

The classical Kriging approach adopts a generative model of the covariance function
to estimate the weights. This approach is not dependent on the data or site but on the joint
probability of the locations. Bayesian Local Kriging (BLK) as proposed in [150] used a
discriminative model of the covariance function, which is conditioned on the data to estimate
the weights. This approach works well for both stationary and non-stationary systems or
observations. Their model addresses two assumptions usually made in Kriging: stationarity
and homoscedasticity. The first problem was addressed by using a discriminative covariance
function conditioned on the data and the second by using a set of L local covariance functions.
They considered a case where the regression part of the function is the same for all L local
models.

Traffic data is periodic and seasonal with inter-day and intra-day dependence. Using
fixed, spatial dependent covariance functions for prediction results in wrong results at
some point and inaccurate at another. A spatio-temporal algorithm that is adaptive to the
seasonal variations during days of the week, time and location are proposed. It is based
on the approaches proposed in [150], [188, 145, 189, 190] and [191]. This work builds on
the existing methods by employing a discriminative covariance model conditioned on the
observations at each location. Thus, the proposed method can account for congested regions
and interactions in the upstream and downstream of the congestion. Usually, the covariance
function is only dependent on the separation distance irrespective of the traffic situation at
the locations. This makes it difficult for the model to capture traffic dynamics and transitions
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from free-flow to congested states, congested states to free-flow, etc. This proposed approach
can capture these dynamics and model them into the covariance matrix.

The contribution of this chapter is threefold: Traffic estimation using discriminative
covariance functions conditioned on the data at each location which can capture the stochastic
nature of the traffic; Robust and adaptive to both stationary and non-stationary traffic data; and
Multi-model Gaussian traffic data analysis. Generally, a given dataset could be represented
by different models. Traditional Kriging makes use of the “best” model that explains the
whole dataset. This often leads to over-fitting or under-fitting within different scenarios.
Using a weighted average of all the models has been shown to outperform a single model
[192].

The rest of this chapter is structured as follows. Section 5.2 gives a brief overview of the
related works. Section 5.3 presents the formulation of the problem of interest. Section 5.4
presents the experimental setup and performance evaluation. Finally, Section 5.5 concludes
this work.

5.2 Related Work

In this section, the state-of-the-art approaches in traffic estimation are highlighted to put
the current work in context. Braxmeier [128] takes into consideration the inhomogeneous
and anisotropic nature of time-series data in estimating road traffic parameters. The method
considered a rush-hour data set of only 30 minutes duration. The use of Euclidean distance
in computing separation between locations fails to describe the spatial distance in a road
network accurately. Zou [23] introduced road network distance called approximate road
network distance (ARND), based on the isometric embedding theory, to describe the spatial
distance between road links. The method addresses the problem of invalid spatial covariance
function in Kriging caused by the non-Euclidean distance metric.

The Kriging weight is only a function of the distance between the points. It does not
incorporate the heteroscedastic/stochastic nature of the data. In [21] and [155], it was shown
that the local accuracy of estimation using ordinary Kriging weights is affected by data
values. The use of interpolation variance was used in [156] to correct the smoothing effect of
the ordinary Kriging variance. A modified-nugget effect was proposed in [155] to account
for location-dependent non-constant variances.

In [193] a similar approach called vicinity Gaussian process was adopted. The vicinity
sensor data of the local sensor are processed to make traffic flow prediction when the
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local sensor malfunctions or communication fails. First, a weighted directed graph of the
network is built up. Next, a dissimilarity matrix is derived and accounts for the selection of
training subsets. A more similar approach was proposed in [194] where non-negative matrix
factorisation (NMF) was used to cluster speed data into related local clusters. Spatio-temporal
speed estimation is then carried out by using the GP models of the most probable correlated
cluster.

The proposed approach differs from these methods in the following aspects. Firstly,
whereas [193] and [194] use a deterministic model, the proposed method is Bayesian and
uses a discriminative covariance function with recursively updated likelihood when new
data becomes available. This is particularly useful in traffic estimation, which is dynamic
and stochastic in nature. Thus the proposed approach could be applied in diverse road
network situations. Secondly, this approach combines Bayesian Model Averaging, which
assigns different weight scales to each of the natural clusters identified using NMF. This is
particularly beneficial because road segments are correlated, and clusters mutually affect
each other.

5.3 Model Formulation

Kriging [126] is an estimation technique which relies on exploiting the spatial correlation of
the observations z(ri), i = 1, ...,m at the locations ri ∈ R to predict or interpolate the values
at unobserved location ru. Let zm = z(r) = [z(r1),z(r2), . . . ,z(rm)]

T , with (.)T the transpose
operation, be a non-stationary set of m measurements, in the proposed approach either the
average vehicle speeds v(r) or vehicle counts N(r), observed in segments i = 1, . . . ,m at the
locations r = (r1,r2, . . . ,rm), where ri = [rx

i ,r
y
i ]

T . Note that the location of each sensor is
uniquely defined by the segment topology. Then, the random set of variables z(r) can be
approximated by a Gaussian process

z(r)∼N
(
µµµ(r),C(r)

)
, (5.1)

which is uniquely defined by the mean µµµ(r) = E[z(r)], and the corresponding covariance
C(rT,r) =

(
z(r)−µµµ(r)

)T(z(r)−µµµ(r)
)
, where E(.) is the mathematical expectation oper-

ation. The process under study could be modelled as a second order random field of the
form:

z(r) = f (·)T
µµµ +w(r)+ ε(r), (5.2)



5.3 Model Formulation 85

where f (·) is the regression function, µµµ is the vector of the regression coefficients, w(r)
is a spatial process modelling the spatial correlation, and ε(r) is an independent process
measurement noise, which is also known as the nugget-effect (see, e.g., [195]). The process
w(·) is mostly specified as a zero-mean GP with covariance function C(r,r′) = σ2ρ(r,r′;θ)

where σ2 is the initial process variance, ρ(·, ·;θ) is a correlation function and θ is a vector
of the correlation parameters.

5.3.1 Traditional Kriging

The underlying idea of Kriging is to obtain the response z(ru), interpreted as a random
variable positioned at the location ru, by a weighted linear combination of the observations
z(r) = [z(r1),z(r2), . . . ,z(rm)]

T , based on a covariance model of the spatial dependence
between the observed and interpolation locations using (5.1), i.e. observations z(ri), i =
1, . . . ,m at locations ri.

ẑ(ru) =
m

∑
i=1

wi(ru)z(ri) = wT (ru)z(r). (5.3)

The Kriging weights, w(ru) are computed from the spatial correlation or covariance
between the observed locations C(ri,r j), and interpolation location (ri,r j), based on the
separation distance between them. It does not depend on the observations and mostly
assumes a second order stationarity. Detailed discussion about Kriging is already presented
in Section 3.3.

5.3.2 Multi-Model Bayesian Kriging

Kriging is among the best linear unbiased predictors because it uses the best model that
describes the entire dataset to predict the values at the unobserved locations. The accuracy of
the prediction decreases as we move farther away from the observation location. Also, there
is the issue of under/overfitting for the locations where the model is not the best fit. Given that
a dataset could be represented by different models that best describe the underlying process
generating the data, a Kriging model that uses a weighted sum of the different models is
proposed. The entire region is divided into K GP models, each with two separate stationary
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Figure 5.1 A rectangular grid network of 4 partitions

covariance structure ci,k(·), i = 0,1;k = 1, ...,K as in Section 5.4.

Ck|r(ri,r j) =
c0,k(ri−r j)

c1/2
1,k (ri− t)c1/2

1,k (r j− t)
. (5.4)

Here, t is the prediction site, c1,k is the local covariance kernel that models the stationary
part and allows each model to maintain its distinct smoothness properties while c0,k is the
global covariance function that models the non-stationary part and cross-correlation across
the models.

Normally, the prediction at site a is computed with only the model parameters of the
partition it falls under, in this case partition 1. This will either lead to over or under fitting.
With the proposed MMBK, the contribution of each partition to the prediction at the site a is
factored in by taking their weighted sum into consideration. For instance, the farther away
point d is from point a, the less the value it will contribute to the prediction at the site a. Note
that prediction points a and d could be in the same or different partition. Thus the nearer r j

is to a or d the larger the covariance and vice versa.
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The partition could be either hard or soft partition. Hard partition is done with the
spatial location of the points using directed graphs while the soft partition is done using the
correlation of measurements. The approach adopted in this work is the soft partition.

For each unobserved location ru, each local Kriging model, k is used, to predict the
response variable as sensed from that location. Without causing misunderstanding, r will be
used rather than ru for simplification. However, bear in mind that r is still a vector. The same
as for the prediction site t, which is also a vector indicating the location of the prediction site
in 2D space. Each GP model is defined by its mean µµµ(r), covariance matrix C(r) and prior
process variance, σ2.

The likelihood of the prediction given the location is then evaluated according to (5.5).

p(zn|k,σ2,r) =
exp

[
− 1

2σ2 zT
n C−1

n (k|r)zn

]
[
σn(2π)n/2||Cn(k|r)||1/2

] , (5.5)

where || · || is the determinant, and Cn(k|r) is a covariance matrix of all the n observations
given the prediction site r. With the choice of a uniform prior and inverse chi-square for σ2,
the expected likelihood becomes

L (zn|k, t) =
1

(2π)(n−p)/2||Cn(k|t)||1/2 ||g⊤n C−1
n gn||1/2

×

(σ2
0 ν0/2)ν0/2

Γ(ν0/2)
Γ(νn/2)

(σ2
n|k,tνn/2)νn/2 , (5.6)

where Γ is the gamma function and gn is an n-dimensional vector of the interpolating point
and observation locations, with νn = ν0 +n− p and

σ
2
n|k,t =

ν0σ2
0 +(n− p)σ̂2

n (k|t)
ν0 +n− p

, (5.7)

The restricted maximum likelihood estimator (MLE) σ̂2
n (k|t) of the prior σ2 is given by,

σ̂
2
n (k|t) =

(zn−gnβ̂n(k|t))⊤C−1
n (k|t)(zn−gnβ̂n(k|t))

n− p
, (5.8)

and the MLE of the mean is given by,

β̂n(k|t) = (g⊤n C−1
n (k|t)gn)

−1g⊤n C−1
n (k|t)zn. (5.9)
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After collecting a set of measurements Zt
n = {zt

1:n}, up to time tn, the probability density
function (PDF) of the traffic state p(xt

n|Zt
n) at time tn, is computed using Bayes’ rule as:

p(xt
n|Zt

n) =
p(zt

n|xt
n)p(xt

n|Zt
n−1)

p(zt
n|Zt

n−1)
, (5.10)

where the likelihood, p(zt
n|xt

n) is given by (5.5), and p(zt
n|Zt

n−1) is a normalizing constant.
The value of traffic state at unobserved location r after n observation is then given by the
weighted sum of GP models as,

x̂n(ru) =
K

∑
k=1

ω
k
n(r)b

T
n (ru|k, t)zn, (5.11)

where ωk
n(r) is the conditional weight of each GP model given the location of the response

variable computed by (5.12),

ω
k
n(r) =

ωk
0 p(zn|k,σ2,r)

∑
K
k=1 ωk

0 p(zn|k,σ2,r)
, (5.12)

and bn(r|k,r) is equivalent to the normal Kriging weight and is given by,

bn(ru|k, t) = C−1
n (k|r,)cn(ru,k|t). (5.13)

Here Cn is the covariance matrix of interpolating points. and cn is the covariance vector
of the interpolating points and prediction point of all the mixture models. These could be
computed using any kernel from the family of kernels in equations (5.14) - Matérn, (5.15) -
spherical, (5.16) - Gaussian, or (5.17) - exponential. A series of experiments is performed
(see Section 5.4.2) to determine the most accurate kernel.

Cn,ℓ(r) = (1+

√
3

θ
r)exp(−

√
3

θ
r), (5.14)

Cn,ℓ(r) = 1− 3r
2θ

+0.5(
r
θ
)3, (5.15)

Cn,ℓ(r) = exp(−r2

θ
), (5.16)

Cn,ℓ(r) = exp(− 1
θ

r). (5.17)

In equations (5.14) to (5.17), r = ||ri− r j||2 is the ℓ2 norm and θ is the learning/scale
parameter. The procedure is summarized in Algorithm 6.
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Algorithm 6 Multi-Model Bayesian Kriging Algorithm with Nonstationary Covariance
Functions
Input: Road network map, Sensor Locations, Flow and Speed Measurements
Output: Predicted Traffic State x(ru)

1. Clustering and Model Length Selection
<Cluster the road network using NMF to determine model number K >
2. Model Parameter Estimation
<Estimate the Non-stationary Covariance Parameters: characteristic
length scale, model means and inverse chi-2 prior>
for <Each Prediction Site> do

for k← 1 to K do
Compute Cn(k|t), cn(k|t) using (5.14) to (5.17)
Compute β̂ββ n(k|t) using equation (5.9)
Compute ẑn(k|t)

1. Bayesian Inference
Compute the Expected Likelihood L (zn|k, t) using equation (5.6)
Update the Posterior using equation (5.10)

end for
Compute the traffic state xn(ru) using equation (5.11)

end for

5.3.3 Estimation of Optimal Mixture Length

The parameters to be estimated include the mean, covariance matrices and the optimal number
of mixture models. As the choice of the prior weight is critical for weighted model averaging,
they were chosen according to the methods recommended by [196]. The following properties
were provided as a guide in choosing the weights, namely:

• Dilution property - highly correlated models should be given lower weights while less
correlated models should be given higher weights.

• Strong dilution property - When a new model is to be added, and they have a similar
weight to the already existing model(s), the weight of the existing identical model(s)
should be divided among the newly added model while the weights of other models
remain the same.
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• Monotonicity property - The weights of existing models may change but should not
increase when new models are added.

5.3.4 Non-Negative Matrix Factorisation

To determine the optimal mixture length K and hence the number of mixture models to
use, NMF was used to reduce the dimension of the data. NMF is Linear dimensionality
reduction (LDR) often applied in situations where the underlying factors could be expressed
as non-negative. In LDR, the goal is to reduce a high dimensional matrix V ∈ Rm×n, into
two lower-dimensional matrices W ∈ Rm×K and H ∈ RK ×n as,

V ≈WH (5.18)

Each row in V , say, vi is computed as a weighted sum of some basis elements where each
row in W is the weight and each row in H is the basis according to,

vi =
n

∑
j=1

wi jh j. (5.19)

When there is no constraint on the values of W and H such that they could be either positive
or negative, LDR is equivalent to PCA and truncated SVD. When columns of W are assumed
independent, it becomes equivalent to Independent component analysis (ICA) [197]. When
either W or H or both are assumed sparse, the approximation becomes equivalent to spare
PCA [198]. When W or H are constrained to be positive (non-negative), it becomes equivalent
to NMF. There are different ways of estimating the reconstruction error. The most common
method is the use of the Frobenius norm because it is easy to efficiently compute an optimal
approximation using truncated SVD, and it also assumes that the reconstruction error is
Gaussian.

min|X−WH|2F . (5.20)

The choice of NMF is predicated on the fact that road traffic is flow can be expressed
with non-negative functions. For a non-negative matrix V ∈ Rm×n, the aim of NMF is to
factorise the matrix into two non-negative matrices W ∈ Rm×K and H ∈ RK ×n such that
the reconstruction error ||V −WH||2 is minimised. The parameter K , is chosen such that
it is less than the minimum of m and n, K < min(m,n). It could be used to represent the
number of correlated clusters in the dataset. NMF is computed by formulating an objective
function which is then iteratively optimised. Different optimisations methods are employed
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such as alternating least squares (ALS) [199], Alternating nonnegative least squares (ANLS)
[200–202], multiplicative update [203], hierarchical alternating least squares (HALS) [204],
and initialisation [205].

One major challenge in NMF is the choice of optimal value for K . In this work,
the method of the Cophenetic Correlation Coefficient (CCC) is adopted as used in [206].
The choice of this approach for the optimal cluster length is predicated on the fact that
the cophenetic correlation coefficient computes the similarities between observations in a
hierarchical clustering tree. NMF is computed several times, say, 100 or 200 with different
values of K each iteration. For each run, the CCC is computed and the value with the
maximum number of occurrences chosen as the optimal rank.

5.4 Performance Evaluation

The algorithm is tested with a real dataset from Santander, Spain, which was obtained from
the EU SETA Project [207].

Figure 5.2 Santander road network with sensor locations
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Figure 5.3 Santander road network with sensor and interpolated locations

The dataset consists of physical sensor measurements at 296 locations in the city (Fig.
5.2). Sensors were installed at these 296 locations as shown in the figure and measurements
at an additional 3810 (total 4106) locations (Fig. 5.3), were simulated using Advanced
Interactive Microscopic Simulator for Urban Networks (AIMSUN) [208]. These AIMSUN
measurements were used as ground truth for performance evaluation of the algorithm. The
physical sensor measurements were used as the training set, and those at the other locations
were interpolated using the proposed method. The root mean squared error (RMSE) (2.9) of
the traffic flow was computed and benchmarked with the traditional Kriging approach. The
normalised (relative) root mean squared error (NRMSE) (2.10) was also computed to access
the accuracy of the proposed method relative to the actual measurement.

5.4.1 Simulation Design

Figure 5.3 shows the city map partitioned into a total of 4106 segments. Magnetic loop
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Figure 5.4 Plot showing how to compute optimal mixture length

detectors were installed in 296 of these segments as shown in Figure 5.2 and forms the
measurement z. The objective of this study is to predict traffic flow at the other locations
using the available observations. Measurements at those other locations are simulated using
AIMSUN to serve as a Ground Truth for performance evaluation.

To determine the correlations between the road segments, NMF was used to decompose
the network into different related clusters. The method discussed in Section 5.3.3 was
used. NMF was computed 100 times with different values of k ranging from 2 to 10 each
iteration. For each run, the CCC was computed, and the value with the maximum number of
occurrences was chosen as the optimal rank and hence the mixture model length K .

The result for the 100 runs of NMF is shown in Fig. 5.4. This shows the optimal
mixture length K to be 4 (Fig. 5.2). The non-stationary covariance parameter of (5.4) was
determined using minimax distance criterion [209].
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5.4.2 Results and Discussion

Investigation with Different Kernels

The effect of different kernels on the prediction error is investigated for a fixed value of K .

Figure 5.5 RMSE and NRMSE of flow across the fourth cluster at a given time.

Figure 5.5 shows the root mean squared error for different kernels for a section of the
road segment where sensors are installed. The mean of the flow for the different kernels
is 62 veh/h, 64 veh/h, 130 veh/h and 106 veh/h respectively for the exponential, Gaussian,
spherical and Matérn kernels. It indicates that the best kernel for the given dataset is the
Matérn kernel. It is observed from Figure 5.5 that there are some locations where the other
kernels perform better than the exponential kernel. However, the overall performance of
the exponential kernel is better than the others. Hence, the exponential kernel is used in the
performance comparison with the traditional Kriging.
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Figure 5.6 The RMSE of flow across the sensor locations at a given time.

Comparison with Traditional Kriging

Figures 5.6 shows the RMSE of the flow for sections of the road segment where sensors are
installed. The minimum, maximum and mean of the RMSE is shown in Table 5.1. Whereas
the mean RMSE for the Bayesian Kriging is 72 veh/h that of the traditional Kriging is 230
veh/h representing 65% improvement. The minimum RMSE for the Bayesian Kriging is 23
veh/h while that of traditional Kriging is 14 veh/h. This represents a decrease in the minimum
accuracy. This is expected as the MMBK takes the average of all the different Kriging
models. The maximum RMSE for the MMBK is and 416 veh/h, while that of the traditional
Kriging is 487 veh/h, representing 14.3% improvement. Overall, there is an improvement in
the average RMSE, thereby ensuring that the predicted traffic state is close to the actual state
for the most part of the prediction horizon.

Table 5.1 Minimum, maximum, mean and percentage improvement

min max mean
RMSE MMBK (veh/h) 23 416 72
RMSE TradKrig (veh/h) 14 487 230
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Figure 5.7 NRMSE of flow across the sensor locations at a given time.

Figure 5.7 shows the normalised RMSE (NRMSE) of the traffic flow for a section of the
road network where measurements are available. It would be observed that the accuracy of
the prediction is more stable for the MMBK approach compared to the traditional Kriging.
However, there are some sections of the road where the performance of the traditional Kriging
is better than the proposed approach. This is expected as mentioned earlier since the MMBK
is a weighted sum of the different Kriging models which attempts to reduce the overall
variance of the estimated traffic state from the actual traffic state. The normalised RMSE
also shows that the percentage of RMSE is well below 5% for the majority of the cases with
a few outliers. It can see that by aggregating Bayesian local Kriging results, the proposed
approach has achieved improvement in terms of prediction accuracy.

5.5 Summary

In this work, a multi-model Bayesian Kriging approach with a discriminative covariance
function conditioned on the observation at each location is proposed for the computation of
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traffic state. Information from the surroundings of the current segment is weighted to find
each traffic state. The method possesses the potentiality to account for congested regions and
interactions in the upstream and downstream of the congestion.

In the commonly used Kriging approaches, the covariance function depends only on the
separation distance irrespective of the traffic at the considered locations. A key limitation of
such an approach is its inability to capture well the traffic dynamics and transitions between
different states. This paper proposes a multi-model Bayesian Kriging approach for the
prediction of urban traffic. The approach can capture the dynamics and fluctuations in traffic
flow between different states by modelling the changes via a covariance matrix.

The main novelty consists in representing both stationary and non-stationary changes in
traffic flows by a discriminative covariance function conditioned on the observation at each
location. A local covariance function captures the model behaviour at a given prediction site
while the global covariance function models the interaction among the different models. The
use of a weighted sum of the different Kriging models ensures that the overall estimation
variance is minimised.

In this work, the regressor is assumed to be the same for all the models. The work also
considered the same correlation lengths for all the K concurrent models. A possible further
area of research would be to investigate the effect of using different trends and covariance
structures. This could potentially accommodate more uncertainty in the process trend.

Uniform prior to the weights is used in the present work. In the present work, the optimal
cluster size is selected using NMF. The predictions in and around the cluster boundaries were
computed by using a weighted sum of each cluster’s prediction. The use of other methods
would be explored in future work to improve the prediction results for clusters with strong
local optima.

In future work, an informative prior that could consider some road attributes like the
number of lanes, intersections, parks and seasonal variations of traffic will be explored. Soft
partitioning is used in the present work. In future work, hard partitioning using a directed
graph will be investigated together with soft partitioning using historical data.





Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis proposed different approaches and algorithms for road traffic state estimation
and prediction. It builds on existing approaches by proposing the use of a discriminative
covariance model conditioned on the observation at each location. The proposed approach
can account for congested regions and interactions in the upstream and downstream of the
congestion. A summary of the key contributions of each chapter of the thesis is presented
below.

In Chapter 2, the theoretical background of intelligent transportation systems, traffic
estimation approaches and review of related works was presented. The traffic flow models
discussed are microscopic flow models, macroscopic traffic flow models, and mesoscopic flow
models. Different traffic state estimation approaches such as neural networks, deep learning,
Kalman filters, principal component analysis, and support vector machine/regression were
discussed. The chapter concluded with a review of related works as it relates to this study
with special emphasis on Kriging and PF state-of-the-art.

Chapter 3 presented a novel approach to tackle the problem of missing and sparse data in
traffic estimation. This approach entails interpolating the missing values using Kriging with
a level of confidence assigned to the Kriged values by computing their interpolation error
variance. This level of confidence is then used to compute the weight to be assigned during
the computation of innovation terms used in PF. An expression of the likelihood function
is derived for the case when the missing value is calculated based on Kriging interpolation.
With the Kriging interpolation, the missing values of the measurements are predicted, which
are subsequently used in the computation of likelihood terms in the particle filter algorithm.
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This was tested using simulated and real data by assigning fixed test-values to the weighting
factor. From the results presented benefit of lowering the weighting of interpolated values
as compared to actual measurements has offered an improvement. The results show 23%
to 36.34% improvement in RMSE values for the synthetic data used. A multi-step ahead
traffic estimation approach that captures the dynamic and stochastic nature of traffic using
discriminative covariance functions conditioned on the data at each location is developed.

Chapter 4 presented a traffic estimation for a large road network with different missing
data ratios. The computational overhead of the large network was addressed by using a
method called reduced measurement space proposed in [181] to select the most influential
and information-rich segments in the road network. These are subsequently used in the
particle filter measurement update step. Missing data in the selected segments are imputed
using Kriging. A 1000-segment road network was simulated using SUMO. Different missing
data ratios ranging from 10% to 70% were tested for different sizes of road network ranging
from 100 to 1000 segments.

The results indicate that considering a larger number of segments would reduce the
overall estimation error even when the missing data ration is high. From the foregoing results
and discussion, it is recommended that the best estimation accuracy would be obtained when
the entire road network is considered at once. The effects of computational overhead could
further be reduced by using a distributed approach with a central control unit.

In Chapter 5, a multi-model Bayesian Kriging approach with discriminative covariance
function conditioned on the observation at each location is proposed for the computation of
traffic state. This entails dividing the entire road network into different partitions with similar
distribution using a carefully chosen clustering method. Predictions at required locations in
space and time are then performed using each of the models as sensed from that location.
Generally, a given dataset could be represented by different models. Traditional Kriging
makes use of the “best” model that explains the whole dataset. This often leads to over-fitting
and underfitting with different scenarios. Using a weighted average of all the models has
been shown to outperform a single model. A weighted sum of the models is then computed to
get the estimated value at the location of interest. Normally, the covariance function is only
dependent on the separation distance irrespective of the traffic situation at the locations. This
makes it impossible for the model to capture traffic dynamics and transitions from free-flow
to congested state, congested state to free-flow, etc. Our proposed approach can capture these
dynamics and model it into the covariance matrix. The prior used are uniformly weighted
with an inverse chi-square distribution. The proposed method is able to account for congested
regions and interactions in the upstream and downstream of the congestion.
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6.2 Future Work

In future work, the algorithm will be validated further by empirically computing the weighting
factor β of the Kriging estimate of the missing measurements with real data from a larger
road network. In addition, the use of different methods in calculating the Kriging variance
would be investigated.

Uniform prior weights are used in the present work. In future work, an informative prior
that could consider some road attributes like the number of lanes, intersections, parks and
seasonal variations of traffic would be explored. Some additional road features like parks,
shopping centres would be investigated in future work. Soft partitioning is used in the present
work. In future work, hard partitioning using a directed graph will be investigated together
with soft partitioning using historical data.

The clustering of the road network is achieved using non-negative matrix factorisation.
It was noted that the determination of the optimal cluster size using NMF poses serious
challenges. Although the cophenetic correlation coefficient is used to address this challenge,
it would be observed that this approach is not entirely accurate consistently. For instance, in
the 100 simulations performed to choose the optimal cluster size, only about 40 per cent of
the results gave the optimal cluster length as 4, the other 60 per cent were distributed across
cluster size of 2, 3 5 6 7 8 and 9. With this, one can never conclude with all certainty that
using a different cluster size would not produce a better result. It would be worth trying other
clustering methods in future work or building a model that would use adaptive cluster size.

The experiments for the large urban road network were performed using simulated data
which spans one thousand segments. The simulation also involved only two types of vehicles
with a fixed driver behaviour modelling which is not possible in a real-life scenario. Future
work would consider the use of real data. Also, the effects of other road features and
whether the information could be incorporated into the system for contextual and improved
performance.

This work assumed the same regressor function for all the models. It also considered
the same correlation lengths for all the K concurrent models. In order to allow for more
uncertainty in the process trend, future research could be directed towards investigating the
effect of using different trends and covariance structures.
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6.3 Personal Reflections 2016 to 2020

The PhD journey starts with the selection of a research topic. This is often preceded by a
brief or extensive literature survey in one’s area of interest to identify gaps in the existing
body of knowledge. Thus I began this stage with an open mind. My supervisor was very
helpful in pointing me to different areas, and I eventually settled for Sensor Data Fusion
for Improving traffic Mobility in Smart Cities. Before I started, I had expected an easy sail.
However, the numerous failed attempts, codes not working as expected and being told that
some of my “results are incorrect and that I have not made much progress over the past one
year...” made me feel depressed and began to question my ability to carry through.

The take away from this whole experience is persistence, focus and determination.
There are times when the experimental results are not giving expected results, making me
spend days, weeks and some times months without any hope in sight. Having a supportive
supervisor helped me to overcome the temptation of quitting at those periods. Determination
kept me going whenever I submit a report with the hope that I will be commended for doing
something "great" only for the supervisory team to condemn the whole report. There was
always that feeling of "I am not good at this and can never be of any good". The assurance of
my wife telling me that she believes in me and reminding me how I have overcome challenges
in the past kept me going and focussed on completing the program.
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