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Abstract

This thesis consists of three parts and is a collection of papers written by the author of this text during

his postgraduate studies, together with an Appendix chapter.

The first chapter is based on [98] and is in collaboration with Evgeny Shinder. It discusses the

K-groups K1, K0 and K−n of the singularity category of isolated quotient singularities. The second

chapter is based on [73] and is joint with Martin Kalck and Evgeny Shinder. It introduces Kawamata

type semiorthogonal decompositions for singular varieties and obstructions for such decompositions are

studied, mainly for the case of nodal threefolds. Each of these two chapters can be read independently.

The third chapter is an Appendix to the first chapter and explains in more detail how the main technical

result in chapter one is proven, on which the main theorems rely on.
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Introduction

The Grothendieck group first appeared in Grothendieck’s formulation of the Grothendieck-

Riemann-Roch theorem and was since then used in many branches of mathematics and gen-

eralized in various ways. Its study lead, for example, to algebraic K-theory and to the notion of

derived categories and dg-categories of schemes.

In this thesis, we are mainly interested in K-groups and derived categories of singular vari-

eties. Our main approach is to examine the singularity category and its K-groups.

Singularity K-theory

Let us denote by G0(X) and by K0(X) the Grothendieck group of coherent sheaves and of

vector bundles of a quasi-projective scheme X over a field k. There is a natural homomorphism

K0(X)→ G0(X) induced by the inclusion functor going from vector bundles over X to coherent

sheaves of X. By a classical result of Serre, this homomoprhism is an isomorphism in the case

when X is regular. If X is singular, this map is in general neither injective nor surjective. In

this thesis, we are going to see how the failure of injectivity (resp. surjectivity) is controlled by

the K-groups of the so-called singularity category. Let us make this more precise.

Let Db(X) denote the bounded derived category of coherent sheaves of X and let Dperf(X)

be the triangulated subcategory of Db(X) consisting of perfect complexes. The Buchweitz-Orlov

singularity category of X is the Verdier quotient

Dsg(X) = Db(X)/Dperf(X).

It was first defined by Buchweitz in [24] and later introduced in a more geometric setting by Orlov

in [94]. The singularity K-theory is Schlichting’s K-theory of the dg-enhancement of Dsg(X) and

we denote the K-groups by Ksg
i (X). One of the basic properties of singularity K-theory is that

there is a long exact sequence

. . .→ G1(X)→ Ksg
1 (X)→ K0(X)→ G0(X)→ Ksg

0 (X)→ 0,

where Ki(X) = Ki(Dperf(X)) are the Thomason-Trobaugh K-theory groups of vector bundles

and Gi(X) = Ki(Db(X)) are Quillen’s K-theory groups of coherent sheaves. There is also an

nonconnective version of the singularity K-theory, defined as the K-theory of the dg-enhancement
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of the idempotent completion Dsg(X) of Dsg(X). By Schlichting’s construction, we have a long

exact sequence

. . .→ Ksg
1 (X)→ K0(X)→ G0(X)→ Ksg

0 (X)→ K−1(X)→ 0,

where Ksg
0 (X) = K0(Dsg(X)).

In Chapter 1 and partly also in chapter 2, we discuss standard properties for singularity

K-theory. In low dimension and for varieties with nice singularities, singularity K-theory can be

used to compute the (−1)-th negative K-group of vector bundles in terms of class groups and

Picard groups. More concretely, let X be an irreducible variety over an algebraically closed field

k. Assume that X is either a normal surface or a threefold with only isolated compound An

singularities. Then by Proposition 2.3.6 there is a long exact sequence

0→ Pic(X)→ Cl(X)→
⊕

x∈Sing(X)

Cl(ÔX,x)→ K−1(X)→ 0.

This statement was known by Weibel in the case for normal surfaces [124]. Note that there are

not many formulas for computing negative K-theory in general. One of the main approaches

in the literature is given by the relation between algebraic K-theory and cdh-topology of cdh-

differentials. We will discuss the cdh-topological aspect in more detail in chapter 3.

Finally, we study singularity K-theory for quotient varieties X over algebraically closed fields

of characteristic zero with only isolated singularities. By computing the local case Ksg
i (An/G)

for i ≤ 1, we obtain:

Theorem (Theorem 1.2.23). Let X be a n-dimensional quasi-projective variety over an alge-

braically closed field of characteristic zero with at most isolated quotient singularities. Denote

by Gi, 1 ≤ i ≤ |Sing(X)| the isotropy groups of X. Then

Ksg
1 (X) = 0, Ksg

0 (X) '
⊕
i

Ksg
0 (An/Gi), and Ksg

−m(X) = 0, for m ≥ 1.

In particular, there is a short exact sequence

0→ K0(X)→ G0(X)→ Ksg
0 (X)→ 0

and Ksg
0 (X) is finite torsion.

A nontrivial consequence of this result is that the Grothendieck group of vector bundles of

weighted projective spaces P(a0, . . . , an) with isolated singularities is free abelian of rank n+1. To

the best of our knowledge, this result wasn’t known in the literature before. Another consequence

is that the length map K0(X on Sing(X))→ Z|Sing(X)| from the supported Grothendieck group

of vector bundles is an isomorphism for isolated quotient singularities (see [109, Page 38]). This

statement was shown by Levine up to dimension three [82, Theorem 3.3], and that it is an

isomorphism up to torsion in general [82, Theorem 2.7]. With our methods, we are able to show
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the statement in all dimensions.

Bondal-Orlov localization

Let X be a singular variety over a field k of characteristic zero and let π : Y → X be a

resolution of singularities. We say that X has rational singularities if Rπ∗OY ' OX in Db(X).

The standard examples of rational singularities are quotient singularities, cones over smooth

Fano hypersurfaces and toric varieties. The following conjecture describes the relation between

Db(X) and Db(Y ).

Conjecture (Bondal-Orlov localization). Let X be a variety with at most rational singularities

and let π : Y → X be a resolution of singularities. Then there is an equivalence

Db(Y )/ ker(Rπ∗)
∼−→ Db(X)

induced by the functor Rπ∗ : Db(Y )→ Db(X).

This conjecture first appeared in Bondal and Orlov’s ICM talk in 2002 [19]. It is known to

experts that the Bondal-Orlov conjecture is true for surfaces X with rational singularities. In

addition, since by a classical result of Artin [4] the exceptional locus of a resolution Y of X is a

tree of rational curves Ei, the kernel category ker(Rπ∗) is generated by the sheaves OEi(−1).

Furthermore, Efimov showed in [45] that the conjecture holds true when X is the cone of a

smooth Fano hypersurface. Additionally, in chapter 1 we verify the conjecture for singularities

with resolutions with 1-dimensional fibers and for (not necessarily isolated) quotient singularities:

Theorem (Theorem 1.2.30 and Lemma 1.2.32). Let X be a quasi-projective variety with rational

singularities, such that either there is a resolution with at most 1-dimensional fibers, or such

that X has at most quotient singularities. Let π : Y → X be a resolution of singularities. Then

the Bondal-Orlov conjecture is true, or in other words,

Rπ∗ : Db(Y )/ ker(Rπ∗)
∼−→ Db(X)

is an equivalence.

Actually, the case of “at most 1-dimensional fibers” will imply the quotient singularity case

by relaxing the definition of a resolution of singularities to Deligne-Mumford stacks. In chapter

1 we explain furthermore that the conjecture is independent of the resolution, i.e. if there is one

(stacky) resolution of a rational singularity X such that the conjecture holds, then it holds for

all resolutions of X. In the general case however, the conjecture is widely open.

Kawamata type semiorthogonal decompositions

Only recently semiorthogonal decompositions of singular varieties have been studied systemat-

ically. The first family of examples, however, was observed by Burban in [25], where chains of
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smooth rational curves are considered. Karmazyn-Kuznetsov-Shinder discuss the case of toric

surfaces completely in [75] and Kawamata gives 2 examples of threefolds in [76, 77]. Namely,

the first example is the nodal quadric threefold in P4 with equation xy− zw = 0 and the second

example is obtained by blowing up 2 points in P3 and then contracting the strict transform of

the line passing through the 2 points.

All the above definitions are of rather specific form. Namely, they can be summarized by the

following definition. We say that a Gorenstein projective variety X admits a Kawamata type

semiorthogonal decomposition if there is an admissible semiorthogonal decomposition

Db(X) ' 〈A,Db(R1), . . . ,Db(Rm)〉,

where A ⊂ Dperf(X) and the Ri’s are finite-dimensional algebras.

In chapter 2 we mainly focus on necessary conditions for Kawamata type decompositions of

threefolds. The main obstruction studied here is K−1(X). On one hand, we can show that if

X admits a Kawamata type decomposition, then K−1(X) = 0 (Corollary 2.4.5). On the other

hand, we know how to compute K−1(X) for curves, surfaces and threefolds using methods from

chapter 1. We obtain the following results.

We note first that the same reasoning as in [25] can be used to generalize this example to

nodal trees, that is curves with smooth rational components and such that the dual graph has

no loops, as we explain in Theorem 2.4.9. On the other hand, by work of Weibel [124] (see also

Proposition 2.3.1) one knows that K−1(C) for a connected projective nodal curve C is a free

abelian group of rank λ, where λ is the number of loops (or Betti number) of the dual graph of

C. If all the irreducible components of C are isomorphic to P1, we obtain:

Theorem (Corollary 2.4.11). Let C be a connected projective nodal curve with only smooth and

rational irreducible components, then Db(C) admits a Kawamata type decomposition if and only

if K−1(C) = 0, or, equivalently, if the dual graph of C has no loops.

Kawamata type decompositions for toric surfaces have been characterized in a similarly in

[75]. There the authors show that a Gorenstein toric surface admits such a decomposition if and

only if the Brauer group vanishes. In Proposition 2.3.7 we show that in this case the Brauer

group coincides with K−1.

For the 3-dimensional case let us assume that X has only nodal singularities. We can show

for the following families of examples that there is no Kawamata type decomposition.

Theorem (Example 2.4.15 and Example 2.4.16). The following nodal threefolds have no Kawa-

mata type decomposition:

1) All nodal hypersurfaces in P4 except for the nodal quadric,

2) All nodal double solids X
2:1−−→ P3 except for the nodal quadric,

3) All nodal prime (meaning rank of Pic(X) is one) Fano threefolds of index 2 of degrees 1 ≤
d ≤ 4 and such that the rank of the class group is maximal.
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Chapter 1

K-theory and the singularity

category of quotient singularities

Abstract

In this paper we study Schlichting’s K-theory groups of the Buchweitz-Orlov singularity category

Dsg(X) of a quasi-projective algebraic scheme X/k with applications to Algebraic K-theory.

We prove for isolated quotient singularities over an algebraically closed field of characteristic

zero that K0(Dsg(X)) is finite torsion, and that K1(Dsg(X)) = 0. One of the main applications is

that algebraic varieties with isolated quotient singularities satisfy rational Poincaré duality on the

level of the Grothendieck group; this allows computing the Grothendieck group of such varieties

in terms of their resolution of singularities. Other applications concern the Grothendieck group

of perfect complexes supported at a singular point and topological filtration on the Grothendieck

groups.

Introduction

In this paper we perform a systematic study of the Schlichting K-theory groups of the dg-

enhancement of the Buchweitz-Orlov singularity category Dsg(X) = Db(X)/Dperf(X); we call

the latter K-theory groups the singularity K-theory.

Let X/k be a quasi-projective scheme. Let Ki(X) = Ki(Dperf(X)) denote the Thomason-

Trobaugh K-theory of perfect complexes, which in the quasi-projective case coincides with K-

theory of vector bundles on X, while Gi(X) = Ki(Db(X)) is Quillen’s G-theory, that is K-theory

of coherent sheaves. By construction the singularity K-theory groups Ksg
i (X) fit into an exact

sequence

· · · → Ki(X)→ Gi(X)→ Ksg
i (X)→ Ki−1(X)→ . . . ,

for i ≥ 1, finishing at

· · · → Ksg
1 (X)→ K0(X)→ G0(X)→ Ksg

0 (X)→ 0, (1.0.1)
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but negative K groups can be taken into account as well, see Lemma 1.1.11.

A classical result going back to Serre is that if X is regular, then Dperf(X) = Db(X), so

the canonical maps Ki(X) → Gi(X) are isomorphisms for all i and Ksg
i (X) = 0. In general

we may think of the singularity K-theory groups Ksg
i (X) as a tool for controlling the difference

between K-theory and G-theory. This approach is essentially a homological incarnation of

Orlov’s definition of the singularity category, and explains the terms “singularity category” and

“singularity K-theory”.

We develop the theory of singularity K-theory, explaining its functoriality properties and

stating relevant exact sequences. Many of these properties follow directly from the work of

Orlov [94, 96] once one makes sure that the relevant triangulated functors are induced from dg

enhancements. For a similar perspective on studying homological invariants of the singularity

category see [114, 115, 54], and for an algebraic approach to K0 and K1 of the singularity category

via MCM modules see [65, 89, 47].

Let us motivate our study from several viewpoints, relating to earlier work in Algebraic K-

theory of singular varieties, and pointing out what singularity K-theory has to offer in each case.

As a general rule our most interesting applications concentrate on isolated rational singularities,

including quotient and ADE singularities.

1. Poincaré duality for quotient singularities.

One of the main questions which motivated this work has been the following one. If X/k is a

quasi-projective algebraic variety with quotient singularities, it is a natural guess that canonical

maps Ki(X) → Gi(X) are isomorphisms up to torsion; indeed this could be expected as X

should be thought of as an analog of a Q-manifold, while Ki(X) → Gi(X) may be thought as

the Poincaré duality map; we use the notation PD : Ki(X) → Gi(X) for this map. In general

however it is not true that PD is an isomorphism up to torsion for varieties with quotient

singularities.

Indeed, if either X has nonisolated quotient singularities or if i ≥ 1, then examples of

Gubeladze [58] (cf Example 1.3.7) and Srinivas [110] (see Remark 1.2.21) respectively show that

Ki(X) → Gi(X) is not an isomorphism, even after tensoring with Q. The typical phenomenon

is that Gi(X) are under control while Ki(X) become counterintuitive. In both examples of

Srinivas and Gubeladze Ki(X)→ Gi(X) has a “huge” kernel.

One of our main results is that Poincaré duality does hold up to torsion for i = 0 in the

isolated quotient singularities case:

Theorem 1.0.1 (See Theorem 1.2.23). Let X be an n-dimensional quasi-projective variety

over an algebraically closed field k of characteristic zero. Assume that X has isolated quotient

singularities with isotropy groups Gi, i = 1, . . . ,m. Then the map

PD : K0(X)→ G0(X)

is injective, and its cokernel is a finite torsion group annihilated by lcm(|G1|, . . . , |Gm|)n−1.
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We deduce the following Corollary of the Theorem, which often allows to conclude that

K0(X) is finitely generated:

Corollary 1.0.2 (See Theorem 1.2.28). Under the same assumptions as in the Theorem, for

any resolution of singularities π : Y → X the pullback π∗ : K0(X)→ K0(Y ) is injective.

This is a strengthening of a result of Levine who proves the result in dimension up to three

and shows that π∗ has torsion kernel in general [82].

Let us emphasize that there is in principle no easy way of controlling K0(X) of singular

varieties. To illustrate our point, let us note that it is a well-known open question in K-theory

of singular varieties, whether every weighted projective space X = P(a0, . . . , an) has a finitely

generated K0(X) [58, Acknowledgements], [70, 5.2.3]; note that G0(X) is finitely generated and

has rank n+ 1.

One important method of computing K-theory of singular varieties has been developed in

[33, 34, 35, 36, 37] and consists in relating K-theory to various sheaf cohomology groups. This

method has been applied to weighted projective spaces in [86] where K0(P(1, . . . , 1, a)) has

been computed (it is isomorphic to the Grothendieck group of a projective space of the same

dimension, which is the answer one would expect).

Regarding weighted projective spaces, we can prove the following. If a0, . . . , an are pairwise

coprime, so that X = P(a0, . . . , an) has isolated quotient singularities, then using the Theorem

and the Corollary above we deduce that K0(X) is a free abelian group of rank n+1 (Application

1.3.2).

The Theorem above follows using the exact sequence (1.0.1) once we know that for varieties

with isolated quotient singularities over an algebraically closed field of characteristic zero Ksg
0 (X)

is finite torsion (Proposition 1.2.5) and Ksg
1 (X) = 0 (Corollary 1.2.19). In order to study the

general case we first study the local case An/G, where a finite group G acts on its linear

representation. We study this local case in some detail relying on tools such as equivariant

K-theory, equivariant Chow groups and cdh topology (Propositions 1.2.8, 1.2.9, 1.2.10, 1.2.18).

In contrast to the isolated quotient singularities case, the group Ksg
1 (X) in general does not

vanish for more general singularities, e.g. for rational isolated singularities (Example 1.3.8) or

non-isolated quotient singularities (Example 1.3.7), and the assumption that k is algebraically

closed is necessary as well (Example 1.3.9).

2. Cohomology and homology algebraic cycles.

The usual Chow groups have the functoriality property of Borel-Moore homology theory, and it

has been asked by Srinivas what is the correct definition of Chow cohomology of singular varieties

[111]. Taking insight from the intersection homology, it seems natural that in order to define

such a theory one needs to generalize both the algebraic cycles and the rational equivalence

relation. For example the Chow group CHdim(X)−1(X) (which coincides with Cl(X) when X is

normal) is the group of “homology divisors”, whereas Pic(X) can be thought as the group of

“cohomology divisors”. Cohomology zero cycles have been introduced and studied in [83].
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Let us now take the sheaves rather than cycles perspective, and see what we can say then.

This approach is legitimate as one way to define Chow groups (up to torsion) is to take the

associated graded groups for the topological filtration on G0(X), that is the filtration given by

codimension of support. See work of Gillet [52] for a realization of this approach to Chow groups

and intersection theory in the regular case and Fulton [49] for the view-point on K0(X)⊗Q as

a variant for Chow-cohomology theory.

In fact the difference between homology and cohomology algebraic cycles in the singular case

seems to be of the same nature as between coherent sheaves and perfect complexes. For example,

if we ask the question: what makes a homology class cohomological, this can be interpreted as

the question about

Ksg
0 (X) = Coker(K0(X)→ G0(X)).

We explain that there is an induced “topological” filtration by codimension of support on

Ksg
0 (X) and study its associated graded groups griKsg

0 (X) = F iKsg
0 (X)/F i+1Ksg

0 (X); we think of

these groups as obstructions for the codimension i homology algebraic cycles to be cohomological.

This approach can be demonstrated in small dimension and codimension as follows.

Theorem 1.0.3. (Proposition 1.1.25) Let X/k be a connected reduced quasi-projective scheme

of pure dimension over an algebraically closed field, then

(1) gr0Ksg
0 (X) = ZN−1, where N is the number of irreducible components of X.

(2) If X is irreducible and normal, then gr1Ksg
0 (X) = Cl(X)/Pic(X).

(3) grdimXKsg
0 (X) = 0.

In particular, if X is an irreducible normal surface, then Ksg
0 (X) is concentrated in a single

degree 1 and Ksg
0 (X) ' Cl(X)/Pic(X).

A related and especially amusing phenomenon is that the well-known Knörrer periodicity

shifts the topological filtration by one (see Proposition 1.1.31); this puts questions such as

factoriality of threefolds and irreducibility of curves on equal footing (Application 1.3.5, Example

1.3.6).

In the case of ordinary double points of arbitrary dimension, the only nontrivial graded

group for the topological filtration on Ksg
0 (X) is in the middle codimension (Examples 1.1.32,

1.1.33). Returning to the relation between sheaves and algebraic cycles, this predicts that all

cycles in codimension up to half the dimension on varieties with ordinary double points are

“cohomological”. For a very concrete example, note that normal varieties of dimension at least

four with ordinary double points are factorial, that is Pic(X) = Cl(X).

In the example of an isolated quotient singularity, for instance, in the local case the associated

graded groups griKsg
0 (An/G) are typically nonzero in the range 0 < i < n and are closely related

to the G-equivariant Chow groups of a point [44].

3. Computing K0(X on Sing(X)): the Srinivas conjecture.

Let X be a quasi-projective variety with isolated singularities over an algebraically closed field

of characteristic zero. In [109] Srinivas introduced and studied the Grothendieck group of the
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exact category of coherent sheaves supported at the singular locus and having finite projective

dimension (i.e. perfect as complexes); for Cohen-Macaulay isolated singularities this group is

isomorphic to the Grothendieck group K0(X on Sing(X)) of the triangulated category of zero-

dimensional perfect complexes supported at the singular points [103, Proposition 2].

There is a natural homomorphism

l : K0(X on Sing(X))→ ZSing(X)

induced by the length of the sheaf.

We call the question whether l is an isomorphism for isolated quotient singularities the

Srinivas conjecture (see [109, Page 38]). Levine has proved that l is surjective for all isolated

Cohen-Macaulay singularities [82, Proposition 2.6]. Furthermore, Levine proved that for isolated

quotient singularities of dimension up to three in characterstic zero l is an isomorphism [82,

Theorem 3.3], and that it is an isomorphism up to torsion in general [82, Theorem 2.7].

On the other hand, it is known that l is not always injective; for instance for a three-

dimensional quadric cone xy = zw, Ker(l) = Z⊕ k∗ [82, Theorem 4.2].

Using singularity K-theory with supports we reprove surjectivity of l and deal with its injec-

tivity. Namely, we prove that l is injective for isolated quotient singularities over an algebraically

closed field of characteristic zero (see Proposition 1.3.11); this is a direct consequence of the fact

that Ksg
1 (X) = 0 for such singularities. We also note that in our approach the surjectivity of l

follows from the topological filtration considerations in subsection 2 and illustrates the interac-

tion between homology and cohomology cycles in dimension zero: skyscraper sheaf of a singular

point (homology cycle) is represented by a class of a perfect complex (cohomology cycle).

In general we show that any example where K0(X)→ G0(X) has nonzero kernel will auto-

matically have Ker(l) 6= 0 (Remark 1.3.12).

4. Homological Bondal-Orlov localization conjecture.

Given a variety X with rational singularities and π : Y → X a resolution of singularities, it is a

natural question whether π∗ : Db(Y ) → Db(X) is essentially surjective and whether there is an

equivalence Db(Y )/Ker(π∗) ' Db(X), that is Db(X) is a Verdier quotient of Db(Y ); this question

may be called the Bondal-Orlov localization conjecture [19]. As a side result, which is morally

related, in a certain sense dual to, but not dependent on the singularity category, we prove that

Bondal-Orlov localization conjecture holds for quotient singularities (not necessarily isolated)

in characteristic zero (Theorem 1.2.30). This implies in particular that π∗ : G0(Y ) → G0(X)

is surjective, which is the “dual” statement to the injectivity π∗ : K0(X) → K0(Y ) for isolated

quotient singularities explained in subsection 1 above (but there is no logical link between the

two statements).

In the more general setting, to the best of our knowledge it is not known whether the

pushforward morphism

π∗ : G0(Y )→ G0(X)
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is surjective if X is a variety with rational singularities over an algebraically closed field and

π : Y → X is a resolution. We call this question, as well as the long G-theory exact sequence

· · · → Ki(Ker(π∗))→ Gi(Y )→ Gi(X)→ · · · → K0(Ker(π∗))→ G0(Y )→ G0(X)→ 0

predicted by the Bondal-Orlov conjecture the Homological Bondal-Orlov conjecture and we hope

return to this question in the future.
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Notation and conventions

Unless specified otherwise, the schemes we consider are quasi-projective over a field k, however

most results remain true in the generality of Orlov’s (ELF) condition [94]. Furthermore, the

base field k is assumed to have characteristic zero; however all general results in Section 1.1 are

true without this assumption.

If G is a finite group, we write Ĝ for the group of characters Hom(G, k∗). We write Zn for

the cyclic group of order n.

All triangulated and dg categories are assumed to be k-linear. All functors such as pullback

π∗, pushforward π∗ and tensor product⊗ when considered between derived categories are derived

functors.

1.1 Singularity K-theory

1.1.1 Triangulated and dg singularity categories

We start by introducing the category whose K-theory we are going to study. Unless stated

otherwise, X is a quasi-projective scheme over a field k. We write Db(X) for the bounded derived

category of coherent sheaves on X and Dperf(X) for its subcategory of perfect complexes, which

in the quasi-projective case coincides with the subcategory of bounded complexes of locally free

sheaves.

Definition 1.1.1 (Buchweitz [24], Orlov [94]). The triangulated category of singularities of X

is the Verdier quotient

Dsg(X) := Db(X)/Dperf(X).

As we will be interested in K-theory of the singularity category, we need to specify a dg-

enhancement for Dsg(X) to apply Schlichting’s machinery of K-theory of dg-categories.
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For that we first recall that Db(X) has a unique dg-enhancement, up to quasi-equivalence

[84, 27]. We denote this dg-enhancement by Dbdg(X). Considering the full dg-subcategory of

perfect objects in Dbdg(X), we get a dg-enhancement Dperf
dg (X) of Dperf(X). Finally, applying

the Drinfeld quotient construction [41] to the pair Dperf
dg (X) ⊂ Dbdg(X) we get a dg-category

Dsg
dg(X) which is a dg-enhancement for Dsg(X).

We note that even though the dg-enhancement of Dsg(X) may not be unique, our choice is

canonical in a way that all enhancements of Dsg(X) induced by an enhancement of Db(X) are

quasi-equivalent.

Similarly, we consider the singularity category with supports. For any closed Z ⊂ X let

Dsg
Z (X) = DbZ(X)/Dperf

Z (X).

Here DbZ(X) consists of complexes in Db(X) acyclic away from Z, and Dperf
Z (X) = DbZ(X) ∩

Dperf(X). A dg-enhancement of Db(X) induces one for DbZ(X), and using the Drinfeld quotient

construction, Dsg
Z (X) acquires a dg-enhancement Dsg

Z,dg(X).

Remark 1.1.2. An alternative definition for the singularity category with supports would be to

consider the kernel category of the restriction functor Dsg(X) → Dsg(X \ Z). By a result of

Chen [30, Theorem 1.3] this kernel category will be the idempotent closure of Dsg
Z (X) in Dsg(X)

(cf Proposition 1.1.5 below), hence Dsg
Z (X) carries more information about the singularity.

We now list some properties of the singularity categories, which are due to Orlov. Even

though Orlov formulates these results on the triangulated level, they all lift to the dg-enhancements

due to the fact that all well-defined derived pullback and pushforward functors lift to dg-

enhancements of Db(X) and Dperf(X) [108].

Proposition 1.1.3 (Orlov [94]). Let j : U ⊂ X be an open embedding such that Sing(X) ⊂ U .

Then

j∗ : Dsg(X)
∼−→ Dsg(U)

is an equivalence, induced by a functor between dg-enhancements.

Theorem 1.1.4 (Knörrer periodicity, Orlov [94]). Let X/k be a smooth quasi-projective scheme

and let f : X → A1 be a non-zero morphism. Define g = f + xy : X × A2 → A1. Let

Zf = f−1({0}) and Zg = g−1({0}), and let W = Zf ×{0}×A1 ⊂ X ×A2. Furthermore, denote

by i : W ↪→ Zg the inclusion and p : W → Zf the flat projection. Then

i∗p
∗ : Dsg(Zf )→ Dsg(Zg)

is an equivalence of triangulated categories induced by a functor between dg-enhancements.

Recall that a full triangulated subcategory T of a triangulated category D is called dense if

any object in D is a direct summand of an object in T .
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Proposition 1.1.5 (Orlov [96]). For any closed subset Z ⊆ X, the induced functor

Dsg
Z (X)→ Dsg(X)

is fully faithful and is induced by a functor between dg-enhancements. Furthermore, if Sing(X) ⊂
Z, then this functor has a dense image.

If D is a triangulated category, then we write D for the idempotent completion of D; D is

a triangulated category by [8]. If D admits a dg-enhancement, then the fully faithful functor

D ⊂ D is induced by a dg-functor (see e.g. [10, 1.6.2]).

Theorem 1.1.6 (Orlov [96]). Assume that the formal completions of X and X ′ along Sing(X)

and Sing(X ′) respectively are isomorphic. Then we have equivalences

Dsg
Sing(X)(X) ' Dsg

Sing(X′)(X
′)

and

Dsg(X) ' Dsg(X ′)

induced by functors between dg-enhancements.

In light of our interest in idempotent completions we will also need the following celebrated

result by Thomason.

Theorem 1.1.7 (Thomason, Theorem 2.1 in [118]). Let D be an essentially small triangulated

category, then there is a one-to-one correspondence

{T ⊆ D | T dense strictly full triang. subcat.} 1:1←→ {H ⊆ K0(D) | H subgroup}.

The correspondence sends strictly full dense subcategories T ⊆ D to the image of K0(T ) in

K0(D) and the inverse sends a subgroup H of K0(D) to the full triangulated subcategory DH ,

where DH := {A ∈ D | [A] ∈ H ⊆ K0(D)}.

1.1.2 K-Theory of the singularity category

Schlichting’s construction of the K-theory spectrum [106, 107] can be applied to produce K-

theory groups Ki(C), i ∈ Z for a k-linear pretriangulated dg-category C.
The Ki groups are covariantly functorial for dg-functors; we summarize their properties as

follows. For a pretriangulated dg-category C we write H0(C) for its triangulated homotopy

category.

(0) K0(C) is the Grothendieck group of the idempotent completion of H0(C).

1. If C → C′ induces a fully faithful embedding H0(C)→ H0(C′) with a dense image, then all

Ki(C)→ Ki(C′) are isomorphisms.
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2. If A → B → C induces a fully faithful embedding H0(A) → H0(B) such that H0(A) is

the kernel of H0(B)→ H0(C) and a fully faithful functor H0(B)/H0(A)→ H0(C) with a

dense image, then there is a long exact sequence

· · · → Ki(A)→ Ki(B)→ Ki(C)→ Ki−1(A)→ . . .

3. Ki(Dbdg(X)) are isomorphic to Gi(X), Quillen’s G-theory, that is K-theory of coherent

sheaves. In particular, Ki(Db(X)) = 0 for i < 0.

4. Ki(Dperf
dg (X)) are isomorphic to Ki(X), the Thomason-Trobaugh K-theory [119], which

under our assumptions on X (quasi-projective scheme over a field) are isomorphic to

Quillen’s K-theory of vector bundles.

Remark 1.1.8. It is well-known that K-theory of triangulated categories satisfying the axioms

analogous to those listed above cannot be defined [105]; the counterexample is provided by the two

singularity categories of schemes which are equivalent as triangulated categories but are forced

to have non-isomorphic higher K-groups if one assumes the long exact K-theory sequence for

Verdier quotients of triangulated categories.

Definition 1.1.9. We define the singularity K-theory groups of X by

Ksg
i (X) =

{
Ki(Dsg

dg(X)), i 6= 0

K0(Dsg
dg(X)), i = 0

and we also define Ksg
0 (X) = K0(Dsg(X)).

Remark 1.1.10. We make a special consideration for i = 0 since by property (0) above Ksg
0 (X)

is in fact the Grothendieck group of the idempotent completion of Dsg(X), and not of Dsg(X)

itself. By Theorem 1.1.7 we have Ksg
0 (X) ⊂ Ksg

0 (X). On the other hand by property (1) it is

true that for i 6= 0, Ksg
i (X) = Ki(Dsg

dg(X)) ' Ki(Dsg
dg(X)).

Let us write PD : Ki(X) → Gi(X) for the canonical “Poincaré duality” morphism induced

by Dperf
dg (X) ⊂ Dbdg(X). Our main motivation in defining the singularity K-theory is for studying

this map.

Lemma 1.1.11 (Singularity K-theory exact sequences). We have exact sequences

· · · → Ki(X)
PD→ Gi(X)→ Ksg

i (X)→ · · · → K0(X)
PD→ G0(X)→ Ksg

0 (X)→ 0, (1.1.1)

0→ Ksg
0 (X)→ Ksg

0 (X)→ K−1(X)→ 0. (1.1.2)

and isomorphisms for j ≥ 1

Ksg
−j(X) ' K−j−1(X). (1.1.3)

Proof. The statement follows from a single K-theory sequence using the properties of Schlichting

K-groups given above and the fact that the image of G0(X) in Ksg
0 (X) is Ksg

0 (X). �
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We record the following well-known result:

Lemma 1.1.12. Dsg(X) is idempotent complete if and only if K−1(X) = 0.

Proof. Using (1.1.2) we see that vanishing of K−1(X) is equivalent to K0(Dsg(X)) = K0(Dsg(X))

which implies Dsg(X) = Dsg(X) by the theorem of Thomason (Theorem 1.1.7). �

Similarly to the definition of the singularity K-theory, for every closed Z ⊂ X we consider

the singularity K-theory with supports defined by

Ksg
i (X on Z) =

{
Ki(Dsg

Z,dg(X)), i 6= 0

K0(Dsg
Z,dg(X)), i = 0

Lemma 1.1.13. If Sing(X) ⊂ Z, then we have natural isomorphisms Ksg
i (X on Z) ' Ksg

i (X)

for i 6= 0 and Ksg
0 (X on Z)→ Ksg

0 (X) is injective.

Proof. Follows from Proposition 1.1.5 and property (1) of Schlichting’s K-theory. �

Remark 1.1.14. There are exact sequences for singularity K-theory with supports analogous

to (1.1.1), (1.1.2); note that Ki(Dperf
dg,Z(X)) = Ki(X on Z) are the Thomason-Trobaugh K-theory

groups [119] while Ki(Dbdg,Z(X)) ' Gi(Z) is Quillen’s G-theory [100].

We now discuss functoriality properties of Ksg
i .

Lemma 1.1.15. Ksg
i are contravariantly functorial for morphisms of finite Tor-dimension, and

are covariantly functorial for proper morphisms of finite Tor-dimension.

Proof. This holds because of the triangulated singularity categories have this functoriality [94],

and since the pullback and pushforward functors are induced by dg-enhancements [108]. �

Lemma 1.1.16. Let U be an open subscheme of X containing the singular locus Sing(X). Then

the inclusion j : U → X induces an isomorphism

j∗ : Ksg
i (X) ' Ksg

i (U)

for all i ∈ Z.

Proof. By Proposition 1.1.3 j∗ is a quasi-equivalence on dg singularity categories, so it must

induce an isomorphism on K-theory groups. �

Lemma 1.1.17. Let X be a quasi-projective variety, and let p : V → X be a vector bundle over

X. Then we have an isomorphism

p∗ : Ksg
0 (X) ' Ksg

0 (V ).
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Proof. Let i : X → V the zero section. Since p is flat and i is a regular embedding, both

morphisms p and i are of finite Tor dimension, so by Lemma 1.1.15 we have pullback homo-

morphisms p∗ : Ksg
i (X) → Ksg

i (V ) and i∗ : Ksg
i (V ) → Ksg

i (X), and i∗ is left-inverse to p∗, in

particular p∗ is injective.

On the other hand, from the diagram

G0(X)

p∗ '
��

// // Ksg
0 (X)

p∗

��
G0(V ) // // Ksg

0 (V )

we see immediately that p∗ : Ksg
0 (X)→ Ksg

0 (V ) is surjective as well. �

Remark 1.1.18. The functors Ksg
i are not homotopy invariant for i 6= 0 in general. Consider

for example the case of Ksg
1 ; if we have Ksg

1 (X×A1) ' Ksg
1 (X), then using the five-lemma applied

to the five bottom terms of the sequence (1.1.1), we would deduce that K0(X × A1) ' K0(X)

which typically does not hold for singular varieties.

We will now present a method to compute Ksg
j (X) for a special class of schemes which we call

A1-contractible. This approach generalizes the so-called Swan-Weibel homotopy trick, which is

used to show that normal graded domains have vanishing Picard group [88, Lemma 5.1].

Definition 1.1.19. We say that X is A1-contractible, if there exists a morphism H : X×A1 →
X such that H|X×1 is the identity map and H|X×0 is a constant rational point x0 ∈ X. We also

say that H is a contraction of X.

Lemma 1.1.20. The following affine schemes are A1-contractible:

1. An/G, where G acts linearly on An

2. V (f) ⊂ An, where f ∈ k[x1, . . . , xn] is a weighted homogeneous polynomial

Proof. (1) An admits a G-equivariant contraction HAn : An × A1 → An, H(v, t) = tv (G acts

trivially on the A1 factor), which induces a contraction H : An/G× A1 → An/G.

(2) By assumption the algebra k[V (f)] = k[x1, . . . , xn]/(f) is positively graded. Let wi > 0

be the weight of xi. Then the k-algebra morphism

k[X]→ k[X, t], xi 7→ twi · xi

is well-defined and induces a contraction for V (f). �

Proposition 1.1.21. Let X be A1-contractible.

(1) For every j ≥ 0 the canonical map PD : Kj(X) → Gj(X) factors as a composition

Kj(X)
x∗0→ Kj(Spec(k))

p∗→ Gj(X), where p : X → Spec(k) is the structure morphism.
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(2) There is a natural isomorphism

Ksg
0 (X) ' G0(X)/(Z · [OX ]).

(3) If X has a smooth rational point x1 ∈ X, then

G0(X) = Z · [OX ]⊕Ksg
0 (X)

and for every j ≥ 1 there is a short exact sequence

0→ Coker(Kj(k)
p∗→ Gj(X))→ Ksg

j (X)→ Ker(Kj−1(X)
x∗0→ Kj−1(k))→ 0.

Proof. (1) The proof relies on the fact that the canonical map PD commutes with pullbacks of

finite Tor dimension as well as on homotopy invariance of G-theory. Let us write i0, i1 for the

two embeddings of X into X ×A1 corresponding to 0, 1 ∈ A1. These embeddings define Cartier

divisors, in particular are regular, hence of finite Tor-dimension.

In the computation below we use the notation K(f) and G(f) for the pullbacks on K and

G-theory respectively, and PDZ for the canonical Poincaré duality map K0(Z)→ G0(Z) on any

Z. We compute:

PDX = PDX ◦K(i1) ◦K(H)

= G(i1) ◦ PDX×A1 ◦K(H)

= G(i0) ◦ PDX×A1 ◦K(H)

= PDX ◦K(i0) ◦K(H)

= PDX ◦K(p) ◦K(x0)

= G(p) ◦ PDSpec(k) ◦K(x0)

which is what we had to establish.

Let us now compute Ker(PD), Coker(PD) for PD : Kj(X)→ Gj(X) using (1). The map x∗0
is always surjective (since x∗0 ◦ p∗ = idKj(k)), hence Coker(PD) = Coker(p∗), and applying this

to j = 0 using the K-theory short exact sequence (1.1.1) we get (2).

If in addition X admits a smooth rational point x1, then the map p∗ is injective (since

x∗1 ◦ p∗ = idKj(k) for the pullback x∗1 : Gj(X)→ Kj(k) for the regular embedding of x1 into X),

hence (1) implies Ker(PD) = Ker(x∗0).

Once we have identified the kernel and cokernel of PD, (3) follows from the K-theory long

exact sequence (1.1.1). �

In the two examples below we consider A1-contractible schemes with no smooth rational

points.

Example 1.1.22. X = Spec(k[ε]/εn) is A1-contractible by Lemma 1.1.20 (2). In this case the

canonical map K0(X)→ G0(X) is Z ·n→ Z and Ksg
0 (X) = Zn.
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Example 1.1.23. Let X be an affine curve x2 + y2 = 0 over k = R, the real numbers.

To compute G0(X) we consider a compactification X ⊂ X, where X is given by equation

X2 + Y 2 = 0 in the real projective plane P2
R with coordinates X,Y, Z. The complement X \X

is the single closed (non-rational) point at infinity ∞ ∈ X; as a subscheme ∞ is isomorphic to

Spec(C).

It is easy to see that there is an isomorphism

G0(X) ' Z⊕ Z, [F ] 7→ (rk(F),deg(F))

(surjectivity is obvious, while injectivity boils down to the fact that every class of a skyscraper

sheaf of a closed point x ∈ X is a multiple of the class of the skyscraper sheaf of the rational

point [0 : 0 : 1], and this can be checked using the fact that CH0(X) = Z).

We write the G-theory localization sequence for X ⊂ X:

G0(Spec(C))→ G0(X)→ G0(X)→ 0.

Under the isomorphism G0(X) = Z ⊕ Z the class of structure sheaf of the point at infinity

corresponds to (0, 2); we deduce that G0(X) = Z⊕Z2 given by the rank map and degree modulo

two.

The curve X is A1-contractible by Lemma 1.1.20 (2) so that by Proposition 1.1.21 (2) we

obtain

Ksg
0 (X) = G0(X)/Z · [OX ] = Z2,

generated by the class of the structure sheaf of the rational point (0, 0) ∈ X.

1.1.3 Topological filtration on Ksg
0

We introduce and study the topological filtration on Ksg
0 (X), that is the filtration given by the

codimension of support. Note that the support of an object in Db(X) does not give a well-defined

notion of support on Dsg(X), as any nonzero perfect complex is isomorphic to a zero object in

the singularity category. The following example gives a more subtle instance of behaviour of the

support.

Example 1.1.24. Let X = {xy = 0} ⊂ A2 be the union of two A1-lines over k. Denote the two

affine lines by L1 = A1 × 0 ⊂ X and L2 = 0 × A1 ⊂ X. The structure sheaves of L1 and L2

correspond to quotient rings k[x] = k[x, y]/(y) and k[y] = k[x, y]/(x) respectively. We have an

exact sequence of k[x, y]/(xy)-modules

0→ k[x]
x→ k[x, y]/(x, y)→ k[y]→ 0

which translates into a distinguished triangle in Db(X)

OL1 → OX → OL2 → OL1 [1]
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and yields an isomorphism OL2 ' OL1 [1] of objects Dsg(X) (the shift [1] is two-periodic in this

example); sheaf-theoretic supports of these two objects are different.

We can speak about codimension of support of an object of Dsg(X) without defining the

support itself. Let X be a quasi-projective scheme with all irreducible components of the same

dimension n.

Recall that K0(X), G0(X) admit the so-called topological filtration (also called the coniveau

or the codimension filtration), which goes back to Grothendieck and is defined as follows. The

class α ∈ G0(X) (resp. K0(X)) belongs to F iG0(X) (resp. F iK0(X)) if α can be represented by a

bounded complex of coherent sheaves (resp. locally free sheaves) whose support has codimension

at least i. It is clear from the definitions that the canonical map PD : K0(X) → G0(X) maps

F iK0(X) to F iG0(X).

We consider the natural quotient homomorphism Q : G0(X) � Ksg
0 (X) and define

F iKsg
0 (X) = Q(F iG0(X)).

This gives a filtration

0 = Fn+1Ksg
0 (X) ⊆ FnKsg

0 (X) ⊆ . . . ⊆ F 1Ksg
0 (X) ⊆ F 0Ksg

0 (X) = Ksg
0 (X).

Explicitly, we say that a class α ∈ Ksg
0 (X) has codimension at least i or that α ∈ F iKsg

0 (X),

if α can be represented by a complex of coherent sheaves E on X whose cohomology sheaves are

supported in codimension i.

It follows from definitions that we have canonical isomorphisms

F iKsg
0 (X) ' F iG0(X)

F iG0(X) ∩ PD(K0(X))
(1.1.4)

We let griKsg
0 (X) = F iKsg

0 (X)/F i+1Ksg
0 (X), and similarly for K0(X), G0(X). We have a

natural surjection

griG0(X)→ griKsg
0 (X) (1.1.5)

and canonical isomorphisms

griKsg
0 (X) ' F iG0(X)

F i+1G0(X) + (F iG0(X) ∩ PD(K0(X)))
. (1.1.6)

Proposition 1.1.25. Let X/k be a connected reduced quasi-projective scheme with all irreducible

components of the same dimension n.

(1) Let N be the number of irreducible components of X. Then gr0Ksg
0 (X) = ZN−1. In

particular gr0Ksg
0 (X) = 0 if and only if X is irreducible.

(2) If X is irreducible and normal then gr1Ksg
0 (X) ' Cl(X)/Pic(X). In particular in this case

gr1Ksg
0 (X) = 0 if and only if X is factorial.
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(3) For any i ≥ 0 there is a surjective homomorphism CHn−i(X) → griKsg
0 (X) which is

natural with respect to pullback for flat morphisms and pushforward for proper morphisms

of finite Tor-dimension.

(4) If k is algebraically closed, then grnKsg
0 (X) = 0.

Proof. (1) Using i = 0 case of (1.1.6) we obtain

gr0Ksg
0 (X) ' G0(X)

F 1G0(X) + PD(K0(X))
.

We have gr0G0(X) = ZN , where the isomorphism is given by generic rank at the irreducible

components. Since X is connected, a locally-free sheaf has the same rank at each point, and

the image of the composition K0(X)
PD→ G0(X) → gr0G0(X) consists of Z embedded into ZN

diagonally, since X is reduced. We conclude that gr0Ksg
0 (X) = ZN−1.

(2) Since X is irreducible, we have canonical splittings K0(X) = Z⊕F 1K0(X) and G0(X) =

Z⊕ F 1G0(X), which are respected by PD so that from (1.1.6) we deduce

gr1Ksg
0 (X) ' F 1G0(X)

F 2G0(X) + (F 1G0(X) ∩ PD(K0(X)))
' F 1G0(X)

F 2G0(X) + PD(F 1K0(X))
.

By [51, Remark 1 on Page 126], we have a natural isomorphism gr1K0(X) = Pic(X). Since

X is normal so that its singular locus has codimension at least two we also get the following

isomorphisms

gr1G0(X) = gr1G0(X \ Sing(X)) = Pic(X \ Sing(X)) = Cl(X).

It follows that the image of F 1K0(X) in gr1G0(X) = Cl(X) is equal to Pic(X), and we get

gr1Ksg
0 (X) = Cl(X)/Pic(X).

Finally, X is factorial if and only if Pic(X) = Cl(X) which is equivalent to gr1Ksg
0 (X) = 0.

(3) There is a surjection CHn−i(X)→ griG0(X), sending the class of an (n− i)-dimensional

subvariety to the structure sheaf of this variety (see SGA X [15], [52, Lemma 3.8, Theorem 3.9]

or [50, Example 15.1.5]), and composing it with the surjection griG0(X) → griKsg
0 (X) gives

the desired homomorphism. Naturality of this homomorphism is explained in SGA X [15], and

naturality for the pushforward of a proper morphism is also explained in [50, Example 15.1.5].

(4) This is a simple Moving Lemma argument. Assume first that X is irreducible. We fix a

closed subvariety Z ( X containing the singular locus. By De Jong’s work (see [40], Theorem

4.1) there is a proper surjective and generically finite morphism π : Y → X where Y is a smooth

irreducible and quasi-projective variety. Let E = π−1(Z) ⊂ Y .

Let us show that for every closed point x ∈ X there is a point x′ ∈ X \ Z such that

[Ox] = [Ox′ ] ∈ G0(X). Indeed, since we assume that k is algebraically closed, there is a closed

point y ∈ Y such that π(y) = x, and using a simple argument (e.g. reducing to the case when

Y is a curve, or using the Moving Lemma [31] for Chow groups), we can find y′ ∈ Y \ E such
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that [Oy] = [Oy′ ] ∈ G0(Y ). Pushing forward this equality to X we get [Ox] = [Ox′ ] ∈ G0(X),

where x′ = π(y′). Since the structure sheaves of non-singular points are perfect complexes, we

get [Ox] = [Ox′ ] = 0 ∈ Ksg
0 (X). Finally, every class of a zero-dimensional complex [F ] ∈ G0(X)

is a linear combination of structure sheaves of closed points, and this shows that FnKsg
0 (X) = 0

if X is irreducible.

If X is not irreducible, the result is obtained by applying the argument above to each of the

irreducible components of Xi ⊂ X with respect to Z = Xi ∩ Sing(X). �

Corollary 1.1.26. If k is algebraically closed, i : x ↪→ X is a closed point and Ox its structure

sheaf, then the image of [i∗Ox] ∈ G0(X) in Ksg
0 (X) is zero.

Proof. This is equivalent to Proposition 1.1.25 (4). �

Remark 1.1.27. The result of the Corollary does not hold if k is not algebraically closed:

see Example 1.1.23, where X/R is a curve, Ksg
0 (X) = Z2 and the generator is supported in

codimension one.

Corollary 1.1.28. If k is an algebraically closed field, and X has isolated singularities then

Ksg
0 (X on Sing(X)) = 0.

Proof. By definition Ksg
0 (X on Sing(X)) = K0(Dsg

Sing(X)(X)), and from Proposition 1.1.5 and

Theorem 1.1.7 it follows that

Ksg
0 (X on Sing(X)) ⊂ Ksg

0 (X)

is generated by classes of coherent sheaves supported on the singular locus, so the first group

has to be zero by Proposition 1.1.25 (4) as the singular locus is zero-dimensional by assumption.

�

Corollary 1.1.29. Let k be an algebraically closed field.

(1) If X is a connected quasi-projective curve with N irreducible components, then Ksg
0 (X) '

ZN−1. In particular, Ksg
0 (X) = 0 if and only if X is irreducible.

(2) If X is a normal irreducible quasi-projective surface, then Ksg
0 (X) ' Cl(X)/Pic(X). In

particular, Ksg
0 (X) = 0 if and only if X is factorial.

Proof. We start by noticing that if griKsg
0 (X) is the only nontrivial quotient of the topolog-

ical filtration, then Ksg
0 (X) = griKsg

0 (X). (1) follows as griKsg
0 (X) are all zero except for

gr0Ksg
0 (X) = ZN−1, and similarly (2) follows using irreducibility of X since griKsg

0 (X) are all

zero except for gr1Ksg
0 (X) = Cl(X)/Pic(X). �

Recall functoriality of the singularity K-groups stated in Lemmas 1.1.15, 1.1.16, 1.1.17. We

now explain how the topological filtration is affected by pullback and pushforward.

Lemma 1.1.30. Let φ : X → Y be a morphism of finite Tor-dimension.
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1. If φ is flat or a regular closed embedding, then φ∗(F iKsg
0 (Y )) ⊂ F iKsg

0 (X).

2. If φ is a vector bundle or an open embedding containing the singular locus of Y , then

φ∗ : F iKsg
0 (Y ) ' F iKsg

0 (X).

3. If φ is proper of codimension c := dim(Y )− dim(X), then φ∗(F
iKsg

0 (X)) ⊂ F i+cKsg
0 (Y ).

Proof. (1) The result in the case of flat morphisms follows from [52, Lemma 5.28], while in the

case of regular embeddings it follows from [52, Theorem 5.27],

(2) The vector bundle case is [52, Lemma 5.29]. Let φ be an open embedding, since it is flat

by (1) we have φ∗(F iKsg
0 (Y )) ⊂ F iKsg

0 (X) and we need to show that this is an equality. For

that it suffices to show that every coherent sheaf F on X with support in codimension i can be

extended to a coherent sheaf F ′ on Y with the same bound on support.

One constructs F ′ as a coherent subsheaf of the quasi-coherent sheaf φ∗(F) (see [62, Ex.

Chapter 2, 5.15]. Since φ∗(F) is supported on the closure of the support of F , we see that F ′ is

supported in codimension i.

(3) If φ : X → Y is a proper morphism of codimension c, then Supp(φ∗E) ⊂ φ(Supp(E)) and

thus φ∗ : F iG0(X)→ F i+cG0(Y ) (see also [51], Ch. VI, Prop. 5.6) which implies the result. �

We now explain how Knörrer periodicity (Theorem 1.1.4) shifts the topological filtration.

Proposition 1.1.31. The isomorphism Ksg
0 (Zf ) ' Ksg

0 (Zg) induced by Theorem 1.1.4 shifts the

topological filtration by one, that is for all i ≥ 0 we have natural isomorphisms F iKsg
0 (Zf ) '

F i+1Ksg
0 (Zg) and griKsg

0 (Zf ) ' gri+1Ksg
0 (Zg).

Proof. We know by Lemma 1.1.30 that p∗ preserves the topological filtration and that i∗ shifts

it by one, however this only implies that i∗p
∗(F iKsg

0 (Zf )) ⊂ F i+1Ksg
0 (Zg). To show the equality

we give a different presentation of the Knörrer periodicity isomorphism.

Let Y = BlZf×0(X×A1) be the blow up and let E be the exceptional divisor. Since Zf ×A1

is a complete intersection in X × A1 the blow up enjoys the same properties which hold in the

smooth case. For instance, E is a projective bundle π : E → Zf , and there is a semiorthogonal

decomposition [93], [14, Theorem 6.9]

Db(Y ) = 〈Db(Zf ),Db(X × A1)〉.

The inclusion of Db(Zf ) into Db(Y ) is given by the fully faithful functor Φ : Db(Zf )→ Db(Y )

Φ(−) = iE∗(OE(−1)⊗ π∗(−)),

and its left adjoint is

Ψ(−) = π∗(OE(−1)⊗ iE∗(−))[1].

Writing the open charts for the blow up one sees that one of the open charts is isomorphic

to Zg while the other one is non-singular. We write j : Zg → Y for the open embedding of the

first open chart; on the level of singularity categories, j∗ is an equivalence by Proposition 1.1.3.
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We consider the composition j∗Φ : Db(Zf )→ Db(Zg) and we now will show that j∗Φ = i∗p
∗.

We note that restriction of π to E ∩ Zg is a trivial bundle so that E ∩ Zg = Zf × A1 (in fact π

itself is a trivial bundle since the normal bundle of Zf × {0} in X × A1 is trivial).

We consider the cartesian diagram

Zf

E ∩ Zg

p

OO

i
��

jE∩Zg // E

iE
��

π
bb

Zg
j // Y

and by flat base change we compute that

j∗Φ(−) = j∗iE∗(OE(−1)⊗ π∗(−)) = i∗(j
∗
E∩Zg

OE(−1)⊗ j∗E∩Zg
π∗(−)) = i∗p

∗(−).

where we used that j∗E∩Zg
OE(−1) ' OE∩Zg .

Now we check the effect of j∗Φ on the toplogical filtration. We rely on Lemma 1.1.30. Since

j∗ strictly preserves the filtration it is sufficient to check that Φ strictly shifts the filtration by

one: this holds true since π∗ preserves the filtration while iE∗ shifts it by one, and the left adjoint

Ψ of Φ which will become its inverse on the level of singularity categories, shifts the filtration

by negative one: this holds since i∗E preserves the filtration while π∗ shifts it by negative one. �

The next two examples consider the singularity Grothendieck group of split nodal affine

quadrics, that is ordinary double points (cf [94, 3.3]).

Example 1.1.32 (Even-dimensional ordinary double points). Let n = 2m and consider the split

quadratic form

qn =
∑

xiyi + z2 ∈ k[x1, y1, . . . , xm, ym, z]

and let Qn ⊂ An+1 be the n-dimensional nodal quadric defined by qn = 0.

From Knörrer periodicity we get

Ksg
0 (Qn) ' Ksg

0 (k[z]/(z2)) = Z2,

see Example 1.1.22. Furthermore, since by dimension reasons the nonzero element of Ksg
0 (k[z]/(z2))

has support in codimension zero, by the shift of the topological filtration of Proposition 1.1.31

we get

Ksg
0 (Qn) = grn/2Ksg

0 (Qn) = Z2.

Explicitly Ksg
0 (Qn) can be seen to be generated by the structure sheaf of n/2-codimensional sub-

variety V (y1, . . . , ym, z) ⊂ Qn.
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Example 1.1.33 (Odd-dimensional ordinary double points). Let n = 2m− 1 and consider

qn =
∑

xiyi ∈ k[x1, y1, . . . , xm, ym]

and let Qn ⊂ An+1 be the n-dimensional nodal quadric defined by qn = 0.

By Knörrer periodicity we get

Ksg
0 (Qn) ' Ksg

0 (k[x, y]/(xy)),

and the latter Grothendieck group is isomorphic to Z by Corollary 1.1.29 (1), generated by

the structure sheaves of one of the two irreducible components (cf Example 1.1.24). Using

Proposition 1.1.31 we obtain

Ksg
0 (Qn) = gr(n−1)/2Ksg

0 (Qn) = Z,

generated by the structure sheaf of a codimension (n− 1)/2 linear space V (y1, . . . , ym) ⊂ Qn.

1.2 Singularity K-theory of quotient singularities

1.2.1 The local case: non-positive K-groups

For a finite group G ⊂ GLn(k) we consider the quotient variety An/G = Spec(k[x1, . . . , xn]G).

In this subsection we study G0(An/G) as well as K-groups Ki(An/G) and Ksg
i (An/G) for i ≤ 0.

Recall that we assume the ground field k to have characteristic zero.

Proposition 1.2.1. Assume that An/G has an isolated singularity at the origin. Then

K0(An/G) ' Z and K−j(An/G) = Ksg
−j(A

n/G) = 0 for j > 0.

Proof. Since An/G has an isolated singularity, k[x1, . . . , xn]G is a positively graded k-algebra and

since the base field k has characteristic zero, we can use [36, Theorem 1.2] to express non-positive

K-theory groups as follows:

K0(An/G) = Z⊕ Pic(An/G)⊕
n−1⊕
i=1

H i
cdh(An/G,Ωi

/Q)/dH i
cdh(An/G,Ωi−1

/Q )

and for j > 0

K−j(An/G) = Hj
cdh(An/G,O)⊕

n−j−1⊕
i=1

H i+j
cdh (An/G,Ωi

/Q)/dH i+j
cdh (An/G,Ωi−1

/Q ).

Here H∗cdh denotes cohomology of An/G defined via the cdh-topology on Sch/k [113] and the

group dHj
cdh(An/G,Ωi−1

/Q ) is the image of the map d : Hj
cdh(An/G,Ωi−1

/Q ) → Hj
cdh(An/G,Ωi

/Q)

induced by the Kähler differential.
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Let us show that cohomology groups Hq
cdh(An/G,Ωp

/Q) are zero for all q > 0, p ≥ 0. Note first

that one can identify H∗cdh(X,Ωp
/k0

) ' H∗eh(X,Ωp
/k0

) for all X ∈ Sch/k, where the right hand side

denotes the cohomology of X via the eh-topology (see [66]). To compute the cohomology of a

smooth variety M endowed with a finite group action G we use the simplicial scheme Ner(G,M)

[39, 43]; with rational coefficients we have Qeh(M/G) ' Qeh(Ner(G,M)). Let us supress Q in

the notation of differentials. Since we work in characteristic zero, for any smooth quasiprojective

M with a G-action we have a chain of isomorphisms

H∗eh(M/G,Ωp) ' H∗eh(Ner(G,M),Ωp) ' H∗(Ner(G,M),Ωp
Ner(G,M)) ' H

∗(M,Ωp
M )G.

Note that we used [37, Corrolary 2.5] for the second isomorphism. In particular, for M = An,

the latter cohomology groups vanish for all p ≥ 0 in positive degrees.

Finally, using the formulas for K-theory groups presented at the beginning of the proof we

get K−j(An/G) = 0 and K0(An/G) = Z ⊕ Pic(An/G) = Z, since the Picard group of a normal

graded k-algebra is zero. �

Remark 1.2.2. In the previous version of this paper we claimed that every vector bundle on

An/G is trivial. We do not know if this statement is true. We thank Sasha Kuznetsov for

pointing out an error in our argument.

Corollary 1.2.3. If An/G is an isolated singularity, then the singularity category Dsg(An/G)

is idempotent complete.

Proof. As K−1(An/G) = 0 by Proposition 1.2.1, the result follows from Lemma 1.1.12. �

Remark 1.2.4. It is not true that every affine quasi-homogeneous or A1-contractible singularity

has an idempotent complete singularity category: the simplest example is provided by the so-called

Bloch-Murthy surface singularity X given by x2 + y3 + z7 = 0 which has non-vanishing K−1(X)

[124, Example 6.1].

Proposition 1.2.5. Let G be a finite group acting linearly on the affine space An over a field

k. Then we have

G0(An/G) = Z⊕Ksg
0 (An/G),

and Ksg
0 (An/G) is a finite torsion group.

Proof. By Proposition 1.1.21 (3) there is a split short exact sequence

0→ Z→ G0(An/G)→ Ksg
0 (An/G)→ 0

where the first map is split by the rank map. Let us show that Ksg
0 (An/G) is finite torsion. The

fact that G0(An/G) is finitely-generated is well-known [7] and follows e.g. from the fact that the

pushforward functor from the equivariant category to the category of coherent sheaves on the

quotient variety π∗ : DbG(An)→ Db(An/G) is essentially surjective by Theorem 1.2.30 (1). Thus
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it suffices to show that G0(An/G) is of rank one. For that we can work rationally and compare

G0 to the Chow groups. We have a chain of isomorphisms

G0(An/G)⊗Q ' CH∗(An/G)⊗Q ' CH∗(An)G ⊗Q ' Q,

where the first isomorphism is the Grothendieck-Riemann-Roch Theorem for singular varieties

[9, Chapter III] and the second isomorphism is [50, Example 1.7.6]. We conclude that G0(An/G)

is a finitely generated abelian group of rank one and that Ksg
0 (An/G) is finite torsion. �

We call an element g ∈ GLn(k) a reflection if g has finite order and acts trivially on a

hyperplane. We need the following well-known Lemmas.

Lemma 1.2.6 ([11, Theorem 3.9.2]). Let G be a finite subgroup of GLn(k) and let N be the

subgroup of G generated by reflections. There is a natural isomorphism Cl(An/G) ' Ĝ/N .

Proof. Our proof relies on equivariant Chow groups [44]. Let us first assume that G does not

contain reflections. In this case there is a G-invariant subvariety Z ⊂ An of codimension at

least two, such that G acts freely on An \ Z. Let π : An → An/G be the quotient map. Since

removing locus of codimension two does not change (n− 1)-st Chow groups, we have a chain of

isomorphisms

Cl(An/G) = CHn−1(An/G) ' CHn−1(An/G \ π(Z)) = CHn−1((An \ Z)/G) ' CHG
n−1(An).

Since An is smooth, we have CHG
n−1(An) = PicG(An), and the latter group of G-equivariant line

bundles on An is isomorphic to the group Ĝ of characters of G.

In the general case the fixed locus of the action of G/N on An/N ' An does not contain

divisors and the same argument applies to show that Cl(An/G) ' Ĝ/N . �

Lemma 1.2.7. For every 0 ≤ i ≤ n− 1, CHi(An/G) is annihilated by |G|.

Proof. Let V ⊂ An/G be a subvariety, let π−1(V ) be the scheme theoretic preimage of V under

the quotient morphism π : An → An/G, and let W be a reduced irreducible component of

π−1(V ). Let us show that the degree of the field extension [k(W ) : k(V )] divides |G|.
Since we assume k to be of characteristic zero, G is a linearly reductive k-group scheme. Thus

according to [48, Proof of Theorem 1.1, p. 28], the G-invariant ring of A := k[x1, . . . , xn]⊗k[An/G]

k(V ) is just k(V ). If Ared is the quotient of A by the nilradical, then

Ared =

r∏
i=1

k(Wi)

where W1, . . . ,Wr are all components of π−1(V ). The action of G on A induces an action on

Ared, and AGred = AG = k(V ). Since G acts on the components W1, . . . ,Wr transitively, the

degrees [k(Wi) : k(V )] are equal to each other, and it is easy to see that they divide |G|.
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Since CHi(An) = 0 in the considered range, by definition of pushforward on Chow groups

we get

0 = π∗([W ]) = [k(W ) : k(V )] · [V ]

so that [V ] ∈ CHi(An/G) is |G|-torsion. �

Proposition 1.2.8. There is a well-defined surjective first Chern class homomorphism

c1 : Ksg
0 (An/G)→ Ĝ/N.

If n = 2 and k is algebraically closed, then c1 is an isomorphism.

Proof. We claim that there is a Grothendieck-Riemann-Roch without denominators style sur-

jection

(rk, c1) : G0(An/G) � Z⊕ CHn−1(An/G).

Indeed, since An/G is normal, to construct c1 one may simply remove the singular locus of An/G
and thus reduce to the smooth case, and the surjectivity follows easily.

Splitting off the direct summand Z corresponding to the trivial bundles and using Proposition

1.2.5 and Lemma 1.2.6 we get the desired surjection.

By construction of the topological filtration on Ksg
0 (X) we have Ker(c1) = F 2Ksg

0 (X) (cf.

proof of Proposition 1.1.25 (2)), in particular if n = 2, then Ker(c1) = F 2Ksg
0 (X) = 0 by

Proposition 1.1.25 (4). �

Proposition 1.2.9. Let k be an algebraically closed field of characteristic zero. Then every

element of Ksg
0 (An/G) is annihilated by |G|n−1.

Proof. We consider the topological filtration on Ksg
0 (An/G) and its associated graded pieces

griKsg
0 (An/G). By Proposition 1.1.25 we have gr0Ksg

0 (An/G) = grnKsg
0 (An/G) = 0 so that the

filtration has the form

0 = FnKsg
0 (An/G) ⊂ Fn−1Ksg

0 (An/G) ⊂ . . . ⊂ F 1Ksg
0 (An/G) = Ksg

0 (An/G).

By Proposition 1.1.25, each subquotient griKsg
0 (An/G), 1 ≤ i ≤ n − 1, admits a surjection

CHn−i(An/G)→ griKsg
0 (An/G) and by Lemma 1.2.7, each of these groups is annihilated by |G|.

This means that multiplication by |G| shifts the filtration: |G| ·F iG0(An/G) ⊂ F i+1G0(An/G),

in particular multiplication by |G|n−1 acts as the zero map. �

The next proposition gives the formula for Ksg
0 (An/G) in the isolated singularity case. For

other approaches to how to compute this group see [7], [85], [63].

Proposition 1.2.10 ([53]). Let G be a finite group acting linearly on An such that the G-action

on An \ {0} is free. Let ρ be the corresponding representation of G. Then we have

G0(An/G) ' R(G)/rR(G),
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where R(G) is the representation ring of G and r ∈ R(G) is the Koszul class

r =
n∑
i=0

(−1)i[Λi(ρ∨)].

Proof. The proof uses equivariant algebraic K-theory [116]. Since G acts freely away from 0,

there is an isomorphism

KG
0 (An \ {0}) ' G0

(
An \ {0}

G

)
.

Let i : {0} → An, i : {0} → An/G be the closed embeddings. Consider the localization exact

sequences of G0 and KG
0 :

KG
0 (0)

iG∗ //

��

KG
0 (An) //

��

KG
0 (An \ {0}) //

'
��

0

G0(0)
i∗ // G0(An/G) // G0(An/G− 0) // 0

(1.2.1)

related by pushforward maps followed by taking G-invariants. The pushforward i∗ is a zero

map since it factor through i∗ = 0. By equivariant homotopy invariance [116, 4.1] we have

an isomorphism KG
0 (An/G) ' KG

0 (0) ' R(G) and under these identifications the pushforward

iG∗ : KG
0 (0)→ KG

0 (An) corresponds to the multiplication by the class [O0] = r.

Putting everything together we obtain

G0(An/G) ' G0((An \ {0})/G) ' R(G)/rR(G).

�

Remark 1.2.11. If G has no reflections, then the condition that G acts freely on An \ {0} is

equivalent to the quotient An/G to have an isolated singularity at the origin.

Remark 1.2.12. Since Ksg
0 (An/G) is a finite group by Proposition 1.2.5 we see that under the

assumptions of Proposition 1.2.10 the linear map r : R(G) → R(G) has cokernel of rank one,

and so it has a one-dimensional kernel.

Example 1.2.13 ([53]). Computing R(G)/rR(G) for a two-dimensional ADE singularity A2/G,

one can compute Ksg
0 (A2/G) using Proposition 1.2.10 as follows:

Type Ksg
0 (A2/G)

An Z/(n+ 1)Z
Dn, n even Z/2Z× Z/2Z
Dn, n odd Z/4Z

E6 Z/3Z
E7 Z/2Z
E8 0
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(note a typo in [53] in the E7 case on page 415). The same result can be obtained using Proposi-

tion 1.2.8, and another way is given by Yoshino using Auslander-Reiten sequences [127, Chapter

13].

Corollary 1.2.14. Let k be an algebraically closed field of characteristic zero and let X be the

local 1
m(

n︷ ︸︸ ︷
1, . . . , 1) singularity, that is X = An/Zm with the diagonal action by the primitive root

of unity. Then Ksg
0 (X) is a finite abelian group of order mn−1.

Proof. Let us fix a primitive character ρ of Zm. Then the representation ring is R(Zm) =

Z[x]/(xm − 1) where we choose x to be the class [ρ∨]. Then

r =

n∑
i=0

(−1)i[Λi(ρ∨)] =

n∑
i=0

(
n

i

)
(−1)ixi = (1− x)n ∈ R(G)

and after making a substitution y = 1− x, we obtain

G0(X) = Z[y]/(yn,my −
(
m

2

)
y2 + . . . ) = Z · 1⊕Ksg

0 (X)

so that Ksg
0 (X) is a quotient of a free Z-module with the basis y, y2, . . . , yn−1 by the upper-

triangular relations myi −
(
m
2

)
yi+1 + . . . for i ≥ 1. This means that Ksg

0 (X) is a finite abelian

group of order mn−1. �

We abuse the notation slightly by writing X = 1
m(1, . . . , 1) for the corresponding local

singularity. The precise structure of Ksg
0 ( 1

m(

n︷ ︸︸ ︷
1, . . . , 1)) will vary depending on m and n.

Example 1.2.15. For n = 2 we have Ksg
0 ( 1

m(1, 1)) ' Zm, in accordance with Proposition 1.2.9.

Example 1.2.16. For n = 3 one can see that

Ksg
0 ( 1

m(1, 1, 1)) =

{
(Zm)2, m odd

Zm/2 × Z2m, m even

Example 1.2.17. If m = 2 and n is arbitrary, one can see that Ksg
0 (An/Z2) ' Z2n−1 (here the

action of Z2 on An is v 7→ −v).

1.2.2 The local case: positive K-groups

Proposition 1.2.18. Let k be an algebraically closed field of characteristic zero, and let G ⊂
GLn(k) be a finite group such that the G-action on An \ {0} is free. For every j ≥ 0 consider

the group Tj = Tor(Ksg
0 (An/G),Kj(k)).

(1) Tj is a finite torsion group annihilated by |G|n−1, and Tj = 0 for all even j.

(2) For every j ≥ 1 there is a short exact sequence

0→ Kj(k)→ Gj(An/G)→ Tj−1 → 0, (1.2.2)
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where the first map is the pullback from Spec(k). In particular for all j ≥ 1 we have Gj(An/G)⊗
Z[1/|G|] ' Kj(k)⊗ Z[1/|G|] and for all odd j ≥ 1 we have Gj(An/G) ' Kj(k).

(3) For every j ≥ 1, there is an exact sequence

0→ Tj−1 → Ksg
j (An/G)→ Kj−1(An/G)→ Kj−1(k)→ 0, (1.2.3)

where the last morphism in the sequence is induced by restriction to the rational point 0 ∈ An/G.

We prove the Proposition at the end of this subsection.

Corollary 1.2.19. If An/G is an isolated singularity over an algebraically closed field of char-

acteristic zero then Ksg
1 (An/G) = 0.

Proof. We may assume that G acts freely on An \ {0} (see Remark 1.2.11 and proof of Lemma

1.2.6). The result follows from (1.2.3) using the fact that T0 = 0 and Proposition 1.2.1 which

says that K0(An/G) = K0(k) = Z. �

Remark 1.2.20. For non-algebraically closed field, see Example 1.3.9. We do not know if

Ksg
1 (An/G) = 0 in the non-isolated singularity case.

Remark 1.2.21. The structure of the groups Kj(An/G) for j ≥ 1 is in general not known.

Since the work of Srinivas it is known that Ker(K1(An/G)→ K1(k)) is “huge”, that is as large

as the base field k, even in the simplest 1
2(1, 1) case [110], and the same follows for Ksg

2 (An/G)

from Proposition 1.2.18.

In order to prove Proposition 1.2.18, we use the language of equivariant K-theory [116] which

for finite groups can also be interpreted as K-theory of Deligne-Mumford stacks [70].

Lemma 1.2.22. In the assumptions of Proposition 1.2.18, let i : Spec(k) → An be the closed

embedding of the origin 0. Then the following is true.

(1) We have natural R(G)-module isomorphisms KG
j (An)

i∗G' KG
j (k) ' R(G)⊗Kj(k) and a

commutative diagram

KG
j (k)

iG∗ // KG
j (An)

R(G)⊗Kj(k)

'
OO

rj // R(G)⊗Kj(k)

'
OO

where rj is multiplication by the Koszul class r ∈ R(G) defined in Proposition 1.2.10.

(2) Let π0 be the projection from the Deligne-Mumford stack [Spec(k)/G] to its coarse moduli

space Spec(k) and let αj be the restriction of π0,∗ : KG
j (k)→ Kj(k) to Ker(iG∗ ) = Ker(rj). Then

for every j ≥ 0 there is a commutative diagram

0 // Kj(k) //

' $$

Ker(rj)

αj

��

// Tj // 0

Kj(k)

(1.2.4)

31



where Tj is defined as in Proposition 1.2.18 and the top row is exact.

(3) Let π be the projection from the Deligne-Mumford stack [An/G] to its coarse moduli space

An/G. For every j ≥ 0 consider the subgroup Kj(k) ' 1⊗Kj(k) ⊂ R(G)⊗Kj(k) = KG
j (An), and

let βj be the restriction of π∗ : KG
j (An) → Gj(An/G) to this subgroup. Then βj is isomorphic

to pullback morphism p∗ : Kj(k) → Gj(An/G) induced by the structure morphism p : An/G →
Spec(k).

Furthermore, for j ≥ 1 the embedding 1 ⊗ Kj(k) ⊂ R(G) ⊗Kj(k) induces an isomorphism

Kj(k) ' Coker(rj).

Proof. (1) i∗G being an isomorphism is the standard homotopy invariance of K-theory in the

regular case [116, 4.1], KG
j (k) ' R(G) ⊗ Kj(k) holds e.g. by [121, Proposition 1.6]. The

commutative diagram follows from [121, Lemma 1.7].

(2) Since the map rj is isomorphic to r ⊗ id, Ker(rj) can be computed via the Universal

Coefficient Theorem applied to the complex [r : R(G)→ R(G)] as follows. We have

0→ Ker(r)⊗Kj(k)→ Ker(rj)→ Tor(Coker(r),Kj(k))→ 0.

By Remark 1.2.12, Ker(r) = Z · t, for some element t ∈ R(G), and by Proposition 1.2.10,

Coker(r) ' Z⊕Ksg
0 (An/G). We see that Ker(r)⊗Kj(k) = Kj(k) and

Tor(Coker(r),Kj(k)) = Tor(Ksg
0 (An/G)),Kj(k)) = Tj

so that the top row of (1.2.4) is exact. We compute αj as follows

αj |t⊗Kj(k) = π0,∗|t⊗Kj(k) = π0,∗(t) · idKj(k),

and for commutativity of (1.2.4) it remains to show that π0,∗(t) = ±1. This follows easily by

extending the commutative diagram (1.2.1) on term to the left [116, Theorem 2.7] (cf j = 1 case

in (1.2.5) in the Proof of Proposition 1.2.18).

(3) The fact that βj is equal to p∗ follows from the projection formula. Since tensor product

is right exact we have

Coker(rj) = Coker(r)⊗Kj(k) ' (Z⊕Ksg
0 (An/G))⊗Kj(k).

Since k is algebraically closed, by a result of Suslin [112], for every j ≥ 1, Kj(k) is a divisible

group, so that since Ksg
0 (An/G) is torsion, Ksg

0 (An/G))⊗Kj(k) = 0, and we have

Coker(rj) ' Kj(k),

induced by tensoring rk : R(G)→ Z by Kj(k). Since rk(1) = 1, the composition

1⊗Kj(k) ⊂ R(G)⊗Kj(k)→ Coker(rj)
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provides a splitting, and hence the inverse to this morphism. �

Proof of Proposition 1.2.18. (1) By Proposition 1.2.5, Ksg
0 (An/G) is a torsion group annihilated

by |G|n−1, hence the same is true for Tj .

For even j, Kj(k) of an algebraically closed field is torsion-free by a result of Suslin [112],

hence Tj = 0 for even j.

For odd j, and every n ≥ 1, the n-torsion subgroup Kj(k) is finite [112], and since Ksg
0 (An/G)

is a finite abelian group, Tj is finite as well.

(2) The key in proving (1.2.2) is to compare the localization sequence for G-theory of An/G
to the G-equivariant localization sequence for K-theory of An. The two sequences are related

by pushforward morphisms:

KG
j (k)

iG∗ //

π0,∗

��

KG
j (An) //

π∗

��

KG
j (An \ {0}) //

��

KG
j−1(k)

iG∗ //

π0,∗

��

KG
j−1(An)

π∗

��
Kj(k)

i∗ // Gj(An/G) // Gj((An \ {0})/G) // Kj−1(k)
i∗ // Gj−1(An/G)

(1.2.5)

Here i : Spec(k)→ An/G is the origin (unique fixed point of the action), and π (resp. π0) is

the canonical morphism from the quotient Deligne-Mumford stack [An/G] (resp. [Spec(k)/G])

to its coarse moduli space, as in Lemma 1.2.22.

The morphisms i∗ : Gj(k) → Gj(An/G) are zero as they factor through the pushforward

Gj(k)→ Gj(An) which are zero maps by the Bass formula in G-theory [100, chapter 6 Theorem

8. ii]. Thus the localization sequence for G-theory of An/G splits into short exact sequences.

Using isomorphisms given by Lemma 1.2.22, from the commutative ladder (1.2.5) for every

j ≥ 1 we obtain the diagram:

0 // Coker(rj) //

βj

��

KG
j (An \ {0}) //

��

Ker(rj−1) //

αj−1

��

0

0 // Gj(An/G) // Gj((An \ {0})/G) // Kj−1(k) // 0

Since 0 is the only fixed point of the action, the action of G on An \ {0} is free, so that the

middle vertical map is an isomorphism and using the Snake Lemma we deduce an isomorphism

Ker(αj−1) ' Coker(βj).

From Lemma 1.2.22 (2) we get Ker(αj) ' Tj and from Lemma 1.2.22 (3) we get Coker(βj) '
Coker(p∗ : Kj(k)→ Gj(An/G)). Since p∗ is injective (it is split by any smooth point x1 ∈ An/G),

we obtain the exact sequence (1.2.2).

(3) Since An/G is contractible by Lemma 1.1.20, one gets (1.2.3) by plugging in (1.2.2) into

the exact sequence of Proposition 1.1.21 (3). �
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1.2.3 The global case

Theorem 1.2.23. Let k be an algebraically closed field of characteristic zero and let X be

an n-dimensional quasi-projective variety. Assume that X has only isolated quotient singular-

ities x1, . . . , xm with isotropy groups G1, . . . , Gm, i.e. the completions ÔX,xi are isomorphic to

ÔAn/Gi,0 where each Gi ⊂ GLn(k) is a finite group acting freely away from the origin. Then

(1) Ksg
0 (X) ⊂ Ksg

0 (X) are finite abelian groups, annihilated by lcm(|G1|, . . . , |Gm|)n−1.

(2) Ksg
1 (X) = 0.

(3) For all j ≥ 1, we have Ksg
−j(X) = 0.

In addition, if dim(X) = 2, then Ksg
0 (X) ' Ĝ1 × . . .× Ĝm.

Proof. By Orlov’s Completion Theorem 1.1.6 and Corollary 1.2.3 we obtain equivalences

Dsg(X) '
m⊕
i=1

Dsg(An/Gi) '
m⊕
i=1

Dsg(An/Gi),

induced by functors between dg-enhancements.

Thus by definition of the singularity K-theory groups and Remark 1.1.10 we have

Ksg
0 (X) ⊂ Ksg

0 (X) '
m⊕
i=1

Ksg
0 (An/Gi)

and for j 6= 0

Ksg
j (X) '

m⊕
i=1

Ksg
j (An/Gi).

Now (1) follows from Propositions 1.2.5, 1.2.9, (2) follows from Proposition 1.2.19 and (3)

follows from Proposition 1.2.1.

Finally if dim(X) = 2, we have isomorphisms Ksg
0 (An/Gi) = Ĝi by Proposition 1.2.8 (Gi acts

freely on An\{0} and in particular has no reflections) so that in this case Ksg
0 (X) ' Ĝ1×· · ·×Ĝm.

�

Corollary 1.2.24. Under the assumptions of Theorem 1.2.23 the following is true.

(1) We have an exact sequence 0→ K0(X)→ G0(X)→ Ksg
0 (X)→ 0.

(2) K−1(X) is a finite torsion abelian group satisfying the same condition on orders as Ksg
0 (X)

(see Theorem 1.2.23 (1)).

(3) For all j ≥ 2, we have K−j(X) = 0.

Proof. This follows from Theorem 1.2.23 and Lemma 1.1.11. �

Remark 1.2.25. The injectiviy of the canonical map K0(X) → G0(X) will generally fail if

either:
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(a) X has quotient singularities which are not isolated, see Example 1.3.7

(b) X has an isolated rational singularity which is not a quotient singularity, see Example

1.3.8

Remark 1.2.26. We do not know if Ksg
0 (X) = Coker(K0(X) → G0(X)) is torsion for any

variety X with quotient singularities, not necessarily isolated ones. The result is known to be

true for simplicial toric varieties [23].

Example 1.2.27. One of the simplest examples of a projective surface X with quotient sin-

gularities and non-vanishing K−1(X) is the following one. Consider G = Z2 acting on P1 via

[x : y] 7→ [x : −y] and let X = (P1 × P1)/Z2 where the action is diagonal. Thus X has four

ordinary double points as singularities. Using [124] one can compute that K−1(X) = Z2.

1.2.4 Relation to the resolution of singularities

Let π : Y → X be a resolution of singularities. Here X is a variety and Y is a variety or more

generally a Deligne-Mumford stack. If we assume that singularities of X are rational which by

definition means that π∗OY = OX , using the projection formula we get a commutative diagram

Db(Y )
99

π∗ π∗

$$
Dperf(X) // Db(X)

where the functors Dperf(X)→ Db(X) and π∗ are both fully faithful.

We also get an induced diagram on the Grothendieck groups

K0(Y )
::

π∗ π∗

$$
K0(X)

PD // G0(X)

(1.2.6)

Theorem 1.2.28. If X is a quasi-projective variety over an algebraically closed field of charac-

teristic zero and with only isolated quotient singularities, then π∗ : K0(X)→ K0(Y ) is injective.

Proof. By Corollary 1.2.24, K0(X)
PD→ G0(X) is injective. Injectivity of π∗ follows from the

diagram (1.2.6). �

Remark 1.2.29. The injectivity of π∗ : K0(X) → K0(Y ) does not follow from the fact that

π∗ : Dperf(X)→ Db(Y ) is fully faithful and will generally fail for rational singularities. Indeed in

Examples 1.3.7, 1.3.8 varieties with rational singularities have huge K0(X), but admit resolutions

with finitely generated K0(Y ).

In dimension up to three, Theorem 1.2.28 has been known since the work of Levine [82,

Corollary 3.4] and for normal surfaces with rational singularities an analogous result follows

from the work of Krishna and Srinivas [80, Corollary 1.5].
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There is an apparent duality between π∗ and π∗ in the diagram (1.2.6). Instead of injectivity

of π∗ we can ask about surjectivity of π∗, which indeed sometimes holds.

Theorem 1.2.30. Let X be a variety over a field k characteristic zero with quotient singularities

(not necessarily isolated) and let π : Y → X be a resolution of singularities, where Y is a variety

or more generally a Deligne-Mumford stack. Then:

(1) The pushforward π∗ : Db(Y )→ Db(X) is essentially surjective.

(2) The pushforward induces an exact equivalence

Db(Y )/ ker(π∗)
'−→ Db(X).

In particular π∗ : K0(Y )→ G0(X) is surjective.

Lemma 1.2.31. If k is a field of characteristic zero and the statement (1) (resp. (2)) of

Theorem 1.2.30 holds for a single resolution π : Y → X, then (1) (resp. (2)) holds for all

resolutions of X.

Proof. The proof is a standard application of the Weak Factorization Theorem [126, 1], extended

to Deligne-Mumford stacks in [12]. Given a birational isomorphism between Deligne-Mumford

orbifolds, that is Deligne-Mumford stacks with trivial generic stabilizers, it can be decomposed

into a sequence of stacky blows ups and blow downs with smooth centers. This means that given

two resolutions π : Y → X, π′ : Y ′ → X we may assume that Y ′ is obtained from Y by a single

smooth stacky blow up γ : Y ′ → Y . Recall that by definition a stacky blow up is either a blow

up of a substack, or a root stack along a smooth divisor, and in each case we have γ∗OY ′ ' OY
(see e.g. [13, Example 4.6]).

We get a commutative diagram

Db(Y ′)

π′∗ $$

γ∗ // Db(Y )

π∗zz
Db(X)

Furthermore the adjoint pair γ∗, γ∗ satisfies γ∗γ
∗ = id so that γ∗ is fully-faithful and there

is a semi-orthogonal decomposition

Db(Y ′) = 〈Ker(γ∗), γ
∗Db(Y )〉.

In particular γ∗ is essentially surjective and condition (1) for Y is equivalent to condition (1)

for Y ′. Furthermore we have a semi-orthogonal decomposition

Ker(π′∗) = 〈Ker(γ∗), γ
∗Ker(π∗)〉
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which induces an equivalence of Verdier localizations

Db(Y ′)/Ker(π′∗)

π′∗ ''

' // Db(Y )/Ker(π∗)

π∗ww
Db(X)

so that conditions (2) for Y and Y ′ are equivalent as well. �

Lemma 1.2.32. If π : Y → X is a resolution of rational singularities and D−(Y ) admits a

t-structure which induces a bounded t-structure on Db(Y ) and for which π∗ : D−(Y )→ D−(X)

is t-exact, then (1) and (2) of Theorem 1.2.30 are true.

Proof. We temporarily use the notation Kerb(π∗) := Ker(π∗) ∩ Db(Y ). We will show that the

functor π∗ : Db(Y )/Kerb(π∗)→ Db(X) is essentially surjective and fully faithful.

Essential surjectivity is proved in the same way as in [79, Corollary 2.5]. For every E ∈ Db(X)

and N ≥ 1 we consider the distinguished triangle

π∗E → τ≥−NA π∗E → C,

where τ≥−NA denotes the truncation with respect to the corresponding t-structure A on D−(Y ).

We apply π∗ to this triangle. Since π∗π
∗ = id and π∗ is t-exact, in particular π∗ commutes with

truncation functors, the pushforward of the triangle above has the form:

E → τ≥−NE → π∗C,

where τ≥−N is the truncation with respect to the standard t-structure on D−(X). Since E
is bounded, for sufficiently large N we have π∗C = 0 so that C ∈ Ker(π∗). In particular,

π∗ : Db(Y )/Kerb(π∗)→ Db(X) is essentially surjective.

On the other hand, one observes by the diagram

D−(Y )/Ker(π∗)
π∗
'
// D−(X)

Db(Y )/Kerb(π∗)

OO

π∗ // Db(X)
?�

OO

that π∗ is fully faithful if and only if the natural functor

Db(Y )/Kerb(π∗)→ D−(Y )/Ker(π∗)

is fully faithful. To show this, we use Verdier’s criterion [120, Theorem 2.4.2]. We see that if

C → B is a morphism in D−(Y ) with C ∈ Ker(π∗) and B ∈ Db(Y ), then for a big enough N

(depending on B) this morphism factors through τ≥−NA C. Since π∗ commutes with τ≥−NA , one

easily sees that τ≥−NA C ∈ Kerb(π∗). �
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Proof of Theorem 1.2.30. By Lemma 1.2.31 it suffices to check the statement for a single resolu-

tion. We consider the canonical stack π : Xcan → X over X [46, Remark 4.9]. Since we assume

k has characteristic zero, the pushforward π∗ : Xcan → X is exact. The proof is finished using

Lemma 1.2.32. �

Remark 1.2.33. Statements (1) and (2) of Theorem 1.2.30 for a resolution of arbitrary rational

singularities π : Y → X is an old open question going back to Bondal and Orlov [19]. In addition

to quotient singularities the answer is positive in the case of cones over smooth Fano varieties

[45], and for rational singularities such that fibers of a resolution Y → X have dimension at

most one [79] (in [79, Corollary 2.5] property (1) is proved, while property (2) follows from

Lemma 1.2.32).

1.3 Examples and Applications

In this section k is an algebraically closed field of characteristic zero.

1.3.1 Torsion-free K0(X)

Application 1.3.1 ([81, 82]). Let X be a projective rational surface with isolated quotient

singularities. Then K0(X) is a free abelian group of the same rank as G0(X).

Indeed if π : Y → X is a resolution, then by Theorem 1.2.28 we have an injection π∗ :

K0(X)→ K0(Y ). Since Y is a smooth projective rational surface, K0(Y ) is a free abelian group

of finite rank, and the same is true for K0(X). Finally by Corollary 1.2.24, we have an inclusion

K0(X) ⊂ G0(X) and the ranks of the two groups are equal.

Note that G0(X) will typically have non-zero torsion.

Application 1.3.2 (Weighted projective spaces with coprime weights). Let X = P(a0, . . . , an)

be a weighted projective space. Let us assume that the weights a0, . . . , an are pairwise coprime.

In this case singularities of X are isolated, and using our results we show that K0(X) is a free

abelian group of rank n+ 1.

Indeed if we let Y = [P(a0, . . . , an)] to be the weighted projective stack, the natural morphism

π : Y → X is a resolution of singularities, and by Theorem 1.2.28, π∗ is injective. Since K0(Y )

is a free abelian of finite rank [70, Theorem 5.6], the same is true for K0(X). To compute the

rank of K0(X) we can use the following argument: by Corollary 1.2.24 we have an isomorphism

K0(X) ⊗ Q ' G0(X) ⊗ Q and the latter space is (n + 1)-dimensional, which can be seen by

comparing G0(X) to Chow groups [2]. Thus we get K0(X) ' Zn+1.

1.3.2 ADE curves and threefolds

We consider one-dimensional ADE singularities over an algebraically closed field of characteristic

zero. For each such curve C we compute Pic(C) as well as Ksg
0 (C) and Ksg

1 (C). If N is the
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number of irreducible components of the curve, then Ksg
0 (C) is computed using Corollary 1.1.29.

We record the results in the table:

C Equation N Ksg
0 (C) Pic(C) Ksg

1 (C)

A2l, l ≥ 1 y2 + z2l+1 1 0 kl kl

A2l−1, l ≥ 1 y2 + z2l 2 Z 0 k∗ ⊕ Z
D2l, l ≥ 2 y2z + z2l−1 3 Z2 0 (k∗ ⊕ Z)2

D2l−1, l ≥ 3 y2z + z2l−2 2 Z kl−2 [k∗ ⊕ Z; kl−2]

E6 y3 + z4 1 0 k3 k3

E7 y3 + yz3 2 Z k [k∗ ⊕ Z; k]

E8 y3 + z5 1 0 k4 k4

(1.3.1)

We use the notation [A;B] to denote an abelian group which has a subgroup A with quotient

B. The first singularity K-theory groups Ksg
1 (C) are computed using the following Proposition.

Proposition 1.3.3. For every ADE singularity we have a natural exact sequence

0→ (k∗ ⊕ Z)N−1 → Ksg
1 (C)→ Pic(C)→ 0.

Proof. By Proposition 1.1.21 (3) and using the fact that K0(C) = Z⊕ Pic(C) (see [51, Remark

1 on page 126]) we get a short exact sequence

0→ G1(C)/k∗ → Ksg
1 (C)→ Pic(C)→ 0.

To finish the proof we show that G1(C) = (k∗)N ⊕ ZN−1, and the morphism K1(k) → G1(C)

maps k∗ into (k∗)N diagonally. This is done using the localization sequence for the closed

embedding i : {0} → C. Since for every j ≥ 0, i∗ : Gj(k) → Gj(C) factors through any

component A1 of the normalization of C, it is a zero map, and we get a short exact sequence

0→ G1(C)→ G1(A1 \ {0})N → G0(k)→ 0

which finishes the proof as G1(A1 \ {0}) = k∗ ⊕ Z. �

Lemma 1.3.4. If C is a curve with equation xa − yb = 0 where gcd(a, b) = 1, then we have an

isomorphism

Pic(C) ' k
1
2

(a−1)(b−1).

Proof. Consider π : A1 → C given by π(t) = (tb, ta). Under the condition gcd(a, b) = 1,

π is surjective which implies irreducibility of C, and since π is finite of degree one, π is the

normalization morphism. By [92, Corollary 3.3] we get an isomorphism of abelian groups

Pic(C) ' k[t]/k[ta, tb].

39



Thus Pic(C) obtains a k-vector space structure with a k-basis corresponding of ti, for every

i ≥ 0 which can not be represented as a non-negative integer combination of a and b.

By a classical theorem of Sylvester, the number of positive integers not representable by

non-negative integer combinations of a and b is equal to 1
2(a− 1)(b− 1) (see [91] for a modern

treatment) so that we have an isomorphism of abelian groups

k[t]/k[ta, tb] ' k
1
2

(a−1)(b−1).

�

Every ADE curve C is a union of components isomorphic to A1 and at most one component

C0 with equation xa−yb = 0. Trivializing line bundles on each affine line component, we deduce

that Pic(C) = Pic(C0). Proposition 1.3.3 and Lemma 1.3.4 allow us to fill in the table (1.3.1).

We demonstrate what the singularity K-theory has to do with the question of computing class

groups. The applications below can be obtained by other methods too, however, we demonstrate

the approach which relies on Knörrer periodicity shifting the topological filtration (Proposition

1.1.31).

Application 1.3.5. Let C ⊂ A2 with coordinates z, w be given by g(z, w) = 0 and let X ⊂ A4

with coordinates x, y, z, w be given by xy + g(z, w) = 0.

Let us assume that C is reduced. Since we have Sing(X) = {(0, 0)} × Sing(C), the latter

condition is equivalent to X having isolated singularities, and since X is a hypersurface, it is

irreducible and normal.

Let N be the number of irreducible components of C. By Proposition 1.1.31 and Proposition

1.1.25 we have an isomorphism

Cl(X)/Pic(X) = gr1Ksg
0 (X) ' gr0Ksg

0 (C) = ZN−1,

in particular X is factorial if and only if C is irreducible.

Example 1.3.6. We can compute the class group of the standard forms of three-dimensional

ADE singularities. Since X is given by a weighted homogeneous equation, Pic(X) = 0 [88,

Lemma 5.1] we have Cl(X) ' Ksg
0 (X) = ZN−1. We put the results in the table (cf. table 1.3.1):

X Equation Cl(X)

A2k (k ≥ 1) xy + z2 + w2k+1 0

A2k−1 (k ≥ 1) xy + z2 + w2k Z
D2k (k ≥ 2) xy + z2w + w2k−1 Z2

D2k−1 (k ≥ 3) xy + z2w + w2k−2 Z
E6 xy + z3 + w4 0

E7 xy + z3 + zw3 Z
E8 xy + z3 + w5 0

(1.3.2)
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1.3.3 Non-vanishing Ksg
1 (X)

In this section we collect some examples where Ksg
1 (X) is nonzero. From the singularity K-theory

exact sequence (1.1.1) it follows that Ksg
1 (X) surjects onto Ker(K0(X)

PD→ G0(X)).

Example 1.3.7 (Non-isolated quotient singularity with huge kernel Ker(K0(X) → G0(X)).

The first such example has been constructed by Gubeladze [58]. We present an example given by

Cortiñas, Haesemeyer, Walker and Weibel [34, Example 5.10].

Let E = O ⊕ O(2) be the rank two bundle over P1. Let Z2 act on E fiberwise via v 7→ −v.

Then X = E/Z2, has quotient singularities and its singular locus isomorphic to P1.

The canonical map K0(X)→ G0(X) is not injective, and furthermore, the kernel Ker(K0(X)→
G0(X)) is huge, that is contains the base field k as a subgroup.

Example 1.3.8 (Isolated rational singularity with huge kernel Ker(K0(X)→ G0(X)). Consider

a smooth cubic hypersurface S ⊂ P3, and let X ⊂ A4 be the affine cone over S. Then X has an

isolated rational singularity.

The Grothendieck group of a cone over a smooth variety has been computed in [36]. In

particular since χ(TS) = −4 by Riemann-Roch so that H1(S,Ω1
S/Q(1)) = H1(S,Ω1

S/k(1)) =

H1(S, TS) 6= 0, where the first equation follows from the short exact sequence

0→ Ω1
k/Q(1)→ Ω1

S/Q(1)→ Ω1
S/k(1)→ 0,

see [56, Proposition 20.6.2]. The main result of [36] implies that K0(X) is huge, that is it

contains a nonzero k-vector space.

Finally by Proposition 1.1.21 (1) the canonical map K0(X)→ G0(X) factors through Z, so

that Ker(K0(X)→ G0(X)) is huge as well.

Example 1.3.9 (Non-vanishing Ksg
1 (X) for isolated quotient singularities over non-algebraically

closed fields). Let X = A2/Z2 be the quotient by the action v 7→ −v. We claim that Ksg
1 (X) '

k∗/(k∗)2.

Indeed, X is isomorphic to the affine surface xy+ z2 = 0, and using the Knörrer periodicity

Theorem 1.1.4 we have

Ksg
1 (X) ' Ksg

1 (R),

where R = k[ε]/(ε2). We compute the singularity K-theory via the K-theory sequence (1.1.1),

plugging in Gi(R) = Ki(k), as G-theory is independent of the non-reduced scheme structure:

K1(R)→ k∗ → Ksg
1 (R)→ K0(R)→ Z→ Ksg

0 (R)→ 0.

Now K0(R) = Z and the map Z = K0(R)→ Z is multiplication by two (cf Example 1.1.22), and

similarly K1(R) = R∗, and the map K1(R)→ k∗ is a+ bε 7→ a2 [65, Example 10.2]. We get

Ksg
1 (X) ' Ksg

1 (R) ' k∗/(k∗)2,
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which is in general a non-finitely generated 2-torsion group.

1.3.4 Proof of a conjecture of Srinivas for quotient singularities

In the 1980s Srinivas considered the question whether for an isolated quotient singularity x0 ∈
X the length homomorphism l : K0(X on x0) → Z is an isomorphism [109, Page 38]. Here

K0(X on x0) stands for the Grothendieck group of perfect complexes supported at x0 (originally

Srinivas has considered the Grothendieck group of coherent sheaves which are supported at the

singular points and which are perfect as complexes, but by [103, Proposition 2] these two groups

are isomorphic).

Levine has proved that l is an isomorphism if X is two-dimensional with isolated quotient

singularities [81, Theorem 3.2], that l is always surjective for isolated Cohen-Macaulay singu-

larities, and that it has torsion kernel [82, Proposition 2.6, Theorem 2.7] in the case of isolated

quotient-singularities.

The language of the singularity K-theory is well-adapted to deal with this kind of questions.

Lemma 1.3.10. Let k be an algebraically closed field. Let X be a quasi-projective variety with

isolated singularities. There is an exact sequence

Ksg
1 (X)→ K0(X on Sing(X))

l→ ZSing(X) → 0 (1.3.3)

and a natural surjective homomorphism Ker(l)→ Ker(PD : K0(X)→ G0(X)).

Proof. We consider the diagram of pretriangulated dg-categories

Dperf
dg (X on Sing(X))

��

// Dbdg(X on Sing(X))

��

// Dsg
dg(X on Sing(X))

��
Dperf
dg (X) // Dbdg(X) // Dsg

dg(X)

and the associated long exact sequences of Schlichting’s K-groups:

Ksg
1 (X on Sing(X)) //

'
��

K0(X on Sing(X)) //

��

G0(X on Sing(X)) //

��

Ksg
0 (X on Sing(X))� _

��
Ksg

1 (X) // K0(X)
PD // G0(X) // Ksg

0 (X)

where the left vertical arrow is an isomorphism and the right vertical arrow is injective by Lemma

1.1.13.

We have Ksg
0 (X on Sing(X)) = 0 (Corollary 1.1.28), and we have a natural isomorphism

G0(X on Sing(X)) = G0(Sing(X)) = ZSing(X)

given by the length (dimension) of zero-dimensional coherent sheaves, so that exact sequence
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(1.3.3) is the first row in the diagram above.

Finally, the diagram above also induces the surjection Ker(l)→ Ker(PD). �

The next result deals with the injectivity part of the Srinivas conjecture for quotient singu-

larities, and thus gives a stronger version of [81, Theorem 3.2].

Proposition 1.3.11. If X is a quasi-projective variety with isolated quotient singularities then

the length map

l : K0(X on Sing(X))→ ZSing(X)

is an isomorphism.

Proof. By Theorem 1.2.23 (2), Ksg
1 (X) = 0. Lemma 1.3.10 implies the result. �

Remark 1.3.12. By Lemma 1.3.10 non-vanishing of Ker(PD : K0(X)→ G0(X)) implies non-

vanishing of Ker(l). This applies for instance in the case of a cone over a smooth cubic surface,

see Example 1.3.8.

Example 1.3.13. Let k be an arbitrary field with char(k) 6= 2. Let Qn be the n-dimensional

affine split quadric cone as in Examples 1.1.32, 1.1.33. It is a result of Levine [82, Theorem

4.2] that

K0(Qn on 0) '

{
Z⊕ k∗/(k∗)2, n even

Z2 ⊕ k∗, n odd

This result can be reproved using exact sequence (1.3.3) and the fact that

Ksg
1 (Qn) '

{
k∗/(k∗)2, n even (cf Example 1.3.9)

Z⊕ k∗, n odd (cf A1 case in (1.3.1))

Similarly, one can compute K0(X on 0) for other ADE singularities of arbitrary dimension. We

omit the details of this computation.
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Chapter 2

Obstructions to semiorthogonal

decompositions for singular

threefolds I: K-theory

Abstract

We investigate necessary conditions for Gorenstein projective varieties to admit semiorthogo-

nal decompositions introduced by Kawamata, with main emphasis on threefolds with isolated

compound An singularities. We introduce obstructions coming from Algebraic K-theory and

translate them into the concept of maximal nonfactoriality.

Using these obstructions we show that many classes of nodal threefolds do not admit Kawa-

mata type semiorthogonal decompositions. These include nodal hypersurfaces and double solids,

with the exception of a nodal quadric, and del Pezzo threefolds of degrees 1 ≤ d ≤ 4 with max-

imal class group rank.

We also investigate when does a blow up of a smooth threefold in a singular curve admit a

Kawamata type semiorthogonal decomposition and we give a complete answer to this question

when the curve is nodal and has only rational components.

2.1 Introduction

Semiorthogonal decompositions for derived categories of singular projective algebraic varieties

have recently began to be extensively studied. One important type of such semiorthogonal

decomposition is

Db(X) = 〈Db(R1), . . . ,Db(Rm)〉 (2.1.1)

where X/k is a projective variety and all Ri’s are finite-dimensional k-algebras. One can think

of (2.1.1) as a generalization of a full exceptional collection which is the case when all Ri = k.

A typical construction of (2.1.1) proceeds through constructing a full exceptional collection

on a resolution of singularities π : X̃ → X and pushing it forward to X. Burban has constructed

44



decompositions (2.1.1) for nodal chains of rational curves [25], while Kawamata [76], Kuznetsov

[79] and Karmazyn-Kuznetsov-Shinder [75] studied rational surfaces with isolated rational sin-

gularities; the exhaustive answer for toric surfaces is given in [75]. Finally Kawamata [76, 77]

has also studied two examples of Fano threefolds with a single ordinary double point which

admit decomposition (2.1.1). These examples are the nodal quadric threefold and a blow up of

P3 in two points followed by contraction of the proper preimage of a line passing through the

two points (this variety can be also described as a nodal linear section of a Segre embedding

P2 × P2 ⊂ P8), see Example 2.4.13.

In this paper we investigate necessary conditions for (2.1.1) to hold on a Gorenstein projective

variety X. In fact we allow more general decompositions

Db(X) = 〈A,Db(R1), . . . ,Db(Rm)〉 (2.1.2)

where A ⊂ Dperf(X) and which we call Kawamata type semiorthogonal decompositions (because

it is similar to what Kawamata has studied in [77]). Here again the Ri’s are finite-dimensional

k-algebras. We assume that semiorthogonal decompositions we consider are admissible; if m = 1

the latter condition is automatic, see Proposition 2.4.7. We think of (2.1.2) as a splitting of

the derived category into its “nonsingular part” A and the algebras Ri which carry information

about the singular points of X.

We concentrate on obstructions coming from Algebraic K-theory, namely on the negative

K−1(X) group. The latter group is a part of the package of the Thomason-Trobaugh K-theory

machinery, and the negative K-groups including K−1(X) have been extensively studied, in par-

ticular in the seminal work of Weibel [124].

After recalling some preliminary results on semiorthogonal decompositions and saturatedness

in the singular setting, Orlov’s singularity category and various K-theory groups in Section 2.2,

in Section 2.3 we translate vanishing of K−1 into geometric properties of X. This has already

been done by Weibel for curves and surfaces [124], and our study concentrates on isolated

threefold singularities, while reproving some of Weibel’s results for curves and surfaces along the

way. This relies on previous joint work of the second and third authors [98], where K-theory

of Orlov’s singularity category is studied. We recall geometric description of K−1 for curves in

Proposition 2.3.1 and Corollary 2.3.3 and K−1 for surfaces can be computed using Proposition

2.3.6.

In general we show that vanishing of K−1(X) implies that X is what we call maximally

nonfactorial, see Definition 2.3.4 and Proposition 2.3.5, and that for certain types of singularities,

including three-dimensional compound An singularities vanishing of K−1(X) is equivalent to X

being maximally nonfactorial (Corollary 2.3.8).

Informally, maximally nonfactorial varieties have as many Weil non-Cartier divisors as the

local class groups allow. In particular, in the nodal threefold case each local class group is

isomorphic to Z, and maximally nonfactorial nodal threefolds are characterized by having suf-

ficiently many Weil divisors to separate singularities, that is for every ordinary double point
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p ∈ X there exists a Weil divisor which generates the local class group at p and is Cartier at

all other nodes. This is stronger than just being non-factorial which only requires existence of a

Weil divisor which is non-Cartier. On the other hand, for singularities for which the local class

groups vanish, the variety is automatically factorial, while maximal nonfactoriality is a vacuous

condition holding trivially.

More generally we relate K−1(X) to the so-called defect of X, that is the codimension of

Pic(X) in Cl(X), see Definition 2.3.9 and Corollary 2.3.8. It follows that in the language of

defect, maximal nonfactoriality for nodal threefolds implies that defect is equal to the number

of singular points, which is the maximal value the defect can take.

In Section 2.4 we show that existence of a decomposition (2.1.2) implies that K−1(X) = 0,

see Corollary 2.4.5. This is obtained by passing to Orlov’s singularity category in (2.1.2), and

using idempotent completeness of the singularity category of a finite-dimensional algebra.

Combining the results explained so far we can state our main result as follows:

Theorem 2.1.1 (Proposition 2.3.5 and Corollary 2.4.5). If a normal Gorenstein projective

variety X has a Kawamata type decomposition (2.1.2), then K−1(X) = 0. If in addition X has

isolated singularities, then X is maximally nonfactorial.

This explains why the two nodal threefolds with a Kawamata type decomposition studied by

Kawamata [77] are nonfactorial. In both cases the threefold X has a single ordinary double with

defect of X being equal to one (in the nodal quadric threefold case Pic(X) = Z, Cl(X) = Z2,

while in the other example Pic(X) = Z2, Cl(X) = Z3), which illustrates the maximal nonfacto-

riality of X. Furthermore using the theorem above we show that many types of threefolds do

not admit decompositions (2.1.2).

Application 2.1.2 (Example 2.4.15, 2.4.16, 2.5.5). The following types of nodal threefolds do

not admit a Kawamata type semiorthogonal decomposition:

1. All nodal threefold hypersurfaces X ⊂ P4, except for the nodal quadric.

2. All nodal threefold double solids X
2:1→ P3, except for the nodal quadric.

3. Del Pezzo threefolds Vd of degrees 1 ≤ d ≤ 4 with maximal class group rank [99].

4. Threefolds obtained by blowing up a nodal irreducible curve in a smooth threefold.

Del Pezzo threefolds in (3) can also be described as follows [99, Theorem 7.1]: Vd is a blow

up of 8 − d general points on P3 followed by contraction of proper preimages of lines passing

through pairs of points and twisted cubics through six-tuples of points (for d = 1, 2). Thus we

negatively answer a question of Kawamata [77, Remark 7.5], in all cases except for d = 5 which is

a 3-nodal V5. In fact we expect that only a few types of nodal Fano threefolds admit Kawamata

type semiorthogonal decompositions. Looking at the potential cases of Fano threefolds with

maximal defect, I. Cheltsov has suggested the following.
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Conjecture 2.1.3. The only nodal Fano threefolds of Picard rank one with Kawamata type

decompositions are the quadric, V5 and V22.

However, in spite of the sparsity of the Fano examples, we can construct lots of nodal three-

folds with a Kawamata decomposition using the blow up construction with a locally complete

intersection center as soon as the base variety and the center of the blow up both admit Kawa-

mata type decompositions (see Theorem 2.5.1 and Corollary 2.5.3). In particular, blowing up

a smooth threefold in a disjoint union of nodal trees of smooth rational curves produces nodal

threefolds with an arbitrary large number of ordinary double points and admitting a Kawamata

type decomposition:

Theorem 2.1.4 (Corollary 2.5.4). Let X be a smooth projective threefold and C is a disjoint

union of nodal curves in X such that all irreducible components of C are rational curves. Then

the blow up X̃ of X along C admits a Kawamata type semiorthogonal decomposition if and only

if C is a disjoint union of nodal trees with smooth rational components.

Relation to other work

The link between idempotent completeness of the Orlov singularity category and nonfactoriality

is already present in the work of Iyama and Wemyss [67]. It follows from [67, Theorem 1.2] that

nodal threefolds with idempotent complete singularity categories are nonfactorial. However

from the perspective of our applications our results are sharper in a sense that we show maximal

nonfactoriality, which is strictly stronger than nonfactoriality for varieties with several ordinary

double points.

The Grothendieck group of the singularity category has been used by the first author of this

paper and Karmazyn [72, Corollary 5.3] to show that some types of surface quotient singularities

most notably Dn, n ≥ 4 and En, n = 6, 7, 8 do not allow a decomposition (2.1.1) with local pos-

sibly noncommutative algebras Ri’s. Even though all existing Kawamata type decompositions

for Gorenstein surfaces only admit An singularities [75], we do not currently know how to rule

out Dn and En singularities without assuming that the algebras Ri are local.

A similar sort of obstruction to K−1 has been used by Karmazyn, Kuznetsov and the third

author of the present paper [75], where it is shown that a necessary condition for existence of

a decomposition (2.1.1) on a projective normal rational surface X with rational singularities is

vanishing of the Brauer group Br(X). We explain in Proposition 2.3.7 that for such surfaces

Br(X) ' K−1(X), so in this paper we generalize the obstruction from [75] from surfaces to

higher-dimensional varieties.

In the sequel to this paper [74] we study restrictions on types of singularities that are forced

by Kawamata type decompositions, using representation theory of finite-dimensional algebras.
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2.2 Preliminaries

2.2.1 Notation

We work over an algebraically closed field k of characteristic zero. By an (algebraic) variety we

mean a reduced, but not necessarily irreducible, scheme of finite type over k.

All triangulated categories are assumed to be k-linear. The opposite category of a category

T will be denoted T ◦. We denote by D(Qcoh(X)) the unbounded derived category of quasi-

coherent sheaves, by Db(X) the bounded derived category of coherent sheaves of a variety X

and by Dperf(X) its full subcategory consisting of perfect complexes. Similarly, for a k-algebra

R we denote by Db(R) = Db(mod-R) the bounded derived category of finitely generated right

modules over R and Dperf(R) is again the full subcategory of perfect complexes in Db(R).

All functors such as pull-back π∗, pushforward π∗ and tensor product ⊗ when considered

between derived categories are derived functors.

2.2.2 Semiorthogonal decompositions and saturatedness

Following [16, 17, 78], we recall standard definitions and properties of semiorthogonal decom-

positions of triangulated categories, of saturated categories and relations between these two

notions.

Let T be a triangulated category. We call T Hom-finite if dimk Hom(A,B) < ∞ for all

A,B ∈ T ; we call T of finite type if
⊕

i dimk Hom(A,B[i]) <∞ for all A,B ∈ T . For example,

if X is projective, then Db(X) is Hom-finite, and Dperf(X) is of finite type. From now we assume

all triangulated categories to be Hom-finite, but not necessarily of finite type.

A triangulated category T is called idempotent complete (or Karoubian) if every idempotent

e ∈ Hom(A,A) gives rise to a direct sum decomposition of A. It is well-known that for every

triangulated category T has a triangulated idempotent completion T ⊂ T [8].

Let A ⊂ T be a full triangulated subcategory. The left and right orthogonals to A are
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defined as

⊥A = {T ∈ T | ∀A ∈ A, Hom(T,A) = 0},

A⊥ = {T ∈ T | ∀A ∈ A, Hom(A, T ) = 0}.

Definition 2.2.1 ([18]). A collection A1, . . . ,Am of full triangulated subcategories of T is called

a semiorthogonal decomposition if for all 1 ≤ i < j ≤ m

Ai ⊂ A⊥j

and if the smallest triangulated subcategory of T containing A1, . . . ,Am coincides with T . We

use the notation

T = 〈A1, . . . ,Am〉

for a semiorthogonal decomposition of T with components A1, . . . ,Am.

The next Lemma is well-known and follows immediately from the definitions:

Lemma 2.2.2. If T admits a semiorthogonal decomposition into components A1, . . . ,Am then

T is idempotent complete if and only if all Ai’s are idempotent complete.

Definition 2.2.3 ([16, 17]). A full triangulated subcategory A of T is called left (resp. right)

admissible, if the inclusion functor A ⊂ T has a left (resp. right) adjoint. If A is both left and

right admissible, then we call A admissible in T .

Lemma 2.2.4 ([17, Proposition 1.5]). Let A be a full triangulated subcategory of T , then A is left

(resp. right) admissible in T if and only if there is a semiorthogonal decomposition T = 〈A,⊥A〉
(resp. T = 〈A⊥,A〉).

Definition 2.2.5. We call a semiorthogonal decomposition T = 〈A1, . . . ,Am〉 admissible if

every Ai is admissible in T .

Admissible decompositions are called strong in [78]. Let us recall in what follows the relation

between (left/right) admissible subcategories and representability of (co)homological functors

of finite type. Note that in the following definition we do not assume that our triangulated

category T is of finite type (which is assumed in [17]).

Definition 2.2.6 ([17]). T is called left (resp. right) saturated if any exact functor T → Db(k)

(resp. T ◦ → Db(k)) is representable. If T is both left and right saturated, then we call T
saturated.

Theorem 2.2.7 (Rouquier). If X is a projective variety, then Db(X) is saturated.

Proof. Left staturatedness is shown in [90, Theorem 7.1]. Let us explain in the following how

left staturatedness of Db(X) implies right saturatedness.
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Let F : Db(X)◦ → Db(k) be an exact functor. Let us denote by (-)◦ : Db(k) → Db(k)◦ the

dualizing functor (-)◦ = RHomDb(k)(-, k). Denote further by ω•X ∈ Db(X) the dualizing complex

of X and write P∨ = Hom(P,OX) ∈ Db(X) for a perfect complex P ∈ Db(X).

We observe that F ◦ is a covariant exact functor on Db(X) and thus by [90, Theorem 7.1] F ◦

is represented by a perfect complex P ∈ Db(X). Furthermore, (-)◦ is inverse to itself and we get

thus

F ' (F ◦)◦ ' RHomDb(k)(RHomDb(X)(P, -), k)

' RHomDb(k)(Rp∗((-)⊗ P∨), k)

' RHomDb(X)((-)⊗ P∨, ω•X)

' RHomDb(X)(-,P ⊗ ω•X),

where we used the fact that P is a perfect complex in the second and fourth equality and

Grothendieck-Verdier duality with respect to the projection p : X → Spec(k) in the third

equality. Hence F is represented by P ⊗ ω•X ∈ Db(X). �

Lemma 2.2.8 ([17]). Let T be saturated and let A be a left (resp. right) admissible full trian-

gulated subcategory of T . Then A is saturated.

Proof. See e.g. [78, Lemma 2.10]. �

Corollary 2.2.9. Let X be a projective variety. Then any left (resp. right) admissible subcate-

gory of Db(X) is saturated.

Finite type saturated categories are universally admissible in the following sense.

Proposition 2.2.10 ([17, Proposition 2.6]). Let A be a full triangulated subcategory of T , where

T is of finite type and let moreover A be left (resp. right) saturated. Then A is left (resp. right)

admissible in T .

Definition 2.2.11 ([17]). Let T be a triangulated category. Then an autoequivalence S : T → T
is called a Serre functor if there is a functorial equivalence

Hom(A,B) ' Hom(B,S(A))?

for A,B ∈ T .

Lemma 2.2.12 ([17, Proposition 3.7]). If T has a Serre functor then for every admissible

decomposition T = 〈A1, . . . ,Am〉 each component Ai has a Serre functor.

2.2.3 Gorenstein varieties and algebras

Definition 2.2.13. A two-sided noetherian ring R satisfying inj. dimRR <∞ and inj. dimRR <

∞ is called Gorenstein. A variety X is called Gorenstein if all its local rings are Gorenstein.
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Gorenstein property is preserved under regular embeddings, projective bundles and blow ups

with locally complete intersection centers.

Let ω•X denote the dualizing complex p!(k) of X, where p : X → Spec(k) (for the definition of

p!, see [61]). It is well-known that X is Gorenstein if and only if ω•X is a shift of a line bundle [61,

Proposition V.9.3]. Let SX(−) = (−)⊗ωX [dim(X)] the Serre functor on Dperf(X). By abuse of

notation, we also write SX for the autoequivalence on Db(X) defined by the same formula. SX

is not a Serre functor on Db(X), however by the Grothendieck-Verdier duality there is a weaker

statement: for all E in Dperf(X) and all F in Db(X) (resp. for all E in Db(X) and all F in

Dperf(X)), we have

HomDb(X)(E,F ) ' HomDb(X)(F, SX(E))∗. (2.2.1)

This isomorphism typically fails when neither E nor F are perfect, for instance it always fails

for structure sheaves of singular points.

The homological meaning of the Gorenstein condition is the following result:

Lemma 2.2.14. A projective variety X (resp. finite-dimensional algebra R) is Gorenstein if

and only if Dperf(X) (resp. Dperf(R)) has a Serre functor.

Proof. For finite-dimensional algebras this is a result of Chen [30, Corollary 3.9], which goes

back to Happel [60, Section 3.6].

For varieties the “only if” direction is clear. For the “if” direction, let us denote by S the

Serre functor on Dperf(X) and let ω•X be as above. By the definition of the Serre functor S and

by Grothendieck-Verdier duality, we have a functorial isomorphism

Hom(E,ω•X) ' Hom(E,S(OX)) (2.2.2)

for E ∈ Dperf(X). In particular we obtain a canonical map f : S(OX) → ω•X corresponding to

the identity morphism of OX . Let C be the cone of f . By (2.2.2) we see that Hom(E,C) = 0 for

all E ∈ Dperf(X). By [20, Corollary 3.1.2] we have that C = 0 and, in other words, S(OX) ' ω•X .

In particular the dualizing complex of X is perfect. Since ω•X
∨ ⊗ ω•X ' RHom(ω•X , ω

•
X) ' OX

by the definition of a dualizing complex, it is easy to deduce that ω•X is a shift of a line bundle.

Equivalently, X is Gorenstein. �

In the Gorenstein case one can mutate semiorthogonal decompositions as follows:

Lemma 2.2.15. Let X be a Gorenstein projective variety. If Db(X) = 〈A,B〉, and either A
or B is contained in Dperf(X), then both A and B are admissible and there is a semiorthogonal

decomposition Db(X) = 〈B ⊗ ωX ,A〉.

Proof. Let A ⊂ Dperf(X). Applying Corollary 2.2.9, Proposition 2.2.10 and Lemma 2.2.12 we

obtain that A is saturated, admissible in Dperf(X) and has a Serre functor SA (alternatively,

instead of relying on Lemma 2.2.12 we can deduce existence of the Serre functor on A using [17,

Corollary 3.5] immediately from A being saturated and of finite type).
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We can define the right adjoint of I : A → Db(X) using the following standard construction

of [17]. Let L : Db(X) → A be the left adjoint of I and define the functor R : Db(X) → A by

the formula R = SA ◦ L ◦ S−1
X . It follows from definitions and (2.2.1) that R is right adjoint to

I, and that there is a semiorthogonal decomposition

Db(X) = 〈B ⊗ ωX ,A〉.

Since ωX is a line bundle, we obtain also 〈B ⊗ ωX ,A〉 ' 〈B,A⊗ ω∨X〉 and hence B ↪→ Db(X) is

admissible as well.

The case B ⊂ Dperf(X) can be proven similarly. �

2.2.4 Singularity categories

We recall standard facts about singularity categories. The basic references for these results are

[24, 94]. Let X be k-scheme satisfying Orlov’s ELF condition [94]; in particular we can take

X to be a quasi-projective variety, or the Spec of a completion of a local ring for a point in a

variety. For every closed Z ⊂ X the triangulated category of singularities of X supported at Z

is the Verdier quotient

Dsg
Z (X) = DbZ(X)/Dperf

Z (X).

We write Dsg(X) for Dsg
X (X). If R is a ring, then we define its singularity category by the same

formula Dsg(R) = Db(R)/Dperf(R).

Let us denote by Dsg(X) the idempotent completion of Dsg(X). As we will see in the next

section, idempotent completeness of Dsg(X) is controlled by the first negative K-theory group

of X.

The following is an important property of the singularity category, called Knörrer periodicity.

Theorem 2.2.16 ([94, Theorem 2.1]). Let X be regular and let f : X → A1 be a non-zero

morphism. Define g = f + xy : X ×A2 → A1. Let Zf = f−1({0}) and Zg = g−1({0}). Then we

have a canonical equivalence

Dsg(Zf )→ Dsg(Zg).

The following result goes back to Auslander.

Proposition 2.2.17. If X is n-dimensional Gorenstein with only isolated singularities, then

Dsg(X) is a Calabi-Yau-(n− 1) category, that is [n− 1] is its Serre functor, or in other words,

for every two objects E,F ∈ Dsg(X) we have a functorial isomorphism

Hom(E,F ) ' Hom(F,E[n− 1])∗.

Proof. By [94, Proposition 1.14] we can reduce to the affine case. The statement is then a result

of Iyama and Wemyss [68, Theorem 1.4], which follows essentially from a theorem of Auslander

[6, Theorem 3.1] combined with Buchweitz’ famous result [24, Theorem 4.4.1 (2)]. �
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Example 2.2.18. If Q is an affine nodal n-dimensional quadric (that is an ordinary double

point of dimension n), then by Knörrer periodicity Theorem 2.2.16, Dsg(Q) only depends on the

parity of n. In particular, let us assume n ≡ 1 (mod 2), so that

Dsg(Q) ' Dsg(A),

where A = k[x, y]/(xy). By Proposition 2.2.17, Dsg(Q) is a Calabi-Yau-0 category, that is

Hom(E,F ) ' Hom(F,E)∗. In fact Dsg(Q) is equivalent to the category of Z/2-graded finite-

dimensional vector spaces, with the shift functor [1] exchanging the graded pieces.

Lemma 2.2.19 (Chen [29, Corollary 2.4]). For any finite dimensional k-algebra R, Dsg(R) is

idempotent complete.

In the Gorenstein case, the Lemma above also follows from the famous result of Buchweitz

[24, Theorem 4.4.1] that Dsg(R) of a Gorenstein ring R is equivalent to the stable category of

stable maximal Cohen-Macaulay R-modules (also called Gorenstein projectives) MCM(R), and

the latter category is well-known to be idempotent complete for finite-dimensional algebras (see

e.g. [71, Lemma 2.68]).

2.2.5 Grothendieck groups and the topological filtration

We assume that X is an ELF k-scheme. Let Z ⊂ X be a closed subscheme.

We define the following Grothendieck groups of X with supports on Z; the first two are

classical, and the last two are defined and studied in [98]. We define

K0(X on Z) = K0(Dperf
Z (X))

G0(X on Z) = K0(DbZ(X)) ' G0(Z)

Ksg
0 (X on Z) = K0(Dsg

Z (X))

Ksg
0 (X on Z) = K0(Dsg

Z (X))

where the the isomorphism in the second line is Quillen’s devissage. The last two groups are

called singularity Grothendieck groups. We write Ksg
0 (X) (resp. Ksg

0 (X)) for these groups when

Z = X. Essentially from definitions (see [98, Remark 1.13]) we get a canonical exact sequence

K0(X on Z)→ G0(Z)→ Ksg
0 (X on Z)→ 0. (2.2.3)

Let K−1(X) (resp. K−1(X on Z)) be the (−1)-st K-group of X (resp. of X with supports in

Z) [119]. We have the following well-known relation between the two singularity Grothendieck

groups defined above, going back to Thomason [118], Schlichting [106] and Orlov [96].

Lemma 2.2.20 ([98, Lemma 1.10, 1.11 and Remark 1.13]). There is a canonical short exact

sequence

0→ Ksg
0 (X on Z)→ Ksg

0 (X on Z)→ K−1(X on Z)→ 0. (2.2.4)
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Moreover, Dsg
Z (X) is idempotent complete if and only if K−1(X on Z) = 0.

We note that all categories and Grothendieck groups with supports on Z used above only

depend on the set of points of Z rather than its scheme structure.

For a noetherian commutative k-algebra A of finite Krull dimension, we write Ksg
0 (A) for

Ksg
0 (Spec(A)). For complete local rings we have the following result.

Proposition 2.2.21. Let Â be the completion of a commutative noetherian local k-algebra A of

Krull dimension n.

1) There is an isomorphism

Ksg
0 (Â) ' Ksg

0 (Â)

2) If Â is reduced, then

FnKsg
0 (Â) = 0.

Proof. 1) This is a consequence of [42, Theorem 3.7] and the short exact sequence (2.2.4).

2) It is well-known by Nakayama’s Lemma that any finitely generated projective module over

a local ring B is free and thus K0(B) ' Z. Using (2.2.3) we obtain F iG0(B) ' F iKsg
0 (B) for all

i ≥ 1. In particular FnG0(A) ' FnKsg
0 (A) and FnG0(Â) ' FnKsg

0 (Â). Moreover, by definition

FnG0(Â) and FnG0(A) are generated by [k] and the flat pullback of the canonical morphism

Spec(Â) → Spec(A) induces a surjective map FnG0(A) � FnG0(Â). By [98, Proposition 1.24

(4)] we know however that FnG0(A) = 0 and thus FnG0(Â) = 0. We conclude that FnKsg
0 (Â) =

0. Note that the statement becomes false without the assumption that k is algebraically closed,

see [98, Example 1.22]. �

Assume that all irreducible components of X have the same dimension. There is a so-called

topological filtration F iKsg
0 (X) on Ksg

0 (X) induced by the topological filtration on G0(X) =

K0(Db(X)) (see [98, Subchapter 1.3]). Recall that F iKsg
0 (X) is generated by elements [OT ],

where T ⊂ X is a closed subscheme of codimension at least i. Let us denote the associated

graded groups by griKsg
0 (X). A topological filtration on Ksg

0 (X on Z) can be defined in the

same way. We have the following useful properties of the associated graded groups of Ksg
0 (X):

Proposition 2.2.22 ([98]). 1) Assume X has only isolated singularities and let Z ⊂ X be a

closed subscheme. Then there is an isomorphism

Ksg
0 (X on Z) '

⊕
p∈Sing(X)∩Z

Ksg
0 (ÔX,p). (2.2.5)

Furthermore for all i ≥ 0 we have

F iKsg
0 (X on Z) ⊂

⊕
p∈Sing(X)∩Z

F iKsg
0 (ÔX,p), (2.2.6)

and in particular, FnKsg
0 (X on Z) = 0, where n = dim(X).
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2) Let C be reduced and connected one-dimensional ELF k-scheme with N irreducible components

and let Z ⊂ C be a reduced subscheme of C of dimension 1. Denote by NZ the number of

irreducible components of Z. Then

Ksg
0 (C on Z) = gr0Ksg

0 (C on Z) =

ZNZ Z ( C

ZNC−1 Z = C
,

generated by the structure sheaves of the irreducible components of Z.

3) If X is normal irreducible then gr1Ksg
0 (X) ' Cl(X)/Pic(X), functorially with respect to flat

pullbacks.

4) The isomorphism Ksg
0 (Zf ) ' Ksg

0 (Zg) induced by Theorem 2.2.16 shifts the topological filtra-

tion by one, that is for all i ≥ 0 we have natural isomorphisms F iKsg
0 (Zf ) ' F i+1Ksg

0 (Zg) and

griKsg
0 (Zf ) ' gri+1Ksg

0 (Zg).

Proof. 1) Let us denote by S the singular locus of X. We have a well-defined, fully-faithful func-

tor Dsg
Z∩S(X)→ Dsg

Z (X) [96, Lemma 2.6] and its image is dense in Dsg
Z (X) (see [96, Proposition

2.7]). In particular, these two categories have the same idempotent completion. Moreover, since

Z ∩ S is a finite set of closed points, we have

Dsg
Z (X) ' Dsg

Z∩S(X) '
⊕
p∈Z∩S

Dsg
{p}(ÔX,p),

where we used [96, Theorem 2.10] and Proposition 2.2.21 1) in the second equivalence. Passing

to the Grothendieck group yields (2.2.5).

By (2.2.4), we get (2.2.6) for i = 0, and then since flat pullbacks of morphisms preserve the

topological filtration [98, Lemma 1.29 (1)], (2.2.6) follows for all i ≥ 0. By Proposition 2.2.21 2)

we get thus that FnKsg
0 (X on Z) = 0.

2) By 1) we see that F 1Ksg
0 (C on Z) = 0, or, equivalently, that Ksg

0 (C on Z) ' gr0Ksg
0 (C on Z).

The result now follows using (2.2.3), since classes of perfect complexes onX with one-dimensional

support and supported on Z generate Z · [OC ] (resp. have trivial image) in gr0G0(C) = ZNC for

Z = C (resp. Z ( C).

3) For the isomorphism see [98, Proposition 1.24 (2)]. Functoriality follows easily by con-

struction.

4) See [98, Proposition 1.30]. �

2.2.6 Local geometry of compound An singularities

Recall that a threefold X has a compound An (abbreviated as cAn) singularity at p ∈ X if the

complete local ring ÔX,p is isomorphic to a hypersurface singularity given by the equation

f = xy + zn+1 + wh(x, y, z, w),
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where h is an arbitrary power series (see [102, Definition 2.1]). It is well-known in the isolated

singularity case that the equation f can, after a change of coordinates, be expressed as f =

xy + g(z, w) for some g ∈ (z, w)2 ⊂ k[[z, w]] (Morse Lemma [3, Section 11.1]). Conversely,

any isolated hypersurface given by the equation f = xy + g(z, w) is a cAn singularity, where

n = ord(g)− 1 and ord(g) is the lowest term of the power series of g ∈ (z, w)2 [26, Proposition

6.1 (e)]. Of particular interest are nodal singularities (also called ordinary double points) given

complete locally by xy + zw = 0 and more generally ADE singularities, see table (2.2.8). Since

cAn singularities are given by one equation they are automatically Gorenstein.

Let A be a complete local ring isomorphic to k[[x, y, z, w]]/(f), where f ∈ A is of the form

xy + g(z, w), for some g ∈ k[[z, w]]. One sees that A has an isolated singularity at the origin

if and only if the ring k[[z, w]]/(g), which we denote by A′, has an isolated singularity at the

origin. The latter condition is equivalent to g being a nonconstant power series with no multiple

factors.

Let br0(A′) be the number of irreducible components of A′. Here 0 stands for the closed

point 0 ∈ Spec(A′).

Lemma 2.2.23. We have a chain of equivalences

Zbr0(A′)−1 ' Ksg
0 (A′) ' Ksg

0 (A) ' Cl(A). (2.2.7)

Proof. Follows from Proposition 2.2.22 2), 3) and 4). �

We call br0(A) := br0(A′), that is the number of irreducible components of A′, also branch

number of A (resp. A′). More generally, if X is a normal threefold with isolated cAn singularities,

we denote by brp(X) the branch number of ÔX,p and we call it the branch number of X at p. The

(total) branch number of X, denoted br(X), is the sum of the brp(X) running over p ∈ Sing(X).

It is well-known and easy to see that isolated cA1 singularities are precisely An threefold

singularities (Morse Lemma [3, Section 11.1]). More generally, the following table lists the local

class groups of the ADE threefold singularities.

Type Equation Cl(A) br0(A)

A2k (k ≥ 1) x2 + y2 + z2 + w2k+1 0 1

A2k−1 (k ≥ 1) x2 + y2 + z2 + w2k Z 2

D2k (k ≥ 2) x2 + y2 + z2w + w2k−1 Z2 3

D2k−1 (k ≥ 3) x2 + y2 + z2w + w2k−2 Z 2

E6 x2 + y2 + z3 + w4 0 1

E7 x2 + y2 + z3 + zw3 Z 2

E8 x2 + y2 + z3 + w5 0 1

(2.2.8)

The global geometry of cAn singularities in relation to their class groups, the so-called defect

δ and K−1 is considered at the end of the next section.
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2.3 Class groups and K−1

Throughout this section we assume that our schemes satisfy Orlov’s ELF condition [94]. Fur-

thermore, the words curve, surface, threefold are reserved for reduced quasi-projective schemes

of dimensions one, two and three respectively. Our goal in this section is to study K−1 for curves,

surfaces and threefolds. The results for threefolds with cAn singularities are new, whereas results

for curves and surfaces mostly go back to Weibel [124].

For a curve C we denote by brp(C) the branch number of ÔC,p and call it branch number of

C at p and by br(C) =
∑

brp(C) the (total) branch number of C. Let us now consider K−1 of

a curve.

Proposition 2.3.1. Let C be a connected curve. Then K−1(C) is a free abelian group of rank

br(C)− |Sing(C)| −N + 1, (2.3.1)

where N is the number of irreducible components of C. In particular, if C has at most nodal

singularities, then K−1(C) is free abelian of rank |Sing(C)| −N + 1.

Example 2.3.2. Let C ⊂ P2 be a union of N projective lines intersecting in one point. Then

br(C) = N , |Sing(C)| = 1, hence K−1(C) = 0.

Proof. The statement will follow from a result of Weibel [124, Lemma 2.3 (2)] by comparing the

number of loops of the graph constructed in [124] with the number given in the statement. We

will, however, give a different proof here using Grothendieck groups of the singularity category.

By Proposition 2.2.22 1) and 2) we see that Ksg
0 (C) '

⊕
p Ksg

0 (ÔC,p) with each component

being a free abelian group of rank brp(C) − 1 and that Ksg
0 (C) is a free abelian group of rank

N − 1. Using the short exact sequence (2.2.4) it is clear that the rank of K−1(C) is just∑
(brp(C) − 1) − N − 1, which is equal to (2.3.1). Furthermore, if C is irreducible, the above

argument also shows that K−1(C) is torsion-free.

To show that K−1(C) is torsion-free in general, we proceed by induction on the number of

irreducible components N of C. Assume that N ≥ 2 and let C0 ⊂ C be an irreducible component

of C. We may choose C0 in such a way that C − C0 is still connected (for that we can take C0

to be a component with minimal number of intersections with other components). Consider the
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commutative diagram

0

��

0

��

0

��
0 // Ksg

0 (C on C0) //

��

Ksg
0 (C on C0) //

��

K−1(C on C0) //

��

0

0 // Ksg
0 (C) //

��

Ksg
0 (C) //

��

K−1(C) //

��

0

0 // Ksg
0 (C − C0) //

��

Ksg
0 (C − C0) //

��

K−1(C − C0) //

��

0.

0 0 0

(2.3.2)

The rows are exact by (2.2.4). Let us now consider exactness of the columns. By Proposition

2.2.22 2) Ksg
0 (C) ' ZN−1, Ksg

0 (C − C0) ' ZN−2 and Ksg
0 (C on C0) ' Z generated by the

structure sheaves of the components of C, C − C0 and C0 respectively, and the maps between

the groups are the obvious ones, so that the left column is split exact. By Proposition 2.2.22 1)

the middle column is also split exact.

Applying the Snake Lemma to the first two columns we get exactness of the right column.

Finally, by the induction hypothesis K−1(C−C0) is torsion-free and since K−1(C on C0) is also

torsion-free because the top row is split exact, we obtain that K−1(C) is torsion-free. �

Recall that the dual graph Γ of a nodal curve C is defined to be the following (undirected)

graph. Vertices of Γ correspond to irreducible components of C. Edges between distinct ver-

tices correspond to intersections of components. Finally, for every self-intersection point on a

component the corresponding vertex has a loop. Usually Γ is decorated by indicating the genus

of each component, but we do not need this for our purposes.

The following corollary implies for example that K−1 of a nodal cubic (Γ has one vertex with

a loop), or any cycle of smooth curves (Γ is a cycle) is Z while K−1 of any tree (that is Γ is a

tree) of smooth curves is zero.

Corollary 2.3.3. Let C be a curve with at most nodal singularities and let Γ = Γ(C) be the

dual graph of C, then

K−1(C) ' Zλ,

where λ = λ(Γ) is the first Betti number of Γ.

Proof. Both sides are additive for finite disjoint unions so we may assume that C is connected.

By definition of Γ, N is its number of vertices and |Sing(C)| =
∑

(brp(C)− 1) is its number

of edges. The result follows by Proposition 2.3.1 since

1− λ = N − |Sing(C)|
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so that λ = |Sing(C)| −N + 1. �

Let us consider the higher dimensional case.

Definition 2.3.4. Let X be normal with at most isolated singularities. We say that X is

maximally nonfactorial if the natural map Cl(X)→
⊕

p Cl(ÔX,p) is surjective, where the direct

sum runs over all p ∈ Sing(X).

Proposition 2.3.5. Let X be normal irreducible with at most isolated singularities. Assume

that K−1(X) = 0. Then X is maximally nonfactorial.

Proof. Let X ′ = Spec
(∏

p∈Sing(X) ÔX,p
)

. By Proposition 2.2.22 1), Ksg
0 (X) ' Ksg

0 (X ′).

Since X is irreducible, we have gr0Ksg
0 (X) = 0, so that Ksg

0 (X) = F 1Ksg
0 (X). Similarly, since

X ′ is a disjoint union of irreducible components, gr0Ksg
0 (X ′) = 0 and Ksg

0 (X) = F 1Ksg
0 (X ′).

In particular as Ksg
0 (X) → Ksg

0 (X) is surjective by (2.2.4), we also get that gr1Ksg
0 (X) →

gr1Ksg
0 (X ′) is surjective.

By Proposition 2.2.22 3) we have a commutative diagram

gr1Ksg
0 (X) //

'
��

gr1Ksg
0 (X ′)

'
��

Cl(X)/Pic(X) // Cl(X ′)

(2.3.3)

where we used that Pic(X ′) = 0. Since we know that the top horizontal arrow is surjective,

the bottom horizontal arrow is surjective as well, which is equivalent to X being maximally

nonfactorial. �

If the local singularity Grothendieck groups are generated by codimension one cycles, then

K−1(X) is controlled by codimension one cycles as well:

Proposition 2.3.6. Let X be normal irreducible with at most isolated singularities and such

that F 2Ksg
0 (ÔX,p) = 0 for all p in Sing(X). Then there is an isomorphism Ksg

0 (ÔX,p) ' Cl(ÔX,p)
for all p in Sing(X) and an exact sequence

0→ Pic(X)→ Cl(X)→
⊕

p∈Sing(X)

Cl(ÔX,p)→ K−1(X)→ 0. (2.3.4)

In particular, X is maximally nonfactorial if and only if K−1(X) = 0.

Proof. We keep the notation of the previous proof. By (2.2.6) we have injective maps

F iKsg
0 (X)→ F iKsg

0 (X ′).

Thus using F 2Ksg
0 (ÔX,p) = 0 for all p in Sing(X), so that F 2Ksg

0 (X ′) = 0 we see that F 2Ksg
0 (X) =
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0. Therefore diagram (2.3.3) is isomorphic to

Ksg
0 (X) //

'
��

Ksg
0 (X ′)

'
��

Cl(X)/Pic(X) // Cl(X ′)

(2.3.5)

The upper horizontal map is injective with cokernel K−1(X) by (2.2.4), hence we get a short

exact sequence

0→ Cl(X)/Pic(X)→ Cl(X ′)→ K−1(X)→ 0,

which implies (2.3.4). �

If S is a normal surface, then the exact sequence (2.3.4) holds for S by Proposition 2.2.21 2),

which recovers a result of Weibel [124, Corollary 5.4]. Furthermore we have the following result.

Proposition 2.3.7. If X is normal rational projective surface with rational singularities, then

we have an isomorphism K−1(X) ' Br(X).

Proof. The proof is a combination of a result of Weibel computing K−1(X) with a result of

Bright computing Br(X).

Let π : X̃ → X be a resolution of singularities of X, such that the exceptional divisor

E = π−1(Sing(X)) is a normal crossing divisor. By Artin [4], E is a tree of smooth rational

curves. Let N be the number of irreducible components of E.

By [124, Example 2.13 and Proposition 5.1] there is an exact sequence

0→ Pic(X)→ Pic(X̃)→ Pic(E)→ K−1(X)→ 0. (2.3.6)

It is well known that Pic(E) ' ZN spanned by the tautological bundles of the components

of E. This group is also canonically isomorphic to the free abelian group E∗ generated by the

components of the exceptional divisor defined in [22], and comparing (2.3.6) to [22, Proposition 1]

(the setup in [22] includes minimality of the resolution, but it is not required in the proof), where

we use that Br(X̃) = 0 since X̃ is a smooth projective rational surface yields K−1(X) ' Br(X).

�

The following result allows to compute K−1 of threefolds with isolated compound An singu-

larities (in particular for nodal threefolds), in terms of their Picard group, Class group and the

branch number defined in subsection 2.2.6.

Corollary 2.3.8. Let X be normal threefold with at most isolated cAn singularities. Then we

have an exact sequence

0→ Pic(X)→ Cl(X)→ ZL → K−1(X)→ 0,
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where L = br(X)−|Sing(X)| is the difference between the branch number and the number of the

singular points of X. In particular, if X has at most nodal singularities, then L = |Sing(X)|.

Proof. Using (2.2.7) we obtain that Cl(ÔX,p) ' Zbrp(X)−1. Since L =
∑

p∈Sing(X)(brp(X) − 1),

the result follows from Proposition 2.3.6. �

Definition 2.3.9. Let X be a normal threefold with at most isolated cAn singularities. We

define the defect δ of X by

δ := rk Cl(X)/Pic(X).

Remark 2.3.10. Note that the defect is well-defined by Corollary 2.3.8. It was first defined by

Clemens in [32] for double solids, then by Werner [125] for nodal 3-dimensional hypersurfaces

and later it was extended by Rams to 3-dimensional hypersurfaces with ADE singularities [101].

By [32, Corollary 2.32] and [101, Theorem 4.1] one sees that the classical definition of the defect

agrees with Definition 2.3.9.

Remark 2.3.11. Let X be as in Definition 2.3.9. We can rewrite Corollary 2.3.8 as a short

exact sequence

0→ Zδ → ZL → K−1(X)→ 0 (2.3.7)

where L = br(X) − |Sing(X)|. Explicitly, the first group Zδ ' Cl(X)/Pic(X) is generated by

the classes of Weil divisors which are not Cartier, the second group ZL is the sum of local class

groups of the singular points, and the map between them is given by restricting Weil divisors to

the local class groups.

By definition, X is factorial if and only if δ = 0. On the other hand, if X is maximally

nonfactorial, then δ = L. Conversely, if δ = L, then X is maximally nonfactorial up to torsion.

It is worth noticing that if L = 0, then X is factorial and maximally nonfactorial at the

same time. Indeed, from (2.3.7) we see that δ = 0, as well as K−1(X) = 0. For isolated cAn

singularities L = 0 if and only if all branch numbers of the singular points are equal to one, that

is singularities are of type xy + g(z, w) = 0, where g(z, w) is irreducible. For example, this is

the case for A2k singularities, see (2.2.8).

We collect examples for known defect of nodal 3-folds.

Example 2.3.12. If X is a nodal quadric threefold in P4, then Pic(X) = Z generated by the

class of the hyperplane section H; Cl(X) = Z2, generated by the two planes D1, D2 passing

through the singular point, so that H = D1 + D2. Therefore, δ = 1, L = 1, the first map in

(2.3.7) is an isomorphism, K−1(X) = 0 and X is maximally nonfactorial.

Example 2.3.13. Let X be a nodal hypersurface in P4 or a nodal double cover of P3, which

is not the nodal quadric hypersurface in P4. Let r be the number of nodes of X. The defect

δ in these cases has been studied in detail and it is known that δ < r (see [38, Definition 1

and Theorem 9] for the hypersurface case and [32, Corollary 2.32] for double solids). Thus by

Corollary 2.3.8 we get that rk K−1(X) = r − δ > 0, i.e. 3-dimensional nodal hypersurfaces and
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nodal double covers of P3 are never maximally nonfactorial, except for the 3 dimensional nodal

quadric hypersurface.

Lemma 2.3.14. Let π : X̃ → X be a small resolution of a nodal projective threefold with r

nodes. Assume that X̃ is obtained as a blow up of a smooth projective threefold Y in µ points.

Let ρX , ρY are Picard ranks of X and Y respectively. Then we have

rk K−1(X) = r − δ = r − µ+ ρX − ρY ,

where δ = µ+ ρY − ρX is the defect of X.

Proof. Since π : X̃ → X is a small resolution, we have that Cl(X̃) ' Cl(X). Moreover, since X̃

is a smooth blow up of Y at µ points, we see further that Cl(X̃) ' Cl(Y ) ⊕ Zµ. The result is

then a direct consequence of Corollary 2.3.8. �

Example 2.3.15. According to Prokhorov [99, Theorem 7.1], del Pezzo threefolds of degree

1 ≤ d ≤ 5, that is Fano threefolds of Picard rank one and index two, with maximal class group

rank are obtained by blowing up 8− d general points Pi on P3 followed by blowing down proper

preimages of lines and twisted cubics passing through the points Pi (the latter contraction is

realized as an algebraic variety by taking half-anticanonical model of the blow up). The number

of nodes of X is 28 for d = 1, 16 for d = 2 and
(

8−d
2

)
for 3 ≤ d ≤ 5 [99, Theorem 7.1 (iii)].

Using Lemma 2.3.14 we see that the rank of K−1 is 21 for d = 1, 10 for d = 2 and (8−d)(5−d)
2

for 3 ≤ d ≤ 5. In particular, the cases 1 ≤ d ≤ 4 are not maximally nonfactorial (see also table

(2.4.3)).

2.4 Kawamata type semiorthogonal decompositions

In this section X is a Gorenstein projective variety. The following definition is motivated by

[76] and [77].

Definition 2.4.1. We say that X has a Kawamata type semiorthogonal decomposition if

Db(X) = 〈A,B1, . . . ,Bm〉

is an admissible semiorthogonal decomposition, such that A ⊂ Dperf(X) and the Bj’s are equiv-

alent to Db(Rj), where the Rj’s are (possibly noncommutative) finite-dimensional k-algebras.

Remark 2.4.2. Note that a smooth projective variety X trivially admits a Kawamata type

decomposition. Indeed, in this case Dperf(X) = Db(X) and we can set m = 0, A = Db(X).

Remark 2.4.3. Any admissible decomposition of Db(X) into components which are subcate-

gories of Dperf(X) and components equivalent to Db(R) can be rearranged to make a Kawamata

decomposition. This follows from a result of Bondal and Kapranov [17, Lemma 1.9], which

implies more generally that any admissible semiorthogonal decomposition can be mutated.
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Theorem 2.4.4. If X admits a Kawamata type semiorthogonal decomposition

Db(X) = 〈A,B1 . . . ,Bm〉,

then the following holds.

1) There is an admissible semiorthogonal decomposition

Dperf(X) = 〈A,B1 ∩ Dperf(X), . . . ,Bm ∩ Dperf(X)〉,

and Bj ∩Dperf(X) is equivalent to Dperf(Rj) for all 1 ≤ j ≤ m. The Serre functor on Dperf(X)

induces Serre functors on A and on all Bj ∩ Dperf(X).

2) The finite-dimensional k-algebras Rj are Gorenstein.

3) There is an equivalence of singularity categories Dsg(X) ' 〈Dsg(R1), . . . ,Dsg(Rm)〉. Further-

more, if X has only isolated singularities, then the decomposition above is completely orthogonal,

that is

Dsg(X) ' Dsg(R1)⊕ . . .⊕Dsg(Rm) ' Dsg(R1 × . . .×Rm). (2.4.1)

Proof. 1) The decomposition and its admissibility follows immediately from Orlov’s charac-

terization of perfect complexes as homologically finite objects [95, Proposition 1.10 and 1.11].

Moreover, by the analogous characterization of Dperf(Rj) in Db(Rj) [67, Proposition 2.18] and

by admissibility of Bj it is easy to see that Dperf(Rj) = Bj ∩ Dperf(X). By Lemma 2.2.12 it

follows that the components A and Bj ∩ Dperf(X) have Serre functors.

2) By 1) we see that Dperf(Rj) has a Serre functor, and by Lemma 2.2.14 this is equivalent to

Rj being Gorenstein.

3) The decomposition of Dsg(X) follows by [95, Proposition 1.10]. Let us assume now that X has

isolated singularities. By Proposition 2.2.17, Dsg(X) is a Calabi-Yau category. By a standard

argument going back to Bridgeland [21] it is easy to see that in this case decomposition is

completely orthogonal. The second equivalence in (2.4.1) is clear. �

Corollary 2.4.5. If X admits a Kawamata type semiorthogonal decomposition, then Dsg(X) is

idempotent complete, or, equivalently, K−1(X) = 0.

Proof. This follows from Theorem 2.4.4 using Lemma 2.2.2 and Lemma 2.2.19. The final equiv-

alence is Lemma 2.2.20. �

Example 2.4.6. If X has trivial canonical bundle, then it admits a Kawamata decomposition if

and only if X is smooth. Indeed if we assume that X has a Kawamata decomposition, it follows

by Theorem 2.4.4 1) that there is an induced semiorthogonal decomposition of Dperf(X). While

the Serre functor on Dperf(X) is just the shift by n = dim(X), we see that for a finite-dimensional

algebra as in Definition 2.4.1, we have that

HomRj (Rj , Rj) = ExtnRj
(Rj , Rj)

∗,
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which is only possible if dim(X) = 0 or m = 0. In both cases X is smooth.

The next proposition shows that admissibility is automatic in the case when we have only

one algebra.

Proposition 2.4.7. Assume that X has a semiorthogonal decomposition

Db(X) = 〈A,B〉,

where A ⊂ Dperf(X), B ' Db(R) (resp. B ⊂ Dperf(X), A ' Db(R)), and R is a finite-

dimensional algebra. Then A and B are admissible subcategories in Db(X) so that the semiorthog-

onal decomposition Db(X) = 〈A,B〉 (resp. Db(X) = 〈B ⊗ ωX ,A〉) is of Kawamata type.

Proof. This follows from Lemma 2.2.15. �

Remark 2.4.8. Kawamata type decompositions generalize tilting objects in the following sense.

Recall that a classical tilting object E of D(Qcoh(X)) is a perfect complex of D(Qcoh(X)), such

that it generates D(Qcoh(X)) (i.e. if Hom(E ,F) = 0, then F ' 0) and such that Hom(E , E [i]) =

0 for all i 6= 0. It is well known that, if D(Qcoh(X)) possesses a classical tilting object E, then

there is an equivalence D(Qcoh(X)) ' D(Mod-R) which restricts to an equivalence Db(X) '
Db(R), where R is the finite-dimensional algebra End(E) (see e.g. [64, Theorem 7.6 (2)]). This

means that X has a Kawamata semiorthogonal decomposition with trivial A ⊂ Dperf(X) part as

soon as D(Qcoh(X)) has a classical tilting object.

We collect the known examples of Gorenstein projective varieties with Kawamata type

semiorthogonal decompositions. We start in dimension one.

Theorem 2.4.9 (Burban [25]). Let X be a nodal tree of projective lines, that is a connected

nodal curve with all irreducible components isomorphic to P1 and with the dual graph Γ of X

forming a tree. Then Db(X) has a tilting object, and furthermore admits a Kawamata type

semiorthogonal decomposition

Db(X) = 〈OX ,Db(RΓ)〉.

The algebra RΓ is the path algebra of the quiver Q with relations, obtained by the following

construction from Γ: Q has the same vertices as Γ and for each two vertices p, q in Γ connected

by an edge there is an arrow a from p to q and an arrow a∗ from q to p in Q. The relations are

that all compositions aa∗ and a∗a are set equal zero.

Proof. The proof is the same as that of Theorem 2.1 in [25], where only chains of projective

lines are considered. �

Example 2.4.10. Let X = X1∪X2 be the A2 tree of projective lines, that is a union of 2 copies

of P1 intersecting transversely. Then the algebra RΓ in Theorem 2.4.9 has the form

R : 1 2 a∗a = 0, aa∗ = 0.
a

a∗

(2.4.2)
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By Theorem 2.4.4 we have Dsg(X) ' Dsg(R) ' MCM(R) (we used Buchweitz’ equivalence

between the singularity category and the stable category of MCM modules in the Gorenstein case

for the second equivalence). On the other hand, by [94, Proposition 1.14], we have an equivalence

Dsg(X) ' Dsg(A)

where A = k[x, y]/(xy) is the ring considered in Example 2.2.18.

Explicitly the generators of the singularity category considered in Example 2.2.18 correspond

to the two MCM R-modules which are the two simple modules given by the vertices of the quiver.

Corollary 2.4.11. Let C be a connected nodal projective curve such that all its irreducible

components are rational curves. Then the following are equivalent:

1) C is a nodal tree of projective lines.

2) Db(C) admits a Kawamata type semiorthogonal decomposition.

3) K−1(C) = 0.

Proof. This is a direct consequence of Theorem 2.4.9, Corollary 2.4.5 and Corollary 2.3.3. �

The following result gives a source of examples of Kawamata type semiorthogonal decompo-

sitions in dimension two.

Theorem 2.4.12 (Karmazyn-Kuznetsov-Shinder [75]). Let X be a projective Gorenstein toric

surface. Let n1, . . . , nm be the orders of the cyclic quotient singularities of X. Then X has a

Kawamata type semiorthogonal decomposition if and only if K−1(X) = 0 and in this case the

decomposition is of the form

Db(X) ' 〈A,Db(R1), . . .Db(Rm)〉,

where the category A ⊂ Dperf(X) is a collection of exceptional objects and such that Ri =

k[z]/(zni).

Proof. By Proposition 2.3.7 we have Br(X) = K−1(X). If K−1(X) = 0, the semiorthogonal

decomposition in Theorem 2.4.12 is [75, Corollary 5.10] and admissibility of the components is

[75, Theorem 2.12].

Conversely, existence of a Kawamata type decomposition implies K−1(X) = 0 by Corollary

2.4.5. �

For threefolds, we have the following two Fano examples due to Kawamata.

Example 2.4.13 (Kawamata). (1) Let X be the nodal quadric threefold in P4 with the equation

xy − zw = 0. In [76, Example 5.6] (see also [77, Example 7.1]) it has been shown that there is

an admissible semiorthogonal decomposition

Db(X) ' 〈OX(−2H),OX(−H),Db(R),OX〉,
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where OX(H) is a hyperplane section bundle and R is the same algebra as (2.4.2) in Example

2.4.10. By Remark 2.4.3, X has a Kawamata type decomposition.

(2) Let X̃ be the blow up of two points in P3 and let L ⊂ X̃ be the strict transform of a line passing

through the two points. Let X be the contraction of L to a node given by the half-anticanonical

embedding in P7. By [77, Example 7.2] X has a Kawamata type decomposition

Db(X) ' 〈A,Db(R)〉 ' 〈OX(C1), . . . ,OX(C5),Db(R)〉,

where the OX(Ci)’s are line bundles on X which are push-forwards of line bundles from X̃, and

R is again the algebra (2.4.2).

Remark 2.4.14. Let us contemplate here on the fact that the algebra occurring in Examples

2.4.13 (1) and (2) coincides with the algebra which shows up in the union C of 2 rational curves

intersecting at a node (Example 2.4.10). This observation is related to Knörrer periodicity. More

concretely, the singularity category of C will agree with the singularity category of Kawamata’s

examples via Knörrer periodicity (Theorem 2.2.16). On the other hand, Knörrer periodicity can

be realized via a blow up construction (see [98, Proof of Proposition 1.30] and Remark 2.5.2)

which provides an explicit link between Kawamata type decompositions of ordinary double points

with the same parity.

More generally, this viewpoint of blowing up projective Gorenstein schemes at locally com-

plete intersection subschemes will provide further examples of Kawamata type semiorthogonal

decomposition, as shown in Section 2.5.

In the next two examples we consider typical singular threefolds: hypersurfaces, double

covers and contractions of blow ups.

Example 2.4.15. Nodal hypersurfaces in P4 of degree d ≥ 3 and nodal double covers of P3

branched in a surface of degree at least four have no Kawamata type decomposition by Example

2.3.13 and Corollary 2.4.5.

This generalizes an example of Kawamata [77, Example 7.8], constructed as follows. One

considers a cubic threefold with two nodes p, q ∈ X0; it is well-known that such cubics are always

factorial. Let X be the blow up of q. In the commutative square from (2.3.4)

Cl(X)

��

// Cl(ÔX,p)

��

Cl(X0) // Cl(ÔX0,p)⊕ Cl(ÔX0,q)

the bottom horizontal map is zero, the right vertical map is an embedding of a direct summand,

hence the top horizontal map is also zero, so that X is factorial as well. From (2.3.4) we deduce

that K−1(X) = Z, so that X has no Kawamata type decomposition by Corollary 2.4.5.

Example 2.4.16. Del Pezzo threefolds as in Example 2.3.15 of degree 1 ≤ d ≤ 4 have no

Kawamata type decomposition. This follows from Corollary 2.4.5.
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This relates to a question of Kawamata about derived categories of blow ups of P3 in more

than 2 points [77, Remark 7.5]. We have shown that the half-anticanonical contraction of a blow

up of P3 in 4 or more points has no Kawamata type decomposition. The remaining case, that

is the nodal del Pezzo threefold of rank 5, seems to be the most interesting one, as we cannot

detect obstructions with our methods. The following table gives a summary:

d(X) |Sing(X)| rk Pic(X) rk Cl(X) rk K−1(X) Kawamata decomp.

1 28 1 8 21 No

2 16 1 7 10 No

3 10 1 6 5 No

4 6 1 5 2 No

5 3 1 4 0 ?

6 1 2 3 0 Yes

(2.4.3)

Here the d = 6 case refers to Example 2.4.13 2).

2.5 Kawamata decompositions, K−1 and blow ups

We start with the following well-known result.

Theorem 2.5.1 (Thomason, Orlov). Let X be a Gorenstein projective variety and Z ⊂ X a

locally complete intersection closed subvariety of pure codimension c. Let π : X̃ → X be the blow

up of X with center Z. Then there is an admissible semiorthogonal decomposition

Db(X̃) = 〈Db(Z), . . . ,Db(Z)︸ ︷︷ ︸
c−1

,Db(X)〉

and for all j ∈ Z we have

Kj(X̃) ' Kj(X)⊕Kj(Z)⊕(c−1).

Proof. The semiorthogonal decomposition is proved in the same way as [93] (see also [14, The-

orem 6.9] or [69, Corollay 3.4]). Let us give just a few words on the well-definedness of the

functors involved.

Indeed, note that all the morphisms Z ⊂ X, E ⊂ X̃, where E is the exceptional locus of π,

p : E → Z, and π : X̃ → X are proper of finite Tor dimension. This is because the first two

morphisms are regular embeddings and the morphism p : E → Z is a projective bundle. For

the blow up π : X̃ → X, we can write it locally as a composition Ũ → P(E) → U of a regular

embedding and a projective bundle, where E is a vector bundle on U ⊂ X such that the zero

locus of global section 0 6= s ∈ H0(E∨) coincides with Z. Thus the pushforward and pull-back

functors of these morphisms on Db are well-defined.

Finally the decomposition for K-theory is proved by Thomason [117, Theorem 2.1], and it

also can be deduced from the semiorthogonal decomposition lifted to dg-enhancements of the

relevant categories, and applying Schlichting’s machinery [107, 106]. �
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Remark 2.5.2. In this paper we mostly deal with isolated singularities, however the blow up

of a smooth variety in a center with isolated singularties does not necessarily have isolated

singularities. For example, if we blow up A3 at the thick point given by the ideal (x, y, z2), then

one can see that the singular locus of the blow up is 1-dimensional.

A local computation shows however that, if Z ⊂ X is a locally complete intersection of

codimension 2 in a smooth variety X and such that Z has at most isolated hypersurface sin-

gularities given complete locally by an ideal
(
f(x1, . . . , xn−1), xn

)
⊂ k[[x1, . . . , xn]], then the

blow up X̃ → X along Z has at most isolated hypersurface singularities given by the ideal(
xn · xn+1 + f(x1, . . . , xn−1)

)
⊂ k[[x1, . . . , xn+1]].

Corollary 2.5.3. Under the conditions of Theorem 2.5.1 if both X and Z admit Kawamata

decompositions, so does X̃.

Proof. While all the components are admissible in Db(X̃), we can use Remark 2.4.3 to rearrange

them to obtain the form as in Definition 2.4.1. �

Corollary 2.5.4. Let X be a smooth projective threefold and let C ⊂ X be a disjoint union of

nodal curves such that each irreducible components of C is a rational curve. Then X̃ admits a

Kawamata type semiorthogonal decomposition if and only if C is a disjoint union of nodal trees

of smooth rational curves.

Proof. If C is a disjoint union of nodal trees of smooth rational curves, then the blow up has a

Kawamata type decomposition by Corollary 2.5.3 and Theorem 2.4.9.

Conversely, if the blow up admits a Kawamata type decomposition, then K−1(X̃) = 0 by

Corollary 2.4.5 hence K−1(C) = 0 by Theorem 2.5.1 and finally C is a nodal tree by Corollary

2.4.11. �

Example 2.5.5. If X is a smooth projective threefold, and C is a disjoint union of nodal trees

of projective lines, then the blow up X̃ = BlC(X) is a threefold with ordinary double points (see

Remark 2.5.2) and by Corollary 2.5.4 it admits a Kawamata type semiorthogonal decomposition.

On the other hand, if C is nodal and irreducible (of arbitrary genus), then the blow up of X in

C does not have a Kawamata type decomposition by Corollary 2.4.5 since K−1(X̃) = K−1(C) 6= 0

where we used Theorem 2.5.1 and Corollary 2.3.3.
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Chapter 3

Appendix: cdh-topology and

K-theory

In a series of papers [33, 34, 35, 36, 37] the interplay between K-theory and cdh-cohomology

is studied. This relation has lead to positive and negative answers of various conjectures and

questions in K-theory, at least in the characteristic 0 case. Examples involve a proof of Weibel’s

conjecture on the bound of negative K-groups [33], a proof of a conjecture of Vorst [37] and a

counterexample to a question of Bass [35].

An important part of this collection of papers are formulas for K0 and negative K-groups

in terms of cdh-cohomology groups in “nice” cases (e.g. Theorem 3.5.6). On the other hand,

cdh-cohomology has properties such as Mayer-Vietoris long exact sequences for abstract blow-

ups and natural isomorphisms to Zariski cohomology for smooth schemes evaluated at Kähler

differentials (Corollary 3.4.4 and Prop. 3.5.1). These two properties make such cohomology

groups computable in many examples. This is one of the main approaches for the computation

of algebraic K-Theory of singular varieties.

Notation and conventions

Throughout this chapter we assume that k is a field of characteristic 0. We denote by Sch/k

the category of separated schemes of finite type over k. We say that X ∈ Sch/k is a variety, if

it is reduced, but not necessarily irreducible. We denote further by (Sch/k)Zar the big Zariski

site, that is the category Sch/k endowed with the Zariski topology and by (X)Zar the small

Zariski site over a fixed scheme X ∈ Sch/k, i.e. the category of open immersions of X endowed

with the Zariski topology. Denote further by Ab the category of abelian groups and by Vect(k)

the category of k-vector spaces. Finally, denote by Sh(X) the category of abelian sheaves over

(X)Zar and by Γ : Sh(X)→ Ab the global section functor.
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3.1 Semi-simplicial schemes and hyperresolutions

Semi-simplicial schemes

Let us remind the reader about semi-simplicial schemes and related notions. We follow [39, 59,

97].

A semi-simplicial scheme X• is a family (Xn)n∈Z≥0
of schemes Xn ∈ Sch/k together with

morphisms δi : Xn+1 → Xn, called projection maps, where 0 ≤ i ≤ n and such that δi ◦ δj =

δj−1 ◦ δi, for all 0 ≤ i < j ≤ n+ 1. One can visualize X• as

. . . X2 X1 X0,

δ2
δ1
δ0

δ1
δ0

where the δi statisfy the commutative relation described above. Note that every simplicial

scheme (see [39] for the definition) can be viewed as semi-simplicial scheme by forgetting the

section maps (also called degeneration maps).

A morphism of semi-simplicial schemes f• : X• → Y• is a family of morphisms {fn : Xn →
Yn}n∈Z≥0

, where all the fn’s commute with respect to the projection maps of X• and Y•. For any

scheme S ∈ Sch/k, one can define the constant semi-simplicial scheme S• by setting Sn = S for

all n ∈ Z≥0 and by setting all projection maps to be the identity map. An augmentation X• → S,

where S ∈ Sch/k and X• is a semi-simplicial scheme, is a morphism of semi-simplicial schemes

X• → S•. Note that for all semi-simplicial schemes X• there is an augmentation X• → Spec(k).

For a scheme S ∈ Sch/k, one can also just consider the semi-simplicial scheme with S in

degree 0 and empty set in all non-negative degrees. This describes a fully faithful embedding of

Sch/k into the category of semi-simplicial schemes.

A semi-simplicial scheme X• is called smooth, affine, quasi-projective, etc., if all its compo-

nents Xn of X• are smooth, affine, quasi-projective, etc. and similarly a morphism f• : X• → Y•

of semi-simplicial schemes is called affine, finite, proper etc., if all its components fn : Xn → Yn

are affine, finite, proper etc.

Let us give two important examples of semi-simplicial schemes:

Example 3.1.1. (i) Let X be a scheme (or more generally a topological space) and let {Ui}i∈I
be an open cover of X with finite ordered index set I. Define the semi-simplicial scheme

U• componentwise as

Ui :=
∐

i0<...<in

Ui0...in :=
∐

i0<...<in

Ui0 ×X . . .×X Uin ,

with projection maps given by the inclusion maps Ui0...in → Ui0...ik−1ik+1...in. It is clear that

the inclusion maps Ui → X define an augmentation ε : U• → X. We call a semi-simplicial

scheme of this form an open hypercover, or Čech simplicial scheme, of X.

(ii) Let G be a finite group acting linearly on a smooth quasi-projective variety M over k and
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let M/G be the quotient variety. We define the semi-simplicial scheme Ner(G,M) as

Ner(G,M)n = Gn ×M,

with projection maps δi : Gn+1 ×M → Gn ×M defined as follows:

δ0 : (g1, . . . , gn+1,m) 7→ (g2, . . . , gn+1,m)

δn+1 : (g1, . . . , gn+1,m) 7→ (g1, . . . , gn, gn+1m)

δi : (g1, . . . , gn+1,m) 7→ (g1, . . . , gigi+1, . . . , gn+1,m)

for 1 ≤ i ≤ n. The quotient map M → M/G defines an augmentation ε : Ner(G,M) →
M/G. Moreover Ner(G,M) is smooth and ε : Ner(G,M) → M/G is finite. Note further

that the G-action on M lifts to a G-action on Ner(G,M), which is defined componentwise

by g(g1, . . . , gn,m) = (gg1g
−1, . . . , ggng

−1, gm).

Sheaves on semi-simplicial schemes and cohomology

A sheaf F• on a semi-simplicial scheme X• is a family of sheaves (Fn)n∈Z≥0
, where Fn is a

sheaf on Xn, together with morphisms of sheaves ui : Fn → δi∗Fn+1. A morphism of sheaves

F : F• → G• on X• is a family of morphisms {fn : Fn → Gn}n∈Z≥0
satisfying the commutative

relation ui(G) ◦ fn = δi∗(f
n+1) ◦ ui(F). Note that the pushforward (resp. pull-back) of a sheaf

F• on Y• (resp. X•) with respect to a morphism of semi-simplicial schemes f : Y• → X• is

naturally defined by f∗F• = (fn∗Fn)n∈Z≥0
(resp. f∗F• = (f∗nFn)) with morphisms fn∗(ui)

(resp. fn
∗(ui)).

Remark 3.1.2. Let F be a sheaf on a scheme X ∈ Sch/k and let U• be an open hypercover of X.

One can induce a sheaf on U by F as follows. Define by F|U• the sheaf on U• given by the family

(F|Un)n∈Z≥0
and by morphisms F|Un → δi∗F|Un+1 induced by the morphisms δi : Un+1 → Un.

By the same construction, one can restrict a sheaf F on the big Zariski site (Sch/k)Zar to a

sheaf F|X• on a semi-simplicial scheme X• (see section 3.2).

It is easy to see that the category of sheaves on X•, denoted Sh(X•), is abelian and has

enough injectives. We can thus speak about the derived category D∗(X•) = D∗(Sh(X•)) of

X•, where ∗ = −,+, b. For a moprhism of semi-simplicial schemes f : Y• → X•, we denote by

Rf∗ : D+(Y•)→ D+(X•) the induced push-forward functor.

Given an augmentation a : X• → S and a sheaf (or more generally a bounded below complex

of sheaves) F on S, we define the pullback functor of a by a−1F = (a−1
n F)n∈Z≥0

with obvious

maps a−1
n F → δi∗a

−1
n+1F (compare to Remark 3.1.2). Moreover, for a sheaf (or more generally

bounded below complex of sheaves) F• one can define the push-forward functor of a by

Ra∗F = Tot(Ra0∗F0 d0−→ Ra1∗F1 d1−→ . . .),

where the differentials dn are defined by taking the alternating sum of the maps induced

71



by the maps Fn → δi∗Fn+1 and Tot denotes the construction of the total complex of a double

complex. The cohomology of F ∈ D+(X•) is defined by

H i(X•,F) := RiΓ(Ra∗F) = H i(Tot(RΓ(X0,F0)→ RΓ(X1,F1)→ . . .)).

for all i ≥ 0.

Example 3.1.3. Let a : U• → X be an affine open hypercover of X ∈ Sch/k and let F be

a quasi-coherent OX-module. The pullback a−1F is given by F|Un in each component and the

corresponding maps are given by restriction. We get thus

H i(U•, a−1F) = H i(Tot(RΓ(U0,F)→ RΓ(U1,F)→ . . .))

' H i(Γ(U0,F)→ Γ(U1,F)→ . . .)

' H i(X,F)

for all i ≥ 0, where we used that U• is affine in the second equality and the third equality follows

as the third complex is just computing Čech cohomology.

Let M be a smooth quasi-projective variety over k and let G be a finite group acting on M

and denote by σ : G×M → M the action and by p : G×M → M the projection. Recall that

a G-equivariant sheaf on M is a sheaf F on M together with an isomoprhism ϕ : p∗F ∼−→ σ∗F
satisfying the cocycle condition on. We can view F as a sheaf F• on Ner(G,M) (Example 3.1.1

(ii)) as follows. Set F0 = F , where we forget the G-equivariant structure of F here. For n > 0

we can define inductively Fn = δ∗0Fn−1. Note that, by definition of G-equivariant sheaves,

Fn ' δ∗iFn−1 for all i. The morphisms ui : Fn−1 → δi∗Fn are then defined in the obvious way.

We denote by abuse of notation the sheaf F• on Ner(G,M) by F .

The following result is well-known.

Proposition 3.1.4. Let M , G and Ner(G,M) be as in Example 3.1.1 (ii) and let F be a

G-equivariant quasi-coherent sheaf on M . Then there is a canonical isomoprhism

H i(Ner(G,M),F) ' H i(M,F)G

for all i ≥ 0.

Proof. Let us write Ner(G, k) instead of Ner(G, Spec(k)). Consider the composition Ner(G,M)
p−→

Ner(G, k)→ Spec(k) induced by the projection M → Spec(k). One obtains by flat base-change

that Rp∗(F)n ' RΓ(M,F) ⊗ k[Gn] for all n ∈ Z≥0, where k[Gn] denotes the group algebra of

Gn.

We get thus
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RΓ(Ner(G,M),F) ' RΓ(Ner(G, k), Rp∗F)

' Tot(Γ(k,RΓ(M,F))→ Γ(k,RΓ(M,F)⊗ k[G])→ . . .)

' RHom(G,RΓ(M,F))

' Γ(M,F)G,

where we used in the third equation that k, viewed as G-equivariant vector space, has a standard

G-equivaraint resolution

. . .→ k[G3]→ k[G2]→ k[G]→ k → 0.

In the fourth equation we use that k is of characteristic 0 and thus taking G-invariants is exact.

�

3.2 cdh-topology and cdh-sheaves

Recall that a Nisnevich covering of a scheme X ∈ Sch/k is a family of étale morphisms {ϕi :

Ui → X} and such that for every (not necessarily closed) point x ∈ X there is an i and y ∈ Ui,
such that ϕi(y) = x and such that the induced map k(x) → k(y) is an isomorphism. One

can check that these covers will define a pretopology on Sch/k, which generates the so-called

Nisnevich topology.

Definition 3.2.1. The cdh-topology on Sch/k, denoted (Sch/k)cdh, is the weakest Grothendieck

topology on Sch/k generated by the following coverings:

(1) Nisnevich coverings.

(2) Abstract blow up squares: For every Cartesian square

E

��

� � // Y

π
��

Z �
� i // X

,

such that π : Y → X is a proper morphism, i : Z ↪→ X is a closed subscheme and π

induces an isomorphism Y −E ∼−→ X −Z, the morphism Y tZ (π,i)−−−→ X is a cdh covering.

Remark 3.2.2. (i) Let X be a non-reduced scheme in Sch/k. Setting Z = Xred and Y = ∅,
one can see that every X ∈ Sch/k is cdh-locally reduced.

(ii) Let X = X1 ∪X2 be a reduced and reducible scheme in Sch/k with irreducible components

X1 and X2. Setting Z = X1 and Y = X2, one can see that every X ∈ Sch/k is cdh-locally

irreducible.
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(iii) Consider an integral scheme X in Sch/k and set Y → X to be a resolution of singularities

(which we can, as k has characterisitic 0) and set Z = Sing(X) to be the singular locus of

X. By induction on the dimension of X and using the previous 2 remarks, one sees that

every X ∈ Sch/k is cdh-locally smooth over k.

Remark 3.2.3. Replacing Nisnevich covers with étale covers in the defintion of cdh-topology,

we obtain the eh-topology. Note that all results in this chapter concerning the cdh-topology are

also valid for the eh-topology. The difference between cdh and eh will be apparent in Lemma

3.3.3.

Note that every Zariski covering of an X ∈ Sch/k is a Nisnevich covering, and thus,

by definition a cdh covering. In other words, the identity functor on Sch/k defines a mor-

phism of topologies id : (Sch/k)Zar → (Sch/k)cdh. This corresponds to a morphism of sites

a : (Sch/k)cdh → (Sch/k)Zar [5] (note that the arrow is drawn in the opposite direction). We

denote by (Sch/k)∼? the category of abelian sheaves on (Sch/k)?, where ? stands for Zar or cdh.

Remark 3.2.4. The functor a defines a functor a∗ : (Sch/k)∼cdh → (Sch/k)∼Zar given by view-

ing a cdh sheaf F as a sheaf on (Sch/k)Zar. It is well-known that a∗ has a left adjoint a∗ :

(Sch/k)∼Zar → (Sch/k)∼cdh which coincides with the sheafification functor and is thus an exact

functor [5, Théorème 3.4 and Théorème 4.1 1)].

Moreover, we denote by (Sch/k)∼Zar

|X−→ (X)∼Zar the restriction functor given by the morphism

of sites (Sch/k)Zar → (X)Zar defined by the inclusion functor i : (X)Zar → (Sch)Zar (see [5]).

Let us now introduce the sheaf Z?(X) on a Grothendieck topology (Sch/k)?, where X ∈
Sch/k (as usual, we think here of Zar or cdh as ?). We denote by Z(X) the presheaf on Sch/k

defined by the mapping U 7→ Z[Hom(U,X)]. Here, Z[Hom(U,X)] is the free abelian group

generated by the set Hom(U,X), or, in symbols,

Z[Hom(U,X)] =
⊕

f :U→X
Zf.

We further denote by Z?(X) the sheafification of Z(X) with respect to a Grothendieck topology

?. We have the following results for Zcdh(X):

Lemma 3.2.5 (Suslin-Voevodsky [113, Lemma 12.1]). Let

E

p

��

� � j // Y

π
��

Z �
� i // X

,

be an abstract blow up square (Definition 3.2.1 (2)). Then there is a short exact sequence of

abelian sheaves

0→ Zcdh(E)
(j(−), p(−))−−−−−−−→ Zcdh(Y )⊕ Zcdh(Z)

π(−)−i(−)−−−−−−−→ Zcdh(X)→ 0.
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Proof. It is straightforward to show that the sequence of presheaves

0→ Z(E)→ Z(Y )⊕ Z(Z)→ Z(X)

is exact, using the fact that E is the fiber product of Z and Y over X. As sheafification is exact,

we get that the sequence

0→ Zcdh(E)→ Zcdh(Y )⊕ Zcdh(Z)→ Zcdh(X)

is exact. Exactness on the right follows from the fact that Y tZ → X is a cdh-covering (see [5]

for the definition of surjectivity of sheaves). �

Corollary 3.2.6. Let E ∈ Sch/k. Then Zcdh(Ered) ' Zcdh(E), and if E = E1 ∪ . . .∪En, where

Ei are closed subschemes of E, then there is a long exact sequence

0→ Zcdh(E1 ×E . . .×E En)→ . . .
⊕
i<j

Zcdh(Ei ×E Ej)→
⊕
i

Zcdh(Ei)→ Zcdh(E)→ 0.

Proof. The first statement, that is Zcdh(Ered) ' Zcdh(E), follows directly from Lemma 3.2.5

(see also Remark 3.2.2 (i)). The long exact sequence follows by induction on n. That is, we can

apply Lemma 3.2.5 to the abstract blow up square

E1 ×E E2 ∪ . . . ∪ E1 ×E En� _

��

� � // E1� _

��
E2 ∪ . . . ∪ En �

� // E

(compare to Remark 3.2.2 (ii)), and as there are long exact sequence for long exact sequence

for Zcdh(E2 ∪ . . . ∪En) and Zcdh(E1 ×E E2 ∪ . . . ∪E1 ×E En) (induction hypothesis), the result

follows. �

Remark 3.2.7. By the same algorithm as in Remark 3.2.2, for any scheme X ∈ Sch/k, we can

resolve Zcdh(X) by a finite resolution with components consisting of (direct sums of) Zcdh(Yi)’s,

where all the Yi’s are smooth. More explicitly, let X ∈ Sch/k be integral with singular locus

Z = Sing(X) and let π : Y → X be a resolution of singularities, such that E = π−1(Z)red is

a strict normal crossing divisor with irreducible components E1, . . . , En. Then by Lemma 3.2.5

and Corollary 3.2.6 there is a long exact sequence

0→ Zcdh(E1 ×Y . . .×Y En)→ . . .→
⊕
i

Zcdh(Ei)→ Zcdh(Y )⊕ Zcdh(Z)→ Zcdh(X)→ 0.

Note that all components of this long exact sequence, except for maybe Zcdh(Z) and Zcdh(X),

are given by smooth schemes. By induction on the dimension of X and using Corollary 3.2.6,

one can resolve Zcdh(Z) by a finitely many Zcdh(Zi)’s, where the Zi’s are smooth.
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3.3 cdh-hyperresolutions

Definition and examples

Note first that for a semi-simplicial scheme Y• one can define Z?(Y•) as the complex

· · · → Z?(Y2)→ Z?(Y1)→ Z?(Y0)→ 0,

where the differentials of this complex are given by the alternating sum of the morphisms induced

by the projection maps δi : Yn+1 → Yn.

Definition 3.3.1. Let X ∈ Sch/k be a variety and let π : Y• → X be a an augmentation, such

that Y• smooth over k and π is proper. We say that π is a cdh-hyperresolution, if the induced

map

Zcdh(Y•)→ Zcdh(X)

is a quasi-isomorphism.

Let us discuss how to construct rather nice cdh-hyperresolutions of irreducible varieties with

smooth singular locus from a resolution of singularities with exceptional divisor being strict

normal crossing.

That is, assume that X ∈ Sch/k is integral and such that its singular locus Z = Sing(X) is

smooth over k. By Hironaka’s theorem there is a resolution of singularities π : Y → X, such that

the exceptional locus E = π−1(Z)red is a simple normal crossing divisor and denote by p : E → Z

the induced morphism. That is, the irreducible components Ei, 1 ≤ i ≤ n, of E are smooth

codimension 1 subvarieties and all possible combinations of intersections Ei1 ×Y . . .×Y Eik are

smooth. We can construct the following semi-simplicial scheme Y•:

. . .
∐

i1<...<ik

Ei1 ×Y . . .×Y Eik t Z . . .
∐
i
Ei t Z Y t Z t Z,

δ2
δ1
δ0

δ1
δ0 (3.3.1)

where the n-th term is E1×Y . . .×Y En if n is even and E1×Y . . .×Y EntZ else. For k > 1,

the projection map δl : Yk+1 → Yk for 0 ≤ l ≤ k is given componentwise by the inclusions

Ei1 ×Y . . .×Y Eik+1
→ Ei1 ×Y . . .×Y Eil−1

×Y Eil+1
×Y . . .×Y Eik+1

and the Z component will be mapped identically onto Z. Furthermore, δk+1 : Yk+1 → Yk is

given by projecting Ei1 ×Y . . . ×Y Ek+1 via p to Z. For k = 1, δ0 is given by the inclusion

E1 t . . . t En → Y and maps Z isomorphically to the first component of Z and δ1 is given by

the projection E1 t . . .tEn → Z to the first component of Z and by mapping Z isomorphically

to the second component of Z. We have:

Lemma 3.3.2. Let X ∈ Sch/k be integral and assume that the singular locus of X is smooth

over k. Let Y• → X be as in (3.3.1). Then Y• → X is a cdh-hyperresolution.
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Proof. This is a consequence of Remark 3.2.7. �

The definition of cdh-hyperresolution can in the same way be defined for the eh-topology.

Working with sheaves of Q-vector spaces rather than abelian sheaves, one can see that the

quotient semi-simplicial variety Ner(G,M)→M/G (Example 3.1.1 (ii)) is a eh-hyperresolution.

More precisely:

Lemma 3.3.3. Let M , G and Ner(G,M) be as in Example 3.1.1 (ii). Then there is a quasi-

isomorphism

Q?(Ner(G,M))
qis−→ Q?(M/G)

given by the projection π : M →M/G, where ? = et or eh, with et denoting the étale topology.

Proof. Let us first show that on the level of presheaves there is a quasi-isomorphism Q(Ner(G,M))→
Q(M)G.

Let U ∈ Sch/k. As G is finite, we have an identification Q(M ×Gn)(U) '
⊕

g∈Gn Q(M)(U)

with an induced G-action. In other words, we have

Q(M ×Gn)(U) ' Q[Gn]⊗Q(M)(U).

We thus can identify the complex Q(Ner(G,M))(U) with

. . .→ Q[G2]⊗Q(M)(U)→ Q[G]⊗Q(M)(U)→ Q(M)(U)→ 0. (3.3.2)

As this complex is just the tensor product of Q(M)(U) with the standard G-equivariant reso-

lution of Q, we have that the cohomology of (3.3.2) is just the group homology of the G-vector

space Q(M)(U). As we work over Q we have that this complex of G-modules is exact in degrees

strictly bigger than 0, and the cohomology in degree 0 is Q(M)G(U).

It remains to show that Qeh(M)G ' Qeh(M/G). To show this, it is enough to show that the

sequence of morphisms

Qet(M ×G)
p1−σ−−−→ Qet(M)

π−→ Q(M/G)et → 0

is exact, where p1 : G×M →M is the projection and σ : G×M →M the multiplication map.

Exactness in the middle is straightforward and can be shown on the level of presheaves.

For surjectivity of π : Q(M)et → Q(M/G)et, it is enough to show the statement for U =

Spec(A), A a strictly Henselian local ring, as we work over the étale topology. We denote by T

the fiber porduct U ×M/G M . As U is Henselian and as T → U is finite, we have that T is a

product of local rings. Furthermore, as the residue field of A is algebraically closed (A is strictly

Henselian), the covering T → U splits. In other words, the map Hom(U,M) → Hom(U,M/G)

is surjective, and thus Qet(M) → Qet(M/G) is surjective. The statement for the eh-topology

follows by sheafification from étale to eh-topology. �
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Existence of cdh-hyperresolutions

Let us contemplate now about the existence of cdh-hyperresolutions, which is less straightforward

as in the case where Sing(X) is smooth, however it is still explicit. To achieve this, it is helpful

to use the language of cubical varieties.

Let n be a positive integer and denote by [n] the set {0, . . . , n− 1}. An n-cubical scheme X•

is a family {XI}I⊂[n−1] of schemes in Sch/k together with morphisms δIJ : XI → XJ , J ⊂ I,

with the usual commutativity property of the δIJ ’s, that is for all I, J,K ⊂ [n − 1] such that

J ⊂ K ⊂ I we have that δKJ ◦ δIK = δIJ .

A morphism of n-cubical schemes f• : Y• → X• is a family of morphisms fI : XI → YI ,

I ⊂ [n − 1], commuting with the δIJ ’s. Analogous to semi-simplicial schemes, an n-cubical

scheme is called smooth over k, proper, etc. if all its components are smooth over k, proper,

etc. and morphisms of n-cubical schemes are called of finite type, proper, etc., if they are

componentwise of finite type, proper, etc.

Remark 3.3.4. (i) One can see that an n-cubical scheme X• is just a morphism Y• → Z• of

(n−1)-cubical schemes. Indeed, one defines Z• := {XI}I⊂[n−2] and Y• := {XI∪{n−1}}I⊂[n−2]

and the corresponding morphism between them is given by XI∪{n−1}
δ−→ XI . This means

that a 1-cubical scheme is nothing but a morphism of schemes, a 2-cubical scheme is just

a commutative diagram of schemes, a 3-cubical scheme is a commutative cube of schemes,

etc.

(ii) An n-cubical scheme X• naturally defines a semi-simplicial scheme X̂• with components

X̂n :=
∐

|I|=n+1

XI

and with projection morphisms given by XI → XI−{ik+1}, where I = {i1, . . . , i|I|}. More-

over, we have an obvious augmentation X̂• → X∅.

If X• is an n-cubical scheme, then we denote Z?(X•) := Z?(X̂•), where X̂• is the associated

semi-simplicial scheme of X• (Remark 3.3.4 (ii)). Denote further by C(X•) the cone of the

induced morphism of complexes Z?(X•)→ Z?(X∅).

Lemma 3.3.5. (1) Let X• be a (n+ 1)-cubical variety and let us view X• as a morphism of

n-cubical varieties X2
• → X1

• as in Remark 3.3.4 (i). Then there is a distinguished triangle

C(X2
• )→ C(X1

• )→ C(X•) ∈ D−((Sch/k)∼? ).

(2) Let X• be a (n+ 2)-cubical scheme considered as commutative diagram

E•

��

// Y•

��
Z• // S•

.
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of n-cubical schemes. Then there is a distinguished triangle

C(E•)[1]→ Cone(C(Y•)⊕ C(Z•)→ C(S•))→ C(X•) ∈ D−((Sch/k)∼? ).

Proof. (1): It is straightforward to see that C(X•), that is the cone of Z?(X•)→ Z?(X∅), is the

complex

0→ Z?(X{0,...,n})→ . . .→
⊕

0≤i≤n
Z?(Xi)→ Z?(X∅)→ 0

with differentials given by the alternating sums of the projection morphisms. C(X1
• ) and C(X2

• )

have a similar form, but with appropriate indices. It is an easy exercise to show then that the

cone of the induced map C(X2
• )→ C(X1

• ) is just C(X•).

(2): Consider the diagram

C(E•)

��

f // C(Y•)

��
C(Z•)

g // C(S•)

and note that, by (1), there is a distinguished triangle Cone(f) → Cone(g) → C(X•). By the

octahedral axiom there are distinguished triangles

Cone(f)→ C(E•)[1]→ C(Y•)[1]

and

Cone(g)→ Cone(C(Y•)⊕ C(Z•)→ C(S•))→ C(Y•[1]).

Comparing these two triangles and applying octahedral axiom again one obtains the result. �

Let us now define and discuss resolutions of singularities of n-cubical varieties. The discrim-

inant of a proper morphism of n-cubical varieties π : Y• → X• is the smallest closed n-cubical

subscheme Z• of X•, such that for all I ⊂ [n−1] there is an isomorphism YI−π−1(ZI)
∼−→ XI−ZI

induced via π. We call the fiber diagram given by π and Z• ⊂ X• the abstract cubical blow

up square given by π : Y• → X•. Furthermore, we call π : Y• → X• an n-cubical resolution of

singularities, if in addition YI is smooth and such that dim(π−1(ZI)) < dim(XI) for all I.

As we work over a ground field of characteristic 0, there is always a desingularization of

cubical varieties. More precisely:

Theorem 3.3.6 ([59, Exposé I, Théorème 2.6]). Let X• be an n-cubical variety. Then there

exists a resolution of singularities Y• → X•.

Remark 3.3.7. Note that the resolution of singularities in Theorem 3.3.6 is not just resolving

the components of X•. Actually, this idea will not work in general.

Indeed, consider the 1-cubical variety A2 q−→ A2/Z2, where A2/Z2 is the A1 singularity and

q is the quotient morphism. Let Y → A2/Z2 any resolution of singularities. Note that there is
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no morphism A2 → Y which is compatible with the quotient map and thus we have no 1-cubical

resolution of singularities of A2 → A2/Z2 with components Y and A2.

With the notation of n-cubical varieties, we have a more general version of Lemma 3.2.5:

Lemma 3.3.8. Let X• be a n-cubical variety, let π : Y• → X• be proper morphism with dis-

criminant i : Z• ↪→ X• and let E• be the fiber product of π and i. Then there is a distinguished

triangle

Zcdh(E•)→ Zcdh(Y•)⊕ Zcdh(Z•)→ Zcdh(X•)

in Db((Sch/k)∼cdh).

Proof. We proceed by induction over n. The case n = 1 is just Lemma 3.2.5.

For n > 1, we view the fiber diagram given by π and i as morphism of fiber diagrams of

(n− 1)-cubical diagrams

E2
• Y 2

•

Z2
• X2

•

−→
E1
• Y 1

•

Z1
• X1

•

where Y i
• → Xi

• is a resolution of singularities with discriminant Zi•, where i = 1, 2. By induction

hypothesis we have distinguished triangles

Zcdh(Ei•)→ Zcdh(Y i
• )⊕ Zcdh(Zi•)→ Zcdh(Xi

•)

for i = 1, 2. Comparing these two triangles, we get by the octahedral axiom that

C(E•)→ C(Y•)⊕ C(Z•)→ C(X•)

is a distinguished triangle. This is however equivalent to the statement we want to show. �

Let us now state and show the main result of this section, which is a consequence of Theorem

3.3.6.

Theorem 3.3.9. Let X ∈ Sch/k be a variety. There exists a cdh-hyperresolution π : Y• → X.

Proof. We construct inductively an m-cubical variety Y
(m)
• for m > 1, such that, viewed as a

morphism of (m − 1)-cubical varieties U
(m−1)
• → V

(m−1)
• , V

(m−1)
I is smooth for all I 6= ∅ and

V
(m−1)
∅ = X and dimU

(m−1)
J < dimV

(m−1)
J for all J , and such that there is a quasi-isomorphism

Zcdh(Y
(m)
• ) → Zcdh(X). By the condition on the dimension, one sees that this process stops

after m = dim(X) steps and we set Y• = Y
(dim(X))
• .

The case m = 2 follows by Hironaka’s result; let π : Y → X be a resolution of singularities,

such that the exceptional locus E = π−1(Z)red is a simple normal crossing divisor. We define
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by Y
(2)
• the 2-cubical variety

E

��

� � // Y

��
Z �
� // X

.

As in Remark 3.3.4 (i), we can view Y
(2)
• as a morphism between the 1-cubical varieties U

(1)
• =

E → Z and V
(1)
• = Y → X. Note that the components of U

(1)
• have strictly smaller dimension

of the components of V
(1)
• . The quasi-isomorphism Zcdh(Y

(2)
• )→ Zcdh(X) is just Lemma 3.2.5.

Let us assume now that we have constructed inductively an m-cubical variety Y
(m)
• , such

that, viewed as a morphism of (m − 1)-cubical varieties U
(m−1)
• → V

(m−1)
• , V

(m−1)
I is smooth

for all I 6= ∅ and V
(m−1)
∅ = X and dimU

(m−1)
J < dimV

(m−1)
J for all J . By Theorem 3.3.6 there

is a resolution p : Ũ
(m−1)
• → U

(m−1)
• with discriminant i : D

(m−1)
• ↪→ U

(m−1)
• . Denote by E

(m−1)
•

the reduced fiber product of p and i. We then define the (m+ 1)-cubical variety Y
(m+1)
• as the

following diagram:

E
(m−1)
•

��

� � // Ũ
(m−1)
•

��

D
(m−1)
•

� � // V
(m−1)
•

. (3.3.3)

It is not hard to check the inductive properties on the components of Y
(m+1)
• . Finally, let us

show that the morphism Zcdh(Y
(m+1)
• ) → Zcdh(X) is a quasi-isomorphism. First note that

applying Lemma 3.3.8 on the abstract cubical blow up square given by Ũ
(m−1)
• → U

(m−1)
• gives

a distinguished triangle

C(E
(m−1)
• )→ C(D

(m−1)
• )⊕ C(Ũ

(m−1)
• )→ C(U

(m−1)
• ). (3.3.4)

Note further that Zcdh(Y
(m)
• ) → Zcdh(X) is a quasi-isomorphism by induction hypothesis, or

in other words C(Y
(m)
• ) ' 0 in Db((Sch)∼cdh). By Lemma 3.3.5 (1), we get thus that there is a

quasi-isomorphism C(U
(m−1)
• )

qis−→ C(V
(m−1)
• ). Combining this quasi-isomorphism with (3.3.4)

we get

Cone(C(D
(m−1)
• )⊕ C(Ũ

(m−1)
• )→ C(V

(m−1)
• )) ' C(E

(m−1)
• )[1] ∈ Db((Sch)∼cdh).

By Lemma 3.3.5 (2) this is equivalent to say that C(Y
(m+1)
• ) ' 0 in Db((Sch/k)∼cdh), or in other

words that Zcdh(Y
(m+1)
• )→ Zcdh(X) is a quasi-isomorphism. �

The proof of Theorem 3.3.9 can be generalized formally to the cubical case. That is, for

an n-cubical variety X•, there is a cubical cdh-hyperresolution Y• → X• (compare to cubical

hyperresolutions of a cubical varieties [59, Proof of Theorem I.2.5]). This yields:

Corollary 3.3.10. Let X → S be a morphism of varieties. Then there are cdh-hyperresolutions
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Y• → X and Y ′• → S, and a morphism Y• → Y ′•, such that the diagram

Y•

��

// Y ′•

��
X // S

commutes.

Remark 3.3.11. The algorithm of Theorem 3.3.9 of constructing a cdh-hyperresolution of a

variety X is not the most efficient one in terms of redundance appearing in the components of

the cdh-hypperesolution. For example, if we consider the nodal union of two lines X = {xy = 0}
in A2, we see that the cdh-hyperresolution from Theorem 3.3.9, denoted Y

(1)
• , is given by

{0} t {0} A1 t A1 t {0}.

On the other hand, there is a semi-simplicial hyperresolution Y• of X given by

{0} A1 t A1

with obvious projection maps. It is not hard to see that Sh(Y
(1)
• ) ' Sh(Y•).

3.4 cdh-cohomology

Let us recall now the definition of sheaf cohomology of a Grothendieck topology ? on Sch/k. Let

us fix an X ∈ Sch/k. As usual, we can define the global section functor Γ?(X,−) : (Sch/k)∼? →
Ab by Γ?(X,F) = F(X). Note that this functor is left exact. Moreover, the category (Sch/k)∼?

is abelian and has enough injectives, so for any bounded below complex C• with components in

(Sch/k)∼? we can define the hypercohomology of C• as

H i
?(X,C

•) := RΓi?(X,C
•) = H i(Tot(Γ?(X, I•,•))),

where C• → I•,• is the Cartan-Eilenberg resolution of C•.

Remark 3.4.1. In the case when ? = Zar it follows from definitions that for F ∈ (Sch/k)∼Zar

one has ΓZar(X,F) = Γ(X,F|X). Furthermore, injectives in (Sch/k)∼Zar will be restricted to

injectives in Sh(X) via (Sch/k)∼Zar

|X−→ Sh(X). Therefore, and since |X is exact, we see that for

all bounded below complexes with components in (Sch/k)∼Zar one has

H i
Zar(X,C

•) ' H i(X,C•|X)

for all i ∈ Z, where the right hand side is the standard (Zariski) hypercohomology of C•|X ∈
D+(Sh(X)).
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Proposition 3.4.2 (Voevodsky [122]). Let C• be a bounded below complex with components in

(Sch/k)∼? , let X ∈ Sch/k and let Z?(X) be as in the previous section. Then there is a canonical

isomorphism

H i
?(X,C

•) ' HomD+((Sch/k)∼? )(Z?(X), C•[i]),

for all i ∈ Z.

Proof. By [122, Proposition 2.1.3] the statement is true for sheaves F ∈ (Sch/k)∼? (an application

of Yoneda’s Lemma). The statement for bounded below complexes C• follows then from the

Leray spectral sequence. �

As an immediate consequence of this proposition, we get a relation between cdh-cohomology

and Zariski hypercohomology.

Corollary 3.4.3. Denote by a : (Sch/k)cdh → (Sch/k)Zar the morphism of sites defined by the

identity functor and let X ∈ (Sch/k)cdh and F ∈ (Sch/k)∼cdh. Then

H i
cdh(X,F) ' H i(X,Ra∗F|X)

for all i ≥ 0.

Proof. The statement follows by Prop. 3.4.2, the isomorphism Zcdh(X) ' a∗ZZar(X), left ad-

jointness of a∗ with respect to Ra∗, and Remark 3.4.1. �

Moreover, we get the following propoerty of cdh-cohomology for abstract blow up squares:

Corollary 3.4.4 (Suslin-Voevodsky [113, Lemma 12.1]). Consider the abstract blow up square

E

��

� � // Y

��
Z �
� // X

in Sch/k. For any F ∈ (Sch/k)∼cdh (or more generally a bounded below complex with components

in (Sch/k)∼cdh) there is a long exact Mayer-Vietoris sequence

. . .→ H i
cdh(X,F)→ H i

cdh(Y,F)⊕H i
cdh(Z,F)→ H i

cdh(E,F)→ . . .

Proof. This follows from Lemma 3.2.5 and Prop. 3.4.2. �

Let F be a sheaf (or more generally a complex) on (Sch/k)Zar and let X• be a semi-simplicial

scheme over k. Let us denote the cohomology of F|X• (Remark 3.1.2) by H i(X•,F) instead of

H i(X•,F|X•). We have:

Corollary 3.4.5. Let C• be a bounded below complex with components in (Sch/k)∼Zar, let X• be

a semi-simplicial scheme and assume that ZZar(X•) has bounded cohomology. Then there is a
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canonical isomorphism

H i(X•, C
•) ' HomD+((Sch/k)∼Zar)

(ZZar(X•), C
•[i]),

for all i ∈ Z.

Proof. By Prop. 3.4.2 there is a canonical isomorphism

Hq(Xp, C
•) ' HomD+((Sch/k)∼Zar)

(ZZar(Xp), C
•[q])

for all p and q. Note that the left hand side spans the Ep,q1 page converging to Hp+q(X•, C
•)

and similarly the right hand side converges to HomD+((Sch/k)∼Zar)
(ZZar(X•), C

•[p+q]). The result

follows. �

Corollary 3.4.6. Let Y• → X be a cdh-hyperresolution and let F ∈ (Sch)∼cdh. Then there is a

canonical isomorphism

H i
cdh(X,F) ' H i(Y•, Ra∗F)

for all i ≥ 0.

Proof. By Prop. 3.4.2 we have canonical isomorphisms

H i
cdh(X,F) ' HomD+((Sch/k)∼cdh)(Zcdh(X),F [i])

' HomD+((Sch/k)∼cdh)(Zcdh(Y•),F [i])

' HomD+((Sch/k)∼Zar)
(ZZar(Y•), Ra∗F [i])

' H i(Y•, Ra∗F),

where we used right adjointness of Ra∗ with respect to a∗ in the third and Corollary 3.4.5 the

fourth equality. �

3.5 cdh-Kähler differentials and K-theory

In this subsection, when we say sheaf we mean a sheaf with entries in Q-vector spaces instead

of abelian groups.

Let X ∈ Sch/k and let us as usual denote by Ωp
X/k0

the p-th exterior power of the sheaf of

Kähler differentials on X over k0, where k0 ⊂ k is a subfield. We define by Ωp
/k0

: Sch/k →
Vect(k) the presheaf which sends X 7→ Ωp

k0
(X). We will write Ωp

/k0
instead of a∗Ω/k0 ∈

(Sch/k)∼cdh when it is clear from the context.

The following result allows us to compute cdh-cohomology groups of Ωp
/k evaluated at X in

terms of Zariski cohomology groups of Ωp
X/k.

Proposition 3.5.1 (Cortinas-Haesemeyer-Weibel [37, Corollary 2.5]). Let X ∈ Sch/k be a

smooth scheme over k, let k0 ⊂ k be a subfield and let a : (Sch/k)cdh → (Sch/k)Zar be the
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morphism of sites induced by the identity functor. Then there is a canonical isomorphism

H i(X,Ωp
X/k0

) ' H i
cdh(X,Ωp

/k0
).

for all p, i ≥ 0.

Corollary 3.5.2. Let Y• be a smooth semi-simplicial scheme over k and let k0 ⊂ k be a subfield.

Denote by a : (Sch/k)cdh → (Sch/k)Zar the morphism of sites induced by the identity functor

and let Ωp
/k0
∈ (Sch/k)∼cdh. Then there is a canonical isomorphism

H i(Y•,Ω
p
Y•/k0

) ' H i(Y•, Ra∗Ω
p
/k0

).

for all p, i ≥ 0. If Y• → X is in addition a cdh-hyperresolution, then there is a canonical

isomorphism

H i
cdh(X,Ωp

/k0
) ' H i(Y•,Ω

p
Y•/k0

)

for all p, i ≥ 0.

Proof. The first statement follows directly from Prop. 3.5.1. The second statement follows from

the first one and from Corollary 3.4.6. �

Let us discuss the Künneth formula for Kähler differentials. Let k0 ⊂ k be a subfield and let

X0 ∈ Sch/k0 be smooth over k0. Denote by X ∈ Sch/k the fiber product X0 ×k0 k. Consider

the fiber diagram

X

p

��

f // X0

��
Spec(k) // Spec(k0)

.

Note that there is a fundamental exact sequence for Kähler differentials

0→ p∗Ω1
k/k0
→ Ω1

X/k0
→ Ω1

Xk/k
→ 0 (3.5.1)

induced by the morphisms X → Spec(k) → Spec(k0) (see [56, Proposition 20.6.2]). More-

over, the base-change property for Kähler differentials [56, Proposition 20.5.5] yields Ω1
X/k '

f∗Ω1
X0/k0

and gives a splitting of the short exact sequence (3.5.1). After applying the p-th

exterior power, we get a Künneth decomposition:

Ωp
X/k0

'
⊕
p=i+j

Ωi
X/k ⊗ p

∗Ωj
k/k0

. (3.5.2)

It is clear that, by passing to (Zariski) cohomology, there is a Künneth decomposition for

(Zariski) cohomology groups. A similar statement is true for the cdh-cohomology groups:
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Proposition 3.5.3. Let k0 ⊂ k be a subfield, let X0 ∈ Sch/k0 and let X ∈ Sch/k be the fiber

product X = X0 ×k0 k. Then there is an isomorphism

Hq
cdh(X,Ωp

/k0
) '

⊕
p=i+j

Hq
cdh(X,Ωi

/k)⊗ Ωj
k/k0

for all p, q ≥ 0, which is functorial with respect to morphisms (of finite type, separated and)

definable over k0.

Proof. Let n = dim(X0). Let Y0• be a cdh-hyperresolution of X0 constructed as in Theorem

3.3.9. Observe that Y• = Y0• ×k0 k is a cdh-hyperresolution of X. We have a sequence of

isomorphisms

Hq
cdh(X,Ωp

/k0
) ' Hq(Y•,Ω

p
Y•/k0

)

'
⊕
p=i+j

Hq(Y•,Ω
i
Y•/k

)⊗ Ωj
k/k0

'
⊕
p=i+j

Hq
cdh(X,Ωi

/k)⊗ Ωj
k/k0

,

where we used the third equation of Corollary 3.5.2 for the first and the third equality, and

(3.5.2) is used in the second equality. Functoriality follows from Corollary 3.3.10. �

For quotient varieties, we have a particularly nice description of their cdh-cohomology with

values in Ωp
/k0

in terms of Zariski cohomology groups:

Proposition 3.5.4. Let k0 ⊂ k be a subfield, let M ∈ Sch/k be a smooth quasi-projective scheme

over k and let G be a finite group acting k-linearly on M . Denote by M/G the corresponding

quotient variety. Then

Hq
cdh(M/G,Ωp

k0
) ' Hq(M,Ωp

M/k0
)G

for all p, q ≥ 0.

Proof. First note that there is an isomorphism Hq
cdh(X,Ωp

/k0
) ' Hq

eh(X,Ωp
/k0

) for all X ∈ Sch/k

(see e.g. [66, Corollary 2.8]), which basically follows from the fact that the Ωp
/k0

’s satisfy descent

for étale covers.

By the analogue statement of Corollary 3.5.2 for the eh-topology and by Lemma 3.3.3 one

has

Hq
eh(M/G,Ωp

/k0
) ' Hq(Ner(G,M),Ωp

Ner(G,M)/k0
).

The result follows from Prop. 3.1.4. �

Corollary 3.5.5. Let G be a finite group acting linearly on An = Ank and denote by An/G the

quotient variety. Then

Hq
cdh(An/G,Ωp

/Q) = 0

for all p ≥ 0 and q > 0.

Let us finally describe the relation between cdh-cohomology groups and negative K-theory.
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Theorem 3.5.6 (Cortinas-Haesemeyer-Walker-Weibel [36, Theorem 1.2]). Let R be a finitely

generated positively graded algebra over k and let R0, the 0-th component of R, be a local artinian

ring with residue field k. Then there is a decomposition

K0(R) ' Z⊕ Pic(R)⊕
dim(R)−1⊕

i=1

H i
cdh(R,Ωi

/Q)/dH i
cdh(R,Ωi−1

/Q ),

and for m > 0, there is a decomposition

K−m(R) ' Hm
cdh(R,O)⊕

dim(R)−m−1⊕
i=1

Hm+i
cdh (R,Ωi

/Q)/dHm+i
cdh (R,Ωi−1

/Q ),

where dHj
cdh(R,Ωi−1

/Q ) is the image of the map d : Hj
cdh(R,Ωi−1

/Q )→ Hj
cdh(R,Ωi

/Q) induced by the

Kähler differential.

Corollary 3.5.7. Let G be a finite group acting linearly on An = Ank and let An/G be the

quotient variety. Assume that An/G has an isolated singularity at 0. Then

K0(An/G) ' Z and K−m(An/G) = 0,

for all m > 0.

Proof. By Theorem 3.5.6 and Corollary 3.5.5 it follows that

K0(An/G) ' Z⊕ Pic(An/G) and K−m(An/G) = 0

for all m > 0. Moreover, the Picard group of a normal positively graded k-algebra is zero and

the result follows. �
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[37] G. Cortiñas, C. Haesemeyer, and C. Weibel: K-regularity, cdh-fibrant Hochschild homology,

and a conjecture of Vorst, J. Am. Math. Soc. 21 (2) (2008), 547–561.

[38] S. Cynk: Defect of a nodal hypersurface, Manuscripta Math. 104 (2001), 325—331.
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morphismes de schémas, Première partie (EGA 4), Publ. Math. IHÉS , 20 (1964), p. 5–259.
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