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Abstract 

Debate rages as to whether, once habitat loss effects are discounted, habitat fragmentation leads 

to biodiversity declines or has positive effects. Studies define fragmentation in different ways, 

as the converse of connectivity, isolation of patches, or with habitat loss. Studies need to 

address “fragmentation per se”, which is, specifically, at the landscape level and not confounded 

by habitat loss. Different patterns have been found, suggesting that fragmentation per se does 

not always have a negative effect. To help bring clarity to the debate, I investigated some of the 

reasons for these differing results. 

To investigate fragmentation per se, I developed a multi-species landscape-scale individual-

based model (IBM), with species able to move around my simulated landscapes. I investigated 

species-level perspectives and incorporated the concepts from this analysis into IBM. I 

investigated, using the IBM, the effect of fragmentation per se of a focal-habitat on diversity 

across landscapes and if the effect differed with different species’ characteristics and 

modification of the land covers between patches of the focal-habitat. 

I found species each have a unique unshared perspective of the multiple land covers in 

landscapes. It is inappropriate to lump species into being associated with one land cover. 

Overall gamma-diversity increases with fragmentation per se under a range of assumptions but 

species that are less competitive and prefer the focal-habitat decline. Specialists, generalists and 

species able to traverse the matrix to reach patches are unaffected or increase with 

fragmentation per se. Landscapes used in fragmentation studies are important in determining 

what result is found, with often-used landscapes tending to lead to more negative results. 

 These findings help resolve the fragmentation per se debate. While our study suggests general 

patterns of gamma-diversity increase under fragmentation, critically for conservation and policy 

responses, species associated with the fragmented habitat decline. But declines are not 

universal. Species are affected differently. 

  



 

v 
 

Table of Contents 

Acknowledgements .................................................................................................................. iii 

Abstract .................................................................................................................................... iv 

Table of Contents ...................................................................................................................... v 

Lists of tables and illustrations................................................................................................ vii 

Abbreviations .......................................................................................................................... xii 

Chapter 1 Introduction .................................................................................................................. 1 

1.1 Habitat fragmentation - a contested concept ................................................................. 1 

1.2 Scale and habitat ........................................................................................................... 6 

1.3 Simulations and Individual-based Models .................................................................... 8 

1.4 Research questions and thesis structure. ....................................................................... 9 

Chapter 2 A weighting method to improve habitat association analysis: tested on British 

carabids ....................................................................................................................................... 14 

2.1 Abstract ....................................................................................................................... 14 

2.2 Introduction ................................................................................................................. 15 

2.3 Methods....................................................................................................................... 17 

2.4 Results ......................................................................................................................... 21 

2.5 Discussion ................................................................................................................... 25 

2.6 Data Accessibility ....................................................................................................... 28 

Chapter 3 Individual-based model, Overview, Design concepts and Details ............................. 29 

3.1 Introduction ................................................................................................................. 29 

3.2 Overview ..................................................................................................................... 30 

3.3 Design concepts .......................................................................................................... 34 

3.4 Details ......................................................................................................................... 36 

Chapter 4 Fragmentation increases diversity, but not of species that depend on the habitat ...... 38 

4.1 Abstract ....................................................................................................................... 38 

4.2 Introduction ................................................................................................................. 38 

4.3 Methods....................................................................................................................... 42 

4.4 Results ......................................................................................................................... 47 

4.5 Discussion ................................................................................................................... 50 



 

vi 
 

Chapter 5 Matrix configuration mediates effect of habitat fragmentation: a modelling study .... 53 

5.1 Abstract........................................................................................................................ 53 

5.2 Introduction ................................................................................................................. 54 

5.3 Method ......................................................................................................................... 56 

5.4 Results ......................................................................................................................... 65 

5.5 Discussion .................................................................................................................... 67 

Chapter 6 Mobile species are positively affected by fragmentation per se ................................. 72 

6.1 Abstract........................................................................................................................ 72 

6.2 Introduction ................................................................................................................. 73 

6.3 Methods ....................................................................................................................... 75 

6.4 Results ......................................................................................................................... 81 

6.5 Discussion .................................................................................................................... 85 

Chapter 7 General discussion ...................................................................................................... 88 

7.1 Limitations and caveats ............................................................................................... 95 

7.2 Further work ................................................................................................................ 98 

7.3 Impact ........................................................................................................................ 100 

7.4 Conclusion ................................................................................................................. 101 

References ................................................................................................................................. 103 

Appendix for Chapter 2 ............................................................................................................. 128 

Appendix C2.1. ...................................................................................................................... 128 

Appendix C2.2. Most abundant habitat analysis ................................................................ 129 

Appendix C2.3. Vector and matrix calculations of the Phi coefficient .............................. 130 

Appendix C2.4. Scripts for calculating correlation index .................................................. 133 

Appendix C2.5. Outputs ..................................................................................................... 133 

Appendix C2.6. Specialist vs generalist analysis................................................................ 134 

Appendix C2.7. Group equalised analysis .......................................................................... 136 

Appendix C2.8. NBN citation 7 ......................................................................................... 138 

Appendix for Chapter 4 ............................................................................................................. 139 



 

vii 
 

Lists of tables and illustrations 

Table 2-1 Example of the vectors that can be used in calculating the Phi coefficient for each 

individual habitat, showing the , proportion of each habitat within each location and the binary 

presence data, in this case for the species Abax parallelepipedus (see Appendix 2 for matrix 

version of this information and equations). ................................................................................ 18 

Table 2-2 Comparison of the habitat associations using Spearman’s rank correlation between 

different thresholds of species numbers used to define absence squares in the analysis of carabid 

land cover association. ................................................................................................................ 25 

Table 5-1 How the five models of the two scenario both relate to the baseline, with each 

scenario only changing either the similarity of the matrix land covers to the focal-habitat, or the 

starting diversity of the matrix land covers compared to the focal-habitat. Colours correspond to 

those in the graphs in the results. ................................................................................................ 61 

Table 5-2 An example of the habitats suitable rank for species, that made the focal and matrix 

land covers similar or dissimilar. Species 1 is a focal-habitat-species in both example models. 63 

Table 6-1 Alphabetical labeling of each species group, defined by varying bias towards more 

suitable land cover and the walk of the species. The species move with a random walk (RW), 

habitat dependent walk (HDW) and correlated random walk (CRW). The HDW species, move 

more like a RW in the matrix with a coefficient of 0.1, and more like a CRW with a coefficient 

of 1. See Figure 6-3 for further explanation of the walks. .......................................................... 81 

Table A C2.3.0-1 Example of the vectors that can be used in calculating the Phi coefficient for 

each individual habitat, showing the, proportion of each habitat within each location and the 

binary presence data, in this case for the species Abax parallelepipedus (see Appendix 2 for 

matrix version of this information and equations). (Identical to table 1 in the main text) ........ 131 

 

 

Figure 1-1 An explanation of alpha- (α), beta- (β), and gamma- (γ) diversity for species within a 

focal-habitat across a landscape. Beta-diversity is shown using the measure beta sim (Koleff et 

al., 2003) and explained in terms of a, b and c for two patches in the middle of the landscape. a 

represents shared species, b species only in the left patch, and c only those in the right patch. ... 4 

Figure 2-1 Comparison of original and weighted correlation index showing how they match the 

validation data. Species are in bins of the number of records (using the records without removal, 

as used in the weighted version). Species that did not have enough records in the original 

version are included on the left to show that the weighted version on average when including 

these species achieves a match with the validation data. ............................................................ 23 



 

viii 
 

Figure 2-2 Abax parallelepipedus and Acupalpus dubius original and weighted habitat 

correlation analysis showing the relative positive and negative ϕ and p values. These examples 

show the improvement offered using the weighted method, matching better with Luff and 

including more habitats. .............................................................................................................. 24 

Figure 2-3 Calathus fuscipes and Loricera pilicornis original and weighted habitat correlation 

analysis showing the relative positive and negative ϕ and p values. Showing that in these cases 

the original version matched more Luff habitats than the weighted version. The weighted 

method does however manage to represent more of the habitats. ............................................... 24 

Figure 2-4 Amara curta, Bracteon litorale, Harpalus anxius, and Dyschirius globosus weighted 

habitat correlation analysis showing the relative positive and negative ϕ and p values. Showing 

that with more than 50 records the analysis gives both significantly positive and negative 

association. .................................................................................................................................. 25 

Figure 4-1 A figurative description of the individual-based model, showing how I represented 

FPS by increasing the number of patches of the focal-habitat (in black) while keeping its total 

area the same. I give an example of the ranked suitability for land covers on the right for one 

species and an example of a random walk in the middle. The simulation used a baseline model, 

in which the individuals did not have differing mortality or movement bias for different land 

covers. I simulated two other scenarios in which the individuals interact with the land covers 

according to their assigned suitability. In the first scenario, the habitat modified mortality and 

individuals showed biased movement. The second scenario was the same, with the addition that 

half of the species were specialists and half generalists. I defined specialists and generalists as 

the former being more competitive in preferred land covers and less competitive in non-

preferred land covers compared to generalists. ........................................................................... 42 

Figure 4-2. A representation of how each individual chose where to move to in a time-step. It 

did this by multiplying the proportion of each land cover in a circle around it up to the 

maximum movement distance, by the bias multiplier. The values were normalised and stacked 

and then a random number between zero and one was drawn which selected the habitat. The 

individual then moved to a random cell of that habitat within the maximum movement distance.

 ..................................................................................................................................................... 45 

Figure 4-3 Values used for the logistic slope within each scenario for habitat-biased movement 

and mortality. The graph shows the effect the slopes have on the multiplying values used to bias 

the movement towards more suitable land cover and to increase mortality in less suitable land 

cover. There is mortality due density-dependence and from being over the carrying capacity of 

the whole simulation. The habitat-modified mortality is additional mortality above the normal 

levels. To link levels of additional mortality to that of the reproductive rate, the habitat mortality 

is multiplied by the reproduction rate 5 × 10-4 to give the additional amount of mortality. I used 

the same scenarios and values for 10% and 40% cover simulations. The specialist species were 



 

ix 
 

more competitive in more suitable land covers than the species in the habitat-dependency model 

and those more so than the generalists. Competitiveness was reversed in less suitable land 

cover. ........................................................................................................................................... 46 

Figure 4-4 Mean patch scale alpha-diversity, mean pairwise beta-diversity and gamma-diversity 

for all species in the focal-habitat at 10% cover, with fitted lines and standard errors. Gamma-

diversity increased with the number of patches (albeit not greatly for the baseline model), which 

represents FPS. In all cases, alpha-diversity declined, and beta-diversity increased. ................. 48 

Figure 4-5 Gamma-diversity for three groups of species – those for whom the focal-habitat had 

high, moderate, or low suitability – for the habitat dependency model (habitat bias and mortality 

slope 0.75) and specialism model (habitat bias and mortality slope 1 and 0.5 respectively). 

Gamma-diversity increased with FPS in both models for the species who for whom the focal-

habitat had low or moderate suitability, and those for whom the focal-habitat had high 

suitability in the specialism model. By contrast, in the habitat dependency model, gamma-

diversity declined with increasing FPS for the species for whom the focal-habitat had high 

suitability. ................................................................................................................................... 49 

Figure 4-6 Gamma-diversity for those species for whom the focal-habitat had high suitability 

for the specialism model (habitat bias and mortality slope 1 and 0.5 respectively) showing 

specialists and generalists separately. Gamma-diversity increases with FPS for both specialists 

and generalists in all cases. ......................................................................................................... 50 

Figure 5-1 A figurative description of the individual-based model, showing how I represented 

FPS by increasing the number of patches of the focal-habitat (in black) while keeping its total 

area the same and that I looked at a differing number of matrix land covers. I give an example of 

the ranked suitability for land covers on the right for one species and an example of a random 

walk in the middle. Not all species like the focal-habitat the best as can be seen from the legend. 

All individuals interact with the land covers according to their assigned suitability, with habitat-

modified mortality and individuals showing biased movement. ................................................ 57 

Figure 5-2 Values used for the logistic slope within each experimental scenario for habitat 

biased movement and mortality. The baseline model and the two models in the matrix diversity 

scenario used the curves in blue with a midpoint of six and a slope of 0.75. The two models in 

the focal/matrix similarity scenario used the orange curves with a midpoint of 12 and a slope of 

0.341, to make the matrix more similar or dissimilar to the focal-habitat. The graph shows the 

effect the slopes have on the multiplying values used to bias the movement towards more 

suitable land cover and to increase mortality in less suitable land cover. There are universal 

mortalities from density-dependence and from being over the carrying capacity of the whole 

simulation. The habitat mortality is additional mortality above the normal levels. To link levels 

of added mortality to that of the reproductive rate, I multiple the habitat mortality multipliers by 

the reproduction rate 5 × 10-4 to give the added probability of mortality. .................................. 59 



 

x 
 

Figure 5-3 For the similarity model, the ranking for the eleven land covers was chosen from 

between one and eleven inclusively, shown in green, this meant the bias in solid orange and 

mortality in dashed orange were less different between the land covers. The dissimilarity model 

had focal-habitat-species who had a rank of one for the focal-habitat and other ranks chosen 

between 13 and 23 for the other land covers as these land covers were very different (purple). 

This then meant the bias away and mortality in these land covers was higher. The non-focal-

habitat-species (yellow) all had a rank of 23 for the focal-habitat as it was very different. The 

other land covers had values chosen between one and 22, as the land covers could be similar to 

each other or not. ......................................................................................................................... 62 

Figure 5-4 Change in alpha-, beta-, and gamma-diversity of the focal-habitat with FPS, for the 

focal-habitat-species for whom the focal-habitat was most suitable. The graph shows the results 

for the similarity, baseline (neither similar nor dissimilar) and dissimilarity models. ................ 66 

Figure 5-5 Change in alpha-, beta-, and gamma-diversity of the focal-habitat with FPS, for the 

focal-habitat-species for whom the focal-habitat was most suitable. The graph shows the results 

for the Starting Low Diversity (SLD), baseline (starting equally diverse) and Starting High 

Diversity (SHD) models. ............................................................................................................. 67 

Figure 6-1 A figurative description of the individual-based model, showing how I represented 

FPS by increasing the number of patches of the focal habitat (in black) while keeping its total 

area the same. I give two examples of the ranked suitability for land covers on the right for a 

non-focal-habitat species on the left and a focal-species on the right. I used three different kinds 

of walk, random walk (RW), correlated random walk (CRW) and habitat dependent walk 

(HDW). I included more variation is walks by modifying the rate of individuals’ transition to a 

more directed walk within the HDW. All individuals interact with the land covers according to 

their assigned suitability, with habitat-modified mortality. I varied bias in choosing land cover 

to make choosing more suitable land cover more likely. These biases ranged between no bias 

(zero) and high bias (two). ........................................................................................................... 76 

Figure 6-2 Showing how the logistic equations were used to relate the habitat suitability rank, 

one to eleven, to both increased habitat mortality in less suitable and bias towards more suitable 

land cover. The same additional mortality slope was used for all species in all scenarios. Habitat 

bias was varied from none to high bias. The multiplying values were multiplied by the 

reproductive rate to give additional mortality that was of a similar magnitude to reproduction 

and in the case of bias used to modify the probability of choosing a more suitable land cover. . 78 

Figure 6-3 Showing how the angle defining where the species can move to (turning angle) 

changes with the ranked habitat suitability of the species for the habitat dependent walk (HDW) 

compared to the random walk (RW) and correlated random walk (CRW). RW species can turn 

completely around. CRW species can turn through any angle, but the angle is defined by a 

gamma distribution and therefore the median angle is 36°, with a lower probability for sharper 



 

xi 
 

turning angles. The HDW species can turn completely around in suitable land cover like the 

RW species, and move more directly in less suitable land cover. .............................................. 79 

Figure 6-4 Alpha-diversity declining in orange, beta-diversity increasing in green and gamma-

diversity both increasing and declining in black with FPS for the different scenarios. .............. 82 

Figure 6-5 The proportional change in alpha, beta and gamma-diversity of the focal-habitat-

species over the full range of FPS (4 patches to 6350 patches). Beta and gamma-diversity are on 

the left axis, alpha-diversity is on the right axis as the proportional change is large and negative.

 .................................................................................................................................................... 83 

The unweighted chosen habitat analysis identified on average 62% of Luff habitats and the 

weighted group equalised analysis 70% both using 239 species. In contrast the unweighted 

excluding locations analysis conducted in the main paper identified on average 68% of Luff 

habitats. The chosen habitat analysis also consistently performed worse than the weighted 

analysis regardless of the number of records (Fig. A C2.0-1) in contrast to Figure 2-1 in the 

main paper where the unweighted analysis sometimes appeared to match better on average. The 

chosen habitat analysis however was able to classify all habitat in the same way to the weighted 

version. ...................................................................................................................................... 129 

Fig. A C2.2.0-2 Comparison of original and weighted correlation index showing how they 

match the validation data. Species are in bins of the number of records (using the records 

without removal, as used in the weighted version). The unweighted version of the analysis that 

chose the most abundant habitat to represent each location matched the Luff validation data less 

well regardless of the number of records. ................................................................................. 130 

  



 

xii 
 

Abbreviations 

SDMs - Species distribution models  

IndVal - Indicator Value Index of Dufrêne and Legendre (1997) 

NBN - UK National Biodiversity Network  

CEH – NERC Centre for Ecology and Hydrology, now UK Centre for Ecology and Hydrology 

LCM2015 - Land Cover Map 2015  

FPS - Fragmentation per se  

IBM - Individual-based model  

ODD - Overview, Design concepts, and Details protocol 

RW - Random walk  

CRW - Correlated random walk  

HDW - Habitat dependent walk 



 

1 
 

Chapter 1  

Introduction 

Humans have modified much of the land surface of the world, converting habitats into other 

habitats and land uses for our own purpose (Lawton et al., 2010; IPBES, 2018). Doing so 

directly reduces the area of habitats and leaves what remains fragmented, with patches of habitat 

separated from each other by other land covers. The effect that habitat loss has on species 

diversity is clear, leading to a reduction in species (MacArthur and Wilson, 1967; Fahrig, 2003; 

Hodgson, Moilanen, et al., 2011; Keil et al., 2015; Loke et al., 2019). It had been shown that 

fragmentation also contributes to this loss in species diversity because it leads to a reduction in 

the ability of species to move between remaining patches of habitat (Haddad et al., 2015). But 

the consistent negative effect of fragmentation without habitat loss, fragmentation per se (FPS), 

is in debate (Fahrig, 2017; Fletcher et al., 2018; Fahrig et al., 2019). Evidence has been 

presented that suggests that FPS may either have no effect or even potentially a positive effect 

on species richness (Fahrig, 2017; Rybicki et al., 2019). In this thesis I will theoretically explore 

some circumstances that could lead to FPS not having a negative effect on species diversity and 

help reconcile the two opposing sides in the FPS debate.  

In this chapter, I first present the habitat fragmentation debate and issues surrounding how 

fragmentation is defined. I go on to talk about differences in scale of analysis and how these 

scales are defined. Then on how habitat is defined, including how species relate to habitat and 

how species move through landscapes. I then go on to explain the individual-based modelling 

(IBM) approach I will employ, and finally present my research questions and the structure of 

the rest of this thesis.  

1.1 Habitat fragmentation - a contested concept 

There are two widely accepted paradigms in biodiversity that come into conflict, that 

connectivity between habitat patches should be increased as connected patches have more 

species (Prugh et al., 2008; Haddad et al., 2015; Damschen et al., 2019) and that heterogeneous 

landscapes can support more species (Benton et al., 2003; Oliver et al., 2010). Increased 

connectivity allows for patches to be recharged by the immigration of individuals (Lawson et 
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al., 2012) or for recolonization (Rosenzweig, 2002) and allows for gene flow between 

populations (Hooftman et al., 2016). Also in a world with a changing climate, increased 

connectivity will, it is hoped, allow for species movement to areas that become climatically 

suitable and escape areas that may no longer be suitable (Hodgson, Thomas, et al., 2011). There 

are potential issues with increasing connectivity, however. Increasing connectivity by adding 

more habitat patches could cause landscapes to become more homogenous and potentially 

fragment other habitats. Increased connectivity could lead to species homogenisation through 

the most competitive species spreading, potentially to the detriment of less widespread species. 

Increased connectivity can also facilitate the movement of predators, invasive species and 

disease and, particularly in the case of corridors, disturbance, for example, through the spread of 

fire (Haddad et al., 2014). Although the review conducted by Haddad et al. (2014) specifically 

looking at the negative effects of corridors, failed to find a consistent effect of corridors on 

predators, invasive species, disease, or disturbance, they did point out that the literature was 

deficient and that there is a need for studies looking at natural corridors at a larger scale than 

experimental systems. They also pointed out that despite corridors being “the most direct way to 

restore connectivity in conservation” that “[w]ith one exception (edge effects), [they] would 

expect the mechanisms by which corridors exert negative effects to be identical to those exerted 

by connectivity more broadly.” (Haddad et al., 2014). Therefore, this work on corridors is 

relevant to work on connectivity and fragmentation more broadly. 

Researchers often conflate connectivity with the inverse of fragmentation, assuming that higher 

fragmentation automatically leads to lower connectivity. But this may not be the case (Fahrig, 

2017). Thompson et al. (2019) showed higher diversity in their modelling study, with their 

measure of effective connectivity when the landscape was more fragmented because their 

measure includes distance travelled and FPS, through increasing the number of patches, makes 

the new patches closer together than the original patches were. Fragmentation leads to reduced 

structural connectivity, but not necessarily functional connectivity, as this is a species-specific 

concept. One measure of functional connectivity is unlikely to be applicable to all species 

(Bélisle, 2005; Betts et al., 2014). Related to the assumption that fragmentation equals reduced 

functional connectivity, studies often represent fragmentation by increasing the distance 

between and isolation of patches (Haddad et al., 2017; Brodie and Newmark, 2019). However, 

this may not necessarily be the case. If the area of habitat is not reduced, and fragmentation 

leads to the number of patches being increased, then patches may end up being closer together 

(Fahrig, 2017). Because fragmentation generally is caused by the removal of habitat, studies of 

fragmentation often include habitat loss. Habitat loss has a large and consistently negative effect 

of biodiversity, and it has been shown that the effect of loss of area swamps the fragmentation 

component of studies (Fahrig, 2003; Fahrig, 2017; Fahrig, 2019; Fahrig et al., 2019). A solution 
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to this frequent conflation and compounding was to define a new term, FPS (fragmentation per 

se). FPS is fragmentation in the absence of habitat loss (Fahrig, 2017). This form of 

fragmentation may be unrealistic as fragmentation in the real world is usually caused by habitat 

conversion and therefore a loss of area (Fletcher et al., 2018). But controlling for area does 

allow for isolation of the effects of fragmentation independent of the effect of habitat loss. FPS 

is a purely mechanical splitting of habitat, excluding any qualitative implications for functional 

connectivity, which is a species-specific concept. When considering landscape-scale 

fragmentation studies controlling for area loss, Fahrig (2017) found studies that found either no 

effect of fragmentation or a positive effect on species richness as well as other measures of the 

fitness of species and communities. Many fragmentation studies are a mix of single species 

analysis (Masier and Bonte, 2019; Galán-Acedo et al., 2019; Kimmig et al., 2019; Hauser et al., 

2019; Marrotte et al., 2020), multi-species analysis, often of birds (Valente and Betts, 2019) or 

plant species (Damschen et al., 2019; Wilson et al., 2020) and meta-analysis (Watling et al., 

2020; Kling et al., 2020). Many of the single species studies have looked at gene flow (Kimmig 

et al., 2019; Marrotte et al., 2020), used microcosm setups (Masier and Bonte, 2019), or looked 

at abundance (Galán-Acedo et al., 2019) and it is positive or negative responses of these sorts of 

studies that are often reported as positive or negative effects of fragmentation in meta-analysis 

studies along with general responses of species richness (Fahrig, 2017). Being unclear about 

which of these different measures of the effect of fragmentation are being talked about can be 

confusing and lead to the mistaken belief that positive and negative effects of FPS are on 

species richness (Miller-Rushing et al., 2019). 

Species richness is the number of species and is analogous of alpha- and gamma-diversity at 

different spatial scales (Whittaker, 1972). Alpha-, beta- and gamma-diversity are different ways 

of quantifying biodiversity at and between defined scales (Socolar et al., 2016). As with all 

research, the scale is important to define in studies. A patch can be defined at multiple scales 

from a quadrat through to a study site as can the whole study system which could be considered 

a patch through to that of the whole globe, although more commonly a region or country 

(Socolar et al., 2016). Alpha-, beta- and gamma-diversity are defined in Socolar et al. (2016) as; 

the number of species in a patch (however that patch is defined); the difference in species 

composition between those patches, giving a measure of species heterogeneity and with 

reduction analogous to homogenisation; and the diversity of all of the patches collectively.  

Unlike alpha- and gamma-diversity, beta-diversity is more complicated and therefore the 

particular measure of beta-diversity I have used needs a more extensive introduction. Because 

beta-diversity does not correspond to the diversity of a particular region (Socolar et al., 2016), 

multiple different ways of measuring beta-diversity have been developed. Each measure of beta-

diversity has its own uses and pros and cons. These trade-offs include whether the measure of 
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beta-diversity is independent of alpha-diversity, increases monotonically with species turnover, 

is bound between a sensible minimum and maximum value and is affected by differences in 

sampling (Barwell et al., 2015). I use beta sim in the chapters in which I model the effects of 

fragmentation. Beta sim is considered the best metric for presence-absence data overall and is 

unaffected by sample size, which I felt could be an issue as our patches got smaller with 

fragmentation and therefore included fewer individuals (Koleff et al., 2003; Barwell et al., 

2015) (Figure 1-1).  

 
Figure 1-1 An explanation of alpha- (α), beta- (β), and gamma- (γ) diversity for species within a focal-habitat across 
a landscape. Beta-diversity is shown using the measure beta sim (Koleff et al., 2003) and explained in terms of a, b 
and c for two patches in the middle of the landscape. a represents shared species, b species only in the left patch, and 
c only those in the right patch.  

Lower fragmentation might lead to higher alpha diversity of a particular patch or even the mean 

alpha of all the patches, simply because the average patch is bigger with less FPS (Figure 1-1). 

FPS creates smaller patches, which due to the species-area relationship and higher extinction 

rates, will have lower mean alpha-diversity. However, FPS may allow some rarer species to 

persist in some patches, leading to a greater difference in species composition between the 

patches and therefore a higher beta diversity. These rarer species may persist because their 

predators or competitors are unable to use smaller patches (Lindenmayer, 2019; Wintle et al., 

2019), unable to reach isolated patches (Cartwright, 2019; Ishiyama et al., 2020) or through 

probabilistically not reaching a patch that they could (Glorvigen et al., 2013). Fahrig (2003) 

pointed out in her review that positive effects of fragmentation when controlling for habitat loss 

and patch isolation, such as enhanced coexistence between species and stabilisation of single-

species populations, have largely been ignored. Despite Fahrig (2003) being highly cited, the 

situation has changed little (Fahrig, 2019). Pardini et al. (2005) showed in their study of small 
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mammals in Brazil’s Atlantic forest that an increase in fragment size and the addition of 

corridors to large patches led to an increase in alpha and gamma diversity, but lower beta 

diversity within each size category, supporting the idea of a loss of species heterogeneity. 

Arellano et al. (2016) used the term oligarchic species, meaning those that are abundant or 

common at any scale, and showed that homogenous landscapes were dominated by these 

oligarchic species. Decreasing fragmentation may lead to an increase in more oligarchic species 

and may lead to a loss of rarer species that had survived in isolated patches as they had used 

them as refuges from more competitive species. Of course these more ubiquitous species may 

be unaffected by fragmentation and reach most patches anyway, which would negate any 

impacts on beta-diversity. Not all species carry out the same functions in the landscape, some of 

these rarer species may be of benefit to the wider community, ecosystem function or to humans, 

by providing an ecosystem service. Ecosystem functions are generally delivered at higher levels 

with high levels of biodiversity as there is more chance of the species responsible for the 

function being conserved (Norris et al., 2011). Lower alpha-diversity has a negative effect on 

ecosystem function at the patch scale, but beta-diversity has been suggested as being important 

at a larger scale in supporting multiple ecosystem functions (Mori et al., 2018). 

Thompson et al. (2019) point out how complex the issue of fragmentation is and that 

circumstances likely exist where fragmentation has any of positive, neutral or negative effects. 

There are mechanisms that could cause FPS to have a positive or negative effect on gamma-

diversity. Negative mechanisms include increased patch-level extinction rates, reduced 

movement success between patches through the intervening land covers, the matrix land covers, 

and edge-effects (Fahrig et al., 2019; Betts et al., 2019). Positive effects could include 

competitive release, spreading of risk, increased functional connectivity, and higher habitat 

diversity (Fahrig et al., 2019; Rybicki et al., 2019). As one can see, these lists include the same 

or similar mechanisms leading to either positive or negative effects. Edge effects could have a 

negative effect on the fitness of species and on their occupancy through two mechanisms. First 

through a modifying effect on the edge of the habitat, effectively converting this area into a 

slightly different land cover type through changes in the microclimate and making it less 

suitable for those species that are most suited to core habitat (De Smedt et al., 2016; da Silva et 

al., 2019). And secondly through exposure to species from outside of the habitat from the matrix 

land covers increasing competition or predation (Wilson et al., 2014). Equally the edge could 

have a positive effect on some species, providing a diversity of land covers and food sources 

that they need, refuge from predators and therefore decreased mortality and increased 

movement along edges in the landscape allowing for more connected sub-populations and 

recolonization (Fahrig, 2017; Pfeifer et al., 2017). Additionally, the increased edge could have a 

positive effect through combination with the mechanism of increased matrix land cover 
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diversity. With fragmentation, patches may be located in proximity to more kinds of matrix land 

covers. The increased edge also increases the interface with these matrix land covers or multiple 

land covers. With this increased diversity of matrix land covers, different species will be able to 

use the habitat that is fragmented that need access to different and now available tertiary habitat. 

Other paired mechanisms are those of reduced movement success vs. increased functional 

connectivity. From the perspective of a species that is strongly associated with a particular suite 

of habitats, grasslands for example, individuals may find it difficult to move through a non-open 

land cover matrix (e.g. forest) either physically or through increased mortality. However, if 

patches of habitat end up being closer together and more evenly spread throughout the 

landscape because of fragmentation, even though species may find the matrix unhospitable they 

will have less distance to move though unhospitable matrix and some species may be able to 

move between patches more easily, spending less time in the matrix. This could have potential 

benefits to species due to one of the other potentially positive mechanisms, the spread of risk. If 

all individuals of a species live in few patches of habitat, they are at risk if those patches are lost 

or if some threat such as disease, flood or fire increases mortality in those patches. If a species is 

able to inhabit more patches, that risk is reduced. Likewise, having more patches available 

allows competing species to occupy different patches. This is termed competitive release and 

results in more species coexisting within the landscape, leading to increased beta-diversity. 

Unfortunately, fragmentation also leads to each patch becoming smaller on average and due to 

the species-area relationship, these smaller patches will each be able to support fewer species, 

increasing patch-level extinction rates and lowering alpha-diversity.  

1.2 Scale and habitat 

Many empirical fragmentation studies are conducted at a patch scale, considering patches of 

focal-habitat that are more isolated by being further away from each other or connected through 

corridors of the same habitat. The surrounding or intervening land covers matrix is generally a 

single dissimilar and lower quality land covers type (Bender et al., 2003; Haddad et al., 2015; 

Haddad et al., 2017; Fletcher et al., 2018). These patch scale results could represent what 

happens at a landscape scale, but this should not be taken as a given as positive mechanisms of 

FPS may only operate at a landscape scale and extrapolation from patch scale studies to a larger 

scale is not the same thing as evidence at a landscape scale (Fahrig et al., 2019).Fragmentation 

effects should be assessed at a landscape scale (Fahrig, 2017; Fahrig et al., 2019). Fahrig’s 

(2017) meta-analysis suggested that fragmentation may either have no effect or could have a 

positive effect at a landscape scale, in accord with the mechanisms described above. Fahrig 

(2017) did not suggest that fragmentation could have a negative effect, despite a small 

percentage of the studies they looked at showing this effect.  
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What constitutes the larger scale over which gamma-diversity could be recorded, and what scale 

constitutes a patch scale vs a landscape scale is not defined in general; simply that a landscape-

scale is large (McGarigal and Cushman, 2002; Watts et al., 2016; Fahrig, 2017). Even studies 

that cover a larger area are often a series of patch scale experiments (Neilan et al., 2018). In 

these patch-scale analyses, studies measure alpha-diversity. Beta-diversity and gamma-diversity 

require multiple patches to be studied and are only applicable at the landscape scale. Modelling 

work looking at the difference in gamma-diversity with habitat area in fragmented landscapes 

led to the species-fragmented area relationship (SFAR) as a modification to the species-area 

relationship when landscapes are fragmented (Hanski et al., 2013). Hanski et al. (2013) showed 

that gamma-diversity is lower than it would be in a contiguous equivalent area because of the 

negative effects of fragmentation causing alpha-diversity to be lower in each patch. This study, 

along with patch scale studies, did not account for beta-diversity however, and the positive 

effects fragmentation may have on this through the previously mentioned competitive release, 

positive edge effects and increased land cover diversity.  

Patches over which alpha-diversity, or multiple patches over which beta- and gamma-diversity 

are measured, are typically of a single habitat type. The habitat of a species is related to its 

Grinnellian niche (Devictor et al., 2010). The niche for animal species is the envelope of 

climatic and other abiotic, both micro and macro scale, suitability and range of biotic 

interactions with food sources and predators. These niches may vary throughout an organism’s 

life and seasonally, with species sometimes needing different resources to reproduce or relying 

on different resources. Despite the range of the niche and therefore differences in what 

constitutes habitat, information on the habitats of a particular species is often derived from 

expert opinion, small scale analysis and limited to a single or few land covers (Lonsdorf et al., 

2009; Ball et al., 2013; De Lima et al., 2016; Webb et al., 2017; Ferrão et al., 2018). Human-

perceived land cover types are often wrongly assumed to be the habitat for multiple sorts of 

species, even though it is well known that different species may use part of, or multiple land 

cover types (Betts et al., 2014; Halstead et al., 2019; Valente and Betts, 2019). Instead of 

thinking of a species belonging to a particular land cover, it may, therefore, be more appropriate 

to consider a species-level perspective at the scale of a study (Betts et al., 2014). This has 

important implications for how fragmentation is modelled, as a species may be able to live in 

several land covers, and so models may need to represent multiple different land covers. These 

multiple land covers also allow for the capturing of the positive mechanism of increased land 

cover diversity with fragmentation, with new patches interacting with more land cover types 

and therefore allowing more species, with different requirements. Specialists and generalists are 

often defined by an association with a particular land cover or with many respectively, but this 

association is open to interpretation (Da Silveira et al., 2016). Being a generalist does not mean 
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the species does not have land cover preference (Townsend et al., 2008; Da Silveira et al., 

2016). Specialists are considered to be more competitive in a preferred or more suitable land 

cover compared to a competitively inferior generalist in that land cover, but the generalist more 

competitive in general across multiple land covers (Marvier et al., 2004). Specialist species 

associated with a land cover are often considered to be negatively affected by FPS (Kosydar et 

al., 2014; Fahrig, 2017) and that where FPS has been shown to be positive that this is because 

generalists increase (Hu et al., 2012). However, Fahrig (2017) found that FPS had a positive 

effect on the landscape-level species richness of specialist, rare, or threatened species in 97% of 

the studies they looked at. Is this because FPS allows for separation of otherwise competing 

species among patches of the focal-habitat within the landscape (Ramiadantsoa et al., 2018)? 

As well as having different sorts of land cover requirements, species move around landscapes 

differently. This may include the allocation of different resources to dispersal structures, such as 

larger legs or wings (Bonte et al., 2012). Species or even individuals within species may have 

different dispersal abilities (wing dimorphism for example), and individuals with features that 

enhance movement may be more common in fragmented landscapes (Cote et al., 2017). 

Individuals or species may also show variation in boldness, being more or less likely to move 

between patches (Fraser et al., 2001). Historic exposure to fragmentation has led to landscapes 

containing species adapted to fragmentation and more able to move through fragmented 

landscapes (Betts et al., 2019). It is likely, therefore, that different studies would contain species 

that move differently and therefore studies showing positive effects of fragmentation could be 

because these landscapes contain more fragmentation adapted species. 

1.3 Simulations and Individual-based Models 

Simulations are useful as they allow us to pull apart complex situations, investigating a problem 

in ways that would otherwise be impossible or extremely difficult. They allow for the separation 

of intrinsically linked traits of a species or the environment. They can be used where field 

studies would be extremely difficult in terms of the scale of analysis, requiring huge amounts of 

time, money and people to investigate. Agent-based models, often called individual-based 

models (IBMs) in ecology, allow for simulation of the wider system by looking at the emergent 

properties arising from the individual action of an agent, in the case of ecology most often an 

individual or small group of individuals, called a super-individual, of a species (Grimm and 

Railsback, 2005). Traditional models have been shown to sometimes be wrong because they are 

too simple and leave out the action of individuals (Railsback and Grimm, 2017). In the case of 

habitat fragmentation or connectivity deterministic analysis would also become impractical as 

the number of patches increased to high numbers and with the complexity of different land 

covers of different shapes in the matrix between the fragmented land cover type (Kanagaraj et 
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al., 2013). IBMs take small scale analysis of a species or an environment to program in the 

behaviour of individuals of a species. These individuals then interact with other individuals, 

either of its own or another species, and the environment often in a spatially-explicit manner. 

The simulation can then be used to set up new, “virtual”, experiments to investigate a theoretical 

question or to inform practical conservation management (DeAngelis and Grimm, 2014). Even 

if the simulations are not sufficient in answering a question fully, they can be useful to test 

theoretical concepts and as a beginning point for future lab or field-based analysis. IBMs have 

been used specifically to explore fragmentation using specific species (Jepsen and Topping, 

2004; Lasky and Keitt, 2013) and by using generic species (Fahrig, 2001; Rybicki et al., 2019). 

Generic species are those which have general characteristics to allow for exploration of 

ecological principles (Jepsen et al., 2005). 

1.4 Research questions and thesis structure.  

To explore general theoretical effects of FPS on biodiversity I chose not to focus on any 

particular group of species; instead focusing on generic species and using values that would be 

applicable to multiple species types at different spatial and temporal scales. Using generic 

species allowed for generalisability of my results and exploration of theoretical possibilities 

(Simpkins et al., 2018). It was important to ground these generic species within the realm of 

characteristics of real species. As is common practice in IBMs I used allometric equations to 

give appropriate values to the generic species we used (Sibly et al., 2013). The values I used 

could scale to 5 m per minute and 260 offspring a year for invertebrates if I considered the cell 

size to be a metre and our time step of a minute, or 5 km per hour and four offspring a year 

roughly equivalent of birds or mammals if the cell size was a km and the time step equal to an 

hour. I created a multi-species and landscape-scale IBM and generated simulated landscapes 

that allowed for control over fragmentation and the land covers between patches, matrix land 

covers, of this fragmented habitat, the focal-habitat, while controlling for the focal-habitat area.  

Real landscapes have a high correlation between habitat amount and configuration (Fletcher et 

al., 2018). Therefore, in simulation studies, landscapes are frequently simulated using different 

methods. These can be a fractal generation (Spanowicz and Jaeger, 2019; May et al., 2019), 

random clustering using probability (Saura and Martínez-Millan, 2000), or by sampling real 

landscape features and tiling to create new landscapes of approximately the right configuration 

(Gunton et al., 2017). Some of these land cover generation methods involve specifying 

fragmentation using non-direct methods such as exponents which are not directly relatable to 

the number of patches (Spanowicz and Jaeger, 2019). These methods also create binary land 

covers. In this thesis, I instead opted to create my own land cover generator based solely on the 



 

10 
 

number of patches and area and specifically designed to allow for multiple matrix land covers 

and to consider FPS explicitly (Figure 1-1). 

As part of the process of creating a simulation, to address the issue that species are not 

associated with a single land cover, I conduct an analysis of the habitat association of species, 

applying a new methodology to a case study of ground beetles (Carabidae). This first research 

chapter (chapter 2) of the thesis does not directly answer questions related to fragmentation but 

was instrumental in the development of the IBM in which multiple species coexist due to having 

different suitabilities and preferences for the land covers of the simulated landscapes. The 

analysis also gives greater insight into the concept of a species-level perspective. This chapter 

develops an improvement on a method used in plant science, the phi coefficient of association, 

to make it more useful for looking at the habitat association of mobile species or when using 

data with a level of uncertainty. I then use this method to answer the first research question of 

the thesis; how do species relate to different land cover types? This analysis directs the 

development of the simulation, with species defined as each being more or less associated with 

different land cover types in their own specific manner. Doing so also allows me to implement a 

species-level perspective into my IBM.  

The latter chapters all use the same IBM with different parameters and configurations of the 

land cover. Chapter 3 is an Overview, Design concepts, Details (ODD) (Grimm et al., 2006; 

Grimm et al., 2010) used to describe the common IBM used for chapters 4, 5 and 6. The first of 

the simulation chapters looks at the different effect fragmentation has on species with different 

specialisms, habitat dependencies and corresponding competitive abilities compared to a model 

in which species have no difference in land cover suitability. The second simulation chapter 

(chapter 5) looks at the effect the matrix and the use of extreme binary landscapes have on 

studies of fragmentation. The third simulation chapter (chapter 6) compares more complex 

movement modes to the random-walk used in the previous chapters and manipulates how long 

individuals spend in the matrix and how readily they move between focal-habitat patches by 

varying the strength of the effect of bias towards more suitable land cover and how directly 

species move through the matrix land covers.  

During the debate on the effects of habitat fragmentation, Fahrig (2017) found that a majority of 

examples within their analysis showed either a neutral or positive effects of fragmentation on 

biodiversity at the landscape scale. Therefore, I use the simulation to answer whether; alpha- 

and gamma-diversity always decline and beta-diversity increase with FPS? Fahrig (2017) then 

gave some summarised examples from across the literature as to why authors thought that 

fragmentation may be showing the unexpected non-negative result. These included that 

generalists species are driving the increase, although Fahrig (2017) pointed out that in the 



 

11 
 

studies they considered, the positive effect was also seen for specialist, rare or threatened 

species. Therefore, I investigate; whether specialist and generalists increase or decrease in 

gamma-diversity with FPS? However, simply looking at whether a species’ specialism, in 

general, leads to differences in the effect FPS has, does not take into consideration the identity 

of the species in terms of their association with the focal-habitat that was fragmented (Fletcher 

et al., 2018). With this in mind, I also investigate; if these increases or decreases universal for 

all species, or are species that are dependent on the focal-habitat affected differently? 

In chapter 4 I answer the above three question. I start by looking generally at the effect of land 

covers having different suitability for the species within the landscape, comparing a model 

without land cover suitability, with species moving entirely randomly around the landscape, to 

one where species have decreased mortality in more suitable land cover and a preferential 

movement towards more suitable land cover. I then further modify this latter model by making 

half of the species specialists and the other half generalists. The effect of FPS is looked at for all 

species in the focal-habitat, and then in three groups, those for whom the focal-habitat is highly, 

moderately and least suitable. I conduct this analysis on landscapes that contained eleven land 

covers, a focal-habitat, and ten other land covers.  

A few empirical studies have looked at the effects of the matrix on fragmentation, but in these 

cases, they only looked at a few matrix land covers and then each individually in combination 

with the focal-habitat at a patch scale (Sisk et al., 1997; Hatfield et al., 2019). As species 

interact differently with different matrix land covers (Haddad et al., 2017; Fletcher et al., 2019; 

Thompson et al., 2019) and have different habitat preferences (Bollmann et al., 2005; Chetcuti 

et al., 2019) it is important to investigate the effect of FPS on biodiversity with different 

configurations of the matrix (Fahrig, 2017; Fletcher et al., 2018). In chapter 5, I vary the matrix 

land covers and investigate the overall question of; how  the structure of the land covers in the 

matrix between a focal-habitat affect the relationship of diversity in the focal-habitat to 

fragmentation per se? I do this because many of the empirical and modelling studies conducting 

fragmentation and connectivity analysis use binary-landscapes containing only a focal-habitat 

that is fragmented and a matrix land cover (Ewers et al. 2011, Haddad et al. 2017, Damschen et 

al. 2019, Thompson et al. 2019, May et al. 2019). I therefore answer the sub-question; does 

using binary landscapes with the matrix represented by one low quality land cover vs. more 

matrix land covers affect the relationship between fragmentation and biodiversity? These 

landscapes are also usually designed or chosen to maximise the contrast between the focal-

habitat and the matrix, by choosing a species-poor and very different matrix land cover in 

comparison to a richer focal-habitat, for example, a woodland focal-habitat and an arable matrix 

(Crawford et al., 2016). Therefore, I also answer two sub-questions; 1) How does species 

diversity responds to fragmentation per se when the matrix land covers are associated with more 



 

12 
 

(high quality land covers) or fewer (low quality land covers) species? And; 2) how does species 

diversity responds to fragmentation per se when the matrix land covers are more (broadleaf to 

conifer and scrub, or unimproved grassland to different grasslands, for example improved 

grassland) or less similar (woodland to grassland or vice versa) to the focal-habitat? I answer 

these questions by varying the number of matrix land covers. I also include two scenarios 

varying the type of matrix. The first of these varies how similar or dissimilar the matrix land 

covers are to the focal-habitat. The second scenario varies how many species depend on each of 

the matrix land covers compared to the focal-habitat.  

It has been suggested that fragmentation could have different effects on different sorts of 

species. The species that spend more time in the matrix would likely be more negatively 

affected by fragmentation while species that are able to traverse between patches of focal-

habitat and for whom more fragmented landscapes may be functionally more connected, may 

benefit from FPS (Fahrig, 2017). I therefore investigate; if species that spend more time in the 

matrix decline in species diversity in the focal-habitat with increasing fragmentation per se of 

the focal-habitat compared to species that spend less time in the matrix? And whether; species 

that have a higher encounter rate with patches of focal-habitat, increase in species diversity in 

the focal-habitat with fragmentation per se of the focal-habitat while species with lower 

encounter rates increase less or decline? In designing species that are able to traverse between 

patches it is important to look at how species move. Studies have simulated species that move 

with a random walks (RWs) as I do in the two preceding fragmentation chapters (Fahrig, 2001; 

Rayfield et al., 2011) and with correlated random walks (CRWs) (Johnson et al., 1992; Boone 

and Hunter, 1996; Jepsen and Topping, 2004; McIntire et al., 2013). These are often criticised 

as being unrealistic, as species sometimes move differently depending on the land cover they 

find themselves in (Kuefler et al., 2010), and therefore moving with habitat dependent walks 

(HDWs). Each walk is likely specific to a different sort of species (Da Silveira et al., 2016; 

Thomaes et al., 2018; Bérces and Růžičková, 2019; Fletcher et al., 2019). I assume that studies 

of fragmentation showing different overall trends likely contained different proportions of 

species moving with different walks. In the last research chapter of my thesis (chapter 6), to 

investigate difference in encounter rate I change the walk of the species to be either a RW, 

HDW and CRW  and  to vary the time spent in the matrix I change the bias towards more 

suitable land cover. 

My thesis uses a species-level perspective of landscapes and different sorts of generic species 

with the aim of consolidating the opposing positions of the fragmentation per se debate. By 

using generic species, I hope to find general relationships and do not seek to find relationships 

specific to different genera or species. Initially I explore how suitable different land covers are 

for species. I then use the perspective of species finding different land covers to be differently 
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suitable in my individual-based model, to explore how the effect of FPS may differ under 

different circumstances. I look at the effect of FPS on species with differing specialism and 

habitat association, the effect of the matrix land covers and finally at species with different 

levels of site fidelity and ability to traverse the landscape. 
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A weighting method to improve habitat association analysis: 

tested on British carabids 
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2.1 Abstract  

Analysis of species’ habitat associations is important for biodiversity conservation and spatial 

ecology. The original phi coefficient of association is a simple method that gives both positive 

and negative associations of individual species with habitats. The method originates in 

assessing the association of plant species with habitats, sampled by quadrats. Using this method 

for mobile animals creates problems as records often have imprecise locations, and would 

require either using only records related to a single habitat or arbitrarily choosing a single 

habitat to assign.  

We propose and test a new weighted version of the index that retains more records, which 

improves association estimates and allows assessment of more species. It weights habitats that 

lie within the area covered by the species record with their certainty level, in our case study, the 

proportion of the grid cell covered by that habitat.  

We used carabid beetle data from the National Biodiversity Network atlas and CEH Land 

Cover Map 2015 across Great Britain to compare the original method with the weighted 

version. We used presence-only data, assigning species absences using a threshold based on the 

number of other species found at a location, and conducted a sensitivity analysis of this 
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threshold. Qualitative descriptions of habitat associations were used as independent validation 

data.  

The weighted index allowed the analysis of 52 additional species (19% more) and gave results 

with as few as 50 records. For the species we could analyse using both indices, the weighted 

index explained 70% of the qualitative validation data compared to 68% for the original, 

indicating no accuracy loss.  

The weighted phi coefficient of association provides an improved method for habitat analysis 

giving information on preferred and avoided habitats for mobile species that have limited 

records, and can be used in modelling and analysis that directs conservation policy and 

practice.  

Key-words: carabids, Coleoptera, ground beetles, habitat classification, habitat preference, invertebrate, 

land cover, site fidelity, phi coefficient of association  

2.2 Introduction 

Habitat association analysis is used in determining the likely habitat requirements of individual 

species (Cole et al., 2010). These requirements are important, for example, in studying impacts 

of habitat loss and fragmentation (Maclean et al., 2011), dispersal and habitat connectivity 

(Brodie et al., 2016), and modelling foraging and movement over landscapes, such as in 

pollinator models (Lonsdorf et al., 2009) and conservation prioritisation (Pouzols and Moilanen, 

2014). Such analyses are particularly important when planning landscapes for conservation: for 

example, in assessing the impact of adding a patch of habitat for certain species, it is also 

necessary to understand which species avoid that habitat. Lawton et al. (2010) highlight that the 

approaches available for designing ecological networks are limited by the availability of 

evidence, usually using expert consensus. Habitat association analysis contributes to this 

evidence base.  

Searching the literature for habitat association or preference returns many examples of 

species distribution models (SDMs) and indicator species analysis. Examples of analysis 

looking at preference of a species to each of several alternative habitats are returned less often. 

For example, SDMs predict where species are likely to be found within a landscape, with 

habitat type being only one factor (De Lima et al., 2016). Indicator species analysis identifies 

species that best represent a habitat or group of habitats, and is used in monitoring habitat 

condition (Hill et al., 1975; De Gasperis et al., 2016). Direct analysis of which habitats a species 

prefers and which it avoids, which is particularly useful in conservation planning, are few. In 

this paper, we consider a direct approach to determine habitat association, which comprises the 

relative preference of a species for multiple habitats. 
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Information on habitat associations is generally derived from expert knowledge (Lonsdorf et al., 

2009) or analysis over a small geographic area (Ball et al., 2013; De Lima et al., 2016; Ferrão et 

al., 2018) and is often limited to associations with a single habitat or a few broad habitats (Webb 

et al., 2017). Large-scale analysis of habitat association de-emphasises the less frequent 

recordings of a species in a habitat in which the species is transient, which could be 

misconstrued at a small-scale as association. Although SDMs (Petit et al., 2003; Phillips et al., 

2006; Porto et al., 2018) and indicator species analyses (Hill et al., 1975; Gardner, 1991; Ricotta 

et al., 2015) are often done over large scales, this is rare for analysis of the preference of a 

species . Exceptions are Eyre and Luff (2004), who used ordination to study habitat preferences 

of carabids in North East England and the Scottish Border, and Redhead et al.(2016) who used 

general linear mixed effects models to study butterfly habitats across Britain.  

Eyre and Luff (2004) used ordination in a straightforward way, giving each carabid species a 

weighted average from positive to negative for each habitat. They did, however, point out that 

care should be taken in interpreting their findings due to some anomalous results. Redhead et al. 

(2016) used the coefficients from their model to derive associations. Their method worked well, 

albeit with large variation in the associations within individual species, but needed 

approximately 5000 records to ensure accuracy. They used this approach, as other methods 

required more precise locations information than the 1 km they used. 

De Cáceres and Legendre (2009) created a framework for ecologists explaining when to use 

IndVal or an alternative, the Phi coefficient of correlation (Pearson, 1896). We focus in this 

paper on the Phi coefficient of correlation, (“correlation index”) which like IndVal is simpler 

than ordination. Unlike IndVal, the correlation index gives a negative association value when a 

species appears to avoid a habitat, and uses species’ absences to provide extra information (De 

Cáceres and Legendre 2009). The Phi coefficient gives degree of preference for a habitat 

compared to other groups. By contrast IndVal assesses how much the target site group matches 

a set of sites where the species is found and is an indicator species analysis. The correlation 

index was created by Karl Pearson (1896) and at its simplest is the binary version of the 

Pearson’s correlation (De Cáceres et al., 2008). It is the preferred method in plant science for 

calculating site fidelity (De Cáceres and Legendre, 2009), but has not been adopted more 

generally despite De Cáceres and Legendre’s (2009) framework. The index uses two binary 

vectors to describe a location: one representing presence or absence of the species and the other 

whether a location is the habitat of interest. The index does not incorporate uncertainty in the 

habitat of the location, it is either habitat or not. Species records often have a degree of 

uncertainty, particularly concerning the spatial resolution of the record. The area covered by the 

resolution of the record may contain multiple habitats. The binary nature of the correlation 

index requires either removal of mixed or uncertain habitat data or a judgement as to which 
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habitat to assign. While this might be considered as an error in the record, movement of 

individuals from preferred into adjacent less-preferred habitats is common (Ries et al., 2004), 

and so the precise location in which a mobile individual is found may not be in a preferred 

habitat. To incorporate these issues, we propose a new version of the correlation index, adding a 

third vector to each record, which is a weighting based on the certainty of the habitats at a 

location. We present the weighting as the proportion of a particular habitat in 100 m grid cell. 

However, the weighting could be the probability of correctly classifying a habitat from remote 

sensing or a combination of weightings.  

In this paper, we present our weighted version of the correlation index and test it against the 

original version using a case study of carabid beetles of Great Britain. We also carry out a 

partial validation of the correlation indices using qualitative data from species descriptions. The 

analysis uses records from the UK National Biodiversity Network (NBN) Atlas (2018) and 

Centre for Ecology and Hydrology (CEH) Land Cover Map 2015 (LCM2015) (Rowland et al., 

2017a). We used a method that considers the number of other species within the family found at 

a location as proxy for survey effort (Hickling et al., 2006; Redhead et al., 2016). We use an 

absence threshold of 14 carabid species and conduct a sensitivity analysis of the threshold value. 

Most species have fewer than 1000 records. We, therefore, ascertain how many records are 

required to give a valid estimate of habitat association. 

2.3 Methods 

2.3.1 Correlation indices 

The original correlation index uses binary presence-absence with each location assigned to one 

group (habitat) (De Cáceres and Legendre, 2009). The index is the Pearson correlation 

coefficient for two binary vectors with length 𝐿, one vector representing the species 

presence/absence at each location (𝒔) and another representing if each location is the habitat of 

interest (𝒉) (De Cáceres and Legendre, 2009). The lengths and sums of each vector are used in 

equation (2-1 

Φ =
𝑁 × 𝑛 − 𝑛 × 𝑁

ට(𝑁 × 𝑛 − 𝑛ଶ) × ൫𝑁 × 𝑁 − 𝑁
ଶ൯

 (2-1) 

Where 𝑁 is the total number of locations (𝑁 =  𝐿), 𝑁 the number of locations with the habitat 

of interest (𝑁 = ∑ ℎ

ୀଵ ), 𝑛 is total number of occurrences across all locations (𝑛 =  ∑ 𝑠


ୀଵ ), 

and 𝑛 is the number of occurrences in habitat of interest (𝑛 = ∑ ℎ𝑠

ୀଵ ). In the event that a 

location is not a point location and instead covers an area, a location could contain more than 

one habitat. For example, in location 4 (Table 2-1), an area location contains acid grassland 

(2%), inland rock (59%) and heather (39%). We do not know in which habitat the species was 
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found, therefore when calculating the original index, either only locations that contain a single 

habitat could be included or a habitat would need to be chosen. We might choose to discard all 

locations with more than one habitat. This would leave locations 1, 2, 3, 5, and 7 in Table 2-1. 

The carabid species of interest is then either present or absent within that single land cover type. 

Using this approach can remove a large proportion of the data, sometimes making a species 

unviable for analysis. Another way of conducting the unweighted analysis would have been to 

choose the habitat covering the largest proportion of the 100 m location; a version of the 

analysis doing this can be found in Appendix C2.1. To allow the use of a larger proportion of 

the data, we created a weighted version of the index (equation (2-2). 

Φ௪ =
𝑁 × 𝑛

௪ − 𝑛 × 𝑁
௪

ට(𝑁 × 𝑛 − 𝑛ଶ) × ൫𝑁 × 𝑁
௪ − 𝑁

௪ଶ൯

 (2-2) 

Table 2-1 Example of the vectors that can be used in calculating the Phi coefficient for each individual habitat, 
showing the , proportion of each habitat within each location and the binary presence data, in this case for the 
species Abax parallelepipedus (see Appendix 2 for matrix version of this information and equations). 
Locatio
n ID 

LCM2015 habitat  Heather 
habitat 

vector (h) 

Weigh
t 

vector 
(w) 

Species vector 
(s) 

1 Heather grassland  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
1
0
1
0
0
⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1.00
1.00
1.00
0.02
0.59
0.39
1.00
0.76
0.24
1.00

⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
1
1
1
0
0
0
1
⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

2 Supralittoral 
sediment 

 

3 Heather grassland  
4 Acid grassland  
4 Inland rock  
4 Heather  
5 Inland rock  
6 Heather  
6 Improved grassland  
7 Inland rock  
… …  
All three vectors have length L 

This version added a third non-binary vector of the weighting of each habitat at each location 

(𝒘). This weighting could be any by which each location sums to one (for example land cover 

classification certainty) but we used the proportion of each habitat. All three vectors have 

length 𝐿. 𝑁 is still the total number of locations (𝑁 = ∑ 𝑤

ୀଵ ), and 𝑛 is still the total number of 

occurrences across all locations (𝑛 = ∑ 𝑤𝑠

ୀଵ ). The values of 𝑁 and 𝑛 are the same as they 

would be if each of the locations only had a weighting of one (a single habitat in our example). 

The 𝑁 and 𝑛 values change however, now denoted as 𝑁
௪ and 𝑛

௪. These can be calculated as 

𝑁
௪ = ∑ 𝑤ℎ


ୀଵ  (lower than a hypothetical 𝑁 would be) and 𝑛

௪ =  ∑ 𝑤ℎ𝑠

ୀଵ (smaller than a 

hypothetical 𝑛). So for only the data in Table 2-1 (assuming no threshold was applied) and 
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with Inland rock being the habitat of interest; 𝑛
௪ = 0.59 + 1 = 1.59, 𝑁

௪ = 0.59 + 1 + 1 = 2.59, 

N = 7 and n = 2 and therefore using the equation for the weighted correlation index (equation 

(2-3) gives; 

Φ௪ =
7 × 1.59 − 2 × 2.59

ඥ(7 × 2 − 2ଶ)(7 × 2.59 − 2.59ଶ)
= 0.56 (2-3) 

The weighted version balances the reduced terms 𝑛
௪ in the numerator of the equation with 𝑁

௪ 

in the numerator and denominator meaning the equation still gives both positively and 

negatively correlated habitats. If all of the locations within the analysis are certain (one habitat), 

the weighting is 1 and the result is the same as the original correlation index. See Appendix 2 

for matrix representation of the data and other equations.  

We calculated both the original and the uncertainty-weighted correlation index ϕ values and 

permutated (De Cáceres and Legendre, 2009) to get a p-value for each habitat and for each 

carabid species. See De Cáceres and Legendre (2009) for additional considerations when 

conducting permutation tests. 

2.3.2 Data 

We used the large volume of carabid (Coleoptera: Carabidae) location records and high-quality 

land cover data available in Great Britain. 

2.3.2.1 Carabid data 

The National Biodiversity Network (NBN) atlas (2017) contains presence records for many 

species, at 100 m resolution resulting from the six digit Ordnance Survey grid reference (Telfer, 

2006). We downloaded all records of carabid locations from the NBN atlas on the 7/11/2017 

and initially selected those above an arbitrary threshold of at least 10 records (268 species). We 

converted the coordinates into 100 m grid cells, with the coordinates representing the bottom 

left corner, using ArcGIS (v 10.4.1 © 2016 ESRI, Redlands, California). NBN species names 

were checked and synonyms corrected using the Natural History Museum UK species inventory 

checklist (Raper, 2014). Remaining synonyms were corrected using the checklist in Luff (2007). 

These steps increased the number of records for species with accepted names on these 

checklists. 

The NBN does not include absence data. A species cannot be considered to be absent from all 

locations where it is not recorded. To allow us to have confidence that a species was genuinely 

not at a particular location, we counted the number of other species found in each location as a 

measure of survey effort. Following Hickling et al (2006) we considered a location to be a true 

absence if it had more records than a threshold number of other carabids. The threshold number 

of species is arbitrary. For butterflies, Redhead et al. (Redhead et al., 2016) used a value of 10% 
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of the species pool (5 species). Using 10% of the carabid species would have required 28 or 

more species, giving only 94 locations across Britain. We used a threshold of 14 species (5%) 

giving 556 potential absence grid cells and conducted a sensitivity analysis of this value. 

Absence locations for a species are the remainder of these 556 grid cells after removing those 

containing the species of interest.  

2.3.2.2 Land cover 

We used the vector LCM2015 for Great Britain (Rowland et al., 2017a) to provide habitat data. 

LCM2015 contains 21 land cover classes based on the UK Biodiversity Action Plan Broad 

Habitats (Jackson, 2000). These classes are assigned to Ordnance Survey Master Map polygons 

using a Random Forest object-based classification of satellite Landsat-8 (30 m resolution) and 

AWIFS data (60 m resolution) (Rowland et al., 2017b). Polygons smaller than 0.5 ha or less 

than 50 m in width are merged into neighbouring polygons. This can remove linear habitats 

such as those within freshwater, only capturing larger water bodies and wide rivers (Rowland et 

al., 2017b).  

We intersected LCM2015 data with the 100 m NBN squares and calculated the proportion of 

each habitat at each location. In principle, one might include temperature or altitude, or group 

land cover classes. Analysing a large number of alternative habitats can lead to a loss of power. 

Therefore, if dividing some habitats, others should be amalgamated. But here, for simplicity, we 

used the LCM2015 classes as they are without further classification. 

2.3.3 Validation data 

To allow validation of both weighted and original correlation indices we used information from 

Luff, (2007) “The Carabidae (ground beetles) of Britain and Ireland”. Luff (2007) is a 

comprehensive text on British carabid identification including descriptions of where the species 

might be found. We used only habitat preferences within the British Isles due to differences in 

associations to other parts of Europe (Eversham and Telfer, 1994; Desender et al., 2005). Luff, 

(2007) stated the preferred habitat for each carabid species in a descriptive way; for example, 

“In most habitats, especially agricultural fields, gardens and other disturbed, open and dry 

situations” (p. 68, Trechus quadristriatus). Luff (2007) did not create the book as a database of 

species associations. It was, therefore, necessary to convert the text into a database against 

which we could compare our analyses.  

We developed a method using as little subjective interpretation as possible. We looked at all 

words in the descriptions in Luff (2007) of habitat and picked out those words naming a habitat. 

We then translated these, into either an individual or group of LCM2015 habitat classes. For 

example, “moorland” in Luff was translated as including Inland rock (in LCM2015 

documentation included under “Mountain, heath, bog” (Rowland et al., 2017b)), Acid grassland, 
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Heather grassland, and Heather & Bog. Where Luff’s habitat descriptions represented a group 

of land covers, the group was included in the database as an aggregate class against which to 

check the analysis. For a table showing a full list of the words used and resulting LCM2015 

habitat classes and aggregates (see Table A C2.1). 

2.3.4 Analyses  

The NBN data contained a separate record for each species at each relevant 100 m location 

meaning that individual locations appeared multiple times. We created a version of the data with 

each location represented once, giving presence or absence (absences determined as described 

above) for each species at that location. We created this wide format version by using an R 

script to go through each location and assign a new binary column of presence for each species. 

Table 2-1 shows an example of the data after pre-processing. The correlation index and 

permutations of the analysis, for each species and versions of the method, were processed using 

the JASMIN cluster (Lawrence et al., 2013). The R scripts for all analyses can be found in the 

supplementary materials of the published paper. 

2.3.4.1 Sensitivity analysis 

We conducted a sensitivity analysis of threshold number of species used to define absence 

locations by using Spearman’s rank correlation to determine to what extent the order of the 

habitat associations from positive to negative ϕ changed using seven (2.5% of the total species 

number) and 28 (10%) species number thresholds compared with the baseline of 14 . We also 

compared the order of habitat associations from positive to negative ϕ between the weighted and 

original index for each species using Spearman’s rank correlation.  

2.3.4.2 Validation 

The correlation index results for each carabid species were validated by comparing them to the 

database created from Luff (2007) (section2.3.3). For each species, we calculated the percentage 

of “Luff habitats” that were also found to be significantly (p-value ≤ 0.05) and positively 

associated habitats in our correlation analysis for that species.  

2.4 Results 

By allowing the use of locations containing more than one habitat, the weighted index used 

more records for each species and therefore included 52 extra species; 19% more. For example, 

for Bembidion prasinum the original method only included 14 records, but the weighted method 

used 79 records. Luff (2007) describes this species as living in shingle near running water. The 

original method did not include freshwater at all due to a lack of records. The weighted method 

associated the species most strongly with freshwater. Comparing the rank of the habitats based 

on their Phi score for the weighted and original analyses for this species using Spearman’s rank, 
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the rho value was only 0.62. The species that have far fewer records in the original than the 

weighted version, like B. prasinum, drove the average correlation down. In most cases where 

both species had many records, the rank correlation was higher. One exception to high 

correlation with many records is Curtonotus aulicus that had 106 original and 258 weighted 

records. The original version had freshwater non-significantly (p = 0.392) positive despite this 

being described as a dry habitat species (Luff, 2007). The weighted analysis of C. aulicus had 

freshwater as the habitat most significantly (p = 8.00 × 10-04) avoided. 

2.4.1 Validation  

Using the 14 species threshold for absence, the original version had 207 and the weighted 

version 264 species with at least one significant habitat association. Furthermore, the weighted 

and original indices gave similar ranked habitat associations, with the average Spearman’s rank 

correlation 0.82 (SE 0.008) between the two indices. That is not to say however, that significant 

results sensibly described the habitat of the species. We, therefore validated the correlation 

results against the database created from Luff (2007). 

Considering the average (across species) percentage match of our analyses to Luff habitats, the 

original analysis identified on average 68% (using 187 species) of Luff habitats and the 

weighted analysis 70% (using 239 species). This is not a great deal more on average, but does 

include more species. In the original version, all of the Luff habitats were identified for 94 

species and at least one Luff habitat for 157 species. In the weighted analysis, all of the Luff 

habitats were selected for 126 species and at least one Luff habitat for 205 species. Comparing 

with Luff (2007), the weighted version matched 18 species less well than the original version, 

141 matched as well, and 28 matched better. Overall, using only the species analysed using both 

methods, the weighted version matched 6.8% on average better compared to the original 

version. Figure 2-1 shows the graphical comparison of the two versions of the index. The 

weighted version generally gave a slightly higher percentage matches for species with a 

moderate to large number of records, and included more species with few records.  
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Figure 2-1 Comparison of original and weighted correlation index showing how they match the validation data. 
Species are in bins of the number of records (using the records without removal, as used in the weighted version). 
Species that did not have enough records in the original version are included on the left to show that the weighted 
version on average when including these species achieves a match with the validation data. 

2.4.2 Individual species examples. 

Here we give examples showing comparisons between the original and weighted version of the 

index, the improvement using the weighted method and establishing how few records are 

required to give a reasonable estimate of habitat preference. For the full dataset of all carabids 

analysed see Appendix 4. 

2.4.2.1 Original vs weighted index 

Abax parallelepipedus is described by Luff (2007) as a woodland and moorland species. Due to 

insufficient data, the original version failed to classify three habitats, despite having 176 

records, but did show a preference for woodland and heather grassland (Figure 2-2). The 

weighted method classified all habitats and captured the woodland and more of the moorland 

habitat types. For Acupalpus dubius neither analysis matched Luff (“In litter, moss and tussocks 

near fresh water”(p.175) translated as Freshwater), but may give additional information (Figure 

2-2) as an association was found with “Fen, marsh and swamp”, potentially represent the moss 

and tussocks of Luff’s description. The analyses identifies freshwater for other waterside 

species (see Appendix 4), this therefore is not a consistent problem with detecting freshwater. 
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Two examples are; Anthracus consputus and Trechoblemus micros, which both Luff and our 

analysis classify as freshwater species. 

 
Figure 2-2 Abax parallelepipedus and Acupalpus dubius original and weighted habitat correlation analysis showing 
the relative positive and negative ϕ and p values. These examples show the improvement offered using the weighted 
method, matching better with Luff and including more habitats. 

Calathus fuscipes and Loricera pilicornis are two examples of species that matched Luff 

habitats better in the original than the weighted version, which failed to match open grassland 

and suburban respectively (Figure 2-3). For both species the named habitat remained positively 

associated in the weighted analysis, but had higher p-values, 0.16 and 0.23 respectively. 

 
Figure 2-3 Calathus fuscipes and Loricera pilicornis original and weighted habitat correlation analysis showing the 
relative positive and negative ϕ and p values. Showing that in these cases the original version matched more Luff 
habitats than the weighted version. The weighted method does however manage to represent more of the habitats. 

2.4.2.2 Number of records required 

Species with between 10 and 35 records in the weighted analysis gave matches with an average 

of 66% of Luff habitats. With so few presence records, however, the analysis had less power to 
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differentiate habitats and to detect significance. For Amara curta the analyses was not able to 

detect any avoided habitats and analysis failed to pick up on the heath association suggested by 

Luff (2007). With 50 or 60 records, as in the case of Bracteon litorale or Harpalus anxius, the 

analysis was more able to differentiate the individual habitats. Bracteon litorale, which Luff 

(2007) describes as “On bare sand and fine shingle near rivers or standing water”, was 

associated in our analysis with broadleaved woodland and improved grassland, as well as 

agreeing with Luff by including freshwater. For Harpalus anxius, the analysis seemed to select 

the dunes of Luff’s description well, with supralittoral sediments the most preferred habitat, but 

did not select heaths. Additionally a positive association with saltmarsh was identified, which is 

often near dunes (Figure 2-4).  

 
Figure 2-4 Amara curta, Bracteon litorale, Harpalus anxius, and Dyschirius globosus weighted habitat correlation 
analysis showing the relative positive and negative ϕ and p values. Showing that with more than 50 records the 
analysis gives both significantly positive and negative association. 

2.4.3 Sensitivity analysis 

Spearman’s rank correlation values were high when comparing habitat association calculated 

with the threshold value of 14 to a threshold of seven or 28 (Table 2-2). Even comparing the 

seven to the 28 threshold, the rank of the habitats remained consistent. 

Table 2-2 Comparison of the habitat associations using Spearman’s rank correlation between different thresholds of 
species numbers used to define absence squares in the analysis of carabid land cover association. 

 Threshold 
7 and 14 

Threshold 
14 and 28 

Threshold 
7 and 28 

Number of 
species 

Original 0.90 (SE 0.004) 0.86 (SE 0.009) 0.80 (SE 0.011) 212 
Weighted 0.95 (SE 0.002) 0.89 (SE 0.007) 0.84 (SE 0.009) 268 
 

2.5 Discussion 

Our new weighted version of the Phi correlation index allowed substantially more records to be 

included for each species and therefore increased the number of species that could be analysed 

and improved the predictions of habitat association. The use of the number of species records as 
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a proxy of survey effort was robust, being insensitive to the threshold for defining absence 

locations. The weighted analysis was able to give accurate results with as few as 50 records, and 

the use of absences enhanced the ability to determine habitat associations. Informative results 

using so few records are in stark contrast to other methods which require thousands of records 

for each species. Redhead et al. (Redhead et al., 2016) suggest that few taxa are well-enough 

recorded to provide so many records, our improved method will be applicable to many more 

taxa. For example, 35% of cerambycid beetles have 50 or more records in Great Britain (44% 

for carabids). Our method also gives a target for recording the rarer specialist species, whose 

conservation most requires an evidence base (Lawton et al., 2010).  

As the number of records gets very large the Phi coefficient becomes the Ochiai index, which is 

itself related to a modified version of IndVal (De Cáceres et al., 2008). The number of records 

in the data we have are not large and the Ochiai index was therefore not applicable. It is 

possible, however, to extend both the non-equalized and group-equalised IndVal in a similar 

way to the phi coefficient we present in this paper by adding habitat weighting. The values still 

range between zero and one and the weighted version gives a value for more of the habitats. The 

results of weighting IndVal have not been tested, but this could be done in future research 

identifying indicator species. To facilitate such a test, this capability is included in our PhiCor R 

package. Dufrêne and Legendre (Dufrêne and Legendre, 1997) used carabid data from pitfall 

traps to validate IndVal originally. The capture locations of all individuals were known 

precisely. However, besides using the weighting for imprecise locations, as presented in our 

case study on the phi coefficient, the weighting method could be useful in cases with precise 

locations for a number of the indices presented in De Cáceres and Legendre (2009). These cases 

include species foraging or dispersing into neighbouring habitats (McIntire et al., 2013), source-

sink dynamics of plants (Kadmon and Shmida, 1990), or to account for the uncertainty of land 

cover classification (Morton et al., 2011). It may even be worthwhile drawing buffers around 

record locations so as to include information on surrounding habitat. 

Unlike species distribution models, the correlation index does not suffer from overfitting 

(Breiner et al., 2015). However, as numbers of presences and absences differ between species, 

comparison among species is not straightforward. The maximum ϕ values vary with the number 

of records and are rarely comparable between species. The rank of the habitats is comparable 

but where two species have similar ranks for a habitat they may not have the same affinity. The 

number of positive habitats for each species, however, is positively correlated with the degree to 

which a species is categorised independently as generalist vs specialist (see Appendix C2.6). 

One possible way of increasing the comparability between species is to use the group equalised 

correlation index (Tichy and Chytry, 2006). Beyer et al. (2010) reviewed the factors influencing 
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habitat preference of species, arguing that species which are found more often are so because 

the habitat is more common. Tichy & Chytry (2006) suggested a group (habitat) equalised 

version of the correlation index. This version modifies several of the inputs by the number of 

groups. In our case, group equalising usually resulted in the same habitats having significant 

associations, although the ϕ values were often different. As an example, Bembidion lampros is 

associated in the non-equalised analysis with arable followed by conifer and urban. In the 

equalised analysis the same habitats are retained in the top three, but now the beetle is most 

associated with coniferous, urban and then arable. A weighted group-equalised version 

(Appendix C2.7) did not match the Luff (2007) validation data quite as well, but is included in 

the full output (Appendix C2.5). It should be noted that species may not be equally detectable in 

different habitats and therefore, where the data is available a similar equalisation could be done 

using detectability. 

The analysis we have conducted agrees to some extent with previous smaller scale studies of 

carabids using different analytical approaches. Eyre and Luff (2004) used constrained ordination 

with 126 carabid species against the proportion of 12 habitats within 1 km squares across 

north-east England and south-east Scotland. Some of their results agree with ours, although, as 

an example, their analysis suggests a higher preference of Abax parallelepipedus for inland 

water than broadleaved woodland. Eyre and Luff (2004) point out that some unexpected 

relationships of species and land covers suggest care is needed when interpreting their results 

and that the low eigenvalues and cumulative percentage variation suggest noisy data. 

Within the literature the same species is sometimes attributed to different habitats in different 

studies without clear information on where this association information stems from or the 

species’ other associations. An example is Pterostichus madidus, which is variously described 

as inhabiting dry open, urban, moorland or grassland (Butterfield et al., 1995; Dennis et al., 

2004; Angold et al., 2006; Morecroft et al., 2009), with Luff (2007) describing the species as 

“woodland, garden and dry grassland”. Our analysis agrees with all of these habitats, suggesting 

the species is associated with a wide range of habitats. The method we present provides a robust 

method of presenting all the associations of a species, which can be used to paint a clearer 

picture of habitat associations. 

We chose in the main analysis to remove record locations with more than one habitat. Another 

option was to choose the most abundant habitat. We conducted a version of the unweighted 

analysis choosing the most abundant habitat in each 100 m square. This version matched the 

Luff (2007) validation less well than the unweighted version removing records (Appendix 

C2.2). This is likely due to misclassification of the habitat that the species was found in or the 
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loss of information about which habitat individuals of the species could have been in prior to 

being caught.  

In conclusion, our new weighted method demonstrates an improvement to the Phi coefficient of 

association, which is simpler than ordination, requires fewer records than regression, and gives 

habitat preference and avoidance. Our method allows for uncertainty in the habitats associated 

with the record location and is ideal for mobile species, which may be found outside of 

preferred habitats. It utilises more of existing sources of data, including every habitat within a 

non-point location, giving quantitative information on habitat preference. Our work provides 

guidance on the flexible threshold defining absence records and targets for the number of 

records necessary to achieve a reasonable result for each species. The method is usable as-is to 

provide detailed data usable in conservation planning and the case study provides the carabid 

analysis ready to use in modelling and improving interpretation of the results of future studies. 

Having established the method as working for carabids, the method would benefit from further 

testing with different taxa. 

2.6 Data Accessibility 

CEH LCM2015 (Rowland et al., 2017a) is available for academic purposes from 

https://doi.org/10.5285/6c6c9203-7333-4d96-88ab-78925e7a4e73. National Biodiversity 

Network (NBN) atlas (2017) carabid data is available from 

https://species.nbnatlas.org/species/NHMSYS0001717497.  
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Chapter 3  

Individual-based model, Overview, Design concepts and 

Details 

3.1 Introduction 

The remaining data chapters of this thesis look at fragmentation per se (FPS), and investigate if 

differences in species and habitat matrix between FPS patches may alter the relationship of 

alpha-, beta-, and gamma-diversity to FPS. Due to the difficulties in conducting this sort of 

analysis in the field in terms of time, money, and availability of sites and the difficulty of 

looking at fragmentation while controlling for the area, I chose to look at FPS by using a 

modelling approach, by using an individual-based model (IBM). I used an IBM in a multi-

species and landscapes simulation to allow me to look at the emergent properties of having 

multiple individuals and species moving around a landscape containing a high number of 

patches and habitats. Other options than IBM for looking at the effect of a large number of 

patches with species having multiple preferences would have been difficult if not 

computationally and mathematically impossible. Deterministic models would struggle to with 

the large numbers of patches and the complexity of multiple land-covers in the matrix between a 

fragmented land cover (Kanagaraj et al., 2013), traditional modelling approaches also fail to 

capture variability caused by individuals (Railsback and Grimm, 2017).  

Our simulation had much in common with other IBMs, density-dependence at a cell scale, 

random distance of movement up to a maximum distance and random starting locations (Fahrig, 

2001).Other IBMs have used multiple species (Shin and Cury, 2004) and studies have looked 

fragmentation (May et al., 2019) or connectivity (Hunter-Ayad and Hassall, 2020), few other 

models look at fragmentation using multiple species, and then only in part of the landscape 

(Rybicki et al., 2019). My simulation looking at fragmentation contains multiple generic species 

within each simulation run and in not being limited to using a binary landscape of focal-habitat 

and matrix, allowing different species to have different land cover associations within a single 

landscape (Nabe-Nielsen et al., 2010; Betts et al., 2014; Chetcuti et al., 2019). I focus on generic 

species in the hope of finding generalisable results and not results only specific to a small 
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number of species or a genus. FPS is defined and mitigated at a human perspective that may not 

match a species perspective (Bollmann et al., 2005; Betts et al., 2014; Brodie and Newmark, 

2019; Chetcuti et al., 2019). My approach continues to classify the fragmented habitat from the 

perspective of a human classified land cover while utilising a benefit of IBM and allowing 

species level perspectives with species having different associations with the focal-habitat and 

matrix land covers. Having increased the complexity of the simulation with multiple species and 

land covers, I kept the individual species simplistic. The simulation does not contain seasonality 

and the associated difference in when species reproduced, nor did it include different dispersal 

and foraging movement behaviour. I instead opted to focus the simulation instead on the 

interaction of species with the landscape and how these species move in an attempt to see if, 

even with these simplistic species it was possible to show differing effects of FPS. My IBM was 

built and run in NetLogo (v6.0.4) software (Wilensky, 1999). No random seed was set instead 

automatically set for each simulation run by the system time. The random numbers were then 

generated using a Mersenne Twister (Wilensky, 1999). The model description follows the ODD 

(Overview, Design concepts, Details) protocol for describing individual- and agent-based 

models (Grimm et al., 2006; Grimm et al., 2010).  

3.2 Overview 

3.2.1 Purpose 

The purpose of this IBM is to allow for the simulation of the interactions of multiple species 

with landscapes and record the habitat and patch at the end of the simulation. This sort of 

simulation is necessary to go beyond single species, binary, few patch deterministic models and 

to allow for the creation and interaction of multiple species with multiple habitats within a 

landscape. This sort of simulation is also interesting as it allows the exploration of different 

walk types for the species. In this simulation, three walks can be set; random walk (RW), 

correlated random walk (CRW) and a habitat dependent walk (HDW). Initially, this simulation 

will be used in three studies, but the hope is that this simulation could be used to answer many 

different questions going into the future. The outputs of these simulations can be used to look at 

changes in abundance and diversity (alpha, beta, gamma and zeta) of different species or types 

of species. The outputs can also be used to look at the full movement path of individuals within 

the simulation. The user of the simulation can either, define abstract species or, to a degree, real-

world species 

3.2.2 Entities, state variables, and scales  

The entities in this IBM are not based explicitly on any real species or sets of species but can be 

parameterized to represent real species. Each entity type or species is defined primarily by its 

habitat suitability, representing both suitability and preference of species to the habitats (a 
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ranking of all possible habitats) and optionally secondarily by the degree to which this 

suitability influences bias in choosing habitat, reproductive probability, mortality probability 

and how the species walks in different habitats. Species can have different speeds, maximum 

reproductive rates, inter and intra-species density-dependent mortality, walks and starting 

numbers.  

Each individual has a set of variables, with only some of them changing every turn: 

These change in every turn: 

 Heading – the direction the individual is facing. 

 X-coordinate – the location on the x axis of the individual. 

 Y-coordinate– the location on the y axis of the individual. 

These are different for offspring: 

 Individual ID – every individual has a unique integer that identifies the individual. 

Unchanging variables that are stored and inherited for each individual.  

 Species ID – the different species also have an ID shared by all individuals of that 

species.  

 Walk information 

o Walk type – RW, CRW, HDW – species can move with different walks, 

random, correlated and habitat dependent walks. 

o HDW exponent – the HDW walk is defined by a negative exponential function. 

This is the exponent and determines how quickly the walk becomes more 

directed with progressively less suitable land cover. 

o  multiplier to the CRW angles 

 Speed or maximum movement distance – the furthest and individual can move in a 

single time step. The emergent movement behavior of this approach will be a dispersal 

kernel with more individuals moving shorter than the maximum and few at the 

maximum.  

 Maximum reproductive rate – the probability of an individual having an offspring 

within a single time step. 

 Intra and inter species density – how many individuals can survive in the same cell. 

 Habitat bias slope – the slope of the logistic equation that defines how strongly biased 

species are towards choosing preferred habitat.  

 A habitat mortality slope– the slope of the logistic equation that defines how strongly 

the additional mortality increases in less suitable land cover. 
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 A habitat reproduction slope– the slope of the logistic equation that defines how 

strongly the reproduction decreases in less suitable land cover. 

The following variables are lists giving a value for each habitat calculated using the HDW 

exponent, habitat bias slope and mortality slope respectively. These values are set for the 

species and do not change, they are calculated at the beginning and stored. Doing so makes the 

simulation run faster as it requires fewer calculations.  

 Habitat field of view (these are only used for the HDW) 

 Habitat Bias multiplier 

 Habitat mortality multiplier 

 Habitat reproduction multiplier 

For all of the variables used by the individuals within the simulation, users of the simulation can 

either define that a variable is the same or different for each species. If the values are different, 

they are loaded from tables. The tables have a row for each species. The rows in the different 

tables relate to the same species.  

The habitat bias and mortality slope multipliers between zero and one and are each given by the 

slope of a negative logistic relationship that calculated the multiplier from the habitat suitability 

rank. These multiplier values are less than one, reducing the probability of moving to a cell or 

the reproductive rate to be lower in less preferred habitat. So that the additional habitat 

dependent mortality is of a similar order of magnitude to the rate of reproduction, the habitat 

mortality multiplier multiplies by the same number as used in the rate of reproduction. This then 

gives an additional mortality between close to zero in suitable land cover and almost equaling 

the reproduction in the least suitable land cover (in most cases, although this can be defined to 

be lower in least suitable land cover).  

The individuals can be set to either move using an RW, CRW or HDW. The HDW moves like 

an RW or CRW depending on the habitat. When moving using the RW the individuals observe 

the cells around it and randomly up to a distance defined by the speed. The habitats are assigned 

a probability of being selected based on 𝑝 ൫1 − 1 ൫1 + 𝑒ି௫(ఝିଵଵ)൯⁄ ൯ where 𝑝 is the 

proportion of the circle that is habitat n and φ is the habitat preference for habitat n and x is the 

slope of the logistic equation. In retrospect I should have, for the CRW walk, used a wrapped 

Cauchy distribution with mean of zero and a concentration parameter (p) which would allow us 

to specify an uncorrelated walk (p=0) to a perfectly correlated walk (p=1). However, we used a 

gamma distribution (alpha = 1, lambda = 2) multiplied by 360°. We then made it more or less 

correlated by multiplying values. When the value exceeded 360° we redrew the number from 

the distribution. The HDW uses a negative exponential equation to determine the range of angle 
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the individual can choose from when walking. In preferred habitat, the walk is, therefore, an 

RW and then becomes progressively more correlated. 

The simulation has no inherent spatial or temporal scale. These can be defined using data on the 

species or genera of interest or by using approximations from allometric equations. So, for 

example, if a species group of interest moved between 2 and 20 km h-1 then, it would make 

sense for a cell to be a kilometer and the time step to be an hour as then individuals could be set 

to move between two and twenty cells per time step. We use the simulation with a vertical and 

horizontal extent of either 1000 or 1020 cells (depending on if we have a buffer or not). 

Changing the extent from the current one 1000-1020 would require a new version, as the extent 

is assumed to be 1000-1020 during the setup procedure. 

The landscapes are loaded from two ascii files, one containing the land cover which should 

match the possible suitabilities in the setup for the species (although not all habitats need to be 

present) and the other defining the habitat patches.  

3.2.3 Process overview and scheduling 

The time is modelled as discrete time steps.  

In each time step: 

1. All individuals are cycled through in random order. 

a. Die if a uniform random draw is less than habitat-based mortality (if the 

simulation has this setting turned on). 

b. Reproduce if a uniform random draw is less than the maximum reproduction 

(multiplied by habitat-based reproduction if this is turned on). 

c. To count the number of individuals in a radius of their self and if higher than 

the threshold to die (inter and intra-species density). 

d. If the whole population of the simulation is over a carrying capacity, then the 

individuals draw a random number against the proportion over the carrying 

capacity and die if the random number is below the proportion.  

e. To assess its surroundings and move (see 2.3 Entities, state variables, and 

scales) 

2. Finally, the time is moved forward one step. 

All random numbers used above are between zero and one. Reproducing individuals spawn an 

individual at its location sharing all variables but setting a new individual ID and the heading 

randomly.  

The simulation is perceptually toroidal to allow the circle or sector of the individuals to be 

complete and not interfere with the movement of individuals, but individuals can be stopped 
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from moving across the boundary by having individuals die if they do cross over (this can be 

turned on or off). So that the habitat on the other edge of the landscape does not influence the 

individuals, causing them to pass over the edge of the simulation more or less probably, a 10-

cell random habitat edge buffer can be included. The random land cover edge can be turned off, 

for example, if the land cover used is simplistic, with the same habitat along all edges, then the 

random edge is not necessary.  

3.3 Design concepts 

3.3.1 Emergence 

The simulation can use several different modes to output results. 

 SinglespeciesLocation and MultispeciesLocation –these report functions can be used for a 

single individual or multiple, to record in every time step: 

 Individual ID 

 Species ID 

 Current location 

o Land cover 

o Patch ID 

o X  

o Y 

 count turtles - the NetLogo default, to count the overall population either every time step or 

at the end of the simulation 

 species-count – is the number of species. Can report either every time step or at the end of 

the simulation. 

 saveOutPitfall and saveOut – these two reporter functions output two csv files, turtle and 

patches. The turtle csv file contains three unlabeled columns, which correspond to species 

id, land cover class and patch ID. The patches csv contain two unlabeled columns, land 

cover class and patch ID. The pitfall function records the individuals that cross the 

approximate central cell of a patch for a defined period before the simulation end and 

outputs the files. The non-pitfall version records every individual at any location. These two 

functions can both be used together at the end of a simulation. If a habitat of interest is 

defined (HabInterest), then the pitfalls are only set up in this habitat and for both output 

types the species are only recorded in the focal-habitat. 

Reproductive and mortality rates overall and in each habitat, the patterns of land covers and 

species suitability and the way the individuals move will influence the number of individuals 

and their distribution within each simulation.  
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3.3.2 Adaptation 

The individuals in the simulation randomly select where to move to within a circle or sector of a 

circle. This random choice can be biased by preference. Density-based mortality is based on 

individual observation of the cell they are in or those in an area around them. The order the 

individuals are cycled through is random, therefore an individual dies if it observes there are too 

many individuals in its vicinity.  

3.3.3 Fitness 

Fitness is not usually sought. Increasing bias towards preferred habitat when habitat-based 

reproduction and or mortality is implemented could be considered seeking out habitat that 

optimizes fitness, but there is still a lot of randomness. They also can only perceive up to the 

maximum distance they can move in a time step and they have no memory for where they have 

been.  

3.3.4 Predictions 

Individuals do not predict future conditions.  

3.3.5 Sensing 

Individuals are aware of the habitat they are in, how many other individuals are in the same cell 

or the surrounding cells (intrRadius and interRadius ≥ 0). They are aware of the cells up to the 

maximum distance they can move within either a circle or a sector depending on the walk. 

3.3.6 Interaction 

Individuals only interact with one another via density-dependent mortality. If there are more 

individuals in their cell than specified, then the individual counting dies. The species are cycled 

through in a different order every time. When an individual dies, it is immediately removed. 

This means that if the density dependence was set as a maximum of two individuals in a cell, 

then if a cell contained five individuals, the first three polled would die, but the fourth and fifth 

would live. 

3.3.7 Stochasticity 

 If the random edge is turned on then the cells in this zone are randomly assigned 

habitat, this is to avoid influencing individuals with the habitat on the other side of the 

simulation, but still let the circle or sector of a circle include cell across the edge of the 

simulation. This makes them leave the simulation randomly. 

 Individuals start at a random location.  

 New individuals have a random heading assigned. 

 When the walk is set to CRW an angle is selected from a random gamma distribution 

and is used to define the sector of a circle the individual observes and can move into. 
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 The maximum distance the individual observes and can move into is randomly selected 

up to the maximum speed for the species.  

 A random number between zero and one is used to decide which habitat to move to 

weighted by bias and proportion. A cell within this habitat is then randomly chosen.  

 Random fractions are compared to the carrying capacity mortality and habitat mortality 

for each individual meaning that on average the mortality is a combination of each of 

these sources of mortality.  

 A random fraction compared to the reproduction rate adjusted by habitat. 

3.3.8 Collective 

Individuals are assigned and inherit a species ID but do not act as a collective. 

3.3.9 Observation 

If the user is using the simulation with the graphic user interface, they can see the land cover 

and different colour individuals, coloured by species. This allows species clumping and 

movement to be observed. Sometimes it is useful to ask turtles to set their pens down as you can 

then see where individuals have been. A graph of the population and number of species can be 

seen on the right. The population graph can be set to show the numbers of each species.  

3.4 Details 

3.4.1 Initialization 

The simulation does not have a single set of initialization values. 

3.4.2 Input data 

The model does not use input data to represent time-varying processes. Land cover data is 

loaded for each simulation. The values are specified for the experimental scenarios. Many of 

these values are kept constant in the current study, but could be changed. 

3.4.3 Submodels 

Individuals having different habitat suitabilities is based on the work in Chapter 2 on habitat 

association of carabids using the Phi coefficient of association (De Cáceres and Legendre, 

2009). This work gave a value between one and negative one defining the positive and negative 

association of the habitat to the species. At this stage, we do not know to what extent this 

association is driven by the choices of the individuals or reproductive success and mortality of 

the species within each habitat. The relationship between the ranked habitat association and the 

associated value is similar to a sideways s-shape. For simplicity, I decided therefore to use a 

negative logistic equation to relate the ranked association of each species to the bias towards 

preferred habitat, habitat growth rate, and mortality. The values calculated for each habitat are 



 

37 
 

used as a multiplier to the probability of choosing a habitat or reproduction and mortality values 

for individuals of an individual while it is in that habitat. The multiplying values are between 

zero and one (equation (3-1). To calculate the habitat bias of habitat, the proportion of the circle 

or sector that is each habitat is calculated and then the proportion of the area that is each habitat 

is multiplied by the multiplier value these are then normalized and cumulatively summed. A 

single random number can then be used to select the habitat using the cumulative sum value for 

each habitat.  

The habitat reproductive rate is calculated by multiplying the mean reproductive rate multiplier 

values and habitat mortality by multiplying the mean reproductive rate by one minus the 

multiplier. 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =  
2

1 + 𝑒௫(ఝିଵଵ)
          (3-1) 

Where x is the slope value assigned for the habitat bias, reproduction or mortality and n is the 

habitat and 𝜑 is the habitat suitability rank. The midpoint of the negative logistic equation can 

be set based on the number of habitats, for example, we set it as 6 as we have 11 habitats. 

Another advantage to using a logistic equation is that on average over all of the habitats, if they 

all had equal proportions in the landscape, the total bias, reproduction or mortality would be the 

same regardless of the slope that was used. 
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Chapter 4  

Fragmentation increases diversity, but not of species that 

depend on the habitat 

4.1 Abstract 

Debate rages as to whether habitat fragmentation leads to the decline of biodiversity once 

habitat loss is accounted for. Previous studies have defined fragmentation variously, but 

research needs to address “fragmentation per se”, which excludes confounding effects of 

habitat loss.  

I have defined fragmentation per se of a focal-habitat with a species level perspective of the rest 

of the landscape. Using a multi-habitat, landscape-scale, individual-based model that 

incorporates movement, I investigated how fragmentation per se changes diversity and if this 

differs among species groups according to their habitat dependency and specialism. I defined 

specialism as increased competitive ability of specialists in suitable land cover, and decreased 

ability in less suitable land cover compared to generalist species. 

I found fragmentation per se caused an increase in gamma-diversity of all species in the focal-

habitat. But, critically for conservation, the gamma-diversity of species for whom the focal-

habitat is most suitable, declined under fragmentation per se. My specialist species were 

unaffected by fragmentation per se. My findings help to inform the fragmentation per se debate, 

showing effects on biodiversity can be negative or positive, depending on species’ competitive 

ability and dependency on the fragmented habitat. My study employs a mechanistic multi-

species model to identify mechanisms that cause some species to be more or less sensitive to 

fragmentation per se. 

4.2 Introduction 

Humans have modified over 75% of the global land area, and the resulting habitat loss and 

degradation is recognised as the principal driver of biodiversity declines (IPBES, 2018). A 

major consequence of landscape modification is that in many locations, previously large blocks 
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of natural habitats have become fragmented into small patches in a matrix of human-modified 

land-use such as farms and cities (Haddad et al., 2015). It is clear that habitat loss reduces 

species diversity, simply by shrinking the areas in which species using that habitat can live 

(MacArthur and Wilson, 1967; Hodgson, Moilanen, et al., 2011; Keil et al., 2015). However, 

the effect of fragmenting habitats is less clear. “Fragmentation per se” (FPS) refers to the effects 

of fragmentation after taking account of, or in the absence of, habitat loss (Fahrig, 2003). Put 

another way, it comprises the altered spatial configuration of habitat with no habitat loss, such 

that remaining patches are smaller but more numerous. In reality, fragmentation and loss of 

habitat are intrinsically linked (Fletcher et al., 2018). Nonetheless, separating the effects of FPS 

from those of area loss and defining under what circumstances FPS leads to higher or lower 

species diversity are important for conservation decisions, such as restoration of habitat 

networks (Isaac et al., 2018). The consensus in the conservation literature has been that 

fragmentation in general is detrimental to biodiversity (Lawton et al., 2010; Eigenbrod et al., 

2017). Considering FPS specifically, debate continues as to whether the effect of FPS on 

biodiversity is generally negative (Fletcher et al., 2018), insignificant or positive (Fahrig, 2017; 

Fahrig et al., 2019). Understanding how positive vs negative effects of FPS on diversity may 

arise according to species’ characteristics such as specialisms and habitat associations, will aid 

decisions about how to manage specific landscapes. Decisions include whether to conserve 

multiple small or fewer large habitat patches (Tulloch et al., 2016) or to allow activities that 

may lead to a limited loss of habitat, but fragmentation (Miller-Rushing et al., 2019).  

It is often assumed that specialist species and those that are positively associated with the focal-

habitat should be negatively affected by FPS (Kosydar et al., 2014; Halstead et al., 2019). If 

studies report a positive effect of FPS, one explanation given is that species richness and 

abundance of generalists increases with habitat fragmentation, leading to this rise in diversity 

(Hu et al., 2012). But in 97% of the studies considered in a review by Fahrig (2017), FPS had a 

positive effect on the landscape-level diversity of specialist, rare, or threatened species. This 

could be because FPS allows for separation of otherwise competing species among patches of 

the focal-habitat within the landscape (Ramiadantsoa et al., 2018). Specialist and generalists are 

often defined by an association with a particular land-cover or with many respectively, but this 

association is open to interpretation (Da Silveira et al., 2016). Being a generalist does not mean 

the species does not have habitat preference (Townsend et al., 2008; Da Silveira et al., 2016). 

Chetcuti et al. (2019) looked at the habitat association of hundreds of species, showing most 

species had a positive association with a number of land covers, and only a few species showed 

a strong restriction to only two or three land covers. Specialists have also been defined as being 

more competitive in a preferred or more suitable land cover compared to a competitively 

inferior generalist in that land cover, but the generalist more competitive in general across 
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multiple land covers (Marvier et al., 2004). Here I define specialists as being more competitive 

in suitable land cover than generalists are, but less competitive than the generalists elsewhere, 

even where the species may share the same habitat preferences within a landscape.  

Long-term manipulation experiments show that patch attributes typically associated with 

fragmentation (e.g. reduced patch size), reduce biodiversity at the scale of an individual patch, 

i.e. alpha-diversity (Haddad et al., 2015; Fletcher et al., 2018; Damschen et al., 2019). However, 

it has been suggested that mechanisms identified in patch-scale studies may not extrapolate to 

negative effects on biodiversity at the landscape scale (Fahrig, 2017). Indeed, at the landscape 

scale, across multiple patches of that focal-habitat, Fahrig (2017) reports that different studies 

report either a neutral or a positive response of biodiversity (gamma-diversity) to FPS (Fahrig, 

2017). By contrast, the species-fragmented area relationship suggests that negative effects of 

FPS should reduce gamma-diversity from that predicted by the species-area relationship 

(Hanski et al., 2013). However, the modelling behind species-fragmented area relationship and 

patch scale studies do not take into consideration mechanisms that lead to potential positive 

effects of fragmentation, such as increased beta-diversity caused by competitive release and 

higher land cover diversity (Fahrig et al., 2019; Rybicki et al., 2019). These mechanisms may 

increase beta-diversity and lead to overall increase in gamma-diversity with FPS. 

At the patch scale, there is also another problem. It can be difficult to separate the effects of loss 

of area from those of FPS, as highly fragmented habitats are often in smaller patches (Fahrig, 

2003). Controlling area is not only a problem for patch-scale studies. In general conduction 

manipulative landscape-scale studies are difficult and it is often impossible to control for habitat 

area, which results in a confounding of FPS with habitat loss (Fahrig, 2003; Betts et al., 2019). 

The effects of area can be isolated statistically (Fahrig, 2017; De Camargo et al., 2018), but in 

these cases, the change in area can swamp any FPS signal (Fahrig, 2003). Theoretical modelling 

is a useful way to address contested issues where field data are difficult to collect and subject to 

confounding variables. To this end, simulation models have been used to study FPS, which 

allow individual organisms to move across simulated landscapes (Gunton et al., 2017; Rybicki 

et al., 2019). However, these studies, as with many other studies (Thompson et al., 2019), with 

few exceptions (Wiegand et al., 1999; Heinrichs et al., 2016), are conducted on binary 

landscapes with the space between the focal-habitat patches, the matrix, being a single land 

cover type. Obviously, binary landscapes are rarely found in nature, and so using a binary land 

cover likely reduces the relevance and applicability of these simulation studies (Fardila et al., 

2017). With only a single matrix land cover, one possible mechanism of benefit of FPS is lost, 

that of increased land cover diversity. With FPS, patches of focal-habitat are adjacent to 

different matrix land covers, which can lead to higher diversity in the focal-habitat by providing 

a secondary habitat (Fahrig et al., 2019; Rybicki et al., 2019). By having multiple matrix land 
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covers, edge effects, which are typically considered a negative mechanism of FPS, can have a 

positive effect (Fahrig et al., 2019; Betts et al., 2019). In this study, I modelled FPS in terms of a 

single land cover type. However, I used multiple matrix land covers, allowing for species level 

perspectives with each species having a different set of habitat preferences, thus better reflecting 

species’ differences in nature (Bollmann et al., 2005; Betts et al., 2014; Brodie and Newmark, 

2019; Chetcuti et al., 2019).  

In this study, I use an individual based model (IBM) to provide a mechanistic assessment of 

FPS effects on alpha-, beta- and gamma-diversity, by simulating FPS at the landscape scale, 

with multiple matrix land covers, and for species with differing specialisms for, and 

dependencies on, the different habitats in the landscape. I predict that FPS will cause beta-

diversity to increase because FPS allows the persistence of more species among different focal-

habitat patches. Furthermore, FPS will increase the edge-to-area ratio and so the degree to 

which the focal-habitat interfaces with other land covers. This will lead to higher beta-diversity 

of species for whom the focal-habitat has high suitability due to species having access to a 

greater variety of secondary habitat, reflecting the different species-specific habitat preferences. 

This increased edge will also lead to an influx of species for whom the focal-habitat is less 

suitable. These tourist species, also called vagrant species (Magurran, 2004; Rickert et al., 

2012), could potentially counter some of the overall loss in alpha-diversity, but lead to higher 

competition for species dependent on focal-habitat. Due to the well-known species-area 

relationship – that the relationship of increased sampling area to richness is positive – by 

leading to smaller patches, FPS will have a negative effect on alpha-diversity. Therefore, I 

hypothesize that, 1) Increasing fragmentation (FPS) of a habitat causes steeper declines in 

alpha-diversity due to increased competition from an influx of “tourist” species from the 

matrix, and therefore the gamma-diversity will decrease with FPS. Focal-habitat dependent 

specialist species, which are more competitive in the focal-habitat they find most suitable, will 

be better able to hold out against the influx of tourist species. Generalists will be able to utilise 

more of the landscape and will coexist with the specialists, but will decline with fragmentation. 

Therefore I hypothesize that, 2) Declines in alpha-diversity with fragmentation of a habitat 

(FPS) will be less steep where the species using that habitat divide into specialists and 

generalists, due to decreased competition, and so gamma-diversity will be either 

unaffected or increase with FPS. Additionally, I assess whether results are consistent at high 

(40%) vs low (10%) levels of focal-habitat cover, testing the fragmentation threshold hypothesis 

that FPS should only have a negative effect when habitat amount is low (Fahrig, 2017; De 

Camargo et al., 2018). I include some of the possible mechanisms of FPS, reduced competition, 

and higher habitat diversity. I also partially include edge effects, through the inherent increase in 

edge with fragmentation, but did not include edge micro-climate effects.  
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4.3 Methods  

I created a multi-species and landscapes IBM simulation to look at the emergent properties 

arising from multiple individuals and species moving around a landscape containing a high 

number of patches and habitats (Figure. 4-1). My IBM was built using NetLogo (v6.0.4) 

(Wilensky, 1999). The simulation parameters were set up, run and the outputs analysed using R 

version 3.5 (R Core Team, 2018).  

 
Figure 4-1 A figurative description of the individual-based model, showing how I represented FPS by increasing the 
number of patches of the focal-habitat (in black) while keeping its total area the same. I give an example of the 
ranked suitability for land covers on the right for one species and an example of a random walk in the middle. The 
simulation used a baseline model, in which the individuals did not have differing mortality or movement bias for 
different land covers. I simulated two other scenarios in which the individuals interact with the land covers according 
to their assigned suitability. In the first scenario, the habitat modified mortality and individuals showed biased 
movement. The second scenario was the same, with the addition that half of the species were specialists and half 
generalists. I defined specialists and generalists as the former being more competitive in preferred land covers and 
less competitive in non-preferred land covers compared to generalists. 
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I described the model in Chapter 3 following the Overview, Design concepts, Details 

(ODD), protocol for describing individual-based models (Grimm et al., 2006; Grimm et 

al., 2010), but summarise it here. Each scenario and FPS number of patches was 

repeated 50 times. Seventy-one runs failed due to java issues on the clusters leading to 

the minimum number of replicates being 45. 

4.3.1 Land cover generation 

I generated fragmented landscapes by increasing the number of patches of the focal-habitat 

while keeping area of focal-habitat constant. I generated land cover data to allow for exploration 

of FPS without confounding variables such as area loss that is often present in real data. I did 

this by writing an R script (supplementary material S2). The generated land covers contained 

patches that were a range of shapes (Figure 4-1). I generated land covers with eleven land 

covers: focal-habitat, and ten other land covers filling the matrix space. I defined the land covers 

from a human perspective, as in other fragmentation studies (e.g. Betts et al 2019). In keeping 

with the known complexity of species habitat associations, I allowed species to have a diversity 

of associations with and use of land covers within the landscape (Betts et al., 2014; Chetcuti et 

al., 2019). I generated a new landscape for every model run. Generating land covers of 

1000 x 1000 cells was computationally intensive, so I generated at 250 × 250 cells and spatially 

resampled to 1000 × 1000 cells by making each of the 250 × 250 landscape cells four cells in 

the new 1000 × 1000 cells landscape. 

I increased the number of patches of the focal-habitat geometrically starting with four patches 

(allowing beta-diversity calculation), up to a maximum number of patches. Patches of the same 

land cover were spatially separated by at least a cell for the 250 × 250 cells landscape (resulting 

in two cells at 1000 × 1000 cells). The maximum number of patches was defined as when each 

separate patch was one cell at 250 × 250 cells (four at 1000 × 1000 cells). For the 10% 

scenarios, this was 6250 patches. For the 40% scenario, I used a maximum patch number of 

8192, less than the theoretical maximum, but computationally feasible. For the focal-habitat, I 

defined number of patches and percentage habitat cover. The patches were located in the 

landscape by generating random coordinates for starting locations using the r package 

‘mobsim’(May, 2017). The program repeatedly chose a patch using a uniform random 

weighting. This allowed for a range of sizes not distributed around a certain size of patch. 

Patches grew by one cell until the area of the focal-habitat reached the required amount (10% or 

40% of the total cells in the land cover). The program repeated the procedure for land covers 

two to eleven (in a random order) one at a time to fill remaining space. Each matrix land cover 

had between one and 200 patches and each covered a random proportion of the matrix. If any 

land cover was unable to grow any of its patches, then that land cover was considered complete 

and the next land cover grown. The last land cover filled all remaining space. 
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4.3.2 Multi-species landscape model description 

My simulation had much in common with other IBMs, such as random-walking species, 

density-dependence at a cell scale, random distance of movement up to a maximum distance 

and random starting locations (Fahrig, 2001). My simulation differed in having multiple generic 

simulated species within each simulation run and in not using a binary landscape of focal-

habitat and matrix, allowing different species to have different habitat associations (Nabe-

Nielsen et al., 2010; Betts et al., 2014; Chetcuti et al., 2019). The simulation included different 

species, in the baseline model defined only by unique identifiers. These species were simplistic, 

and did not have complex reproduction with seasonality, instead focusing on the interaction of 

the species with the landscape and if with their simple movements fragmentation could have 

both a negative and positive relationship on species diversity. In the two more complex models, 

I varied habitat-biased movement and habitat-modified mortality. To each species, I assigned a 

random rank from one (most suitable) to eleven (least suitable) to the eleven land covers. 

Preference, dependence, association or ranked suitability are simply the rank the species would 

choose the land cover, or comparatively how suitable they would find different land covers. 

Individuals moved with a random walk in the baseline and a habitat-biased random walk in the 

other scenarios. An individual chose a point within a circle of random size up to a maximum 

distance around it, the emergent movement distance of this random distance is of a dispersal 

kernel (Figure 4-1) (Fahrig, 2001). The probability of individuals moving to any point in the 

circle was equal in the baseline model. In the other scenarios with habitat-biased movement, 

individuals were more likely to choose more preferred land cover. The simulation iterated 

through individuals in random order so that the simulation did not always assess the same 

individuals first within each time-step. This random order was important when the population 

was over the carrying capacity and when assessing density-dependent mortality. Those assessed 

first were more likely to die. To simulate density-dependent mortality, if an individual counted 

more than two individuals were in the same cell, it died. This too was a simplification, the 

simulation can be run with more complex density dependence, varying within and between 

species density dependence, but in the pursuit of exploring the possibility of both positive and 

negative effect of FPS in species diversity, I opted to keep the simulation simple at this stage. 

Density dependence could be explored in future analysis. The habitat-biased movement and 

mortality both used a logistic function defined by a midpoint and slope to determine a multiplier 

between zero and one for each land cover (Figure 4-3). The multiplier for habitat-modified 

mortality increased the probability of dying in a time-step for individuals in less suitable land 

covers but death was not certain. The habitat-biased movement multiplier modified the 

probability of moving into a cell of a habitat, giving bias towards preferred habitat, but still 

allowing individuals to move into other land covers. Each individual did this by counting the 
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cells of each land cover in the circle around it and multiplying these by the bias multiplier. Each 

land cover was then assigned a proportion of values between zero and one and a random number 

generated between zero and one selected a land cover (Figure 4-2). The individual then moved 

to a random point of that land cover within the circle. 

 
Figure 4-2. A representation of how each individual chose where to move to in a time-step. It did this by multiplying 
the proportion of each land cover in a circle around it up to the maximum movement distance, by the bias multiplier. 
The values were normalised and stacked and then a random number between zero and one was drawn which selected 
the habitat. The individual then moved to a random cell of that habitat within the maximum movement distance. 

I chose a maximum movement rate of individuals of five cells per time-step and 5×10-4 chance 

of reproducing during a time-step. These arbitrary values would be realistic for different 

species. For example, based on allometric equations (Sibly et al., 2013) this could be, if a cell 

was a meter and the time-step a minute, ~5 m per minute and ~260 offspring a year (525,600 

minutes in a year × 5×10-4 = 260) for invertebrates, or if a cell was a kilometre and the time-step 

an hour then ~5 km per hour and four offspring a year for birds or mammals. To stop my 

simulation from running longer than the 24-hour time-limit of the JASMIN HPC cluster 

LOTUS (Lawrence et al., 2013) I used, I chose a limiting carrying capacity of 4000 individuals 

in the landscape. I implemented the carrying capacity by increasing the chance of an individual 

dying when numbers were higher than the carrying capacity. Individuals could perceive the 

other side of the landscape over the edge of the landscape (i.e. “wrap-around” edges). I added an 

additional bounding area around the edge of the landscape of 10 cells wide with each cell in the 

area being randomly assigned a different land cover, to prevent species with bias from being 

influenced by the other side of the landscape. Individuals that left the landscape died. 

4.3.3 Modelled scenarios 

I generated 400 species per simulation run. In the baseline scenario, all had identical mortalities, 

fecundities and movement abilities, and with no habitat suitability. In the other two models, 

species’ ranked habitat suitabilities were generated separately for each simulation run using the 

R packages ‘gtools’ (Warnes et al., 2018) to permute the order of the vector 1:11 to give a rank 

for each land cover and ‘prodlim’ (Gerds, 2018) to exclude repeating a particular ranking within 

a simulation run. For the habitat-dependency model, each species had movement and mortality 

modified by their habitat suitability (Figure 4-3). In the specialism scenario, I compared the 

effect of FPS on specialists and generalists. In this case, I created 200 of each type of species 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Values between zero and one against which a random land cover was selected.

Land cover 
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(400 in total), using the values in Figure 4-3 for the logistic slope for habitat bias and mortality. 

The species with a slope value of one, specialist species, had higher bias towards more suitable 

land cover but higher mortality in less suitable land cover than the species with a slope of 0.5, 

the generalists.  

I carried out preliminary simulation runs without varying FPS, using a land cover that contained 

four patches. I used these runs to calibrate the model, choosing values for habitat movement 

bias and modified mortality that led to as high a number of individuals as possible while 

allowing the simulation to run for 200,000 model time-steps. This time allowed for the number 

of species to reduce to close to the equilibrium number of species (i.e. if the model ran until no 

more species were lost). 

 
Figure 4-3 Values used for the logistic slope within each scenario for habitat-biased movement and mortality. The 
graph shows the effect the slopes have on the multiplying values used to bias the movement towards more suitable 
land cover and to increase mortality in less suitable land cover. There is mortality due density-dependence and from 
being over the carrying capacity of the whole simulation. The habitat-modified mortality is additional mortality 
above the normal levels. To link levels of additional mortality to that of the reproductive rate, the habitat mortality is 
multiplied by the reproduction rate 5 × 10-4 to give the additional amount of mortality. I used the same scenarios 
and values for 10% and 40% cover simulations. The specialist species were more competitive in more suitable land 
covers than the species in the habitat-dependency model and those more so than the generalists. Competitiveness was 
reversed in less suitable land cover. 

4.3.4 Alpha-, beta- and gamma-diversity 

I calculated diversity scores for the focal-habitat only, land cover one, reflecting the focus on 

FPS impacts. At the end of the simulation, I counted species within each patch of the focal-

habitat. I then calculated the focal-habitat gamma-diversity, mean alpha-diversity per patch and 

mean pairwise (between pairs of patches) beta-sim-diversity (Barwell et al., 2015) using the R 

package ‘vegan’ (Oksanen et al., 2019). I used beta-sim-diversity as it is considered the best 
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metric for presence-absence data and is unaffected by sample size which could be an issue as 

my patches got smaller with FPS and therefore included fewer individuals (Koleff et al., 2003; 

Barwell et al., 2015). For the habitat-dependency and specialism models, I classified species 

into three groups: high suitability, those for whom the focal-habitat was highly suitable (rank 

one to three); low suitability, (rank nine to eleven); and moderate suitability (all other species), 

which was a bigger group and could contain more species. 

4.3.5 Analysis of results 

I analysed the data using generalized linear models for gamma- (with a Poisson distribution) 

and alpha-diversity (with a gamma distribution), and beta regression for beta-diversity 

(‘betareg’) (values between zero and one) (Cribari-Neto and Zeileis, 2010) as affected by the 

number of patches (logged in the case of the beta-diversity, see Supplementary Information), as 

a measure of FPS. Differences between pairs of scenarios were tested by including both 

scenarios and creating interaction terms. Due to the simulation nature of my study, using p-

values is not advisable (White et al., 2014). I instead focus on effect size and 95% confidence 

intervals. The effect size is usually over an increase of a unit of the independent variable. In my 

study this would be a patch but this is meaningless. It is more appropriate to consider the effect 

size over the range of FPS simulated. I calculated the effects over the range of FPS using the R 

package ‘effects’ (Fox, 2003; Fox and Weisberg, 2019). 

4.4 Results 

Considering all species found in the focal-habitat, gamma-diversity increased with FPS in all 

models. In the baseline model, habitat type did not influence movement or mortality, and I 

observed that individuals became scattered randomly across the landscape. But individual 

species became concentrated by chance in different locations through random movement 

combined with reproduction, and conversely, became vacant from other parts and this led to 

increasing beta-diversity with FPS (Supplementary Figure C4.1). Because the species were 

equivalent in the baseline model, individual species only went extinct through stochasticity. The 

gamma-diversity, therefore, remained high after the 200,000-time-steps of the simulation. In the 

baseline model the 95% confidence interval includes negative values and the effect size was low 

(Figure 4-4). The positive effect of FPS showed an increase for the habitat dependency and 

specialism models, of 2.7 and 4.5 species over the full range of fragmentation. In the latter 

models, the mean pairwise beta-diversity between patches increased faster than mean patch 

alpha-diversity declined. When the focal-habitat had low FPS, beta-diversity was low, as the 

few large patches contained similar sets of species. As FPS increased, beta-diversity increased 

because there were more patches, and these were in different landscape settings that suited 

different sets of species. In the baseline model, the movement and mortality of species did not 
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differ among the land covers, and so the species existed as though there were no different land 

covers/habitats and distributed across the landscape through stochastic processes only. 

Therefore, more patches in different landscape settings made no difference to the beta-diversity 

in the baseline model and gamma-diversity only increased slightly due to sampling more of the 

landscape (+0.69). All results were the same for high (40%) and low (10%) overall focal-habitat 

cover (Supplementary Tables A C4.1, C4.2 and C4.3). I present results for 10% cover results 

here, while those for 40% cover are in Supplementary Tables A C4.4, C4.5 and C4.6.  

The habitat-dependency and specialism models had differences in habitat-dependent mortality 

and movement bias among species. This led to lower gamma-diversity values as the species 

were more rapidly sorted in space and species less suited overall to the specific landscape of a 

simulation run died out. In these models, I observed that particular species became concentrated 

in areas of the landscape through habitat associations (Supplementary Figure A C4.1). In many 

cases, a few species dominated a single land cover patch. In the specialism model, the gamma-

diversity of the specialists and generalists together summed to give a higher overall gamma-

diversity than in the simpler habitat-dependency model in which species showed no specialism 

(Figure 4-4).  

 
Figure 4-4 Mean patch scale alpha-diversity, mean pairwise beta-diversity and gamma-diversity for all species in the 
focal-habitat at 10% cover, with fitted lines and standard errors. Gamma-diversity increased with the number of 
patches (albeit not greatly for the baseline model), which represents FPS. In all cases, alpha-diversity declined, and 
beta-diversity increased. 
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Considering the different species groups in the habitat-dependency model, the gamma-

diversity of the species for whom the focal-habitat had low or moderate suitability increased 

with FPS (Figure 4-5). This was as expected, as the increased edge-to-area ratio under FPS 

would mean more of these species drifted into focal-habitat patches by chance. The gamma-

diversity of species for whom the focal-habitat had high suitability declined with FPS. The 

reduction in gamma-diversity over the whole range of FPS was again quite small, 2 species, 

although this is a 25% reduction. This reduction was also due to a greater amount of edge. In 

this case this greater edge meant these species were more likely to leave focal-habitat patches 

and also to be excluded from these patches by the influx of those species for whom the focal-

habitat had low or moderate suitability. 

 

Figure 4-5 Gamma-diversity for three groups of species – those for whom the focal-habitat had high, moderate, or 
low suitability – for the habitat dependency model (habitat bias and mortality slope 0.75) and specialism model 
(habitat bias and mortality slope 1 and 0.5 respectively). Gamma-diversity increased with FPS in both models for the 
species who for whom the focal-habitat had low or moderate suitability, and those for whom the focal-habitat had 
high suitability in the specialism model. By contrast, in the habitat dependency model, gamma-diversity declined with 
increasing FPS for the species for whom the focal-habitat had high suitability. 

In the specialism model, the gamma-diversity of the species for whom the focal-habitat had 

high suitability neither increased nor decreased with FPS. In contrast to the habitat-dependency 

model, the specialist species were more competitive in land cover to which they were suited, so 

they were better able to resist species that found the land cover less suitable and their beta-

diversity increased at a rate greater than the decline in alpha-diversity, so gamma-diversity did 

not decline (Figure 4-6). The generalist species for whom the focal-habitat had high suitability 
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also did better under high FPS than the species in the habitat-dependency model (which had 

neither specialists nor generalists), as they were able to use more of the wider landscape. 

 

Figure 4-6 Gamma-diversity for those species for whom the focal-habitat had high suitability for the specialism 
model (habitat bias and mortality slope 1 and 0.5 respectively) showing specialists and generalists separately. 
Gamma-diversity increases with FPS for both specialists and generalists in all cases. 

4.5 Discussion 

This study helps to reconcile the debate on the effects of FPS on biodiversity (Fahrig, 2017; 

Fletcher et al., 2018; Fahrig et al., 2019; Thompson et al., 2019). FPS had no effect or a positive 

effect on overall gamma-diversity of the focal-habitat across a landscape, but the gamma-

diversity of species for which the land cover had high suitability could decline with FPS 

depending on specialism and competitive ability. Looking at the fragmentation threshold 

hypothesis was a small part of this study and unlike the SLOSS analysis of Rybicki et al. (2019) 

I found no difference in the relationship of gamma-diversity to FPS at 10% and 40% cover. 

I found that beta- and gamma-diversity increased overall even without the species showing 

habitat specialisms. I did find that gamma-diversity of species for whom the focal-habitat was 

highly suitable declined with FPS, except in the specialism model where these species did not 

decline. In the habitat-dependency model, the species for whom the focal-habitat was highly 

suitable were under pressure by the influx into the fragmented patches by species for whom the 

land cover was less suitable, and the beta-diversity increase did not outweigh the loss in alpha-

diversity, so gamma-diversity declined. 

In the specialism model, the specialists were more competitive against other species in the 

focal-habitat and therefore beta-diversity increased at a similar rate to alpha-diversity decline, 
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resulting in gamma-diversity not declining with FPS. The generalists did not decline, probably 

due to competitive release, or as they were better able to use multiple land covers outside of the 

focal-habitat. The implication of this finding is that FPS might have a negative effect on 

gamma-diversity only under specific circumstances. For example, if the quality of the focal-

habitat declines, the species that are highly suited to the focal-habitat may act like those in the 

habitat-dependency model, with reduced competitiveness. With gamma-diversity being similar 

irrespective of the difference in competitiveness at low FPS, the difference in competitiveness 

may not have had an effect in the absence of FPS. But, as FPS increases its effects would 

interact with the lower land cover quality to cause these species to decline. Future studies could 

conduct simulations with complex assemblages of species or look at FPS together with other 

pressures on the species. 

Because the habitat dependency and degree of specialism of species were so important in 

changing the direction of the relationship of gamma-diversity to FPS, information on species’ 

habitat relationships are critical to planning landscape-scale conservation. In terms of 

conservation, it is often the less competitive species, with high dependencies on specific land 

covers that are of highest concern and that are the targets for conservation (Manchester and 

Bullock, 2000; Carrete et al., 2010; Fletcher et al., 2018). The effect fragmentation has on these 

species should, therefore, be assessed and the landscape managed to conserve these species. 

Doing so will have consequences for species in other habitats, however, and the resulting trade-

offs should be analysed and considered. Fragmentation per se creates smaller patches, which 

have lower mean alpha-diversity as shown in my modelling. Lower alpha-diversity has a 

negative effect on ecosystem functioning at the patch scale, but beta-diversity has been 

suggested as important at a larger scale in supporting multiple ecosystem functions (Mori et al., 

2018).  

I generated species and land covers at random, meaning my results are widely applicable but not 

specific to any real landscape or communities. My simulations do not show whether particular 

species would be retained with increasing FPS. I used a large pool of potential diversity 

providing each simulation run with 400 randomly-generated species. I also randomly generated 

the land cover matrix between the patches of the focal-habitat, always having ten other land 

covers. Given the importance of the intervening land cover matrix in determining what species 

are in the landscape and how species move between patches (Brodie and Newmark, 2019; 

Chetcuti et al., 2019), future studies might look at the matrix specifically, non-randomly 

generating land cover matrices and including different mixes of anthropogenic and semi-natural 

land covers (Fletcher et al., 2018). My baseline model represented movement as a random walk, 

and I introduced bias based on habitat suitability in the more complex models. In reality, many 



 

52 
 

organisms show complex movement behaviour (Gurarie et al., 2016), which is likely to be 

important in modelling how FPS affects biodiversity and could be a focus of future research. 

My theoretical work studied FPS in heterogeneous landscapes, unpicking some of the 

mechanisms that can cause gamma-diversity to increase or decrease with FPS. Specialists and 

generalists did better than less competitive species that were highly suited to the focal-habitat. 

Less competitive species declined with FPS, as they were unable to hold out against increasing 

influxes of species for whom the focal-habitat had lower suitability. My research opens new 

avenues of research into how species demography and movement in relation to the focal-habitat 

affect biodiversity responses to FPS. Species’ specialisms, habitat preferences and demography 

in different land covers (Chetcuti et al., 2019) should be taken into consideration when planning 

conservation as well as considering that under some circumstances FPS may lead to the 

conservation objectives of increased beta-diversity.  
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Chapter 5 Matrix configuration mediates effect of habitat 

fragmentation: a modelling study 

5.1 Abstract 

The conversion of land for human use has fragmented natural habitats. While habitat loss has 

clear negative effects on biodiversity, there is debate over whether fragmentation per se (FPS), 

which excludes the impacts of habitat loss, reduces species diversity. Fragmentation studies 

tend to use landscapes of fragmented focal-habitat and a single vastly different species-poor 

intervening land cover (the matrix). This is sensible when looking for an effect and when 

studying extremely degraded landscapes. But is this result generalisable to other landscapes, 

for example where the matrix is less hostile or degraded? 

I used an individual-based model to investigate the effect of different configurations of the 

matrix land covers on the relationship between FPS and species diversity. I manipulated the 

number and quality of matrix land covers, and their similarity to the fragmented focal-habitat. I 

found that one aspect of the typical experimental design used in field studies, that of an 

extremely different matrix land cover, caused an order of magnitude stronger effect on alpha- 

and gamma-diversity and caused beta-diversity to decline with FPS. With low FPS, gamma-

diversity was very high. Increasing FPS caused a dramatic decline to exceptionally low 

diversity. This was not the case in landscapes with a more moderate matrix; these had lower 

diversity under low fragmentation and declined little with increasing FPS. Furthermore, having 

a low number of matrix land covers caused beta-diversity to decline compared to having a 

larger number of land covers, except where the matrix was very similar to the focal-habitat. 

My study has shown that the effects of FPS on biodiversity can change depending on the 

number of matrix land covers present and their similarity to the focal habitat. I recommend that 

fragmentation studies should consider a greater variety of landscapes other than only the vastly 

different focal and matrix land covers that are currently used. Doing so may help in showing 

cases where FPS does not have a negative impact and allow better predictions of the impacts of 

FPS. My study also highlights the importance of matrix land covers diversity and the benefits of 

improving the hospitability of matrix land covers for species dependent on the focal-habitat. 
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5.2 Introduction 

Conversion of natural habitat to human land-uses has been overwhelmingly detrimental to 

biodiversity (IPBES, 2018). It has, however, been argued that the negative effects of this 

conversion are purely due to the well-known effects of habitat loss, with habitat fragmentation 

per se (FPS; fragmentation after taking account of, or in the absence of habitat loss), having 

either no effect or actually causing an increase in species richness (Fahrig, 2003; Fahrig, 2017; 

Fahrig et al., 2019). In reality, fragmentation and loss of habitat are intrinsically linked (Fletcher 

et al., 2018). Nonetheless, separating the effects of FPS from those of area loss by dividing 

habitat into more smaller patches and defining under what circumstances FPS leads to higher or 

lower species diversity are important for conservation decisions, such as restoration of habitat 

networks (Isaac et al., 2018). 

One suggestion has been that results at the patch scale showing fragmentation has a negative 

impact on biodiversity (alpha-diversity) (Sisk et al., 1997; Haddad et al., 2015; Fletcher et al., 

2018), may not be reflected in landscape-scale biodiversity changes (gamma-diversity) (Fahrig, 

2017; Fahrig et al., 2019). Patch-scale studies do not allow for positive mechanisms of FPS, 

such as competitive release, spreading of risk, increased functional connectivity, and higher land 

cover diversity as these act at the landscape scale, though increasing beta-diversity (Fahrig et 

al., 2019; Rybicki et al., 2019). The difference between patch-scale and landscape-scale findings 

may also be due to differences in the study designs used at these two scales of study. Patch-

scale empirical studies, as well as many simulation studies, are conducted on binary landscapes. 

These binary landscapes have a fragmented focal-habitat and a single type of intervening matrix 

that is of an extremely different land cover to the focal-habitat, and typically one that is less 

species-diverse (Ewers et al., 2011; Haddad et al., 2017; Damschen et al., 2019; May et al., 

2019; Thompson et al., 2019). This design therefore also inhibits the positive mechanisms of 

FPS, of increased land cover diversity and positive edge effects (Fahrig et al., 2019). Examples 

of this large difference between matrix and focal-habitat are grassland focal-habitat surrounded 

by plantation forestry (Damschen et al., 2019) or natural woodland surrounded by arable fields 

(Crawford et al., 2016). Some landscapes will show this type of extreme contrast, with a focal-

habitat of conservation value and a matrix of intensive anthropogenic land-use (Wintle et al., 

2019). Therefore, studies using this extreme paradigm have been and will continue to be useful 

in identifying the negative effect of fragmentation in these landscapes. However, does the effect 

of fragmentation hold true for different, possibly less extreme landscapes such as between 

native woodland, plantations and scrub or between natural heaths and grasslands? What effect 

will using a matrix that is less species-diverse have on the effect of FPS? Using a species-poor 

matrix may lead to a reduced effect of competition on focal-habitat-species (Miller-Rushing et 

al., 2019) or allowing focal-habitat-species to access to sub-optimal habitats (Jacob et al., 2017), 
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and therefore reduce the effect of FPS. Will a matrix with higher species diversity therefore lead 

to a greater effect of FPS due to increased competition? 

Unlike oceans in the theory of island biogeography, even an anthropogenic matrix is not entirely 

hostile to species that live in the focal-habitat (Tscharntke et al., 2012). The quality of the 

matrix has been identified as an important factor in the survival of species in the matrix and 

consequently the movement of species between focal-habitat patches (Fahrig, 2001; van der 

Hoek et al., 2015; Fahrig, 2017). The matrix influences species persistence in the landscape by 

subsidizing resources, and with more similarity to the focal-habitat facilitating movement 

(Driscoll et al., 2013). It has, as a consequence of these qualities, been suggested that FPS may 

have a lesser effect if the matrix includes land covers that are of a similar type to the focal-

habitat (Miller-Rushing et al., 2019). Matrix heterogeneity may also help maintain variation in 

species across landscapes (beta-diversity) and offset negative effects of FPS (Neilan et al., 

2018). As mentioned, land cover diversity and positive edge effects have been identified as 

potential positive mechanisms of FPS (Fahrig et al., 2019). At the landscape scale, beta-

diversity may increase and counteract negative mechanisms such as negative edge effects from 

tourist species (Magurran, 2004) and increases per-patch extinction rates, which lead to 

reductions in alpha-diversity. If the effect of matrix intensity and heterogeneity on the 

relationship of diversity to FPS can be identified then this will allow for more accurate analysis 

of the effect of habitat loss and fragmentation (Bueno et al., 2018; De Camargo et al., 2018). It 

may then be possible to estimate the effects of fragmentation per se in different landscapes 

(Fahrig et al., 2019). 

Including more complex matrix configurations has been criticised for similar reasons to those 

suggesting a move away from considering simplistic landscapes. The worry is that non-habitat 

can provide resources and landscapes may not be fragmented from a species perspective, which 

may obscure the effects of habitat fragmentation (Fletcher et al., 2018). Land managers and 

researchers generally use a human perspective when measuring and mitigating FPS, by 

classifying a land cover as a habitat and then looking at its fragmentation. This perspective fails 

to consider that each species has a different association with the land covers across the 

landscape; that is, individual species are not associated solely with one, human-defined, land 

cover, and each species has an individual set of a habitat associations (Chapter 2, Bollmann et 

al., 2005; Betts et al., 2014; Brodie and Newmark, 2019). Some species typically associated 

with the land cover being fragmented may use or move through matrix land covers readily. For 

these species, increasing FPS may not lead to a reduction in connectivity. They then may have 

access to a greater diversity of land covers and have meta-populations in the new fragments of 

habitat. My approach continues to consider the fragmented habitat from the perspective of a 

human classified land cover, but also utilises a benefit of individual-based modelling (IBM) by 
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allowing species-level perspectives, with different species having different associations with the 

focal-habitat and matrix land covers.  

I have created a multi-species and landscapes simulation in the form of an IBM (see model 

description protocol, the ODD in chapter 3). Because FPS acts differently on different 

components of biodiversity, I use my simulation to look at the emergent alpha-, beta-, and 

gamma-diversity that results from individuals of species with different habitat associations 

moving through landscapes with varying levels of FPS, represented by the number of patches of 

a focal-habitat. In this chapter, I configure the matrix differently by varying the number, the 

associated species diversity, and the similarity of the matrix land covers compared to the focal-

habitat. I test the following hypotheses. 1) A matrix which is more dissimilar to the focal-habitat 

will lead to a stronger effect of FPS while a more similar matrix will lead to higher alpha- and 

gamma-diversity but lower beta-diversity and a lesser effect of FPS. 2) Matrix land covers 

which support more species will cause a strong decline in gamma-diversity of the focal-habitat-

species in the focal-habitat with FPS because of greater influxes of tourist species, and therefore 

higher competition, into the patches as they become fragmented. 3) An increase in the number 

of matrix land covers increases gamma-diversity due to higher beta-diversity. Under low FPS 

this will lead to there being more land covers and therefore higher beta-diversity and gamma-

diversity. As FPS increases, more species will be able to utilise different parts of the landscape 

and gain access to more of the matrix land covers, leading to increasing beta-diversity with FPS 

and so a lesser decline in gamma-diversity. 

5.3 Method 

My multi-species and landscapes simulation (Figure 5-1) was built using NetLogo software 

(v6.0.4) (Wilensky, 1999). The NetLogo simulation parameters were set up, run and the outputs 

analysed using R version 3.5 (R Core Team, 2018). The model has been described following the 

Overview, Design concepts, Details (ODD), protocol for describing individual- and agent-based 

models (Grimm et al., 2006; Grimm et al., 2010). To aid the readability of these Methods, the 

ODD is placed in chapter 3. Each model and landscape configuration was repeated 50 times. 

This resulted in 7000 simulation runs. 
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Figure 5-1 A figurative description of the individual-based model, showing how I represented FPS by increasing the 
number of patches of the focal-habitat (in black) while keeping its total area the same and that I looked at a differing 
number of matrix land covers. I give an example of the ranked suitability for land covers on the right for one species 
and an example of a random walk in the middle. Not all species like the focal-habitat the best as can be seen from the 
legend. All individuals interact with the land covers according to their assigned suitability, with habitat-modified 
mortality and individuals showing biased movement.  
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5.3.1 Land cover FPS and matrix land cover diversity 

In this study, I simulated land covers in which I created different levels of fragmentation of the 

landscape by increasing the number of patches of focal-habitat while keeping the total 

focal-habitat area constant, using the same method as in chapter 4 (Figure 5-1). I created 

increasing FPS by simulating land cover data with 4, 16, 64, 256, 1024, 4096 and 6250 focal 

habitat patches while keeping the area at 10% (based on the results from chapter 4) of the 

1000 × 1000 cells of land cover. I also varied the number of land covers in the space in-between 

the focal-habitat patches, the matrix. I did this by creating 1, 4, 7 or 10 matrix land covers. 

Combining variation in FPS (7 treatments) and the number of matrix land covers (4 treatments) 

gave 28 different landscape types. For every landscape simulated, I also created a dataset that 

defined patches in that landscape. I defined each patch as a contiguous area, including those 

connected by corner cells, of a land cover. The landscape for every single of the 7000 

simulation runs was different as I generated each landscape and corresponding patch dataset 

individually for each replicate and model scenario. I did this to capture variations in the 

landscapes.  

5.3.2 Simulation 

I used the same multi-species landscape simulation as in chapter 4. I defined the species 

differently for different scenarios, but I always created them randomly or stratified randomly 

(focal-habitat-species and non-focal-habitat-species each being associated with different random 

land covers) and they did not represent a particular taxon. The only characteristic of these 

species was that they move and are differently suited to the different possible land covers in the 

landscape. Species are still simplistic focusing on their relationship to the landscape to focus in 

on how their relationship to the matrix land covers will influence the effect of habitat 

fragmentation. I defined the distinct species by how suitable they found different land covers in 

the landscape. I defined each species in terms of suitability for the eleven land covers 

irrespective of the number of matrix land covers in a particular run of the simulation (1, 4, 7, or 

10). I defined this habitat suitability by ranking each of the eleven land covers with values 

between one and either eleven or twenty-three depending on the experimental scenario. One of 

the scenarios used a ranking of the eleven land covers from one to twenty-three to increase 

difference between land covers, I explain this in the description of that model. I generated 

species randomly as there are too many combinations of species to represent all ways of 

defining species. By randomly creating species, I captured the variation across different sorts of 

species. I generated the species separately for each repetition and landscape. I define focal-

habitat-species as those species for whom the focal-habitat is most suitable (habitat suitability 

rank one).The huge combination of possible species within this simulation, is further 
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justification for keeping the species simple as adding in further complexity at this stage would 

lead to difficulty in interpreting results.  

All organisms moved with a habitat biased random-walk, meaning they could choose to move to 

cells within a five cells radius, including corner cells, around themselves but had a higher 

probability of choosing land cover which they find more suitable. The individuals had habitat-

biased movement and habitat-modified mortality equivalent to the habitat dependency scenario 

in chapter 4, although one of the scenarios in the current study defined this over a different 

number of land covers to achieve differences in the similarity between the focal and matrix land 

covers. I defined both the habitat-biased movement and modified mortality as logistic curves 

that related habitat preference and suitability to a value between zero and one that increased the 

probability of choosing a preferred land cover and increasing mortality in less suitable land 

covers within the simulation. I use suitability to represent both preference and suitability in this 

study, noting that they can be different in reality (e.g. ecological traps). The curves had 

midpoints of six or 12 and slopes of 0.75 or 0.341 depending on the scenario (Figure 5-2).  

 
Figure 5-2 Values used for the logistic slope within each experimental scenario for habitat biased movement and 
mortality. The baseline model and the two models in the matrix diversity scenario used the curves in blue with a 
midpoint of six and a slope of 0.75. The two models in the focal/matrix similarity scenario used the orange curves 
with a midpoint of 12 and a slope of 0.341, to make the matrix more similar or dissimilar to the focal-habitat. The 
graph shows the effect the slopes have on the multiplying values used to bias the movement towards more suitable 
land cover and to increase mortality in less suitable land cover. There are universal mortalities from density-
dependence and from being over the carrying capacity of the whole simulation. The habitat mortality is additional 
mortality above the normal levels. To link levels of added mortality to that of the reproductive rate, I multiple the 
habitat mortality multipliers by the reproduction rate 5 × 10-4 to give the added probability of mortality.  

The boundary of the simulation was different to that in chapter 4, in which individuals leaving 

the simulation died. Instead, the boundary was toroidal with individuals able to cross over the 
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edge and reappear on the other side of the landscape. I made this change because I observed that 

with edge death the density was lower at the edges of the landscapes and higher in the middle. I 

also ran some additional analysis and showed that the habitat dependency model in chapter 4 

had the same result (declining gamma-diversity with FPS), regardless of having mortality or 

not. I therefore chose to switch to a toroidal simulation. At the edge of the simulated landscape, 

I added a ten cell-wide strip to each side of the landscape, with each cell randomly assigned a 

land cover to avoid the land cover on the other side of the landscape influencing species into 

crossing over the edge or not. 

5.3.3 Experimental scenarios 

I applied two scenarios to the 28 types of landscape that varied according to focal-habitat FPS 

and number of matrix land covers. I compared the models in both scenarios to the same baseline 

model. I took the baseline model from the habitat dependency scenario in chapter 4 and 

specified that each matrix land cover would start equally diverse to the focal-habitat and that 

each land cover in the matrix could be similar or dissimilar to the focal-habitat entirely 

randomly. The first scenario, the focal/matrix similarity scenario, contrasted: 1) all of the matrix 

land covers being similar to the focal-habitat; and 2) all of the matrix land covers being 

dissimilar to the focal-habitat. The second scenario, the matrix diversity scenario, contrasted: 1) 

half as many species associated with each matrix land cover as with the focal-habitat; and 2) 

double the number of species associated with each matrix land cover (Table 5-1).  
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Table 5-1 How the five models of the two scenario both relate to the baseline, with each scenario only changing 
either the similarity of the matrix land covers to the focal-habitat, or the starting diversity of the matrix land covers 
compared to the focal-habitat. Colours correspond to those in the graphs in the results. 
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5.3.3.1 Baseline model 

In the baseline model, the midpoint of the logistic function used for the bias and additional 

habitat dependent mortality was 6 and the slope was 0.75 (Figure 5-2). I included this model to 

give initial insights into the effect of the number of matrix land covers on the relationships of 

diversity to FPS and against which to compare the models of the two scenarios. Forty species 

were most strongly associated with each of the eleven land covers, with the land cover species 

were associated with having a habitat suitability of rank one and the ranking for other land 

covers randomly assigned inclusively between two and eleven. This gave 440 species at the 

beginning of the simulation. Because for each species I assigned a random ranking for the 

eleven land covers the focal-habitat and matrix land covers were not universally similar nor 

dissimilar. 
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5.3.3.2 Focal/matrix-similarity scenario 

The focal/matrix-similarity scenario included two models, the Similarity and Dissimilarity 

models. Specifying the two models of this scenario was more complex than the other scenarios. 

For land covers to be similar, species had to have similar multiplying values derived from the 

logistic equation for habitat bias and mortality, and for dissimilar land covers to have very 

different values (Figure 5-3). To do this I allowed the suitability for the eleven land covers to 

range between 1 and 23 instead of 1 and 11. The midpoint of the logistic function was changed 

to 12 and the slope to 0.341, so that the value derived from the equation that I used to specify 

habitat bias and mortality for habitats based on the habitat suitability, remained approximately 

the same (0.98 and 0.02 respectively) (Figure 5-2). For the Similarity model, I assigned a rank 

to each species for each habitat suitability between 1 and 11 so that species would find the land 

covers to be similar to each other (Figure 5-3).  

 

 
Figure 5-3 For the similarity model, the ranking for the eleven land covers was chosen from between one and eleven 
inclusively, shown in green, this meant the bias in solid orange and mortality in dashed orange were less different 
between the land covers. The dissimilarity model had focal-habitat-species who had a rank of one for the focal-
habitat and other ranks chosen between 13 and 23 for the other land covers as these land covers were very different 
(purple). This then meant the bias away and mortality in these land covers was higher. The non-focal-habitat-species 
(yellow) all had a rank of 23 for the focal-habitat as it was very different. The other land covers had values chosen 
between one and 22, as the land covers could be similar to each other or not.  

In the dissimilarity model, the focal-habitat-species had a rank of one for the focal-habitat. The 

habitat suitabilities for the other land covers (the matrix) were chosen from values 13 to 23 

inclusively (Figure 5-3). This means that for the focal-habitat-species the matrix land covers 
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were very dissimilar to the focal-habitat and so the bias in movement towards them was low and 

the mortality in them was high. For the other species (i.e. other than the focal-habitat-species), 

each had a rank of one for one of the matrix land covers. For the other nine matrix land covers, I 

assigned ranks between 2 and 22. All non-focal species had a rank of 23 for the focal-habitat. 

The nine other matrix land covers were given ranks of 2 to 23, because although the matrix land 

covers were dissimilar to the focal-habitat, they were not necessarily dissimilar to each other. 

This dissimilarity model is an extreme example and with only two types of species in the focal-

habitat, species for whom the focal-habitat had high suitability (focal-habitat-species) or low 

suitability (all other species). Table 2 gives an example of suitability for the land covers for 

similar matrix and focal-habitat and dissimilar matrix and focal-habitat. 

Table 5-2 An example of the habitats suitable rank for species, that made the focal and matrix land covers similar or 
dissimilar. Species 1 is a focal-habitat-species in both example models. 

Similarity model 
Land cover 1 2 3 4 5 6 7 8 9 10 11 

Species 1 1 3 8 9 4 11 10 7 6 5 2 

Species 2 11 5 3 2 9 2 4 7 8 6 3 

Species 3 5 7 9 2 3 1 4 8 11 10 6 

… … … … … … … … … … … … 

Dissimilarity model 
Land cover 1 2 3 4 5 6 7 8 9 10 11 

Species 1 1 15 16 13 17 23 22 19 18 20 14 

Species 2 23 1 5 22 9 23 4 3 8 6 11 

Species 3 23 19 9 2 3 1 15 8 11 10 6 

… … … … … … … … … … … … 
 

5.3.3.3 Matrix-diversity scenario 

As in the baseline, the midpoint of the logistic function used for the bias and additional habitat-

dependent mortality was six and the logistic slope was 0.75 (Figure 5-2). The matrix-diversity 

scenario included two models: 1) The Starting Low Diversity (SLD) model, where each matrix 

land cover had a lower species diversity at the beginning of the simulation than the focal-habitat 

and than in the baseline model, and 2) The Starting High Diversity (SHD) model, where each 

matrix land cover started the simulation with a higher species diversity than the focal-habitat 

and than in the baseline model. In the SLD model, each matrix land cover was associated with 

half as many species, twenty compared to the forty in the focal-habitat; giving 240 species at the 

beginning of the simulation (10 × 20 + 40 in the focal-habitat). In the SHD model, eighty 

species were associated with each of the matrix land covers, giving a starting number of species 

of 840. I loaded these freshly generated 240, 440 or 840 species into each run of the IBM 

simulation at the beginning regardless of how many matrix land covers the simulation had. 
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5.3.4 Alpha-, Beta- and Gamma-diversity 

At the end of each simulation run, I recorded the individuals in each focal-habitat patch. I 

calculated mean alpha-diversity per patch, mean pairwise (i.e. between pairs of patches) beta 

sim diversity (Barwell et al., 2015) and gamma-diversity of the focal-habitat using the R 

package ‘vegan’(Oksanen et al., 2019). I did not look at species richness per cell because of the 

density dependence which would have meant that a cell could only have contained two species 

maximum. I calculated alpha-, beta- and gamma-diversity for focal-habitat-species only. I 

define the focal-habitat-species as the species for whom the focal-habitat is most suitable and 

who are dependent on focal-habitat. This chapter will focus on the effect on the focal-habitat-

species. I focused on the focal-habitat-species because they are the species most strongly 

affected by increasing the FPS of their habitat (as part of the high suitability group in Chapter 

4).  

5.3.5 Analysis of results 

I employed a similar analysis to that of chapter 4. I graphed results and performed regression 

analysis of alpha-, beta- and gamma-diversity with an increasing number of focal-habitat 

patches representing FPS and report effect sizes . I used generalized linear models for gamma- 

(with a Poisson distribution with a log link) and alpha-diversity (with a gamma distribution with 

a log link). I used beta regression for beta-diversity (‘betareg’) (Cribari-Neto and Zeileis, 2010) 

(values bound between zero and one). The beta sim values range between zero and one 

inclusively while beta-regression does not include zero or one themselves. To perform beta 

regression, I therefore scaled the values to be greater than zero and less than one (0.001 to 

0.991). Where gamma-diversity values were zero I excluded the zero beta-diversity value as 

meaningless, the fitted relationships was nowhere near the datapoints and because they 

suggested a much larger difference between the SHD, SLD and baseline models; ultimately the 

results were very similar, but reduced in magnitude. I also excluded NA beta-diversity values. 

These NAs were due to an error that occurred when only one patch had species, with up to three 

species. These NAs should have been zero. Removing zeros and NAs removed 1861 records for 

the focal-habitat-species. To calculate alpha-diversity with a gamma distribution, I added 0.001 

to the values to remove zeros. I tested differences between pairs of models by including both 

scenarios and creating interaction terms. Due to the simulation nature of my study using p-

values was not advisable (White et al., 2014). I instead focused on effect size and 95% 

confidence intervals. The effect size is typically considered over an increase of a single unit of 

the independent variable, this would be a patch in my study. In my study, this is not very 

meaningful, and it may be more appropriate to think of the effect size over the range of 

fragmentation simulated. I obtained predicted values for each of the number of patches used in 
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my study to look at effect sizes by using the R packages ‘effects’ (Fox, 2003; Fox and 

Weisberg, 2019) 

5.4 Results 

For the focal-habitat-species, increasing FPS through increasing the number of patches of focal-

habitat always led to a decrease in alpha- and gamma-diversity. Beta-diversity variously 

increased or decreased in the different models. Alpha-diversity approached zero with high FPS 

in all cases. Making the focal-habitat and matrix land covers more (similarity model) or less 

(dissimilarity model) similar, changing the starting diversity of the matrix land covers to be 

more (SHD model) or less (SLD model) diverse than the focal-habitat, or increasing the number 

of matrix land covers, did not change overall trends in alpha- or gamma-diversity of the 

focal-habitat focal-habitat-species. There were, however, differences in levels and rates of 

diversity change with FPS between scenarios, some of which were extreme. Beta-diversity was 

strongly influenced by the scenario used, being either positively, unaffected or negatively 

affected by FPS. I will first present the results of the focal/matrix-similarity scenario which have 

the most extreme results, then the matrix-diversity scenario, and finally talk about the difference 

the number of matrix land covers made. 

5.4.1 Focal/matrix-similarity scenario 

In the models of the focal/matrix-similarity scenario (Figure 5-4), alpha-diversity decreased 

with increasing FPS in all models, but most steeply in the dissimilarity model. When the matrix 

was similar to the focal-habitat (the similarity model), beta-diversity increased (0.09-0.16). 

When the matrix was dissimilar to the focal-habitat (the dissimilarity model), beta-diversity 

decreased (-0.48 to -0.33). In the baseline model, where the matrix was neither completely 

similar nor dissimilar, the beta-diversity was unaffected by FPS (between -0.01 and 0.02), 

except when there were ten matrix land covers, when beta-diversity increased marginally with 

FPS (0.07). The resulting effect on gamma-diversity was that it usually declined with FPS, but 

the effect was weak for the similarity model and sometimes reversed, and declined strongly in 

the dissimilarity model. The baseline model again, as it had for beta-diversity, showed a weak 

decline in gamma-diversity with FPS where there were few matrix land covers, and decreased 

more strongly with more matrix land covers. In Figure 5-4 and the corresponding beta 

regression, I did not include zero or NA values where gamma-diversity was zero as these are 

meaningless because with no species the patches are neither similar nor dissimilar, but beta-

diversity still declined with FPS. These removed values would have had the largest effect on the 

dissimilarity model (903 records), and less on the baseline (295 records) and similarity model 

(166 records). 
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Figure 5-4 Change in alpha-, beta-, and gamma-diversity of the focal-habitat with FPS, for the focal-habitat-species 
for whom the focal-habitat was most suitable. The graph shows the results for the similarity, baseline (neither similar 
nor dissimilar) and dissimilarity models. 

5.4.2 Matrix-diversity scenario 

Starting the simulation with the focal-habitat having 40 associated species, and each of the 10 

matrix land covers having 20, 40, or 80 associated species (less, equal, or more diverse for SLD, 

baseline, or SHD models), did lead to a difference in the species composition at the end of the 

200,000-time-steps of the simulation. Like in the previous scenario, alpha diversity always 

declined with FPS. With more starting species, the alpha-diversity was higher under low FPS 

(SHD>Baseline>SLD models). With more starting species (SHD model), beta-diversity rose 

with increasing FPS (0.10 - 0.14). The beta-diversity of the baseline model, as seen in the 

Focal/matrix-similarity scenario, was unaffected by FPS, except when there were ten matrix 

land covers, when it increased. This was similar for the SLD model, although possibly declining 

marginally with few matrix land covers (-0.02) and becoming marginally positive with ten 

matrix land covers (0.02). This again resulted in an overall decline in gamma-diversity with 

FPS, but only at high FPS. Gamma-diversity was higher with more initial starting species, again 

with the SHD model having the most, then the baseline model and the lowest with the SLD 

model. 
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Figure 5-5 Change in alpha-, beta-, and gamma-diversity of the focal-habitat with FPS, for the focal-habitat-species 
for whom the focal-habitat was most suitable. The graph shows the results for the Starting Low Diversity (SLD), 
baseline (starting equally diverse) and Starting High Diversity (SHD) models. 

5.4.3 Number of matrix land covers 

Increasing the number of matrix land covers increased the alpha (by between 0.53 and 3.81 

species) and gamma-diversity (by between 0.98 and 2.61 species) when FPS was low. Because 

of these higher levels of diversity with low FPS, the alpha- and gamma-diversity then declined 

more steeply. Increasing the number of matrix land covers also caused beta-diversity to 

increase, or increase more strongly in the case of the similarity and SHD models, with FPS, 

except in the dissimilarity model in which beta-diversity always declined. 

5.5 Discussion 

My study showed that FPS had a consistent negative effect on alpha- and gamma-diversity for 

species associated with the focal habitat. But the magnitude of the effect was much increased 

when the focal-habitat and matrix land cover were very different from each other. 

Fragmentation has been shown in another modelling study to have a lesser effect when matrix 

land covers are more similar (Hatfield et al., 2020). This dissimilar matrix and focal habitat 

design is often used for experimental landscapes in field and simulation fragmentation studies 

(Ewers et al., 2011; Haddad et al., 2017; May et al., 2019). Given my results, such designs could 

mask cases where other positive FPS mechanisms could cause either no relationship of diversity 

to FPS or a positive one, and imply wrongly that FPS will always have a strongly negative 

effect in all types of landscapes and with all sorts of species (Galán-Acedo et al., 2019). 
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Alongside variation in which species (e.g. all vs habitat dependent) are counted (chapter 4, 

Miller-Rushing et al. 2019), this could be another reason why patch-scale studies (Sisk et al., 

1997; Haddad et al., 2015; Fletcher et al., 2018) consistently show negative effects of FPS, 

while landscape-scale studies sometimes show neutral or positive changes in diversity (Fahrig, 

2017; Fahrig et al., 2019). In these patch scale studies, increases in beta-diversity caused by the 

positive mechanism of FPS, increased land cover diversity, cannot be accounted for. The 

species poor, very dissimilar matrix also further increases mortality, and drives down alpha-

diversity. In chapter 4 I showed that gamma-diversity is unaffected by fragmentation in certain 

circumstances; in that case in a group that included the focal-habitat-species, when the 

simulation included specialist and generalists. Chapter 4 used ten matrix land covers and a setup 

similar to the baseline model used here, with the matrix land covers being neither similar nor 

dissimilar. The positive effect of FPS on beta-diversity and no effect on gamma-diversity of 

specialists and generalist species, may have been masked in studies using a dissimilar matrix 

and focal-habitat.  

As might have been expected, making the matrix more hospitable by making it more like the 

focal‑habitat reduced the effect of FPS. Therefore, modifying the matrix between focal‑habitats 

to make it more hospitable to the species that depend on the focal‑habitat and more land cover 

diverse can lessen the effect of FPS. Modifying the matrix is one potential way of increasing 

functional connectivity (Hunter-Ayad and Hassall, 2020). Other ways are by including stepping-

stones or corridors (Haddad et al., 2014). Stepping-stones or corridors of the same land cover or 

similar land covers could also have a similar effect to making the matrix more similar.  

I found little difference in the effect of FPS by changing the species diversity of the matrix 

compared to the focal-habitat. This suggests that controlling for differences in species-diversity 

of the matrix land covers compared to the focal-habitat in field studies is not very important. 

Within any particular matrix diversity design the effect of FPS on diversity was similar. Despite 

that, increasing the potential diversity of the matrix land covers and not the focal-habitat, did 

cause the alpha- and gamma-diversity of the focal-habitats to be higher. I had expected the 

opposite effect as I had hypothesised that more species in the matrix would also mean more of 

them would be “tourists” in the focal-habitat patches. I expected a reduction in the number of 

focal-habitat-species due to competition as more of the tourist species would find the focal-

habitat partially suitable. This was not the case and the reason for this is not clear. Despite there 

being the same number of individuals due to the carrying capacity, there was a greater diversity 

of non-focal species of the possible approximately 36 million non-focal species. These non-

focal species had therefore a greater diversity of different rankings for different land covers. 

This could mean that there were more small areas occupied by species well suited to a mix of 

land covers in that area. Different focal-habitat-species may do better with different neighbours, 
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therefore, as although species in this simulation do not exploit each other, they are more 

competitive or less competitive compared to each other. This could result in species inhabiting 

certain sub-optimal parts of the landscape (Jacob et al., 2017; Orme et al., 2019). With fewer 

matrix species, say, one species could occupy a large area of the matrix, and only the focal-

habitat-species that does well against that species would survive. With a higher diversity of 

matrix species, two or more species may occupy the same area, and therefore two or more focal-

habitat-species may be better able to compete against these species leading to a higher diversity 

of the focal-habitat. The carrying capacity was applied over the whole landscape. Because of the 

movement bias, with more matrix species more species would show biased movement towards 

the matrix and species density could be higher in the matrix. 

A caveat to the result that focal-habitat-species diversity was higher with initially higher matrix 

diversity is that all models ran for the same amount of time. Given more time the more diverse 

matrix may have fallen to similar levels of diversity to the baseline and then the SLD levels, at 

which point the diversity of the focal-habitat-species may have reduced. If this was not the case 

and the SHD model with a high starting diversity stayed higher, then, maintaining or enhancing 

the quality of the matrix to encourage diversity of species dependent on these matrix land covers 

may also help the diversity of the focal-habitat-species and mitigate fragmentation (Neilan et al., 

2018). 

I showed that a greater diversity of land covers, i.e. more matrix land covers, can lead to 

increased beta- and gamma-diversity of species that depend on the focal‑habitat, by allowing for 

a greater diversity of species with different dependencies on secondary habitats. This supports 

the conservation objective that habitat quality and diversity of the matrix should be conserved 

and enhanced (van der Hoek et al., 2015). It also shows that taking into consideration the effect 

different matrix land covers have on focal-habitat species is important in fragmentation and 

connectivity research and planning (Fletcher et al., 2019). More matrix land covers reduced the 

effect of FPS in the dissimilarity model, but not to the degree of the baseline, similarity, SHD or 

SLD models. It is important to use matrix land covers that are not always highly dissimilar in 

future field and simulation studies of fragmentation. Having few matrix land covers was 

detrimental to beta-diversity, preventing it from increasing with FPS. Using more matrix land 

covers may be important when conducting field studies, particularly when looking for positive 

effects of FPS. I therefore agree with the call to move away from a binary landscape, as 

suggested by others (Valente and Betts, 2019). As I mentioned in chapter 4, beta-diversity has 

been suggested as important at a larger scale in supporting multiple ecosystem functions (Mori 

et al., 2018). Therefore, a diversity of matrix land covers may be important in supporting beta-

diversity in a fragmented habitat within a landscape. 
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Given the influence of the matrix land covers on the effect size of FPS on gamma-diversity, it 

may be a good idea to record more information on the landscapes used in empirical studies of 

fragmentation (Miller-Rushing et al., 2019; Thompson et al., 2019). This could include 

information on the matrix and on species, for example by calculating species habitat association 

for the different species found in the landscape (Chetcuti et al., 2019). This would allow 

researchers to place studies within a framework of meta-information, allowing for consideration 

of context or to consider more factors when performing a meta-analysis of the effects of 

fragmentation. This meta-analysis should also include the definition being used for 

fragmentation (Thompson et al., 2019). This information could then be used to make better 

predictions of what effect fragmentation would have in a particular sort of landscape (Fahrig et 

al., 2019; Brodie and Newmark, 2019). 

One issue I did not look at in this study and that could be looked at in future work, is the effect 

of the different physical structure of different land covers that could affect the ability of species 

to move through different matrix land covers (Keeley et al., 2017; Thompson et al., 2019). My 

species experience differences in mortality and bias in different land covers. So, for example, a 

grassland species may experience higher mortality in woodland, and would more often move 

towards a grassland land cover (Haddad et al., 2017). But my species do not differ in their 

ability to move through different land covers. Using the example again of a grassland species, 

this species may be unable to move through dense woodland, or a woodland species may turn 

back from a woodland edge and refuse to travel across an open matrix. Future research could 

achieve this by changing the movement rates of species in different land covers (Brodie and 

Newmark, 2019), changing the level of bias and therefore habitat fidelity and by modifying the 

walk from a random walk to either a correlated-random-walk or habitat dependent walk and 

again looking at the configuration of matrix land covers. I do begin to explore differences in the 

way species move in the next chapter. I do this by changing bias and movement based on land 

cover, but even there I have not changed the rate of movement within land cover nor repeated 

the analysis of this chapter with these different walks. 

My study has important implications for how to conduct future research into fragmentation. In 

this study, different configurations of matrix land covers did not change results on whether 

fragmentation had positive or negative effects on alpha- and gamma-diversity; but did have 

different effects on beta-diversity. This suggests the potential for finding further inconsistencies 

in the effect of fragmentation on biodiversity. The effect size of fragmentation on gamma-

diversity was much higher in the dissimilar habitat and matrix model than in all the other 

models. This suggests that this popularly used research landscape could overpower more subtle 

results. Some of the results showing different relationships of diversity to FPS could be 

explained by more moderate matrix land cover than the worst-case scenario used in many 
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studies. Researchers could potentially show this difference, even at a patch scale, by using 

landscapes that are more varied with a diversity of matrix land cover types and not just an 

extremely different matrix land cover. Further, this study supports the need to safeguard matrix 

diversity of land cover and species within the landscape to lessen any negative effects of habitat 

fragmentation by safeguarding and improving matrix quality. 
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Chapter 6  

Mobile species are positively affected by fragmentation per se 

6.1 Abstract 

Human conversion of habitat has led to habitat loss and fragmentation. The effects of habitat 

loss are confirmed, but the effects of habitat fragmentation per se (FPS), fragmentation without 

habitat-loss, are currently in debate. Both empirical and modelling studies of FPS show 

negative, neutral, or positive effects. These studies cover different sorts of species, with 

potentially different responses to FPS. There is a knowledge gap concerning how species 

characteristics determine their responses to FPS. For example, does FPS have more negative 

effects on species that spend more time in the matrix between habitat patches? Does functional 

connectivity increase with FPS for species with higher dispersal ability and therefore higher 

encounter rates of patches? 

I created a multi-species landscape-scale individual-based model with simulated species who 

experience higher mortality in less suitable land cover. The species differ in walk type and can 

move with a random walk (RW), correlated random walk (CRW), or habitat dependent walk 

(HDW) and biased versions of these walks with increased habitat bias. RW individuals can 

move in any direction. CRW individuals can turn within a set of angles from the previous 

direction. HDW individuals consider the suitability of the current land cover and RW in 

preferred land cover and progressively more CRW in less suitable land cover. These walks 

modify how readily species can move between habitat patches. Increasing bias towards suitable 

land cover causes individuals to spend more time in suitable land cover and less time in the 

land cover falling between habitat. 

Without bias towards more suitable land cover, FPS did not affect gamma-diversity. With bias, 

RW species declined with FPS but bias had little effect on species moving with a CRW. With 

moderate bias, gamma-diversity of HDW species increased with FPS. Yet, with high bias, they 

strongly declined. These results show that even for species that are dependent on the habitat 

that is fragmented, FPS does not have a universally negative affect. FPS can have a positive 

effect on species able to move between patches of habitat as their functional connectivity 
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increases. These results offer an explanation as to why fragmentation in the absence of habitat 

loss appears to show contradictory results in different studies. 

6.2 Introduction 

Many habitats have experienced large scale fragmentation and loss caused by conversion to 

different land covers and uses (Lawton et al., 2010; IPBES, 2018). While habitat loss has clear 

negative effects (Fahrig, 2003; Loke et al., 2019), there is debate over whether fragmentation 

per se (FPS), fragmentation without or while controlling for habitat loss, always has a negative 

effect (Fahrig, 2017; Fletcher et al., 2018; Fahrig et al., 2019). Fragmentation is not always 

defined in the same way with many studies defining fragmentation as the converse of 

connectivity (Leroux et al., 2017; Bueno et al., 2018; Horváth et al., 2019; Brodie and 

Newmark, 2019). FPS comprises the splitting up of patches without a clear relationship to 

connectivity. Connectivity is defined as the facilitation of movement between patches of habitat, 

and measurable as the probability of individuals of a species moving between all patches of 

habitat (Taylor et al., 1993). Connectivity is, therefore, dependent on each of the species in the 

study. Connectivity is sometimes called functional connectivity to differentiate species 

connectivity from structural connectivity, which is the physical connectedness of contiguous 

areas of habitat that would be similar to a lack of fragmentation (Bélisle, 2005). It has been 

suggested that FPS could actually increase functional connectivity because the smaller patches 

will be closer together and more regularly scattered through the landscape than when less 

fragmented (Fahrig, 2017; Galán-Acedo et al., 2019). Thompson et al. (2019) looked at 

connectivity using their measure of effective connectivity measuring individuals’ ability to 

disperse through fragmented landscapes and found that for the generic species simulated within 

their study fragmented landscapes were more connected than less fragmented landscapes.  

Simulation studies have generally created species that move with a random walk (RW) (Fahrig, 

2001; Rayfield et al., 2011) or correlated random walk (CRW) (Johnson et al., 1992; Boone and 

Hunter, 1996; Jepsen and Topping, 2004; McIntire et al., 2013). These movement types are 

often criticised as being too simple and unrealistic, and it may be more realistic to represent 

species as moving differently depending on the land cover they find themselves in (Kuefler et 

al., 2010; Wang, 2019) and therefore with a habitat dependent walk (HDW). Each modelled 

walk type is likely not a bad model for movement, but may represent the movement behaviour 

of different types of species (Da Silveira et al., 2016; Thomaes et al., 2018; Bérces and 

Růžičková, 2019; Fletcher et al., 2019). It may be that different field studies have had different 

proportions of species moving with different types of walk. I explore whether such differences 

could lead to differences in the effect of FPS. By defining species that move more or less 

directionally, with CRW, HDW, or RW (more to less directionally respectively), and by 
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changing the bias towards more suitable land cover, species move between patches of focal-

habitat more or less and spend more or less time in the matrix. 

Moving between patches of focal-habitat by crossing the matrix is costly in terms of time lost 

from other activities and the risks of increased mortality (Bonte et al., 2012). Species spending 

more time in less suitable land cover will spend less time reproducing and incur higher mortality 

from less food availability, damage, and predation. Species who leave their habitat less often 

should be more successful, and in the short term, FPS should affect them less if they can survive 

in small patches. They may experience longer-term effects of isolation such as inbreeding 

depression if individuals of the species are unable to move between patches of habitat 

(Cosgrove et al., 2018). Species able to move between patches more readily may benefit from 

increasing functional connectivity between patches brought about by increased FPS. The 

functional connectivity will not be higher than if all the species were in a single large patch of 

habitat, but with increasing FPS over a small amount of FPS, functional connectivity will 

increase and allow for the separation of the population into more metapopulations. With higher 

FPS, having more small patches closer together may lead to a higher encounter rate and 

therefore less time in the matrix (Fahrig, 2017) while allowing for the spread of risk and for 

competitive release. Species are potentially at risk from extinction in the landscape as a result of 

the destruction of a single population in one location, and are safer having multiple sub-

populations spread among different patches of habitat (Fahrig et al., 2019; Rybicki et al., 2019). 

Species may also benefit from competitive release with different competitor species occupying 

different patches at different times (Resasco et al., 2017). 

I test two hypotheses from mechanisms proposed by Fahrig (2017): firstly, that FPS should 

affect species that spend more time in the matrix between patches of the fragmented focal-

habitat more negatively than species that spend less time in the matrix; secondly, that FPS 

should affect species less if they have higher patch encounter rates and are able to traverse the 

landscape more easily. The latter of these if true would support the idea of increased functional 

connectivity for such species.  

I use a multi-species and landscape-scale individual-based model (IBM) to look at how 

differences in species movement bias and ability affect species diversity under FPS. FPS is 

defined and mitigated at a human perspective that may not match a species perspective 

(Bollmann et al., 2005; Betts et al., 2014; Brodie and Newmark, 2019; Chetcuti et al., 2019). 

Using an IBM, I can apply the human-defined FPS, typical of considering the fragmentation of 

a land cover, while allowing for the species level perspective, which results in different 

movement and mortality in different matrix land covers.  
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To address the first hypothesis, I simulated different times spent in the matrix by using a biased 

movement towards more suitable land cover with higher bias corresponding to less time in the 

matrix. Increasing bias causes individuals to choose more suitable land covers when they are 

close to a land cover, therefore, to address the second hypothesis, I simulated different patch 

encounter rates by changing how the species move, from RW, through HDW to CRW. RW 

species have a low ability to move across the landscape, HDW species can be parameterised to 

move more directionally in the matrix and CRW species move directionally in both matrix and 

suitable land cover turning little and therefore constantly move across the landscape. The HDW 

and CRW species, do not move towards a new patch, but because they are passing through the 

landscape more, in general they encounter more patches of habitat. I hope to bring clarity to the 

debate that has arisen over whether FPS has a positive or negative effect on species-diversity 

(Fahrig, 2017; Fletcher et al., 2018; Fahrig, 2019; Fahrig et al., 2019; Thompson et al., 2019). 

Specifically, I consider if the differences could depend on the species studied (De Camargo et 

al., 2018; Valente and Betts, 2019) leading, therefore, to more complicated outcomes than FPS 

simply having a negative or positive effect on species diversity (Thompson et al., 2019).  

6.3 Methods 

My multi-species and landscape-scale simulation (Figure 6-1) was built using the NetLogo 

software (v6.0.4) (Wilensky, 1999). The NetLogo simulation parameters were set up, run and 

the outputs analysed using R version 3.5 (R Core Team, 2018). The model has been described 

following the Overview, Design concepts, Details (ODD) protocol for describing individual- 

and agent-based models (Grimm et al., 2006; Grimm et al., 2010). To aid the readability of 

these Methods, the ODD is in chapter 3.  
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Figure 6-1 A figurative description of the individual-based model, showing how I represented FPS by increasing the 
number of patches of the focal habitat (in black) while keeping its total area the same. I give two examples of the 
ranked suitability for land covers on the right for a non-focal-habitat species on the left and a focal-species on the 
right. I used three different kinds of walk, random walk (RW), correlated random walk (CRW) and habitat dependent 
walk (HDW). I included more variation is walks by modifying the rate of individuals’ transition to a more directed 
walk within the HDW. All individuals interact with the land covers according to their assigned suitability, with 
habitat-modified mortality. I varied bias in choosing land cover to make choosing more suitable land cover more 
likely. These biases ranged between no bias (zero) and high bias (two). 

6.3.1 Land cover generation 

I did not use real land cover data in this study. Instead I opted to generate land covers. In real 

land cover data with different levels of focal-habitat fragmentation, the area of focal-habitat and 

the number and area of other habitats are correlated (Cushman et al., 2008; Fletcher et al., 

2018). To allow for exploration of FPS, I simulated land covers over which I had precise control 

by using the technique described in chapter 4. FPS was represented by the number of patches, 

with more fragmented landscapes having more patches of focal-habitat (Figure 6-1). These 

focal-habitat patches were not necessarily of the same size, with the size of each patch taken 

from a uniform distribution. The focal-habitat covered 10% of the landscape, as Chapter 4 
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showed the same effects of FPS for when the focal-habitat had 10% or 40% cover. The matrix 

land covers between focal-habitat patches contained ten different land covers. The number of 

patches of each of the matrix land covers varied for all but the last generated, chosen from a 

uniform distribution between 1 and 200 patches for each. The area of each land cover was also 

randomly generated to be a proportion of the available space in the matrix. The last land cover 

generated filled all remaining space and could, because it included the space between patches 

more often include linear features and could have any number of patches. The matrix land 

covers were generated in a random order so that the last generated was not always the same land 

cover type. Each focal-habitat and matrix land cover patch (except the last generated), were 

randomly located within the landscape, but at least two cells apart. Each patch was then grown 

until the land cover covered the specified area while still remaining separate from another patch 

of the same land cover by at least two cells. For the matrix land covers, if a land cover could be 

grown no further, that land cover was considered finished and the next land cover was grown. 

The land-covers generated for the simulations were 1000 × 1000 cells in size. 

6.3.2 Species 

The species in this simulation were specified in a similar way to those in the two previous 

chapters, chapters 4 and 5. All individuals of all species reproduce, generating an additional 

individual with a probability of 5 × 10-4 during a time step, and can move up to a maximum of 5 

cells from their current location. These values were arbitrary but approximate real species at 

different scales. For example, based on allometric equations (Sibly et al., 2013) this could be, 

5 m per minute and 260 offspring a year, similar to invertebrates, or 5 km per hour and four 

offspring a year similar to birds or mammals. A maximum of two individuals can coexist in a 

single cell; all additional individuals die (Figure 6-1). The simulation iterated through 

individuals in random order so that the simulation did not always assess the same individuals 

first within each time-step. This random order was important when the population was over the 

carrying capacity and when assessing density-dependent mortality. Those assessed first were 

more likely to die. To simulate density-dependent mortality, if an individual counted more than 

two individuals were in the same cell, it died. There is an overall carrying capacity of 4000 

individuals. Above this, an individual had a slightly higher probability of dying within a time 

step.  

Each species has a rank for the eleven land covers in the land cover specifying how suitable that 

species finds each land cover. These ranks are randomly assigned to each of the species. All 

species have increased mortality in less suitable land cover. This increased mortality is the same 

as for the habitat dependency scenario of chapter 4 and all scenarios in chapter 5. This 

additional habitat mortality is specified by using a logistic equation to relate the rank for land 

covers to a multiplying value between zero and one. These values were multiplied by the overall 
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rate of reproduction, to give a similar order of magnitude value to reproduction, to give an 

additional probability of dying within a time step (Figure 6-2). This multiplication meant the 

highest additional mortality equaled the reproduction probability.  

 
Figure 6-2 Showing how the logistic equations were used to relate the habitat suitability rank, one to eleven, to both 
increased habitat mortality in less suitable and bias towards more suitable land cover. The same additional mortality 
slope was used for all species in all scenarios. Habitat bias was varied from none to high bias. The multiplying 
values were multiplied by the reproductive rate to give additional mortality that was of a similar magnitude to 
reproduction and in the case of bias used to modify the probability of choosing a more suitable land cover.  

In this chapter I only focus on the focal-habitat-species. I define focal-habitat-species as those 

species for whom the focal-habitat is most suitable (habitat suitability rank one). To test the 

effects of focal-habitat-species spending more time in the matrix land covers and the species 

being able to move between patches more readily, 24 scenarios were run. The 24 scenarios were 

run with different habitat biases (Figure 6-2) and walk types (Figure 6-1). The habitat bias was 

represented by logistic curves that converted the habitat suitability rank to a value between zero 

and one (Figure 6-2). I used four different levels of bias, none, low, medium and high. These 

values between zero and one were then converted to a probability which is used along with the 

area of each land cover into which the species could move. This bias results in an increase in the 

probability of a species choosing to move into a more suitable land cover. I used six different 

walks, a random walk (RW), correlated-random walk (CRW) and four habitat dependent walks 

(HDWs). When bias is zero, they are RW, CRW and HDWs, but technically when bias is 

greater than zero, then they should be biased-random-walk, biased-correlated-random walk and 

biased-habitat dependent walk, for simplicity and comparability I refer to them as RW, CRW 

and HDW with or without bias. The RW individuals can move in any direction up to the 

maximum 5 cells movement distance. The CRW individuals can turn within an angle centred on 
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where they are currently facing, which is defined by a gamma distribution of alpha=1 lambda=2 

multiplied by 3600, giving a median turn of 36° but the ability to turn through big angles 

occasionally. This angle defines a sector the individual could move into up to the maximum 5 

cells movement distance. The HDW walk is defined by a negative exponential function that 

relates the habitat suitability rank of an individual of a species to a turning angle (Figure 6-3). 

The four HDW walks have exponents of 0.1, 0.25, 0.5 and 1, which give walks that deviate 

progressively more from an RW, with movement in the least suitable land cover eventually 

becoming like a CRW, but always remaining an RW in suitable land cover. RW species do not 

move directly through the landscape. HDW walks with progressively higher exponents move 

more directly across the matrix between patches. CRW always move directly across both the 

matrix and patches of suitable land cover. HDW individuals have the best of both RW and 

CRW, able to turn readily with an RW within suitable land cover patches but traverse less 

suitable land cover like the CRW. I did not use a lag in changing walk mode for the HDW. 

 
Figure 6-3 Showing how the angle defining where the species can move to (turning angle) changes with the ranked 
habitat suitability of the species for the habitat dependent walk (HDW) compared to the random walk (RW) and 
correlated random walk (CRW). RW species can turn completely around. CRW species can turn through any angle, 
but the angle is defined by a gamma distribution and therefore the median angle is 36°, with a lower probability for 
sharper turning angles. The HDW species can turn completely around in suitable land cover like the RW species, and 
move more directly in less suitable land cover.  
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6.3.3 Multi-species and landscapes model description 

The simulation loaded the land cover data and ten individuals of each of 400 species. Each 

individual had a random starting location within the 1000 × 1000 cell simulations. The 

simulation is toroidal, as in chapter 5, meaning individuals who pass out of one edge reappear 

on the other side of the landscape. By using a toroidal design, I assumed the landscape to be in a 

wider landscape that is the same as the landscape of the simulation. To minimize individuals 

with bias turning away or choosing to cross over the boundary to avoid or gain access to land 

cover on the other side of the simulation, an additional 10 cells width strip was added around 

the edge of the 1000 × 1000 cells of the land cover. Each cell in this strip was randomly 

assigned a different land cover. This randomized the individuals passing from one side of the 

simulation to the other. The simulation was run for 200,000 time-steps. Using a high number of 

time steps allowed the number of species to reduce within the simulation to close to an 

asymptotic number of species. At the end of the simulations, the patch and species of every 

individual in the focal-habitat was recorded. Each species movement type and level of FPS was 

repeated 50 times. This resulted in 8398 simulation runs (two runs failed). 

6.3.4 Alpha, beta and gamma-diversity 

Using the information on focal-habitat-species in each patch, mean patch alpha-diversity, mean 

pairwise patch (i.e. between pairs of patches) beta sim diversity (Barwell et al., 2015) and 

overall gamma-diversity of the focal-habitat were calculated using the R package ‘vegan’ 

(Oksanen et al., 2019). As I did in chapter 5, I focused exclusively on the species for whom the 

focal-habitat was most suitable (focal-habitat-species) as they were most dependent on the 

focal-habitat and therefore most strongly affected by increasing the FPS of their habitat. 

6.3.5 Analysis of results 

I analyzed the results by constructing generalised linear models for alpha-diversity (with a 

gamma distribution with a log link), gamma-diversity (with a Poisson distribution with a log 

link) and beta-diversity using beta regression (index values bound between zero and one) 

against the number of patches, which represented FPS. I then graphed these trend lines. Due to 

the simulation nature of my study, using p-values is not advisable (White et al., 2014). I instead 

focus on effect size and 95% confidence intervals. The effect size is usually over an increase of 

a unit of the independent variable. In my study this would be a patch but this is meaningless. It 

is more appropriate to consider the effect size over the range of FPS simulated. I calculated the 

effects over the range of FPS using the R package ‘effects’ (Fox, 2003; Fox and Weisberg, 

2019). This approach is similar to that of chapter 4 and 5. To aid in communication, each of the 

scenarios has been labelled a to d increasing in bias and 1 to 6 going from a random walk to a 

progressively more corelated walk (Table 6-1). 
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Table 6-1 Alphabetical labeling of each species group, defined by varying bias towards more suitable land cover and 
the walk of the species. The species move with a random walk (RW), habitat dependent walk (HDW) and correlated 
random walk (CRW). The HDW species, move more like a RW in the matrix with a coefficient of 0.1, and more like a 
CRW with a coefficient of 1. See Figure 6-3 for further explanation of the walks.  

Bias none (0) Bias low (0.5) Bias medium (1) Bias high (2)  
a1 b1 c1 d1 RW 
a2 b2 c2 d2 HDW 0.1 
a3 b3 c3 d3 HDW 0.25 
a4 b4 c4 d4 HDW 0.5 
a5 b5 c5 d5 HDW 1 
a6 b6 c6 d6 CRW 

6.4 Results 

To show how alpha-, beta- and gamma-diversity change with FPS and with the different walks 

and bias, the results are displayed in a multi panel graph, which is first explained in Figure 6-4 

and then presented in Figure 6-5. 

 

Figure 6-4 Explanation of graph Figure 6-5. Each panel shows a different walk and bias set up. 

Alpha- and gamma-diversity are both count data and are shown on the left axis. Because beta-

diversity only varies between zero and one, beta-diversity is shown on the right axis. To identify 

what each panel represents, look at the bias along the top grey bar and the walk on the righ grey 

bar. The axis for alpha- and gamma-diversity, beta-diversity and the number of patches are 

repeated for each row and colum.With no bias the focal-habitat-species gamma-diversities 

across the different scenarios and different walks were unaffected by FPS, looking at effect size, 

changing by -0.04, -0.47, -0.11, -0.10, 0.23 and 0.09 species over the full range of FPS (Figure 

6-5 a), despite the fact that the species would have experienced increased mortality in less 
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suitable land cover. Alpha-diversity decreased less with a more directional walk across the total 

range of FPS, from RW through the HDW scenarios to CRW (-2.22 to -0.84 species). Beta 

diversity increased overall, but not by a large amount (0.08, 0.06, 0.07, 0.07, 0.08 and 0.11). 

The alpha and beta-diversity of the focal-habitat-species almost completely balanced each other, 

explaining the limited change in gamma-diversity.  

Increasing the bias of individuals in moving towards more suitable land cover led to cases 

where FPS affected gamma-diversity (Figure 6-5). With increased bias, the gamma-diversity of 

species moving with different walks showed both negative (reducing by as much as 2.58 

species) and positive (increasing by as much as 1.56 species) relationships of gamma-diversity 

to FPS. Alpha-diversity always decreased (by between -0.84 and -3.39), while beta-diversity 

changed by between -0.02 and 0.20 (to give an idea of scale, possible beta-diversity values 

range between zero and one, therefore decreasing by 2% and increasing by 20%). 

 
Figure 6-5 Alpha-diversity declining in orange, beta-diversity increasing in green and gamma-diversity both 
increasing and declining in black with FPS for the different scenarios. SE shown as area either side of lines. 
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Figure 6-6 The proportional change in alpha, beta and gamma-diversity of the focal-habitat-species over the full 
range of FPS (4 patches to 6350 patches). Beta and gamma-diversity are on the left axis, alpha-diversity is on the 
right axis as the proportional change is large and negative.  

With bias, the gamma-diversity of RW species always declined with increasing FPS, as they are 

unable to pass readily between patches of the focal-habitat (Figure 6-5 b1 -1.64, c1 -1.73, and 

d1 -1.84). With bias, the species would have spent less time in the matrix, and the gamma-

diversity was higher than with no bias (+1.75 with four patches but only +0.17 with 6250), but 

very similar when comparing the different levels of biases. With increasing bias, the gamma-

diversity declined more, due to the beta-diversity declining (b1 0.07, c1 -0.00 and d1 -0.02) 

even though alpha-diversity decreased less (Figure 6-6). The lesser decrease in alpha-diversity 

was probably due to fewer individuals leaving the focal-habitat with higher bias and therefore 

their risk of mortality is lower and fewer species are lost. With more species surviving in the 

focal-habitat, the patches share more species and the beta-diversity with FPS decreases with 

higher bias, further reducing the alpha-diversity loss and gamma-diversity decreases more. The 

gamma-diversity with at the highest number of 6250 patches, was very similar across the 

different levels of bias (a1 1.34, b1 1.51, c1 1.45, d1 1.33). 

Gamma-diversity of CRW species who turned infrequently and, therefore, had the ability to 

traverse the landscape rapidly, increased with FPS, although only by a very small amount 

(Figure 6-5, b6 +0.27,c6w +0.13 and d6 +0.36). Increasing bias affected alpha (-0.89, -1.19 and 

-1.05), beta (+0.07, +0.08 and +0.08) and gamma-diversity very little. This very low increase in 

gamma-diversity with FPS for the CRW species is due to the inability of individuals to stay 
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within the focal-habitat patches having encountered them. The CRW species encounter patches 

more frequently due to the landscape having higher functional connectivity for them with high 

FPS, but the increase in bias was not enough to keep them in patches.  

I looked at four variations of the HDW species by varying the exponent of the negative 

exponential relationship from 0.1 to one. With the 0.1 exponents, the individuals of the focal-

habitat species turn more in the matrix and with an exponent of one they turn little (Figure 6-3). 

The HDW species with an exponent of 0.1 had a relationship of alpha, beta, and gamma-

diversity to FPS that was similar to the RW with changing bias (Figure 6-6). As the HDW 

became more directional in less suitable land cover (with higher exponents), for low and 

moderate bias, the relationship of gamma-diversity to FPS changed from negative (b2 -1.66 and 

c2 -1.29), to positive (Figure 6-5 b5 +0.05 and c5 +1.56). The increase with low bias (b5) was 

very small but larger with moderate bias (c5). The alpha-diversity decreased less with a more 

directional walk than a more RW for both low (b2 -3.24 most RW like HDW,b3j -2.90, b4 -1.98 

and b5 -1.40 most directional HDW) and moderate bias (c2-2.64 most RW like HDW, c3 -2.48, 

c4 -2.03 & c5-1.24 most directional HDW). Beta-diversity increased with the more directed 

walks (b2 +0.02 to b5 +0.06, and c2 +0.06 to c5 +0.20). This change with more direct walks 

was very small with low bias (b2 – b5) but changed by a larger amount with moderate bias (c2 – 

c5). This small change with low bias, and larger change with moderate bias was similar to the 

difference between low and moderate bias for gamma-diversity. The positive changes in beta- 

and gamma-diversity, and lower decreases in alpha-diversity with more direct walks support the 

idea of increasing functional connectivity. Those species that can move between patches 

directly experience lower mortality due to less time in the matrix. Because of higher functional 

connectivity, beta-diversity likely increases due to competitive release as different species can 

survive in different patches and move between patches.  

In contrast to the changing relationship of gamma-diversity to FPS from negative to positive 

with more direct walks with moderate bias (c2 to c5), having high bias (bias exponent of 2) did 

not cause gamma-diversity to increase with more direct walks. With high bias, individuals 

would have a very high chance of choosing preferred land cover. They would therefore leave 

patches of habitat rarely. Gamma-diversity declined more with more directional walks (Figure 

6-5 d2 -1.58, d3 -1.36, d4 -2.58 and d5 -2.54). The decline in gamma-diversity with FPS, 

changed by a large amount between d3 and d4. Alpha-diversity reduced less, as it had done with 

the low and moderate bias, but not by as much (from d2 -2.47 to d5t -1.83). Beta-diversity 

increased less (d2 +0.01 to d5 +0.12), and with the declines in alpha-diversity this explained the 

declines in gamma-diversity (Figure 6-6). This was because, with high bias, individuals rarely 

leave patches of focal-habitat. Although if individuals did leave they would be able to move 

across the landscape easily, because they did not leave the effect was the same as if the 
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landscape had low connectivity, with species not moving between patches and having lower 

alpha-diversity and a smaller increase in beta-diversity.  

In general, alpha-diversity decreased less with a more directed walk, from an RW through the 

HDW to CRW. Gamma-diversity decreased less, except under the highest bias. Figure 6-6, 

showing the proportional change in alpha, beta, and gamma-diversity, shows the strong 

influence alpha-diversity had on gamma-diversity. Gamma-diversity always followed alpha-

diversity, but this was modified by beta-diversity patterns. 

6.5 Discussion 

My results show that spending less time in the matrix through having a high bias and therefore 

high patch fidelity, can be beneficial to species that are able to move across the less suitable 

land covers. Critically, too high a bias and therefore high patch fidelity or low likelihood of 

leaving a patch can cause alpha- and gamma-diversity of species that could move between 

patches to decline with FPS. This is because they find themselves in progressively smaller 

patches and they do not move to other patches. With no bias, as might be the case with passive 

dispersers, such as seeds or some insects, FPS had no effect in my study. My results showed 

both negative and positive effects of FPS on the gamma-diversity of the focal-habitat-species 

(the species for whom the focal-habitat is most suitable). This suggests that it is possible to find 

negative impacts of FPS at a landscape scale, and so results from patch scale studies (Haddad et 

al., 2015; Fletcher et al., 2018), may be applicable at landscape scales in some cases, 

particularly given the strong influence of alpha-diversity on gamma-diversity. But, FPS does not 

always have a negative effect on gamma-diversity, with positive mechanisms of FPS such as 

increased functional connectivity, higher land cover diversity and competitive release causing 

beta-diversity to increase strongly. 

Calls for additional landscape-scale analysis (Fahrig, 2017; Fahrig, 2019; Fahrig et al., 2019) 

are relevant and these studies are needed. But, landscape-scale studies are not always possible 

and are costly. There is value in patch scale analysis; for example, it should be possible to 

investigate if there are less negative effects of FPS on the alpha-diversity of species that are able 

to cross less suitable land cover, as I have seen in this simulation. It would be difficult to infer, 

however, whether this lower decline in alpha-diversity would be enough for landscape-scale 

gamma-diversity to increase with FPS. Unlike our study looking at the effect of FPS on the 

diversity of multiple species, there are examples of studies looking at individual species, of 

species moving with a random walk and being negatively affected by fragmentation, as in the 

case of an endangered ground beetle which rarely moves with a directed walk, but rather usually 

moves with a biased random walk (Bérces and Růžičková, 2019). Likewise, there are cases of a 

species moving more directly and appearing to be unaffected by fragmentation, as in the case of 
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pandas that showed no genetic differentiation caused by fragmentation (Ma et al., 2018). Further 

research is required on the effects of fragmentation rather than assuming, as much research on 

species movement does, that fragmentation will have a negative effect (Thomaes et al., 2018). 

Da Silveira et al. (2016) tested how starlings moved through landscapes, hypothesising that 

species would move in a similar way to my HDW. They instead found the birds turned more 

randomly, often switching direction sharply, and the authors suggested that the starlings may 

have adapted to fragmentation through behavioural plasticity. A mode of movement that I have 

not included, but which may have different effects, are foray loops, which is being found in an 

increasing number of species (Bauduin et al., 2016). Foray loops would seem to suggest some 

memory of previous locations (Grant et al., 2018) and I would expect these species to respond 

more like the HDW species, looping out and back if they do not find a new patch of habitat and 

benefiting from fragmentation in that new patches are more often found.  

By using 400 starting species and by generating them randomly anew in each simulation run, it 

is not possible to determine whether individual species persist with increased FPS. Due to the 

random nature of the matrix and associated species, there is no reason to assume that particular 

species would consistently do better with FPS and therefore replace ones from un-fragmented 

landscapes, as my landscapes did not include species with different walks in any particular run. 

If I had run the fragmented landscapes in a series of increasing FPS with only those surviving in 

the last level of FPS, then gamma-diversity could only have either remained constant or 

declined as no more species could enter the landscape. Assuming other species arriving from 

surrounding landscapes (introduced at the edge and not just through the toroidal landscape) may 

have negated the effort of running the fragmented landscapes in a series of increasing FPS with 

only those surviving in the last level of FPS, as the all of the initial species could be introduced 

at the edge. This could lead to a slightly different result if the numbers of individuals entering at 

the edge of the scenario meant some of the species could not establish themselves in a particular 

level of FPS. Although this again would lead to gamma-diversity increasing less with FPS. This 

logic does have implications for my results, however. It implies that in a wider landscape with a 

reduction of species diversity, the outcome of increasing species diversity with FPS would be 

less likely. 

My study did not sweep the full range of possible values for each parameter and did not use 

specific species, but still found both negative and positive effects of FPS on gamma-diversity. 

My results show that it is possible to get different effects of FPS as a result of simulating 

distinct species types. The next step should be to investigate how common these different sorts 

of species are in real landscapes. Are species more able to move between patches and to have 

moderate fidelity levels in landscapes or habitats that are historically fragmented? Are species 

with passive dispersal unaffected by FPS, or would they be affected if I had used higher habitat 
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dependent mortality? Further simulations could test this by focusing on species without habitat 

bias and sweeping a greater range of mortalities. This could be done possibly by using an 

exponential relationship instead of the logistic relationship used in this study to allow mortality 

to remain the same in the focal-habitat while increasing it in matrix land covers. Can species 

adapt to fragmented landscapes by reducing site fidelity, possibly by becoming bolder through 

plasticity (Villegas-Ríos et al., 2018)? Another possibility for species to cope with FPS is by 

becoming better dispersers by an increase in the proportion of the population that is adapted to 

dispersal, such as wing dimorphism in insects, where it has been shown that a higher proportion 

of the population has wings in fragmented landscapes (Chapman et al., 2005). 

In conclusion, I show the circumstances that could explain the different results of fragmentation 

that are reported in the literature (Fahrig, 2017; Fahrig et al., 2019). Depending on which studies 

are included in an analysis, fragmentation could overall have a positive or negative effect on 

gamma-diversity. Defining fragmentation as the converse of connectivity is troublesome as the 

effective connectivity will differ with different sorts of species. As I show increased FPS can 

lead to both reduced and increased functional connectivity, landscapes should be assessed for 

the species in them when making decisions on planning conservation. The safest 

recommendation in the absence of information on specific species, such as through specific 

connectivity analysis, would be to variously conserve large patches of habitat in some areas 

while putting effort in to conserve many small patches in other areas. This will give a diversity 

of different landscape configurations and therefore species across the landscape. The exception 

to this would be where habitat has historically only been found in large contiguous areas as 

species adapted to FPS would be unlikely.  
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Chapter 7  

General discussion 

In this thesis I have focussed on the heated debate about whether fragmentation has a 

universally negative, neutral or positive effect on species diversity (Fahrig, 2017; Fletcher et al., 

2018; Fahrig et al., 2019). Specifically, I focused on fragmentation per se (FPS), which is 

fragmentation in the absence of, or when controlling for, habitat loss. Patch-scale studies cannot 

look at the interplay between beta-diversity and alpha-diversity across patches and therefore the 

overall effects of FPS on gamma-diversity (Mori et al., 2018). As such the extrapolation to a 

landscape-scale of the results and conclusions from patch-scale studies has been questioned 

(Fahrig, 2017; Fahrig et al., 2019). I chose, therefore, to study FPS at a landscape scale. Due to 

the difficulties in conducting this sort of analysis in the field in terms of time, money, and 

availability of sites and the difficulty of looking at fragmentation while controlling for the area, 

it is valuable to look at FPS by using a modelling approach. I did this by creating an individual-

based model (IBM), in which I could simulate multiple generic species, species that are 

designed to have general characteristics to allow for exploration of ecological principles (Jepsen 

et al., 2005), and simulate land covers with FPS represented by varying the number of focal-

habitats patches. Within the IBM, species could move and interact with the land covers. I then 

used this IBM, different generic species, and the simulated land covers to test hypotheses 

concerning circumstances which could lead to negative, neutral, or positive effects of FPS on 

gamma-diversity. I also looked at the effects of FPS on alpha- and beta-diversity to explain why 

in any situation gamma-diversity responded as it did. To assess species diversity responses to 

FPS, my IBM had to allow multiple species to co-exist within a landscape. One of the ways 

species coexist within a landscape is through the occupation of different niches (Chesson, 

2000). As such, in chapter 2 I explored, using empirical data, how species each have different 

associations with multiple land cover types. Within my IBM the definition of habitat is different 

for each species based on this species-level perspective (Betts et al., 2014). 

Within the IBM, generic species could experience differing mortality and behaviour in different 

land covers based on the different associations derived in chapter 2. This allowed species to live 

in and move through multiple matrix land covers, the land covers between the fragmented focal-
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habitat patches in my simulation. Chapters 4, 5 and 6 then used this IBM to explore how 

differences in species specialism, movements through and interactions with the matrix 

depending on matrix characteristics could cause FPS to have different effects on alpha-, beta-, 

and gamma-diversity. In chapter 2, I found that no two of the ground beetle (Carabidae) species 

that I analysed in my case study shared even the same ranked order of association with the 21 

different land covers, let alone precisely the same strength of association. As this was a large-

scale analysis, covering Great Britain, I looked at the species associations at the level of land 

cover classes, and did not split these land cover units by different abiotic characteristics, or 

group them. Analysing more alternatives could have led to a loss of power and this level of 

association with land cover types is typical of similar types of work on habitat association (Eyre 

and Luff, 2004; Redhead et al., 2016). Grouping and splitting other land covers or habitats 

would have been possible but would make more sense in the context of a study that needed this 

level of detail to answer a particular question. The land cover scale of the analysis allowed for 

validation of the improvement my method offered. My method was an improvement over other 

methods (Eyre and Luff, 2004; De Cáceres and Legendre, 2009; Redhead et al., 2016) due to its 

ability to include more data and deal with species with few records and spatial uncertainty, both 

from sampling and species movement. This analysis clarified the definition of what I consider to 

be habitat association, looking at the preference of a species for several land covers, as opposed 

to species distribution models, predicting where species are likely to be found within a 

landscape (De Lima et al., 2016), and indicator species analysis which identifies the species 

which best represent a habitat (Hill et al., 1975; De Gasperis et al., 2016). My definition is 

congruent with the concept of a species-level perspective of the landscape (Betts et al., 2014). 

This has implications for fragmentation and connectivity analysis, in that the habitats that are 

fragmented or made more or less connected likely do not correspond to a single meta-

population (Valente and Betts, 2019) or meta-community. Instead, the “habitat” that has or 

could become fragmented, is defined at the human perspective of conversion, reconfiguration, 

and conservation. Researchers can then look at the effects that FPS has on the different species 

who have some dependency on these land cover types. Going forward, I defined the habitat that 

I fragmented as the focal-habitat. This focal-habitat represented this human perspective, and 

then each of my generic species had differing suitability and preference for this and the other 

land covers in-between patches of this focal-habitat, the matrix land covers.  

Chapter 4 was my first investigation of the effects of FPS. I included three models in this 

chapter. The first two were the baseline and habitat-dependency models. The baseline model 

had species moving over the landscape and among patches, but not interacting with the land 

covers. The habitat dependency model had individuals who had a bias to move towards more 

suitable land cover and higher mortality in less suitable land cover. In the baseline model, FPS 
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did not affect gamma-diversity as changes in alpha- and beta-diversity counteracted each other 

quite closely. This simulation did not sort the species in the landscape, and the species spread 

randomly through the landscape. When land covers had different suitabilities for distinct species 

and species showed increased mortality in less suitable land cover and bias towards more 

suitable land cover, overall the gamma-diversity of the focal-habitat increased with FPS. This 

increase, however, comprised all species, including species who do less well in the focal-

habitat, tourist species, which are seeking suitable land cover and become lost (Alderman et al., 

2011) and also those that are just passing through (Eversham and Telfer, 1994; Magurran, 

2004). To account for the relationships of species to the focal-habitat, I looked at the species in 

three groups: those for whom the focal-habitat had low, moderate, or high suitability. The 

species in the low and moderate group increased in gamma-diversity with FPS. The species 

most dependent on the focal-habitat, in the high group, declined in diversity with FPS. This 

supports the call and need, to look at the identity of species in studies of FPS (Fletcher et al., 

2018), and not simply state that fragmentation causes either no effect or has a positive effect on 

diversity without establishing what species are included within the analyses (Fahrig, 2017).  

Additionally, it has been suggested that cases where diversity has increased with FPS may be 

because specialist species increased with FPS, contradicting the idea that only generalists 

increase in diversity with FPS (Fahrig, 2017). Therefore, in chapter 4 I also included a third 

model. This specialism model included specialist and generalists, defined by differences in 

competitiveness of species across land covers. The specialists were more competitive than 

generalists in land covers they found to be most suitable, but less competitive in land covers 

they found less suitable. In this scenario, overall gamma-diversity increased, primarily driven by 

the species in the low and moderate groups who found the focal-habitat less suitable. However, 

for the species most dependent on the focal-habitat, the high group, FPS no longer had a 

negative effect, with gamma-diversity not declining. The question then was, did the specialist or 

generalist species cause this increase? Looking at specialists and generalists separately, neither 

group declined with FPS. I would have expected one of them to increase while the other 

declined, especially as with neither specialists nor generalists the species dependent on the 

focal-habitat declined. The specialists are more and the generalists less competitive than the 

species in the model with neither specialists nor generalists. However, by creating specialist and 

generalist species, both species groups were more able to cope with FPS. The specialists were 

able to cope because they could compete successfully against species less suited to the focal-

habitat that encroached into the focal-habitat. The tourists did increase less with FPS in the 

model with specialists and generalists. The generalists as well seemed to have been more 

resilient, able to use more of the landscape and competing less with the specialists, suggesting 

some form of niche separation. Another possibility is that these generalists acted more like the 



 

91 
 

species in the baseline model that had no interaction of species with the land covers or like the 

species in chapter 6 who had no bias and therefore in both cases no or limited sorting of species 

into areas of land cover. In both cases, FPS did not affect gamma-diversity. I think this is 

unlikely in reality, however, because although species sorting in the landscape was lower, the 

species were not extremely strong generalists and the difference between suitable and unsuitable 

land cover was still quite high for these generalists. Of course, it is unlikely that species would 

ever fall into such binary classifications of specialists and generalists, where all species in every 

other land cover are similarly binary. However, this was at least evidence that different sorts of 

species can be unaffected by FPS. The overall increase in gamma-diversity also explained why 

studies may report increases in gamma-diversity when not accounting for species (Fahrig, 

2017). 

In my first foray into considering FPS, I had jumped straight into looking at landscapes with 

multiple matrix land covers, influenced by chapter 2 in which I studied habitat associations and 

the concept of a species-level perspective (Betts et al., 2014). However, many connectivity and 

fragmentation studies at both patch and landscape-scales, in both empirical and modelling 

studies, often use binary landscapes with a focal-habitat and a single dissimilar matrix land 

cover. This is a sensible approach when testing to see if there is any effect. Picking an extreme 

is likely to produce results and also these extreme landscapes represent a worst-case scenario of 

landscape conversion of good quality natural habitat surrounded by a desert of poor quality land 

use, such as arable agriculture or forest plantations (Tscharntke et al., 2012; Haddad et al., 2017; 

Damschen et al., 2019). This also fits well with island biogeography, with the matrix in this 

cases being water and therefore for many land species entirely dissimilar (Tscharntke et al., 

2012). In these examples, populations of species will strongly associate to a single land cover, 

as they are unlikely to be equally adapted to both. In cases where they are equally adapted, 

researchers would rightly label them as being very strongly a generalist species, and therefore 

having no difference in suitability. My use of multiple land covers allows a more nuanced 

assessment of FPS. For example, I expected that beta-diversity would increase with FPS 

because of the positive mechanisms of increased land cover diversity and positive edge effects 

(Fahrig et al., 2019). With fewer land covers in the matrix, this would not be possible, and beta-

diversity would increase less with FPS. I used species like those of the habitat dependency 

scenario of chapter 4 in five models in chapter 5. The first of these was a baseline model similar 

to the habitat dependency scenario of chapter 4 (not chapter 4’s baseline). The second and third 

in the focal/matrix similarity scenario were the dissimilarity and similarity matrix models, with 

the matrix being less or more similar to the focal-habitat than in the baseline. The fourth and 

fifth in the matrix diversity scenario were the starting low diversity (SLD) matrix and starting 

high diversity (SHD) matrix, with the matrix land covers at the start of the simulations having 
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fewer or more species diversity than the focal-habitat and the baseline. In chapters 5 and 6, I 

only looked at those species most dependent on the focal-habitat, for whom the focal-habitat 

had suitability of one. This was different from the high group in chapter 4, as that had consisted 

of those species for whom the focal-habitat had suitability of one, two or three. I labelled these 

focal-habitat dependent species as the focal-habitat-species and looked at them because FPS 

would likely affect them most. The prediction that beta-diversity would increase less with FPS 

when there were fewer land covers was supported. In fact, beta-diversity decreased with 

dissimilar matrix land covers irrespective of the number of matrix land covers and in the 

baseline and SLD models with fewer matrix land covers. With a dissimilar matrix, beta-

diversity declined with FPS, and the effect on gamma-diversity was extremely negative. Even in 

the baseline model with the matrix being neither particularly similar nor dissimilar, the beta-

diversity declined under FPS with fewer matrix land covers. With ten matrix land covers, beta-

diversity no longer declined with FPS, even increasing a small amount, although not enough to 

stop gamma-diversity declining, albeit not as severely as with the matrix being dissimilar. 

Therefore, although it is beneficial to use a binary landscape with highly dissimilar land covers 

in terms of clarity of species association and specialism, doing so may stack the deck against the 

positive effects of FPS. These dissimilar binary landscapes would undermine the positive 

mechanism of FPS, through positive edge effects and increased land cover diversity, and so 

beta-diversity could not increase. This lends support to the need for landscape-scale analysis, 

and further suggests that researchers should conduct at least some studies on more varied 

landscapes. This also reinforces the need to maintain and enhance the quality and diversity of 

matrix land covers to mitigate effects of FPS (van der Hoek et al., 2015; Neilan et al., 2018). A 

more permeable matrix is also highlighted as a necessity of making corridors and stepping 

stones effective in increasing connectivity (Baum et al., 2004). 

All the species in my simulations in chapters 4 and 5 moved with a random walk. This meant 

that the species were not good at moving through the landscape and between patches of focal-

habitat (Codling et al., 2008). I had given species the ability, in the latter models of chapter 4 

and those in chapter 5, to move more often towards more suitable land covers, but in general, 

any individual would not move across the landscape and choose new patches instead more often 

encountering already encountered patches. The species, therefore, most often spread between 

patches through the species as a whole surviving and diffusing across the landscape. However, 

it has been suggested that species that spend less time in the matrix and those who have higher 

encounter rates with focal-habitat patches should be affected less negatively by FPS (Fahrig, 

2017). Inherent in these suggestions is the concept that not all species move in the same way, 

with differences both between and within species (Bonte et al., 2012; Bonte and Bafort, 2019). 

In chapter 6, I varied the strength of movement bias towards more suitable land cover and 
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changed the way species walked across the landscape. As well as the random walk of chapters 4 

and 5, I included a correlated-random walk, with individuals turning infrequently and moving 

across the landscape, and a habitat-dependent walk in which species random-walked in suitable 

land cover and moved more directly in less suitable land covers and, therefore, traversed 

unsuitable land cover arriving at new patches of suitable land cover. Interestingly, without 

movement bias, and therefore no sorting of species in the landscape, FPS had no effect on 

gamma-diversity with the levels of habitat dependent mortality I had in all three fragmentation 

chapters. With bias, the habitat-dependent walk species were, with certain parameterisations, 

not only unaffected by FPS but did better, increasing in gamma-diversity. This supports the idea 

of increasing functional connectivity, although of course only for particular species (Fahrig, 

2017). This support for functional connectivity further highlights the necessity of understanding 

that connectivity is a species level perspective. In my results some species were negatively 

affected by FPS as they move with a biased random walk and therefore do not move between 

patches. This is how the ground beetle species moves in the empirical movement study Bérces 

and Růžičková (2019) in which they defined their ground beetle species as being threatened by 

fragmentation. In my results other species moved more directly and were unaffected by 

fragmentation. This is a similar results to the empirical study of pandas, there was no genetic 

support for the isolations of meta-populations caused by fragmentation and the pandas were not 

restricted by barriers or distance (only topography) (Ma et al., 2018). 

Functional connectivity is a species-level perspective on movement through a landscape 

(Bélisle, 2005). Each species will have a unique perspective as I showed in chapter 2, each 

finding different land covers to have different suitabilities, and therefore connectivity will be 

different for every species in each landscape. Connectivity is a useful concept when making 

predictions about landscape change for single species or related groups of species (Brodie and 

Newmark, 2019). I would argue though that connectivity measures are less useful with 

progressively larger groups of species. When looking to make generalisations, FPS is more 

appropriate as it does not include any assumptions over whether we as researchers think a 

landscape is more or less connected. Fragmentation is the mechanical loss and splitting of 

habitat patches and is not species-specific, analogous to structural connectivity (Bélisle, 2005). 

The impacts of fragmentation, as I have shown, will likely be different for different species. 

FPS, as already stated, is the component of fragmentation that excludes impacts of changing the 

area of habitat and reflects only the reconfiguring the patches, primarily through splitting into 

more patches (Fahrig, 2017). FPS is potentially an unrealistic concept, as fragmentation in the 

real world generally arises through the anthropogenic conversion of an area of one land cover 

into another, leading de facto to a loss in an area of the first. However, it has been shown that 

area loss often swamps the effect of FPS, and therefore it is useful to isolate fragmentation from 



 

94 
 

area loss and assess impacts of FPS to determine the effect the fragmentation component has on 

species diversity (Fahrig, 2003; Watling et al., 2020). An example of this is the species-

fragmented area relationship which suggests lower gamma-diversity than the species-area 

relationship caused by FPS, but not accounting for beta-diversity increases (Hanski et al., 2013).  

It is vital to document which species are included in measurements of diversity when looking at 

the effects FPS or other spatial reconfigurations have. Measuring the effect of FPS on an 

individual species is an indication of the connectivity of the landscape for that species. The 

effect on a meta-community is, therefore, the sum of effects on each species’, plus any 

interaction between the species. The issue of fragmentation is a complex one with multiple 

factors influencing whether there is an effect of FPS and if this effect is positive or negative 

(Thompson et al., 2019). Fahrig (2017) seemed to suggest that, despite finding only a majority 

of studies they looked at showed either no or positive effects, and not all of the studies, that FPS 

never has a negative effect. They even went as far as suggesting that the idea that FPS has a 

widespread negative effect was a zombie idea. Zombie idea is too harsh, but studies should 

better define the circumstances and scale of the study. They should also acknowledge that if 

they conducted their study at a patch scale, that there could be no measure of beta-diversity or 

its potential to counteract any loss in alpha-diversity. The zombie idea was likely an attempt to 

provoke scientists working on connectivity into admitting that fragmentation does not always 

have a negative effect. My work does support doubt in the absolutism of two other of the ideas 

Fahrig (2017) included in the “fragmentation zombie family”; that fragmentation always 

reduces connectivity and that specialists are particularly affected (although I would never use 

the term zombie idea, suggesting instead a need for clear definition/documentation). 

Fragmentation can reduce connectivity (Damschen et al., 2019; Marrotte et al., 2020), but as I 

and others have shown, it can also increase functional connectivity for certain species (Halstead 

et al., 2019; Thompson et al., 2019). These species need not necessarily be “generalists”, as 

specialist species with a dispersal phase, adaptation, or bold individuals being able to move to 

new patches may also experience increased connectivity. Although this may not be the case for 

all species, only for “Goldilocks species”, as Brodie and Newmark (2019, p.752) call them, with 

a decent quality matrix. Others may still require additional linkages to move around the 

landscape. 

Whether a species is a specialist or generalist is open to interpretation and these classifications 

are often ill-defined, with studies calling species specialist or generalist idiosyncratically (Da 

Silveira et al., 2016). Within studies using dissimilar binary landscapes, it is easy to define a 

specialist species as one that would do poorly in the impoverished matrix and a generalist as one 

that would do well in either, or even as one that is a specialist of the matrix but uses the edge of 

the focal-habitat (Da Silveira et al., 2016). I did not design my specialist species to be only 
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associated with a single land cover, but that is how they may have appeared with a simplified 

landscape. If the landscape had been simpler, we may not have found that the specialists were 

unaffected by fragmentation, due to the extremely negative response of both beta- and gamma-

diversity to both matrix dissimilarity and few matrix land covers. Likewise, the positive 

response of mobile species, potentially adapted to fragmented landscapes, may be swamped by 

the lack of an increase in beta-diversity in a binary landscape.  

7.1 Limitations and caveats 

The size of the simulation, in terms of spatial extent, may have been a limiting factor of my 

fragmentation analysis. The 1000 × 1000 cell extent of my analysis is not particularly large and 

the densities of individuals in the landscape are lower than would be the case in the real world. 

However my 1000 × 1000 cell extent is comparable or larger than similar IBM fragmentation 

studies (Aben et al., 2014; Rybicki et al., 2019; Hunter-Ayad and Hassall, 2020), if slightly 

smaller (although of a similar magnitude) than some IBMs generally (Engel et al., 2017). Due to 

limitations in the processing power and time, it was necessary to add a cap on the number of 

species and the density of individuals in cells, this limited the strength of the interactions 

between individuals, something which other IBM models have shown to have no ill effect 

(Bilde and Topping, 2004). This may not have been a big issue if considering the cell size as 

meters but may have become less realistic if a cell represented a kilometre. The limited extent is 

one of the reasons the diversity was low in my simulation and why my effect sizes were low. 

Another reason the effect sizes were low was the simplicity of the available niches. Including 

another form of niche differentiator, for example, elevation, and then having each species 

randomly assigned a range of elevations range would have allowed for more species. I think 

more species would have strengthened the effect size, both negative and positive, because 

higher numbers of species have more potential to decline or increase. But this increase in size 

would not have changed the overall conclusions. 

Because real land cover data contain many correlated characteristics (Cushman et al., 2008; 

Fletcher et al., 2018), I designed the land cover generator to allow me to distribute patches 

through the landscape regularly, randomly or in a clustered way. I chose to run all analysis with 

patches randomly distributed within the landscape, as there was no reason to assume FPS called 

for patches to be either regular or clumped. Even so, my land covers often had clumped patches. 

This is not a problem, as this is to be expected and this would likely make little difference due 

to the large steps in the number of patches I used to represent FPS, 2n (excluding 2) in chapter 4, 

and 4n in chapters 5 and 6. Looking at the clusters of patches for example, in the four patches 

cases, if three were close together there would be two clusters. In the 16 patches case, which is 

the next step up in number of patches after the four patches case, looking at Figure 5.1 in 
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chapter 5, there were 12 or 13 clusters. This is still very different to four patches case. This 

likely increased the variation in diversity outcomes at any level of FPS (the number of patches). 

This again likely made my effect sizes smaller than they might have been. I specified the 

number of patches and area of the focal-habitat but specified the matrix less strongly. The 

matrix land covers were not as fragmented as the focal-habitat. I could have co-varied 

fragmentation of each land cover, but this would have been difficult to create. One reviewer of 

the paper for chapter 4 suggested I should have looked at the species in each of the other land 

covers, but I am not sure why this would have been beneficial. I think the simplest option would 

have been to have a larger range of landscapes by varying the number of patches of each matrix 

land cover beyond the 200 that I used as the maximum number of patches for each matrix land 

cover. However, there is no reason to assume a natural land cover that is experiencing FPS 

would exist in a landscape where all other land covers are also becoming more fragmented. I 

could have fragmented one or two other matrix land covers in the same way as the focal-habitat. 

Would fragmenting these other land covers have told us anything new, however? As it is, the 

last matrix land cover created by the land cover generating process was by default more varied 

in terms of the number of patches and shape, including linear features.  

The simulations were not entirely realistic because when I changed an attribute like specialism, 

walk, or bias, I did the same to all the species in the landscape and they were all the same. Many 

IBM studies are conducted on single real species (Jepsen et al., 2005) but those using generic 

species have similarly had all species sharing many properties (Rybicki et al., 2019). Would it 

have been better to have most of the species in the landscape be entirely random in terms of 

specialism, speed, movement, bias and then changing focal-habitat-species to either be all of 

one type, specialist/generalists for example, or taking randomly created focal-habitat-species 

and making half more specialist and the other half more generalist? The simulation already 

contained randomness because of the way I generated species and landscapes. With enough 

variation in the species in the matrix, the matrix community would potentially end up perfectly 

adapted to the landscape. This would mean more pressure on the species for whom the focal-

habitat is most suitable and make the result of FPS more likely to be negative. However, if 

humans created several of the land covers in the land covers in the matrix through the 

conversion of parts of the focal-habitat, it is unlikely the species will be so perfectly adapted to 

these matrix land covers. It would be a worthwhile experiment to look at the effect of doing the 

analysis in this way. The reader should treat my simulations as indicative only, and not as proof 

of FPS being positive or negative in any particular real-world situation. They only show that it 

is possible, depending on species and landscape characteristics, for FPS to have no effect, a 

positive, or a negative effect.  
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I also fixed the perceptual range of the individuals to the maximum movement distance. The 

perceptual distance is likely further (Thiele, 1977). Fixing these attributes to be the same was 

computationally expedient. Having two choices, long-distance and within maximum distance, 

every movement would have required at least two levels of decision; where am I going and what 

step shall I take now. This could replace the different walks I used, but I would need 

information on how far species are willing to deviate from a straight course to reach an eventual 

location. The walks I used are a way to represent observed behaviour, therefore the way I have 

modelled movement is likely similar to what would emerge with different levels of perception 

and memory. Aben et al. (2018) advocate the use of viewsheds to differentiate where species 

can see and to explain sub-optimal movements. For me to have taken this sort of approach 

would have required topography in our model. Equally, I could have included memory in 

individuals of previous locations (Grant et al., 2018). But studies have chosen to not include 

memory when looking at movement, to allow for a focus on the interaction of movement and 

the environment (Holloway, 2019). My approach is taking these sort of movement analyses and 

having species interact with the environment, therefore memory would have been a potential 

over-complication. However, adding in memory could allow for analysis of whether including 

memory would complicate movement analysis or not. These sorts of approaches could be added 

in future adaptation to implementing species-specific modelling of the effects of FPS. I also 

used a simplistic case of density-dependent mortality, with inter- and intra-species density 

dependence the same. Others have achieved similar density dependence by using common 

resources, although they split these into different groups of species that use a few different types 

of resource and therefore had no density dependence between groups (Rybicki et al., 2019). I 

wrote the simulation to allow me to vary these two types of density dependence separately and 

differently for different species, doing so would be a move to higher realism than has been 

included in this simulation. 

All these additional parameter sweeps were not possible during my PhD due to a decision I 

made not to convert my NetLogo simulation to a faster programming language (C++). I had 

spent a month converting a different IBM from NetLogo to C++ via python and cythonisation 

which I had based on the ground beetle IBM of Bilde and Topping (2004). Doing so I reduced 

run time to about 2% of the NetLogo version. Similar gains would have caused my simulation 

to run in 30 minutes instead of the 24 hours each run took. I instead opted to save the month and 

instead rely on using high powered computing. With the benefit of hindsight, I might have been 

able to run more experiments with each run taking 30 minutes. However, the main trends in my 

results would likely not have changed. These additional parameter sweeps could be run however 

in further work. 
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7.2 Further work 

In their review of the SLOSS debate, Fahrig (2020) found more support for several small (SS) 

over single large (SL) habitat patches. Conclusions like specialists having higher diversity with 

SS, and colonization outweighing patch scale extinction are both supported by the results of my 

thesis, with specialists being unaffected by FPS and species more able to move between patches 

being positively affected by FPS. However, Fahrig (2020) also found that SS patches had higher 

diversity in a more hostile matrix. This is in disagreement with what I show with a more hostile 

matrix, in my dissimilarity model of chapter 5. Fahrig (2020) suggests that most species can 

colonise successfully. But I do not use higher dispersing individuals, those with a habitat 

dependent walk (HDW) (chapter 6), in a hostile matrix (chapter 5). For this reason, further work 

could include combining some of the scenarios from the different chapters. I would like to see if 

the focal-habitat-species from chapter 6 who were able to move between patches of focal-

habitat with a HDW, leading to an increase in gamma-diversity, would still be able to increase 

in diversity with the dissimilar matrix land cover. Based on Fahrig (2020) they should still 

increase in gamma-diversity. Fahrig (2020) also talks about a diversity of land covers and 

fragmented or SL patches interacting with more land covers. If the gamma-diversity did still 

increase with mobile species and in a hostile matrix, would this still hold with fewer matrix land 

covers as I did in chapter 5? I suspect they would not because the beta-diversity would increase 

less.  

I have found different effects of FPS on different generic species, but if reviews of empirical 

studies on FPS and SLOSS are only finding particular results (Fahrig, 2017; Fletcher et al., 

2018; Wintle et al., 2019; Fahrig et al., 2019; Watling et al., 2020; Fahrig, 2020), do only 

certain sorts of species exist, or because there is not universal agreement on the effects of FPS, 

is this because they are looking at different species as I have assumed in chapter 6. Future work 

could involve parameterising an IBM similar to my analysis for real species. I had hoped to try 

to parameterise the simulation with values for ground beetles, incorporating data from chapter 2, 

size and allometric speed and reproductive rates. I had then hoped to conduct approximate 

Bayesian computation (van der Vaart et al., 2016) trying to approximate the habitat association 

results from chapter 2 using the IBM, and determine differences in the bias towards, mortality 

and reproductive rate of different land covers for each species. I could also have potentially used 

different modes of movement. This would have given insights into exactly what the phi-

coefficient from chapter 2 represents in terms of preference, mortality, and reproduction. Then, 

having parameterised the simulation to be as realistic as possible, I could have run analysis to 

see how these species collectively and in groups reacted to FPS. I originally planned this as the 

last chapter, but I realised that this could involve as much work and processing as the whole of 
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the PhD as it is now. This would, therefore, be ideal as a future substantial and standalone 

project.  

There is the idea in IBMs of deconstructing complex computational models to analyse their 

robustness (Grimm and Berger, 2016). My simulation is simplistic and general, looking for 

reversals in the relationship of diversity to FPS. It is already deconstructed, and the first step 

towards a more complex model. Adding in real species data would be a move towards more 

complexity, but could also include greater variability in land covers, potentially including 

topography and climate and with real data on different landscapes allowing for answering of 

questions specific to different locations on the sort of scale and complexity of the ALMaSS 

agent-based modelling system (Topping et al., 2003). These results would be important in terms 

of repeatedly testing different circumstances that affect FPS but would not immediately be as 

generalizable. Even with my model being simplistic, it was not always easy to work out why 

diversity changed in a particular way. Therefore, immediately having a more complex model 

would have made results difficult to interpret.  

I would also have liked to have moved away from FPS, and looked at the impacts of corridors 

and stepping-stones (Haddad et al., 2014). For example, in Ma et al. (2018) empirical study they 

did not appear to be seeing genetic differences in populations of pandas, which suggests they 

were not being affected by fragmentation but were still advocating planning corridors. It would 

be interesting to determine the threshold for species generally requiring corridors and whether 

adding them would have the desired effects, including at which point corridors are not sufficient 

to help isolated species (Doherty and Driscoll, 2017).  

Researchers should develop a framework to document all fragmentation studies due to a lack of 

clarity in the language used in studies (Miller-Rushing et al., 2019) and the complexity of the 

FPS debate (Thompson et al., 2019). This would involve clearly appraising if the study is of 

connectivity, isolation, or fragmentation per se, whether it is at a patch or landscape scale and 

how big an area they cover. They should also clearly define what exactly is measured in terms 

of the diversity measure and the species included (Miller-Rushing et al., 2019). Additional 

information should describe the matrix and the similarity of the focal-habitat and matrix land 

cover. One approach to this could be the measurement of the phi coefficient of association that I 

presented in chapter 2 for the species that researchers have in their study, based on larger 

datasets of species presence. This would allow them to classify species as acting as specialists 

or generalists and as dependent on or a tourist in the focal-habitat. This would allow researchers 

to place studies within a framework of meta-information, allowing for consideration of context 

or to consider more factors when performing a meta-analysis of the effects of fragmentation. 

This meta-analysis should also include the definition being used for fragmentation (Thompson 
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et al., 2019). This information could then be used to make better predictions of what effect 

fragmentation would have in a particular sort of landscape (Fahrig et al., 2019; Brodie and 

Newmark, 2019). Further, this sort of analysis could also be a way forward in practical 

conservation; allowing for determining exactly how species react to different planning options 

and how capable species are of moving across different land covers. From this analysis, one 

could then make better estimates of the effect fragmentation would have on the sorts of species 

that are in landscapes at risk of change or help to mitigate current lacks of connectivity for the 

species that are identified as likely needing help. 

7.3 Impact 

Should the results of chapters 4, 5 and 6 be proven to be representative of the sorts of patterns of 

FPS effect on species diversity, then they have important consequences for practical 

conservation. Chapter 3 showed that almost all species of carabid were not restricted to a single 

land cover type. This suggests a more holistic approach should be taken to practical species 

conservation. Not simply conserving the woodland habitat of a “woodland” species, for 

example, but taking into consideration the secondary resources of the species. Additionally, in 

the planning of conservation of a focal species, the other “woodland” species should be 

considered further using this approach and additional elements of the landscape conserved or 

enhanced for these species also. In both cases, habitat association analysis could be performed 

for a suite of species, and the landscape conservation informed by the insights gained. 

Chapter 4 combined with the information on the association of different species in chapter 3 

suggests that many specialists, those most strongly restricted to a single land cover type, and 

generalist species, may be unaffected by fragmentation as long as the landscape contains a 

diversity of land covers. Still others, those of the middling ground, neither particularly specialist 

nor generalist may respond badly to fragmentation. Considering the identity and what is meant 

when species are referred to as specialist or generalist and using analysis of habitat association, 

conservation efforts could be focused on mitigating fragmentation for those species struggling 

with a fragmented landscape. Further, specialism could be looked at from the emergent 

perspective of species appearing specialist because of the other species in the landscape or the 

design of the landscape, further highlighted in chapter 5. In the absence of more competitive 

species, such as on islands or isolated corners of the landscape specialist species may utilise a 

broader range of habitats and benefit further from a heterogeneous landscape of resources and 

land covers. 

In chapter 5, I showed the potential impact of typical analysis choices in fragmentation analysis 

that of using an extremely different fragmented and matrix land cover types in experimental 

landscapes. These are often a fragmented woodland and different open habitat types, or a 
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fragmented grassland and different woodland types. In an exploration of fragmentation, this 

suggested that fragmentation analysis should sometimes look at a greater diversity of landscapes 

when exploring the effect of fragmentation. But from a practical conservation perspective, this 

shows the importance of maintaining or creating landscapes with a diversity of land covers and 

resources. It would be easier, and potentially appear more cost-efficient to pump resources into 

the conservation of important habitats patches in monoculture landscapes and not to focus on 

the matrix. However, allowing massive single land use withing the matrix without any 

mitigation would strongly exacerbate the negative effects of fragmentation. As mentioned for 

chapter 4, it is also likely that framing in such simplistic binary, “good” and “bad” land cover 

landscapes, that species would appear to be more specialised, when they may function as a more 

generalist species in a landscape containing a diversity of landcover elements in the matrix 

between a fragmented landscape. This could lead to the wrong conservation approach though 

misclassifying species or different sources classifying species specialism differently. It is also 

possible that species should be considered specialist or generalist in different landscapes. 

Chapter 6 showed a difference, in how species move, their site fidelity or potential boldness 

when moving out of preferred habitat and moving into the matrix. If different species are shown 

to respond differently to fragmented landscapes by altering how they move, being bolder or 

having a higher prevalence of dispersal ability within their populations, this could suggest long 

term adaptation within fragmented landscapes. Conservation could focus some effort on 

species-level adaptation to landscapes, increasing adapted individuals within populations to 

further mitigate the effects of fragmentation where it is not possible to physically decrease 

fragmentation. This is an idea similar to that of developing immunity to things like avian 

malaria to conserve island bird species. Populations adapting to fragmentation may need help 

for some time to allow them to develop enough individuals within the species to survive 

unassisted in fragmented landscapes. However, the negative costs on the fitness of the species 

of this increased dispersal adaptation should be further explored lest the species become 

unviable particularly compared to other species. 

7.4 Conclusion 

In conclusion, I found that it is possible for differences in species movement and behaviour, and 

choices of experimental landscapes to change if FPS has a negative or positive effect on 

gamma-diversity. In my modelling, the species more capable of moving through landscapes or 

that were more competitive were unaffected by or positively affected by FPS. Having an 

extremely different, low-diversity or degraded matrix between the focal-habitat more often 

showed negative effects of FPS. This will have the same effects as patch scale studies, with the 

positive mechanisms of FPS, land cover diversity and positive edge effects being unable to 
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increase beta-diversity and counter the loss in alpha-diversity caused by smaller patches with 

increase FPS. Patch scales and simple landscapes will also potentially be making specialists and 

generalists appear to be more so because of the simplicity of the landscapes.  

Changing species specialism, habitat association and movement changed the effect that FPS had 

on species diversity. Given the different effects, it is important that future studies on 

fragmentation not only state the species or groups of species that are being looked at in their 

work but also characterise the different species and potentially look at them in separate groups if 

there is reason to think that fragmentation may affect them differently. Simple landscapes had a 

stronger negative effect on diversity than more complex or varied landscapes. Going forward 

both empirical and modelling studies should also include examples of non-binary landscapes, 

better covering the variation in landscapes in which a fragmented habitat of concern may be 

situated.  
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Appendix for Chapter 2 

Appendix C2.1.  

Table A C2-1 Words used to translate Luff (2007) text into LCM2015 (Rowland et al., 2017) habitats or aggregates 
of these habitats. The intertidal aggregate is nested within the coastal aggregate, and therefore if the coastal 
aggregrate was added it overwrote the intertidal. The same applied with heath and moorland. A lone habitat was 
also superceded by an aggregate containing it.  

Luff words LCM classes 
Flooded, flushes, marshy, mires, reed, reedbed, 
reedbeds or submerged. 

Agg. = ( "Fen, marsh and swamp"; 
Freshwater) 

Grass, grassland, grasslands, grassy, meadow or 
meadows.  

Agg. = ( Acid grassland; Calcareous 
grassland; Heather grassland; Neutral 
grassland; Improved grassland) 

Pasture or stables.  Agg. = ( Arable and horticulture; 
Improved grassland) 

Forest, trees, woods or woodland.  Agg. = ( Broadleaf woodland; 
Coniferous woodland) 

Moorland or moors.  Agg. = ( Inland rock; Acid grassland; 
Heather grassland; Heather; Bog) 

Intertidal, inter-tidal, littoral, sea, seaweed, tidal or 
tide  

Agg. = ( Littoral rock; Littoral 
sediment; Saltwater; Saltmarsh) 

Brownfield, cellars, garden, gardens, suburban or 
urban.  

Agg. = ( Suburban; Urban) 

Beaches, buildings, cliff, cliffs, coast, coastal, 
supralittoral, dune, dunes or estuarine. 

Agg. = ( Supralittoral rock; 
Supralittoral sediment; Littoral rock; 
Littoral sediment; Saltwater; 
Saltmarsh) 

Calluna, heath, heather or heaths. Agg. = ( Heather grassland; Heather; 
Bog) 

Fen, marsh or swamp. "Fen, marsh and swamp" 
Acid grassland. Acid grassland 
Arable or horticulture. Arable and horticulture 
Bog or sphagnum. Bog 
Broadleaf woodland, broadleaf, deciduous or oak. Broadleaf woodland 
Calcareous grassland.  Calcareous grassland 
Coniferous woodland, conifer, coniferous or 
plantation.  

Coniferous woodland 

Freshwater, lake, lakes, ponds, river, riverine, 
rivers, stream, streams or water. 

Freshwater 

Heather. Heather 
Heather grassland. Heather grassland 
Improved grassland. Improved grassland 
Inland rock or rock. Inland rock 
Littoral rock. Littoral rock 
Littoral sediment. Littoral sediment 
Neutral grassland. Neutral grassland 
Saltmarsh. Saltmarsh 
Suburban. Suburban 
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Supralittoral rock. Supralittoral rock 
Supralittoral sediment. Supralittoral sediment 
Urban. Urban 
 

Luff, M. L. (2007). The Carabidae (ground beetles) of Britain and Ireland (2nd ed.). London: 

Royal Entomological Society. 

Rowland, C. S., Morton, R. D., Carrasco, L., McShane, G., O’Neil, A. W., & Wood, C. M. 

(2017). Land Cover Map 2015 (vector, GB). NERC Environmental Information Data 

Centre. NERC Environmental Information Data Centre. 

doi:/https://doi.org/10.5285/6c6c9203-7333-4d96-88ab-78925e7a4e73 

Appendix C2.2. Most abundant habitat analysis 

In the main analysis within this paper we elected to discard all locations which had multiple 

habitats when conducting the original unweighted analysis. An alternative to this is to choose 

the most abundant habitat at any location as the habitat of that location.  

A C2.2.1. Methods 

The methodology was identical to that in the main paper, except that no locations were 

removed. The weighted and unweighted versions thus had the same number of records for each 

species. We again calculated both the original chosen habitat and the uncertainty-weighted 

correlation index ϕ values and permutated (De Cáceres and Legendre, 2009) to get a p-value for 

each habitat and for each carabid species.  

A C2.2.2. Results 

The unweighted chosen habitat analysis identified on average 62% of Luff habitats and the 

weighted group equalised analysis 70% both using 239 species. In contrast the unweighted 

excluding locations analysis conducted in the main paper identified on average 68% of Luff 

habitats. The chosen habitat analysis also consistently performed worse than the weighted 

analysis regardless of the number of records (Fig. A C2.0-1) in contrast to Figure 2-1 in the 

main paper where the unweighted analysis sometimes appeared to match better on average. The 

chosen habitat analysis however was able to classify all habitat in the same way to the weighted 

version.  
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Fig. A C2.2.0-2 Comparison of original and weighted correlation index showing how they match the validation data. 
Species are in bins of the number of records (using the records without removal, as used in the weighted version). 
The unweighted version of the analysis that chose the most abundant habitat to represent each location matched the 
Luff validation data less well regardless of the number of records. 

De Cáceres, M., & Legendre, P. (2009). Associations between species and groups of sites: 

indices and statistical inference. Ecology, 90(12), 3566–3574. doi:10.1890/08-1823.1 

Appendix C2.3. Vector and matrix calculations of the Phi coefficient 

The Phi coefficient can be calculated in two ways, either for each habitat of interest one at a 

time using three vectors, as shown in the main paper or by creating a matrix of the weighting of 

each habitat and calculating vector versions of 𝑁 and 𝑛 and subsequently a vector giving Phi 

values for all the habitats simultaneously. The vector version is easier to understand and is how 

one would calculate the Phi coefficient for a single habitat. The matrix example is 

computationally more efficient (in particular when running the permutation test) and elegantly 

gives the result for all habitats together. The vectors and matrix are different for each species 

and here we show an example for one species. 
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A C2.3.1. Vector version 

If the vector version is used, one calculates the phi coefficient separately for each habitat of 

interest.  

Table A C2.3.0-1 Example of the vectors that can be used in calculating the Phi coefficient for each individual 
habitat, showing the, proportion of each habitat within each location and the binary presence data, in this case for 
the species Abax parallelepipedus (see Appendix 2 for matrix version of this information and equations). (Identical to 
table 1 in the main text) 

Locatio
n ID 

LCM2015 habitat  Heather 
habitat 

vector (h) 

Weigh
t 

vector 
(w) 

Species vector 
(s) 

1 Heather grassland  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
1
0
1
0
0
⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1.00
1.00
1.00
0.02
0.59
0.39
1.00
0.76
0.24
1.00

⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
1
1
1
0
0
0
1
⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

2 Supralittoral 
sediment 

 

3 Heather grassland  
4 Acid grassland  
4 Inland rock  
4 Heather  
5 Inland rock  
6 Heather  
6 Improved grassland  
7 Inland rock  
… …  
All three vectors have length L 

Unweighted  

𝑁 =  L or “the length of the habitat vector” 

𝑁 = ∑ ℎ

ୀଵ  or “the sum of all values in the habitat vector” 

𝑛 =  ∑ 𝑠

ୀଵ  or “the sum of the species vector” 

𝑛 = 𝒉 ∙ 𝒔 = ∑ ℎ𝑠

ୀଵ  or “the sum of the product of the habitat and species vectors” 

Weighted 

𝑁 = ∑ 𝑤

ୀଵ  or “the sum of all values in the weighting vector” 

𝑛 = 𝒘 ∙ 𝒔 = ∑ 𝑤𝑠

ୀଵ  or “sum of the product of the weighting vector and species vector” 

𝑁
௪ = 𝒘 ∙ 𝒉 or 𝑁

௪ = ∑ 𝑤ℎ

ୀଵ  or “sum of the product of the weighting vector and the habitat 

of interest vector” 

𝑛
௪ =  ∑ 𝑤ℎ𝑠


ୀଵ  or “the sum of the product of all three vectors, the weighting, the habitat of 

interest and the species presence” 
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Φ௪ =
𝑁 × 𝑛

௪ − 𝑛 × 𝑁
௪

ට(𝑁 × 𝑛 − 𝑛ଶ) × ൫𝑁 × 𝑁
௪ − (𝑁

௪)ଶ൯

 

An example of the output: 

Φ௪ = 0.56 

A C2.3.2. Matrix version 

Creating a habitat matrix allows one to obtain the phi coefficient simultaneously for all habitats, 

returning a vector of phi values.  

Table A C2.3.1 Showing how weighting for multiple habitats can be represented as a matrix, giving context to the 
matrix which is then shown below.  

Location 
ID 

Acid 
grassland 

Heather Heather 
grassland 

Improved 
grassland 

Inland 
rock 

Supralittoral 
sediment 

… K 

1 0.00 0.00 1.00 0.00 0.00 0.00 …
… 

0.00 

2 0.00 0.00 0.00 0.00 0.00 1.00 … 0.00 

3 0.00 0.00 1.00 0.00 0.00 0.00 … 0.00 

4 0.02 0.39 0.00 0.00 0.59 0.00 … 0.00 

5 0.00 0.00 0.00 0.00 1.00 0.00 … 0.00 

6 0.00 0.76 0.00 0.24 0.00 0.00 … 0.00 

7 0.00 0.00 0.00 0.00 1.00 0.00 … 0.00 

… … … … … … 
 

… 0.00… 

N 0 0 0 0 0 0 … 0.00 

Let H be the habitat matrix of length N and width K, where 𝑁 = 𝑁𝑜. 𝑠𝑖𝑡𝑒𝑠 and 𝐾 =

 𝑁𝑜. ℎ𝑎𝑏𝑖𝑡𝑎𝑡𝑠. 

𝑯 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.00 0.00 1.00
0.00 0.00 0.00
0.00 0.00 1.00

0.00 0.00 0.00
0.00 0.00 1.00
0.00 0.00 0.00

⋯ 0.00
⋯ 0.00
⋯ 0.00

0.02 0.39 0.00
0.00 0.00 0.00
0.00 0.76 0.00

0.00 0.59 0.00
0.00 1.00 0.00
0.24 0.00 0.00

⋯ 0.00
⋯ 0.00
⋯ 0.00

0.00 0.00 0.00
⋮ ⋮ ⋮

0.00 0.00 0.00

0.00 1.00 0.00
⋮ ⋮ ⋮

0.00 0.00 0.00

⋯ 0.00
⋱ ⋮
⋯ 0.00⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Let s be the species vector of length N.  

𝒔 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
1
0
0
1
⋮
0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Both weighted and unweighted 

𝑛 =   𝑠



ୀଵ

 

𝑵𝒑 =  𝐻

ே

ୀଵ

 

𝒏𝒑 =  𝑠

ே

ୀଵ

× 𝐻 

𝝋𝒘 =
𝑁 × 𝒏𝒑

𝒘 − 𝑛 × 𝑵𝒑
𝒘

ට(𝑁 × 𝑛 − 𝑛ଶ) × ൫𝑁 × 𝑵𝒑
𝒘 − 𝑵𝒑

𝒘ଶ
൯

 

An example of the output: 

𝝋𝒘 = [0.20 −0.15 0.05 −0.25 0.01 0.03 … −0.08] 

Appendix C2.4. Scripts for calculating correlation index 

The R package published as PhiCor (https://github.com/Zabados/PhiCor). CorrelationIndex.R is 

the version that was used for analysis, before being turned into package. 

See scripts at www.ecography.org/appendix/ecog‐04295: 

 CorrelationIndex.R  

 CompileJasminOutputs.r 

 JasminRScript.r 

 JasminSubmitRBatch.job 

 Preprocess.r 

 Validation.r 

Appendix C2.5. Outputs 

https://doi.org/10.5285/ce0a6690-9277-4880-a20a-b30477bf8646  

The output data can be explored at https://shiny-apps.ceh.ac.uk/CarabidData/ 
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Appendix C2.6. Specialist vs generalist analysis 

A C2.6.1. Methods 

Some of the species analysed using the weighted correlation index appear to have very few 

positively correlated habitats. We tested if this was related to whether the species is classified as 

a specialist (stenotopic) or generalist (eurytopic) species. Using information from several 

sources (H Turin & Denboer, 1988; Desender & Turin, 1989; Hans Turin, 2000; Fowles, 2004; 

Bates, Sadler, Fowles, & Butcher, 2005; Bates, Sadler, & Fowles, 2007; Pozsgai, Baird, 

Littlewood, Pakeman, & Young, 2016) we assigned each species a score from one (stenotopic) 

to five (eurytopic) and compared this to the number of positively correlated habitats.  

A C2.6.2. Results 

The boxplot in Figure A C2.6.1 suggests specialist species have fewer positively associated 

habitats, i.e. they specialise on fewer habitats. There is a lot of variation in the number of 

positive habitats for each specialist generalist score. Figure A C2.6.1 shows there is also a 

positive relationship between the score and the number of presence records, with those classed 

as generalist having more records, although there is a lot of variation.  

 
Figure A C2.6.1 Boxplot showing the relation between specialist to generalist and then number of positively 
correlated habitats derived using the weighted correlation index. 



 

135 
 

 
Figure A C2.6.2 Correlogram showing correlation between scored specialist vs generalist, number of presence and 
absence records and the number of positive habitats for each species. Confidence ellipse and smoothed line in lower 
left of graph.  
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Turin, H., & Denboer, P. J. (1988). Changes in the Distribution of Carabid Beetles in The 
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Appendix C2.7. Group equalised analysis 

A C2.7.1. Methods 

The group equalised version of the correlation index (equation A C2.7.1) (Tichy & Chytry, 

2006; De Cáceres & Legendre, 2009) is similar to the non group-equalised version and contains 

the species presence absence vector. It differs by containing all of the habitat of interest vectors, 

for all habitats, which are all needed to calculate the number of habitats, averages of species’ 

occurrences, and the number of locations within each habitat, to equalise the size of the groups. 

𝜑 =
𝑁 × n


− n × N



ට൫× n − nଶ൯ × ቀ𝑁 × N


− N
ଶ

ቁ

 

 

eqn A C2.7.2 

Where 𝑁 is the total number of locations (the length of the habitat vector), 𝑁
 is the average 

number of locations per habitat (𝑁 divided by number of habitats), 𝑛 is the average number of 

occurrences in a habitat (the sum of the proportion of locations with occurrence for each habitat, 

divided by total number of habitats and multiplied by the number of locations), and 𝑛
 is the 

number of occurrences in habitat of interest inflated by the proportion of total number of 

locations over the total number of locations if all habitats had the same number of locations as 

the habitat of interest. 

We created a weighted version of the index (equation A C2.7.2). 

 

𝜑௪ =
𝑁 × n

௪
− n௪ × N



ට(× n௪ − n௪ଶ) × ቀ𝑁 × N


− N
ଶ

ቁ

 

 

eqn A C2.7.3 

In the same way as the weighted non-group equalised version presented in the main body of the 

paper, this version added a third non-binary vector of the weighting of each habitat at each 

location which weights the other values. 𝑁 is still the total number of locations, but now 

calculable as the sum of the weighting vector and 𝑁
 is still the average number of locations per 
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habitat (𝑁 divided by number of habitats). n௪ is now a version of n in which the number of 

occurrences within each habitat and the number of locations is weighted n௪ = 𝑁


×

∑ 𝑛
௪ 𝑁

௪⁄
ୀଵ . K is total number of habitats, 𝑛

௪ is the weighted occurrence, and 𝑁
௪ the 

weighted amount of habitat in habitat k. n
௪

 is the number of occurrences in habitat of interest 

(n) inflated by the proportion of total number of locations over the total number of locations if 

all habitats had the same number of locations and weighting as the habitat of interest (n ×

𝑁 (𝐾 ∙ 𝑁
௪)⁄ ; 𝑁

௪ is 𝑁
௪ for the habitat of interest). 

A C2.7.2. Results 

The unweighted group equalised analysis identified on average 64.5% (using 187 species) of 

Luff habitats and the weighted group equalised analysis 67.7% (using 239 species). The full 

results are included in the outputs as Rg and with p-values as pRg.  

Looking at the weighted version only, the results suggest, as would be expected that the more 

common habitats are the most preferred in the non-group equalised analysis simply because 

they are common. For example, Abax parallelepipedus has broadleaf woodland as the most 

preferred in the non group equalised version, followed by coniferous and then acid grassland 

and heathland habitats. Broadleaf woodland has the largest amount of habitat followed by 

improved grassland, both one or two orders of magnitude larger than the other habitats (Figure 

A C2.7.1). The patterns of phi values are similar relative to the amount of habitat, but those with 

the most and least are adjusted either towards or away from zero respectively. In the group 

equalised version, broadleaf woodland moves down the preference to fifth, similarly improved 

grassland moves from 19th to 14th, becoming less negatively associated.  
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Figure A C2.7.1 Showing the general lack of correlation between the amount of habitat and the calculated φ value, 
but that the equalised version adjusts the habitats with the least and most habitat. 

 

De Cáceres, M., & Legendre, P. (2009). Associations between species and groups of sites: 

indices and statistical inference. Ecology, 90(12), 3566–3574. doi:10.1890/08-1823.1 

Tichy, L., & Chytry, M. (2006). Statistical determination of diagnostic species for site groups of 

unequal size. Journal of Vegetation Science, 17(6), 809–818. doi:10.1111/j.1654-

1103.2006.tb02504.x 

 

Appendix C2.8. NBN citation 7 

See file NBN_full_citation.csv in the appendices of the published paper.  
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Appendix for Chapter 4 

Using a logged version of the number of patches when fitting alpha-, beta- and gamma-diversity increase the fit in all cases (likelihood ratio test ChiSq 5475.8 

(p <0.01), 2578.8 (p <0.01) and 77.8 (p <0.01) respectively). In the case of alpha-diversity, it caused the AIC to jump from 80.7 to 5556.5, for gamma-

diversity the AIC increased from 9936.0 to 9858.2 in both cases it was therefore inappropriate to log the number of patches. For beta-diversity, logging the 

number of patches changed the AIC from -3913.2 to -6492.0 and therefore logging the number of patches was appropriate for the beta-regression method we 

used for beta-diversity. 

Table A C4.1| Comparison of Gamma-diversity relationship between 10% and 40% cover of habitat showing no significant difference. 
 Baseline Habitat dependency Specialism 

Intercept 10% 
3.45 (CI [3.43e+00, 

3.47e+00], SE 
8.68e-03) 

2.93 (CI [2.91e+00, 
2.95e+00], SE 
1.12e-02) 

3.21 (CI [3.19e+00, 
3.23e+00], SE 
9.66e-03) 

Add intercept 40% 
-3.45E-03 (CI [-2.73e-02, 

2.04e-02], SE 
1.22e-02) 

2.04E-03 (CI [-2.86e-02, 
3.27e-02], SE 
1.56e-02) 

6.93E-03 (CI [-1.96e-02, 
3.34e-02], SE 
1.35e-02) 

Slope 10% 
3.49E-06 (CI [-3.91e-06, 

1.09e-05], SE 
3.77e-06) 

2.17E-05 (CI [1.22e-05, 
3.11e-05], SE 
4.82e-06) 

2.65E-05 (CI [1.84e-05, 
3.46e-05], SE 
4.14e-06) 

Add slope 40% 
3.74E-06 (CI [-5.78e-06, 

1.33e-05], SE 
4.86e-06) 

-4.16E-06 (CI [-1.62e-05, 
7.85e-06], SE 
6.13e-06) 

-5.77E-06 (CI [-1.61e-05, 
4.55e-06], SE 
5.26e-06) 
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Table A C4.2| Comparison of the alpha-diversity relationship between 10% and 40% cover of habitat showing significant differences. 
 Baseline Habitat dependency Specialism 

Intercept 10% 
2.03 (CI [1.96e+00, 

2.11e+00], SE 
3.83e-02) 

1.31 (CI [1.25e+00, 
1.38e+00], SE 

3.52e-02) 

1.6 (CI [1.53e+00, 
1.67e+00], SE 

3.61e-02) 

Add intercept 40% 
-0.0455 (CI [-1.51e-01, 

5.98e-02], SE 
5.37e-02) 

-0.0351 (CI [-1.32e-01, 
6.16e-02], SE 

4.93e-02) 

-0.0513 (CI [-1.50e-01, 
4.77e-02], SE 

5.05e-02) 

Linear 10% 
-0.00222 (CI [-2.33e-03, -

2.11e-03], SE 
5.73e-05) 

-0.00199  (CI [-2.10e-03, -
1.89e-03], SE 

5.34e-05) 

-0.00206 (CI [-2.16e-03, -
1.95e-03], SE 

5.48e-05) 

Add linear 40%t 
0.000356 (CI [2.15e-04, 

4.98e-04], SE 
7.24e-05) 

0.000285 (CI [1.53e-04, 
4.17e-04], SE 

6.73e-05) 

0.000345 (CI [2.10e-04, 
4.81e-04], SE 

6.92e-05) 

Squared 10% 
0.000000244 (CI [2.25e-07, 

2.63e-07], SE 
0.00e+00) 

0.000000215 (CI [1.98e-07, 
2.33e-07], SE 

0.00e+00) 

0.000000224 (CI [2.05e-07, 
2.42e-07], SE 

0.00e+00) 

Add squared 40% 
-8.38E-08 (CI [-1.06e-07, -

6.17e-08], SE 
0.00e+00) 

-6.73E-08 (CI [-8.79e-08, -
4.67e-08], SE 

0.00e+00) 

-7.82E-08 (CI [-9.93e-08, -
5.70e-08], SE 

0.00e+00) 
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Table A C4.3| Comparison of the beta-diversity relationship between 10% and 40% cover of habitat showing no significant difference. 
 Baseline Habitat dependency Specialism 
Intercept 10% -1.42 (CI [-1.49e+00, -1.35e+00],  

SE 3.73e-02)  
-1.04 Intercept 10% -1.42 (CI [-1.49e+00, -1.35e+00],  

SE 3.73e-02)  

Add intercept 40% 
0.00256 (CI [-9.94e-02, 1.04e-01],  

SE 5.20e-02)  
-0.063 

Add intercept 40% 
0.00256 (CI [-9.94e-02, 1.04e-01],  

SE 5.20e-02)  
Slope 10% 0.679 (CI [6.61e-01, 6.98e-01],  

SE 9.37e-03)  
0.341 Slope 10% 0.679 (CI [6.61e-01, 6.98e-01],  

SE 9.37e-03)  
Add slope 40% -0.00438 (CI [-2.94e-02, 2.06e-02],  

SE 1.28e-02)  
0.00573 Add slope 40% -0.00438 (CI [-2.94e-02, 2.06e-02], 

SE 1.28e-02)  
(phi) 46 (CI [4.22e+01, 4.99e+01],  

SE 1.94e+00) 
20.8 (phi) 46 (CI [4.22e+01, 4.99e+01],  

SE 1.94e+00) 
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Table A C4.4| Overall number of patches to gamma-diversity regression results comparing linear, squared, and cubed fits of a generalized linear model with a Poisson distribution. A linear 
relationship best fits the relationship between the number of patches and gamma-diversity. 

Treatment Fitted 
Habitat 
cover 

Intercept number of patches number of patches2 number of patches3 N AIC 

Baseline Linear 10% 3.45 (SE 8.68e-03, p 
<0.01) 

3.49E-06 (SE 3.77E-06, p 
0.36) 

    
587 3310 

Baseline Square 10% 3.45 (SE 9.60e-03, p 
<0.01) 

3.98E-06 (SE 1.43E-05, p 
0.78) 

0.00E+00 (SE 0.00E+00, p 
0.97) 

  
587 3310 

Baseline Cube 10% 3.44 (SE 1.05e-02, p 
<0.01) 

4.52E-05 (SE 3.17E-05, p 
0.15) 

-2.07E-08 (SE 0.00E+00, p 
0.15) 

0.00E+00 (SE 0.00e+00, p 
0.15) 

587 3310 

Baseline Linear 40% 3.45 (SE 8.52e-03, p 
<0.01) 

7.23E-06 (SE 3.06E-06, p 
0.02) 

    
584 3290 

Baseline Square 40% 3.45 (SE 9.45e-03, p 
<0.01) 

1.31E-05 (SE 1.10E-05, p 
0.23) 

0.00E+00 (SE 0.00E+00, p 
0.58) 

  
584 3290 

Baseline Cube 40% 3.44 (SE 1.04e-02, p 
<0.01) 

3.25E-05 (SE 2.84E-05, p 
0.25) 

0.00E+00 (SE 0.00E+00, p 
0.42) 

0.00E+00 (SE 0.00e+00, p 
0.46) 

584 3290 

Habitat dependency Linear 10% 2.93 (SE 1.12e-02, p 
<0.01) 

2.17E-05 (SE 4.82E-06, p 
<0.01) 

    
586 3250 

Habitat dependency Square 10% 2.91 (SE 1.25e-02, p 
<0.01) 

1.04E-04 (SE 1.80E-05, p 
<0.01) 

0.00E+00 (SE 0.00E+00, p 
<0.01) 

  
586 3230 

Habitat dependency Cube 10% 2.89 (SE 1.36e-02, p 
<0.01) 

1.88E-04 (SE 3.95E-05, p 
<0.01) 

-5.69E-08 (SE 1.81E-08, p 
<0.01) 

0.00E+00 (SE 0.00e+00, p 
0.02) 

586 3230 

Habitat dependency Linear 40% 2.93 (SE 1.09e-02, p 
<0.01) 

1.75E-05 (SE 3.78E-06, p 
<0.01) 

    
589 3300 

Habitat dependency Square 40% 2.92 (SE 1.22e-02, p 
<0.01) 

6.49E-05 (SE 1.38E-05, p 
<0.01) 

0.00E+00 (SE 0.00E+00, p 
<0.01) 

  
589 3290 

Habitat dependency Cube 40% 2.9 (SE 1.35e-02, p 
<0.01) 

1.26E-04 (SE 3.60E-05, p 
<0.01) 

-3.15E-08 (SE 0.00E+00, p 
0.02) 

0.00E+00 (SE 0.00e+00, p 
0.07) 

589 3280 

Specialism Linear 10% 3.21 (SE 9.66e-03, p 
<0.01) 

2.65E-05 (SE 4.14E-06, p 
<0.01) 

    
591 3370 

Specialism Square 10% 3.19 (SE 1.08e-02, p 
<0.01) 

8.21E-05 (SE 1.56E-05, p 
<0.01) 

0.00E+00 (SE 0.00E+00, p 
<0.01) 

  
591 3360 

Specialism Cube 10% 3.18 (SE 1.18e-02, p 
<0.01) 

1.56E-04 (SE 3.44E-05, p 
<0.01) 

-4.67E-08 (SE 1.57E-08, p 
<0.01) 

0.00E+00 (SE 0.00e+00, p 
0.02) 

591 3350 

Specialism Linear 40% 3.22 (SE 9.45e-03, p 
<0.01) 

2.07E-05 (SE 3.25E-06, p 
<0.01) 

    
592 3370 

Specialism Square 40% 3.2 (SE 1.05e-02, p 
<0.01) 

7.24E-05 (SE 1.19E-05, p 
<0.01) 

0.00E+00 (SE 0.00E+00, p 
<0.01) 

  
592 3360 

Specialism Cube 40% 3.18 (SE 1.17e-02, p 
<0.01) 

1.83E-04 (SE 3.12E-05, p 
<0.01) 

-5.25E-08 (SE 0.00E+00, p 
<0.01) 

0.00E+00 (SE 0.00e+00, p 
1.46e-04) 

592 3340 
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Table A C4.5| Overall number of patches to alpha-diversity regression results comparing linear, squared, and cubed fits of a generalized linear model with a gamma distribution. A cubed 
relationship best fits the relationship between the number of patches and alpha-diversity. 

Treatment 
Fitt
ed 

Habitat 
cover 

Intercept number of patches number of patches2 number of patches3 N AIC 

Baseline Lin
ear 

10% 
1.85 (SE 4.41e-02) -8.33E-

04 
(SE 1.93e-05) 

    
587 2150 

Baseline Squ
are 

10% 
2.03 (SE 3.78e-02) -2.22E-

03 
(SE 5.65e-05) 2.44E-07 (SE 0.00e+00) 

  
587 1720 

Baseline Cub
e 

10% 
2.2 (SE 3.09e-02) -4.11E-

03 
(SE 9.45e-05) 1.18E-06 (SE 4.28e-08) 0.00E+

00 
(SE 0.00e+00) 587 1330 

Baseline Lin
ear 

40% 
1.79 (SE 4.55e-02) -6.27E-

04 
(SE 1.67e-05) 

    
584 2270 

Baseline Squ
are 

40% 
1.99 (SE 3.82e-02) -1.86E-

03 
(SE 4.49e-05) 1.60E-07 (SE 0.00e+00) 

  
584 1770 

Baseline Cub
e 

40% 
2.17 (SE 3.09e-02) -3.79E-

03 
(SE 8.54e-05) 9.55E-07 (SE 3.33e-08) 0.00E+

00 
(SE 0.00e+00) 584 1350 

Habitat 
dependency 

Lin
ear 

10% 
1.13 (SE 3.97e-02) -7.75E-

04 
(SE 1.80e-05) 

    
586 1400 

Habitat 
dependency 

Squ
are 

10% 
1.31 (SE 3.46e-02) -1.99E-

03 
(SE 5.26e-05) 2.15E-07 (SE 0.00e+00) 

  
586 999 

Habitat 
dependency 

Cub
e 

10% 
1.48 (SE 2.76e-02) -3.66E-

03 
(SE 8.45e-05) 1.05E-06 (SE 3.89e-08) 0.00E+

00 
(SE 0.00e+00) 586 637 

Habitat 
dependency 

Lin
ear 

40% 
1.07 (SE 4.25e-02) -5.59E-

04 
(SE 1.54e-05) 

    
589 1530 

Habitat 
dependency 

Squ
are 

40% 
1.28 (SE 3.51e-02) -1.71E-

03 
(SE 4.16e-05) 1.48E-07 (SE 0.00e+00) 

  
589 1020 

Habitat 
dependency 

Cub
e 

40% 
1.45 (SE 2.90e-02) -3.32E-

03 
(SE 8.06e-05) 8.12E-07 (SE 3.14e-08) 0.00E+

00 
(SE 0.00e+00) 589 660 

Specialism 
Lin
ear 

10% 
1.42 (SE 4.14e-02) -7.86E-

04 
(SE 1.87e-05) 

    
591 1750 

Specialism 
Squ
are 

10% 
1.6 (SE 3.50e-02) -2.06E-

03 
(SE 5.32e-05) 2.24E-07 (SE 0.00e+00) 

  
591 1330 

Specialism 
Cub
e 

10% 
1.76 (SE 2.96e-02) -3.68E-

03 
(SE 9.05e-05) 1.04E-06 (SE 4.15e-08) 0.00E+

00 
(SE 0.00e+00) 591 1000 

Specialism 
Lin
ear 

40% 
1.36 (SE 4.33e-02) -5.86E-

04 
(SE 1.58e-05) 

    
592 1840 

Specialism 
Squ
are 

40% 
1.55 (SE 3.63e-02) -1.71E-

03 
(SE 4.34e-05) 1.45E-07 (SE 0.00e+00) 

  
592 1370 

Specialism 
Cub
e 

40% 
1.73 (SE 2.98e-02) -3.49E-

03 
(SE 8.38e-05) 8.76E-07 (SE 3.26e-08) 0.00E+

00 
(SE 0.00e+00) 592 976 
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Table A C4.6| Overall log number of patches to beta-diversity regression results comparing linear, squared, and cubed fits of a maximum likelihood regression with a beta distribution. A 
linear relationship best fits the relationship between log number of patches and beta-diversity. 
Treatment Fitted Habitat 

cover 
Intercept number of patches Phi number of patches2 number of patches3 no

bs 
df.
nul
l 

log
Lik 

AIC 

Baseline Linear 10% -1.4  CI -1.48e+00, -1.32e+00, 
SE 4.01e-02 

0.67  CI 6.51e-01, 6.91e-01, 
SE 1.02e-02  

40
.1 

 CI 3.54e+01, 4.48e+01, SE 
2.39e+00 

        58
7 

0.9
6 

585
.00 

117
0.32 

Baseline Square 10% -1.15  CI -1.29e+00, -9.96e-01, 
SE 7.60e-02 

0.52  CI 4.47e-01, 6.00e-01, 
SE 3.92e-02 

43
.3 

 CI 3.81e+01, 4.85e+01, SE 
2.65e+00 

0.01
73 

 CI 8.69e-03, 2.59e-02, SE 
4.38e-03 

    58
7 

0.9
7 

585
.00 

117
7.14 

Baseline Cube 10% -0.43  CI -7.32e-01, -1.24e-01, 
SE 1.55e-01 

-0.12  CI -3.76e-01, 1.28e-01, 
SE 1.29e-01 

44
.4 

 CI 3.91e+01, 4.97e+01, SE 
2.71e+00 

0.17
8 

 CI 1.18e-01, 2.39e-01, SE 
3.08e-02 

-
0.01
15 

 CI -1.57e-02, -7.23e-03, SE 
2.17e-03 

58
7 

0.9
6 

585
.00 

119
0.83 

Baseline Linear 40% -1.44  CI -1.51e+00, -1.37e+00, 
SE 3.52e-02 

0.68  CI 6.65e-01, 7.01e-01, 
SE 9.07e-03 

54
.1 

 CI 4.78e+01, 6.04e+01, SE 
3.21e+00 

        58
4 

0.9
7 

582
.00 

124
1.95 

Baseline Square 40% -1.08  CI -1.20e+00, -9.53e-01, 
SE 6.41e-02 

0.47  CI 4.05e-01, 5.36e-01, 
SE 3.34e-02 

63
.3 

 CI 5.57e+01, 7.09e+01, SE 
3.86e+00 

0.02
53 

 CI 1.79e-02, 3.28e-02, SE 
3.81e-03 

    58
4 

0.9
8 

582
.00 

125
9.66 

Baseline Cube 40% -0.23  CI -4.74e-01, 1.80e-02, SE 
1.25e-01 

-0.30  CI -5.01e-01, -9.45e-
02, SE 1.04e-01 

66
.8 

 CI 5.89e+01, 7.48e+01, SE 
4.05e+00 

0.21
7 

 CI 1.68e-01, 2.66e-01, SE 
2.48e-02 

-
0.01
37 

 CI -1.71e-02, -1.03e-02, SE 
1.75e-03 

58
4 

0.9
7 

582
.00 

128
8.82 

Habitat 
dependency 

Linear 10% -1.04  CI -1.13e+00, -9.50e-01, 
SE 4.58e-02 

0.34  CI 3.23e-01, 3.58e-01, 
SE 8.92e-03 

20
.6 

 CI 1.83e+01, 2.29e+01, SE 
1.18e+00 

        58
6 

0.8
8 

584
.00 

959.
70 

Habitat 
dependency 

Square 10% -1.12  CI -1.31e+00, -9.40e-01, 
SE 9.38e-02 

0.38  CI 3.00e-01, 4.67e-01, 
SE 4.28e-02 

20
.6 

 CI 1.83e+01, 2.29e+01, SE 
1.18e+00 

-
0.00
439 

 CI -1.27e-02, 3.93e-03, SE 
4.24e-03 

    58
6 

0.9
3 

584
.00 

101
7.21 

Habitat 
dependency 

Cube 10% -0.47  CI -8.43e-01, -1.05e-01, 
SE 1.88e-01 

-0.16  CI -4.45e-01, 1.21e-01, 
SE 1.45e-01 

21
.1 

 CI 1.87e+01, 2.35e+01, SE 
1.21e+00 

0.12
1 

 CI 5.83e-02, 1.84e-01, SE 
3.22e-02 

-
0.00
844 

 CI -1.26e-02, -4.24e-03, SE 
2.14e-03 

58
6 

0.9
2 

584
.00 

103
0.72 

Habitat 
dependency 

Linear 40% -1.1  CI -1.19e+00, -1.02e+00, 
SE 4.53e-02 

0.35  CI 3.30e-01, 3.64e-01, 
SE 8.71e-03 

21  CI 1.87e+01, 2.34e+01, SE 
1.21e+00 

        58
9 

0.9
0 

587
.00 

991.
20 

Habitat 
dependency 

Square 40% -1.57  CI -1.75e+00, -1.40e+00, 
SE 9.06e-02 

0.58  CI 5.04e-01, 6.61e-01, 
SE 4.03e-02 

22
.1 

 CI 1.96e+01, 2.45e+01, SE 
1.27e+00 

-
0.02
35 

 CI -3.11e-02, -1.59e-02, SE 
3.89e-03 

    58
9 

0.9
3 

587
.00 

102
9.34 

Habitat 
dependency 

Cube 40% -1.21  CI -1.57e+00, -8.60e-01, 
SE 1.80e-01 

0.29  CI 2.55e-02, 5.51e-01, 
SE 1.34e-01 

22
.3 

 CI 1.98e+01, 2.48e+01, SE 
1.28e+00 

0.04
25 

 CI -1.44e-02, 9.93e-02, SE 
2.90e-02 

-
0.00
431 

 CI -7.99e-03, -6.37e-04, SE 
1.88e-03 

58
9 

0.9
2 

587
.00 

104
5.33 

Specialism Linear 10% -1.21  CI -1.28e+00, -1.14e+00, 
SE 3.60e-02 

0.43  CI 4.17e-01, 4.46e-01, 
SE 7.45e-03 

37
.4 

 CI 3.32e+01, 4.17e+01, SE 
2.16e+00 

        59
1 

0.9
3 

589
.00 

114
8.06 

Specialism Square 10% -1.54  CI -1.68e+00, -1.40e+00, 
SE 7.25e-02 

0.61  CI 5.42e-01, 6.74e-01, 
SE 3.38e-02 

38
.6 

 CI 3.43e+01, 4.30e+01, SE 
2.23e+00 

-
0.01
85 

 CI -2.52e-02, -1.18e-02, SE 
3.41e-03 

    59
1 

0.9
6 

589
.00 

119
2.19 

Specialism Cube 10% -1.05  CI -1.33e+00, -7.63e-01, 
SE 1.46e-01 

0.19  CI -3.19e-02, 4.11e-01, 
SE 1.13e-01 

39
.6 

 CI 3.51e+01, 4.40e+01, SE 
2.29e+00 

0.07
93 

 CI 2.93e-02, 1.29e-01, SE 
2.55e-02 

-
0.00
664 

 CI -1.00e-02, -3.27e-03, SE 
1.72e-03 

59
1 

0.9
5 

589
.00 

120
1.95 

Specialism Linear 40% -1.2  CI -1.27e+00, -1.14e+00, 
SE 3.51e-02 

0.43  CI 4.16e-01, 4.45e-01, 
SE 7.25e-03 

38
.8 

 CI 3.44e+01, 4.32e+01, SE 
2.24e+00 

        59
2 

0.9
3 

590
.00 

113
4.30 

Specialism Square 40% -1.66  CI -1.80e+00, -1.53e+00, 
SE 6.86e-02 

0.67  CI 6.09e-01, 7.32e-01, 
SE 3.15e-02 

41
.7 

 CI 3.70e+01, 4.64e+01, SE 
2.41e+00 

-
0.02
49 

 CI -3.10e-02, -1.87e-02, SE 
3.13e-03 

    59
2 

0.9
6 

590
.00 

118
2.24 

Specialism Cube 40% -1.21  CI -1.48e+00, -9.49e-01, 
SE 1.36e-01 

0.30  CI 9.38e-02, 4.98e-01, 
SE 1.03e-01 

42
.7 

 CI 3.78e+01, 4.75e+01, SE 
2.47e+00 

0.06
09 

 CI 1.63e-02, 1.06e-01, SE 
2.28e-02 

-
0.00
57 

 CI -8.63e-03, -2.77e-03, SE 
1.50e-03 

59
2 

0.9
5 

590
.00 

120
5.18 
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Figure A C4.1 Two example maps showing the distribution of individuals of a species in the baseline model and habitat dependency model run for illustrative purposes on the same land 
cover with four patches of the focal-habitat. This shows that the baseline model, where individuals do not consider the habitat and are scattered randomly, can have voids with no individuals 
of a species. In the habitat dependency model, the species are more restricted to a single habitat or group of habitats. 


