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Abstract 

       Mapping of real time applications on real time NoC based MPSoCs 

With the recent developments in semiconductor technology it becomes possible to integrate 

many different processing elements on single chip, this solution is known as a System-on-

Chip (SoC). In such systems, the communication between the different components is also an 

important aspect. On-chip busses or point-to-point communications have been successfully 

used. However, as the number of elements increases, on-chip busses are not able to scale and 

quickly become a communication bottleneck. Packet-switched networks on chip (NoC) have 

been proposed as a solution for on-chip communication of SoC platforms overcoming many 

of the limitations of on-chip buses. An important design aspect in such a system is the 

relative placement of tasks on the processing elements of the platform so that some metrics of 

interest are optimised commonly referred to as the mapping problem. NoC platforms, because 

of the benefits that they introduce, will eventually be used in commercial embedded and real-

time systems. Despite its significance to embedded systems industry and research 

communities, little research has been done on providing guarantees for hard real-time 

applications composed of multiple communicating components running over NoC platforms, 

in such systems both the computation and the communication between the components must 

complete within certain deadlines for the system to behave correctly. Application mapping 

has a direct impact on the interference patterns emerging on the platform where separate tasks 

and the communications between them interfere with each other when contending over 

shared resources. Even though a significant amount of research has been carried out on the 

mapping problem usually the aim is to optimise different metrics and reduce cost in terms of 

energy consumption. This work tries to solve the mapping problem from a real-time systems 

perspective, in such systems the overall correctness does not only depend on producing the 

correct output but also on the time required by the system to produce it, this requirement is 

most commonly expressed with the concept of a deadline which must always bound the 

response time of a computational task. Schedulability analysis refers to a set of analytical 

methods that are able to prove a set of tasks can meet their deadlines when sharing resources 

under a particular scheduling scheme. This work takes advantage of recent advancements on 

schedulability analysis that can guarantee the timeliness of tasks, as well as their 

communications, in distributed real-time systems which specifically run on network on chip 

platforms using wormhole routing, this analysis is used as a ranking function in a genetic 

algorithm that is able to evolve task mappings which allow all tasks and communication 

flows to meet their deadlines in all possible scenarios. 
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Chapter 1 

Introduction 

1.1 Introduction to NoC Systems and the Mapping Problem 

     Multiprocessor Systems-on-Chip (MPSoC) are SoC made of multiple processing elements 

(PEs). MPSoC is a relatively new technique and a new trend in VLSI design that has been 

made possible due to the advancements in IC technology. The primary advantages of SoC 

devices are lower costs, greatly decreased size, reduced power consumption and the ability to 

meet the increasing performance requirements of complex concurrent applications (real-time 

video, communications, control etc.). Such applications are inherently parallel and should 

take advantage of any available parallelism. As the computational demands of such 

applications increase they will no longer be supported as efficiently by single general purpose 

processors. Since MPSoC are SoC with multiple processing elements a communication 

infrastructure has to interconnect the PEs. Traditional on chip communication schemes such 

as buses could be used for MPSoC that consist of a few elements but as the number of PEs 

that can be integrated on such a system increases, due to advances in silicon technology, 

these communication schemes will not be able to scale well and issues like the power 

consumption of the system will impose limitations. So there is a need of a scalable 

communication infrastructure and a promising solution is found in the use of networks on 

chip (NoC). Network(s)-on-Chip (NoC) have emerged as a design that incorporates on-chip 

communication architectures that are scalable and provide a more efficient structure and 

better modularity than its predecessors [1, 2]. 

     MPSoC may employ NoCs to integrate many different components such as multiple 

programmable processor cores of various types, specialized memories, and other intellectual 

property blocks (IPs) in a scalable way, giving rise to heterogeneous systems, alternatively 

the integrated components may be all similar resulting in homogeneous systems. 

Heterogeneous systems achieve better performance and lower power consumption because of 

the application specific components; this comes at the cost of reduced flexibility and 

reusability. Homogeneous architectures are more flexible and also more open to different 

techniques such as run time reconfiguration, task migration and fault tolerance because of 

their functional redundancy. 

     An important aspect of MPSoC design is the optimisation of the system so that the 

platform is fully utilized the advantages of MPSoCs. Given specific applications that can be 

subdivided into a set of tasks, that can be concurrent and communicating with each other, it is 

necessary to control task operation and system resources usage in order to better utilise the 

system. The mapping of the application tasks onto the PEs of the system consists of finding a 

placement for a set of tasks so that some specific requirements are met. The performance of a 

NoC system running such a highly parallel application is also communication-dependent and 

depends on task mapping in many ways such as overall execution time, energy consumption, 

packet latency, communication channel load, bandwidth reservation, and congestion levels; 

The mapping problem for NoC is to decide how to place the selected set of tasks onto the PEs 

of the network such that the metrics of interest are optimized.  

     In NoC architectures each processing element is connected to a router which is the actual 

interface to the rest of the network. Each router’s work is to implement a routing policy by 
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accepting and forwarding each incoming packet, the architecture of the router depends on the 

switching policy which determines the manner that the packets are forwarded through the 

network so that the traffic flows can share the communication resources. 
 

 

 

Figure 1.1 A 4x4 NoC 

 

     Applications running on MPSoC typically execute a varying number of tasks 

simultaneously, however at some point the number of tasks may exceed the available 

resources, requiring task mapping to be executed at runtime; more specifically the need to 

execute a new task may occur at run-time and with the current configuration the resources 

may be inadequate (paths connecting to master PE overloaded) so a remapping of some or all 

of the tasks may be necessary; in a simpler case a new task will have to be mapped 

somewhere on the available resources so that it’s placement is optimal according to some 

criteria. Efficient solutions have been proposed for static mapping, static mapping defines a 

fixed placement and scheduling before the application is run where the application and its 

task set are known at design time. For this case approaches are used that can find better 

solutions since the time spent for finding such a solution at design time is not so important 

but obviously it is not appropriate for dynamic workloads. 

     The performance metrics mentioned above can usually be described in relation to the 

relative task placement so the task mapping problem, where the goal is to minimise some of 

these metrics, becomes similar to some well known NP-hard optimisation problems such as 

the quadratic assignment problem [3], [106] which is an especially hard instance of this class 

of problems [107] meaning that an algorithm that can solve this problem in polynomial time 

is unlikely to exist. The relation between different performance metrics is not always straight 

forward; a solution that optimises one may have adverse effects on another. 

     When formulating the mapping problem some properties of the system and underlying 

platform architecture must be known. These properties are also part of the assumptions in the 

problem definition, and hence they would affect the problem's complexity e.g. the ability for 

the PE's to execute more than one task. Additional properties such as the routing and 

switching policies of the network infrastructure would also play an important role in the way 

the problem is defined, and they could enable some analytical models that would help 

compute some of the metrics of interest; for example knowing the bandwidth capacity of a 
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system's communication links and that the specific routing algorithm is deterministic could 

give some deterministic bounds for communication delay and throughput, however more 

information would be required because this model does not take into consideration the delays 

due to contention of the shared network resources, this in turn could be modelled only by 

knowing the arbitration strategy of the system. A different approach would be to use some 

algorithm or policy based on intuition or some partial formulation (small subset) of the 

problem and use simulation to verify it, the feasibility of this approach would depend on the 

quality of the solution required and the determinism of the output. 

     The mapping procedure in any such system, affects many different parameters that may be 

conflicting, so for a system with real-time requirements (hard, soft) a mapping that would 

avoid task’s and communication's deadline misses would be ideal, typically however such 

applications are found in the embedded systems domain where power consumption is an 

important issue as well, so a solution that satisfies both requirements becomes harder to find. 

Additionally in such a system, especially if the mapping takes place dynamically, the running 

time of the mapping algorithm itself could have a significant impact on the overall temporal 

behaviour of the system. 

 

     Next another important aspect of the problem solution is the way each solution proposed 

by a mapping algorithm is actually evaluated, this is typically done using an analytical model 

and in that case an accurate model is important, for example many mapping algorithms seem 

to use the average packet hop count (moves to adjacent routers) as a function that determines 

the power dissipated for communication and also the communication time cost, however 

packets may usually be queued in a congested system and have to reside somewhere for some 

time (which with smaller transistor sizes is power consuming as well) so hop count is not 

necessarily always a good measure. Alternatively simulation can be used to evaluate a 

solutions quality at the cost of speed. The inputs to the mapping problem, which are an 

application and a NoC platform have to be abstracted away because they are typically very 

complex objects however these abstractions must be at a level that all necessary information 

is included while the overall input is concise. For example the representation of an 

application through an application task graph is a sufficient way as it conveys all the 

important information for an application that the mapping algorithm needs to know such as 

communication/control dependencies and communication volume, any further constraints 

that need to be considered such as task deadlines, channel bandwidth etc. can be added as 

additional variables to the mapping problem. Mapping as explained above is an important 

aspect of the design as it may drastically influence the system performance. Many approaches 

and algorithms have been proposed in literature for the mapping problem based on different 

assumptions and trying to optimise different aspects of a system (e.g. energy-aware, 

congestion-aware), the quality of such algorithms would be measured in relation to their 

execution times and overall optimisation of the system also how well they can perform in 

various scenarios and how well they meet certain constraints of the system (real-time, 

bandwidth). 

     However testing such algorithms is not always easy because testing in the context of real 

applications is not flexible or otherwise would be very time consuming. Synthetic models can 

be used that model traffic and computation loads according to different classes of 

applications with worst case bounds or alternatively simulation based approaches with some 

well known applications since specific benchmarks have not yet been defined for those 

aspects of NoC design. The aim of this work is to review the existing literature relevant to the 

mapping problem and then examine this problem from a real-time system perspective where 

the timing aspects of a system are the most important. 
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1.2 Problem Formulation  

    The mapping problem can be generally described as the problem of finding a topological 

placement of the application tasks onto the PEs of the system so that the metrics of interest 

are optimised. For an application that is partitioned into n tasks the problem of mapping those 

tasks on a network on chip with n processing elements would have n! possible solutions, the 

solution space factorially increases with the problem size so it is infeasible to exhaustively 

search it. The topological mapping of the application onto the NoC platform would obviously 

have an impact on the energy spent on the communication between the tasks and the 

communications latency as they are a function of the distance between the tasks. In some 

application domains, the communication volume between tasks can be very large and may be 

using the entire network link bandwidth; in this case a mapping that maps the tasks in a way 

so that the traffic on the network links does not exceed the bandwidth capacity of the network 

may be necessary. According to what metric the mapping problem is trying to optimise, the 

problem can be formulated differently, however most commonly the metrics and variables 

that formulate the problem are functions of distance and mapping becomes an instance of the 

NP-hard quadratic assignment problem [3]. This is the case when using the energy consumed 

on communication as a cost metric, as it is proportional to the distances between the 

communicating cores, also on such systems (NoCs) the energy spent on communication is a 

significant amount making it a popular metric in the relevant literature. The energy-aware 

formulation of the problem is described below to demonstrate a form that the problem may 

generally take. 

     The mapping problem in this case can be described as: For a set of communicating tasks 

where the communications and their volumes between them are known (described by a 

directed weighted graph G (T, C)  and a set of cores with their positions on the network  

N (P, L) find a mapping function that maps tasks to cores f : T → P so that: 

 

                  
 

   
                          

     

 

     

      Explaining the terms in the equation above:  

 

           A pair of communicating tasks 

 
 

   
 The energy that the system spends to communicate a bit per unit distance. 

                 The distance between the communicating tasks as a result of the 

mapping function f. 
 

      It can be seen that the goal is to minimise the sum of products between a cost function 

and weights. In this case the cost function is the energy that is consumed for a bit to travel 

unit distance (between adjacent routers) and the weights are the communication volume and 

the distance between two communicating tasks. Additional constraints may be added to the 

problem because of features of the platform architecture or the application. For example the 

problem above could have some additional constraints as it does in [4]: 
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∀Ti ≠ Tj , f (Ti )≠ f (Tj)     (2) 

 

                                         

∀         

          

 

Where R i, j is the set of links that make the route between i and j. 

 

f (link, R i, j)      
                   

                  
     (4) 

     The first constraint means that each processing core can only have one task running on it, 

which is a platform specific feature. The second constraint demands that the aggregated 

communication traffic on any link does not exceed the available bandwidth so that all the 

communication flows can be serviced. Any additional constraints may be added to the 

problem. In the case described above the goal of the problem is to minimise the quantity in 

(1) which depends on the distance the traffic has to traverse. This distance in turn depends on 

the path the packet has to traverse through the network which is determined by the system's 

routing algorithm. Because of this close relation, many authors have treated the topological 

mapping and path selection/ routing as one problem [4], [5]. In many instances it is suitable 

for NoCs to use deterministic minimal routing algorithms, because it becomes easy to 

calculate the path and distance of a specific traffic flow, and it also becomes possible to 

calculate the quantity in (1).  

    Whether there exists an accurate analytical model for this metric depends on how these 

features are implemented in this system. Finding good analytical models for different metrics 

in such systems is regarded as a difficult problem as well [6]. 

1.3 Goals and Objectives  

    The main objective and scope of this work is to study the application mapping problem 

specifically from a distributed real-time systems perspective. In such systems the 

communications between real time tasks must complete within bounded time as well to 

ensure the correctness of the system, this is necessary as these communications contain data 

that the receiving tasks will need to operate on within bounded time. As a result this work 

will study the effects of task placement on both the timeliness of communication and 

computation in such systems. In order to do so it will be necessary to study solutions to this 

problem already proposed in a broader set of domains apart from real-time systems and also 

see what platforms and tools can be applied in this specific instance of the problem. Next 

utilising this knowledge we will be in a position to propose a solution to the problem based 

on evolutionary algorithms and finally evaluate it by producing experimental results and 

conclusions using an appropriate framework. 
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Chapter 2 
 

Network on Chip Platforms 
      

     This chapter aims to provide a brief description of Network On Chip platforms by 

explaining some of the most important architectural characteristics and by giving an overview 

of the typical communication protocol stack. Next follows a review of current NoC platforms 

with regard to predictability, a concept central to real-time system analysis, and finally a 

review of methods which can be used to model such a system.   

2.1 System Architectures and Modelling 
 

     The advancement in microchip technologies has enabled many components to be 

integrated together and form large scale systems-on-chip (SoC). Typically the on-chip 

communication between the components of such systems has been bus-based or a mixture of 

buses and point-to point links. Communication on chips with few components ought to be 

fast and reliable while the computation aspect is usually is the performance limiting factor. 

With the technology scaling down and by adding more components onto a single chip this 

changes; while resources for computation (PEs, memory) mainly benefit from scaling down 

the communication infrastructure does not. In a highly interconnected multi core system the 

energy required for communication does not scale down well, the power consumed to drive 

the wires increases (wire resistance increases) and physical parameters of the wires become 

unpredictable because it becomes harder to produce uniform structures, thus in future deep 

submicron (DSM) designs, the interconnect medium will definitely affect performance [14]. 

In addition noise from crosstalk, delay variations and synchronisation failures between large 

numbers of components may cause transmission failures. As a result estimating delays 

accurately will become increasingly harder, and the transmission will be power consuming 

and inherently unreliable. For maximum flexibility and scalability, it is generally accepted 

that a move towards a shared, segmented global communication structure is needed [15]. This 

motivation led into a new approach which is a data-routing network that consists of 

communication links and routing nodes built on the chip, hence the name network on chip. 

Similar to macro network communication, the network on chip approach tries to provide 

scalability, performance and reliability as well as modularity. At the same time however 

networks on chip must exhibit less non determinism while having tight resource constraints 

(e.g. energy, area). 

 

2.2 Network on Chip Features 
      
     NoCs are packet switched multi hop networks. The processing elements access the 

network using point to point connections to the interface, and their packets are forwarded to 

their destinations by hoping through a number of routers. One of the basic characteristics of 

NoC is the topology which determines the layout and connectivity of the on chip 

components. Most NoCs implement regular network topologies that can be laid out on a 2D 

chip surface. These topologies are known as grid-based topologies. Torus, tree and irregular 

structures have also been proposed that may exploit different characteristics of the 

applications traffic patterns such as locality of traffic [36]; however mesh based topologies 
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are the most compatible in terms of simple routing algorithms, re-usability and scalability 

hence the most commonly used. 

 

 
 

Figure 2.1 A 2D mesh based NoC. 

 

 
Figure 2.2 Regular (a) and irregular (b) NoC topologies. 

     Networks on Chip can be designed in different ways, based on the network architecture 

and communication protocol used. Networks on chip can also be designed and described by 

using a layered model as it is done in macro networks, but in a much simpler fashion. The 

NoC design phase would involve designing a system specific architecture and a 

communication protocol/infrastructure that will be compliant with this architecture; hence 

according to these design decisions a protocol stack can be defined as in [1]. In macro 

networks the abstractions offered by the layered protocol allow communication between 

different systems. Networks on chip have the advantage that the system is composed from 

static elements so the communication protocol becomes simpler based only on the attributes 

of the specific system. Overall the network characteristics such as the communication 

mechanism, switching mode, and routing algorithm depend on the network topology and 

together they define the services provided by the NoC.  
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2.3 Network Layers 
 

     The lowest level in a typical communication stack is the physical layer where specific 

signalling techniques are implemented to provide the most fundamental service of lossless 

data transmission through the links; according to the signalling technique (encoding, 

synchronization) and the physical properties of the communication links a trade off between 

energy consumption and transmission errors is achieved; based on the specific signalling 

technique the energy spend on transmitting data can be calculated. At this level, the basic unit 

of data is a phit (physical unit), which is the minimum datagram of the system and the 

building block of packets and streams. 

     The layer above the physical layer would be the data link layer. The main role of this layer 

is to improve the reliability of the physical layer so that the system can operate at the required 

level. This can be done at the expense of energy and system complexity using error detection 

and correction protocols. The data link layer would also have to implement a policy that 

resolves contention between different traffic flows for the network resources (arbitration 

policy) so that no errors occur from simultaneously accessing the network. The layer above 

the data link layer, the network layer is responsible for end to end delivery of messages, in 

such a complex network which is composed of many links this layer has to address both the 

way the data will be transported through the network or in other words how the connection 

and transmission occurs between successive links and how routes are chosen between the 

source and destination of the data sent. The tasks mentioned above are those of switching and 

routing of data. The network interface (NI) decouples the processing core's functionality from 

the network and provides a well defined interface to the network layer. 

     The two main switching techniques are circuit and packet switching. In the case of circuit 

switching a path from the source to the destination of data is reserved prior to the 

transmission for the duration of the data transmission and is accessible only by this set of 

data; in this case there is no need for the data to be packetized. Circuit switching, however, is 

very inefficient in terms of link capacity utilisation and set-up latency unless used for long 

infrequent messages.  

     Packet switching overcomes the limitations of circuit switching by using packetized 

traffic. The data to be transmitted is divided into packets that also contain routing 

information. Typically the whole packets are buffered at each intermediate node before they 

are forwarded to the next (store-and forward); packet switching offers much higher 

utilization of the network resources and higher flexibility (production rates, arbitration 

schemes, out-of-order delivery) with respect to circuit switching, at the price of an increase in 

non-determinism and silicon area (switches, buffers) as each packet may experience queuing 

delays (residing on buffers). The disadvantage in the case of packet switching is the buffer 

space requirements, specifically flow control techniques that govern the way the packets use 

the buffering resources deal with this limitation. In order to overcome this limitation packet 

switching is further improved by using different flow control techniques as in cut-through 

switching. With this technique each packet can start leaving the switch on which it resides 

before the entire packet is present (received by the switch) hence reducing the buffer size 

requirements. In this way, however, the total resources a packet will occupy increase as it 

may occupy many switches at once. In the case where a packet is blocked, waiting on 

resources, it will occupy many resources itself which may cause other packets to block so the 

overall blocking caused by a packet's transmission increases hence the overall variance in 

traffic response times increases [1]. 
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     A further improvement on packet switching is achieved by wormhole switching; in this 

scheme each packet is divided into flow control units (flits) which are fixed size segments. 

Each packet has a header flit which traverses first and reserves a channel on each switch; the 

remaining flits will have the same route information as the header flit. Wormhole flow 

control works at the flit level and because it further divides packets into smaller chunks it 

reduces the required buffer spaces and the store and forward delay on each switch. 

Unfortunately the side effect of blocking in cut-through switching becomes even greater in 

wormhole switching as a stalled packet may occupy all the switches it spans (same as the 

number of flits). 

     This effect can be overcome by using resource sharing techniques like virtual channels. 

Virtual channels is a flow control method where many logical channels may be implemented 

sharing a single physical channel. This is achieved by having separate buffers for each logical 

channel. Hence with an overhead in silicon area and power more packets may share the 

network resources simultaneously which allows wormhole switching to become much more 

efficient. The number of virtual channels used is a design option based on the amount of 

traffic that needs to be supported. In such systems there is also the need to have a flow 

control mechanism that regulates the amount of traffic sent so that a receiver is not 

overwhelmed; in the case of wormhole switching this can be implemented using a credit 

based approach which can guarantee that data is only forwarded from a router to the next 

when there’s enough buffer space to hold it otherwise it is blocked and may reside at the 

current VC buffer until space at the next hop node is available. 

      

 

 

 

      

 
 

Figure 2.3 Implementation of VC using multiple buffers. 
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Figure 2.4 Message sub-components for transmission on a wormhole based NoC. 

 

 

     The task of routing in the context of NoCs is that of determining the path of a message 

travelling from a source PE to destination PE. For this purpose many routing algorithms have 

been developed. Routing algorithms can be either deterministic or adaptive. Typically a 

routing algorithm would have a source and a destination core as inputs and it would produce 

a path between them. A deterministic algorithm will always produce the same path for the 

same inputs while the adaptive algorithm will take into account dynamic aspects of the 

system like congestion and silicon faults and may produce different paths each time in order 

to improve performance; another class of algorithms is the flexible routing algorithms, these 

algorithms are restricted to using only a subset of the network links from which they may 

choose a path according to some criteria. Because of the additional resources that adaptive 

algorithms would require (silicon area for more complex routers and energy to drive them) 

and the additional non-determinism they would introduce, they are not regarded a very 

suitable solution for NoCs (a comparison in [30]) and especially for systems with strict 

timing requirements.  Most systems presented in literature use forms of source routing where 

the path of a packet is known before it is transmitted and each packet carries this information 

with it allowing for each network node to send it towards the right direction, this decision at 

every node does not require much logic if the routing scheme is simple. 

         

     Some properties of routing algorithms that are usually desirable for NoCs are minimality 

and freedom from deadlock and live lock, conditions caused by circular dependencies. The 

prominent strategy for avoiding deadlocks caused by routing paths in NoCs is by using 

certain routing algorithms which have the property that they do not produce paths that can 

cause a deadlock; deadlock is caused by cyclic dependencies on shared resources which in a 

network are the physical channels, the virtual channel scheme overcomes these dependencies 

by providing multiple channels [83] so different packets contend only for the network links. 

Minimal routing algorithms always produce a path that is of minimum hop distance between 

source and destination, this property is desirable in NoCs as many performance and cost 

metrics are proportional to the communication distance. For a detailed review and 

comparison of different NoC designs we refer the reader to [15]. 
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Figure 2.5 Protocol stack for a wormhole based NoC. 

 

2.4 Predictable Communication on Network on Chip platforms 
 

    The aspect of predictability is crucial from the perspective of real-time systems.  In the 

packet switched schemes mentioned above packets still contend for shared resources such as 

the physical links (router output ports) of the network; this contention is the reason for the 

unpredictability of the network traffic, it can be resolved in many different ways providing 

flexibility and differentiated services, for example it can be done in a simple FIFO manner 

[30], where no distinction needs to be made between packets from different traffic flows or it 

can be based on time division multiplexing [32] where specific traffic flows can be assigned 

different time slices so that they never contend for the network links. Using this method 

traffic flows can have a guaranteed bandwidth and latency. A case where both of these 

schemes exist together on the same platform is that of the AEthereal network on chip [32], 

this system offers two classes of communication services that use the same infrastructure: 

guaranteed service (GS) where the communication flows have reserved time slots (TDM 

arbitration) and best-effort (BE) where the traffic flows use the unreserved time slots using 

FIFO arbitration; obviously in the later case no guarantees can be provided.  

      The TDM approach described earlier is characterized by resource reservation where 

traffic flows must set up paths on the network and reserve resources (time slots) at each node; 

this can be thought of as a virtual circuit implemented on top of a packet switched network. 

The advantage of such a scheme is that it can provide deterministic bounds for traffic 

parameters (latency, bandwidth) however this determinism comes at the cost of poor 

utilisation (especially for variable rate traffic) and runtime inflexibility furthermore TDM 

requires a highly synchronous system whereas NoC designs tend towards a GALS approach. 

A similar arbitration scheme is introduced in [31] which can overcome the limitations of the 

TDM approach but still providing bandwidth guarantees. This arbitration mechanism is again 

based on a virtual circuit scheme; each GS flow reserves a virtual channel on every node of 

the virtual circuit it establishes, then the access of all virtual channel buffers to the link is 

served at an equal rate, as a result the bandwidth guarantee for a GS flow will be the service 

rate of the reserved virtual channel (e.g. for 8 traffic flows it will be 1/8 of the total link 

bandwidth) [31]. This design together with credit based flow control is used in an 

asynchronous NoC design called MANGO. Other platforms use methods that do not fully 

utilise the packet switching capabilities of the NoC architecture but are still able to provide 

GS traffic and QoS guarantees, such a case is the Nostrum NoC [71] that sets up a form of 
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virtual circuit for different nodes to communicate; the authors in [75] also propose a circuit 

switched communication network (SoCBUS) to provide hard real-time guarantees.   

     Another approach is priority based arbitration [34] [35] where higher priority packets may 

pre-empt lower priority ones accessing communication resources. Such an approach can 

provide guaranteed throughput to high priority traffic flows in a more efficient way as it does 

not reserve resources like the virtual circuit scheme does and can even allow analysis that 

estimates worst case end to end packet latency [33] which is suitable for hard real time 

systems. In the case where all traffic flows are equally important it may be hard to determine 

different priorities; furthermore for the relevant analysis to be applicable the system must 

again be static with fixed traffic and routes, a scheme similar to virtual circuit connections, 

even so it will be easier for system to reconfigure itself without suffering the penalty of 

virtual circuit set up times. In general the priority arbitration scheme seems to be much more 

flexible; both approaches however are able to provide the desired determinism for time-

critical traffic flows. A comparison between the two schemes takes place in [67]. The priority 

arbitration scheme can also implement flow control techniques which improve the quality of 

service by using dynamic priorities as done in [74], improving the QoS cannot offer hard 

guarantees but can increase the performance in soft real-time systems.  The QoS that a NoC 

platform can offer can be expressed with various parameters like availability, jitter, packet 

loss, and throughput. 

     One of the main challenges in the design of such a NoC system is the way the network 

resources are allocated such that the hard temporal requirements of GS traffic are satisfied 

while the system is not underutilised and the reserved resources are actually used. An 

approach trying to improve the overall utilisation of the NoC resources is used in the 

Aethereal NoC; this approach combines both GS and BE traffic flows where BE flows use 

the network resources when the GS flows are idle to avoid the low utilization, furthermore 

the BE traffic does not use the virtual circuit scheme so it is more flexible. The low utilization 

occurs because in real-time systems the resources are always reserved according to worst-

case scenarios. Similarly in a priority based system packets with low priority and without 

hard deadlines may try and use the NoC along with higher priority packets as they will not 

affect their transmission.  

2.5 Network on Chip Modelling 
 

     An important step in the SoC design process is the modelling of the system, it is necessary 

as it helps the exploration of the design space as through modelling it is possible to evaluate 

various design trade-offs, it is also a means of evaluating a system in terms of performance 

and also validating the system in terms of requirements and constraints. A good model is also 

essential for evaluating the performance and cost trade-offs of different mappings. Modelling 

of complex MPSoCs and NoCs can be either analytical or simulation based, considering that 

simulation can happen at various levels of abstraction an analytical model is usually needed 

to abstract away the details of the lower levels. 

     A way to define different abstraction levels is based on time granularity. Finer time 

granularity implies lower levels of abstraction (more detailed) as it describes events that 

occur at smaller time periods hence given a certain duration it describes more states of the 

system. Using the clock cycle of the computation and communication components as a point 

of reference abstraction levels can be defined starting from cycle-accurate register transfer 

level or instruction set simulation level. 

     Running simulations at this level of abstraction is very time consuming as incorporating 

this level of detail for a large system would be computationally intensive, but it provides 

good accuracy in terms of the system behaviour. An RTL cycle- accurate model is used in 



The University of York   Department of Computer Science 

13 
 

[37] in order to evaluate the power and delay in a NoC. Power and delay are first evaluated 

for even smaller components that make up the RTL components using circuit-physical level 

simulations and are then incorporated into the RTL blocks making the simulation even more 

accurate at the expense of running time. 

     Simulation at this level can be achieved using hardware description tools such as VHDL. 

An advantage of this level of simulation/modelling is that by incorporating monitors into the 

system design it becomes easy to obtain accurate figures for metrics that would otherwise be 

hard to measure (e.g. packet latency). At the other end models that abstract all the 

implementation details to the system level can be used of course at the cost of accuracy, such 

an abstract software model is implemented in [39] which models both a NoC and an RTOS 

managing its resources at system level, this model [40] aids in exploring the design space 

through different task mappings, RTOS policies and NoC protocols, using the calculated 

network latency (inaccurate) as a metric for the network performance. 

     Because of the particular complexity of NoCs, the simulation times at this accurate level 

are increasingly higher, so alternative solutions have been proposed such as FPGA-based 

emulation [40]. In such systems where communication between components is largely 

present it can be abstracted separately from computation in different levels according to 

which aspect needs to be simulated accurately and also which of the two aspects can be 

accurately described at higher levels of abstraction in order to speed up simulation time. A 

concept that works on this idea is that of transaction level models [41]. The basic 

characteristic of transaction level models is that they abstract away low-level details of the 

communication and model it as large granularity data transfers. This is done using the 

concept of channels to model communication where the transactions between computation 

elements take place through calls to the interface functions of the channels. Transaction level 

models use three degrees of time accuracy for both computation and communication and 

different abstraction levels are generated by possible combinations, the three degrees of time 

accuracy used are untimed, approximate-timed, and cycle-timed. 

     Cycle-timed computation/communication contains implementation and architecture details 

at all levels down to the register transfer level, a level that allows cycle-accurate estimation. 

     Approximate-timed computation/communication contains system-level implementation 

details and is the level that corresponds to the transaction level for communication; finally the 

un-timed computation/communication contains only the functionality of the system hiding 

away all the implementation details. The different abstraction levels can aid at different 

stages of the design flow in various systems however the more complicated the system 

architecture the greater the loss of accuracy of these models hence the ability of a TLM to 

accurately model systems depends on the system communication architecture/ protocols and 

the time granularity the model used. TLM has been successfully applied to NoC modelling 

[42], [43] giving significant improvements in simulation time and a small loss in accuracy. In 

[44] an approximate-timed TLM model of a network-on-chip using wormhole switching with 

priority pre-emptive virtual channel arbitration is proposed in order to reduce the simulation 

time and to obtain accurate packet latency figures, the time granularity instead of every clock 

cycle is the time instants when packets enter or exit the NoC nodes, experimental results 

showed that this approach achieved a significant speed-up (three orders of magnitude) with a 

small loss of accuracy (90%) compared to a cycle accurate simulation of the same system. A 

potentially useful application of this approach would be in cases where only the 

communication aspect of a design needs to be accurately simulated and the computation can 

be abstracted away in order to speed up simulation time. 
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2.6 Summary 

    This chapter demonstrated some of the distinguishing characteristics of NoC platforms; 

also it provided a brief introduction to the different architectural variants that can be used 

each with different costs and benefits. Of specific interest are the different approaches used to 

provide predictable communications, reviewing the qualities of each aids this work with 

focusing on a platform type that will be more suitable to the achieve the desired result.  
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Chapter 3 
 

Real – time Applications and Relevant Models 
      

     The goal of this chapter is to provide an overview of the real –time systems domain both 

from a soft and hard real-time perspective. It is necessary to clarify the requirements present 

in such systems so that they can then be related to the aspects of the mapping problem that we 

are trying to solve. Furthermore in this chapter models and tools that can be used to analyse 

the properties of interest for these systems are introduced.   

3.1 Application Domains 
 

     This research is mainly interested in reviewing the application mapping problem from a 

real-time system point of view; in real – time systems the correctness of a system does not 

only depend on it producing the correct results but also on the time it takes to produce them, 

so we are generally concerned about applications with real time requirements. An important 

distinction in real time systems is that of hard and soft real time systems. Soft real time 

applications are present in many areas such as multimedia and distributed and/or high 

performance computing, such systems are subject to temporal constraints however for these 

applications it is acceptable for some traffic to not be serviced correctly as long as the overall 

throughput maintains a certain level (quality of service). No absolute guarantee for the 

temporal behaviour of such systems is required, yet performance must be at a certain level on 

average. This allows the requirements to be expressed using statistical measures. Because of 

this flexibility such systems are termed as soft real-time. 

     Other types of applications, such as those found in the hard real-time domain, are not as 

flexible and require all computational tasks to meet their deadlines at all times [87]. In such a 

system the temporal requirements are expressed explicitly with deadlines. In general hard-

real time systems cannot tolerate any deadline misses the occurrence of which may be 

catastrophic, for this reason all the aspects of the system need to be taken into consideration 

at design time so that guarantees may be provided; because of this inflexibility in such 

systems dynamic behaviour is undesirable unless it can be modelled as a state of the system 

that can be analysed at design time.  

      For streaming applications which are very common in various consumer systems the 

number of different modes that the system has to support is steadily increasing. These modes 

of operation could be either different combinations of a number of independent applications 

running on the same platform or various versions of an application’s sub-systems where each 

may offer different services; for example in a video processing application different codec’s 

could be used allowing for a trade-off between the quality of the image and the stream bit 

rate; we could treat those different scenarios as separate use cases. Each different use case 

will clearly have different requirements in terms of computation, storage and communication. 

In such an application the temporal requirements may be expressed in various terms such as 

throughput and end to end latency.  
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3.2 Application Modelling 
 
     This section aims to list the ways that an application that consists of communicating 

concurrent tasks can be modelled so that it can be mapped on to a multiprocessor system. An 

important aspect of the mapping problem is the way the applications are modelled. Having an 

accurate model that conveys information about an application can either allow exploiting this 

information to reach a better solution quicker or can help validate solution reasoning about 

the application behaviour under different circumstances. By modelling an application the goal 

is to abstract the application’s functionality regardless of implementation details by 

simplifying the information that is given about the task set, hence abstract it to a level so that 

only the information relevant to the problem at hand (mapping) is displayed. Applications 

that are likely to benefit from networks on chip are complex inherently parallel applications 

with many communicating subsystems and high computing power requirements mainly 

because their constraints on power consumption and size can be better met by on chip 

communication. A concurrent application or system in general is a set of interacting 

components and can be described by a concurrent model of computation, where this model 

would be the set of rules that determine the interaction between these components. A 

component of such a set could be a task, where a task could be defined as a computation that 

is executed by a processor in a sequential fashion. The use of a model of computation can 

help design an application and also describe and abstract an existing one. Many 

computational models have been introduced that describe computational systems e.g. Turing 

machines and finite state machines, however the need to efficiently exploit task level 

parallelism demands a concurrent model of computation that can model the dynamic aspects 

and the concurrent behaviour of the modelled applications. Such models of computation need 

to describe a concurrent system at such a level so that the non-determinism is minimized by 

taking into consideration all of the dynamical aspects.   

 

3.3 Concurrent Models of Computation 
 

     A distinction between concurrent models of computation can occur by the way they 

represent time and by whether the system is synchronous or asynchronous. A system's state 

or behaviour with respect to time can be determined at different granularity (continuous 

time/discrete time/ untimed). In timed models time is a reference against which all 

computation can be defined and measured where in untimed models there is only the notion 

of a logical sequence, in general there is a certain ordering of actions to ensure data 

precedences and causality but actions can also occur in parallel. Precedences and 

dependencies can be defined for each system through a concurrent MoC but are also 

interpreted differently according to it. The notion of the synchronous/ asynchronous model 

has the typical meaning of a synchronous system where the concurrent tasks are synchronized 

centrally by a fixed rate clock while in asynchronous system the concurrent tasks synchronize 

through communication/events. 

     Concurrent models of computation give a set of rules that describe the interaction of 

communicating tasks. Those models can be represented in various ways, for example in the 

model of finite state machines, the behaviour of tasks can be described by state transition 

rules based on inputs for each individual task-machine (e.g. FSM composite model), multiple 

concurrent tasks may be executing independently or they can be interacting together 

asynchronously, in which case sets of state sequences (one set per task) can describe a certain 

system routine [7].  
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     However such state-based models cannot explicitly express the rules of concurrency. A 

similar model is Petri-nets [8], in Petri-nets a computation can be modelled as a set of 

places/states and a transition between places, the system is also token based where tokens can 

move from one place to another when a state transition happens (fires). In turn a transition 

fires when there are enough tokens in its input place, since there can be many tokens Petri-

nets can model concurrency, and on a higher level tokens can represent different inputs 

(amount of data, control, external stimuli) again in an asynchronous untimed manner. These 

models can help with analysing the reachability and determinism of a task set however they 

do not incorporate information about execution times. 

 

     Other asynchronous models are the communicating sequential processes (CSP) model [9] 

and the process network model. In CSP the interactions between concurrent processes are 

modelled through the notion of a rendezvous where two processes need to reach a specific 

state in order to communicate, hence communication is synchronised and thus a central 

monitor mechanism is necessary to coordinate the communicating tasks/processes. This 

model is formally described by a process algebra with specific operations between processes 

where large concurrent task sets may be described and analysed. A different concurrent MoC, 

that of shared variables, is based on the notion of the processes communication using shared 

memory locations; this model is not strictly synchronous but some level of synchronisation 

between the processes must be established when accessing the shared resources to ensure 

data consistency and freedom from deadlock (locks, semaphores).  

 

3.3.1 Data flow Networks 
 

     Another important family of MoC is that of data flow networks. Data flow networks 

describe the movement of data through various processes in a system; this is achieved by 

describing the data routes between the processes (dependencies between concurrent tasks) 

that make up the system and the data storage elements; however they do not consider control 

flow and the system processes and routes are assumed to be static. In data flow models 

processes, called actors, communicate between them by sending streams of data called 

tokens, the communication between elements is made explicit and represented by edges in the 

respective graph called channels; channels may have some initial tokens called delays. The 

interface of an actor to a channel is a port (input or output port). The execution of an actor is 

termed as a firing, when a firing occurs the actor consumes tokens available in its input port, 

performs some computation on these tokens and produces an output at its output port; the 

amount of output tokens is always equal to the amount of input tokens, these amounts are 

termed port rates;. The duration of one complete execution of an actor is termed as its 

execution time. An actor may only fire if sufficient tokens are present in its input thus tokens 

may also capture dependencies between actor firings and not only data movement.  

 

     One characteristic data flow network model is the Kahn process networks (KPNs) [10]. In 

data flow models a task set is represented as a directed graph where the nodes are tasks and 

the arcs are channels, in such models the tasks communicate by exchanging tokens through 

FIFO-buffered channels instead of sharing memory. In the Kahn Process network model of 

computation, concurrent processes communicate through unidirectional unbounded FIFO 

Channels (buffers). The data transmitted through the communication channels are represented 

as streams (sequences of data elements or tokens), each process may block on a read when an 

input channel is empty but writing is non-blocking, the system is hence asynchronous and can 

also provide determinism which means that each different firing sequence of the actors 

(schedule) will provide the same output for a specific input sequence. However because of 
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the unbounded buffers assumption the model is somewhat ideal furthermore this assumption 

seems to give the property of determinism without caring about the order in which the actors 

perform the series of transformations on the data stream however it is important to find a 

schedule that allows a KPN to run on bounded buffers without overflowing them. 

 

     Another data flow model is the synchronous data flow (SDF) [11]; it is an interconnection 

of tasks whose firings are enabled by a fixed number of input tokens. The production and 

consumption rates of tokens by processes are fixed and known. This property makes it 

possible to determine a schedule where there is no token accumulation on buffers exceeding 

the buffer spaces; this is equivalent to no rate inconsistency between production and 

consumption of data. Actors of an SDF graph may fire in various different sequences some of 

which may lead to deadlock or to rate inconsistencies. For a given schedule there is a 

property that ensures that the system will not enter such states, this property is called 

consistency; this property means that the initial state of the system (token distribution) can be 

restored after a finite number of firings (the schedule). So the system executes periodically in 

a fixed pattern called an iteration. The number of iterations that can be completed during a 

time interval is a measure of the throughput of the graph and is directly related to the 

execution time of the actors.  

 

     Because of imposing the specific sequence (schedule) the notion of synchrony appears. 

This model is highly applicable as it can accurately model actual data flow systems. Also 

techniques exist to determine the storage requirements i.e. buffer sizes necessary to support 

an application at a required throughput [76] or conversely determine the worst case 

throughput based on buffer constraints and a given schedule. 

  

     When multiple actors share a processor their execution must be scheduled so as to provide 

a bound on each actor’s response time. There are several possible strategies for the 

scheduling of actors sharing resources [77] like static-order, Time-Division Multiple Access 

(TDMA), fixed-priority and dynamic priority scheduling. Based on these strategies the worst 

case response time of each actor can be calculated. 

 

     We can define a synchronous dataflow graph as a finite set of actors A, ports P and 

channels C, each actor consists of two sets of input and output ports  a = (Ip, Op) where Ip  

P and  Op  P, and each channel consists of two ports c = (po, pi); every port is connected to 

exactly one channel. The rates of the ports are again functions Rate(P)  . The execution 

time of each actor can be added to this model as a function E: A  which maps every actor 

to its execution time. An iteration (consistent firing sequence) can be described in terms of a 

repetition vector. A repetition vector is a function v: A  such that for every channel 

connecting actors a and b transmitting data from a to b   Rate (po) · v(a) = Rate(pi) · v(b). A 

repetition vector is called non-trivial if for every actor a, v(a) ≠ 0. For an SDF graph a 

schedule is consistent if it produces a repetition vector that is not trivial. 

 

 

 

 

 

              

 

 



The University of York   Department of Computer Science 

19 
 

 

 

      
 

 
 

 

 

 

                
 

 

 

     A more general case of synchronous data flow is the cyclo-static data flow model. In this 

case the requirement that the each actor produces and consumes fixed numbers of token at 

each firing is relaxed and is replaced by the constraint that the amount of tokens 

produced/consumed at actor firings can be variable but still can be described by a repeating 

finite sequence. This model is harder to schedule and it imposes further requirements onto the 

communicating interfaces (buffers etc.).  

 

     The SDF and CSDF models are especially suited for modelling streaming applications 

such as multimedia and DSP where the system operates on streams of data in a pipelined 

fashion but some scheduling is required in order to guarantee the temporal requirements of 

the application, which in those domains is expressed as constraints on the overall throughput/ 

data rates; this model is both expressive and analysable so it becomes possible to determine 

the temporal behaviour of the system. The main difference with the traditional schedulability 

analysis is that the requirement of meeting deadlines is replaced by requirements on statistical 

metrics which should fall within specified values. The scheduling and placement problem in 

this case would become that of meeting these requirements by using as less resources as 

possible. From this description it can be seen that this model is more appropriate to a soft 

real-time system where the aim is to provide a required level of service.  

 

 

 

Figure 3.1 Synchronous Dataflow. Token production/consumption rates. 

Figure 3.2 The SDF graph of an H.236 decoder. A video codec standard where each 

token is a block of 63 pixels. 
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3.4 Meta-Models 
 

     There also exist meta-models that can combine various models together [12] in a 

hierarchical way where different models can represent different levels, and also meta-models 

that can further abstract implementation details e.g. in the actors model generic concurrent 

objects with some attributes communicate via message passing. The model defines interfaces 

for these objects to their communication channels (ports, queues). Such models may also 

capture additional information about a system which that may not be possible to convey using 

the semantics of the models described earlier, for example in order to capture the dynamic 

behaviour of a streaming application a composite model of a state machine and a dataflow 

network could be used [81]. 

     Most of the above models describe behavioural aspects of an application, mainly the 

interactions between communicating tasks and they also tend to have a graphical 

representation that is based on the rules that govern the system (interaction between 

components) and represent the specific application features (components and 

interrelations/communications). These representations can be mainly divided into graph-

based models and state-based models, in graph based models the application is modelled by 

directed graphs where the nodes are tasks and the arcs denote communication relations 

between the tasks (direction-dependencies/precedences, weights-communication volumes). In 

state based systems again graphs are used but the nodes represent states and the edges rules 

that transit from state to state, used in parallel they can model concurrent tasks; also a 

combination of the two approaches can be used with a token based approach (Petri-nets). 

 

     Each representation can convey different information, assuming that the underlying 

architecture is capable of providing resources for the specific application so that this 

information is accurate; when the mapping problem is considered a graph based approach is 

more appropriate because it contains more relevant information like all communications 

between tasks and their volumes. Considering that the application is at a level that can be 

described using an untimed synchronous or asynchronous model these representations can 

give a lot of information about the system/application. Process networks and Data flow 

models rely on a graph-based representation where the nodes are actors that respond to firing 

rules and the arcs are channels through which the processes can communicate. Models that 

assume unbounded buffers when implemented may have issues such as token accumulation 

however provided enough information they can be scheduled in such a way that those 

problems may be avoided. As mentioned above these models of computation are especially 

suitable to DSP and multimedia applications which have a temporally and spatially 

predictable behaviour. 

     Regardless the underlying computational model an efficient way of representing an 

application is required that will contain the important information required for the mapping 

problem. The computational model of the application gives a lot of information about the 

behaviour of the system however a more abstract way of representing an application can be 

used such as communication task graphs (CTG) which characterize the application 

partitioning into tasks, tasks' type (preferred processor type), communication 

patterns/volumes, and task execution time. A task graph contains useful information that can 

be used for spatial mapping according to some optimisation criteria while abstracting away 

some of the details such as the internal operations and data structures of tasks. 

 

     A CTG may represented as a pair (T, C), where T is the set of nodes modelling generic 

tasks and C the set of arcs modelling communication between the tasks (control, data etc.). 

Graph based models such as process networks etc. are already represented in such a way. The 
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importance of using models of computation in this context lies in the fact that they allow to 

interpret this abstract information and determine the temporal and functional aspects of the 

application behaviour; for example different communications between tasks may occur at 

different times according to a MoC and so they may be able to use the same hardware 

resources (e.g. NoC links) without any problem, information that a CTG is not be able to 

include. The computation and communication characteristics and requirements of processes 

can be obtained through various simulation and profiling techniques which are not in the 

scope of this work. 

 

 
 

Figure 3.3 A communication task graph – a directed weighted graph. 

 

3.5 Application Models and Analysis for Real-Time Systems 
 

     Considering hard real-time applications the model typically adopted is that of a periodic or 

sporadic task set with or without communications between the tasks allowing pre-emption 

based on the relative priorities of tasks. This model treats tasks as periodic, sporadic and 

aperiodic; periodic tasks are released within regular intervals and are hence characterised by 

a period P, their longest possible execution time is known a priori and so is their relative 

deadline D. Sporadic tasks differ in that they can be released at arbitrary points in the system 

but with defined minimum inter-arrival time between consecutive tasks instead of a period.  

Those models have been used extensively in the real time community and there is an 

impressive amount of literature covering relevant issues such as the scheduling of tasks 

among single or multiple resources. The main feature of this model is that it allows analysis 

of the worst case response time of a task based on the interference it may receive from other 

tasks for a shared resource (processor, memory) and the attributes of the tasks described 

above, this type of analysis is called schedulability analysis. As the temporal requirements are 

specified in terms of task deadlines the calculated response time of each task will have to be 

less than its deadline. Applications within the hard real time domain are typically composed 

of periodic or sporadic tasks that communicate their results by sending messages. For the 
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timing requirements of all the individual tasks to be met the end-to-end latency of the 

communications between them has to be bounded; tasks in such systems are released in 

response to the arrival of a triggering event generated by the external environment, 

periodically by the system itself, or on the arrival of a message from another task containing 

the data to be processed within the receiving task deadline. In the later case the tasks period 

will correspond to the availability of the input data, an increase in the end to end 

communication delay when transmitting messages will have an effect on the release time of 

the task making it start executing later than its calculated period, not only making it possible 

for the specific task to miss its deadline but also for other tasks scheduled together on the 

same resource. As a consequence it is necessary for communication deadlines to be imposed 

on communications as well.  

 

 
 

Figure 3.4 Period and release time of traffic flows and their receiving tasks. 

    Scheduling algorithms can be used to schedule tasks that share a single resource so that 

they all meet their deadlines. This is usually achieved by assigning fixed priorities to tasks in 

a pre-emptive system [114]. These algorithms will take as input the attributes of the tasks 

mentioned above and produce the relevant priorities [89]. In addition to fixed priority 

schemes there also exist dynamic priority algorithms which have many advantages 

(optimality, platform utilisation) [116], [115] at the expense of resources that the algorithm 

requires to run dynamically. There has also been extensive research in the field of 

multiprocessor scheduling algorithms [113]; the mapping of tasks in this context is termed 

task allocation and is performed in a way that allows the tasks to meet their deadlines, this 

problem has also been studied but the communication aspect is typically considered and 

analysed as competing for a single resource which is the message bus [117], [118], [119], 

[120]. The two main approaches for scheduling tasks on multiprocessor systems are 

partitioned and global scheduling; in a partitioned scheduling algorithm the migration of 

tasks to other cores is not permitted at runtime so the task allocation problem would have to 

be solved statically, then communications can be routed and scheduled according to the fixed 

allocation if possible, global algorithms do permit task migration in which case however 

without fixed placement deterministic communication would not be easily achieved 

(analysing worst case communication delays, transmitting messages). As mentioned above 

real time communications are not usually included in the analytical models except for when 

competing for a single resource like a bus, for a hard-real time system with communicating 

tasks a model that could provide guarantees for the traffic on a networked platform (NoC) 

would be essential; in the next section we will describe how such a fixed priority model can 
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be extended to analyse real–time communications competing for NoC resources treating it as 

periodic traffic flows with deadlines and priorities.  

     High performance and low cost are desirable in the real-time embedded systems domain 

however predictability is the most required feature as it allows any relevant analysis to hold 

true so in relation to the previous chapter this property would also depend on the platform 

architecture.  

 

3.6 Schedulability Analysis for NoC Traffic Flows – an Analytical 

Model 
 

     Motivated by the need for NoC platforms that can provide real time services a 

schedulability analysis approach was presented in [33] based on which the worst case 

network packet latency can be calculated. For such analysis to be possible the underlying 

network architecture would have to behave predictably, for this reason this analysis is 

restricted to NoCs with predictable characteristics such as deterministic routing. Regarding 

the switching method the case of wormhole switching is considered because of its ability to 

achieve high throughput with lesser buffer requirements when compared to other packet 

switching techniques however because of the way the packets are spread throughout the 

network contention between traffic flows for the network resources occurs frequently and its 

effects are hard to predict. While a packet is transmitted it occupies network resources such 

as links and buffers, in such an architecture the shared resource is the links of the network, 

during the transmission of the packet if a packet from another resource tries to access the 

network resources contention occurs and it has to be resolved according to some arbitration 

policy. In order to increase the predictability the network architecture examined is further 

constrained to NoCs that use wormhole switching with priority based pre-emptive arbitration. 

Based on this arbitration strategy a real-time schedulability analysis becomes possible. In fact 

an analytical model is derived based on the system-level behaviour of the system. The 

analysis proposed can predict the packet worst case transmission latency for a given traffic-

flow by successfully adopting a single multitasking processor scheduling model. In order to 

avoid deadlock one virtual channel per priority level is assumed as proposed in [84] so that 

there is no dependency between traffic flows and channels. 

     In priority pre-emptive arbitration if any number of flows traffic flows contend for the 

same resources the one with the highest priority gains access to the resources blocking the 

other traffic flows packets and forcing them to reside at the buffers they currently occupy 

until the resources are free again. In this model all traffic flows i are either periodic or 

sporadic and have a period Ti, they are assigned a priority Pi and have a deadline Di. Another 

parameter that is defined for traffic flows is the release jitter Ji
R

 which is the maximum 

deviation of the release of packets from the period of their traffic flow, this attribute helps 

with the accuracy of the estimation.  

     Another important attribute of a traffic flow is the maximum network packet latency Ci 

which is the time a packet of maximum size that belongs to a traffic flow would take to reach 

its destination node when no contention occurs and is calculated by: 
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     Where L is the packet size, f is the flit size and B is the link bandwidth. The distance the 

packet has to traverse is H number of hops and S is the processing time each router takes. 

Each traffic flow in the system will be assigned a specific route generated by a routing 

algorithm. The route of a traffic flow i is a set of links i = {l1, l2, l3... ln}. If a traffic flow’s 

route i shares at least on link with another flow’s route j then the two traffic flows i and j 

have a direct competing relation in which case the higher priority flow will pre-empt the 

lower priority one. For a traffic flow the direct interference set Si
D is defined which is the set 

of all the traffic flows that have a direct competing relation with i and have higher priority. 

Two traffic flows instead of a direct competing relation can have an indirect one. In the case 

where there are two flows i and j and their routes do not share any links but there is one (or 

more) traffic flow k that has a direct competing relationship with both of these traffic flows 

(interleaved) and it’s priority is such that Pj > Pk > Pi then i will have an indirect competing 

relationship with j, as j will influence the release patterns of k which will in turn influence 

i. An indirect interference set Si is now defined similarly to before which contains all the 

traffic flows that have an indirect competing relationship with i. 
 

 

                       
Figure 3.5 Indirect interference between i and j where Pj > Pk > Pi.  

 

The analysis proposed in [33] calculates the worst case network latency Ri for each traffic- 

flow. The upper bound of the network latency depends both on the basic maximum packet 

latency and the time a flow is blocked due to interference from higher priority traffic flows. 

 

Under the assumption that for all traffic flows Di < Pi the network latency upper bound Ri for 

a traffic flow i is given by:  
  

      
          

     

  
                

∀     
 

  

 

  

    For further details, we refer the reader to [33], but the main intuition is that the worst case 

latency of a traffic flow depends on the distance between its source and destination and on the 

interference it may experience from higher priority traffic flows which in turn depends on the 

current communication pattern on the network. The correctness of this analysis is proved in 

[33] and is also backed up by simulation results in [62].    
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3.7 Summary 

     In this chapter the different models that can be used to express the properties of systems 

composed of concurrently executing tasks were reviewed. The goal of this chapter was to 

motivate the need to for a model which allows the analysis (available techniques) of the 

temporal characteristics of both computation and communication in a real time system. As 

this research will focus on the mapping problem from a hard real-time systems perspective it 

was explained why the model reviewed in 3.6 would be more appropriate as analytical tools 

are available that may provide worst case bounds for the network latency of the 

communications as well.  
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Chapter 4 
 

Mapping Strategies 
 

    This chapter aims to give a comprehensive review of previous works on mapping 

algorithms.  These works are categorized according to the different contexts the problem is 

solved in (dynamic, static mapping) and different types of solutions. The overall goal is to 

describe the “state of the art” in mapping algorithms and use this information to inspire a 

novel approach. 

4.1 Approaches to the Mapping Problem 
 

     The mapping of computational clusters onto the physical topology of processors has been 

studied in the field of parallel processing [16], [17], [18] however the mapping of tasks onto 

NoC cores presents additional challenges because of latency, bandwidth and energy 

requirements on the links of a NoC and the silicon area limitations of the network 

components. Mapping of tasks onto the MPSoC platform as mentioned above requires 

finding the placement of tasks into the platform in view of some optimization criteria. In 

addition the problem conditions may vary in different contexts; for example mapping 

communicating tasks onto MPSoC platforms can be accomplished at either design-time or 

run-time, each case having different constraints on the algorithm running time. Next if the 

MPSoC platform is heterogeneous, then task binding has to be taken into consideration, 

where an appropriate platform resource type has to be defined for each task type. The 

mapping problem varies depending: 

   

 On the metrics that have to be optimised 

 Any constraints that are imposed by the platform or the application 

 On the tools available to evaluate the metrics and constraints 

 Any assumptions made about the system 

 When it has to take place i.e. static, dynamic 

 On the information available about the system 

 

Because the mapping problem becomes a combination of all these factors there is no solution 

that applies to every instance of this problem and usually proposed solutions are devised for, 

and may only apply, to a specific pair of platform and application types. The main purpose of 

this work is to approach this problem in the real – time application context and find 

appropriate solutions. 
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4. 2 Static Mapping 
 
     In the case where the application to be run on the platform is known at design-time and it 

is not going to change dynamically it would reasonable that the mapping is performed at 

design-time as well. In this situation, the platform is dedicated to running the specific 

application and no dynamic features like task insertion, removal or migration are allowed 

during runtime. The algorithms that deal with mapping in this case are called static mapping 

algorithms. The advantage of this situation is that the algorithm has all the necessary 

information about the application (which will remain static throughout the lifetime of the 

system) and that the running time of the algorithm is not too important. Therefore static 

mapping algorithms can be expected to provide close to optimal solutions. 

 

       4.2.1 Evolutionary Methods 
 

     Because of the nature of the static mapping problem meta-heuristics are usually employed. 

This is the case in [19] where a two stage genetic algorithm is used with the objective of 

optimising the execution time of the application. It assumed that the network is packet 

switched and that the routing algorithms give the shortest path routes between source and 

destination (minimal). The effects of contention for the communication resources are not 

considered mainly because the routing algorithm used is adaptive so in case of congestion it 

will pick different minimal paths that avoid it, because of this fact however it is not possible 

to provide any latency guarantees. Similarly in [22] a genetic algorithm has been used. In this 

case the algorithm tries to optimise multiple objectives at once by searching a Pareto front of 

solutions and trying to find a solution from the optimal set. The NoC architecture in this case 

is a 2D-mesh with static XY routing and wormhole switching and is abstracted as a graph that 

contains information which specifies the functional behaviour of each element in the NoC 

such as timing and power consumption parameters, while the applications are either 

statistically synthesised or come from real traces. Solutions are evaluated using simulations 

instead of analytical models and the simulation framework is capable of evaluating many 

different metrics such as energy and processing time. The advantage of this simulation based 

approach is that it can take into account dynamic effects which affect the quality of the 

solutions. In this approach the genetic algorithm is not entirely random based, the crossover 

and mutation operations are applied in a way so that they alter the positions of 

heavy/demanding communication flows in particular as a result the produced solutions are 

more diverse. This may lead to a better exploration of the solution space also in the case 

where searching for solutions that provide latency guarantees as the heavy flows are more 

likely to affect the overall latency in the system. 

 

 4.2.2 Greedy Heuristic Methods 
 

     In [23] a different approach is proposed, again assuming a packet switched mesh based 

NoC with wormhole switching the main cost objective to minimise is the aggregated 

bandwidth used on each of the network links, hence the goal is to balance the bandwidth 

requirements of the application across the different links. In this way it is suggested that 

indirectly congestion and latency will also be reduced. The congestion on the network links 

affects the remaining available bandwidth of the links and increases latency due to contention 

that may lead to blocking (wormhole switching). Again the application is modelled by an 

application graph, in this work called a core graph, which includes information about the 

application behaviour. The algorithm used is greedy like and has an initial phase where first 
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the task with the highest communication demands is mapped first and then the other tasks are 

selected in turn; in the selection step the task that communicates most with the already 

mapped ones is picked next. Then this task is placed on a core so as to minimise the 

communication cost of the set of flows of the application (E).  

 

                              

   

   

 

 

For each traffic flow i in E where dist(i) is the minimum number of hops between the source 

and destination of the flow nodes. This best core in each step is obtained by examining every 

available core in the platform then a routine will give a minimal route. The procedure is 

repeated until all the cores are mapped. If the bandwidth constraints are satisfied the solution 

is saved otherwise discarded. This initial solution or partial solution up to the point that the 

constraints are satisfied is then improved upon by pair-wise swapping tasks for all possible 

pairs and saving the best mapping.  

     In addition to this algorithm an approach is proposed where a single traffic flow can be 

split in two minimum paths in order to better distribute the bandwidth requirements of the 

application across the platform and minimise congestion, latency and the jitter between 

subsequent packets, with the small overhead of additional routing tables at the router buffers. 

This approach is validated by cycle-accurate simulation of a DSP system. Again this 

approach could be used in order to reduce the overall congestion on the network links 

however on a priority based network it could increase contention as by splitting the traffic-

flows would increase their total while applied on a TDM based network could lead to better 

utilisation of resources. 

 

     In [25] a similar approach is used where the objective is to minimise the communication 

energy in a 2D mesh NoC with XY routing. Here two greedy algorithms produce solutions 

which are used as seeds to a simulated annealing algorithm. The two greedy algorithms are 

largest communication first (LCF) and greedy incremental (GI). In the LCF heuristic tasks 

that communicate the most are mapped first. The amount of communication for each task is 

the total incoming and outgoing communication with other tasks. The algorithm places highly 

communicating tasks from the centre of the platform outwards so that there are more route 

options. The greedy incremental algorithm works on a randomly generated initial mapping 

and is based on two nested iterations. The first loop defines a core as a pivot iterating for all 

the cores of the platform; the nested iteration performs swaps of tasks between all possible 

pairs of the platform's PEs except for the PEs already used as pivots; at the end of each nested 

iteration the mapping with the least energy consumption is saved and finally when the 

algorithm terminates the best mapping is chosen; this approach is very similar to an 

exhaustive search. 

 

     The solutions of these algorithms were used as seeds to the simulated annealing and tabu 

search heuristics and the results were compared against those of the heuristics without seed 

solutions. These algorithms were tested adopting the communication model of [26] for 

randomly generated application sets varying in degree of connectivity, communication 

weight, and for varying NoC sizes. The combined approaches of the greedy algorithms and 

the heuristics showed good improvements in terms of execution time and energy saving 

comparing to the simple heuristics. 

     This is an idea that can be easily adapted to different cases as well. In [47] the authors 

have developed a greedy algorithm which works according to different application templates. 
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The input applications are classified according to the connectivity of the vertices of their 

communication task graphs. The weights of the communication traces are derived similar to 

[27]. The algorithm classifies the input applications by keeping a sorted list of edges in 

decreasing order of edge weight, the applications are of two different types, the applications 

that fall into the first type are applications that have at least a node of degree four or higher 

and at least one of the edges connecting to this node is at the higher 50% of the sorted list 

(highly weighted). 

     The presence of such nodes (tasks) indicates that there are one or more hot nodes which 

communicate heavily with flows that either require high bandwidth or have tight latency 

constraints. The second types of applications are applications that do not have such nodes 

hence the weight of their communication is more evenly distributed across connections. In 

the first case the algorithm maps the hot nodes first along with their four most significant 

neighbours which are determined by the weights of the edges connecting them at a minimum 

hop distance. These nodes are mapped on tiles of the platform that have the highest amount 

of neighbouring tiles (central tiles with 4 neighbours). The remaining nodes are mapped in 

descending order based on the weights of their edges. In the case where the application falls 

into the second category the algorithm divides the NoC into regions and the communication 

graphs into blocks in a in a divide-and-conquer manner similar to [27] then it maps the tasks 

on IP cores inside each block again in a priority based on communication weights. XY and 

odd-even routing are considered as the routing algorithms used by the platform in order to 

generate deadlock-free and minimal routing paths. Simulation experiments using [48] on 

multimedia and random benchmarks show that this algorithm produces good quality results in 

terms of energy spent with low run times, however the algorithm is not described to take any 

action in cases where constraints are violated hence the relation of the algorithms 

performance to the size of the platform used is not apparent. Such an approach could be also 

applied to a system with latency requirements where the communication flows could be 

weighted according to their deadlines producing optimal or close to optimal solutions that 

could be further processed by other steps.  

 

4.2.3 Unified Approaches 
 
     The mapping problem is tightly coupled with other design aspects of the system such as 

the system topology and the routing function. This fact motivated many researchers to try and 

solve the mapping problem as a part of a larger design space solution for NoCs allowing for 

solutions optimised more towards specific applications. 

 

     In [4] Hu and Marculescu propose a branch-and-bound algorithm for the mapping 

problem which aims to minimise the total communication energy and meet the application 

constraints by bandwidth reservation. The algorithm tries to find both an optimal mapping 

and a routing function that minimise the energy spent on communication, also having the 

bandwidth usage as a constraint. The concept of bandwidth reservation means that after the 

mapping, the communication traffic on any of the networks links will not exceed the 

available bandwidth, hence it will be serviced. The energy model used to evaluate the 

solutions calculates the energy used to send one bit from one core to another by:  

 

                                                     
 

     Where ES bit is the energy the switch consumes to process one bit and it is measured by 

running circuit simulations in SPICE and EL bit is the energy consumed when the bit travels 

along a wire (one hop distance). The Branch and Bound algorithm represents the solution 
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space as a tree and it traverses it by generating children nodes for each parent node. In the 

specific case each node of the tree represents a partial solution and each leaf node a complete 

solution, the solutions consist of both a partial mapping and the corresponding routing paths 

of the communication flows. In such systems as mentioned above the routing has to have 

some fundamental properties such as being minimal (shortest route) and deadlock free. The 

above approach does not use a single routing algorithm instead it incorporates the routing 

paths as part of the solution. During each level of the algorithm for each node the next 

children nodes are generated by mapping the next unoccupied task enumeratively on to the 

remaining unoccupied cores. Then a routing path allocation heuristic that runs in reasonable 

time generates routing paths which are both minimal and deadlock free. Then the bounding 

stage is based on evaluating the solutions generated and discarding the ones that fall above 

certain energy thresholds and or violate bandwidth constraints. Experimental results show 

substantial communication energy savings compared to other heuristics like simulated 

annealing while the running time of such an algorithm is relatively high as expected.  

 

     Benini et. al in [24] adopt a unified approach for designing application specific NoCs 

where the specified hardware cores suitable to the applications tasks are mapped onto 

different NoC topologies. In this approach the hardware cores on which tasks will run are 

known a priory and a tabu search algorithm tries to map the cores on different topologies 

trying to find the best combination of mapping/topology. This work also differentiates by the 

fact that a heterogeneous platform is assumed where predetermined specialised PEs for each 

task are mapped on a topology instead of tasks being mapped on various PEs. The algorithm 

perturbs the mappings in order to traverse the solution space by pair wise swapping mapped 

cores. The objective in this case is to minimise the delay of the traffic flows measured in hop 

counts in order to meet the delay constraints and provide QoS and real-time services. The 

traffic characteristics of the application like the permissible delays (deadlines) of the traffic 

flows are obtained by simulating the application. This process in the tabu algorithm is 

combined with a physical planning stage which optimises the design area, power 

consumption or hop delay by regulating the size and positions of network components. This 

approach is able to provide high quality solutions as it customises the whole system for a 

specific application incorporating mapping as one of the many design aspects. 

 

     Murali et. al[20] introduce a methodology aiming to find a mapping that meets the 

bandwidth and latency constraints of multiple use cases of an application that are known a 

priori and capture some dynamic characteristics of the applications communication patterns. 

In this approach, path selection for different traffic flows (routing) and reservation of 

bandwidth (TDMA slot-table entries) for the GT traffic flows are unified with the mapping 

process in a manner similar to [5]. The different use cases of an application all are assumed to 

have the same set of tasks and they only have different communication flows. The algorithm 

is restricted to the AEthereal architecture and mainly considers GT flows and their 

requirements. The algorithm is a heuristic and it works by iterating through all the use cases, 

looking for the most bandwidth demanding traffic flows. The algorithm begins by sorting all 

the traffic flows from all use cases by decreasing bandwidth values in a list and then it 

iterates through that list visiting high bandwidth demanding flows first. When considering a 

traffic flow the algorithm finds a path that has the least cost in terms of latency (measured in 

hop counts) and bandwidth (available slot reservation) in order to satisfy the flows 

requirements, then it maps the traffic flows source and destination tasks on the paths edges. 

The mapping of the tasks is shared between all the use cases and the algorithm reserves 

bandwidth for the mapped traffic flow on this path. This algorithm can also iterate in an outer 

loop for various NoC sizes so that it can find the minimum area that can satisfy the 
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applications communication constraints. This approach contributes to the fact that it can 

capture dynamic aspects of the application (different modes/use cases). Experiments in [20] 

compared the method described above to a previous approach where a worst-case use-case 

was synthesised that combined all the constraints and requirements of all the applications use 

cases hence over-specifying the requirements, the results showed a big improvement on the 

NoC area that was necessary to meet the constraints. Such solutions can also be adopted in 

systems with tight latency requirements and by incorporating the routing in the solution the 

solution space increases. 

 
 

4.2.4 Generic Approaches 
 
     In [26] an approach that uses a communication dependence model (CDM) is presented. 

The aim of this work is to minimise energy consumption. The communication dependence 

model provides additional information about the application into the mapping problem, 

specifically the information of dependencies between messages. Again assuming a 2D mesh 

network with deterministic XY routing which is abstracted by a NoC topology graph the 

application is modelled both by a communication weighted graph and a communication 

dependence graph. In this work the energy consumed by the system is separated in static and 

dynamic, dynamic energy is consumed by the communication fabric transmitting the traffic 

flows and the general switching activity of gates on the network (routers, buffers) and the 

static energy is proportional to the total number of gates dissipating static power and to the 

execution time (mostly by information residing and being processed). So the total energy 

consumed by the NoC running an application is: 

 

                             
 

Previous works described here have tried to reduce the energy consumed by communication. 

The main difference in this work is that by taking into account the message dependencies, 

hence the sequence that they are produced, the contention between traffic flows can be 

reduced, so can the static energy dissipated and overall execution time. The algorithm used is 

simulated annealing and it tries to minimise the quantity in (7) hence the dynamic energy as 

well. The main observation that makes the dependencies information useful is that messages 

that have precedence relations will not occur at the same time while independent messages 

may occur simultaneously and lead to contention over the communication resources. This 

information allows the algorithm to narrow down its search space by trying to avoid only 

contentions that will actually occur. For each mapping the algorithm will maintain for each 

link a list of all the independent messages that share it and next it will assume the worst case 

where these messages contest with each other for the link. Message contention implies a 

larger application execution time (based on the arbitration scheme used) and consequently 

more static energy dissipation. For each mapping the algorithm computes the dynamic energy 

due to the distance and the static energy due to each message delay which is computed by 

calculating the delay due to precedence (add previous messages' delays) and contention 

(messages that share same links). Therefore this algorithm that uses the additional 

information from the CDA tries to minimize the contentions that will actually occur by 

searching core mappings that spread the messages over parallel links. The drawback of this 

approach is that it can be very hard to obtain a static communication dependence graph at 

design time that will be constantly valid throughout the application's lifetime as it may 

depend on input data available only at run time [26]. Testing the algorithm against a plain 
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simulated annealing algorithm that only considers communication energy, significant 

reductions are achieved in execution time and smaller reductions considering static and total 

energy consumption, however the authors suggest that the static energy consumption will 

become more important in the future as technology will scale down. This approach could be 

very useful for traffic with real time requirements as it allows to take into consideration only 

the traffic that will be present on the system at any given time hence solve the same problem 

for less traffic flows however the relevant information must be available and accurate. 

 

     In [27] a technique is proposed aiming to meet latency constraints of communication 

flows while minimising the energy spent on communication. This approach is restricted to 

mesh based NoCs and takes an application and a mesh topology as inputs. The application is 

modelled as a communication trace graph which is similar to a communicating task graph 

with the addition that each edge also carries the information of the latency constraint and 

bandwidth requirements of the flow. The weights of the application graph edges are 

determined by the latency and bandwidth of the flow. The arc weights are calculated so that 

an arc representing a traffic flow with very tight latency constraints has larger weight than an 

arc representing a flow with high bandwidth requirements. This work assumes that the 

network used does not have a specific arbitration scheme and that many traffic flows may 

share the same links as long as their aggregated bandwidth does not exceed the bandwidth of 

the link, so for any given mapping the bandwidth constraints on shared links have to be 

satisfied. The mapping problem in this work is solved using an algorithm that solves the 

graph equicut problem. The equicut problem consists of finding a partition of a directed 

weighted graph so that the number of nodes in both partitions is equal and the amount of flow 

(aggregated weight of edges) crossing the partition is minimum which is very similar to the 

sparsest cut problem on graphs. The algorithm recursively partitions the communication trace 

graph vertically and horizontally solving the equipartition problem each time until the 

partitions contain only one node, then the relative positions of the nodes denote their 

placement on the XY plane. In this method the way the communication trace graph is 

partitioned depends on the weights of the communication flows, in turn these weights are 

derived according to latency and bandwidth requirements however being more biased 

towards latency. This fact ensures that communication flows with high latency constraints 

will be placed closer to each other but also represents a trade-off between placing high 

bandwidth traffic flows close to each other in order to minimise energy consumption. This 

algorithm has a polynomial time complexity and experiments demonstrated that in some 

cases the algorithm was able to produce close to optimal solutions however with this 

approach the energy requirements conflict with the latency constraints. 

 

     As it can be seen there have been various approaches presented in literature for the 

problem of static application mapping onto the mesh architectures. These approaches vary in 

the aspects of the system they try to optimise and the methods they employ. Some of the 

approaches tackle the mapping problem together with other design aspects of the system such 

as routing and time-slot allocation and as a result they provide good quality application 

instance specific solutions; other approaches use additional information about the application 

they try to map in order to achieve better results but they become applicable only in cases 

where this information is available. Different algorithms are used in these approaches 

however optimal results are not always guaranteed in addition in some cases the algorithm 

complexity may have limitations on the problem size it can process e.g. [23]. Most 

algorithms consider specific platform and application features so they may not be generally 

applicable.  
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4. 3 Dynamic Mapping 
 

     Different to static mapping, in dynamic mapping the time taken for the mapping 

algorithms to run and produce a valid solution is important since it becomes an overhead to 

the overall application execution time. A compromise has to be made between the solution 

quality and the running time of the algorithms used. Complex applications running on NoCs 

may have dynamic workloads so the number of parallel tasks executing may be varying in 

time. Such applications may run on homogeneous platforms where the uniformity of the 

system simplifies the mapping problem and also allows for easy reconfiguration (task 

migration), or they may run on heterogeneous platforms in order to take advantage of 

specialized processing elements and increase performance. Apart from the dynamic aspect of 

applications it may be preferred to have tasks mapped (loaded) on the system at the specific 

instance they are required so that the PEs of the platform are not unnecessarily occupied; 

doing so allows to save power and to have more mapping options at any time being able to 

find optimal configurations easier; it may also be the case that the entire number of tasks that 

an application may require during its runtime may exceed the available resources so in any 

case it is necessary to add tasks into the system on a per need to basis. 

     Different techniques have been proposed in literature so that a system may respond to 

varying situations at runtime, e.g. different communication volumes, which may lead to 

performance degradation. Task migration [63][64] is a technique where at run-time the tasks 

are relocated from one processing element to another when a performance bottleneck is 

detected or when the workload needs to be distributed more evenly across the platform e.g. 

thermal balancing. Task migration on such systems however is essentially a re-mapping of 

some tasks and would again have to employ some mapping heuristic method, in addition it 

comes at a high overhead such as the cost to save a tasks context (memory issues arise that 

are architecture specific), transmitting all of the data to a new PE and restarting the task, an 

accurate estimate of this overhead is necessary so that the relevant strategy can take it into 

consideration.  

 

      Complex NoCs can also be used in situations where the system may run a variety of 

software applications instead of only one and/or the applications may have many different 

modes of operation and various dynamic characteristics depending on user input. Because in 

a dynamic system the optimal resource allocation will vary different approaches to those used 

in static mapping are required. A major distinction in dynamic mapping algorithms is 

between algorithms that map the entire application task set, even though some of the tasks do 

not have to be present at all times, and other algorithms that map only single tasks of the 

application on a need to basis; algorithms that fall in the first category are termed resource-

reserving because of the need to reserve resources for the not present tasks so that they can be 

mapped when available.  

 

            4.3.1 Per single-task Mapping Methods 
 
      One of the first approaches for NoC based MPSoCs was proposed in [48]. The authors 

present three heuristics for dynamic mapping all of which work on an initial placement of 

some of the applications tasks. The objective of these algorithms is to reduce the congestion 

on the NoC links (congestion aware). This work considers heterogeneous NoCs and assumes 

the system may be running multiple applications that do not communicate with each other. A 

task in this model is mapped on the platform only when another task requests to communicate 

with it so the mapping problem is solved for one task at a time; each application is modelled 
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as having some initial task that has to be running at all times. First the mapping of this initial 

task takes place; in the case of multiple applications a clustering strategy is employed. The 

NoC is partitioned in clusters and each applications initial task is placed inside a cluster, all 

the subsequent tasks of the application will be placed into the same cluster too; the aim of this 

strategy is to equally reserve resources for each application and to minimise the sharing of 

NoC channels by communications of different applications in order to avoid link congestion. 

      

     The first heuristic proposed is called Minimum Maximum Channel Load. When a task is 

required this heuristic visits all possible different mappings for it on the available elements in 

the application's cluster. The cost of a mapping is the maximum data rate/ Bandwidth 

occupied across all the NoC links which indicates the maximum congestion at any time in a 

cluster. The algorithm chooses the mapping with the minimum cost. Next the Minimum 

Average Channel Load heuristic aims at reducing the average bandwidth occupancy on the 

NoC links. The difference of this heuristic with the minimum maximum channel load is that 

instead of using the maximum occupancy as the cost metric it uses the average. As a result 

this heuristic tries to evenly distribute the communication load throughout the NoC links. The 

mapping that results in the lower average channel occupancy is chosen. Another algorithm 

proposed in this work is Path Load. This algorithm measures the cost of a mapping only on 

paths used by the communication of the task being mapped thus being faster. Again the cost 

measured is that of bandwidth occupancy and the mapping with the least cost is selected. 

Finally the Best Neighbour heuristic calculates the cost of different mappings same as in the 

path Load heuristic but instead of all possible mappings it restricts the search only to the 

neighbours of the initial task requesting a new task to be mapped. If a valid placement is not 

found the distance is incremented from one to two hop counts so the search is extended to the 

NoC limits along a spiral path. Some simple heuristics were used as a point of reference to 

compare the ones proposed above. This heuristic was Nearest Neighbour, in this heuristic 

there is no cost evaluation of solutions and it works by searching for a core able to execute 

the requested task starting from the neighbours of the node making the request. The search 

iterates through all n-hop neighbours, with n varying between 1 to the NoC limits. 

Experiments were carried out [49] using the Hermes NoC (8x8, 9x9) described at RTL in 

VHDL, the processing elements were modelled using systemC. Because in the context of 

dynamic mapping the system itself has to run the heuristics on a specific processor one 

processor is dedicated to this task called the manager processor, modelled as a systemC 

thread it is responsible for task mapping along with other resource management tasks. The 

experiments were carried out for a variety of real and synthesised applications on both 

homogeneous and heterogeneous NoCs. All algorithms reduced the average channel load; in 

addition because of the simulation based result other metrics could be evaluated such as 

packet latency and algorithm execution time, overall Path load seems to offer the best results. 

The algorithms proposed in [48], [49] and [50] seem to produce good results compared to ad 

– hoc approaches, however they do exhaustively search the solution space as a result they 

may not run sufficiently fast in large NoCs. It can be argued that the optimality of a single 

task mapping may not lead to the optimality of subsequent task mappings so these algorithms 

could produce overall suboptimal mappings as the number of tasks mapped on the system 

increases. Further these algorithms do not guarantee to satisfy any constraints while in many 

cases it may be necessary. Using additional input about the system state and the application 

or having some kind of reconfiguration strategy could potentially address this issue. 

 

      In [53] dynamic mapping algorithms are proposed which assume that the processing 

elements of the system are able to execute more than one task. The goal of the heuristics 

presented in this work is to optimise various aspects of the system by reducing the 
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communications' distances. This work assumes a mesh based heterogeneous NoC which also 

contains reconfigurable hardware areas that may be dynamically reconfigured and run more 

than one hardware task in parallel (FPGAs). It is also assumed that the system runs various 

independent applications where each application starts by running an initial task and then the 

rest of the tasks are mapped on demand (based on communication requests by previously 

mapped tasks) similar to [50]. The algorithm does not know the application task graph and 

characteristics in advance and is assumed to be running on a separate processor, the manager 

processor. This work builds on the work in [50] by taking into consideration the fact that the 

PEs of a system are able to run more than one tasks. These algorithms are based on an initial 

packing strategy which is similar to the clustering approach in [48], after the mesh NoC is 

partitioned in clusters one for each application (assuming that all applications' initial tasks are 

available at the same time) initial tasks of the applications are mapped at the centre of 

clusters, subsequent tasks are mapped close to the requesting task but are not restricted to the 

specific cluster, clustering is only used to place initial tasks evenly across the platform. The 

subsequent tasks are mapped according to the packing strategy which looks for available PEs 

in a circular manner at increasing hop distances from the PE making the request. The packing 

strategy specifies an order according to which the PEs at each hop distance are traversed, this 

order is left, down, right, top so that each application is more compact towards a specific 

direction (left, bottom) in the cluster allowing free space in the cluster for other applications 

that will look in the same direction. Using this strategy the applications can share the NoC 

resources more efficiently by being more compact towards a specific direction. 

 

 
 

 
 

Figure 4.1 Packing strategy for different applications sharing the same NoC. Applications map 

their tasks towards the same direction allowing them to better share the NoC.   

 

     The algorithms proposed here are based on two algorithms proposed in [48] namely 

Nearest Neighbour, and Best Neighbour. The proposed approach enhances those algorithms 

using the packing strategy mentioned above and by introducing the notion of communication 

awareness resulting in communication aware packing based Nearest Neighbour and 

communication aware packing based Best Neighbour. In these enhanced versions of the 

above algorithms whenever a task is requested to be mapped fist it is attempted to map it on 
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to the same PE in order to take advantage of this feature and minimise the communication 

overhead, if it is not possible the platform is scanned for an available PE of suitable type in 

increasing hop distances from the initial requesting task according to the packing scheme 

mentioned above. In the case where a suitable PE is not available then the task waits in a 

queue until some resource becomes free.  

     In communication aware packing based Nearest Neighbour a greedy search looking for an 

available PE takes place, if the search comes across a PE which can support the task and there 

are no other tasks mapped on to it then the task is mapped and the search stops. If the search 

comes across a suitable PE with already mapped tasks on it checks to see if those tasks 

communicate with the task that is to be mapped, if it is so then the task is mapped on the this 

PE otherwise the search continues until a suitable free PE or a PE with such tasks is found. 

This approach aims to map communicating tasks on the same PEs when possible in order to 

minimise the communication cost. The communication aware packing based Best Neighbour 

is based on the Path Load algorithm in [48] all the mappings of the incoming task on 

neighbouring PEs are evaluated according to the total bandwidth usage on the links (path 

load) and the one with the minimum is evaluated, because of the platforms ability to run 

multiple tasks on a single PE solutions that do so are favoured as they do not require any 

traffic on the links. In order to verify their approach the authors used a simulation framework 

to test the algorithms. The framework used was an 8x8 2D mesh NoC modelled in VHDL 

having the PEs modelled as systemC threads. One task and PE are reserved for running the 

above algorithms are resource management the manager processor. Using random and tree 

like applications as inputs with both software and hardware tasks notable reductions in the 

communication overhead were noted in comparison to the simpler versions of the algorithms 

affecting both energy and execution time. 

      In this work the mapping algorithm runs on a single processor (mapping control is 

centralized) a fact that may become a bottleneck as the system size increases. The feature of 

multitasking on a single PE should be supported by an operating system especially if the 

tasks have real time requirements where they will have to be scheduled in which case the 

problem complexity will increase probably posing a significant overhead to this approach. 

Again these algorithms are not able to provide any guarantees in terms of latency and 

bandwidth constraints, in cases where a mapping of a task is not possible it will have to wait 

on a queue thus affecting the overall performance in it's absence, a reconfiguration strategy 

might be able solve this bottleneck problem.  

     

    The most recent work to date targeting the dynamic mapping problem on NoCs is 

presented in [54]. In this work the authors target homogeneous NoCs where the PEs have the 

ability to multitask; the overall aim is to minimise the energy consumption in the system. The 

proposed algorithms are Dependencies Neighbourhood (DN), Low Energy Consumption – 

Dependences Neighbourhood (LEC-DN) and Premap – DN. The DN is a simple heuristic that 

maps incoming tasks as closely as possible to the already mapped tasks in which they 

communicate with; by using a proximity only cost function (no. of hops). So the task is 

placed in a position where the total sum of the distances to the communicating tasks is 

minimised. The LEC-DN uses the total communication energy of a task mapping as cost 

function which is a function of the distance of the communications and the communication 

volume between tasks. In the case were the incoming task only communicates with one task 

then the search for the suitable PE is done similar to NN [48] where the search starts from the 

requesting task's neighbours outwards in a spiral fashion, in the case where the incoming task 

communicates with more than one task the search is restricted in a box bounding these tasks, 

if a solution is not found in this box then it's size is increased by one hop. 
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Figure 4.2 Box bounding of search region for the mapping of task 3. 

 

      Another proposed algorithm is proposed in this work is Premap-DN. The aim of this 

algorithm is to group tasks with high communication rates on the same PEs in order to utilise 

the multitasking capability of the system. This heuristic uses a method called pre-map which 

allows tasks to reserve places on the PEs of the platform so that the communication costs are 

minimised. This method is used after the mapping of the initial tasks of the application. For 

an initial task tA after it is mapped the pre map method will reserve positions for the tasks that 

communicate with it on the same PE, this is done by maintaining a list with all the tasks that 

tA communicates with but are not yet mapped called the communicating list. This list is 

sorted according to the communication volumes, next the algorithm iterates through the list 

and for each task tB it visits it is pre mapped on the same PE with the source task tA. Next for 

any tasks that have not been pre-mapped and are requested on the system the LEC-DN 

heuristic is used, in this case after the task is mapped the pre-mapping algorithm is invoked 

again for the communication list of this task. 

      Experiments using a variety of real and synthetic applications were carried out to validate 

the proposed approaches. The algorithm pre-map LEC-DN was tested against a multi-tasking 

version of NN mentioned in [48] and the mono task algorithms were tested against each other 

(DN, LECDN) and against the mono task version of the NN heuristic. In general experiments 

show that LECDN produce better results for mono task scenarios and Premap-DN heuristic 

effectively reduces the communication on the NoC and also produces significantly better 

results than the NN approach. 
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     The works described in the section above propose simple fast solutions to the dynamic 

mapping problem on a per task basis, however they are not able to provide any guarantees 

that certain requirements will be met at all times during the lifetime of the system. 

 

4.3.2 Resource Reserving Algorithms 
 

     Another approach for runtime spatial mapping was proposed by Hölzenspies et al. in [51]; 

this approach targets streaming DSP applications running on heterogeneous mesh based 

NoCs. The aim of the proposed method is to find a mapping at runtime that minimises the 

energy spent on communication and satisfies the applications QoS requirements. The 

algorithm is named hierarchical search with iterative refinement the main characteristic of the 

algorithm is that it solves the problem in different steps where each step helps to narrow 

down the solution space. In this approach the fact that the platform is heterogeneous is 

considered in order to produce an efficient mapping where each task runs on a processing 

element type that is most preferable e.g. an FFT kernel on a DSP. This affinity between the 

task and processor types somehow restricts the solution space so it is assumed that each task 

can have a few implementations able to run on various processor types e.g. an FFT kernel 

may run on both a DSP and an ARM processor but less efficiently in the later case, some 

tasks are less flexible as implementations for different processor types are not efficient. The 

fact that these various implementations are available enables multiple applications to run 

simultaneously on a heterogeneous system. The proposed mapping algorithm runs whenever 

an application needs to start executing. Considering that all tasks of such streaming 

applications run concurrently the algorithm maps the entire application instead of separate 

tasks.   

     The algorithm is composed of four steps; considering heterogeneous NoCs and an 

application that is made of various tasks the first step aims to find a processing element type 

(DSP, ISP etc.) that suits each task; this process is done iteratively for all tasks first choosing 

the tasks that are less flexible (regarding processor types). Assuming that each processing 

element can run multiple tasks the chosen tasks are mapped on to the first suitable processor 

found with sufficient resources (first fit). The second step of the algorithm tries to improve 

the current mapping obtained from the previous step by remapping tasks to more suitable 

processor types. In addition this step considers communication costs, having found a optimal 

processor type assignment for a task the algorithm will swap this task to another processing 

element of the same type and will choose the one element with the least communication cost. 

The total communication cost of assigning a task to a processor is the sum of the Manhattan 

distances between the mapped task and all of the tasks it communicates with. The iteration in 

step two can stop or continue based on a threshold in time or in the gain achieved by the 

alternative mappings. In step three the communication flows between tasks are routed on the 

NoC, the flows are sorted by non-increasing throughput so that the heavier flows are routed 

first. Next the algorithm finds a shortest path between the source and destination of the flows 

by only considering links that are able to service the throughput requirement of the flow as 

their capacity may be occupied by previously routed flows. Finally the last step checks that 

the current mapping satisfies the applications constraints. 

     The application is modelled initially as a Khan process network that describes the 

dependencies between tasks; additional to this information the QoS constraints are necessary 

for each communication flow between tasks. After a specific mapping of tasks on processors 

the resulting system can then be described as a cyclo – static data flow graph; according to 

the specific processor types chosen for the tasks additional information becomes available 

such as WCET and production and consumption rates. Based on the CSDF graph of the 

resulting system the buffer capacities required by each task mapped on a PE can be 
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determined using an analysis presented in [58]. If after the last step of the algorithm the 

throughput constraints on the links cannot be satisfied or the required buffer sizes of tasks 

cannot be realised the algorithm re-runs previous steps so that they may lead to different 

solutions. Similarly if any step fails to find a result the algorithm re-runs previous steps so 

that it can reach different solutions. Experiments carried out in [51] tried to map a 

HIPERLAN/2 receiver system on a NoC platform composed of two ARM and two 

MONTIUM processors. The algorithm was compiled and run on an ARM processor and for 

this problem inputs it produced feasible solutions with a small running time; however it is not 

clear if the algorithm will be able to produce solutions sufficiently fast in cases where the 

application is very large as it involves various iterations. More experimentation with a wider 

variety of problem sizes would indicate whether the algorithm is able to scale well. 

 

     Chou and Marculescu in [56] suggest an approach which includes user behaviour 

information in the task mapping process. This behaviour information is employed to define 

tasks periodicity and communication rates. This work targets NoC platforms that may run 

multiple applications at the same time; the dynamic aspect of the system comes from the fact 

that it may load additional applications at run-time where different application tasks run on 

different resources (processors). In addition it is assumed that an application may also leave 

the system when no longer needed. The behaviour of a user is defined as a set of consecutive 

events requesting applications to enter or leave the system over a given period in the system 

lifetime. Two approaches are proposed with the aim of minimising contention and the 

communication energy cost between tasks which is defined as a function of distance. The 

contention between the traffic flows for the network resources in this work is separated into 

internal and external, internal contention occurs between tasks that belong to the same 

application while external contention between tasks belonging to separate applications. 

 

 

          
 
Figure 4.3 . Internal contention between traffic flows f2 and f3, external contention between flows f1and f2. 

 

     The two methods for mapping an application on to the system are the following: The first 

method tries to map the application in such a way so that the internal contention and 

communication cost (energy) is minimised without considering the external contention. The 

second method tries to minimise the external contention and the communication cost of the 

application. Each of the two approaches relates to a different problem, in the first approach an 

arrangement on the 2D plane containing all the application tasks is found which minimises 

the communication energy, based on this arrangement a region is reserved on the NoC to map 

the tasks; as a secondary requirement if there are more than one arrangements that minimise 

communication energy, the arrangement that is closer to convex is used. In the second 
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approach a near convex region is selected on the NoC according to the free resources 

available at the time and the application's tasks have to be mapped on it so as to minimise the 

energy cost; the fact that the area chosen is convex minimises the external contention that this 

application may cause. 

 

 

 

         
 
Figure 4.4 mapping solutions for three different applications, in (a) the internal contention is 

minimised while in (b) the external contention is minimised. 

 

 

      The mapping algorithm used in the second approach is a greedy algorithm and works by 

mapping heavily communicating tasks first. In the beginning the most communicating task is 

mapped at the centre of the region then at each subsequent step the task with the largest total 

communication to already mapped tasks is chosen and mapped at a processor so that the total 

communication cost is minimised. The complexity of this algorithm is given as 

O(VlogV+AlogA) Where V is the number of vertices and A the number of arcs in the 

application graph. 

     The system chooses one of the two approaches based on the application's characteristics 

and the previous user behaviour (previously mapped applications). Applications that have a 

total communication rate higher than other applications or applications that have been 

responsible for most of the communication energy spent by the system in the past (lifetime of 

the system) are mapped using method one which minimises only the communication cost of 

the application, such applications are termed critical. The reasoning behind this choice is that 

using the second approach for critical applications which is friendlier to other applications a 

suboptimal placement in terms of energy will be found while for critical applications it would 

be more suitable to find an optimal solution regarding the overall system performance. 

     Experiments were carried out using applications from a benchmark suite [60]. The NoC 

platform is a 5x5 NoC that uses wormhole switching and minimal path routing. A custom 

made simulator was used to measure the communication energy consumption. 

     This approach targets a specific case where entire applications may enter and leave the 

system; it exhibits power consumption improvements when compared to a random approach 

that maps each application randomly yet in a contagious fashion. The proposed method does 

not take into account any constraints that the system may have such as bandwidth usage on 

the links or packet latency, also the user behaviour model is not necessarily applicable in 

systems with arbitrary behaviour however this method shows a way of relating the 
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geometrical features of a mapping and the contention that occurs (assuming the model of 

multiple applications onto a single NoC). 

     Similarly Mehran et. al. In [55] propose an algorithm that tries to minimise the cumulative 

energy consumption across the NoC links and consequently the time spent on 

communications by placing highly communicating tasks close to each other. This work 

targets the mapping of a single application on a NoC similar to the work done in static 

mapping without taking into consideration any dynamic aspects of the system however due to 

its low running time the authors suggest that it may be used in a dynamic mapping scenario. 

Assuming a homogeneous platform the algorithm works by sorting the platform's nodes and 

the application tasks in lists. The nodes are sorted according to their connectivity in a non-

decreasing order this results in the platform priority list (PPL) which list all the network 

switches starting from central switches ending to boundary switches in a spiral fashion. Next 

the tasks are sorted on a list according to a priority (tasks first on the list will have higher 

priority and should be mapped first) forming the task priority list (TPL). Each task is assigned 

a priority based on the number of tasks it communicates with. High priority tasks are placed 

on PEs next to highly connected nodes so tasks first in the TPL are placed on PEs connected 

to nodes first in the PPL, when a task from the TPL list all of the tasks they communicate 

with are placed at a minimum hop distance and the processes iterates until all tasks are 

placed. The main idea of the algorithm is that highly communicating tasks are placed from 

the centre of the mesh outwards together with the tasks they communicate at minimum hop 

distances. The framework used for experiments was the simulation environment presented in 

[61] assuming a homogeneous NoC architecture with XY routing, the algorithm was tested 

against a genetic algorithm and a random approach, for synthesised application graphs with 

high communication characteristics and on various NoC sizes ranging from 3x3 to 6x6, the 

number of tasks in the applications was assumed to be the same with the number of PEs on 

the platform. The algorithm would run considerably faster than the genetic algorithm 

especially as the size of the platform would increase and in some cases find more optimal 

solutions. The algorithms complexity is not explicitly calculated as it is essentially a greedy 

heuristic and simulations would help evaluate whether it would be applicable in runtime 

scenarios; also the algorithm does not take into consideration system constraints and does not 

have a strategy in case a suggested mapping violates any of them. 

 

     As shown above various heuristics have been proposed as solutions to dynamic mapping. 

In the context of hard real-time systems such approaches would be unsuitable as it would be 

impossible to analyse all the possible states of the system at design time and provide 

guarantees for deadlines. In a case common in dynamic systems the potential set of tasks that 

may run on the system is known a priory but it is not necessary that these tasks will be 

running simultaneously at all times; if this set at its maximum demand is feasible under some 

multiprocessor scheduling algorithm, as mentioned in the previous chapter, a partitioned 

algorithm would have to schedule and allocate the tasks at design time (static) or alternatively 

using a global scheme there would be no tools available to analyse communication.   

     In addition the execution time of a dynamic mapping algorithm that would (re) allocate a 

set of tasks so that their deadlines are met together with those of the relevant real-time traffic 

could not complete within a bounded reasonable time interval as the problem would become 

especially hard to solve; on the other hand using some kind of heuristic at runtime that would 

run up to a pre-specified interval could not guarantee a solution to this problem. On the 

contrary soft real-time systems are more flexible in the fact that they may tolerate deadline 

misses which may appear as a degradation of the provided services allowing these algorithms 

time to search for solutions.  In many cases in a soft real-time application like streaming may 

be running on a fairly generic platform sharing it with other applications and it may also 
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change according to dynamic aspects of the system so in this context dynamic mapping 

algorithms are more relevant even though the real-time requirements are not taken into 

consideration in many of the works mentioned above.  

4. 4 Summary 

     In this chapter we tried to provide a comprehensive review of approaches to the static and 

dynamic mapping problem. Because of the hardness of the problem heuristic algorithms are 

proposed which try to optimise different metrics; these metrics vary according to the systems 

that each author is considering. Regarding static mapping a general observation is that 

typically most of the work tries to minimise communication energy consumption having the 

bandwidth usage on the network links as a constraint. The algorithms reviewed try to 

optimise different aspects making certain assumptions and using specific models hence 

comparing different approaches is not necessarily useful since most of these solutions target 

specific systems; even so this review remains useful as many of these approaches could 

potentially be adopted for the case of mapping real- time applications. In the case of dynamic 

mapping the mapping algorithms are required to provide an output quickly so greedy 

heuristics are used that search the solution space locally following some logic that should 

lead to continuously better solutions, obviously there is no guarantee on the ability of this 

type of heuristics to find globally optimal solutions or solutions that meet a specific quality or 

requirement within a specific time interval. This is a downside for their application in hard 

real-time applications which could not depend on dynamic mapping heuristics because of the 

inherent non-determinism. The review of this class of algorithms still remains useful however 

both for soft and hard real time systems; in the first case they could be directly applied and in 

the later case greedy/ quick heuristics may serve as a pre-processing step to a static mapping 

heuristic algorithm increasing its probability to find a high quality solution and/or reducing 

the time it takes to execute, also the algorithm intuition could be used to guide the search of 

the static heuristic instead of having an entirely random approach. 
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Chapter 5 
 

Mapping Algorithms for Hard Real-Time Applications 
      

      This chapter aims to introduce a novel approach for the mapping of hard real-time 

applications on network on chip platforms which is based on evolutionary algorithms. The 

suggested approach and its motivation will be described in detail as well as further 

variations/additions. A brief description of the development and experimentation framework 

will follow and finally experimental results will be demonstrated together with the relevant 

conclusions.  

5.1 Proposed Approach 

      As it is described in the chapters above ever since the introduction of NoCs there has been 

significant research in the field of task mapping, usually with the goal of optimizing 

performance and cost. Many works have identified the relationship between packet latency 

and the task mapping on NoC platforms and have also have used it as a metric to optimize 

through various mapping methods. However a significant portion of embedded system 

applications have real-time requirements and little research has been done on providing 

guarantees for hard real-time applications running on such systems. 

     Applications that fall into the hard real time domain are typically composed of periodic or 

sporadic tasks that communicate their results by sending messages. For the timing 

requirements of all the individual tasks to be met the end-to-end latency of the 

communications between them has to be bounded, so communication deadlines are imposed 

on traffic flows. In a packet based network the packet latency is directly dependent on the 

distance between communicating nodes and the contention from other traffic flows hence it 

directly depends on the current topological mapping of the tasks onto the processing elements 

and the resulting communication patterns. The aim in this case is to find a mapping where 

this latency for every traffic flow does not exceed its deadline.  

     Several NoC architectures can provide guaranteed throughput to some of the transmitted 

traffic flows, while providing a best effort service to the rest, as described in [31]. Most NoCs 

that provide such services use variants of time division multiplexing (TDM). In order to 

guarantee the required bandwidth for each traffic flow a pre-assigned time-slot is allocated to 

use resources. Alternatively NoCs with priority pre-emptive virtual channels can be used. In 

such systems by allowing high priority packets to pre-empt the transmission of low priority 

ones, network contention becomes predictable; in addition the ability of traffic flows to meet 

their deadlines (schedulability) can be analyzed using the approach presented in [33]. In 

priority pre-emptive virtual channels if any number of traffic flows compete for the same link 

the one with the highest priority gains access to the resources blocking the other traffic flows. 

Because of this fact, it is possible to calculate the maximum amount of time a particular flow 

will have to wait before it can transmit its payload completely. The main advantage in using 
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priority pre-emptive arbitration over the TDM approach is that it does not unnecessarily 

reserve resources, so low priority traffic can always use the NoC resources if there are no 

requests from high priority traffic, additionally by using simpler arbiters a good trade-off 

between latency guarantees and hardware overhead is achieved. 

     In this chapter we demonstrate an attempt to solve the mapping problem in a real-time 

system context. Using the schedulability analysis for the type of system described above 

presented in [33] and the platform type described above we try to find a mapping solution 

that allows all traffic flows of an application to meet their deadlines. 

 

5.2 Development Framework and Methodology 

     In order to develop and validate any mapping algorithms a development framework was 

necessary. Typically as mentioned in the review section researchers validate their mapping 

algorithms using a simulation framework for a given NoC architecture; the communication 

and computation are usually both modelled at a cycle accurate level especially in the case 

where the energy consumption of the system has to be calculated and when the mapping is 

performed at runtime and the system has many states. In this case we consider a closed 

system where the all the application characteristics are known at design time and are to 

remain the same during runtime. As we consider real-time applications using the model 

described above and we only consider the temporal requirements we can validate any 

mapping solution in terms of computation and communication by using the analysis 

presented in [33]. Because we can rely on a purely analytical model a simulation framework 

in this case is not necessary to test a proposed algorithm; instead a system model can be used 

that implements the relevant analysis.  

     A framework based on the system model approach was developed at the University of 

York by various contributors and was used for the purposes of testing mapping algorithms; 

the algorithms were developed as part of the framework which was itself modified to 

implement additional functionality. The framework was developed in Java which being 

object orientated and high level would easily implement the system level and analysis model 

while abstracting away low level details saving development time. The model of the NoC 

platform describes the major components as objects: processing elements, routers, buffers, 

and links and from the object relations other properties emerge e.g. topology; also the 

application is modelled as task and traffic flow objects with various attributes; with this 

model it is also possible to evaluate quickly every metric that can be accurately described 

analytically by implementing the relevant analysis as a function e.g. utilisation. In this work, 

we consider only 2D mesh topologies with homogeneous processing, but nothing prevents 

the application of the proposed approach to other architectures; for example it could be 

applied to a heterogeneous processing platform in which case a different WCET for each task 

to processor binding would have to be provided and the task set and communications would 

again have to be schedulable under the new execution rates resulting from tasks being placed 

on new processing elements, analysis has been extended to heterogeneous systems previously 

[126].  

     This framework was sufficient for a proof of concept approach for testing proposed 

algorithms but a simulation framework would be necessary in the case where more elaborate 

cases would have to be tested although simulation alone cannot provide validation for real 

time systems. Below we list various cases where a simulation framework would be 

beneficial. In addition to finding mappings with schedulable communication and computation 
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additional objectives may have to be optimised; an important metric in embedded systems is 

the avg. power consumption which can be only accurately measured through simulation. Next 

mappings where the actual WCET analysis is tight (values recorded during simulation runs 

close to values calculated from analysis) may be desirable. Many of the design aspects for 

NoC and embedded systems in general trade off between silicon area/ power consumption 

and predictability, in order to further evaluate any technique that may offer more predictable 

communication it is necessary to determine the cost in relation to the relevant improvement. 

In the case of dynamic systems and mapping algorithms simulation is necessary to evaluate 

their performance and impact because such algorithms will have to execute at the runtime of 

the system. In the domain of soft real time systems the temporal requirements may be 

expressed as throughput constraints or different measures such as average packet loss or 

average jitter in which case simulation is needed to evaluate these metrics. 

 

5.3 Genetic Mapping of Hard Real-Time Applications 
 

5.3.1 Genetic Algorithm 
 

     Motivated by the fact that the network latency and the interference between traffic flows 

depends on the relevant traffic patterns which in turn depend on the mapping of tasks we 

employ a genetic algorithm with the objective of finding a mapping where all the traffic 

flows in the application are able to finish transmission before their deadlines even in the 

worst case scenario. Genetic algorithms were selected as the method to employ over a variety 

of heuristics used for combinatorial optimisation problems e.g. simulated annealing. The 

main reason that genetic algorithms were used was that the different mappings can be directly 

applied on by the genetic operators i.e. be directly treated as chromosomes in a genetic 

algorithm, allowing the heuristic to efficiently operate and the implementation to be 

straightforward; furthermore genetic algorithms consider many candidate solutions together 

(generations, population) a property which should allow the search of the solution space to be 

more thorough at the expense of completion time, this trade off in comparison to simpler 

heuristics and their execution time would depend on the problem hardness and size [121], 

[125] . An additional advantage would be that the operators in a genetic algorithm (crossover 

and mutation) can have their relative weights altered, for example a genetic algorithm relying 

only on mutation could resemble a local search algorithm operating on many solutions [124]; 

furthermore in addition to a good cost function targeting the problem at hand the operators 

could be guided, either in the way they mutate solutions or in the way they favour solutions 

with specific characteristics [122], this could allow the algorithm to find better solutions 

and/or to try and optimise other metrics as well [22]. These characteristics of genetic 

algorithms suggest that they are highly flexible and can be tuned to better suit a specific 

problem.   

     The inputs to the proposed algorithm are the models of the application and of the NoC-

based platform. The application model used is that of periodic and sporadic tasks; the tasks 

are described with attributes such as priority, period, computation time, deadline and release 

jitter. Tasks communicate with each other through traffic flows, which inherit some attributes 

of the tasks that generate them (period, priority, deadline) and also have their own attributes, 

such as the amount of data they transmit and the release jitter that they suffer, which is 

derived from the worst case execution time of the respective task, as a result if a task misses 

it’s deadline the traffic flow it generates will miss its respective deadline as well; so every 

schedulable  traffic flow implies that its generating task is schedulable as well unless there 

are tasks that do not generate or just receive traffic flows in which case the schedulability of 
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traffic flows does not imply the schedulability of tasks. The attributes of the traffic flows are 

then used to carry out the worst case latency analysis for each different flow for a given 

mapping. 

     The following assumptions are made about the system: it is a homogeneous platform 

where each tile has a processing element with local memory, each processing element may 

accommodate many tasks and if tasks on the same processor are to communicate with each 

other they do so by using the local memory instead of the network links. In order to make the 

last assumption more realistic a constraint could be introduced on the total memory size on 

each tile; each communication on a tile would continuously occupy its data size in memory 

and the total memory requirements should not exceed the available amount.   

     Each solution in the algorithm can be denoted by the pairing of tasks and processing 

elements in a many-to-one cardinality (a task can be assigned to only one processing element, 

a processing element can have many tasks mapped). This form of solution is naturally suited 

to a genetic algorithm approach. Each solution can be ranked by using the number of traffic 

flows that cannot meet their respective deadlines under this mapping as the solutions score. 

We use the analysis presented in [33] as our ranking function: the score of each 

solution/mapping is calculated using equation (8) for every traffic flow. 

     An optimal solution should have a score of zero. In case a solution with score zero is 

found the algorithm halts. The genetic operations are purely random: the crossover operation 

combines two mappings to produce a new one and the mutation operation just perturbs an 

existing solution/mapping. The algorithm begins by generating a population of random 

solutions/mappings. The selection step of the algorithm calculates the score of each solution 

and the average score of all the solutions in the current generation, it then discards all the 

solutions with score higher than average. Next the current generation is repopulated using 

crossover at one random point between the accepted solutions. 

 

 

 
 

Figure 5.1 Crossover operator 

 

     Finally each member of the population is mutated with a probability of 50% (similar to 

mutating a fixed percentage of the population but more random). The mutation operation in 

this instance is just a pair wise mapping swap of two tasks picked at random. A more guided 
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mutation operation picks an unschedulable task at random and remaps it to the least utilised 

core which is easy to find by maintaining the list of cores in a data structure sorted by 

utilisation. The mutation operation in a genetic algorithm plays an important role as a factor 

that introduces randomization and allows the search to escape local minima for this reason we 

adopt a strategy where both the random and guided mutation operations are applied on a 

population to get the benefits of both approaches.  

    The first mutation operation mentioned above tries to make the computation more evenly 

distributed across the platform however numerous approaches exist for the task allocation 

problem in real-time systems that could potentially produce better results while our main 

concern is to achieve schedulable communications. Intuitively this would require that the 

relevant contention between traffic flows is minimised so the next mutation operator 

suggested above aims to put communicating tasks together on the same core so that less 

traffic has to traverse the network thereby reducing interference. Minimising the contention 

cannot only be achieved through the mapping of the application but also through the routing 

of the traffic flows. As explained in previous chapters the mapping has an obvious impact on 

the communication distance and contention so the mapping could be guided towards a 

solution which optimises these metrics; a more obvious way to optimise communications on 

a network would be through the routing function that produces paths for the system traffic, 

the benefits of this approach are that it would in a way decouple the mapping of the tasks 

from optimising communication, so for a given mapping done based on a 

placement/scheduling heuristic a routing function would try and find the best possible paths 

for the communications; next incorporating routing into the search space would allow to 

better utilise the network interconnect capabilities in comparison to a simpler algorithm such 

as XY routing however the produced routes should have some certain characteristics such as 

being minimal.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

                  Listing 1. Pseudo-code of the genetic algorithm 

 
     The steps described above are iterated until a suitable solution is found. The current 

approach was chosen because it was relatively straightforward to implement in addition to the 

fact that the computation time is not a limitation in static mapping. As a first approach, the 

proposed algorithm applied genetic operators randomly as this will help with comprehending 

1     Generate an initial population of random mappings of size n  

2     while (!solutionFound){ 

3         evalutate(population)       //Calculate the score of the solutions 

4                  if(!solutionFound){  //Look for solution with no deadline misses 

5                         for all solutions in population 

6                 if (solution.DeadlineMisses >Avg.DeadlineMisses) 

7  {Remove solution} 

8                         while (populationSize!= initialSize) { 

9             Solution s1 = random Solution from population 

10         Solution s2 = random Solution from population 

11         Solution s3 = randomCrossover(s1, s2) 

12                         Population.add(s3) } 

13                   for all solutions in population 

14    mutate with probability 50% }   }  
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the problem complexity and the size of the solution space and will give us a point of 

reference to compare with more elaborate algorithms. 

 
5.3.2 Route Selection 

 

     The problem of finding a selection of paths for the traffic flows of a network so that the 

contention is minimum has been studied before and was shown to be NP-hard in [85], [86]; in 

[85] the authors propose an interesting heuristic that attempts to find a solution to this 

problem by trying to generate paths with low contention values. The amount of routes that 

intersect a given route is termed the overlap,  

 

For a set of routes P and a routeP,  

 

overlap (i) = |ik,kP and k intersects with i |.  (10) 

     

     In the context we are interested in we could translate the overlap of routes to direct 

interference between traffic flows [33]. A metric that measures the overall overlap for a set of 

routes is contention and is defined as: given a set of m routes P = {1,2... m},  

 

                    

                           

 

   

      

  
     So contention is defined as the total number of overlap between routes which is equivalent 

to direct interferences between traffic flows.   More formally the minimum contention search 

problem is defined as follows: given a graph G = (V, M), where the vertices V represent 

network nodes with tasks mapped onto them and the edges M represent communications 

between these nodes, find a set of |M| routes Pall = {1, 2,... m} so that the contention 

between all routes (Pall) is minimised.  

 

     The algorithm described in [85] is based on the idea of generating a set of alternative 

routes for each traffic flow Pf and then combining those sets together in a set Pall which 

represents the solution space for this problem. The algorithm is based on iterating on the set 

Pall. At each step of the iteration the route in Pall with the minimum overlap min is found next 

all other routes of the same traffic flow Pf (min)) plus all other routes that intersect with 

min are deleted and placed in set Pdel. Next the overlap values for the routes in Pall are 

recalculated and the iteration continues. At the deletion step if the overlapping route to be 

deleted is the last remaining route of the respective traffic flow the initial choice for min is 

cancelled and the route with the next highest overlap is chosen; this happens because the last 

remaining route of a traffic flow cannot be removed. If after a full iteration all traffic flows 

have one route and no route deletions have been cancelled then the solution is fully 

contention free, if traffic flows with multiple routes remain the route with the algorithm 

reiterates (minimum overlap is chosen, the rest are deleted and the overlap is recalculated).        

    

     The intuition behind the algorithm is that by finding the route with the minimum number 

of intersecting routes (min. overlap) in each iteration and by deleting these intersecting routes 

a route with no contention is generated, since the amount of the intersecting routes is 

minimum over an iteration so is the impact of removing them on the solution space.  
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     An adopted version of the algorithm in [85] is described below. 

 

 

                   
 
 
 
 
 
 
 
 
 
                          
 
 
 
 
 
 
 
 
                        Listing 2. Pseudo-code of the minimum contention route generation algorithm 

  

     A main difference in the way we apply the algorithm in is the set of available paths for 

each traffic flow, a characteristic that is necessary in this context is minimality which can 

guarantee freedom from live lock and minimal distances. The set of permissible routes Pp for 

all traffic flows i then becomes the set of all minimal paths from sourcei to desti. We can 

generate these paths by only allowing a number of hops in each direction (S, E, W, N) and 

generating all possible combinations of these hops. The Manhattan distance between two 

node coordinates (x1, y1) and (x2, y2) can be calculated as dx = (x1 – x2), dy = (y1 – y2),  

 dM = | dx + dy | (12),  then if the number hops of a generated route is equal to the Manhattan 

distance for a 2D mesh the route is minimal. The sign of the terms dx and dy in the above 

equation determines the orientation of the hops of the route according to the coordinate 

system adopted; the route generation algorithm used here is based on the observation that dx 

hops on the x axis and dy hops on the y axis with the correct orientation would always 

produce minimal routes reaching the correct destination no matter the order of the hops. 

     The authors in [85] prove that this algorithm has the following complexity O(m
2
r

2
d), 

where m is the number of communications/ traffic flows, r is the number of alternative routes 

considered per flow and d is the distance (no. of hops in our case) of the longest route. For 

traffic flows that need to traverse a long distance (minimal distance of n hops) many different 

permutations are possible (!n), even though many of the hops in a 2D system will be towards 

the same direction so their relative ordering will not count as a permutation, this amount 

corresponds to the r factor whose square bounds the execution time of the algorithm so it is 

1    For each traffic flow I generate Pf, and Pall   Pall   Pf      

2    Initialise Pdel    , Pmc    

3    Until Pall      

4    For each i     Pall calculate overlap (i ),  find min  

5                           delete all routes in Pf (min)),  Pdel   Pdel   Pf (min))        

6                           for all routes k that intersect with min  

                     if (Pf (min)) - k ≠    )  

                             delete k, Pdel   Pdel   k  

7                       else    Pall   Pall -  min ,   Pmc   Pmc    min, continue step 3 

8  if all intersected routes deleted successfully  

     Pmc   Pmc - Pdel,  Pall   Pall - Pdel 

9    Until Pmc      

10       For each i     Pmc calculate overlap (i),  find min  

11           if (Pf (min)) - min ≠   )  

12              delete all routes in Pf (min)),  Pdel   Pdel   Pf (min)), Pmc   Pmc - Pdel        
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obvious that this factor significantly affects the performance; by restricting the number of 

possible paths considered for any traffic flow to a certain constant or to a proportion of all 

possible paths (e.g. 1/3) the algorithm should speed up at the expense of solution quality. 

     This algorithm can also be integrated into the genetic mapping algorithm in which case 

whenever a mapping is evaluated instead of using a simple XY routing algorithm to generate 

the traffic flow routes the minimum contention route generation algorithm is used. 

 

5.3.3 Priority Assignment 
 

     The communication model we adopt in this work is based on a fixed priority scheme; the 

schedulability of such a system apart from interference is also based on the relevant priorities. 

Priority assignment policies have been well studied especially in the case of fixed priority 

single processor based systems; various priority assignment policies have been proposed 

beginning from the seminal work of Liu and Layland [87] to more elaborate approaches such 

as in [89], [90] where optimal algorithms for this problem are proposed. Considering real-

time communications the authors of [93] among various other approaches proposed the Least 

Laxity First assignment policy, the laxity of a message i is defined as: 

  

Lxi = deadlinei – network latencyi   (13) 

 

which intuitively is proportional to the amount of interference that a message may tolerate as 

the latency is calculated at the relative packet position; based on this scheme the message 

with the least laxity gets assigned the highest priority. In [94] an improvement to this scheme 

was proposed were the laxity of a message is again considered as defined in [93] only now 

the metric becomes more elaborate as apart from the absolute network latency, calculated 

from the number of remaining hops that a message has to traverse, the number of hops is 

taken into account as well; this is based on the fact that a message travelling a large number 

of hops may experience more interference.  

       

     An important difference however is that in these works the priority assignment policies are 

used for runtime readjustment (dynamic priority system) of each separate message priority 

according to its laxity at any given instant while the analysis we are considering can only be 

applied in a fixed priority system. In [95] Shi and Burns give a branch and bound algorithm 

that solves the priority assignment problem of traffic flows in a fixed priority context and is 

shown to be optimal, that is according to the analysis presented in [33] if a set of interfering 

communication flows is feasible the algorithm will assign the relevant priorities so that all the 

traffic flows in the set will be schedulable. Due to the longer running time of a dedicated 

heuristic which in combination with the genetic algorithm and the route selection algorithm 

would be too slow we chose to implement a simpler approach similar to the ones proposed in 

[94], [95]. Since we are interested in a fixed priority scheme and considering the static 

mapping approach in which the communication flows get assigned a fixed path we could 

adopt any of the above schemes to a become fixed a priority assignment policy. For our static 

system the relative laxity will be the same for all instances of a traffic flow so will be the 

network latency and the number of hops it will have to traverse, so we can use the static 

laxity of a flow to assign a fixed priority similar to the Rate Monotonic assignment policy. 

This assignment will have to take place after the traffic flows are mapped and the network 

latency for any given flow can be calculated based on the distance it will have to traverse. We 

can also take into consideration more information that is available after the tasks are mapped 

such as the release jitter of the flow and formulate a metric as: 
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Lxi = (deadlinei – network latencyi – release Jitter) / No. of Hops    (14) 

 

     We could refer to this metric as weighted laxity for the purposes of this work. The traffic 

flow with the least weighted laxity would get assigned the highest priority. 

5.4 A Heuristic Mapping Algorithm 

     In addition to the genetic algorithm proposed earlier we propose a constructive heuristic 

that tries to take advantage of some characteristics of a 2D mesh based NoC and produce 

sufficiently good solutions to the mapping problem. An important characteristic of static 

mapping algorithms is their ability to evaluate a multitude of different solutions and hence 

explore a large solution space; further more in such a context it is possible to decouple 

communication and computation and efficiently solve the problems of task partitioning, 

mapping and communication routing separately. Dynamic mapping algorithms on the other 

hand usually need to produce a solution to a smaller instance of the problem i.e. for a partial 

mapping and an incoming task find an optimal placement for the incoming task, but the 

aspects of the problem such as computation and communication have to be considered 

together.  

     The motivation to develop a constructive heuristic algorithm is that it can be versatile 

enough to be used in different contexts. The logic that the algorithm uses to make the 

placement at each step can be adopted to suit both static and dynamic versions of the 

algorithm. In the case of static mapping adding a backtracking step can make the algorithm 

similar to an exhaustive search of the solution space  

  

     Here we propose a constructive heuristic that works by iteratively mapping 

communicating tasks on the NoC platform, in each iteration the algorithm has to make a 

decision about where to place a single task and the way this decision is made forms the core 

of this algorithm. The algorithm is inspired by various approaches proposed for dynamic 

mapping; the basis is similar to the Dependencies Neighbour [54] and Nearest Neighbour 

[48] heuristics where the search starts from the requesting task's node neighbours outwards in 

a spiral fashion. Allowing the spiral search to always have the same orientation we seek to 

take advantage of a. The bi-directionality of the NoC links and b. Achieve a spatial 

arrangement that “packs” the resource usage close together so that the resource fragmentation 

is minimised (leading to less interference) for any incoming requests similar to the packing 

strategy used in [53]. 

 

      Here we will only describe the algorithm version for static mapping as it was the context 

in which it was developed and tested. The algorithm works by iterating over the task set of 

the application, at each iteration it finds the task with the highest connectivity (in terms of 

outgoing communications) that is not yet mapped; for this task the algorithm selects a pivot 

core which is the initial core around which the search will evolve, next the algorithm tries to 

map the task on the pivot core if it is not possible the search for another core starts spirally 

outwards the pivot core in a specific orientation up to a certain number of hops in distance.  

     If a highly communicating task is mapped next all the tasks it communicates with are put 

in a list and are mapped next. From this communicating list again the task with the highest 

connectivity is selected and the algorithm tries to map it as closely as possible to the parent 

task following again the specific search pattern.  
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    The algorithm is described by three main steps:  

 

 The selection of tasks based on their connectivity. 

 The selection of tasks that communicate with previously placed tasks 

 The search for a placement of the tasks in a spiral fashion 

 

    The algorithm performs the search spirally with the following orientation East, North, 

West, and South. 

 

 

 
 

 

 

 

 

 

 

 

Listing 3. Pseudo-code for the constructive heuristic mapping algorithm 

 

     Two important characteristics of the algorithm are a. the criteria based on which a task 

“fits” a core and b. the selection of a pivot core at each step. This search technique offers two 

advantages, first the search tries to place communicating tasks as close to each other as 

possible minimising the communication distance and the therefore the possible interference 

on the network links, next because the probability of a selection for a placement becomes 

higher for a specific direction this heuristic imitates the effect of the packing strategy in 

figure 10 as it packs tasks and traffic towards a specific direction.  
     We used the schedulability analysis of a task set on a single core as the criteria for task 
fitness on a placement; at each such step the priorities of a task set on a core plus the incoming 
task where re-assigned according to RM and a schedulability test was then carried out 
(response time analysis) if the set was schedulable the placement was complete otherwise the 
priorities of the tasks where restored as previously and the search would continue. The 
selection of a pivot core at each step could be either random or guided, for the guided case the 
same pivot core could be used for all steps so that the placement would be more packed 
towards some point on the platform or the least utilized core on the platform could used so that 
the distribution on the platform was more even, a combination of the two schemes could use 
the least utilized core closest to the initial starting core. A shortcoming of the existing 
implementation is that it does not consider the case where the pivot cores reside at the edge of 
the NoC platform separately; in this case the search for the placement of the subsequent tasks 
would be possible only towards a specific direction potentially disrupting the algorithms 
ability to achieve its goals. In this situation the bi-directionality of the NoC links could be 
taken advantage of as the search could switch to the opposite orientation so that the 
communication between subsequently mapped tasks would use less utilized links.     

The algorithm when tested did not have some coherent behavior pattern so no results are 
displayed, further improvements and additions to this algorithm could be part of future 

1    For an application tasks graph G = (T,  C ) Sort the tasks of the application by their          

       connectivity (High to low) .  

2    For all tasks ti   in the sorted list 

3    if ti  is not already mapped    

4        Place task on pivot core  

5 else continue to next task 

6         for all tasks tj :    C | source () = ti        () = tj 

7  Look for a placement for the task spirally outwards from core (ti ). 
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research on mapping heuristics. Below we list some observations that were made during the 
testing of this algorithm. 

     The algorithm was rarely able to provide a solution with all tasks and traffic flows 
schedulable but the solutions produced had fewer unschedulable flows compared to a random 
mapping of the application; a backtracking step was next added in the algorithm that would 
make it behave more like an exhaustive search of the solution space, in this case in some 
instances it was able to find a solution much faster than the genetic algorithm and in other 
cases the genetic algorithm would find a solution and the heuristic would not do so in 
reasonable time, a final observation is that the ability of the algorithm to find a solution fast 
would depend on the initial selection of the pivot core.      

5.5 Experimental Results 
 

     In order to validate the proposed approach we developed a framework that implements 

both application and platform models described earlier, as well as the schedulability analysis 

from [33]. Unlike most of the related work on task mapping our approach did not require 

cycle accurate simulation as it is based on an analytical model, simulation nonetheless could 

provide further insight to the quality of the results produced. The software framework 

provided us with a NoC system model where an application can be mapped onto. Such model 

describes the topology of the NoC using collections of PEs and links on a 2D coordinate 

system interconnected to each other. It also implements a routing function. This system 

model provides all the information needed to carry out the analysis described in the previous 

sections.  

 

 5.5.1 Input Application Models 
 

     Two main application models were used for this case study. The first one is the controller 

of an autonomous vehicle, which is a good example of a highly parallel application running 

on an embedded system. This application was introduced in [62] and it is very 

communication intensive, because of the successive processing of different video streams for 

stereo photogrammetry and visual odometry. The subsystems of the application are those of 

video processing, navigation and stability control. In total it comprises of 33 tasks and 38 

inter-task fixed-priority communication flows. Each traffic flow has all the attributes 

mentioned in the previous sections such as period and deadlines. In addition all the traffic 

flows have fixed-size payloads, ranging from 7kbits to 525kbits. A second application was 

used which was completely synthesized. It was composed of more tasks and traffic flows 

hence it would be harder to find a solution for a same size NoC. The synthetic application has 

50 tasks and 40 inter-task communication flows again with all traffic flows having fixed-size 

payloads, ranging from 42kbits to 2400kbits, and shorter periods so that this application is 

much more communication intense than the previous one. 

      

     Next in order to test the algorithms using a wider variety of application instances various 

random applications were generated. For the generation of random applications a method was 

used which would bound some of the application’s variables and components; these 

applications were generated according to the model described.  

     The type of generated applications most suitable for testing would have an overall 

computation utilisation less than that which the platform may offer; even though this does not 

guarantee that a schedulable placement of tasks exists it is a coarse measure indicating that 

the application may ‘fit’ the platform and also an attempt to make the effect of unschedulable 

computation on the communication as less frequent as possible as we are mostly interested in 
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the communication aspect. Next following the same reasoning no tasks were generated that 

did not communicate with ingoing or outgoing traffic flows.     

     

    The period and WCET of each task where generated according to an overall task set 

utilization for a fixed number of tasks. For a number of tasks n and an overall utilization U 

we generated the task set with random task utilization values ui so that    
   i ≤ U (15). The 

period of each task in each application instance is generated randomly within an interval. 

Next each task deadline is taken as equal to its period and finally the execution time of the 

task instead of being generated randomly in the open interval (0, period) is defined by the 

task utilization value and the period as Ci = uiPi. 

 

     Some important properties that a task set generation algorithm must possess have been 

identified in various works [96], [97], [98], these properties are those of being independent 

and unbiased. Independence means that different parameters of the task set can be varied 

independently while others remain constant e.g. utilization and number of tasks; next being 

unbiased means that the task sets generated have a uniform distribution within the set of all 

possible suitable task sets. In addition to those properties the algorithm should generate such 

task sets reasonably fast. For a given number of tasks n and an overall utilization various 

algorithms have been examined that have the properties mentioned above however the 

problem for U > 1 becomes more complicated because of the added restriction that each task 

utilization has to be valid ui ≤ 1. In [97] along with a comprehensive survey of different 

approaches an algorithm is proposed that can generate such task sets efficiently for any 

utilization value, for detailed explanation of this algorithm we refer the reader to [99].  

     Having generated such a task set a set of traffic flows should be generated accordingly, the 

difference with generating traffic flows is that the traffic flows will inherit almost every 

attribute for the tasks that generate them except for their payload. The inherited attributes will 

be generated uniformly at random for tasks so we could assume that this property is 

maintained for the traffic flows as well, the remaining attribute of payload can be generated 

randomly within an interval for all flows but with the restriction that for each flow the 

relevant utilization ratio C/P with network latency C measured over one link does not exceed 

1. Regarding the amount of traffic that will be generated the number of traffic flows in any 

case should be lower bound by the amount necessary for every task to be communicating i.e. 

be the source of a traffic flow which means that for n tasks and m traffic flows m ≥ n. Finally 

the destination task of each traffic flow will be randomly chosen.  

 

     There is no apparent relation between the schedulability of traffic flows and their relevant 

utilization ratio of C/P over one or more links such as a feasibility test because the 

distribution of the traffic on the mesh is an equally important factor and the effect of indirect 

interference makes this test on a link impossible since schedulability does not only depend on 

traffic flows that share a single resource; the utilization of a link i which is used by n traffic 

flows can be defined as: 

  

 

              

 

   

      

 

     The average (mean) and maximum link utilization can also be defined using (16) over all 

the m links of the network. 
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     Using those metrics we would like to measure the spatial distribution of the overall traffic 

over the network links and relate it to schedulability of traffic. In order to measure the spatial 

distribution of traffic the utilisation of the network links will be used, then calculating the 

mean absolute deviation of the measured values will provide a good measure of dispersion. 

The mean absolute deviation (MAD) is measured as: 

 

 

     
 

 
                 

 

   

       

 

    Small values of MAD mean that all the network links have similar utilisation values close 

to the mean hence we can assume that the traffic is evenly distributed on the network.   

     

5.5.2 Experimental Results using Custom Benchmarks 

 

     The figures below show the results obtained from running the baseline version of the 

proposed genetic algorithm. The results show the minimum (best) score achieved in every 

iteration of the algorithm (generation). The solutions tend to get closer to optimal as the 

algorithm runs. We tested the two applications mentioned above for a population size of 100 

solutions and various NoC sizes. The algorithm tried to map the autonomous vehicle and the 

synthetic applications on a 5x5, 4x4, 4x3 and a 3x3 NoCs.  

 

 

   

                                               

 
 

            Figure 5.2 (i). Mapping of Autonomous Vehicle application onto a NoC platform with 3x3 topology.   

            Vertical axis shows the number of unschedulable traffic flows of the best mapping of each generation of    

            the genetic algorithm execution (only the best of 15 executions is shown). 
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         Figure 5.2 (ii). Mapping of Autonomous Vehicle application onto a NoC platform with 

            3x4 topology. 

 

 

 
 

           Figure 5.3 (i). Mapping of Autonomous Vehicle application onto a NoC platform with  

           4x4 topology. (blue line shows the fastest of 15 executions that found a solution,  red line 

           shows the slowest). 

 

 
  
            Figure 5.3 (ii). Mapping of Autonomous Vehicle application onto a NoC platform with 4x5 topology. 
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      Figure 5.4 (i). Mapping of Synthetic application onto a NoC platform with a 4x4 topology.  

 

 
      

       Figure 5.4 (ii). Mapping of Synthetic application onto a NoC platform with a 5x4 topology. 

        The blue line shows the number of unschedulable flows, the red line shows the number of   unschedulable    

        tasks. The results displayed come from the fastest run from 15 consecutive runs.  

 

 
 

      Figure 5.4 (iii). Mapping of Synthetic application onto a NoC platform with a 5x5 topology. 

      The blue line shows the number of unschedulable flows, the red line shows the number of   unschedulable      

      tasks. The results displayed come from the fastest run from 15 consecutive runs.  
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     The algorithm was run 15 times for each scenario and to a maximum of 500 generations 

with 100 solutions per generation. This amount of iterations would allow the algorithm to 

visit enough solutions. The algorithm would also run for 15 times for each scenario so as to 

make the overall solution pool is independent of the initial random population’s quality. 

 

In figure 13 the algorithm attempts to map the autonomous vehicle application on a 3x3 and 

4x3 NoC, It can be seen that in the case of the 3x3 NoC the algorithm cannot find a suitable 

mapping for the application (a solution with 0 deadline misses) a fact that is expected as the 

platform gets smaller because the interference between traffic flows increases and the task set 

does not have enough resource to execute. Next for the 4x3 platform the algorithm was able 

to find a solution only twice during 15 runs. 

 

    Next in figure 14 as the platform size increases to a 4x4 and 5x5 NoC and more resources 

become available the algorithm is able to converge to a solution much quicker; each figure 

shows both the quickest and the slowest run of the algorithm for each case.  

    

    In figure 15 we can see that the synthesized application which was more communication-

intensive could only be mapped on 4x5 and a 5x5 platforms. This synthesized application is 

different to the previous one in the fact that it also has tasks that only receive communication 

flows a fact which leads to a situation where there may no unschedulable communication but 

the computation can be unschedulable. This is shown in figure 15 (ii) where the blue line 

shows the number of unschedulable flows and the red line shows the number of 

unschedulable tasks. 

    

    Motivated by this fact we introduced a more guided mutation operator in our genetic 

algorithm which finds the least and most utilised cores and transfers a task at random from 

the most to the least utilised core.  

 

 

 

 
  

         Figure 5.5. Genetic mapping of Synthetic application onto a NoC platform of size 5x5 using the  

         guided mutation operator. The blue line shows the number of unschedulable flows, the red line shows  

         the number of unschedulable tasks. This is a run of the algorithm chosen at random from 5 consecutive    

         runs. 

 

 

0 

2 

4 

6 

8 

10 

12 

0 50 100 150 200 250 300 350 400 450 

Unschedulabe tasks 
and traffic flows 

Genetic algorithm generations 



The University of York   Department of Computer Science 

60 
 

     In figure 16 the problem with the use of the specific mutation operator is evident, although 

the algorithm converges faster to solutions with few task deadline misses the algorithm gets 

trapped in a local minima; this happens because the mutation operator is no longer random. In 

order to mitigate this effect we can combine the two different mutation operators in the same 

algorithm.  

 

 

 
 

Figure 5.6. Genetic mapping of Synthetic application onto a NoC platform of size 5x5 using a 

  combination of both guided and random mutation operators. The blue line shows the number of 

      unschedulable flows, the red line shows the number of unschedulable tasks. This is the fastest run 

             of the  algorithm chosen from 15 consecutive runs. 

 

 

     Figure 17 shows the combination of the two mutation operators which quickly converges 

to a schedulable mapping mainly with respect to computation in comparison to figure 15 (ii) 

and 16. 

 

     Next the minimum contention route generation algorithm was tested separately in order to 

see its effects on the schedulability of the traffic flows. For the two applications described 

above a number of randomly generated mappings were generated and evaluated regarding 

only the number of unschedulable traffic flows; the traffic flows of the applications in each 

instance were routed by both the XY routing algorithm and next by the minimum contention 

algorithm. As figure 18 below shows over 50 random mappings for each application the 

minimum contention algorithm when compared to XY routing would always produce routes 

that lead to less or the same amount of unschedulable traffic flows. The idea behind using the 

synthesized application on a 4x4 NoC to test this algorithm is that since the genetic algorithm 

was not able to find a solution with schedulable flows for this combination a lot of contention 

must exist between traffic flows in this scenario. 
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(i) 

 

 

 
     

(ii) 

 
                Figure 5.7. Random mapping of the (i) Autonomous Vehicle and (ii) the Synthetic applications onto a   

                NoC platform of size 4x4, the results display the number of unschedulable traffic flows - Y axis for  

                each random mapping - X axis. The blue markers show the number of unschedulable flows when the  

                XY routing algorithm is used, the red markers show the number of unschedulable flows when the  

              minimum contention routing algorithm is used. 

 

 

   Another important aspect of this algorithm is its running time which depends on the number 

of alternative routes considered for all traffic flows (Rall). Empirically through 

experimentation it was noticed that the algorithm would run acceptably fast on our Java 

framework as long as the size of Rall would be less than 1000 routes so the algorithm was 

sped up by imposing this additional constraint and possibly sacrificing the produced solutions 

quality. 

 

     Next the proposed priority assignment policy was tested in the same manner in order to 

see its improvement on traffic flow schedulability compared to the default priority 

assignment policy based on the flows rate which is the default policy used; the use of the 

default policy stems from the fact that the traffic flows inherit their attributes (period and 

priority) from the tasks that generate them, the task set of the application is assigned priorities 

according to a rate monotonic policy and since the traffic flows have the same periods and 
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inherit the same priority indirectly the rate monotonic scheme is applied on them as well. The 

proposed approach calculates the metric in equation (14) and assigns a priority accordingly.   

 

 

 
 

(i) 

 

 
 

(ii) 
 

 Figure 5.8. Random mapping of the (i) Autonomous Vehicle and (ii) the Synthetic applications onto a  

             NoC platform of size 4x4, the results display the number of unschedulable traffic flows - Y axis for   

               each random mapping - X axis. The blue markers show the number of unschedulable flows when the    

             proposed priority assignment algorithm is used, the red markers show the number of unschedulable           

traffic flows when the default priority assignment policy is used. 

 

      Figure 19 above shows again over 50 random mappings for each application the routing 

algorithm used was XY routing, when the routes of traffic flows were generated the different 

priority assignment algorithms were used for same mapping and routing; the proposed 

priority assignment algorithm for those applications on a 4x4 NoC would always produce 

routes that lead to less or the same amount of unschedulable traffic flows. 

 

     Next the genetic mapping algorithm was tested together with using the minimum 

contention route generation and the priority assignment algorithms in order to see its overall 

improvement. As mentioned earlier this route generation algorithm has a long running time 
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so in order to apply it to each solution of a generation we had to cap the number of all 

possible routes that route generation the algorithm would consider per mapping solution.  

 

 

 
 
         

Figure 5.9. Mapping of Synthetic application onto a NoC platform of size 4x4 using the genetic 

algorithm in combination with the minimum contention route generator. Results display the fastest run 

over 15 consecutive runs. The blue line shows the number of unschedulable flows. 

 

     In comparison to figure 15 (i) we can see in figure 20 (i) that the genetic algorithm 

combined with the minimum contention route generator was able to find a schedulable (with 

regards to communication) solution in a few generations while the basic version of the 

genetic algorithm was unable to do so over 400 generations, however the running time of the 

combined algorithm was considerably higher per generation so it is hard to say at this stage if 

there was some absolute performance increase.  

 

5.5.3 Experimental Results using Randomly Generated Applications 

 

      In order to test our algorithm over a wider variety of applications we generated random 

applications according to the method described in the previous section. The main motivation 

here is to test the different versions of the genetic algorithm and ensure that the additional 

features suggested do improve the algorithm’s performance and ability to find solutions. Due 

to the fact that it is possible to generate applications with specified characteristics we chose 

the application to be the main variable instead of the available resources (platform size) as 

done in the previous experiments, the testing is thus carried out only for 4x4 and a 5x5 NoC 

platforms.  

 

     In this set of experiments the following variations of the genetic algorithm in combination 

with the different proposed improvements where evaluated: 

 

 GA: baseline genetic algorithm. 

 GM: genetic algorithm with guided mutation. 

 GR: genetic algorithm with minimum contention route generation per solution. 

 GP: genetic algorithm with the proposed priority assignment policy per 

solution. 

 GRP: genetic algorithm with both the above additions. 

 GPRM: genetic algorithm with all the above additions combined together. 
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     The following twelve task sets were generated for each platform size separately: 

 

No. of tasks                      Task set utilization 

30 U = m/3 U = m/2  U = 2/3 m U = 3/4 m 

40 U = m/3 U = m/2  U = 2/3 m U = 3/4 m 

50 U = m/3 U = m/2  U = 2/3 m U = 3/4 m 

 

 

     The task set utilization U would increase in relation to the overall resources available to a 

platform of m processors (actual values used were rounded to the closest larger integer).   

 

     For each of the randomly generated applications above four more variations were 

generated with the following amount of traffic flows: n, n + 5, n + 10, n + 20 where n is the 

number of tasks. 

 

     The period of each task in seconds was generated randomly within the interval (0, 1); the 

payload of each traffic flow would have to be within some meaningful value, in the same way 

that a task’s utilisation has to be bounded by one the relevant utilisation ratio for a traffic 

flow has to be less than one measured over the basic network resource that it may require 

which is that of one link; for every traffic flow C/P ≤ 1, with C measured over one network 

link, in which case C can be calculated by equation (5) substituting 1 for H, so for all traffic 

flows random payload values would be generated within the interval that satisfies this 

inequality.  Using this constraint for the payload of traffic flows is still prohibitive as it means 

that a traffic flow with a payload value close to this bound would be schedulable only on 

routes with length of at most one hop, for any longer routes the ratio C/P would increase 

above one as the basic latency would be greater than the period making the traffic flow 

unschedulable even without the presence of interference from other traffic flows; because of 

this fact the upper bound on the payload is further reduced so that the ratio C/P is less or 

equal to one but instead measured over the largest possible minimal route on the network 

(e.g. 8 hops for a 4x4 mesh). 

 

     In the results below we demonstrate how the various versions of the algorithm performed 

for all the different input cases. The quantity measured is the number of generations that each 

version of the algorithm had to run in order to find a solution over one random application 

instance. 

 

 

 

 

 

 

 

 

                        Task sets for 4x4 and 5x5 platforms 
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       Figure 5.10 (i). Mapping of random applications onto a NoC platform of size 4x4 using the different  

       versions of the genetic algorithm. The application is composed of 30 tasks and 30 traffic flows. 

 

 

 

               
       Figure 5.10 (ii). Mapping of random applications onto a NoC platform of size 4x4 using the different   

       versions of the genetic algorithm. The application is composed 30 tasks and 35 traffic flows. 
 

 
 

 

 

0 

50 

100 

150 

200 

250 

300 

350 

m/3 m/2 2/3m 3/4m 

Generations before  
solution 

Task sets 

GA 

GM 

GR 

GP 

GPR 

GRMP 

Random application: 30 tasks, 30 traffic flows on a 4x4 NoC 

0 

50 

100 

150 

200 

250 

300 

350 

400 

m/3 m/2  2/3 m 3/4 m 

Generations before 
solution 

Task sets 

GA 

GM 

GR 

GP 

GPR 

GRMP 

Random application: 30 tasks, 35 traffic flows on a 4x4 NoC 



The University of York   Department of Computer Science 

66 
 

 

 

 
 

      Figure 5.10 (iii). Mapping of random applications onto a NoC platform of size 4x4 using the different   

      versions of the genetic algorithm. The application is composed 30 tasks and 40 traffic flows. 
 

 

 
         

      Figure 5.10 (iv). Mapping of random applications onto a NoC platform of size 4x4 using the different   

      versions of the genetic algorithm. The application is composed 30 tasks and 45 traffic flows. 
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       Figure 5.11 (i). Mapping of random applications onto a NoC platform of size 4x4 using the different  

       versions of the genetic algorithm. The application is composed of 40 tasks and 40 traffic flows.  

 

 

 

 

 

 

 
 

        Figure 5.11 (ii). Mapping of random applications onto a NoC platform of size 4x4 using the different  

       versions of the genetic algorithm. The application is composed of 40 tasks and 45 traffic flows. 
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        Figure 5.11 (iii). Mapping of random applications onto a NoC platform of size 4x4 using the different  

       versions of the genetic algorithm. The application is composed of 40 tasks and 50 traffic flows. 

 

 

 

 

 

 

 
 

       Figure 5.11 (iv). Mapping of random applications onto a NoC platform of size 4x4 using the different  

     versions of the genetic algorithm. The application is composed of 40 tasks and 60 traffic flows. 
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       Figure 5.12 (i). Mapping of random applications onto a NoC platform of size 5x5 using the different     

      versions of the genetic algorithm. The application is composed of 30 tasks and 30 traffic flows.      
 

 

 

 

 

 
 

       Figure 5.12 (ii). Mapping of random applications onto a NoC platform of size 5x5 using the different     

      versions of the genetic algorithm. The application is composed of 30 tasks and 35 traffic flows.      
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       Figure 5.12 (iii). Mapping of random applications onto a NoC platform of size 5x5 using the different     

       versions of the genetic algorithm. The application is composed of 30 tasks and 40 traffic flows.      
 

 

 

 

 

 

      
 

      Figure 5.12 (iv). Mapping of random applications onto a NoC platform of size 5x5 using the different     

      versions of the genetic algorithm. The application is composed of 30 tasks and 50 traffic flows.      
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 Figure 5.13 (i). Mapping of random applications onto a NoC platform of size 5x5 using the different    

 versions of the genetic algorithm. The application is composed of 40 tasks and 40 traffic flows.  

 

 

 

 

 

 

 

     

 
 

 Figure 5.13 (ii). Mapping of random applications onto a NoC platform of size 5x5 using the different    

 versions of the genetic algorithm. The application is composed of 40 tasks and 45 traffic flows.  
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      Figure 5.13 (iii). Mapping of random applications onto a NoC platform of size 5x5 using the different    

      versions of the genetic algorithm. The application is composed of 40 tasks and 50 traffic flows.  

 

 

 

 

 

 

 
 
      Figure 5.13 (iv). Mapping of random applications onto a NoC platform of size 5x5 using the different    

      versions of the genetic algorithm. The application is composed of 40 tasks and 60 traffic flows.  
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      In the results above we see how the different algorithms perform for various problem 

instances. In each case the algorithms share the exact application instance, the metric 

observed in the Y axis is the number of generations required by a version of the algorithm to 

generate a solution. The comparison of the different algorithms may require an even larger 

test set because a. different versions based on the genetic algorithm are tested which by 

default involves a lot of randomness, b. each run of a genetic algorithm is using a number of 

random mapping solutions as the initial input so the overall running time can be significantly 

affected by the quality of the initial solutions. The aim here was to observe any existing 

trends in the results of the experiments carried out. In the above experiments the number of 

seven hundred generations was used as a cap where if a run of the algorithm would not find a 

solution within this number it was considered as unable to find a solution; this interval was 

chosen empirically as being the reasonable time frame within which the algorithm should 

complete.   

       

     The basic genetic algorithm in the majority of cases needs the most generations to find a 

solution however this does not mean that it is slower than the other versions; as the problem 

instances get harder the basic version becomes to unable to find solutions (within the given 

timeframe and beyond it) and the different versions do so both in less generations and faster. 

     From the guided mutations proposed in chapter four we used only the mutation operator 

that would perturb a solution by moving a task from the most to the least utilised core, the 

guided mutation that would directly affect traffic (trying to map tasks of demanding flows 

together) was avoided so that the performance of the additional algorithms that operate on 

traffic flows (minimum contention routing, priority assignment) would not be affected when 

tested. This mutation operator was applied together with random mutation, at the same step of 

the algorithm, so that the necessary randomness would still be present. This addition to the 

algorithm compared to the basic version is shown to have some positive effect as the task set 

utilisation increases in relation to the platform resources.   

 

    The version of the algorithm using the minimum contention route generation algorithm is 

shown to always require less iterations than the basic version although it takes significantly 

longer per iteration. There is no clear trend in the above results relating the performance of 

this algorithm to the increasing computation or communication; intuitively it should have a 

great impact in the presence of many traffic flows. This algorithm also depends on the size 

limit set on its search space (number of routes to consider) so in this case there is a trade-off 

between running time and the solutions provided. In a hard problem instance the high running 

time may be insignificant as other algorithms may not be able to find solutions within the 

same amount of time.   

      

    The priority assignment policy in combination with the genetic algorithm is shown to have 

adverse effects on the ability of the algorithm. The reason could be the fact that the priority 

assignment misguides the selection stage of the genetic algorithm, in this version of the 

algorithm (GP) before a mapping solution is evaluated the traffic flows have their priorities 

re-assigned according to the specific policy then the number of unschedulable traffic flows is 

calculated and is assigned as the solution’s score. There is no indication showing that a 
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candidate solution with a low score due to priority assignment may evolve to a better solution 

as the priority assignment itself does not affect the interference patterns.  

 

      In other versions of the algorithm where the priority assignment is used (GPR, GPRM), 

mainly in combination with the route generation algorithm, it does not seem to have a 

negative effect on the performance but it seems to further improve its ability in comparison to 

the GR version;  

      

     Finally the version of the algorithm that combines all of the approaches together seems to 

outperform all the other versions in this set of experiments, a fact that means that the different 

“optimisations” proposed on the original algorithm do not have adverse effects on each other 

when used together. The GPRM version is slower per iteration than the basic approach 

(mainly because of the route generation algorithm) but is able to provide solutions in almost 

every case. These results also indicate that a mapping algorithm can be a good “vessel” for 

combining various algorithms and strategies for the mapping problem together.  

 

     The results validate the intuition behind the different approaches however more extensive 

testing is required in order to stress the algorithms’ ability to find solutions in hard instances 

and to provide insight to the interrelations between the different methods.  

 

     Next the basic version of the algorithms was run and for the best mapping solution of 

every generation additional parameters of the mapping solution were recorded. These 

parameters were those of the mean absolute deviation of the link utilisation and the sum total 

of the number of hops for every route. We would like to see if there is any clear trend 

between the schedulability of each solution and these parameters. 

 

 
 

 

 
 

Figure 5.14 (i). The evolution of the values of unschedulable traffic flows for the Autonomous Vehicle 

application mapping on a 4x4 NoC  
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            Figure 5.14 (ii). The evolution of the values of the mean absolute deviation of the utilisation of  the     

            network links versus the genetic algorithm generations for the Autonomous Vehicle application  

              mapping on a 4x4 NoC.  

 

 

 

 

 

 

 

 

 

  

 
 

Figure 5.14 (iii). The total sum of the route length over all traffic flows per generation of the genetic 

algorithm, values recorded for the mapping of the autonomous vehicle application on a NoC   platform 

of size 4x4. 

 

 

0 10 20 30 40 50 60 70 80 

Genetic algorithm Generations 

MAD of link utilisation per algorithm generation 

0 

20 

40 
60 

80 

100 

120 
140 

160 
180 
200 

0 10 20 30 40 50 60 70 80 

Genetic algorithm generations 

Sum total of route length in hops per algorithm generation 



The University of York   Department of Computer Science 

76 
 

 

 

 

 
 
        Figure 5.15 (i). The evolution of the values of unschedulable traffic flows for the synthetic  

          application mapping on a 4x5 NoC.  
 

 

 

 

 

 

 

 
 
          Figure 5.15 (ii). The evolution of the values of the mean absolute deviation of the utilisation of the     

        network links versus the genetic algorithm generations for the synthetic application mapping on a 4x5   

        NoC.  
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        Figure 5.15 (iii). The total sum of the route length over all traffic flows per generation of the genetic   

        algorithm, values recorded for the mapping of the synthetic application on a NoC platform of size 4x5. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.16 (i). The evolution of the values of unschedulable traffic flows for the mapping of a random 

application comprising of 30 tasks and 35 traffic flows with an overall task utilization of 8 on a NoC 

platform of size 4x4. 
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       Figure 5.16 (ii). The evolution of the values of the mean absolute deviation of the utilisation of the     

        network links versus the genetic algorithm generations for the mapping of a random application comprising    

       of 30 tasks and 35 traffic flows with an overall task utilization of 8 on a NoC platform of size 4x4. 

 

 

 

 

 

   
        

      Figure 5.16 (iii). The total sum of the route length over all traffic flows per generation of the genetic   

      algorithm, values recorded for the mapping of a random application comprising of 30 tasks and 35 traffic   

      flows with an overall task utilization of 8 on a NoC platform of size 4x4. 
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Figure 5.17 (i). The evolution of the values of unschedulable traffic flows for the mapping of a random 

application comprising of 30 tasks and 40 traffic flows with an overall task utilization of 8 on a NoC 

platform of size 4x4. 

 

 
        

         Figure 5.17 (ii). The evolution of the values of the mean absolute deviation of the network link utilisation  
          versus the genetic algorithm generations for the mapping of a random application comprising of 30 tasks    

         and 40 traffic flows with an overall task utilization of 8 on a NoC platform of size 4x4. 

 

 
     
    Figure 5.17 (iii). The total sum of the route length over all traffic flows per generation of the genetic   
         algorithm, values recorded for the mapping of a random application comprising of 30 tasks and 50 traffic   

        flows with an overall task utilization of 8 on a NoC platform of size 4x4. 
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Figure 5.18 (i). The evolution of the values of unschedulable traffic flows for the mapping of a random 

application comprising of 30 tasks and 50 traffic flows with an overall task utilization of 8 on a NoC 

platform of size 4x4. 

 

 
 

          Figure 5.18 (ii). The evolution of the values of the mean absolute deviation of the network link utilisation  
           versus the genetic algorithm generations for the mapping of a random application comprising of 30 tasks    

          and 50 traffic flows with an overall task utilization of 8 on a NoC platform of size 4x4. 
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     In the results above there does not appear to be a clear relationship between the 

schedulability of traffic and the mean absolute average of the link utilisation because its value 

are highly variable typically ranging from                              so no conclusion 

can be directly be drawn, additional experimentation and different statistical measures for 

variance may provide a better insight. The total sum of route lengths tends to decrease as the 

solutions become schedulable, an expected fact as shorter routes should interfere less, but it 

may still be possible for a different communication pattern involving longer routes to produce 

less interference a fact reflected in the results in figure 26 (iii) and 27 (iii). The relation 

between route length and interference may also be an attribute of the routing algorithm; an 

example algorithm may choose a longer route for a traffic flow instead of one of minimal 

length in order to avoid interference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The University of York   Department of Computer Science 

82 
 

Chapter 6 
 

Future Research 

 

6.1 Suggestions for Future Research  
 

      As mentioned in the work above an important property of a mapping heuristic algorithm 

is the ability to find solution in instances that it is hard to do so. In order to test this ability it 

becomes necessary to generate applications that are hard to map on a given platform. Given 

such a case can help to determine the benefit of this algorithm over an exhaustive search of 

the solution space; given the size of the solution space which even for small instances of the 

mapping problem  is big, the results produced clearly demonstrate that the algorithm can 

produce a solution much faster than such a brute force approach. Having a hard problem 

instance available the quality of this approach would be more apparent and it could also allow 

a comparison of different heuristics e.g. branch and bound. There is no proposed 

methodology in literature used to generate such a hard application instance with only a few 

unique mapping solutions for a given platform size; a possible approach would be to generate 

the application constructively in a way that computation and communication on a given 

platform are hardly schedulable.  

     In addition to the above the distribution and variance of traffic flow parameters such as 

period and payload could be related to the overall feasibility of traffic and to the hardness of a 

mapping problem instance. This kind of evolutionary algorithm would best suit large problem 

instances with many cores (dozens) and large applications in which case it should outperform 

simpler greedy heuristics (first fit, nearest fit etc.). 

 

     The additional algorithms proposed when combined with the genetic algorithm seem to 

improve its overall ability to produce solutions however the route generation and priority 

assignment can become part of the solution space that the genetic algorithm searches; for 

each given solution the algorithm could perturb the routes and priorities of traffic in a guided 

or random fashion and also recombine the routes and priorities of different solutions 

(crossover), this approach could then be compared to the one proposed here. With regards to 

communication an additional metric that can easily be incorporated in the cost function of the 

algorithm is the distance between communicating tasks, in this case the algorithm would 

favour solutions where this distance is minimised. Conversely any additional variable which 

can be expressed analytically can be integrated within this algorithm’s cost function making 

it a multi-objective algorithm.  

     Furthermore the set of possible routes considered by the minimum contention algorithm 

could be extended from the set of all minimal routes to a larger set which may satisfy some 

other properties giving the algorithm a larger search space hence more candidate solutions.  

     It would also be interesting to see the relation of the traffic distribution on the network and 

the schedulability of traffic. Intuitively such a relation must exist however it is not clear to 

what extent, in case there is a clear trend different routing approaches could be applied. 

 

     The above approaches can be further validated by using simulation. Through simulation it 

is possible to observe for what mapping solutions the analysis is actually tight (worst case 

response times are actually close to observed values). In addition if the algorithm would try 
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and produce solutions that would try and optimise different metrics that cannot be expressed 

exactly by analytical methods but instead the algorithm tries to achieve such optimisations 

indirectly based on some intuitive method again simulation would be necessary. The authors 

in [105] have developed a simulation framework that specifically aims at real - time systems 

executing on platforms that implement priority based wormhole switching and directly 

supports the application model used in this work. In order to achieve fast and accurate 

simulation transaction level modelling [41] has also been successfully used for simulating 

such systems [44]. 

 

    The mapping problem could be suitable to a divide and conquer approach, assuming that 

the application can be partitioned according to some meaningful criteria the different 

partitions of the application could then be placed on different areas of the platform, in which 

case the mapping problem would be solved for many small instances instead. We would like 

to partition the application graph in such a way that the communication between the different 

partitions is minimized as the tasks of a partition will be placed close together on the 

platform, tasks that communicate a lot between them should be placed in the same partition to 

ensure that communication becomes more “localized” so that the communication interference 

between different partitions is minimized. This problem resembles that of the minimum cut 

problem which is the problem of finding a cut of a graph so that the sum of the weights of 

edges crossing the cut is minimised. A solution to the min-cut problem will provide only two 

partitions that are probably highly unbalanced so it would have to be repeatedly solved on a 

large graph to produce balanced partitions suitable to the mapping problem. An existing 

algorithm by Karger et al. [100] is proposed, in this algorithm weighted edges are contracted 

merging their vertices in a partition, this contraction happens at random with a probability for 

each edge proportional to its weight. It would be interesting to see if such an approach can be 

used to solve the mapping problem or even as a pre-processing step that would produce a 

partial solution to be used as input to a heuristic algorithm. 

 

    In addition to the above the constructive heuristic algorithm proposed in this work can be 

further developed and enhanced into a heuristic that can tackle the mapping problem more 

efficiently in the context of static mapping, also the algorithm logic can be tested to see if it is 

able to provide good solutions in the case of dynamic mapping for soft real time applications 

where the approach proposed in [51] could be combined with this specific search pattern. For 

a real time system it would also be necessary to examine the impact of any runtime 

mechanisms such as task migration and re-mapping would have on the timeliness of the 

system traffic.           

 

    The system described in this work assumes one virtual channel per priority level which for 

a large number of traffic flows could be expensive in hardware and since the routes are 

deterministic and the application static this approach resembles a virtual circuit scheme; in 

such a case it could be more suitable to provide a custom topology and architecture or 

alternatively take advantage of the flexibility provided by a NoC (with regards to 

communication) to somehow decouple the computation placement and communication 

schedulability so that more efficient approaches can be used (global, dynamic algorithms). In 

addition the flexibility provided by NoC platforms may also be used to provide fault tolerant 

communications for hard-real time systems.  

 

     To overcome the cost incurred by using one virtual channel per priority level Shi and 

Burns [103] propose a priority share policy where different traffic flows may share a priority 

level in order to reduce the resource overhead and at the same time the proposed analysis 
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model is extended to suit this scheme still achieving hard real-time communication 

guarantees, so the approach proposed here could be further enhanced by using this model.      

6.2 Conclusions 
 

     In this work we tried to approach the application mapping problem in the context of real-

time systems. The mapping problem is not only intractable for a certain goal but also has an 

impact on many different parameters of the system. The problem formulation varies for 

different systems based on the system model assumptions, constraints and goals, so a 

universal solution is not possible. We restricted our research to a NoC platform type that is 

suitable for real-time communications (priority based wormhole routing) and used response 

time analysis methods recently proposed for such systems in order to guarantee the timeliness 

of real-time communications. In order to solve the mapping problem for hard real-time 

applications on NoC we chose to use a straightforward evolutionary algorithm that uses this 

analytical method as its ranking function. This method is able to provide schedulability 

analysis for both computation and communication on a NoC platform that uses wormhole 

routing and pre-emptive arbitration. This algorithm, as the results show, was able to find 

solutions in some cases, however there is no guarantee that there are no existing solutions for 

those cases where this genetic algorithm cannot find one over a specific number of 

generations (such as mapping the autonomous vehicle application onto a 3x3 NoC or the 

synthetic application onto a 4x4 NoC) i.e. the algorithm is not optimal.        

     Various additions to the algorithm were proposed that would improve the schedulability of 

traffic and hence improve the algorithm’s ability to find solutions in comparison to the basic 

version. The results for the set of experiments carried out validate the basic intuition behind 

the algorithms but are not able to clearly demonstrate any complex interrelationships between 

the different algorithms combined together and between the traffic patterns on the platform 

and the schedulability of traffic flows.  

      A constructive heuristic method was developed and tested alongside the genetic algorithm 

but was not able to provide any consistent results however the development of such an 

algorithm could be an avenue of research for the mapping problem.   

 

       The combination of a genetic algorithm with response time analysis as the ranking 

function may also serve as a starting/reference point for the development of other algorithms 

for the same problem, in which case any new approaches could be compared against it. 

 

     Many solutions have been suggested to the mapping problem however the problem has not 

yet been studied in depth from a real-time systems perspective in which case many problems 

are still open and many possibilities exist for both hard and soft real-time systems.  
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