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Abstract

Ozone pollution is negatively affecting human nutrition and health due to its adverse

effects on crops. The effect of ozone on crop performance can be significant and has

causal links to climate. The climatic conditions interact with ozone and modify the

impact of the pollutant on crop productivity. Atmospheric composition models simulate

surface ozone concentrations and can be used by crop models to assess the crop ozone

damage. However, crop models exhibit limited skill in simulations of crop growth and

yield under stress conditions, thus improvement in model performance is previously

required to enhance the model skill.

In this thesis, a new dynamic crop modelling technique is introduced, SEMAC (Si-

multaneous Equation Modelling for Annual Crops), which uses simultaneous solution

of the model equations to improve the model structure, ensure internal model consis-

tency and reduce the parameterization requirements. SEMAC was implemented into

an existing crop model, GLAM (General Large Area Model for annual crops), resulting

in a new model version, GLAM-Parti. GLAM and GLAM-Parti were compared against

observed data with wheat exposed to different levels of water stress and GLAM-Parti

exhibited higher skill in all drought experiments. The RMSE of GLAM-Parti was re-

duced by at least 44, 66 and 41% for LAI, biomass and grain yield respectively in

comparison with GLAM in the early, late and full drought treatments.

GLAM-Parti was further extended to incorporate the effect of ozone pollution on

wheat performance. The derived model, GLAM-ROC (GLAM-Relative Ozone Concen-

trations) was successfully evaluated against experiments with wheat exposed to elevated

ozone concentrations in variable duration of exposure to the pollutant. GLAM-ROC

was then applied to determine the effect of ozone pollution on historical wheat produc-

tivity in India. Large damage to crop yield was found, ranging from 9.8% in Punjab to

18.9% in Bihar. Reduction in the levels of ozone pollution of 25, 50 and 75% decrease

wheat yield loss by 27.2, 70 and 92% respectively. Thus, ground-level ozone pollution

poses a considerable threat to food production in India and reduction in the levels of

the pollutant can act as an effective mechanism for increasing wheat productivity.

In conclusion, SEMAC demonstrated high skill in simulating ozone and drought

and shows promise for the addition of more stresses in the future, such as heat and

nitrogen.
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Chapter 1

Introduction

1.1 Background

Food is an essential element of all heterotrophs on Earth, since it provides the energy

and nutrients needed for survival and growth. Humans are not an exception and our

existence is intimately acquainted to the consumption of food. Thus, providing ad-

equate food supply has always been a major concern of human societies across the

world. The cultivation of land started around 12,000 years ago (Larson et al., 2014)

and continually evolves in the present day.

On the last two centuries, the rapid expansion of biological and mechanical tech-

nology have completely transformed the agricultural processes (Binswanger , 1986).

Farming has become more efficient and productive over time, primarily in industrial-

ized and some developing countries, where the yields of staple crops have dramatically

increased (Reilly and Fuglie, 1998; Jain, 2012). Agriculture is also significantly less

labour-intensive and today less than 1% of the UK population is occupied in the agri-

cultural sector (Devlin and Foundation, 2016).

Despite the improvement in the quality of life, technological progress has come with

considerable environmental trade-offs. Serious environmental challenges are climate

change and air pollution, stemming mainly from anthropogenic activities which emit

greenhouse gasses (GHGs) and air pollutants into the atmosphere (Solomon et al.,

2007). The main sources of GHG emissions are the combustion of fossil fuels for energy

production, the industrial activities, transportation, deforestation and agriculture (Fig.

1.1).

As a result of GHG emissions, the global surface temperature has increased by

around 1 °C in comparison with the pre-industrial level (Stocker et al., 2013). This

rise in temperature is projected to continue on the next decades with a rate depending

upon the change of anthropogenic emissions of GHGs, air pollutants as well as land use

changes. By the end of the 21st century, the global mean surface temperature is likely

to have raised by up to 4.8 °C in comparison with the current level (i.e. under RCP8.5

1
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Figure 1.1: Global anthropogenic GHG emissions listed by economic sectors (Extracted from
IPCC (2014)).

scenario and using 1980 - 2005 period as baseline) (Pachauri et al., 2014). In addition,

the severity and frequency of heat waves are projected to increase (Meehl and Tebaldi ,

2004; Coumou and Robinson, 2013) and changes in precipitation patterns may lead to

more frequent drought and flood events (Sillmann et al., 2013).

Crop simulation models can be used to estimate the risks on food production from

climate change and air pollution in the present and future years. These models are

agricultural tools describing the plant performance and yield in any given environment

at local, regional or even global scale (Chenu et al., 2017). Their role is significant

for food security applications, especially in regions affected by both climate change

and air pollution. One such country is India where the increase in temperature as

well as the rise in concentrations of air pollutants have deteriorated the environmental

conditions for crop growth and development (Burney and Ramanathan, 2014). At the

same time, the increasing population in the country brings higher demand for food

(Ritchie et al., 2018). Thus, ensuring adequate food supply is a major concern for the

Indian agricultural sector in the present and future years (Agoramoorthy , 2008).

1.2 Crop productivity under climate change

Increasing average temperatures can have significant impact on crop productivity and

yield. Crops growing below their optimal temperature can benefit from increased tem-
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peratures (e.g., Tian et al., 2012), whilst crops exceeding their optimal conditions will

be negatively affected (Lobell et al., 2011). Overall, for maize, wheat and rice, aver-

age yield losses of 4.9% per °C are projected under climate change, with wheat and

maize being mainly affected in tropical and rice in temperate regions (Challinor et al.,

2014). In addition, extreme temperatures can cause significant yield declines. Heat

stress around flowering can reduce plant fertility and reproduction with subsequent

decreases in harvest index and grain yield (Wollenweber et al., 2003; Challinor et al.,

2005; Fábián et al., 2019). For example, in the Southwestern US, the large number of

extreme temperature days (> 35 °C) projected by mid-century is estimated to reduce

maize and cotton yields by 27 and 37% respectively (Elias et al., 2018).

Drought is another significant environmental stress lowering crop productivity. Un-

der limiting water conditions, plants close their stomata (Fig. 1.2) to avoid leaf water

loss through transpiration, thus decreasing their CO2 uptake and photosynthesis level

(Chaves, 1991). Depending on the severity of the water stress event, metabolic impair-

ment may also lower photosynthetic CO2 assimilation (i.e. non-stomatal limitation)

(Flexas and Medrano, 2002). As a result, crop growth and productivity decreases with

negative effect on the partitioning of biomass to grain yield (Boutraa and Sanders,

2001).

During the past four decades, drought events are estimated to have caused 1820

Mt losses globally in the production of maize, wheat and rice (Lesk et al., 2016). In

addition, water stress interacts with high temperature and exacerbates the effects of

heat stress on crop yield. This is especially true in rainfed agricultural systems when

reduction in rainfall occurs during sensitive crop growth stages (Roudier et al., 2011).

1.3 Ozone

Air pollutants interact with humans, animals and plants and when found in sufficient

concentrations, they can cause significant damage and decrease the lifetime of living

organisms (Loomis et al., 2013). Air pollution is a mixture of solid particles, liquid

droplets and gases derived either from natural or anthropogenic sources. Solid particles

and liquid droplets (aerosol) can be divided into two categories, those with a diameter

greater or smaller than 10 µm (Hocking , 1993). The former group consists of heavier

particles which tend to deposit onto surfaces quickly due to the gravitational force,

whilst the particles in the latter group stay in the air for longer (such as fine particulate

matter (PM2.5)). The third category of air pollutants are gases found either in gaseous

or vapour state (Hocking , 1993).

Human activities dominate the emission of air pollutants into the atmosphere with

the major sources being the combustion of fuels for energy production, the industrial

activities, transportation, agriculture and biomass burning (Unger et al., 2010). Major

air pollutants are particulate matter (PM), NOx, Ozone (O3), sulphur oxides (SOx),



4 Chapter 1: Introduction

black carbon (BC) and carbon monoxide (CO).

O3 is the most important air pollutant for damage to crop yield at global scale

(Mauzerall and Wang , 2001). Staple crops such as wheat, maize, soybean and rice are

all sensitive to ozone stress (Mills et al., 2007). In the future, O3 pollution is estimated

to either dominate or exacerbate the effects of climate change on the above-mentioned

crops, depending on the region and the scenario considered (i.e. the highest ozone

damage to crop yield is projected under the RCP8.5 scenario) (Tai et al., 2014).

1.3.1 Ozone in the atmosphere

O3 is a gas made up by three atoms of oxygen and is present both in the troposphere

and the stratosphere (i.e. up to 50 kilometres above Earth’s surface). Stratospheric O3

consists of about 90% of the total atmospheric O3, whilst the rest 10% is present in

the troposphere (Lelieveld and Dentener , 2000). Stratospheric O3 is beneficial to life

as it protects our planet from the biologically harmful ultraviolet radiation (Krupa and

Manning , 1988). On the contrary, tropospheric O3 is harmful to living organisms and

has been recognised as a significant air quality issue due to its adverse effects on both

humans (Conibear et al., 2018) and the vegetation (Yunus and Iqbal , 1996).

O3 in the troposphere is not directly emitted into the air, but produced through pho-

tochemical oxidation of precursor gasses such as carbon monoxide (CO), methane (CH4)

and volatile organic compounds (VOC) in the presence of NOx (Arnold et al., 2018).

O3 can also be transferred into the troposphere through the stratosphere-troposphere

exchange, however this source is small relative to its chemical production in-situ in the

troposphere (Monks et al., 2015).

Surface O3 concentrations exhibit an increasing trend in major air pollution - emit-

ting countries such as China and India (Oksanen et al., 2013; Silver et al., 2018; Fleming

et al., 2018) and are projected to remain enhanced in many regions of the world in the

future (Sicard et al., 2017). In addition, O3 and its precursors can travel long distances

and lead to enhanced background concentrations in various parts of the world. For

instance, increasing air pollution emissions in China during the years 2005 - 2010 have

counterbalanced more than 40% of the decrease in O3 pollution in the western US

(Verstraeten et al., 2015). Thus, the high O3 phytotoxicity (Krupa et al., 2001) as well

as the enhanced concentrations of the pollutant pose a major threat to food production

at global scale.

1.3.2 Ozone effects on crops

O3 enters the plants through the stomata, which are pores on the plant epidermis

used for gas exchange (Fig. 1.2). Since most of the stomata are present in the leaves

(Kirkham, 2014), this is the primary route of O3 into the plants.

Inside the leaves, O3 can react with volatile compounds (e.g. isoprene) in the inter-
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cellular air space, or move further to react with water in the apoplast and form reactive

oxygen species (ROS) (Fiscus et al., 2005). Enhanced ROS levels cause oxidative plant

stress and lead to cell destruction (Mittler , 2002). Plants use various enzymic and non-

enzymic antioxidants as defensive mechanisms to scavenge ROS (Dusart et al., 2019).

ROS that remain unscavenged lead to cell death through oxidative processes such as

the peroxidation of lipids, oxidation of proteins, inhibition of enzymes, damage to DNA

and RNA (Mittler , 2002; Sharma et al., 2012).

Acute exposure to high O3 concentration (above 150 ppbv) can lead to visible symp-

toms, such as leaf chlorosis or necrosis (Fiscus et al., 2005; Fumagalli et al., 2001). Nev-

ertheless, plants may exhibit considerable O3 damage without visible effects. Chronic

exposure to moderate O3 concentration accelerates the decline of Rubisco activity and

quantity and decreases photosynthesis (Pell et al., 1992). Stomatal conductance is also

reduced with subsequent effect on leaf transpiration (Temple, 1986; Lombardozzi et al.,

2013). In addition, the rate of leaf senescence accelerates (Pell et al., 1997) and the

root:shoot carbon allocation ratio declines (Andersen, 2003). O3 can also inhibit the

activity of phloem loading which lowers the ability of the plant to transport sugars

from the leaves to the grains (Grantz , 2003).

Overall, exposure to O3 decreases crop growth as well as the allocation of carbon to

the grain, leading to lower productivity and loss in grain yield. The magnitude of the

effects of O3 on plants depends upon the concentration level of the pollutant, the time

and duration of exposure (Heath et al., 2009), the plant sensitivity (Van Goethem et al.,

2013) and the stage of plant development (Tiedemann and Pfähler , 1994; Mulholland

et al., 1998).

Water stress can also interact with O3 and cause stomatal closure which decreases

the uptake of the pollutant by the leaves (Khan and Soja, 2003). Moreover, future

increases in atmospheric CO2 can protect against O3 pollution, since elevated CO2

causes stomatal closure and similarly decreases the uptake of O3 by the leaves (Fiscus

et al., 1997; Hudak et al., 1999). Thus, the interaction between O3, CO2 and drought

on crop growth and productivity is significant and should be taken into account for

estimations of future food production under climate change and air pollution.

1.3.3 Experimental studies of ozone and wheat

Various experimental studies have demonstrated the deleterious effect of O3 on wheat

growth, development and productivity. McKee and Long (2001) exposed spring wheat

plants to peak O3 concentration of 60 ppb from plant emergence to maturity and

reported decreased Rubisco content and activity, leading to lower photosynthesis and

biomass accumulation. Nevertheless, the most significant factor for damage to grain

yield was the alteration in crop development, where chronic exposure to O3 accelerated

the rate of plant senescence (i.e. the time from flag leaf emergence to panicle emergence

was reduced by 8%) and reduced the allocation of carbon to the grains (i.e. the grain



6 Chapter 1: Introduction

  

Cutin
Upper 

       epidermis

Palisade
parenchyma

Spongy 
mesophyll

Air spaces

Lower 
epidermis

Guard cells

Stomata

CO
2

Ozone

H
2
0

 O
2

Figure 1.2: Cross-section of a leaf of a dicotyledonous plant with CO2 and O3 uptake and O2

and water loss through stomata (Adopted from Krupa and Manning (1988)).

mass was decreased by 17%). Osborne et al. (2019) reached to the same finding after

analyzing experiments with two European wheat cultivars exposed to chronic O3 stress.

The study showed that the major driver of the O3-induced reduction to grain yield

was the acceleration of leaf senescence as well as an earlier onset of senescence. The

photosynthetic leaf response to O3 was less significant and dependent on the leaf age.

The meta-analysis of Feng et al. (2008) considered various experiments with wheat

plants fumigated with different O3 levels for at least 10 days. The study found that the

aboveground biomass decreases by an average of 18% at 72 ppb of O3 in comparison

with carbon-filtered treatments. Grain yield is more affected than biomass and is

reduced by 29%, whilst harvest index decreases by 9% on average at the same O3 level.

This is consistent with the above findings regarding that the O3 damage to wheat yield

is greater than the effect of the pollutant on crop biomass due to the larger effect of

O3 on plant developmental than growth processes.

Wheat exposure to chronic O3 stress alters the nutritional properties of the grains,

however this area is less explored. The meta-analysis of Broberg et al. (2015) considered

19 wheat cultivars exposed to elevated O3 for at least 14 days. The study showed that

enhanced O3 levels increase the concentration of grain protein and important minerals,

such as P, K, Mg, Ca, Zn and Mn, but decrease their yield. This means that under
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O3 exposure, wheat produces grains with higher concentration of the above elements,

but reduced total amount per cultivated area. In addition, the baking properties of

the grains were positively affected by O3 (e.g. Zeleny value, Hagberg falling number)

and the concentration as well as the yield of the potentially toxic element Cd was

reduced. These findings show that the effect of O3 on the quality of the grains in wheat

is significant with both positive and negative influence.

1.4 Wheat in India

Before 1960, India was suffering from low wheat yields and was reliant on food imports

to meet the population demand. In the mid-1960s, the development of high-yielding

crop varieties introduced a new era in agriculture, the Green Revolution. The newly

developed varieties were semi-dwarf plants with thicker stems, which were highly more

efficient in partitioning biomass to the grains, in favour of their straw and leaf parts

(Evenson and Gollin, 2003). In India, the adoption of these varieties in agriculture to-

gether with the improvement in management practices, the increased use of fertilizers

and pesticides as well as the agricultural mechanization significantly boosted the pro-

duction of cereals (Larson et al., 2004). As a result, today, the annual wheat production

is almost nine times higher than in 1961 and the grain yield has more than tripled (Fig.

1.3). Thus, India has become the second largest producer of wheat globally (Singh

et al., 2007) and is self-sufficient despite the increase in human population.

1.4.1 Effect of ozone pollution on wheat in India

India is a country with some of the highest air pollution levels in the world. Several

of its cities hold global records of air pollution and together with China, they are

attributable to more than 50% of the deaths globally due to ambient air pollution (for

year 2015) (Landrigan et al., 2018). One of the regions with severe air quality issues, the

Indo-Gangetic plain is a densely populated zone, where human activities lead to high

emissions of air pollutants (Ghude et al., 2008). At the same time, this region is the

breadbasket of India, contributing with a large proportion of the total wheat production

in the country. The states of Utter Pradesh, Punjab, Haryana, and Bihar provide with

34.97, 13.09, 7.88, and 7.56% respectively of the total wheat grain production (i.e. for

years 1966 - 2011) (ICRISAT , 2015). Together with Madhya Pradesh and Rajastan,

these six states contribute with around 88% of the total wheat production in India

(Fig. 1.4).

During the months from February to June, high temperatures and increased solar

radiation favour the photochemical production of O3 (Deb Roy et al., 2009). This

period also coincides with the later stages of wheat development, which are the most

O3-sensitive for damage to grain yield. Unsurprisingly, studies have demonstrated the

deleterious effect of O3 on wheat productivity in India. Mills et al. (2018) estimated
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Figure 1.3: Harvested area (yellow bars; in million hectares) and annual production (grey
bars; in million tonnes) of wheat as well as grain yield (black line) for years 1961 - 2017 (data
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that the O3-induced damage to wheat yield in large areas of North India has exceeded

15% on average for the years 2010 - 2012. Ghude et al. (2014) estimated that present-

day O3 levels lower total wheat production by about 3.5 Mt. Given that India is one

of the largest producers of wheat globally and the second most populated country in

the world, the effect of O3 pollution on wheat yield is a crucial issue of food security

in the country.

1.5 Crop models

The agricultural cropping systems are complex and interactive environments (Bouman

et al., 1996). Crop models attempt to simulate these systems in a simplified way by us-

ing a set of mathematical equations (Marcelis et al., 1998). The models of explanatory,

dynamic nature describe plant processes in short time intervals (e.g. one day) such as

the accumulation of biomass, the growth of leaf area and the soil water and nutrient

content (de Vries, 1980). These models rely on the principle that the state of a system

can be quantified at any time using suitable mathematical equations (De Wit , 1982).

The first models of this kind were introduced around 50 years ago and their main pur-

pose was to explain the physiological mechanisms driving the crop performance both

in terms of growth and development (Bouman et al., 1996).

http://www.fao.org/faostat/
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Figure 1.4: The six highest wheat-producing states in India and their percentage contribution
to annual wheat production in the country (Data extracted from ICRISAT (2015)).

Today, various crop models have been developed according to the plant species of

interest as well as the temporal and spatial resolution. Most of them were initially

designed for operation with single crops at field scale (Ewert et al., 2015). Recently,

the advancement in the understanding of plant physiology supported the evolution of

models capable of wider application. As a result, the state-of-the-art crop models do

not only target the improvement of scientific knowledge but also the involvement in

decision-making for policy shaping (Jones et al., 2017). One category of such tools are

the combined crop-climate models which use seasonal weather information to forecast

crop productivity at regional or even global scale (Challinor et al., 2009). These large-

area models rely upon the principle that there is a significant relationship between

weather and crop yield (Challinor et al., 2003). Their advantage is the ability to project

future food production, to inform the risks of climate change and suggest opportunities

for adaptation in the agricultural sector (Challinor et al., 2013).
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1.5.1 Crop model structure

Crop models are designed upon different levels of complexity, according to the scope

and the scientific questions that they seek to address (Challinor et al., 2018). Usually,

the models designed for large-area applications tend to be simpler with less site-specific

information and reduced parameterization requirements. On the contrary, field-based

crop models require more detailed information and include a larger set of parameters.

The expectation is that complex modelling approaches can lead to improved perfor-

mance by including more processes and interactions of the real world. However, it is

often impossible to describe with mathematical equations all factors affecting the crop

performance, due to the complexity of the biological processes involved (Affholder et al.,

2012). Thus, in some cases, an increase in model complexity may lead to unwarranted

complexity and to a system that is not well understood (Challinor et al., 2018). Pas-

sioura (1996) showed that in such systems, the total error stemming from the model

structure and the parameters cannot be decreased below a certain level (Fig. 1.5). In

contrast, in well understood systems, there is an appropriate level of complexity which

minimizes the total model error.

Figure 1.5: Structural, parameter and total model error against complexity in a system where
a) the structure is well-understood, b) the structure is wrong (taken from Passioura (1996)).

Based on the above, the simple and complex crop models may both be affected by

problematic model structures which limit their performance. Simple crop models may

oversimplify the simulated processes and not provide sufficient detail in the representa-

tion of real-world conditions. On the contrary, complex crop models may introduce large

numbers of parameters and equations and increase the risk of over-parameterization,

leading to internal model inconsistencies (Tremblay and Wallach, 2004). In both cases,

a sub-optimal model structure decreases the model skill and limits the benefit of further

model development. Thus, all models should target for a robust model structure which

represents the modelled processes in sufficient detail, includes the correct number of

parameters and processes and leads to an optimal level of complexity, minimizing the
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model error (Passioura, 1996; Challinor et al., 2018).

1.5.2 GLAM crop model

The General Large Area Model for annual crops (GLAM) is a process-based crop model

which simulates the impact of climate on crop growth, development and yield (Challinor

et al., 2004). It is a relatively simple model which runs in daily time step and is

designed to operate at large spatial scales. The model requires incoming solar radiation,

minimum and maximum temperature and rainfall as input weather information. The

output consists of growth variables such as biomass and yield as well as other variables

such as the crop water consumption and the soil water content. GLAM was originally

developed for groundnut (i.e. peanut: Arachis hypogaea L.) (Challinor et al., 2004),

whilst other crops were later introduced including wheat (Sanai et al., 2010), maize

(Bergamaschi et al., 2013), sorghum (Nicklin, 2013), soybean (Osborne et al., 2013)

and potato (Jennings, 2018).

Regarding the model structure, GLAM uses a maximum daily growth rate of leaf

area index which can be decreased by water stress. The daily potential evapotranspi-

ration is calculated by the Priestley-Taylor equation and is partitioned into potential

evaporation and potential transpiration. The actual transpiration is calculated from

the potential transpiration rate by taking into account the soil water content. The

transpiration is multiplied by the transpiration efficiency to return the daily biomass

growth. The grain yield is estimated by partitioning the above-ground biomass to the

grains using the harvest index.

GLAM has been extensively used for large-scale applications. Challinor et al. (2007)

used the model to examine the importance of temperature on the productivity of the

groundnut crop in India. The study showed that increases in mean temperature have

significant effect on groundnut yield in the current climate, whilst extreme tempera-

ture days become an important driver of yield under climate change projections. The

authors demonstrated that the adaptation of suitable genotypes provides an effective

mechanism to limit the negative impact of increasing temperature on groundnut yield

in the future.

Challinor et al. (2010) used GLAM to show that climate change threatens the

production of spring wheat in Northeast China. The study found that the increases in

water and heat stress suggested by future climate projections enhance the rates of crop

failure in the region. The authors recommended that possible adaptation options for

increasing the resilience of the cropping system are the use of suitable crop varieties, the

development of crop insurance programs designed for climate variability, the necessity

of research focused on plant breeding and the importance of informing the farmers

regarding forthcoming extreme weather events.
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1.5.3 Crop model limitations

The role of crop models is significant in decision-making due to their ability to connect

the climate information to agricultural impacts at large spatial scale. Rosenzweig et al.

(2014) used seven global gridded crop models to show that maize and wheat are in risk

of significant yield losses in low-latitude areas by the end of the century according to

the RCP8.5 climate scenario. Cammarano et al. (2019) used the CERES-Barley model

of DSSAT v4.7 (Decision Support System for Agrotechnology Transfer) to estimate an

average 9% loss in barley yield in the Mediterranean region by 2050 (under the RCP4.5

climate scenario). Traore et al. (2017) applied the APSIM (Agricultural Production

Systems sIMulator) model in southern Mali to assess potential food security issues due

to climate change. The study showed that projected increases in temperature under

both the RCP4.5 and RCP8.5 climate scenario can decrease the crop productivity of

maize and millet significantly. As a consequence, all farm types in the region are

expected to experience lower food availability with small-scale farms being in high risk

of not reaching self-sufficiency by mid-century.

The above studies consist of significant steps toward disseminating the risks of cli-

mate change on agricultural production and assist in preparation of adaptation. How-

ever, the use of the above information requires a crop model with high skill to allow

confidence in the projections. Thus, studies have been implemented to evaluate the

performance of crop models under environmental stress conditions as expected by cli-

mate change. Asseng et al. (2013) tested 27 crop models in the response of wheat

to climate change and concluded that no single model could adequately simulate the

expected reality. Especially when the input information was limited, the model error

was increased. The authors also demonstrated that a crop model ensemble was needed

to increase the confidence in the output. In a following study, Asseng et al. (2015)

examined the performance of 30 crop models in the simulation of wheat under various

temperature environments. The study showed that when the average growing-season

temperature increased above 22 °C, the simulation of grain yield consistently deviated

from the observations. Detailed information on physiological aspects of the cultivars

improved the performance of some models, however this level of information is almost

never achieved in large-scale applications. Again, the multi-model ensemble performed

better than any individual crop model.

Based on the above information there is an definite need for improvement in the

performance of crop models in simulations of plant response to environmental stress

conditions. One of the ways to do this is by reforming the model structure. Tao

et al. (2018) used 7 crop models to compare the uncertainty in the output stemming

from the model structure, the model parameters and the climate projections. The

barley crop was used as case study and the model simulations consisted of two sites

with contrasting climates, Jokioinen (Finland) and Lleida (Spain). The study showed
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that the largest source of uncertainty in the crop model ensemble output was due to

the model structure. Especially when one set of calibrated parameters was used, the

contribution of the crop model structure to the total variance was at least 60% in each

site (Fig. 1.6). The authors concluded that the model structure exhibits a vital role on

the performance and output. Thus, the Chapter 2 of this thesis focuses on improving

the crop model structure as a means of increasing the model skill in the simulations.

Figure 1.6: Share of variance by crop model structure and climate projections in the simulated
barley yield changes. Left barplots are with single set of calibrated parameters and right barplots
are with 3n sets of parameters for Jokioinen and Lleida respectively. The error variance is that
which is neither due to crop model structure nor climate projections; hence, in the right two
columns (with 3n sets of parameters), the error variance includes the share of crop model
parameters (taken from Tao et al. (2018)).

1.6 Simulation of plant ozone damage in crop models

Current O3 pollution levels decrease the yields of staple crops at global scale (e.g.,

Van Dingenen et al., 2009; Avnery et al., 2011; Hollaway et al., 2012), however most

crop models have thus far overlooked the effect of this stressor in their simulations.

Thus, limited parametrization schemes exist which explicitly account for the impact of

O3 on crop growth and development.

Ewert and Porter (2000) introduced an O3 damage subroutine to the AFRCWHEAT2

crop model. The derived model (AFRCWHEAT2-O3) simulates both the short-term

effects of O3 (i.e. reduced leaf photosynthesis) as well as the chronic O3 damage (i.e.

acceleration of leaf senescence). The algorithm initially calculates the daily O3 uptake
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rate by using information on stomatal conductance and the O3 concentration at the

surface of the leaf. The O3 uptake is then used to compute the reduction of photosyn-

thesis, which starts above an empirical threshold to account for the plant detoxification

capacity. The O3 damage to photosynthesis can be further reduced due to the repair

ability of the leaf, which is estimated according to the leaf age. Regarding the long-term

effects, the O3-induced acceleration of leaf senescence decreases photosynthesis and is

simulated as function of the accumulated O3 uptake during the crop growing season.

The evaluation of the model revealed relative success and the authors emphasized the

need of more research designed on the response of leaf area dynamics to O3.

Guarin et al. (2019) introduced equations of O3 damage into the DSSAT-NWheat

model to simulate the effect of the pollutant on wheat photosynthesis and leaf senes-

cence. In their modelling study, the effect of O3 pollution on crop growth was not

simulated via a leaf uptake mechanism (i.e. through stomatal conductance). Instead,

the damage to plant growth and the acceleration of leaf senescence were set as linear

functions of the O3 concentration at the leaf level. Both equations were empirical and

had variable slope and intercept values to account for different sensitivities between

the cultivars (i.e. sensitive, intermediate, tolerant). The model was evaluated against

limited observed data and the authors indicated the need of testing the model against

a larger range of plant exposures to O3 as well as in combination with other stresses.

Plants can enhance their defence in response to an abiotic stress in a process called

acclimation (Bruce et al., 2007). A limitation of the above modelling studies is the lack

of incorporating a plant acclimation mechanism under chronic exposure to O3 pollution.

Gillespie et al. (2011) showed that soybean plants grown under chronic O3 exposure

exhibited significantly higher antioxidant capacity in comparison with the same plants

grown under elevated CO2. The authors reported that the primed antioxidant system

of the O3-treated plants was less affected by an acute O3 pollution event later in the

season than the plants grown in high CO2 environment. Similarly, Held et al. (1991)

exposed radish plants to high O3 concentration either six days after germination or

three days later and found that the plants which were exposed to the pollutant for

the longer time period exhibited higher dry mass than the plants exposed to O3 later,

implying an acclimation mechanism.

In Chapter 3 of the present thesis a new parametrization of O3 stress is introduced.

The focus of the new approach is to develop a model capable of simulating the O3

damage to crop growth and productivity at different durations of exposure to the

pollutant (i.e. from episodic to chronic exposure). In order to do this, the plant

acclimation mechanism should be incorporated to account for reduced crop sensitivity

to O3 stress over time. To my knowledge, this is the first time that the mechanism of

plant acclimation to O3 is considered in a crop model.
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1.7 Research aims and objectives

This thesis aims to provide an existing crop model, GLAM, with the ability to simulate

the interactive effects of climate and air pollution on wheat growth, development and

productivity. Initially, a new modelling framework is developed to improve upon the

previous approach in the simulation of crop performance under abiotic stress condi-

tions. The effect of O3 stress is then incorporated into the new modelling methodology

and the derived model is applied to estimate the effect of O3 pollution on wheat pro-

ductivity in India.

The aims of the study will be achieved through the objectives listed below:

1. In Chapter 2, the Simultaneous Equation Modelling for Annual Crops (SEMAC)

is introduced, a new crop modelling methodology which relies on a simultaneous

solution of the model equations. SEMAC is implemented into GLAM and a new

model version is formed called GLAM-Parti (i.e. GLAM-Partitioning). The new

model is designed to improve the simulations of crop response to environmental

variability and extreme weather conditions, without increasing the model com-

plexity or the parameterization requirements. In addition to the improvement

in skill, SEMAC also equips GLAM-Parti with the ability to integrate multiple

stresses in the model simulations. This is a significant step toward incorporating

the effect of O3 pollution on crop productivity into the model on the next chapter.

2. In Chapter 3, GLAM-Parti is extended to simulate the effect of O3 stress on wheat

performance and yield. A new parameterization of O3 damage is introduced

into the model, resulting in a model version called GLAM-ROC (i.e. GLAM-

Relative Ozone Concentrations). Unlike previous crop modelling approaches, the

simulation of O3 pollution includes a parameterization of plant acclimation to

chronic O3 stress. This is necessary for capturing the O3 damage to wheat biomass

and yield when O3 fumigation increases from episodic to chronic exposure. The

error introduced by the omission of the acclimation process into the model is also

estimated.

3. Chapter 4 examines the impact of O3 pollution on historical wheat yield in India.

GLAM-ROC is used for the simulations which cover a long time period (years

1980-2009). The model is also used to estimate the reduction in yield loss due to

25, 50 and 75% decrease in ground-level O3 pollution.

4. Chapter 5 summarises the enhancement in model performance due to the addi-

tion of the SEMAC methodology into GLAM. It discusses the overall usefulness

of GLAM-Parti and GLAM-ROC, the current model limitations and provides
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recommendations for further model development which will allow the model ap-

plication to a larger domain.
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Abstract

Crop models simulate growth and development and they are often used for climate

change applications. However, they have a variable skill in the simulation of crop re-

sponses to extreme climatic events. Here, we present a new dynamic crop modelling

method for simulating the impact of abiotic stresses. The Simultaneous Equation Mod-

elling for Annual Crops (SEMAC) uses simultaneous solution of the model equations to

ensure internal model consistency within daily time steps; something that is not always

guaranteed in the usual sequential method. The SEMAC approach is implemented in

GLAM, resulting in a new model version (GLAM-Parti). The new model shows a clear

improvement in skill under water stress conditions and it successfully simulates the

acceleration of leaf senescence in response to drought. We conclude that SEMAC is a

27
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promising crop modelling technique that might be applied to a range of models.

2.1 Introduction

The plant growth and development are influenced by a wide range of biotic and abiotic

factors. Understanding the complex interactions between plants and their surrounding

environments is important for prediction under environmental change. In this context,

crop models are developed as systems for describing the growth and development of

a crop in any given environment at local, regional or even global scale (Chenu et al.,

2017). Crop models simulate the plant growth and development by using a set of math-

ematical equations and they often include complex functions and modelling techniques

for their simulations (Marcelis et al., 1998). They are widely used as agricultural tools

to describe the plant performance and to predict the final production and yield.

Climate change brings a higher frequency of extreme weather events and more

complex interactions which can damage the crops, limit their yield (Howden et al.,

2007; Porter et al., 2014; Zhao et al., 2017), and alter their nutritional properties

(Myers et al., 2014; Jones et al., 2017). Crop modelling has a long history in simulating

these complex interactions. However significant challenges remain if the risks posed by

climate change are to be reliably quantified (Challinor et al., 2014). Extreme events,

and the abiotic stresses that result, are particularly challenging, especially considering

the wide range of environments across which crops are cultivated. The simulation of

crop performance in these extreme climatic conditions can be significantly uncertain

(Zhang and Tao, 2013; Asseng et al., 2013, 2015). Tao et al. (2018) showed that for

climate change impact assessment, the largest source of uncertainty in their crop model

ensemble was due to the model structure. Rivington and Koo (2010) suggests that one

of the ways to improve the crop model performance is by better simulating the various

processes through an improved connection between them. Thus, improving the crop

model structure is a significant step towards reducing the uncertainty in the model

output for climate change impact studies (Challinor et al., 2013).

A common practice to improve the performance of a crop model is to add new

processes and interactions (Affholder et al., 2012). It is expected that this practice

will lead to an improvement in skill, while at the same time the model will be able

to simulate more processes of the real world. Nevertheless, adding complexity in a

crop model may not always lead to an improvement in skill, especially in large scale

applications. This can partially occur from the inclusion of site-specific parameters and

processes that are difficult to generalize in larger regions (Challinor et al., 2009). This

is a common problem in crop modelling and in some cases modellers tend to develop

simplified versions of models that are already very complex (e.g., Stella et al., 2014).

According to Passioura (1996) there is an optimal level of complexity in which the

total model error is minimized. At this point, there is a balance between a robust
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model structure and the number of parameters included. In accordance with that, crop

modellers should design their models upon an appropriate level of complexity (Sinclair

and Seligman, 2000). This level is defined by the scope of the model and the scientific

questions that it seeks to address (Challinor et al., 2018).

Simultaneous equation modelling approaches are commonly used to provide a robust

way of simulating the interdependence between processes that are jointly determined

in the real world (e.g., Oldroyd , 1950; Chou and Kamel , 1988; Zeng and Cai , 2005;

Lefcheck , 2016). Agricultural environments consist of complex systems with many in-

teractions and the interdependence between various processes makes modelling difficult.

The aim of this paper is to introduce a new crop modelling method which uses simul-

taneous solution of all model equations for crop growth and development. The new

approach is called SEMAC (Simultaneous Equations Modelling for Annual Crops).

The solution of the system of equations returns the values of the state variables for

growth and development of the crop. This is done twice for each time step, initially for

optimal conditions, where the impact of any stresses is ignored, and then again after

considering of the environmental limitations. Applying the new modelling technique

results in a dynamic crop model with reduced parameterization requirements, robust

structure, and improved internal consistency.

SEMAC is implemented here in the GLAM crop model and a new model version is

formed. The new model is called GLAM-Parti as it introduces partitioning of biomass

based on allometric relationships; a necessary step for the application of SEMAC.

GLAM-Parti advantages over GLAM since it has improved model structure, it gives a

better connection between the model processes and finally, it increases the ability of

the model to capture the impact of water stress on crop growth and development.

2.2 Rationale and methodology

2.2.1 Methodology and internal consistency in SEMAC

The simultaneous solution of model equations is not a new concept in crop modelling.

For instance, simultaneous modelling approaches have been developed to couple leaf

photosynthesis to stomatal conductance (e.g., Baldocchi , 1994; Yin and Struik , 2009).

In addition, Goudriaan and Van Laar (1994) combined the rate of formation of new leaf

area and the growth of biomass to develop an equation which explains the evolution of

the total biomass during the season. Nevertheless, in order to avoid a very complicated

system, they made simplifications, such as that the relative growth rates of biomass

and leaf area are identical and constant over time.

SEMAC develops a system of simultaneous equations which accounts for all above-

ground crop growth and development processes. This differentiates SEMAC from the

prevailing crop modelling techniques. Otherwise, the modelling process follows the
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methodology described in van Ittersum et al. (2003). At the first step (i.e. the potential

production level) the crop growth is defined by the given environmental conditions and

the crop properties without considering of any limitations from stresses. At this step,

the system of equations is solved to return the potential crop production level. At the

second step (i.e. the attainable production level) the impact of stresses is taken into

account - in this case water stress - which reduces transpiration and growth, decreases

the specific leaf area (SLA), and alters the allocation of dry matter between leaves and

stems. These modifications are incorporated into the model equations, which are solved

to return the values of the state variables. This step ensures consistency between the

prognostic variables of the system and it outputs the attainable production level. At

the third step, the growth reducing factors are taken into account (i.e. weeds, pests,

diseases, pollutants). In SEMAC, the steps 1-3 are always carried out in order as

necessary (Fig. 2.1).
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Reduction in:
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1st step
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Figure 2.1: A. SEMAC methodology for crop production; B. Production levels in Wageningen
crop models (Van Ittersum and Rabbinge, 1997; van Ittersum et al., 2003)

Applying SEMAC to a crop model involves the following steps:

i) Introduction of allometric relationships to relate state variables: There are various

modelling techniques for simulating the carbon allocation among the plant organs.

Common approaches are the use of partitioning coefficients that are dependent on

the development stage or modelling the source to sink carbon dynamics (Marcelis and
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Heuvelink , 2007). In SEMAC, the concept of allometric growth is implemented, which

expands upon the principle that the growth of the different plant compartments is

jointly determined through allometric relationships. Based on these relationships, the

total biomass (W) can be expressed as function of LAI, following the modifications

shown in Section 2.3.4.2.

ii) Expression of any remaining state variables as functions of other state variables:

In crop models, the daily increase in biomass (dW/dt) is estimated either from inter-

cepted radiation, transpiration or photosynthesis. At the canopy level, the biomass

growth can be expressed as function of LAI (i.e. this is especially true for radiation or

transpiration driven models). For instance, in water-based crop models, the production

of new biomass depends on canopy transpiration. The transpiration is a function of

evapotranspiration, which is in turn dependent on the environmental conditions and

LAI. After calculating the environmental influence (i.e. based on the weather condi-

tions), the growth of biomass can be expressed as function of LAI (see Section 2.3.4.3

and Appendix A).

iii) Substitution of the relationships from i and ii into the simple mass balance

equation Wn - Wn-1 - dW/dt = 0. The Wn and dW/dt terms of the equation are

explained in steps i, ii, where they are expressed as function of LAI. Wn-1 is the biomass

value of the previous time step. The solution of the mass balance equation returns the

value of LAI which is then used to solve all other equations that participate into the

system. This is done twice, initially for optimal conditions, where the stress impact is

ignored, and then again, after incorporating the stress effects. In this study water stress

is considered, however SEMAC can be similarly applied to various stress conditions. A

schematic representation of the implementation of SEMAC in crop models is given in

Fig. 2.2.

2.2.2 Use of SEMAC to model stress conditions

The implementation of SEMAC leads to three main potential sources of error in the

simulation of crop growth and development at each time step. These are: the produc-

tion of new biomass, the allocation of biomass to the different plant compartments and

the canopy SLA. The first two aspects affect the accuracy of the model to simulate

the above-ground biomass and the masses of the different organs (e.g. leaves, stems,

grains). The third aspect (i.e. the SLA) affects both the simulation of leaf mass and

the estimation of LAI. This accounts for all climatic conditions and abiotic stresses.

More specifically, various stresses and management practices can significantly affect

the plant growth (Cramer et al., 2011) and alter the dry matter allocation patterns

(Weiner , 2004; Sieling et al., 2016; Poorter et al., 2012). In crop models, the biomass

accumulation rate may be modified and the SLA as well as the carbon partitioning be-

tween different organs may be adjusted to the environmental conditions (i.e. through

modifications in the allometric relationships). SEMAC provides a simple modelling
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Figure 2.2: Implementation of SEMAC in radiation and transpiration driven crop mod-
els. TT=Transpiration, ET=Evapotranspiration, Q=Intercepted PAR, W=total above-ground
biomass, dW/dt=daily increase in biomass, n=time step. Wn and dW/dt are expressed as
function of LAI and the solution of the mass balance equation returns the value of LAI.

framework for simulating these growth and development processes and ensures internal

model consistency with the use of the simultaneous equation modelling. This secures

that there are no missing interactions between processes that are interconnected in

the field, which is particularly important under stress conditions where the system be-

comes more complex. Crop modelling techniques based on sequential approaches may

face issues in capturing the plant / environment interactions at the same time step.

2.2.3 Modelling water stress effects in SEMAC

Most crop models use a water stress factor to simulate the impact of water shortage on

crops (e.g., Jamieson et al., 1998; Asseng et al., 2004). This factor is usually calculated

as the rate of the available water in the soil to the total water demand by the plant.

If this rate is below a pre-determined threshold then the plant is affected by the water

deficit. The water stress factor takes values from zero to one and it is usually applied

to modify LAI or accelerate leaf senescence (Raes et al., 2009; Ewert et al., 2015).

Nevertheless, the leaf development is affected by various factors under limited water

in the field. Most importantly, drought conditions may alter the leaf:stem mass ratio
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(Ratjen et al., 2016) and decrease the SLA (Fernández and Reynolds, 2000; Brisson

and Casals, 2005; Zhang et al., 2010). If these effects are omitted in a crop model,

a bias may be introduced in the simulation of leaf dynamics (Ratjen et al., 2016).

For this reason, in SEMAC, LAI is not directly effected by the water stress effects.

Instead, the water stress factor is used to apply modifications on the leaf:stem dry

matter production and the canopy SLA under drought. LAI is then altered both due

to decreased carbon allocation to the leaves and to lower SLA. Simultaneously, the

biomass production is affected by the LAI reduction. These effects are captured at

the same time step due to the robust model structure and the simultaneous solution

of the model equations. Through this method, both the LAI takes into account the

water stress effects on leaf growth and development, and all state variables (including

biomass growth) are consistent with the value of LAI, since they are updated by the

same system of equations.

2.2.4 Modelling of stress interactions

Climate change brings a higher frequency of extreme weather conditions and more

stress interactions acting on crops (Gray and Brady , 2016). When multiple stresses

affect the crop performance, the response of plants cannot be addressed only by taking

into account of each stress individually (Mittler , 2006). In crop modelling studies, the

simulation of crop growth and development in these environments can be very complex.

For instance, in drought prone regions with high air pollution levels, the use of multiple

factors to simulate the leaf expansion or accelerate leaf senescence may result to an un-

realistic model output. SEMAC attempts to increase the model predictability in these

situations by introducing an improved connection between the various model processes.

LAI is computed by the system of equations which decreases the parameterization re-

quirements, as it removes the need of using stress factors to modify the LAI growth. It

also improves the LAI simulation since it takes into account all equations in the system

for the estimation of LAI. The use of allometric relationships for the partitioning of

biomass gives the opportunity to easily shift the carbon allocation between the plant

compartments under different environmental conditions. The above advancements cre-

ate a modelling framework which can be further expanded to incorporate more stresses.

Hence, it is believed that SEMAC can be a useful tool in the attempt to address the

crop response to a changing climate.

2.3 Materials and Methods

2.3.1 GLAM model

The General Large Area Model for annual crops (GLAM) is a process based crop

model which simulates the impact of climate on crop yield (Challinor et al., 2004)
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(Fig. 2.3). It is a relatively simple model which runs in daily time step and it is

designed to operate at regional scales (Challinor et al., 2005). GLAM uses a maximum

daily growth rate of leaf area index which can be decreased by the water stress. The

daily potential evapotranspiration is calculated by the Priestley-Taylor equation and

it is partitioned into potential evaporation and potential transpiration. The actual

transpiration is calculated from the potential transpiration by taking into account the

soil water content. The transpiration is multiplied by the transpiration efficiency to

return the daily biomass growth. The grain yield is estimated by partitioning the

above-ground biomass to the grains using the harvest index. Challinor et al. (2004)

provides a detailed description of GLAM.

In GLAM, the grain growth is dependent on canopy transpiration. However, under

drought conditions, either the photosynthesis or the remobilization of pre-anthesis as-

similates to the grains play a major role on grain yield (Inoue et al., 2004). In order to

capture this effect, the radiation use efficiency (RUE) approach i.e. the second option

for simulating growth in GLAM (Osborne et al., 2013) - was selected to describe the

increase in biomass, only after anthesis when extremely low values of canopy transpi-

ration were calculated. A threshold for transpiration was set below which the RUE

approach was used. Severe drought effects have been previously reported to occur for

wheat at anthesis in 80% of water deficit (Mahrookashani et al., 2017). In accordance

to that, the model threshold was set to the 0.2 value of the soil water stress factor.

2.3.2 Internal consistency in GLAM

GLAM uses a sequential method for solving the model equations at each time step.

This can limit the model performance in the simulation of processes that interact in

the field. Fig. 2.3 is a schematic representation of the GLAM model structure. LAI is

initially estimated and the potential canopy transpiration is calculated according to the

LAI value. The actual transpiration is a fraction of the potential value based on the soil

water content. Under water stress, the actual transpiration is reduced due to the soil

water deficit. The decreased transpiration rate reduces the production of new biomass.

In such case, the growth of leaves should also be lower due to the water stress effects.

However, LAI is already calculated in the model and it is used for the calculation of

the other state variables. Therefore, LAI does not respond dynamically to water stress.

For this reason, the soil water stress factor is computed which reduces the growth of

leaves on the next time step (i.e. the next day). This is a form of inconsistency, since

this time delay is not representative of the reality and limits the model skill in the

simulation of the drought stress effects.
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Figure 2.3: Generic scheme of GLAM model. The categorization of variables is taken from
Loomis et al. (1979). State variables are represented by boxes, rate variables by ellipses, aux-
iliary variables by octagons, external variables by 2 dots - 3 dashes lines. Mass flows are
represented by solid-line arrows, information flows by dashed-line arrows.

2.3.3 GLAM-Parti development

GLAM-Parti is the new version of GLAM based on the SEMAC approach (Fig. 2.4).

The model modifications are described in Section 2.3.4. The alterations start with the

inclusion of an allometric relationship between leaves and stems and expand with the

incorporation of the new methodology. The value of LAI and the masses of leaves,

stems and the total above-ground biomass are extracted simultaneously and there is

no time lag between them, something that may occur in the step-by-step modelling

method (e.g. the LAI value of the previous day is used for the computation of the

carbon assimilation on the next day).

In GLAM-Parti, the set of model equations is initially solved to calculate the maxi-

mum plant growth at daily time step. This growth rate corresponds to the level defined

only by temperature, radiation, vapour pressure deficit (VPD) and the plant properties

(e.g. transpiration efficiency). Next, the available soil water is estimated. Based on the

level of the water in the soil, the actual transpiration and the water stress factor are

calculated. The actual transpiration is used to compute the growth of the above-ground

biomass. The water stress factor is used to alter the SLA and the allocation of dry

matter between leaves and stems. These modifications are incorporated into the set of
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model equations which is solved again to return the values of all growth variables and

the attainable production level. The yield gap parameter (YGP) is used to estimate

the actual production level for all growth-reducing factors that the model implicitly

takes into account. In this study, water stress is the only yield limiting factor, thus no

growth reducing factors are considered.

The incorporation of the SEMAC methodology into GLAM simplifies the modelling

of canopy LAI and leads to reduced parameterization requirements. The maximum LAI

expansion rate (dL/dt)max is removed, which is a parameter used for the calculation of

LAI. The model has been previously seen to be particularly sensitive to this parameter

value (Ramirez-Villegas et al., 2017) and its removal decreases the model error signifi-

cantly (i.e. in the results, GLAM-Parti improves upon GLAM in all LAI simulations).

In this study, SEMAC stops at anthesis since at the post-anthesis period the model

runs with a combination of the transpiration and the radiation use efficiency methods.

This step is currently not included in GLAM-Parti, however the model is under ongoing

development. At plant maturity, all leaf area is simulated to be senescent, therefore at

the end of the grain-filling period if there was still green leaf area, the LAI is set to

zero.

2.3.4 GLAM modifications

2.3.4.1 Leaf dynamics

In crop modelling studies, SLA is used for the simulation of the leaf dynamics. Gen-

erally, it is set either as an input parameter (Yin and Struik , 2010) or it is defined

as a function of plant age, growth stage or the environmental conditions (Hoogenboom

et al., 1992; Marcelis et al., 1998; Asseng et al., 2003; Leutscher and Vogelezang , 1990).

In GLAM, biomass and leaf area are simulated separately and SLA is permitted to

evolve, subject to constraints based on an observed maximum value. This approach is

inconsistent with SEMAC, since it does not result in full partitioning of biomass. In

GLAM-Parti we make use of a significant observed relationship between SLA and tem-

perature in various plant species (Loveys et al., 2002; Rosbakh et al., 2015; Atkin et al.,

2005). For wheat too, SLA has been previously seen to be sensitive to temperature

variations (Hotsonyame and Hunt , 1998).

For the parameterization of SLA, data analysis was conducted on the Hot Serial

Cereal experiment (Martre et al., 2018). Wheat was grown in different periods of

the year and the impact of temperature on growth and development was examined.

Here, we tested the impact of high temperature on the evolution of the canopy SLA

over time. We accumulated all daily maximum temperatures for the period from leaf

emergence to the day of leaf measurement and compared them to the observed SLA

as follows: SLA was calculated as the reciprocal of the measured specific leaf weight

(SLW) and the data points with a coefficient of variation greater than 0.3 (i.e. 30%)
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Figure 2.4: GLAM-Parti model structure. The system of equations is solved numerically by
iteration with the Newton-Raphon approach. The unknown variable is dL (leaf area change).
The iteration process stops when the system converges. The categorization of variables is taken
from Loomis et al. (1979). State variables are represented by boxes, rate variables by ellipses,
auxiliary variables by octagons, external variables by 2 dots - 3 dashes lines. Mass flows are
represented by solid-line arrows, information flows by dashed-line arrows.

were excluded (Taylor et al., 1999) (there was only one such point with value 0.49). A

significant relationship was observed between the SLA and the accumulated maximum

temperature index (Tmac) (Fig. 2.5). A quadratic model was selected to best fit the

relationship:

SLA = 501− 0.296 · Tmac+ 6.17 · 10−5 · Tmac2 (2.1)

where,

Tmac =
n∑

i=IEM

Tmaxi (2.2)

Tmax is the daily maximum temperature, IEM is the day of crop emergence and n is

the number of days after crop emergence. Eq. 2.1 describes canopy SLA as a function

of the maximum temperature events accumulated over the crop growing season.

2.3.4.2 Partitioning of biomass between leaves and stems

In GLAM, LAI is the first state variable to be updated in the model based on a

prescribed maximum LAI growth, which can be reduced only by limited soil water.
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Figure 2.5: Quadratic regression between canopy SLA and the accumulated maximum
temperature index. Continuous line is the regression: y = 501 − 0.296x + 6.17 · 10−5x2

(R2 = 0.68, p < 0.01).

For the incorporation of SEMAC, the function of LAI growth was removed. Instead,

an allometric relationship was introduced which describes the partitioning of biomass

between leaves and stems. According to the allometric approach the mass of stems

(MS) can be described in relation to the mass of leaves (ML) under the generic formula

(Enquist et al., 1998; Poorter et al., 2012):

MS = h ·Mg
L (2.3)

where g, h are empirically determined parameters and their values for wheat are taken

from Ratjen et al. (2016) (i.e. the parameter h of this study is equal to the eh of Ratjen

et al. (2016)). The total mass of leaves (ML) is divided into green leaves (MGL) and

yellow leaves (MYL):

ML = MGL +MY L

=
LAI

SLA
+MY L (2.4)

The above-ground biomass (W) is divided into stems, leaves and grains. For the period

before the initiation of grain development, W can be described by Eq. 2.3 and 2.4 as:

W = ML +MS

=
LAI

SLA
+MY L + h · (LAI

SLA
+MY L)g (2.5)
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2.3.4.3 Incorporation of SEMAC into GLAM

Eq. 2.3 - 2.5 are newly imported equations in GLAM. These are combined with the

existing functions to form GLAM-Parti as follows:

In GLAM, the potential evapotranspiration (ET
pot) is calculated by the Priestley-Taylor

equation as:

ETpot =
α

λ
· ∆(RN −G)

∆ + γ
(2.6)

and it is partitioned to potential evaporation and transpiration, out of which the po-

tential transpiration (TT) is calculated as:

TT = ETpot(1− e−kLAI) (2.7)

The growth of the above-ground biomass (dW/dt) is defined as:

dW

dt
= TT · TE (2.8)

where TE is the transpiration efficiency and it is calculated as:

TE = min(
ET
V
,ETN,max) (2.8a)

ET is the normalised transpiration efficiency in Pa, V is the vapour pressure deficit,

and ETN,max is the maximum transpiration efficiency in g kg-1.

LAI can be expanded as:

LAIn = LAIn−1 + dL (2.9)

where LAIn is the value of LAI at any given n day, LAIn-1 is the LAI of the previous

day and dL is the leaf area change between the two consecutive days.

Finally, the above-ground biomass of the n day (Wn) is equal to the biomass of the

previous day (Wn-1) plus the growth in biomass between the two days (dW/dt), which

makes:

Wn −
dW

dt
−Wn−1 = 0 (2.10)

Eq. 2.5 - 2.10 form a system of 6 equations with 6 unknown variables which can

be solved simultaneously to return the values of each unknown variable (i.e. dL, LAIn,

ET
pot, TT, dW/dt, Wn). For the solution of the system, Eq. 2.5 - 2.9 are substituted
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into Eq. 2.10 which gives:

LAIn−1 + dL

SLA
+MY L + h · (LAIn−1 + dL

SLA
+MY L)g︸ ︷︷ ︸

Wn

−

TE · α ·∆ ·RN
λ · (∆ + γ)

(1− CG · e−k(LAIn−1+dL))(1− e−k(LAIn−1+dL))︸ ︷︷ ︸
dW/dt

−Wn−1 = 0
(2.11)

Eq. 2.11 forms the core of the SEMAC methodology (Fig. 2.6) and it is a function

of leaf area change (dL). It can be solved numerically by iteration with the use of the

Newton-Raphson method. The iteration process ends when the difference in the value

between two consecutive loops is < 0.01. The extracted value of dL is used to update

the variables in Eq. 2.3 - 2.9. Detailed description of the derivation of the dW/dt

term in Eq. 2.11 is provided in the Appendix A. Whenever a negative value of dL is

calculated, MYL is updated as:

MY L(n) = MY L(n−1) +
|dL|
SLA

(2.12)

where MYL(n) is the mass of yellow leaves on the n day, and MYL(n-1) is the mass of

yellow leaves on the previous day (n-1). Eq. 2.3 - 2.11 form the 1st step of SEMAC in

which no stress affects the crop growth and development (i.e. the potential production

level).

2.3.4.4 Root modelling in GLAM-Parti

In GLAM the roots grow under a prescribed extraction front velocity and a prescribed

root length density at the extraction front. The root length density by volume is

calculated as a function of LAI and is used for the computation of the potentially

extractable soil water (Challinor et al., 2004). In GLAM-Parti, the modelling of root

growth is modified. A root partitioning coefficient (Rc) is introduced which describes

the increase in root biomass (dWR) as a fraction of the total biomass increase (dWT).

The roots grow from plant emergence to anthesis and Rc is defined as:

RC =
dWR

dWAG + dWR
(2.13)

Where dWT is divided into above-ground (dWAG) and root biomass growth (dWR).

The solution of Eq. 2.13 for dWR gives:

dWR = (
RC

1−RC
) · dWAG (2.14)
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Figure 2.6: A. Well-established crop modelling methodology implemented in GLAM; B.
SEMAC methodology for crop growth and development.

The computation of Rc is taken from Baret et al. (1992) and it is a function of the

growth degree days (GDD) after sowing normalized at spiking:

RC = −0.15 + 0.63 · e−0.98·θ∗ (2.15)

where,

θ∗ =
θ − θe
θs − θe

(2.16)

θ is the GDD after sowing, θe and θs are the GDD from sowing to emergence and from

sowing to spiking (i.e. 150 GDD before anthesis) accordingly.

The root biomass is daily updated based on the allometric relationship of Eq. 2.14

to form the total root biomass (WR). The WR is divided by the specific root weight (σ)

to give the total root length (RL). The value of σ for wheat is assumed to be constant

at 4.57 g km-1 (King et al., 2003). The soil is divided into 25 layers (NSL=25), each

with 10 cm thickness (DZ=10). The root length density of each soil layer (LVSLi
) is

estimated according to the modelling method of King et al. (2003):

LVSLi
= (YSLi − YSL(i−1))RL (2.17)

where SLi is the soil layer i and SLi-1 is the previous soil layer. The YSLi and YSL(i-1)
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describe the cumulative proportion of roots from the surface to the soil layers i and i-1

accordingly. The vertical root distribution with depth (Y) is parametrized after Gale

and Grigal (1987) as:

Y = 1− βd (2.18)

where β describes the shape of the Y function and it is set to 0.953 (King et al., 2003)

and d is the soil depth from surface (i.e. d=i*DZ, for i=[1,NSL]). The estimated root

length density per soil layer is used for the calculation of the potentially extractable

soil water and the total soil water uptake (Challinor et al., 2004). The value of the

uptake diffusion coefficient (kDIF) is taken from Jamieson and Ewert (1999).

2.3.5 Modelling the impact of water stress in GLAM-Parti

In GLAM the water stress factor describes the magnitude of water shortage - from

full drought (value of zero), to zero water stress (value of one). For GLAM-Parti,

the inverse number is used, so that the value of zero is appended to full water supply

and this value increases according to the level of the water stress event. The soil water

stress factor (SWFAC) is used to modify the SLA and the leaf:stem dry mass allocation.

These effects are modelled below.

2.3.5.1 Water stress effects on SLA

The function of canopy SLA is given in Section 2.3.4.1. In the absence of a robust

relationship between the reduction of SLA and the magnitude of the water stress event,

a linear relationship is assumed. The water stress effects on SLA are incorporated into

Eq. 2.2 as following:

Tmac =

n∑
i=IEM

(1 + SWFAC) · Tmaxi (2.19)

The incorporation of Eq. 2.19 into Eq. 2.1 results in a linear decrease of the canopy

SLA according to the magnitude and the total period of the drought event.

2.3.5.2 Water stress effects on leaf:stem partitioning of biomass

In water limiting environments, the stem mass (MS) is favoured over the leaf mass

(ML) for wheat (Ratjen et al., 2016). The enhancement of MS is incorporated into

GLAM-Parti as following:

MSn = h ∗ (MLn−1 + (1 + SWFAC) · dML +MY Ln)g (2.20)

where MSn and MY Ln are the mass of stems and mass of yellow leaves on the n day,

MLn−1 is the mass of green leaves on the previous day and dML is the leaf mass change
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between the two days. Eq. 2.20 can be used to describe Eq. 2.10 as:

MLn +MY Ln +h∗(MLn−1 + (1 + SWFAC) · dML +MY Ln)g− dW
dt
−Wn−1 = 0 (2.21)

and Eq. 2.21 can be described as a function of leaf area change (dL) as following:

LAIn−1 + dL

SLA
+MY Ln +h ·(LAIn−1 + (1 + SWFAC) · dL

SLA
+MY Ln)g− dW

dt
−Wn−1 = 0

(2.22)

Eq. 2.22 solves the system of equations for crop growth and development under

water stress conditions. It is solved numerically with the Newton-Raphson method -

similarly to Eq. 2.11 - to return the value of dL and calculate LAI as well as the masses

of leaves, stems, and the total biomass under water stress. It consists of the second

step of SEMAC, in which the water stress effects are incorporated into the model. The

solution of Eq. 2.22 ensures consistency between the state variables and it outputs the

attainable production level.

2.3.6 Sensitivity analysis to determine initial conditions for LAI

Eq. 2.11 does not converge for the first day after crop emergence, where the biomass

of the previous day (Wn-1) equals zero. As a result, the solution of Eq. 2.11 does not

return any real value of dL on that day. In order to solve this issue, an initial LAI

value (LAIini) was prescribed into the model. LAIini consists of the initial condition of

growth in GLAM-Parti and the model starts calculating the leaf area change from the

second day after emergence. The baseline value of LAIini = 0.1365 m2 m-2 was selected

the model runs (Stella et al., 2014). The evolution of LAI is sensitive to LAIini, since

every leaf area change depends on the LAI value of the previous time step. Analysis

was conducted to evaluate the model performance over a wide range of LAIini values

(interval (0.0007 - 0.3 m2 m-2), Ma et al., 2013). The model was calibrated for each

LAIini using the methodology explained in Section 2.3.10.

2.3.7 Methods to compare sequential and simultaneous modelling

methodologies

A new model version (GLAM-Partiseq) was developed to test the contribution of the

simultaneous equation modelling methodology to the model output. The new version is

identical to GLAM-Parti in terms of the model equations but it uses sequential method

to solve them. In order to do this Eq. 2.11 was removed from the model. Instead,

we use the LAI value of the previous time step (i.e. the previous day) to solve the

model equations of the next day. The other model processes are not modified. Thus,

the accumulation of biomass is estimated, which is partitioned into leaves and stems

according to their allometric relationship. Given the mass of leaves and the canopy
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SLA, a new LAI is calculated, which is used for the solution of the model equations on

the next day.

For a given set of equations there should be one set of parameters which optimizes

the model output. GLAM-Parti and GLAM-Partiseq use the same set of equations but

they differ in the model structure. As a result, one set of parameters is expected to

lead to different model output in the two model versions. We made the assumption

that GLAM-Parti provides higher internal consistency and that the parameters from

the calibration of GLAM-Parti are the optimal for our set of model equations. If this

is true, then GLAM-Parti should exhibit higher skill when the two model versions run

with the parameters from its calibration. If not, then the assumption that GLAM-Parti

improves the model performance due to the simultaneous modelling approach is wrong.

Then we calibrated GLAM-Partiseq, which resulted in new model output (i.e. we call it

GLAM-Partiseq-cal). If GLAM-Parti is still performing better than GLAM-Partiseq-cal,

this validates the assumption that the calibration of GLAM-Parti provides the optimal

set of parameters for our set of model equations. The differences between GLAM-Parti

and GLAM-Partiseq reveal the limitations of the sequential modelling approach. The

comparison between GLAM-Parti and GLAM-Partiseq-cal shows the extend to which the

calibration can compensate for the model limitations due to the step-wise modelling

method.

2.3.8 Experimental design

GLAM, GLAM-Parti and GLAM-Partiseq were tested against field data for wheat under

drought stress. The experiment, reported by Jamieson et al. (1995), was held in a

mobile rainshelter at the New Zealand Institute for Crop and Food research experiment

station at Lincoln in Canterbury (latitude 43◦38’ S, longitude 172◦30’ E). ’Batten’

wheat was sown on 8 June 1991. The rainshelter was used to impose the plants to

various levels of drought stress. Four treatments were chosen out of the total set of

experiments for analysis here. Treatment 1 (RS1) is the control experiment which is

well irrigated with no water stress, treatment 5 (RS5) is imposed to early drought,

treatment 6 (RS6) is the late drought and treatment 11 (RS11) is the full drought

experiment.

2.3.9 Statistical measures

The calibration and evaluation of all model versions was done using the root mean

square error (RMSE) and model efficiency index (MEI) according to the following

formulas:

RMSE =

√∑n
i=1(Pi −Oi)2

n
(2.23)
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where Pi and Oi are the estimated and observed values accordingly and n equals the

number of observations.

MEI = 1−
∑n

i=1(Oi − Pi)2∑n
i=1(Oi − Ō)2

(2.24)

MEI is a measure of the model skill. It is in the range of (−∞, 1], where a value of

1 indicates ideal fit to the observations. Values below zero indicate that the mean

observed value is a better predictor than the model (Krause et al., 2005).

2.3.10 Model calibration

GLAM, GLAM-Parti and GLAM-Partiseq were calibrated against the observed data.

Initially, the simulated phenology of the models was set to meet the observed anthesis

and maturity dates of the fully irrigated treatment. This was done to avoid any model

bias from sources different than the water stress effects. The initial soil water and the

soil characteristics were set up using the observed values. For transpiration efficiency

(ET) and maximum transpiration efficiency (ETN,max), an optimizer was developed

to test all possible combinations in their total range of values (see Appendix A for

parameter ranges). The optimizer selected the combination of ET and ETN,max which

minimized the RMSE between all observed and simulated above-ground biomass values

in the control experiment (RS1). For radiation use efficiency (RUE), the optimizer

selected the value which minimized the RMSE between all observed and simulated

above-ground biomass in the early drought treatment (RS5). This was done because

RUE was used only after anthesis in the drought stress simulations (Section 2.3.1).

Similar process was followed for the maximum LAI expansion rate (dL/dt)max and the

rate of change of harvest index (dHI/dt). The optimizer selected the values which

minimized the RMSE between observed and simulated LAI and grain mass of the

control treatment (RS1) accordingly. The step for the runs of the optimizer was 0.1 for

ET, ETN,max and RUE, 0.0025 for (dL/dt)max and 0.00025 for dHI/dt. The (dL/dt)max

parameter was used in all GLAM-Parti versions only for the period after anthesis when

SEMAC stops and GLAM-Parti runs under the GLAM approach. The values of all

calibrated parameters are provided in the Table A.1 of the Appendix A. The extinction

coefficient k for wheat was set to 0.737 (Kanemasu et al., 1985) and the maximum

transpiration rate (TTmax) was set to 0.75 cm day-1 (Liu et al., 2002). All other

parameter values were taken from Challinor et al. (2004). The yield-gap parameter

(CYG) was set to one because limited water supply was the only yield-reducing factor.
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2.4 Results

2.4.1 Test GLAM and GLAM-Parti overall model performance

Table 2.1 shows the MEI and RMSE of GLAM and GLAM-Parti for LAI, biomass,

grain yield and cumulative evapotranspiration in all treatments. Both measures were

calculated based on all simulated and observed values of the variables during the whole

growing season. The mean MEI (MEI) is the numerical mean of the four compared

variables in each treatment.

Both models demonstrated a good agreement with the observations in the control

experiment where no water stress effects the wheat (Fig. 2.7). The evapotranspiration,

above-ground biomass and yield are well simulated in both models (i.e. all MEI values

are greater or equal 0.94) and their overall performance is satisfactory. GLAM slightly

overestimates the final yield, whilst GLAM-Parti overestimates the final biomass. Nev-

ertheless, the differences are not large. GLAM is also in closer agreement with the

maximum observed LAI value, whilst both models show very similar results in the sim-

ulation of the cumulative evapotranspiration. Overall, GLAM and GLAM-Parti show

good performance in the simulation of the control treatment (GLAM MEI = 0.88,

GLAM-Parti MEI = 0.92).
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Figure 2.7: Observed values (·), GLAM (−−) and GLAM-Parti (-) output in the control
experiment (RS1) for: A. leaf area index (LAI), B. above-ground biomass, C. grain yield, D.
cumulative evapotranspiration.
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On the other hand, the performance of the two models varies considerably in the

water stress treatments. In the early drought experiment (RS5), GLAM-Parti shows

very good fit to the observations. In Fig. 2.8, both the leaf area development and

the onset of leaf senescence are accurately estimated, whilst the peak LAI value is

slightly underestimated. The simulated biomass and yield are also in close agreement

with the observations (i.e. RMSE for biomass equals 0.69 and RMSE for yield equals

0.32), however the final yield is underestimated. On the contrary, GLAM shows lower

skill in the simulation of RS5. The RMSE for LAI is higher in GLAM (1.30) than

GLAM-Parti (0.45) and the biomass is underestimated during almost the whole growing

season. As a result, the grain growth and final yield are underestimated (Fig. 2.8).

Regarding the evapotranspiration, both models show similar results. Initially, they

both overestimate the cumulative evapotranspiration and underestimate it later in the

season. In summary, GLAM-Parti improves upon GLAM in the simulation of the early

drought treatment (GLAM MEI = 0.70, GLAM-Parti MEI = 0.95).
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Figure 2.8: Observed values (·), GLAM (−−) and GLAM-Parti (-) output in the early drought
treatment (RS5) for: A. leaf area index (LAI), B. above-ground biomass, C. grain yield, D.
cumulative evapotranspiration.

In the late drought experiment (RS6), GLAM-Parti does not show an optimal agree-

ment with the observations regarding the LAI development (RMSE = 1.00). In Fig.

2.9, the peak LAI value is slightly underestimated and the onset of LAI decline is de-

layed in comparison with the observations. This is due to the initiation of the water

stress effects in the model later than the reality. In addition, the LAI decline rate is

underestimated after anthesis. As a result, the model simulates an increased number

of grain filling days, which leads to a significant overestimation of the final grain yield.

Nevertheless, the above-ground biomass is well estimated (i.e. RMSE = 0.99). On
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the other hand, GLAM shows lower performance in the simulation of LAI in the RS6

treatment (RMSE = 1.78). The above-ground biomass is underestimated and this leads

to an underestimation of the final yield. Moreover, both models show similar results

in the simulation of evapotranspiration. They are in good agreement with the observa-

tions apart from the last period of the crop cycle when it is underestimated. Overall,

GLAM-Parti improves over GLAM in the simulation of the RS6 treatment (GLAM

MEI=0.89, GLAM-Parti MEI=0.72).
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Figure 2.9: Observed values (·), GLAM (−−) and GLAM-Parti (-) output in the late drought
experiment (RS6) for: A. leaf area index (LAI), B. above-ground biomass, C. grain yield, D.
cumulative evapotranspiration.

In the full drought experiment (RS11), the leaf growth and senescence rate are ac-

curately simulated in GLAM-Parti (Fig. 2.10) and the LAI is well estimated (RMSE

= 0.51). Similarly, the model shows a very good fit to the observed biomass (RMSE =

0.47), whilst the final yield is slightly underestimated (RMSE = 0.29). On the contrary,

GLAM shows a lower performance in the simulation of leaf growth and senescence and

the estimation of LAI (RMSE = 1.50). The above-ground biomass is underestimated

during almost the whole crop season, as well as the grain yield. The cumulative evapo-

transpiration shows similar pattern in both models, by being overestimated during the

most part of the growing season and underestimated in the final part. In summary,

GLAM-Parti advantages over GLAM in the simulation of the full drought treatment

(GLAM MEI=0.66, GLAM-Parti MEI=0.94).
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Figure 2.10: Observed values (·), GLAM (−−) and GLAM-Parti (-) output in the full drought
experiment (RS11) for: A. leaf area index (LAI), B. above-ground biomass, C. grain yield, D.
cumulative evapotranspiration.

2.4.2 Results of sensitivity analysis

Fig. 2.11 shows the RMSE for LAI, biomass, grain yield and evapotranspiration in the

total range of LAIini in GLAM-Parti. For all compared variables, the lowest RMSE

was achieved in the [0.1365-0.3] range. For the LAIini values in the low range ([0.0007-

0.01]), the model showed a consistently higher RMSE for all variables, especially for

LAI and biomass. The total RMSE was at least 27.5 % higher for LAI, 17.9 % higher

for biomass, 5.6% higher for grain yield and 1.7% higher for evapotranspiration in the

low LAIini range. This further supports the use of a LAIini value in the [0.1365-0.3]

range for the model runs. Furthermore, Fig. 2.11 shows that the model calibration does

not compensate for the variability in LAIini at the low range ([0.0007-0.01]). Hence,

in GLAM-Parti, attention should be given to the parameterization of LAIini, since the

model can be sensitive to its value.

2.4.3 Comparison of simultaneous and sequential modelling approaches

GLAM, GLAM-Parti, GLAM-Partiseq and GLAM-Partiseq-cal were compared against

the observations for LAI, biomass, grain yield and evapotranspiration in the four water

treatments. The RMSE was used to measure the model skill and it was calculated based

on all observed and simulated values of each variable during the growing season. Fig

2.12 shows that GLAM exhibits higher total RMSE in all treatments than any GLAM-

Parti version by at least 46.9 % for LAI, 92.9 % for biomass, 39.9 % for grain yield and

11.7 % for evapotranspiration (Fig. 2.12). This reveals that the model modifications
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Figure 2.11: Barplots of the root mean square error (RMSE) between modelled (GLAM-Parti)
and observed state variables: A. leaf area index (LAI), B. above-ground biomass, C. grain yield,
D. cumulative evapotranspiration in the different water treatments: Control treatment (RS1),
early drought treatment (RS5), late drought treatment (RS6), full drought treatment (RS11).

lead to significant improvement in the overall performance regardless of the modelling

methodology implemented (i.e. sequential or simultaneous). Next, the impact of the

model structure was tested by comparing GLAM-Parti with GLAM-Partiseq. The total

RMSE of GLAM-Partiseq was higher than GLAM-Parti as following: 30.4% for LAI,

49.1% for biomass, 29.3% for yield and 7.2% for evapotranspiration. Similarly, the total

RMSE of GLAM-Partiseq-cal was higher than GLAM-Parti by 25.2% for LAI, 28.6% for

biomass, 7.9% for yield and 4.9% for evapotranspiration. The above results highlight

the need of solving the model equations simultaneously to overcome the structural

limitations of the sequential modelling approach. In all comparisons of this study,

GLAM-Parti improves upon any model version. The calibration can only partially but
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not fully compensate for the inconsistencies of the sequential method. Therefore, our

results indicate that the incorporation of SEMAC increases the model skill both due

to the model modifications and the simultaneous modelling methodology.
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Figure 2.12: Barplots of the root mean square error (RMSE) between modelled and observed
state variables: A. leaf area index (LAI), B. above-ground biomass, C. grain yield, D. cumulative
evapotranspiration in the different water treatments: Control treatment (RS1), early drought
treatment (RS5), late drought treatment (RS6), full drought treatment (RS11). The four
models under comparison are: GLAM, GLAM-Parti, GLAM-Partiseq and GLAM-Partiseq-cal.

2.5 Discussion

The incorporation of SEMAC into GLAM leads to a significant model improvement

in the four rain-shelter experiments. The major differences between the two model

versions rely on the simulation of the leaf dynamics, the partitioning of dry matter to

the plant compartments and the model structure. The structure of GLAM requires

the use of the water stress factor on the reduction of LAI growth under drought. On

the contrary, GLAM-PARTI removes the stress effects from LAI. This is crucial for

the model ability to simulate the observed leaf dynamics and the overall plant growth.

In the experiments, under water stress there is premature leaf senescence which leads
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to an earlier LAI decline. This effect cannot be captured in GLAM with the use of

the water stress factor acting on LAI. The SWFAC takes only positive values (from

zero to one), and when applied to the leaf area change, it leads to an increased trend

of LAI growth (even though at a reduced rate) instead of the observed decline. This

opposite leaf area trend gives a significant error in GLAM and it contributes to the

limited model skill in capturing the water stress effects.

On the other hand, the SEMAC methodology is seen to be successful in the pre-

diction of the leaf dynamics. The canopy SLA varies during the season and this affects

both the already formed leaf tissue and the newly formed leaf area (i.e. in Eq. 2.11 the

SLA acts both on the already existing LAI and the newly formed leaf area (dL)). Thus,

the SLA of the previously formed leaf tissue is not conserved (Ratjen and Kage, 2013).

The water stress factor is removed from LAI and the model error is reduced. In GLAM-

Parti, the LAI value is extracted by the system of equations after incorporating the

water stress effects. This technique explicitly takes into account the drought-induced

changes on leaf growth and development and enables the prediction of the acceleration

of leaf senescence without further parameterization. Fig. 2.13 shows the simulated LAI

of all treatments until the day of anthesis, when SEMAC stops. It can be seen that the

LAI curve of all drought treatments declines earlier than the control. The maximum

LAI value is lower in all water stress treatments, and the LAI profile is altered, with

early senescence affecting the wheat. The improved simulation of leaf senescence is

due to the SEMAC methodology which introduces modifications to the leaf dynamics

and the partitioning of dry matter and it extracts the leaf area change from the sys-

tem of equations. Thus, the leaf area change is not restricted only to positive values

during the pre - senescence stage (i.e. as in GLAM with the use of the SWFAC on

LAI), but it can also be negative during any part of the crop cycle depending on the

existence and the magnitude of the stress event. As a result, GLAM-Parti successfully

captures the premature leaf senescence without the need of downscaling into leaf level

processes. This is an important trait of SEMAC and it can be used as a significant tool

in the attempt to model the plant performance in various stress environments. It is

also a key aspect for the improved simulation of the drought effects in this study. The

same modifications could not be implemented in the original GLAM model where LAI

and biomass are not jointly determined. Hence, the inclusion of SEMAC improves the

estimation of the water stress effects on wheat.

SEMAC provides a robust model structure which leads to a more realistic represen-

tation of crop growth and development as well as an improved simulation of the water

stress effects. Moreover, the methodology follows the general remark that an improve-

ment in the simulation of the leaf dynamics is essential for the further development of

crop models (Ewert , 2004). This is especially true under stress conditions where mod-

elling of leaf development becomes more complex and it can lead to systematic errors.

For instance, it has already been seen that in modelling of heat stress, the omission
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of the acceleration of leaf senescence for wheat increases the model error significantly

(Maiorano et al., 2017). Here, the capture of premature leaf senescence under drought

in GLAM-Parti significantly improves the model performance.

The contribution of the simultaneous solution of the model equations to the model

performance was separated from the model modifications. For this reason, GLAM-Parti

was re-designed to solve the model equations sequentially (GLAM-Partiseq). The com-

parison of GLAM-Parti and GLAM-Partiseq highlights the limitations of the sequential

modelling approach. GLAM-Partiseq shows higher RMSE than GLAM-Parti in all

compared variables. This reveals that the inconsistencies introduced by the sequen-

tial solution of equations affect the model skill. GLAM-Partiseq-cal improves the model

performance but it does not fully compensate for the inconsistencies of the sequential

approach. As a result, GLAM-Partiseq-cal has higher RMSE than GLAM-Parti for all

compared variables. Thus, the simultaneous equation modelling leads to significant

model improvement due to the robustness of the model structure.

SEMAC can be implemented in other transpiration or radiation use efficiency mod-

els with a similar methodology to the one presented here. Initially, allometric rela-

tionships should be introduced to partition the biomass (Wn) to the different plant

compartments. This gives the opportunity to express Wn as function of LAI. The

accumulation of new biomass (dW/dt) can also be expressed as function of LAI. For

transpiration driven models, this can be done using an approach similar to the one

presented here. In radiation use efficiency models, dW/dt can be expressed as func-

tion of LAI as shown in Fig. 2.2. The expression of Wn and dW/dt as function of

LAI develops an equation similar to Eq. 2.11 which is solved to return the LAI value.

This is done twice, initially for optimal environmental conditions, where the impact of

stresses is ignored and then again after incorporating the stress effects. LAI is then

used to calculate all variables in the system of equations. Regarding the stress effects,

these can be simulated by reducing the accumulation of new biomass, altering the car-

bon allocation between the plant parts and adjusting the canopy SLA. Various models

use different techniques to simulate these modifications. The model performance will

depend on the efficiency to capture the above-mentioned effects at the canopy level.

More effort may be needed to implement SEMAC in more detailed crop models (i.e.

photosynthesis based models), where the model complexity may increase the difficulty

of solving the system of equations simultaneously. Currently, there is no clear path on

how to incorporate SEMAC in these models. Thus, the approach is mainly aimed to

radiation or transpiration based models of medium complexity like GLAM. However,

the possibility of implementing SEMAC in more complex models is not excluded, but

simplifications in the model structure may be needed.

Finally, in the late drought treatment GLAM-Parti overestimates the final yield.

This is due to the increased number of grain filling days in the model simulation.

Currently SEMAC stops at anthesis and during that period GLAM-Parti runs under
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the GLAM approach. Thus, SEMAC needs to be expanded for the period after anthesis.

In addition, the modelling of yellow leaf mass should be improved, since Eq. 2.12 is

currently not included into the system of equations.

0

2

4

6

8

200 240 280 320
Day of year

Le
af

 a
re

a 
in

de
x 

(m
2  m

−2
)

Treatment

RS1

RS5

RS6

RS11

Figure 2.13: Simulated LAI of all treatments until day of anthesis in GLAM-Parti. Control
treatment (RS1) (continuous line), early drought (RS5) (twodash line), late drought (RS6)
(dashed line), full drought (RS11) (dotted line).

2.6 Conclusion

The application of SEMAC to crop modelling results in a new model where all equations

for crop growth and development are combined and solved simultaneously. It is adopted

here into the GLAM crop model and a new model version is formed (GLAM-Parti). The

new model is primarily designed to deal with stress conditions, where various processes

are modified and modelling the plant performance becomes more difficult.

The incorporation of SEMAC into GLAM simplifies the model algorithms and im-

proves upon the simulation of several plant processes (e.g. LAI development, accelera-

tion of leaf senescence under water stress conditions, leaf:stem partitioning of biomass).

These alterations lead to an improved model performance and a more realistic model

output. We demonstrated this by testing the two model versions against different levels

of water stress. GLAM-Parti showed a clear improvement over GLAM in all drought

simulations. In addition, GLAM-Parti retains its confidence at all levels of water stress

in the treatments (i.e. from early to full drought treatment).

In general, we believe that a robust model structure is essential for the realistic

simulation of crop performance under stress conditions. The success of SEMAC relies

on the improved model structure, the better representation of the leaf dynamics and the
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improved internal model consistency. SEMAC can be further extended to incorporate

more stresses. Application of SEMAC to other crop models would follow a similar

methodology to that presented here. It would be very interesting to see if similar

improvements in skill result. Finally, it is believed that SEMAC can be a useful tool

for the simulation of the crop performance under climate variability and change where

multiple stresses may act on crops simultaneously.

Software and data availability

The GLAM model was developed in FORTRAN by Andy Challinor (a.j.challinor@leeds.ac.uk)

and it was firstly released in 2004. The software requires a FORTRAN compiler under

any operating system. The GLAM-Parti model presented in this paper was devel-

oped by Ioannis Droutsas (eegdr@leeds.ac.uk) and it is a new version of GLAM based

on the SEMAC approach. GLAM is freely available following registration, please visit:

https://environment.leeds.ac.uk/climate-change-impacts/doc/general-large-area-model-

annual-crops. The GLAM-Parti version is currently being developed and prepared for

general release. The experimental rain shelter data used in this paper has already been

published by Jamieson et al. (1995). The dataset is available at:

https://bitbucket.org/masemenov/lincoln/src/master/
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Abstract

Surface ozone (O3) is an important air pollutant globally and enhanced concentrations

lead to crop yield penalties in many parts of the world. Crop models simulate pro-

duction and yield and they are often used for various applications. However, most of

the existing models neglect the effect of O3 and only limited parameterization schemes

exist. In addition, the existing O3 modelling approaches do not take into account the

plant acclimation to the pollutant as a mechanism of survival and maintenance of per-

formance. Here, we introduce a simple modelling method to simulate the O3 damage

to wheat with consideration of the plant acclimation process. The O3 parameterization

scheme was incorporated into the GLAM-Parti crop model, resulting in a new model
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version GLAM-ROC (i.e. GLAM - Relative Ozone Concentrations). The new model

simulates the effect of O3 on crop growth and development and was evaluated against

data from control-environment chambers with high O3 concentration levels and vari-

able duration of exposure to the pollutant. GLAM-ROC successfully reproduced the

observed plant response to O3 as well as the final biomass and yield. The incorporation

of plant acclimation allowed the prediction of crop yield loss at variable duration of O3

exposure. The statistical response formula neglected the acclimation process and over-

estimated the relative O3 damage to yield by 56.5%, when fumigation increased from

32 to 106 days. We conclude that the plant acclimation to chronic O3 environment is

significant and should be taken into account for the effect of O3 on wheat performance

and yield.

3.1 Introduction

Ground-level ozone (O3) is a highly phytotoxic air pollutant at global scale (Ashmore,

2005; Ainsworth, 2017). Current O3 levels induce crop yield damage and lead to de-

creased food supply and economic loss (Emberson et al., 2009; McGrath et al., 2015).

Avnery et al. (2011) estimated that global yields of soybean and wheat were reduced by

up to 14 and 15% respectively for the year 2000 due to O3 pollution. Mills et al. (2018)

estimated that in highly polluted regions of N India and NW China the O3 damage to

wheat yield exceeded 15% on average for the years 2010 - 2012. O3 concentrations are

projected to remain enhanced in many regions in the future, potentially posing serious

threat to agriculture (Sicard et al., 2017).

The main mechanisms through which O3 affects crops are by inhibiting photosyn-

thesis, accelerating the plant senescence rate and causing leaf chlorosis or necrosis under

under acute exposure (Heath, 1994; Farage and Long , 1999; Fiscus et al., 2005). These

effects result in decreased photosynthate allocation to the grain, reduced productivity

and lower yield (Wilkinson et al., 2012). The range of effects depends upon the concen-

tration level of the pollutant, the time and duration of exposure (Heath et al., 2009),

the plant sensitivity (Van Goethem et al., 2013) and the stage of plant development

(Tiedemann and Pfähler , 1994; Mulholland et al., 1998).

The effect of O3 on crop yield has been extensively studied and various modelling

approaches have been suggested. Initially, different metrics were developed to link the

plant O3 exposure to the reduction in grain yield. These metrics accumulate the O3

concentration during the crop-growing season (e.g. AOT40, M7, SUM06, W126) and

relate the effect to yield according to a statistical response function (e.g. Fuhrer et al.,

1997; Mauzerall and Wang , 2001). However, various interactions between the crops and

their surrounding environment modify the magnitude of this relationship (Musselman

et al., 2006). This is a major limitation of exposure-based approaches and so O3 effects

were later introduced into more complex models of plant growth and development.
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The family of more complex models tend to use stomatal flux parameterizations

(e.g. Emberson et al., 2000; Pleijel et al., 2007) such as those found in crop models (e.g.

Ewert and Porter , 2000; Schauberger et al., 2019). These models can improve upon the

exposure-based estimation of O3 damage to crop productivity and yield by simulating

the stomatal limitations which regulate O3 uptake by the plants (Challinor et al., 2009;

Pleijel et al., 2004). Nevertheless, the modelling of stomatal conductance is difficult

and it is not clear which of the many models of different complexity (Damour et al.,

2010) is closest to reality. Modelled responses to CO2 concentration, temperature, air

humidity, light and soil water content differ (Buckley and Mott , 2013), resulting in

different errors in the calculation of O3 uptake and damage.

Plants can adjust their physiological and metabolic processes to enhance their stress

tolerance over time (Bruce et al., 2007). Under long-term O3 exposure, the plant anti-

oxidative enzyme activity increases (Gillespie et al., 2011, 2012), working as a mecha-

nism of defence in favour of closing stomata to avoid take-up of O3 (Feng et al., 2016).

This acclimation mechanism allows stomata to remain partially open and support gas

exchange for photosynthesis, thus avoiding high reductions in biomass accumulation

(Chen et al., 2011). The acclimation process in stress environments improves the plant

response to the stressor (Kollist et al., 2018) and leads to optimisation of productiv-

ity and yield. Held et al. (1991) exposed radish plants to high O3 either six days

after germination or three days later and found that the plants which were exposed to

the pollutant for the longer period exhibited higher dry mass than the plants exposed

to O3 later, implying an acclimation mechanism. Trees can also compensate for the

negative O3 effects by activating acclimation mechanisms. Mikkelsen and Ro-Poulsen

(1994) reported higher photosynthesis levels of Norway spruce in the morning before

8-h daily O3 fumigation, as well as five days post-O3 fumigation in comparison with

non-fumigated trees. Crop models do not usually parameterize for plant acclimation to

chronic O3 stress. One barrier to the development of acclimation parameterizations in

crop models is that the models are not evaluated under variable duration of exposure

to O3.

The purpose of this study is to incorporate the effect of O3 into a crop model by

accounting for the concentration level of the pollutant, the stage of plant development

and the duration of plant exposure. The wheat crop was selected as case study since

it is particularly sensitive to O3 (Barnes et al., 1990; Farage et al., 1991; Burney and

Ramanathan, 2014), an important staple crop at global level (FAO et al., 2017) and

there is excellent data availability. The GLAM-Parti crop model was used to incorpo-

rate the effect of O3 on wheat, resulting in a new model version called GLAM-ROC

(i.e. GLAM-Relative Ozone Concentrations). Prior to the incorporation of the O3

effect, the allometric relationships for partitioning plant biomass in GLAM-Parti were

extended to the full crop cycle, since the model was previously developed with the

GLAM approach for post-anthesis crop growth and development.
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3.2 Materials and methods

3.2.1 Wheat varieties and growing conditions

Two modern spring wheat varieties were considered in this study, Lennox (Saaten-

Union) used in southern France and KWS Bittern (DanishAgro) used in Denmark.

Lennox was used for the development of the O3 algorithm in the model and KWS Bit-

tern for the model evaluation. The plants were grown in 24 m2 chambers in the RERAF

(Risø Environmental Risk Assessment Facility) climate phytotron at the Technical Uni-

versity of Denmark, Campus Risø, Roskilde. The plants were sown in 11 L pots filled

with 4 kg of sphagnum (Pindstrup Substrate No. 4, Pindstrup Mosebrug A/S, Ry-

omgaard, Denmark) and reduced to eight plants after germination, corresponding to ∼
165 plants m-2. Light intensity in the chambers was approximately 400 mol photons m-2

s-1 PAR (photosynthetically active radiation) at canopy height and was provided for

16 h d-1. The growing conditions in the chambers are shown in Table 3.1. The plants

were watered three times a week to ensure full water supply. No additional nutrients

were added to the pots since the sphagnum was nutrient enriched. Both varieties were

represented by five replicates in each treatment. Detailed description of the experimen-

tal set-up is given in Hansen et al. (2019), Frenck et al. (2011) and Ingvordsen et al.

(2015).

Table 3.1: Mean and standard deviation of growing conditions in RERAF chambers for wheat
culitvars Lennox and KWS Bittern.

Treatment Temperature, day/night (C) Humidity, day/night (%) [O3] (ppb) [CO2] (ppm)
Control 19.4± 2.5 / 13.8± 4.1 53.7± 5.3 / 65.8± 8.3 6.4 ± 2.1 534 ± 109
Episodic 19.4± 2.5 / 14.0± 4.1 54.2± 5.2 / 65.5± 8.0 84.5 ± 28.1 539 ± 109
Chronic 19.4± 2.5 / 13.9± 4.1 53.7± 5.4 / 65.5± 8.3 78.8 ± 32.4 537 ± 111

3.2.2 Ozone treatments

O3 was generated by UV Pro 550 A ozone generators (Crystal Air Products and Ser-

vices, Langley, BC, Canada). The experiments included 3 levels of fumigation: i) no

O3 enrichment (Control); ii) episodic O3 exposure (Episodic) ; and iii) full-time O3 ex-

posure (Chronic) (Fig. 3.1 and Table 3.1). In the Control treatment, O3 concentration

in the climate chambers was 6.4 ± 2.1 ppb during the whole crop cycle. In the Chronic

treatment, the plants were exposed to 78.8 ± 32.4 ppb O3 concentration during the

daylight hours from sowing (Zadoks Stage 01 - ZS 01) to harvest maturity (ZS 99).

In the Episodic treatment, O3 concentration was 84.5 ± 28.1 ppb during the daylight

hours and the duration of plant exposure was from the first node stage (ZS 31) until

anthesis was complete (ZS 69). During the night, in both the Chronic and Episodic

treatment, O3 concentration was reduced to the Control level.
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Figure 3.1: (a) Daily mean O3 concentration (ppb) and (b) cumulative O3 exposure above 40
ppb (AOT40) calculated from hourly [O3] in Chronic and Episodic treatment. Arrow indicates
day when plants reached ZS 31 (Zadoks stage 31).

3.2.3 Plant measurements and calculation of evapotranspiration and

water use efficiency

At the end of the experiment, the plants were harvested and dried for 48 h at 80 ◦C. The

above-ground biomass and grain yield were measured in g pot-1 and were converted to g

m-2 using the pot dimensions. This allowed direct comparison between the observations

and the model output. The plant water consumption (g pot-1) was calculated as the

difference in pot weight between two consecutive measurements. Assuming that the

increase in plant weight between two measurements was negligible, we calculated canopy

evapotranspiration (ET) (mm) as following:

ET = ((Wpn −Wpn+1)/ρ · pot) · 1000mm/m (3.1)

where Wpn and Wpn+1 are the pot weight directly after the n irrigation (kg) and

directly before the n+1 irrigation (kg) respectively, pot is the number of pots per m2

and ρ is water density (997 kg m3). Harvest index (HI) was calculated as the ratio of

grain yield to above-ground biomass.

The biomass, grain yield, ET, HI and water use efficiency (WUE) of Lennox and

KWS Bittern wheat in the experiments were calculated as the mean of the 5 replicates.

The replicate 2 of Lennox in the Control and the replicate 5 of KWS Bittern in the

Chronic treatment were disregarded due to errors in the measurements of pot weight.
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Also WUE (g m-2 mm-1) was defined as the ratio of the above-ground biomass (g m-2)

to total ET (mm) at harvest.

3.2.4 Ozone metrics

The AOT40 index (Accumulated ozone exposure above a threshold of 40 ppbv) was

calculated as follows:

AOT40 =

n∑
i=1

DOE40i (3.2)

where n is the number of days in the growing season, i is the day index and DOE40 is

the daily O3 exposure (ppm h) defined as:

DOE40 =
m∑
j=1

max([O3]j − 40ppb, 0) · 0.001 ppmh ppbh−1 (3.3)

where [O3] is the one hour mean O3 concentration (ppb), m is the number of daylight

hours per day and j is the hour index.

3.2.5 GLAM-Parti model

The GLAM-Parti crop model was developed based on the General Large Area Model

for annual crops (GLAM) which is a relatively simple model designed to operate at

regional scale (Challinor et al., 2004). The model was selected for the incorporation of

the effect of O3 on wheat, since it was developed with the SEMAC approach (Simul-

taneous Equation Modelling for Annual Crops), a novel crop modelling methodology

which provides with a consistent representation of abiotic stresses and ensures internal

consistency in the simulation of crop growth and development under environmental

stress conditions (Droutsas et al., 2019). GLAM-Parti uses transpiration efficiency

to simulate crop growth and allometric relationships for partitioning the biomass to

the plant compartments. The daily potential evapotranspiration is calculated by the

Priestley-Taylor approach and is partitioned into potential evaporation and potential

transpiration. The actual transpiration is computed from the potential transpiration

rate by taking into account the soil water content. The transpiration is multiplied by

the transpiration efficiency to return the daily biomass growth.

Two major modifications were implemented into GLAM-Parti for this study. Firstly,

the canopy SLA was expressed as function of LAI (see B.0.1). In addition, the plant

biomass partitioning scheme with allometric relationships was extended to the post-

anthesis period (see B.0.2). This method replaced the previously used GLAM approach

for simulating crop growth and development after anthesis in GLAM-Parti.
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3.2.6 GLAM-ROC development

GLAM-ROC is the version of GLAM-Parti which incorporates the effect of O3 on crop

growth and development. The O3 damage to wheat was introduced into the model

by reducing the canopy ET as well as transpiration efficiency (TE) in daily time step.

The effect of O3 on ET was related to the AOT40 index and the reduction in TE

was expressed as function of [O3]. An acclimation factor was introduced to simulate

the plant adjustment to stress conditions with increased O3 exposure. Harvest Index

was also reduced to account for decreased allocation of assimilates to the grains under

exposure to enhanced O3 during the grain-filling period.

3.2.6.1 Modelling ozone effects on evapotranspiration

Plant exposure to O3 decreases leaf transpiration due to stomatal closure (Temple,

1986; Bernacchi et al., 2011), which may have widespread implications for atmospheric

moisture and climate (Arnold et al., 2018; Lombardozzi et al., 2012). Data analysis was

conducted to examine the effect of O3 on cumulative evapotranspiration (CET) during

the exposure to the pollutant. CET was calculated as:

CET =
n∑
i=1

ETi (3.4)

where ET is canopy evapotranspiration, i is the day index and n is the number of days

after planting. Data from the variety Lennox was used to compare the differences in

CET between the Control, Chronic and Episodic treatment.

CET exhibited a significant response to O3 in both the Episodic and Chronic treat-

ment, which showed 6.2% and 13.4% lower end-of-season CET respectively in compari-

son with the Control (Fig. 3.2). Nevertheless, the O3 impact varied in magnitude with

time and the plant sensitivity to O3 was investigated according to the growth stage.

The crop cycle was separated into three stages, from seed germination (ZS 01) to the

first node stage (ZS 31) (Stage 1), the first node stage to the end of anthesis (ZS 69)

(Stage 2) and from the end of anthesis to harvest maturity (ZS 99) (Stage 3). We used

the Pearson test to examine the differences in CET between the Control and Chronic

as well as Control and Episodic treatment (Table 3.2). During Stage 1, there was a

weak, non-significant correlation between the two variables (p-value >0.05). At that

stage, only the plants in the Chronic treatment were fumigated with O3. This shows

that the effect of O3 before ZS 31 was not significant. On the other hand, during Stages

2 and 3 there was a significant positive correlation in the difference in CET between

Control and Chronic and Control and Episodic treatment (i.e. p-value < 0.001 in both

stages). This implies that the O3 impact was significant during Stages 2 and 3. Thus,

the negative effects of O3 on wheat were considered to initiate at the onset of stem

elongation (ZS 31) until crop maturity.
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Figure 3.2: Cumulative evapotranspiration (CET) (mm) of wheat variety Lennox from plant-
ing to harvest for Control, Chronic and Episodic O3 treatment.

Table 3.2: Correlation coefficients for difference in cumulative evapotranspiration (CET) be-
tween Control and Chronic as well as Control and Episodic O3 treatment. Stage 1 is from seed
germination (ZS 01) to first node (ZS 31), Stage 2 is from first node to end of anthesis (ZS 69)
and Stage 3 is from end of anthesis to harvest maturity (ZS 99).

corr p-value Test

Stage 1 0.28 0.28 Pearson
Stage 2 0.98 <0.001 Pearson
Stage 3 0.97 <0.001 Pearson

Next, we calculated the percentage change in CET (pCET) between the control and

O3-fumigated plants as follows:

pCEToz = (CETcc − CEToz)/CEToz (3.5)

pCETep.oz = (CETcc − CETep.oz)/CETep.oz (3.6)

where pCEToz is the percentage change in CET between the Control and Chronic

treatment and pCETep.oz is the percentage change in CET between the Control and

Episodic treatment. Since only the differences after Stage 1 were considered, we nor-

malized pCEToz and pCETep.oz by subtracting their value at the end of Stage 1. We

also calculated the AOT40 index for the same time period (i.e. for Stages 2 and 3).

Fig. 3.3 (a) shows that the plants in the Episodic treatment were significantly more
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Figure 3.3: (a) Percentage change in cumulative evapotranspiration (pCET) of wheat variety
Lennox between Control and Chronic treatment as well as Control and Episodic O3 treatment
plotted against AOT40; (b) pCET expressed as function of effective AOT40 (efAOT40) and
continuous black line is the regression: y= -0.021 + 0.018 x - 0.000356 x2 (R2=0.98, p<0.01).
All pCET values were calculated for Stages 2, 3 after normalization at the end of Stage 1.
AOT40 and efAOT40 were calculated for the same stages.

affected by the O3 exposure than the plants in the Chronic treatment and exhibited

higher values of pCET. In other words, the plants which started in the low O3 envi-

ronment and were transferred to high O3 at ZS 31 were more sensitive to the pollutant

than the plants which grew at high [O3] from emergence. Thus, the early fumigation

with O3 in the Chronic treatment decreased the plant sensitivity later in the season.

This is in accordance with previous studies which report that the priming of plants

can lead to improved performance at a subsequent abiotic stress event (Tanou et al.,

2012; Wang et al., 2014; Li et al., 2014). The plants in the Episodic treatment were not

fumigated with O3 at Stage 1 and exhibited higher sensitivity to the pollutant during

Stage 2.

3.2.6.2 Acclimation factor

The duration of plant exposure to O3 affected the relationship between pCET and

AOT40 (Fig. 3.3 (a)). We introduced the effective AOT40 index (efAOT40) which

accounts for the variability in the effect of O3 on wheat over time. The efAOT40 index
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represents the part of daily O3 exposure which is limiting for the plant growth and is

defined as:

efAOT40 =
n∑
i=1

(1− facli)DOE40i (3.7)

where n is the number of days in the growing season, i is the day index and facl is

an acclimation factor that accounts for the plant adjustment to O3 over time. facl is

a function of the number of days that DOE40 is above zero (NDoz), it is in the [0,1]

range and is updated in daily time step as follows:

facl = a1 ∗ f(NDoz) (3.8)

where a1 is an empirical constant and NDoz starts at zero at planting and is updated

in daily time step as follows:

NDoz(i) =

{
NDoz(i−1) + 1 DOE40i > 0

NDoz(i−1) DOE40i = 0
(3.9)

where i is the day after planting and i-1 is the previous day.

Due to incomplete understanding of the plant acclimation process to chronic O3

stress, different equations were tested for the parameterization of facl. We evaluated

the fit of a linear, quadratic and square root function in the expression of facl against

NDoz (Table 3.3). The parameter a1 was calibrated to minimize RMSE for pCET

between the Chronic and Episodic treatment when expressed against efAOT40. RMSE

was calculated as follows:

RMSE =

√∑n
i=1(pCETozi − pCETep.ozi)2

n
(3.10)

where i is the day index and n is the number of observations.

For the derivation of Eq. 3.8, the linear shape was selected since it provided the

lowest RMSE between all functions tested (Table 3.3). The relationship between pCET

and efAOT40 was described by a second degree polynomial model (Fig. 3.3 (b)), which

was used in GLAM-ROC to estimate the O3-induced reduction on potential ET (i.e.

the canopy ET rate under optimal growth conditions). Detailed information about the

incorporation of the above-mentioned formula into the model is given in the B.0.3.

Table 3.3: Evaluation of different line shapes in the expression of acclimation factor (facl) as
function of the number of days of O3 exposure (NDoz). The empirical parameter a1 was cali-
brated to minimize RMSE between pCEToz and pCETep.oz when expressed against efAOT40.

Line shape Function Calibrated value of a1 RMSE

Linear a1 NDoz 0.006 0.0124
Quadratic a1 NDoz

2 0.0001 0.0182
Root a1

√
NDoz 0.05 0.0136



§3.2 Materials and methods 73

3.2.6.3 Ozone effects on transpiration efficiency and partitioning to grains

Exposure to O3 induces up-regulation of the plant antioxidant metabolism which is

energy demanding and the plants suppress their growth to use their resources for re-

ducing the stress damage (Betzelberger et al., 2010; Fatima et al., 2019). As a result TE

decreases, since the plant growth reduction exceeds the reduction in ET (VanLoocke

et al., 2012). HI also decreases due to reduced allocation of assimilates to the grains

(Pleijel et al., 2014).

In GLAM-ROC, we applied O3-induced modifications on both TE and the rate of

increase of HI (dHI/dt). TE is defined as:

TE = min(
ET
V PD

,ETN,max) (3.11)

where ET is normalised transpiration efficiency in Pa, VPD is vapour pressure deficit

(kPa), and ETN,max is the maximum transpiration efficiency in g kg-1. In this study,

temperature and humidity were controlled (see Table 3.1) and VPD did not fluctuate

significantly for most of the days in the growing season, thus for simplicity TE was

set equal to ETN,max. The effect of O3 on TE was related to the effective [O3] index

(ef[O3]). This index is calculated similarly to efAOT40 to simulate the plant adjustment

to chronic O3 stress which leads to optimization of biomass productivity over time.

ef[O3] is a fraction of daily [O3] defined as follows:

ef [O3] = (1− facl) · [O3] (3.12)

where [O3] is the daily mean O3 concentration during the daylight hours and facl is

calculated in Eq. 3.8. For dHI/dt, no acclimation mechanism was assumed to impact

on the allocation of assimilates to the grains, thus the effect was related to [O3].

The effects of O3 on both TE and dHI/dt were initiated above 10 ppb which is

the O3 level of the pre-industrial period (Marenco et al., 1994). This threshold was

set since GLAM-ROC is designed to simulate the effect of O3 pollution on wheat in

comparison with the pre-industrial period. TE and dHI/dt decreased linearly above

the 10 ppb [O3] threshold as follows (Fig. 3.4): ef[O3] is a fraction of daily [O3] defined

as follows:

TEoz
TEc

=

{
1 [O3] < 10ppb

c1 · ef [O3] + d1 [O3] ≥ 10ppb
(3.13)

(dHI/dt)oz
(dHI/dt)c

=

{
1 ef [O3] < 10ppb

c2 · ef [O3] + d2 ef [O3] ≥ 10ppb
(3.14)

where TEc, TEoz, (dHI/dt)c and (dHI/dt)oz are the control and O3-limited TE and
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dHI/dt respectively.

Feng et al. (2008) summarizes various experiments with wheat plants fumigated

with different O3 levels. The study finds that the aboveground biomass is decreased

by an average of 18% at [O3] of 72 ppb in comparison with carbon-filtered treatments.

Similarly, HI reduces by 9% at the same [O3] level. Following the above findings, the

slope and intercept of Eq. 3.13, 3.14 were calculated accordingly and their values are

given in Table B.1.
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Figure 3.4: O3-induced reduction (a) in transpiration efficiency (TE) relative to control ex-
pressed against effective daily mean [O3] (ef[O3]), (b) in the rate of increase of HI (dHI/dt)
relative to control expressed as function of daily mean [O3].

3.2.7 Model calibration and evaluation measures

The GLAM-ROC model was calibrated against the observed data for KWS Bittern

wheat in the Control treatment. The metric used for the model calibration was the

absolute error (AE) according to the following formula:

AE = |O − S| (3.15)

where O and S are the observed and simulated values of the compared variables. The

model performance was evaluated with the absolute percent error between the observed

and simulated value of all compared variables.
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3.2.8 Calibration

The phenology of the model was set to meet the observed anthesis and maturity dates

of the Control treatment. This was done to avoid any model bias from sources differ-

ent than the O3 stress effects. The maximum transpiration efficiency (ETN,max) was

calibrated with the use of an optimizer which selected the value that minimized AE

between the end-of-season observed and simulated above-ground biomass in the Con-

trol treatment. Similarly, the rate of change of harvest index (dHI/dt) was selected

by the optimizer to minimize AE between the observed and simulated grain yield of

the Control treatment. The step for the runs of the optimizer was 0.1 for ETN,max and

0.0005 for dHI/dt. The ranges and values of the calibrated parameters are provided

in Table B.2. All other parameter values were taken from Droutsas et al. (2019). The

yield gap parameter (YGP) was set to one since O3 was the only yield-limiting factor.

3.2.9 Sensitivity analysis

We performed a sensitivity analysis to test GLAM-ROC in a wide range of O3 concen-

trations. The relative O3 damage to yield was examined in comparison with the yield

at the baseline O3 concentration. In the meta-analysis of Pleijel et al. (2018), average

[O3] of charcoal-filtered air treatments was 13.3 ppb. We used the same baseline for

direct comparison between the two studies. We modified all hourly O3 concentrations

in the Chronic and Episodic treatment by the appropriate value, such that the average

[O3] during the growing season was [13.3, 23.3, ..., 83.3 ppb]. We run GLAM-ROC

at the different O3 concentration levels by keeping all other environmental conditions

constant. The relative O3 damages to yield in the Chronic and Episodic treatment

were calculated as percentage differences in yield from the baseline simulation.

3.3 Results

3.3.1 Evaluation of GLAM-ROC model skill

Exposure to O3 significantly decreased the plant biomass and yield of KWS Bittern

wheat in the experiments as well as the total evapotranspiration (TET) and WUE. All

measured and simulated values of the compared variables and their percent error are

shown in Table 3.4. The model reproduced the observed plant biomass response in

both O3 treatments (Fig. 3.5(a)). In the Chronic treatment, the percent error between

the observed and simulated biomass at harvest was 5.02%. In the Episodic treatment,

biomass was simulated to within 1% of observation. Thus, the model closely followed

the effect of O3 stress on wheat biomass in both durations of exposure by accounting

for O3-induced reductions in canopy ET and TE.
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Figure 3.5: Observed (wheat variety KWS Bittern) and simulated (a) above-ground biomass
and (b) grain yield at harvest in Control, Chronic and Episodic O3 treatment. Error bars are
standard errors of means in the observations.

Regarding the grain yield, GLAM-ROC accurately estimated the observed decreases

in both the Chronic and Episodic treatment. Yield was simulated to within 1% of

observation in both the Chronic and Episodic treatment. Reduction in HI was also

noticed in the Chronic but not the Episodic treatment (Fig. 3.6). This was due to

lack of O3 fumigation during the grain filling period in the Episodic treatment. The

model reproduced the observed plant response to HI in the Episodic treatment where

the simulated value was within 1% of observation. In the Chronic treatment, HI was

overestimated by 5.06%.

Finally, GLAM-ROC overestimated the O3-induced reduction in TET in the Chronic

treatment and the percent error was 20.17% (Fig. 3.7 (a)). The model skill was higher

in the Episodic treatment where the percent error was 7.64%. WUE was significantly

overestimated in the Chronic treatment, where the percent error was 32.97 % (Fig. 3.7

(b)). In the Episodic treatment, GLAM-ROC exhibited improved skill and the percent

error for WUE was 7.77%.
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Figure 3.6: Observed (wheat variety KWS Bittern) and simulated harvest index in Control,
Chronic and Episodic O3 treatment. Error bars are standard errors of means in the observations.

3.3.2 Sensitivity of GLAM-ROC to different O3 concentrations

Yield reduction was higher in the Chronic than the Episodic exposure in all O3 con-

centrations (Fig. 3.8). In the Episodic treatment, yield reduced in an almost linear

fashion for every 10 ppb increase in [O3] from the baseline. Using linear regression of

the data points, yield loss was found to increase by 0.28% per ppb increase in [O3] (re-

gression not shown). In the Chronic treatment, yield loss increased by 0.54% per ppb

increase in [O3] (regression not shown), however the standard error (se) of the slope

was 177.3% higher than the Episodic treatment (i.e. se of slope was 0.0366 in Chronic

against 0.0132 in Episodic treatment). This means that in the Chronic treatment, the

reduction in grain yield diverted substantially from the linear line depending on [O3].

The highest yield loss was estimated when the difference from the baseline [O3] value

increased from 30 to 40 ppb. In absolute numbers, the grain yield of wheat was most

affected when [O3] increased from 43.3 to 53.3 ppb. Within that concentration range,

the average damage to yield was 0.96% per ppb increase in [O3]. In the Episodic treat-

ment, the same [O3] range gave the highest damage to yield with 0.39% loss per ppb

increase in [O3].

We also applied linear regression to all data points in the Chronic and Episodic

treatment and compared the regression line to those developed in the meta-analysis of

Pleijel et al. (2018) and Broberg et al. (2015) (Fig. 3.8). The three lines were in close

agreement with each other and the slope of this study was -0.41 against -0.36 of Pleijel

et al. (2018) and -0.47 of Broberg et al. (2015). Thus, the studies suggest 0.41%, 0.36%

and 0.47% increase in wheat yield loss respectively per ppb increase in [O3] above the
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Figure 3.7: Observed (wheat variety KWS Bittern) and simulated difference from control in
end-of season (a) total evapotranspiration (TET) and (b) water use efficiency (WUE) in Chronic
and Episodic O3 treatment. Error bars are standard errors of means in the observations.

baseline. However, it should be noted that the lower O3 damage suggested by Pleijel

et al. (2018) in comparison to Broberg et al. (2015) may be explained by that the former

study used wheat yield data only from charcoal-filtered and non-filtered air treatments,

whilst the latter study used also treatments with elevated O3 levels. In addition, the

meta-analysis of Feng et al. (2008) estimates that the grain yield of wheat is reduced by

17.5 and 29% at average [O3] of 43 and 72 ppb respectively. Both findings are in very

close agreement with the regression line of our study which predicted the loss in grain

yield with less than 3% difference from the reported values (Fig. 3.8). Overall, GLAM-

ROC was in accordance with the existing meta-analysis studies and closely followed

the measured effect of O3 on the grain yield of wheat.

3.3.3 GLAM-ROC comparison with ozone exposure response func-

tion

A large number of studies estimate the regional or global effect of O3 on crop produc-

tivity based on a statistical response function (SRF) between the relative crop yield
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Figure 3.8: GLAM-ROC estimations of O3-induced grain yield loss of wheat at different O3

concentrations in Chronic (circles) and Episodic treatment (triangles) in comparison with base-
line. Solid black line is linear regression of all data points in Chronic and Episodic treatment,
red and green dashed lines are linear regressions in meta-analysis of Pleijel et al. (2018) and
Broberg et al. (2015) respectively. Star data points are O3-induced yield losses at 43 and 72
ppb [O3] in meta-analysis of Feng et al. (2008) and error bars are 95% confidence intervals.
The two star data points are presented using their absolute [O3] value on x axis instead of the
difference from baseline, since this was not reported.

and the level of O3 exposure (e.g. Hollaway et al., 2012; Ghude et al., 2014; Sharma

et al., 2019). This formula assumes linear reduction in grain yield in relation to AOT40.

The modelling methodology introduced in GLAM-ROC assumes non-linear O3 effect

on yield with increased exposure to the pollutant. The two methods were evaluated

against the observed data for KWS Bittern wheat. In the SRF model, the function for

wheat was taken from Mills et al. (2007). The AOT40 index was accumulated during

Stages 2 and 3, since these days were the most O3-sensitive (i.e. the last 68 days of the

crop season).

In GLAM-ROC, the grain yield in the Chronic treatment was 80.7% of the Episodic,

which was less than 1% different from the observed value (Fig. 3.9). In the SRF model,

the Chronic: Episodic yield ratio was 0.35, underestimated by 56.5%. This was due to

the overestimation of the O3 damage to yield at a greater extent in the Chronic than

the Episodic treatment. Nevertheless, no acclimation mechanism is considered in the

SRF model and the O3 damage to yield is linearly extrapolated as AOT40 increases.

As a result, the observed non-linear plant response with increased exposure to O3 stress

affected the skill of the model. Thus, GLAM-ROC improved upon the SRF model in the

estimation of the Chronic: Episodic yield ratio by accounting for the plant acclimation

to chronic O3 stress at variable duration of exposure.
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Figure 3.9: Observed and simulated grain yield in Chronic relative to Episodic treatment.
SRF is statistical response function for wheat taken from Mills et al. (2007).

3.4 Discussion

We developed and evaluated the GLAM-ROC model to simulate the effect of O3 on

wheat growth and development. The model successfully reproduced the O3-induced

damage to wheat biomass and yield in both the Episodic and Chronic treatment. The

plant biomass was simulated to within 6% of observation in both durations of exposure.

Similarly, the simulated grain yield was less than 1% different from the measurements.

The model also closely followed the observed effects of O3 on HI, ET and WUE.

The modelling approach followed here is simpler than stomatal flux-based methods

commonly used in crop models. Such method was avoided since it strongly depends on

stomatal conductance, a trait which is highly complex (Buckley , 2017) and not simple to

incorporate in process-based crop models. Difficulties may also be faced in crop models

with complex O3 schemes regarding their parameterization for large scale applications

(Emberson et al., 2018). GLAM is a large area crop model and unwarranted complexity

should be avoided (Challinor et al., 2018). In addition, our approach − even relying

on an exposure-based methodology − overcomes some limitations of the statistical

response function. This is due to relating AOT40 to the potential ET rate instead

of using the index to estimate grain yield loss directly. ET and AOT40 have been

previously seen to correlate significantly under well-watered conditions (Jaudé et al.,

2008; VanLoocke et al., 2012). Nevertheless, the use of AOT40 disregards the effect of
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O3 stress on ET below 40 ppb. Bernacchi et al. (2011) and VanLoocke et al. (2012)

exposed soybean plants to various O3 concentrations and showed that the pollutant

reduces canopy ET significantly for exposures above 40 ppb. Since wheat and soybean

exhibit similar sensitivity to O3 (Mills et al., 2007), in our study we also related the

reduction in canopy ET to the AOT40 index.

In GLAM-ROC, the O3-induced decrease in ET is estimated in comparison with the

same plant growing in optimal environment. Under water stress, the effect of O3 on crop

growth can be reduced due to decreased stomatal conductance and lower uptake of the

pollutant by the leaves (Khan and Soja, 2003; Feng et al., 2008). Both O3 and drought

reduce the daily canopy transpiration rate in the model, the minimum of which is

considered as the actual transpiration (i.e. the effect of drought (Challinor et al., 2004)

and O3 (this study) on ET are estimated independently). Thus, if limited soil water

suppresses transpiration to a greater extend than O3, there will be no additive effect of

the pollutant on canopy ET. In other words, the O3 damage to crop transpiration and

growth decreases with higher levels of water stress in GLAM-ROC. The accuracy of

this approach should be tested against experimental data with wheat exposed to both

stressors simultaneously. In this study, GLAM-ROC was only evaluated for the effect

of O3 on well-watered wheat crops. Thus, the model can be currently used only in

regions where adequate rainfall prevents water stress or where wheat is fully irrigated.

Elevated CO2 concentrations can also reduce stomatal conductance and protect against

O3 pollution (Yadav et al., 2019). Currently, GLAM-ROC does not account for the

effect of elevated CO2 on crop growth and yield, thus it cannot be used for future

environments with rising CO2 concentrations (i.e. the model has to be calibrated

each time for the given CO2 level). Following the addition of the CO2 fertilization

mechanism, the interaction between elevated CO2 and O3 should be addressed to allow

for the estimation of crop performance and yield under future climate change conditions.

GLAM-ROC uses the acclimation factor to simulate the plant adaptation to chronic

O3 stress. This was necessary for capturing the differences in water consumption and

biomass productivity between the Chronic and Episodic treatment. The plants in the

Chronic treatment exhibited higher values of water consumption than the Episodic

during their common period of O3 fumigation (i.e. at Stage 2). Nevertheless, only the

plants in Chronic treatment were exposed to high O3 during Stage 1. The lack of previ-

ous exposure to the stressor in the Episodic treatment increased the plant sensitivity at

Stage 2, thus reducing the water consumption rates. This difference in plant behaviour

could not be simulated without considering the effect of plant acclimation to chronic

O3 exposure. The acclimation factor was calculated according to the number of days

of O3 fumigation, thus modifying the plant sensitivity to O3 at different durations of

exposure. The same factor simulated the differences in biomass productivity between

the two O3 exposures through modifying the effect on TE. The SRF model does not

account for the plant acclimation mechanism and overestimated the relative damage to
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grain yield between the Chronic and Episodic treatment by 56.5%.

In GLAM-ROC, the acclimation factor was related to the 40 ppb threshold (Eq.

3.8, 3.9), which means that no plant acclimation was considered for exposure to O3 be-

low that level. This threshold was chosen since it is the most commonly used threshold

for relating the O3 exposure to loss in crop yield (e.g., Fuhrer et al., 1997; Mills et al.,

2011; Sharma et al., 2019). However, it is unclear if this is the optimal threshold for

wheat acclimation to the pollutant or if it needs to be adjusted in the future. In our

study, the O3 concentrations in the chambers were either very low (below 10 ppb in the

Control treatment) or significantly higher than 40 ppb during exposure to the pollutant

in the Chronic and Episodic treatments. Thus, decreasing the acclimation threshold

does not change the model results in comparison with the observations (Section 3.3.1).

In addition, the sensitivity analysis (Section 3.3.2) indicates that this threshold is ap-

propriate, since the model can be reliably used for simulating grain yield losses for O3

exposure below 40 ppb. Nevertheless, since wheat performance is affected by O3 below

40 ppb (Pleijel , 2011), the plant acclimation threshold may need to be reconsidered in

the future.

The plant sensitivity to O3 varies also according to the growth stage. O3 did not

exhibit significant effect on wheat from plant emergence to ZS 31, at least in terms of

water consumption. Thus, the O3 damage to wheat was simulated to initiate at ZS

31. On the other hand, the period from anthesis to the end of grain filling is the most

O3-sensitive for grain yield reduction (Lee et al., 1988; Pleijel et al., 1998; Soja et al.,

2000). The Episodic treatment was not fumigated with high O3 after anthesis and HI

was less than 1% different from the Control. In the Chronic treatment, HI was 14.3%

lower than the Control due to high O3 exposure during grain filling. GLAM-ROC was

able to reproduce the O3-induced reduction to yield by slowing down the daily rate of

increase of HI (dHI/dt) based on the [O3] level. As a result, the model followed the

observed decrease in HI and successfully simulated the O3 impact on grain yield at

maturity.

The development and evaluation of GLAM-ROC were based on controlled-environment

chamber experiments where the environmental conditions cannot perfectly match the

field. For instance, the plants were grown in pots instead of being rooted on the ground.

Nevertheless, the meta-analysis of Feng and Kobayashi (2009) revealed no significant

differences in the yield response to O3 between pot and ground-rooted wheat plants. In

addition, the daily O3 concentration in the chambers did not match the diurnal varia-

tion experienced under ambient conditions (e.g. Pawlak and Jaros lawski , 2015; Wang

et al., 2017). However, Harmens et al. (2018) exposed a modern wheat variety to vari-

ous background O3 concentrations and different peak O3 episodes and showed that the

relationship between the reduction in grain yield and the accumulated stomatal O3 flux

could be explained by the same slope irrespective of the temporal O3 profile. Moreover,

in our study the fumigation in the Chronic treatment lasted for the full crop cycle (i.e.
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107 days) with an average concentration of 78.8 ppb, which can be unrealistic for most

parts of the world. The highest frequency of O3 pollution episodes (i.e. daily average

8-h [O3] of at least 75 ppb) in the summertime for the year 2000 was 38 days in North

America (Lei et al., 2012). The Episodic treatment was closer to these conditions with

the total duration of plant O3 exposure being 33 days. The real dynamics of surface

O3 in polluted regions are likely to be between the Episodic and Chronic treatments of

this study. In addition, the average CO2 concentration in the chambers was around 530

ppm and this concentration level was experienced in all treatments. For this reason,

CO2 was not accounted as an additional varying factor in the estimation of O3 damage

to wheat.

Our sensitivity analysis suggested 0.41% average yield loss per ppb increase in O3

concentration above 13.3 ppb, which is directly comparable with existing meta-analysis

studies (Fig. 3.8). In the Chronic treatment, the model estimated a 0.96% maximum

damage to yield per ppb increase in O3 concentration, which occured when [O3] was in

the 43.3 - 53.3 ppb range. In the Episodic treatment, the same concentration range gave

the maximum damage to yield per ppb increase in [O3], which was considerably lower

at 0.39%. Overall, the yield loss per ppb increase in [O3] varied from 0.17% to 0.96%,

depending on the treatment (i.e. Chronic vs. Episodic) and the [O3] level. Hence, the

duration of exposure to O3 stress is a significant factor influencing the effect of the

pollutant on wheat productivity and yield. Longer duration of exposure to O3 implies

higher reduction in yield, however the relative damage may decrease as the duration

increases. The non-linear grain yield vs. [O3] pattern can result from enhanced plant

acclimation with increased duration exposure to the pollutant. Thus, we believe that

the plant acclimation process should be taken into account for robust estimation of the

chronic effect of O3 on crop growth, productivity and yield.

3.5 Conclusion

Exposure to O3 significantly decreased the wheat biomass and grain yield in the ex-

periments. The GLAM-ROC crop model was developed and evaluated for the effect

of O3 on wheat growth and development. A statistical relationship was introduced to

estimate the reduction in canopy evapotranspiration based on the O3 exposure (i.e.

AOT40 index). Decreases in transpiration efficiency and harvest index were also in-

corporated into the model according to the O3 concentration. The model successfully

reproduced the observed O3 damage to biomass and yield of KWS Bittern wheat in

both the Episodic and Chronic treatment. Accounting for the plant acclimation to

chronic O3 stress was necessary for good model skill. The acclimation process was

empirically incorporated with the use of an acclimation factor based on the days of

O3 exposure. This allowed the simulation of plant adjustment to O3 over time which

reduced the relative damage to biomass and yield. The statistical response function
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ignored the acclimation process and overestimated the Chronic: Episodic grain yield

ratio. It is concluded that the plant acclimation to chronic O3 stress is significant and

should be taken into account for the estimation of the O3 damage to wheat growth and

productivity.
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Jaudé, M. B., N. Katerji, M. Mastrorilli, and G. Rana (2008), Analysis of the effect
of ozone on soybean in the mediterranean region: I. the consequences on crop-water
status, European Journal of Agronomy, 28 (4), 508–518. 3.4

Khan, S., and G. Soja (2003), Yield responses of wheat to ozone exposure as modified
by drought-induced differences in ozone uptake, Water, Air, and Soil Pollution,
147 (1-4), 299–315. 3.4



References 89

Kollist, H., S. I. Zandalinas, S. Sengupta, M. Nuhkat, J. Kangasjärvi, and R. Mit-
tler (2018), Rapid responses to abiotic stress: priming the landscape for the signal
transduction network, Trends in plant science. 3.1

Lee, E. H., D. T. Tingey, and W. E. Hogsett (1988), Evaluation of ozone exposure
indices in exposure-response modeling, Environmental Pollution, 53 (1-4), 43–62. 3.4

Lei, H., D. J. Wuebbles, and X.-Z. Liang (2012), Projected risk of high ozone episodes
in 2050, Atmospheric environment, 59, 567–577. 3.4

Li, X., J. Cai, F. Liu, T. Dai, W. Cao, and D. Jiang (2014), Cold priming drives
the sub-cellular antioxidant systems to protect photosynthetic electron transport
against subsequent low temperature stress in winter wheat, Plant Physiology and
Biochemistry, 82, 34–43. 3.2.6.1

Lombardozzi, D., S. Levis, G. Bonan, and J. Sparks (2012), Predicting photosynthe-
sis and transpiration responses to ozone: decoupling modeled photosynthesis and
stomatal conductance., Biogeosciences Discussions, 9 (4). 3.2.6.1
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Abstract

Ozone has been shown to have a significantly negative impact on wheat yields. India

is one of the countries with the highest levels of surface ozone pollution due to various

anthropogenic activities which emit air pollutants into the atmosphere. Wheat is a

major crop in India during the Rabi season, a period which coincides with high ground-

level ozone concentrations. Process-based crop modelling approaches can be used to

quantify the effect of ozone on crop yield. Mills et al. 2018 used a stomatal flux model

to estimate a mean 12.2% wheat yield loss in India due to ozone pollution for the years

2010-2012. Here, we used a process-based crop model, GLAM-ROC, to suggest a higher

mean ozone effect (16.2%) on wheat yield in India for the years 1980-2009. We also

showed that the ozone damage to yield exhibits large state-to-state variation as well as

significant spatial differences in each state. For instance, in Uttar Pradesh, the state

with the highest share of total wheat production, the ozone-induced yield loss varied

between 5.7 and 27.6% for the year 2000. Reduction in the levels of ozone pollution can

lead to significant decrease in wheat yield loss, with 25, 50 and 75% decrease in ozone

lowering yield damage from 16.2% to 11.8, 4.9 and 1.3% respectively. Overall, our
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results show that ozone stress causes significant wheat yield loss in India, the effect of

the pollutant exhibits considerable spatial variation and effective regulation is needed

to reduce the levels of ozone and increase wheat productivity in the future.

4.1 Introduction

Surface ozone (O3) is an important air pollutant globally causing significant damage

to crop production (Van Dingenen et al., 2009; Avnery et al., 2011). O3 interacts with

vegetation by being taken up by the leaves of the plants throught the stomatal pores,

which are openings on the surface of the leaves used for gas exchange. In polluted

regions of the world, O3 diffuses into the leaves together with CO2 and causes negative

effects on plant growth, development and productivity (Ainsworth et al., 2020).

Exposure to chronic O3 concentration decreases leaf photosynthesis (Pell et al.,

1992) as well as stomatal conductance and transpiration (Temple, 1986; Lombardozzi

et al., 2013) and accelerates the rate of leaf senescence (Pell et al., 1997; Osborne

et al., 2019). As a result, the plant biomass is reduced as well as the photosynthate

allocation to the grain, leading to lower productivity and loss in grain yield (Wilkinson

et al., 2012). The negative effects of O3 on plants depend upon the concentration level

of the pollutant, the time and duration of exposure (Heath et al., 2009), the plant

sensitivity (Van Goethem et al., 2013) and the stage of plant development (Tiedemann

and Pfähler , 1994; Mulholland et al., 1998).

Wheat exhibits high sensitivity to O3 as demonstrated repeatedly in various ex-

perimental studies (e.g., Heagle et al., 1979; Farage et al., 1991; Hansen et al., 2019).

Enhanced concentrations of the pollutant reduce the crop’s yield and alter the nutri-

tional properties of the grains (Broberg et al., 2015). In India, during the rabi season,

58% of the crop area is used for the cultivation of wheat (Rao et al., 2015), which is

typically sown in November-December and harvested in February-March. The coun-

try also faces high O3 pollution levels, with the Indo-Gangetic plain being one of the

hotspots (Ghude et al., 2008), as well as the ’breadbasket’ of India. During the months

from February to June, high temperatures and increased solar radiation favour the

photochemical production of O3 (Deb Roy et al., 2009). This period also coincides

with the later stages of wheat development, which are the most O3-sensitive for grain

yield loss (Lee et al., 1988; Pleijel et al., 1998). Given that India is the second largest

producer of wheat globally (Mottaleb et al., 2019), the effect of O3 pollution on wheat

is a crucial issue of food security in the country.

During the recent years, studies have demonstrated the deleterious effect of O3 on

wheat productivity in India. Most studies to date are empirical and used a statistical

response function to relate the grain yield loss to the AOT40 index (i.e. Accumulated

ozone exposure above a threshold of 40 ppbv). Sinha et al. (2015) estimated 27-41%

reduction in wheat yield in the states of Punjab and Haryana for the years 2012-2013,
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using O3 data from a measurement site. Lal et al. (2017) expanded this analysis to

a wide network of O3 observation sites and estimated 4.2-15% annual yield loss due

to O3. Van Dingenen et al. (2009) and Avnery et al. (2011) estimated up to 28 and

30% average wheat yield loss respectively for the year 2000. Burney and Ramanathan

(2014) developed a statistical regression model and suggested that O3 and black carbon

(BC) have caused around 33% wheat yield loss in India for the year 2010.

There is a large range of results in the above studies and some more process-

based approaches have emerged recently to increase the confidence in the estimations.

These methods improve upon the statistical approaches by explicitly accounting for

the plant/environment interactions on crop growth and development during the whole

crop season (Emberson et al., 2018). Mills et al. (2018) used a stomatal flux model

to account for the plant O3 uptake and estimated a mean 12.2% wheat yield loss in

India due to O3 pollution for the years 2010-2012. Another recent method is taking a

process-based crop model as a starting point. In this study, we apply the GLAM-ROC

crop model (Chapter 3), to estimate the effect of O3 pollution on wheat yield in India

over a long time period (growing seasons 1980-2009). Our analysis considers all the

main wheat-growing areas in the country and accounts for over 90% of the total wheat

production. In addition, we estimate the spatial differences in the effect of O3 between

the states of India as well as between the different parts of each state. Finally, we assess

the potential decreases in wheat yield loss due to different levels of reduction in surface

O3 pollution.

4.2 Materials and Methods

4.2.1 Climate, ozone and crop data

Daily meteorological data were obtained from the AgMerra climate series (Ruane

et al., 2015). We used maximum and minimum temperature (°C) and solar radia-

tion (MJ/m2/day) for the years 1980-2010 in horizontal resolution of 0.25° x 0.25°.
Hourly surface ozone concentrations were obtained from the UKESM1 model, which

was developed and evaluated in Sellar et al. (2019). The predecessor of this model,

HadGEM2-ES, was evaluated for surface ozone concentrations over India in Hakim

et al. (2019). UKESM1 considers 360 days in the simulations, in the form of 12 months

× 30 days month-1. In order to ensure consistency with the climate data, we dupli-

cated all hourly ozone values on the last day of all months with 31 days and erased all

ozone concentrations from the 29th and 30th of February. Ozone was provided in 1.25°
x 1.875° horizontal resolution and was converted into 0.25° x 0.25° grids using the bilin-

ear interpolation method of the Climate Data Operator (CDO) software (Schulzweida,

2019). We also considered three different levels of reduction in O3 pollution: 25, 50

and 75%. For each reduction level, we multiplied all hourly O3 concentrations by the
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respective value to derive the decreased O3 concentrations.

Historical wheat yield data were obtained from the ICRISAT district-level database

(ICRISAT , 2015), where wheat yields were calculated from area and production infor-

mation during the growing seasons of years 1980-2009. The following six states were

considered in our analysis: Haryana, Madhya Pradesh, Uttar Pradesh, Punjab, Ra-

jasthan and Bihar. We focused on these six states since they accounted for at least

90% of the total wheat production in each year. The wheat yield data were converted

from districts to 0.25° x 0.25° resolution grids using the ’raster’ package (Hijmans et al.,

2015) of Rv3.4.1 (Team, 2017). In order to remove the impact of technology on histor-

ical wheat productivity, the yield data were also detrended using the smoothing spline

methodology of the R package ’dplR’ (Bunn et al., 2019).

4.2.2 Crop model

The GLAM-ROC (GLAM - Relative Ozone Concentrations) crop model was used to

estimate the O3-induced damage to wheat grain yield in India. GLAM-ROC is the

version of the GLAM-Parti crop model (Chapter 2), which incorporates the effect of

ground-level O3 pollution on crop growth and development (Chapter 3). The model was

developed based on the General Large Area Model for annual crops (GLAM) (Challinor

et al., 2004), which is a relatively simple model designed to operate on the spatial scale

of climate models (Challinor et al., 2003).

GLAM-ROC uses transpiration efficiency to simulate crop growth and allometric

relationships for partitioning the crop biomass to the plant compartments. The daily

potential evapotranspiration is calculated by the Priestley-Taylor approach and is parti-

tioned into potential evaporation and potential transpiration. The actual transpiration

is computed from the potential transpiration rate by taking into account the soil water

content. The transpiration is multiplied by the transpiration efficiency to return the

daily biomass growth. In this study, the canopy SLA was determined according to

the daily maximum temperature events accumulated during the crop growing season

(Droutsas et al., 2019). This equation was chosen since it was designed for high tem-

perature environments similar the ones encountered in India. In addition, given that

over 90% of wheat in India is irrigated (Koehler et al., 2013), fully irrigated conditions

were considered for the model runs.

4.2.3 Ozone concentrations and metrics

GLAM-ROC requires daily mean O3 concentration and the AOT40 index (Accumulated

ozone exposure above a threshold of 40 ppbv) for the model runs (Chapter 3). Both

metrics are calculated for the 16 hours with the highest O3 concentration in each day
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(i.e. the daylight hours). AOT40 is computed as follows:

AOT40 =

n∑
i=1

DOE40i (4.1)

where n is the number of days in the growing season, i is the day index and DOE40 is

the daily O3 exposure (ppmh) defined as:

DOE40 =
16∑
j=1

max([O3]j − 40ppb, 0) · 0.001 ppmh ppbh−1 (4.2)

where [O3] is the one-hour mean O3 concentration (ppb) and j is the hour index.

Fig. 4.1 shows the spatial average and maximum value of the mean O3 concentra-

tions (16-hour) during the wheat growing season (November - April) for the six states

considered in this study. The spatially averaged mean O3 concentrations exhibit an

increasing trend in the states of Bihar, Madhya Pradesh and Rajastan and decreasing

in Haryana, Punjab and Uttar Pradesh. The spatial maximum of the mean O3 con-

centrations is increasing in all states, with Bihar exhibiting the highest and Punjab the

lowest rate of change over time. This shows that the mean O3 concentrations do not

exhibit a consistent trend in all states for the November to April time period, however,

the O3 pollution episodes have increased in magnitude in all states over time.
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Figure 4.1: UKESM1 model estimations of spatial average (solid lines) and maximum value
(dashed lines) of the 16-h mean O3 concentration in the states of Bihar, Haryana, Madhya
Pradesh, Punjab, Rajasthan and Uttar Pradesh during the wheat growing season (November -
April) for the years 1980-2010.
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4.2.4 Performance metrics

For the calibration and evaluation of the model performance, we used the root mean

square error (RMSE), the normalized root mean square error (nRMSE) and the mean

percent difference (MPD) as follows:

RMSE =

√√√√√ n∑
i=1

(Pi −Oi)2

n
(4.3)

nRMSE =
RMSE

O
∗ 100 (4.4)

MPD =

n∑
i=1

( |Oi−Pi|
Oi

)

n
∗ 100 (4.5)

where Pi and Oi are the estimated and observed values respectively, Ō is the mean of

observations and n equals the number of observations.

4.2.5 Model calibration

For the calibration of the GLAM-ROC model, the yield gap parameter (YGP) was used

to minimize the RMSE between the observed and simulated grain yield in each grid cell

included in the analysis on the first year of the simulations (i.e. growing year 1980).

YGP is in the [0-1] range and accounts for all parameters that influence crop yield and

are not explicitly simulated by the model (e.g. limited soil nutrients, pests, diseases,

non-optimal management). It (YGP) is multiplied with the simulated grain yield at

maturity to reduce production from the attainable to the actual level. Moreover, the

values of normalized transpiration efficiency (ET), maximum transpiration efficiency

(ETN,max) and the rate of change of harvest index (dHI/dt) are provided in Table C.1.

All other parameter values are taken from Chapter 3. Irrigated wheat is usually sown

around mid-November (Prasad and Nagarajan, 2004), thus the 15th of November was

chosen as the planting date for the model runs.

4.2.6 GLAM-ROC estimation of ozone effect on wheat

The O3-induced damage to wheat yield was estimated by running GLAM-ROC with

the parameterization used for the model evaluation, but ignoring the effect of O3 stress

on wheat growth and development. The relative yield loss (RYL) from O3 pollution

was defined as follows:

RY L = (1− Yoz
Yc

) ∗ 100 (4.6)

where Yoz and Yc are the simulated grain yields with and without the O3 effect respec-

tively.
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4.3 Results

4.3.1 Evaluation of GLAM-ROC model performance

The modelled yield times series were compared against the observations for the wheat

growing seasons 1980 - 2009 (Fig. C.1). The values of the metrics used for the model

evaluation are presented in Table 4.1. Across the six states, RMSE for yield ranged

from 148.0 kg ha-1 in Madhya Pradesh to 324.3 kg ha-1 in Haryana. When RMSE

was normalized by the observed mean yield, the lowest error was observed in Punjab

with 9.6%. Haryana, Madhya Pradesh and Uttar Pradesh exhibited an error less than

15%, whilst Bihar and Rajasthan showed nRMSE of 17.2 and 21.9% respectively. The

lowest MDP was observed in Punjab (7.7%). Bihar, Haryana, Madhya Pradesh and

Uttar Pradesh exhibited MDP lower than 15%, whilst in Rajasthan MPD was less

that 20%. We followed the ranking of Hammad et al. (2018) (i.e. in their study, the

CSM-CERES-Maize Model was evaluated for maize growth and yield in Pakistan) and

considered the GLAM-ROC model simulations as very good in Punjab (i.e. nRMSE

and MDP < 10%) and good in all other states (i.e. nRMSE and MDP < 20%). Only

in Rajastan, nRMSE was higher than 20% (21.9%).

Table 4.1: Root mean square error (RMSE), normalized root mean square error (nRMSE)
and mean percent difference (MPD) between observed and simulated (GLAM-ROC) average
wheat yields in the states of Bihar, Haryana, Madhya Pradesh, Punjab, Rajasthan and Uttar
Pradesh for the growing seasons 1980-2009.

RMSE nRMSE MPD State

223.6 17.2 13.9 Bihar
324.3 13.9 10.5 Haryana
148.0 14.8 10.9 Madhya Pradesh
262.5 9.6 7.7 Punjab
311.3 21.9 19.5 Rajasthan
233.7 14.8 11.3 Uttar Pradesh

Overall, the above results demonstrate that the model was suitable for simulating

wheat yields in India during the growing seasons 1980-2009. The model comparison to

observations is summarized in Fig. 4.2.

4.3.2 Historical effects of ozone on wheat yield in India (1980 - 2010)

4.3.2.1 Simulated state-level ozone damage to wheat yield

GLAM-ROC suggested a mean 16.2 ± 1.7% O3-induced wheat yield loss during the

wheat growing seasons 1980 - 2009 (Table 4.2, Fig. C.2). This effect varies considerably

between the six states with Bihar exhibiting the largest RYL (18.9%) and Punjab the

lowest (9.8%). Madhya Pradesh, Uttar Pradesh, Rajastan and Haryana exhibit 18.5,

15.5, 15.3, and 10.5% damage to wheat yield respectively due to O3 pollution. In all
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Figure 4.2: Simulated (GLAM-ROC) versus observed average wheat yield in the states of
Bihar, Haryana, Madhya Pradesh, Punjab, Rajasthan and Uttar Pradesh during the growing
seasons 1980-2009. The solid black line is the 1:1 line and the solid red line is the linear
regression between simulated and observed yield.

states, the effect of O3 does not vary strongly between the years, with the standard

deviation (sd) being less than 4% (Table 4.2).

In addition, Uttar Pradesh, Madhya Pradesh, Rajastan and Bihar show an increas-

ing trend of RYL over time, whilst in Haryana and Punjab the trend is declining (Fig.

C.2). The highest RYL trend is seen in Bihar, where the increase in surface O3 leads to

an added yield loss of 0.24% each year. On the contrary, the largest decreasing trend

in RYL is in Haryana, where the reduced O3 concentrations lower the damage of the

pollutant to wheat yield by an average 0.08% annually.

Table 4.2: Average wheat Relative Yield Loss (RYL) and standard deviation (sd) in the states
of Bihar, Haryana, Madhya Pradesh, Punjab, Rajasthan and Uttar Pradesh during the growing
seasons 1980-2009.

RYL sd State

18.9 3.1 Bihar
10.5 1.9 Haryana
18.5 2.2 Madhya Pradesh
9.8 1.7 Punjab
15.3 1.8 Rajasthan
15.5 1.9 Uttar Pradesh
16.2 1.7 Average
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4.3.2.2 Ozone damage to wheat yield at grid level

Fig. 4.3 and C.3B illustrate the large variation in RYL between the different grids of

each state, with the year 2000 taken as example. In Uttar Pradesh, the state with the

highest share of total wheat production, the mean RYL is 17.6%, whilst the minimum

and maximum values are 5.7 and 27.6% respectively. Large differences exist in all other

states, with RYL ranging from 5.8 - 13.6% in Punjab, 6.5 - 14.5% in Haryana, 8.8 -

24.4% in Rajastan, 15.1 - 25.7% in Madhya Pradesh and 17.0 - 27.4% in Bihar. The

large variability in RYL reveals that the effect of O3 on wheat yield depends upon the

area where wheat is cultivated in each state.

In Punjab and Haryana, the states with the lowest O3 levels (Fig. 4.1), the parts

with the highest O3 damage to yield are those in close vicinity to the state of Rajas-

tan (Fig. C.3A). Similarly, in Uttar Pradesh, the largest O3-induced yield losses are

experienced in the Southeast part which is close to Bihar and Madhya Pradesh (i.e.

the two states with the highest O3 concentrations; Fig. 4.1). Rajastan faces high O3

pollution as well as RYL in the central and south parts, whilst Madhya Pradesh and

Bihar exhibit the highest O3 levels, the largest damage to wheat yield and the lowest

spatial variation in comparison with all other states. Overall, the O3 damage to wheat

yield strongly depends upon the area where wheat is cultivated in each state, with the

regions belonging to or neighbouring the most pollutant states exhibiting the highest

effect of O3 pollution on yield.

When all grids are taken together, the average O3 damage to wheat yield for the

year 2000 is 19.0% (Fig. 4.3; red dashed line), which is similar to the mean effect of the

pollutant in the states of Uttar Pradesh, and Rajastan. In Madhya Pradesh and Bihar,

the O3-induced yield losses are higher than the average, whilst in Haryana and Punjab

they are considerably lower. Nevertheless, the latter two states exhibit low impact on

RYL, since they include low number of grid cells due to their small size.

4.3.3 Avoided yield losses from reduction in ozone pollution

We used GLAM-ROC to estimate the reduction in wheat yield loss due to three different

levels of reduction in O3 pollution: 25, 50 and 75%. Fig. 4.4 illustrates the large avoided

yield damage, where the mean yield loss of 16.2% under the current O3 level is reduced

to 11.8, 4.9 and 1.3% accordingly for O3 decreases of 25, 50 and 75% respectively. In

other words, the O3 damage to wheat yield lowers by 27.2, 70 and 92% for O3 reductions

of 25, 50 and 75% respectively. Similarly, the maximum RYL is 19.2%, which decreases

to 15.7, 6.0 and 2.1% for the same O3 reductions. The largest avoided yield losses are

seen for O3 decrease from 25 to 50% in comparison with the current level (Fig. 4.4).

Significant RYL decrease is also seen for O3 reduction from 0 to 25% and 50 to 75%.

Above 75% there is limited yield benefit since RYL is already very low (1.3%).
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Figure 4.3: Boxplots of Relative Yield Loss (RYL) for wheat in the states of Bihar, Haryana,
Madhya Pradesh, Punjab, Rajasthan and Uttar Pradesh for the year 2000. Red dashed line is
the average RYL of all grids in the six states.
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Figure 4.4: Boxplots of wheat relative yield loss (RYL) in India due to 0, 25, 50 and 75%
decrease in ground-level ozone pollution during the growing seasons 1980-2009. The states
considered in the analysis are Bihar, Haryana, Madhya Pradesh, Punjab, Rajasthan and Uttar
Pradesh. Horizontal line is median and ’x’ symbol is the mean value.

4.4 Discussion

GLAM-ROC suggests that ground-level O3 pollution is significantly lowering the pro-

ductivity of the wheat crop in India. The six major wheat-producing states in the
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country are all experiencing enhanced surface O3 levels during the wheat growing sea-

son, causing a mean grain yield loss of 16.2%. Thus, India loses the equivalent of one

wheat harvest every six years due to O3 pollution. Only for the year 2000, wheat ex-

posure to O3 caused 19% grain yield damage which corresponds to loss of 15.99 million

tons in wheat production. This translates to an economic loss of about 3.36 billion

USD in the country.

Our estimations are relatively higher than Mills et al. (2018), which used a stomatal

O3 flux model to suggest that O3 pollution causes 12.2% wheat yield loss in India for

the years 2010-2012. In their study, Uttar Pradesh and Bihar face the highest O3-

induced yield damage, around 12.5 - 17.5%. In our study, Bihar and Uttar Pradesh

rank 1st and 3rd regarding the O3 damage to wheat yield, with 18.9 and 15.5% yield

losses respectively. In addition, our estimates are lower than Sharma et al. (2019),

who used a statistical yield response function to suggest that O3 pollution has caused

21% average yield loss in India for the years 2014-2015. All the above findings are

considerably lower than the 33% wheat yield loss due to air pollution suggested by

Burney and Ramanathan (2014). However, in their study, the impact of black carbon

was also taken into account for their estimations.

Our results reveal that there is large spatial variability in the effect of O3 on wheat

yield, depending on the area where the crop is cultivated. For instance, in Uttar

Pradesh, the state with the highest share of wheat production in the country, the O3

damage to yield varied from 4.3 to 26.2% for the year 2000. This is due to the large

contrast in the levels of surface O3, with the Southeast part of the state exhibiting

significantly higher pollution levels than the Northwest (Fig. C.3B). This large variation

in O3 drives the spatial differences in wheat yield response to the pollutant. Madhya

Pradesh and Bihar exhibit the highest O3 levels in our analysis with the lowest spatial

variation leading to high yield losses in almost all parts of the state. On the contrary,

Punjab and Haryana exhibit the lowest O3 and RYL levels, with the levels of the

pollutant being higher in their south parts neighbouring Rajasthan which leads to

enhanced yield losses.

The spatial variability in the response of wheat yield to O3 may partially explain

the large differences in the estimations of Sinha et al. (2015) and Lal et al. (2017). The

former study used O3 observations from a specific site in Punjab and estimated up to

41% wheat yield losses due to the pollutant for the years 2012-2013. The latter study

used O3 data from 17 independent sites and suggested up to 15% average wheat yield

damage due to O3. Despite that the two studies used different methodologies for the

calculation of the O3 effect on wheat yield, our results show that the spatial differences

in surface O3 pollution play an important role on the estimations. Thus, the effect of

O3 on wheat yield in a state cannot be assessed based on the level of the pollutant at

a specific site. The use of O3 data from multiple sites can improve the estimation of

the average O3 damage to wheat yield in India significantly.
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GLAM-ROC suggested significant reductions in wheat yield loss due to decrease in

the level of surface O3 pollution. Reduced O3 concentrations of 25% could avoid up

to 18.2% wheat yield damage in the six states of our analysis. Halving O3 and 75%

reduction in the concentrations of the pollutant can decrease RYL by up to 68.8 and

89.1% respectively. This clearly shows the importance of regulating the emissions of

air pollutants for increasing wheat productivity and improving food security in India.

It is important to note that the yield benefit decreases for O3 reductions above 50%

in comparison with the current level. This is due to the low O3 phytotoxicity below a

certain level (40 ppb for wheat, (Mills et al., 2007)). At 75% reduction in O3 pollution,

the RYL is already low (1.3%), which means that further O3 decrease does not lead to

significant yield gain. In addition, the highest relative yield gain was observed when the

reduction in O3 concentration was between 25 to 50% in comparison with the current

level of the pollutant. This suggests that reducing O3 by up to 25 and 50% can have a

very significant, positive effect on wheat productivity in India.

4.5 Conclusion

Surface O3 pollution threatens food security in India. The six main wheat-producing

states in the country face significant wheat yield losses due to enhanced levels of surface

O3 concentration during the crops growing season. Our analysis suggests an average

annual yield loss of 16.2% due to O3, which varies from 9.8% in Punjab to 18.9% in

Bihar. The effect of the pollutant on wheat yield is relatively stable over time with low

inter-annual variability. However, there is significant spatial variation, with some areas

facing up to five times higher O3-induced yield losses than others into the same state.

Reduction in the levels of O3 can increase wheat yields significantly, with 25 and 50%

decrease in the concentrations of the pollutant lowering the yield damage by up to 18.2

and 68.8% respectively. Hence, effective regulation for the reduction of surface O3 in

India can provide a significant mechanism for future increases in wheat grain yield.
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Chapter 5

Discussion and conclusion

5.1 Summary

Agricultural systems are complex environments where there are interactions between

crops and the weather; atmosphere (e.g. CO2 level, air pollution); soil quality; land

availability; human decisions (e.g. planting date, crop management); socio-economic

factors (human labour availability, fertilizers, pesticides); environmental resources (e.g.

available water for irrigation); technological and scientific advancements (e.g. agricul-

tural machinery, new cultivars); and other ecological aspects (e.g. plant pests, diseases,

weeds). Large-area crop models mainly focus on the influence of weather (short-term)

and the climate (long-term) on crop productivity, whilst they may also take into account

the condition of the soil, the changes in land use patterns and basic management infor-

mation (e.g. planting date, amount of fertilizer application). Other above-mentioned

interactions are usually not included due to the difficulty in their quantification, such

as the influence of technology and scientific progress on crop yield, the effects of pests,

weeds and deseases and various socio-economic factors such as the level of human labour

and the available capital.

The evaluation of crop models is usually performed against experimental studies

with plants exposed to certain environmental conditions and management practices. If

the model exhibits good skill in the simulation of plant growth, development and yield,

there is increased confidence that it can be reliably used for large-area applications, at

least when similar weather conditions apply. Recent studies, however, reveal that crop

models often exhibit limited skill in their simulations, especially under stress conditions

(e.g., Asseng et al., 2015; Li et al., 2015; Maiorano et al., 2017). These studies show that

the effects of water and temperature stress are not always adequately simulated, due to

the difficulty in modelling complex plant biological processes in extreme environments.

Future climate variability and change are expected to increase the frequency of heat

and drought extremes, thus, improving the representation of these events in the crop

models is a vital step toward robust estimations of the effect of climate change on crop
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production.

5.2 Discussion

One of the main factors that drive the performance of a crop model is the complexity.

If the model is too simple for the purpose of its use, the predictions are poor; the

same happens if it is too complex. Agricultural environments exhibit high complexity

and the crop models often become increasingly complex to include more processes and

interactions affecting crop yield (e.g. drought, heat, nitrogen, salinity or ozone stress)

(Sinclair and Seligman, 1996). The role of the model structure is very important to

support the added complexity and avoid model inconsistencies. A problematic model

structure limits the impact of further model development with the addition of new pro-

cesses and interactions and increases the error in the simulations. Thus, an appropriate

level of complexity should be combined with a robust model structure to improve the

model performance (Passioura, 1996).

A simple example of a model structure which requires improvement is given in the

GLAM crop model, where in each time step the first calculated state variable is the

leaf area index (LAI) based on a maximum leaf area growth (Fig. 5.1). The value

of LAI is then used to estimate the potential level of canopy transpiration. If there

is not enough water in the soil, the canopy transpiration is reduced from a maximum

to an actual (water-stressed) value, which in turn reduces the growth of the above-

ground biomass under the transpiration efficiency approach. The issue here is that

on the same time step, LAI is calculated for optimal growth conditions, whilst the

total biomass corresponds to water stress conditions (Fig. 5.1). For this reason, a

water stress factor is calculated as fraction of the actual to potential transpiration and

is applied to reduce the growth of leaf area on the next time step. In addition, an

optional subroutine (named SLA control) is usually applied to adjust LAI to the value

of biomass.

The model structure outlined above creates two problems. The first issue is the

time-step limitation, where the model is unable to synchronize LAI and biomass on the

same time-step if the SLA control is not used. It should be mentioned that this is not

a problem encountered only in GLAM, but may be faced in every crop model that uses

sequential method for solving the equations (after three years of investigation in the

literature, I could not find a process-based crop model in use which solves all equations

simultaneously). The second issue is the model over-parameterization, where for the

estimation of the water-stressed LAI, GLAM firstly uses the maximum growth of leaf

area (dL/dtmax; 1st parameter), then the drought stress factor on LAI (WSFAC; 2nd

parameter) and then the SLA control, where the value of SLA is given as input (3rd

parameter) (Fig. 5.1). The SLA subroutine is also inconsistent with the reality since

it ignores the mass of stems (i.e. in the model: SLA = LAI/(Biomass - Yield)). In
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this thesis, the above issues had to be addressed before further increasing the model

complexity with the inclusion of the impact of air pollution into the crop model.

  

dL/dt
max

 LAI T
Tpot

T
T W

WSFAC

Corresponds to 
optimal growth

Corresponds to water stress conditions

n + 1 time-step

SLA control (n time-step)

Grain yield

Figure 5.1: GLAM model structure on typical n day after crop emergence. dL/dtmax is
maximum leaf area growth, LAI is leaf area index, TTpot is potential canopy transpiration, TT

is actual canopy transpiration, W is above-ground biomass and WSFAC is water stress factor.

The incorporation of SEMAC into GLAM introduces a new model version, GLAM-

Parti, which addresses the above-mentioned issues in the crop model structure. The

simultaneous equation modelling approach implemented into GLAM-Parti removes the

time-step limitation in the update of state variables, since all equations are solved as

a system and no interactions are missed. In addition, the parameters previously used

for the estimation of LAI are removed (i.e. in GLAM-Parti there is no SLA control,

dL/dtmax and WSFAC acting on LAI). Instead, LAI is an emergent property of the

simultaneous solution of the system of equations (Fig. 2.6). For the development of

GLAM-Parti, two more major modifications were implemented. An allometric rela-

tionship is introduced to express the mass of stems as function of the leaf mass and

the canopy SLA is parameterized as function of the maximum temperature events ac-

cumulated during the crop growing season.

In Chapter 2, GLAM-Parti improves upon GLAM in the comparison of wheat

exposed to different levels of drought stress. The RMSE of GLAM-Parti is reduced by

at least 44, 66 and 41% for LAI, biomass and grain yield respectively in comparison with

GLAM in the early, late and full drought treatments (Table 2.1). The improvement

in model performance is both due to the model modifications and the simultaneous

solution of the model equations. Restructuring GLAM-Parti to solve the equations

sequentially resulted in an RMSE increase of 25.2% for LAI, 28.6% for biomass and

7.9% for yield in the four water stress treatments (Fig. 2.12). In addition, the use of
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allometric relationship for partitioning the wheat biomass between leaves and stems

allows to easily shift the allocation of carbon to favour the mass of stems over the

leaf mass under water stress. This is an important property of GLAM-Parti, since

the modelling of assimilate allocation is complex and consists of an ongoing issue in

crop models (Boote et al., 2013). Overall, the SEMAC methodology demonstrated

significant contribution on the performance of GLAM, providing with a robust model

structure, improved internal consistency, reduced parameterization requirements and

increased skill in the simulation of plant growth, development and yield for wheat under

water stress conditions. Hence, GLAM-Parti closely followed the observed reduction in

leaf and overall wheat growth, the acceleration of leaf senescence and the decrease in

grain yield induced by drought in the experiments (Fig. 2.8 - 2.10).

In Chapter 3, GLAM-Parti was further parameterized for the effect of O3 pollution

on wheat growth, development and productivity. The derived model, GLAM-ROC,

was tested against experimental data with wheat exposed to enhanced levels of O3 at

variable duration of exposure to the pollutant. The model exhibited high skill in the

simulation of both the chronic and the episodic exposure to O3 and the biomass and

grain yield were less than 6% and 1% different from the observations respectively (Fig.

3.5). An important novelty in the development of the O3 subroutine was the inclusion

of an acclimation process to modify the canopy response to O3 with increased duration

of exposure to the pollutant. The plant acclimation to O3 has already been reported in

the literature (e.g., Held et al., 1991; Gillespie et al., 2011), however, to my knowledge,

the mechanism of plant acclimation to chronic O3 exposure is not incorporated into

any crop model up to date. One reason may be that the crop models are usually

evaluated for the crop response to different O3 concentration levels but not in variable

duration of exposure to the pollutant. The mechanism of plant acclimation to O3 is also

significant for future crop yield projections, since climate change can increase surface

O3, especially in highly polluted regions of the world (Doherty et al., 2013).

GLAM-ROC was compared with a commonly used statistical response function

(SRF), a model where the O3-induced damage to grain yield is determined according

to the level of exposure to the pollutant (i.e. the AOT40 index) through a linear

relationship (Mills et al., 2007). SRF assumes that plants exposed to ’x’ times higher

O3 than other identical plants, will also face ’x’ times higher reduction in yield. This

was not confirmed in our study, since the plants in the chronic treatment exhibited

lower impact per ppmh of AOT40 in comparison with the same plants in the episodic

treatment. As a result, the ratio of chronic:episodic grain yield was underestimated

by 56.5% in the SRF formula (Fig. 3.9). On the contrary, GLAM-ROC successfully

followed the observed chronic:episodic grain yield ratio (less than 1% different from

observation) (Fig. 3.9) by incorporating the acclimation mechanism to reduce the

effect of O3 with increased duration of plant exposure to the pollutant.

The grain filling period is the most O3-sensitive for grain yield loss due to the adverse
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effect of the stressor on the allocation of carbon to the grains (Fuhrer and Booker ,

2003). GLAM-ROC successfully reproduced the observed plant response to O3 by

reducing the harvest index when exposure to the pollutant was experienced during grain

filling. The crop growth was also reduced through modifications of transpiration (i.e.

canopy water loss) and transpiration efficiency (i.e. biomass produced per unit of water

transpired). In Chapter 3, GLAM-ROC exhibited high skill in the simulations based

on the introduction of an O3-reduction mechanism on crop growth, the modification in

the partitioning of biomass to the grains and the plant acclimation process for variable

plant exposure to O3. Models which do not incorporate the acclimation mechanism

may increase the error in the simulations of O3 damage to wheat yield under chronic

plant exposure to the pollutant.

India faces high levels of surface O3 pollution with negative impact on wheat pro-

ductivity. In Chapter 4, GLAM-ROC was applied to estimate the effect of O3 stress on

wheat yield in India during a long historical time period (1980-2009). The model sug-

gested that the six main wheat-producing states in India are all considerably affected by

the pollutant. The O3-induced damage to yield was found to vary spatially according

to the concentration level of the pollutant in the different states of the country. The

largest O3-induced reductions in wheat grain yield are experienced in Bihar (18.9%),

followed by Madhya Pradesh (18.5%), Uttar Pradesh (15.5%) and Rajasthan (15.3%).

Haryana and Punjab exhibited lower effects with 10.5 and 9.8% loss in grain yield from

O3 pollution respectively. Reduction in the level of O3 leads to significant decrease in

the damage to grain yield, with 25, 50 and 75% decrease in O3 concentration reducing

yield losses by 27.2, 70 and 92% respectively. Surface O3 is the major air pollutant

affecting crop yields at national level (Ainsworth et al., 2012), thus effective legislation

is needed to reduce the levels of the pollutant and improve wheat productivity in India.

5.3 Limitations and future work

The SEMAC methodology provides with a new modelling opportunity for the simu-

lation of crop growth, development and yield. A main limitation of the methodology

is the model parameterization. In each time step, three major processes are included

into the approach which need careful consideration. These are the accumulation of new

biomass based on the radiation or transpiration efficiency approach, the partitioning of

biomass into the plant compartments through allometric relationships and the evolu-

tion of canopy SLA. The first two aspects affect the accuracy of the model to simulate

the aboveground biomass and the masses of the different organs (e.g. leaves, stems,

grains). The third aspect (i.e. the SLA) affects the simulation of both the leaf mass

and LAI.

The challenge in the parameterization is to account for all interactions between

the factors that affect the crop performance (as described in the first paragraph of
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the Discussion) and estimate their combined effect on these three processes. As a

simplified example, one could argue that under any given environment and management

practice, crop growth, development and yield can be accurately simulated if the slopes

and intercepts of the three graphs in Fig. 5.2 can be correctly estimated. In other

words, SEMAC incorporates all the uncertainties of the cropping system into these

three processes (i.e. daily crop growth, development and canopy SLA), which makes it

difficult to define the slopes and intercepts of the relationships in Fig. 5.2.

In the future, the model parameterization can be improved either with traditional

crop modelling methods (i.e. through collection of experimental data - model com-

parison with observations - improvement in model parameterization) or with novel

approaches, such as the use of machine learning for the determination of the unknown

parameters. The ultimate goal is to develop a robust parameterization of these three

processes (i.e. daily growth, development and canopy SLA) in order to improve the

representation of crop performance in the simulations. This will lead to a model ca-

pable of accurate predictions of crop yield by accounting for the climatic factors and

management conditions, the soil quality and the technological and scientific advance-

ments.

Regarding the effect of O3 pollution on wheat, GLAM-ROC should be evaluated for

the interaction between O3 and drought. Dry areas are hotspots of ozone pollution, such

as the Mediterranean, the Middle East and the Southwestern United States (Hodnebrog

et al., 2012; Lelieveld et al., 2009; Wise and Comrie, 2005) and the crops in these regions

may not always be fully irrigated. In wheat, water stress causes stomatal closure, which

reduces the uptake of the pollutant, the canopy transpiration and the O3 damage to

grain yield (Khan and Soja, 2003). In GLAM-ROC, both O3 and drought decrease

the daily canopy transpiration rate, the minimum of which is considered as the actual

transpiration. The validity of this approach should be tested against experimental data

with wheat exposed to both stressors simultaneously. In crop modelling, the interaction

between O3 and drought consists of an ongoing issue and previous model development

studies which incorporate the O3 damage into DSSAT-NWheat (Guarin et al., 2019)

and AFRCWHEAT2 (Ewert and Porter , 2000) did not evaluate the models against

experimental data with plants exposed to a combination of both stressors. Schauberger

et al. (2019) tested the LPJmL model against various experiments with wheat and

soybean exposed to O3 stress and few of them included a combination of O3 and

drought. Nevertheless, the authors did not separate the results for single (i.e. O3

and combined (i.e. O3 and drought) stress environments, which makes it difficult to

evaluate the model performance in each case.

O3 interacts with CO2 with important implications for climate change. Elevated

CO2 concentrations reduce stomatal conductance and can protect against O3 pollution

Yadav et al. (2019). Hence, the role of CO2 should not be ignored for future projections

of the impact of surface O3 pollution on wheat productivity. In GLAM-ROC, the
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mechanism of CO2 fertilisation on crop photosynthesis and growth should be added

into the model. Reyenga et al. (1999) suggests a formula which increases radiation

use efficiency according to the level of temperature and CO2 concentration. Following

the addition of this process, the interaction between elevated CO2 and O3 should be

modelled to allow the estimation of crop growth and yield under future climate change

projections.

Wheat exposure to O3 pollution affects the nutritional properties of the grains. The

meta-analysis of Broberg et al. (2015) showed that when the wheat crop is exposed to

enhanced O3 levels, the grain protein yield decreases significantly, meaning that less

amount of protein is produced per unit area. This can have important implications for

human nutrition, especially in developing countries where people rely more strongly

on plant protein than in developed regions (Henchion et al., 2017). For instance, in

India, up to 70% of the daily protein intake comes from cereals, especially in rural

areas (Swaminathan et al., 2012). At the same time, the Indian population suffers

from protein deficiency in their diet (Rampal , 2018), which has been found to link to

several health issues such as reduced growth, stunting and wasting (Golden, 1985).

Thus, reducing O3 pollution can increase wheat protein yield and the daily intake of

the nutrient for people in India.

GLAM-ROC does not simulate any traits of grain quality. Ongoing GLAM devel-

opment attempts to incorporate a soil nitrogen subroutine into the model. This can

consist of the first step in the simulation of the uptake of nitrogen by the plants and the

partitioning of the nutrient to the different compartments, including the grains. The

pattern of nitrogen partitioning may be modified according to the magnitude and the

duration of the O3 pollution event. Grain nitrogen can be converted into protein (Mar-

iotti et al., 2008), hence the model will be able to simulate alterations in the amount

of grain protein according to the plant exposure to O3. The simulation of other grain

nutrients is not well understood (e.g. K, P, Mg, Zn, Fe) and most crop models do not

yet incorporate algorithms for their estimation (Nuttall et al., 2017). Future model

development should focus more strongly on the effect of the environmental conditions

on grain quality, since both climate change and air pollution exhibit significant impact

on the nutritional composition of the wheat grains (Myers et al., 2014; Broberg et al.,

2015).

In Chapter 4, GLAM-ROC was the single model applied for the estimation of the O3

damage to wheat yield in India. All models contain errors and multi-model ensembles

are particularly useful for the reduction of the uncertainty in the output. The median

of the crop model ensemble has been seen to be a better predictor than any single crop

model due to compensating for errors of the individual models and providing with higher

consistency in the predictions (Martre et al., 2015; Asseng et al., 2015; Challinor et al.,

2018). AgMIP-Ozone is an initiative which started recently and attempts to evaluate

the O3 algorithms in the crop models which simulate O3 damage. It would be very
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interesting to compare GLAM-ROC with other models in the response of wheat to O3

stress. This would provide a great opportunity for further assessing the model skill,

learning from other modelling groups and improving the simulated processes.

In conclusion, SEMAC is a novel crop modelling technique which can be mainly

applied in crop models of medium complexity (based on transpiration or radiation use

efficiency approaches). The implementation of SEMAC into GLAM revealed significant

improvement in model skill and good predictive power for wheat under drought and

O3 stress environments. The GLAM-ROC model can be used by scientists for the

estimation of the effect of surface ozone pollution on wheat yield and assist in desicion-

making for the regulation of anthropogenic emissions of air pollutants to increase wheat

productivity. Similarly, GLAM-Parti can be used to estimate the impact of drought

on wheat yield in large-area applications. The simplicity of SEMAC allows to further

extend the model to incorporate more stresses into the simulations. This is an important

property of the methodology, since crops in the field are exposed to various stress

conditions during their growing season. Finally, following necessary parameterizations,

GLAM-Parti can be used to estimate the impact on wheat of stresses such as heat and

limited soil nitrogen.

  

Growth
Partitioning Canopy SLA

A

B
C

Figure 5.2: Sources of uncertainty in GLAM-Parti. Fig. A illustrates stem-leaf mass par-
titioning (taken from Ratjen et al. (2016)), Fig. B illustrates the determination of RUE as
slope of above-ground biomass vs. cumulative intercepted radiation (taken from Sandaña et al.
(2012)) and Fig. C illustrates canopy SLA vs. LAI (taken from Ratjen et al. (2018)).



References

Ainsworth, E. A., C. R. Yendrek, S. Sitch, W. J. Collins, and L. D. Emberson (2012),
The effects of tropospheric ozone on net primary productivity and implications for
climate change, Annual review of plant biology, 63, 637–661. 5.2

Asseng, S., F. Ewert, P. Martre, R. P. Rötter, D. B. Lobell, D. Cammarano, B. A.
Kimball, M. J. Ottman, G. Wall, J. W. White, et al. (2015), Rising temperatures
reduce global wheat production, Nature climate change, 5 (2), 143. 5.1, 5.3

Boote, K. J., J. W. Jones, J. W. White, S. Asseng, and J. I. Lizaso (2013), Putting
mechanisms into crop production models, Plant, cell & environment, 36 (9), 1658–
1672. 5.2

Broberg, M. C., Z. Feng, Y. Xin, and H. Pleijel (2015), Ozone effects on wheat grain
quality–a summary, Environmental Pollution, 197, 203–213. 5.3

Challinor, A. J., C. Müller, S. Asseng, C. Deva, K. J. Nicklin, D. Wallach,
E. Vanuytrecht, S. Whitfield, J. Ramirez-Villegas, and A.-K. Koehler (2018), Im-
proving the use of crop models for risk assessment and climate change adaptation,
Agricultural systems, 159, 296–306. 5.3

Doherty, R., O. Wild, D. Shindell, G. Zeng, I. MacKenzie, W. Collins, A. M. Fiore,
D. Stevenson, F. Dentener, M. Schultz, et al. (2013), Impacts of climate change on
surface ozone and intercontinental ozone pollution: A multi-model study, Journal of
Geophysical Research: Atmospheres, 118 (9), 3744–3763. 5.2

Ewert, F., and J. R. Porter (2000), Ozone effects on wheat in relation to co2: modelling
short-term and long-term responses of leaf photosynthesis and leaf duration, Global
Change Biology, 6 (7), 735–750. 5.3

Fuhrer, J., and F. Booker (2003), Ecological issues related to ozone: agricultural issues,
Environment international, 29 (2-3), 141–154. 5.2

Gillespie, K. M., A. Rogers, and E. A. Ainsworth (2011), Growth at elevated ozone
or elevated carbon dioxide concentration alters antioxidant capacity and response to
acute oxidative stress in soybean (glycine max), Journal of Experimental Botany,
62 (8), 2667–2678. 5.2

Golden, M. H. (1985), The consequences of protein deficiency in man and its rela-
tionship to the features of kwashiorkor, Nutritional adaptation in man, pp. 169–185.
5.3

Guarin, J. R., B. Kassie, A. M. Mashaheet, K. Burkey, and S. Asseng (2019), Modeling
the effects of tropospheric ozone on wheat growth and yield, European Journal of
Agronomy, 105, 13–23. 5.3

Held, A., H. Mooney, and J. N. Gorham (1991), Acclimation to ozone stress in radish:
leaf demography and photosynthesis, New phytologist, 118 (3), 417–423. 5.2

Henchion, M., M. Hayes, A. M. Mullen, M. Fenelon, and B. Tiwari (2017), Future pro-
tein supply and demand: strategies and factors influencing a sustainable equilibrium,
Foods, 6 (7), 53. 5.3

117



118 References

Hodnebrog, Ø., S. Solberg, F. Stordal, T. M. Svendby, D. Simpson, M. Gauss,
A. Hilboll, G. Pfister, S. Turquety, A. Richter, et al. (2012), Impact of forest fires, bio-
genic emissions and high temperatures on the elevated eastern meditteranean ozone
levels during the hot summer of 2007, Atmospheric Chemistry and Physics, 12 (18),
8727–8750. 5.3

Khan, S., and G. Soja (2003), Yield responses of wheat to ozone exposure as modified
by drought-induced differences in ozone uptake, Water, Air, and Soil Pollution,
147 (1-4), 299–315. 5.3
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Chapter 2

The equations of potential evapotranspiration (ET
pot), potential transpiration (TT) and

biomass growth (dW/dt) are taken from Challinor et al. (2004).

Potential evapotranspiration:

ETpot =
α

λ
· ∆(RN −G)

∆ + γ

=
α

λ
· ∆(RN − CG ·RN · e−kLAI)

∆ + γ

=
α ·∆ ·RN
λ · (∆ + γ)

· (1− CGe−kLAI) (A.1)

Eq. A.1 can be used to express potential transpiration as:

TT = ETpot · (1− e−kLAI)

=
α ·∆ ·RN
λ · (∆ + γ)

· (1− CG · e−kLAI)(1− e−kLAI) (A.2)

Eq. A.2 can be used to describe biomass growth (dW/dt) as:

dW

dt
= TE · TT

= TE · α ·∆ ·RN
λ · (∆ + γ)

· (1− CG · e−kLAI) · (1− e−kLAI) (A.3)

Eq. A.3 consists of the dW/dt term in Eq. 2.11. The CG, k, γ and λ are constants and

the α, ∆, RN, TE are dependent on the environmental conditions. After calculating the

environmental dependence, the dW/dt becomes a function of LAI. Detailed description

of all parameters and equations is provided in Challinor et al. (2004).
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B.0.1 SLA function in GLAM-Parti

In Ratjen et al. (2018) the canopy SLA for wheat was expressed as function of LAI (Fig

B.1). The suggested relationship is the following:

SLA =

{
161.3 + 11.3 · LAI DV S < 32

137 + 15.1 · LAI DV S ≥ 32
(B.1)

For GLAM-Parti, the major limitation of the above piecewise function is the lack

of continuity on the first day when DVS reaches 32 (i.e. Zadoks stage 32). In Fig. B.1,

this day is shown in point (LAI1, SLA1). In order to deal with this discontinuity, the

slope and intercept of Eq. B.1 were modified above DVS = 32 as:

SLA =

{
161.3 + 11.3 · LAI DV S < 32

z + y · LAI DV S ≥ 32
(B.2)

where y and z were determined using points (LAI1, SLA1) and (6, 227.6). The second

point is the solution of Eq. B.1 for LAI = 6 and DVS ≥ 32. Based on the two points,

y and z were calculated as:

y = (SLA1− 227.6)/(LAI1− 6) (B.3)

z = 227.6− 6 · y (B.4)

Eq. B.2 is used in GLAM-Parti to express SLA as function of LAI and graphical

illustration is shown in Fig. B.1 (b).
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Figure B.1: Canopy SLA as function of LAI (a) in Ratjen et al. (2018) (b) in this study. Point
(LAI1, SLA1) is when DVS reaches 32.

B.0.2 Expanding GLAM-Parti approach after anthesis

In GLAM-Parti, the above-ground biomass (Wn) consists of leaves, stems, ears and

grains as follows:

Wn = ML +MS +ME +MG (B.5)

where ML is leaf, MS is stem, ME is the non-grain ear mass and MG is the grain mass.

ME is expressed as function of MS as follows:

ME = CE · TTn/TTfl ·MS (B.6)

where TTn is the thermal time elapsed from terminal spikelet initiation (TS) until day

n after TS and TTfl is the thermal time requirement from TS to anthesis. CE expresses

the ratio of ear: stem mass at anthesis, which is set to 0.5 for modern wheat varieties

(Siddique et al., 1989). MG is expressed as function of Wn using the harvest index (HI)

as follows:

MG = HI ·Wn (B.7)

Eq. B.6, B.7 can be combined to describe Eq. B.5 as:

Wn = (1/(1−HI)) · (ML + (1 + CE ∗ TTn/TTfl) ∗MS) (B.8)
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Eq. B.8 can be further manipulated to express Wn as function of leaf area change. ML

is expressed as:

ML = LAI/SLA+MY L (B.9)

where LAI is green leaf area index, SLA is canopy specific leaf area and MYL is the

mass of yellow leaves. LAI can be expanded as:

LAIn = LAIn−1 + dL (B.10)

where LAIn is the value of LAI at any given n day, LAIn-1 is LAI of the previous day

and dL is the leaf area change between the two consecutive days. The mass of stems

(MS) is expressed with an allometric relationship according to ML as:

MS = h ·Mg
L (B.11)

where g, h are allometric coefficients. Eq. B.2, B.9, B.10, B.11 can be combined to

express Eq. B.8 as:

Wn = (1/(1−HI))·( LAIn−1 + dL

z + y · (LAIn−1 + dL)
+MY L+(1+CE ·TTn/TTfl)·h(

LAIn−1 + dL

z + y · (LAIn−1 + dL)
+MY L)g)

(B.12)

where the slope and intercept of Eq. B.2 (y, z) vary before and after DVS = 32.

Eq. B.12 expresses Wn as function of the leaf area change (dL) and is used for the

implementation of the SEMAC methodology during the full crop cycle in GLAM-Parti.

A detailed description of the SEMAC approach is given in Droutsas et al. (2019).

Moreover, the model was parametrerized to account for the canopy leaf mass loss

which mainly occurs during the period of rapid leaf senescence after anthesis. Whenever

a negative value of leaf area change (dL) was estimated, the mass of yellow leaves (MYL)

was updated as:

MY L(n) = MY L(n−1) + Cyl ∗ (|dL|/SLA) (B.13)

where MYL(n) is the mass of yellow leaves on the n day of the crop cycle, MYL(n-1) is

the mass of yellow leaves on the previous day (n-1), SLA is the canopy specific leaf area

and Cyl is the ratio of yellow:green leaf mass which was set to 0.68 to account for the

leaf mass loss due to the remobilization of dry mass (Borrell et al., 1989).

B.0.3 O3 effect on evapotranspiration in GLAM-ROC

The statistical formula for the expression of percentage change in cumulative evapo-

transpiration (pCET) according to effective AOT40 (efAOT40) is given below (Fig. 3.3

(b)):

pCET = −0.021 + 0.018 · efAOT40− 0.000356 · efAOT402 (B.14)
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where at any given n day of the growing season, pCET between the Control and O3

treatments is defined as:

pCETn =
CETAAn − CETozn

CETozn
=
CETAAn

CETozn
− 1 =

CETAAn

CETozn−1 + ETozn
− 1 (B.15)

where CETAA and CEToz are the cumulative evapotranspiration of the control and O3

treatment respectively. The substitution of Eq. B.15 into B.14 and solving for EToz

gives:

ETozn =
CETAAn

0.979 + 0.018 · efAOT40− 0.000365 · efAOT402
− CETozn−1 (B.16)

Eq. B.16 is used in GLAM-ROC to calculate the O3-induced decrease in ET (EToz) in

comparison with the same plant growing under optimal conditions.

Table B.1: Slope and intercept of O3-induced reduction in transpiration efficiency (TE) and
rate of change in harvest index (dHI/dt) relative to Control.

TE reduction factor dHI/dt reduction factor

c1 d1 c2 d2
-0.0029 1.029 -0.00145 1.0145

Table B.2: Values and units of GLAM-ROC calibrated parameters.

Parameter Unit Range GLAM-ROC value Source

ETN,max g kg-1 [3 - 10.6]a 9.3 Christy et al. (2018)
dHI/dt day-1 [0.0064 - 0.0137] 0.0135 Moot et al. (1996)

a Average CO2 concentration in the chambers was around 530 ppm (see Table 3.1). The upper
boundary of ETN,max was multiplied by 1.18 to account for the CO2 fetilization effect on TE

(Reyenga et al., 1999).
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Table C.1: Values and units of GLAM-ROC calibrated parameters.

Parameter Unit GLAM-ROC value Source

ET Pa 3.5 Droutsas et al. (2019)
ETN,max g kg-1 9.0 Christy et al. (2018)
dHI/dt d-1 0.01 Moot et al. (1996)
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Figure C.1: Observed (solid lines) and simulated (GLAM-ROC; dashed lines) average wheat
grain yields in the states of Bihar, Haryana, Madhya Pradesh, Punjab, Rajasthan and Uttar
Pradesh during the growing seasons 1980 - 2009.
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Figure C.2: Average wheat Relative Yield Loss (RYL) in the states of Bihar, Haryana,
Madhya Pradesh, Punjab, Rajasthan and Uttar Pradesh as well as the six-state average during
the growing seasons 1980 - 2009.
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Figure C.3: A) 16-h mean ozone concentration for the November to April time period and B)
Relative Yield Loss (RYL) in the states of Bihar, Haryana, Madhya Pradesh, Punjab, Rajasthan
and Uttar Pradesh for the year 2000.
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