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Abstract

In the �eld of Soft Robotics, viscoelasticity has been proved bene�cial

for human assistance applications. The human skeletal muscle system,

as well as many soft materials commonly used in soft robotic applica-

tions, have viscoelastic properties. Viscoelasticity can be modelled using

a set of equations known as the Linear Viscoelastic Models (LVMs).

This modelling approach has two main limitations: high mathematical

complexity and high computational cost. Here, these limitations are ad-

dressed in two ways. Firstly, the Piecewise Linearisation method is used

to reduce the mathematical complexity of LVMs. Secondly, a model-

ling approach based on feedforward arti�cial neural networks (ANNs)

is used to reduce the computational cost. The aim of both modelling

approaches is to describe the non-linear, strain-dependent, and time-

dependent stress response of seven thermoplastic elastomers.

On the one hand, the implementation of the Piecewise Linearisation

method yielded the PL-SLS model and the PL-Wiechert model. Both

models were successful in predicting the viscoelastic behaviour of the

materials, outperforming similar modelling tools documented in the lit-

erature. On the other hand, four di�erent architectures of ANN models

are developed, categorized in rate-dependent and rate-independent. Res-

ults highlight the rate-dependent architecture as the most suitable. The

ANN models achieved a similar prediction performance as the PL mod-

els.

The ANN model for the natural rubber material is further validated in

a real-time simulation environment, in Simulink. This soft material is

found to be the best candidate to imitate the mechanical properties of the

human tendon. On the one hand, the performance prediction of the ANN

models is adequate for a sine wave strain input, when the strain rate is

constant. On the other hand, the response of the ANN model is unstable

under variable strain rates. This highlights an important limitation of

the training set used for developing the ANN models, which only contains

data for three di�erent strain rates. Finally, the three modelling tools

developed in this research are a direct improvement to current modelling

approaches. Nonetheless, a richer training set is required to improve the

ANN models real-time response.
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1. INTRODUCTION

1.1 Background

The �eld of Soft Robotics deals with the implementation of soft and deformable

materials in traditional robotic applications. The interest in this �eld has increased

in the past decade. The latter is due to the outstanding progress in manufacturing

of soft and smart materials which can be actuated by heat, light, and magnetism.

Early applications in Soft Robotics were inspired in nature, by observing that most

biological organisms are not rigid [1]. This inspiration gave birth to several soft

bio-inspired robots.

The design and development of soft robots is is full of challenges, such as: ac-

tuation of soft materials, development and implementation of soft sensors into soft

robots, control systems capable of dealing with the nonlinear behaviour of soft ma-

terials, and modelling tools able to accurately predict the mechanical behaviour of

soft materials in real-time [2, 3]. Nonetheless, the potential bene�ts are many, such

as: soft robots have the potential of being very dexterous due to the ability of modi-

fying their shape depending on the environment; soft robots can manipulate objects

of di�erent shapes, sizes; and most importantly soft robots are safe to interact with

humans in the event of an unplanned collision [4]. These bene�ts highlight the po-

tential of soft robotic applications for physical human-robot interaction (PHRI) such

as, orthoses, surgical tools, and wearable devices. This research aims to contribute

to the technological advance of Soft Robotics for human assistance applications.

For a long time, humans have pursued the idea of increasing their strength,

stamina and speed through di�erent means. Nowadays, this is a reality due to the

technological advances on wearable robotic devices, commonly known as robotic

exoskeletons. This wearable device was motivated by military applications where

a soldier is required to carry a heavy load in its back for a long period of time,

ultimately causing him injuries or early fatigue. The robotic exoskeleton is able to

carry a payload and transmit the payload weight to the ground, ideally relieving the

wearer from feeling the payload, which allows the wearer to walk greater distances

without premature fatigue. The rigid nature of these devices and the big actuators

implemented to achieve forces able to enhance humans, impose many limitations,

such as, restriction of body movements, interference on subject natural biomechanics

and high inertia which impedes the device to follow the subject intentions smoothly,

creating a drag feeling [5].

In the �eld of Soft Robotics, a soft version of the robotic exoskeleton, formally

called soft exosuit, is being developed. Soft exosuits are wearable robotic systems
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meant to be worn in the same way as clothes. In this context, both the actuation

and perception systems are attached to a soft structure made of textiles which is

strapped to the human body. Despite the many bene�ts of this technology, available

prototypes cannot deliver enough mechanical power to be called an enhancement

device. Therefore, these devices are mainly for human assistance applications. This

limitation is caused by the challenge of having a soft structure to transmit the

forces generated by the actuators that are distal to the assisted joint. Moreover,

these forces can create discomfort to the user. Nonetheless, there are areas of the

human body which naturally sustain high amounts of forces which are commonly

used in the design of soft exosuits [6]. Another alternative to address the latter

limitation is to deploy the actuators proximal to the assisted joint, closer to the

human skeletal muscle system functionality [7, 8].

In most soft exosuits, the lack of a robust modelling tool for the prediction of

the mechanical behaviour of soft materials, makes is di�cult to implement a control

system. There are two modelling approaches commonly used for this task. One

is based on the Linear Viscoelastic Models (LVMs), the other is based on machine

learning models. On the one hand, the LVMs describe the mechanical behaviour

of a soft material using two basic mechanical components, a spring and a dash-

pot. Inside this family of models, there are two models that can be expanded as

required. In theory, they are capable of describing the most complex soft material.

In practice, expanding a mathematical model is translated into solving more di�er-

ential equations which at the same time translates into higher computational cost.

Therefore, modeling tools based on the LVMs have an important trade-o� between

achievable accuracy and required complexity. In some cases, deploying these models

to hardware, i.e. control systems, is prohibitive.

On the other hand, the modelling approach using machine learning tools is com-

monly based on Arti�cial Neural Networks (ANNs). ANNs excel at identifying

complex relationship in large datasets. Their development, specially their training

process, is time consuming. However, the time required for an ANN to make a

prediction is very small once trained. This is the main advantage of ANNs in com-

parison to model-driven approaches, which have to perform intensive calculations

every time new data is presented as input. Plenty of research can be done on both

modelling approaches with the aim of developing a robust modelling tool to accur-

ately describe the complex mechanical behaviour of soft materials. The latter has

the potential of increasing the adoption of soft materials in robotic applications, as
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well as creating more e�cient wearable systems.

1.2 Motivation

The global percentage of elderly population is constantly rising. The World Health

Organization has estimated that the global percentage of people aged 65 or older

will triple by 2050, with respect to 2010 [9]. Moreover, the amount of elderly people

living alone is also increasing. Solely in the United Kingdom, there are 1 million

people aged over 65 living on their own [10]. Although, the social triggers of the

mentioned phenomenons are out of the scope of this research, they represent a strong

motivation to push forward the research on soft robotic applications for human

assistance. Currently, there are viable concepts of assistive exosuits targeted to

increase the quality of life of elderly people during activities of daily living, such

as walking over ground, ascending stairs, and using a chair. However, the concept

of an assistive exosuit is relatively new, the �rst documented prototype is dated

from 2013 [6]. The idea behind an exosuit is to translate the proven concept of a

robotic exoskeleton, which is a heavy and bulky wearable device aimed to enhance

the strength of humans, into a soft, light weight and compliance version aimed to

provide assistance to the elderly or disabled people.

One of the main challenges in this �eld of research is the modelling of the mech-

anical behaviour of soft materials. The accuracy of current modelling approaches is

proportional to the required computational power. Due to this, the most accurate

modelling tools are di�cult to be deployed in control systems where the hardware

computational power is limited. The necessity for commercial-grade exosuits for

human assistance is pushing the development of robust modelling tools capable of

predicting the viscoelastic behaviour of soft materials. Therefore, the main mo-

tivation of this research is to contribute to the technological development of robust

modelling tools. This can translate into more e�cient soft actuators, hence soft exo-

suits, which will improve the quality of life of the elderly and disabled population

in the near future.
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1.3 Aims and Objectives

1.3.1 Aims

The aims of this research are:

� To investigate the concept of implementing viscoelasticity, a property found

in the human skeletal muscle system, in soft robotic applications for the as-

sistance of the human lower limb.

� To develop a reliable modelling tool to be implemented in a bio-inspired soft

actuator model for the prediction of the stress response of soft materials in

real-time.

1.3.2 Objectives

In accordance to the research aims, the following objectives are identi�ed:

� Survey the literature to identify: the terminology related to the biomechanics

of the human lower limb, and the current soft robotic developments on the

�eld of human assistance.

� Investigate the biomechanics of the human lower limb during activities of daily

living.

� Characterize the viscoelastic properties of suitable soft materials.

� Identify the soft materials with the most similar mechanical properties to the

human tendon.

� Address current limitations on modelling tools for the prediction of the vis-

coelastic behaviour of soft materials.

� Investigate the performance of current modelling tools under simulated real-

time conditions.

� Design a bio-inspired soft actuator for human-assistance applications.
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1.4 Research Scope

This research is focused on developing a reliable modelling tool, able to be imple-

mented in a control system, for the prediction of the mechanical behaviour of soft

materials. Therefore, the following is included in the scope of the research.

The biomechanics from the lower limb of the human body during several activ-

ities of daily living are characterized. The potential bene�ts of using a viscoelastic

material instead of the traditional metallic spring in series-elastic actuators, is invest-

igated. For this reason, the following soft materials are studied: ethylene polypro-

pylene rubber (EPR [11]), �uorocarbon rubber (FR [12]), nitrile rubber (NR [13]),

natural rubber with polyester (NatPolR [14]), polyethylene rubber (PR [15]), sil-

icone rubber (SR [16]), and natural rubber (NatR [17]). A recent and accurate

modelling approach, based on a piecewise linearisation of the Linear Viscoelastic

Models (LVMs), is studied. Furthermore, a systematic analysis on the performance

of a popular machine learning tool, Arti�cial Neural Networks (ANNs), is executed.

The analysis includes the e�ect of the number of neurons, output activation func-

tion, training algorithm, and combination of inputs/outputs presented to the ANN.

Moreover, the performance of the developed ANN models under simulated real-

time conditions, is assessed. Finally, the most suitable modelling approach for this

application is identi�ed.

1.5 Research Contributions

This research contributes to the �eld of Soft Robotics for human assistance by

investigating the performance of Arti�cial Neural Networks, as an alternative to

the Linear Viscoelastic Models, for the modelling of viscoelasticity in soft materials.

Some parts of this thesis are published in peer-reviewed conference papers. The

contributions are summarized as follows:

� Three modelling tools for the prediction of the non-linear, strain-dependent,

and time-dependent stress response of soft materials. The models are: the

PL-SLS model, the PL-Wiechert model, and the ANN model.

� Identi�cation of design guidelines for the selection of actuator technologies,

based on the kinetic and kinematic parameters of the human body, when

developing assistive devices.
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� Incremental improvement of the piecewise linearisation method by proposing

a tolerance criteria to de�ne the required complexity of the method depending

on the desired prediction accuracy.

� Concept design of a modular clamp mechanism aim to hold a bundle of strings

of soft materials in a bio-inspired series-elastic actuator.

1.6 Thesis Outline

This thesis is divided and organized in eight chapters, as follows:

� Chapter 1: This chapter presents the research background, motivation of

the researcher, aims and objectives. Moreover, the speci�c contributions of

this research to the respective �eld of knowledge, and the scope of the thesis

are also presented in here.

� Chapter 2: The second chapter presents an overview on the �eld of Soft

Robotics. The applications related to human assistance are described in terms

of the actuation, perception and control system technologies. The recent trend

about implementing the functionality of the human skeletal muscle system in

soft robotic application is discussed. Due to this, the terminology related to

the human biomechanics is included. In addition to this, the challenges of

modelling the mechanical behaviour as well as the modelling tools currently

used are introduced in this chapter. Finally, the gaps in the body of knowledge

are identi�ed and presented.

� Chapter 3: In this chapter, the process of extracting design guidelines for

robotic assistive devices from clinical studies focused on the human gait ana-

lysis is presented. Moreover, the characterization of the kinetic and kinematic

parameters of the human lower limb during activities of daily living (ADLs),

is performed. A total of four main ADLs are investigated from clinical tri-

als: ground level walking, going up/down steps, going up/down a ramp and

sitting down/standing up from a chair. The compiled data is processed to

obtain a graphical representation and facilitate the comparison and analysis

of the parameters variations from subject to subject and activity to activity.

The work done in this chapter was substantial enough to produce a conference

paper [18].
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� Chapter 4: In this chapter, the characterization of a selection of seven

thermoplastic elastomers is presented. The mechanical tests of tensile strength

and stress relaxation are performed to characterize the viscoelastic properties

of the materials. The processing of the data and extraction of the materials

parameters are described in detail.

� Chapter 5: This chapter describes the development process of two modelling

tools based on the Linear Viscoelastic Models (LVMs). The work in here is

inspired by the Piecewise linearisation method, which has been successful in

improving the performance of the LVMs. Two modelling tools are developed,

PL-Wiechert and the PL-SLS models. The performance of these models is

assessed for the description of the non-linear, strain-dependent, and time-

dependent stress response of viscoelastic materials. The work done in this

chapter was substantial enough to produce a conference paper [19].

� Chapter 6: In this chapter, the development of a modelling tool based on ar-

ti�cial neural networks (ANNs), is presented. The research about implement-

ing ANNs in the �eld of composite materials is very scarce. Nonetheless, ANNs

have been proven useful for many function approximation applications. Two

hyper-parameters of the developed ANN models are optimized: the number of

neurons in the hidden layers, and the selection of inputs. The performance of

the developed ANN models is compared against the developed PL models.

� Chapter 7: This chapter presents the design concept of a bio-inspired series-

elastic actuator. The work on this chapter is focused on design due to time

limitations. Nonetheless, the proposed design takes the bio-inspiration from

the concept of mimicking the human skeletal muscle functionality. Therefore,

a comparison analysis between the mechanical properties of the human tendon

and the studied soft materials is performed. Also, the prediction capabilities

of the ANN models are evaluated in simulated real-time conditions when being

deployed as part of a control system. In here, the design of a clamping mech-

anism is presented, which is aimed to be the interface between the actuator

and a load in a series-viscoelastic actuator.

� Chapter 8: The �nal chapter is reserved for the summary, conclusions, and

future work.
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2.1 Introduction

This chapter presents the literature review about soft robotic applications implemen-

ted in human assistance in the following order. Firstly, the �eld of Soft Robotics

is introduced. Secondly, an overview of many soft robotic applications for human

assistance is provided. Thirdly, the terminology around the biomechanics of the

human lower limb is introduced. Fourthly, the mechanical properties of the human

muscle-tendon component are described. Fifthly, the modelling tools currently be-

ing implemented for the prediction of the mechanical properties of soft materials

is investigated. Lastly, resulting from the extensive literature review, the gaps on

the body of knowledge are identi�ed and described in the summary section of this

chapter.

2.2 The Field of Soft Robotics

The �eld of Soft Robotics deals with the implementation of soft and deformable

materials in traditional robotic applications. The interest in this �eld has increased

in the past decade. The latter is due to the outstanding progress in manufacturing

of soft and smart materials which can be actuated by heat, light, and magnetism.

The coordination action called RoboSoft, supported by the IEEE Robotics and

Automation Society (RAS) and the European Commission, has played a very im-

portant role in spreading the awareness of the wide number of soft robotic ap-

plications. The RoboSoft committee formally de�nes the �eld of Soft Robotics as

�Soft robot/devices that can actively interact with the environment and can undergo

`large' deformations relying on inherent or structural compliance� [2]. The categor-

ization of when a robotic application fall into the �eld of Soft Robotics depends on

the material's Young Modulus, a mechanical property which relates the material's

deformation with the amount of stress applied to it; which must be between the

range of 102−106 Pascals (Pa). The Young's modulus is usually a measure of a solid

material sti�ness; a high value refers to a sti� material in the same way as a low

value refers to an elastic or soft material. In the context of Soft Robotics, the term

compliance is commonly used instead of sti�ness since it refers to the adaptability

of the material under certain circumstances.

Early applications in Soft Robotics were inspired in nature, by observing that

most biological organisms are not rigid, e.g. the human skeleton only contributes

with 11% of an adult's weight, on contrast, the skeletal muscle in our body only
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contributes with 42% of the weight [1]. This inspiration gave birth to several soft

bio-inspired robots, as well as the interest in studying the embodied intelligence of

biological organisms. The latter refers to the ability of biological organisms to adapt

to di�erent situations by exploding their body morphology and properties. This is

one of the main di�erences between soft and rigid robots. The embodied intelli-

gence of soft robots releases the controller from the task of accurately controlling

the position of the robot and of constantly monitoring the working environment;

allowing the controller to focus on the execution of commands. This is only possible

with the implementation of soft and deformable materials able to automatically ad-

apt to perturbations from the environment, such as uneven terrains and obstacles.

Bio-inspired soft robots are now being developed for a broad range of applications,

such as locomotion, manipulation, and even replicating biological processes such

as digestion. The research done in the �eld of Soft Robotics has an interesting

multidisciplinary potential. For example, the locomotion of caterpillars and snake

could be study by building a soft robot which replicates this motion. The know-

ledge extracted from this could be useful for the development of actuated bendable

soft cylinders which ultimately could replace the current rigid tools being used in

laparoscopic surgery [20].

The mechanical behaviour of soft materials is very di�cult to model using tra-

ditional mathematical models due to their non-linear, time-dependent and strain-

rate-dependent stress response. This great challenge motivated the research in Soft

Robotics to develop bio-inspired soft bodies, arms and legs able to perform the task

at hand using minimal control. This caused a shift in the traditional design approach

for rigid robots from �rigidity by design, safety by sensors and control� to the design

approach used in soft robots, �safety by design, performance by control�. The added

feature of safety, inherent in most soft robots, allowed the development of physical

human-robot interaction (PHRI) applications [21]. Many other challenges faced by

this emerging �eld are: actuation of soft materials, development and implementation

of soft sensors into soft robots, control systems capable to deal with the nonlinear

behaviour of soft materials, and modelling tools capable to accurately predict the

mechanical behaviour of soft materials in real-time [2, 3]. Most of these limitations

come from the simple fact that soft robots cannot be considered as a chain of rigid

links able to rotate or slide as common robots are, but soft robots are deformable

and continuous which means that all the foundation in which Robotics is based on,

is not easily transferable to the Soft Robotics �eld.
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2.2 The Field of Soft Robotics

The design and development of soft robots is very challenging, but the potential

bene�ts are many such as: soft robots have the potential of being very dexterous

due to the ability of modifying their shape depending on the environment; soft

robots can manipulate objects of di�erent shapes, sizes; and most importantly soft

robots are safe to interact with humans in the event of an unplanned collision [4].

These bene�ts highlight the potential of soft robotic applications for PHRI such as,

orthoses, surgical tools, and wearable devices. This research aims to contribute to

the technological advance of Soft Robotics for human assistance applications.

For a long time, humans have pursued the idea of increasing their strength,

stamina and speed through di�erent means. Nowadays, this is a reality due to the

technological advances on wearable robotic devices, commonly known as robotic

exoskeletons. This wearable device was motivated by military applications where

a soldier is required to carry a heavy load in its back for a long period of time,

ultimately causing him injuries or early fatigue. The robotic exoskeleton is capable to

carry a payload and transmit the payload weight to the ground, ideally relieving the

wearer from feeling the payload, which allows the wearer to walk greater distances

without premature fatigue. The rigid nature of these devices and the big actuators

implemented to achieve forces able to enhance humans, impose many limitations,

such as, restriction of body movements, interference on subject natural biomechanics

and high inertia which impedes the device to follow the subject intentions smoothly,

creating a drag feeling [5].

In the �eld of Soft Robotics, research is being done to develop a soft version of

a robotic exoskeleton, formally called soft exosuit, in an attempt to solve the pre-

viously mentioned limitations. Soft exosuits are wearable robotic systems meant to

be worn in the same way as clothes, by attaching both the actuation and perception

systems into a wearable structure, made of textiles, strapped to the human body

which will ultimately assist the wearer's motions. Despite the many bene�ts of this

technology, in comparison to the robotic exoskeleton, current developments of soft

exosuits are not capable to deliver enough mechanical power to be called an en-

hancement device. Currently, soft exosuits are categorized as assistive devices. This

limitation is inherent from the idea of having a soft wearable device. The accurate

delivery of assistive forces generated by the actuators attached to a wearable textile,

or directly to the user's body, is very challenging. In a rigid exoskeleton the reac-

tion forces produced by the actuators are sustained by the exoskeleton mechanical

frame, but this is not the case in soft exosuits, where the reaction forces must be
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dissipated through the worn textile attached to the human body, which generates

uncomfortable frictions between the user skin and the textile. Nevertheless, the hu-

man body naturally possesses regions capable of sustaining high amounts of forces.

These regions are used in soft exosuit designs to prevent discomfort, skin injury, and

to increase the e�ciency of transmitted forces. The latter principle is implemented

in [6] where a lower limb soft exosuit using pneumatic muscles is developed. The

other, most common approach is to �x a wearable soft material to the skin, as in

[7, 8] where pneumatic arti�cial muscles (PAM) were attached to a soft cloth and

disposed in such a way that they can mimic the biological musculoskeletal beha-

viour of a human foot. Among the available soft exosuit developments, few of them

implements a closed loop control system, due to the high complexity of dealing with

the non-linearity of soft materials. These technologies are described in detail in the

following section.

2.3 Human Assistance Applications

The adoption of soft robotics in human assistance applications started with the

replacement of rigid and bulky actuators, commonly used in traditional robotic

exoskeletons, with soft and �exible actuators such as Pneumatic Arti�cial Muscles

(PAMs) and cable-driven actuators. The latter gave birth to hybrid systems as

found in [22], where a combination of both the previously mentioned technologies

were implemented to overcome the limitation of having high inertia in robotic exo-

skeletons. The latter work also describes the �rst attempt of imitating the func-

tionality of the human musculoskeletal system by using cable-driven actuators to

transmit the forces created by the PAMs. The latter resembles the functionality of

human muscle-tendon component.

During the following years of this adoption process, many rigid devices were

implementing soft actuators motivated by the same principle as mentioned earlier.

However, in the early stages of soft robotics there was a lack of available soft materi-

als to be implemented as actuators which encouraged researchers to focus mainly on

pneumatic actuators [23]. As soft robotics gained popularity, researchers in the �eld

of material sciences started to develop new soft materials capable of functioning as

actuators. Nonetheless, more research is required to make these new materials safe

to be used in soft robotic applications for human assistance. Due to this, current

developments in soft exosuits and soft orthoses are built around two well established
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technologies: pneumatic arti�cial muscles (PAMs) and cable-driven actuators, com-

monly based on electric motors, using Bowden cables as the pulling element. In a

lesser quantity, technologies such as shape memory alloys (SMAs) and shape memory

polymers (SMPs) have been implemented in soft orthoses with unsuccessful results

mainly due to their large recovery time which make them unsuitable for human as-

sistance applications. The extent of how these technologies have been implemented

in soft robotic applications is presented in the next subsection.

2.3.1 Soft Actuation Technologies

2.3.1.1 Pneumatic Arti�cial Muscles

The usage of compressed air or gases into engineering applications is called Pneu-

matics, if an incompressible �uid is used, it is called Hydraulics. In Soft Robotics,

the latter principles are translated to expand or contract a soft material to generate

forces. Nonetheless, this can also be used to produce di�erent types of locomotion

in particular soft robots. As previously mentioned, soft pneumatic actuators were

extensively researched in di�erent applications for Soft Robotics. In fact, the usage

of soft polymers, such as silicone and elastomers, in combination with PAMs enabled

di�erent applications such as legged locomotion [24], pneumatic �ngers for grasp-

ing objects with sensing capabilities [25], soft skin with embedded sensors [26, 27]

and even implantable cardiac stimulators [28]. In the �eld of human assistance,

soft pneumatic actuators can be categorized in four main groups: textile muscles,

braided �uid muscles (McKibben type), large deformation actuators (LDA) bellows

and LDA worms. Only the former three are suitable for some kind of human assist-

ance. However, according to Belforte et al. [23], the most suitable for a biomedical

application in rehabilitation are the McKibben muscles due to the advantages de-

scribed in Table 2.1.

Early works on the assistance of the human lower limbs include the development

of a soft orthosis for the foot to treat gait pathologies such as drop-foot [8, 29].

One important aspect of this device is its design, inspired in the musculoskeletal

human system. The actuation system was designed to mimic the natural function-

ality of the muscle-tendon-ligament (Figure 2.1). The soft orthosis is powered by

Mckibben-type pneumatic actuators. They are attached to a soft support structure

consisting of an adapted neoprene knee sleeve and a �ve toed leather shoe. A total

of three o�-the-shelf pneumatic muscles assisted the dorsi�exion, eversion and in-
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Table 2.1: Main features of pneumatic arti�cial muscles. Modi�ed from [23].

version movements of the ankle joint by generating and transmitting tension forces

through arti�cial tendons made of a �exible but non-extensible metal cables (Fig-

ure 2.2(a)). The tendons were located inside a low-friction material tube to minimize

losses during transmission; two of these tendons were anchored to a single point in

the foot brace while the other one was anchored in four di�erent points in order

to distribute the pulling force, again, mimicking the human body behaviour. The

arti�cial ligaments delivered the same functionality as the biological ones, which is

to restrict the movement of the tendons in all the directions other than the one of

actuation (Figure 2.2(b)). The pneumatic actuators were strategically anchored in

two points, at the bottom of the knee sleeve providing nonrestrictive motion of the

knee, and at the foot brace.

Another soft orthosis using pneumatic actuation is presented in [30] which ex-

tends the concept of embedded sensor and create an embedded sensor-actuator mod-

ule, which is referred to as a muscle-sensor unit. In order to obtain some degree

of compliance with the human lower limb, the device has a cylindrical shape and
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Figure 2.1: Bio-inspired active soft orthosis concept for the treatment of ankle-foot

pathologies. From top to bottom: arti�cial muscles attached to the soft wearable

garment, a strain sensor for ankle angle measurements, the tendon-ligament system

and pressure sensor for gait cycle detection [8].

Figure 2.2: Soft orthosis components, (a) pneumatic arti�cial muscle in its relaxed

and contracted state, (b) complete tendon-ligament system without ligaments and

with ligaments [8].

it is made of a �exible silicone elastomer (EcoFlex 0300). The muscle-sensor units

are embedded into the latter shape to form a distributed array of four columns and

four rows (16 actuators), allowing the device to have a wide range of motions and

assistive torques depending on the number of active actuators (Figure 2.3). Dur-

ing the casting process, each column of actuators is tied to each other with Kevlar

�bres so they can pull each other when contracting. The �bres are anchored to both

caps of the cylinder to create the desired movement. When the pneumatic muscle

is activated, its radius increases and its length decreases, creating a compression

force. This design provides some degree of modularity due to the large number
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individually-controlled actuators used. Nevertheless, it has little compliance with

the human lower limb which ultimately complicates the conversion of generated

forces into assistive torques.

Figure 2.3: Soft sleeve prototype. (a) Original shape. (b) All muscles activated,

contracting the whole body and ampli�ed image of one muscle. (c) Partial con-

traction, only the 1st and 2nd top rows are activated. Both (d) and (e) illustrate

bending movements, only two adjacent columns are activated [30].

In recent works, the virtual anchor technique, a very novel concept which uses

pneumatic arti�cial muscles is described [6]. This concept, attempts to address

the challenges on force transmission using soft materials attached or strapped to the

skin, such as discomfort and slippage. The key anchor points of the human body are

de�ned as the ones exhibiting large bony landmarks. These regions are capable of

withstanding high forces and of minimizing the slippage or cha�ng of soft materials

positioning on them. The virtual anchor technique is also motivated by the changes

in length of some parts of the skin surface during joint motion, where some parts

exhibit more changes than others. The soft exosuit was developed by interconnecting

PAMs and nylon straps, replicating the extensible and non-extensible paths of the

skin, respectively, in the speci�c points where the changes in the skin length take

place. These places are called virtual anchor points which in combination with the

key anchor points allow a good transmission of forces without causing discomfort to

the user. The concept is illustrated in Figure 2.4, where the orange lines represent the

pneumatic actuators interconnected with the key anchors and the virtual anchors.

These interconnections constrain the actuator movements other than the desired,

as well as redirect the actuator reaction forces to the areas of the body capable

of withstanding these forces. Finally, this design was able to reduce the metabolic

cost caused by wearing the complete device (10 kg), by almost 100%. Considering

that no control system, other than a timed activation sequence, and no perception
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system was implemented, this technique opens the door for further improvements

to achieve a better degree of assistance.

Figure 2.4: Virtual anchor concept. The three key anchors (red square) located at

the foot, hip and shoulder are interconnected with the soft actuators (orange) and

auxiliary connectors (black) in speci�c points called virtual anchors (red circle) to

stabilize the forces created by the actuators [6].

Putting aside the McKibben-type actuators as the most common choice for pneu-

matic muscles, elastomers such as high-�exible silicone can be used to build PAMs

as shown in [31]. This PAM consists of interconnected �at chambers made of silic-

one rubber which in�ate when pressurized air is injected (Figure 2.5), the innovative

concept in this work is the zero-volume air chamber which provides a higher degree

of compliance and compactness (traditional PAMs retain air inside them even when

they are not actuated). Kevlar �bres are embedded inside this soft actuator to

constrain the expansion direction, creating a contraction movement when pressur-

ized. The �atness of these actuators simpli�es the casting process. Furthermore, the

chamber-based design makes it possible to join each chamber together not only in

series, which increases the contraction length, but in parallel as well to increase the

contraction force. In order to test the actuator performance, a soft exosuit similar

to the previously described was developed using nylon straps and hooks to connect

the soft actuator to the points of interest. The developed soft orthosis, intended for

infant-toddler rehabilitation, was capable of delivering a 38 N contraction force and

18 mm contraction length by implementing a muscle with an array of four elastomer
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actuators inter-connected in series. In addition, a total excursion for the knee joint

of 132° was achieved, considering both �exion and extension motions (Figure 2.5).

Moreover, in a most recent development by [32], it can be found the implement-

ation of elastomers for ankle assistance, in this case the pulling force of the PAM

is generated when the actuator de�ates and a pushing force is generated when it

in�ates, an inverted behaviour in comparison to previously mentioned applications.

This soft orthosis consists of a regular sock which is attached to both ends of the

PAM, that is enclosed into textile to restrict its longitudinal and radial expansion

mainly. Despite the simplicity and assistance capabilities of the device, it cannot be

worn with shoes, restricting the assistance to indoor activities

Figure 2.5: (a) Flat elastomer pneumatic actuator in (1) pressurized and (2) relaxed

states. (b) Implementation of the �at actuator in medical leg model assistance,

along with the achieved (1) extension, and (2) �exion motion [31].

This concept, of expanding instead of contracting the PAM when pressurizing,

is called Inverse PAM (IPAM). This soft actuator is called `Hydro Muscle', and is

directly compared with McKibben muscles since it overcomes the main limitations of

the latter. The main di�erence between this actuator and the previously mentioned

is the shift from pneumatic technology to hydraulics, in fact, it is reported that

the pressure found in homes tap water is enough to actuate it [33]. Therefore,

the cylindrical shape `Hydro Muscle' is capable of elongating axially, increasing

its sti�ness radially, when pressurized; and of the exact opposite behaviour when

depressurized (Figure 2.6). The actuator functionality is due to two structural layers

of di�erent materials. The inner layer is a tube made of an elastic material (latex

showed better performance than the commonly used silicon) and the outer layer is

made of a soft but inelastic material, such as polyester, which restricts the inner
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layer radial expansion and allows its axial expansion. Despite the simplicity of the

design, this new concept of actuator is free of energy losses in radial expansion. Also,

the energy losses inherent when using compressed air as the power source are not

present in this design (in comparison to PAMs).

Figure 2.6: (a) IPAM developed in its relaxed and pressurized state, the small radial

expansion and large axial expansion is appreciated. (b) Cross-sectional view of the

jamming e�ect ongoing inside the actuator, and (c) bending e�ect caused by heavy

load, and correction of the bending using the jamming e�ect [33].

The experiments performed in this work showed that this innovative soft actuator

is 33% more e�cient in comparison to a McKibben muscle using hydraulics. Fur-

thermore, this actuator can be easily manufactured with o�-the-shelf components.

Nonetheless, the convenience of using both pneumatic and hydraulic muscles for

performing pulling instead of pushing tasks, is to prevent the bending e�ect caused

when the actuator is �xed in one of its ends and has a heavy load attached to the

other end. The latter e�ect is ampli�ed for pushing tasks being one of the main

drawbacks of the proposed actuator concept. The solution to this is to use the prin-

ciple of jamming by �lling the gap between the inner and outer layer with granular

media which will jam when the actuator is pressurized (Figure 2.6). Another IPAM

which implements a very similar concept as the one illustrated in (Figure 2.6) can be

found in [34]. This IPAM managed to achieve a strain of 300% of its length, which

is three times more the achieved strain of the IPAM illustrated in (Figure 2.6). This

improvement is achieved due to the complete restriction on the stretchable material

in the inner layer to only expand along its axis and not radially. The main bene�ts
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of recent IPAMs in comparison with traditional PAMs are: high strain and nearly

linear control (since no radial deformation is present). Finally, the ability to achieve

high strains make IPAMs suitable for joints like the elbow.

2.3.1.2 Cable-driven Actuators

Another actuation technology implemented in soft orthoses is cable-driven actuators,

based on electric motors, in combination with Bowden cables. Following the same

principle as pneumatic muscles, this technology relies on generating tensions along

a cable which, with a right positioning along the human lower limb, can transmit

torques to the human body. The work in [35] presents the design and implementation

of a battery operated soft exosuit built with Bowden cables (Figure 2.7).

Figure 2.7: (a) Developed Bowden cable-based soft exosuit prototype. (b) Initial

design concept highlighting the main parts of the soft exosuit [35].

The exosuit is based on the leg's muscles functionality during normal walking,

with the objective of assisting the forward propulsion stage of the gait. The soft

exosuit structure made of fabrics is attached to the waist and above the knee, from

the former the Bowden cable follows a path of webbing straps into the lower limb,

ending at the ankle. In order to minimize the cha�ng and displacement on the

webbing strap structure caused by the tension on the cables while actuated, the

strap along the waist of the user terminates at the hip which is a natural bony

part of the human body. In other words, there is almost no muscle and fat tissue

between the skin and the bone, which improves the transmission of forces without

causing discomfort to the user. This soft exosuit delivers 18% and 30% of the
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torques required for normal walking on the knee and hip, respectively. However,

despite the innovative design, the main limitation of this exosuit structure is the

large displacement experienced on its structure, of 13 cm, when the cables are under

tension. This displacement caused the cable-driven actuators to have a very low

e�ciency since almost 45% of the generated mechanical power is lost in the form of

friction forces in the soft exosuit structure. Nonetheless, the proposed multi-joint

concept allows the actuation of two joints using a single actuator.

Following the multi-joint actuation concept, another soft exosuit is designed in

[36] with the objective of not only providing assistance but also to enable impaired

users. This concept, illustrated in (Figure 2.8), exploits the bene�ts of using a single

cable-driven actuator to control more than one joint, i.e. multi-joint actuation. The

di�erence in this case is the deep analysis performed regarding the compatibility of

the joints, taking into account synergy of torque and equal polarity of torque. In

order to assist the desired movements of sit-to-stand, walking and stairs ascend, the

knee and the hip joints were selected as the most suitable combination. Despite the

limited scope of this work, being focused only on the concept design, the authors

expect the selected joint combination to support the movements of sit-to-stand and

stairs ascend.

The next follow up on the concept of multi-joint actuation is documented in

[37] where a testing platform for soft exosuits was developed. The aim of this

platform is to study the performance of the multi-joint actuation concept when being

implemented in di�erent soft exosuits. The o�-board platform integrates several

cable-driven actuators and the sensors required to evaluate their performance. In

addition, this platform can deploy sensors to be attached to the exosuit and compare

relevant metrics such as mechanical power e�ciency. This platform, which can be

recon�gured to meet di�erent applications, has been used to evaluate the advantages

of implementing single joint and multi-joint actuation, highlighting the bene�ts of

the latter [38]. Furthermore, the study performed with the aid of this platform

provided designing parameters for the development of an exosuit, in other words,

the multi-joint platform assists the designing phase, ultimately reducing designing

times.

2.3.1.3 Shape Memory Materials

The two main groups of shape memory materials implemented in soft robotics are:

shape memory alloys (SMAs) and shape memory polymers (SMPs). Both technolo-
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Figure 2.8: Multi-joint actuated soft exosuit. There are two anchor points, one at

the pelvis (1) and one at the shank (5). The suit is actuated by a bowden cable

(2) and positioned at the front of the knee. The contractile element is connected

connected to the two anchors by webbing elements (4). Knee module to increase

the lever arm (3). Red arrows: reaction forces, and orange arrows: actuation force

[36].

gies function under the same principle: they can switch to a di�erent shape when a

stimulus such as heat is in contact with them. Nevertheless, there are some di�er-

ences to be mentioned. The SMAs have two main phases, one for high temperature

(austenite) and one for low temperature (martensite), when they su�er deformation

while being in the martensite phase they can recover from the deformation by ex-

posing them to heat, therefore SMAs convert the energy from heat into mechanical

energy to return to their original shape [39]. This property is usually exploited

to cause contraction changes in the material (Figure 2.9). Therefore, SMAs are

commonly used in combination with cable-driven actuators.

The implementation of SMAs into robotic applications have three main chal-

lenges to be addressed: response speed, high power consumption and low operational

bandwidth. The functionality of SMAs is based on the property found in metals in

which heat is generated when an electric current �ows through it, this is also known

as the Joule e�ect. Depending on the metals used in the alloy, the amount of heat
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Figure 2.9: Shape memory alloys made of Nitinol. The contraction e�ect under the

increase in temperature is illustrated [39].

required for the SMA to recover from deformation is high enough to melt plastics,

this excess of energy is what makes SMAs ine�cient [40, 41]. Furthermore, SMAs

have a very low response time due to the large amount of time required to cool them

down, limiting their operation frequency. This limitation is only present when air

convection is used as the cooling process. Due to this, SMAs have been found to

be unsuitable for most orthoses in which an operating frequency of roughly 6 Hz is

required. However, plenty of authors have successfully developed the latter devices,

in both rigid [42] and soft variations [43], capable of assisting human motions. This

proves the feasibility of using SMAs for applications such as clinical rehabilitation

where slow and repetitive cycles are required [44, 45]. An example of these applic-

ations are: re-positioning, muscle toning, functional exercise and assistive robotics

[46, 47]. Currently, extensive research is being done to address the main limitation

of SMAs, as documented in [47].

J. Zhang proposed a novel SMA-based arti�cial muscle [48]. This con�guration

facilitates the addition of a cooling system, due to the cylindrical hollow shape of

the arti�cial muscle. Therefore, a mini pump is used to create a �ow of air inside the

arti�cial muscle, e�ectively reducing the cooling time by 10 times. The performance

of this arti�cial muscle is further improved by considering the hysteresis behaviour

typically found in SMAs when shifting between the low and high temperature phases.

Furthermore, there is again evidence of trying to replicate the muscle-tendon func-

tionality, in this case by adding a spring in series with the arti�cial muscle which

aids the SMA recovery phase. The latter simulate a more realistic behaviour, similar

to the human muscles behaviour. Moreover, this is the �rst documented work that

deals with the modelling of the actuator behaviour, allowing the implementation of

a robust control system which can be also used in other scenarios involving SMAs.

Finally, this arti�cial muscle is deployed as part of an active foot orthosis capable of
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large contractile forces by using in parallel more than one SMA wire to form each

of the pulling tendons (Figure 2.10). Low e�ciency and low operational bandwidth

were identi�ed as the main drawbacks of this design.

Figure 2.10: Ankle joint soft orthosis. The developed SMA arti�cial muscle along

the main parts are highlighted. [48].

Current SMAs are also limited by the amount of contraction they can achieve,

i.e. operational bandwidth, which is commonly 3% of its original length. Recent

solutions to this, are based on deploying the SMAs in several loops, exploiting the

same concept of using pulleys with cables, essentially increasing the usable length of

the SMA wire without increasing the size of the �nal actuator. However, relying on

pulleys in a soft actuator greatly reduces compliance, increases the actuator weight,

and may cause twisting between the individual turns of the SMA wire. Therefore,

a new approach described in [49], make use of the outer sheath of Bowden cables

to contain the SMA wires inside. This concept allows the SMA to be directed in

many ways to the point of interest, allowing the actuator to have di�erent shapes

that can be compliant with the user's body, e.g. the SMA can be wrapped around

the user's arm in a solenoid-like shape which also increases the SMAs wire length

(Figure 2.11). Furthermore, pulleys are also implemented to allow the SMAs to

have a maximum number of three turns contained inside the Bowden sheath. Two

main drawbacks were discovered during an experimental testing: SMAs wires were

twisting between each other which caused high friction losses and prevented the

SMA to completely recover its initial length; the other drawback was the Bowden

sheath material which was found to have low force transmission e�ciency. In order
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to solve the latter, the Bowden cable sheath made of nylon was replaced by �exible

tubes of Polytetra�uoroethylene (PTFE) and every SMA wire turn was individually

encased in a narrow-gauge sheath. The �nal experiments showed that the developed

actuator is capable to contract 9% of its length which is three times the theoretical

contraction length of an SMA wire.

Figure 2.11: Flexible wrist exoskeleton prototype. [49].

Shape memory polymers (SMPs) are a little bit more complex than SMAs. They

have two main phases: a glassy state (high sti�ness) and a rubbery state (low sti�-

ness). Furthermore, when they are in their rubbery state, they can be deformed

by applying small forces and preserve the deformation by cooling the SMP. In this

state, the SMP can be considered rigid and it has to be heated to the point of the

transition temperature to return to its original shape, hence having shape memory.

This property of preserving a deformation is analysed by K. Takashima et al. in an

attempt to boost the McKibben arti�cial muscle performance [50]. McKibben actu-

ators are unable to maintain their contraction shape unless precise and continuous

control is implemented which cause premature wear on controlling elements as well

as higher energy consumption. Therefore, a SMP is embedded into the McKibben

braid which, by controlling the SMP temperature, allows the arti�cial muscle to

hold its contracted position as illustrated in Figure 2.12. It is worth mentioning

that SMPs can be stimulating in di�erent ways to obtain the change of shape, such

as infrared light, electric �eld, magnetic �eld and even manipulating the material

water content. In the previous work, the SMP was stimulated by heat and cooled

down using a compressor, which drastically limits the actuator portability.

The bene�ts of SMPs, in comparison to SMAs, can be summarized as: light-

weight, low cost, rigidity in low temperature and �exibility in high temperature,
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higher strains (around 400% in comparison with 7% for SMAs), and they can be

easily moulded into 3D shapes. Furthermore, the main positive aspects of the im-

proved McKibben arti�cial muscles are: allows rigidity �xing, the parameter to

control sti�ness can be used to control actuation, and controllability of the actuator

surface by individually stimulating certain segments of the SMP.

Figure 2.12: Schematic illustrating McKibben with embedded SMP functionality.

Tg: transition temperature, PH : high pressure, PL: low pressure [50].

2.3.2 Soft Perception Technologies

Currently, the most common soft perception technologies are based on liquid metal

alloys embedded into soft materials such as elastomers. These strain soft sensors

are widely used in soft orthoses, such as the one in [8]. The materials used in this

case were Eutectic Gallium Indium (eGaIn), as the liquid metal alloy, and silicon

rubber as the �exible layer, which creates a highly deformable sensor (Figure 2.13).

The sensor was implemented to measure changes in the ankle joint proportional to

the skin strain which it was attached to, by measuring the changes in resistance

caused by the variations in the path length and cross-sectional area of the channel

containing the liquid metal. Nevertheless, the developed soft orthoses implemented

two other non-soft sensors: an inertial measurement unit (IMU) as an angle position
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detection and a pressure sensor attached to the shoe insole to detect foot strikes,

hence the gait cycle. The developed strain sensor delivered good performance and

contributed in the development of a feedback controller for this soft orthosis.

Figure 2.13: Soft strain sensor. The microchannel �lled with liquid metal can be

appreciated in: (a) concept design and (b) the prototype [8].

Liquid metal alloys are also implemented in [30], as previously described, in the

form of embedded muscle-sensor units (Figure 2.14). The soft strain sensor was

capable of estimating the contraction length of a pneumatic muscle by measuring

its radial expansion. In order to preserve softness, thin �exible copper wires were

embedded into the cylindrical soft orthosis to obtain the sensor readings.

Taking the application of soft strain sensors with eGaIn a step further, a wearable

soft suit capable of sensing the joint angles of the hip, knee and ankle joints, is

presented in [51]. With the sensors properly positioned along the lower limb, by

measuring the strain caused by the joint rotation, the joint angle can be known.

The sensors tracked the user motions with a mean absolute error of 8°, being the
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Figure 2.14: Soft sensor sleeve: (a) design concept, (b) developed prototype, (c)

magni�ed view of the embedded sensor-actuator concept. (d) Soft strain sensor

change in resistance during stretch and relax [30].

most precise tracking achieved on the hip joint and the less precise on the ankle joint.

In the mentioned work, only sagittal plane motions were measured, however, due to

the great success and linearity of the sensors, they are planned to be implemented

to measure motions in the frontal plane as well. The complete suit characterization

can be found in [52], and is illustrated in Figure 2.15.

Figure 2.15: Implementation of soft strain sensors into a Soft sensing suit, (a) hip

sensor, (b) knee sensor and (c) ankle sensor position [51].

A potentially improved version of these soft strain sensors is presented in [53]
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where the highly stretchable elastomer is �lled with two di�erent conductive liquids,

a traditional liquid metal and an ionic solution, instead of one. Interconnecting

the strain soft sensor with the external application has been a big challenge, since

the strain caused by the connection, usually soft wires, a�ects the sensor accuracy

by increasing the total electrical resistance and by generating additional strain.

Nevertheless, the ionic solution is intended to decouple the signal routing part from

the sensing part to solve the latter challenge, creating a noise-free interface with the

external application (Figure 2.16).

Figure 2.16: Hybrid soft strain sensor, the interface between the liquid metal and

the ionic solution can be clearly seen in dark areas [53].

One direct implementation of the embedded microchannel with conductive �uid

sensors, can be seen in a recent improvement to the McKibben type PAM (Fig-

ure 2.17). McKibben actuators were widely adopted in soft robotics applications and

there is plenty of information in the literature about their implementations. How-

ever, accurately sensing the deformation and force of these actuators still remains

challenging. This has been addressed in many ways such as: cylindrical dielectric

elastomers with carbon grease disposed on their surface to function as electrodes

[54]; and also by attaching soft elastomer sheaths to the actuator, which are cap-

able of sensing deformation due to their microchannels �lled with conductive �uid

[55]. The implementation of carbon grease electrodes and conductive microchan-

nels allows the measuring of the actuator deformation. The conductive elements,

mentioned before, change their electrical resistance when they are deformed. Fur-

thermore, the concept of attaching these sensors to the actuator was re�ned in
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[56, 57], where the sensing elements surrounding the actuator are now disposed in

a helical shape. From the electric circuit created, it is possible to measure both

the output force and length deformation of the actuator by correlating them with

the circuit resistance and inductance respectively. This work proposed the imple-

mentation of conductive wires to build the reinforced braid of a McKibben actuator

allowing the actuator to `sense', from there the given name of `Smart Braid', creating

a solenoid-like circuit from which the inductance can be measured using a couple of

mathematical approximations such as: the Neumann approximation and the long

solenoid approximation, being the former one the most accurate and general; but at

the same time the most expensive in terms of computation. The author exerts that

this new sensing concept can be applied to multitude of scenarios in soft robotics,

which includes soft orthosis.

Figure 2.17: `Smart Braid' concept. The variation in the actuator length cause a

change in the electric circuit inductance [57].

2.3.3 Control Technologies

One of the successfully implemented control systems is documented in [8], which

forms part of the previously mentioned concept illustrated in Figure 2.13. The con-

trol system is composed of several micro-controllers for parallel processing, and is

divided in four main stages: sensing, signal processing, control and actuation (Fig-

ure 2.18). The soft orthosis makes use of three di�erent sensor technologies which

requires di�erent sampling and signal processing algorithms for each one, the IMU

being the most complex one. Thereafter, another micro-controller with access to

all the sensors, decides when to activate the solenoid valves that control the pneu-

matic muscles by generating pulse width modulated (PWM) signals. The latter

describes a basic proportional control system. No mathematical model was deduc-

ted to describe the non-linear behaviour of the pneumatic muscles, instead, simpler
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controller approaches as feed-forward and feedback controller were implemented,

with the latter being able to achieve a response time of 500 ms when a perturbation

was present on the system, such as letting a weight hang from the device toe. The

feedback controller made use of a soft strain sensor (Figure 2.13) to correct the ankle

angle. Finally, although the controller performance is good it is still not enough to

provide active gait assistance nor to predict user intentions. Another drawback is

that the system requires calibration every time a new user wears it. Nevertheless,

the developed soft orthosis is suitable for rehabilitation because it can achieve a dor-

si�exion of 12° and 20° when foot was at resting position, and when foot was forced

to a plantar �exion position, respectively. Moreover, the perception system could

provide the clinician with meaningful data about the patient progress. The previous

work was continued in [7] where a new controller was designed by considering the

interaction between the soft exosuit and the human body as a black box, i.e. instead

of trying to model the non-linear behaviour of the whole system some experiments

were performed to obtain a system input/output relationship. Following this, clas-

sic control techniques were implemented to model a linear time-invariant controller.

The results were promising since the original complex system performed adequately

using simple techniques. Finally, the implementation of electromyography sensors

was discussed to add the involuntary muscle contractions of the user into the system

as a disturbance and improve the accuracy during di�erent scenarios.

Figure 2.18: Control system architecture implemented for the ankle soft orthosis [8].

In some cases, the design and development complexity of a control system for

soft robotic applications limits the research to focus only on the implementation

and study of the soft actuation and perception systems. This is the case for the

work documented in [30], the cylindrical soft sleeve with embedded muscle-sensor

units. In the latter work, the developed controller is well designed but does not
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implemented a close-loop architecture nor complex mathematical models to predict

the soft material behaviour.The control system consist of several micro-controller

units, each of these communicated with their surrounding neighbours (Figure 2.14).

Each of the 16 nodes embedded into the cylindrical soft sleeve has a microcontroller

unit with independent functionalities, such as recollecting and distributing the data.

On top of this, there is a scheduling routine embedded in each unit which allows

synchronization between them. Every unit has four tasks to execute at a given time

and a given order: sensing, communicate, process data and actuate. The actuation

parameters are generated using a mathematical approximation of the soft material

behaviour which assumes no other deformation around the soft sleeve is caused by

the compression of the pneumatic actuators. This assumption neglects the fact that

when one side of the cylinder is under compression, the opposite side is under ten-

sion, i.e. the length on this side does not remain constant. The authors highlighted

the necessity for a better approximation method when analysing the experimental

results. For a desired bending angle of 15°, an actual bending angle of 11.5° was

achieved. In simulation, feeding the soft sensors data into the mathematical ap-

proximation, a bending of 13° was estimated, which translates into an accuracy of

76%.

The fact that few soft exosuit developments fully implement a control system

does not imply that no research is being performed in the �eld. The implementation

of current soft actuators into functional devices, as well as the proof of concept of

emerging soft actuators are usually followed by an extensive study about modelling

their behaviour to translate that information into a control system. On the �eld of

PAMs, many interesting new approaches are being researched, such as implementing

fuzzy logic techniques to improve their performance [58�61]. The next step in the

research cycle of all soft actuation technologies is to implement the tested models

into functional devices, which then will allow new concepts to be developed, hence

new modelling research to be performed.

2.4 Biomechanics of the Human Lower Limb

The biomechanics of the human lower limb are self-contained between three planes of

action, which are the sagittal plane, the frontal plane and the transverse (horizontal)

plane [62]. In combination with these planes there are three axes used to identify

speci�c motions: frontal horizontal axis, vertical axis and sagittal horizontal axis.

34



2.4 Biomechanics of the Human Lower Limb

The positioning of each of them is illustrated in Figure 2.19. The sagittal plane

divides the body vertically into left and right parts, the frontal plane divides the

body vertically into front (posterior) and back (anterior) parts and the transverse

plane divides the body horizontally into upper (superior) and lower (inferior) parts.

This coordinate system allows the many motions of each joint in the human body

to be clearly identi�ed.

Figure 2.19: Dimensional spaces used to understand human motions: (a) Sagittal

plane, (b)Horizontal plane and (c)Frontal plane [62].
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The motions of each joint are named with respect to the plane and axis where

they happen. This allows the easy recognition of the human body motions (Fig-

ure 2.20). The biomechanics of the lower limb are categorized in �ve groups, each

containing two individual motions, as follows:

� Flexion and extension describe the bending motion which decreases, or in-

creases the angle between two parts of the body, respectively.

� Abduction and adduction describe the motion away from, or towards the body

midline, respectively.

� Eversion and inversion of the foot describe the motion away from, or towards

the body midline, respectively.

� External rotation and internal rotation describe the motion away from, or

towards the body midline, respectively.

� Horizontal abduction and adduction describe the motion away from, or to-

wards the body midline, respectively.
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Figure 2.20: Lower limb motions for (a) sagittal plane, (b) horizontal plane and (c)

frontal plane. Image adapted from [62].

37



2. LITERATURE REVIEW

2.5 The Muscle-tendon Component

Having de�ned the terminology involved in the biomechanics of the human skeletal

muscle system, this section focuses on describing the muscle-tendon component from

a mechanical point of view. In the literature, the mechanical model commonly used

to describe the mechanical behaviour of the muscle-tendon component is the Hill's

model [63]. This model is considered the most representative of all the available

models [64]. Hill's model describes the skeletal muscle as a three elements system,

which contains a contractile element, a passive element, and a series element. The

contractile element (CE) represents the muscle �bres in charge of generating the

contractile forces, the parallel (passive) element (PE) is formed by the tissue sur-

rounding the muscle which prevents it from over stretching, and the series element

(SE) represents the human tendon, as illustrated in Figure 2.21.

Figure 2.21: Hill's model of the skeletal muscle. The contractile element (CE), the

parallel element (PE) and the series element (SE) are shown [63].

Hill's model makes the important assumption of considering the SE to be purely

elastic, i.e. the deformation of the element is entirely dependent on the force applied

to it. Nevertheless, the non-linear viscoelastic properties of the human tendon are

acknowledged in his work. The latter simpli�cation is a common practice among

studies of the skeletal muscle system because the muscle and tendon are studied

as a whole (muscle-tendon component) [65]. Evidence of the actual bene�ts of

this simpli�cation is found in the literature for the �eld of robotics exoskeletons.

The complex muscle-tendon model developed in [66], considered the viscoelastic

properties of the human tendon to estimate forces and joint torques in real time. The

model achieved high accuracy at the cost of high computational load. In an attempt

to reduce the computational load, the assumption of an in�nitely sti� tendon was

made which proved to be reliable as well [67].

In a similar way, developments in the �eld of soft robotics which are inspired in

the skeletal muscle system functionality are also based in Hill's model, as highlighted

in Section 2.3.1. Commonly, springs [8] or Bowden cables [48] are implemented as
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the SE of the muscle-tendon model. Nevertheless, the fact is that the human tendon

has viscoelastic properties [68]. Most of the documented literature is mainly focused

on developing and testing soft materials to be used as the contractile element in

soft arti�cial muscles. The latter, previously identi�ed as a research opportunity,

indicates that the viscoelastic properties of soft materials have not been studied with

the aim of developing a soft arti�cial tendon, which in combination with current

soft arti�cial muscles could deliver better performance in soft robotic applications

for human assistance.

Tendons are connective tissues that link muscles with bones. They have a non-

linear viscoelastic behaviour, i.e. the proportional relationship between the reac-

tion force experimented by the tendon and the applied deformation is not constant

throughout the whole range of possible deformations. This reaction force is also

dependent on the history of previous deformations. At rest, the collagen �bres (core

components of tendons) are in a relaxed wavy state. When the tendon experi-

ences a tensile force, the collagen �bres are easily stretched and realigned, opposing

little resistance to deformation. However, when the collagen �bres are completely

stretched they begin to o�er more resistance to deformation which is proportional

to the applied force. Finally, �bres can be stretched to their limit and failure of the

tendon will occur [69]. This non-linear response to the applied deformation is bet-

ter explained using Figure 2.22 where the characteristic S-shape curve for a tendon

stress-strain curve is appreciated.

The stress-strain curve in Figure 2.22 illustrates the mechanical properties of

a human tendon. The stress is described as the tensile force per cross-sectional

unit area experienced by the tendon. This stress causes the tendon to elongate.

In the chart, the elongation is represented as the strain, which is the tendon de-

formation in relation to its original length. Along with the stress-strain curve, the

force-elongation curve is also used to visualize the mechanical properties of tendons.

These experiments are performed in a static state, i.e. the strain rate is the same

throughout the whole experiment. Therefore, they do not provide any information

about the viscoelastic properties of the tendon.

Viscoelastic materials exhibit both elastic and viscous characteristics. Viscosity

describes a �uid's resistance to �ow, the more viscous a �uid is, the more slowly it

will �ow and vice versa. The latter suggests a time-dependent behaviour. In the case

of viscoelastic materials, this time-dependent behaviour is shown when subjecting

the material to di�erent rates of strain or deformation. For example, the stress-strain
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Figure 2.22: Tendon stress-strain curve. Image adapted from [68].

curve of the human tendon, illustrated in Figure 2.22, would have a greater slope

in the elastic region if a greater strain rate is applied. The viscoelastic behaviour

of the human tendon can be analysed with the following mechanical tests: stress

relaxation, creep (deformation over time) and hysteresis [69].

During the stress relaxation experiment, the tendon is subjected to a constant

deformation (length remains the same throughout the whole experiment). To avoid

plastic deformations, i.e. incorrect measurements, the parameter of deformation

for this experiment must not exceed the linear region of the material. The initial

force/stress triggered as a response of the applied deformation will decrease over time

(relax) until reaching equilibrium. From this experiment a chart of force against time

is generated (Figure 2.23). In a similar way, in the creep experiment a constant force

is applied to the material. The material will creep as time passes, in other words,

the deformation caused by the applied force will increase over time until reaching

equilibrium. A chart of deformation against time is generated (Figure 2.23). Finally,

during the hysteresis experiment the tendon is subjected to cyclic tests where a load

is applied up to a certain stress level and then released (unloading). The tendon

behaviour shows two di�erent paths, one for loading and one for unloading. Due

to the time-dependent behaviour of viscoelastic materials, each cycle will generate

40



2.5 The Muscle-tendon Component

di�erent load-unload paths since the time interval for each cycle to be executed are

intentionally de�ned to prevent the material from reaching equilibrium (Figure 2.24).

Figure 2.23: Tendon curves for the experiments of: (a) stress relaxation and (b)

creep. The experiments were executed several times under the same conditions, the

curve labelled n illustrates the tendon reaching a steady state where repeatability

between experiments is achieved. Image reproduced from [68]

Figure 2.24: Hysteresis of the human tendon. (a) Deformation chart shows both

loading and unloading paths for few cycles and (b) displacement chart shows 200

loading-unloading cycles. The preconditioned state of the tendon is reached for

cycles above 50. Images taken from [68, 70] respectively.

When performing mechanical experiments to �nd the tendon properties at fail-

ure, the obtained results are di�erent between a preconditioned and an uncondi-

tioned tendon, as proved in [70]. This e�ect is illustrated in Figure 2.23 as well, for
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both experiments, the tendon relaxation and creep are smaller for each new testing

cycle until reaching an equilibrium state, i.e. the preconditioning state. The previ-

ous set of experiments is useful to characterize the non-linear viscoelastic properties

of tendons and soft materials.

2.6 Modelling Tools for Soft Materials

The majority of the soft robotic applications implement soft materials from the fam-

ily of thermoplastic elastomers (TPE). These type of materials are known to have a

non-linear stress response, low sti�ness, high deformation lengths, time-dependent

and temperature-dependent stress response [71]. These mechanical properties are

similar to the ones found in biological skin or muscle tissue. Due to this, soft ma-

terials are being implemented in soft robotic applications. However, it is imperative

to have a reliable modelling technique to fully take advantage of the viscoelastic

properties of soft materials.

The stress response of soft materials, such as TPE is non-linear and viscoelastic.

The majority of the documented modelling approaches to predict the viscoelastic be-

haviour of soft material is based on the development of a mathematical constitutive

model. The Linear Viscoelastic Models (LVMs) are commonly used for this task

[72�75]. This is also the case when for the modelling of biological tissues [76]. The

LVMs are a set of mathematical models that use two basic components, a spring

and a dashpot, in di�erent con�gurations and quantities to describe the viscoelastic

mechanical behaviour of materials [77]. Inside this family of mathematical models,

there are a couple of them which, in theory, can describe the viscoelastic behaviour

of any material, as long as the required number of parameters is met. This imme-

diately imposes the restriction of having enough computational power to deal with

the model complexity when high accuracy is required.

The implementation of soft materials in soft robotic applications for human as-

sistance has recently gained more attention. Most of the e�orts are focused on im-

proving the traditional series-elastic actuator (SEA) by replacing its elastic element,

commonly a metallic spring, with a viscoelastic material, such as rubber. SEAs are

from the family of cable-driven actuators and are commonly paired with electric

motors. The main feature of these actuators is that they have an elastic element

between the actuator and the load. SEAs have greatly impacted the �eld of robotics,

speci�cally in legged robotics and powered orthoses, due to many bene�ts such as:
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greater shock tolerance, low output impedance, passive energy storage, and better

force feedback accuracy [78�80]. SEAs are now a mature actuation technology, and

as such, they have a well-de�ned trade-o�, caused by the �xed sti�ness provided

by linear springs traditionally used. More often than not, variable sti�ness is more

suitable for legged robots and powered orthoses. The latter limitation have been

addressed by developing variable sti�ness actuators [81], using non-linear metallic

springs [82], and very recently by using viscoelastic materials, such as polymers and

rubber [83�85]. However, most of these works, still face the challenge of accurately

modelling the mechanical behaviour of soft materials.

In [84], where the concept of a series-viscoelastic actuator (SVA) is �rst men-

tioned, the modelling of the soft material is based on the Burger Model, one of the

most complete LVMs, in combination with a controlling technique known as the

state space observer. The accuracy of the system was found to be proportional to

the complexity of the mathematical model used. The studied material in this work

was a rigid-acrylic based photopolymer (FullCure720). The reported control system

contained the viscoelastic model, the state space observer, and a cascaded force-

velocity scheme, in other words, a very complex and well thought control system for

a linear viscoelastic polymer. The developed SVA is illustrated in Figure 2.25.

Figure 2.25: Series-viscoelastic actuator proposed by Parietti et al. The end-e�ector

is rigidly mounted on the revolving lever (i), which also supports the laser sensor.

A Nylon line (ii) connects the end-e�ector handle to the high-precision piezoelectric

force sensor (iii), which is �xed to a rigid support [84].

Following this line of research, Rollinson et al. attempted to add viscoelasticity

to a SEA, this time a soft material is used, natural rubber, instead of a rigid polymer

[83]. The developed SEA has a rotary spring. Two di�erent types of rubber, and

a type of neoprene, were studied. In here, the stress response of the materials is
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considered linear and instead, the hysteresis of the material is modelled. Again, the

modelling of the soft material is based on one of the LVMs, the Standard Linear Solid

(SLS) model, which is slightly less complex than the Burger model. Thanks to the

proposed mechanical design for the rotary SEA, the reported stress response of the

studied rubbers was surprisingly linear under a speci�c range of deformations. The

authors concluded that more work is required to create better modelling techniques

for the hysteresis and non-linear behaviour of soft materials like elastomers. The

developed rotary spring is illustrated in Figure 2.26.

Figure 2.26: Developed soft rotary spring: a)photo and b)cross-section [83].

Following a more traditional approach, Schepelmann et al. incorporated vis-

coelasticity in cable-driven SEA by using a rubber material as the elastic element,

instead of the traditional metallic spring [85]. In here, no LVMs are used, instead

the non-linear stress response of the rubber is simpli�ed by �tting a second order

exponential curve to the stress-strain curve of the material. The main motivation of

this work is to tackle the limitations of SEA with non-linear springs (NLS), where

computer-aided manufactured (CAM) structures are used to de�ne a known de�ec-

tion trajectory of the spring, thus de�ning a torque trajectory. Essentially, CAM

structures can relate the spring deformation with the generated torque, allowing the

implementation of control systems. This work successfully validated the suitabil-

ity of rubber to be incorporated as part of a SEA (Figure 2.27). However, under

the limited range of testing parameters, the authors were not able to observe any

velocity-dependency on the stress response of the rubber. In the conclusions, a state

space observer is recommended to improve the accuracy of the reported forces trans-

mitted by the soft material, i.e. to allow the controller to compensate the hysteresis

and non-linear stress response of the material.

In an attempt to relieve the controller for such load, the latter work was con-

tinued by Austin et al. in [86], this time the focus was on developing a modelling
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Figure 2.27: Benchtop setup for rubber characterization and observer testing. The

load side of the rubber is �xed. Load cells in-line with the rubber give rubber

force measurements for testing. The choice of electric motors and transmission is

illustrated [85].

tool to better describe the complex behaviour of rubber. In here, the complexity of

modelling the non-linear and strain-dependent stress response of soft materials is ad-

dressed, for the �rst time, by upgrading the SLS model without greatly increasing its

complexity. A piecewise linearisation is implemented, to transform the equilibrium

spring in the SLS model into several springs in parallel which sequentially engages

in proportion to the strain applied to the material. The developed mathematical

model is called the Standard Linear Solid model with Strain-Dependent Sti�ness.

(Std. Lin. SDS). Although, the SLS is not the most complete model among the

LVMs, the reported accuracy of the developed model is impressive. The control sys-

tem implemented a state space observer, as well, which was capable of estimating

the torque generated by the rubber spring. However, despite the large improvement

in accuracy obtained by the developed Std. Lin. SDS, the hysteretic properties

of the rubber lead to instability at higher frequencies, suggesting that there is still

work to be done in this �eld.

2.7 Summary

The available literature suggests a growing interest in the research and develop-

ment of soft actuation technologies, soft perception systems, and control systems to

pair with the latter two. Also, and following the bio-inspiration driving the �eld of

Soft Robotics, many works are attempting to imitate the capabilities of the human

musculoskeletal system by developing soft actuators capable of behaving like the

human muscle-tendon component. This is more evident when looking at the avail-
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able works on Pneumatic Arti�cial Muscles (PAMs) where the actuator is used as

the contractile force generator element (muscle), and a �exible interface (tendon) is

used to transmit that force to the desired location. Similarly, established technolo-

gies such as electric motors, which can deliver forces in both directions of rotation,

are being used in combination with Bowden cables to create pulling forces. This

type of setup is known as a redundant system because more than one actuator is

required to control both directions of rotation of a joint. Moreover, the research and

development of new soft materials, such as the SMA and SMP, are also focused on

creating materials that can contract when stimulated. There is still plenty of work

to be done in this matter, which is why this is identi�ed as one gap in the body of

knowledge.

The majority of the literature is focused on testing a new soft actuation concept

in an open-loop environment, i.e. with no control system implemented. This is

caused by the fact that modelling the mechanical behaviour of a soft material is

very complex. Even the control system of the most documented work in the literat-

ure, the ankle-foot orthosis, does not implement a modelling technique to monitor

the behaviour of the PAMs, instead it is focused on extracting as many information

as possible from the environment and to use this to decide when and how to activate

the PAM [8]. The literature dealing with the control systems of soft robotic applic-

ations is limited. Recently, attempts of adding viscoelasticity to well-established

actuation technologies have been done. Speci�cally, viscoelasticity has the potential

to address many of the limitations found in series-elastic actuators. The available

literature on the subject is scarce but very well documented. In general, the re-

viewed works face a common challenge, the modelling of the viscoelastic properties

of the materials used to accurately estimate their reaction force or torque. Rubber

is the most common choice in these applications. Almost all of the documented

modelling approaches are based on the Linear Viscoelastic Models, for the predic-

tion of the material behaviour. However, the work performed by Austin et al. in

[86], is the �rst attempt to upgrade the potential of the LVMs using a Piecewise

linearisation method. The authors succeeded in developing a mathematical model,

called the Standard Linear Solid model with Strain-Dependent Sti�ness. (Std. Lin.

SDS) which achieved higher accuracy than traditional models. However, even with

the aid of controlling techniques such as the state space observer, the implemented

control system is still incapable of accounting for properties of the material, such

as hysteresis and the velocity-dependency in their stress response. Nevertheless, the
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developed mathematical model has the potential to be upgraded further by using

the same Piecewise linearisation method but on a more complex LVM. The latter

clearly indicates a growing interest in this �eld of research, its importance and a

current gap in the body of knowledge.

Therefore, two main gaps are considered in the body of knowledge which are ad-

dressed by this research. On the one hand, more research is required to understand

the functionality of the human musculoskeletal system, and to develop a soft actu-

ation technology which mimics the functionality of the muscle-tendon component.

On the other hand, there is a lack of reliable modelling tools to predict the complex

mechanical behaviour of soft materials being used in soft actuation technologies.
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Chapter 3

Design Guidelines for Assistive Devices
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3. DESIGN GUIDELINES FOR ASSISTIVE DEVICES

3.1 Introduction

The development of wearable robotic assistive devices requires a deep understand-

ing of human biomechanics. Speci�cally, the kinematic and kinetic parameters are

fundamental for the design stage and the assessment stage of an assistive device.

The kinematic parameters describe the human body motion in terms of the angle,

velocity, and acceleration of a joint. The kinetic parameters describe the forces

involved in the motion of a joint in terms of torque and mechanical power. The

characterization process of these parameters involves reviewing several clinical stud-

ies focused on gait analysis. Commonly, the scope of the latter process is limited

to the end-application of the assistive device, e.g. assisting healthy adults to walk

at the ground level. Therefore, the characterization of the kinematic and kinetic

parameters dictates the applicability of the assistive device, in terms of the end-user

characteristics. This important step in the design stage of an assistive device is often

overlooked. The limitations of the resulting device are then solved by over-sizing it.

This chapter introduces several techniques to facilitate the extraction of design

guidelines for the development of assistive devices through visual representation of

the kinematic and kinetic parameters taken from clinical studies on gait analysis.

The chapter is organized as follows.

The kinematic and kinetic parameters of the human lower limb during activities

of daily living (ADLs) are introduced. These parameters are extracted from clinical

studies focused on gait analysis. The underlying di�culties of extracting these

parameters from the available literature are discussed. Subsequently, the extracted

parameters are categorized and visually represented using di�erent chart designs.

Lastly, the bene�ts of each chart design, in the context of extracting design guidelines

for the development of assistive devices, is discussed.

3.2 Characterization of Kinematic and Kinetic Para-

meters for Activities of Daily Living

The kinetic and kinematic parameters of each joint are an important part of the bio-

mechanics of the human body. The kinematic parameters describe the human body

motion in terms of the joint angle, velocity, and acceleration. The kinetic parameters

describe the forces causing this motion, e.g. joint torque and power. Motion capture

is the most commonly used method to extract these parameters. However, other
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technologies such as soft strain sensors [52], electrogoniometers [87], and inertial

measurement units (IMU) have also been used. The process of characterizing these

parameters is very important for the development of any wearable robotic device.

This allows the intended device to be tailored for a speci�c application, it being

assisting an elder adult or enabling a disabled subject to move. Alternatively, the

kinetic and kinematic parameters can be also used to measure the e�ectiveness and

compatibility of an already available assistive device. Measuring the e�ectiveness

of an assistive device in this way is more convenient than calculating the metabolic

cost reduction, which involves specialized equipment [88].

The kinetic and kinematic parameters can be obtained from gait studies. These

studies di�er between one another in many aspects, in addition to the technology

of choice, such as subjects' gender, age, weight, etc., as well as the setup of the

experiments. Therefore, the following subsection describes the process of extract-

ing and processing the kinetic and kinematic parameters from gait studies. As

previously mentioned, these parameters are useful design guidelines for wearable

robotic devices. The gait studies compiled in the following section cover the main

activities of daily living (ADLs), which are: walking, ascending/descending stairs,

ascending/descending ramps and chair sitting down/standing up. In the context of

studying the human lower limb, the joints of interest are the hip, knee and ankle

joints.

3.2.1 Gait Analysis Data

In clinical studies focused on analysing the human gait, parameters regarding the

subjects involved and the experiment performed are commonly provided. Regarding

the subjects characteristics, information about their age, subject age, weight, height,

gender and health condition are included. Similarly, contextual information about

the experiment performed such as: loading conditions, plane geometry, and activity

of choice is provided. Subjects characteristics are always presented as mean values.

In a similar way, measured and calculated data, such as torque and power, are

presented in normalized values. The gait cycle is usually normalized using the

subjects height, whereas the joint torques are normalized using the subjects weight.

The latter is clearly expressed in the units of the reported values, being Nm/kg

for the joint torque, and W/kg for the joint mechanical power. Nonetheless, some

studies do not follow the same guidelines when reporting the obtained results, or

when normalizing the calculated values, preventing the reported information to be
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compared against other clinical studies [89].

The diversity on the subjects characteristics di�cult the comparison process

against similar clinical studies. Due to this, some clinical studies focus on studying

a common characteristic among all participants, such as age or health condition.

This is the case for the study in [90], where the study group is segmented in two

age groups. One group included subjects from 22 to 72 years old, meanwhile, the

subjects from the other group have ages ranged from 6 to 17 years old. With this

segmentation approach, the clinical study can present the results with respect to

age range. In some cases where the di�erence between age groups is very small, the

clinical study condense the reported data into a single dataset [89].

The technology of choice to extract the kinematic parameters of the human

gait, such as the joint angle, is motion capture. Similarly, the human body kinetics

parameters are extracted by measuring the ground reaction forces using force plates.

The latter is required to calculate the joint torque and joint power. Therefore, the

three most common parameters found in gait analysis studies are the angle, torque,

and power of the joint of interest. The gait cycle of the studied activity is usually

presented in a chart accompanied with tables to clearly indicates the maximum,

minimum and mean values of the gait cycle. The di�erence between the maximum

and minimum values of the kinematic and kinetic parameters of a gait cycle are very

important for the characterization process. Commonly, these values are provided

in the studies in the form of tables and charts [91, 92], in other cases the complete

experiment dataset is included [93]. The extraction of the parameter of interest is

straightforward when the data is presented in a form of a table. Alternatively, when

data is provided in the form of charts, the process of extracting it must be done by

visual inspection, which inherently add some degree of error to the extracted data

[94�98]. Likewise, it can be the case for some studies to focus on speci�c features of

the gait cycle, such as maximum and minimum values of each parameter; or to not

provide one or more of the parameters of interest (angle, torque or power). Due to

all these di�erent scenarios, the process of curating and compiling the data found

in clinical studies is very lengthily. The latter motivated the process described in

the following section in which the data of several clinical studies is compiled and

visually presented to serve as design guidelines for the development of soft robotic

applications for human assistance.
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3.2.2 Extracting Design Guidelines

The variations of the data from one experiment to another can be reduced by focus-

ing on the range obtained from the di�erence between the maximum and minimum

values of each parameter. This is illustrated in Figure 3.1a, despite the variations

between the maximum and minimum values from one experiment to another, the

actual range of each parameter is similar among all the experiments. The mean

range of motion for the hip joint angle throughout di�erent walking over-ground ex-

periments was found to be 44.63° (Figure 3.1a). Also, the greatest variation between

the mean range value and the range value of each experiment is 18% of the mean

value. The previous calculation can be used to decide design parameters of wear-

able robotic devices, such as which range of motion should be covered by the device

depending on which sector of the population is intended to be assisted. Alternat-

ively, the device can be tailored to cover as much of the population as possible by

choosing the maximum and minimum values of the range of motion, out of all the

experiments.

Di�erent design guidelines can be extracted when visually analysing other para-

meters together. For example, in Figure 3.1b , the parameters of the knee joint are

now compared against many experiments of stairs ascending/descending. Now, the

main feature is not the range of motion of the knee, but the characteristics of the

torque values. They appeared mirrored, in other words, the torque values required

for descending stairs are of similar magnitudes but opposite in direction. Also,

the amount required for ascending stairs is generally twice as much as the amount

required for descending stairs. The latter illustrates an optimization opportunity.

When designing a wearable robotic device for human assistance, the actuator is

chosen to satisfy a certain torque range of a particular activity. Without the char-

acterization of the parameters performed, the actuator is most likely to be oversized

to comply with the most demanding part of the activity. However, a di�erent ap-

proach could be proposed: agonist-antagonist actuators; a technique implemented

in several wearable robotic devices which at the same time complies with the actual

functionality of the human skeletal muscle system.

Another useful way of extracting design guidelines from the gait analyses is to

plot the range of a speci�c parameter against di�erent ADLs. To the best of the

author's knowledge, this approach has only been documented once in [100], where

the range of motion of the knee joint is compiled into a chart for 11 di�erent ADLs.

This concept, illustrated in Figure 3.2, can provide insight of two important design
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(a) Hip joint characteristics for walking over ground activities. The

weight next to the name of some activities dictates the load carried

by the subjects during the experiment [18]. Data collected from: (1)

[90], (2) [89], (3-8) [91].

(b) Knee joint characteristics for several stairs ascending/descending

experiments. The number enclosed in brackets represents the stairs

slope. Data collected from: (1) [95], (2-4) [99].

Figure 3.1: Clustered-stacked bar charts of reviewed gait analyses [18].
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parameters. On the one hand, the actuators meant for this application must be

capable of delivering torques in both directions of rotation, i.e. clockwise and anti-

clockwise. On the other hand, the selected actuation technology must meet the

torque requirements of the activity of interest. Figure 3.2 was constructed using the

mean range of the hip joint torque during di�erent activities [89�91, 94�98].

Figure 3.2: Torque range values during several activities. The values for the max-

imum and minimum torque are mean values from the data of all the di�erent gait

analysis experiments enclosed in one main activity. [18, 89�91, 94�98]

Another alternative of visual representation of the data can be done by group-

ing the range of a speci�c parameter and comparing it with any of the subjects'

physical characteristics, e.g. the age range. This is illustrated in Figure 3.3, where

the dependency of the subjects' age with the knee range of motion is evidenced.

The colour code used in Figure 3.3, the age ranges and knee ranges of motion are

presented in Table 3.1. The chart shown in Figure 3.3 concentrates the data from

three di�erent gait analyses, in which six age groups are contained. The approach

used in Figure 3.3 is to overlap areas of di�erent colours, each area represents the

range of motion of the knee for a speci�c age range. The area in which several areas

intersect can be appreciated due to the enabled transparency property. Neverthe-

less, the areas where three and two areas are intersected are manually highlighted by

a surrounding solid line and dotted line respectively, to improve their visualization.
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This simple intersection of areas can provide information regarding the required

range of motion to be delivered by the wearable robotic device with respect to the

aimed population sector. For example, if a wearable robotic device is aimed to as-

sist the population sector aged from 50 to 70 years old, then a range of motion of

the knee joint from 5° to 63° would su�ce to meet the requirements. The range

of motion is taken from the triple intersection of areas illustrated in Figure 3.3,

which can provide a certain degree of con�dence since three di�erent clinical studies

are compared. This approach can be used to compare other characteristics, e.g.

subject's weight against torque. Summarizing, the overlapping areas approach can

provide guidelines to avoid over sizing of wearable robotic devices by analysing the

intersection of di�erent areas which ultimately provides a degree of con�dence when

deciding design parameters.

Table 3.1: Colour code used in Figure 3.3 for each combination of age range and

knee range of motion [18].

Colour Code Knee Range of Motion (°) Age Range (Years) Clinical Study

Red 2.2 - 67.4 49 - 90 [100]

Green 5 - 66.5 6 - 17 [90]

Blue 4.5 - 63.5 22 - 72 [90]

Yellow 0 - 69 18 - 30 [89]

Magenta 0 - 69 50 - 70 [89]

Cyan 8 - 63.6 23 - 27 [91]

In this section the process of characterizing the human lower limb kinematics

and kinetics parameters during some ADLs is described. The relevant information

provided in gait analysis experiments, and the challenges faced when extracting it

from the clinical trials, are also explained. Data compiled for the activities of walk-

ing, ascending/descending stairs, ascending/descending ramps and chair standing

up are presented in the form of clustered stacked bar charts. This type of chart

allowed quick and easy detection of similarities between several clinical trials of the

same activity. In contrast, the spotted di�erences, as the ones for the knee torque

values during ascending/descending stairs, are indicators for optimization oppor-

tunities where instead of using a single actuator to satisfy the torque range, an

agonist-antagonist system is more suitable.

The reliability of the data can also be observed using the type chart of overlapping

areas with subjects' ranges of age against the knee ranges of motion. In other words,
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Figure 3.3: Comparison between subjects' age and the knee range of motion during

walking over ground. The areas surrounded by solid lines and dotted lines represent

the intersection between three and two areas, respectively. The overlapping squares

highlight the great similarity among the range of motion despite subjects' age. The

data used to create this chart is presented in Table 3.1 [18].

the speci�c ranges in which the data from di�erent experiments overlaps, gives a

measure of consistency which can be used to tailor the developed wearable device

coverage.

The chart style with ranges of motion versus activities, facilitates the choice of

the actuator type and dimension (depending on the activities of interest). The styles

used to represent the charts are kept as simple as possible while providing useful

information about the KKP. However, more complex plotting methods can be used.

Finally, a total of 12 charts are produced in Excel® using the compiled data from

the gait analyses. In favour of keeping the length of this section adequate, only two

out of the 12 charts are included. The remaining charts are in the Appendix A.

3.3 Summary

The characterization of the kinetic and kinematic parameters of the hip, knee and

ankle joints is performed by reviewing many clinical trials about gait analysis of

the lower limb. The collected data can be used as design guidelines when devel-

oping robotic devices targeted for human assistance. Therefore, many visualization
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techniques are proposed and analysed in this context. The latter work resulted in

a published conference paper (Section 3.2). In summary, the main �ndings of this

chapter are as follows:

The visual approach presented in Figure 3.1 makes use of clustered-stacked bars.

Visualizing the parameters of angle, torque, and power, against di�erent variations

of a speci�c activity in this way allows the extraction of design guidelines in terms of

the intended coverage of the assistive device. In other words, decisions to prioritize

speci�c walking speed, to mention one factor, can be made depending on the en

application of the assistive device. The visual approach presented in Figure 3.2

makes use of stacked bars to illustrate the full range of each parameter. This is

useful when deciding the capacity of the actuator to be implemented, specially when

implementing the antagonist-agonist functionality of a muscle group. In contrast,

the information in these charts can also be used to tailor half of the full range

of motion of the joint to reduce costs associated with actuators working in pairs.

Lastly, the visual approach presented in Figure 3.3 makes use of overlapping square

shapes. These shapes represent ranges of two variables of two variables of interest.

In the example provided in this chapter, the range of motion of the knee is compared

against the subjects age. The information in this chart allows the comparison of

physiological aspects of the subject against the joint range of motion. This allows

the intended assistive device to be �ne tune to a speci�c target group. In other

words, this allows the properly selection of the actuator to be implemented in the

assistive device.
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Chapter 4

Characterization of the Mechanical

Properties of Soft Materials
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4.1 Introduction

In Chapter 2, the trend in soft robotic applications for human assistance of mimick-

ing the human skeletal muscle system is identi�ed. This trend is mainly focused on

the contractile element (CE) of the muscle-tendon component. Recently, research

has been done on implementing soft materials as the elastic element of series-elastic

actuators (SEAs). This is motivated by the fact that viscoelasticity, found in biolo-

gical tissue and many soft materials, has the potential to overcome current limita-

tions on SEAs. This is inline with the literature, which states that polymers, such as

polyethylene, have similar mechanical properties as the human tendon. The literat-

ure available on the concept of series-viscoelastic actuators (SVAs) is very scarce and

is currently facing the challenge of accurately estimating the force/torque transmit-

ted by soft materials, such as rubber. One of the aims of this research is to develop

a reliable modelling tool to address the latter. Therefore, this chapter covers the

following points.

Firstly, a selection of di�erent o�-the-shelf soft materials is made from the family

of composite materials, speci�cally thermoplastic elastomers (TPEs). The selection

is based on the literature, which suggest that this type of materials have similar

viscoelastic properties as the human tendon. The materials are as follows: Poly-

ethylene Rubber (PR), Ethylene Polypropylene Rubber (EPR), Natural Rubber

with Polyester (NatPolR), Natural Rubber (NatR), Silicone Rubber (SR), Fluoro-

carbon Rubber (FR), and Nitrile Rubber (NR). All the materials are acquired from

RS Components UK®, with the exception of the Natural Rubber, which is acquired

from CoreZone Sports® in the form of resistance bands of di�erent thickness.

Secondly, the mechanical property of viscoelasticity of this type of materials

is discussed. Thirdly, the characterization of the mechanical properties of these

materials is presented. In here, the mechanical tests of tensile strength and stress

relaxation are performed to extract both the elastic and viscoelastic properties of the

materials. As previously mentioned, the study of the creep and hysteresis e�ect is

out of the scope of this research. Finally, the collected data is processed in Matlab®

prior to creating the visual representation of the studied properties.

4.2 Mechanical Properties of Soft Materials

The selection of soft materials to be studied in this research is based on the literature

about tendon reconstruction applications. A comprehensive review about the usage
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of synthetic materials in tendon reconstruction is made by Andullah in [101], where

the most common materials used as arti�cial tendons and for tendon reconstruction

are reported as: carbon, polyester, polytetra�uoroethylene, among others. The

latter suggest that polymers are highly compatible with the human skeletal system

and have similar mechanical properties as the human tendon. This assumption is

further veri�ed in the study performed by Duenwald et al. in [102], which is about

the viscoelastic relaxation and recovery of the human tendon. In the previous work,

a high density polyethylene material is tested to �nd great similarities between this

material and the mechanical properties of the human tendon. In fact, the viscoelastic

properties of the human tendon during loading and unloading are similar to the

ones found in polyethylene. However, high density polyethylene cannot sustain high

strains without su�ering plastic deformations nor it has a very fast elastic response.

Among the current developments in soft orthoses, silicone rubber is a common

choice, due to its high compliance, high elasticity and softness. Silicone rubber

is usually implemented to create in�atable elements, but it is also known to have

non-linear elastic properties, as reported in [103]. These �ndings suggest that the

limitations of polymers, in terms of their elasticity, could be circumvented when com-

bined with elastomers, such as rubber. A material with the latter characteristics,

is known as a composite material. Many composite materials are created by inject-

ing polymer particles, such as the previously mentioned polyethylene, into a rubber

mixture. Thanks to the advances in manufacturing of composite materials, there is

a wide variety of commercially available materials that �t with the requirements of

this research. Due to the latter information, the selection of the soft materials to be

studied in this work are from the family of composite materials, as follows: Poly-

ethylene Rubber, Ethylene Polypropylene, Natural Rubber with Polyester, Natural

Rubber, Silicone Rubber, Fluorocarbon Rubber, and Nitrile Rubber. All the ma-

terials are acquired from RS Components UK®, with the exception of the Natural

Rubber, which is acquired from CoreZone Sports® in the form of resistance bands

of di�erent thickness.

The soft materials studied in this work belong to the family of thermoplastic

elastomers or TPE. These materials are created by mixing a thermoplastic material,

such as natural or synthetic rubber, with other materials, such as carbon and sulfur.

This process is called vulcanization which creates cross-linked structures inside the

material. Since elastomers are based on rubber, the terms elastomer and rubber are

often used interchangeably. Elastomers are known to have nonlinear stress response,
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low sti�ness and to achieve high deformation lengths. Some elastomers can fully

recover their shape after stretched many times their length. They are also known

to exhibit both elastic and viscoelastic properties. The latter means the stress

response of elastomers is also time-dependent [71]. The main mechanical properties

of elastomers are described in following paragraphs.

4.2.1 Elasticity

Elasticity, or elastic behaviour, refers to the ability of a material to be deformed

up to a certain length and completely recover its shape and dimensions when the

load deforming it is removed. Elasticity also refers to ability of a material to comply

with the law of constant proportionality between the stress and the strain, described

by Hooke's Law. However, elastomers are not purely elastic materials and tend to

have a nonlinear stress-strain response, i.e. they do not obey Hooke's Law over

the whole range of strains in the sense that the proportionality between the stress

and the strain does not remain constant. This typical nonlinear behaviour in the

stress-strain curve of elastomers is illustrated in Figure 4.1.

Figure 4.1: Typical stress-strain curve of elastomers. There are three main regions:

the toe region (1.0 < λ < 1.5), the elastic region (1.5 < λ < 3.5), and the yield/failure

region (λ > 3.5) [71].

The stress-strain curve of elastomers has three main regions: the toe region

(1.0 < λ < 1.5), the elastic region (1.5 < λ < 3.5), and the yield/failure region

(λ > 3.5) (Figure 4.1). In the toe region, the internal molecular chains of the

material are misaligned, experiencing greater friction forces which greatly oppose to

initial deformations. In contrast, when the molecular chains are aligned the friction
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forces decrease and the material deforms as a whole. The latter conditions dictates

the beginning of the elastic region, in which the slope of the curve (sti�ness) is

slightly smaller than in the toe-region. The elastic region of many materials exhibit

a proportional or linear relationship between the stress and the strain. This is not the

case for elastomers, where most of them exhibit a nonlinear relationship. When the

internal molecular chains have been elongated to its maximum length they demand

higher forces to fail, this is observed as a peak in the stress-strain curve which also

highlights the beginning of the yield/failure region [71].

Elastomers exhibit elastic behaviour over a certain range of deformations, i.e.

the elastic region or elastic limit. Beyond this limit the material is likely to undergo

plastic or permanent deformation, this means the material will not recover its ori-

ginal shape completely. In some cases, the elastic limit is not easily visible on the

stress-strain curve of a material, and instead the proportional limit is used to ap-

proximate the location of the elastic limit. The proportional limit is de�ned as the

point in the stress-strain curve where the nonlinear response (change in the curve's

slope) is �rst observed. Another way to approximate the elastic limit of a material

is based on using the yield strength, which is de�ned as the largest stress value on

the curve, or the �rst point in which an increase in strain occurs without an increase

in the stress [104]. These are some of the parameters that can be extracted from

the tensile strength test and are useful to delimit the operating conditions of the

materials. For this reason, particular care is put into accurately de�ning the elastic

region, hence the safe operating conditions, of the studied soft materials. This is

better described in Section 4.3.1.2.

4.2.2 Viscoelasticity

Viscoelasticity, is a property of some materials which are not purely elastic, i.e. do

not fully obey Hooke's Law, nor purely viscous, i.e. do not fully obey Newton's

Law in the sense that stress is not proportional to the rate of change of the strain

with time. In other words, the stress experienced by viscoelastic materials depends

on both the strain and the strain rate applied. An example of a purely elastic

material is a spring; whereas an example of a purely viscous material is a dashpot.

The mechanical model of a viscoelastic material contains both elements, which can

be arranged in di�erent con�gurations. The set of mathematical models created

out of these di�erent con�gurations are known as the Linear Viscoelastic Models

(LVMs). The time dependency or viscosity, of viscoelastic materials is appreciated
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in phenomena such as creep, stress relaxation, hysteresis, the Mullin's E�ect and in

the Van der Waals forces.

Stress relaxation and creep are both time-dependent phenomena observed in

elastomers. On the one hand, stress relaxation refers to the decrease over time

of the stress experimented by a material when subjected to a constant strain (or

deformation). On the other hand, creep refers to the increment over time of the

material strain when subjected to a constant stress (or load). The latter phenom-

ena is observed in elastomers because they are composed of an internal network of

molecular chains. Inside this network, entanglements form naturally. According to

J. Bauman in [71], stress relaxation is mainly caused by the slipping of these entan-

glements ultimately causing a loosening of force applied by the network of molecular

chains. Stress relaxation and creep occur in both constant and cyclic deformations.

There are two mechanical tests designed to study these behaviours, from where the

relaxation modulus and creep modulus of a material can be extracted [105].

Hysteresis in a material is de�ned as the mechanical energy dissipated as heat

when the material is undergoing deformations. This phenomenon is observed in a

loading-unloading cycle, where the stress trajectory of the material while loading

(extension) is di�erent than the trajectory during unloading (retraction), as illus-

trated in Figure 4.2. Hysteresis is mainly caused by internal friction of the molecular

chain, also known as Van der Waals forces, in both elongation and contraction. Van

der Waals forces are caused by the momentary bonding experienced between mo-

lecular chains that are close together. This constant making and breaking of bonds

caused by deforming a material produces heat which ultimately becomes a mechan-

ism to dissipate mechanical energy. This energy is represented as the enclosed area

in Figure 4.2. Stress relaxation and creep play a role in the amount of hysteresis

experienced by a material in each consecutive loading-unloading cycle. The e�ect of

hysteresis alone can be isolated by subjecting the elastomer to a conditioning pro-

cess (preconditioning) in which it undergoes several loading-unloading cycles until

the stress response stops changing with every new cycle.

The Mullin's e�ect is another important phenomenon in the mechanical beha-

viour of elastomers. This e�ect refers to the breakage of tense molecular chains

resulted from the manufacturing process of the material. Therefore, the very �rst

time the material is subjected to deformations it exhibits a larger stress response in

comparison to consecutive deformations. The latter is also referred to as a weaken-

ing of the material. This e�ect is more dramatic than the stress relaxation but can
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Figure 4.2: Hysteresis in stress-strain curve. [71].

be easily avoided when preconditioning the material. Having de�ned the expected

mechanical properties of elastomers, the mechanical tests of tensile strength and

stress relaxation are described in the following section.

4.3 Characterization Process

In this section, the mechanical tests of tensile strength and stress relaxation, per-

formed as part of the characterization process, are described. The tests are per-

formed in an Instron 3369 Dual Column Testing System equipped with a 50 kN load

cell, at room temperature (25 ° C). The experimental data is expected to contain

some noise due to the accuracy limitations of the available load cell. The algorithm

implemented to �lter this noise is described in the next section. As previously men-

tioned, the elastomers selected for this research are: Polyethylene Rubber (PR),

Ethylene Polypropylene (EPR), Natural Rubber with Polyester (NatPolR), Natural

Rubber (NatR), Silicone Rubber (SR), Fluorocarbon Rubber (FR), and Nitrile Rub-

ber (NR). The Natural Rubber material is acquired from CoreZone Sports® and

comes in the form of resistance bands of di�erent thickness. The other materials

are acquired from RS Components UK®, and come in the form of a rectangular

sheets. Laser cutting was used to extract individual specimens from each material
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sheet with the layout illustrated in Figure 4.3, as recommended in the Standard

Test Method for Vulcanized Rubbers - Tension (ASTM D412) [106]. Finally, all the

specimens were preconditioned prior to testing by applying a small deformation to

them.

Figure 4.3: Specimen Type C Dumbbell Layout from the ASTM D412 [106]. In this

example, the specimen thickness is 3mm, the width is 6mm, and the initial length,

lo, is 33mm.

4.3.1 Tensile Strength Test

In a tensile strength test the material is loaded to failure at a certain deformation

(strain) rate. The main purpose of this test is to extract the stress-strain curve of

the material. From the stress-strain curve, the elastic properties of the material,

such as sti�ness, elastic modulus, ultimate strain, ultimate stress, elastic limit and

yield strength, can be extracted.

The tensile strength test performed in this work is in accordance with the Stand-

ard Test Method for Vulcanized Rubbers - Tension (ASTM D412) [106]. Also, the

Standard Test Method for Tensile Properties of Plastics (ASTM D638), was con-

sulted on how to interpret the obtained stress-strain curves [107]. In here, it is

recommended to elongate the material specimen until failure using a deformation

rate of 500 mm/min, whenever possible. However, under certain circumstances

where the previous deformation rate is not suitable, the test can be performed using

the deformation rate of 250 mm/min. The latter was required for the silicon rubber,

natural rubber and some resistance bands, where the gripper of the testing machine

was not able to hold the material during the entirety of the test. In addition to

the previous two deformation rates, a third one of 50 mm/min is used whenever

possible. In summary, most of the materials are tested using at least two out of the

three deformation rates of 50, 250 and 500 mm/min. The decision of characterizing
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the mechanical behaviour of the materials under di�erent strain rates is motivated

by the known velocity-dependency of the stress-response of this type of materials.

This will be useful during the modelling stage. The exact number of tests performed

to each material is summarized in Table 4.1.

Table 4.1: Number of specimens per type of test.

Type of Rubber Thickness 50 250 500

mm mm/min mm/min mm/min

Ethylene Polypropylene 1.5 16 � 5

Fluorocarbon 1.5 8 8 5

Natural with Polyester 1.5 11 5 1

Nitrile 1.5 8 7 6

Silicone 1.5 15 7 �

Polyethylene 6 13 7 1

Natural (Resistance Bands) 0.33 � 1.49 1 33 11

The testing machine used for these experiments output the following parameters:

reaction force, elongation, and time. In this work, the conventional parameters of

stress, σ, and strain, ε, are used instead of the reaction force, F , and elongation,

∆L. The latter is calculated using the initial length lo = 33mm, and cross-sectional

area Ao, of the specimen, illustrated in Figure 4.3 and Table 4.1, respectively. Then

it follows that σ = F/Ao, and ε=∆L/lo.

4.3.1.1 Data Processing

The main objective of the data processing stage is to get rid of any noise added

to the experimental data, normally due to sensor limitations, and also to �lter out

any undesired data. Removing noise from the data, i.e. �ltering or smoothing,

is avoided whenever possible because meaningful data can be lost in the process.

Unfortunately, some of the collected datasets showed signs of high frequency noise

which make it vary rapidly. A smoothing algorithm was applied to these datasets.

In addition to noise, there are two sections of the collected stress-strain curve which

are not desired. The �rst one is the section of the curve beyond the failure point of

the material, when the stress value precipitates to zero. The working conditions of

the soft material are desired to be limited to its elastic region, therefore, the �nal

section of the stress-strain curve is not critical for the modelling of the materials
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behaviour. The second undesired section of the stress-strain curve is located at the

very beginning. According to the literature, the very �rst portion of the stress-strain

curve can be contaminated with phenomena such as: take-up of slack, and seating

of the specimen. This e�ect was observed for most of the studied materials in here.

The process of how to get rid of this phenomenon is called toe compensation (for

a detailed description, refer to [107]). The mentioned sections are illustrated in

Figure 4.4.

Figure 4.4: Undesired data on the tensile strength results. On the top left, the take-

up slack phenomenon at the beginning of the experiment is observed. On the right,

the di�erent failure points of each specimen from the same material are highlighted.

The stress-strain curve from di�erent specimens of the same material is expected

to be slightly di�erent, as illustrated in Figure 4.4. This variability is caused by many

reasons such as the manufacturing process, temperature, and micro-�ssures inside

the material due to handling. For this reason, and as recommended in [106, 107], the

engineering ultimate values of stress σue and strain εue are reported as the median

value, per strain rate, from all the tests for a single type of material. Similarly, the

previously mentioned variability is removed by calculating the mean value along the

available stress-strain curves. The latter generates a single stress-strain curve from
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all the specimens involved in a test. This is required for the modelling process.

The impact of the abrupt changes around the end section of the stress-strain

curves, caused by the di�erent failing points of each specimen (Figure 4.4) are illus-

trated in Figure 4.5. The presence of this variation is not critical for the modelling

stage because the soft material is unlikely to be elongated to such lengths in a real

wearable robotic application. However, the decision of discarding this section of the

curve in favour of calculating the mean ultimate values of stress σu and strain εu,

is made. This section of the curve is also not included when generating the �nal

stress-strain curves of the materials.

Figure 4.5: Abrupt changes observed at the last portion of the stress-strain curve,

caused by the di�erent failure points for each specimen. This phenomenon is ob-

served after unifying the data from all individual specimens of a speci�c strain rate,

into a single stress-strain curve.

The processing algorithm, developed in Matlab ®, is applied to the datasets

with large amount of noise. These datasets were identi�ed by looking at positive

and negative peaks, speci�cally by looking at the mean absolute di�erence (MAD).

Any dataset with peaks having a MAD greater than zero is considered noisy and

subsequently �ltered out. The �ltering of the noise is done using the smoothdata

function with the Savitsky-Golay algorithm. This function requires a window para-

meter to which the smoothing algorithm is applied, the larger the window, the
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greater the smoothing. However, a large window size also introduces a bias or o�set

to the extreme points of the data. This trade-o� is described in [108]. Due to this,

the chosen window size is based on the amount of data contained in one second. In

this way the window size depends on both the strain rate and the sampling frequency

for each case. The implemented data processing is summarized as follows:

1. Load raw data from tensile strength tests which contains the test timestamp,

applied elongation and measured reaction force (load).

2. Discard portion of the stress-strain curve beyond the failure point.

3. Extract engineering ultimate load and ultimate displacement, latter converted

to stress and strain.

4. Discard take-up slack phenomenon.

5. Unify processed data from all specimens into a single dataset by calculating

the mean value.

6. Smooth datasets which have a peak-to-peak MAD greater than zero in the

initial portion of the curve.

7. Discard negative o�set induced by processing and smoothing.

8. Calculate σ = F/Ao, and ε = ∆L/lo .

4.3.1.2 Elastic Properties of the Material

One of the main parameters to extract from the stress-strain curves is the elastic

limit of each material. As previously mentioned in Section 4.2, this parameter

dictates the maximum amount of deformation a material can sustain without losing

the ability to fully recover its original shape. Commonly, the proportional limit is

used to approximate the location of the elastic limit, and by extension, the elastic

region. The proportional limit is the point in the curve where the proportionality

between stress and strain becomes nonlinear. It can be safely assumed that the

elastic region of the material is located below this point. However, most elastomers

do not have a clear elastic region due to their nonlinear stress-strain curve, hence the

proportional limit cannot be obtained. Under this circumstance, the elastic region

of the material can be approximated using the yield strength of the material. The

latter is de�ned as the �rst point in the curve where an increment in strain happens

without an increment in the stress, in other words when the slope becomes zero or

even negative [107]. The yield strength is inside the region of plastic deformations

of the material, hence this parameter by itself is not a safe way to approximate the

elastic region.
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A better alternative to approximate the elastic region is the o�set yield strength.

This parameter requires an o�set strain value, and the elastic modulus E (slope of

the curve) at a speci�c strain, to be calculated. In the literature, an o�set strain

of εoffset = 0.02, or 2%, is recommended for plastics and elastomers [109]. This

recommendation is mainly to allow comparisons between di�erent laboratories data

and does not indicate a goodness of �t when approximating the elastic region or

the yield point of a material. In here, a strain o�set εoffset = 0.2, or 20%, is

chosen due to the large values of elongation achieved by most of the materials. The

main recommendation to calculate E is to choose a strain range inside the initial

part of the stress-strain curve in which a linear behaviour can be observed. The

elastic modulus is then approximated using a function �tting method such as linear

regression.

The stress-strain curves of all the materials studied under di�erent strain rates

are presented in Figures 4.6 to 4.9. The optimal strain range for E is extracted

by visual inspection of the stress-strain curves illustrated in Figures 4.6 to 4.9.

The process to obtain the stress-strain curve of the Natural Rubber material is

longer than for the other materials, due to the di�erent available thicknesses. This

material comes in the form of resistance bands commonly used in rehabilitation. A

total of two di�erent batches are acquired. Each batch contained one band for each

strength level, a total of six levels. The weakest band is the tinniest, whereas the

strongest band is the thickest. The measured reaction force of one band from the

same strength level varied from one batch to the other. The measured thickness, per

type of resistance band, is not consistent from batch to the other. This is directly

related to manufacturing practices and is reported in the literature [110]. For this

reason, the individual thickness of each type of rubber band, from each batch is used

to convert the raw data to the �nal stress-strain curve. With this, the impact from

the latter di�erences is decreased and the material behaviour is better captured.
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(a)

(b)

Figure 4.6: Stress-strain curves, during di�erent strain rates, for the (a) EPR and

(b) FR materials. On the bottom right, the initial section of the curve is presented.
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(a)

(b)

Figure 4.7: Stress-strain curves, during di�erent strain rates, for the (a) NatPolR

and (b) NR materials. On the bottom right, the initial section of the curve is

presented.
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(a)

(b)

Figure 4.8: Stress-strain curves, during di�erent strain rates, for the (a) PR and (b)

SR materials. On the bottom right, the initial section of the curve is presented.
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Figure 4.9: Stress-strain curve, during di�erent strain rates, for the NatR. On the

bottom right, the initial section of the curve is presented.

The velocity-dependency on the stress response of elastomers is also illustrated in

Figures 4.6 to 4.9. In general, for larger strain rates, the materials exhibited a larger

stress response. Moreover, a large di�erence in the ultimate values of the stress-strain

curve of the Natural Rubber with Polyester material at 500 mm/min is observed

in comparison to the other two curves (Figure 4.7a). This is a side e�ect from the

uni�cation step in the processing of the data, which is being ampli�ed in here due to

the small number of datasets involved in the tensile strength test for 500 mm/min

(Table 4.1). Also, the Natural Rubber and Fluorocarbon materials showed signs of

crystallization, a phenomenon that occurs when the internal molecular chains of the

material are completely extended and greatly oppose to further deformation, hence

the increase in sti�ness just before the failure point [71].

Most of the materials have two regions in which the proportionality between the

stress and strain appears to be constant. This is inline with the expected nonlinear

behaviour from elastomers previously described. The slope of these regions, i.e. the

sti�ness, can be approximated by linear regression. A method such as the yield

o�set strength can be used to separate these regions into an initial and small elastic

region, and a �nal and large elastic region. Therefore, the o�set yield strength, σy
and εy, is obtained and illustrated in Figures 4.10 to 4.16.
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(a)

(b)

(c)

Figure 4.10: O�set Yield Strength for the FR material
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(a)

(b)

(c)

Figure 4.11: O�set Yield Strength for the NatPolR material
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(a)

(b)

(c)

Figure 4.12: O�set Yield Strength for the NR material
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(a)

(b)

(c)

Figure 4.13: O�set Yield Strength for the PR material
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(a)

(b)

(c)

Figure 4.14: O�set Yield Strength for the NatR material
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(a)

(b)

(c)

Figure 4.15: O�set Yield Strength for the SR and EPR (50mm/min) material.
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Figure 4.16: O�set Yield Strength for the EPR (500mm/min) material

In Figures 4.10 to 4.16, the elastic region is approximated by using the o�set yield

strength parameter, described previously. The values for the ultimate strength, yield

strength, and the elastic modulus at the elastic region, are also provided. Any value

below the o�set yield strain can be assumed to be inside the elastic region of the

material, hence the material will recover its original shape after undergoing any

deformation inside this range of values. Having delimited the elastic region and its

elastic modulus (now Esmall), the slope of the second linear portion of the curve, i.e.

the elastic modulus Elarge, can be approximated.

The elastic properties of the material are compiled in Table 4.2. The ultimate

values σue and εue are reported as the median value from all the specimens of a

speci�c test type. The yield values σy and εy are obtained using the o�set yield

strength method. The parameters Esmall and Elarge are the elastic modulus at the

initial section, and middle section of the stress-strain curve. Also, Esmall is the

most useful parameter for assessing the performance of a material in a real robotic

application, because it describes the sti�ness of a material inside the elastic region,

i.e. safe working conditions. In this regards the PR material has the smallest value,

whereas the NatR material has the largest.

4.3.2 Stress Relaxation Test

The stress relaxation test allows the extraction of the viscoelastic properties of the

materials, i.e. the time-dependent properties. In this test, a prede�ned and constant

elongation, also called initial strain εo is applied to the material specimen. The ma-

terial is held in place for the whole duration of the test and the stress response is
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Table 4.2: Elastic properties of the selection of soft materials. The materialas

are: Polyethylene Rubber (PR), Ethylene Polypropylene Rubber (EPR), Natural

Rubber with Polyester (NatPolR), Natural Rubber (NatR), Silicone Rubber (SR),

Fluorocarbon Rubber (FR), and Nitrile Rubber (NR).

Materials Speed σue εue σu εu σy εy Esmall Elarge

mm/min MPa MPa MPa MPa MPa

EPR
50 8.48 7.56 7.67 6.74 1.44 0.54 3.23 0.99

500 9.59 8.84 9.16 8.41 1.39 0.51 4.16 1.1

FR

50 4.36 3.97 3.96 3.56 1.5 0.47 4.83 0.65

250 4.41 3.93 4.22 3.57 1.78 0.45 5.95 0.58

500 5.35 4.29 4.87 4.07 1.91 0.45 6.78 0.61

NatPolR

50 3.57 1.19 3.08 0.91 2.12 0.41 9.97 2.05

250 4.06 1.19 3.91 1.09 2.51 0.43 10.74 2.28

500 4.59 1.64 4.59 1.64 2.52 0.48 8.77 1.9

NR

50 3.55 3.57 3.36 3.36 1.41 0.5 4.29 0.64

250 3.65 3.62 3.58 3.43 1.47 0.5 4.63 0.69

500 4.62 4.61 4.37 4.34 1.48 0.5 4.72 0.72

PR

50 0.3 1.87 0.28 1.59 0.18 0.48 0.58 0.11

250 0.33 1.97 0.31 1.83 0.19 0.45 0.66 0.1

500 0.32 1.97 0.32 1.97 0.2 0.49 0.64 0.1

SR
50 6.03 5.77 5.26 4.22 1.1 0.53 3.26 1.08

250 5.68 4.27 5.52 4.08 1.15 0.54 3.26 1.35

NatR

50 9.43 13.02 9.37 12.93 0.61 0.69 1.01 0.33

250 15.88 12.11 7.38 11.27 0.69 0.74 1.11 0.41

500 11.93 12.26 6.61 11.22 0.73 0.71 1.19 0.43

recorded. The material will relax over time, i.e. the stress response will decrease.

Similarly as for the tensile strength test, di�erent combinations of test duration and

initial strain values are chosen for the tests. Also, a varying number of specimens

are included in each test. Some of these combinations are based on similar char-

acterization processes available in the literature in where the duration time is no

longer than 200 minutes [110, 111]. Nonetheless, a second test is proposed with a

shorter duration. The diverse parameters used in the tests are aimed to create a

richer dataset. As a recommendation, the value for the applied εo must fall bey-
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ond the elastic region of the material to avoid plastic deformation, i.e. irreparable

damage. However, for highly elastic materials, such as elastomers, large values of

εo are used in the literature. Also, the material must be elongated from zero strain

to the value of εo as fast as possible. Therefore, the strain rate chosen for this

test is 500 mm/min. With this in mind, the �rst test is performed using relatively

large values of εo which are beyond the elastic region of the materials, identi�ed in

Section 4.3.1.2. For this case, the test duration is the longest, of 180 minutes. A

second test is performed using εo values inside the elastic region of the materials

and with a shorter duration of 15 minutes. The parameters for the performed tests

are compiled in Table 4.3.

Table 4.3: Stress relaxation tests parameters and total collected datasets.

Test Parameters EPR FR NatPolR NR PR SR NatR

1

∆Lo (mm) 5 5 7 6 3 6 40

εo 0.15 0.15 0.21 0.18 0.09 0.18 1.21

Duration (minutes) 15 15 15 15 15 15 15

Datasets 5 5 5 5 5 5 2

2

∆Lo (mm) 20 10 6 5 4 15 -

εo 0.61 0.3 0.18 0.15 0.12 0.45 -

Duration (minutes) 180 180 180 180 180 180 180

Datasets 1 1 1 1 1 1 -

Similar to the tensile strength tests, the collected data is processed prior to the

extraction of the relevant parameters. The data of interest is the one found after the

machine has reached the prede�ned εo value. In here, several smoothing algorithms

such as, moving average, Gaussian-weighted moving average, and the Savitzky-Golay

algorithm, are analysed. During testing of these algorithms, a direct relationship

between the decrease in the value of the initial stress σo, and the selected window

size, is observed. The selected window size is based on the sampling frequency and

the duration of the test. The Savitzky-Golay algorithm has the least impact on the

initial stress σo in relation to the achieved smoothing. Therefore, this algorithm is

chosen for the smoothing of the stress relaxation curve.

84



4.3 Characterization Process

4.3.2.1 Stress Relaxation Properties

The stress relaxation test is useful for approximating the time relaxation constants

of the materials. Commonly, viscoelastic materials have more than one relaxation

constant. This is caused by the many number of internal molecular chains which

relax at di�erent rates. The stress relaxation curve of viscoelastic materials has a

decaying exponential behaviour. This known mathematical function, in combina-

tion with the Linear Viscoelastic Models (LVMs), can be used to approximate the

time relaxation constants of the materials. The LVMs have the �exibility to get as

complex as required by adding extra elements to the model. The number of relax-

ation constants that can be extracted from the stress relaxation curve is directly

proportional to the number of exponential functions contained in the LVM. This is

described in detail in Chapter 5. The stress at the starting and ending points of the

test, σo and σend, respectively, are the minimum required parameters to approximate

one relaxation constant of the material using a LVM. Another parameter of interest

is the achieved stress relaxation, which is de�ned as follows:

S.R. = 100

(
σo − σend

σo

)
(4.1)

The parameters extracted from the stress relaxation test are compiled in Table 4.4.

The obtained stress relaxation curves of all the materials are illustrated in Fig-

ures 4.17 and 4.18. The values of σo and σend are obtained by �nding the median

value of all tests included in each scenario, using the collected raw data. The values

of the S.R. are very similar in both tests, in terms of the duration of the test and the

chosen value for εo. This means most of the S.R. happens very early into the test,

and that only one relaxation time constant is required to model the stress relaxation

of these materials.

Table 4.4: Stress relaxation parameters for the selection of soft materials.

Test Properties EPR FR NatPolR NR PR SR NatR

1

σo (MPa) 0.61 0.84 1.22 0.77 0.06 0.61 2.15

σend (MPa) 0.42 0.27 0.80 0.55 0.02 0.43 1.82

S.R.(%) 32 67 35 29 63 31 15

2

σo (MPa) 1.28 1.13 1.18 0.72 0.07 1.11

σend (MPa) 0.89 0.41 0.76 0.55 0.03 0.80

S.R.(%) 31 63 36 24 51 28
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(a) Caption

(b) Caption

Figure 4.17: Stress Relaxation curves for (a) 180 minutes and (b) 15 minutes, of the

EPR, FR, NatPolR, NR and SR materials. Di�erent values of εo are investigated.
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(a) Caption

(b) Caption

Figure 4.18: Stress Relaxation curves for (a) 180 minutes and (b) 15 minutes, of the

PR, and NatR materials. Di�erent values of εo are investigated.
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4.4 Summary

In this chapter, the characterization process of the viscoelastic mechanical properties

of a selection of seven di�erent thermoplastic elastomers (TPEs) is presented. For

this, the mechanical tests of tensile strength and stress relaxation are performed. In

the tensile strength test, the materials are elongated until failure using up to three

di�erent strain rates. This decision is aimed to capture the velocity-dependent

stress response of the materials and to create a richer dataset for the modelling

stage. The algorithm used to condition the collected data is included is also de-

scribed. The smoothing algorithm applied to both mechanical tests is the Savitsky-

Golay algorithm. In the case for the Natural Rubber material, inconsistencies in the

measured thickness of a type of band, from one batch to the other, are detected.

Nevertheless, the mechanical behaviour of the material is captured accurately in the

stress-strain curves. This suggests a linear proportionality between the thickness of

the material and the the strength of the material. The elastic region of the materials

cannot be easily identi�ed due to the non-linear stress-strain curve of the materials.

Therefore, the elastic region is approximated using the o�set yield strength para-

meter. This region is very important to delimit the working conditions of the soft

materials in a real robotic application. Finally, the ultimate values of strain and

stress, the elastic region location, the elastic modulus in two distinctive regions of

the curve, and the o�set yield strength parameters, are reported. The Esmall is the

most useful parameter for assessing the performance of a material in a real robotic

application, because it describes the sti�ness of a material inside the elastic region,

i.e. safe working conditions, in contrast to the ultimate strength values. In this

regard the PR material has the smallest value, whereas the NatR has the highest.

The performed stress relaxation tests can be divided into two sets. One with a low

deformation, and low duration. The other, with large deformation, large duration.

Regarding this, the achieved stress relaxation of the materials is very similar for both

cases. Knowing the resemblance of the stress relaxation curve with an exponential

decaying function, the latter �nding suggests that only one time relaxation constant

is responsible for the majority of the S.R. achieved. This hypothesis will be explored

in the modelling stage.
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5.1 Introduction

In this chapter, two modelling tools, based on mathematical models, for the pre-

diction of the viscoelastic properties of seven soft materials are developed. These

models are the PL-SLS model and the PL-Wiechert model. The work carried out in

this chapter is inspired on the piecewise linearisation (PL) method described by Aus-

tin et al. [86]. The PL method has been proven successful in enabling the Standard

Linear Solid (SLS) model to account for the strain-dependent stress response of soft

materials. The model developed in Austin et al. work is called the Standard Linear

Solid model with Strain-Dependent Sti�ness (Std. Lin. SDS). The capabilities of

the Std. Lin. SDS of accounting for velocity-dependent stress responses have not

been assessed in the literature. This is investigated in this chapter.

The PL method implemented in this work is improved to maximize the predic-

tion performance of the models. Due to this, the developed models in here di�er

from the ones available in the literature and represent a direct improvement to cur-

rent modelling approaches. Two LVMs are studied in here, the SLS model and the

Wiechert model. The PL method is applied to both, yielding the PL-SLS and the

PL-Wiechert models. The Wiechert model is of interest due to its better capabilities

of accounting for velocity-dependent stress responses, in comparison to the simpler

SLS model. These additional capabilities of the Wiechert model translates into ad-

ditional computational and mathematical complexity. Nonetheless, the PL method

is capable of reducing this complexity.

In contrast with the �tting process described in the literature [86], the stress

relaxation test is used to extract the relevant parameters for the SLS and Wiechert

models. Subsequently, the PL method is applied to both models, allowing them to

account for strain-dependent stress responses. The performance of both models is

assessed using the stress-strain curves of the characterized soft materials: ethylene

polypropylene rubber (EPR [11]), �uorocarbon rubber (FR [12]), nitrile rubber (NR

[13]), natural rubber with polyester (NatPolR [14]), polyethylene rubber (PR [15]),

silicone rubber (SR [16]), and natural rubber (NatR [17]).

Three mains analyses are performed. Firstly, the relationship between the PL

method prediction accuracy and required complexity is assessed. A tolerance cri-

teria is proposed in here, which establishes a proportional relationship between the

complexity of the soft material stress-strain curve, and the required complexity of

the PL method. Secondly, the maximum prediction accuracy of both models is as-

sessed. The results indicate that both models can accurately predict the stress-strain
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curve of the soft materials under a single strain rate. Thirdly, the capabilities of

both models to account for the velocity-dependent stress response of the materials

are investigated. The results indicate the superiority of the PL-SLS model and the

PL-Wiechert model in comparison to the Std. Lin. SDS model documented in the

literature. The models developed in here achieved normalized root mean square

values of 5% in comparison to the 13.6% achieved by the Std. Lin. SDS model.

In general, the PL-Wiechert model performs better for soft materials with moder-

ate to high viscous properties, whereas the PL-SLS model performed better for soft

materials with high elastic properties. In conclusion, the improved implementation

of the PL method resulted in an improved modelling tool for the prediction of the

nonlinear, strain-dependent, and time-dependent stress response of soft materials.

5.2 The Linear Viscoelastic Models

Thermoplastic elastomers have nonlinear and viscoelastic mechanical properties

which cannot be easily described by mathematical models. The latter represents

an important challenge for current soft robotic developments. However, the bene-

�ts of using soft materials are many: energy storing, passive compliance and safe

human-robot interaction. This has motivated their implementation in robotic ap-

plications, as well as the development of robust modelling tools capable of describing

their viscoelastic properties [112].

The natural property of the human skeletal muscle system of storing and releasing

energy, has motivated the inclusion of elasticity in robotic applications. Series-elastic

actuators (SEAs) are the most commonly used technology. The addition of an elastic

element between the actuator and the load greatly simpli�es the controller design.

The deformation of the elastic element can provide an indirect measurement of the

applied force to the load, essentially transforming a force-control problem into a

displacement-control problem [113].

Traditional SEAs use metallic springs, considered as purely elastic. However,

the human skeletal muscle system exhibits viscoelastic behaviour. In the literature,

attempts of adding viscoelasticity to SEAs by using soft materials instead of metallic

springs, are documented. In fact, viscoelasticity has the potential to address many

of the limitations found in series-elastic actuators, such as: low torque resolution

and low bandwidth [85, 114, 115].

The mechanical behaviour of a rigid element (metallic spring) can be accurately
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described by known mathematical models. This is not the case for soft materials

which have nonlinear and viscoelastic properties. The bene�ts of adding viscoelasti-

city to SEAs can only be fully exploited by developing a reliable modelling tool.

Substantial research has been done on this. However, the most accurate models are

mathematically complex and computationally expensive [72, 74, 75]. Nonetheless,

even these complex models cannot account for all the di�erent factors which modify

the materials properties, such as the manufacturing process and internal weakening

of the material after being loaded for the �rst time [110]. The latter highlights the

di�culty of developing mathematical models which account for both microscopic

and macroscopic aspects of the materials. This has motivated researchers to im-

plement alternative methods for characterizing a material, such as Finite Element

Analysis (FEA).

In robotic applications, where the controller can compensate ine�ciencies in the

system, a simple and fairly accurate modelling tool is preferred over a very accurate

and highly complex one. For this reason, a known set of mathematical models,

the Linear Viscoelastic Models (LVMs) are commonly used for the prediction of

viscoelasticity in soft materials. In contrast to the mechanical model for Hooke's

Law, which is based on a single spring, the LVMs are based on two fundamental

mechanical components, a spring and a dashpot, which can be arranged in di�erent

con�gurations and quantities. This is illustrated in Figure 5.1, where the parameters

k and η represent the spring sti�ness and the dashpot viscous constant, respectively.

Figure 5.1: Hooke's Law and linear viscoelastic models: (a) Hooke's Law (b) Kelvin-

Voigt, (c) Maxwell, (d) Standard Linear Solid, and (e) Burger. The parameters k

and η represent the spring sti�ness and the dashpot viscous constant, respectively

[86].

In line with the mentioned approach of relying on the controller to compensate

the limitations of simple models, the work performed by Austin et al. modi�es

the viscoelastic Standard Linear Solid (SLS) model by implementing a piecewise

linearisation (PL) method [86]. The authors chose the SLS model instead of the
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more complete, hence more complex, Burger model to keep the modelling process

as simple as possible. The implementation of the PL method allowed the SLS

model to account for the nonlinear properties of the material stress response in

proportion to the applied strain. Due to this, the developed model is called the

Standard Linear Solid model with Strain-Dependent Sti�ness (Std. Lin. SDS).

Unfortunately, the developed model is still incapable of accounting for the material

hysteresis. Due to hardware limitations, the velocity-dependent sti�ness e�ects are

not validated. Nonetheless, experimental tests validated the changes on the material

sti�ness depending on the velocity of the applied deformation.

The PL method has proven to be a successful way to improve the prediction

capabilities of traditional LVMs. Although it still has some limitations. The latter

is addressed in this chapter by implementing the PL method in a more complex

member of the LVMs, the Wiechert model.

5.3 The Piecewise linearisation Method

The SLS model is frequently used when modelling viscoelastic materials, mainly

due to its mathematical simplicity and its capability of accounting for the creep

and stress relaxation phenomena of the materials (time-dependent properties). The

SLS model can be viewed as a Maxwell model (also known as Maxwell branch)

with an extra spring connected in parallel. The simplicity of the SLS model is

also its main limitation. Viscoelastic materials are known to have more than one

relaxation time constant, i.e. more than one Maxwell branch. In the family of

LVMs, the relaxation time constant depends on the viscous elements, i.e. dashpots.

The Wiechert model, which is essentially a SLS model with j Maxwell branches, is

able to account for j relaxation time constants (Figure 5.2). The time-dependent

behaviour of any viscoelastic material can be fully described by this model, given

enough numbers of elements. However, the complexity of the model increases in

proportion to the number of extra branches. Mathematically, each extra branch

increases the derivative order of the model since more equations are required to

account for the extra variables [73, 77].

As previously described in Section 4.2, in addition to time-dependent and history-

dependent properties, elastomers also have a nonlinear stress response. This can be

partially described by the LVMs. The relaxation time constant of the dashpots

in these models describes the nonlinear and time-dependent stress response of the
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Figure 5.2: Wiechert Model. The components k1, η1, and the equilibrium spring

ke, together represents the SLS model. The components kj, and ηj represents the

Maxwell Branch. The Wiechert model can contain as many branches as required,

this is symbolised by the subscript j.

material. Nonetheless, LVMs cannot account for the strain-dependent response of

materials. The latter can be addressed by the PL method as described in [86].

The spring in parallel with the other elements, in both the SLS model and the

Wiechert model, is known as the equilibrium spring, and its sti�ness ke, is assumed

constant. In reality, the sti�ness ke of most elastomers is strain-dependent. Early

attempts of modelling a strain-dependent stress response in viscoelastic materials are

described by Schepelmann et al. in [85], where the stress-strain curve of a nonlinear

rubber spring is approximated with an exponential model. In subsequent works,

Austin et al. describe a piecewise linear regression �tted to the stress-strain curve

of a material, in combination with the SLS model [86].

The slope of the stress-strain curve represents the material's Young Modulus

which is proportional to the material sti�ness. During a tensile strength test the

material is deformed at a constant rate, i.e. ε̇ is constant. The stress response of

a viscous element is proportional to the strain rate ε̇. Therefore, it can be safely

assumed that the observed nonlinear stress response on the stress-strain curve is

solely caused by changes in the equilibrium spring sti�ness ke.

Using the PL method, the nonlinear behaviour of the equilibrium spring is ap-

proximated by considering it as several springs in parallel which �engage� in sequence

as the material strain increases. This is modelled by a summation of Heaviside func-

tions centred in the desired strain in which each of the mentioned springs �engage�

and contributes to the total stress response of the material. In other words, the

stress-strain curve of the material is segmented in several sections which relates a

single sti�ness to a range of strains (Figure 5.3).
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Figure 5.3: (a) Standard Linearized Solid model with Strain-Dependent Sti�-

ness. (b) Piecewise linearisation method applied to the slope of the material load-

displacement curve. This is analogous to many parallel springs which contribute to

the material response depending on the material strain [86].

5.4 Model �tting

The mathematical expression for the SLS model and the Wiechert model can be

simpli�ed when considering a constant strain input (stress relaxation test). This

simpli�cation allows these models to be �tted into the stress relaxation curve and to

approximate the parameters of interest, k and η [77]. The mathematical expression

for the Wiechert model under a constant strain input is given by:

σ(t) =

(
ke +

∑
j

kje
−t/τj

)
εo (5.1)

where σ is the stress at a given time, ke is the equilibrium spring sti�ness and εo is

the initial strain. For the summation, τj = ηj/kj is the relaxation time constant, kj
and ηj are the spring sti�ness and viscous constant of the elements in the jth Max-

well branch, respectively. For the speci�c case when j = 1, the resulting equation

describes the SLS model under a constant strain input, which is as follows:

σ(t) =
(
ke + k1e

−t/τ) εo (5.2)

In (5.2), the three main parameters of the SLS model, i.e. the equilibrium spring

sti�ness ke, the dashpot viscous constant η = τk1, and the spring sti�ness in the

Maxwell branch k1, can be obtained from the stress relaxation curve by analysing
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three signi�cant points: t = 0, t = τ , and t =∞ (Figure 5.4). Due to the decaying

exponential nature of this curve, the time constant τ can be related to the point in

time t where the stress has decayed to approximately 36.8% of its initial value σo.

The longer the duration of the test, the better the approximation of ke.

Figure 5.4: SLS model �tted to a typical stress relaxation curve of a viscoelastic

material. The parameters ke, k1 and η can be obtained by analysing three points

in the curve: t = 0, t = τ , and t = ∞. The variable τ is the time constant of the

exponential decaying curve.

The process to extract the parameters of the Wiechert model is more complicated

due to its extra Maxwell branches, i.e. there are more than three points in time to be

analysed. These points can be selected using a collocation technique [77, 116]. In the

reviewed literature, the points of interest are linearly scattered throughout the whole

duration of the stress relaxation curve. Nevertheless, the decaying exponential term

in (5.1) is better approximated by selecting the points of interest using a logarithmic

scale. This is possible with the MATLAB function logspace which spreads evenly

the desired number of points between the allowable decades. This is best described

in the following example. A Wiechert model with six branches, j = 6, is to be �tted

into a stress relaxation curve with four decades of duration (t = 104 seconds). In

total, it would be required seven points in time, one for each branch and one for

t = 0. These points are spread as evenly as possible, using the total duration of the

test, by the function logspace.

Similar to the process illustrated in Figure 5.4, each point in time represents a

time constant τj for which there is a known stress σj from the experimental data.

This can be rearranged into an system of j equations with kj as the unknown variable

as follows [116]:

97



5. SOFT MATERIALS MODELLING: LINEAR VISCOELASTIC

MODELS

ke + k1e
−τ1/τ1 + k2e

−τ1/τ2 · · ·+ kje
−τ1/τj =

σ(τ1)

ε0

ke + k1e
−τ2/τ1 + k2e

−τ2/τ2 · · ·+ kje
−τ2/τj =

σ(τ2)

ε0
...

ke + k1e
−τj/τ1 + k2e

−τj/τ2 · · ·+ kje
−τj/τj =

σ(τj)

ε0

(5.3)

Prior to this step, ke can be obtained using the equation for σ(∞) = εoke,

as illustrated in Figure 5.4. Subsequently, the Wiechert model in (5.1) can be

completely described by solving the system of equations described in (5.3). Finally,

after obtaining all the kj, the value of k1 is corrected by analysing the point in time

t = 0, as described in [77].

The previous process allows the Wiechert model equation to be �tted into the

stress relaxation curve for a de�ned number of branches j. However, to obtain the

optimal number of branches for each material, an iterative algorithm to �nd the

smallest root mean square error (RMSE) between the Wiechert model response and

the experimental data after testing a di�erent number of branches in the range of

j = [1, 10] is implemented. The obtained optimal number of branches for each

material varies between the range j = [5, 8]. A higher number of branches have

a meaningless improvement on the RMSE. Furthermore, beyond the number of

branches j = 20 the Wiechert model response shows an oscillatory behaviour, hence

a higher RMSE.

Having obtained the parameters of interest for the SLS and the Wiechert model,

their stress response under a constant strain is compared against the experimental

data in Figure 5.5. In this �gure the superior accuracy delivered by the extra

Maxwell branches in the Wiechert model in comparison to the simpler SLS model

is observed.

As previously mentioned, (5.1) is a simpli�cation helpful to approximate the

parameters of both models, but it is only applicable when the strain input is con-

stant. The mathematical expression for the Wiechert model which describes the

stress response under an unknown strain input, also called the constitutive equa-

tion, in the Laplace domain, is as follows [77]:

σ̄ = σ̄e +
∑
j

σ̄j =

ke +
∑
j

kjs(
s+ 1

τj

)
 ε̄ (5.4)
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Figure 5.5: Obtained �t from the Standard Linear Solid (SLS) and Wiechert model

of the stress relaxation curve of the Silicone Rubber material. The obtained optimal

number of branches of the Wiechert model �t is j = 8.

where σ̄ is the total stress,σ̄e is the stress of the equilibrium spring, σ̄j is the stress

of the Maxwell branches, and ε̄ is the strain function. All these variables are in the

Laplace domain. Similarly, the constitutive equation for the SLS model, i.e. j = 1,

in its time domain, is as follows:

σ̇ +
σ

τ1
= (ke + k1)ε̇+

keε

τ1
(5.5)

where ε, ε̇, and σ̇ are the strain, the strain rate and the stress rate, respectively (for

the detailed procedure refer to [77]). Notice that the previous procedure will yield

into a higher derivative order equation when applied to the Wiechert model due to

its extra branches. A higher number of branches will increase the model accuracy

at the cost of increasing its mathematical complexity. The constitutive equation of

a Wiechert model with j branches would result in a jth order di�erential equation

similar to (5.5). The aim of this chapter is to apply the PL method to the Wiechert

model and evaluate its performance. Therefore, dealing with di�erential equations is

out of the scope. Nonetheless, the Wiechert model can be evaluated by transforming

it into a �nite-di�erences equation yielding the following equation [77]:
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σt = keε
t +
∑
j

kj(ε
t − εt−1) + σt−1

j(
1 +

∆t

τj

) (5.6)

where the superscript t− 1 and t refers to values before and after a small time step

∆t have passed. Once again, making j = 1 in (5.6) yields the �nite di�erence

version of the SLS model.

The next step of the �tting process is focused on the tensile strength test. In

this test, the strain rate is constant, hence the resulting stress for both models

is dependent on both the equilibrium spring and the Maxwell branches. At this

stage of the model �tting process, the parameters of the Maxwell branches in both

models are known and their stress response can be calculated. The stress response

in the equilibrium spring ke can be isolated by subtracting the stress response of the

Maxwell branches to the stress measured in the tensile strength test.

After isolating the stress response of ke, the �nal step in the �tting process is

to implement the PL method to both models and compare their response against

the experimental data. Firstly, the stress-strain curve from the tensile strength test

is divided into n segments. As previously explained, ke is considered as a group of

parallel springs which �engage� as the strain increases. This means, each subsequent

sti�ness is a combination of the ones found in previous segments of the stress-strain

curve (Figure 5.3). Lastly, a linear regression is applied to the stress-strain curve for

the desired n strain segments to �nd the slope of the curve. This slope represents

the sti�ness of the equilibrium spring in each segment. By combining the n obtained

sti�ness, the stress response of the strain-dependent sti�ness k∗i is de�ned as follows:

σ∗t =
n∑
i

k∗iHε−εi(ε
t − εi) (5.7)

where n is the desired number of strain intervals to �t, εi represents the strain value

at which the ith spring starts contributing to the stress response, the Hε−εi is the

Heaviside or unitary step function centered at εi, i.e. the function output goes from

0 to 1 when ε− εi = 0. By substituting (5.7) into (5.5), the Standard Linear Solid

model with Strain-Dependent Sti�ness is obtained [86].

The LVMs describe a nonlinear relationship between the applied strain and the

resulting stress in a material. However, they only account for a linear stress response

of the equilibrium spring. In reality, the relocation of internal molecular chains

causes viscoelastic materials to exhibit a nonlinear and strain-dependent stress re-

sponse. This can be solved by applying the PL method to (5.6). The equilibrium

100



5.5 Findings

spring sti�ness ke is replaced by the strain-dependent sti�ness k∗i , yielding the lin-

earized Wiechert model (PL-Wiechert) in (5.8). Subsequently, the Std. Lin. SDS

model, found in [86], is transformed into a �nite di�erence equation, yielding the

PL-SLS model described in (5.9).

σt = σ∗t +
∑
j

kj(ε
t − εt−1) + σt−1

j(
1 +

∆t

τj

) (5.8)

σt = σ∗t +
k1(ε

t − εt−1) + σt−1
m(

1 +
∆t

τ1

) (5.9)

The linearized SLS model (5.9) is labelled as the Piecewise Linearized SLS (PL-

SLS) model, di�erentiating it from the Std. Lin. SDS model due to the many

optimizations performed to the PL method. The latter included using the stress

relaxation curve of the materials. The optimization performed on the number of

branches delivered a range from j = 5 to j = 8. Lastly, the process of �tting the

Piecewise linearisation method to the SLS and the Wiechert model to create the

PL-SLS and the PL-Wiechert model is described in Figure 5.6.

5.5 Findings

The following section describes the �ndings obtained from three individual analyses

about the PL method performance and capabilities. The latter is organized into

three subsections. Section 5.5.1 is focused on analysing the trade-o� between the

number of strain segments �tted to the stress-strain curve, i.e. complexity, and the

achieved accuracy, when being applied to the PL-SLS model and the PL-Wiechert

model. Section 5.5.2 is focused on analysing the accuracy of the PL-SLS model

and the PL-Wiechert model in terms on the achieved normalized mean square error

(NRMSE). Lastly, Section 5.5.3 is focused on analysing the capabilities of both

models to account for the velocity dependency of the materials stress response. In

other words, the generalization capabilities of both models are assessed.

The stress-strain curves from the materials studied in this section are from the

tensile strength test with 500 mm/min strain rate. With the exception of the SR

material, for which the 50 mm/min stress-strain curve is used. The available data

for each soft material is described in Table 4.1.
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Figure 5.6: Description of the implemented Piecewise linearisation method.

5.5.1 Analysis of the Optimal Number of Strain Segments

The amount of strain segments and their proper collocation have an impact on the

PL method accuracy. In the work presented by Austin et al. there is no explanation

about the criteria used to select the strain segments. Nonetheless, the implementa-

tion of a linear collocation approach can be inferred from the description provided

[86].

In here, the variation of the slope of the stress-strain curve is proposed as a
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selection criteria for obtaining the right number of strain segments to �t to the stress-

strain curve of the materials. Hence, an algorithm is developed to automatically

collocate a new strain segment when the curve's slope exhibits a variation greater

than a proposed tolerance value. In the optimization process the testing of di�erent

tolerance values in the range of 10 to 100 % is performed. This process is described

in Figure 5.7.

Figure 5.7: Algorithm for obtaining the right number of strain segments to be �tted

based on the variation of the stress-strain curve slope.

The slope is calculated by numerical di�erentiation of the stress-strain curve.
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Then, the �rst calculated value of the slope is used as reference to monitor the

variation of the slope along the stress-strain curve. When the variation is greater

than the de�ned tolerance two things happen: a new strain segment is created, and

the slope at this point becomes the new slope reference. This process is repeated

until the complete stress-strain curve is scanned.

The proposed tolerance criteria establishes a proportional relationship between

the nonlinearity of the stress-strain curve and the complexity of the Piecewise lin-

earisation method. In other words, highly nonlinear soft materials will require more

strain segments to be collocated. In a similar way, the tolerance criteria is inversely

proportional to the obtained number of strain segments. In other words, the smaller

the tolerance the larger the number of strain segments.

The performance of the PL method can be analysed with the optimization pro-

cess described. Speci�cally, the relationship between the complexity and accuracy

of the PL method. The complexity of the PL method is measured in terms of the

number of strain segments �tted to the stress-strain curve. Whereas, the accuracy

of the PL method is measured in terms of the normalized root mean square error

(RMSE) [117], described as follows:

NRMSE =

√
〈(σpred − σexp)2〉

〈σexp2〉
(5.10)

where the 〈...〉 represents the arithmetic mean, σpred and σexp represent the pre-

dicted and experimental values of the stress response of the material, respectively.

The results of the optimization process are illustrated in Figures 5.8 to 5.11. In

these �gures, the inversely proportional relationship between the number of strain

segments and the tolerance is demonstrated. In other words, the smaller the toler-

ance value the greater the number of strain segments. In general, the relationship

between these two parameters is inversely exponential for both the PL-SLS model

and the PL-Wiechert model. This is consistent with all but one of the studied soft

materials, the SR material. In this case, the relationship between the tolerance value

and the number of strain segments, for both models, is more linear than exponential.

There is in fact a complex relationship between the number of strain segments, the

tolerance criteria, the achieved accuracy and the model used.
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(a)

(b)

Figure 5.8: Impact of the proposed tolerance criteria on the relationship between

the number of strain segments and the achievable accuracy of the PL method. (a)

EPR material (b) FR material.

105



5. SOFT MATERIALS MODELLING: LINEAR VISCOELASTIC

MODELS

(a)

(b)

Figure 5.9: Impact of the proposed tolerance criteria on the relationship between

the number of strain segments and the achievable accuracy of the PL method. (a)

NR material (b) NatPolR material.
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(a)

(b)

Figure 5.10: Impact of the proposed tolerance criteria on the relationship between

the number of strain segments and the achievable accuracy of the PL method. (a)

PR material (b) SR material.
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Figure 5.11: Impact of the proposed tolerance criteria on the relationship between

the number of strain segments and the achievable accuracy of the PL method. NatR

material

In general, there is no substantial di�erence in the best obtained accuracy of

both models. The main di�erence between the models is the number of strain

segments required to achieve this accuracy. In most of the cases, the PL-Wiechert

model requires fewer strain segments than the PL-SLS model. This is the case for

the EPR, FR, NR, NatPolR and NatR materials (Figures 5.8, 5.9 and 5.11). In

these cases, the bene�t of isolating the stress response of the equilibrium spring

sti�ness ke by subtracting the stress response of the Maxwell branches from the

stress-strain curve of the materials is appreciated. The latter, essentially split the

stress response of the material in two parts: the time dependent stress response and

the nonlinear strain-dependent stress response. The PL-Wiechert model, which has

a larger number of Maxwell branches, is expected to describe the time dependent

stress response more accurately than the PL-SLS model. This allows the PL method

to be more e�ective in modelling the nonlinear strain-dependent stress response.

The e�ectiveness of the latter process is dependent on the properties of the soft

material in turn. The materials with dominant viscoelastic properties are bene�ted

the most when using the PL-Wiechert method. In fact, it is possible to categorize
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the studied soft materials into: highly elastic (Figures 5.10 and 5.11), viscoelastic

(Figures 5.8b and 5.9a), and highly viscous (Figures 5.8a and 5.9b), by analysing

the di�erence on the required number of strain segments between the PL-SLS model

and the PL-Wiechert model.

Another important �nding is the speed in which both models converge to the

smallest NRMSE value. In this scenario, the PL-SLS model is faster than the PL-

Wiechert model. In general, it is safe to assume that the smallest tolerance criteria

does not always yield the best accuracy for both models. In other words, there is

a tolerance value which delivers the best accuracy for each individual model. The

latter is analysed in the following section. In summary, the analysis performed in

this section describes the relationship between the complexity of the PL method and

its accuracy when being applied to the LVMs.

5.5.2 Analysis of the Model Fit Accuracy

In this section, the goodness of �t of both developed models is analysed. In gen-

eral, both the PL-SLS model and the PL-Wiechert model converge to very similar

NRMSE values when enough number of strain segments are used. The main di�er-

ence between the models is the number of strain segments required for convergence.

In most cases, the PL-SLS model requires fewer strain segments to converge than the

PL-Wiechert model. This is illustrated in the previous section (Figures 5.8 to 5.11).

In this section, the best case performance of both models is analysed. The latter

aims to test the hypothesis that a better model can be developed by implementing

the PL method to more complex LVMs, i.e. the Wiechert model. The latter can

be tested by calculating the increment or decrement achieved by the PL-Wiechert

model with respect to the PL-SLS model, for both the accuracy and number of

strain segments, as follows:

∆Accuracy = 100

(
1− NRMSEWiechert

NMRSESLS

)
(5.11)

∆Complexity = 100

(
SegmentsWiechert

SegmentsSLS
− 1

)
(5.12)

where ∆Accuracy > 0, and ∆Complexity < 0, represents the degree of improvement

achieved by the PL-Wiechert model with respect to the PL-SLS model. In Table 5.1,

the best performance case for both models is compiled. In here, the performance of

the PL-Wiechert model is compared against the performance of the PL-SLS model.
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Table 5.1: Best accuracy of the PL-SLS model (1), the PL-Wiechert model (2), and

the degree of improvement achieved by the PL-Wiechert model.

Model Parameters EPR FR NatPolR NR PR SR NatR

1

NMRSE (%) 0.64 2 0.91 0.35 4.67 0.34 2.90

Segments 400 44 268 686 25 592 27

Tolerance (%) 60 20 30 40 60 60 80

2

NMRSE (%) 0.81 2.01 1.53 0.29 4.24 0.34 2.82

Segments 561 33 58 255 50 684 28

Branches 7 8 7 5 7 6 5

Tolerance (%) 20 20 10 40 50 70 80

3
∆Accuracy (%) -27 0 -68 16 9 -2 3

∆Complexity (%) 40 -25 -78 -63 100 15 4

The soft materials for which the PL-Wiechert model performs better than the

PL-SLS model are the FR and the NR materials. Therefore, choosing the PL-

Wichert model over the PL-SLS model can be justi�ed for these soft materials.

Strictly speaking, the only case in which the PL-Wiechert model outperforms the

PL-SLS model by a considerable percentage is for the NR material. In the case of

the NatR material, the performance of both models is very similar. Hence, either

model can be chosen. Lastly, the PL-Wiechert model performs worse than the PL-

SLS model for the EPR, NatPolR, PR and SR materials. Hence, the PL-SLS model

is a better choice.

The analysis performed in this section provides useful guidelines for choosing the

right model to implement depending on the soft material of interest. Nonetheless,

the complexity of the PL-Wiechert calculated in here is based on the PL method

complexity and does not take into account the complexity added from having a

higher number of Maxwell branches than the PL-SLS model. There is the possibility

that when taking these two factors into account, the resulting added complexity of

using the PL-Wiechert model overcomes the accuracy increment. In this scenario

the PL-SLS model is a safer choice. Finally, the models best �t on the stress-strain

curve on the soft materials is illustrated in Figures 5.12 to 5.15.
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(a)

(b)

Figure 5.12: Best �t for the PL-SLS and PL-Wiechert models on the stress-strain

curve of (a) EPR material (b) FR material. The parameters required for this �t can

be found in Table 5.1.
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(a)

(b)

Figure 5.13: Best �t for the PL-SLS and PL-Wiechert models on the stress-strain

curve of (a) NR material (b) NatPolR material. The parameters required for this

�t can be found in Table 5.1.
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(a)

(b)

Figure 5.14: Best �t for the PL-SLS and PL-Wiechert models on the stress-strain

curve of (a) PR material (b) SR material. The parameters required for this �t can

be found in Table 5.1.
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Figure 5.15: Best �t for the PL-SLS and PL-Wiechert models on the stress-strain

curve of NatR material. The parameters required for this �t can be found in

Table 5.1.

5.5.3 Analysis of the Velocity-dependent Stress Response

In previous sections, the performance of both the PL-SLS model and PL-Wiechert

model is found to be very similar in all the studied soft materials. The main di�er-

ence between the models is the required complexity to achieve said accuracy. In this

section, the capability of both models to account for the velocity-dependent stress

response of the soft material is analysed. The result of this analysis can provide a

better way to determine which of the developed models is the best choice for each

soft material. Moreover, the PL-SLS and the PL-Wiechert models are inspired by

the work of Austin et al. where a similar model, the Std. Lin. SDS model was

developed [86]. In the previous work, the capabilities of the Std. Lin. SDS model

of accurately describing the velocity-dependent stress response of the soft material

used was not assessed due to hardware limitations. Due to this, the latter property

is investigated in this section.

The PL-SLS model and the PL-Wiechert model analysed so far are the result

of applying the PL method to the stress-train curve of the soft materials obtained
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from the tensile strength test. The strain rate used in these tests varies from one

material to the other. Almost in all cases the 500 mm/min strain rate is used for

the �tting process. The only exception is the SR material where the strain rate of

50 mm/min is used instead. The dataset of the studied soft materials contains up

to three di�erent strain rates per material, as described in Table 4.1.

The strain-dependent sti�ness k∗ is the result of �tting the PL method to the SLS

and the Wiechert models. This parameter is the linearized version of the equilibrium

spring sti�ness contained in both LVMs. The obtained k∗ for each soft material is

speci�c to one strain rate. In the following analysis, the strain-dependent sti�ness

of the equilibrium spring k∗ has a major role. Therefore, the analysis in this section

investigates the performance of the PL-SLS model and the PL-Wiechert model when

using the obtained k∗ under di�erent strain rates.

In Sections 5.5.1 and 5.5.2, the NRMSE and the number of strain segments are

used to measure the performance of both the PL-SLS and the PL-Wiechert models.

There is a clear trade-o� between the achieved accuracy and the required model

complexity. In these analyses, the case for which the NRMSE value is the smallest

do not re�ect the best �t for the task of accounting for the velocity-dependent stress

response of the soft materials. In fact, this can cause the �tted model to only perform

well for a speci�c set of data, or in this case, a speci�c strain rate. Therefore, the

main focus of the analysis performed in this section is to obtain the number of

strain segments, i.e. a k∗, for each material that allows the PL-SLS model and the

PL-Wiechert model to predict the stress-train curve of the materials for di�erent

strain rates. The latter also assesses the generalization capabilities of the developed

models.

The analysis performed in here is an extension of the one performed in Sec-

tion 5.5.1. In here, the prediction of the models for the strain rates of 50 min/mm,

250 min/mm, and 500 min/mm is obtained. The same range of tolerance values is

used in here. Similarly, the NRMSE is used to measure the models accuracy. The

results are illustrated in Figures 5.16 to 5.19. In addition to this, the generalization

error of both models is calculated as the mean NRMSE value along all strain rates

for a single tolerance value, as follows:

GE =
1

N

N∑
j=1

NRMSEj (5.13)

where N is the total number of strain rates cases, up to 3, and the subscript j is

the individual strain rate case.
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(a)

(b)

Figure 5.16: Prediction of the PL-SLS (circles) and the PL-Wiechert (squares) model

under di�erent strain rates for the (a) EPR material (b) FR material. Strain rates

are in millimetres per minute. Filled markers indicate the strain rate used to extract

the strain dependent sti�ness k∗.
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(a)

(b)

Figure 5.17: Prediction of the PL-SLS (circles) and the PL-Wiechert (squares) model

under di�erent strain rates for the (a) NR material (b) NatPolR material. Strain

rates are in millimetres per minute. Filled markers indicate the strain rate used to

extract the strain dependent sti�ness k∗.
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(a)

(b)

Figure 5.18: Prediction of the PL-SLS (circles) and the PL-Wiechert (squares) model

under di�erent strain rates for the (a) PR material (b) SR material. Strain rates are

in millimetres per minute. Filled markers indicate the strain rate used to extract

the strain dependent sti�ness k∗.
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Figure 5.19: Prediction of the PL-SLS (circles) and the PL-Wiechert (squares) model

under di�erent strain rates for the NatR material. Strain rates are in millimetres per

minute. Filled markers indicate the strain rate used to extract the strain dependent

sti�ness k∗.

From previous �gures, an interesting tendency is revealed. For the cases in which

the strain rate of 500 mm/min is used to obtain the strain dependent sti�ness k∗,

the accuracy of both models decreases in proportion to the di�erence between the

predicted strain rate and the strain rate used for �tting. In contrast, for the cases

in which the strain rate of 50 mm/min is used for �tting, i.e. for the SR material,

the accuracy of both models behaves di�erently (Figure 5.18b). In this scenario,

the PL-Wiechert model outperforms the PL-SLS model. The latter �nding could

suggest that using a slower strain rate for extracting the k∗ delivers better results.

Although, there are some variables to take into account before jumping to any

conclusion, such as the type of material, and overall complexity of the model used.

Nonetheless, considering the velocity-dependency stress response of the elements on

the Maxwell branches for both models, using a slower strain rate has the potential

to better isolate the stress response of the equilibrium spring ke. In other words,

this approach has the potential to improve the PL method �tting process.

In almost all cases, the PL-SLS model achieved smaller NRMSE values than the
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PL-Wiechert model, with the exception of the SR and NatR materials (Figures 5.18b

and 5.19). Nonetheless, the overall performance of each model is best assessed

using the generalization error, GE. Therefore, the tolerance value which yielded the

smallest GE is calculated and reported in Table 5.2.

Table 5.2: Best generalization error of the PL-SLS (1) and the PL-Wiechert (2)

models.

Model Parameters EPR FR NatPolR NR PR SR NatR

1
Gen. Error (%) 13.04 3.03 2.27 1.36 2.70 1.44 1.10

Tolerance (%) 60 90 30 40 40 70 80

2
Gen. Error (%) 10.34 4.44 2.51 2.36 3.64 0.55 1.12

Tolerance (%) 90 70 10 70 60 60 80

The obtained best case generalization errors are in line with the best case NRMSE

values reported in Table 5.1. In here, the PL-SLS model outperforms the PL-

Wiechert model for all but two materials, the EPR and the SR materials. For the

speci�c case of the SR material, the PL-Wiechert model performs much better than

the PL-SLS model. The reason for this is the small value of strain rate used for

�tting the PL method to the stress-strain curve of the SR material. In all cases,

both models achieve a GE value smaller than 5% which indicates that the models

are capable of accounting for the velocity-dependent stress response of the studied

soft materials. The exception to this is the EPR material which delivered a very

large GE value in comparison to the other materials. The larger GE value in here

can be attributed to the absence of a dataset for the strain rate of 250 mm/min.

This creates a larger gap between the prediction at 50 mm/min and the predic-

tion at 500 mm/min, which is re�ected when calculating the mean NRMSE along

all strain rates, i.e. the GE described in (5.13). On top of this, the potential

disadvantage previously described of using the strain rate of 500/min can also be

in�uencing the performance of both models for this particular soft material. Lastly,

the models developed in here achieved a higher performance in comparison to the

Std. Lin. SDS model documented in the literature. The reported relative RMSE

value for the Std. Lin. SDS model is of 13.6%. The conditions in which the latter

performance is achieved are comparable to the conditions in Section 5.5.2, where the

reported NRMSE values for both models are between 0.34% to 4.67% (Table 5.1).

Similarly, the generalization error GE obtained in this section further validates the
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much better performance achieved by the PL-SLS and the PL-Wiechert models.

Summarizing, in this section the capabilities of the PL-SLS and the PL-Wiechert

model of accounting for the velocity-dependent stress response of the soft materials

are assessed. This is measured using the generalization error GE, described in

(5.13). The results indicate that both models are capable of predicting the stress

response of the soft materials under di�erent strain rates with reasonable accuracy.

In other words, they are capable of accounting for the velocity-dependent stress

response of the soft materials. The only exception to this conclusion is the EPR

material, where a larger GE value was obtained. The potential causes of this isolated

case are the larger gap between the strain rate used in the �tting process and the

predicted strain rate, and the potential limitations of using 500 mm/min instead

of 50 mm/min as the strain rate in the �tting process. Using the strain rate of 50

mm/min is found to be bene�cial for the performance of both models as observed

in the results for the SR material.

5.6 Summary

In this chapter, the development process of the PL-SLS and the PL-Wiechert models

is described. The �tting process of both models is very similar, as described in

Figure 5.6. The main di�erences between the developed models in here and the Std.

Lin. SDS model found in the literature [86] are the following optimizations:

� Transformation of the constitutive di�erential equations of both models into

their �nite di�erences form. This allowed the PL method to be easily imple-

mented in both models.

� Implementation of a logarithmic time collocation approach to extract the val-

ues of kj and τj from the stress relaxation curve.

� Removal of the stress response of the components in the Maxwell branches.

� Proposed tolerance criteria to determine the number of strain segments to be

�tted based on the variation of the stress-strain curve.

In addition to the latter di�erences, several aspects of the Piecewise linearisa-

tion method are investigated in this section. Firstly, the relationship between the

complexity and the accuracy of the PL method is described in Section 5.5.1. The

latter is achieved due to the proposed tolerance criteria which is based on the slope
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variation of the stress-strain curve. The obtained results, illustrated in Figures 5.8

to 5.11, describe the relationship between the required complexity and the achieved

accuracy for both the PL-SLS and the PL-Wiechert models. Both models behave

di�erent depending on the soft material. The latter can be used to categorize the

studied soft materials in highly elastic, viscoelastic, and highly viscous. The PL-SLS

model performs better for soft materials in the highly elastic category, where the

PL-Wiechert model performs better for soft materials in the viscoelastic and highly

viscous categories. The latter is in line with the fundamentals behind each model

where the PL-Wiechert model has many Maxwell branches to describe many time

constants of the material, i.e. many viscous constants.

Secondly, in Section 5.5.2 the performance of both developed models is investig-

ated. The obtained results are compiled in Table 5.1, where the PL-SLS model is

suggested as the best choice for most cases. The additional complexity of using the

PL-Wiechert model does not justify the performance improvement. Nonetheless, in

this analysis the models are only assessed in their capabilities of �tting the stress-

strain curve for a single strain rate. This conclusion changes when considering the

models capability of accounting for di�erent strain rates.

Thirdly, the analysis described in Section 5.5.3 is focused on assessing the cap-

abilities of the developed models of accounting for the velocity-dependent stress

response of the soft materials. In other word, the generalization capabilities of the

developed models are assessed. In here, the obtained strain dependent sti�ness k∗

is used to predict the stress-strain curve of the soft materials under di�erent strain

rates. Up to three di�erent values of strain rates are evaluated: 50, 250, and 500

mm/min. The performance of the models is assessed using the generalization error

GE described in (5.13). In general, the PL-SLS model outperforms the PL-Wiechert

model for all but two materials, the EPR and the SR materials. For the speci�c case

of the SR material, the PL-Wiechert model performs much better than the PL-SLS

model. The di�erences in performance can be caused by the strain rate used for the

extraction of the strain dependent sti�ness k∗. The results are compiled in Table 5.2.

In all cases, both models achieved a GE value smaller than 5% which prove the cap-

ability of the models to account for the velocity-dependent stress response of soft

materials. The only isolated case in which the achieved GE is higher than 5% is for

the EPR material. The potential cause for this is the strain rate used for the �tting

process of the PL method. This further validate the hypothesis that using a small

value of the strain rate is bene�cial for the �tting process.
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Finally, the PL-SLS and the PL-Wiechert models achieved a higher prediction

accuracy in comparison to the Std. Lin. SDS model documented in the literat-

ure. The reported relative RMSE value for the Std. Lin. SDS model is of 13.6%.

The conditions in which the latter performance is achieved are comparable to the

conditions in Section 5.5.2, where the reported NRMSE values for both models are

between 0.34% to 4.67% (Table 5.1). Similarly, the prediction accuracy of the models

developed in here when accounting for di�erent strain rates, reported as GE values

in Table 5.2, further validates the much better performance achieved by the PL-SLS

and the PL-Wiechert models in comparison to their predecessor the Std. Lin. SDS

model. The performance of the Std. Lin. SDS model under this scenario was not as-

sessed in the literature. The superiority of the PL-SLS and the PL-Wiechert models

is due to the many optimizations performed to the PL method �tting process.
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Chapter 6

Soft Materials Modelling: Arti�cial Neural
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6.1 Introduction

In the previous chapter, the development of two mathematical models for the pre-

diction of viscoelastic behaviour in soft materials is described. The PL-SLS model

and the PL-Wiechert model can describe the nonlinear, time dependent, and strain

dependent stress response of seven soft materials. The main limitation of modelling

tools based on mathematical models is their implementation in control systems for

real robotic applications. Due to this, a di�erent modelling approach is investigated

in this chapter.

The �eld of machine learning provides reliable algorithms to tackle regression

problems, such as arti�cial neural networks (ANNs). ANNs have been successful

in extracting complex mechanical parameters of soft materials, and are now being

used to model the stress-strain curve of many materials. Nonetheless, back in 2016

the literature on the latter subject was very scarce. It is until 2019, that a surge

in research dealing with the implementation of di�erent architectures of ANNs, in

combination with Dynamic Mechanical Analysis (DMA), is being performed as an

attempt to model the viscoelastic properties of soft materials. Nonetheless, there

is still plenty of research to be done, such as implementing ANNs for the real-time

prediction of the viscoelastic properties of soft materials. In this context, real-

time prediction refers of deploying the trained ANN model into a control system,

essentially replacing the mathematical model commonly used to estimate the stress-

strain curve of elastic elements used in series-elastic actuators. This gap in the body

of knowledge is addressed in this research.

In this work, a feedforward ANN model is developed. The Bayesian Regular-

ization algorithm is used during the training process. The selection of inputs and

outputs to be included to the network is optimized by observing the generalization

capabilities of di�erent combinations. The total number of neurons in the hidden

layer is also optimized to minimize the risk of a common phenomenon known as

over-�tting. The optimal number of neurons varies from one soft material to the

other, but in any case exceeds 10 neurons.

Finally, the generalization error of the developed ANN is compared against the

PL-SLS and the PL-Wiechert models. The results varies from one material to

the other. In general, the developed ANN model can predict the nonlinear time-

dependent stress response of the soft materials. The ANN model performed poorly

for the single case of the NatR material. The reasons behind this might be related

to the uneven dataset of this material. Lastly, the three developed modelling tools
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so far are suitable for the prediction of the complex behaviour of soft materials.

6.2 Arti�cial Neural Networks

Arti�cial Neural Networks (ANNs) are computational systems inspired in the struc-

ture and functionality of the biological nervous system. Neurons, a speci�c type of

cell, are the basic components in the brain. They form connections with a vast num-

ber of other neurons, allowing us to remember, think, and apply previous knowledge

to our present actions. The basic functionality of a neuron is to receive information

in its inputs from many sources, to combine this information, to apply a nonlinear

operation, and to output the end result. Moreover, neurons are capable of spe-

cializing for a speci�c task by amplifying or reducing the impact of their individual

inputs. Neurons are also capable of reorganizing themselves in complex interconnec-

ted clusters in a three-dimensional space, called biological neural networks, where

the information �ows from one group of neurons to the other.

Similarly, Arti�cial Neural Networks are composed of many basic components

working in parallel, known as arti�cial neurons. The clustering found in biological

neural networks, can be replicated in ANNs by creating layers, containing many

neurons, which can be interconnected between each other in di�erent ways. The

simplest structure of an ANN is composed of three layers: an input layer, a hid-

den layer, and an output layer. As the name suggest, the input and output layers

interface the ANN with the outside world. The main learning process happens in

the hidden layer. The way in which the interconnections between these three layers

are formed are mainly dependent on the application. The strength of each intercon-

nection depends on a weighting factor, enabling the arti�cial neuron to amplify or

reduce the contribution of a speci�c input. The �ne tuning of these weights, per-

formed in a process called training, allows ANNs to specialize in a particular task,

i.e. allow them to learn. The latter highlights the capability of ANNs to simulate

two key functionalities of the human brain, which are: acquiring knowledge from the

environment through a learning process, and storing this knowledge in the form of

inter-neuron connection strengths, i.e. synaptic weights. The capability of learning

from experience, i.e. experimental data, make ANNs particularly useful when deal-

ing with complex scienti�c and engineering problems where an adequate analytical

description is not available, or is too complex [118, 119].

Arti�cial Neural Networks can have as many layers as required, simulating the
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clustering phenomenon found in biological neural networks. These type of multi-

layered ANNs can be categorized depending on how the information �ows inside

it. For example, an ANN in which the information �ows in one direction, from the

input layer up to the output layer, is called Feedforward Neural Network (FFNN).

This type of ANN is one of the most commonly used for function approximation,

pattern recognition and classi�cation (Figure 6.1a) [118].

(a) (b)

Figure 6.1: (a) Feedforward arti�cial neural network (b) Internal structure of an

arti�cial neuron [120].

The variables illustrated in Figure 6.1a are as follows. The inputs of the ANN

are represented by the variable x, in the form of:

x = [x1, x2, x3, ..., xk] (6.1)

where k represents the total number of inputs. Similarly, the outputs of the ANN

are represented by the variable H in the form of:

H = [H1, H2, H3, ..., Hn] (6.2)

where n represents the total number of outputs. Furthermore, the output of the

neuron illustrated in Figure 6.1b, combines the individual weighted values of the

input vector x with a bias value. Then, a nonlinear function is applied to the result

of this sum. This is described as follows:

z1 = f

(
k∑
i=1

(xiwi,j) + w1,bias

)
(6.3)
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where w1,1 to w1,k represents the weights of one neuron which interacts with all the

inputs. The subscript i in wi,j indicates to which neuron this weight is interacting,

whereas the subscript j indicates the input that this weight is related to.

In order for the ANN to learn, it must be trained �rst. In FFNN the most com-

mon approach for training is based on the backpropagation algorithm. The training

process of ANN commonly involves dividing the available data into a training and

a test subset. The former subset is used for training of the ANN, whereas, the

latter is used for testing the prediction capabilities of the ANN after being trained.

During training, the ANN is presented with known values of the output, called

targets, which are related to a speci�c combination of inputs. In each training ses-

sion the ANN will adapt slightly until its output is close to the target value. The

backpropagation algorithm is based on minimizing the sum of square errors (SSE)

between the target and predicted values, by modifying the weights and biased of the

ANN [118]. This algorithm is so powerful in minimizing the error that it could cause

the ANN to memorize the training dataset instead of generalizing it. This means

that the ANN will not be able to provide accurate predictions when new data is

presented to it. This issue is called over-�tting.

According to the literature, FFNN are capable of representing any functional

relationship between a set of inputs and outputs, as long as the ANN has enough

number of neurons in its hidden layers. However, having too many neurons increases

the risk of over-�tting. As previously mentioned, over-�tting will prevent the ANN

to generalize well. Therefore, when designing an ANN, it is better to use the min-

imum amount of resources which are able to provide a good �t. There are two main

methods for preventing over-�tting from happening, i.e. improving generalization,

during the training process: early stopping and regularization. On the one hand, in

the early stopping method, a third subset of data is involved, called the validation

subset. In general terms, when the error during the validation process increases over

certain number of consecutive training sessions, then over-�tting is detected and the

training process is stopped. On the other hand, in a regularization method the per-

formance function used during training, commonly the SSE of the ANN prediction,

is modi�ed. For example, in the Bayesian Regularization method, the performance

function has an additional condition, which is to minimize the SSE of the weights

and biases of the ANN. This limits the correction power of the backpropagation

algorithm, which allows the weights and biased to be �ne-tuned rather than have

large variations. There are many variables involved in the process of designing and
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optimizing an ANN for a speci�c application. Therefore, the relevant works on

implementation of ANNs for the modelling of soft materials are presented in the

following section.

6.3 Soft Materials Modelling

Arti�cial Neural Networks have been implemented in a wide number of applications,

such as: forecasting, control, power systems, robotics, signal processing, manufac-

turing, pattern recognition and optimization [121]. At the time of writing this

document, the available literature about the implementation of ANNs for the mod-

elling of the complex behaviour of soft materials, speci�cally elastomers, is scarce.

Recently there has been an increase in the number of published papers focusing on

modelling soft materials using ANNs which highlights the relevance of this �eld of

research.

One of the earliest works in this �eld is documented in [122] by Zhang et al..

In here, a FFNN is developed to model the dynamic mechanical properties of short

�bre reinforced materials. The trained ANN can predict the storage modulus and

damping of the material for temperature values not used during the training pro-

cess. Many properties of the material are provided as input to the network. The

developed ANN had 25 neurons in its single hidden layer with a tan-sigmoidal trans-

fer function, whereas the output layer had a linear transfer function. The Bayesian

Regularization algorithm was used for training. The prediction capabilities of the

ANN were assessed using the percentage of correct predictions, in which a prediction

with an R2 value greater than 0.9 is considered correct. The ANN was tested 50

times with a randomized test set each time. Moreover, the authors found a pro-

portional relationship between the complexity of the parameters to model, and the

amount of data required for training to achieve a good accuracy.

The review paper of Zhang et al. about the implementation of ANNs in polymer

composite applications states that the available literature on the subject was scarce

at that time [118]. Moreover, the documented applications ranged from modelling

of the fatigue life of the material, to prediction of tribological and dynamic mechan-

ical properties of composite materials [122, 123]. This review paper provided very

insightful evidence of the potential of ANNs for applications such as: design of new

composite materials, optimization of the manufacturing process, and modelling the

relationship between di�erent manufacturing parameters. From the reviewed works,
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the authors were able to �nd a well de�ned sequence of actions which describes the

process of implementing ANNs for the prediction of the mechanical properties of

composite materials:

1. Data collection: the �rst step in designing an ANN is to collect enough data

from experimentation. On top of this, processing of the collected data, mainly

to �lter out noise, might be required.

2. ANN design and training: the second step is to design the ANNs depend-

ing on the application at hand. This involves deciding on the best parameters

to use, in terms of: number of neurons, number of hidden layers, training al-

gorithm and neuron's activation function. Also, this step involves the training

of the proposed ANN.

3. Test of the trained network: this step is about assessing the prediction

and generalization capabilities of the trained ANN. The former is commonly

assessed by looking at the di�erence between predicted and experimental val-

ues, as a general rule, the lower the error, the better the prediction. The

generalization of the network is assessed by statistical methods such as p-fold

cross-validation and the coe�cient of determination.

4. Use of the trained network: the last step is to use the trained network to

simulate new data or for prediction.

The latter process highlights the large number of con�gurations available when

tackling a modelling problem. Due to this, some works in the literature opt for a

�trial and error� approach when investigating the potential of ANNs for a speci�c

application. Nonetheless, many works do perform optimizations in more than one of

the ANN hyper-parameters. For example, motivated by the limitations of traditional

viscoelastic models, the viscoelastic behaviour of polymer composites is investigated

by Al-Haik et al. in [124]. In here an ANN is developed to predict the stress

relaxation characteristics of a polymer composite. The amount of data used in

here is rather large, having 900 datasets covering di�erent conditions of the stress

relaxation process. The training algorithm used is the scaled conjugate gradient. In

addition to this, the optimal brain surgeon algorithm is used to optimize the topology

of the network. The latter algorithm assesses the contribution of each neuron to the

�nal results, by removing neurons one by one. This process is also known as pruning.

The developed ANN had two hidden layers with 45 and 39 neurons, respectively;
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and was successful in modelling the stress relaxation characteristics of the material

for ranges in which viscoelastic models were unsuccessful.

Initial works on this �eld of research were solely focused on one speci�c material.

However, as the research matured, more materials were studied in a single work.

This is the case for the work from Trebar et al. where a total of 12 di�erent com-

posite materials, natural rubber among them, were studied [119]. This work is more

oriented towards assessing the generalization capabilities of ANNs for this speci�c

selection of materials, having the previous knowledge of ANNs being successful for

the modelling of viscoelastic materials. Therefore, more attention is given to the

validation of the ANN prediction. This is done by using three di�erent statistical

parameters: (i) the root mean square error (RMSE), (ii) the normalized to the stand-

ard deviation, (iii) the mean absolute percentage di�erence (MAPE), and (iv) the

percentage of correctly classi�ed samples. In this case, the Levenberg-Marquardt

algorithm, an early stopping method, was used to prevent over-�tting. The dataset

was divided into training (80%) and testing (20%) subsets. The training subset was

further subdivided, allocating 80% of the data for the actual training and 20% for

the validation process required for the early stopping algorithm. Di�erent number of

neurons in the hidden layer were tested, ranging from three neurons to three times

the number of inputs. The latter ratio has also been mentioned in [118], where three

to four neurons per input node are found to be the optimal ratio. Although this is

more a suggestion rather than a rule. Trebar et al. assessed the impact of using raw

and preprocessed data for the training process. The preprocessed data consisted of

the statistical parameters of the mechanical properties used as input, such as the

standard deviation and mean values. The authors found that the developed ANN

was in agreement with the experimental data of studied mechanical parameters of

hardness and tensile properties.

Current implementations of ANNs in this �eld are focused more on using the

ANN as an alternative to current mathematical models for the prediction of the

stress relaxation and stress-strain curves of the materials. For example, in [125],

the prediction capabilities of an ANN are compared against one of the LVMs, the

Generalized Maxwell model, also known as the SLS model. A rather simple ANN

was developed in here, having only one input, the time, and one output, the stress.

The back-propagation with declining rate algorithm was used for training. The

performance of the ANN was assessed by the total sum of squared errors (TSSE)

and by commonly used statistical parameters, such as the RMSE and R2 coe�cient.
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The optimal number of neurons was found by trial and error, keeping the learning

rate, momentum and total number of epochs constant. In this case, the logarithmic

sigmoid function was chosen due to the compatibility with the stress relaxation

behaviour. The main di�erence between the latter function and the tan-sigmoid

function is that the former have an output range of [0, 1], whereas the latter range

is [-1,1]. In another work, the SLS model is again compared to an ANN [126].

In this case, many hyper-parameters, such as the number of neurons, number of

hidden layers, and activation function in the hidden layers, are optimized by trial

and error. Particular attention is put to the activation function of choice, which are

tan-sigmoid (tansig) and logarithmic sigmoid (logsig). All combinations of using the

latter function for a single and double layer network were assessed. The combination

of using logsig and tansig in a double layered network was found to be the most

optimal. The assessment of the performance of the ANN is based on the training

time, overall training error and maximum error. The ideal network would have

these parameters at its minimum values. This approach of minimizing the number

of resources of the ANN was previously mentioned as a way to avoid over-�tting.

Lastly, both mentioned works are good examples of the potential of ANN of replacing

traditional mathematical models for the prediction of the stress relaxation of soft

materials.

The literature on ANNs for the modelling of the stress-strain curve of soft ma-

terials is very scarce and fairly recent, in comparison to the literature available for

metals [127�129]. Nonetheless, one of the earliest attempts of modelling the stress-

train curve of non-metal materials is documented in [130]. In this work, polymer

composite materials are studied. The ANN developed in here follows the same trend

of using FFNN. However, the number of neurons and hidden layers are larger than in

previous applications. In this work, up to three hidden layers and up to 45 neurons,

are investigated. The aim of this work was to analyse the e�ect of polymer blending

ratio in the stress-strain curve of these materials. Current mathematical models

were only e�ective, for the previously mentioned task, inside the elastic range of the

material. The developed ANN was capable of overcoming this limitation. Moreover,

a logsig activation function was used, together with a backpropagation training al-

gorithm. No information is given on the reasoning behind the selection of neurons

and hidden layer, therefore a trial and error approach must have been adopted.

More recent works speci�cally investigates the performance of ANNs for the mod-

elling of soft materials such as elastomers and thermoplastic elastomers (TPEs). An
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example of this is documented in [131]. The aim of this work is to model the tem-

perature dependency on the dynamic mechanical properties of TPEs. Therefore, the

materials are characterized using a Dynamic Mechanical Analysis (DMA), which de-

scribes the stress response of the material on a range of frequencies or strain rates.

Nonetheless, the study is focused on a single frequency of 1 Hz. This particular work

is closely related to the research presented in this thesis. Therefore, the methodology

implemented by the authors is of interest. The work focuses on thermoplastic poly-

urethanes (TPUs). Again, the FFNN architecture is chosen for the developed ANN.

The temperature history is presented as input to the network, whereas the storage

modulus, damping factor, and loss modulus are the desired parameters to predict.

Three individual ANNs were developed, one for each parameter. The latter para-

meters describes the viscoelastic properties of materials. In terms of the activation

functions, the commonly used con�guration of having a tangent-sigmoid function in

the hidden layer and a linear function (purelin) in the output layer is chosen. The

Levenberg-Marquardt back-propagation minimization algorithm was implemented.

No particular measurements, besides the already provided by the training algorithm,

were implemented to ensure good generalization capabilities of the network. Among

the three developed ANN, no more than 15 neurons were used.

Kopa et al. continued the latter research in a recently published paper [132],

this time focusing on predicting the uni-axial tensile response of vulcanized rubber.

Again, a FFNN is developed. The inputs were the engineering strain and the content

of carbon black in the rubber blend. The output was the engineering uni-axial stress.

The optimal number of neurons was found by trial and error, being six the optimal

number of neurons. Similarly to previous applications, the tansig-purelin combina-

tion of transfer function was chosen. The Levenberg-Marquardt algorithm was also

used. The main contribution of this work is the validation approach implemented,

which is based on knowing the relationship between the material stress-strain ulti-

mate values, and the carbon black content of the material. A quadratic regression

can describe the latter with adequate accuracy. This is a simpler approach in com-

parison to �t the whole stress-strain curve of a material with a LVM. In summary,

the ANN was presented with unknown values of carbon content, obtained from the

regression model. The validation was successful since the ANN was capable, not

only of agreeing with the ultimate strain-stress values corresponding to that carbon

black content, but also of describing the whole stress-strain curve.

Lastly, the most recent work on this research �eld was performed by Rodriguez
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et al. in [120]. Many thermoplastic elastomers are studied in this work. Their

stress/strain curves are extracted from an available dataset, hence no mechanical

characterization is performed. The developed ANN is aimed to model the stress-

strain curve of many thermoplastic elastomers under di�erent values of temperature.

In comparison to previous works, several optimizations are performed in this one.

For example, the training process of the ANN consist of two steps. Initially, the Sim-

ulated Annealing (SA) algorithm is used to explore initial solutions for the weights

of the network prior to applying the greedy gradient-based Levenberg-Marquardt

(GGLM) algorithm. The main objective of the SA algorithm is to prevent the

weights, tuned by the GGLM algorithm, to fall into a local minimum. The latter

is a well-known side e�ect of Levenberg-Marquardt-based algorithms. Furthermore,

the ANN developed in here is a FFNN with 10 neurons in its single hidden layer.

The process of �nding the optimal number of neurons involved the training and test

of many ANNs with di�erent number of neurons ranging from 1 to 20 neurons. The

decision of using 10 neurons is based on the small improvement of the achieved pre-

diction error when further increasing the number of neurons. No explicit mention

of the activation function used in either of the ANN layers is given. The authors

opted to use the Neural Lab software to developed the ANN, instead of the com-

monly used Neural Network Toolbox from Matlab®. The temperature and strain

values were used as inputs, and the stress response as output. This work implements

similar methods as the one found in the literature for data division, measurement

of performance, and validation of the ANN prediction capabilities. Nonetheless,

the validation process implemented is extensive because �ve di�erent hyper-elastic

models, and a Probabilistic Neural Network are used for comparison. The validation

process was mainly focused on the prediction error rather than the generalization

capabilities of the developed ANN. The latter was assessed using the Normalized

Absolute Di�erence (NMAD) and the R2 coe�cient. An extra validation step was

performed which consisted of retraining the ANN using the data from another ma-

terial from the same type. In this case, the prediction error was slightly higher but

still adequate, considering that no further optimizations were performed in this test.

Summarizing, the implementation of ANNs for the modelling and prediction of

soft materials, such as composite materials, is still in its early stages. The available

literature is very limited for the speci�c application of modelling the stress-strain

curve of soft materials. Available works are focused on the e�ect of the temperat-

ure. Moreover, works focusing on the e�ect of the strain rate, hence the velocity-
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dependency, of the stress response of the soft materials are currently not available

in the literature. The latter is addressed in this thesis. Nonetheless, the potential

of ANNs for this application has been proven in the documented works. Despite the

many di�erences in the selection of hyper-parameters for the developed ANNs, the

architecture of choice has been the same, feedforward neural networks. Moreover, a

very comprehensive review can be found in [133] which includes information about

the commonly used validation methods, measurement of performance, sample size,

and the type of statistical models, implemented in engineering applications. More

detailed information on the speci�c statistical methods for the validation of the de-

veloped ANN, such as the p-fold cross-validation method can be found in [134, 135]

6.4 Model Development

As previously discussed in Chapter 2, modelling the nonlinear, time dependent, and

strain dependent stress response of soft materials is critical for the implementation

of reliable control systems in soft robotic applications. This has been attempted

in many ways, and is also attempted in this thesis with the development of the

PL-SLS and the PL-Wiechert models described in Chapter 5. The obtained results

highlight the capabilities of these models of predicting the mechanical behaviour

of soft materials. Nonetheless, the main limitation of modelling tools based on

mathematical models is the high complexity required to achieve adequate accuracy.

The latter is ampli�ed when these models are deployed in hardware with limited

computing power. This situation is not present in machine learning models where the

high computational complexity happens during training only. The computational

cost of a deployed model is minimum.

In line with the work available in the literature, a feed-forward back-propagation

neural network is developed in here. Nonetheless, the optimization of many of

its hyper-parameters is performed to increase its generalization capabilities. These

hyper-parameters include: the number of neurons in the hidden layer and the se-

lection of inputs. The remainder hyper-parameters used in here are based on suc-

cessful implementations from the literature. Table 6.1 provides a summary of the

hyper-parameters to be optimized and the hyper-parameters chosen based on the

literature.

In this work, the training function trainbr is used to train the ANNs, which is

based on the Bayesian Regularization (BR) algorithm. This is one of the two most
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Table 6.1: Summary of proposed and optimized hyper-parameters.

Proposed Hyper-parameters

Topology Feedforward Neural Network

No. of Hidden Layers 1

Hidden Layer Activation Function Hyperbolic Tangent Sgimoid (tansig)

Output Layer Activation Function Linear (purelin)

Training Algorithm Bayesian Regularization (BR)

Cost Function Mean Squared Error (MSE)

Output Stress (σ)

Dataset Size All available data

Dataset Division Function Random Division

Validation Error Measurement Normalized Root Mean Squared Error (NRMSE)

Validation Method Multiple Training Sessions (5)

Optimized Hyper-parameters

Number of Neurons 1 - 20

Inputs 1 - 3

commonly implemented methods to avoid over�tting in ANNs. The BR algorithm is

more computational demanding than the Levenberg-Marquardt algorithm, which is

commonly implemented as an early stopping training algorithm. Nevertheless, the

BR algorithm performs better for function approximation applications, and when

the dataset is small [136]. These characteristics are inline with the dataset used

in this research. The characteristics of the available dataset for each material is

presented in Table 6.2.

Table 6.2: Total number of training samples per soft material for the number of

neurons optimization. In here, the total number of training samples represents the

100% of the whole dataset.

Test Type EPR FR NatPolR NR PR SR NatR

50 mm/min 45294 11675 4675 11592 8788 24810 3768

250 mm/min - 11675 2129 10143 4735 11578 124344

500 mm/min 14154 8754 425 8694 676 - 41450

Total 59448 32104 7229 30429 14199 36388 169562
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The analyses presented in the following sections summarizes the large exploration

process, initially based on a trial and error approach, performed as part of assessing

the capabilities of ANNs for the prediction of the viscoelastic properties of the soft

materials included in this research. These tests provided with enough evidence on

the capabilities of ANNs for the mentioned application. Lastly, the optimization

processes performed to some of the ANN hyper-parameters are described in detail

in the following sections.

6.4.1 Analysis of the Model Inputs Selection

The �rst hyper-parameter to optimize is the selection of inputs. For this application,

in which the modelling of the velocity-dependent stress response of the material is

desired, the decision to include both the strain and the strain rate as inputs of

the ANN models, is made. However, in the scenario where the developed ANN

is deployed as part of a control system in a real application, having a derivative

term and the peaks associated with rapid changes in the input can cause the ANN

model to behave unexpectedly. An alternative to circumvent this limitation without

preventing the ANN model to learn the time-dependent properties of the stress

response, is to use the current and past values of the strain as inputs, i.e. the strain

history, allowing the network to learn the time dependency of the stress response

without having to di�erentiate any input. The latter con�guration describes a very

basic form of a Recurrent Neural Network.

In this work, both described scenarios are analysed. On the one hand, the pro-

posed ANN architectures which have derivative terms in its inputs is considered rate-

dependent. On the other hand, the ANN architecture which has current and past

values of their inputs, instead of a derivative term, is considered rate-independent.

The proposed combination of inputs used to create the ANN models studied in this

section, are described in Table 6.3.

As previously mentioned, the inputs and outputs listed in Table 6.3 must be

presented to the ANN in the form described in Equations (6.1) and (6.3), yielding:

X =

[
εt1 εt2 εt3 ... εtn

εt−11 εt−12 εt−13 ... εt−1n

]
(6.4)

H =
[
σpredt1 σpredt2 σpredt3 ... σpredtn

]
(6.5)

T =
[
σexpt1 σexpt2 σexpt3 ... σexptn

]
(6.6)
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Table 6.3: Proposed ANN architectures. The architectures FFRI1, FFRI2 and

FFRI3 are rate-independent, whereas the architecture FFRD4 is rate-dependent.

FFRI1 FFRI2 FFRI3 FFRD4

Inputs

εt εt εt εt

εt−1 εt−1 ε̇t

εt−2

Output σt σt σt σt

where X, H, and T are the inputs, outputs, and targets matrices. The variables

σexp and σpred represent the experimental and predicted values of the stress response

of the material for a given strain, respectively. The subscript n refers to the total

number of samples in each matrix. The assessment of the best combination of

input parameters is based on a 10-fold cross-validation approach which includes

the execution of several training sessions. During each training session, up to 10

sessions, the training dataset is randomized prior to be presented to the ANN. Due

to the 90-10 proportion used to create the training and test subset, the latter means

that the ANN will learn from a di�erent 90% of the data and at the same time, it

will be tested with a di�erent 10% of the data, at random. Also, the initial weights

of the ANN are randomized in each training session. By default, the measurement

of performance used during training is the mean square error (MSE). However, the

normalized root mean square error (NRMSE), between the ANN prediction and the

experimental data, is extracted from each training session and used for validation

(5.10) [117]. Finally, the generalization error is de�ned as the mean NRMSE value

from all the training sessions. The architecture with the lowest generalization error

is considered as the best candidate.

Due to the �ndings from Chapter 5, where the performance of the developed

PL-SLS and PL-Wiechert models can be correlated to the properties of the soft

materials, i.e. highly elastic, viscoelastic or highly viscous, the decision to optimize

the selection of inputs presented to the ANN on the remainder of the studied soft

materials is made. In other words, it is not safe to assume a �one �ts all� approach

due to the di�erences between the materials properties.

In Table 6.4, the hyper-parameters chosen for this optimization are described.

This is intended to isolate the impact of the di�erent inputs presented to the ANN.

Similarly, the impact of the amount of data used during training is isolated by using
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Table 6.4: Proposed parameters for the selection of best inputs

Fixed Hyper-parameters

Number of Neurons 20

Dataset Size 10% of available data

Data Division 90% for training, 10% for testing

Error Measure NRMSE and Generalization Error

Validation Method 10-fold Cross Validation

only 10% of all the complete dataset previously described in Table 6.2. Subsequently,

the data is divided into training and testing subsets, containing 90% and 10% of

the data, respectively. The size of the testing set is based on the number of training

session to perform, which is 10. The Matlab function cvpartition is used to obtain

10 nonstrati�ed subsets of data which guarantees a unique subset of data is used

for each training session. The testing subset is used to validate the generalization

capabilities of the ANN when unknown data is presented to it. Similarly, a rel-

atively large number of neurons is used in this optimization to avoid limiting the

performance of the ANN models. Finally, the results are illustrated in Figures 6.2

and 6.3. The obtained charts indicates that the FFRD4 architecture is the one with

the best generalization capabilities, i.e. smallest generalization error. In some cases,

such as the EPR and NR materials, the achieved error of the FFRI1 and FFRD4

architectures are very similar. The di�erence between the achieved errors are minor.

Hence, the FFRD4 architecture is selected as the best candidate.

Another important observation is the relationship between the achieved error

and the complexity of the rate-independent architectures. In other words, presenting

the ANN models with more inputs, in the form of past values of the strain, does

not always yield in a performance increase. This is the case for the FR, NR, and

SR materials. These results could be related to a weak velocity-dependency of the

previously mentioned materials. Presenting the ANN models with additional inputs,

aimed to account for velocity dependencies in the materials stress response, can harm

the learning process rather than aid it.

As part of this analysis, the concept of having past values of the material stress

response as input to the ANN model was also investigated. The achieved general-

ization error of this architecture is at least one order of magnitude lower than the

other four architectures. Nonetheless, this concept is later dropped due to its incom-
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Generalization error, based on a 10-fold cross-validation, for the (a)

EPR, (b) FR, (c) NatPolR, (d) NR, (e) PR, and (f) SR materials. The best input

combination is the one with the smallest generalization error, which in most cases

is the FFRD4 con�guration.
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Figure 6.3: Generalization error, based on a 10-fold cross-validation, for the NatR

material. The best input combination is the one with the smallest generalization

error, i.e. the FFRD4 con�guration.

patibility with a real robotic application. In other words, having the stress response

of the material as input to the ANN model would translate into adding a load cell

to the application. This cancels out one of the main bene�ts behind series-elastic

actuators, which is transforming the force control problem into a position control

problem. In other words, using a modelling tool to predict the stress response of

the material based on the measured deformation of the material. Finally, the op-

timization performed in here showed that a rate-dependent architecture, such as the

FFRD4, is more suitable for accounting the velocity-dependency of the stress-strain

curve of soft materials.

6.4.2 Analysis on the Optimal Number of Neurons

In the literature, having two to three neurons for each input of the ANN is recom-

mended. This recommendation seems to be in accordance to the number of neurons

used in the documented implementations [120, 129, 132]. Nonetheless this is not

true for all implementations [130, 131]. Moreover, the number of neurons must be

kept at its minimum to avoid the ANN to over-�t the training dataset. Therefore, it

is desirable to search for the optimal number of neurons which allows the developed

ANN models to achieve a desired accuracy. In here, the latter search is performed,

initially, for a range of 1 to 20 neurons. The coe�cient of determination, R2 value,

is used to assess the performance of the ANNs. In addition to this a 10-fold cross

validation is performed. The latter is done by �rstly dividing the whole training

dataset into 10 subsets. Then, multiple training sessions are performed. In each
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training session, 1 out of the 10 available subsets becomes the test set and the re-

mainder 9 subsets become the training set. In this way, each training session use a

di�erent section of the whole dataset during the training. On top of this, the range

from 1 to 20 neurons is investigated. This means, a total of 200 ANN models are

training per soft material. The main objective of this optimization process is to limit

the resources of the developed ANN models, i.e. to avoid over-�tting. The training

session with the minimum number of neurons that has a value of R2 > 99.9% is con-

sidered as the best candidate. A similar process to this, but using the percentage of

correct prediction, is documented in [122].

In this optimization, the complete dataset available for each material is sub-

divided to allocate 90% of the data for training and 10% for testing. As previously

mentioned, no validation subset is required when using the Bayesian Regulariza-

tion algorithm. Therefore, the training set is no further subdivided. The list of

hyper-parameters used in this case is compiled in Table 6.5, and the total number

of training samples for each soft material is compile din Table 6.2.

Table 6.5: Proposed hyper-parameters for the number of neurons optimization

Fixed Hyper-parameters

Architecture FFRD4 (see Table 6.3)

Number of Neurons 1 to 20

Error Measure R2 value

Validation Method 10-fold Cross Validation

Data Division 90% for training, 10% for testing

Data Set Size 100% of available data

The achieved generalization errors (Gen. Error) and the R2 values obtained from

this optimization are illustrated in Figures 6.4 to 6.6. The calculation of the Gen.

Error is based on the mean value of the NRMSE values obtained during the 10

training sessions, as follows:

Gen.Error =
1

N

N∑
j=1

NRMSEj (6.7)

where N is the total number of training sessions, 10, and the subscript j represents

the NRMSE value obtained in each individual training session. It is important to

mention that the training set is di�erent from one training session to the other, but

it is constant among the di�erent number of neurons tested.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Impact of the number of neurons on the R2 value (a), (c), (e), and the

Generalization error (b), (d), (f), for the EPR, FR, and NatPolR materials. A total

of 200 ANN models are trained per soft material. The best R2 value is circled in

(a), (c), (e). The optimal number of neurons is circled in (b), (d), (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Impact of the number of neurons on the R2 value (a), (c), (e), and the

Generalization error (b), (d), (f), for the NR, PR, and SR materials. A total of 200

ANN models are trained per soft material. The best R2 value is circled in (a), (c),

(e). The optimal number of neurons is circled in (b), (d), (f).
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(a) (b)

Figure 6.6: Impact of the number of neurons on the R2 value (a) and the Generaliz-

ation error (b), for the NatR material. A total of 200 ANN models are trained per

soft material. The best R2 value is circled in(a). The optimal number of neurons is

circled in (b).

The R2 value, or coe�cient of determination, indicates the fraction of the data

variation which is explained by the ANN models. Traditionally, a R2 value closer

to 1 indicates a very good model �t. However, in the �eld of ANNs, a very high R2

value could actually indicate over-�t in the developed ANN. In general, most of the

achieved R2 values are below the desired threshold of R2 > 99.9%. Only the ANN

model NR material is able to meet the latter threshold. In contrast, the lowest R2

value achieved among all materials is reported for the NatR material as R2 > 81.6%.

The ANN models with the optimal number of neurons must have the right com-

bination of good accuracy (small NRMSE), low number of neurons, and high R2

values. The �rst parameter to consider is the R2 value. For the training sessions

with a R2 > 99.9%, the optimal candidate is the one with the lowest number of neur-

ons. For the cases in which the threshold is not achieved, the maximum achieved R2

value is taken as reference. Following these conditions, the optimal number of neur-

ons per soft material are extracted and presented in Table 6.6. In here, the PL-SLS

and the PL-Wiechert models are also compared against the developed ANN model.

The values of the generalization error for all the three models are very similar.

The calculation of this parameter is di�erent between the ANN models (6.7) and

the PL models (5.13). Nonetheless, in both cases, the generalization error measures

the capabilities of the models for accounting the non-linear velocity-dependent stress

response of the studies soft materials.
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Table 6.6: Comparison between the performance of the best case ANN model, the

PL-SLS model, and the PL-Wiechert model. The generalization error, Gen. Error

(6.7), is based on the mean NRMSE value from all training sessions, whereas the GE

(5.13), is based on the mean NRMSE among all available strain rates as described

in Chapter 5.

EPR FR NatPolR NR PR SR NatR

ANN model

Gen. Error (%) 2.29 8.75 5.04 1.22 5.48 7 24.9

R2 99.7 93.6 98.5 99.9 96.9 97.9 81.6

No. of Neurons 10 17 13 12 5 12 10

PL-SLS model

GE (%) 13.04 3.03 2.27 1.36 2.70 1.44 1.10

Tolerance (%) 60 90 30 40 40 70 80

PL-Wiechert model

GE (%) 10.34 4.44 2.51 2.36 3.64 0.55 1.12

Tolerance (%) 90 70 10 70 60 60 80

In general, the generalization error values of the developed ANN models are

slightly higher then the values reported for the PL models. This is expected due to

the selection criteria when choosing the optimal number of neurons. In other words,

this is the potential e�ect of constraining the number of neurons to avoid over-�tting

from happening. Nonetheless, the NatR material is identi�ed as an outlier. This

material reported a signi�cantly di�erent Gen. Error value of 24.9% which is also

not aligned with the generalization errors reported for the PL models. The potential

cause of this is the uneven dataset available for this material in which much of the

data is concentrated in the strain rates of 250 and 500 mm/min. Another potential

cause of this is the limited number of neurons used, in comparison to the size of the

dataset available for this soft material, which is the largest among all the studied

materials. This hypothesis is further veri�ed by looking at Figure 6.3 from the

selection of inputs optimization where only 10% of the whole dataset is used. In

this scenario, the Gen. Error achieved by the ANN model is around 5%, a value

closer to the Gen. Error values reported in Table 6.6.

Interestingly enough, the ANN models performed better for the case of the EPR

material, where the PL models performed the worst. Again, this can be related to
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the characteristics of the dataset. For this material, there is no available data for

the strain rate of 250 mm/min. In addition to this, the stress-strain curves of this

material for the strain rates of 50 and 250 mm/min are very similar (Figure 4.6a).

Due to this, a small Gen. Error in this scenario could in fact indicate over-�tting.

Nonetheless, the developed ANN models performed better than Std. Lin. SDS

model, the reference which has been used along this thesis, where the reported

relative RMSE is of 13.6%. Therefore, the developed ANN models are also suitable

for the prediction of the non-linear, time dependent, and strain dependent stress

response of viscoelastic materials. Lastly, the performance of the developed ANN

models is further validated under simulated real-time conditions, replicating as much

as possible the conditions expected in a real robotic application.

6.5 Summary

In this chapter, a feedforward arti�cial neural network model is developed and tested

as an alternative to traditional modelling approaches based on the LVMs, such as the

PL models developed in Chapter 5, which can be very computationally costly. Arti-

�cial neural networks have been successfully implemented is many applications, but

the literature available on the prediction of the viscoelastic properties of soft mater-

ials is still scarce. The developed ANN models are aimed to be used in real robotics

applications, speci�cally to predict the mechanical behaviour of the viscoelastic ele-

ment found in a recent actuation technology, the series-viscoelastic actuator.

The process of developing the ANN models involved the optimization of the

number of neurons in the hidden layer and the most appropriate selection of inputs

and outputs, to account for the viscoelastic properties of the studied soft materials.

The optimal number of neurons varied from one material to the other but it does

not exceed 20 neurons. The inputs of the ANN models are de�ned as the strain

and the strain rate of the materials. As the output, the ANN models are aimed to

predict the stress response. In order to avoid over-�tting, the Bayesian Regulariz-

ation algorithm is used instead of a traditional early stopping method such as the

Levenberg-Marquardt algorithm.

The generalization capabilities of the ANN models are assessed using a k-fold

cross validation approach together with multiple training sessions. In this way, the

network is trained and tested with unique data subsets in each training sessions.

The mean NRMSE from these training sessions is de�ned as the generalization error
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of the ANN models. In general the ANN models outperformed the Std. Lin. SDS

model documented in the literature, which has been used as reference in this thesis.

When comparing the performance of the ANN models to the PL models, two outliers

are detected. On the one hand, the ANN model for the EPR material outperformed

the developed PL models. On the other hand, the ANN model for the NatR material

performed worse than the PL models. The di�erences in performances could be

caused by the characteristics of the dataset of each of these materials. This however,

do not disregard the capabilities of the ANN models to account for the non-linear

velocity-dependent stress response of soft materials. Nonetheless, the performance

of these modelling approaches when being implemented as part of a control system

is still unknown. This is investigated in the following chapter.
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Modelling a bio-inspired series-viscoelastic

actuator
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7.1 Introduction

In the previous chapters, the development of two modelling tools based on the LVMs,

and one modelling tool based on machine learning algorithms is described. The three

developed models are capable of accounting for the nonlinear velocity-dependent

stress response of the studied soft materials with adequate accuracy. Due to the

measurement of performance used for evaluating the ANN models, further validation

is desired. Speci�cally, under a simulated real-time scenario, which replicates the

conditions expected in a real robotic application. This is in line with the motivation

of this research of addressing the current limitations of traditional modelling tools

when being deployed as part of a control system, such as: high complexity and large

computational power requirements.

In this chapter, the performance of the ANN model is assessed under a simulated

real-time scenario. This is done by assessing the prediction performance of the

ANN model under di�erent types of strain inputs, such as a sine wave, and using

a simpli�ed model of a series-viscoelastic actuator. This study is performed in

Simulink. The developed PL models are not included in this analysis due to their

formulation which make use of past values of the stress response of the material.

This contradicts the principles and bene�ts of series-elastic actuators.

Also included in this chapter is the investigation about the similarities between

the human tendon and the studied soft materials. This is a crucial part for selecting

the best soft material to be implemented as part of the model of a series-viscoelastic

actuator.

Results highlight an unexpected limitation of the developed ANN model which

is not capable of performing well under a variable strain rate input. This can be

circumvented by keeping the strain rate input constant. However, this is a limit-

ation which must be addressed for the ANN model to be reliable in real robotics

applications.

In summary, the design process presented in here consists of: the selection of

the best soft material to match the human tendon properties; the selection of the

electric motor and gearbox combination suitable to deliver 50% assistance, based on

the knee torque requirements during walking activities; the evaluation of the ANN

model in simulated real-time under di�erent strain input signals; and the 3D design

of a clamping device aimed to hold several pieces of soft materials in a bundle-form.
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7.2 Matching the Human Tendon Properties

In line with the aim of implementing the human skeletal muscle system functionality

in soft robotic applications in the form of a bio-inspired soft actuator, this section

presents a comparison analysis between the mechanical properties of the seven stud-

ied soft materials, and the human tendons and ligaments involved in the motion of

the knee joint. The latter is motivated due to the large contribution of this joint

on the activities of daily living, as described in Chapter 3. Due to the limited

availability of clinical studies focusing on the tensile strength and stress relaxation

properties of the tendons and ligaments involved in the human knee joint, a selection

of three separate clinical studies is made. The �rst study is solely focused on the

tensile strength properties of the patellar tendon [137], the second one is focused

on the stress relaxation properties of the quadriceps ligaments [70], and the third

study is focused on the tensile strength properties of both the patellar tendon and

the quadriceps ligaments [138]. The aim of this comparison analysis is to identify

which of the studied soft materials can match the human tendon mechanical prop-

erties. Due to this, the viscoelastic properties of the human patellar tendon and the

quadriceps ligaments are compiled in Table 7.1, alongside the mechanical properties

of the studied soft materials for direct comparison.

Table 7.1: Viscoelastic properties of the patellar tendon and the quadriceps liga-

ment [70, 137, 138], compared against the viscoelastic properties of the studied soft

materials (Tables 4.2 and 4.4).

Human EPR FR NatPolR NR PR SR NatR

Tendon

Tensile Strength

σue (MPa) 33.6 8.48 4.36 3.57 3.55 0.3 6.03 9.43

εue 0.14 7.56 3.97 1.19 3.57 1.87 5.77 13.02

Esmall (MPa) 303.9 3.23 4.83 9.97 4.29 0.58 3.26 1.01

Stress Relaxation

S.R (%) 41 32 67 35 29 63 31 15

In Table 7.1, the large di�erence between the elastic properties of the quadriceps

tendon and the studied soft materials, speci�cally for the elastic modulus Esmall, can

be appreciated. Nonetheless, the achieved stress relaxation in the human tendon is
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very similar to the one found in the soft materials. Therefore, they share similar

viscous properties. This is a positive �nding, because the elastic properties, of

stress and strain, are structural parameters which depends on the dimensions of

the material Section 4.3. The stress is inversely proportional to the cross-sectional

area of the material. Moreover, the stress has a nonlinear relationship with the

material strain. Hence, a material with larger cross-sectional area will require a

larger force to achieve the same deformation. With this in mind, a new questioning

arises regarding the cross-sectional area increment required for the soft materials to

match the properties of the human tendon.

The latter questions must be answered considering the end application of the soft

materials. As previously mentioned, these are intended to be used as part of a series-

viscoelastic actuator. Having this in mind, the way in which the soft materials match

the human tendon properties by an increase in their cross-sectional area can be

better visualized. The implementation of a bundle of many strips of a soft material is

proposed. The dimensions of each strip must be in line with the dimensions in which

the material is available from the manufacturer. As previously mentioned, they all

come in a rectangular shape. The thickness among all the studies soft materials vary

from one to the other. Moreover, it is useful to think in the end application of the

soft actuator itself, which is human assistance. According to the literature, a robotic

wearable device for rehabilitation applications must deliver an assistance of 60% of

the peak torque required [139]. Due to this, an objective assistance percentage of

50% is proposed in here as design guidelines for the selection of the motor-gearbox

combination. In addition to this, the safe working conditions of the studied soft

materials, i.e. the elastic region, are considered. The approximated elastic region

of each studied, using the o�set-yield strength, is compiled in Section 4.3. Lastly,

all this information is considered in the matching factor calculation, in which the

elastic modulus Esmall of the human tendon is desired to be matched by the soft

materials.

The matching factors described in Table 7.2 are obtained using a two-fold process.

Firstly, the cross-sectional area of each soft material is matched with the cross-

sectional area of the human tendon. Secondly, the elastic modulus of the human

tendon is matched, considering the previous increase in the cross-sectional area of

the materials. As previously mentioned, the materials thickness is de�ned by the

manufacturer, therefore �xed. Nonetheless, many strips can be extracted from the

material rectangular sheet using laser cutting. The width of these strips can be
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Table 7.2: Matching factors required for the soft materials to achieve the human

tendon Esmall value. The width proposed for the material strips is 66 mm.

EPR FR NatPolR NR PR SR NatR

Matching factors

Ao 7 7 7 7 2 7 12

Esmall 77 52 25 58 375 76 248

Esmall @ 50% 39 26 12 29 188 38 124

Material Dimensions

Old Ao (mm2) 9 9 9 9 36 9 5.22

New Ao (mm2) 4852 3245 1572 3653 27020 4807 15517

New Ao @ 50% (mm2) 2426 1622 786 1827 13510 2404 7758

Strip Width (mm) 66 66 66 66 66 66 66

No. of strips 49 33 16 37 68 49 270

No. of strips @ 50% 25 16 8 18 34 24 135

modi�ed to increase the cross-sectional area of the material. Hence, a width of

66 mm is proposed for the latter calculations. The latter is decided taking into

consideration the application in which the bundle of strips will be implemented.

That is, bio-inspired actuator. Moreover, this actuator is aimed to be used to assist

the knee joint. This in fact puts a limit to the width of the bundle of strips, and

that is the dimensions of the human shank. Taking this into consideration, and

the relationships between the required number of strips and the strips width. The

previously mentioned value of 66 mm is adequate. In theory, it is possible for all the

materials to match the human tendon elastic modulus as long as enough strips are

used. The exact number is stated in Table 7.2. Finally, by analysing the obtained

matching factor in combination with the stress relaxation properties of the human

tendon, the soft material with the closest properties is identi�ed to be the NatPolR

material.

7.3 Validation in Simulated Real-time

In this validation, the developed PL models are not included because its formulation

makes use of past values of the stress response. This contradicts the bene�ts of

implementing a SEA in the �rst place, which is to use the deformation of the elastic
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element as an indirect way to measure the stress response. The same principle apply

for series-viscoelastic actuators (SVAs).

The developed ANN models, takes two inputs, the strain and strain rate, and

outputs the stress response of the material in MPa. Therefore, particular care must

be taken with regard to the conversion to avoid undesired results. As previously

mentioned the stress is de�ned as σ = F/Ao, whereas the strain is de�ned as ε =

∆L/lo. The value of lo = 33mm applies to all soft materials studied in here. The

cross-sectional area Ao varies from one material to the other. The units from the

stress output (MPa) and Ao (mm2) are compatible and can be used as they are in

the conversion.

The simulation environment is based on the model of a soft SVAs. Commonly,

these actuators are cable-driven. In simple terms, this means that an electric motor

is connected in series to a viscoelastic element, and this element to a load. In here,

many assumptions are make to simplify the model of the actuator and isolate the

performance of the ANN model. These assumptions are as follows:

� The electric motor is replaced with a simple sine wave block which represents

the strain. The derivative of this input signal is the strain rate.

� The viscoelastic element is connected to the motor in one end, and is �xed on

the other end. Hence, no load is connected to this element.

� The concept of implemented multiple pieces of the same material is implemen-

ted by a gain block.

Having de�ned the conditions of the simulation, the developed Simulink model

is illustrated in Figure 7.1, as follows:
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Figure 7.1: Simulink implementation of the ANN model. The ANN model takes the

strain and strain rate as inputs, and delivers the stress response of the material in

MPa as output. The gain blocks ensure that the units are consistent.

In Table 7.2, the NatPolR material is identi�ed as the best candidate to imitate

the mechanical properties of the human tendon. Due to this, the NatPolR material

is selected for this simulation. The parameters of the generated sine wave must

be inside the working conditions of this soft material. The latter is reported in

Table 4.2. The elastic limit εy of the NatPolR varies from 0.41 to 0.48 strain.

Similarly, the stress response of the material in this range of deformation goes from

2.12 to 2.52 MPa. Moreover, the prediction capabilities of the ANN models have

been assessed for the three available strain rates of 50, 250, 500 mm/min. Therefore,

the frequencies of the generated sine wave must be inside this range as well. For

consistency, these values are changed to mm/sec when de�ning the sine wave. Inside

the block diagram, the generated sine wave is divided by the initial length of the

material lo = 33mm, yielding the units of the strain (mm/mm) per second. The

generated sine wave must have positive values of the strain only. This is in line to

the training set where only positive values of the strain are available. The generated

sine waves follow the basic formula f(t) = Asin(wt + β) + C. For simplicity, only

the amplitude A and the o�set C are varied. Changing these two parameters allows

each sine wave to have di�erent values of strain rates, measured as the di�erence

between the maximum and minimum values of the sine wave that are spaced by one

second due to the chosen frequency.

A total of four di�erent sine waves are generated to represent a varying strain

inputs. The strain rate input is the derivative of the sine wave, i.e. a cosine wave.

Each one is aimed to assess a speci�c scenario. The sinewaves with the strain rate

of 100 mm/min and 400 mm/min are aimed to assess the response of the model for
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positive values of the strain and the strain rates which are unknown to the ANN

model, i.e. they are not included in the training set. The sinewave with a strain

rate of 50 mm/min is aimed to assess the response of the ANN model when negative

values of both the strain and strain rate are included. In reality, negative values

of the strain, i.e. compressing the material, do not produce any stress response.

Nevertheless, this behaviour must considered when deploying the ANN model in a

control system. Lastly, the sine wave with a strain rate of 500 mm/min is aimed to

assess the response of the ANN model when the strain rate is saturated, i.e. negative

values of the strain rate are replaced with zero. The results of the simulation are

illustrated in Figure 7.2.

(a) (b)

(c) (d)

Figure 7.2: ANN model stress response to a sine wave strain input. The solid and

dotted blue line are the strain and strain rate, respectively. (a) and (b) positive and

unknown strain rate values, (c) negative values of the strain and strain rate, (d)

strain rate saturated to avoid negative values.

The prediction of the ANN model under scenario (a) is not entirely accurate
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since negative values of the stress response are present (Figure 7.2a). This is an

unexpected behaviour because both the strain and strain rate are positive and are

inside the elastic limit of the material. This behaviour can be caused by the steep

decaying rate of the cosine wave in the 0.5 to 1.5 seconds interval. Nonetheless,

the stress response of the ANN model is even more unstable when using a larger

value for the strain and strain rate as shown in scenario (b) (Figure 7.2b). In here,

the response of the ANN model do not reach negative values. In scenario (c), the

response of the model looks very stable. However, the stress response is always

negative (Figure 7.2c). This scenario is initially out of the ordinary due to the

negative values of the strain and strain rate which are not expected to be present

in a real application. Due to this, the obtained stress response if expected to be

inaccurate. Lastly, in scenario (d) the response of the ANN model oscillates between

positive and negative values despite the saturation implemented to the strain rate

signal (Figure 7.2d). In summary, the scenario in which the ANN model performed

the best is in (a). Although, the obtained negative values of the stress response are

undesired.

The unstable response of the ANN model can be caused by the limited number of

strain rates included in the training set. Moreover, the strain rate in these scenario

is changing over time, whereas the strain rate in the training set is �xed between

three di�erent values. Due to this, the four scenarios are tested again, this time

using a positive an constant strain rate of 250 mm/min. The results are illustrated

in Figure 7.3.

The response of the ANN model when a constant strain rate is used is very

stable (Figure 7.3). This further indicates that the main limitation of the developed

ANN models, i.e. their performance relies heavily on the training set. This can be

improved by adding the unloading stage of the stress-strain curve of the material. In

this way, the concept of a decreasing strain rate can be learned by the ANN model.

Summarizing, the analysis performed in this section provided useful informa-

tion about the behaviour of the ANN model in simulated real-time conditions. An

important limitation is found, which is the erratic prediction of the ANN model

when the strain rate varies over time. The lack of a bigger and richer training set

is identi�ed as the potential cause. The relevance of understanding the role of the

strain rate on the stress response of soft materials has been recently highlighted in

the literature. In the work performed by Xu t al. in 2019, the development of an

ANN model capable of predicting the elastic modulus of soft materials under di�er-
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(a) (b)

(c)

Figure 7.3: ANN model stress response to a sine wave strain input and a constant

strain rate. The solid and dotted blue line are the strain and strain rate, respectively.

(a-b) positive and unknown strain values, (c) negative values of the strain.

ent strain rates is described [140]. The studied material in this case is a graphene

reinforced composite, and is characterized using a dynamic mechanical analysis over

a range of frequencies and temperatures. These ranges of values are the input of the

ANN model which in fact, does not directly predict the stress response of the mater-

ial, and instead, predicts the storage modulus of the material which is a parameter

related to the viscoelasticity of materials. Using this parameter in combination with

known mathematical equations, the stress response of the material can be extracted.

Ongoing research about the modelling of soft materials using ANN models highlights

the relevance and feasibility of the research presented in this thesis.
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7.4 Series-viscoelastic Actuator: Design Concept

Series and parallel elastic actuators have been implemented in human assistance ap-

plications to achieve a muscle-like performance and increase the assistance capability

of robotic wearable devices. Traditionally, the mechanical element used to provide

elasticity in actuators is a metallic spring. However, the idea of replacing the metal-

lic spring with a soft material, such as rubber, is being researched now. The works

performed by D. Rollinson has proved this idea to be bene�cial for series-elastic ac-

tuators (SEAs) by developing a rotational spring based on natural rubber [83, 141].

In fact, the latter research gave birth to HEBI Robotics and to the �rst SEA im-

plementing a soft material as the elastic element [142]. In addition to this, other

SEA concepts implementing rubber [86], dielectric elastomer [143] and polyurethane

[114] are being researched.

The bene�ts of series and parallel elasticity have been demonstrated in many

works both with rigid and soft materials as the elastic element. However, there is

only one actuator concept documented in the literature which implements both series

and parallel elasticity in the same actuator, creating a series-parallel-elastic actuator

(SPEA) [144]. This actuator implements rigid springs and is based on the variable

recruitment process observed in human muscles, which means that depending on

the required torque and displacement, more springs are engaged.

As previously mentioned, an objective assistance of 50% of the required peak

torque is proposed. Moreover, the research is focused on the human knee joint due

to its major role in the activities of daily living. In line with this, the required peak

torque and angular speed range for the knee joint during normal walking is found to

be 29 Nm and ±50 rpm respectively [139, 145]. Therefore, the peak torque aimed

to be delivered to achieve a 50% assistance is 15 Nm. The previous parameters will

be used as guidelines when selecting the electric motor/gearbox combination to be

used in the simulation. In addition to this, the working range of the soft materials

is also important. The latter is indicated by the elastic region of the material, which

is approximated using the o�set yield strength in Section 4.3. In summary, the

parameters aimed to be used in a future experimental validation are presented in

Table 7.3.

As part of the preliminary design of the series-viscoelastic actuator, and in line

with using a bundle of soft materials to match the human tendon mechanical prop-

erties, a clamping device is designed in SolidWorks® (Figure 7.4). The width of

the clamp is in line with the end application, which is an assistive wearable device
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Table 7.3: Simulation parameters

Soft Material Natural Rubber with Polyester (NatPolR)

Working Range Up to 0.5 strain ( 16.5 mm)

Strip Width 20 mm

Strip length 33 mm

Ao 9 mm2

No. of strips 8

Torque reference Knee joint motion capture data

Position reference Knee joint motion capture data

Electric motor Maxon RE53-323891 [146]

Nominal Voltage 24 V

La 0.191 mH

Ra 0.583 Ω

Ka 29.2 mNm/A

Kb 0.029 V/(rad/s)

Jm 79.2 g/cm2

Gearbox Maxon GP 42 C-203124 [147]

n 1/81

for the human knee joint. The idea behind this design is to stack several pieces

of the same material on top of each other and then clamp them together to create

a bundle of soft materials. This design is similar to the one used in the literature

when dealing with rubber materials and cable-driven actuators [86].

The clamp mechanism of Figure 7.4 is designed to be detachable. This is achieved

by having a T-shape element which can be glued to a bundle of materials strips. Each

soft material strip must also be glued to each other to allow for even deformation

of the whole bundle. The T-shape attachment, which resembles a �plug and play�

device, �ts inside the clamp base (Figure 7.4a) and also in the clamp top element.

This allows the quick testing of di�erent bundles of soft materials. Once in place, the

clamp mechanism can be secured with bolts going through the holes added to the

clamp base and top parts. This is illustrated in Figure 7.4b. This design is inspired

in the one used in [86], with the addition of designing it as detachable clamping

mechanism to allow the test of di�erent soft materials bundles, when being used as

part of a test bench.
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(a) (b)

Figure 7.4: CAD Design of the detachable clamping device (a) Bottom part, (b)

Final assembly, the soft material is coloured in black, and the T-shape attachment

in blue. Units are in millimetres.

7.5 Summary

In this chapter, the preliminary design concept of a series-viscoelastic actuator is

presented. As the very �rst step in the design process and in line with the aim of

mimicking the human muscle skeletal system, the comparison of the human tendon

mechanical properties against the properties of the soft materials is made. In addi-

tion to this, the validation of the ANN model performance under simulated real-time

conditions is investigated. The results are unexpected due to the erratic stress re-

sponse prediction of the ANN model. The latter is directly related with the fact that

only up to three di�erent strain rates are included in the training set. Moreover, the

stress response of the ANN model is also a�ected by the selection of frequency and

amplitude of the strain input. Nonetheless, the prediction performance of the ANN

model is very stable when the strain rate is positive and constant. This highlight the

necessity of a richer dataset which includes the unloading stage of the stress-strain

curve of the materials. Also, information about a decreasing strain rate can improve

the performance of the ANN model described in here. Finally, the work related to

the design process of the series-viscoelastic actuator is presented, which includes:

the selection of actuator technologies, selection of the best soft material to match

the human tendon properties, and design of a clamping device to hold a bundle of

stacked soft material pieces.
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8.1 Summary

The aim of this research, is to investigate the concept of implementing viscoelasticity,

a property found in the human skeletal muscle system, in soft robotics applications

for the assistance of the human lower limb. Narrowing this a little further, spe-

cial focus is put into the human knee joint and the concept of a series-viscoelastic

actuator. In addition to this, this research aims to address current limitations on

the modelling of soft materials. Specially the nonlinear, time dependent, and strain

dependent stress response of soft materials is of interest. The latter is systematically

investigated by developing three modelling tools. Two of them are based on the Lin-

ear Viscoelastic Models, whereas the third one is based on arti�cial neural networks

(ANNs). The motivation behind investigating di�erent modelling approaches is to

address the known limitations of traditional modelling tools, based on mathemat-

ical models, when being deployed as part of a control system. These limitations are

high complexity and large computational power requirements. Due to the latter,

the performance of the developed ANN model is assessed in a simulated real-time

environment using Simulink. The simulation is based on the simpli�ed model of a

bio-inspired series-viscoelastic actuator (SVA). The main di�erence between a SVA

and traditional series-elastic actuators is in the type of elastic element implemented.

In here, the aim is to implement a bundle of strings made of a speci�c soft mater-

ial. Lastly, this last chapter of the thesis provides a summary of the actions taken

towards completing the aims and objectives presented in Chapter 1, as follows:

Survey the literature to identify: the terminology related to

the biomechanics of the human lower limb, and the current

soft robotic developments for the �eld of human assistance.

The tendency of mimicking the human muscle skeletal system functionality when

developing soft robotic applications for human assistance, is presented in Chapter 2.

Furthermore, the most matured soft actuation technologies commonly used are iden-

ti�ed as: pneumatic/hydraulic arti�cial muscles, and cable-driven actuators. The

bene�ts and limitations of these technologies are described. In the �eld of soft

sensing applications, the literature is mainly focused on elastomers with embed-

ded micro-conductive channels. The lack of literature describing the modelling of

the soft materials used for these applications is detected as a research opportunity.

Lastly, the implementation of soft actuation technologies as a way to imitate the

functionality of the muscle-tendon component is mainly focused on the contractile
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element rather than the elastic element. Polymer materials are identi�ed as poten-

tial candidates to be used as part of a bio-inspired actuator due to the similarities

of these materials with the mechanical properties of the human tendon, and due to

the medical application in which they have been used, e.g. tendon reconstruction.

Lastly, viscoelasticity, a property of most soft materials, is now being researched

as an alternative to improve mature actuation technologies, such as series-elastic

actuators. The concept of a series-viscoelastic actuator is very recent and further

validates the feasibility of this research.

Investigate the biomechanics of the human lower limb during

activities of daily living.

In Chapter 3, kinetic and kinematic parameters of the human lower limb during

activities of daily living are presented. Special attention is given to the mechanical

model commonly used in soft robotic applications, the Hill's model, when mimick-

ing the functionality of the human skeletal muscle system. The potential of using

the compiled data is identi�ed and a conference paper is produced from the work

performed in this chapter. The latter paper presents several visualization techniques

which can be useful for the design phase of any soft robotic application for human

assistance of the lower limb. The complete collected dataset is presented in Ap-

pendix A in the form of charts.

Characterize the viscoelastic properties of suitable soft mater-

ials.

The characterization process of seven soft materials from the family of composite

materials is presented in Chapter 4. The studied rubber-based materials are as

follows: Polyethylene Rubber (PR), Ethylene Polypropylene Rubber (EPR), Natural

Rubber with Polyester (NatPolR), Natural Rubber (NatR), Silicone Rubber (SR),

Fluorocarbon Rubber (FR), and Nitrile Rubber (NR). The concept of elasticity and

viscoelasticity are described in here. The mechanical tests of tensile strength and

stress relaxation are performed. The processing of the collected data is described in

detail. Moreover, particular attention is paid to �nd the elastic region of the studied

materials since these regions dictates the safest working conditions for each material.

This information is latter used for the design of a bio-inspired soft actuator.

Identify the soft materials with the most similar mechanical

properties to the human tendon.
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The motivation behind characterizing many composite materials is to identify

the material with the most similar viscoelastic properties as the human tendon.

This is another step towards implementing viscoelasticity in soft robotic applica-

tions for human assistance. The process to identify the best candidate is presented

in Chapter 7, as part of the design process of a bio-inspired actuator. In this com-

parison, the human tendons involved in the motion of the knee joint are investigated.

These are the patellar and quadriceps tendons. The results showed a large di�erence

between the elastic properties of the materials and properties of the human tendon.

Nonetheless, their viscoelastic behaviour is found to have similarities. Due to this,

the calculation of a matching factor is performed. The idea is to combine several

pieces of a material into a bundle to increase the e�ective cross-sectional area of the

material, hence its elastic properties. Lastly, the soft material with the most similar

properties as the human tendon, in terms of the achievable sti�ness, is identi�ed by

looking at the obtained matching factors. This material is the Natural Rubber with

Polyester material (NatPolR).

Address current limitations on modelling tools for the predic-

tion of the viscoelastic behaviour of soft materials.

In Chapter 5 the current modelling approach for the prediction of stress response

of soft materials is presented. In general, modelling approaches are based on the

Linear viscoelastic Models (LVMs), which can describe any viscoelastic materials

using a combination of two basic components: a spring and a dashpot. Nonetheless,

the accuracy of these models is tightly linked to a high complexity and large com-

putational power requirements. One of the recent methods described to circumvent

the latter limitation is found in the literature as the Standard Linear Solid model

with Strain-Dependent Sti�ness (Std. Lin. SSD). This model can account for the

nonlinear stress response of viscoelastic materials by implementing a piecewise lin-

ear regression on the equilibrium spring sti�ness ke found in the Standard Linear

Solid model (SLS). Nonetheless, the model has not been validated when predicting

the velocity-dependent properties of viscoelastic materials. Therefore, a case study

is performed on this model, aimed to address its limitations. The latter is done by

linearising the Wiechert model, a more complex model from the family of LVMs,

using the Piecewise Linearisation method. The hypothesis behind this is that a

more complex model might be capable of accounting for the time dependent stress

response of the viscoelastic materials. The Piecewise Linearisation method imple-

mented in this work is optimized in many aspects (Figure 5.6). Hence, the resulting
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PL-SLS and PL-Wiechert models are di�erent, and a direct improvement, from the

Std. Lin. SSD. The proposed tolerance criteria, which takes the variation on the

slope of the stress-strain curve to de�ne the number of strain segments to collocate,

provided crucial information about the bene�ts and limitations of the PL method.

The models developed in here can account for the nonlinear, time dependent, and

strain dependent stress response of soft materials, and in fact, outperformed the Std.

Lin. SDS model. The work done in here is substantial enough to produce a second

conference paper. In addition to this, a di�erent modelling approach is investig-

ated in Chapter 6. This model is based on machine learning algorithms, speci�cally

on feedforward arti�cial neural networks (ANNs). The implementation of an ANN

model for the prediction of the stress response of viscoelastic materials is poorly

documented. Nonetheless, this area of research is rapidly growing due to the proven

potential of ANNs to approximate complex functions. The data from the same seven

materials is used for the training of the ANN models. The objective is to overcome

the limitations of modelling tools based on the LVMs. These limitations are high

complexity and computational cost. The performance of the ANN models is very

similar to the PL methods. The latter is assessed by statistical parameters such as

the root mean square error and the coe�cient of determination. In summary, the

three developed models outperforms the Std. Lin. SDS in the task of predicting the

nonlinear, time dependent, and strain dependent stress response of soft materials.

Investigate the performance of current modelling tools under

simulated real-time conditions.

The developed ANN model is chosen for further validation. In this case, the

PL methods are not suitable due to their formulation which make use of previous

values in time of the stress response of the material. This contradicts the main

motivation behind using a viscoelastic element in series with a load. The real-time

validation performed in Simulink highlighted the limitations of the developed ANN

model, presented in Chapter 7. In summary, the ANN model is unstable due to the

varying strain rate used for testing. For a constant strain rate, as the one used when

validating the accuracy, the ANN model performed as expected.

Design a bio-inspired soft actuation for human-assistance ap-

plications

The design concept of a series-viscoelastic actuator is presented in Chapter 7.

The proposed actuator is aimed to assist the knee joint, hence the torque knee
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requirements of the joint during walking activities are used as guidelines for the

selection of the electric motor and gearbox combination. Lastly, the design of a

clamping device to be used in the experimentation is designed. The clamping mech-

anism was designed to be detachable and allow the testing of many materials without

modifying the experimental setup.

8.2 Conclusions

In conclusion, in this research the development of three modelling tools is presented.

They are the PL-SLS model, the PL-Wichert model, and the ANN model. All three

of these models are successful in describing the nonlinear, time dependent, and

strain dependent stress response of the studied soft materials. The accuracy of all

models when predicting the stress-strain curve of the materials is better than the

accuracy reported for the Std. Lin. SDS model. On the one hand, the Piecewise

linearisation method implemented in here is optimized in many ways (Figure 5.6).

Due to this, the models developed in here are di�erentiated from the Std. Lin.

SDS and named as PL-SLS model and PL-Wiechert model. On the other hand, the

ANN model, based on feedforward arti�cial neural networks also outperformed the

Std. Lin. SDS. The optimization performed to the ANN models indicated that the

architecture FFRD4 is the most suitable for the prediction of viscoelasticity. The

inputs of this architecture are the strain and the strain rate. The output is the

stress. Due to the addition of the strain rate, this type of architecture is categorized

as rate-dependent. The ANN models are investigated under real-time simulation

conditions. In this scenario, the ANN models performed poorly. The results indicate

that a richer dataset is required for the ANN models to correctly predict a varying

strain rate input.

Finally, the main contribution of this research to the �eld of soft robotic ap-

plications for human assistance is the development and assessment of three novel

modelling tools. During this process, an improved way to implemented the Piece-

wise linearisation method is proposed. Moreover, this research also provided a novel

approach to adequate select the actuator technology when designing an assistive

device, using the kinetic and kinematic parameters found in clinical studies. Further-

more, the research performed on series-viscoelastic actuators yielded a novel concept

design for a clamping mechanisms which has the potential to reduce research and

development times when studying soft materials, due its modular design.
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8.3 Future Work

The �ndings of this research have allowed the identi�cation of the following issues

still needed to be addressed:

� Dynamic mechanical analysis can be used to characterize the soft materials

under a wide range of frequencies to create a more comprehensive dataset to

train ANN models.

� Further investigation on the concept of series and parallel elasticity in com-

bination with soft materials.

� Validation of the ANN model when being deployed as part of a control system

must be investigated.

� Further characterization of the viscoelasticity of soft materials could be done

by extracting their hysteresis, creep and cyclic behaviour.

� Di�erent input combinations for the ANN model could be explored, mainly

the ones which do not have the strain rate of the material as input.

� Alternative types of ANNs could be investigated, such as Radial Basis Neural

Networks and Recurrent Arti�cial Neural Networks.

� Alternative techniques, such as synthetic data creation, can be investigated to

create a richer dataset without having to perform more experimental tests.

� Further investigation on the implementation of the concepts of co-contraction

and variable recruitment could be performed for soft robotics applications.

� Further investigation on the �eld of the human skeletal system functionality,

such as muscle redundancy, which is a compatible approach for cable-driven

actuators.
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Characterization of the Human Body
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A.1 Stacked Clustered Bar Charts

This appendix presents the compiled data from the reviewed gait analysis studies,

in the form of charts as the ones presented in Section 3.2, for the hip, knee and ankle

joints. The parameters of torque, angle and power, are extracted.

Figure A.1: Knee joint characteristics for walking over ground activities. The weight

next to the name of some activities dictates the load carried by the subjects during

the experiment [18]. Data collected from: (1) [90], (2) [89], (3-8) [91].
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Figure A.2: Ankle joint characteristics for walking over ground activities. The

weight next to the name of some activities dictates the load carried by the subjects

during the experiment [18]. Data collected from: (1) [90], (2) [89], (3-8) [91].

Figure A.3: Hip joint characteristics for step ascending/descending experiments [18].

Data collected from: (1) [94], (2) [95], (3) [99].
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Figure A.4: Ankle joint characteristics for step ascending/descending experiments

[18]. Data collected from: (1) [94], (2) [95], (3) [99].

Figure A.5: Hip joint characteristics for ramp ascending/descending experiments

[18]. Inclination in brackets. Data collected from [96]
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Figure A.6: Knee joint characteristics for ramp ascending/descending experiments

[18]. Inclination in brackets. Data collected from [96].

Figure A.7: Ankle joint characteristics for ramp ascending/descending experiments

[18]. Inclination in brackets. Data collected from [96].
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Figure A.8: Hip joint characteristics for sit to stand/stand to sit experiments [18].

In brackets (h) healthy subjects, and (p) subjects with Parkinson's. Data collected

from: (1) [97], (2) [98].

Figure A.9: Knee joint characteristics for sit to stand/stand to sit experiments [18].

In brackets (h) healthy subjects, and (p) subjects with Parkinson's. Data collected

from: (1) [97], (2) [98].
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Figure A.10: Ankle joint characteristics for sit to stand/stand to sit experiments

[18]. In brackets (h) healthy subjects, and (p) subjects with Parkinson's. Data

collected from: (1) [97], (2) [98].
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