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Abstract 
 

Rhizobia	are	agriculturally	important	bacteria	capable	of	forming	symbiosis	with	

legumes	and	fixing	atmospheric	nitrogen	which	sustainably	improves	plant	

productivity	and	soil	fertility.	The	Rhizobium	leguminosarum	species	complex	is	

highly	genetically	diverse	and	contains	five	genetically	distinct	genospecies.	

Significant	phenotypic	diversity	is	also	displayed	within	Rhizobium	leguminosarum;	

however,	no	phenotypes	are	genospecies-exclusive.	The	importance	of	the	broad	

genetic	diversity	of	Rhizobium	leguminosarum	and	its	influence	on	phenotypic	

diversity	and	rhizosphere-associated	interactions	are	unclear.	In	this	thesis,	

Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	intraspecies	diversity	was	

investigated	by	assessing	the	genetic	and	phenotypic	variation	of	white	clover	nodule	

Rlt	from	agricultural	field	managements	across	Europe.		

	

This	thesis	identified	that	the	significant	genetic	diversity	of	Rlt	can	manifest	in	

substantial	transcriptional	and	phenotypic	variation	across	strains,	and	this	diversity	

can	influence	plant-mediated	symbiont	selectivity	and	competitive	strain	

interactions.	A	novel	multiplexed	high-throughput	amplicon	sequencing	approach,	

MAUI-seq,	was	developed	to	improve	detection	of	chimeras	and	other	erroneous	

sequences	for	confident	determination	of	intraspecies	diversity	from	environmental	

samples.	Using	this	method,	significant	Rlt	nodule	population	diversity	was	identified	

between	clover	genotypes	due	to	the	combined	effects	of	plant-host	filtering	and	

geospatial	variation	in	allele	frequencies	of	individual	genes.	Investigation	of	multiple	

Rlt	strain	transcriptomes	demonstrated	that	genospecies	displayed	differences	in	

core	genome	expression	which	was	associated	with	phenotypic	growth	traits	and	

putative	differences	in	bacterial	metabolism.	Genomic	and	transcriptomic	variation	

was	utilised	to	identify	transcriptional	units	conserved	across	strains.	Pairwise	

growth	competition	experiments	between	Rlt	strains	further	showed	that	significant	

competitive	variation	is	evident	and	potentially	associated	with	genospecies	

differences.	This	research	demonstrates	that	utilising	multiple	strains	can	aid	

identification	of	species-specific	traits	by	considering	the	representative	variation	

within	a	species.	The	work	presented	here	has	laid	the	groundwork	for	future	

investigation	into	the	implications	of	intraspecies	diversity	for	symbiotic	

effectiveness	in	the	rhizobia-legume	symbiosis.	
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Chapter 1. Introduction 
	

1.1. Overview  

 

Securing	access	to	an	increased	global	food	supply	using	sustainable	solutions	

that	also	take	advantage	of	nutrient	poor	soils	is	a	major	scientific	issue	for	the	future	

of	agricultural	practices	(Godfray	et	al.,	2010;	Tilman	et	al.,	2011).	Despite	the	

prevalence	of	dinitrogen	(N2)	gas	in	the	atmosphere,	nitrogen	in	a	biologically	

accessible	form	is	commonly	limiting	in	agricultural	systems	impeding	plant	growth.	

In	order	to	circumvent	this	restriction,	specific	plants	called	legumes	form	a	beneficial	

symbiotic	relationship	with	soil	bacteria	called	rhizobia	which	are	capable	of	

converting	dinitrogen	gas	into	a	plant-accessible	form,	such	as	ammonia	(NH3),	in	a	

natural	process	called	biological	nitrogen	fixation	(BNF)	(Oldroyd	et	al.,	2011;	

Terpolilli	et	al.,	2014).	Within	this	mutualism,	the	diazotrophic	rhizobia	fix	nitrogen	

for	the	legume	using	the	microbial	nitrogenase	enzyme	in	exchange	for	carbon	

sources	such	as	photosynthates.	Not	only	is	the	symbiosis	beneficial	to	the	symbiotic	

partners,	but	the	process	also	re-fertilises	soil	nitrogen	reserves	which	is	then	

accessible	to	non-leguminous	plants	(Bohlool	et	al.,	1992).	This	non-obligatory	

symbiosis	is	of	agricultural	importance	as	it	increases	the	amount	of	available	

nitrogen	to	the	legume	which	enables	increased	plant	growth	and	subsequent	yield.	

Therefore,	BNF	through	rhizobia	inoculation	into	agricultural	systems	provides	an	

alternative	sustainable,	environmentally	friendly,	and	economically	attractive	method	

for	improving	soil	fertility	over	exogenous	nitrogen	fertilizer	(Bohlool	et	al.,	1992;	

Wang	et	al.,	2012).	On	organic	farms	and	forage	pastures	rhizobial	BNF	is	vital	to	

productivity.		

	

In	the	UK	alone,	70%	of	total	land	area	is	agriculturally	managed,	and	a	significant	

proportion	of	this	is	pastureland	(Andrews	et	al.,	2007).	Forage	pastures	are	

commonly	used	for	animal	husbandry	such	as	sheep	and	cow	feed	for	dairy	and	meat	

production.	In	cultivated	pastures	across	temperate	agricultural	systems,	BNF	is	

predominantly	driven	by	symbiosis	between	Trifolium	repens	(white	clover)	and	the	

highly	strictly	specific	microsymbiont	Rhizobium	leguminosarum	symbiovar	trifolii	

(Rlt)	(Dénarié,	Debelle	and	Rosenberg,	1992;	Annicchiarico	et	al.,	2015).		
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Although	the	nitrogen	fixing	symbiosis	between	white	clover	and	Rlt	is	strictly	

species	specific,	there	is	also	a	large	amount	of	variation	in	the	symbiotic	

compatibility	between	different	strains	and	clover	genotypes.	This	can	result	in	

varied	nitrogen	fixing	efficiencies	depending	on	the	symbiotic	partners	and	

environmental	context	(Terpolilli	et	al.,	2014).	Consequently,	there	is	a	need	to	

identify	rhizobium	inoculants	that	are	compatible	with	both	the	legume	host	and	its	

soil	environment	microbiota.	Intraspecies	genetic	and	phenotypic	diversity	of	

rhizobia	is	large,	and	it	is	unclear	what	causes	the	maintenance	of	this	diversity	in	

soils,	but	possible	explanations	include	through	strain-strain	interactions,	strain-

plant	interactions	and	heterogeneity	of	soil	environments.	Similarly,	how	this	genetic	

diversity	translates	into	phenotypic	differences	is	unclear.	It	is	thus	important	to	

understand	to	what	extent	rhizobium	intraspecies	diversity	is	linked	with	its	fitness	

and	symbiotic	specificity	and	how	this	diversity	is	maintained.	Improving	our	

understanding	of	the	relevance	of	intraspecies	diversity	and	using	this	knowledge	to	

applying	precision	farming	techniques	will	aid	progression	to	securing	sustainable	

global	food	security.	

	

This	study	aimed	to	investigate	the	level	of	observed	intraspecies	diversity	within	

white	clover	nodule	rhizobia	collected	from	agricultural	fields	across	Europe,	and	to	

explore	the	potential	mechanisms	behind	the	maintenance	of	this	rhizobial	

intraspecies	diversity	and	its	implications	for	the	efficacy	of	the	legume-rhizobia	

symbiosis.	This	work	contributed	to	a	broad	collaborative	effort	with	Aarhus	

University	and	industrial	partners	DLF	Trifolium,	SEGES	and	Legume	Technology	as	

part	of	the	NCHAIN	research	consortium	funded	by	Innovation	Denmark.	

Additionally,	strain	interaction	work	in	this	study	also	forms	part	of	a	collaboration	

with	the	University	of	Sheffield.		

	

In	this	introduction,	background	information	for	the	research	undertaken	within	this	

thesis	is	provided,	and	the	aims	and	objectives	of	the	project	are	defined.	The	

background	context	regarding	the	rhizobium-legume	symbiosis	will	be	discussed,	

firstly	introducing	the	importance	of	the	symbiosis	for	agriculture,	the	mechanisms	

and	specificity	of	rhizobia-legume	interactions,	and	the	challenges	for	exploiting	the	

symbiosis	commercially.	Additionally,	there	is	a	focus	on	the	intraspecific	genetic,	

transcriptomic	and	phenotypic	variation	observed	within	Rhizobium	leguminosarum,	

and	how	these	three	topics	are	investigated	in	the	thesis.	This	introduction	will	also	
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discuss	the	particular	rhizobia	strains	of	interest	to	this	study.	To	conclude	the	

chapter,	the	aims	and	objectives	are	summarised	with	an	outline	of	the	thesis.		

	

1.2. The rhizobia-legume mutualism 

1.2.1. Importance of the legume rhizobia symbiosis in agriculture 

 

BNF	is	the	principal	source	of	naturally	fixed	nitrogen	and	occurs	through	the	

conversion	of	atmospheric	dinitrogen	into	ammonia	compounds	using	the	microbial	

nitrogenase	enzyme.	Only	certain	species	of	bacteria	and	archaea,	called	diazotrophs,	

are	capable	of	performing	BNF,	and	exist	in	free-living	and	symbiotic	lifestyles.	

Specifically,	symbiotic	bacterial	diazotrophs	called	rhizobia	can	perform	BNF	when	

engaging	in	symbiosis	with	legume	plant	species.	The	exploitation	of	BNF	provides	an	

ecologically	sustainable	and	environmentally	friendly	method	to	reduce	the	amount	

of	external	nitrogen	input	into	agricultural	systems	and	improve	management	of	its	

resources	compared	to	Haber-Bosch	generated	fertilisers	(Bohlool	et	al.,	1992).	The	

symbiotic	mutualism	between	crop/forage	legumes	and	rhizobia	are	the	most	

important	nitrogen	fixing	partners	in	agriculture	(Herridge,	Peoples	and	Boddey,	

2008),	and	drives	the	largest	natural	source	of	nitrogen	into	agricultural	systems	

(Galloway	et	al.,	2004).	It	has	been	estimated	that	symbiotic	partnerships	fix	up	to	

80%	of	BNF	in	agriculture	(O’Hara,	1998).	However,	since	the	mass	production	and	

application	of	inorganic	artificial	nitrogen	fertiliser	from	the	Haber-Bosch	process,	

the	number	of	farming	managements	utilising	legumes	has	drastically	reduced	

(Galloway	et	al.,	2004;	Erisman	et	al.,	2008).	Although	high	applications	of	fertilisers	

generated	by	the	Haber-Bosch	process	have	aided	attainment	of	increased	crop	

yields,	intensive	farming	practices	have	also	caused	a	substantial	negative	impact	on	

the	environment	through	various	processes:	reduction	in	soil	condition	causing	

eutrophication	of	aquatic	environments	and	risks	to	human	health;	nitrate	leaching;	

increasing	greenhouse	gas	nitrogen	oxide	emissions	that	contribute	to	air	pollution;	

and	loss	of	biodiversity	(Tilman	et	al.,	2002,	2011;	Jensen	and	Hauggaard-Nielsen,	

2003;	Erisman	et	al.,	2008;	Cameron,	Di	and	Moir,	2013).	Additionally,	a	large	amount	

of	fossil	fuels	are	required	for	Haber-Bosch	nitrogen	fertiliser	production	in	

comparison	to	nitrogen	generated	by	BNF,	which	is	essentially	‘free’	due	to	being	

generated	from	the	exchange	with	legume	photosynthates	(Jensen	and	Hauggaard-

Nielsen,	2003).	Subsequently,	in	order	to	meet	the	demand	of	intensive	agriculture,	

and	to	reduce	the	unsustainable	ramifications	of	increased	chemical	fertiliser	use,	
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efforts	are	being	made	to	optimise	the	production	of	symbiotic	BNF	which	is	a	more	

environmentally	sustainable	source	of	nitrogen	(Jensen	and	Hauggaard-Nielsen,	

2003;	Reeve	et	al.,	2015).		

	

Nitrogen	fixation	in	soils	with	low	rhizobium	abundance	or	activity	can	be	improved	

by	inoculating	legumes	with	rhizobia	strains	that	are	highly	efficient	for	BNF	

(Sessitsch	et	al.,	2002).	Plant	growth	promoting	rhizobacteria,	such	as	rhizobia,	

provide	not	only	beneficial	effects	to	their	associated	legumes	but	also	to	non-

leguminous	neighbouring	plants	and	its	surrounding	soil	environment.	The	most	

evident	benefit	for	legumes	is	the	biofertilisation	from	forming	symbiosis	with	

rhizobia,	whereby	rhizobia	facilitate	the	uptake	of	accessible	nitrogen	by	the	legume	

(Vessey,	2003).	Use	of	the	rhizobia-legume	symbiosis	to	re-fertilise	soils	in	crop	

rotations	also	helps	to	maintain	soil	nitrogen	reserves	and	provides	bio-actively	

accessible	nitrogen	to	non-leguminous	plants	which	in	turn	increases	their	crop	

yields	(Bohlool	et	al.,	1992;	Graham	and	Vance,	2000;	Sessitsch	et	al.,	2002;	Lüscher	

et	al.,	2014).	The	use	of	legumes	in	agriculture	itself	is	additionally	an	important	

protein	source	for	both	humans	and	livestock,	and	can	improve	soil	structure,	aid	

crop	disease	and	pest	control,	and	promote	biological	diversity	(Jensen	and	

Hauggaard-Nielsen,	2003;	Lindström	et	al.,	2010).	Taken	together,	the	use	of	the	

legume-rhizobia	symbiosis	in	agriculture	provides	a	variety	of	ecosystem	benefits	

over	artificial	nitrogen	fertiliser,	which	overall	help	to	reduce	fossil	energy	use	and	

greenhouse	gas	emissions,	increase	crop	yields,	and	ultimately	provide	food	to	

humans	and	animals	in	a	way	that	maintains	environment	integrity	(Jensen	et	al.,	

2012;	Lüscher	et	al.,	2014;	Phelan	et	al.,	2015).	BNF	alone	may	not	match	the	yields	

produced	by	intensive	agriculture	with	artificial	fertiliser,	however	BNF	in	

combination	with	chemical	fertiliser	and	animal	manure	could	also	provide	a	

promising	alternative	for	future	more	sustainable	agricultural	systems	(Tilman	et	al.,	

2002,	2011;	Jensen	and	Hauggaard-Nielsen,	2003).		

	

A	globally	important	cultivated	forage	crop	is	the	perennial	legume	white	clover	

species	that	has	been	introduced	across	temperate	regions	from	the	UK.	It	is	usually	

planted	in	combination	with	perennial	ryegrass	for	pasture	systems	to	improve	

livestock	nutrition	(Graham	and	Vance,	2003;	Phelan	et	al.,	2015).	In	this	way,	

nitrogen	input	into	pastures	is	driven	by	the	symbiosis	between	clover	and	rhizobia	

which	causes	nitrogen	to	become	available	also	to	the	grass	via	legume	exudates,	
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legume	senescence,	and	manure	from	livestock	digesting	the	clover-grass	sown	

mixture	(Ledgard,	2001;	Andrews	et	al.,	2007).	Forage	legume	pastures	are	vital	for	

maintaining	animal	husbandry	practices	and	have	been	used	for	centuries	to	provide	

protein	and	energy	for	increased	cow	dairy	and	meat	production	which	are	ranked	1st	

and	3rd	top	food	commodities	across	the	globe,	respectively	(Graham	and	Vance,	

2003;	Lindström	et	al.,	2010;	Lüscher	et	al.,	2014).	Countries	such	as	New	Zealand	

and	Australia	rely	on	the	BNF	from	white	clover	to	maintain	their	pasture	

productivity,	and	additionally	approximately	40%	of	agricultural	land	in	Europe	is	

grassland	used	as	ruminant	animal	feed	(Andrews	et	al.,	2007).	It	has	also	been	

suggested	that	20	million	hectares	of	land	is	used	for	forage	legume	monocultures	

across	the	world,	not	including	their	land	area	in	mixtures	with	grasses	which	is	likely	

to	be	far	greater	than	monocultures	(Graham	and	Vance,	2003;	Phelan	et	al.,	2015).	

Furthermore,	land	used	for	grazing	has	been	suggested	to	total	the	most	widespread	

form	of	agriculture	accounting	for	25%	of	land	use	(Asner	et	al.,	2004).	Clover	species	

are	additionally	used	as	cover	crops	in	order	to	re-fertilise	the	soil	for	other	non-

leguminous	species	(Fageria,	Baligar	and	Bailey,	2005).	Therefore,	the	benefits	and	

significance	to	optimising	the	efficiency	of	nitrogen	input	for	these	clover	systems	are	

evident.		

	

Global	nitrogen	fixation	input	estimates	for	symbiosis	in	pasture	and	fodder	legumes	

has	been	suggested	to	be	around	12–25	Tg,	with	a	total	estimate	of	50–70	Tg	N	fixed	

when	agricultural	legume	crops	are	also	included	(Herridge,	Peoples	and	Boddey,	

2008;	Lindström	et	al.,	2010).	Between	35%-60%	less	fossil	fuel	energy	is	used	by	

legume	crops	and	pastures	than	artificially	fertilised	grasslands	and	cereal	crops,	

which	is	predominantly	due	to	the	reduced	requirements	for	artificial	fertilisers	by	

legumes	(Jensen	et	al.,	2012).	It	has	also	been	suggested	that	clover	could	have	

between	£125–160	ha−1	annum−1	advantage	over	N	fertiliser	for	low	maintenance	

perennial	white	clover	–	ryegrass	pastures	in	the	UK	(Andrews	et	al.,	2007).	This	

highlights	that	the	clover-rhizobia	symbiosis	as	a	means	of	agricultural	N	

management	is	not	only	considered	environmentally	sustainable	but	also	

economically	feasible.		
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1.2.2. Symbiosis mechanism between Rhizobium leguminosarum sv. trifolii and 

white clover 

 

Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	strains	are	facultative	

microsymbionts	that	can	form	a	mutualistic	symbiotic	relationship	with	white	clover	

(Trifolium	repens)	roots.	Rhizobia	have	two	different	life	stages;	a	free-living	

physiology	in	the	soil,	and	a	symbiotic	bacteroid	physiology	within	plant	cells.	For	

symbiosis	to	occur,	rhizobia	are	required	to	contain	symbiosis	genes	usually	located	

on	a	symbiosis	plasmid.	The	rhizobial	symbiosis	genes	mediate	the	interactions	with	

the	legume	species	and	can	be	categorised	into	three	main	components:	nodulation	

(nod),	nif	and	fix	genes.	In	brief,	nod	genes	expressed	by	free-living	rhizosphere	soil	

rhizobia	elicit	the	formation	of	a	symbiotic	root	organ	called	a	nodule	(Göttfert,	

1993),	whereas	nif	and	fix	genes	are	expressed	at	later	stage	in	symbiotic	

establishment	and	are	involved	in	nitrogen	fixation	within	the	legume	root	nodule	

(Fischer,	1994).	

	

In	order	to	initiate	symbiotic	establishment,	the	clover	root	releases	clover-specific	

flavonoids	that	are	detected	by	the	NodD	protein	in	free-living,	soil	rhizosphere-

dwelling	Rlt	strains.	NodD	is	a	LysR	family	transcriptional	regulator	of	nod	genes,	and	

is	activated	by	specific	clover	flavonoids,	which	enables	NodD	to	transcriptionally	

activate	nod	gene	expression	(Hong,	Burn	and	Johnston,	1987a).	Expression	of	nod	

genes	induces	production	and	transport	of	rhizobia	Nod	factors,	which	are	

lipochitooligosaccharides	(LCOs)	that	are	secreted	from	the	rhizobia	and	initiate	

symbiotic	establishment.	The	LCO	backbone	is	synthesised	by	nodABC	gene	products,	

and	additional	nod	gene	products	(NodFEHGPQ),	and	nol	and	noe	gene	products,	

modify	the	chitin	backbone	by	adding	species-specific	substituents	which	determines	

strain	host	range	(Haeze	and	Holsters,	2002;	Lupwayi,	Clayton	and	Rice,	2006;	Wang,	

Liu	and	Zhu,	2018).	This	is	important,	as	it	is	vital	that	Nod	factors	are	recognised	by	

Nod	factor	receptors-like	kinases	on	the	legume	root	in	order	to	instigate	nodule	

formation	(Herman	P.	Spaink	et	al.,	1987;	Oldroyd	et	al.,	2011;	Downie,	2014).	

Expression	of	nod	genes	can	also	induce	chemotaxis	of	the	rhizobia	to	the	clover	root	

(Munoz	Aguilar	et	al.,	1988).	Recognition	of	structurally	specific	Nod	factors	by	the	

legume	instigates	root-hair	curling	and	formation	of	an	infection	thread	from	which	

the	root	colonised	rhizobia	grow	through	to	reach	the	developing	root	nodule	



 19 

(Downie,	2014).	nod	genes	are	crucial	for	nodulation	and	symbiosis	as	mutations	

result	in	a	Nod-	phenotype	(Downie	et	al.,	1985;	Jacobs,	Egelhoff	and	Long,	1985).		

	

After	being	internalised	into	a	plant-derived	symbiosome	membrane,	Rlt	cells	

proliferate	and	terminally	differentiate	into	non-motile,	nitrogen-fixing	bacteroids	

(Oldroyd	et	al.,	2011;	Wang,	Liu	and	Zhu,	2018).	This	proliferation	aids	creation	of	the	

new	root	nodule	structure.	In	white	clover,	the	nodules	are	indeterminate	and	so	

maintain	an	apical	meristem	(Łotocka,	Kopcińska	and	Skalniak,	2012).	Terminal	

differentiation	of	rhizobia	into	bacteroids	includes	downregulation	of	cell	growth	and	

reproduction	related	gene	expression,	endoreduplication	of	genomes,	cell	elongation	

and	increased	membrane	permeability	(Mergaert	et	al.,	2006;	Kereszt,	Mergaert	and	

Kondorosi,	2011;	Oldroyd	et	al.,	2011;	Haag	et	al.,	2013).	This	dramatic	alteration	in	

cell	physiology	and	gene	expression	enables	bacteroids	to	be	better	adapted	to	the	

intracellular	plant	environment	(Mergaert	et	al.,	2006;	Haag	et	al.,	2013;	Wang,	Liu	

and	Zhu,	2018).	Additionally,	expression	of	nif	and	fix	genes	for	nitrogen	fixation	are	

upregulated,	which	control	the	conversion	of	dinitrogen	(N2)	into	ammonia	(NH3)	

catalysed	by	a	nitrogenase	enzyme	(Oldroyd	et	al.,	2011).	Nitrogen	fixing	nodules	are	

pink,	as	a	result	of	the	production	of	leghaemoglobin	by	the	plant	cells,	which	enables	

a	low	enough	oxygen	concentration	for	the	oxygen-sensitive	nitrogenase	to	work,	

while	also	ensuring	rhizobium	can	undergo	aerobic	respiration	(Ott	et	al.,	2005).	

Consequently,	a	symbiosis	is	then	established	within	the	nodule	whereby	the	plant	

supplies	photosynthates	and	a	safe	niche	to	the	rhizobia,	and	in	turn,	the	rhizobia	

supplies	vital	accessible	nitrogen	to	the	plant	through	Biological	Nitrogen	Fixation.	In	

indeterminate	nodules,	different	zones	of	bacterial	differentiation	are	evident	

whereby	some	rhizobia	will	not	have	yet	terminally	differentiated	into	bacteroids.	It	

is	these	non-differentiated	free-living	rhizobia	within	the	nodule	that	will	go	on	to	

recolonise	the	soil	at	the	end	of	symbiosis	when	the	nodule	senesces,	as	the	

terminally	differentiated	bacteroids	are	unable	to	reproduce	(Sprent,	Sutherland	and	

De	Faria,	1987;	Mergaert	et	al.,	2006).	

	

1.2.3. Partner choice for symbiotic establishment 

 

While	description	of	symbiosis	mechanisms	predominantly	highlights	the	single	

pairwise	interaction	between	legume	host	and	Rhizobium	strain,	in	reality	there	can	

be	many	rhizobial	strains	interacting	and	forming	symbiosis	with	the	legume	at	any	



 20 

one	time,	with	varying	degrees	of	nitrogen	fixing	effectiveness	(Mytton,	1975;	

Denison,	2000).	For	a	successful	symbiosis	to	occur,	both	the	rhizobium	and	the	

legume	must	be	compatible	throughout	symbiotic	establishment.	Incompatibility	

between	symbiotic	partners	is	often	observed	by	nodule	organogenesis	failure	on	a	

specific	legume	host	or	where	there	is	an	absence	of	nitrogen	fixation	in	nodules.	

Effectiveness	of	symbiosis	is	predominantly	determined	by	the	nitrogen	fixing	ability	

of	the	rhizobial	strain	within	the	legume	nodule	(Laranjo,	Alexandre	and	Oliveira,	

2014).		

	

In	the	majority	of	cases,	it	is	well	known	that	only	particular	rhizobia	will	form	a	

symbiosis	with	certain	legumes	(symbiovars),	thereby	providing	interaction	

specificity.	Some	rhizobial	strains	are	more	promiscuous	than	others;	for	example,	

Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	nodulates	only	Trifolium	spp.	

(clover),	although	other	rhizobia	species	can	form	symbiosis	with	multiple	legume	

species	and	have	a	wider	host-range	within	their	symbiovar	(Perret,	Staehelin	and	

Broughton,	2000;	Hirsch,	Lum	and	Downie,	2001).	This	rhizobia-legume	interaction	

specificity	occurs	at	both	species	level	and	also	individual	genotype	level	(Perret,	

Staehelin	and	Broughton,	2000;	Wang	et	al.,	2012;	Wang,	Liu	and	Zhu,	2018).	Notable	

examples	include	ICC105’s	interaction	with	white	and	Caucasian	clovers,	and	

WSM1689’s	ability	to	only	fix	N2	efficiently	in	Trifolium	uniflorum	(Miller	et	al.,	2007;	

Terpolilli	et	al.,	2014).	Similarly,	some	legume	genotypes	are	suggested	to	differ	in	

their	range	of	compatibility	with	rhizobia	strains,	as	wild	clovers	have	been	shown	to	

be	compatible	with	a	potentially	greater	number	of	rhizobial	strains	than	their	

domesticated	crop	species	equivalents	(Mutch	and	Young,	2004;	Wang	et	al.,	2012).		

	

Multiple	genetic	and	molecular	pathways	have	been	identified	that	regulate	the	

symbiotic	specificity	and	compatibility	between	symbiotic	partners	(Wang,	Liu	and	

Zhu,	2018).	Legume	selection	for	a	Rhizobium	strain	is	largely	influenced	by	the	

genetic	compatibility	with	rhizobial	symbiosis	genes.	In	particular,	specificity	can	be	

mediated	by:	1)	legume	flavonoid	interaction	with	the	rhizobial	NodD	transcriptional	

regulator;	and	2)	legume	recognition	of	rhizobium	Nod	factors	(Haeze	and	Holsters,	

2002;	Wang,	Liu	and	Zhu,	2018).	Compatibility	for	NodD	is	crucial	for	initiation	of	

symbiosis	as	it	is	activated	by	legume	flavonoids	and	functions	as	a	regulator	of	nod	

gene	activation	(Redmond	et	al.,	1986;	Maj	et	al.,	2010;	Hassan	and	Mathesius,	2012).	

NodD	proteins	from	different	rhizobia	strains	have	evolved	to	be	activated	by	
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different	legume	flavonoids	(Perret,	Staehelin	and	Broughton,	2000).	Only	certain	

legume	flavonoids	will	induce	specific	NodD	proteins	and	instigate	a	bacterial	

response,	thereby	ensuring	legume	host	specificity	of	rhizobial	partner	choice.	In	

addition	to	activation	of	NodD,	legume	flavonoids	can	act	as	chemo-attractants	to	the	

root	and	the	strength	of	their	attraction	can	differ	for	specific	rhizobial	strains	

(Hassan	and	Mathesius,	2012).	Furthermore,	once	nod	genes	are	activated,	rhizobia	

can	produce	multiple	types	of	Nod	factors	(Wang,	Liu	and	Zhu,	2018).	Plants	can	also	

produce	multiple	types	of	flavonoids,	for	example,	multiple	flavonoids	have	been	

detected	from	white	clover	secretions	which	can	activate	and	inhibit	symbiosis	

(Redmond	et	al.,	1986;	Djordjevic	et	al.,	1987;	Carlsen	et	al.,	2012).	The	wide-variety	

of	plant-specific	flavonoid	and	rhizobial-specific	Nod	factor	combinations	available,	in	

addition	to	further	downstream	interactions,	are	suggested	to	determine	the	

specificity	and	compatibility	of	symbioses	at	both	the	inter-	and	intra-species	levels	

(Perret,	Staehelin	and	Broughton,	2000;	Wang,	Liu	and	Zhu,	2018).	

	

Molecular	interactions	between	the	rhizobia	and	legume	are	complex,	and	other	

signalling	mechanisms	in	addition	to	Nod	factors	are	important	for	determining	

symbiotic	specificity	and	host	range.	Symbiotic	specificity	is	also	known	to	be	

mediated	by	legume	detection	of	rhizobial	exopolysaccharides,	lipopolysaccharides,	

secretion	systems,	their	secreted	effectors,	and	microbe-associated	molecular	

patterns	(MAMPs),	as	part	of	the	plant	immune	response	for	pathogen	detection	

(Kannenberg,	Rathbun	and	Brewin,	1992;	Fauvart	and	Michiels,	2008;	Deakin	and	

Broughton,	2009;	Downie,	2010;	Okazaki	et	al.,	2013,	2016;	Kawaharada	et	al.,	2015;	

Zipfel	and	Oldroyd,	2017;	Wang,	Liu	and	Zhu,	2018).	For	example,	the	production,	

composition	and	structure	of	exopolysaccharides	can	vary	between	rhizobial	species	

and	has	been	shown	to	determine	nodulation	capability	in	Rlt	(Fraysse,	Couderc	and	

Poinsot,	2003;	Skorupska	et	al.,	2006;	Janczarek	and	Rachwał,	2013;	Ghosh	and	Maiti,	

2016;	Rachwal	et	al.,	2016).	Despite	the	multiple	levels	of	specificity	required	for	

symbiotic	establishment,	this	does	not	necessarily	lead	to	optimal,	efficient,	

successful	symbioses.	Some	rhizobia	strains	reach	the	nodule	and	are	subsequently	

unable	to	fix	nitrogen	efficiently,	for	example,	due	to	early	nodule	sensencence	

induced	by	plant	immune	response	(S.	Yang	et	al.,	2017;	Wang,	Liu	and	Zhu,	2018).	

On	the	other	hand,	some	poor	nitrogen-fixing	strains	are	able	to	remain	in	nodules	

and		benefit	from	the	host,	giving	way	to	the	symbiotic	manipulation	of	defective	

“cheater”	strains	(Simms	and	Taylor,	2002).		
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Taken	together,	potential	rhizobia	and	legume	interactions	are	largely	diverse	at	both	

inter-	and	intraspecies	levels.	This	diversity	of	interactions	is	accounted	for	during	

symbiotic	establishment	by	the	implementation	of	multiple	mechanisms	to	select	for	

the	most	compatible	symbiotic	partners,	thereby	introducing	symbiotic	specificity	

between	and	within	rhizobia	and	legume	species.	

	

1.2.4. Challenges for commercially exploiting the rhizobia-legume symbiosis 

 

Optimisation	of	the	symbiosis	has	involved	choosing	the	most	compatible	rhizobia	

strains	and	legume	genotypes	for	agricultural	application.	However,	in	many	

instances	the	legume	genotype	and	the	environmental	field	factors	are	

predetermined,	leaving	only	the	selection	of	rhizobia	strains	as	the	flexible	parameter	

for	improving	symbiotic	efficiency	in	the	field	(Rys	and	Bonish,	1981;	Lupwayi,	

Clayton	and	Rice,	2006).	For	a	rhizobia	strain	to	be	considered	a	suitable	inoculant	it	

must	be	able	to	colonise	the	soil	and	endure	it’s	abiotic	environmental	conditions,	

compete	with	native	rhizobia	and	other	microbes,	form	nodules	successfully,	be	an	

effective	nitrogen	fixer,	and	have	no	adverse	effects	on	non-target	hosts	(Brockwell	

and	Bottomley,	1995;	Howieson,	Malden	and	Yates,	2000;	Checcucci	et	al.,	2017;	

Zaidi,	Khan	and	Musarrat,	2017).	This	is	not	to	mention	the	strain’s	ability	to	survive	

farmers	practices	and	manufacturing	standards	including	method	of	sowing,	

pesticide	usage,	and	having	a	long	shelf	life	(Catroux,	Hartmann	and	Revellin,	2001).	

However,	with	the	long	list	of	inoculant	prerequisites	it	is	not	surprising	that	the	

majority	of	inoculants	produced	globally	are	suggested	to	be	of	suboptimal	quality	

(Catroux,	Hartmann	and	Revellin,	2001).	

	

Rhizobium	leguminosarum	symbiovar	trifolii	strains	RCR221/TA1,	VAR1,	CC275e	and	

U204	are	commonly	used	as	commercial	inoculants	of	white	clover	(Brockwell,	

McIlroy	and	Hebb,	1998;	Batista	et	al.,	2015;	Delestre	et	al.,	2015;	Roberts	et	al.,	2017;	

Tartaglia	et	al.,	2019).	The	process	of	choosing	inoculant	strains	has	been	largely	

based	on	testing	growth	ability	under	laboratory	conditions	and	subsequently	

trialling	strains	for	resilience	in	the	field.	Previously,	strains	have	been	chosen	due	to	

their	efficient	nitrogen-fixing	capabilities,	and	strain	have	also	been	selected	based	on	

their	interactions	within	chosen	legume	cultivars	(Howieson,	Malden	and	Yates,	

2000;	Denton	et	al.,	2003;	Checcucci	et	al.,	2017).	
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Rhizobial	intraspecies	diversity	has	been	known	to	cause	various	challenges	for	

symbiotic	establishment	of	commercial	rhizobia	inoculants	in	the	field.	It	is	well	

documented	that	inoculants	are	commonly	unable	to	compete	with	the	diverse	native	

soil	rhizobia	in	the	field	(Denton	et	al.,	2003;	Batista	et	al.,	2015;	Checcucci	et	al.,	

2017;	Irisarri	et	al.,	2019;	Tartaglia	et	al.,	2019).	This	is	likely	because	Rlt	strains	vary	

in	ability	to	form	nodules	and	fix	nitrogen	(Rys	and	Bonish,	1981;	Vanlauwe	et	al.,	

2019),	and	while	commercial	strains	are	suggested	to	generally	be	better	nitrogen	

fixers,	they	are	often	found	to	be	poor	competitors	for	nodule	occupancy	compared	to	

the	adapted	native	soil	rhizobia.	Additionally,	long-term	growing	pastures	and	self-

regenerating	crop	rotations	have	shown	the	highest	levels	of	competition	compared	

to	annually	sown	forages	and	crops	where	inoculants	more	often	have	the	advantage	

of	legume	seeds	being	densely	inoculated	before	sowing	which	provides	a	greater	

chance	of	symbiotic	establishment	(Sessitsch	et	al.,	2002).		

	

To	improve	the	efficiency	of	commercial	rhizobia	inoculants,	strains	must	be	able	to	

outcompete	indigenous	strains,	but	also	remain	optimally	compatible	with	the	host	

legume	for	nitrogen	fixation	(Sessitsch	et	al.,	2002;	Lupwayi,	Clayton	and	Rice,	2006;	

Checcucci	et	al.,	2017).	In	order	to	achieve	this,	improving	our	understanding	of	the	

level	of	intraspecies	diversity	present	within	a	rhizobia	species	and	the	potential	

mechanisms	maintaining	this	diversity	(e.g.	through	interactions	with	legume	hosts,	

and	interactions	with	other	rhizobial	strains)	could	be	utilised	to	aid	future	strain	

selection	(Checcucci	et	al.,	2017).	Furthermore,	by	exploring	the	wide	diversity	of	

native	soil	rhizobia,	this	provides	additional	opportunities	to	isolate	more	strains	

matching	desirable	inoculant	traits	for	development	of	improved	inoculants	

(Lindström	et	al.,	2010;	Batista	et	al.,	2015;	Santos,	Nogueira	and	Hungria,	2019).	

 

1.3. Intraspecies diversity of Rhizobium leguminosarum 

 

Multiple	genetic	and	phenotypic	traits	have	been	used	to	identify	and	categorise	

strains	of	rhizobia	into	taxonomic	groups	(Pongsilip,	2012;	Shamseldin,	Abdelkhalek	

and	Sadowsky,	2017).	Rhizobial	speciation	of	a	broad	variety	of	species	and	

genotypes	across	genera	has	been	enabled	by	rhizobia	adaptation	to	diverse	soil	and	

plant	niches	which	provide	substantial	opportunities	for	gene	transfer	(Provorov,	

Andronov	and	Onishchuk,	2017).	However,	despite	the	categorisation	of	strains	into	
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species	there	still	exist	a	large	amount	of	genetic	diversity	within	rhizobia	species	

(Fagerli	and	Svenning,	2005).	In	particular,	Rhizobium	leguminosarum	contains	a	

large	group	of	strains	and	indigenous	soil	populations	commonly	display	vast	genetic	

diversity	which	is	also	reflected	as	variation	in	strains’	gene	expression	and	

phenotypic	properties.			

	

1.3.1. Genetic classification of Rhizobium leguminosarum 

 

Symbiotic	nitrogen-fixers	from	legumes	were	classed	into	6	Rhizobium	species	until	

the	1980s	(R.	leguminosarum,	R.	trifolii,	R.	phaseoli,	R.	meliloti,	R.	japonicum	and	R.	

lupini),	and	taxonomy	of	rhizobia	has	since	largely	developed	and	is	still	rapidly	

evolving	through	current	research	(Somasegaran	and	Hoben,	1985;	Young	and	

Haukka,	1996).	By	2017,	the	number	of	defined	rhizobia	species	reached	238	species	

across	18	genera	and	two	clades	(Shamseldin,	Abdelkhalek	and	Sadowsky,	2017).	

Rhizobium	and	Bradyrhizobium	remain	the	two	largest	genera	of	rhizobia,	with	

Rhizobium	itself	containing	69	species	able	to	infect	distinct	legume	hosts	

(Shamseldin,	Abdelkhalek	and	Sadowsky,	2017).	The	consistent	fluctuations	in	

taxonomic	reassignment	of	rhizobial	species	is	largely	attributed	to	the	development	

of	molecular	techniques	used	for	species	classification,	from	multilocus	sequence	

typing	(MLST)	(Ribeiro	et	al.,	2009),	sequence	analysis	of	core	genome	markers	

(González	et	al.,	2019),	average	nucleotide	identity	between	shared	genomic	regions	

(Kumar	et	al.,	2015;	Rashid	et	al.,	2015;	González	et	al.,	2019),	and	whole	genome	

sequencing	alignments	(Ormeño-Orrillo	et	al.,	2015).	Therefore,	the	realised	diversity	

of	rhizobia	is	continually	increasing	as	research	methods	develop	and	as	the	

agronomic	importance	of	rhizobial	diversity	becomes	more	apparent	for	agricultural	

practices	(Masson-Boivin	et	al.,	2009;	Shamseldin,	Abdelkhalek	and	Sadowsky,	2017).	

	

Today,	Rhizobium	leguminosarum	is	classified	as	a	bacterial	species	belonging	to	the	

Rhizobiaceae	family	and	Alphaproteobacteria	class	(Stackebrandt,	Murray	and	Truper,	

1988).	Rhizobium	leguminosarum	can	be	further	subdivided	into	a	species	complex	of	

genetically	distinct	sub-species	called	genospecies	(Kumar	et	al.,	2015).	The	

genospecies	concept	is	used	to	define	a	group	of	bacterial	genotypes	that:	1)	are	

genetically	related	through	a	common	ancestor;	2)	can	undergo	horizontal	gene	

transfer	and	recombination	within	their	group;	3)	have	diverged	and	subsequently	

restricted	gene	flow	although	not	necessarily	completely;	and	4)	but	that	are	
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phenotypically	heterogeneous	and	show	no	exclusive	phenotype	(Ravin,	1960,	1963).	

Five	sympatric	genospecies	(gsA,	gsB,	gsC,	gsD,	and	gsE)	of	Rhizobium	leguminosarum	

have	previously	been	identified	from	multiple	soils	globally,	and	seem	to	account	for	

the	majority	of	Rhizobium	leguminosarum	diversity	in	Northern	Europe	(Kumar	et	al.,	

2015;	Cavassim	et	al.,	2020).	Additionally,	two	additional	genospecies	groups	gsF-1	

and	gsF-2	were	identified	from	European	soil	samples,	which	include	R.	laguerreae	

strains.	However,	their	frequencies	are	generally	much	lower	compared	to	other	

genospecies	(Boivin	et	al.,	2020).	These	genospecies	consistently	display	a	clear	

average	nucleotide	identity	(ANI)	above	95%	(equating	to	the	70%	DNA-DNA	

hybridisation	measure	for	species	distinction)	based	on	core	genes	and	also	from	a	

standard	whole-genome	measure	of	ANI	further	confirming	the	definitive	species	

distinction	of	Rhizobium	leguminosarum	genospecies	(Kumar	et	al.,	2015;	Rashid	et	

al.,	2015;	Cavassim	et	al.,	2020).	Genospecies	distinction	is	not	evident	using	16S	gene	

markers	as	the	16S	sequence	can	be	too	conserved	for	genospecies	distinction.	

However,	multiple	housekeeping	genes,	or	core	gene	markers,	can	be	used	to	

determine	intraspecies	diversity	(Ramírez-Babena	et	al.,	2008;	Ramírez-Bahena	et	al.,	

2009;	Shamseldin,	Abdelkhalek	and	Sadowsky,	2017).	Further	sub-structuring	in	the	

Rhizobium	species	complex	indicate	a	continuous	evolutionary	divergence	of	

genomes	leading	to	species	divergence	(Pérez	Carrascal	et	al.,	2016;	González	et	al.,	

2019).	

	

The	species	naming	convention	for	rhizobia	is	determined	based	on	genome	

organisation,	whereby	the	species	name	is	determined	by	the	core	genes,	and	the	

symbiovar	is	indicative	of	accessory	genes	important	to	the	symbiotic	function	of	the	

bacteria	(Young,	2016).	In	this	species-naming	methodology,	the	nodulation	genes	on	

the	symbiosis	plasmid	are	useful	for	determining	a	strain’s	symbiovar	(sv.).	In	1984,	

Rhizobium	trifolii,	Rhizobium	leguminosarum	and	Rhizobium	phaseoli	species	were	

reclassified	into	symbiovars	of	the	Rhizobium	leguminosarum	species	to	become	R.	

leguminosarum	sv.	trifolli	(Rlt),	sv.	viciae	(Rlv),	and	sv.	phaseoli,	respectively	

(Ramírez-Bahena	et	al.,	2009;	Rogel,	Ormeño-Orrillo	and	Martinez	Romero,	2011).	

	

The	taxonomy	of	Rhizobium	species	is	predominantly	currently	based	on	symbiotic	

compatibility	with	the	host-legume	and	does	not	consider	the	expansive	free-living	

phenotypic	diversity,	although	modern	taxonomic	approaches	(such	as	the	R.	

leguminosarum	genospecies	classification)	identify	species	using	core	genome	
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phylogenies	and	pairwise	strain	ANI	(Richter	and	Rosselló-Móra,	2009;	Kumar	et	al.,	

2015;	Pérez	Carrascal	et	al.,	2016).	For	example,	Rhizobium	leguminosarum	

genospecies	are	not	necessarily	symbiovar	specific	and	are	not	defined	by	legume	

host	range.	As	a	result,	a	Rhizobium	leguminosarum	genospecies	can	contain	strains	

that	can	be	isolated	from	either	pea	or	clover,	at	least	for	gsB,	gsC	and	gsE	(Kumar	et	

al.,	2015;	Boivin	et	al.,	2020).	Furthermore,	while	strains	of	viciae	and	trifolii	

symbiovars	do	not	share	symbiosis	genes,	they	are	likely	to	share	other	accessory	

genes	that	are	not	host-specific,	as	demonstrated	by	their	genospecies	classifications	

(Kumar	et	al.,	2015).	

 

1.3.2. Genetic variation of Rhizobium leguminosarum 

 

1.3.2.1. Diversity within a small geographical range 

 

The	large	and	versatile	genomes	of	rhizobia	(<10.5Mbp)	indicate	the	complexity	of	

their	life	cycle	transitioning	from	free-living	to	bacteroid	physiologies	and	the	

heterogeneity	of	their	ecological	niche	(MacLean,	Finan	and	Sadowsky,	2007;	Pini	et	

al.,	2011;	Sánchez-Cañizares	et	al.,	2018).	For	example,	Rlt	strain	WSM1689	has	a	

genome	size	of	6,903,379bp	containing	6,709	protein-encoding	genes,	similar	to	Rlt	

strains	WSM2304,	WSM1325,	CC275e,	with	the	common	inoculant	strain	TA1	

containing	a	larger	genome	with	around	8,493	protein-coding	genes	(Reeve,	O’Hara,	

Chain,	Ardley,	Brau,	Nandesena,	Tiwari,	Copeland,	et	al.,	2010;	Reeve,	O’Hara,	Chain,	

Ardley,	Brau,	Nandesena,	Tiwari,	Malfatti,	et	al.,	2010;	Reeve	et	al.,	2013;	Terpolilli	et	

al.,	2014;	Delestre	et	al.,	2015).	While	the	number	of	rhizobial	genomes	continues	to	

increase	in	open	source	databases,	few	genomes	are	fully	annotated	to	enable	in	

depth	genomic	comparisons	(Sánchez-Cañizares	et	al.,	2018).	However,	with	the	

consistent	development	of	next	generation	sequencing	methodologies,	the	number	of	

complete	fully	annotated	rhizobial	genomes	is	also	increasing,	and	from	this	large	

scale	analysis	of	species	diversity	is	feasible	(Cavassim	et	al.,	2020).	

	

The	level	of	intraspecies	diversity	is	suggested	to	be	correlated	with	the	

heterogeneity	of	a	species’	environment	(Brockhurst	et	al.,	2019).	The	soil	

environment	provides	a	multitude	of	opportunities	for	rhizobial	species	

diversification	through	genetic	transfer	between	rhizobia	strains,	as	strains	are	likely	

to	share	overlapping	niches	and	be	in	close	proximity	to	other	strains	within	diverse	
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soil	microbial	communities	(Kloesges	et	al.,	2011;	Brockhurst	et	al.,	2019).	

Additionally,	the	large	size	of	rhizobial	genomes	are	suggested	to	be	advantageous	for	

competition	under	varied	soil	conditions	because	larger	genomes	enable	strains	to	

harbour	multiple	metabolic	capabilities	for	accessing	soil	nutrients,	providing	a	

selective	advantage	in	changing	environments	(Young	et	al.,	2006;	Wielbo	et	al.,	

2010).		

	

Intraspecies	diversity	of	Rhizobium	leguminosarum	is	extensive,	and	several	studies	

have	shown	that	up	to	five	distinct	genospecies	can	occur	sympatrically	within	a	

small	plot	of	soil	(Kumar	et	al.,	2015;	Boivin	et	al.,	2020;	Cavassim	et	al.,	2020).	While	

the	genetic	composition	of	Rhizobium	leguminosarum	communities	has	been	shown	

to	differ	at	small	geographic	scales	(Stefan	et	al.,	2018),	distinct	genotypes	and	

genospecies	have	also	been	identified	across	the	world	from	geographic	regions	with	

differing	environmental	conditions	(Ramírez-Bahena	et	al.,	2009;	Mauchline	et	al.,	

2014;	Kumar	et	al.,	2015;	Cavassim	et	al.,	2020).	Furthermore,	these	co-occurring	

genospecies	can	display	different	preferences	for	legume	hosts,	which	is	determined	

by	their	symbiosis	genes	(Mauchline	et	al.,	2014;	Kumar	et	al.,	2015).	It	has	been	

shown	that	a	greater	amount	of	intraspecies	diversity	is	identified	in	the	soil	

compared	to	from	root	nodules	(Duodu	et	al.,	2006).	This	suggests	that	the	studies	

using	legume-host	trapping	to	determine	rhizobium	diversity	have	so	far	likely	

underestimated	the	level	of	intraspecies	rhizobial	diversity,	even	though	some	

studies	have	still	found	high	genetic	diversity	of	R.	leguminosarum	from	nodule	

populations	(Stefan	et	al.,	2018).		

	

1.3.2.2. Diversity at the global level: Pangenomes 

 

Within	a	bacterial	species,	strains	can	differ	genetically	in	the	presence	and	absence	

of	a	substantial	number	of	genes.	The	pangenome	refers	to	all	of	the	genes	identified	

within	a	species.	This	can	be	further	partitioned	into	the	core	genome,	containing	

genes	present	in	all	strains,	and	the	accessory	genome,	consisting	of	genes	not	

present	in	all	strains	(Young	et	al.,	2006;	Brockhurst	et	al.,	2019).	Pangenomes	occur	

due	to	the	dynamic	nature	of	prokaryotic	genomes	being	able	to	gain	genes	from	

other	bacterial	species	through	horizontal	gene	transfer,	and	also	readily	lose	genes	if	

they	confer	a	large	fitness	disadvantage	(Brockhurst	et	al.,	2019).	Species	with	large	

and	long-term	populations	that	are	able	to	migrate	to	new	niches	are	most	likely	to	
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develop	pangenomes	as	a	consequence	of	adaptive	evolution.	This	fits	the	lifestyle	of	

rhizobia	well	as	they	spend	the	majority	of	their	lives	in	heterogeneous	soil	

environments	and	later	navigate	plant	tissues	for	nodulation	(McInerney,	McNally	

and	O’Connell,	2017).		

	

The	core	and	accessory	genomes	were	defined	to	aid	understanding	intraspecies	

genetic	variation,	its	origins,	and	the	genomic	structure	of	a	species	(McInerney,	

McNally	and	O’Connell,	2017).	Core	genes	are	generally	essential	genes	with	

functions	related	to	vital	cell	maintenance	and	are	usually	chromosomally	encoded	

(although	they	can	be	found	on	plasmids)	with	a	characteristically	high	G+C	content	

(around	60%	in	Rhizobium)	(Young	et	al.,	2006).	Core	genes	tend	to	reflect	the	same	

phylogenies	as	16S	sequences	for	species,	whereas	accessory	genes	can	move	more	

freely	between	strains	and	tend	to	show	diverging	phylogenies	that	deviate	from	the	

accepted	species	tree	(Young	et	al.,	2006).	That	being	said,	core	genes	can	still	display	

substantial	intraspecies	diversity	at	the	sequence	level	(Wielbo	et	al.,	2010).		

	

On	the	other	hand,	accessory	genes	are	often	attributed	to	more	specialised	adaptive	

functions,	are	located	on	auxiliary	plasmids	and	chromosomal	islands,	and	their	G+C	

content	can	range	from	core-like	to	a	lower	G+C	composition	(Young	et	al.,	2006;	

Cavassim	et	al.,	2020).	As	a	result,	the	accessory	genome	is	suggested	to	influence	

strain	adaptation	to	specific	niches.	While	characteristic	functional	traits	have	been	

assigned	to	core	and	accessory	genes,	it	is	important	to	note	that	the	majority	of	these	

are	putative	as	most	genes	still	have	unknown	functions.	The	accessory	genome	can	

be	further	subdivided;	each	genospecies	contain	a	specific	set	of	genospecies-

exclusive	genes	which	could	confer	genospecies-specific	traits	(Kumar	et	al.,	2015).	

Furthermore,	the	similarity	of	gene	contents	between	Rhizobium	leguminosarum	

strains	has	previously	been	found	to	cluster	by	genospecies,	with	additional	

underlying	substructure	based	on	whether	strains	were	isolated	from	a	similar	

geographic	origin	(Cavassim	et	al.,	2020).	Additionally,	there	are	often	genes	which	

have	only	ever	been	identified	in	one	strain	(ORFans),	which	are	suggested	either	be	

recently	acquired	to	the	species,	or	be	present	unevenly	across	a	species	(Young	et	al.,	

2006).	Taken	together,	the	accessory	genome	has	maintained	distinctive	

characteristics	despite	a	long	history	of	coexisting	alongside	core	genes,	and	could	

reflect	differences	in	gene	transferability,	mutation	rate,	or	genomic	location	on	

either	chromosomes	or	plasmids	(Young	et	al.,	2006;	Jiao	et	al.,	2018).	As	a	result,		the	
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accessory	genome	is	often	evolving	more	rapidly	than	the	core	genome	(Crossman	et	

al.,	2008)	

	

The	size	of	the	pangenome	is	known	to	vary	widely	amongst	species,	and	the	

pangenome	itself	can	be	considered	open	or	closed	(Brockhurst	et	al.,	2019).	

Pangenome	size	has	been	suggested	to	be	influenced	by	both	effective	population	size	

and	bacterial	ability	to	migrate	to	new	niches	and	environments	(Kimes	et	al.,	2014;	

McInerney,	McNally	and	O’Connell,	2017).	The	potential	for	expansion	of	the	

pangenome	size	is	also	dependent	upon	the	diversity	and	size	of	the	gene	pool	a	

strain	is	exposed	to,	which	is	likely	to	be	larger	and	more	diverse	in	spatially	and	

temporally	variable	environments	such	as	the	soil		(Brockhurst	et	al.,	2019).	Open	

pangenomes	characteristically	contain	a	greater	number	of	genes,	of	which	a	smaller	

proportion	are	considered	core	and	the	majority	are	accessory	and	gained	through	

horizontal	gene	transfer	(Brockhurst	et	al.,	2019).	Closed	pangenomes	have	a	smaller	

number	of	genes	and	the	majority	are	considered	core	and	have	a	lower	frequency	of	

gene	acquisition	through	horizontal	gene	transfer	(Brockhurst	et	al.,	2019).	As	a	

result,	species	core	genome	sizes	are	known	to	range	from	totalling	3%	to	84%	of	a	

species	pangenome	(McInerney,	McNally	and	O’Connell,	2017).	Rhizobium	

leguminosarum	has	an	open	pangenome,	with	a	consistent	core	genome	containing	a	

large	number	of	genes	also	shared	by	other	rhizobia	species,	and	an	expansive	

accessory	genome	(Crossman	et	al.,	2008;	González	et	al.,	2019).	It	was	additionally	

shown	from	analysis	of	the	Rhizobium	leguminosarum	genospecies	complex	that	the	

total	number	of	unique	accessory	genes	increases	indefinitely	for	the	species	when	

more	genomes	are	continually	added	(Cavassim	et	al.,	2020).	As	an	example	of	the	

pangenome	diversity	of	Rlt	(not	considering	ORFan	genes),	196	strains	were	

identified	to	have	a	stable	core	genome	of	4,204	orthologous	gene	groups	(19%	of	the	

pangenome),	and	17,911	accessory	orthologous	gene	groups	(Cavassim	et	al.,	2020).	

Therefore,	Rhizobium	leguminosarum	has	a	large	open	pangenome,	which	is	likely	to	

confer	a	diverse	range	of	adaptive	traits	to	enable	survival	and	competition	in	the	soil	

environment.		

	

1.3.2.3. Plasmids, recombination and introgression 

 

Rhizobium	leguminosarum	genomes	are	characteristically	multipartite,	whereby	the	

genome	is	split	across	a	chromosome	and	one	or	more	plasmids	(Young	et	al.,	2006;	
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Terpolilli	et	al.,	2014;	diCenzo	and	Finan,	2017;	Provorov,	Andronov	and	Onishchuk,	

2017;	Zahran,	2017;	Sánchez-Cañizares	et	al.,	2018).	Commonly,	the	general	term	of	a	

“replicon”	is	used	to	denote	a	DNA	molecule	within	the	genome	architecture	(diCenzo	

and	Finan,	2017).	Around	10%	of	bacterial	genomes	are	divided	into	two	or	more	

replicons	(Harrison	et	al.,	2010;	diCenzo	and	Finan,	2017).	Within	this	category,	

Rhizobium	leguminosarum	can	contain	multiple	plasmids	which	can	vary	in	number	

and	size	between	strains,	for	example,	common	inoculant	Rlt	strain	TA1	has	5	

replicons,	and	Rlv	strain	WSM3841	has	65%	genomic	material	in	the	chromosome	

with	the	remainder	organised	into	six	plasmids	(Young	et	al.,	2006;	Krol	et	al.,	2008).	

Additionally,	analysis	of	196	Rlt	strains	identified	single	strains	containing	up	to	8	

replicons	(Cavassim	et	al.,	2020).	Overall,	the	multipartite	genome	organisation	has	

been	suggested	to	be	advantageous	for	enabling	easier	management	of	large	genomes	

containing	a	diverse	range	of	rhizobial	functions	while	also	keeping	replication	

systems	small	to	permit	shorter	generation	times	under	heterogeneous	and	

fluctuating	environments	(Zahran,	2017).	

	

Some	genomic	features	are	known	to	differ	between	bacterial	species,	such	as	

differences	in	G+C	content,	codon	usage	and	dinucleotide	(A-T,	G-C	pairs)	relative	

abundance	(diCenzo	and	Finan,	2017).	The	accessory	genome	has	been	shown	to	

differ	in	many	of	these	characteristics	to	the	core	genome,	and	consequently,	it	is	

assumed	that	many	accessory	genome	components	have	been	introduced	through	

transfer	of	mobile	plasmids	and	phages	from	other	bacterial	species,	with	alleles	

further	incorporated	onto	the	chromosome	by	recombination	(Harrison	and	

Brockhurst,	2012;	Pérez	Carrascal	et	al.,	2016;	Brockhurst	et	al.,	2019).	Therefore,	it	

is	common	that	replicons	within	a	single	multipartite	genome	also	display	distinction	

in	these	genomic	characteristics.	In	order	to	categorise	these	differences,	replicons	

have	been	classified	into	three	general	types:	the	chromosome,	chromid	and	plasmid	

(diCenzo	and	Finan,	2017).		

	

The	chromosome	predominantly	contains	the	core	genome	functions,	is	the	largest	

replicon	in	the	genome,	and	is	the	most	genetically	stable	(Harrison	et	al.,	2010;	

diCenzo	and	Finan,	2017;	Zahran,	2017;	Sánchez-Cañizares	et	al.,	2018).	On	the	other	

hand,	the	extra-chromosomal	plasmids	usually	encode	the	accessory	genes,	and	in	

Rhizobium	leguminosarum	usually	have	a	lower	G+C	content	which	indicates	towards	

their	foreign	origin	(Harrison	et	al.,	2010;	Zahran,	2017;	Sánchez-Cañizares	et	al.,	
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2018).	The	chromid	is	a	replicon	that	is	in	between	a	chromosome	and	a	plasmid.	

This	is	because	the	chromid	can	contain	some	core	genes	and	its	G+C	content	and	

codon	usage	is	similar	to	the	host	chromosome,	however	they	have	plasmid	

replication	systems	(i.e.	repABC)	and	the	majority	of	genes	are	considered	part	of	the	

accessory	genome	(Harrison	et	al.,	2010;	Zahran,	2017).			

	

The	diversity	of	plasmids,	including	their	number	and	size,	varies	between	strains	of	

Rhizobium	leguminosarum.	The	Rhizobium	leguminosarum	pangenome	has	been	

shown	to	be	largely	diverse	at	both	the	level	of	the	chromosome	and	plasmids	

(González	et	al.,	2019).	However,	in	most	instances,	strains	of	Rhizobium	

leguminosarum	display	highly	syntenic	and	colinear	chromosomes,	but	have	

extensively	non-uniform,	highly	varied	plasmid	profiles	with	a	large	amount	of	

within-replicon	‘mosaic	structured’	genetic	diversity	(Crossman	et	al.,	2008;	Krol	et	

al.,	2008;	Wielbo	et	al.,	2010;	Mazur	et	al.,	2011;	Sánchez-Cañizares	et	al.,	2018).	This	

can	involve	strains	containing	similar	chromosomes	but	completely	different	

symbiosis	plasmids	(Fagerli	and	Svenning,	2005;	Kumar	et	al.,	2015;	Sánchez-

Cañizares	et	al.,	2018).	Additionally,	the	high	synteny	of	the	chromosomes	is	

suggested	to	reflect	genome	conservation	at	the	species	and	genus	levels.	However,	

differences	in	chromosomal	types	have	also	previously	been	shown	to	be	strongly	

associated	with	geographic	origin	(Fagerli	and	Svenning,	2005;	diCenzo	and	Finan,	

2017;	Stefan	et	al.,	2018).	The	genetic	conservation	of	chromids	is	almost	as	stable	as	

chromosomes	but	has	only	been	shown	to	sustain	genetic	similarity	at	the	species	

level	and	not	genus	level	(Harrison	et	al.,	2010).	Across	Rhizobium	leguminosarum	

strains,	plasmids	are	the	most	genetically	variable,	and	numbers	have	ranged	from	2-

8	plasmids	with	sizes	of	approximately	200	kb	to	1	Mb	(Krol	et	al.,	2008;	Wielbo	et	al.,	

2010;	Provorov,	Andronov	and	Onishchuk,	2017;	Cavassim	et	al.,	2020).	However,	

analysis	of	196	Rlt	strains	demonstrated	while	up	to	20	distinct	repABC	sequence	

group	plasmid	families	could	be	identified,	eight	of	those	plasmid	types	accounted	for	

the	majority	of	plasmids	identified	(Cavassim	et	al.,	2020).	This	is	also	supported	by	

another	study	which	found	that	although	extra-chromosomal	replicons	showed	

significant	diversity,	only	a	few	replicon	families	were	identified	overall	(González	et	

al.,	2019).	Therefore,	the	accessory	genome	which	is	predominantly	encoded	in	the	

plasmids	largely	confers	the	genomic	traits	and	phenotypic	capabilities	that	are	

strain-specific	and	is	also	largely	influenced	by	the	significant	genetic	diversity	within	

plasmid	families.		



 32 

	

Studies	have	also	suggested	that	chromosomal	recombination	is	rare	within	

Rhizobium	leguminosarum	symbiovars	and	recombination	of	core	genes	

predominantly	occurs	within	species	boundaries	(Harrison,	Jones	and	Young,	1989;	

Kumar	et	al.,	2015).	However,	plasmid	diversity	is	not	explained	by	Rhizobium	

leguminosarum	genospecies	complex,	as	plasmids	are	not	exclusive	to	a	single	

genospecies,	although	some	plasmids	are	more	overrepresented	in	some	genospecies	

(Cavassim	et	al.,	2020).	Additionally,	symbiosis	genes	have	been	found	to	be	encoded	

by	different	plasmid	families	within	the	Rhizobium	leguminosarum	genospecies	

complex,	and	these	different	symbiosis	plasmids	can	co-exist	in	the	same	geographic	

location	(Cavassim	et	al.,	2020).	This	diversity	of	symbiosis	plasmid	types	has	also	

been	found	in	other	studies	(Black	et	al.,	2012).	Some	of	these	plasmid	families	have	

additionally	been	found	to	contain	conjugal	transfer	proteins,	suggesting	that	there	

could	be	different	methods	and	rates	of	both	plasmid	and	symbiosis	plasmid	transfer	

within	Rhizobium	leguminosarum	(Cavassim	et	al.,	2020).	Consequently,	phylogenetic	

analysis	indicates	symbiosis	plasmids	have	crossed	genospecies	boundaries	

(Cavassim	et	al.,	2020).	The	inter-strain	transfer	of	the	symbiosis	plasmids	and	genes	

has	also	been	identified	in	other	previous	investigations	(Kumar	et	al.,	2015;	González	

et	al.,	2019).	However,	diversification	of	plasmid	profiles	due	to	conjugal	plasmid	

transfer	is	likely	somewhat	restricted	by	geographic	location	as	bacterial	cells	must	

be	within	close	proximity	for	transfer	to	occur,	although	soil	pH	has	also	been	

suggested	to	contribute	to	plasmid	profile	composition	(Ramírez-Bahena	et	al.,	2009;	

Stefan	et	al.,	2018).	Overall,	symbiosis	plasmids	are	suggested	to	display	the	highest	

recombination	rates	within	rhizobia	populations	and	between	species,	followed	by	

accessory	plasmids,	and	core	chromosomes	display	the	lowest	recombination	rates	

(Carrascal	et	al.,	2019).	

	

Overall,	horizontal	gene	transfer	of	plasmids	and	genetic	elements	facilitates	

acquisition	of	adaptive	genes	from	closely	related	and	distantly	related	strains	and	

thereby	increasing	bacterial	inter-	and	intraspecies	diversity	(Wiedenbeck	and	

Cohan,	2011).	In	this	way,	horizontal	gene	transfer	can	dissociate	phenotypic	traits	

from	their	inferred	species	and	enable	overlapping	of	environmental	niches	between	

distantly	related	strains,	as	demonstrated	by	the	transfer	of	symbiosis	plasmids	

between	species	(Kumar	et	al.,	2015;	Pérez	Carrascal	et	al.,	2016;	González	et	al.,	

2019;	Cavassim	et	al.,	2020).	Analysis	of	Rlt	strains	identified	that	genes	can	travel	
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across	genetically	distinct	genospecies	boundaries,	however	nearly	all	genes	

otherwise	showed	no	evidence	of	introgression	and	those	that	did	were	

predominantly	plasmid-localised	(Cavassim	et	al.,	2020).	Consequently,	even	though	

genospecies	have	evolved	to	display	defined	boundaries	of	recombination	within	

their	species	boundaries,	rarer	introgression	events	can	still	introduce	adaptive	genes	

from	more	distantly	related	species	and	provide	unique	phenotypes	at	the	individual	

strain	level	(Kumar	et	al.,	2015;	Pérez	Carrascal	et	al.,	2016).		

	

1.3.2.4. Operons 

 

In	prokaryotic	genomes,	genes	within	replicons	are	commonly	thought	to	be	

organised	into	operons.	An	operon	is	a	group	of	genes	arranged	consecutively	along	

the	genome	and	co-directionally	transcribed	by	a	common	promoter	and	terminator.	

The	first	defined	classical	operon	is	the	well-studied	E.	coli	lac	operon,	which	consists	

of	genes	required	for	the	transportation	and	metabolism	of	lactose	sugars	(Jacob	and	

Monod,	1961).	Therefore,	it	is	thought	that	genes	that	share	functions	in	related	

cellular	pathways	are	arranged	into	non-random	operon	units	for	efficient	co-

expression	via	co-transcription	into	a	single	stand	of	polycistronic	mRNA	(Jacob	and	

Monod,	1961;	Wolf	et	al.,	2001;	De	Hoon	et	al.,	2004;	Koonin,	2009;	Osbourn	and	

Field,	2009).	However,	some	operons	are	suggested	to	contain	genes	from	different	

functional	pathways	but	are	grouped	into	operons	because	they	are	required	under	

the	same	environmental	conditions	(Osbourn	and	Field,	2009).	Operon	structures	

have	also	been	shown	to	be	dynamic	and	altered	by	environmental	influences	(Okuda	

et	al.,	2007;	Osbourn	and	Field,	2009;	Fortino	et	al.,	2014).	Some	operons	can	be	

subdivided	into	multiple	transcriptional	units	with	their	own	internal	promoter	and	

terminators	that	are	regulated	differently	depending	on	the	external	stimuli	(Okuda	

et	al.,	2007).	Therefore,	the	environmental	context	of	the	species	in	question	is	likely	

to	substantially	influence	operon	organisation	and	diversity	in	prokaryotic	genomes.		

	

The	evolutionary	persistence	of	operon	structures	across	bacteria	is	debated	by	

different	theories	(Lawrence,	1999;	Rocha,	2008).	The	Selfish	Operon	Model	is	

currently	the	most	accepted	theory,	which	rationalises	that	operon	gene	organisation	

is	maintained	in	prokaryotes	because	genes	required	for	a	selectable	phenotype	can	

be	transferred	by	both	horizontal	co-transfer	and	vertical	transmission	and	are	

consequently	maintained	due	to	their	close	proximity	(Lawrence,	1999;	Koonin,	
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2009;	Osbourn	and	Field,	2009).	Gene	clustering	by	operon	organisation	is	therefore	

considered	advantageous	to	the	constituent	genes,	instead	of	solely	due	to	the	

importance	of	functional	coregulation	for	the	organism	itself	(Lawrence,	1999).	

	

The	coverage	of	operon	organisation	within	genomes	significantly	differs	between	

bacterial	species	(Wolf	et	al.,	2001;	Koonin,	2009).	Little	is	known	regarding	the	

difference	in	operon	organisation	between	rhizobia	species	and	considering	the	

dynamic	nature	of	their	large	multipartite	genomes	this	could	be	vast.	This	is	

especially	considering	initial	comparisons	of	bacterial	genome	operon	organisation	

revealed	low	conservation	of	gene	order	beyond	the	extent	of	operons,	which	was	

further	confirmed	by	variability	in	gene	order	across	the	Rhizobium	leguminosarum	

species	complex	(Koonin,	2009;	Cavassim	et	al.,	2020).	Despite	the	limited	

investigation	of	operon	organisation	diversity	in	rhizobia,	many	individual	common	

rhizobial	operons	have	been	extensively	studied	previously,	including:	nodulation	

gene	operons	which	are	vital	for	symbiotic	establishment	(nodABCIJ		and	nodEF)	

(Herman	P.	Spaink	et	al.,	1987;	Hong,	Burn	and	Johnston,	1987a);	operons	involved	in	

metabolism	and	nutrient	acquisition	(Yeoman	et	al.,	1997;	Poole	et	al.,	1999);	and	

operons	involved	in	the	rhizosphere	and	quorum-sensing	such	as	the	tra-trb	operon	

system	used	for	conjugational	transfer	of	the	symbiosis	plasmid	(Wisniewski-Dyé	and	

Downie,	2002;	Danino	et	al.,	2003).	Taken	together,	operon	structure	and	function	

can	be	largely	diverse	between	strains	and	should	be	considered	with	both	

environmental	context	and	bacterial	species	in	mind.		

	

1.3.3. Transcriptomic variation of Rhizobium leguminosarum 

 

Gene	expression	is	measured	in	abundance	of	transcribed	mRNA,	and	in	most	

instances	is	highly	correlated	to	protein	levels.	Therefore,	expression	levels	are	

considered	a	good	proxy	for	identifying	different	phenotypic	responses	from	an	

organism	exposed	to	different	environmental	conditions,	and	conversely,	

understanding	expression	differences	between	different	organisms	grown	in	the	

same	environment.	Analysis	of	gene	expression	can	highlight	ecologically	crucial	

phenotypes	that	have	previously	been	difficult	to	define	and	measure	because	

differences	are	not	translated	into	morphologically	distinct	phenotypes	(Pavey	et	al.,	

2010).	Consequently,	transcriptome	profiling	has	become	an	insightful	tool	for	

investigating	phenotypic	differences	among	organisms,	and	developments	in	
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microarray	and	RNA-Seq	technologies	have	advanced	transcriptomic	analysis	

capabilities	enabling	affordable	wider-scope	gene	expression	investigations	

(MacLean,	Finan	and	Sadowsky,	2007;	Wang,	Gerstein	and	Snyder,	2009;	Yoder-

Himes	et	al.,	2009;	Filiatrault,	2011;	Peng	et	al.,	2014;	Jiménez-Guerrero	et	al.,	2017;	

diCenzo	et	al.,	2019)	

	

Both	inter-	and	intra-species	transcriptomic	variation	investigations	have	

predominantly	been	driven	by	the	most	genetically	well-characterised	bacterial	

species,	including	Escherichia	coli,	Staphylococcus	aureus,	Pseudomonas	aeruginosa	

and	Salmonella	enterica	(Carrasco,	Tan	and	Duman,	2011;	Zarrineh	et	al.,	2014;	

Hosseinkhan	et	al.,	2015;	Vital	et	al.,	2015;	Hosseinkhan,	Mousavian	and	Masoudi-

Nejad,	2018;	Hornischer	et	al.,	2019).	To	identify	transcriptomic	differences	between	

bacterial	strains	at	an	inter-	and	intra-species	level,	previous	prokaryotic	analyses	

have	predominantly	used	one	or	two	isolates,	and	a	maximum	of	4,	as	the	

representative	strains	of	a	species’	transcriptome	profile	(Scaria	et	al.,	2013;	Kimes	et	

al.,	2014;	González-Torres	et	al.,	2015;	Vital	et	al.,	2015;	Connolly	et	al.,	2019).	Despite	

only	using	a	few	strains,	variation	in	gene	expression	is	evident	at	the	intraspecies	

level	for	core	and	accessory	genes	(Scaria	et	al.,	2013;	González-Torres	et	al.,	2015;	

Vital	et	al.,	2015;	Connolly	et	al.,	2019).	Consequently,	it	is	anticipated	that	the	large	

genomic	diversity	of	rhizobia	species	would	to	some	extent	reflect	variation	across	

individual	strain	phenotypes.		

	

Rhizobia	have	been	extensively	utilised	for	investigating	transcription	variation	in	

bacteria,	for	several	reasons.	The	substantial	number	of	full	sequenced	genomes	

available	in	sequencing	repositories	and	the	elaborateness	of	their	multipartite	

genomes	(Young	et	al.,	2006;	diCenzo	and	Finan,	2017)	facilitates	interesting	

investigations	of	transcriptional	regulation.	The	additional	complexity	of	their	

lifestyle	involving	transition	between	a	motile	free-living	soil	form	and	a	non-motile	

symbiotic	bacteroid	form	is	a	physiological	transformation	associated	with	significant	

alterations	to	gene	expression,	and	as	a	result	has	received	a	great	amount	of	focus	in	

rhizobial	transcriptomics	(Yoder-Himes	et	al.,	2009;	Vercruysse	et	al.,	2011;	Lopez-

Leal	et	al.,	2014;	diCenzo	et	al.,	2019).	Studies	have	principally	focused	on	rhizobial	

transcriptomic	responses	to	altered	nutrient	resources,	symbiosis	development	

across	different	hosts	(Karunakaran	et	al.,	2009;	Ramachandran	et	al.,	2011;	Krysciak	

et	al.,	2014;	Peng	et	al.,	2014;	Roux	et	al.,	2014;	Perez-Montano	et	al.,	2016;	Green	et	
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al.,	2019),	free-living	versus	bacteroid	physiologies	(Yoder-Himes	et	al.,	2009;	

Vercruysse	et	al.,	2011;	Lopez-Leal	et	al.,	2014)	and	responses	to	known	stress	

conditions	(Vercruysse	et	al.,	2011;	Liu	et	al.,	2014;	Lopez-Leal	et	al.,	2014).	These	

investigations	have	improved	our	understanding	of	important	functional	and	

regulatory	interactions	of	genes	involved	in	quorum-sensing,	symbiotic	

establishment	and	metabolism	in	rhizobia.	However,	there	has	been	limited	

investigation	into	the	extent	of	transcriptional	variation	of	rhizobia	at	either	the	

inter-	or	intra-species	level,	and	only	a	few	studies	have	undertaken	direct	

transcriptome	comparisons	between	rhizobia	strains	differing	in	core	and	accessory	

genome	organisation	(Heath,	Burke	and	Stinchcombe,	2012;	Galardini	et	al.,	2015;	

Rachwal,	Matczynska	and	Janczarek,	2015;	Jiao	et	al.,	2018;	Green	et	al.,	2019).				

Genetic	diversity	is	clearly	an	important	factor	in	transcriptomic	and	phenotypic	

variation	in	symbiosis,	as	it	has	been	shown	that	Sinorhizobium	meliloti	gene	

expression	in	symbiotic	establishment	varies	between	strains	and	is	also	dependent	

on	the	interaction	with	specific	plant	genotypes	(Heath,	Burke	and	Stinchcombe,	

2012).	

	

One	recent	study	investigated	how	rhizobial	transcriptional	profiles	were	affected	by	

the	differing	organisation	of	core	and	accessory	genes	in	two	Sinorhizobium	fredii	

strains	(Jiao	et	al.,	2018).	Analysis	of	accessory	genes	was	enabled	by	sub-setting	the	

genes	in	the	genomes	based	on	their	frequency	in	ten	published	Sinorhizobium	

genomes	(Jiao	et	al.,	2018).	The	analysis	identified	that	while	expression	of	core	genes	

were	similar	in	both	strains	across	growth	phases	and	symbiotic	conditions,	

intraspecies	accessory	genes	displayed	larger	variations	in	expression	and	could	

contribute	to	rhizobia	diversification	(Jiao	et	al.,	2018).	Additionally,	the	study	

highlighted	the	relevance	of	genomic	architecture	for	gene	incorporation	into	

replicon	regulatory	networks.	A	large	amount	of	between-replicon	co-regulation	of	

genes	was	found	to	occur,	and	importantly	the	symbiosis	plasmid	was	found	to	

display	more	between-replicon	gene	co-expression	than	within-replicon	gene	co-

expression	(Jiao	et	al.,	2018).	As	it	is	known	that	the	genomic	architecture	of	

Rhizobium	leguminosarum	replicons	is	diverse,	this	could	have	profound	influences	

on	the	intraspecies	transcriptional	variation	between	strains	as	a	result	in	differences	

in	gene	connectivity.	Furthermore,	it	has	already	been	shown	from	analysis	of	51	

Sinorhizobium	meliloti	strain	pangenome	that	significant	variation	in	gene	
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connectivity	can	occur	at	the	intraspecies	level	largely	as	a	result	of	accessory	

genome	content	variability	(Galardini	et	al.,	2015).		

	

Variation	in	intraspecies-level	gene	expression	has	also	been	suggested	to	promote	

bacterial	speciation	(Pavey	et	al.,	2010).	This	is	suggested	to	be	achieved	by	

expression	variation	enabling	populations	to	colonise	new	ecological	niches	where	

regulation	of	expression	could	then	become	vital	for	population	persistence	in	the	

new	niche,	which	could	lead	to	species	diversification	and	potential	reproductive	

isolation	(Pavey	et	al.,	2010;	Ng	et	al.,	2019).	The	extent	to	which	this	has	contributed	

to	the	diversification	of	Rhizobium	leguminosarum	genetic	and	phenotypic	variation	is	

unknown	and	consequently	requires	further	investigation.		

	

1.3.4. Phenotypic variation of Rhizobium leguminosarum 

 

Despite	the	high	level	of	observed	genotypic	diversity	and	advancements	in	genetic	

analyses,	a	significant	proportion	of	genes	are	still	annotated	with	putative,	unknown	

or	hypothetical	functions	(Sánchez-Cañizares	et	al.,	2018).	Consequently,	in	order	to	

fully	understand	and	confirm	the	functional	capacities	of	strains	there	is	a	need	for	

direct	phenotypic	investigations.	

	

Reflecting	their	genetic	variation,	rhizobia	are	phenotypically	diverse.	Rhizobium	

leguminosarum	is	characterised	as	a	gram	negative,	motile,	non-spore	forming,	rod-

shaped	bacterium	that	grows	into	white	colonies	after	3-5	days	growth.	The	bacteria	

grow	optimally	at	28°C	but	have	a	temperature	range	between	10	–	35°C.	

Additionally,	Rhizobium	leguminosarum	grows	optimally	at	pH	7.75,	but	is	collectively	

as	a	species	able	to	grow	within	a	pH	range	of	5-8.5	(Ramírez-Bahena	et	al.,	2009;	

Reeve,	O’Hara,	Chain,	Ardley,	Brau,	Nandesena,	Tiwari,	Copeland,	et	al.,	2010;	Mazur	

et	al.,	2013;	Delestre	et	al.,	2015;	Howieson	and	Dilworth,	2016).		

	

Rhizobia	strains	can	dwell	in	the	soil	for	years	in	between	opportunities	for	symbiotic	

interaction,	and	are	suggested	to	display	a	versatile,	metabolically	active	state	in	the	

soil	between	these	periods	(Young	et	al.,	2006).	Similarly,	it	is	anticipated	that	

rhizobia	are	able	to	metabolise	a	diverse	variety	of	compounds	considering	they	are	

found	in	various	complex	environments	from	the	soil	to	inside	plant	cells	where	

many	of	the	compounds	are	unknown	(Mazur	et	al.,	2013;	Ormeño-Orrillo	and	
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Martínez-Romero,	2013).	Rhizobium	leguminosarum	strains	grow	at	different	rates,	

and	this	could	be	a	result	of	the	different	metabolic	capabilities	of	strains	(Wielbo	et	

al.,	2010;	Mazur	et	al.,	2013).	A	high	proportion	of	field	isolates	have	been	described	

as	metabolically	versatile	(i.e.	they	have	not	specialised	to	utilize	only	one	particular	

type	of	substrate),	and	there	is	a	wide	variation	in	the	number	of	substrates	that	

individual	strains	can	metabolise	(Wielbo	et	al.,	2010;	Mazur	et	al.,	2013).	For	

example,	in	one	study,	the	lowest	number	of	substrates	utilised	by	a	strain	was	113	

(Mazur	et	al.,	2013).	Strains	of	Rhizobium	leguminosarum	were	shown	to	vary	

predominantly	in	their	ability	to	metabolise	sugar	compounds,	and	secondly	acids	

and	amino	acids	(Wielbo	et	al.,	2010;	Mazur	et	al.,	2013).	Polysaccharides,	sugar	acids	

and	D-amino	were	shown	to	be	metabolised	the	least	by	strains	(Mazur	et	al.,	2013).	It	

has	been	suggested	that	metabolic	versatility	is	associated	with	replicon	diversity,	

with	vital	metabolic	functions	located	on	the	chromosome	and	metabolic	capabilities	

providing	resilience	in	fluctuating	heterogeneous	environments	encoded	by	plasmids	

(Mazur	et	al.,	2013;	Ormeño-Orrillo	and	Martínez-Romero,	2013).	Furthermore,	

strains	with	no	large	replicons	were	shown	to	use	a	significantly	lower	number	of	

monosaccharides	and	oligosaccharides	but	a	higher	utilisation	of	sugar	acids,	

modified	carboxylic	acids,	and	nitrogen	compared	to	strains	with	large	plasmids	

(Mazur	et	al.,	2013).	Similar	to	the	varied	gene	and	plasmid	distribution	across	

genospecies,	no	metabolic	capability	or	substrate	utilisation	profile	has	been	found	

exclusive	to	a	single	genospecies	or	other	defined	genotype	group	(Wielbo	et	al.,	

2010;	Kumar	et	al.,	2015).	The	ability	to	be	metabolically	versatile	is	likely	to	be	an	

advantageous	long-term	approach	for	soil	survival,	colonisation	and	adaptation	as	

strains	can	metabolise	more	diverse	plant-secreted	compounds	and	nutrients	

available	in	the	soil	rhizosphere	soil	(Wielbo	et	al.,	2010;	Mazur	et	al.,	2013).	

Moreover,	it	has	even	been	proposed	that	Rhizobium	metabolic	capacity	and	diversity	

is	underestimated	due	to	the	large	number	of	unknown	gene	functions	which	may	

have	functional	associations	to	metabolism	of	soil	and	plant	compounds	(Ormeño-

Orrillo	and	Martínez-Romero,	2013).	

	

Rhizobium	leguminosarum	strains	also	vary	in	their	symbiotic	capacity.	While	

Rhizobium	leguminosarum	strains	differ	by	which	legume	hosts	they	infect	(sv.	trifolii,	

viciae	and	phaseoli),	symbiovars	display	differences	in	their	response	to	legume	

flavonoids,	competitive	ability	for	nodulation	and	effectiveness	for	nitrogen	fixation	

(Leung,	Wanjage	and	Bottomley,	1994;	Ramírez-Bahena	et	al.,	2009;	Maj	et	al.,	2010;	
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Wielbo	et	al.,	2011;	Bourion	et	al.,	2018).	Furthermore,	the	legume	host	species	that	

Rhizobium	leguminosarum	strains	form	symbiosis	with	are	not	explained	by	

genospecies	classification,	as	strains	of	the	same	genospecies	have	been	shown	to	

form	specific	symbioses	with	either	clover	(sv.	trifolii	strains)	or	pea	and	faba	bean	

(sv.	viciae	strains)	(Kumar	et	al.,	2015;	Boivin	et	al.,	2020).	Increased	metabolic	

versatility	was	shown	to	not	be	advantageous	for	competitive	nodulation	with	clover,	

however	strains	at	low	frequency	in	the	soil	population	with	a	specialised	metabolism	

were	suggested	to	be	more	symbiotically	effective	(Wielbo	et	al.,	2010).	In	addition,	

the	types	of	secondary	metabolites	produced	by	Rhizobium	leguminosarum	are	also	

diverse	at	the	intraspecies	level.	For	example,	the	number	and	combinations	of	

quorum-sensing	pathways,	such	as	cinI/cinR,	rhiI/rhiR,	traI/traR	and	raiI/raiR,	

contribute	to	the	diversity	of	strain	interactions	with	neighbouring	soil	microbes	and	

legumes	(Wisniewski-Dyé	and	Downie,	2002;	Sanchez-Contreras	et	al.,	2007).		

	

Although	phenotypic	diversity	is	high	within	Rhizobium	leguminosarum,	some	

previous	studies	have	found	limited	association	to	genetic	diversity	of	sequence	types	

and	taxonomic	classifications	(Kumar	et	al.,	2015;	Stefan	et	al.,	2018).	Currently,	there	

are	no	phenotypes	that	are	exclusive	to	a	single	genospecies,	although	it	is	not	yet	

known	the	extent	to	which	genospecies	boundaries	are	associated	with	differences	in	

symbiotic	capabilities	(Kumar	et	al.,	2015;	Boivin	et	al.,	2020).	Therefore,	

understanding	the	connection	between	genotype	and	phenotype	is	paramount	to	

understanding	both	intraspecies	diversity	and	symbiotic	potential	within	Rhizobium	

leguminosarum,	and	is	most	likely	dependent	on	the	environmental	context	and	

relevant	organism	interactions.		

	

1.4. Significance of intraspecies diversity in the rhizosphere 

 

The	rhizosphere	is	the	section	of	soil	closest	to	the	plant	root	where	interactions	

between	soil	microorganisms	can	influence	plant	growth,	plant	health,	resilience	to	

environmental	stresses,	competition	for	resources	and	nutrient	cycling	(Philippot	et	

al.,	2013;	Jones	et	al.,	2019).	In	addition	to	direct	influences	from	plant	root	

secretions,	the	interspecies	and	intraspecies	interactions	between	microorganisms	

and	the	plant	root	are	dynamic.	Therefore,	understanding	the	importance	and	

specificity	of	these	interactions	is	crucial	for	refining	and	improving	crop	production	

(Philippot	et	al.,	2013;	Liu	et	al.,	2019).	The	sequencing	of	genomes	from	soil	and	
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rhizosphere	environments	has	demonstrated	the	extensiveness	of	rhizobial	species	

pangenomes	and	the	subsequent	metabolic	diversity	of	rhizobia	populations	(Poole,	

Ramachandran	and	Terpolilli,	2018).	This	rhizobial	intraspecies	diversity	can	lead	to	

variation	in	the	potential	interspecies	and	intraspecies	interactions	between	strains	

and	also	affect	rhizobial	interactions	with	the	host	legume.	

	

Rhizobial	intraspecies	diversity	in	the	soil	rhizosphere	can	be	affected	by	a	number	of	

factors	including	interspecies	and	intraspecies	plant	variation	(Kiers	and	Denison,	

2008;	Miranda-Sánchez,	Rivera	and	Vinuesa,	2016;	Kroll,	Agler	and	Kemen,	2017;	

Vuong,	Thrall	and	Barrett,	2017;	Clúa	et	al.,	2018),	abiotic	soil	factors	(Rice,	Penney	

and	Nyborg,	1977;	Harrison,	Jones	and	Young,	1989;	Xiong	et	al.,	2017;	Igiehon	and	

Babalola,	2018;	Liu	et	al.,	2019),	and	different	agricultural	management	practices	

such	as	organic	or	conventional	farming	(Kiers,	West	and	Denison,	2002;	Lupwayi,	

Clayton	and	Rice,	2006;	Shu	et	al.,	2012;	Weese	et	al.,	2015).	In	addition,	microbial	

factors	such	as	the	interspecific	competition	with	other	soil	bacteria,	and	intraspecific	

competition	with	other	rhizobia	strains	for	nutrient	resources	and	nodulation,	can	

affect	intraspecies	diversity	(Pugashetti,	Angle	and	Wagner,	1982;	Villacieros	et	al.,	

2003;	Denison	and	Kiers,	2004;	Kiers	and	Denison,	2008;	Blanco,	Sicardi	and	Frioni,	

2010;	Hibbing	et	al.,	2010;	Wielbo	et	al.,	2011;	Barrett	et	al.,	2015;	Teng	et	al.,	2015;	

Lu	et	al.,	2017).	As	an	example,	rhizobia	can	indirectly	interact	through	competition	

for	nutrient	resources.	These	indirect	competitive	interactions,	where	some	strains	

more	effectively	metabolise	a	resource	which	limits	its	availability	for	other	strains	is	

one	method	that	could	suppress	growth	of	niche-sharing	strains	and	subsequently	

could	reduce	symbiont	diversity	within	a	community	(Ramachandran	et	al.,	2011;	

Becker	et	al.,	2012).	Siderophores	that	sequester	iron	can	also	be	used	by	rhizobia	as	

a	resource	competition	mechanism	to	inhibit	growth	of	competitor	strains	(Joshi	et	

al.,	2008;	diCenzo	et	al.,	2014;	Kramer,	Özkaya	and	Kümmerli,	2019).	In	the	

rhizosphere,	there	is	a	high	likelihood	of	overlapping	resource	utilisation	between	

strains	which	provides	many	opportunities	for	interference	and	cheating	interactions	

to	occur	within	communities	(Jousset	et	al.,	2011;	Barrett	et	al.,	2015).	Additionally,	

quorum	sensing	is	a	powerful	direct	signalling	mechanism	between	strains	of	

bacteria,	capable	of	modulating	growth	through	regulation	of	gene	expression	by	

intra-	and	interspecies	communication	in	a	cell-density	dependent	manner	(Miller	

and	Bassler,	2001;	Wisniewski-Dyé	and	Downie,	2002;	Gonzalez	and	Marketon,	2003;	

Checcucci	et	al.,	2017).	N-acyl	homoserine	lactones	(AHLs)	are	the	most	commonly	
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identified	quorum	sensing	molecules,	and	Rhizobium	species	produce	the	largest	

diversity	of	AHLs	among	soil	bacteria	(Cha	et	al.,	1998;	Wisniewski-Dyé	and	Downie,	

2002).	Quorum	sensing	is	an	important	aspect	of	symbiotic	establishment,	as	this	

signalling	mechanism	between	cells	can	modulate	the	rhizosphere	community	

interactions	and	increases	bacterial	densities	around	the	root	surface	in	preparation	

for	nodule	development	(Schwinghamer	and	Brockwell,	1978;	Miller	and	Bassler,	

2001;	Wisniewski-Dyé	and	Downie,	2002;	Gonzalez	and	Marketon,	2003;	Downie,	

2010).	This	signalling	capability	varies	between	strains,	but	strains	with	this	ability	

can	use	it	to	their	competitive	advantage	to	co-ordinate	bacterial	competitor	

interactions	with	plant	hosts	(Gonzalez	and	Marketon,	2003).		

	

Intraspecies	diversity	of	rhizobia	is	important	in	the	rhizosphere	because	symbiont	

community	diversity	and	the	associated	competitive	interactions	could	potentially	

influence	symbiont	function	and	effectiveness	of	legume-rhizobia	symbiosis	by	

determining	which	strains	form	symbiosis	with	the	legume	(Hibbing	et	al.,	2010;	

Bolnick	et	al.,	2011;	Barrett	et	al.,	2015;	Pahua	et	al.,	2018;	Liu	et	al.,	2019).	Increased	

intraspecies	diversity	can	be	beneficial	by	providing	legumes	with	more	opportunity	

to	form	symbiosis	with	many	strains,	however	this	increased	diversity	might	also	

lead	to	a	prevalence	of	cheating	behaviours	and	antagonistic	intraspecies	interactions	

within	the	population	which	are	detrimental	to	plant	growth	(Becker	et	al.,	2012;	

Barrett	et	al.,	2015).	For	example,	the	success	of	rhizobial	inoculant	can	be	limited	by	

competition	with	indigenous	soil	rhizobia	that	can	outcompete	inoculants	for	nodule	

occupancy	but	are	less	effective	nitrogen	fixers	themselves	(Berg	et	al.,	1988;	Triplett	

and	Sadowsky,	1992;	Blanco,	Sicardi	and	Frioni,	2010).	

	

Taken	together,	to	develop	methods	for	increasing	plant	productivity	by	optimising	

the	legume-rhizobia	symbiosis	it	is	crucial	to	gain	an	understanding	of	the	

importance	of	intraspecies	rhizobial	diversity	and	competitive	interactions	which	

may	explain	why	specific	strains	form	symbiosis	with	the	legume	over	others	(Barrett	

et	al.,	2015;	Pahua	et	al.,	2018;	Liu	et	al.,	2019).		

	

1.5. Rhizobium strains of interest in this study 

 

This	project	concentrated	on	Rhizobium	leguminosarum	symbiovar	trifolii	strains	

that	form	symbiosis	with	white	clover.	Strains	used	within	this	study	were	selected	
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from	a	196	Rlt	genome-sequenced	isolate	collection	generated	by	the	NCHAIN	

consortium	(Cavassim	et	al.,	2019,	2020).	Strains	were	isolated	from	white	clover	

root	nodules	collected	from	DLF	Trifolium	conventional	breeding	trial	sites	in	the	UK	

(32	isolates),	Denmark	(43	isolates),	France	(40	isolates),	and	50	organic	fields	across	

Denmark	(81	isolates)	(Figure	1.1).	Clover	roots	were	sampled	from	40	plots	within	

each	conventional	trial	site,	and	in	total	170	plots	were	sampled	overall.	The	196	

strains	all	have	respective	Illumina	sequenced	whole-genome	assemblies	and	

additionally	8	strains	were	also	re-sequenced	with	PacBio	technology	(Pacific	

Biosciences	of	California,	USA)	(Cavassim	et	al.,	2020).		

	

The	196	strains	are	categorised	into	five	genetically	distinct	Rhizobium	

leguminosarum	genospecies	(gsA,	gsB,	gsC,	gsD	and	gsE)	(Kumar	et	al.,	2015).	These	

genospecies	were	determined	previously	by	constructing	a	phylogeny	from	rpoB	gene	

sequences	using	known	genospecies	strain	representatives	in	addition	to	the	196	

strains.	Genospecies	classification	was	then	determined	for	all	196	strains	based	on	

their	relative	positions	within	the	phylogeny	compared	to	the	known	representatives	

(Cavassim	et	al.,	2020).	Pairwise	average	nucleotide	identity	(ANI)	based	on	6,529	

genes	present	in	at	least	100	strains	demonstrated	that	strains	clustered	by	

genospecies,	with	some	additional	substructure	determined	by	geographic	origin	

(Cavassim	et	al.,	2020).	

	

Therefore,	these	Rlt	strains	were	used	in	this	study	because	it	enabled	analysis	of	

strains	that	were	both	genetically	distinct	and	geographically	different,	with	the	

exception	of	gsA	and	gsB	strains,	which	were	exclusively	isolated	from	Danish	organic	

sites	and	a	UK	conventional	site,	respectively	(Table	1.1).	Additionally,	all	strains	

were	similar	in	that	they	could	form	symbiosis	with	white	clover	genotypes.	
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Figure 1.1 Field sites sampled across the UK, France and Denmark. Green pins represent the locations of 
DLF Trifolium conventional breeding trial sites, and blue pins represent the organic field sites. 

 
 
Table 1.1 The dataset of 196 Rhizobium leguminosarum symbiovar trifolii strains used in this study. Strains 
are grouped by geographic origin and genospecies classification. 

 
Geographic Origin 

Genospecies  
Total A B C D E 

UK conventional farms - 32 - - - 32 

France conventional farms - - 40 - - 40 

Denmark conventional farms - - 30 4 9 43 

Denmark organic farms 32 - 46 1 2 81 

Total 32 32 116 5 11 196 

 

 

1.6. Project Background 

1.6.1. Project Aims and Objectives 

 

This	project	is	part	of	a	large	research	consortium	effort	called	NCHAIN,	led	by	

Aarhus	University,	Denmark,	and	includes	both	academic	and	industrial	

collaborators.	NCHAIN	aims	to	improve	white	clover	and	grass	mixture	production	

for	animal	feed	on	organic	farms	through	development	of	a	quantitative	model	of	

nitrogen	transfer	from	rhizobia	to	clover	to	grass,	based	on	genetic	data	from	these	

three	organisms.	One	aim	of	the	NCHAIN	consortium	is	to	identify	optimal	Rlt	–	white	

clover	genotype	partnerships	that	can	be	used	to	increase	crop	yields	on	agricultural	

land.	Multiple	studies	have	proposed	that	selection	of	optimal	rhizobia	should	

consider	legume	cultivar,	environment,	and	soil	microbiota	(Bolnick	et	al.,	2011;	

Busby	et	al.,	2017;	Pahua	et	al.,	2018;	diCenzo	et	al.,	2019),	thereby	suggesting	that	

intraspecific	variations	in	rhizobial	interactions	are	important	factors	determining	
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inoculant	success.	This	thesis	project	focuses	on	understanding	the	extent	and	

importance	of	intraspecies	diversity	in	rhizobial	genetics	and	phenotypic	interactions	

associated	with	the	Rlt	–	white	clover	symbiosis.	

	

Questions	that	currently	remain	unanswered	include:	

• what	mechanisms	maintain	Rhizobium	intraspecies	genetic	diversity;	

• how	intraspecies	genetic	diversity	translates	transcriptionally	and	phenotypically;	

• whether	Rhizobium	leguminosarum	genetic	diversity	determines	intraspecific	

interactions	between	strains.		

	

Therefore,	the	overall	purpose	of	this	PhD	project	was	to	determine	the	extent	of	

intraspecies	diversity	of	Rlt	at	the	genetic	and	phenotypic	levels,	particularly	with	

regard	to	identifying	functional	differences	between	Rhizobium	leguminosarum	

genospecies.	More	specifically	the	objectives	were	to:	

	

1) Determine	if	the	diversity	of	Rlt	populations	can	be	explained	by	the	selective	

differences	of	white	clover	genotypes;		

2) understand	if	Rlt	genetic	diversity	manifests	itself	in	the	gene	expression	profiles	

and	growth	phenotypes	of	strains	between	and	within	genospecies;	

3) identify	whether	intraspecific	Rlt	interactions	can	be	determined	by	genetic	

differences	between	genospecies	and	environmental	origins	of	strains.	

	

1.6.2. Thesis chapter outline 

 

This	thesis	includes	the	following	chapters,	presented	in	the	form	of	research	papers:	

	

Chapter	2:	MAUI-seq:	Metabarcoding	using	amplicons	with	unique	molecular	

identifiers	to	improve	error	correction		

In	this	chapter,	a	multiplexed	High	Throughput	Amplicon	Sequencing	method	was	

developed	and	validated	for	characterising	intraspecies	diversity	of	DNA	samples.	

The	method,	named	MAUI-seq,	uses	unique	molecular	identifiers	to	improve	

sequencing	error	correction	by	eliminating	chimeric	and	other	erroneous	reads.	

MAUI-seq	was	validated	with	white	clover	nodule	DNA	samples	and	by	comparing	its	

error	correction	results	to	alternative	known	methods,	DADA2	and	UNOISE3.		

This	chapter	is	currently	under	peer	review	in	Molecular	Ecology	Resources.	
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Chapter	3:	Rhizobium	nodule	diversity	is	determined	by	both	clover	host	

genotype	and	local	growth	conditions	

This	chapter	utilised	the	MAUI-seq	amplicon	sequencing	pipeline	to	compare	how	

symbiotic	selection	by	five	different	white	clover	genotypes	affected	Rlt	nodule	

community	diversity	under	field	conditions.	Rlt	diversity	was	determined	based	on	

the	allelic	diversity	of	two	chromosomal	housekeeping	genes,	rpoB	and	recA,	and	two	

auxiliary	plasmid-bound	symbiosis	genes,	nodA	and	nodD.	

	

Chapter	4:	Rhizobium	leguminosarum	symbiovar	trifolii	sub-species	display	

distinct	intraspecies	transcriptomic	variation		

In	this	chapter,	transcriptional	differences	between	and	within	Rlt	genospecies	were	

investigated,	to	gain	an	insight	into	how	genetic	distance	is	associated	with	gene	

expression	patterns.	In	total,	79	Rlt	strains	were	grown	under	the	same	in	vitro	

conditions	and	transcriptome	profiles	were	evaluated	for	fundamental	core	gene	

expression	differences.	Transcriptional	differences	between	genospecies	were	

further	associated	to	phenotypic	and	putative	metabolic	traits	in	order	to	determine	

functional	differences	between	genospecies.		

	

Chapter	5:	Identifying	conserved	operonic	transcriptional	units	in	Rhizobium	

leguminosarum	symbiovar	trifolii	genospecies	

This	chapter	used	genome	and	transcriptome	data	from	26	Rlt	strains	to	identify	

transcriptional	units	(putative	operons)	conserved	at	the	genospecies-	and	Rhizobium	

leguminosarum	species-level.	Multiple	parameters	were	used	to	define	conserved	

transcriptional	units	for	each	genospecies,	including;	gene	ortholog	group	

classification,	adjacent	gene	pair	identification;	mean	intergenic	distance	calculations;	

and	detection	of	gene	co-expression	using	correlation	coefficients	and	expression	

deviance	scores.	Species-conserved	transcriptional	units	were	identified	by	cross	

comparing	genospecies-conserved	transcriptional	units.	The	pipeline	was	further	

validated	by	determining	if	known	Rlt	operons	were	identified	using	the	method.	This	

study	generated	a	database	of	putative	operons	for	Rhizobium	leguminosarum.		
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Chapter	6:	Competitive	rhizobial	intraspecies	interactions	are	genospecies	

specific	

In	this	chapter,	variation	of	pairwise	intraspecies	competitive	interactions	between	

24	Rlt	strains	was	investigated.	This	was	undertaken	to	determine	whether	

interactions	were	predictable	based	on	genetic	background	and	environmental	

origin.	Pairwise	competitive	interactions	were	determined	in	vitro	in	two	ways:	1)	

indirectly,	mediated	by	interactions	with	cell-free	supernatants;	and	2)	directly,	by	

observing	growth	inhibition	when	strains	were	grown	on	spot	agar	plate	assays.	To	

identify	potential	underlying	competition	mechanisms,	comparative	genomics	was	

used	to	determine	differences	in	strain	metabolic	capacities	and	presence	of	genes	

associated	with	quorum-sensing,	bacteriocins,	secondary	metabolites	and	prophages.		

	

Chapter	7:	General	Discussion	

An	overview	of	the	project	is	discussed	in	the	context	of	answering	the	three	main	

project	research	questions.	The	potential	for	future	research	directions	based	on	the	

presented	work	are	suggested.		

	

The	methods	used	for	each	chapter	are	outlined	within	the	respective	chapters.	

References	are	provided	at	the	end	of	the	thesis.	The	supplementary	information	for	

each	chapter	is	shown	at	the	end	of	the	thesis	in	separate	chapter	Appendices	(A-E),	

and	in	specified	Additional	Files	as	Accompanying	Material.	
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2.1.  Abstract 

 

Background:	Sequencing	and	PCR	errors	are	a	major	challenge	when	characterising	

genetic	diversity	using	high-throughput	amplicon	sequencing	(HTAS).	

Results:	We	have	developed	a	multiplexed	HTAS	method,	MAUI-seq,	which	uses	

unique	molecular	identifiers	(UMIs)	to	improve	error	correction	by	exploiting	

variation	among	sequences	associated	with	a	single	UMI.	We	show	that	two	main	



 48 

advantages	of	this	approach	are	efficient	elimination	of	chimeric	and	other	erroneous	

reads,	outperforming	DADA2	and	UNOISE3,	and	the	ability	to	confidently	recognise	

genuine	alleles	that	are	present	at	low	abundance	or	resemble	chimeras.	

Conclusions:	The	method	provides	sensitive	and	flexible	profiling	of	diversity	and	is	

readily	adaptable	to	most	HTAS	applications,	including	microbial	16S	rRNA	profiling	

and	metabarcoding	of	environmental	DNA.	

	

Keywords:		

Metabarcoding,	High-throughput	amplicon	sequencing,	Error	correction,	Chimeric	

amplicons,	Amplicon	sequence	variant		

 

2.2.  Introduction 

 

The	evaluation	of	DNA	diversity	in	environmental	samples	has	become	a	pivotal	

approach	in	microbial	ecology	(Birtel	et	al.,	2015)	and	is	increasingly	also	used	to	

assess	the	distribution	of	larger	organisms	(Deiner	et	al.,	2017).	If	a	core	gene	can	be	

amplified	from	environmental	DNA	with	universal	primers,	the	relative	abundance	of	

species	in	the	community	can	be	estimated	from	the	proportions	of	species-specific	

variants	among	the	amplicons.	High	throughput	amplicon	sequencing	(HTAS),	often	

termed	metabarcoding,	is	a	cost-effective	way	to	detect	multiple	species	

simultaneously	within	a	range	of	environmental	samples	(Poisot,	Péquin	and	Gravel,	

2013;	Elbrecht	and	Leese,	2015;	Gohl	et	al.,	2016;	Tessler	et	al.,	2017;	Fonseca,	2018;	

Krehenwinkel	et	al.,	2018).	While	shotgun	sequencing	of	the	whole	community	

(metagenomics)	can	provide	a	richer	description	of	the	functions	in	a	community,	

HTAS	remains	a	more	efficient	tool	for	comparing	the	species	diversity	of	a	large	

number	of	community	samples.	Despite	the	extensive	use	of	HTAS	for	interspecies	

ecological	diversity	studies,	few	investigations	have	utilised	HTAS	for	intraspecies	

analysis	(Kinoti	et	al.,	2017;	Poirier	et	al.,	2018).	As	16S	rRNA	amplicons	are	too	

highly	conserved	to	estimate	microbial	within-species	diversity,	other	target	gene	

candidates	need	to	be	considered	in	order	to	sufficiently	discern	intraspecies	

sequence	variation.		

	

Many	studies	have	evaluated	the	extent	of	PCR-based	amplification	errors	and	bias	

for	HTAS	diversity	studies	(Elbrecht	and	Leese,	2015;	Kebschull	and	Zador,	2015;	

Gohl	et	al.,	2016;	Krehenwinkel	et	al.,	2018).	Numerous	known	PCR	biases	reduce	the	
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accuracy	of	diversity	and	abundance	estimations,	with	the	major	concern	being	the	

inability	to	confidently	distinguish	PCR	error	from	natural	sequence	variation	in	

environmental	samples,	which	is	an	especially	limiting	factor	for	intraspecific	studies.	

	

Polymerase	errors,	production	of	chimeric	sequences	by	template	switching,	and	the	

stochasticity	of	PCR	amplification	can	be	major	causes	of	PCR	errors	(Edgar	et	al.,	

2011;	Kebschull	and	Zador,	2015;	Edgar,	2016a).	Polymerase	errors	introduce	new	

sequences	into	the	template	population	during	amplification.	These	sequence	errors	

include	not	only	substitutions	but	also	insertions	and	deletions.	The	use	of	

proofreading	polymerases,	optimised	DNA	template	concentration,	and	reduced	PCR	

cycle	number	have	been	suggested	to	reduce	these	errors	(Kebschull	and	Zador,	

2015;	Oliver	et	al.,	2015;	Gohl	et	al.,	2016).	

	

In	order	to	account	for	the	introduction	of	sequence	variants	in	PCR	amplification,	

several	sequence-classification	approaches	have	been	established	to	manage	

diversity	estimates.	The	most	common	method	is	the	use	of	operational	taxonomic	

units	(OTUs)	in	microbial	diversity	studies	which	analyse	target	gene	sequences	and	

cluster	based	on	an	arbitrary	fixed	similarity	threshold	(QIIME	(Bokulich	et	al.,	2018);	

UPARSE	(Huse	et	al.,	2010;	Edgar,	2013;	Lindahl	et	al.,	2013;	Poisot,	Péquin	and	

Gravel,	2013;	Callahan	et	al.,	2016;	Fierer,	Brewer	and	Choudoir,	2017).	Within	

species	boundaries	this	technique	could	dramatically	reduce	the	resolution	of	

naturally	occurring	sequence	variation.	

	

Most	recent	methods	rely	on	the	formation	of	sequence	groups	called	amplicon	

sequence	variants	(ASVs)	(DADA2,	(Callahan	et	al.,	2016);	UNOISE3,	(Edgar,	2016b;	

Fierer,	Brewer	and	Choudoir,	2017).	This	approach	allows	sequence	resolution	down	

to	one	nucleotide,	which	is	advantageous	for	determining	intraspecies	allelic	

variation,	but	noise	from	PCR	errors	is	also	more	evident.	Variation	induced	by	PCR	

errors	often	cannot	be	differentiated	from	rare	natural	allelic	variation	without	the	

use	of	sequence	denoising	methods	(Kebschull	and	Zador,	2015).	DADA2	relies	on	a	

quality-aware	parametric	error	model,	which	is	developed	on	a	per	sequencing	run	

basis.	This	increases	the	run	time	compared	to	UNOISE3,	which	uses	a	one-pass	

technique	(Nearing	et	al.,	2018).		
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An	approach	that	can	reduce	sequencing	noise	is	to	assign	a	unique	molecular	

identifier	(UMI)	to	every	initial	DNA	template	within	an	HTAS	sample,	which	also	

enables	evaluation	of	PCR	amplification	bias	(Lundberg	et	al.,	2013).	Additionally,	the	

UMI	provides	a	potential	route	to	address	polymerase	errors	in	metabarcoding	

studies.	The	UMI	is	provided	by	a	set	of	random	bases	in	the	gene-specific	forward	

inner	primer,	which	introduces	a	unique	DNA	sequence	into	every	initial	DNA	

template	upstream	of	the	amplicon	region	during	the	first	round	of	amplification.	

Once	all	original	DNA	template	strands	are	assigned	a	unique	UMI,	an	outer	forward	

primer	and	the	gene-specific	reverse	primer	can	be	used	for	further	amplification.	

Consequently,	all	subsequent	DNA	amplified	from	the	original	template	will	have	the	

same	UMI,	so	the	number	of	reads	amplified	from	the	initial	template	can	be	

calculated.	Grouping	sequences	by	shared	UMI	allows	identification	of	a	consensus,	

which	is	assumed	to	be	the	correct	sequence	(Kou	et	al.,	2016).	To	our	knowledge,	

UMIs	have	previously	only	been	used	for	single-amplicon	interspecies	investigations	

(Jabara	et	al.,	2011;	Kinde	et	al.,	2011;	Faith	et	al.,	2013;	Hoshino	and	Inagaki,	2017).	

	

Here,	we	present	a	method	for	metabarcoding	using	amplicons	with	unique	

molecular	identifiers	to	improve	error	correction	–	MAUI-seq.	The	innovative	

approach	is	that	we	use	variation	among	sequences	associated	with	a	single	UMI	to	

identify	erroneous	sequences,	and	we	show	that	this	improves	error	correction	

compared	to	non-UMI	based	analysis	using	the	state-of-the-art	software	packages	

DADA2	and	UNOISE3.	

	

2.3.  Materials and methods  

2.3.1. Aim, design, and setting  

 

MAUI-seq	is	a	HTAS	method	designed	to	assess	genetic	diversity	within	or	across	

species,	using	global	UMI-based	errors	rates	to	detect	potential	PCR	artefacts	such	as	

chimeras	and	single-base	substitutions.	To	evaluate	MAUI-seq,	we	compared	its	

performance	with	the	widely-used	ASV	clustering	methods,	DADA2	and	UNOISE3	on	

DNA	mixtures	of	two	Rlt	strains	to	assess	accuracy	on	a	set	of	known	sequences,	and	

two	sets	of		environmental	samples	of	white	clover	root	nodules	to	assess	the	

performance	on	a	complex	set	of	sequences.	
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2.3.2. Preparation of DNA mixtures 

 

Two	Rlt	strains	(SM3	and	SM170C)	were	chosen	based	on	their	recA,	rpoB,	nodA,	and	

nodD	sequence	divergence,	with	a	minimum	of	3	base	pair	differences	in	the	amplicon	

region	required	for	each	gene.	Strains	were	grown	on	Tryptone	Yeast	agar	(28°C,	

48hrs).	Culture	was	resuspended	in	750ul	of	the	DNeasy	Powerlyzer	PowerSoil	DNA	

isolation	kit	(QIAGEN,	USA)	and	DNA	was	extracted	following	the	manufacturer’s	

instructions.	DNA	sample	concentrations	were	calculated	using	QuBit	(Thermofisher	

Scientific	Inc.,	USA).	DNA	samples	of	the	two	strains	were	diluted	to	the	same	

concentration	and	mixed	in	various	ratios	(Appendix	Table	A.1).	

	

2.3.3. Preparation of environmental samples 

 

For	Field-Samples-1	data,	white	clover	(Trifolium	repens)	root	nodules	were	collected	

from	two	locations:	Store	Heddinge,	Denmark	(6	plots)	and	Aarhus	University	Science	

Park,	Aarhus,	Denmark	(2	plots)	(Appendix	Figure	A.2).	The	clover	varieties	sampled	

were	Klondike	(Store	Heddinge)	and	wild	white	clover,	(Aarhus).	100	large	pink	

nodules	were	collected	from	4	points	on	each	plot,	making	a	total	of	32	samples.	

Nodules	were	stored	at	-20°C	until	DNA	extraction.	Nodule	samples	were	thawed	at	

room	temperature	and	crushed	using	a	sterile	homogeniser	stick.	Crushed	nodules	

were	mixed	with	750µl	Bead	Solution	from	the	DNeasy	PowerLyzer	PowerSoil	DNA	

isolation	kit	(QIAGEN,	USA)	and	DNA	was	extracted	following	the	manufacturer’s	

instructions.	DNA	sample	concentrations	were	measured	using	a	Nanodrop	3300	

instrument	(Thermofisher	Scientific	Inc.,	USA).	

	

For	Field-Samples-2	data,	root	nodules	were	additionally	sampled	from	13	white	

clover	conventionally-managed	field	trial	plots	at	Store	Heddinge,	Denmark	(Sample	

1A-13A,	Additional	File	2).	All	plots	were	sown	under	the	same	conditions	in	2017.	

Three	to	ten	clover	plants	were	sampled	from	one	point	in	each	plot	and	the	100	

largest	nodules	collected.	Nodules	were	stored	at	-20°C,	and	DNA	was	extracted	for	

each	sample	using	the	Qiagen	DNeasy	PowerLyzer	PowerSoil	DNA	isolation	kit,	as	

above.	Samples	were	processed	independently	with	Platinum	(non-proofreading)	and	

Phusion	(proofreading)	polymerases	to	evaluate	the	method	dependency	on	

polymerase	choice,	as	described	in	the	following	sections.		
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2.3.4. PCR and purification 

 

Primer	sequences	were	designed	for	two	Rlt	housekeeping	genes,	recombinase	A	

(recA)	and	RNA	polymerase	B	(rpoB),	and	for	two	Rlt	specific	symbiosis	genes,	nodA	

and	nodD	(Additional	File	1:	Table	S1).	

	

The	three	primers	are	a	target-gene	forward	inner	primer,	a	universal	forward	outer	

primer,	and	a	target-gene	reverse	primer.	The	concentration	of	the	inner	forward	

primer	was	100-fold	lower	than	the	universal	forward	outer	primer	and	the	reverse	

primer	(Figure	2.1)	in	order	to	reduce	the	competitiveness	of	this	primer	compared	

to	the	outer	primer.	The	inner	primer	is	essential	for	the	first	round	of	amplification,	

but	its	participation	is	undesirable	in	later	rounds	as	it	would	assign	a	new	unique	

UMI	to	an	existing	amplicon.	The	PCR	reaction	mixture	and	thermocycler	programme	

are	provided	(Additional	File	1:	Tables	S2	and	S3).	

	

PCRs	were	undertaken	individually	for	each	primer	set	using	Platinum	Taq	DNA	

polymerase	(Thermofisher	Scientific	Inc.,	USA)	(Additional	File	1:	Table	S2)	and	

subsequently	pooled	and	purified	using	AMPure	XP	Beads	following	the	

manufacturer’s	instructions	(Additional	File	1:	Table	S5)	(Beckman	Coulter,	USA).	

Successful	PCR	amplification	was	confirmed	by	running	a	0.5X	TBE	2%	agarose	gel	at	

90V	for	2	hours.	

	

For	the	DNA	mixture	samples,	PCRs	were	run	in	triplicate.	DNA	from	single	strains	

was	also	processed	as	a	control	to	determine	the	level	of	cross	contamination	

between	samples.	Some	samples	were	also	amplified	using	Phusion	High-Fidelity	

polymerase	(Thermofisher	Scientific	Inc.,	USA),	to	evaluate	whether	use	of	a	proof-

reading	polymerase	improved	the	quality	of	the	results	using	the	PCR	program	

described	in	Additional	File	1:	Table	S2	and	Table	S4.	

	

2.3.5. Nextera indexing for multiplexing and MiSeq sequencing 

 

Samples	were	indexed	for	multiplexed	sequencing	libraries	with	Nextera	XT	DNA	

Library	Preparation	Kit	v2	set	A	(Illumina,	USA)	using	the	Phusion	High-Fidelity	DNA	

polymerase	(Thermofisher	Scientific	Inc.,	USA).	PCR	reaction	mixture	and	programme	
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are	detailed	in	Additional	File	1:	Tables	S6	and	S7	Indices	were	added	in	unique	

combinations	as	specified	in	the	manufacturer’s	instructions	(Illumina,	USA).	

	

The	PCR	product	was	purified	on	a	0.5X	TBE	1.5%	agarose	gel	and	extracted	with	the	

QIAQuick	gel	extraction	kit	(QIAGEN,	USA)	(expected	band	length:	~454bp).	PCR	

amplicon	concentrations	were	quantified	using	GelAnalyzer2010a	and	normalised	to	

10nM	(Lazar	and	Lazar,	2012).	A	pooled	sample	was	quantified	and	checked	for	

quality	by	Bioanalyzer	(Agilent,	USA)	before	sequencing	using	Illumina	MiSeq	

(2x300bp	paired	end	reads)	by	the	University	of	York	Technology	Facility.	A	detailed	

protocol	is	available	in	Additional	File	1.		

	

2.3.6. Read processing and data analysis 

 
The	PEAR	assembler	was	used	to	merge	paired	ends	(Zhang	et	al.,	2014).	Python	

scripts	were	used	to	separate	the	merged	reads	by	gene	(MAUIsortgenes.py)	and	to	

calculate	allele	frequencies	both	with	and	without	the	use	of	UMIs	(MAUIcount.py).		

The	scripts	are	available	in	the	GitHub	repository	

https://github.com/jpwyoung/MAUI.	Sequences	were	clustered	by	UMI,	and	the	

number	of	unique	UMIs	was	counted	for	each	distinct	sequence,	provided	that	

sequence	had	at	least	two	more	reads	with	that	UMI	than	any	other	sequence.	In	

cases	where	two	or	more	sequences	were	associated	with	the	same	UMI,	the	second	

most	abundant	sequence	was	noted,	and	sequences	that	occurred	more	than	0.7	

times	as	often	as	second	sequences	than	as	the	main	sequence	associated	with	a	UMI	

were	filtered	out	of	the	results	as	putative	PCR-induced	chimeras	or	other	errors.	

Sequences	with	primers	removed	(ignoring	UMIs)	were	also	clustered	using	DADA2	

(version	1.8)	(Callahan	et	al.,	2016)	and	UNOISE3	(USEARCH	version	11.0.667)	

(Edgar,	2016b)	with	default	settings.	An	overall	read	frequency	filter	of	0.1%	was	

applied	to	DADA2	and	UNOISE3	outputs	to	match	MAUI-seq	accepted	sequences	

filtering.		

	

Raw	Illumina	reads	are	available	in	the	SRA	repositories	with	accession	numbers	

SRP221010	(Synthetic	mix	and	Field-Samples-1)	and	SRP238323	(Field-Samples-2).	

Detailed	output	sequences	for	all	three	methods	are	available	in	Additional	File	2.	

Scripts	used	for	DADA2,	UNOISE3,	and	figure	generation	are	available	in	Additional	

File	3,	4,	and	5,	respectively.	Output	abundance	data	were	then	processed	for	

statistical	analysis	and	figure	generation	using	various	R	packages	(Additional	File	3,	
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4,	and	5;	(Wickham,	2009;	Team,	2015)).	Principal	components	were	calculated	with	

the	R	‘prcomp’	package	using	singular	value	decomposition	to	explain	the	Rhizobium	

diversity	and	abundance	within	each	sub-plot	sample.	Differences	in	allele	

frequencies	between	samples	were	quantified	using	Bray-Curtis	beta-diversity	

estimation	using	the	R	package	‘vegdist.’	PERMANOVA	tests	were	performed	using	

the	R	package	‘adonis’.	Empirical	Bayes	estimator	of	FST	was	calculated	using	the	R	

package	‘FinePop’	as	previously	described	(Kitada,	Nakamichi	and	Kishino,	2017).		

	

2.4.  Results 

2.4.1. Laboratory protocol: UMI labelling and amplicon multiplexing 

 

We	developed	a	procedure	(MAUI-seq)	to	amplify	multiple	target	genes	from	

environmental	samples,	while	assigning	a	random	UMI	to	each	initial	copy	of	a	

template.		We	opted	for	a	straightforward	protocol	using	a	“one-pot”	initiation	and	

amplification	system.	Forward	primers	consist	of	two	modules;	an	inner	primer	

bearing	the	UMI	and	designed	to	amplify	the	target	gene,	and	a	universal	outer	

primer	that	binds	only	to	a	linker	on	the	inner	primer	(Figure	2.1a).	We	used	a	12-

base	UMI	that	allowed	over	4	million	distinct	sequences,	which	is	adequate	to	ensure	

that	duplicate	use	is	negligible	for	samples	with	a	few	thousand	sequenced	UMIs.	For	

studies	with	greater	sequencing	depth,	a	longer	UMI	can	easily	be	designed.	As	a	test	

case,	we	used	MAUI-seq	to	investigate	the	genetic	diversity	of	the	nitrogen-fixing	

bacterium	Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	by	characterising	

amplicons	from	the	chromosomal	core	genes	rpoB	and	recA	and	the	plasmid-borne	

nodulation	genes	nodA	and	nodD.	Each	gene	was	amplified	separately	in	a	single	

reaction,	using	a	target-specific	inner	forward	primer	(at	low	concentration)	to	assign	

the	UMI	and	a	universal	outer	primer	(at	high	concentration)	to	amplify	the	resulting	

molecules	(Figure	2.1a).	The	resulting	amplicons	were	pooled	and	tagged	by	Nextera	

to	identify	the	sample,	then	further	pooled	for	high-throughput	paired-end	

sequencing	(Figure	2.1b).	The	full	MAUI-seq	step-by-step	laboratory	protocol	can	be	

found	in	Additional	File	1.	

	 	



 55 

	

2.4.2. Analysis protocol: filtering using UMI-based error rates 

 

The	resulting	paired-end	reads	were	merged	and	then	separated	by	gene	prior	to	

downstream	analysis,	where	UMIs	are	critical	in	two	ways.	Firstly,	sequences	are	

clustered	by	UMI,	and	the	number	of	unique	UMIs	is	counted	for	each	distinct	

sequence,	selecting	the	most	abundant	sequence	associated	with	each	UMI	(Figure	

2.1c).	UMIs	are	discarded	as	ambiguous	if	the	most	abundant	sequence	does	not	have	
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Figure 2.1 Primer design and method workflow. a) Primer design using the sense strand of the target 
DNA template as an example. The amplicon region of interest should be no longer than 500bp. The 
target-gene forward inner primer, universal forward outer primer and the target-gene reverse primer 
are all used in the initial PCR. The Nextera XT indices provide sample barcodes in a separate PCR step. 
The unique molecular identifier (UMI) region is shown in turquoise on the target-gene forward inner 
primer. b) Sample preparation workflow. c) MAUI-seq data analysis workflow. 
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at	least	two	reads	more	than	the	next	in	abundance.	The	most	abundant	sequence	will	

usually	be	the	correct	one	(Figure	2.2a	Case	1)	but,	because	most	UMIs	are	

represented	by	just	a	small	number	of	reads,	it	can	sometimes	happen	that	an	

erroneous	sequence	is	sampled	more	often	than	the	true	sequence,	so	the	primary	

sequence	of	the	UMI	becomes	this	erroneous	sequence	(Figure	2.2a	Case	2).	Secondly,	

we	reasoned	that	it	may	be	possible	to	eliminate	these	errors	by	using	the	UMIs	to	

provide	information	on	global	error	rates	across	all	samples.	We	implemented	this	in	

MAUI-seq	by	noting	both	the	most	abundant	(primary)	and	the	second	most	

abundant	(secondary)	sequence	if	two	or	more	sequences	were	associated	with	the	

same	UMI.	MAUI-seq	then	distinguishes	between	true	and	erroneous	sequences	

based	on	the	ratio	of	primary	and	secondary	occurrences	of	each	sequence,	

eliminating	sequences	that	show	a	high	ratio	(default	is	0.7)	of	secondary	to	primary	

occurrences	(Figure	2.1c	and	Figure	2.2b).	The	0.7	threshold	was	chosen	empirically,	

based	on	the	ratios	observed	for	known	true	and	erroneous	sequences,	but	it	is	a	

compromise	because	the	incidence	of	secondary	sequences	varies	across	genes	and	

studies.	An	examination	of	the	results	may	suggest	choosing	different	thresholds	in	

other	studies.		Finally,	globally	rare	sequences	are	discarded	(default	threshold	is	

0.1%	averaged	across	samples	-	a	lower	threshold	could	be	used	if	samples	were	

sequenced	to	a	greater	depth).	Python	scripts	for	separating	the	genes	and	for	the	

UMI	analysis	are	available	at	https://github.com/jpwyoung/MAUI.	

	

To	summarise,	in	the	case	where	two	or	more	sequences	were	associated	with	the	

same	UMI,	the	more	prevalent	primary	sequence	was	accepted.	The	secondary	

sequences	associated	with	UMIs	are	considered	errors	and	therefore	they	are	only	

used	to	determine	whether	primary	sequences	are	likely	to	be	erroneous	sequences	

(Figure	2.2a	Case	2).	In	this	method,	the	number	of	unique	UMIs	associated	with	each	

(primary)	sequence	are	totalled	to	determine	the	abundance	of	a	sequence	across	

samples	(note	that	number	of	UMIs	are	counted,	not	individual	reads	as	with	other	

ASV	methods).	For	each	unique	amplicon	sequence,	we	count	the	number	of	times	it	

is	found	as	the	primary	sequence	for	a	unique	UMI,	and	we	also	count	the	number	of	

times	it	is	a	secondary	sequence	for	a	UMI.	If	the	number	of	times	a	sequence	is	found	

as	a	secondary	sequence	compared	to	a	primary	sequence	is	a	ratio	of	0.7	or	higher,	

then	it	is	considered	erroneous	and	the	sequence	is	rejected	from	all	samples.	This	is	

because	the	confidence	of	selecting	the	sequence	as	genuine	is	low,	because	it	is	

highly	associated	among	secondary	sequences	(which	are	assumed	to	be	errors).		 	
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2.4.3. Validation using purified DNA mixed in known proportions 

 

We	first	evaluated	the	accuracy	of	MAUI-seq	by	profiling	DNA	mixtures	with	known	

strain	DNA	ratios.	DNA	was	extracted	from	two	Rlt	strains	differing	by	a	minimum	of	

3	bp	in	each	of	their	recA,	rpoB,	nodA,	and	nodD	amplicon	sequences,	and	the	

extracted	DNA	was	mixed	in	different	ratios	(Appendix	Table	A.1).	After	amplification	

and	sequencing,	assembled	reads	were	assigned	to	their	target	gene	and	analysed	

using	MAUI-seq	and	two	programs	frequently	used	for	de-noising	of	amplicon	

sequencing	data,	DADA2	and	UNOISE3	(Callahan	et	al.,	2016;	Edgar,	2016b).	Since	

rare	sequences	have	a	high	error	rate,	we	discarded	(for	each	of	the	three	methods)	

sequences	that	fell	below	a	threshold	frequency	of	0.1%	of	accepted	sequences.	The	

observed	and	expected	strain	ratios	were	highly	correlated	for	all	four	genes	across	

the	three	analysis	methods,	and	we	found	that	the	performances	of	the	proofreading	

(Phusion)	and	non-proofreading	(Platinum)	polymerases	were	gene-dependent,	

which	could	be	due	to	differences	in	amplification	efficiency	for	the	four	templates	

(Table	2.1	and	Appendix	Figure	A.2-Appendix	Figure A.5).	On	average,	MAUI-seq	

detected	between	98.5%	and	100%	true	sequences	exactly	matching	those	of	the	two	

strains	in	the	mixture,	while	DADA2	ranged	from	89.7%	to	100%,	and	UNOISE3	from	

79.8%	to	100%	(Table	2.1).	The	better	performance	of	MAUI-seq	was	due	to	more	

effective	elimination	of	chimeras,	which	were	especially	abundant	when	the	PCR	

reaction	was	carried	out	using	the	Platinum	non-proofreading	polymerase	(Table	2.1	

and	Appendix	Figure	A.2-Appendix	Figure A.5).	For	the	proofreading	polymerase,	

DADA2	detected	100%	true	sequences	for	all	four	genes,	whereas	MAUI-seq	detected	

99.03%	for	nodA,	failing	to	eliminate	three	rare	sequences	that	did	not	have	sufficient	

secondary	counts.	This	suggests	that	DADA2	can	perform	equally	well	or	even	slightly	

better	than	MAUI-seq,	when	a	proofreading	polymerase	is	used	to	amplify	DNA	from	

a	simple,	two-component	mix.	The	prevalence	of	secondary	sequences	varied	with	

gene	and	polymerase:	the	secondary/primary	ratio	for	accepted	sequences	was	

0.0322	for	rpoB	using	Phusion,	but	just	0.0002	for	nodD	using	Platinum.	When	the	

ratio	was	very	low,	there	were	insufficient	secondary	counts	for	MAUI-seq	to	

eliminate	erroneous	sequences	effectively.	
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Table 2.1 Total number of detected sequences in the synthetic mix samples using MAUI-seq, DADA2 and 
UNOISE3. The percentage of true sequences is averaged over 23 samples for Platinum (non-proofreading) 
and 14 samples for Phusion (proofreading). n seq is the total number of sequences occurring across all 
samples. %true is calculated by dividing the number of counts for the true sequences by the total number of 
counts accepted by the method. %true-overall is based on summed counts for all four genes. Cor.exp/obs is 
the Pearson correlation for the observed proportion of SM170C reads versus the expected proportion. 
Chim.freq is the proportion of chimeras compared to total reads at 0.5 expected proportion of sequences. 
Exp.seq is the expected number of detected sequences.† SM170C has a second copy of nodD (Cavassim et al., 
2019). 
 

  Platinum Phusion  

  MAUI- 

seq 

DADA2 UNOISE3 MAUI- 

seq 

DADA2 UNOISE3 exp. 

seq* 

rpoB n seq* 2 3 4 2 2 2 2 

%true* 100 96.96 93.80 100 100 100 - 

Cor.exp/obs* 0.956 0.977 0.981 0.996 0.999 0.9998 - 

chim.freq* 0 0.07 0.13 0 0 0 - 

recA n seq 2 2 2 2 2 2 2 

%true 100 100 100 100 100 100 - 

Cor.exp/obs 0.984 0.991 0.989 0.948 0.952 0.947 - 

chim.freq 0 0 0 0 0 0 - 

nodA n seq 6 5 4 5 2 4 2 

%true 99.04 89.70 89.93 99.03 100 90.43 - 

Cor.exp/obs 0.985 0.998 0.999 0.989 0.999 0.999 - 

chim.freq 0.10 0.25 0.22 0.04 0 0.16 - 

nodD n seq 7 6 21 3 3 14 3† 

%true 98.49 93.93 90.10 100 100 79.83 - 

Cor.exp/obs 0.998 0.998 0.995 0.990 0.998 0.995 - 

chim.freq 0.05 0.05 0.13 0 0 0.11 - 

all %true-

overall* 

99.76 93.73 91.93 99.74 100 91.71 - 
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2.4.4. Validation using environmental samples 

 

To	test	the	method	on	more	complex	samples,	we	compared	Rlt	populations	in	root	

nodules	from	two	locations	in	Denmark:	a	clover	trial	station	in	Store	Heddinge	on	

Zealand	and	a	lawn	at	Aarhus	University	in	Jutland	(the	Field-Samples-1	dataset;	

Appendix	Figure	A.1).	One	hundred	nodules	were	pooled	for	each	sample	and	each	

plot	was	sampled	in	four	replicates.	Platinum	Taq	polymerase	enzyme	was	used	for	

amplification.	Each	clover	root	nodule	is	usually	colonised	by	a	single	Rhizobium	

strain,	so	a	maximum	of	100	unique	sequences	per	gene	is	expected	per	sample.		

	

For	Field-Samples-1,	the	total	number	of	distinct	sequences	for	MAUI-seq	and	DADA2	

were	in	the	same	range	as	the	number	of	distinct	alleles	observed	in	a	population	of	

196	natural	European	Rlt	isolates	(Cavassim	et	al.,	2019)	(Table	2.2).	In	contrast,	

UNOISE3	produced	a	substantially	higher	number	of	distinct	sequences,	suggesting	

that	its	default	filtering	might	be	too	lenient	for	our	data	(Table	2.2).	The	sequences	

accepted	as	true	by	MAUI-seq	were	nearly	all	also	included	in	the	DADA2	and	

UNOISE3	outputs	(Figure	2.3).	On	the	other	hand,	DADA2	and	UNOISE3	both	

accepted	a	number	of	sequences	that	were	filtered	out	by	MAUI-seq,	and	many	of	

these	were	eliminated	by	MAUI-seq	because	a	high	ratio	of	secondary	to	primary	

occurrences	strongly	suggested	that	they	represent	errors	and	not	real	sequences	

(Figure	2.3	and	Additional	File	2:	Field-Samples-1	tables).	To	provide	independent	

evidence	as	to	whether	sequences	were	likely	to	be	genuine,	we	checked	whether	

they	matched	(or	differed	by	a	single	nucleotide	from)	known	sequences	in	either	a	

reference	database	of	196	natural	European	Rlt	isolates	(Cavassim	et	al.,	2019),	or	the	

NCBI	whole-genome	shotgun	database	(Figure	2.3).	The	great	majority	of	sequences	

rejected	by	MAUI-seq	did	not	have	exact	matches	to	these	known	sequences.		A	few	

sequences	that	exactly	matched	known	alleles	were	included	by	DADA2	and	UNOISE,	

but	not	by	MAUI-seq.	These	sequences	were	not	reported	by	MAUI-seq	because	their	

UMI	counts	were	below	the	abundance	threshold,	not	because	the	

secondary/primary	occurrence	filter	identified	them	as	erroneous	(Figure	2.3).	The	

count	threshold	could	be	lowered	to	include	rarer	sequences,	if	the	study	required	it.	

	

The	allele	frequency	distributions	were	different	at	Aarhus	and	Store	Heddinge	

(Figure	2.3),	and	the	two	sites	were	clearly	separated	by	the	first	principal	

component	in	a	Principal	Component	analysis	(PCA)	for	MAUI-seq,	DADA2	and	
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UNOISE3	sequences.	(Figure	2.4	and	Appendix	Figure	A.6-Appendix	Figure A.8).	The	

amplicon	sequencing	has	sufficient	resolution	to	characterize	geospatial	variation	in	

allele	frequencies.		For	example,	MAUI-seq,	DADA2	and	UNOISE3	can	all	clearly	

identify	several	highly	abundant	sequences	from	one	location	that	are	either	absent	

or	present	in	very	low	frequency	in	samples	from	the	other	location	(Figure	2.3).	To	

quantify	the	genetic	differentiation	between	the	Aarhus	and	Store	Heddinge	sites,	we	

calculated	fixation	indices	(FST).	Considering	all	four	target	genes	combined,	the	

MAUI-seq	output	resulted	in	the	highest	FST	value	followed	by	DADA2	and	UNOISE3	

(Table	2.2,	Figure	2.4	and	Appendix	Figure	A.9-Appendix	Figure A.11).	For	all	

individual	genes,	MAUI-seq	also	produced	the	highest	FST	estimates,	and	the	

differences	were	especially	pronounced	for	nodA,	which	also	showed	the	highest	

overall	level	of	differentiation	(Table	2.2	and	Appendix	Figure	A.9-Appendix	Figure 

A.11).	The	lower	genetic	differentiation	estimated	based	on	DADA2	and	UNOISE3	

results,	compared	to	those	of	MAUI-seq,	reflects	the	inclusion	of	an	increased	number	

of	erroneous	sequences,	which	are	less	differentiated	between	the	two	sampled	sites	

than	the	real	sequences	(Figure	2.3).	

	

Since	it	was	clear	from	the	DNA	mixture	experiment	that	the	choice	of	DNA	

polymerase	could	significantly	affect	error	rates,	we	sampled	root	nodules	from	13	

additional	clover	field	plots	(the	Field-Samples-2	dataset)	and	amplified	each	sample	

(a	pool	of	one	hundred	root	nodules)	using	Platinum	and	Phusion	polymerases	in	

parallel.	For	samples	amplified	using	Platinum,	MAUI-seq	detected	fewer	sequences	

than	DADA2	and	UNOISE3	for	the	two	core	genes,	but	the	same	number	of	reference	

sequences	were	detected	(Table	2.3).	DADA2	included	two	chimeric	sequences	that	

were	filtered	out	by	MAUI-seq	due	to	a	high	ratio	of	secondary	to	primary	

occurrences	(Additional	File	2:	Field-Samples-2-platinum-rpoB).	UNOISE3	detected	

twice	as	many	sequences	as	DADA2	and	MAUI-seq	for	the	accessory	genes,	but	most	

of	the	additional	sequences	had	no	associated	UMIs	and	were	classified	as	“other”	

(Table	2.3,	Additional	File	2:	Field-Samples-2-platinum-nodA	and	Field-Samples-2-

platinum-nodD).	For	samples	amplified	using	Phusion,	MAUI-seq	and	DADA2	

detected	a	similar	number	of	sequences	(Table	2.3).	All	nine	UNOISE3	rpoB	sequences	

that	were	not	accepted	by	either	MAUI-seq	or	DADA2	(Additional	File	2:	Field-

Samples-2-phusion-rpoB)	are	putative	chimeric	sequences	with	two	parental	

sequences	of	higher	abundance.	For	nodA,	MAUI-seq	includes	three	sequences	that	

have	a	single	nucleotide	difference	from	a	reference	sequence,	but	all	have	a	good	
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ratio	of	secondary	to	primary	reads,	so	we	hypothesise	that	these	are	true	sequences.	

Some	reference	or	exact	blast	hit	sequences	were	included	by	DADA2	but	not	by	

MAUI-seq	because	their	abundance	was	estimated	by	DADA2	to	be	above	the	0.001	

threshold,	but	MAUI-seq	estimated	that	they	were	rarer.			

	

Both	MAUI-seq	and	DADA2	identify	and	remove	sequences	that	appear	to	be	errors	

(base	substitutions	or	chimeras),	but	they	use	completely	different	evidence.	As	a	

result,	they	do	not	always	make	the	same	decision,	as	illustrated	for	a	small	set	of	

representative	data	in	Table	2.4	(the	rpoB	sequences	amplified	by	Phusion).	While	

DADA2	examines	the	sequences	and	rejects	those	that	are	likely	to	be	generated	from	

more	abundant	sequences	in	the	sample,	MAUI-seq	does	not	use	the	actual	sequence	

but	bases	decisions	on	how	frequently	a	sequence	occurs	as	a	secondary	sequence	

with	the	same	UMI	as	another	(primary)	sequence.	Sequences	ranked	5	and	6	(Table	

2.4)	are	both	potential	chimeras	of	the	more	abundant	sequences	1-4.	Both	DADA2	

and	MAUI-seq	reject	sequence	6	and	accept	sequence	5.	Sequence	6	has	a	

secondary/primary	ratio	of	103/118,	which	is	above	the	default	threshold	of	0.7,	so	

MAUI-seq	rejects	it	as	a	likely	error.	On	the	other	hand,	the	ratio	for	sequence	5	is	

71/229.	This	is	well	below	the	threshold,	but	it	is	higher	than	other	sequences	with	a	

similar	primary	count,	e.g.	sequence	9	(15/270).	A	possible	explanation	is	that	some	

of	the	reads	for	sequence	5	are	generated	as	chimeras	but	others	are	genuine,	since	it	

is	entirely	plausible	that	new	alleles	are	generated	by	recombination	between	

existing	alleles.	To	some	extent,	MAUI-seq	compensates	for	this	because	it	allocates	

sequence	5	a	relatively	low	count	and	hence	lower	ranking	(8)	than	it	has	in	the	raw	

reads	or	the	DADA2	analysis.	There	are	two	further	sequences,	10	and	29,	that	are	

rejected	by	DADA2	as	potential	chimeras	but	accepted	by	MAUI-seq	(Additional	File	

2:	Field-Samples-2-phusion-rpoB);	in	both	cases	they	have	secondary	sequence	

counts	well	below	the	threshold,	so	MAUI-seq	accepts	them	as	genuine.	DADA2	

included	an	rpoB	sequence	that	does	not	have	any	associated	UMIs	(sequence	41),	

and	appears	to	be	a	chimera	of	two	more	abundant	sequences	(sequence	3/4/5	and	

sequence	11)	(Table	2.4).	MAUI-seq	counts	UMIs,	not	individual	reads,	and	the	default	

setting	is	to	require	that	the	primary	sequence	has	at	least	two	more	reads	than	the	

next	most	frequent	sequence	(if	any)	that	has	the	same	UMI.	This	enriches	for	

genuine	sequences,	which	are	generally	more	abundant	than	errors,	but	it	means,	of	

course,	that	the	number	of	counts	is	much	lower	than	the	number	of	reads.	In	fact,	for	

this	particular	set	of	data,	the	number	of	UMIs	is	orders	of	magnitude	smaller	than	
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either	the	raw	reads	or	the	DADA2	count,	although	still	sufficient	to	provide	good	

estimates	of	the	relative	abundance	of	the	sequences	that	make	up	the	bulk	of	the	

population.	The	main	reason	for	the	low	UMI	count	is	that	the	number	of	reads	per	

UMI	was	suboptimal	in	these	data	for	the	rpoB	gene:	only	18%	of	the	UMIs	had	more	

than	one	read,	and	MAUI-seq	discards	single-read	UMIs	by	default.	By	contrast,	in	the	

equivalent	data	for	the	recA	gene	in	the	same	study	(Additional	File	2:	Field-Samples-

2-phusion-recA),	37.5%	of	UMIs	had	more	than	one	read,	making	more	effective	use	

of	the	available	sequence	reads.			
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Table 2.2 Total number of detected sequence clusters in root nodule samples (Field-Samples-1) using MAUI-
seq, DADA2, and UNOISE3 clustering and genetic differentiation between populations. *Output sequences 
were classified into reference (100% identity in at least 1 of 196 Rhizobium leguminosarum symbiovar trifolii 
genomes (Cavassim et al., 2019)), exact BLAST (100% query coverage and 100% identity against the whole-
genome shotgun contigs BLAST database), single nt (one nt difference from either reference or exact BLAST 
match), and other. Total reference is the total number of detected sequences in the 196 Rhizobium 
leguminosarum symbiovar trifolii genomes. † The population global FST (fixation index) is an estimate of 
genetic differentiation among populations based on relative allele abundance. 
 

  Detected sequence clusters* FST† 

Gene  Method  Total Reference Exact BLAST Single nt Other  

rpoB MAUI-seq 12 7 3 1 1 0.032 

DADA2 15 7 3 3 2 0.032 

UNOISE3 30 7 2 7 14 0.012 

Total Reference* 13 - - - - - 

recA MAUI-seq 8 6 2 - - 0.110 

DADA2 13 8 2 3 - 0.090 

UNOISE3 14 5 2 2 5 0.028 

Total Reference 17 - - - - - 

nodA MAUI-seq 9 8 - 1 - 0.369 

DADA2 18 12 1 1 4 0.191 

UNOISE3 43 13 - 5 25 0.061 

Total Reference 14 - - - - - 

nodD MAUI-seq 18 11 1 2 4 0.139 

DADA2 22 11 1 3 7 0.124 

UNOISE3 57 11 1 4 41 0.031 

Total Reference 16 - - - - - 

All genes  MAUI-seq 47 32 6 4 5 0.139 

DADA2 68 38 7 10 13 0.105 

UNOISE3 144 36 5 18 85 0.032 

 
  



 65 

Table 2.3 The effect of polymerase choice. Total number of detected sequence clusters in root nodule 
samples (Field-Samples-2) amplified using Phusion (proofreading) or Platinum (non-proofreading) 
polymerases. Sequences were clustered using MAUI-seq, DADA2, and UNOISE3. *Output sequences were 
classified into reference (100% identity in at least 1 of 196 Rhizobium leguminosarum symbiovar trifolii 
genomes (Cavassim et al., 2019)), exact BLAST (100% query coverage and 100% identity against the whole-
genome shotgun contigs BLAST database), single nt (one nt difference from either reference or exact BLAST 
match), and other. 

  Platinum Phusion 

Gene   MAUI- 
seq 

DADA2 UNOISE3 MAUI- 
seq 

DADA2 UNOISE3 

rpoB Total 16 24 26 15  15 20 

Reference* 9 9 7 8 9 7 

Exact BLAST* 3 3 2 3 3 2 

Single nt* 3 7 8 3 2 5 

Other* 1 5 9 1 1 6 

recA Total 9 10 12 8 9 10 

Reference 5 5 4 5 5 4 

Exact BLAST 0 1 1 0 1 1 

Single nt 3 3 3 3 2 3 

Other 1 1 4 0 1 2 

nodA Total 18 14 35 17 11 34 

Reference 7 10 8 9 9 9 

Exact BLAST 0 1 0 0 0 0 

Single nt 6 1 4 6 1 4 

Other 5 2 22 2 1 21 

nodD Total 20 17 46 27 24 71 

Reference 10 12 12 16 16 15 

Exact BLAST 0 0 0 0 0 0 

Single nt 6 3 6 5 4 6 

Other 4 2 28 6 3 50 
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Table 2.4 A comparison between DADA2 and MAUI-seq for a subset of the Field-Samples-2 data 
summarised in Table 2.3: the rpoB sequences from samples amplified by Phusion (proofreading) 
polymerase. Red cells refer to rejected sequences. Green cells refer to sequences, which are accepted by 
MAUI-seq, while DADA2 rejects them as potential chimeras. Yellow cells refer to sequences filtered out due 
to low UMI count by MAUI-seq. 

Raw reads MAUI-seq DADA2 

Rank  count rank UMI primary 
count 

UMI secondary 
count 

accepted rank count accepted 

1 99431 1 7459 197 yes 1 54758 yes 

2 86751 2 7067 155 yes 2 48402 yes 

3 70318 3 3668 95 yes 3 44412 yes 

4 47337 4 1898 106 yes 4 28339 yes 

5 13190 8 229 71 yes 5 7854 yes 

6 11786 9 118 103 no none NA no 

7 10490 5 489 19 yes 6 6009 yes 

8 9630 6 362 13 yes 7 5414 yes 

9 4738 7 270 15 yes 8 2757 yes 

10 4290 12 62 15 yes none NA no 

11 3223 11 90 3 yes 9 2041 yes 

20 1950 10 96 6 yes 10 981 yes 

29 1504 13 42 10 yes none  NA no 

39 1063 14 35 2 yes 12 618 yes 

41 946 none 0 0  11 721 yes 

43 826 15 34 0 yes 13 434 yes 

51 567 16 22 3 yes 14 341 yes 

63 415 24 7 0 (yes) 15 208 yes 
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Figure 2.3 Amplicon diversity reported by MAUI-seq compared with the DADA2 and UNOISE3 analysis 
pipelines. Data are for four genes from nodule samples from two geographic locations, Store Heddinge (1-
6) and Aarhus (7-8). Letters A-D denote the replicates within each plot (Appendix Figure A.1). Heatmap of 
the log10 transformed relative allele abundance of sequence clusters for individual genes. Lines connect 
identical sequences found by different clustering methods. Evidence that sequences are likely to be 
genuine is denoted by classifying them as reference (100% identity in at least 1 of 196 Rhizobium 
leguminosarum symbiovar trifolii genomes (Cavassim et al., 2019)), exact BLAST (100% query coverage and 
100% identity against the whole-genome shotgun contigs BLAST database), single nt (one nt difference 
from either reference or exact BLAST match), and other. Sequences not reported by MAUI were classified 
as sec/pri ratio (rejected as erroneous because of a high secondary to primary ratio), low UMI count (not 
reported because too rare), not found by MAUI (no accepted UMIs). 
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Figure 2.4 Genetic differentiation between populations visualised by Principal Component Analysis (a-c) and 
FST (d-f) of Rlt diversity in root nodule samples (8 sites, 4 replicates). Three analysis pipelines are compared: 
MAUI-seq (a,d), DADA2 (b,e), UNOISE3 (c,f). The PCA analysis was based on log10 transformed relative allele 
abundance. FST analysis was based on relative allele abundance. Data from all four genes (rpoB, recA, nodA, 
and nodD) were included in the analysis. 
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2.5.  Discussion   

 

We	propose	a	new	HTAS	method	(MAUI-seq)	designed	to	assess	genetic	diversity	

within	or	across	species.	It	uses	global	UMI-based	errors	rates	to	detect	potential	PCR	

artefacts	such	as	chimeras	and	single-base	substitutions	more	robustly	than	the	

widely-used	ASV	clustering	methods,	DADA2	and	UNOISE3.	The	approach	is	

potentially	applicable	to	any	study	of	amplicon	diversity,	including	community	

diversity	estimates	based	on	16S	rRNA	and	other	metabarcoding	surveys	using	

environmental	DNA.		

	

2.5.1. Using UMIs to filter out chimeras and other errors 

 

In	the	MAUI-seq	approach,	UMIs	are	used	to	reduce	errors	in	two	distinct	ways.	Since	

all	reads	with	the	same	UMI	should,	in	principle,	be	derived	from	the	same	initial	

template	copy,	any	variation	among	them	reflects	errors.	In	some	implementations,	a	

consensus	sequence	is	calculated	(Kou	et	al.,	2016),	but	we	adopt	the	simpler	

approach	of	accepting	the	most	abundant	sequence,	which	will	usually	give	the	same	

result.	Requiring	more	than	one	identical	read	before	accepting	a	UMI	creates	an	

important	quality	filter	that	greatly	reduces	the	number	of	rare	(and	usually	

erroneous)	sequences,	but	as	more	reads	are	required,	an	increasing	number	of	the	

original	reads	are	discarded	and	the	number	of	accepted	counts	declines.	To	strike	a	

balance	between	quantity	and	quality,	we	chose	to	count	a	sequence	provided	it	had	

at	least	two	more	reads	than	the	next	most	frequent	sequence	with	the	same	UMI,	but	

this	threshold	could	be	adjusted	if,	for	example,	a	markedly	larger	number	of	reads	

were	available.	

	

While	the	most	abundant	sequence	associated	with	a	UMI	will	usually	be	the	correct	

one,	it	will	sometimes	happen	that	an	erroneous	sequence	will	predominate	among	

the	small	number	of	reads	actually	sequenced,	leading	to	these	sequences	being	

included	among	the	recorded	counts.	These	errors	can	be	detected,	though,	by	

aggregating	information	across	the	whole	set	of	samples.	When	a	UMI	is	associated	

with	more	than	one	sequence,	the	secondary	sequences	are	most	often	erroneous,	so	

sequences	that	are	relatively	more	abundant	as	secondary	sequences	than	as	the	

primary	sequences	associated	with	UMIs	are	likely	to	be	erroneous.	We	recorded	the	

number	of	times	each	sequence	was	found	as	the	second	sequence	associated	with	a	
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UMI,	and	found	empirically	that	a	suitable	threshold	for	accepting	sequences	as	

genuine	was	that	they	occurred	less	than	0.7	times	as	often	as	secondary	sequences	

as	they	occurred	as	primary	sequences.	This	threshold	can,	however,	be	adjusted	to	

reflect	the	error	distribution	observed	in	a	particular	study.	We	found	that	this	

approach	was	very	effective	in	identifying	known	errors,	particularly	chimeras,	which	

were	generally	the	most	abundant	errors.	Chimeras	were	rejected	more	effectively	by	

MAUI-seq	than	by	the	two	established	ASV	clustering	methods,	DADA2	and	UNOISE3.	

Both	of	these	rely	on	de	novo	rejection	of	sequences	that	could	be	constructed	as	

recombinants	of	other	sequences	that	are	more	abundant	in	the	sample	(Edgar,	

2016a).	This	method	risks	rejecting	sequences	that	appear	to	be	recombinant	but	are	

genuine	alleles,	which	may	not	be	uncommon,	particularly	in	intraspecific	samples.	

Our	approach,	by	contrast,	uses	information	on	the	observed	error	rates	in	the	data	

(detected	using	UMIs)	to	decide	whether	a	sequence	is	likely	to	be	genuine,	

regardless	of	its	actual	sequence	and	relationship	to	other	sequences.	Sequences	that	

could	be	generated	as	chimeras,	or	that	differ	by	a	single	nucleotide	from	a	more	

abundant	sequence,	may	be	accepted	as	genuine	if	they	are	more	abundant	than	

expected	from	their	rate	of	occurrence	as	minor	sequences	associated	with	UMIs.	In	

our	study,	this	approach	eliminated	many	known	errors	and	substantially	improved	

our	confidence	in	the	remaining	data,	providing	a	powerful	additional	reason	for	

using	UMIs	in	metabarcoding	studies	of	all	kinds.	While	we	found	that	a	simple	

empirical	threshold	was	effective,	we	noticed	that	the	proportion	of	secondary	

sequences	varied	markedly	across	studies	and	genes,	suggesting	that	an	adjustable	

threshold	might	give	further	improvement.	A	useful	future	development	might	be	to	

use	the	abundance	of	minor	sequences	associated	with	UMIs	to	generate	a	statistical	

model	of	error	processes	that	would	provide	a	firmer	theoretical	basis	for	the	

classification	of	sequences.	

	

2.5.2. Using UMIs to reduce amplification bias 

 

One	motivation	for	the	use	of	UMIs	is	to	obtain	more	accurate	relative	abundance	

data	by	eliminating	possible	sequence-specific	bias	in	the	PCR	amplification,	which	

may	be	introduced	by	variation	in	polymerase	and	primer	affinity	for	some	DNA	

templates.	Indeed,	we	observed	that	the	Platinum	polymerase	preferentially	

amplified	the	SM170C	rpoB	allele,	whereas	the	Phusion	enzyme	did	not	have	this	bias	

(Table	2.1	and	Appendix	Figure	A.2a-c).	Allele	variant	bias	was	also	shown	for	other	
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target	genes,	although	the	ranking	of	the	two	enzymes	was	not	always	the	same	

(Table	2.1	and	Appendix	Figure	A.2-Appendix	Figure A.5).	However,	in	our	study,	the	

use	of	UMIs	did	not	correct	the	allele	bias.	This	suggests	that	the	bias	was	present	in	

the	initial	round	of	copying	using	the	target-specific	primer,	rather	than	in	the	

subsequent	amplification	rounds.	For	our	case	study,	at	least,	the	choice	of	

polymerase	was	much	more	important	for	accurate	relative	abundance	data	than	the	

use	of	UMIs.	The	main	advantage	of	UMIs	was,	rather,	the	ability	to	remove	most	

sequencing	errors,	as	discussed	in	the	preceding	section.	

	

2.5.3. Advantages of multiplexing several amplicons  

 

Increasing	the	number	of	monitored	amplicons	to	four	increased	our	ability	to	

robustly	distinguish	samples	from	two	locations	(Figure	2.3,	Figure	2.4	and	Appendix	

Figure	A.6-Appendix	Figure A.11).	Multiplexing	could	be	used	in	other	ways,	for	

example	to	monitor	several	organisms	in	the	same	environment,	or	to	increase	read	

coverage	profiling	of	single	genetic	markers	such	as	16S	(Fuks	et	al.,	2018).	In	

addition,	there	is	a	technical	benefit	in	sequencing	multiple	different	targets	together,	

because	a	lack	of	sequence	diversity	can	cause	Illumina	base-calling	issues	(Krueger,	

Andrews	and	Osborne,	2011).	

	

2.5.4. Optimization of the protocol 

 

As	with	any	metabarcoding	project,	the	first	important	step	is	to	design	the	primers	

carefully	to	amplify	the	entire	target	community	with	minimum	bias,	and	we	used	a	

large	database	of	known	gene	sequences	to	achieve	this.	Another	consideration	that	is	

shared	with	other	approaches	is	the	choice	of	polymerase	for	PCR.	For	the	samples	

studied	here,	with	abundant	template	DNA,	the	proofreading	enzyme	was	clearly	

superior	in	performance,	although	more	costly.	On	the	other	hand,	this	enzyme	may	

provide	less	robust	amplification	when	the	template	is	weak,	as	we	have	observed	in	

another	project	aimed	at	rhizobial	DNA	in	soil	(Boivin	et	al.,	2020).	The	use	of	UMIs	

introduces	other	design	considerations.	We	used	twelve	random	nucleotides	(with	

some	constraints),	giving	over	four	million	potential	UMI	sequences,	which	was	

sufficient	for	the	scale	of	our	studies,	but	it	would	be	simple	to	increase	the	UMI	

length	if	greater	sequencing	depth	was	planned.		In	any	metabarcoding	study,	the	

choice	of	sequencing	depth	is,	to	some	degree,	made	blindly	because	the	diversity	of	
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templates	is	not	known	in	advance,	but	UMI-based	approaches	need	greater	depth	

because	it	is	UMIs	that	are	counted,	not	reads,	and	the	aim	is	to	have	several	reads	

per	UMI.	There	are	many	factors	that	affect	the	average	number	of	reads	per	UMI,	but	

our	study	is	encouraging	in	that,	without	separate	optimization,	all	of	our	target	

genes	in	all	of	our	samples	gave	usable	data.	In	fact,	the	number	of	reads	per	UMI	

were	suboptimal	in	most	cases.	Given	a	fixed	sequencing	effort,	reads	per	UMI	could,	

if	necessary,	be	increased	by	reducing	the	concentration	of	the	forward	UMI-bearing	

primer	and/or	of	the	sample	DNA	so	that	fewer	distinct	UMIs	were	initiated.	With	our	

parameters,	at	least	two	reads	are	needed	before	a	UMI	is	counted,	and	a	sufficient	

fraction	of	the	UMIs	need	at	least	four	reads	so	that	some	will	have	a	secondary	

sequence	as	well	as	the	primary	sequence	(with	at	least	two	reads	more	than	the	

secondary).		

	

2.5.5. Future directions for MAUI-seq 

 

HTAS	is	a	valuable	and	widely-used	approach	for	the	study	of	microbial	community	

diversity,	but	handling	erroneous	sequences	introduced	by	the	amplification	and	

sequencing	procedures	has	always	been	challenging.	The	use	of	UMIs	allows	MAUI-

seq	to	greatly	reduce	the	incidence	of	errors	through	two	mechanisms.	Firstly,	the	

requirement	that	a	UMI	is	associated	with	at	least	two	identical	reads	eliminates	

many	rare	sequences	that	are	predominantly	erroneous.	Secondly,	sequences	that	are	

frequently	generated	as	errors	can	be	identified	and	removed	because	they	occur	

unexpectedly	often	as	minor	components	associated	with	UMIs	that	are	assigned	to	

more	abundant	sequences.	These	mechanisms	are	independent	of	any	reference	

database	and	can	recognise	and	retain	genuine	alleles	that	differ	by	a	single	

nucleotide	or	match	a	potential	chimera.	This	makes	MAUI-seq	particularly	suited	to	

studies	of	intraspecific	variation,	where	the	range	of	sequence	divergence	may	be	

limited	and	not	fully	known	in	advance.	However,	the	efficient	elimination	of	

erroneous	sequences	is	also	important	in	community	studies	such	as	those	based	on	

widely-used	16S	primers,	and	MAUI-seq	should	be	readily	adaptable	to	this	field.	The	

analysis	pipeline	is	very	fast	because	no	sequence	alignment	or	database	searching	is	

involved;	only	the	accepted	final	sequences	would	need	to	be	characterised	by	

comparison	to	a	reference	database.		

	



 73 

Most	HTAS	studies	report	the	relative	proportions	of	the	taxa	in	a	community,	but	it	

would	sometimes	be	valuable	to	estimate	the	absolute	abundance	of	the	microbes	in	

the	environmental	sample.	UMIs	can	potentially	provide	such	information,	if	the	

initial	template	copying	is	carefully	controlled	so	that	the	total	number	of	distinct	

UMIs	reflects	the	number	of	templates	(Kivioja	et	al.,	2011;	Hoshino	and	Inagaki,	

2017).	While	this	would	necessitate	some	additional	steps	at	the	start	of	the	

experimental	protocol,	it	should	still	be	possible	to	analyse	the	resulting	sequences	

using	the	error-removal	approaches	provided	by	MAUI-seq.	Alternatively,	absolute	

abundance	can	be	estimated	by	adding	a	spike	of	a	known	quantity	of	a	recognisable	

target	sequence	to	the	sample	before	processing	(Kebschull	and	Zador,	2015;	Edgar,	

2017;	Palmer	et	al.,	2018).	

	

The	addition	of	a	UMI	shortens	the	maximum	length	of	target	sequence	that	can	be	

read,	and	the	counting	of	UMIs	rather	than	reads	requires	a	higher	depth	of	

sequencing,	but	these	limitations	are	increasingly	unimportant	as	improvements	in	

sequencing	technology	lead	to	increasing	length,	enabling	long-read	amplicon	

sequencing	(Karst	et	al.,	2019;	Kumar	et	al.,	2019),	and	numbers	of	reads.	As	

implemented	in	MAUI-seq,	UMIs	are	very	effective	in	reducing	the	errors	inherent	in	

HTAS,	and	have	the	potential	to	improve	the	quality	of	any	amplicon-based	study	of	

diversity.	There	are	several	parameters	(minimum	difference	between	primary	and	

secondary	reads	of	a	UMI,	ratio	of	secondary	to	primary	reads	of	a	sequence,	

minimum	relative	abundance)	that	are	user-specified	and	can	be	adjusted	to	suit	each	

study.	In	principle,	it	should	be	possible	to	optimize	these	using	a	statistical	model	of	

mutational	errors,	like	that	implemented	in	DADA2	(Callahan	et	al.,	2016)	and	of	

chimera	formation,	which	is	not	modelled	in	detail	by	DADA2.	The	UMIs	provide	an	

additional	source	of	information	to	parameterize	the	model,	linking	sequences	that	

have	a	common	origin.	Such	a	model	would	be	complex,	however,	and	parameterizing	

and	testing	it	would	need	a	dataset	that	was	optimized	for	the	purpose.	At	the	same	

time,	it	would	also	be	interesting	to	explore	the	use	of	UMIs	at	both	ends	of	the	

amplicon,	which	would	provide	an	additional	means	to	identify	and	eliminate	

chimeras	(Burke	and	Darling,	2016).	
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2.5.6. Conclusions 

 

Some	potential	advantages	of	incorporating	UMIs	in	amplicon	diversity	studies	have	

been	explored	previously,	but	here	we	propose	a	new	way	to	use	the	extra	

information	that	they	provide.	Error	processes	lead	to	more	than	one	sequence	being	

associated	with	the	same	UMI,	and	this	can	be	used	to	identify	erroneous	sequences	

regardless	of	their	relative	abundance	or	their	relationship	to	other	sequences	in	the	

sample.	The	method	is	experimentally	and	computationally	straightforward,	and	we	

demonstrate	its	effectiveness	using	known	strain	mixtures	and	real	environmental	

samples.	It	allows	decontamination	of	amplicon	sequence	data	by	flagging	chimeras	

and	other	errors,	and	can	readily	be	adapted	to	any	target	gene	of	interest	in	

microbiome	studies.	
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Chapter 3. Rhizobium nodule diversity is determined by both 

clover host genotype and local growth conditions 
 

3.1.  Abstract 

 

Background:	Plant	species	impose	a	diverse	range	of	selection	pressures	on	bacterial	

communities,	both	within	the	soil	and	their	own	microbiomes.	Shaping	of	plant	

microbiome	composition	through	‘host-filtering’	is	well	documented	in	legume-

rhizobia	symbioses	where	different	plant	species	can	disproportionally	change	the	

microbiome	composition	by	interacting	with	specific	symbionts.	However,	it	is	less	

clear	how	much	individual	varieties	of	plant	species	differentially	influence	the	

intraspecies	diversity	of	their	symbionts,	especially	under	complex	field	conditions.		

Results:	This	study	compared	how	host	legume	genotype	affects	rhizobium	

population	diversity	in	root	nodules	under	conventional	field	conditions	in	Denmark.	

Five	Trifolium	repens	(white	clover)	genotypes	were	grown	in	a	conventional	field	

trial,	and	differences	in	root	nodule	Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	

genotype	diversity	were	compared	using	MAUI-seq	high-throughput	amplicon	

sequencing	of	two	chromosomal	housekeeping	genes,	rpoB	and	recA,	and	two	

auxiliary	plasmid-bound	symbiosis	genes,	nodA	and	nodD.	It	was	found	that	Rlt	rpoB	

and	recA	nodule	diversities	significantly	differed	between	clover	genotypes,	and	rpoB	

and	recA	allele	frequencies	could	be	further	used	to	infer	differences	in	the	

proportions	of	Rlt	sub-species	(genospecies)	between	some	clover	genotypes.	

Diversity	of	rpoB	and	recA	was	significantly	associated	with	geographic	distance	

within	fields,	suggesting	that	in	addition	to	host	genotype,	local	differences	in	soil	

physicochemical	properties	and	microbiota	composition	also	likely	influenced	nodule	

diversity.	nodA	and	nodD	diversities	were	not	significantly	attributed	to	host	

genotype	or	geographic	distance,	indicating	that	intraspecies	symbiotic	specificity	

might	not	be	associated	with	these	genes.		

Conclusions:	These	results	suggest	that	variation	in	local	growth	conditions	and	host	

genotype	together	influence	white	clover	Rlt	nodule	diversity	under	agricultural	

conditions.		
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3.2.  Introduction 

 

Plant	species	are	well	documented	to	influence	their	surrounding	microbial	

composition	by	attracting	and	repelling	specific	microorganisms	to	their	productive	

benefit	(Burns	et	al.,	2015;	Quiza,	St-Arnaud	and	Yergeau,	2015;	Fitzpatrick	et	al.,	

2018;	Schmid	et	al.,	2018;	Zhalnina	et	al.,	2018;	Jones	et	al.,	2019;	Veach	et	al.,	2019).	

This	plant	host-filtering	of	the	soil	microbial	community	is	mediated	through	multiple	

mechanisms,	such	as	secretion	of	various	root	exudates	enabling	microbe-plant	

signalling	and	microbe	recognition	systems	to	differentiate	pathogenic	and	non-

pathogenic	bacteria	(Jones	et	al.,	2019).	In	practice,	plant	host-filtering	is	exploited	

agriculturally	to	improve	soil	fertility	by	altering	the	soil	microbial	composition	

between	crop	rotations	of	different	plant	species	(Ashworth	et	al.,	2017;	Song	et	al.,	

2018;	Zhang	et	al.,	2019).	The	effects	of	distinct	varieties	of	the	same	plant	species	on	

microbial	soil	diversity	has	been	studied	in	non-legumes;	plant	genotypes	have	been	

found	to	significantly	shape	rhizosphere	bacterial	diversity	under	both	greenhouse	

and	field	conditions,	but	soil	type	can	influence	bacterial	diversity	to	an	even	greater	

extent	(Inceoǧlu	et	al.,	2010;	Bulgarelli	et	al.,	2012,	2013,	2015;	Lundberg	et	al.,	2012;	

Peiffer	et	al.,	2013).	Intraspecies	diversity	clearly	warrants	further	investigation,	as	

soil	bacterial	species	can	show	huge	within-species	taxonomic	and	functional	

diversity,	that	is	undetectable	with	16S	sequencing,	and	which	can	have	profound	

effects	on	plant-microbe	interactions	and	ecosystem	functioning	(Gaunt	et	al.,	2001;	

Case	et	al.,	2007;	Adékambi,	Drancourt	and	Raoult,	2009;	Vos	et	al.,	2012;	Zhang	et	al.,	

2012,	2017;	Li	et	al.,	2013;	Burns	et	al.,	2015;	Miranda-Sánchez,	Rivera	and	Vinuesa,	

2016;	Wang	et	al.,	2018).	

	

Symbiotic	rhizobia	bacteria	are	one	such	highly	diverse	group	of	soil	microbes	

regularly	exposed	to	host-filtering	by	plants.	Legumes	form	root	nodule	symbioses	

with	particular	nitrogen-fixing	rhizobia	species	to	increase	their	nitrogen	uptake	for	

subsequent	growth.	Compatible	rhizobia	selection	for	symbiosis	is	initially	mediated	

by	highly	specific	interactions	between	plant	flavonoid	exudates	and	expressed	

rhizobial	symbiosis	genes	(Wang	et	al.,	2012;	Clúa	et	al.,	2018).	Therefore,	legume	

crops	are	commonly	inoculated	with	rhizobia	strains	in	the	field	as	a	sustainable	

alternative	to	chemical	fertilization.	In	order	to	optimise	the	efficiency	and	success	of	

the	inoculation	treatment,	inoculant	developers	aim	to	select	highly	genetically	

compatible	strains	for	the	host	plant.	Consequently,	optimisation	of	host-symbiont	
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partner	selection	requires	further	understanding	of	1)	the	degree	to	which	

intraspecies	genetic	specificity	is	linked	with	effective	symbiosis,	2)	the	potential	

competing	interactions	with	native	soil	rhizobia	and	3)	rhizobium	survival	under	

various	abiotic	soil	conditions	(Irisarri	et	al.,	2019;	Jones	et	al.,	2019).	

	

While	it	is	known	that	different	legume	species	select	for	certain	rhizobia	species	

(Bromfield,	Barran	and	Wheatcroft,	1995;	Laguerre	et	al.,	2003;	Wang,	Liu	and	Zhu,	

2018),	it	is	less	clear	how	much	distinct	varieties	of	the	same	legume	species	differ	in	

their	manipulation	of	rhizobium	populations	and	how	this	variation	affects	the	

intraspecies	rhizobium	diversity.	Plants	can	influence	symbiont	community	

compositions	through	multiple	host-filtering	mechanisms	including	by	engaging	in	

symbiotic	specificity	for	nodule	occupancy	or	by	influencing	rhizosphere	community	

composition	through	interaction	with	specific	root	exudates	(Jones	et	al.,	2019).	

However,	it	is	still	disputed	whether	Rhizobium	genotype	composition	in	nodules	is	

mainly	due	to	initial	strain	abundance	in	a	natural	soil	population	or	a	strain’s	

competitive	ability	for	nodulation	(ZéZé,	Mutch	and	Young,	2001).	Studies	that	have	

aimed	to	elucidate	the	extent	of	symbiotic	specificity	between	legume	cultivars	have	

predominantly	used	a	restricted	number	of	strains	or	introduced	a	synthetic	

inoculum	community,	with	limited	field	crop	applicability	(Russell	and	Jones,	1975;	

Jones	and	Hardarson,	1979;	C.	Yang	et	al.,	2017).	Under	greenhouse	conditions,	clover	

varieties	have	been	found	to	display	preferences	for	specific	rhizobial	genotypes 

(Russell	and	Jones,	1975;	Jones	and	Hardarson,	1979;	C.	Yang	et	al.,	2017).	Genotypes	

of	the	same	clover	variety	have	also	been	shown	to	display	significant	variations	in	

rhizobial	selectivity	(Russell	and	Jones,	1975;	Jones	and	Hardarson,	1979).	

Conversely,	another	study	observed	that	Trifolium	repens	(white	clover)	cultivars	did	

not	display	preferences	for	different	Rhizobium	leguminosarum	symbiovar	trifolii	

(Rlt)	genotypes	under	greenhouse	conditions	(Harrison,	Young	and	Jones,	1987).	

However,	allozyme	variants	were	used	to	detect	differences	in	population	structure,	

which	likely	had	a	reduced	association	to	the	determinants	of	strain	selectivity	for	

symbiotic	establishment	(Harrison,	Young	and	Jones,	1987).	Using	‘real’	crop	systems	

could	be	advantageous	to	help	identify	how	genetically	specific	rhizobial	inoculums	

need	to	be	to	achieve	fit-for-purpose	compatibility	with	legume	host	crops	(Wadhwa,	

Dudeja	and	Yadav,	2011).	For	example,	nodD	genotype	preferences	have	previously	

been	indistinguishable	between	Trifolium	species	hosts	and	soil	types	when	grown	

across	different	sites	(McGinn	et	al.,	2016).	Conversely,	inoculation	of	four	Rlt	strains	
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at	various	field	sites	showed	competitive	ability	for	Trifolium	subterraneum	cultivar	

nodule	occupancy	was	associated	with	host	genotype,	field	site,	and	bacterial	strain	

compatibility	(Roughley,	Blowes	and	Hurridge,	1976).	Therefore,	while	intra-species	

symbiont	selectivity	by	different	legume	genotypes	have	been	found	previously,	they	

are	less	often	observed	and	studied	in	field	conditions.			

	

The	compatibility	between	legume	genotypes	and	rhizobia	strains	has	previously	

been	attributed	to	rhizobium	differences	in	both	the	symbiosis	plasmid	and	

chromosome	(Brewin,	Wood	and	Young,	1983;	Paffetti	et	al.,	1996).	A	variety	of	

different	gene	markers	have	been	used	for	determining	rhizobia	population	diversity	

in	both	nodule	and	soil	samples	(Bromfield,	Barran	and	Wheatcroft,	1995;	Laguerre	

et	al.,	2003;	McGinn	et	al.,	2016).	rpoB	(RNA	polymerase	B	subunit)	and	recA	

(recombinase	A)	have	both	been	effectively	used	as	robust	chromosomal	markers	for	

observing	intraspecies	diversity	and	as	phylogenetic	determinants	(Xiong	et	al.,	2017;	

Wang	et	al.,	2018).	Several	symbiosis	genes	have	also	been	used	to	determine	

population	structure	based	on	symbiotic	selection.	nodD	(transcriptional	regulator	of	

nodulation	nod	gene	activation)	has	previously	been	chosen	for	analysis	of	Rlt	

populations	as	it	can	display	genetic	heterogeneity	between	Rlt	strains,	and	is	well	

characterised	by	its	interspecies	selectivity	for	symbiotic	establishment	(ZéZé,	Mutch	

and	Young,	2001;	McGinn	et	al.,	2016).	It	is	plausible	that	nodD	would	show	

distinction	between	clover	genotypes,	as	nodD	is	well-known	to	play	a	large	role	in	

legume-Rhizobium	interspecies	partner	compatibility	and	host	range	for	symbiosis,	

although	not	with	host	specificity	(Redmond	et	al.,	1986;	Laguerre	et	al.,	1996;	Perret,	

Staehelin	and	Broughton,	2000;	ZéZé,	Mutch	and	Young,	2001;	Maj	et	al.,	2010;	

Hassan	and	Mathesius,	2012).	While	nodA	(N-acyltransferase	essential	for	successful	

Nod	factor	production)	has	been	less	commonly	used,	nodA	diversity	could	provide	

insight	into	host-selection	as	it	has	been	suggested	to	be	involved	in	host	specificity	

and	interaction,	and	its	regulation	has	been	used	to	assess	strain	competitive	abilities	

(Debellé	et	al.,	1996;	Ritsema	et	al.,	1996;	Maj	et	al.,	2010;	Poinsot	et	al.,	2016;	

Igolkina	et	al.,	2019).	Alterations	to	the	molecular	structure	of	different	Nod	factors	

has	been	shown	to	influence	symbiotic	specificity	between	rhizobia	and	legumes,	and	

therefore	the	function	of	nodA	by	association	is	also	suggested	to	influence	clover	

host	specificity	(Lupwayi,	Clayton	and	Rice,	2006;	Wang,	Liu	and	Zhu,	2018).	Allelic	

differences	in	nodA	have	been	shown	to	influence	NodA	specificity	for	different	fatty	

acid	substrates	during	N-acyl	substitution,	and	consequently	has	been	suggested	to	



 79 

act	as	a	component	in	host-specific	nodulation	and	host	range,	at	least	at	an	

interspecies	level	(Debellé	et	al.,	1996;	Ritsema	et	al.,	1996;	Perret,	Staehelin	and	

Broughton,	2000;	Downie,	2014).	In	addition,	nodA	alleles	were	suggested	to	be	more	

related	to	host	plant	taxonomy	than	bacterial	taxonomy,	further	associating	nodA	

allelic	differences	to	host	specificity	(Debellé	et	al.,	1996;	Igolkina	et	al.,	2019).	Both	

nodA	and	nodD	are	plasmid-bound	and	can	be	transferred	to	unrelated	strains	

through	horizontal	gene	transfer.	On	the	other	hand,	rpoB	and	recA	are	chromosomal	

housekeeping	genes,	thereby	commonly	conveyed	through	vertical	transmission.	

Therefore,	a	broad	reflection	of	diversity	from	horizontal	and	vertical	genetic	

transmission	can	be	perceived	from	using	multiple	chromosomal	and	plasmid	genetic	

markers	for	analysis	of	population	diversity	(Wernegreen	and	Riley,	1999).			

	

The	aim	of	this	study	was	to	determine	the	extent	of	symbiotic	specificity	from	an	

intraspecies	perspective.	Differences	in	Rlt	genotype	diversity	were	investigated	

between	root	nodule	populations	from	five	white	clover	genotypes	grown	under	

conventional	field	conditions	using	high-throughput	amplicon	sequencing	(MAUI-

seq).	This	was	undertaken	to	provide	a	more	representative	reflection	of	the	rhizobial	

diversity	present	between	white	clover	genotypes	in	an	agricultural	application,	and	

to	understand	the	extent	that	symbiotic	specificity	was	present	at	the	intraspecies	

level.	The	relative	allelic	diversity	of	two	Rlt	chromosomal	housekeeping	genes,	rpoB	

and	recA,	and	two	auxiliary	plasmid-bound	symbiosis	genes,	nodA	and	nodD,	were	

analysed.	It	was	found	that	housekeeping	genes	displayed	the	greatest	distinction	

between	clover	genotype	nodule	samples.	However,	this	was	not	necessarily	a	

consequence	of	only	host	genotype,	as	geographic	distance	between	sampled	plants	

within	the	field	was	also	found	to	be	additionally	associated	with	housekeeping	gene	

nodule	diversity.	Symbiosis	genes,	nodA	and	nodD,	showed	no	association	with	host	

genotype	or	geographic	distance.	Consequently,	choice	of	gene	marker	highly	

influenced	observed	sample	diversity	and	further	identified	that	a	combination	of	

local	growth	conditions	and	host	genotype	can	influence	Rlt	diversity	of	clover	nodule	

populations	in	agricultural	field	conditions.		
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3.3.  Methods 

3.3.1. Plants, nodule sampling and DNA extraction 

 
Four	genetically	distinct	F2	Trifolium	repens	(white	clover)	variety	crosses	

(Cross	1;	Cross	2;	Cross	3;	Cross	4),	and	one	pure	check	variety	(Klondike)	were	

grown	in	conventionally	managed	trial	plots	at	Store	Heddinge,	Denmark.	No	F2	cross	

shared	a	parent	variety	with	another	cross.	Klondike	was	similarly	not	a	parent	to	any	

of	the	crosses,	thereby	making	all	of	the	crosses	genetically	distinct	from	one	another	

and	are	from	here	on	referred	to	as	clover	genotypes.	The	varieties	used	to	generate	

the	five	crosses	have	been	made	confidential	in	this	study	for	DLF	Trifolium	breeder	

trial	developments.		

	

All	plots	were	sown	under	the	same	conditions	in	June	2017	in	the	same	field.	Plots	

were	organised	into	two	Blocks,	each	containing	two	rows	of	18	plots,	and	plots	were	

sown	in	dimensions	of	8	meters	by	1.5	meters	(Figure	3.1).	Within	each	Block,	a	strip	

of	grassland	measuring	3.3	meters	separated	the	two	rows	of	18	plots.	A	strip	of	

grassland	measuring	8	meters	separated	the	two	Blocks	of	plots.	Clover	genotypes	

were	sown	within	Blocks	in	a	rectangular	Latin	plot	design	(Figure	3.1);	a	complete	

randomized	block	design	with	a	restriction	in	the	randomization,	providing	complete	

set	of	all	clover	genotypes	in	both	directions	within	a	Block	of	plots	(Figure	3.1).	

Within	Block	1,	clover	genotype	plots	were	sown	in	duplicate	(Figure	3.1).	An	

additional	third	replicate	Klondike	plot	was	sampled	from	Block	2	to	enable	further	

geographic	distance	effects	analyses	(plot	c	in	addition	to	a	and	b;	Figure	3.1).		

	

A	mixture	of	6	g	clover	genotype	seed	and	20	g	of	diploid	perennial	ryegrass	varieties,	

Indiana	and	Boyn,	were	sown	on	each	plot.	No	other	plant	species	or	Rhizobium	

inoculation	were	added	to	plots	previously	before	sowing.	In	the	establishment	year,	

the	trial	plots	received	no	fertiliser	treatment.	In	the	second	year,	plots	received	

fertiliser	treatment	4	times	across	the	year,	which	totalled	170	kg	N/harvest	year	

across	all	plots.	Around	3-10	clovers	were	sampled	from	three	points	in	each	plot	in	

October	2018.	Therefore,	for	each	plot	three	independent	replicate	samples	were	

collected,	and	six	samples	were	collected	in	total	for	each	clover	genotype	from	Block	

1.	From	Block	2,	only	3	independent	replicate	samples	were	collected	from	one	

Klondike	plot	(plot	c;	Figure	3.1).	For	each	plot	point,	clovers	were	washed,	and	100	

large	nodules	picked	and	pooled.	Nodules	were	stored	at	-20°C,	and	DNA	was	
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extracted	for	each	within-plot	replicate	using	the	Qiagen	DNeasy	PowerLyzer	

PowerSoil	DNA	isolation	kit	following	manufacturer’s	protocol.		

 

3.3.2. DNA sample processing and read processing. 

 
Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	specific	genes	rpoB,	recA,	nodA	and	

nodD	were	individually	PCR	amplified	and	processed	for	each	pooled	nodule	sample	

using	the	MAUI-seq	high-throughput	amplicon	sequencing	method,	as	described	in	

detail	previously	(Chapter	1;	Fields	et	al.,	2019).	Briefly,	in	this	method	genes	are	

amplified	in	a	nested	PCR	using	primers	that	contain	a	region	of	12	random	bases	in	

the	forward	inner-primer,	which	generates	a	unique	molecular	identifier	(UMI)	for	

each	initial	DNA	strand	in	the	first	round	of	PCR	amplification.	All	subsequent	

daughter	DNA	strands	generated	will	contain	the	same	UMI	as	their	parent.	This	

consequently	means	DNA	reads	with	the	same	UMI	can	then	be	grouped	and	aid	

identification	of	erroneous	sequences,	such	as	chimeras	and	PCR	mutations,	during	

sequencing	read	processing.	This	is	carried	out	with	the	aim	to	better	reflect	true	

allelic	diversity	of	samples	by	identifying	and	further	filtering	out	identified	errors	

across	samples.		

	

Initial	PCRs	were	carried	out	individually	for	each	primer	set	using	non-proofreading	

Platinum	Taq	DNA	polymerase	(Thermofisher	Scientific	Inc.,	USA).	Equal	volumes	of	

the	four	PCRs	produced	for	each	sample	were	pooled,	cleaned	(AMPure	XP	Beads,	

Beckman	Coulter,	USA)	and	indexed	for	sequencing	as	previously	(Nextera	XT	DNA	

Library	Preparation	Kit	v2	set	A,	Illumina,	USA;	Phusion	High-Fidelity	DNA	

polymerase,	Thermofisher	Scientific	Inc.,	USA)	(Fields	et	al.,	2019).	All	samples	were	

pooled,	and	quality	checked	by	Bioanalyzer	2100	(Agilent,	USA)	before	sequencing	

using	Illumina	MiSeq	(2	x	300	bp	paired	end	reads)	by	the	University	of	York	

Technology	Facility.	Full	method	protocols	including	PCR	reaction	mixtures	and	

programmes	are	detailed	in	Fields	et	al.,	2019	(Chapter	1).	

	

Paired-end	reads	were	first	merged	using	the	PEAR	assembler	(Zhang	et	al.,	2014).	

MiSeq	reads	were	then	processed	using	MAUI-seq	python	scripts	to	firstly	separate	

reads	into	the	4	Rlt	genes	for	each	sample,	and	to	secondly	calculate	the	abundance	of	

unique	UMI	reads	for	each	gene	in	each	sample.	Raw	read	counts	for	each	gene	

analysis	were	as	follows:	nodA	=	1,942,182;	nodD	=	2,117,588;	recA	=	1,225,324;	rpoB	

=	2,256,179.	To	calculate	total	abundances,	reads	were	grouped	by	UMI	and	the	most	
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abundant	read	sequence	(primary	sequence)	was	assigned	to	that	UMI,	thereby	

removing	PCR	errors.	Then,	the	number	of	UMIs	associated	to	the	same	primary	

sequence	were	counted.	Chimeras	were	detected	by	comparing	the	number	of	times	a	

sequence	appears	as	the	most	abundant	sequence	for	a	UMI	compared	to	appearing	

as	the	second	most	abundant	sequence	(secondary	sequence)	in	UMI	clustering.	

Additional	parameters	used	to	control	the	stringency	of	the	analysis	were	all	set	to	

default.	These	include:	1)	count	a	UMI	only	if	the	most	abundance	sequence	has	2	

more	reads	than	the	second	most	abundant	sequence;	2)	reject	sequences	that	occur	

as	secondary	sequences	at	least	0.7	times	as	often	as	they	appear	as	primary	

sequences;	3)	discard	sequences	with	an	overall	relative	abundance	less	than	0.001,	

when	sequences	are	ordered	in	rank	order.	Therefore,	sequence	counts	used	in	

downstream	analyses	were	the	number	of	UMIs	associated	to	each	identified	

sequence	(UMI	sequence	counts),	rather	than	the	number	of	reads	for	a	sequence.	

Scripts	can	be	found	at	https://github.com/jpwyoung/MAUI.		

 

3.3.3. Sequence analysis   

 
To	enable	allele	abundance	comparison	across	samples	from	all	four	genes,	UMI	

sequence	counts	were	converted	to	relative	abundance	within	each	gene	for	each	

sample.	Sequence	presence	across	clover	genotypes	was	displayed	with	Venn	

diagrams	made	using	R	package,	Venn	(v.1.7).	To	observe	relative	abundance	of	allele	

sequences	across	samples	in	a	heatmap,	relative	abundance	counts	of	0	(occurring	

when	a	sequence	is	not	present	in	a	sample	but	present	in	other	samples)	were	

converted	to	one	decimal	place	lower	than	the	lowest	relative	abundance	count	(1	

x10-5)	and	subsequently	log10	transformed.	Log	transformation	was	used	because	

most	samples	were	dominated	by	two	or	three	alleles,	and	therefore	this	would	skew	

observed	variance	towards	more	abundant	alleles	within	the	population.	

	

To	assign	a	genospecies	to	each	recA	and	rpoB	allele,	BLASTn	was	used	to	search	for	

sequences	in	the	genome	assemblies	of	196	Rlt	full	genome	sequenced	strains	

(Cavassim	et	al.,	2019),	RCR221,	TA1	and	TA1-MC2010	reference	genomes,	which	are	

known	genospecies	strains.	Alleles	that	did	not	match	any	of	these	strains	were	

aligned	to	the	NCBI	database	using	BLASTn	(GenBank).	If	no	100%	sequence	match	

with	known	genome	assemblies	was	found,	sequences	were	classed	as	an	‘unassigned	

genospecies’.		
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3.3.4. Statistical analysis 

 
In	all	analyses,	allelic	similarity	between	nodule	samples	was	estimated	using	Bray-

Curtis	dissimilarity.	Bray-Curtis	dissimilarity	metric	was	calculated	for	all	pairwise	

sample	comparisons	with	vegan	R	package	(v.	2.5-6)	using	relative	abundance	UMI	

sequence	count	data	for	all	four	genes.	To	compare	intraspecies	diversity	between	

clover	genotypes,	non-metric	multidimensional	scaling	(NMDS)	was	employed	on	

Bray-Curtis	dissimilarities	using	metaMDS	in	the	vegan	R	package	(v.2.5-6).	Two	

dimensions	were	specified	for	NMDS	analyses	of	all	genes	individually	and	in	

combination,	which	all	produced	an	NMDS	stress	score	of	less	than	0.2.	Intrinsic	

sequence	variable	vectors	were	fitted	with	a	default	of	999	permutations	to	NMDS	

coordinates	using	the	env.fit	function	in	the	vegan	package,	to	determine	which	

alleles	associated	significantly	with	NMDS	dimensions.	To	determine	significant	

differences	in	rhizobial	allele	diversity	for	clover	genotypes,	PERMANOVA	was	

undertaken	using	the	adonis	R	vegan	function.	Additionally,	to	further	determine	

which	clover	genotypes	significantly	differed	in	Bray-Curtis	dissimilarity,	

adonis.pairwise	function	with	Bonferroni	adjusted	p-value	correction	was	used	from	

the	pairwiseAdonis	R	package	(v.0.0.1).	Principal	component	analysis	(PCA)	was	

carried	out	using	singular	value	decomposition	using	prcomp	from	the	Stats	R	

package	(v.3.5.1),	with	log10	relative	abundance	counts	(and	0	counts	=	1	x10-5).	

Global	and	pairwise	empirical	Bayes	estimator	of	fixation	index	(FST)	values	between	

nodule	DNA	samples	for	all	four	genes	were	calculated	using	relative	allele	

abundances	with	FinePop	R	package	(v.1.5.1),	as	previously	described	(Kitada,	

Nakamichi	and	Kishino,	2017).		

	

To	identify	significant	differences	in	the	relative	abundance	of	genospecies	across	

clover	genotypes	for	recA	and	rpoB,	two-way	ANOVAs	were	undertaken.	

Furthermore,	TukeyHSD	post	hoc	from	the	tidyverse	R	package	(v.1.2.1)	was	used	to	

identify	interaction	effects	between	clover	genotype	and	genospecies	relative	

abundances.	

	

To	determine	if	allelic	diversity	similarity	between	samples	was	associated	with	

geographic	distance,	the	Mantel	test	Pearson’s	correlation	R	statistic	was	calculated	

between	Euclidean	geographic	distance	and	allelic	(Bray-Curtis)	dissimilarity	

between	samples.	Geographic	distance	between	sampled	plot	points	was	calculated	

using	Euclidean	distance	calculation	based	on	x-y	geographic	coordinates.	Similarly,	
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the	Mantel	test	was	used	to	calculate	between	geographic	distance	and	pairwise	FST	

between	samples.	

	

In	order	to	analyse	whether	allelic	similarity	between	samples	was	affected	by	

geographic	distance	and	whether	samples	were	the	same	clover	genotype,	a	

maximum	likelihood	(ML)	mixed	effect	model	was	generated	for	each	of	the	four	Rlt	

genes	individually	(rpoB,	recA,	nodA	and	nodD)	with	lme4	R	package	(v.1.1-21).	

Euclidean	geographic	distance	and	a	binary	metric	of	whether	samples	were	isolated	

from	clovers	that	were	the	same	or	different	genotype	(same	clover	genotype	=	1,	

different	=	0)	were	classed	as	fixed	effects.	The	clover	genotype	IDs	of	both	samples	

(e.g.	Cross	1)	were	categorised	as	cross	random	effects.	The	random	effects	had	a	

variance	>	0	supporting	their	incorporation	in	the	model.	The	linear	mixed	models	

enabled	accounting	for	variability	due	to	clover	genotype	and	ability	to	model	

multiple	random	effects	simultaneously,	which	was	undertaken	to	reduce	error	in	the	

models	and	increase	ability	to	determine	significance	of	fixed	effects.	LmerTest	was	

used	to	generate	t-values,	degrees	of	freedom	and	p-values	for	each	fixed	effect	

variable.	The	four	models	were	generated	and	analysed	for	each	gene	individually	

using	following	pipeline.	Firstly,	the	full	factorial	models	were	generated	whereby	

both	fixed	effects	(geographic	distance	and	clover	genotype	binary	metric)	and	their	

interaction	were	included,	along	with	the	clover	genotype	of	sample	pairs	as	random	

effects.	The	importance	of	the	fixed	effects	interaction	was	tested	using	the	likelihood	

ratio	(LR)	test	using	anova()	by	comparing	the	full	interaction	model	to	a	reduced	

model	with	no	interaction.	No	significance	of	interaction	was	found	between	

geographic	distance	and	clover	genotype	on	allelic	dissimilarity	for	any	of	the	four	Rlt	

genes.	Subsequently,	the	full	model	without	interaction	was	used	in	further	analysis	

(referred	to	as	full	model	hereon	and	in	the	results).	Secondly,	the	importance	of	

geographic	distance	and	whether	the	samples	were	isolated	from	the	same	clover	

genotype	were	determined	by	LR	test.	This	tested	for	significant	differences	in	model	

fit	between	a	model	with	geographic	distance	and	clover	genotype	and	as	fixed	effects	

and	a	reduced	model	without	either	fixed	effect	in	a	stepwise	manner.	Model	fits	were	

determined	as	significantly	different	if	Chi-squared	p	<	0.05.		

	

Additionally,	the	importance	and	reliability	of	the	fixed	effects	were	determined	by	

parametric	bootstrapping	to	obtain	95%	confidence	intervals	for	the	full	model	with	

no	interaction.	bootMer	and	boot.ci	in	boot	R	package	was	used	to	obtain	95%	
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confidence	intervals	with	1000	bootstraps.	95%	confidence	intervals	that	included	0	

were	considered	not	reliable	effects,	as	this	suggests	that	there	was	no	clear	

association	of	the	fixed	effect	with	the	allelic	dissimilarity	between	samples.	The	

bootstrapping	model	displayed	warnings	of	failed	model	convergence	for	each	gene:	

rpoB	=	55	out	of	1000	permutations;	recA	=	62	out	of	1000	permutations;	nodA	=	68	

out	of	1000	permutations.	However,	because	the	original	model	converged,	and	due	

to	developers	suggesting	increasing	the	convergence	warning	message	threshold	to	

0.01	these	were	classified	as	false	positive	convergence	warnings	(Bolker,	2020).	

Similarly,	warnings	regarding	singular	fits	were	generated	from	bootstrapping	for	the	

following	genes:	rpoB	=	79	out	of	1000	permutations;	recA	=	149	out	of	1000	

permutations;	nodA	=	498	out	of	1000	permutations;	nodD	=	1000	out	of	1000	

permutations.	For	the	nodD	full	model	without	fixed	effects	interaction,	lme4	

generated	warnings	of	a	singular	fit	which	was	caused	by	one	of	the	random	effects	

producing	a	variance	and	standard	deviation	of	0.	The	random	effect	was	maintained	

in	the	full	model	and	subsequent	reduced	models	because	retaining	the	parameter	

made	no	difference	to	estimate	quantities	(apart	from	AIC/BIC)	and	also	allowed	

congruence	of	model	formula	with	the	other	gene	models	(Bolker	et	al.,	2009;	Bolker,	

2020).		

	

3.4. Results 

3.4.1. The presence of rhizobia alleles showed only small variation between clover 

genotypes 

 
Using	high-throughput	amplicon	sequencing	(Fields	et	al.,	2019),	nodule	samples	

from	five	white	clover	genotypes	grown	in	a	conventional	trial	field	management	

(Figure	3.1)	were	sequenced	for	four	Rlt	genes	(rpoB,	recA,	nodA	and	nodD).	Per	

clover	genotype,	six	sample	replicates	were	collected	across	two	plots	in	Block	1	

(Figure	3.1).	Firstly,	the	number	of	unique	allele	sequences	identified	were	counted	

for	rpoB,	recA,	nodA	and	nodD	Rlt	genes	across	all	samples	from	Block	1	(Appendix	

Table	B.1).	A	greater	number	of	alleles	were	identified	for	symbiosis	genes	than	

housekeeping	genes:	rpoB	=	16;	recA	=	8;	nodA	=	23;	nodD	=	21	(Appendix	Table	B.1).	

To	determine	whether	rhizobial	allelic	diversity	in	white	clover	nodule	samples	was	

associated	with	clover	genotype,	the	total	number	of	unique	alleles	for	each	of	the	five	

distinct	clover	genotypes	across	all	genes	was	counted	(Figure	3.2a-b).	rpoB	and	recA	

allele	presence	showed	little	variation	across	clover	genotypes	(Figure	3.2c-d).	rpoB	
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was	the	most	homogeneous,	with	all	Rlt	alleles	identified	in	all	clover	genotypes	with	

the	exception	of	two	alleles	which	were	shared	by	all	clover	genotypes	except	Cross	1	

(Figure	3.2c).	Symbiosis	genes,	nodA	and	nodD,	displayed	more	specificity	to	specific	

clover	genotypes,	with	some	alleles	only	present	in	the	nodules	of	a	subset	of	clover	

genotypes	(Figure	3.2e-f).	Even	so,	only	one	nodD	allele	was	found	to	be	exclusive	to	a	

single	cross	(Figure	3.2f:	Cross	1).	Otherwise,	all	nodD	and	nodA	Rlt	alleles	were	

identified	in	nodules	of	at	least	two	clover	genotypes,	and	overall	alleles	were	

predominantly	found	in	all	clover	genotypes.	On	the	whole,	there	was	no	clear	

distinction	of	allele	presence	between	different	clover	genotype	nodules.	This	

suggests	that,	based	on	the	four	genes	tested,	clover	genotypes	did	not	exclusively	

select	for	specific	Rlt	alleles.		
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Figure 3.1 Field plot design for sampling. Plots were organised into 2 blocks, each containing 2 rows of 18 
plots (grey rectangles), sown in dimensions of 8 meters by 1.5 meters. Blocks were separated by a strip of 
grassland measuring 8 meters across. Additionally, within Blocks, the two rows of plots were separated by 
grassland measuring 3.3m across. Plots sampled in this study are coloured respectively by the white clover 
genotype sown on each plot (see the legend on the right). Two plots were sampled per clover genotype 
from Block 1, with the exception of Klondike where an additional third plot was sampled from Block 2 to 
enable further analysis of geographic distance (plot c in addition to plots a and b from Block 1). Clovers 
were sampled from three locations on each plot (Black dots in the most bottom-right plot). Therefore, 6 
samples were collected for each clover genotype from Block 1. 100 nodules were sampled from 3-10 
clover plants for each sampling point. Clover genotypes were sown within Blocks in a rectangular Latin 
plot design, as demonstrated by the numbering system outlined in Block 2, whereby a number represents 
a clover genotype. 
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3.4.2. Relative allele frequencies of housekeeping genes are more distinct than 

symbiosis genes between clover genotypes 

 
Due	to	the	homogeneity	of	allele	presence	in	all	clover	genotype	root	nodules,	it	was	

investigated	whether	Rlt	allele	frequencies	differed	between	clover	genotypes.	

Therefore,	the	relative	abundances	of	Rlt	alleles	for	rpoB,	recA,	nodA	and	nodD	were	

calculated	for	all	samples	(Figure	3.3).	It	was	found	that	for	each	Rlt	gene,	the	relative	

abundance	of	alleles	varied	between	clover	genotypes	(Figure	3.3).	However,	the	

most	abundant	gene	alleles	seemed	to	be	the	same	across	all	clover	genotype	

samples.	To	further	observe	the	differences	in	allelic	composition	between	samples,	

allelic	dissimilarity	was	calculated	using	Bray-Curtis	dissimilarity	(referred	here	on	

as	allelic	dissimilarity	in	all	analyses)	for	all	four	Rlt	genes	individually	and	in	

combination	across	pairwise	sample	combinations	(Figure	3.4a,	Appendix	Figure	B.1	

and	Appendix	Figure	B.2).	Non-metric	multidimensional	scaling	(NMDS)	analysis	of	

allelic	dissimilarities	identified	some	separation	between	clover	genotypes	when	the	

relative	allelic	abundances	for	all	four	genes	was	combined	(Figure	3.4b).	NMDS	

suggested	a	gradient-like	separation	of	clover	genotypes	across	NMDS	coordinate	1	

(Figure	3.4b).	Significant	differences	in	rhizobial	allele	diversity	were	identified	

between	clover	genotypes	(all	genes	PERMANOVA	clover	genotype:	F4,29	=	3.7036,	p	<	

0.001;	Appendix	Table	B.2).	However,	only	Cross	1	and	Cross	4	were	identified	to	

have	significantly	different	Rlt	diversity	in	post	hoc	testing	(adjusted	p	<	0.05).		

	

Further	NMDS	analysis	of	allelic	dissimilarities	identified	that	different	clover	

genotypes	separated	depending	on	the	individual	gene	of	interest	(Figure	3.4c-f;	rpoB	

PERMANOVA	clover	genotype,	F4,29	=	5.375,	p	<	0.001;	recA	PERMANOVA	clover	

genotype,	F4,29	=	5.247,	p	<	0.01;	nodA	PERMANOVA	clover	genotype,	F4,29	=	2.678,	p	<	

0.05;	nodD	PERMANOVA	clover	genotype,	F4,29	=	2.123,	p	<	0.05;	Appendix	Table	B.3-

Appendix	Table	B.6).	rpoB	showed	significant	differences	in	allelic	diversity	of	Cross	2	

compared	with	Klondike,	Cross	1	and	Cross	4	(adjusted	p	<	0.05;	Figure	3.4c).	On	the	

other	hand,	while	recA	showed	less	allelic	distinction	between	clover	genotypes,	

significant	differences	were	identified	between	Cross	2	and	Cross	1,	which	is	

congruent	with	the	allelic	distinction	of	rpoB	alleles	(adjusted	p	<	0.05).	For	recA	

alleles,	the	variation	observed	across	NMDS	coordinate	1	was	biased	by	Klondike	

samples	(Appendix	Figure	B.3),	where	half	of	the	Klondike	samples	predominantly	

contained	the	overall	most	abundant	recA	allele	and	the	other	samples	mainly	

contained	the	second	overall	most	abundant	allele.	Therefore,	when	Klondike	
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samples	were	removed	from	the	analysis,	the	similar	separation	of	Cross	2	and	Cross	

1	clover	genotypes	were	clearly	observable	(Figure	3.4d).	On	the	other	hand,	for	nodA	

and	nodD,	significant	allelic	differences	between	clover	genotypes	was	lost	after	post	

hoc	testing	p-value	correction.	To	investigate	which	allele	sequences	were	driving	the	

sample	distribution	patterns	for	each	of	the	four	Rlt	genes,	the	intrinsic	allele	

sequence	variable	vectors	were	fitted	to	NMDS	coordinates.	The	frequencies	of	the	

overall	most	abundant	alleles	were	shown	to	significantly	drive	the	separation	of	

clover	genotypes	(Appendix	Figure	B.4).	These	results	were	further	confirmed	using	

principal	components	analysis	that	yielded	qualitatively	similar	results	to	the	NMDS	

analysis,	but	clover	genotypes	were	not	as	distinguished	(Appendix	Figure	B.5).		

	

Additionally,	in	order	to	further	determine	which	Rlt	gene	most	greatly	influenced	the	

population	structure,	fixation	index	(FST)	was	calculated	for	all	four	Rlt	genes	

individually	and	as	a	combined	value.	No	clear	pattern	was	discernible	between	

clover	genotypes	(Appendix	Figure	B.6).	However,	global	FST	calculations,	which	also	

did	not	consider	the	clover	genotype	or	geographic	location	of	samples	a	priori,	

suggested	that	population	structure	was	predominantly	determined	by	nodA	

compared	to	the	three	other	genes	(Appendix	Table	B.1).		

	

Overall,	the	differences	in	Rhizobium	allelic	variation	could	be	distinguished	between	

some,	but	not	all	clover	genotypes.	Observed	diversity	was	found	to	be	largely	

depended	on	the	gene	of	interest	(rpoB,	recA,	nodA	or	nodD),	and	rpoB	and	recA	

alleles	showed	the	greatest	allelic	distinction	specifically	between	Cross	1	and	Cross	2	

clover	genotypes.		
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rpoB recA nodA nodD

Gene

−5
−4
−3
−2
−1

Klondike

Cross 4

Cross 3

Cross 2

Cross 1

Allele
Abundance

High

Low

Figure 3.3 Relative abundance of unique alleles identified for four Rlt genes (rpoB, recA, nodA and nodD) 
varied in root nodule populations from five white clover genotypes (Cross 1-4, Klondike). Raw UMI 
sequence counts for each allele were converted to relative abundances (between 0-1) and subsequently 
log10 transformed for visualisation. Relative abundance counts of 0 were converted to 1x10-5 (one decimal 
place lower than the smallest relative abundance value across all samples) before log transformation. 
Therefore, log transformation produces a negative abundance score, whereby more negative scores denote 
for a lower allele abundance is (yellow = high abundance, blue = low abundance). Clover genotype samples 
were collected across two plots (displayed as separate row sections), and 3 locations were sampled within 
each plot (displayed as three rows within each plot section). Only samples from Block 1 are shown. Tick 
marks at the top of the heatmap indicate every 5 alleles. 
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Figure 3.4 The level of observed allelic dissimilarity between clover genotypes differed depending on the Rlt 
gene marker. a) Pairwise allelic dissimilarity of four Rlt genes combined (rpoB, recA, nodA and nodD) 
between white clover nodule samples. Bray-Curtis dissimilarity is shown on a scale ranging from low (red) 
to high (white) allelic dissimilarity. Additionally, Non-metric Multi-Dimensional Scaling (NMDS) analysis of 
the relative abundances of four gene alleles b) in combination, and individually; c) rpoB, d) recA, e) nodA, f) 
nodD displays the separation of sampled based on their allelic dissimilarity. Allelic dissimilarity is displayed 
across two dimensions, and samples that are closer are more allelically similar. Samples are from Block 1 
and are grouped by their respective plot (n = 3, and 2 plots per clover genotype) and coloured by their 
clover genotype host.  
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3.4.3. Rlt genospecies frequencies differ between clover genotypes  
 
In	order	to	study	whether	different	white	clover	genotypes	preferentially	selected	for	

specific	Rlt	genospecies,	rpoB	and	recA	allele	sequences	were	assigned	to	a	

genospecies	(gsA-E)	(Kumar	et	al.,	2015),	and	relative	genospecies	frequencies	in	

nodule	samples	were	calculated	(see	Methods).		

	

The	top	four	most	abundant	rpoB	and	recA	allele	sequences	could	all	be	assigned	to	

known	genospecies	using	the	196	Rlt	genome	dataset	(Cavassim	et	al.,	2019);	in	total,	

9	out	of	16	rpoB	sequences,	and	5	out	of	8	recA	sequences,	were	assigned	to	

genospecies.	Other	sequences	did	not	largely	contribute	to	the	overall	relative	

abundances,	but	they	all	exceeded	1%	relative	ranked	abundance	in	at	least	one	

sample.	Therefore,	the	remaining	unassigned	sequences	were	searched	for	against	

the	GenBank	database	in	order	to	try	to	assign	them	at	the	genospecies	level.	No	

remaining	allele	sequences	matched	to	GenBank	whole	genome	assemblies	with	

known	genospecies	identities,	although	some	allele	sequences	matched	100%	

identity	to	single	GenBank	sequences	(i.e.	not	from	a	full	genome	assembly).	

However,	genospecies	identity	could	not	be	determined	based	on	these	sequences.	

Therefore,	all	remaining	allele	sequences	(7	out	of	16	rpoB	sequences	and	3	out	of	8	

recA	sequences)	were	classified	as	‘unassigned	genospecies’.		

	

The	genospecies	frequencies	determined	from	rpoB	allele	sequences	significantly	

strongly	correlated	with	genospecies	frequencies	determined	from	recA	allele	

sequences	(Pearson’s	Correlation:	R	=	0.951,	t	=	41.193,	df	=	178,	p	<	0.001).	

However,	a	greater	number	of	recA	alleles	could	be	associated	to	gsA,	whereas	no	gsA	

alleles	were	identified	for	rpoB.	Similarly,	rpoB	alleles	were	more	often	associated	

with	gsC,	and	recA	alleles	associated	with	gsB,	suggesting	a	potential	bias	in	

amplification	of	some	templates	depending	on	the	gene	of	interest.		

	

Noticeably,	all	clover	genotypes	were	significantly	dominated	by	either	gsB	or	gsC	in	

their	nodules	(Figure	3.5;	recA	ANOVA	genospecies,	F5,150	=	365.597,	p	<	0.001;	rpoB	

ANOVA	genospecies,	F5,150	=	210.43,	p	<	0.001;	Appendix	Table	B.7-Appendix	Table	

B.8).	Similarly,	a	significant	interaction	was	identified	between	genospecies	

abundances	and	clover	genotype	for	both	recA	and	rpoB	alleles	(recA	ANOVA	

genospecies*clover	genotype:	F20,150	=	7.144,	p	<	0.001;	rpoB	ANOVA	

genospecies*clover	genotype:	F20,150	=	10.25,	p	<	0.001).	In	particular,	the	check	
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variety,	Klondike,	contained	a	significantly	lower	percentage	of	gsB	rpoB	and	recA	

alleles	in	nodules	compared	to	all	F2	Crosses	(p	<	0.05).	Similarly,	Klondike	nodules	

also	contained	a	significantly	greater	percentage	of	rpoB	and	recA	gsC	alleles,	

compared	to	all	other	F2	Crosses	(p	<	0.05).	No	significant	difference	was	found	in	

genospecies	composition	between	F2	Crosses	for	recA	or	rpoB,	with	the	exception	of	

Cross	1	rpoB	alleles	containing	a	significantly	greater	percentage	of	gsC,	and	

significantly	lower	percentage	of	gsB,	compared	to	Cross	2	(p	<	0.05),	but	this	was	not	

significantly	shown	for	recA	alleles.	In	all	samples,	gsA,	gsD	and	gsE	were	present	in	

low	abundance	compared	to	gsB	and	gsC	and	totalled	less	than	16%	of	recA	and	rpoB	

allele	representation	in	nodule	samples.	Together,	these	results	show	that	

genospecies	can	differ	between	clover	genotypes,	and	this	was	predominantly	

identified	between	the	check	variety,	Klondike,	compared	to	the	other	F2	Crosses.		

	 	



 95 

	
  

recA

rpoB

a)

b)

0.00

0.25

0.50

0.75

1.00

Cross 1 Cross 2 Cross 3 Cross 4 Klondike
Clover genotype

 re
cA

 fr
eq

ue
nc

y Genospecies
gsA
gsB
gsC
gsD
gsE
Unassigned

0.00

0.25

0.50

0.75

1.00

Cross 1 Cross 2 Cross 3 Cross 4 Klondike
Clover genotype

 rp
oB

 fr
eq

ue
nc

y Genospecies
gsA
gsB
gsC
gsD
gsE
Unassigned

Figure 3.5 The mean relative abundances of genospecies A-E allele sequences within each clover 
genotype was calculated for a) recA alleles or b) rpoB alleles. Klondike samples contained a 
significantly greater proportion of gsC alleles compared to other crosses, whereas Cross 2 contained a 
significantly lower proportion of gsC alleles compared to other clover genotypes. Allele sequences 
which could not be assigned to a genospecies were labelled as ‘Unassigned’. All clover genotypes 
were sampled in replicates of 6 from Block 1. 
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3.4.4. Similarity of housekeeping gene allele frequencies is predominantly 

associated with geographic distance 

 

To	test	whether	allelic	similarity	between	samples	was	associated	with	geographic	

distance	or	the	plant	genotype	that	samples	were	isolated	from,	a	linear	mixed	effects	

model	was	undertaken	for	each	Rlt	gene	(rpoB,	recA,	nodA	and	nodD;	Appendix	Table	

B.9).		

	

Geographic	distance	was	found	to	be	significantly	associated	with	rpoB	allelic	

dissimilarity	(Figure	3.6a;	rpoB	CoeffGeographicdistance	estimate	=	0.003,	std.	error	=	

0.001,	t	=	2.894,	p	<	0.01).	Whether	samples	were	isolated	from	the	same	clover	

genotype	was	also	suggested	to	significantly	associate	with	rpoB	allelic	dissimilarity,	

with	samples	of	the	same	clover	genotype	showing	significantly	similar	rpoB	allelic	

diversity	than	sample	pairs	from	different	clover	genotypes	(rpoB	CoeffGenotypedifference	

estimate	=-0.059,	std.	error	=	0.020,		t	=-2.967,	p	<	0.01).	However,	parametric	

bootstrapping	of	confidence	interval	parameters	showed	that	only	geographic	

distance	was	a	reliable	predictor	(Table	3.1).	Despite	this,	clover	genotype	was	found	

to	significantly	affect	model	fit	(rpoB:	X26,5	=	8.653,	p	<	0.01).	Therefore,	this	suggests	

that	for	rpoB	both	geographic	distance	and	clover	genotype	influences	rpoB	diversity	

in	clover	nodules,	but	geographic	distance	has	a	potentially	stronger	association	than	

clover	genotype	similarity.	

	

Similarly	to	rpoB,	geographic	distance	was	found	to	be	significantly	associated	with	

recA	allelic	dissimilarity	(Figure	3.6b;	recA	CoeffGeographicdistance	estimate	=	0.003,	std.	

error	=	0.001,	t	=	2.157,	p	<	0.05).	However,	recA	diversity	was	found	to	not	be	

significantly	influenced	by	whether	samples	were	isolated	from	the	same	clover	

genotype.	LR	test	and	parametric	bootstrapping	of	confidence	intervals	further	

confirmed	that	geographic	distance	was	a	reliable	effect	and	improved	model	fit	

(Table	3.1;	X26,5	=	4.532,	p	<	0.05).	This	suggests	that	geographic	distance	is	

significantly	associated	with	recA	diversity,	whereas	the	clover	genotype	from	where	

the	strains	were	isolated	had	no	significant	effect.	

	

For	symbiosis	genes,	nodA	and	nodD,	no	significant	association	was	identified	

between	allelic	dissimilarity	and	geographic	distance	or	clover	genotype	(Appendix	

Figure	B.7).	This	was	confirmed	by	the	following:	LR	test	between	full	and	reduced	
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models	removing	either	clover	genotype	or	geographic	distance	fixed	effects;	

(nodAGenotypedifference	reduced	model:	X26,5	=	3.163,	p	>	0.05;	nodAGeographicdistance	reduced	

model:	X26,5	=	0.119,	p	>	0.05;	nodDGenotypedifference	reduced	model:	X26,5	=	0.478,	p	>	

0.05;	nodDGeographicdistance	reduced	model:	X26,5	=	0.126,	p	>	0.05);	p-values	calculated	

for	fixed	effects	parameters	within	models	(p	>	0.05);	and	parametric	bootstrapping	

for	95%	confidence	intervals	of	full	model	parameters	included	0	(Table	3.1).	

	

To	further	observe	the	extent	to	which	geographic	distance	was	associated	with	Rlt	

allelic	diversity,	the	allelic	diversity	of	the	six	Klondike	samples	already	evaluated	

from	Block	1	(Klondike	plots	a	and	b;	Figure	3.1)	were	compared	to	three	additional	

nodule	samples	collected	from	another	replicate	Klondike	plot	located	within	Block	2	

which	is	separated	by	a	larger	geographical	distance	to	the	other	plots	(Klondike	plot	

c;	Figure	3.1).	NMDS	analysis	identified	that	the	Rlt	allelic	diversity	of	the	Block	2	plot	

(c)	was	distinctly	different	to	the	other	two	Klondike	plots	from	Block	1	(a	and	b)	

(Figure	3.6c-d).	To	further	support	this,	PCA	showed	a	similar	separation	of	Klondike	

plot	c	from	plots	a	and	b	(Appendix	Figure	B.5).	Additionally,	allelic	dissimilarity	and	

pairwise	FST	calculated	from	relative	abundances	of	all	four	genes	combined	

significantly	correlated	with	geographic	distance	between	samples	(Figure	3.6e-f;	

allelic	dissimilarity	Pearson’s	correlation	R	=	0.314,	p	<	0.05;	FST	Pearson’s	correlation	

R	=	0.348,	p	<	0.05).	This	indicated	that	differences	in	Rlt	allelic	diversity	between	

samples	was	likely	to	be	partially	driven	by	distance	between	sampling	points,	even	

for	the	same	clover	genotypes	(Figure	3.6c-f).		
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Table 3.1 Parametric bootstrapping of fixed effects 95% confidence intervals for each Rlt gene (rpoB, recA, 
nodA and nodD) mixed effects model. 

Model Fixed effect 95% Confidence 
Interval 

Original 
Beta 
Estimate 

Bias Std. error 

rpoB Geographic 
distance 

0.0012, 0.0055 0.003  -0.00001 0.001 

Clover genotype 
difference 

-0.0986, -0.0196 -0.059 0.0005   0.020 

recA Geographic 
distance 

0.0001, 0.0056 0.003 -0.00003 0.001 

Clover genotype 
difference 

-0.0619, 0.0368 -0.013 -0.00008 0.025 

nodA Geographic 
distance 

-0.0025, 0.0034 0.0005  -0.00002 0.001 

Clover genotype 
difference 

-0.0928, 0.0019 -0.044  -0.0005   0.024 

nodD Geographic 
distance 

-0.0027, 0.0019 -0.0004  -0.00005 0.001 

Clover genotype 
difference 

-0.0575, 0.0258 -0.015  -0.0006 0.021 
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Figure 3.6 Geographic distance was associated with allelic dissimilarity between samples. a) Euclidean 
geographic distance correlated to rpoB allelic dissimilarity for all pairwise sample comparisons from 
Block 1. b) Euclidean geographic distance correlated to recA allelic dissimilarity for all pairwise sample 
comparisons from Block 1. c) Pairwise allelic dissimilarity was calculated between all Klondike samples 
across 3 plots (plots a, b from Block 1 and c from Block 2). Allelic dissimilarity is shown on a scale ranging 
from low (red) to high (white) allelic dissimilarity. d) Non-metric Multi-Dimensional Scaling (NMDS) of 
allelic dissimilarity of all four genes in combination from Klondike nodule samples across 3 plots (plots a, 
b from Block 1 and c from Block 2). e) Euclidean geographic distance correlated to all genes combined 
allelic dissimilarity for pairwise Klondike sample comparisons across 3 plots (R = 0.314, p < 0.05). f) 
Euclidean geographic distance correlated to all genes combined FST for pairwise Klondike sample 
comparisons across 3 plots (R = 0.348, p < 0.05). Allelic (Bray-Curtis) dissimilarity and FST were calculated 
using relative abundance UMI sequence counts for each of the four Rlt genes (rpoB, recA, nodA and 
nodD). 



 100 

 
3.5. Discussion 

 

This	study	investigated	whether	clover	genotypes	were	associated	with	particular	

symbiont	genotypes	within	one	field,	and	if	this	pattern	was	affected	depending	on	

the	specific	gene	under	investigation	or	the	local	growth	conditions	(distance	

between	sampled	plots).	Rlt	nodule	populations	from	five	genetically	distinct	white	

clover	genotypes,	grown	in	conventional	trial	field	conditions,	were	evaluated	for	

differences	in	Rlt	allele	composition	based	on	two	chromosomal	and	two	symbiosis	

genes	(rpoB,	recA,	nodA	and	nodD).	When	the	allelic	diversity	of	all	genes	was	

considered	together,	Rlt	diversity	in	samples	clustered	to	some	extent	by	clover	

genotype	host.	When	Rlt	allelic	diversity	was	evaluated	on	an	individual	gene	basis,	

housekeeping	genes	rpoB	and	recA	showed	a	greater	distinction	between	clover	

genotypes	than	symbiosis	genes.	Further	analysis	identified	some	clover	genotypes	

displayed	significantly	different	relative	proportions	of	Rlt	genospecies	in	nodules.	

Additionally,	diversity	of	Rlt	genes	was	not	necessarily	only	a	result	of	the	host	clover	

genotype,	and	the	similarity	of	rpoB	and	recA	diversity	between	samples	was	

significantly	associated	with	geographic	distance	between	sampled	plants	(higher	

dissimilarity	with	increasing	sampling	distance).	This	suggests	that	variation	is	

driven	by	a	combination	of	clover	genotype	and	local	growth	conditions	in	the	field,	

and	therefore	local	microenvironmental	variation	is	also	likely	important	for	

explaining	intraspecific	symbiotic	diversity	in	the	rhizosphere.		

	

3.5.1. White clover genotype symbiotic selectivity under field conditions 

 
No	clear	distinction	of	allele	presence	or	absence	was	identified	between	clover	

genotypes,	although	a	larger	number	of	unique	alleles	and	greater	heterogeneity	was	

found	for	presence	of	symbiosis	gene	alleles	than	housekeeping	genes	(Figure	3.2).	

For	each	of	the	four	Rlt	genes,	all	nodule	samples	were	found	to	predominantly	

consist	of	the	same	few	dominating	alleles	with	many	additional	sequences	present	at	

lower	abundances,	as	similarly	identified	with	previous	studies	(Leung,	Wanjage	and	

Bottomley,	1994;	ZéZé,	Mutch	and	Young,	2001;	Laguerre	et	al.,	2003;	Fagerli	and	

Svenning,	2005).	It	has	previously	been	suggested	that	isolates	from	large	nodules	are	

usually	effective	with	a	wide	range	of	white	clover	genotypes,	which	could	explain	the	

homogeneity	in	allele	presence	across	clover	genotypes	in	this	study	(Mytton,	1975).	

However,	the	effect	of	host	genotype	on	microbial	diversity	has	been	demonstrated	
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through	variation	in	abundance	of	many	OTUs,	rather	than	based	on	the	presence	of	

single	alleles	alone	(Bulgarelli	et	al.,	2015).	The	variation	in	clover	genotype	

distinction	across	the	four	genes	suggests	that	use	of	multiple	genes	is	essential	for	

providing	a	better	view	of	differences	between	clover	genotypes,	and	observed	

variation	is	fundamentally	dependent	on	choice	of	marker	genes.	This	conclusion	is	

further	supported	by	that	the	compatibility	between	legume-rhizobium	genotypes	

has	been	attributed	to	rhizobial	differences	in	both	chromosomal	and	symbiosis	

genetic	diversity	(Brewin,	Wood	and	Young,	1983;	Paffetti	et	al.,	1996).	

	

When	relative	abundances	of	rpoB,	recA,	nodA	and	nodD	were	considered	in	

combination,	differences	in	rhizobial	genotype	diversity	was	observed	between	some	

clover	genotypes,	but	not	all	(Figure	3.4b).	At	the	individual	gene	level,	clover	

genotypes	significantly	separated	based	on	nodule	sample	allelic	dissimilarity	of	

housekeeping	genes,	rpoB	and	recA	alleles,	but	not	nodA	and	nodD	(Figure	3.4c-f).	The	

rpoB	and	recA	allelic	dissimilarity	between	samples	was	assumed	to	be	

predominantly	driven	by	changes	in	allele	frequencies	rather	than	allele	

presence/absence,	as	all	alleles	were	present	in	nearly	all	clover	genotypes.	Mixed	

effects	models	further	confirmed	that	rpoB	allelic	diversity	was	more	similar	between	

samples	from	the	same	clover	genotype	than	different	clover	genotypes.	However,	for	

all	other	genes	no	significant	increase	in	diversity	similarity	was	found	between	

samples	of	the	same	clover	genotype.	The	results	of	this	study	are	in	line	with	

previous	findings	where	it	was	reported	that	Rlt	selection	varied	between	different	

varieties	of	clover	and	also	that	significant	variation	in	Rlt	selection	was	observed	

even	between	plants	of	the	same	variety	(Russell	and	Jones,	1975;	Jones	and	

Hardarson,	1979).	Other	investigations	have	similarly	found	host	genotype	

significantly	influenced	rhizobia	partner	choice	and	nodule	populations	in	multiple	

legume	species	(Mytton,	1975;	Russell	and	Jones,	1975;	Paffetti	et	al.,	1996;	Wadhwa,	

Dudeja	and	Yadav,	2011;	Bourion	et	al.,	2018).	White	clover	varieties	have	also	been	

found	to	differ	in	their	preference	for	specific	Rlt	strains,	but	this	was	only	when	

inoculated	with	a	simplistic	two-strain	community	(Jones	and	Hardarson,	1979).	

Additionally,	results	have	been	found	previously	where	legume	plants	were	shown	to	

form	more	productive	symbioses	with	rhizobia	isolated	from	more	genetically	related	

plants	than	with	rhizobia	isolated	from	more	distantly	related	plants,	suggesting	that	

the	preference	for	rhizobium	strains	is	genetically	influenced	by	the	host,	and	

potentially	even	at	the	intraspecies	level	(Mytton,	1975;	Jones	and	Hardarson,	1979).	
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Contrastingly,	some	studies	have	not	found	any	associations	between	cultivar	and	

rhizobium	strains	(Bromfield,	1984;	Harrison,	Young	and	Jones,	1987;	Buttery,	Park	

and	van	Berkum,	1997;	McGinn	et	al.,	2016).	The	relative	diversity	of	nodule	

communities	is	therefore	likely	effected	by	both	gene	marker	and	experimental	

design.	As	a	result,	a	combination	of	different	gene	markers	should	be	utilised	to	

better	capture	this	diversity	rather	than	through	evaluation	of	a	single	gene	marker.	

Furthermore,	observing	diversity	in	applicable	agricultural	experiments	likely	

reduces	observed	Rlt	community	differences	between	cultivars	due	to	the	influence	

multiple	additional	environmental	factors	compared	to	investigations	in	controlled	

greenhouse	conditions.		

	

While	housekeeping	genes	showed	the	greatest	differences	between	clover	genotypes	

in	this	study,	the	symbiosis	genes	showed	no	significant	distinction	between	clover	

genotypes.	The	interspecies	specificity	in	the	legume-rhizobia	symbiosis	is	

predominantly	determined	from	the	interaction	between	NodD	and	legume	

flavonoids,	which	if	compatible,	enable	the	activation	of	nodulation	(nod)	genes	to	

begin	Nod	factor	(lipochitooligosaccharide)	production	for	initiation	of	symbiotic	

establishment	(Redmond	et	al.,	1986;	Perret,	Staehelin	and	Broughton,	2000;	Maj	et	

al.,	2010;	Hassan	and	Mathesius,	2012).	Therefore,	it	was	predicted	that	differences	in	

nodD	allelic	diversity	would	be	observed	between	clover	genotypes	due	to	the	

importance	of	nodD	for	determining	legume-Rhizobium	interspecies	partner	

compatibility	for	interspecies	level	symbiotic	establishment	(Redmond	et	al.,	1986;	H	

P	Spaink	et	al.,	1987;	Laguerre	et	al.,	1996;	Perret,	Staehelin	and	Broughton,	2000;	

ZéZé,	Mutch	and	Young,	2001;	Maj	et	al.,	2010;	Hassan	and	Mathesius,	2012).	Other	

studies	have	also	identified	that	nodD	genotype	preferences	were	indistinguishable	

between	Trifolium	species	hosts	(McGinn	et	al.,	2016),	although	faba	bean	cultivars	

have	been	suggested	to	preferentially	select	for	different	nodD	genotypes	under	

greenhouse	conditions	(Xiong	et	al.,	2017).	As	this	was	not	observed	in	this	study	it	

suggests	that	differences	in	nodD	nodule	diversity	may	only	be	evident	at	the	

interspecies	level	for	white	clover,	or	this	specificity	becomes	unclear	in	an	

agricultural	setting.	Other	known	legume-rhizobia	symbioses	have	been	used	to	

evaluate	cultivar	x	strain	interaction	differences	utilising	around	2-5	strains	as	an	

inoculum	under	sterile	greenhouse	conditions	or	using	collected	soil	from	different	

geographical	areas	(Russell	and	Jones,	1975;	Roughley,	Blowes	and	Hurridge,	1976;	

Jones	and	Hardarson,	1979;	C.	Yang	et	al.,	2017;	Bourion	et	al.,	2018).	While	simplistic	



 103 

rhizobium	selection	can	be	identified	between	cultivars	under	restricted	conditions	

with	synthetic	minimal	communities,	an	inoculum	with	more	strains	or	growth	in	

natural	field	conditions	might	better	reveal	if	identified	host	preferences	for	

rhizobium	population	genotypes	are	maintained	in	application	(Wadhwa,	Dudeja	and	

Yadav,	2011).	

	

Similarly,	for	nodA	no	significant	differences	in	diversity	were	observed	between	

clover	genotypes	at	the	intraspecies	level.	However,	nodA	allele	sequences	were	

found	to	cause	the	most	population	structure	from	global	Fixation	index	(FST)	

estimates	(Appendix	Table	B.1).	It	was	predicted	that	differences	in	nodA	diversity	

would	be	found	between	white	clover	genotypes.	This	was	because	in	previous	

studies	nodA	allelic	differences	have	been	shown	to	influence	NodA	specificity	for	

different	fatty	acid	substrates	during	N-acyl	substitution,	and	consequently	nodA	has	

been	suggested	to	act	as	a	component	in	host-specific	nodulation	and	host	range,	at	

least	at	an	interspecies	level	(Debellé	et	al.,	1996;	Ritsema	et	al.,	1996;	Perret,	

Staehelin	and	Broughton,	2000;	Lupwayi,	Clayton	and	Rice,	2006;	Downie,	2014;	

Wang,	Liu	and	Zhu,	2018).	However,	the	contrary	was	observed	at	the	intraspecies	

level.	nodA	alleles	have	also	been	suggested	to	be	more	related	to	host	plant	

taxonomy	than	bacterial	taxonomy,	further	associating	nodA	allelic	differences	to	host	

specificity	(Debellé	et	al.,	1996;	Igolkina	et	al.,	2019).	Despite	this,	types	of	rhizobial	

Nod	factors	do	not	strongly	correlate	to	the	plants	they	initiate	symbiosis	with.	For	

example,	major	Nod	factors	secreted	by	Rlt	are	also	secreted	by	Rlv	even	though	they	

form	symbiosis	with	different	legume	species	(Perret,	Staehelin	and	Broughton,	

2000).	The	majority	of	studies	also	agree	that	a	large	amount	of	symbiotic	variability	

and	rhizobial	genetic	diversity	is	observed	at	the	inter-	and	intra-species	level	

between	legume	hosts	(Russell	and	Jones,	1975;	Bromfield,	1984;	Harrison,	Young	

and	Jones,	1987;	Wadhwa,	Dudeja	and	Yadav,	2011;	McGinn	et	al.,	2016;	C.	Yang	et	al.,	

2017;	Kazmierczak	et	al.,	2017;	Bourion	et	al.,	2018).	As	a	result,	further	research	into	

the	associations	between	cultivar	host-specificity	and	nodA	would	aid	understanding	

of	its	importance	for	intraspecies	symbiotic	establishment.		

	

This	study	also	investigated	whether	the	relative	abundances	of	Rlt	genospecies	

differed	between	clover	genotypes	(Kumar	et	al.,	2015;	Cavassim	et	al.,	2019).	This	

was	undertaken	in	order	to	observe	whether	Rlt	variation	could	be	explained	by	

putative	functional	differences	between	genospecies	when	interacting	with	distinct	
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clover	genotypes.	In	this	study,	the	relative	proportions	of	Rlt	genospecies	were	

found	to	differ	between	clover	genotypes	(Figure	3.5).	Relative	frequencies	of	gsB	and	

gsC,	based	on	recA	and	rpoB	allele	frequencies,	were	found	to	significantly	differ	

between	pure	check	variety	Klondike	nodules	and	all	other	F2	variety	Crosses,	and	

also	between	Cross	1	and	Cross	2	(Figure	3.5).	However,	there	were	no	differences	in	

the	relative	proportions	of	Rlt	genospecies	between	comparisons	of	most	F2	crosses,	

and	this	was	mostly	due	to	the	large	amount	of	variation	in	genospecies	abundances	

within	clover	genotypes.	The	proportion	of	‘unassigned	genospecies’	allele	sequences	

may	also	be	able	to	partially	account	for	the	lack	of	observed	genospecies	differences.	

White	clover	are	outbreeders	and	therefore	a	large	amount	of	genetic	heterogeneity	

within	and	between	varieties	is	somewhat	expected	based	on	previous	findings.	For	

example,	within	variety	heterogeneity	has	previously	been	shown	through	varied	

nodulation	success	of	inoculated,	heterogeneous	plant	variety	populations	(Russell	

and	Jones,	1975;	Jones	and	Hardarson,	1979).	Nevertheless,	the	clovers	sampled	in	

this	study	were	taken	from	industrial	breeding	programme	trial	plots,	and	it	is	

assumed	that	the	heterogeneity	within	these	crosses	is	reduced	as	much	as	possible	

for	commercial	purposes.	The	percentage	genetic	similarity	between	the	white	clover	

F2	variety	crosses	are	unknown.	It	is	also	unknown	how	much	the	clover	genotypes	

differed	in	traits	associated	with	host-filtering	mechanisms,	such	as	production	of	

various	root	exudates	and	microbe	recognition	systems	(Jones	et	al.,	2019).	However,	

it	was	hypothesised	that	a	clearer	distinction	of	host	Rhizobium	nodule	diversity	

would	be	observed	between	pure	varieties	compared	to	F2	crosses.	Despite	this	

assumption,	the	pure	variety	used	in	this	study	(Klondike)	displayed	just	as	much	Rlt	

allelic	variation,	if	not	more,	as	the	F2	crosses.	Future	similar	experiments	could	be	

undertaken	with	more	genetically	distinct	and	defined	clover	varieties	to	confirm	

whether	a	greater	distinction	of	rhizobia	nodule	communities	is	evident	compared	to	

F2	crosses.	

 

3.5.2. Geographical distance contributes to nodule Rlt diversity 

 
The	genetic	dissimilarity	in	rpoB	and	recA	housekeeping	genes,	was	significantly	

associated	with	geographic	distance	between	sampled	plants	(Figure	3.6a-b).	

Conversely,	diversity	of	symbiosis	genes,	nodA	and	nodD,	were	not	significantly	

associated	with	geographic	distance	or	whether	samples	were	isolated	from	the	same	

clover	genotype	(Appendix	Figure	B.7).	When	using	samples	from	a	single	clover	

genotype	(Klondike),	dissimilarity	of	allelic	diversity	was	found	to	increase	with	
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increased	geographic	distance	between	sampling	points	(Figure	3.6d-f).	gsB	rpoB	and	

recA	alleles	were	found	to	dominate	nodule	samples	from	Block	1	plots	(Figure	3.5).	

However,	Klondike	plot	c	from	Block	2	(Figure	3.6c-d)	displays	different	allelic	

composition	because	it	is	actually	dominated	by	gsC	alleles.	Additionally,	other	

nodule	samples	collected	from	Block	2	plots	at	the	same	time	but	not	included	in	this	

study	also	showed	gsC	alleles	dominating	nodule	populations.	This	is	interesting,	as	

previously	gsC	has	been	found	to	be	the	most	prevalent	genospecies	in	Danish	soils	

(Cavassim	et	al.,	2020).	Furthermore,	nodule	samples	used	for	MAUI-seq	method	

validation	were	collected	from	the	same	site	a	year	earlier	(although	from	different	

parts	of	the	same	site)	and	these	samples	were	also	dominated	by	gsC	alleles.	This	

suggests	that	intraspecies	composition	of	rhizobia	clover	symbionts	vary	

considerably	within	fields	between	local	microenvironments	of	individual	plants.	

Previous	studies	have	also	shown	chromosomal	genotypes	to	be	strongly	associated	

with	geographic	origin	(Fagerli	and	Svenning,	2005).	Together	these	results	suggest	

that	also	other	variation	associated	with	local	growth	conditions	likely	affected	the	

symbiont	diversity	in	addition	to	plant	genotype	identity.	For	example,	differences	in	

soil	conditions,	such	as	changes	in	pH	or	chemical	composition,	have	been	associated	

with	diversity	and	composition	of	rhizosphere	microbial	communities	(Wang	et	al.,	

2018).	This	could,	in	part,	determine	the	initial	rhizobial	population	‘pool’	of	available	

genotypes	for	the	plants	(Paffetti	et	al.,	1996;	Philippot	et	al.,	2013).	The	influence	of	

environment	on	population	diversity	is	important,	as	small	differences	in	Rhizobium	

genotype	frequencies	between	soils	have	been	strongly	associated	with	the	

distribution	of	bacterial	genotypes	in	nodules	(ZéZé,	Mutch	and	Young,	2001;	

Laguerre	et	al.,	2003).	Unfortunately,	the	initial	rhizosphere	soil	population	for	each	

sample	was	not	determined	in	this	study	and	could	have	provided	further	insight	into	

additional	biogeographic	patterns	between	samples.	

	

Moreover,	rpoB	was	influenced	by	both	host	genotype	and	geographic	distance,	

although	there	was	no	significant	interaction	between	genotype	and	geographic	

distance.	However,	it	was	observed	that	even	Klondike	samples,	which	showed	

significant	allelic	diversity	from	other	clover	genotypes,	displayed	increased	genetic	

dissimilarity	with	increased	geographic	distance	across	the	field	(Figure	3.6).	

Therefore,	it	is	possible	that	interactive	effects	between	the	field	geography	and	host	

genotype	could	have	cooperatively	manipulated	rhizobia	diversity	as	it	has	been	

shown	in	both	soybean	and	common	bean	legumes,	with	soil	type	predominantly	



 106 

influencing	microbiome	community	and	host	genotype	modifying	the	selectivity	

(Aouani	et	al.,	1997;	Nleya,	Walley	and	Vandenberg,	2001;	Argaw	and	Muleta,	2017;	

Liu	et	al.,	2019).	This	highlights	the	importance	of	considering	both	soil	

microenvironment	and	plant	genetic	variability	when	applying	rhizobial	inoculants	in	

the	field,	as	field	geography	could	influence	the	initial	rhizosphere	microbial	

population	‘pool’	in	addition	to	further	symbiotic	selectivity	imposed	by	the	clover	

genotype	(Liu	et	al.,	2019).	

	

3.5.3. Study limitations and future research 

 
One	considerable	limitation	of	this	study	was	that	the	level	of	observed	diversity	

within	and	between	host	genotypes	was	shown	to	be	dependent	on	the	gene	markers	

of	interest	(Figure	3.4).	As	a	result,	potential	differences	in	Rlt	nodule	diversity	

between	plant	genotypes	could	have	been	missed	because	of	marker	gene	choice.	

This	could	have	been	potentially	achieved	by	analysing	the	genetic	diversity	of	

additional	accompanying	symbiosis	genes	which	may	also	influence	inter-	and	intra-

species	symbiotic	specificity.	For	example,	interactions	between	nodA	and	other	nod	

genes	(nodBC	and	nodEF)	have	been	show	to	affect	Nod	factor	production	and	

functionality,	and	by	association,	efficiency	for	symbiotic	establishment	(Debellé	et	

al.,	1996;	Ritsema	et	al.,	1996;	Duodu	et	al.,	2006;	Maj	et	al.,	2010).	Additionally,	

intraspecies	host	specificity	between	white	clover	and	Rlt	may	also	be	regulated	by	

other	molecular	interactions	at	later	stages	of	symbiotic	establishment,	such	as	from	

extracellular	polysaccharide	production,	identification	of	secretion	systems	and	

detection	of	microbe-associated	molecular	patterns,	which	could	be	investigated	

further	(Perret,	Staehelin	and	Broughton,	2000;	Simms	and	Taylor,	2002;	Wang,	Liu	

and	Zhu,	2018).	In	the	future	it	would	be	important	to	take	these	also	into	account	by	

perhaps	sequencing	for	other	nodulation	genes,	or	even	investigate	how	differences	

in	legume	cultivar	gene	sequences	such	as	those	associated	with	pathogen	

recognition	systems	are	associated	with	observed	rhizobium	nodule	diversity.	

	

Unfortunately,	the	abiotic	soil	factors	and	initial	rhizosphere	soil	community	

composition	for	each	sample	was	not	evaluated.	It	would	otherwise	have	been	

insightful	to	determine	if	the	initial	rhizosphere	Rlt	population	pool	differed	between	

clover	genotype	samples.	Legume	root	microbiomes	have	been	found	to	significantly	

differ	to	those	of	non-legume	plants,	due	to	their	predominant	symbiotic	interaction	

with	rhizobia	(Turner	et	al.,	2013;	Hartman	et	al.,	2017).	However,	individual	
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genotypes	have	been	reported	to	only	weakly	influence	rhizosphere	microbiome	

composition	depending	on	the	soil	properties	and	plant	species	(Liu	et	al.,	2019).	

Additionally,	abiotic	factors	such	as	nitrogen	content,	oxygen	content,	moisture,	pH	

and	salinity	were	also	not	evaluated	which	could	critically	affect	rhizobial	soil	

population	structure	at	different	sampling	points	(Harrison,	Jones	and	Young,	1989;	

Paffetti	et	al.,	1996;	Wang	et	al.,	2018).	In	the	future,	it	would	be	interesting	to	

replicate	the	experimental	design	in	more	controlled	conditions	in	greenhouse	

experiments	with	known	initial	rhizosphere	populations.	The	link	between	selection	

of	different	rhizobium	genotypes	and	clover	yield	was	also	not	investigated.	In	order	

to	achieve	this,	more	controlled	greenhouse	experiments	would	be	required.	This	

type	of	experiment	would	be	needed	to	systematically	disentangle	interactions	

between	the	many	different	genetic	and	environmental	factors	influencing	symbiosis.	

	

Finally,	in	this	study	clovers	were	sampled	in	October	which	may	have	resulted	in	an	

altered	soil	microbial	community	composition	compared	to	if	sampling	had	taken	

place	in	the	summer	months,	after	nitrogen	fertilisation,	or	at	an	earlier	plant	growth	

stage	before	the	first	cut	was	harvested	in	the	field	(Inceoǧlu	et	al.,	2010).	However,	it	

was	previously	observed	that	the	same	pool	of	rhizobia	genotypes	dominated	sample	

populations	regardless	of	the	time	of	year	sampling	(Duodu	et	al.,	2006),	which	

suggest	that	the	sampling	time	might	have	been	a	lesser	problem.	

	

3.5.4. Conclusions 

 
Investigating	the	extent	to	which	partner-choice	is	advantageous	in	mutualistic	

symbioses	is	critical	to	aiding	our	understanding	of	the	evolutionary	dynamics	and	

maintenance	of	symbiosis	and	intraspecies	diversity	(Simms	and	Taylor,	2002).	This	

study	evaluated	whether	the	selection	for	specific	rhizobial	genotypes	by	white	clover	

extended	beyond	interspecies	specificity,	and	selection	was	observable	at	the	

intraspecies	level	under	genuine	field	conditions.	Overall,	some	clover	genotypes	

were	found	to	select	for	different	rhizobial	genotypes,	but	a	large	amount	of	variation	

was	observed	within	clover	genotypes.	Nodule	diversity	was	also	largely	associated	

with	geographic	distance	between	samples,	which	was	perhaps	enhanced	by	a	

heterogeneous	initial	soil	rhizobium	population	pool	and	other	abiotic	local	growth	

conditions.	The	fact	that	global	FST	alternatively	identified	nodA	as	the	major	

determinant	of	population	structure	out	of	the	four	Rlt	genes	suggest	that	additional	

geographical	and	environmental	factors	could	determine	Rlt	nodule	diversity	
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between	samples	in	addition	to	clover	genotypes.	Using	all	four	genes	in	combination	

to	detect	clover	genotype	differences	can	generate	a	greater	holistic	perspective	of	Rlt	

genotype	differences	between	clover	genotypes.	However,	observed	diversity	was	

found	to	be	largely	depended	on	the	gene	of	interest	(rpoB,	recA,	nodA	or	nodD).	rpoB	

and	recA	alleles	showed	the	greatest	allelic	distinction	between	clover	genotypes,	

specifically	Cross	1	and	Cross	2,	which	was	not	observed	with	symbiosis	genes.	

Future	work	could	investigate	these	other	cellular	mechanisms	of	symbiotic	

selectivity,	such	as	the	importance	of	extracellular	polysaccharides	and	specificity	of	

secretion	systems	detection	by	the	legume	host,	wherein	intraspecies	specificity	may	

also	be	evident.	As	other	molecular	selection	processes	are	involved	in	Rlt	genotype	x	

clover	genotype	compatibility	and	partner	choice,	more	genes	should	be	included	in	

future	diversity	analyses.	Overall,	both	soil	environment	and	host	genotype	are	

important	considerations	when	choosing	compatible	inoculants	for	white	clover	

(Lupwayi,	Clayton	and	Rice,	2006).	
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Chapter 4. Rhizobium leguminosarum symbiovar trifolii sub-

species display distinct intraspecies transcriptomic variation 

 

4.1. Abstract 

 

Background:	Transcriptomic	cross-species	analyses	have	identified	regions	of	

conserved	and	divergent	gene	expression	between	bacterial	species	by	relying	on	

only	a	few	representative	strains.	However,	within-species	transcriptomic	

comparisons	are	scarce.	The	Rhizobium	leguminosarum	species	complex	contains	five	

genetically	distinct	genospecies	based	on	an	average	nucleotide	identity	<	95%.	Here	

the	potential	transcriptional	differences	in	the	core	and	accessory	genome	of	different	

genospecies	were	compared	with	their	phenotypic	differences.		

Results:	To	study	how	bacterial	genetic	distance	influences	gene	expression,	multiple	

Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	strains	were	grown	under	the	same	

conditions	and	assessed	for	core	gene	expression	differences	between	(3-7	strains)	

and	within	(59	strains)	genospecies.	Genospecies	displayed	differences	in	core	

genome	expression	profiles	and	significant	differential	expression	of	individual	core	

genes.	Core	genome	expression	profiles	were	less	distinct	within	genospecies,	and	

overall,	more	genetically	diverged	strains	displayed	a	higher	proportion	of	

differentially	expressed	core	genes.	Significant	correlations	between	groups	of	co-

expressed	core	gene	modules	and	phenotypic	growth	differences	between	

genospecies	were	identified.	Rlt	core	gene	modules	enriched	with	fundamental	

bacterial	metabolism	genes	were	also	significantly	differentially	expressed	between	

genospecies.	Additionally,	the	Rlt	accessory	genome	had	significantly	lower	

expression	compared	to	the	core	genome	across	all	genospecies.		

Conclusions:	Together	these	results	suggest	that	genospecies	can	display	differences	

in	core	genome	expression	when	grown	under	the	same	conditions,	and	this	variation	

can	be	further	associated	with	growth	differences.	Furthermore,	within	genospecies	

substantial	transcriptional	variation	is	also	evident	which	overall	demonstrates	that	

within	species	similar	genotypes	can	show	differences	in	gene	expression.		

	

4.2.  Introduction 
 

Transcriptome	profiling	has	become	an	insightful	tool	for	investigating	

phenotypic	differences	among	organisms	(Wang,	Gerstein	and	Snyder,	2009)	
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providing	gene	expression	information	for	a	specific	subset	of	genes	up	to	whole-

genome	expression.	Such	studies	comparing	inter-species	expression	profiles	are	

commonly	called	cross-species	analyses,	and	can	be	used	to	identify	conserved	and	

differential	gene	regulation	between	species	based	on	the	expression	of	orthologous	

genes	(Stuart	et	al.,	2003).	However,	from	a	prokaryotic	perspective	it	is	known	that	

there	can	be	large	genetic	variation	within	a	species	alone,	and	studies	have	already	

shown	that	significant	natural	transcriptomic	variation	is	observable	between	

individuals	of	the	same	species	(Oleksiak,	Churchill	and	Crawford,	2002;	Townsend,	

Cavalieri	and	Hartl,	2003;	Pavey	et	al.,	2010;	Madritsch	et	al.,	2019).	To	identify	

transcriptomic	differences	between	bacterial	species,	previous	analyses	have	used	

between	one	and	four	strains	as	species	representatives	for	direct	differential	gene	

expression	comparisons	(Vital	et	al.,	2015),	and	up	to	51	strains	for	assessing	

variation	within	species	regulatory	networks	(Galardini	et	al.,	2015).	In	addition,	a	

maximum	of	three	bacterial	species	have	been	transcriptionally	cross-compared	

within	one	study	(Hosseinkhan	et	al.,	2015).	Therefore,	although	intraspecies	

bacterial	diversity	is	known	to	vary	significantly	at	the	genome	level,	the	extent	to	

which	genetic	differences	translate	to	expression	level	variation	within	a	species	is	

less	well	understood.			

	

It	has	been	suggested	that	evolution	of	new	species	could	be	shaped	by	gene	

expression	differences	within	a	species	promoting	adaptive	divergence,	as	well	as	

from	genomic	changes	(Feder	and	Mitchell-Olds,	2003;	Ranz	and	Machado,	2006;	Ng	

et	al.,	2019).	Ecological	speciation	arises	when	gene	flow	is	restricted	between	

populations	due	to	adaptive	divergence	by,	as	examples,	geographic	isolation	

(allopatric	speciation)	or	niche-specific	adaptation	(sympatric	speciation)	(Pavey	et	

al.,	2010;	Vos,	2011;	Friedman,	Alm	and	Shapiro,	2013;	Shapiro	and	Polz,	2015).	Gene	

expression	could	promote	speciation	by	enabling	population	persistence	through	

expression	variance,	and	also	by	directly	influencing	traits	related	to	reproductive	

isolation	(Pavey	et	al.,	2010).	For	example,	expression	differences	may	lead	to	

colonisation	of	new	environments	where	the	regulation	of	expression	could	further	

become	vital	for	population	survival	influencing	species	diversification	(Pavey	et	al.,	

2010;	Ng	et	al.,	2019).	Divergence	of	gene	expression	has	therefore	been	used	as	a	

molecular	phenotypic	indicator	to	support	the	idea	species	divergence	(Pavey	et	al.,	

2010;	Wolf	et	al.,	2010;	Dunning	et	al.,	2016).	This	is	because	expression	divergence	

is	expected	to	develop	and	evolve	faster	than	nucleotide	divergence,	although	it	still	
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remains	unclear	how	much	this	variation	influences	species	divergence	(Oleksiak,	

Churchill	and	Crawford,	2002;	Vicente	and	Mingorance,	2008;	Wolf	et	al.,	2010;	

González-Torres	et	al.,	2015).	Other	unanswered	questions	include	to	what	extent	

transcriptomic	variation	can	define	species	differences	and	whether	transcriptome	

profiles	overlap	during	bacterial	speciation	(Vital	et	al.,	2015).	

	

While	transcriptomic	analysis	pipelines	have	been	specifically	developed	for	cross-

species	analyses,	they	are	currently	mainly	optimised	for	eukaryotic	comparisons	

(Kuhn,	Luthi-Carter	and	Delorenzi,	2008;	Zarrineh	et	al.,	2014;	Zhu	et	al.,	2014;	

LoVerso	and	Cui,	2015).	Typically	in	cross-species	transcriptome	comparisons,	

organisms	are	exposed	to	the	same	environment	in	‘common	garden’	experiments,	

and	the	transcription	levels	across	orthologous	gene	regions	are	compared	(Oleksiak,	

Churchill	and	Crawford,	2002;	Townsend,	Cavalieri	and	Hartl,	2003;	Madritsch	et	al.,	

2019).	There	are	several	ways	to	identify	and	compare	orthologous	genomic	regions	

in	cross-species	analysis.	For	example,	LoVerso	and	Cui	(2015)	use	a	single	reference	

genome	from	which	to	identify	orthologous	regions	in	all	other	genomes,	which	is	

more	effective	the	more	genetically	similar	the	compared	species	are.	Similarly,	

‘master’	reference	transcriptomes	have	been	assembled	de	novo	from	two	species	to	

allow	for	cross-taxa	comparisons	(Wolf	et	al.,	2010;	Ng	et	al.,	2019).	Other	pipelines	

have	produced	platforms	to	compare	expression	levels	at	the	level	of	single	genes,	

gene	sets	and	gene	networks	(Langfelder	and	Horvath,	2008;	Chaudhuri	et	al.,	2015).	

Often,	cross-species	analysis	data	are	curated	from	different	independent	studies,	and	

hence,	the	environmental	conditions	used	in	the	studies	might	confound	transcription	

comparisons	as	the	initial	data	collected	was	not	intended	for	cross-species	analyses	

(Stuart	et	al.,	2003;	Carrasco,	Tan	and	Duman,	2011;	Kristiansson	et	al.,	2013;	

Hosseinkhan,	Mousavian	and	Masoudi-Nejad,	2018).	Therefore,	cross-species	

analyses	have	been	criticised	for	inconsistencies	in	data	collection	and	inadequacies	

in	experimental	design	(Kristiansson	et	al.,	2013).		

	

Bacterial	cross-species	transcriptomic	comparisons	have	predominantly	focused	on	

the	most	genetically	well-characterised	species,	such	as	Escherichia	coli,	

Staphylococcus	aureus,	Salmonella	enterica	and	Pseudomonas	aeruginosa	(Carrasco,	

Tan	and	Duman,	2011;	Zarrineh	et	al.,	2014;	Hosseinkhan	et	al.,	2015;	Vital	et	al.,	

2015;	Hosseinkhan,	Mousavian	and	Masoudi-Nejad,	2018).	Cross-species	analyses	

focus	mainly	on	the	expression	differences	in	core	genes,	and	disregard	accessory	
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genome	components	(Wolf	et	al.,	2010;	Galardini	et	al.,	2015;	Young,	2016;	

McInerney,	McNally	and	O’Connell,	2017;	Jiao	et	al.,	2018;	Madritsch	et	al.,	2019).	

Core	genes	are	defined	as	genes	shared	amongst	all	individuals	in	a	distinguished	

population	or	species	and	essential	for	organism	functioning,	whereas	accessory	

genes	are	not	present	in	all	individuals	and	associated	with	more	dispensable,	but	

advantageous	functions	linked	to	survival	in	different	environments	and	are	less	

likely	to	participate	in	a	species	regulatory	network	(Young	et	al.,	2006;	Young,	2016).	

The	pangenome	(combination	of	core	and	accessory	genes	within	a	species)	can	be	

very	large	as	horizontal	gene	transfer	and	other	forms	of	introgression	can	contribute	

substantially	to	a	species	genetic	variation	(Tettelin	et	al.,	2005;	McInerney,	McNally	

and	O’Connell,	2017).	This	large	genetic	diversity	within	bacterial	species	can	make	it	

hard	to	identify	definitive	genetic	and	phenotypic	species	differences.	For	example,	

while	polyphasic	taxonomy	classifies	species	based	on	genetic	similarity	and	by	

distinctive	phenotypic	traits	(Vandamme	et	al.,	1996;	Young,	2016),	phenotypic	

distinction	of	bacteria	can	be	challenging	when	a	species	has	a	large	accessory	

genome	that	conveys	extensive	intraspecies	genomic	and	phenotypic	diversity	(Vos,	

2011;	Young,	2016).	Because	not	all	strains	of	a	bacterial	species	share	the	same	

accessory	genes,	fewer	studies	have	focused	on	accessory	gene	expression	differences	

relative	to	core	gene	expression	(Scaria	et	al.,	2013;	Vital	et	al.,	2015;	Jiao	et	al.,	2018).	

	

Cross-species	analyses	have	not	only	been	utilised	to	identify	differences	between	

bacterial	species	but	also	to	identify	conserved	transcriptional	regions.	Co-expression	

identified	amongst	more	than	one	strain	or	species	has	been	used	to	provide	support	

that	a	gene	is	involved	in	the	same	biological	process	or	has	a	similar	function	

(Hosseinkhan	et	al.,	2015;	Hosseinkhan,	Mousavian	and	Masoudi-Nejad,	2018).	As	a	

result,	cross-species	gene	expression	analyses	have	enabled	identification	of	larger	

core	transcriptional	networks	conserved	across	species	(Zarrineh	et	al.,	2014;	

Hosseinkhan,	Mousavian	and	Masoudi-Nejad,	2018).	Similarity	of	gene	expression	

between	strains	has	previously	been	found	to	be	more	strongly	associated	with	

similarity	of	environmental	origins	and	experimental	conditions	than	phylogenetic	

relatedness	(Vital	et	al.,	2015;	Jiao	et	al.,	2018).	Previous	studies	have	compared	the	

transcriptomes	of	strains	isolated	from	different	environments	in	order	to	account	for	

both	the	potential	genomic	diversity	and	phenotypic	diversity	associated	with	living	

in	different	niches	(Scaria	et	al.,	2013;	Vital	et	al.,	2015).	In	comparison,	genetically	

different	strains	isolated	from	the	same	environment	have	been	compared	under	
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various	growth	conditions	to	explore	how	genetic	differences	contribute	to	the	

capacity	to	express	genes	in	novel	environments	(Kimes	et	al.,	2014).	However,	the	

level	to	which	environment	influences	conservation	of	co-expressed	genes	and	their	

regulatory	networks	across	different	phylogenetic	distances	remains	unclear	

(Zarrineh	et	al.,	2014).		

	

Rhizobia	have	extensively	been	used	to	study	variation	in	bacterial	gene	expression.	

Rhizobia	are	soil	bacteria	that	can	live	in	two	physiologies:	a	motile,	free-living	soil	

form	or	a	non-motile	bacteroid	form	within	legume	root	nodules;	a	physiological	

transformation	associated	with	significantly	altered	gene	expression	(Yoder-Himes	et	

al.,	2009;	Vercruysse	et	al.,	2011;	Lopez-Leal	et	al.,	2014).	Rhizobia	are	a	good	

bacterial	model	to	evaluate	gene	expression	for	several	reasons.	Firstly,	sequencing	

repositories	have	a	large	number	of	strains	with	fully	sequenced	Rhizobium	genomes,	

and	their	multipartite	genome	(Young	et	al.,	2006;	diCenzo	and	Finan,	2017)	allows	

for	interesting	investigation	of	regulatory	interactions.	Secondly,	several	groups	of	

genes	have	been	heavily	studied	and	their	regulatory	interactions	are	known	such	as	

in	the	case	of	formation	of	symbiosis.	Previous	investigations	have	mainly	observed	

rhizobial	transcriptomic	responses	to	induction	of	known	stress	conditions	

(Vercruysse	et	al.,	2011;	Liu	et	al.,	2014;	Lopez-Leal	et	al.,	2014),	altered	

environmental	conditions	and	symbiosis	development	(Karunakaran	et	al.,	2009;	

Ramachandran	et	al.,	2011;	Krysciak	et	al.,	2014;	Peng	et	al.,	2014;	Roux	et	al.,	2014;	

Perez-Montano	et	al.,	2016),	and	bacteroid	versus	free-living	physiologies	(Yoder-

Himes	et	al.,	2009;	Vercruysse	et	al.,	2011;	Lopez-Leal	et	al.,	2014).	However,	only	a	

few	studies	have	directly	evaluated	differences	in	transcriptome	profiles	between	

rhizobia	strains	with	differing	organisations	of	core	and	accessory	genes	(Galardini	et	

al.,	2015;	Rachwal,	Matczynska	and	Janczarek,	2015;	Jiao	et	al.,	2018;	Green	et	al.,	

2019).			

	

This	study	aimed	to	investigate	how	genetic	distance	influences	gene	expression	by	

assessing	the	transcriptome	profiles	of	strains	from	recently	diverged	sub-species	of	

Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt),	named	genospecies	(gs)	A	to	E.	

These	genospecies	are	classed	as	cryptic	individual	species	based	on	their	genetic	

distinctiveness	(<95%	average	nucleotide	identity)	and	reduced	gene	flow	(Ravin,	

1963;	Kumar	et	al.,	2015;	Cavassim	et	al.,	2019).	However,	despite	the	significant	

genomic	differences	between	these	sibling	species,	currently	no	phenotypic	traits	
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have	been	found	to	be	exclusive	to	a	single	genospecies	(Ravin,	1963;	Kumar	et	al.,	

2015).	In	particular,	the	extent	to	which	transcriptome	profiles	differed	between	and	

within	Rlt	genospecies	was	assessed.	To	this	end,	whole	core	genome	transcriptome	

expression	variation	was	compared	with	RNA-seq	across	26	Rlt	strains	from	5	

genospecies	(A-E),	and	additionally	59	strains	from	Rlt	genospecies	C,	that	were	

isolated	from	conventional	trial	managements	and	organic	farm	managements	across	

the	UK,	France	and	Denmark	(Cavassim	et	al.,	2019).	This	study	aimed	to	answer	four	

key	questions	regarding	whether	genetic	boundaries	can	predict	gene	expression	

profiles:		

	

i)	First,	within	a	simplistic	environment,	do	Rhizobium	leguminosarum	genospecies	

display	basal	transcriptional	differences	of	shared	genes?	And	if	so,	what	proportion	

of	shared	genes	are	differentially	expressed?		

ii)	Secondly,	does	differential	gene	expression	correlate	with	genetic	divergence	along	

with	genospecies	boundaries?		

iii)	Thirdly,	can	transcriptional	differences	be	attributed	to	distinct	phenotypic	or	

metabolic	traits	that	might	aid	understanding	of	what	drove	speciation	of	these	

genospecies?		

iv)	Finally,	to	what	extent	does	expression	of	the	accessory	genome	differ	within	

species?		

	

4.3. Methods 

4.3.1. Strain metadata, ANI, bacterial growth and RNA sample preparation  

 

Twenty-six	Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	strains	were	

selected	from	the	196	Rlt	strain	NCHAIN	collection	(Cavassim	et	al.,	2019)	and	

categorised	into	five	genetically	distinct	Rlt	sub-species	with	<95%	average	

nucleotide	identity,	called	genospecies	(gs)	A-E	(gsA	=	6,	gsB	=	5,	gsC	=	7,	gsD	=	5,	gsE	

=	3)	(Kumar	et	al.,	2015).	Additionally,	a	further	59	strains	from	gsC	were	also	

selected	from	the	collection	(referred	to	here	as	gsC*	dataset)	and	can	be	categorised	

into	several	phylogenetic	gsC	subbranches	(C1	=	17,	C3	=	5,	C4	=	2,	C5	=1,	C6	=8,	C7	

=14,	C8	=	4,	C9	=	9,	C10	=	1).	Metadata	for	strains,	including	genospecies	classification	

and	geographic	origin,	can	be	found	in	the	Supplementary	Material	(Appendix	Table	

C.1).	
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The	genetic	relatedness	of	strains	differed	within	each	genospecies.	Pairwise	Average	

Nucleotide	Identity	values	(ANI)	were	calculated	based	on	the	proportion	of	shared	

single	nucleotide	polymorphisms	(SNPs)	in	genes	that	were	present	in	at	least	100	

strains	from	the	196	NCHAIN	strain	dataset	(6,529	genes,	441,287	SNPs)	(Cavassim	

et	al.,	2019)	rather	than	using	only	genes	present	in	all	known	Rlt	strains	(282	genes).	

Using	a	larger	number	of	genes	increased	the	clustering	resolution	and	genetic	

distinction	between	strains	(Appendix	Figure	C.5c).	ANI	for	each	genospecies	based	

on	the	26	strains	ranged	from:	gsA	=	0.9550-0.9751,	gsB	=	0.9848-0.9966,	gsC	=	

0.9708-0.9999,	gsC*	(58	strains,	without	SM132)	=	0.9539-0.9999,	gsD	=	0.9882-

0.9998,	gsE	=	0.9770-0.9928.	gsB	is	most	genetically	homogeneous	genospecies	and	

strains	used	in	this	study	were	isolated	from	the	same	UK	site.		

	

Strains	were	revived	from	glycerol	stocks	in	Tryptone	Yeast	(TY)	broth	(5	g	Tryptone,	

2.5	g	Yeast	Extract,	1.47	g	CaCl2,	per	litre	volume)	and	grown	for	48	h	at	28°C,	180	

rpm.	Optical	densities	were	normalised	to	0.1	OD600,	in	preparation	for	transfer	into	

inducing	conditions.	Strains	were	then	individually	cultured	in	TY	broth	with	1	µM	

7,4’-dihydroxyflavone	(clover	flavonoid	stock	solubilised	in	DMSO)	at	28°C,	180	rpm,	

for	48	h.	Additionally,	59	strains	from	gsC	were	grown	under	the	same	conditions	in	a	

separate	sampling	batch	(gsC*	samples)	for	processing	and	sequencing.	Within	this	

additional	gsC*	sample	batch,	2	strains	(SM158	and	SM170C)	were	also	grown	in	

duplicate	as	biological	replicates,	bringing	the	total	number	of	samples	to	61.	Clover	

flavonoid,	7,4’-dihydroxyflavone,	was	also	added	to	the	TY	broth	to	model	the	

presence	of	legume	host	interaction	and	because	it	was	found	to	be	the	most	effective	

clover	flavonoid	to	induce	Rlt	nod	gene	expression	(Djordjevic	et	al.,	1987).	On	

average,	all	strains	reached	0.3	OD600	after	48	h.	 

	

Total	RNA	was	isolated	using	the	RNeasy	Protect	Bacteria	Mini	kit	following	

manufacturer’s	instructions	(Qiagen).	Stabilised	pellets	were	stored	at	-80°C	until	

total	RNA	was	isolated.	Total	RNA	yield	was	measured	using	Bioanalyzer	2100	and	

for	batch	1	(range:	59-271	ng/µl,	average	yield:	134.82	ng/µl)	and	gsC*	sample	batch	

2	(range:	30-122	ng/µl,	average	yield:	69.57	ng/µl).	rRNA	depletion	using	Ribo-Zero	

rRNA	Removal	kit	(Bacteria)	(Illumina),	clean	up	with	Zymo	Clean	and	Concentrator	

kit,	and	RNA-seq	paired-end	library	preparations	were	carried	out	by	the	University	

of	York	Technology	Facility.	Libraries	for	both	sample	batches	were	subject	to	
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Illumina	2	x	150	bp	paired	end	sequencing	in	independent	runs	using	a	HiSeq3000	by	

the	University	of	Leeds	Next	Generation	Sequencing	Facility.		

	

4.3.2. RNA-seq read and count processing  

 
RNA-seq	reads	were	quality	checked	with	FastQC	(v.0.11.5)	following	default	

parameters.	Cutadapt	(v.1.15)	was	used	to	trim	reads	of	Illumina	adapters	with	the	

following	parameters:	maximum	error	rate	=	0.1	(10%),	minimum	overlap	=	5	bp,	

minimum	read	length	=	15	bp.	Trimmed	reads	for	each	strain	were	then	mapped	to	

their	respective	Illumina	sequenced,	‘Jigome’	assembled,	whole	genome	assemblies	

(Cavassim	et	al.,	2019)	using	HISAT2	(v.	2.1.0)	(Additional	File	6:	Table	S1).	All	reads	

passed	Samtools	flagstat	(v.	1.7)	and	rseqc	bamstat	(v.	2.6.4)	default	QC	filtering	

(Additional	File	6:	Table	S1).	Total	number	of	reads	per	sample	for	the	first	batch	

sequencing	run	of	26	gsA-E	samples	ranged	between	6,793,334	-	15,699,075	reads	

with	an	average	of	9,183,811	reads.	Total	number	of	reads	per	sample	for	the	second	

batch	sequencing	run	of	61	gsC*	samples	ranged	between	990,334	–	12,135,188	

reads	with	an	average	of	4,759,219	reads.	All	sequences	mapped	to	their	individual	

genomes	with	an	average	overall	alignment	rate	of	98.30%	(Additional	File	6:	Table	

S1).	HTSeqCount	(v.0.9.1)	was	used	to	count	reads	mapping	to	each	gene	feature,	

with	union	parameters	selected	(Additional	File	6:	Table	S1).	Orthologous	gene	

groups	were	previously	identified	using	ProteinOrtho	(v.5.16b)	and	were	used	to	

compare	ortholog	group	expression	across	strains	(Cavassim	et	al.,	2019).	For	

functional	annotation	of	genes,	Prokka	(v.1.12)	was	previously	used	to	produce	gene	

annotations	with	equivalent	RefSeq	accession	numbers	and	protein	product	

information	(Cavassim	et	al.,	2019).	Overall,	only	orthologous	gene	expression	was	

analysed.		

 

4.3.3. Library normalisation methods optimisation 

 

Raw	counts	of	4,229	orthologous	core	gene	groups	were	used	to	produce	

normalisation	scaling	factors	for	each	genotype	sample.	Orthologous	core	genes	were	

defined	as	being	present	in	every	strain	from	the	196	Rlt	strain	NCHAIN	collection	

(Cavassim	et	al.,	2019).	
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Raw	read	count	normalisation	was	evaluated	and	optimised	by	comparing	DESeq2	

(v.1.22.2),	TMM	(EdgeR	v.3.24.3)	and	PoissonSeq	(v.1.1.2)	normalisation	methods.	

The	initial	count	dataset	used	for	optimising	normalisation	constituted	30	strains	

from	the	first	sample	batch	dataset	containing	strains	of	all	five	genospecies	(1	gsB	

strain	and	3	gsE	strains	were	subsequently	removed	to	generate	the	final	26	strain	

dataset,	see	below),	and	59	strains	gsC*	strains	(61	samples	as	two	strains	are	in	

biological	duplicates)	from	the	second	sample	batch	dataset.			

	

The	core	gene	raw	counts	were	normalised	via	the	three	normalisation	methods.	In	

order	to	test	the	success	of	the	normalisation	methods,	the	normalised	expression	

counts	of	three	random	subsets	of	400	core	genes	(subsets	1-3)	across	samples	were	

used	as	a	representation	of	the	dataset	(approximately	10%	of	total	core	genes).	Then	

for	each	of	the	three	400-gene	subset	individually,	eigengene	values	were	calculated	

for	each	strain	using	expression	count	data	normalised	by	either	DESeq2,	TMM	or	

PoissonSeq	methods	(Li	et	al.,	2010;	Robinson,	McCarthy	and	Smyth,	2010;	Love,	

Huber	and	Anders,	2014).	Eigengene	values	were	calculated	using	the	WGCNA	

(v.1.66)	package	in	R	and	equate	to	the	representative	normalised	gene	expression	

(or	first	principal	component	value)	of	the	400	genes	within	a	subset.	These	

eigengene	values	were	then	correlated	to	samples’	raw	library	sequencing	depths	and	

normalised	library	sequencing	depths.		

	

TMM	normalisation	was	found	to	be	the	least	effective	and	eigengene	values	strongly	

correlated	with	the	raw	(Appendix	Figure	C.1,	panel	2)	and	normalised	(Appendix	

Figure	C.2,	panel	2)	sequencing	depths	of	samples	.	DESeq2	was	much	more	

successful	and	normalised	well	to	account	for	the	difference	in	sequencing	depth	

between	the	two	sample	batches	(Appendix	Figure	C.1	and	Appendix	Figure	C.2,	

panel	1).	PoissonSeq	was	the	most	effective	for	normalising	sequencing	depths	and	

no	correlation	was	found	to	eigengene	values	(Appendix	Figure	C.1	and	Appendix	

Figure	C.2,	panel	3).	However,	four	strain	samples	were	unaffected	by	any	of	the	three	

normalisation	methods	tested	(1	gsB	strain	and	3	gsE	strains).	The	relative	

distribution	of	the	samples’	eigengene	values	(calculated	with	PoissonSeq	normalised	

counts)	remained	consistent	regardless	of	61	sample	gsC*	dataset	removal	from	the	

normalisation	step	(Appendix	Figure	C.3	and	Appendix	Figure	C.4,	panel	1)	and	four	

outliers	removal	(Appendix	Figure	C.3	and	Appendix	Figure	C.4,	panel	2-4).	

Therefore,	the	four	outlier	samples	were	removed	from	the	final	dataset	(Appendix	
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Figure	C.3-Appendix	Figure	C.4,	panel	4).	In	conclusion,	the	final	multi-genospecies	

comparison	dataset	contained	26	samples	(gsA	=	6,	gsB	=	5,	gsC	=	7,	gsD	=	5,	gsE	=	3),	

and	including	the	61	gsC*	samples	from	the	second	sequencing	batch.	Raw	gene	

expression	count	data	for	both	datasets	were	normalised	together	using	PoissonSeq	

(Appendix	Figure	C.2,	panel	4).	

	

Additionally,	the	normalised	and	log	transformed	counts	from	two	gsC*	strains	with	

biological	duplicates	were	correlated	to	ensure	that	replicate	samples	were	

comparable	(Appendix	Figure	C.5a-b).		

 

4.3.4. Gene expression analysis  

 

Gene	expression	was	compared	using	multiple	different	approaches.	First,	differential	

gene	expression	was	compared	between	different	genospecies	using	DESeq2.	Second,	

the	number	of	differentially	expressed	genes	between	individual	strains	was	

calculated	with	GFOLD.	Lastly,	Rlt	core	gene	modules	that	were	differentially	

expressed	between	genospecies	was	determined	using	WGCNA.	

	

DESeq2	(v.1.22.2)	was	used	to	identify	differentially	expressed	orthologous	core	gene	

groups	(core	DEGs)	between	genospecies	using	the	26	multi-genospecies	sample	

dataset,	and	within	genospecies	using	the	61	gsC*	sample	dataset.	Cytoscape	(v.3.7.2)	

was	used	to	create	the	DEG	network	figures.	pBLAST	was	used	to	identify	the	RefSeq	

functional	annotations	(100%	identity,	100%	query	cover)	for	the	amino	acid	

sequences	of	the	top	two	most	significant	(FDR	corrected)	DEGs	(log2Fold	Change	>	

±2).	

	

GFOLD	(v1.1.4)	was	used	to	determine	the	number	of	core	DEGs	between	pairwise	

sample	comparisons	(Feng	et	al.,	2012).	GFOLD	calculates	a	generalised	fold	change	

for	ranking	DEGs	and	produces	equivalent	log	fold	change	values	for	sample	

comparisons	when	no	sample	replicates	are	available.	Therefore,	GFOLD	enabled	

determination	of	DEGs	between	all	strain	comparisons	using	PoissonSeq	normalised	

read	counts.	A	GFOLD	value	of	>±2	GFOLD	was	used	as	a	threshold	for	identifying	

DEGs.		

	



 119 

Co-expressed	orthologous	core	genes	were	grouped	into	modules	with	WGCNA	

(v.1.66)	R	package.	PoissonSeq	normalised,	log2(n+1)	transformed	counts	from	the	

26	multi-genospecies	sample	dataset	were	used	as	input	for	WGCNA.	A	signed	

network	and	signed	topological	overlap	matrix	were	generated	to	categorise	core	

genes	into	modules.	A	soft	threshold	power	of	7	was	used,	as	it	was	the	lowest	power	

for	which	the	scale-free	topology	fit	index	curve	flattened	out	upon	reaching	0.90	

(Appendix	Figure	C.6a).	The	minimum	number	of	genes	required	to	be	considered	as	

a	distinct	module	was	set	to	3.	Otherwise,	all	WGCNA	default	settings	were	used.	

WGCNA	calculates	an	eigengene	value	for	each	module	for	each	strain.	Module	

eigengenes	are	calculated	by	restricting	the	gene	expression	matrix	to	only	the	genes	

within	a	module	and	calculating	singular	value	decomposition	for	that	module.	For	

each	strain,	the	first	principal	component	value	for	that	module	was	used	as	the	

eigengene	value.		

 

4.3.5. Growth phenotype analysis 

 

For	analysis	of	phenotypic	growth	differences	between	genospecies,	strains	were	

grown	in	modified	Tryptone	Yeast	broth	(TY)	(5	g	Tryptone,	2.5	g	Yeast	Extract,	1.47	

g	CaCl2,	per	litre	volume)	conditions	in	96-well	plates	(Smith,	2018).	TY	media	was	

altered	in	the	following	ways:	by	modifying	pH	(pH	4,	5	and	6,	6.68),	growth	

temperature	(4,	10,	15,	20,	28	°C),	and	nutrient	concentration	(100,	25,	12.5,	6.25,	

3.125%	TY).	Growth	measurements	(OD600)	at	48	h	was	used	as	a	proxy	of	rhizobial	

growth	for	all	measured	phenotypic	traits.	Biofilm	formation	was	also	measured	

(OD600)	after	96	hours	growth	from	all	the	temperature	and	nutrient	altered	

treatments	as	follows.	Briefly,	20	µl	of	crystal	violet	was	added	to	each	well	and	left	to	

stand	for	15	minutes.	Wells	were	subsequently	rinsed	with	clean	water	three	times	

and	left	to	air-dry.	Wells	were	then	filled	with	225	µl	of	absolute	ethanol	and	

incubated	at	room	temperature	for	1	h	to	dissolve	the	crystal	violet	staining.		

	

4.3.6. Gene function annotation and accessory genome analysis 

 

To	link	differential	gene	expression	with	specific	functional	pathways,	Kyoto	

Encyclopedia	of	Genes	and	Genomes	(KEGG)	BlastKoala	was	used	to	identify	KEGG	K	

identifiers	for	core	orthologous	genes	(Kanehisa	et	al.,	2016).	KEGG	Ontology	(KO)	

identifiers	were	identified	from	the	‘Prokaryotes,	Bacteria’	KEGG	taxonomy	group	
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using	the	‘Genus,	Prokaryotes’	KEGG	database.	KEGG	mapper	was	used	to	identify	

KEGG	functional	pathway	classifications	of	orthologous	core	genes	and	genospecies	

accessory	genes.	KEGG	mapper	was	also	used	to	identify	complete	KEGG	modules	(i.e.	

containing	all	genes	required	for	a	specified	functional	unit)	present	within	WGCNA	

co-expressed	Rlt	core	gene	modules.	KEGG	KO	IDs	were	assigned	to	2,380	genes	out	

of	4,229	core	genes,	with	7	of	those	genes	being	assigned	two	KO	IDs.	

Overrepresentation	analysis	of	KEGG	functional	categories	within	each	module	was	

undertaken	with	enrich.KEGG	ClusterProfiler	(v.3.10.1)	function	in	R,	using	all	core	

genome	KO	identifiers	as	a	background	dataset.	For	additional	pathway	enrichment	

analysis,	metacyc	IDs	were	assigned	to	all	possible	core	genes.	In	total,	metacyc	IDs	

were	identified	for	2,070	out	of	4,229	genes.	Metacyc	IDs	were	analysed	for	

significant	pathway	enrichment	using	the	metacyc	pathway	enrichment	pipeline	with	

Benjamini-Hochberg	p-value	correction	for	genes	in	WGCNA	modules	and	for	core	

DEGs.	Additionally,	to	identify	functional	associations	to	PCA	principal	components,	

metacyc	pathway	enrichment	analysis	and	KEGG	pathway	analysis	was	undertaken	

using	the	genes	contributing	more	than	they	would	on	average	to	each	principal	

component	(Appendix	Table	C.2;	Additional	File	6:	Table	S2).	

	

Orthologous	accessory	genes	were	identified	in	each	strain	as	genes	not	considered	a	

core	gene.	The	number	of	unique	accessory	genes	was	determined	by	totalling	the	

number	of	unique	orthologous	gene	groups	across	all	strains	in	a	genospecies	that	is	

not	a	core	orthologous	gene	group.	Additionally,	the	percentage	of	genes	present	but	

not	expressed	were	determined	by	calculating	the	expression	level	for	each	

orthologous	gene	group	in	each	strain,	and	orthologous	gene	groups	with	expression	

values	of	0	were	classed	as	genes	that	were	present	but	not	expressed.	The	

percentage	of	core	and	accessory	genes	with	0	counts	in	each	strain	were	used	to	

generate	a	mean	value	for	each	genospecies.			

	

4.3.7. Statistical analyses 

 

For	analysis	of	core	genome	expression	profile	differences	between	strains,	Principal	

Components	Analysis	(PCA)	using	singular	value	decomposition	was	carried	out	

using	R’s	prcomp	function	on	scaled	and	centred	normalised,	log2(n+1)	transformed	

core	genome	count	data.	Principal	components	contributing	an	individual	variance	of	

more	than	5%	and	preceding	the	scree	plot	inflection	point	were	used	for	further	
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analysis.	Genes	contributing	more	than	they	would	on	average	if	all	genes	had	an	

equal	contribution	to	a	principal	component	(0.236%;	Appendix	Table	C.2)	were	

selected	for	pathway	enrichment	analysis	of	principal	components.	Average	linkage	

hierarchical	clustering	was	calculated	using	R’s	hclust	(method	=	average)	function,	

using	a	Euclidean	distance	matrix	of	normalised,	log2(n+1)	transformed	core	gene	

expression	values	for	each	sample.	

	

To	measure	phenotypic	growth	differences	between	strains,	48	h	OD600	

measurements	of	strains	grown	under	the	different	TY	growth	conditions,	and	OD600	

biofilm	formation	measurements	were	scaled	and	centred	for	PCA	using	singular	

value	decomposition	carried	out	using	R’s	prcomp	function.	Phenotypic	growth	traits	

which	contributed	to	a	principal	component	more	than	they	would	on	average	if	all	

traits	had	an	equal	contribution	(4.35%)	were	identified	to	infer	which	PCA	variables	

explained	principal	components	1	and	2.	

	

Eigengene	values	for	each	module	were	correlated	to	TY	growth	phenotypes	(OD600)	

with	WGCNA	using	Pearson’s	correlation	coefficient	and	p-values	were	Benjamini-

Hochberg	False	Discovery	Rate	corrected.	Strains	for	transcriptomic	analysis	were	

grown	under	slightly	different	conditions	to	the	TY	growth	phenotype	conditions	that	

expression	levels	were	correlated	against	(e.g.	5	ml	instead	of	200	µl,	180	rpm	instead	

of	non-shaking,	and	1	µM	7,4’-dihydroxyflavone	instead	of	no	clover	flavonoid).	The	

correlations	between	the	phenotypic	growth	data	and	the	expression	data	were	

confirmed	to	be	suitable	by	identifying	a	strong	correlation	between	the	growth	of	

strains	grown	in	100%	TY	28°C	conditions	and	the	growth	when	strains	were	RNA	

stabilised	for	transcriptome	analysis	(Pearson’s	correlation:	R	=	0.55,	p	<	0.01;	

Appendix	Figure	C.7).	To	calculate	a	strain’s	mean	module	expression	for	Modules	16	

and	Module	9,	PoissonSeq	normalised,	Log2(n+1)	transformed	expression	values	for	

genes	in	the	modules	were	averaged.	Significant	differences	between	genospecies	in	

Modules	16	and	9	mean	module	expression	were	confirmed	with	Kruskal-Wallis	test	

and	Dunn’s	post	hoc	with	Benjamini-Hochberg	p-value	correction.		

	

To	determine	whether	WGCNA	modules	eigengene	expression	values	significantly	

differed	between	genospecies,	two-way	ANOVA	with	TukeyHSD	post-hoc	testing	was	

used.	The	normalised,	log	transformed	counts	for	genes	within	specified	modules	



 122 

were	displayed	in	boxplots	and	heatmaps	generated	using	R’s	ggplot2	and	

complex.heatmap.		

	

For	analysis	of	accessory	genome	sizes	between	genospecies,	Kruskal-Wallis	with	

Dunn’s	post	hoc	testing	and	Benjamini-Hochberg	p-value	correction	was	undertaken	

on	the	number	of	genes	in	accessory	genomes	between	strains	grouped	by	

genospecies.	To	determine	the	significance	of	expression	level	differences	between	

Rlt	core	and	accessory	genes,	a	linear	mixed	effects	model	was	performed	using	

Maximum	Likelihood	(ML)	with	lme4	R	package	(v.1.1-21).	The	dependent	variable	

was	normalised	log2(n+1)	transformed	count	data,	and	the	gene	type	(core	or	

accessory)	was	used	as	the	fixed	effect	independent	variable.	Therefore,	as	input	into	

the	model,	the	number	of	gene	expression	values	in	total	for	core	genes	=	367,923,	

and	for	accessory	genes	=	271,061.	Individual	strain	IDs	and	ortholog	gene	group	IDs	

were	categorised	as	random	effects.	A	variance	of	more	than	0	supported	the	

incorporation	of	random	effects	in	the	full	model.	Fixed	effect	parameter	t-values,	

degrees	of	freedom	and	p-values	were	generated	with	LmerTest.	The	significance	of	

the	fixed	effect	was	tested	with	the	likelihood	ratio	(LR)	test	using	anova(),	whereby	

the	full	model	was	compared	to	a	reduced	model	with	no	fixed	effect	and	a	Chi-

squared	p-values	<	0.05	indicated	a	significant	difference	in	model	fit.	Additionally,	

the	reliability	of	the	fixed	effect	was	determined	by	parametric	bootstrapping	of	fixed	

effect	parameter	95%	confidence	intervals	using	bootMer	and	boot.ci	with	1000	

bootstraps	replicates.	95%	confidence	intervals	not	including	0	were	considered	

reliable	effects.	Parametric	bootstrapping	displayed	warnings	of	failed	model	

convergence	for	58	out	of	1000	permutations.	Due	to	the	original	model	converging	

with	no	warnings,	and	the	arbitrary	threshold	determination	for	model	convergence	

warnings,	these	were	classified	as	false	positives	(Bolker,	2020).		

	

4.4. Results  

4.4.1. Core genome expression differs between Rlt genospecies but not within 

genospecies C 

 

To	determine	whether	there	were	basal	transcriptional	differences	between	Rlt	

genospecies,	Principal	Components	Analysis	(PCA)	was	performed	on	the	expression	

of	4,229	orthologous	core	genes	present	in	all	26	strains.	These	4,229	core	genes	
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constituted	25.84%	of	the	26	strain	ortholog	pangenome	(16,365	genes)	and	included	

25	symbiosis	genes	essential	for	symbiotic	establishment	with	white	clover.	

	

PCA	of	the	normalised,	log2	transformed	gene	expression	counts	showed	that	strains’	

core	genome	expression	profiles	clustered	by	genospecies	classification	(Figure	4.1a).	

Out	of	26	principal	components	(PCs),	the	first	five	PCs	all	individually	explained	

greater	than	5%	of	the	percentage	variance	(19.6,	12.7,	11.8,	10.0,	7.5),	and	

cumulatively	66%	of	the	total	variance.	The	first	two	principal	components	alone	

accounted	for	32%	of	the	total	variation.	The	first	five	PCs	came	before	inflection	of	

the	scree	plot	and	were	thus	chosen	for	further	analysis.	PC1	and	PC2	accounted	for	

20%	and	13%	of	the	total	variation,	respectively.	gsA	and	gsB	were	the	only	

genospecies	that	did	not	show	separation	along	PC1	and	PC2,	whereas	gsC,	gsD	and	

gsE	clearly	distinguished	along	these	principal	components.	Additional	principal	

components	(PCs	3-5)	which	accounted	for	a	smaller	proportion	of	the	variance	

distinguished	gsA	and	gsB	strains	as	separate	clusters	(Appendix	Figure	C.8a-b).	

Therefore,	these	results	suggest	that	core	gene	expression	varies	between	different	

Rlt	sub-species.		

	

The	genes	contributing	most	to	PC1	were	significantly	enriched	for	several	functions	

including	aminoacyl-tRNA	charging,	trehalose	biosynthesis,	proteinogenic	amino	acid	

degradation,	amino	acid	degradation,	ATP	biosynthesis	and	transport	(Additional	File	

6:	Table	S2).	KEGG	similarly	identified	PC1	to	be	overrepresented	for	ribosome	

related	pathways	and	additionally	quorum	sensing	pathways	(Additional	File	6:	Table	

S2).	PC2	variation	was	largely	attributed	to	genes	enriched	for	amine	and	polyamine	

degradation	and	4-aminobutanoate	degradation	(Additional	File	6:	Table	S2).	

Complete	KEGG	gene	sets	(KEGG	modules)	were	also	searched	for	these	two	principal	

components.	KEGG	identified	seven	modules	for	PC1	including:	PRPP	biosynthesis	

involved	in	central	carbon	metabolism;	production	of	cytochrome	c	oxidase	and	F-

type	ATPase	for	ATP	synthesis;	acyl-CoA	and	phosphatidylcholine	(PC)	biosynthesis	

involved	in	lipid	metabolism;	amino	acids	metabolism	such	as	arginine	to	putrescine	

(polyamine	biosynthesis);	and	glutathione	biosynthesis.	KEGG	conversely	showed	

PC2	was	overrepresented	for	ABC	transporters,	nitrogen	metabolism,	and	ascorbate	

and	aldarate	metabolism	(Additional	File	6:	Table	S2).	Therefore,	genospecies	were	

found	to	vary	most	notably	in	expression	of	core	genes	associated	with	basic	bacterial	

metabolism.		
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To	determine	how	many	genes	were	significantly	differentially	expressed	(DEGs)	

between	genospecies,	Differential	Gene	Expression	analysis	was	carried	out	using	

DESeq2.	DEGs	were	identified	for	all	pairwise	genospecies	comparisons	(Figure	4.1b;	

Table	4.1;	Log2	Fold	Change	>	±2,	FDR	adjusted	p	<	0.001).	Comparison	of	gsB	and	

gsD	showed	the	largest	number	of	differentially	expressed	core	genes	(1.4%).	On	the	

other	hand,	gsD-gsE	and	gsA-gsB	were	found	to	have	the	smallest	number	of	DEGs	

(0.28%	and	0.31%,	respectively,	Figure	4.1b).	DEGs	identified	were	largely	unique	to	

each	genospecies	comparison	with	a	maximum	of	seven	of	the	same	DEGs	being	

shared	across	pairwise	genospecies	comparisons	at	an	adjusted	p	<	0.05	(Table	4.2).	

While	some	DEGs	(Log2	Fold	Change	>	±2,	FDR	adjusted	p	<	0.05)	were	found	to	have	

an	associated	regulatory	function,	the	majority	of	DEGs	had	unidentified	functions	

(Table	4.1).	Several	DEGs	with	regulatory	functions	were	the	top	two	most	

significantly	DEGs,	such	as	LuxR	and	XRE	transcriptional	regulators	and	a	histidine	

kinase	(Table	4.1).	As	a	result,	no	significant	metabolic	pathway	enrichment	could	be	

found	for	the	DEGs	between	genospecies	using	metacyc.	This	is	likely	because	

resolution	of	functional	relevance	can	be	low	when	only	a	few	genes	are	considered	

together.	For	example,	gsB-gsD	comparison	had	the	largest	number	of	DEGs	and	was	

the	only	exception	where	pathway	enrichment	was	observed.	gsB-gsD	DEGs	were	

overrepresented	with	alanine,	aspartate	and	glutamate	metabolism,	butanoate	

metabolism,	and	starch	and	sucrose	metabolism.	Therefore,	by	analysing	only	DEGs	

the	context	of	the	expression	profile	can	be	lost	by	omitting	genes	which	do	not	

exactly	fit	within	DEG	parameter	thresholds.	

	

In	addition,	average	linkage	hierarchical	clustering	was	performed	on	Euclidean	

distances	of	core	gene	expression	values	(Figure	4.1c).	While	gsC	and	gsD	were	

distinct	in	their	branching,	one	strain	each	from	gsA,	gsB	and	gsE	were	found	within	

the	gsC	branch.	When	61	additional	gsC	samples	were	included	in	the	analysis,	gsC	

strains	formed	their	own	branch,	gsA	and	gsB	clustered,	and	gsD	and	gsE	clustered	

(Appendix	Figure	C.8c).		

 

The	core	genome	expression	of	59	gsC	strains	(two	of	which	were	biologically	

duplicated;	Appendix	Figure	C.5a-b)	were	similarly	assessed	by	PCA.	Out	of	61	PCs,	

the	first	four	PCs	individually	explained	more	than	5%	of	the	percentage	variance	

(22.5,	11.8,	8.3,	7.2),	and	cumulatively	49.8%	of	the	total	variation.	The	first	four	PCs	
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preceded	the	scree	plot	inflection	point,	supporting	their	maintenance	in	the	analysis.	

PC1	and	PC2	accounted	for	34%	of	the	total	variation.	gsC	strains	were	categorised	by	

their	phylogenetic	subbranch	based	on	the	maximum-likelihood	phylogeny	of	196	Rlt	

strains	(Cavassim	et	al.,	2019).	Phylogenetic	subbranches	of	gsC	were	not	clearly	

distinct	in	their	core	genome	expression,	in	comparison	to	genospecies	differences	

(Figure	4.1d).	However,	PC1	and	PC2	explained	a	comparable	amount	of	the	total	

variation	as	the	genospecies	expression	PCAs.	PC1	and	PC2	were	identified	to	be	

enriched	with	ABC	transporters,	nitrogen	metabolism,	quorum	sensing	and	valine,	

leucine	and	isoleucine	degradation	(Additional	File	6:	Table	S2).	Metacyc	additionally	

identified	pathways	involved	in	the	respiratory	electron	transport	chain	(e.g.	

substrates	to	cytochrome	bo	oxidase	electron	transfer)	and	amine	and	sugar	

derivative	degradation	for	PC2	(Additional	File	6:	Table	S2).	While	the	percentage	

variance	for	PC5	and	PC6	were	less	than	5%	(4.79,	4.59),	these	principal	components	

separated	gsC	strains	into	distinct	phylogenetic	subbranch	groups,	which	were	

enriched	for	genes	involved	in	secondary	metabolite,	sugar,	amine,	glycine	betaine	

derivative	degradation	(Appendix	Figure	C.8e).	This	could	suggest	that	within	gsC,	

gene	expression	variation	is	predominantly	explained	by	factors	other	than	genetic	

similarity.	However,	genetic	divergence	clearly	does	account	for	a	small	proportion	of	

gene	expression	variation	within	genospecies.	

	

Differential	Gene	Expression	analysis	showed	that	up	to	4.07%	of	core	genes	

displayed	significantly	different	expression	between	gsC	subbranches	(subbranches	

with	>=	3	strains)	(Figure	4.1e).	The	relatively	higher	proportion	of	core	DEGs	

observed	in	within-genospecies	comparison	is	likely	due	to	the	larger	within-

genospecies	group	sample	sizes	and	reduced	genetic	variation.	This	likely	allowed	for	

a	greater	resolution	between	groups	and	reduced	expression	noise,	as	groups	were	

more	closely	genetically	related.		

	

Therefore,	DEG	comparisons	between	individual	strains	were	also	calculated	to	

observe	expression	differences	beyond	genetically	defined	strain	groupings.	The	

number	of	DEGs	and	number	of	shared	ortholog	gene	groups	were	compared	to	

average	nucleotide	identity	(ANI)	for	all	possible	strain	comparisons	(Figure	4.1f).	A	

strong	linear	correlation	was	observed	between	the	ANI	of	strains	and	the	number	of	

shared	ortholog	gene	groups	(Figure	4.1f).	Furthermore,	the	more	genetically	distinct	

strains	(lower	ANI)	displayed	a	larger	number	of	differentially	expressed	genes,	on	
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average,	and	as	the	number	of	shared	orthologous	genes	increased	between	strains,	

the	number	of	differentially	expressed	genes	decreased	(Figure	4.1f;	Appendix	Figure	

C.5d).	However,	a	stronger	correlation	was	observed	between	ANI	and	the	number	of	

shared	orthologous	genes,	than	ANI	and	DEG	expression	distance	(Appendix	Figure	

C.5e).	
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Figure 4.1 Differential gene expression between Rlt genospecies and phylogenetic subbranches within 
genospecies C. a) PCA of 4,229 core genes expression for 26 Rlt strains coloured and grouped by their 
genospecies (A-E). b) Number (%) of core differentially expressed genes (DEGs) (edges) from all pairwise Rlt 
genospecies (nodes) comparisons (Log2 Fold Change > ±2, FDR adjusted p < 0.001). c) Strains cluster by 
genospecies based on average linkage hierarchical clustering of Euclidean core gene expression distances. d) 
PCA of 4,229 core genes expression for 59 strains of gsC (and additionally 2 strains in duplicate), coloured and 
grouped by their phylogenetic subbranches (C1-10). e) Number (%) of core DEGs (edges) from pairwise Rlt gsC 
phylogenetic subbranch (nodes) comparisons (Log2 Fold Change > ±2, FDR adjusted p < 0.001). f) Individual 
pairwise strain comparisons show that as the average nucleotide identity (ANI) of strains increases, the 
number of shared orthologous gene groups also increases, but the number of core DEGs decreases. Red and 
Blue lines display the rolling average (n=100) for DEGs number and shared orthologous gene groups, 
respectively. Red and dark blue dots highlight strain comparisons which are biological replicates for number of 
core DEGs and number of shared orthologous gene groups, respectively. 
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Table 4.1 Number of core differentially expressed genes (DEGs) between pairwise Rlt genospecies 
comparisons. Genes were classed as differentially expressed if they had a Log2 Fold Change > ±2, FDR < 
0.05, adjusted p < 0.05. Metabolic pathway enrichment analysis of DEG groups meeting the threshold 
values of Log2 Fold Change > ±2, FDR adjusted p < 0.05 were evaluated for pathway enrichment. However, 
not all DEGs DNA sequences could be blasted to a metacyc ID or KEGG K identifier. The amino acid 
sequence of the top two most significant DEGs were pBLAST to identify the RefSeq functional annotation. 
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RefSeq Function of top two most 
significant (adjusted p) DEGs (log2Fold 
Change > ±2). 

A-B 25 (0.59) 13 (0.31) 10 15 1 (4.00) 
1: hypothetical protein 
2: ACI57256.1 hypothetical protein 

A-C 43 (1.02) 29 (0.69) 20 19 2 (4.65) 1: ACI56088.1 transcriptional regulator 
LuxR family 
2: ACS55582.1 histidine kinase 

A-D 42 (0.99) 32 (0.76) 14 18 8 (19.05) 1: ACI57516.1 transcriptional regulator 
XRE family 
2: ACS55582.1 histidine kinase 

A-E 58 (1.37) 29 (0.69) 27 19 4 (6.90) 1: ACS56907.1 hypothetical protein 
2: ACS55582.1 histidine kinase 

B-C 52 (1.23) 42 (0.99) 20 25 1 (1.92) 1: ACI56088.1 transcriptional regulator 
LuxR family 
2: ACS60957.1 3-hydroxybutyrate 
dehydrogenase 

B-D 76 (1.80) 59 (1.40) 27 37 10 (13.16) 1: ACI57516.1 transcriptional regulator 
XRE family 
2: ACS60957.1 3-hydroxybutyrate 
dehydrogenase 

B-E 82 (1.94) 51 (1.21) 40 31 2 (2.44) 1: ACS56366.1 hypothetical protein 
2: ACS60957.1 3-hydroxybutyrate 
dehydrogenase 

C-D 65 (1.54) 46 (1.09) 12 32 8 (12.31) 1: ACS56501.1 glutathione-dependent 
formaldehyde-activating GFA 
2: ACS57477.1 autoaggregation protein 

C-E 55 (1.30) 30 (0.71) 16 23 2 (3.64) 1: ACS56501.1 glutathione-dependent 
formaldehyde-activating GFA 
2: ACS58639.1 hypothetical protein 

D-E 37 (0.87) 12 (0.28) 21 16 8 (21.62) 1: ACS59506.1 hypothetical protein 
2: AHF84664.1 hypothetical protein  
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Table 4.2 Number of differentially expressed orthologous core genes (DEGs) shared across genospecies and 
gsC subbranch comparisons  

Strain grouping comparisons Number of DEGs shared 
(adj. p < 0.05) 

Number of DEGs shared 
(adj. p < 0.001) 

A-B, A-C, A-D, A-E 0 0 
A-B, B-C, B-D, B-E 0 0 
A-C, B-C, C-D, C-E 5 0 
A-D, B-D, C-D, D-E 7 1 
A-E, B-E, C-E, D-E 1 0 
C1-3, C1-6, C1-7, C1-8, C1-9 0 0 
C1-3, C3-6, C3-7, C3-8, C3-9 1 0 
C1-6, C3-6, C6-7, C6-8, C6-9 1 0 
C1-7, C3-7, C6-7, C7-8, C7-9 2 1 
C1-8, C3-8, C6-8, C7-8, C8-9 1 0 
C1-9, C3-9, C6-9, C7-9, C8-9 4 1 

 
 
4.4.2. Genospecies have distinct growth phenotypes across different Tryptone Yeast 

broth conditions 

 
In	order	to	understand	how	the	transcriptional	differences	between	genospecies	

might	relate	to	phenotypic	differences,	the	growth	of	all	strains	was	measured	under	

different	Tryptone	Yeast	broth	(TY)	conditions.		

	

PCA	revealed	the	first	six	PCs	displayed	individual	percentage	variances	greater	than	

5%	(26.2,	14.7,	12.1,	8.3,	6.8,	5.4),	with	a	cumulative	total	variance	of	73.6%.	The	first	

two	PCs	accounting	for	the	most	variance	totalled	41%	of	the	total	variance.	Based	on	

PCA,	it	was	found	that	strains’	growth	phenotypes	did	cluster	by	genospecies	(Figure	

4.2a).	High	growth	in	100%	and	6.25%	TY	treatments	between	pH	5-6.68,	15-28°C	

has	a	positive	loading	on	PC1,	whereas	biofilm	formation	at	4°C	and	10	°C	had	a	

positive	loading	on	PC2.	When	considering	only	the	growth	of	strains	in	100%	TY	

broth	at	28°C,	gsB	strains	(which	are	the	most	genetically	homogenous	in	the	dataset)	

(Cavassim	et	al.,	2019)	were	on	average	the	fastest	growing	genospecies,	and	gsC	

were	the	slowest	(Smith,	2018).		

	

Additionally,	growth	differences	were	analysed	by	PCA	within	gsC	using	the	same	

growth	trait	data.	The	first	five	PCs	were	identified	with	a	percentage	variance	

explaining	more	than	5%	(24.4,	13.9,	9.8,	6.8,	6.3),	and	totalling	a	cumulative	variance	

of	61.3%.	gsC	subbranches	were	found	to	be	less	distinct	than	genospecies	groups	for	

PC1	and	PC2,	which	explained	38%	of	the	total	variance	(Figure	4.2b).	The	variables	
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contributing	to	PC1	and	PC2	for	the	between	genospecies	and	within	genospecies	

analysis	were	predominantly	the	same,	suggesting	the	largest	variation	in	phenotypic	

growth	traits	within	gsC	were	in	the	same	traits	that	dominated	differences	between	

genospecies.	In	summary,	these	results	suggest	that	most	genospecies	(with	the	

exception	of	gsA)	showed	clearly	distinct	separation	respective	to	their	growth	traits,	

and	that	this	separation	was	clearer	between	than	within	genospecies.	
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4.4.3. Conserved co-expressed gene groups identify genospecies expression 

differences that correlate to phenotypic growth traits 

 
To	compare	expression	differences	at	the	level	of	regulatory	networks,	core	genes	

were	grouped	by	expression	similarity	into	co-expressed	gene	‘modules’	using	

Weighted	Correlation	Network	Analysis	(WGCNA)	to	simplify	the	transcriptional	

organisation	of	Rlt	genomes	and	to	generate	a	representative	Rlt	expression	network.	
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Figure 4.2 PCA of Rlt strains grown under different Tryptone Yeast broth (TY) growth conditions, a) 
between genospecies and b) between gsC strains. Strains are coloured by their genospecies classification 
in a), and gsC strains are coloured by their phylogenetic subbranch in b). 
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A	total	of	47	Rlt	core	modules	were	identified,	with	modules	containing	a	minimum	of	

7	genes	and	a	maximum	of	603	genes	(Appendix	Figure	C.6b;	Additional	File	6:	Table	

S3).	128	out	of	4,229	core	genes	were	not	assigned	into	any	of	these	modules.		

	

To	correlate	module	expression	with	strains’	phenotypic	TY	growth	traits,	an	

eigengene	value	was	calculated	for	each	module,	which	is	a	pseudogene	expression	

value	that	represents	gene	expression	within	a	module	(Langfelder	and	Horvath,	

2008).	Module	eigengene	values	for	each	strain	were	then	correlated	to	their	

respective	growth	phenotypes	in	TY,	as	described	previously	(Figure	4.2).		

	

In	total,	9	out	of	47	module	eigengene	values	were	significantly	and	strongly	

correlated	with	at	least	one	phenotypic	growth	trait	(Pearson’s	correlation	R	value	>	

±0.4	and	Benjamini-Hochberg	corrected	p	<	0.05;	Figure	4.3;	Appendix	Table	C.3;	

Additional	File	6:	Table	S3).	Some	modules	were	found	to	correlate	with	the	same	

phenotypic	traits,	generating	groups	of	‘meta-modules’,	which	are	displayed	in	the	

dendrogram	(Figure	4.3).		

	

Modules	that	showed	significant	differential	expression	between	genospecies	were	

also	identified	(Figure	4.4).	Module	eigengene	expression	values	were	compared	

across	strains	to	identify	if	genospecies	displayed	significantly	different	module	

expression.	In	total,	12	of	47	modules	significantly	differed	in	module	eigengene	

expression	between	genospecies	(Figure	4.4;	Two-way	ANOVA	genospecies*module	

interaction:	F118,1008	=	5.23,	p	<	0.001;	Appendix	Table	C.4;	Appendix	Table	C.5).	

Genospecies	comparisons	gsA-gsC,	gsB-gsC	and	gsB-gsD	had	the	largest	number	of	

differentially	expressed	modules	(3	modules).	GsE	had	no	differentially	expressed	

modules	to	any	other	genospecies,	and	this	is	likely	due	to	the	small	sample	size	in	

the	analysis	(gsE	=	3	strains).	Furthermore,	no	modules	where	all	genospecies	were	

significantly	differentially	expressed	from	one	another	were	identified.	Therefore,	it	

is	likely	that	a	combination	of	module	expression	differences	contributes	to	overall	

differences	in	genospecies	core	transcriptome	profiles.		

	

Functional	pathways	associated	with	5	out	of	12	of	the	modules	differing	in	

genospecies	eigengene	expression	were	identified	(Additional	File	6:	Table	S3).	

Module	3	was	significantly	differentially	expressed	between	gsB-gsD,	and	was	

functionally	associated	with	L-arginine,	L-ornithine,	putrescine	and	4-
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aminobutanoate	metabolism.	On	the	other	hand,	Module	13	and	Module	33	were	

found	to	be	differentially	expressed	between	gsA-gsD	and	were	functionally	

associated	with	two-component	systems,	drug	metabolism	and	beta-lactam	

resistance.	Module	40,	containing	just	16	genes,	contained	genes	associated	with	

glycerolipid	metabolism,	and	was	differentially	expressed	between	gsA-gsB.	

Therefore,	transcriptional	modules	associated	with	basic	bacterial	metabolism	which	

were	also	differentially	regulated	between	several	Rlt	genospecies	were	identified,	

supporting	the	earlier	finding	that	genospecies	showed	most	variance	in	principal	

metabolism	genes.		

	

Two	modules	displayed	differences	in	genospecies	expression	and	significant	

association	with	TY	growth	(100%	TY,	28°C);	Module	9	and	Module	16	(Figure	4.5;	

Appendix	Figure	C.9).	Mean	expression	of	genes	within	these	two	modules	also	

showed	an	association	with	growth	for	the	59	gsC	strain	dataset	(gsC*	in	Figure	4.5),	

providing	independent	evidence	that	the	association	is	likely	correlated	with	growth	

differences	(Appendix	Figure	C.10;	Module	16	Pearson’s	Correlation	R	=0.26,	p<	0.05;	

Module	9	Pearson’s	Correlation	R	=	-0.42	,	p	<	0.001).	Module	9	and	16	were	large	

modules	that	contained	106	and	64	genes,	respectively.	Both	sample	groups	of	gsC	(C	

=	6	strains	and	C*	=	59	strains)	on	average	expressed	genes	in	Module	16	to	a	

significantly	lower	level	compared	to	all	other	genospecies	(Figure	4.5a;	Appendix	

Figure	C.9a;		Kruskal-Wallis:	X2	=	44.482;	d.f.	=	5;	p	<	0.001;	Dunn’s	post	hoc:	adjusted	

p	<	0.05;	Appendix	Table	C.6).	Conversely,	genes	in	Module	9,	which	were	associated	

with	glycine	betaine	degradation,	diacylglyceryl-N,N,N-trimethylhomoserine	

biosynthesis	and	quorum	sensing	functions	were	expressed	to	a	significantly	higher	

level	in	gsC	(C	=	6	strains	and	C*	=	59	strains)	compared	to	other	genospecies	(Figure	

4.5b;	Appendix	Figure	C.9b;	Kruskal-Wallis:	X2	=	41.936;	d.f.	=	5;	p	<	0.001;	Dunn’s	

post	hoc:	adjusted	p	<	0.05;	Appendix	Table	C.7).	Taken	together,	strain	growth	was	

found	to	be	significantly	correlated	with	the	expression	of	two	gene	modules	which	

are	suggested	to	contain	genes	that	have	putative	functional	associations	with	growth	

in	Rhizobium	leguminosarum.		
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Figure 4.3 Groups of co-expressed Rlt core gene modules correlated with phenotypic growth differences 
between strains. A total of 47 of co-expressed gene modules were identified from 26 Rlt strains. Eigengene 
module expression values were correlated with growth of strains in various Tryptone Yeast broth 
conditions shown in X-axis. The heatmap is coloured by Pearson’s R correlation values, which are displayed 
along with bracketed Benjamini-Hochberg corrected p-values. Pearson’s R > 0.4 and with an adjusted p-
value < 0.05 are highlighted with bold black outlines. Modules are grouped into meta-modules using 
hierarchical clustering based on module eigengene value correlations. Black dots on Y-axis show modules 
with significant differences between genospecies groups. 
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Figure 4.4 Twelve co-expressed Rlt core gene modules that showed representative eigengene expression 
values, which significantly differed between genospecies (A-E). Strains are coloured by their genospecies 
classification and significances between genospecies are shown at the top of each panel with significance 
stars equating to; adjusted p < 0.05 = *, < 0.01 = **, < 0.001 = ***. Individual strain eigengene expression 
values for each module are plotted within each genospecies boxplot.  
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4.4.4. The expression of accessory genes is relatively lower across genospecies 

 
As	only	some	of	the	strains	within	each	genospecies	shared	a	small	fraction	of	

accessory	genome,	the	average	expression	levels	of	core	and	accessory	genomes	were	

instead	compared	between	genospecies.	The	accessory	genome	included	12,136	out	

of	16,365	genes	(74.16%)	in	the	26	Rlt	ortholog	group	pangenome.	In	order	to	

compare	how	representative	expression	levels	were	based	on	the	subset	of	strains	

evaluated	for	each	genospecies	group,	the	gene	expression	levels	of	59	gsC	strains	

Figure 4.5 Expression of two Rlt core gene modules significantly correlated with growth differences 
between Rlt genospecies. a-b) Growth of strains (OD600) correlated to eigengene expression values for 
Module 16 and Module 9, respectively. Pearson’s correlation coefficients and adjusted p-values are 
provided in Figure 4.3. c-d) gsC strains displayed significantly different mean module expression to other 
genospecies for Module 16 and 9, respectively. Strains are coloured and grouped by their genospecies 
classification. * adjusted p-value < 0.05 against all other genospecies comparisons. gsC* = 59 strains (2 in 
duplicate) utilised for the within-genospecies analyses (see methods). 
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(Figure	4.1d)	were	also	included	in	the	analysis	(named	gsC*	strains)	for	comparison	

(Figure	4.6).	Core	genes	were	found	to	have	significantly	higher	levels	of	expression	

on	average	than	accessory	genes	across	all	strains	(Figure	4.6a;	Table	4.3;	Appendix	

Table	C.8;	CoeffgenetypeCore:	estimate	=	2.482,	std.	error	=	0.0382,	t	=	64.97,	p	<	0.001;	

LR	test:	X21,5=	3822.1,	p	<	0.001).	Furthermore,	parametric	bootstrap	testing	further	

confirmed	the	difference	between	expression	of	core	and	accessory	genes	was	a	

reliable	effect	(95%	percentilegenetypeCore	(2.410,	2.564):	original	=	2.482,	bias	=	

0.0009,	std.	error	=	0.0383).	Core	genes	were	nearly	always	expressed,	whereas	

accessory	genomes	contained	more	genes	that	were	present	but	not	expressed	

(Figure	4.6b).	Further	analysis	showed	that	the	higher	the	ortholog	frequency	

(presence	in	196	Rlt	genomes)	the	higher	the	level	at	which	the	gene	was	expressed	

(Pearson’s	Correlation:	R	=	0.415,	p	<	0.0001;	Appendix	Figure	C.5)	(Vital	et	al.,	2015;	

Jiao	et	al.,	2018).	The	distributions	of	core	and	accessory	genome	expression	levels	

were	similar	across	genospecies	even	though	genome	sizes	differed	between	

genospecies;	gsC	strains	were	shown	to	have	significantly	larger	genome	sizes	than	

gsD	and	gsE	(Figure	4.7a;	Kruskal-Wallis:	X2=	32.424;	d.f.	=	5;	p	<	0.001;	Dunn’s	post	

hoc:	p	<	0.05;	Appendix	Table	C.9).	The	average	accessory	genome	size	was	also	

found	to	not	significantly	differ	between	a	representative	subset	of	six	gsC	strains	

compared	to	the	59	gsC	strains	used	for	the	within-genospecies	analysis	(gsC*;	Figure	

4.7a;	Appendix	Table	C.9).	All	genospecies	accessory	genomes	displayed	a	similar	

representation	of	KEGG	functional	categories	(Figure	4.7b).	Overall,	these	results	

show	that	the	accessory	genes	are	expressed	at	lower	levels	than	core	genes	across	

Rlt	strains,	and	this	expression	level	difference	between	core	and	accessory	genomes	

was	also	maintained	when	a	larger	set	of	strains	was	considered	(gsC*).		
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Figure 4.6 Core and accessory genome expression differences across Rlt. a) Expression levels for core and 
accessory genes within each strain across Rlt genospecies. Gene expression counts were normalised by 
PoissonSeq and transformed using log2(n+1). b) Percentage of genes present but not expressed (0 counts) 
in the core and accessory genomes of strains from each Rlt genospecies. Error bars display the standard 
deviation. gsC* = 59 (2 in duplicate) strains utilised for the within-genospecies analyses (see Methods).  
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Table 4.3 Mean and median expression levels of Rlt genospecies A-E. Expression levels were calculated by 
normalising raw counts using PoissonSeq and transforming normalised counts by log2(n+1) transformation. 
Rlt strains used to calculate descriptive statistics include: gsA = 6, gsB = 5, gsC = 7, gsC* = 59 (2 in duplicate) 
strains utilised for the within-genospecies analyses (see Methods), gsD = 5, gsE = 3. 

  
  

Genospecies 
A B C C* D E 

Core  Mean 8.498 8.481 8.505 8.448 8.562 8.546 
Median 8.489 8.493 8.491 8.421 8.597 8.530 

Accessory  Mean 6.871 6.843 6.732 6.556 6.921 6.970 
Median 6.870 6.833 6.775 6.653 6.985 6.976 
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Figure 4.7 Accessory genome size and functional annotation differences between genospecies. a) The 
number of accessory genes for each strain, grouped by genospecies. Error bars display the standard 
deviation. b) Percentage number of genes from Rlt core genome, and genospecies accessory genomes, 
assigned to KEGG functional categories. gsC* = 59 (2 in duplicate) strains utilised for the within-
genospecies analyses (see Methods). 
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4.5.  Discussion 

 

This	study	investigated	whether	genetically	distinct	Rhizobium	leguminosarum	

genospecies	display	basal	transcriptional	core	genome	differences	when	grown	in	the	

same	environment.	In	addition,	gene	expression	differences	were	correlated	with	

metabolic	traits	in	order	to	identify	the	functional	phenotypic	differences	between	

genospecies.	To	accomplish	this,	RNA-seq	whole-genome	gene	expression	variation	

was	compared	among	26	Rhizobium	leguminosarum	symbiovar	trifolii	strains	from	

five	genospecies	(A-E),	and	an	additional	59	strains	from	genospecies	C.	Individual	

strains	grown	under	the	same	conditions	were	used	to	represent	observable	

expression	variation	between	(3-7	strains)	and	within	(59	strains)	genospecies,	

which	to	our	knowledge	is	an	experimental	approach	that	has	not	been	undertaken	

for	cross-species	comparisons.	Genospecies	boundaries	contributed	to	observable	

gene	expression	differences	at	the	core	genome	level	(Figure	4.1)	and	strains	that	

were	more	genetically	diverged	tended	to	have	a	higher	proportion	of	differentially	

expressed	core	genes	(Figure	4.1f).	When	co-expressed	core	genes	were	grouped	into	

modules,	significant	correlations	between	transcriptomic	and	phenotypic	differences	

between	genospecies	were	observed	(Figure	4.3	and	Figure	4.4).	These	Rlt	core	gene	

modules	were	associated	with	growth,	amino	acid	metabolism	and	two	component	

signalling	systems.	Additionally,	the	accessory	genome	had	significantly	lower	

expression	and	a	greater	number	of	non-expressed	genes	compared	to	the	core	

genome,	and	this	was	independent	of	genospecies	classification	(Figure	4.6).	

Together	these	results	suggest	that	genospecies	displayed	differences	in	core	genome	

expression	when	grown	in	the	same	environment.	Furthermore,	this	transcriptomic	

variation	was	associated	with	phenotypic	differences	conserved	within	genospecies	

boundaries.	However,	transcriptional	differences	still	exist	within	each	genospecies	

demonstrating	that	substantial	variation	can	occur	within	a	species	as	similar	

genotypes	can	show	differences	in	their	gene	expression.	

 

4.5.1. Genospecies display divergence in core genome expression 

 
Rlt	genospecies,	were	found	to	display	expression	differences	at	the	level	of	overall	

core	transcriptome	profiles	and	at	the	level	of	individual	genes.	Genospecies	also	

displayed	distinct	core	transcriptome	profiles,	as	indicated	by	Rlt	strains	clustering	

into	genospecies	groups	(Figure	4.1a	and	e).	The	overlapping	expression	profiles	of	
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gsA	and	gsB	was	somewhat	unexpected	because	gsB	is	the	most	genetically	

homogeneous	genospecies	and	all	the	strains	in	the	collection	originated	from	the	UK,	

which	was	clearly	geographically	separated	from	the	origin	of	other	genospecies	

(Appendix	Table	C.1).	One	potential	explanation	for	this	is	that	PC1	and	PC2	variances	

could	display	the	stronger	overriding	expression	differences	amongst	gsC,	gsD	and	

gsE,	and	the	fundamental	expression	differences	between	gsA	and	gsB	are	explained	

by	other	principal	components	where	gsA	and	gsB	clusters	are	found	to	separate	

(Appendix	Figure	C.8a-b).	The	overlapping	of	Rlt	genospecies	expression	profiles	

could	indicate	incomplete	species	divergence	in	their	core	genome	expression	(Vital	

et	al.,	2015).	However,	while	transcriptomes	have	been	considered	a	molecular	

phenotype	capable	of	identifying	initial	species	divergence,	the	amount	to	which	gene	

expression	corresponds	to	definitive	bacterial	species	difference	is	still	disputed	

(Pavey	et	al.,	2010;	Wolf	et	al.,	2010;	Vital	et	al.,	2015;	Dunning	et	al.,	2016)	

	

At	the	individual	gene	level,	DEGs	(Log2	Fold	Change	>	±2,	adjusted	p	<	0.001)	were	

also	identified	between	genospecies	groups	(Figure	4.1b;	Table	4.1).	However,	the	

number	of	core	DEGs	observed	between	genospecies	was	less	than	2%	of	the	core	

genome	(Figure	4.1b).	More	genetically	distant	strains	were	shown	to	differ	more	in	

orthologous	core	gene	expression	(Figure	4.1),	and	this	clustering	based	on	genomic	

similarity	was	observed	both	between,	and	to	a	lesser	extent	within,	genospecies	

levels	(Figure	4.1b,	Figure	4.1f).	These	results	are	in	line	with	a	previous	study,	where	

core	genes	were	found	to	be	differentially	expressed	between	strains	of	the	same	

species	when	grown	in	the	same	environment	(Scaria	et	al.,	2013).	However,	gene	

expression	variation	between	natural	isolates	has	also	been	shown	to	occur	

predominantly	on	a	smaller	scale,	with	most	gene	expression	differences	displaying	a	

Log2	Fold	Change	below	2	(Townsend,	Cavalieri	and	Hartl,	2003).	Despite	small	

variations	in	expression,	many	genes	have	still	been	observed	to	produce	distinct	

phenotypic	variation	between	isolates	(Townsend,	Cavalieri	and	Hartl,	2003).	It	has	

also	been	suggested	that	gene	expression	variation	could	be	coordinated	by	a	

combined	effect	of	several	small	genetic	changes	(Townsend,	Cavalieri	and	Hartl,	

2003).	Therefore,	perhaps	the	threshold	of	Log2	Fold	Change	used	in	this	study	only	

focused	on	the	very	distinct	DEGs.	Consequently,	these	strict	DEG	parameters	may	

exclude	some	of	the	phenotypic	variation	which	only	require	relatively	small	changes	

in	gene	expression	levels.	Therefore,	one	potential	reason	for	the	relatively	low	

number	of	core	DEGs	between	genospecies	(Figure	4.1b)	yet	clear	distinction	of	core	
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genome	expression	profiles	(Figure	4.1a)	could	be	that	a	combination	of	a	few	

regulatory	gene	expression	differences	between	genospecies	possibly	causes	small	

alterations	in	the	expression	of	multiple	genes	downstream,	thereby	creating	distinct	

core	genome	expression	profiles	for	different	genospecies. 

 

4.5.2. Genospecies display distinct core genome transcriptome profiles linked to 

expression differences in basic metabolism 

 
Genospecies	showed	differences	in	phenotypic	growth	traits,	such	as	ability	to	grow	

and	biofilm	formation,	when	exposed	to	abiotic	stresses	such	as	temperature,	

nutrient	concentration	and	pH	(Figure	4.2a)(Smith,	2018).	Previously,	no	metabolic	

phenotypic	traits,	such	as	single	substrate	carbon	utilisation,	were	found	to	be	

exclusive	to	a	single	genospecies	(Ravin,	1963;	Kumar	et	al.,	2015;	Smith,	2018;	

Cavassim	et	al.,	2019).	To	further	associate	potential	transcriptomic	differences	to	

phenotypic	differences	between	genospecies	groups,	the	putative	functional	

associations	of	differentially	expressed	genes	and	modules	were	determined.	

	

Many	of	the	top	two	most	significantly	DEGs	between	genospecies	were	attributed	to	

a	regulatory	function	(Table	4.1).	For	example,	genes	matching	a	LuxR	transcriptional	

regulator	(RefSeq	Accession:	ACI56088.1)	and	an	XRE	transcriptional	regulator	

(RefSeq	Accession:	ACI57516.1)	were	found	to	be	most	significantly	differentially	

expressed	between	some	genospecies	comparisons	(Table	4.1).	LuxR	transcriptional	

regulators	are	well	known	to	be	important	for	quorum	sensing	function	(Wisniewski-

Dyé	and	Downie,	2002),	and	correspondingly	PC1	was	found	to	be	overrepresented	in	

gene	orthologs	involved	in	quorum	sensing.	There	are	fewer	examples	of	the	XRE	

transcriptional	regulator	function,	but	they	have	associations	with	oxidative	and	high	

temperature	stress	tolerance	and	virulence	(Gerstmeir	et	al.,	2004;	Hu	et	al.,	2019).	

The	identification	of	transcriptional	regulators	as	DEGs	further	supports	the	theory	

that	expression	differences	in	transcriptional	regulators	could	influence	larger	

regulatory	network	differences	in	transcription	between	genospecies.		

	

By	generating	Rlt	modules	of	co-expressed	genes	and	searching	for	enriched	

functional	pathways,	novel	Rlt	transcriptional	modules	associated	with	fundamental	

bacterial	metabolism	were	identified	that	differed	between	genospecies	(Additional	

File	6:	Table	S3).	Grouping	core	Rlt	genes	into	co-expressed	modules	provided	more	

functional	context	to	Rlt	transcriptional	regulation	using	a	“guilt	by	association	rule”	
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whereby	the	functions	of	unannotated	genes	could	be	inferred	based	on	their	co-

expression	with	annotated	genes	(Langfelder	and	Horvath,	2008;	Hosseinkhan	et	al.,	

2015).	For	example,	gsB	and	gsD	differed	in	their	expression	of	genes	associated	with	

amino	acid	metabolism	(including	alanine,	aspartate,	glutamate	and	butanoate	

metabolism),	which	was	also	identified	from	their	PCA	separation	(Figure	4.1a;	

Additional	File	6:	Table	S2).	Additionally,	differential	gsB-gsD	eigengene	expression	of	

Module	3	was	also	enriched	for	genes	associated	with	L-arginine,	putrescine,	and	4-

aminobutanoate	degradation	(Figure	4.4;	Additional	File	6:	Table	S3).	Arginine	and	

putrescine	are	utilised	as	a	precursors	for	many	compounds	in	bacteria,	and	are	

crucial	‘branch	point’	metabolites	in	cell	functioning	(Dunn,	2015).	Similarly,	

putrescine	degradation	links	to	the	4-aminobutanoate	(GABA)	production	pathway	

(Dunn,	2015),	which	was	also	found	to	be	associated	with	Module	3	expression	and	

PC2	variance.	Degradation	of	these	substrates	have	been	suggested	to	contribute	to	

amino	acid	cycling,	central	carbon	metabolism,	and	could	potentially	play	a	role	in	

ammonia	assimilation	and	energy	generation	in	mature	bacteroids	(Miller,	1991;	

Prell	et	al.,	2002;	Lodwig	et	al.,	2003;	Prell	and	Poole,	2006;	White	et	al.,	2009).	

Therefore,	expression	differences	were	found	in	central	amino	acid	metabolism	

between	gsB-gsD,	and	it	is	tentatively	speculated	that	these	expression	differences	

may	affect	genospecies	ability	to	efficiently	grow	and	colonise	soil	rhizospheres	and	

could	have	implications	for	symbiosis.		

	

In	addition,	a	significantly	upregulated	histidine	kinase	family	protein	(RefSeq	

Accession:	ACS55582.1)	was	identified	in	gsA	compared	to	gsD,	gsC	and	gsE	(Table	

4.1).	This	gene	is	present	in	WGCNA	Module	13,	which	again	shows	differential	

expression	between	gsA-gsD,	and	is	overrepresented	with	two-component	signal	

transduction	system	genes.	As	a	part	of	two-component	signalling	systems,	

membrane-bound	histidine	kinases	can	sense	external	stimuli	and	transmit	signal	

responses	to	a	cytoplasmic	response	regulator	to	facilitate	bacterial	cell	changes	

(Borland,	Prigent-Combaret	and	Wisniewski-Dyé,	2016).	Two	component	systems	are	

a	key	mechanism	for	bacteria	to	sense	and	respond	to	changing	environments	and	

are	involved	in	chemotaxis	response	to	plant	root	exudates	(Borland,	Prigent-

Combaret	and	Wisniewski-Dyé,	2016).	In	Rhizobium,	histidine	kinases	have	been	

shown	to	be	involved	in	amino	acid	metabolism	and	membrane	stability,	and	loss	of	

function	can	result	in	defective	nodulation	(Vanderlinde	and	Yost,	2012).	gsA	and	gsD	

also	showed	differentially	expressed	Module	33	eigengene	values	which	was	
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associated	with	drug	metabolism	and	beta-lactam	resistance	(Figure	4.4).	Similarly,	

two-component	systems	and	histidine	kinases	have	also	been	shown	to	be	used	in	

beta-lactam	resistance	(Demanèche	et	al.,	2008;	Lingzhi	et	al.,	2018).	Beta-lactam	

resistance	is	widespread	in	soil	bacteria	(Demanèche	et	al.,	2008)	and	the	genes	

identified	within	Module	33	are	specifically	involved	in	peptidoglycan	cell	wall	

recycling,	and	LysR	regulation	of	beta-lactamase	production.	The	ability	to	express	

beta-lactam	resistance	could	be	highly	advantageous	for	colonisation	of	Rlt	strains	in	

the	rhizosphere	environment.	Taken	together,	the	expression	of	this	histidine	kinase	

ortholog	and	its	many	potential	roles	could	be	important	for	rhizosphere	colonisation	

and	competitiveness	for	nodulation	between	some	genospecies.	

	

Furthermore,	novel	co-expressed	Rlt	core	gene	modules	highly	correlated	with	

growth	traits	were	identified	between	genospecies	(Figure	4.5).	For	example,	Module	

9	was	enriched	for	pathways	involved	in	glycine	betaine	degradation	and	

diacylglyceryl-N,N,N-trimethylhomoserine	biosynthesis,	which	is	assumed	to	be	

related	to	carbon	and	nitrogen	catabolism	and	cell	membrane	production,	further	

suggesting	upregulation	of	these	pathways	is	linked	to	increased	growth	

(Boncompagni	et	al.,	1999;	Geiger	et	al.,	1999;	Brhada	et	al.,	2001).	Yet,	upregulation	

of	Module	9	was	associated	with	reduced	growth	in	genospecies	comparisons	(Figure	

4.5b).	However,	Module	9	contains	106	genes	and	approximately	half	have	no	

associated	KEGG	or	metacyc	function.	As	a	result,	there	will	likely	be	other	functions	

associated	with	the	module	which	could	not	be	identified	in	this	study.		

	

Overall,	these	results	suggest	that	species	can	differ	phenotypically	even	when	they	

have	highly	similar	core	genomes,	as	shown	by	transcriptomic	differences	between	

genospecies	at	both	the	level	of	individual	genes	and	overall	core	transcriptome	

profiles.	Therefore,	the	core	genome	similarity	alone	does	not	necessary	indicate	if	

the	behaviour	of	bacterial	strains	is	similar.	It	is	possible	that	observed	genospecies	

variation	could	be	linked	with	strain	fitness	and	potentially	explained	by	Rlt	strains’	

adaptation	to	specific	resource	or	other	niches	within	the	plant	rhizosphere.	

 

4.5.3. Accessory gene expression levels are associated with their frequency across 

strains 

 
The	frequency	of	an	orthologous	gene	across	Rlt	strains	was	found	to	positively	

correlate	with	increased	expression	levels	(Appendix	Figure	C.5f).	Gene	frequencies	
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were	determined	based	on	their	presence	across	196	Rlt	genomes	(Cavassim	et	al.,	

2019)	and	correlated	to	the	mean	expression	levels	across	up	to	79	Rlt	strains.	Other	

studies	using	E.	coli	and	S.	fredii	species	have	similarly	identified	core	genes	based	on	

larger	available	species	genome	datasets	and	analysis	of	the	expression	data	with	a	

smaller	number	of	strains	showed	a	similar	trend	between	orthologous	gene	

frequency	and	expression	levels	(Vital	et	al.,	2015;	Jiao	et	al.,	2018).	It	has	been	

suggested	that	the	reason	for	increased	expression	with	increased	genome	

distribution	is	due	to	more	frequent	orthologs	having	a	higher	level	of	gene	

connectivity	in	the	transcriptome	regulatory	network	(Jiao	et	al.,	2018).	This	suggests	

that	accessory	genes	have	lower	expression	due	to	their	reduced	integration	into	the	

core	regulation	network.	In	line	with	this,	accessory	genes	were	on	average	expressed	

to	a	lower	level	than	core	genes	(Figure	4.6a).	Conversely,	it	could	simply	be	that	the	

majority	of	accessory	genes	are	regulated	by	factors	not	investigated	in	this	study	

(Vital	et	al.,	2015).	For	example,	large	species	accessory	genomes	can	convey	a	

multitude	of	diverse	phenotypes	(Young,	2016),	and	in	the	complex	rhizosphere	

where	strains	are	exposed	to	both	other	organism	and	heterogeneous	abiotic	

conditions	the	niche-adaptive	capacity	provided	by	the	accessory	genome	is	more	

likely	to	be	utilised	then	rather	than	in	an	axenic	laboratory	environment.	

 

4.5.4. Study Limitations and future research 

 
The	accessory	genome	was	not	incorporated	into	the	differential	or	co-expression	

analyses	due	to	the	biasing	background	influence	of	gene	presence/absence	

population	structure	on	the	data.	In	some	cases,	the	accessory	genome	is	very	large,	

and	in	this	study	accounts	for	79.25%	of	the	79	strain	pangenome.	The	complications	

of	accessory	genome	incorporation	have	been	a	long-standing	technical	challenge	of	

cross-species	expression	analyses.	However,	it	was	suggested	that	differential	

regulation	of	shared	genes,	rather	than	differential	accessory	genome	content,	is	the	

greater	influence	of	species	diversification	(Vital	et	al.,	2015).	On	the	other	hand,	

accessory	genome	regulation	in	coordination	with	the	core	genome	could	influence	

the	observed	genospecies	transcriptional	profiles	and	potential	expression	patterns	

are	undoubtedly	missed	from	their	exclusion.	Subsequently,	future	research	could	

aim	to	understand	the	influence	of	accessory	genomes	on	the	transcription	of	core	

genes.		
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Furthermore,	the	large	number	of	unannotated	genes	within	the	genomes	limited	the	

classification	of	the	functional	relevance	of	both	the	core	and	accessory	genome	

expression	patterns	(Figure	4.6b).	The	lack	of	functional	annotation	for	genes	can	

make	the	relevance	of	observed	expression	patterns	difficult	to	interpret,	as	also	

found	with	other	studies	(Ramachandran	et	al.,	2011;	Vital	et	al.,	2015;	McInerney,	

McNally	and	O’Connell,	2017).	For	that	reason,	curation	of	addition	functional	

annotation	data	for	non-model	organisms	would	aid	future	investigations	aiming	to	

understand	the	functional	relevance	of	genomic	regions.	

		

The	limited	number	of	biological	replicates	for	validating	individual	strain	expression	

patterns	was	an	evident	shortcoming	of	this	study,	and	therefore	future	analyses	

would	aim	to	include	additional	strain	replicates	within	each	genospecies	group.	

Additionally,	inclusion	of	more	strains	for	each	genospecies	from	across	multiple	

geographic	regions	and	continents	could	provide	further	insight	into	the	potential	

global	diversity	of	gene	expression	within	different	genospecies.	In	future,	gene	

expression	patterns	that	correlated	to	phenotypic	growth	traits	in	this	study	could	be	

validated	through	direct	lab	experiments.		

	

Ultimately,	it	would	be	interesting	to	observe	transcriptional	differences	between	

strains	under	more	natural	environmental	conditions,	such	as	in	the	soil	rhizosphere,	

or	in	plant	root	nodules	in	bacteroid	physiology.	This	may	aid	further	understanding	

of	what	has	influenced	genospecies	divergence	and	how	core	genome	variation	

changes	depending	on	the	environmental	context.		

 

4.5.5. Conclusions 

 
Rlt	core	genome	expression	variation	was	associated	with	distinct	phenotypic	

differences	that	were	conserved	within	genospecies	boundaries.	This	suggests	that	

core	genome	similarity	does	not	necessarily	predict	transcriptomic	or	phenotypic	

similarity,	and	consequently	expression	levels	are	an	important	indicator	of	species	

ecological	characteristics.	Considering	the	wider	scope	of	understanding	species	

variation,	it	could	be	proposed	that	the	major	concern	for	prokaryotic	cross-species	

analysis	is	the	lack	of	representation	of	potential	variation	of	expression	within	a	

species.	Predominantly,	prokaryotic	cross-species	analyses	have	used	one	or	two	

isolates	to	represent	a	species	when	undertaking	direct	species	comparisons	(Scaria	

et	al.,	2013;	Kimes	et	al.,	2014;	González-Torres	et	al.,	2015;	Vital	et	al.,	2015).	
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Therefore,	experimental	design	of	this	study,	using	several	strains	within	a	species,	is	

proposed	as	an	alternative	approach	for	cross-species	analysis	that	considers	the	

likely	variation	observed	within	species	for	comparison.		By	using	a	multi-strain	

comparison	approach,	novel	co-expressed	gene	modules	associated	with	bacterial	

metabolism	were	identified,	which	were	associated	with	certain	genospecies	

differences.	These	differences	in	core	genome	expression	could	potentially	be	

adaptive	and	it	is	tempting	to	suggest	that	core	expression	differences	between	

genospecies	may	have	evolved	to	provide	differing	competitive	advantages	to	

colonisation	and	persistence	within	soil	rhizospheres.	However,	it	is	noteworthy	that	

the	accessory	genome	is	highly	likely	to	play	a	significant	role	in	the	niche-adaptive	

phenotypic	traits	observed	between	strains,	which	was	not	fully	explored	here.	

Future	investigations	into	the	co-expression	of	Rlt	modules	may	shed	more	light	on	

the	functional	importance	of	expression	pattern	differences	between	genospecies	

under	more	ecologically	realistic	multi-trophic	or	rhizosphere-based	systems.		
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Chapter 5. Identifying conserved operonic transcriptional units 

in Rhizobium leguminosarum symbiovar trifolii genospecies 
 

5.1. Abstract 

 

Background:	Many	bacterial	operon	prediction	software	have	been	developed.	Most	

of	these	are	however	based	on	the	genomes	of	model	organisms,	such	as	Escherichia	

coli,	Bacillus	subtilis	and	Staphylococcus	aureus,	and	using	only	few	representative	

bacterial	strains	per	species.	As	a	result,	these	software	are	often	limited	in	predicting	

operons	of	more	distantly	related	bacterial	species.		

Results:	In	this	study,	genomic	and	single-replicate	transcriptomic	data	collected	

from	26	strains	of	Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	were	used	to	

identify	transcriptional	units	conserved	within	and	across	five	Rlt	subspecies	

(genospecies	A-E).	A	combination	of	ortholog	identification,	adjacent	gene	pair	

identification,	mean	intergenic	distance	calculations,	and	detection	of	gene	co-

expression	were	used	to	generate	transcriptional	units	equating	to	putative	operons.	

Calculation	of	deviance	in	expression	between	adjacent	genes	across	multiple	strains	

also	supported	operon	predictions.	Furthermore,	the	well-characterised	nodABCIJ	

symbiosis	gene	operon	and	adjacent	genes	were	utilised	to	verify	the	suitability	of	the	

determined	parameters.	Approximately	1000	transcriptional	units	that	contained	

both	core	and	accessory	genes	were	identified	for	each	individual	Rlt	genospecies.	

Additionally,	transcriptional	units	containing	genospecies-specific	genes	were	

identified	including	a	bacterial	efflux	pump	system	and	a	rhizosphere-induced	gene	

operon.	In	total,	94	conserved	transcriptional	units	were	found	across	all	five	

genospecies.		

Conclusions:	The	developed	operon	prediction	pipeline	utilises	the	variation	in	

genomic	organisation	and	gene	expression	levels	across	multiple	strains	grown	under	

the	same	conditions	to	determine	species	conserved	operons,	which	offers	a	further	

validation	to	operon	prediction	pipelines.	The	use	of	multiple	strains	to	characterise	

Rlt	species	and	genospecies	transcriptional	units	additionally	highlights	that	

substantial	variation	in	the	expression	of	putative	operons	is	evident	within	bacterial	

species.	The	generated	database	of	putative	operons	for	Rhizobium	leguminosarum	

can	be	utilised	to	further	study	functional	and	transcriptional	variation	with	rhizobia.	
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5.2. Introduction 

 

An	operon	is	a	group	of	genes	that	are	arranged	consecutively	in	the	genome	and	

co-directionally	transcribed	by	a	common	promoter	and	terminator	region.	This	

structure	enables	a	set	of	genes	to	be	co-transcribed	into	a	single	stand	of	

polycistronic	mRNA	and	it	is	thought	that	many	of	the	genes	within	the	genomes	of	

prokaryotes	are	organised	into	operons.	The	well-studied	lac	operon	in	E.	coli	was	the	

first	defined	classical	operon,	and	it	is	now	hypothesised	that	many	genes	involved	in	

related	functional	pathways	are	organised	into	non-random	operon	structures	to	

enable	efficient	co-expression	(Jacob	and	Monod,	1961;	Wolf	et	al.,	2001;	De	Hoon	et	

al.,	2004;	Koonin,	2009;	Osbourn	and	Field,	2009).	It	has	also	been	suggested	that	

operons	(predominantly	newly	formed)	may	contain	genes	that	are	in	different	

functional	pathways	but	are	required	under	the	same	environmental	conditions	

(Osbourn	and	Field,	2009).	With	these	functional	dependencies	in	mind,	operon	

structures	have	been	found	to	be	largely	dynamic	and	can	be	significantly	altered	by	

environmental	influences	(Okuda	et	al.,	2007;	Osbourn	and	Field,	2009;	Fortino	et	al.,	

2014).	The	extent	of	genomic	‘operonization’	largely	differs	between	different	

bacterial	species	and	significant	operon	structure	differences	are	apparent	even	

between	the	strains	of	one	bacterial	species	(Wolf	et	al.,	2001;	Wang	et	al.,	2004;	

Koonin,	2009).	Due	to	this	variation,	it	is	challenging	to	utilise	generalised	methods	to	

predict	operons	within	different	bacterial	species	using	solely	genomic	information.			

	

The	Selfish	Operon	Model	is	currently	the	most	accepted	model	theorizing	the	

persistence	of	conserved	operons	across	diverse	bacteria	(Lawrence,	1999).	The	

Selfish	Operon	Model	reasons	that	operonic	gene	organisation	is	maintained	in	

bacteria	because	it	enables	all	genes	required	for	a	selectable	phenotype	to	be	

propagated	through	horizontal	co-transfer	as	well	as	vertical	transmission	as	a	result	

of	their	close	proximity	(Lawrence,	1999;	Koonin,	2009;	Osbourn	and	Field,	2009).	

Consequently,	the	model	suggests	that	gene	clustering	is	beneficial	to	the	constituent	

genes	themselves	within	the	host,	rather	than	purely	because	of	the	importance	of	

functional	coregulation	to	the	host	organism	(Lawrence,	1999).		

	

Genes	with	a	conserved	order	across	several	or	more	bacterial	genomes	have	a	high	

probability	of	belonging	to	an	operon	(Ermolaeva,	White	and	Salzberg,	2001;	Wolf	et	

al.,	2001;	Edwards	et	al.,	2005;	Junier	and	Rivoire,	2016).	Conservation	of	gene	order	
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across	species	could	be	explained	by	horizontal	gene	transfer	of	a	block	of	genes,	

recent	divergence	preventing	disruption	of	gene	order,	or	stable	maintenance	of	the	

gene	order	due	to	positive	effect	on	organism	fitness	(Tamames	et	al.,	1997;	

Tamames,	2001).	The	size	of	conserved	genome	regions	across	bacterial	species	can	

vary	from	small	2-gene	operons	up	to	big	syntenic	gene	blocks	(uber-operons)	

(Tamames	et	al.,	1997;	Tamames,	2001;	Junier	and	Rivoire,	2016).	On	the	other	hand,	

the	reduction	of	operon	conservation	has	been	linked	with	genome	divergence	

distance,	evolutionary	lineage,	and	operon	complexity	(Itoh	et	al.,	1999;	Okuda	et	al.,	

2007).	Previous	comparative	analyses	have	found	that	few	operons	are	fully	

conserved	across	species	and	the	‘operome’	of	individual	strains	is	primarily	

comprised	of	unique	operons	(Salgado	et	al.,	2000;	Wolf	et	al.,	2001;	Koonin,	2009).	

Even	closely	related	strains	can	have	regions	with	no	conserved	gene	order	

presumably	indicative	of	regions	of	active	rearrangement	or	constitution	of	

predominantly	unique	genes	(Tamames,	2001).	Within	operons,	gene	order	could	be	

reorganised	frequently	during	evolution	and	therefore	destruction	of	operon	gene	

order	is	seen	as	an	essentially	neutral	process	in	the	long-term	evolution	of	genome	

structure	(Itoh	et	al.,	1999).	For	example,	there	could	be	flexibility	in	gene	order	

within	operons	if	it	is	not	essential	for	operon-product	functioning.	Addition	or	

insertion	of	genes	into	pre-existing	operons	also	can	alter	the	transcriptional	

structure	and	generate	new	operons	(Price,	Arkin	and	Alm,	2006).	However,	this	

instability	of	gene	order	within	operons	can	also	lead	to	difficulties	in	identification	of	

conserved	operon	structures	(Price,	Arkin	and	Alm,	2006).		

	

Operon	prediction	using	genomic	and	transcriptomic	data	has	seen	extensive	

development	in	prokaryotes	(examples	of	software	currently	available	for	operon	

prediction	are	outlined	in	Table	5.1).	For	example,	it	has	recently	been	shown	that	a	

combination	of	gene	expression	data	with	intergenic	gene	distances	provides	an	

additional	crucial	determinant	of	successful	operon	detection	(De	Hoon	et	al.,	2004).	

Moreover,	genes	within	and	outside	operons	have	been	shown	to	display	significant	

overlap	in	their	intergenic	gene	distances,	and	therefore	co-expression	data	is	vital	

for	identifying	co-regulated	gene	sets	and	potentially	functional	operons	(De	Hoon	et	

al.,	2004).	Previous	operon	prediction	studies	have	largely	focused	on	the	genomes	of	

model	prokaryotes	such	as	the	Escherichia	coli,	Bacillus	subtilis	and	Staphylococcus	

aureus,	and	in	some	cases	only	the	core	chromosomal	genes	have	been	considered	

(Huerta	et	al.,	1998;	Salgado	et	al.,	2000;	De	Hoon	et	al.,	2004;	Wang	et	al.,	2004;	
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Bergman	et	al.,	2007;	Chuang	et	al.,	2012;	Conway	et	al.,	2014;	Fortino	et	al.,	2014;	

Taboada	et	al.,	2018).	As	a	consequence,	most	of	the	operon	databases	rely	on	these	

model	organisms	and	the	applicability	of	these	databases	in	context	of	more	distantly	

related	bacterial	species	have	been	questioned	due	to	the	lack	of	experimental	

evidence	supporting	the	operon	predictions.		
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Table 5.1 Operon prediction software and their references.  

Operon Software 
(Reference) 

Application 

DOOR/DOOR2 
(Mao et al., 2009, 2014) 

• DOOR: Open access database 
• DOOR2: operon prediction algorithm using genomic information and 

not transcriptomic data. 
• Calculates level of similarity between related operons in different 

organisms from database. 
OperonDB 
(Pertea et al., 2009) 

• Identify gene pairs located on the same DNA strand across different 
bacterial genomes. 

ProOpDB 
(Taboada et al., 2012) 

• Neural networking to predict operons stored in ProOpDB database.  

Rockhopper 
(McClure et al., 2013) 
 

• Algorithm to predict operon structure and transcriptional start and 
stop sites using RNA-seq mapping data, intergenic distance and 
expression correlations across experiments.  

• Run on single RNA-seq dataset at a time.  
RegulonDB 
(Huerta et al., 1998) 

• Database for E. coli K-12 putative operons identified across different 
growth treatments.  

MicrobesOnline 
(Dehal et al., 2009) 
 

• Utilises microarray data and genomic information to combine 
phylogenetic analysis of genes and correlation of expression profiles 
to identify conserved putative operons.  

OperomeDB 
(Chetal and Janga, 2015) 
 

• Uses RNA-seq data to identify condition-specific putative operon 
structures.  

• Uses Rockhopper software to operon prediction and iBrowse to 
visualise predicted operons. 

• Analysis carried out individually for each bacterial genome. 
• Suggested for comparative operomics analysis. 

REMap 
(Pelly et al., 2016) 
 

• Utilises BAM file transcriptomic data, gff file and user-determined 
expression parameters.  

• Algorithm evaluates transcription coverage within genes and 
intergenic regions (intergenic region length not limited). Does not 
rely heavily on gene structure or functional annotations. 

• Algorithm can be modified for specific bacterial species. 
• Alternative to Rockhopper, it does not split putative operons if ORF 

are identified on the complementary strand.  
CONDOP 
(Fortino, Tagliaferri and 
Greco, 2016) 
 

• R package  
• Determines operon pairs and non-operon pairs with genomic 

(genome sequence, gff and DOOR files) and raw count transcriptomic 
data 

• Uses three machine learning approaches (neural networks, support 
vector machines, random forests) to identify adjacent similarly 
identified genes and link them into operon groups.  

SeqTU 
(Chen et al., 2017) 
 

• Developed by the creators of DOOR. Part of the DOOR2 package. 
• Uses RNA-seq expression level continuity and variance.  
• Gene functional relatedness evaluated with KEGG and GO terms. 
• Calibrate organism-specific predictor parameters. 
• Uber-operon predictor. 

Operon-Mapper 
(Taboada et al., 2018) 
 

• Uses only genomic sequences to calculate intergenic distances and 
relationships between gene functions to generate an artificial neural 
network for operon prediction.  

• Transcriptomic data is not considered.  
• Provides a score of how likely gene pairs are in the same operon. 

 

	



 154 

Operon	prediction	studies	have	outlined	several	common	parameters	that	must	be	

maintained	between	gene	pairs	if	they	are	to	be	considered	part	of	a	transcriptional	

unit	or	operon	(Chuang	et	al.,	2012).	These	include:	

1)	genes	must	be	less	than	a	specific	threshold	of	base	pairs	apart	and	based	on	

previous	studies	a	threshold	between	20	bp	to	300	bp	is	commonly	used	(Salgado	et	

al.,	2000;	Ermolaeva,	White	and	Salzberg,	2001;	De	Hoon	et	al.,	2004;	Wang	et	al.,	

2004;	Price,	Arkin	and	Alm,	2006;	Bergman	et	al.,	2007;	Fortino	et	al.,	2014;	Wang,	

MacKenzie	and	White,	2015;	Taboada	et	al.,	2018);	

2)	gene	pairs	must	be	adjacent	on	the	genome	(Salgado	et	al.,	2000;	Price,	Arkin	and	

Alm,	2006;	ten	Broeke-Smits	et	al.,	2010);		

3)	pairs	must	be	on	the	same	DNA	strand	(Eyre-Walker,	1995;	Salgado	et	al.,	2000;	

Ermolaeva,	White	and	Salzberg,	2001;	Wang	et	al.,	2004;	Price,	Arkin	and	Alm,	2006);		

4)	pairs	must	be	co-expressed	(Eyre-Walker,	1995;	De	Hoon	et	al.,	2004;	Price,	Arkin	

and	Alm,	2006;	ten	Broeke-Smits	et	al.,	2010;	Fortino	et	al.,	2014;	Wang,	MacKenzie	

and	White,	2015;	Slager,	Aprianto	and	Veening,	2018);		

5)	identified	orthologs	in	other	strains	must	also	be	neighbouring/adjacent	genes	or	

have	a	conserved	order	(Wolf	et	al.,	2001;	Wang	et	al.,	2004;	Price,	Arkin	and	Alm,	

2006;	Bergman	et	al.,	2007).		

	

Other	additional	parameters	used	in	previous	studies	include	confirmation	of	

operons	using	reference	genomes	and	by	considering	the	functional	relationships	

between	adjacent	genes	(Salgado	et	al.,	2000;	De	Hoon	et	al.,	2004;	Fortino	et	al.,	

2014;	Taboada	et	al.,	2018).	Other	investigations	have	also	identified	operons	via	

other	methods,	such	as	using	Hidden	Markov	models	(Yada	et	al.,	1999;	Bergman	et	

al.,	2007),	and	identifying	ribosomal	binding	sites	and	shine-dalgarno	sequences	

(Yada	et	al.,	1999),	termination	sites	(Wang	et	al.,	2004;	Conway	et	al.,	2014;	Wang,	

MacKenzie	and	White,	2015),	codon-usage	patterns,	intergenic	region	expression	

patterns	(Fortino	et	al.,	2014),	RNA-seq	read	coverage	(Conway	et	al.,	2014)	and	

using	log-likelihood	methods	(Ermolaeva,	White	and	Salzberg,	2001).		

	

Some	operons	can	be	organised	into	multiple	transcriptional	units	whereby	the	

expression	of	groups	of	adjacent	genes	within	the	operon	can	differ	(Okuda	et	al.,	

2007).	This	expression	difference	can	depend	on	external	stimuli	that	alter	gene	

regulation	or	the	presence	of	internal	promoters	and	terminators	between	operon-

genes	(Okuda	et	al.,	2007).	It	is	well	known	that	genes	within	operons	have	shorter	
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intergenic	distances	than	genes	outside	an	operon,	or	at	the	borders	of	

transcriptional	units	within	operons	(Salgado	et	al.,	2000).	This	is	likely	because	

genes	that	have	shorter	intergenic	distances	also	commonly	display	higher	levels	of	

coregulation	(Okuda	et	al.,	2007).	However,	some	intergenic	regions	within	an	operon	

can	be	longer	than	others	due	to	incorporation	of	internal	regulatory	promoter	and	

terminator	elements	(Okuda	et	al.,	2007).	Intergenic	distance	can	also	indicate	

operon	age,	as	newer	operons	have	less-optimal	spacing	between	genes	compared	to	

older	operons	as	a	result	of	deletions	within	intergenic	regions	over	generations	

(Price,	Arkin	and	Alm,	2006).	Relatedly,	due	to	fine-tuning	of	gene	regulation,	highly	

expressed	operons	are	more	likely	to	have	relatively	larger	intergenic	regions	in	

order	to	avoid	over-transcribing	unnecessary	proteins	(Price,	Arkin	and	Alm,	2006).	

	

Here	we	studied	operon	prediction	by	using	genetic	information	and	gene	expression	

data	from	26	strains	of	Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	grown	

under	the	same	conditions	to	build	conserved	‘operomes’	for	five	genetically	distinct	

Rlt	sub-species	(genospecies	A-E).	The	term	‘transcriptional	unit’	was	used	as	

opposed	to	operon	because	regulatory	promoter	or	terminator	regions	around	

putative	operons	were	not	identified,	and	differential	expression	has	been	observed	

between	polycistronic	genes	that	occur	within	the	same	operon	(Okuda	et	al.,	2007;	

Conway	et	al.,	2014).	Transcriptional	units	were	determined	by	evaluating	the	mean	

intergenic	distances	and	expression	level	correlations	between	adjacent	orthologous	

genes	across	Rlt	strains.	Calculating	the	deviance	in	expression	between	adjacent	

gene	pairs	across	strains	also	provided	additional	supporting	evidence	to	

transcriptional	unit	classification,	despite	its	previously	limited	application	in	operon	

prediction	(Fortino	et	al.,	2014).	The	well-characterised	Rhizobium	leguminosarum	

nodABCIJ	symbiosis	gene	operon	and	neighbouring	genes	were	used	to	confirm	the	

suitability	of	the	determined	transcriptional	unit	parameters	(Hong,	Burn	and	

Johnston,	1987b).	Expression	of	this	operon	was	ensured	by	the	addition	of	clover	

flavonoid	to	the	strain	growth	media	(Djordjevic	et	al.,	1987).	Genospecies-conserved	

putative	operons	were	further	compared	to	identify	transcriptional	unit	structures	

that	were	maintained	holistically	across	the	Rlt	species.	The	utilisation	of	multiple	

strains	to	characterise	species	conserved	operons	by	taking	into	account	gene	

expression	variation	across	strains	with	differing	genomic	contents	offered	a	further	

valuable	verification	to	operon	prediction	pipelines.	Findings	demonstrate	that	

genomic	and	single-replicate	transcriptomic	data	generated	from	a	collection	of	
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strains	can	be	used	to	identify	transcriptional	units	that	are	conserved	at	the	species	

level.	This	investigation	has	subsequently	created	a	database	of	putative	operons	for	

Rhizobium	leguminosarum	that	can	be	utilised	for	further	functional	testing	and	

investigations	concerning	transcriptomic	regulation.		

	

5.3. Methods 

5.3.1. Genome and transcriptome data sources and strain metadata   

 

Three	to	seven	Rhizobium	leguminosarum	symbiovar	trifolii	strains	from	each	

genospecies	(gsA	=	6,	gsB	=	5,	gsC	=	7,	gsD	=	5,	gsE	=	3:	Total	=	26)	were	selected	from	

the	196	Rlt	strain	NCHAIN	collection	for	this	study	(Cavassim	et	al.,	2020).	Only	the	

orthologous	genes	identified	from	the	196	Rlt	strain	collection	were	utilised	for	the	

operon	prediction	(Cavassim	et	al.,	2020).	These	orthologous	gene	groups	were	

previously	identified	using	ProteinOrtho	(v.5.16b)	and	were	functionally	annotated	

using	Prokka	(v.1.12),	to	provide	putative	RefSeq	accession	numbers	and	protein	

product	information	(Cavassim	et	al.,	2020).		

	

Transcriptome	data	for	the	26	strains	was	obtained	and	processed	as	described	

previously	(Chapter	4).	In	brief,	to	generate	the	transcriptome	data	the	strains	were	

cultured	individually	in	5	ml	of	Tryptone	Yeast	(TY)	broth	(5	g	Tryptone,	2.5	g	Yeast	

Extract,	1.47	g	CaCl2,	per	litre	volume)	with	1µM	7,4’-dihydroxyflavone	(clover	

flavonoid	stock	concentration	solubilised	in	DMSO)	for	48	hours,	28°C,	180	rpm.	7,4’-

dihydroxyflavone	was	added	to	the	TY	broth	to	induce	expression	of	Rlt	nodulation	

gene	operon,	nodABCIJ,	which	was	used	to	validate	the	operon	prediction	threshold	

parameters	in	this	study	(Djordjevic	et	al.,	1987).	Raw	gene	expression	count	data	

was	normalised	based	on	expression	of	4,229	Rlt	core	genes	using	PoissonSeq	

(v.1.1.2),	and	further	log	transformed,	as	described	previously	(Chapter	4).	Metadata	

for	strains	can	be	found	in	Appendix	C:	Chapter	4	(Appendix	Table	C.1).	

 

5.3.2. Transcriptional unit generation 

 
The	following	analyses	were	undertaken	for	each	genospecies	individually	in	order	to	

generate	a	dataset	of	putative	operons	for	each	genospecies.	For	generation	of	

transcriptional	units	per	genospecies,	only	ortholog	group	gene	pairs	that	were	

present	in	at	least	three	strains,	and	adjacent	in	one	strain,	of	a	genospecies	were	
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considered.	Additionally,	genes	were	only	considered	adjacent	if	they	were	on	the	

same	DNA	strand	(i.e.	transcribed	in	the	same	direction).	For	gsE,	only	gene	pairs	that	

were	present	in	all	three	gsE	strains	were	considered	for	the	transcriptional	unit	

analysis.		

	

For	each	adjacent	gene	pair,	the	mean	number	of	base	pairs	between	adjacent	

orthologous	genes	(intergenic	distance)	across	strains	was	calculated.	Pearson’s	

correlation	between	adjacent	gene	pairs	expression	was	calculated	from	the	

PoissonSeq	normalised,	log2	transformed	gene	expression	data	using	the	cor.test	

function	from	psych	R	package	(v.1.8.12).	Additionally,	the	deviance	in	gene	

expression	of	adjacent	gene	pairs	across	strains	(i.e.	mean	difference	in	gene	

expression)	was	calculated	using	the	PoissonSeq	normalised,	log2	transformed	gene	

expression	data	by	the	following	equation:	

	

	
Where	the	expression	difference	between	adjacent	genes,	gene	i	(Gi)	and	gene	j	(Gj),	

for	each	strain	(Sx)	is	totalled	and	normalised	by	the	number	of	strains	with	the	

adjacent	gene	pair.	

	

Subsequently,	adjacent	genes	within	each	genospecies	were	filtered	to	make	

transcriptional	units	for	each	Rlt	genospecies.	Transcriptional	units	were	identified	

by	stringing	together	adjacent	gene	pairs	that	met	the	following	criteria:	1)	intergenic	

distance	must	be	less	than	200	base	pairs	between	adjacent	gene	pairs;	2)	adjacent	

gene	pairs	must	have	correlated	expression	with	a	Pearson’s	correlation	R	statistic	>	

0.8;	3)	adjacent	genes	must	have	a	deviance	score	<	3.	

	

Adjacent	gene	pairs	that	did	not	meet	these	criteria	signalled	the	end	of	the	

transcriptional	unit	in	the	string	of	adjacent	genes	that	met	these	criteria.	Intergenic	

distance	and	Pearson’s	correlation	parameters	stated	above	were	chosen	with	

consideration	to	prediction	parameters	used	by	previous	studies	(Dam	et	al.,	2007;	

ten	Broeke-Smits	et	al.,	2010;	Wang,	MacKenzie	and	White,	2015;	Chen	et	al.,	2017;	

Slager,	Aprianto	and	Veening,	2018),	and	from	correlation	coefficient	distribution	

patterns	of	adjacent	genes	using	gsB	genomic	and	transcriptomic	data.	The	deviance	

å	((SxGi	–	SxGj)2)	
	

number	of	strains	
	

=	Deviance	score		
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score	parameter	was	also	based	on	the	deviance	score	distribution	patterns	of	

adjacent	genes	using	gsB	genomic	and	transcriptomic	data.	gsB	was	used	because	

strains	in	this	genospecies	were	the	most	genetically	homogeneous	(Cavassim	et	al.,	

2020).	Suitability	of	the	determined	transcriptional	unit	parameters	were	confirmed	

based	on	the	known	nodABCIJ	symbiosis	gene	operon	and	surrounding	Rlt	SM3	strain	

symbiosis	plasmid	genes	as	it	is	a	well-characterised,	known	Rlt	operon,	which	was	

actively	expressed	due	to	the	addition	of	clover	flavonoid	in	the	strain	growth	media	

(Djordjevic	et	al.,	1987).	

 

5.3.3. Core and accessory gene classification 

 
Genes	were	classed	as	core	or	accessory	based	on	their	frequency	in	196	Rlt	strains	

(Cavassim	et	al.,	2020).	If	genes	were	present	in	all	196	strains,	they	were	considered	

core	genes,	which	resulted	in	4,229	core	genes	including	25	symbiosis	genes.	All	

other	genes	were	considered	as	accessory.	Genospecies	enriched	genes	were	classed	

as	genes	present	in	at	least	90%	of	strains	in	a	genospecies	from	the	196-strain	

dataset,	and	absent	in	at	least	90%	of	the	four	other	genospecies.	

 

5.3.4. Transcriptional unit validation with known Rlt operons and WGCNA Rlt core 

gene modules 

 
Genospecies	operon	predictions	were	evaluated	by	searching	for	known	rhizobia	

operons	within	the	identified	transcriptional	units.	Known	operon	gene	reference	

sequences	were	used	to	search	for	orthologous	gene	groups	in	strain	genomes	using	

nBLAST.	If	matched	operons	in	genomes	did	not	contain	the	full	set	of	orthologous	

BLASTn	gene	groups,	then	the	intergenic	distances,	correlation	coefficients	and	

deviance	scores	of	matched	ortholog	gene	groups	were	assessed	to	determine	why	

genes	were	excluded	from	known	operons.		

	

To	calculate	how	many	operons	were	maintained	when	intersected	into	previously	

calculated	weighted	gene	correlation	network	analysis	(WGCNA)	Rlt	core	gene	

modules,	only	the	core	genes	within	transcriptional	units	were	considered.	

Previously	(Chapter	4),	co-expressed	core	ortholog	genes	were	grouped	into	modules	

with	WGCNA	R	package	(v.1.66).	PoissonSeq	normalised,	log2(n+1)	transformed	

counts	were	used	as	input	for	WGCNA.	All	WGCNA	default	settings	were	used	with	

the	exception	that	a	soft	threshold	power	of	7	was	used	and	the	minimum	number	of	
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genes	to	form	a	distinct	module	was	set	to	3.	In	order	to	observe	how	core	genes	in	

modules	intersected,	only	transcriptional	units	that	contained	2	or	more	core	genes	

were	included	in	the	analysis.	This	was	to	determine	whether	core	genes	within	a	

transcriptional	unit	were	either	split	or	maintained	by	a	WGCNA	module.		

	

5.4. Results 

5.4.1. Validation of transcriptional unit parameters 

 

A	dataset	of	transcriptional	units	was	generated	for	each	genospecies	individually,	

based	on	genomic	and	transcriptomic	information	collected	for	three	to	seven	strains	

of	each	genospecies.	To	classify	orthologous	gene	groups	into	conserved	

transcriptional	units	for	each	Rlt	genospecies	separately	(gsA-E),	gene	pairs	present	

in	at	least	three	strains	and	adjacent	in	at	least	one	strain	were	considered	for	

transcriptional	unit	assignment.	Genes	were	only	considered	adjacent	if	they	were	

located	next	to	each	other	on	the	same	strand	of	DNA	(i.e.	transcribed	in	the	same	

direction).	With	consideration	to	previous	parameters	used	for	operon	identification,	

the	following	thresholds	were	applied	to	gene	pairs	based	on	their	genomic	location	

and	expression	within	a	genospecies:	1)	pairs	must	have	a	mean	intergenic	region	of	

less	than	200	base	pairs	(intergenic	distance	measure);	2)	comparison	of	adjacent	

gene	pairs	expression	must	have	a	Pearson’s	correlation	R	statistic	>	0.8;	3)	adjacent	

genes	must	have	a	gene	expression	deviance	score	<	3.	The	genomic	information	and	

gene	expression	patterns	in	five	strains	from	gsB	were	utilised	to	test	the	suitability	

of	the	chosen	transcriptional	unit	parameters	(Figure	5.1	and	Figure	5.2).	

Furthermore,	the	known	symbiosis	nodulation	gene	operon,	nodABCIJ,	and	

neighbouring	symbiosis	plasmid	genes	were	additionally	used	to	confirm	the	

suitability	of	the	parameter	thresholds	(Hong,	Burn	and	Johnston,	1987b),	as	the	

expression	of	this	operon	was	ensured	by	the	addition	of	clover	flavonoid	to	the	

growth	media	(Djordjevic	et	al.,	1987).	Using	these	parameters,	1,122	transcriptional	

units	containing	3,097	(44.65%)	ortholog	gene	groups	were	identified	from	6,936	

ortholog	gene	groups	in	gsB.		

	

For	all	genospecies,	the	majority	of	gene	pairs	were	found	to	have	a	mean	intergenic	

distance	of	around	40	bp,	and	a	second	smaller	peak	between	50-100	bp	(Figure	

5.1a).	Gene	pairs	with	intergenic	distances	of	40	bp	or	less	have	a	high	possibility	of	

being	in	the	same	operon	or	transcriptional	unit.	However,	for	this	pipeline	gene	
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pairs	were	required	to	have	a	mean	intergenic	distance	of	200	bp	or	less	to	be	

considered	transcriptional	unit	gene	pairs,	as	the	intergenic	distribution	tails	off	after	

200	bp	and	this	maximum	distance	threshold	is	similar	to	previously	identified	

operons.	In	order	to	assess	how	clear	transcriptional	units	can	be	observed	based	on	

intergenic	distances	along	a	genomic	region,	the	gsB	mean	intergenic	distances	were	

plotted	between	adjacent	genes	ordered	by	the	positive	and	negative	strand	of	the	Rlt	

strain	SM3	(gsB)	symbiosis	plasmid	(Figure	5.1b).	nodABCIJ	operon	genes	showed	

that	intergenic	distances	within	the	operon	were	below	200	bp	and	intergenic	

regions	to	adjacent	genes	outside	of	the	operon	were	greater	than	200	bp	(Figure	

5.1b).	This	highlighted	the	group	of	nod	genes	as	a	distinct	operon	based	on	

intergenic	distance	alone.		

	

The	correlation	in	expression	of	adjacent	gene	pairs	was	observed	to	tail	off	below	a	

correlation	coefficient	of	0.8	(Figure	5.2a).	Additionally,	the	expression	correlations	

for	all	gene	pair	combinations	in	relation	to	gene	order	across	a	genome	was	assessed	

using	the	SM3	symbiosis	plasmid	gene	region	as	a	reference	for	the	potential	gene	

order.	Gene	pair	combinations	on	opposite	strands,	and	pairs	separated	by	many	

genes	along	the	same	strand,	were	found	to	display	high	expression	correlations	

(Figure	5.2b).	For	example,	the	nodABCIJ	operon	was	strongly	correlated	with	

expression	of	gsB-enriched	genes	and	symbiosis	genes	on	the	opposite	strand	(Figure	

5.2b).	However,	when	the	correlations	only	between	adjacent	genes	across	the	SM3	

symbiosis	gene	region	were	observed,	it	was	clearer	that	correlations	in	expression	

were	stronger	at	the	start	of	the	operon	region	and	tailed	off	below	0.8	at	the	end	of	

the	operon	region,	as	demonstrated	by	the	nodABCIJ	operon	and	surrounding	genes	

(Figure	5.2c).	It	was	further	identified	that	the	majority	of	adjacent	gene	pairs	with	an	

intergenic	distance	of	approximately	245	bp	or	less	seemed	to	predominantly	display	

co-expression	correlation	coefficient	values	above	0.75	(Appendix	Figure	D.1).	This	

suggests	that	the	majority	of	tightly	clustered	genes	showed	high	co-expression.	

However,	there	were	also	a	larger	number	of	instances	where	genes	with	small	

intergenic	distances	did	not	display	strong	co-expression	correlations.		

	

In	addition,	the	deviance	in	expression	between	adjacent	genes	was	considered.	

Analysis	of	the	distribution	of	deviance	scores	for	all	adjacent	genes	in	gsB	identified	

that	the	majority	of	adjacent	genes	had	an	expression	deviance	score	below	3,	and	

deviance	scores	levelled	off	after	a	score	of	5	(Figure	5.2d).	This	suggests	that	most	
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genes	within	an	operon	will	have	a	deviance	of	less	than	5,	and	most	notably	less	than	

3,	where	the	number	of	gene	pairs	drastically	increases	(Figure	5.2d).	However,	gsB	

expression	deviance	scores	across	the	SM3	symbiosis	gene	region	identified	that	

genes	at	separate	parts	of	the	genome	also	displayed	deviance	scores	below	3,	

similarly	to	expression	correlations	(Figure	5.2e).	Additionally,	tracking	of	the	

deviance	score	across	the	SM3	symbiosis	gene	region	highlighted	fluctuations	in	

deviance	score	that	seemed	to	associate	with	genes	clustering	by	transcriptional	units	

(Figure	5.2f).	Estimates	of	expression	deviance	below	3	are	supported	by	the	

nodABCIJ	operon,	where	deviance	between	nod	genes	is	close	to	0.	Due	to	the	use	of	

expression	information	from	different	strains	with	differing	genomic	contents,	a	less	

conservative	deviance	score	of	3	was	used	to	indicate	a	potential	transcriptional	unit,	

in	order	to	account	for	possible	strain-dependent	expression	variation.	Similarly,	

deviance	scores	were	found	to	correlate	with	intergenic	distance	up	to	approximately	

245	bp	(3x102	on	logged	intergenic	distance	axis),	after	which	deviance	scores	

between	adjacent	gene	pairs	with	larger	intergenic	distances	appeared	to	become	

random	(Appendix	Figure	D.2).		

	

Additionally,	approximately	12%	of	adjacent	gene	pairs	had	a	negative	mean	

intergenic	distance,	whereby	gene	pair	protein	coding	regions	overlapped	(Table	5.2).	

A	negative	mean	intergenic	distance	of	-4	bp	was	the	most	common	overlapping	gene	

distance,	and	this	pattern	was	observed	across	all	five	genospecies	(Appendix	Figure	

D.3).	An	adjacent	gene	pair	overlap	of	-4	bp	has	been	shown	to	be	a	standard	operon	

organisation	for	bacteria,	which	allows	for	a	frame	shift	in	the	stop	codon	of	one	gene	

and	the	start	codon	of	the	consecutive	gene	(Johnson	and	Chisholm,	2004;	Price,	

Arkin	and	Alm,	2006;	Sabath,	Graur	and	Landan,	2008;	Huvet	and	Stumpf,	2014).	For	

gsB,	607	out	of	7103	adjacent	gene	pairs	(8.55%)	had	a	mean	intergenic	distance	

overlap	of	-4	bp,	and	422	of	those	607	gene	pairs	(69.52%)	were	tagged	as	

transcriptional	unit	pairs	after	further	filtering	with	consideration	to	co-expression	

correlation	and	deviance	scores.	All	gene	pairs	with	negative	mean	intergenic	

distances	were	found	to	be	very	highly	conserved	across	all	strains	within	a	

genospecies,	to	the	extent	that	all	negative	gene	pairs	displayed	the	exact	same	

number	of	base	pair	overlaps	in	all	strains	with	the	exception	of	one	to	two	gene	pairs	

per	genospecies.	Overall,	the	distributions	of	adjacent	gene	intergenic	distances	and	

expression	similarities	across	multiple	strains	(Figure	5.1a,	Figure	5.2a	and	Figure	

5.2d),	and	further	observing	the	profiles	of	these	parameters	across	a	genomic	region	
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(Figure	5.1b,	Figure	5.2c	Figure	5.2f),	can	be	used	to	infer	the	appropriateness	of	

parameter	thresholds	for	operon	prediction.		
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Figure 5.1 Validation of intergenic distance thresholds to determine genospecies transcriptional units. a) 
Distribution of intergenic region lengths (base pairs) between adjacent genes for genospecies A-E. Red 
line indicates 200 bp. b) gsB mean intergenic distance (base pairs) for adjacent genes arranged by their 
order along a region of the symbiosis plasmid in gsB strain, SM3. Red line indicates an intergenic distance 
of 200 bp. 
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Figure 5.2 Validation of gene expression thresholds to determine genospecies transcriptional units. (Continued on following page).  
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Figure 5.2 continued. Validation of gene expression thresholds to determine genospecies transcriptional 
units. Panels b,e,c, and f are based on genes within a region of the symbiosis plasmid, with genes arranged 
by their genome order in gsB strain, SM3. a) Distribution of adjacent gene pairs gene expression Pearson’s 
correlation coefficients for gsB. Red line indicates a gene expression correlation coefficient of 0.8. b) gsB 
Pearson’s correlation coefficients for gene expression correlations of all pairwise gene combinations. Gene 
expression correlation coefficients are shown on a scale ranging from positive (red) to negative (blue). c) 
Pearson’s correlation coefficients for gsB adjacent genes expression correlation. Red line indicates a 
Pearson’s correlation coefficient of 0.8. d) Distribution of adjacent gene pair deviance scores for gsB. Red 
line indicates a deviance score of 3. e) gsB deviance scores for all pairwise gene combinations within a 
region of the SM3 symbiosis plasmid. Deviance scores are shown on a scale ranging from 0 (yellow) to 
above 3 (dark blue). f) Deviance scores for gsB adjacent genes. Red line indicates a deviance score of 3. All 
gene expression correlation coefficients and deviance scores are calculated from gsB genomic and 
transcriptomic data. 
 
 
 
5.4.2. Differences in transcriptional units are evident between genospecies 

 
In	order	to	evaluate	the	differences	in	transcriptional	unit	generation	between	

genospecies,	the	number	of	genes	assigned	to	transcriptional	units	for	each	

genospecies	was	calculated.	Percentage	of	genes	assigned	to	a	transcriptional	unit	

ranged	between	42.17%-48.19%	across	genospecies	pangenomes,	with	the	exception	

of	gsD	for	which	only	34.24%	of	genes	were	assigned	to	a	transcriptional	unit	(Table	

5.2;	Figure	5.3a).	gsD’s	lower	percentage	could	be	because	on	average	adjacent	genes	

across	gsD	strains	displayed	lower	levels	of	co-expression	with	lower	correlation	

coefficients	(gsD	Pearson’s	correlation	R	statistic	average:	0.33;	genospecies	range:	

0.40-0.47)	and	higher	expression	deviance	scores	(gsD	deviance	score	average:	5.30;	

genospecies	range:	4.53-5.03)	compared	to	other	genospecies.	The	distribution	of	

transcriptional	unit	size	was	found	to	be	similar	across	all	genospecies,	with	the	

majority	of	transcriptional	units	containing	only	2	genes	(Figure	5.3c;	Table	5.3).	For	

this	study,	only	polycistronic	operons	were	considered,	and	did	not	analyse	the	

abundance	of	single	gene	operons.	Therefore,	the	average	lengths	of	transcriptional	

units	for	the	genospecies	groups	totalled	between	2-3	genes	(Table	5.3).		

	

Transcriptional	units	were	predominantly	comprised	of	core	genes,	and	this	trend	

was	shown	across	all	genospecies	(Figure	5.3b;	Table	5.4).	This	is	because	many	

accessory	genes	are	filtered	out	of	transcriptional	unit	assignment	as	they	are	present	

in	fewer	than	3	strains	in	a	genospecies.	For	all	genospecies,	transcriptional	units	

containing	predominantly	genospecies	enriched	genes	were	also	identified	(genes	

that	are	highly	abundant	in	one	genospecies	and	highly	absent	from	all	other	

genospecies)	(Figure	5.3;	Appendix	Figure	D.4-Appendix	Figure D.7).	gsB	was	found	



 166 

to	have	the	most	genospecies	enriched	genes	included	in	transcriptional	units	(Figure	

5.3b;	Table	5.4).	For	example,	in	gsB	a	genospecies	enriched	gene	operon	contained	

five	genes,	of	which	four	matched	BLAST	hits	to	‘efflux	transporter,	RND	family,	MFP	

subunit’,	‘putative	ABC	transporter	permease’,	‘ABC	transporter’	and	‘ligand-binding	

protein	SH3’	functions	(Figure	5.4).	This	suggests	that	gsB	strains	have	acquired	a	

bacterial	efflux	pump	system	commonly	used	for	active	transport	of	antibiotics,	heavy	

metals,	or	nodulation	factors,	that	is	rare	in	other	genospecies.		

	

Only	94	transcriptional	units	were	shared	across	all	genospecies	groups	(Table	5.5).	

These	94	transcriptional	units	were	comprised	of	224	genes,	of	which	191	were	core,	

26	were	accessory	and	7	were	symbiosis	genes	(Additional	File	6:	Table	S4).	Most	

accessory	genes	formed	operons	with	other	core	genes.	Four	operons	(two	genes	in	

length)	were	found	to	constitute	only	accessory	genes,	however	these	accessory	

genes	were	present	in	a	high	frequency	of	strains	(179-195	out	of	the	196	Rlt	strains	

collection).	Additionally,	the	only	symbiosis	gene	operons	conserved	across	all	

genospecies	were	the	nodABCIJ	and	nodEF	operons.	As	expected,	the	nodABCIJ	operon	

was	identified	as	a	transcriptional	unit	in	all	genospecies	based	on	the	chosen	

parameters,	due	to	the	operon	being	used	initially	to	assess	the	suitability	of	the	

transcriptional	unit	threshold	parameters	(Figure	5.4;	Appendix	Figure	D.4-Appendix	

Figure D.7).	nodMN	are	present	in	all	genospecies	except	for	gsE,	where	a	deviance	

score	of	3.1	narrowly	rejects	them	from	transcriptional	unit	acceptance.	Nitrogen	

fixation	(nif	and	fix)	genes,	which	are	used	for	nitrogen	fixation	when	rhizobia	are	in	

their	nodule	bacteroid	physiology,	were	hypothesised	to	not	be	identified	effectively	

by	the	operon	prediction	strategy	because	under	the	TY	broth-clover	flavonoid	

growth	conditions	these	genes	were	expected	to	be	expressed	only	at	extremely	low	

levels,	if	at	all.	As	a	result,	the	nitrogen	fixation	genes	were	found	to	be	less	effectively	

identified	as	conserved	transcriptional	units.	For	the	fixABCX	operon,	fixA	and	fixX	

were	not	included	in	the	transcriptional	units	across	some	genospecies	due	to	a	

correlation	coefficient	<	0.8	or	a	deviance	score	just	above	3.	Therefore,	the	altered	

content	of	the	fixABCX	operon	across	genospecies	classes	them	as	different	

transcriptional	units	and	therefore	would	be	considered	as	not	conserved	across	

genospecies.	Similarly,	omission	of	nifH,	nifK	and	nifD	genes	from	the	nifHDKEN	

operon	due	to	correlation	and	deviance	scores	outside	parameter	thresholds	meant	

these	transcriptional	units	were	also	considered	un-conserved	across	genospecies.	

gsC	was	found	to	assign	the	most	symbiosis	genes	to	transcriptional	units	(22	of	25	



 167 

symbiosis	genes),	whereas	gsD	assigned	only	15	of	25	symbiosis	genes	to	a	

transcriptional	unit.	Taken	together,	it	was	challenging	to	adequately	identify	

operons	consistently	between	strains	for	genes	whose	expression	rely	on	specific	

environmental	conditions.		

	

The	largest	cross-species	conserved	operon	contained	10	ribosomal	protein	genes	

(Appendix	Figure	D.8).	The	main	functions	of	the	94	operons	followed	a	similar	

pattern	of	essential	cellular	metabolic	functions	with	‘putative	ribosomal	protein’,	

‘transporter/efflux	pump’	and	‘ATPase’	functions.	gsB	and	gsC	shared	the	most	

transcriptional	units,	whereas	gsA	and	gsD	shared	the	fewest	transcriptional	units	

(Table	5.5),	which	could	suggest	that	gsA	and	gsD	had	the	most	differences	in	

regulatory	network	structures.	Gene	order	was	also	identified	to	be	highly	conserved	

in	transcriptional	units	shared	across	genospecies,	as	when	gene	order	within	

transcriptional	units	was	not	considered,	the	number	of	shared	transcriptional	units	

remained	almost	exactly	the	same	(Table	5.5).		

	

Conversely,	there	were	cases	where	a	transcriptional	unit	was	identified	in	two	or	

more	genospecies	but	the	genes	within	the	unit	differed	between	genospecies	by	the	

presence	or	absence	of	a	single	gene.	Based	on	the	developed	pipeline,	these	would	be	

considered	as	separate	transcriptional	units	as	they	differed	in	overall	gene	content.	

For	example,	‘Transcriptional	unit	A’	in	gsB	consists	of	9	genes	encoding	the	

components	of	a	Type	IV	conjugal	transfer	system	(Figure	5.4a).	‘Transcriptional	unit	

A’	has	two	different	end	genes	(group5766	or	group7857)	because	the	gsB	strains	

contained	either	group5766	or	group7857	(Figure	5.4a).	This	disparity	between	

strains	was	due	to	both	genes	encoding	the	same	‘conjugal	transfer	protein	TrbI’	

function	but	being	identified	as	different	orthologous	gene	groups	by	ProteinOrtho.	

gsC	also	had	the	exact	same	operon	but	without	the	end	group5766/group7857	

genes.	This	is	because	in	gsC,	group5766	was	not	found	adjacent	to	group5767	but	

instead	adjacent	to	another	set	of	genes	which	encoded	for	a	different	putative	type	

IV	conjugal	transfer	system.	Additionally,	group7857	was	excluded	from	gsC	

‘Transcriptional	unit	A’	because	it	had	a	deviance	score	of	3.25	with	its	adjacent	gene	

group5767,	which	consequently	narrowly	excluded	it	from	the	operon	(Figure	5.4a).	

As	such,	in	this	analysis	the	gsB	and	gsC	transcriptional	units	were	classified	as	

different	transcriptional	units	based	on	the	overall	difference	in	gene	content.	

Therefore,	minor	alterations	to	the	regulatory	structure	of	the	operons	must	be	
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considered	when	comparing	the	similarity	of	putative	polycistronic	regions	between	

genospecies.		

	

Alterations	to	the	structure	of	transcriptional	units	within	a	genospecies	must	also	be	

considered	when	generating	transcriptional	units	from	a	consensus	of	adjacent	gene	

pairs	from	multiple	strains.	Infrequently,	some	transcriptional	units	produced	for	a	

genospecies	were	not	linear	(Figure	5.4).	This	was	found	to	be	commonly	caused	by	

some	strains	containing	one	version	of	the	transcriptional	unit,	and	other	strains	

containing	an	altered	version	of	the	transcriptional	unit	where	a	different	gene	

ortholog	group	had	been	replaced	with	another	gene	with	a	different	ortholog	group	

name	in	the	middle	of	the	transcriptional	unit.	Non-linear	transcriptional	units	can	

occur	by	both	‘redundant’	gene	versions	being	present	in	at	least	3	strains	in	the	

genospecies	and	also	being	located	in	the	same	position	within	the	unit	in	at	least	1	

strain.	In	most	cases,	the	‘redundantly’	located	genes	in	the	transcriptional	unit	were	

again	found	to	be	homologs	with	the	same	putative	function	but	labelled	under	

different	ortholog	gene	names	by	ProteinOrtho.		

	

	

Table 5.2 The number of genes for consideration of transcriptional unit generation before and after operon 
filtering parameters. Before filtering, gene pairs must be present in at least 3 strains of a genospecies and 
located adjacently in at least 1 strain. Filtering parameters include intergenic distance < 200 bp, Pearson’s 
correlation coefficient > 0.8, deviance score < 3.  

 
 

Genospecies Number of 
genes before 

filtering 

Number of 
genes after 
filtering (%) 

Number of 
unique 

adjacent gene 
pairs before 

filtering 

Number of 
unique 

adjacent gene 
pairs after 

filtering (%) 

Number of 
adjacent gene 

pairs with 
negative 

intergenic 
distances before 

filtering (%) 

A 6530 2754 (42.17) 6876 1743 (25.35) 844 (12.27) 
B 6936 3097 (44.65) 7103 1976 (27.82) 961 (13.53) 
C 7634 3392 (44.43) 8198 2212 (26.98) 982 (11.98) 
D 6988 2393 (34.24) 7191 1437 (19.98) 913 (12.70) 
E 6172 2974 (48.19) 6067 1911 (31.50) 799 (13.17) 
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Table 5.3 The number of transcriptional units with a specific number of genes. The total number of transcriptional units identified for each genospecies is noted. Additionally, the number 

of transcriptional units conserved within WGCNA modules (i.e. not split across several WGCNA modules) is noted. *Only core genes were considered for the conservation calculation, and 

therefore the number of transcriptional units considered are only those that contain 2 or more core genes.  
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Table 5.4 The total number of genes in transcriptional units that are classified as core, genospecies enriched, 
accessory and symbiosis genes across all five genospecies A-E. Gene group classification is based on gene 
frequency in 196 Rlt strains. 

Genospecies Total no. 
of genes 

No. core genes 
(%) 

No. genospecies 
enriched genes 

(%) 

No. accessory 
genes (%) 

No. symbiosis 
genes (%) 

A 2754 1730 (62.82) 83 (3.01) 923 (33.51) 18 (0.65) 
B 3097 1782 (57.54) 158 (5.10) 1138 (36.75) 19 (0.61) 
C 3392 1757 (51.80) 73 (2.15) 1540 (45.40) 22 (0.65) 
D 2393 1448 (60.51) 27 (1.13) 903 (37.73) 15 (0.63) 
E 2974 2021 (67.96) 44 (1.48) 893 (30.02) 16 (0.54) 
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Figure 5.3 Transcriptional unit abundance and size across genospecies. a) Number of genes in 
transcriptional units for each genospecies A-E. Percentages of genes in transcriptional units are displayed. 
b) Percentage of genes in transcriptional units for each genospecies that are core, accessory, genospecies 
enriched or symbiosis genes. Gene types are classified based on their frequency in 196 Rlt strains. c) The 
number of transcriptional units made up of n number of genes across all 5 genospecies.  
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Figure 5.4 gsB transcriptional units generated using the following filtering parameters: R correlation > 0.8, 
deviance < 3, intergenic distance < 200 bp, must be adjacent gene pair in at least 3 strains. Nodes are 
genes colour coded by: Blue = core, Purple = accessory, Pink = genospecies enriched, Green = symbiosis. 
Edge colour increases from blue to purple with increased gene expression correlation between adjacent 
pairs. Edge thickness increases with decreasing deviance score. a) Shows the comparison of 
‘Transcriptional unit A’ gene content between genospecies B and genospecies C. * indicates a unit which 
contains only genospecies enriched genes and has functional associations to an efflux pump system. ▲ 
Indicates the nodABCIJ nodulation gene operon. ■ Indicates a non-linear transcriptional unit.  
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Table 5.5 The number of transcriptional units shared across genospecies groups. 

Comparisons Number of shared transcriptional 
units (gene order conserved) 

Number of additional shared 
transcriptional units (gene order 

not conserved) 

AB 368 0 
AC 372 1 
AD 297 0 
AE 352 0 
BC 386 0 
BD 315 0 
BE 335 0 
CD 302 0 
CE 368 2 
DE 299 0 

All species 94 0 
BCDE 108 0 
ACDE 123 0 
ABDE 120 0 
ABCE 142 0 
ABCD 129 0 

 
 

5.4.3. Other known operons are identifiable as transcriptional units 

 
To	further	evaluate	the	genospecies	operon	predictions,	other	known	rhizobia	operons	

were	identified	from	the	generated	transcriptional	units.	Orthologous	gene	groups	were	

identified	that	matched	the	genes	from	known	operons	using	a	BLAST	search	of	the	Rlt	

genomes.	

	

The	rhizosphere	induced	operon	(rhiABC)	was	identified	in	gsC,	which	had	previously	

only	been	found	in	Rhizobium	leguminosarum	symbiovar	viciae	strains	(Ramachandran	

et	al.,	2011)	(Appendix	Figure	D.5).	The	cycHJKL	operon	was	also	searched	for,	which	is	

involved	in	iron	acquisition	for	maturation	of	cytochrome	c	and	mutations	in	this	operon	

can	result	in	loss	of	nitrogen	fixing	ability	in	rhizobia	(Yeoman	et	al.,	1997).	cycHJKL	was	

present	as	a	transcriptional	unit	in	genospecies	B,	C	and	D	but	excluding	the	cycL	gene.	

This	was	because	the	cycL	gene	did	not	meet	operon	prediction	threshold	parameters	

(gsB:	correlation	=	0.17,	deviance	=	7.0;	gsC:	correlation	=	0.51,	deviance	=	7.4;	gsD:	

correlation	=	0.67,	deviance	=	7.2).	In	gsA,	cycJK	was	identified	as	a	two	gene	operon,	but	

cycH	and	cycL	were	excluded	from	the	operon	due	to	co-expression	parameters	not	being	
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met	despite	displaying	negative	intergenic	distances	(gsA	cycH-cycJ	correlation	=	0.54,	

deviance	=	11.50;	gsA	cycK-cycL	correlation	=	0.95,	deviance	=	6.32).	The	correlation	

coefficients	and	deviance	scores	seemed	to	indicate	the	cycL	was	not	transcribed	in	the	

same	way	as	the	other	genes.	However,	the	intergenic	distance	for	cycL	is	highly	

conserved	between	all	strains	regardless	of	genospecies	and	has	a	consistent	negative	

base	pair	distance	with	cycK	of	-4	bp,	which	would	indicate	that	cycL	is	part	of	the	

operon.	Further	investigation	identified	that	co-expression	correlation	coefficients	and	

deviance	scores	were	found	to	tail	off	at	the	end	of	many	transcriptional	units	(Figure	

5.2c,	Figure	5.2f).	A	staircase-like	expression	behaviour	of	genes	within	operons	could	

explain	the	reduced	correlation	and	increased	deviance	scores	towards	the	ends	of	

operons,	as	transcription	is	often	higher	at	the	5’	end	of	operons	with	transcription	

efficiency	reducing	towards	the	3’	end	resulting	in	incomplete	mRNA	transcription	(Güell	

et	al.,	2009;	Maier	et	al.,	2011;	Schmidt	et	al.,	2011;	Arike	et	al.,	2012).	Consequently,	the	

threshold	for	operon	prediction	in	the	samples	might	have	been	too	conservative.	

However,	stringent	parameter	values	also	enabled	confident	identification	of	putative	

operons	with	highly	conserved	expression	patterns	across	genospecies.	

	

In	addition,	transcriptional	units	were	also	validated	by	confirming	whether	they	were	

maintained	within	WGCNA	modules	of	co-expressed	core	genes	that	were	generated	

previously	(Chapter	4).	Calculation	of	WGCNA	modules	did	not	consider	intergenic	

distances	or	genospecies	strain-grouping,	and	instead	relied	on	converting	expression	

correlations	of	all	genes	into	a	signed	and	weighted	expression	network	for	hierarchical	

clustering	based	on	expression	across	all	Rlt	strains.	43.66-53.87%	of	transcriptional	

units	were	maintained	when	intersected	by	WGCNA	modules	(Table	5.3).	gsD	had	the	

highest	percentage	of	conserved	transcriptional	units	in	Rlt	WGCNA	core	gene	modules,	

whereas	gsE	had	the	lowest	percentage	of	maintained	transcriptional	units	(Table	5.3;	

Additional	File	6:	Table	S5).	Similarly,	several	transcriptional	units	were	identified	

within	the	grey	WGCNA	group	(containing	genes	which	were	not	assigned	to	a	WGCNA	

module),	but	these	transcriptional	units	contained	less	than	3	genes,	and	therefore	

would	have	been	removed	due	to	the	requirement	of	3	genes	minimum	per	WGCNA	

module.	Only	one	transcriptional	unit	containing	3	genes	encoding	a	tripartite	

tricarboxylate	membrane	transporter	was	found	in	the	grey	WGCNA	group,	and	it	is	

speculated	this	was	identified	because	it	was	only	classed	as	a	transcriptional	unit	in	gsB	
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and	gsE,	suggesting	its	co-expression	is	not	tightly	conserved	across	all	genospecies.	

Together,	this	suggests	that	while	known	operons	could	be	identified	as	transcriptional	

units	within	this	study,	choosing	parameters	is	also	challenging	as	operon	expression	can	

substantially	vary	across	strains	which	can	potentially	lead	to	undetected	or	truncated	

transcriptional	units.		

	

5.5. Discussion 

	

Genome	annotation	and	single	replicate	transcriptome	data	from	multiple	strains	

was	utilised	to	build	generalised	‘operomes’	for	five	Rlt	genospecies	(Additional	File	6:	

Table	S6).	Approximately	1000	transcriptional	units	were	identified	for	each	

genospecies	individually,	and	94	of	these	transcriptional	units	were	conserved	across	all	

five	genospecies	A-E.	A	combination	of	ortholog	identification,	intergenic	distance	

measures,	gene	expression	correlation	and	expression	deviance	were	used	to	generate	

transcriptional	units	equating	to	putative	operons.	Expression	deviance	also	provided	an	

additional	supporting	metric	for	operon	generation.	Furthermore,	the	genomic	and	

transcriptomic	traits	of	the	Rlt	nodulation	nodABCIJ	operon	were	used	as	a	control	to	

validate	the	appropriateness	of	the	chosen	operon	prediction	parameters.	This	method	

exploits	the	variation	in	genomic	architecture	and	expression	levels	across	multiple	

strains	grown	under	the	same	conditions	to	determine	species	conserved	operons.	

Overall,	the	use	of	multiple	different	strains	to	characterise	Rlt	species	and	genospecies	

transcriptional	units	also	highlighted	that	substantial	variation	in	the	expression	of	

putative	operons	is	evident	across	strains	within	the	same	species.			

 

5.5.1. Optimisation of genetic and transcriptomic parameters using multiple strains 

 
For	this	study,	intergenic	distance	distributions	suggested	that	most	adjacent	genes	had	

an	intergenic	distance	<200	bp	(Figure	5.1a),	and	subsequently	gene	pairs	with	an	

intergenic	distance	below	this	threshold	were	chosen	as	potential	transcriptional	unit	

gene	pairs	for	further	evaluation.	Additionally,	these	intergenic	distance	distributions	

were	also	in	agreement	with	distributions	identified	in	previous	studies	(Ermolaeva,	

White	and	Salzberg,	2001;	De	Hoon	et	al.,	2004;	Dam	et	al.,	2007;	Wang,	MacKenzie	and	

White,	2015). Intergenic	distance	has	been	suggested	to	be	the	most	reliable	indicator	for	
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operon	prediction	and	is	used	as	a	parameter	in	nearly	all	operon	identification	studies	

(Dam	et	al.,	2007).	However,	this	pipeline’s	intergenic	distance	calculations	differ	from	

previous	studies	that	commonly	just	use	intergenic	distance	measures	determined	from	

a	single	strain.	For	analysis	of	intergenic	distance,	the	average	distance	was	calculated	

between	orthologous	gene	pairs	when	they	were	adjacent	in	at	least	1	strain	in	a	

genospecies,	but	the	genes	must	be	present	in	a	minimum	of	three	genomes	in	order	to	

evaluate	co-expression	across	strains.	Therefore,	the	number	of	replicates	for	each	

adjacent	gene	intergenic	distance	calculation	is	not	necessarily	the	same	each	time,	

especially	when	accessory	genes	are	considered.	This	enabled	identification	of	

genospecies	transcriptional	units	which	have	more	flexible	gene	arrangements	across	

strains.	 

	

A	marginally	bimodal	distribution	was	identified	for	intergenic	distances	between	

adjacent	genes,	with	a	major	sharp	peak	under	40	bp	and	another	smaller	shallow	peak	

at	around	70-100	bp.	This	intergenic	distance	distribution	is	also	observed	in	genomes	of	

other	bacterial	species	(Salgado	et	al.,	2000;	Ermolaeva,	White	and	Salzberg,	2001;	De	

Hoon	et	al.,	2004;	Price,	Arkin	and	Alm,	2006;	Okuda	et	al.,	2007).	The	smaller	second	

intergenic	distance	peak	has	been	suggested	to	represent	the	intergenic	distances	of	

genes	at	the	borders	of	transcriptional	units	in	E.	coli	(Salgado	et	al.,	2000).	On	the	other	

hand,	these	intergenic	distances	could	also	be	generated	from	operons	that	are	highly,	

but	inconsistently,	expressed	because	they	have	wider	intergenic	regions	than	other	

operons	(Eyre-Walker,	1995;	Price,	Arkin	and	Alm,	2006).	Genome-specific	distance	

models	have	also	shown	that	operon	structures	in	different	bacterial	species	can	differ	

from	the	model	E.	coli	operon	structures	(Price,	Arkin	and	Alm,	2006).	For	example,	the	

maximum	accepted	intergenic	distance	between	operon-genes	varies	between	studies,	

ranging	from	20bp	to	300bp	(Salgado	et	al.,	2000;	Ermolaeva,	White	and	Salzberg,	2001;	

De	Hoon	et	al.,	2004;	Wang	et	al.,	2004;	Price,	Arkin	and	Alm,	2006).	Predominantly,	

genes	with	intergenic	distances	greater	than	200	bp	have	been	considered	to	not	be	in	

the	same	operon	(Ermolaeva,	White	and	Salzberg,	2001;	Wang,	MacKenzie	and	White,	

2015).	The	variation	in	accepted	intergenic	distance	length	is	understandable	as	it	

cannot	be	assumed	that	the	genomic	architecture	of	all	bacterial	genomes,	and	between	

all	operons	within	the	same	genome,	are	consistent	(Wang	et	al.,	2004;	Edwards	et	al.,	

2005;	Price,	Arkin	and	Alm,	2006).	For	these	reasons,	and	due	to	this	analysis	calculating	



 

 176 

the	average	intergenic	distance	from	multiple	genomes,	a	more	relaxed	intergenic	

distance	threshold	was	opted	for	compared	to	other	studies	to	account	for	the	genomic	

variability	between	strains	of	the	same	genospecies	(De	Hoon	et	al.,	2004;	Price	et	al.,	

2005;	Brinza	et	al.,	2010).	

	

In	addition	to	intergenic	distance	between	adjacent	genes,	gene	pairs	were	specified	to	

have	an	expression	correlation	coefficient	>	0.8	and	an	expression	deviance	<	3	(Figure	

5.2).	Expression	correlation	thresholds	were	based	on	the	distribution	of	adjacent	gene	

pair	expression	correlation	coefficients	(Figure	5.2a-c)	with	consideration	to	the	

thresholds	used	in	previous	operon	prediction	studies	(Dam	et	al.,	2007;	ten	Broeke-

Smits	et	al.,	2010).	Using	a	deviance	score	further	enabled	evaluation	of	transcriptional	

co-expression	between	genes,	and	the	threshold	was	determined	based	on	distribution	

of	deviance	scores	across	adjacent	gene	groups	with	additional	consideration	to	the	

deviance	scores	calculated	for	the	known	symbiosis	nodulation	gene	operon,	nodABCIJ	

(Figure	5.2d-f).	The	distribution	of	adjacent	gene	pairs	expression	correlation	

coefficients	was	observed	to	be	similar	to	those	in	previous	studies	using	E.	coli	and	B.	

subtillis	(Okuda	et	al.,	2007).	Expression	parameters	were	quite	stringent	and	were	

chosen	in	order	to	confidently	identify	only	the	gene	pairs	which	are	highly	likely	to	be	in	

operons,	as	comparing	expression	across	multiple	genomes	can	incur	substantial	noise.	

However,	identifying	putative	operons	using	only	expression	data	also	can	incur	false-

positive	operons.	This	is	because	adjacent	genes	can	be	considered	co-expressed	by	

having	common	co-regulation	but	still	be	in	separate	operons	(Westover	et	al.,	2005;	

Dam	et	al.,	2007).	Similarly,	genes	within	the	same	operon	can	be	differentially	expressed	

if	there	are	multiple	dynamically	expressed	transcriptional	units	within	the	operon	that	

are	dependent	on	certain	environmental	signals	(Oliver	et	al.,	2009).	Therefore,	it	is	vital	

for	operon	prediction	to	be	determined	based	on	both	genomic	and	transcriptomic	

information	between	adjacent	gene	pairs	from	multiple	strains	in	order	to	fully	consider	

the	flexibility	of	operon	structures	across	species.		

	

For	each	genospecies,	42.17-48.19%	of	orthologous	genes	were	assigned	into	a	

transcriptional	unit	(except	gsD	at	34.24%;	Table	5.2;	Figure	5.3a),	which	is	lower	than	

the	62%	of	genes	reported	for	Staphylococcus	aureus	(ten	Broeke-Smits	et	al.,	2010).	

However,	the	percentage	calculated	for	S.	aureus	was	based	on	the	genes	in	one	strain,	
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with	transcriptomic	data	collected	from	several	growth	time-points,	whereas	the	data	for	

this	pipeline	was	collected	from	multiple	strains	grown	under	the	same	conditions	(ten	

Broeke-Smits	et	al.,	2010).	Additionally,	all	Rlt	genospecies	produced	transcriptional	

units	with	an	average	size	of	2-3	genes	(Table	5.3;	Figure	5.3c).	The	average	number	of	

genes	per	transcriptional	unit	were	similar	to	the	operon	size	distributions	of	other	

species	(2-4	genes	average	per	operon),	but	perhaps	on	the	slightly	smaller	side	

compared	to	Bacillus	(4.1	average)	and	E.	coli	(3	–	3.5	average)	(Itoh	et	al.,	1999;	Zheng	

et	al.,	2002;	Koonin,	2009;	ten	Broeke-Smits	et	al.,	2010).	Increased	average	length	of	

operons	has	been	associated	with	genomes	displaying	high	modularity	in	the	genomic	

organisation	of	their	biochemical	pathways,	as	observed	with	E.	coli,	B.	subtilis	and	

Buchnera	(Zheng	et	al.,	2002).	Genomes	with	smaller	average	operon	lengths	have	been	

suggested	to	have	undergone	more	frequent	translocation	(Zheng	et	al.,	2002).	This	

could	be	the	reason	the	genospecies	have	such	a	small	average	operon	size,	because	

operon	prediction	was	based	on	gene-pair	presence	across	at	least	three	genomes.	

However,	the	requirement	for	the	conservation	of	gene	pairs	across	genomes	in	this	

study	also	likely	biases	selection	towards	2-gene	operons,	which	in	previous	cross-

species	operon	predictions	between	Haemophilus	influenzae	and	Escherichia	coli	were	

most	highly	conserved	between	bacterial	species	(Tamames	et	al.,	1997).	

	

5.5.2. Species-conserved putative operons contain core and accessory genes 

 
Transcriptional	units	were	identified	that	contained	purely	core	genes,	purely	accessory	

genes,	and	those	containing	a	mixture	of	core	and	accessory	genes	(Figure	5.4;	Appendix	

Figure	D.4-Appendix	Figure D.7;	Table	5.4).	Fewer	accessory	genes	were	found	to	be	

incorporated	into	operons	compared	to	core	genes	(Table	5.4).	This	could	be	due	to	the	

large	number	of	years	required	for	horizontally	transferred	genes,	such	as	some	

accessory	genes,	to	be	incorporated	into	the	strain	regulatory	network	(Lercher	and	Pal,	

2008).	Similarly,	it	is	speculated	that	the	reduced	frequency	of	accessory	genes,	their	

less-essential	functional	associations,	and	reduced	expression	levels	slows	their	

integration	into	the	species	regulatory	network	(Galardini	et	al.,	2015).	However,	94	

operons	were	found	to	be	conserved	across	all	genospecies,	some	of	which	contained	

both	core	and	accessory	gene	components	(Additional	File	6:	Table	S4).	The	functions	of	

the	cross-species	conserved	operons	were	predominantly	associated	with	vital	cellular	
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functioning	mechanisms	such	as	ribosomal	protein	assembly	and	various	cellular	

transport	mechanisms,	which	explains	their	high	conservation	across	Rlt	genospecies.	

The	majority	of	these	mixed	core-accessory	gene	operons	constituted	2-3	genes.	

Therefore,	introgression	of	accessory	genes	into	a	core	operon	seems	to	have	enabled	

regulation	of	accessory	genes	by	core	genome	regulatory	components	in	some	cases	

(Galardini	et	al.,	2015).		

	

Additionally,	operons	containing	purely	genospecies	enriched	genes	(i.e.	genes	that	are	

highly	present	in	one	genospecies	and	highly	absent	in	all	others)	were	identified	for	all	

genospecies.	gsB	was	found	to	have	the	most	operons	containing	only	genospecies	

enriched	genes	and	this	is	likely	because	gsB	is	the	most	genetically	homogeneous	

genospecies	from	the	196	Rlt	strain	dataset	(Cavassim	et	al.,	2019).	For	example,	in	gsB	a	

genospecies	enriched	gene	operon	containing	five	genes	was	identified	that	constituted	

the	components	of	an	efflux	pump	system	(Figure	5.4).	This	suggests	that	gsB	strains	

have	acquired	a	bacterial	efflux	pump	system	potentially	for	active	transport	of	

antibiotics,	heavy	metals,	or	nodulation	factors	(Nikaido,	2018).	Additionally,	the	known	

rhizosphere-induced	operon,	rhiABC,	was	identified	only	in	gsC	(Appendix	Figure	D.5)	

(Cubo	et	al.,	1992;	Rodelas	et	al.,	1999).	These	transcriptional	units	containing	

genospecies-enriched	genes	could	be	used	to	identify	specific	functional	attributes	that	

are	highly	associated	to	a	particular	genospecies,	and	which	may	provide	some	

competitive	advantage	in	the	soil	rhizosphere	over	other	genospecies.		

	

Out	of	the	symbiosis	nodulation	gene	operons,	only	nodABCIJ	and	nodEF	were	conserved	

across	all	genospecies	as	transcriptional	units	(Hong,	Burn	and	Johnston,	1987a).	

Nodulation	gene	transcriptional	units	were	expected	and	observed	to	be	the	most	easily	

identified	symbiosis	gene	groups,	because	strains	were	grown	in	Tryptone	Yeast	(TY)	

broth	with	1	µM	7,4’-dihydroxyflavone	(clover	flavonoid)	which	activates	the	NodD	

transcriptional	activator	of	nod	genes	(Djordjevic	et	al.,	1987).	However,	nif	and	fix	gene	

transcriptional	units	were	not	conserved	across	all	genospecies,	and	this	is	likely	

because	nif	and	fix	genes	are	only	activated	and	consistently	expressed	in	clover	nodules	

when	strains	differentiate	into	their	bacteroid	form	(Herman	P.	Spaink	et	al.,	1987).	

Therefore,	variable	and	low	nif	and	fix	gene	expression	across	strains	contributed	to	

their	lack	of	transcriptional	unit	conservation	across	genospecies.		
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Taken	together,	it	is	unlikely	that	the	majority	of	Rlt	transcriptional	units	have	been	

identified.	This	is	because	rare	accessory	gene	operons	will	have	been	prone	to	removal	

due	to	their	low	frequency	across	strains	excluding	them	from	the	analysis.	Nevertheless,	

utilising	multiple	genomes	has	been	able	to	identify	conserved	transcriptional	units	that	

do	contain	accessory	genes	which	were	expressed	consistently	across	strains	under	

particular	environmental	conditions.	Environmental	differences	are	also	important	for	

identifying	core	transcriptional	units	that	are	expressed	under	specific	conditions.	

However,	these	transcriptional	units	may	have	not	been	detected	in	this	study	due	to	the	

environmental	conditions	being	inadequate	to	induce	their	expression.	

	

5.5.3. Study limitations and future research 

 
Parameters	included	in	other	studies,	which	were	not	considered	in	this	study,	are	

predominantly	based	on	using	large	confirmed-operon	reference	databases	for	E.	coli	or	

B.	subtilis	(De	Hoon	et	al.,	2004;	Fortino	et	al.,	2014).	For	example,	optimal	operon	length	

parameters	were	determined	for	B.	subtilis	and	E.	coli	studies	based	on	the	distributions	

from	previously	curated	operon	datasets	(De	Hoon	et	al.,	2004).	The	use	of	reference	

operon	databases,	such	as	RegulonDB	(Fortino	et	al.,	2014),	has	also	enabled	use	of	

Bayesian	models	to	predict	operons	on	other	strains	(Brinza	et	al.,	2010;	Chen	et	al.,	

2017).	However,	operon	predictors	trained	on	E.	coli	and	B.	subtilis	do	not	necessarily	

apply	well	to	other	genomes,	which	are	known	to	be	largely	diverse	in	genomic	structure	

and	gene	content	(Wolf	et	al.,	2001;	Romero	and	Karp,	2004;	Dam	et	al.,	2007;	Koonin,	

2009;	Osbourn	and	Field,	2009).	It	would	therefore	be	insightful	to	test	whether	this	

pipeline	can	identify	operons	for	other	bacterial	species	where	alternative	known	

operons	can	be	used	to	validate	chosen	parameter	thresholds.	

	

Another	previously	used	determinant	of	operon	prediction	that	was	not	used	is	the	

identification	of	Transcriptional	Start	and	Terminator	Sites	(TSS	and	TTS)	(Brinza	et	al.,	

2010;	Wang,	MacKenzie	and	White,	2015;	Chen	et	al.,	2017;	Slager,	Aprianto	and	

Veening,	2018).	However,	studies	that	searched	for	TSS	and	TTS	only	utilised	one	strain	

genome	under	varying	environmental	conditions	for	operon	prediction	(with	the	

exception	Brinza	et	al.’s	(2010)	use	of	RegulonDB),	whereas	in	this	study	three	to	seven	
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strains	grown	under	the	same	conditions	were	used	for	each	genospecies.	Future	

investigations	could	therefore	try	to	identify	conserved	TSS	and	TTS’s	across	genomes	

and	would	be	a	useful	addition	to	operon	identification.		

	

Additionally,	the	operon	prediction	pipeline	used	in	this	study	is	especially	dependent	on	

conservation	of	gene	order	because	genomic	information	is	utilised	from	multiple	strains	

to	predict	genospecies-conserved	operons.	Gene	order	conservation	across	multiple	

genomes	(either	from	recent	vertical	or	horizontal	transmission)	increases	the	

probability	of	gene	pairs	being	part	of	an	operon	(Ermolaeva,	White	and	Salzberg,	2001;	

Tamames,	2001;	Wolf	et	al.,	2001;	Edwards	et	al.,	2005;	Junier	and	Rivoire,	2016).	For	

the	operon	prediction	pipeline	in	this	study,	this	suggests	that	many	of	the	

transcriptional	units	are	likely	to	be	real,	as	gene	pairs	must	be	present	across	at	least	

three	strains	(although	only	required	to	be	adjacent	in	at	least	1	strain)	to	be	included	in	

the	analysis.	At	short	phylogenetic	distances,	gene	order	is	more	conserved	due	to	recent	

divergence.	Therefore,	this	criterion	worked	well	for	this	study,	which	contained	strains	

within	the	same	sub-species	of	Rlt	(Tamames	et	al.,	1997;	Tamames,	2001).	However,	the	

shortcoming	of	relying	on	gene	order	for	operon	prediction	is	that	operons	with	

reordered	but	conserved	genes	are	not	recognised	(Itoh	et	al.,	1999;	Wolf	et	al.,	2001).	

For	example,	many	of	the	94	cross-genospecies	conserved	transcriptional	units	have	a	

transporter-associated	or	protein-subunit	function	whereby	conservation	of	gene	order	

within	the	operon	is	important	for	function	(Additional	File	6:	Table	S4).	However,	when	

gene	order	within	transcriptional	units	is	not	considered	the	number	of	shared	

transcriptional	units	between	genospecies	was	found	to	remain	almost	exactly	the	same	

(Table	5.5).	This	highlighted	the	strong	conservation	of	gene	order	within	the	

transcriptional	units	in	this	investigation.	Operons	are	also	not	identified	when	genes	are	

appended	onto	the	end	of	an	existing	operon	(Price,	Arkin	and	Alm,	2006),	which	for	this	

operon	prediction	pipeline	classifies	them	as	different	operons	(Figure	5.4a).		

	

If	gene	pairs	had	a	negative	intergenic	distance	or	less	than	200	bp	distance,	but	a	

correlation	coefficient	below	0.8	and	deviance	more	than	3,	then	the	gene	pair	would	not	

be	considered	a	transcriptional	unit.	This	is	regardless	of	the	fact	negative	and	small	

intergenic	distances	would	suggest	gene	pairs	are	highly	likely	to	part	of	the	same	

operon	(Salgado	et	al.,	2000;	De	Hoon	et	al.,	2004;	Price,	Arkin	and	Alm,	2006).	Due	to	
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this	restrictive	criteria,	gene	pairs	that	pass	all	criteria	are	labelled	as	a	‘transcriptional	

unit’	instead	of	operon,	because	even	if	the	gene	pairs	are	genomically	close	enough	to	be	

considered	an	operon,	if	no	evidence	of	strong	co-expression	is	provided	the	gene	pair	

will	be	excluded.	Further	development	of	the	operon	prediction	could	include	acceptance	

of	some	gene	pairs	as	transcriptional	unit	pairs	based	on	intergenic	distance	alone,	

regardless	of	correlation	and	deviance	scores,	if	the	distance	is	acceptably	small	enough	

that	the	genes	are	almost	guaranteed	to	be	in	the	same	operon	(such	as	overlapping	gene	

pairs).		

	

The	functional	relationship	between	genes	was	also	not	considered	(Salgado	et	al.,	2000;	

Taboada	et	al.,	2018).	Then	again,	this	criterion	maybe	more	of	a	limitation	than	an	asset	

because	previous	studies	have	already	shown	that	it	is	not	necessary	for	genes	within	an	

operon	to	have	a	related	function	(Osbourn	and	Field,	2009;	Fortino	et	al.,	2014).		

	

5.5.4. Conclusions 

 

This	study	provides	a	new	resource	of	putative	transcriptional	units	in	Rlt,	identified	

across	five	genospecies	using	26	strains.	Additionally,	calculating	the	expression	

deviance	between	genes	was	shown	to	provide	an	additional	effective	metric	to	

determining	operons.	Parameters	for	operon	detection	can	be	determined	from	known	

operons	within	the	species	or	from	looking	at	the	distribution	of	parameters	across	

genomic	regions,	as	this	study	has	shown.	Identifying	operons	will	further	aid	

identification	of	conserved	of	regulatory	networks	and	gene	order	within	Rlt	species	and	

can	be	used	for	future	functional	association	studies.	
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Chapter 6. Competitive rhizobial intraspecies interactions are 

genospecies specific 
 

6.1. Abstract 

 

Background:	Symbiotic	interactions	between	rhizobia	bacteria	and	legume	plants,	are	

vital	for	ecosystem	functioning	and	soil	nutrient	balance.	To	form	symbiosis	with	the	

plant,	rhizobia	first	need	to	compete	for	nutrients	and	space	with	other	symbiont	strains	

in	the	plant	rhizosphere.	This	study	investigated	competition	between	rhizobia	

genotypes,	with	the	aim	to	understand	to	what	extent	facilitative,	inhibitory	or	neutral	

intraspecies	interactions	exist	between	and	within	different	genospecies	and	what	are	

the	potential	underlying	mechanisms.	

Results:	Twenty-four	genetically	diverse	Rhizobium	leguminosarum	sv.	trifolii	(Rlt)	

strains	were	selected	from	3	genospecies	(<	95%	average	nucleotide	identity)	and	

pairwise	competitive	interactions	were	determined	in	vitro:	1)	indirectly,	mediated	via	

secreted	compounds	in	cell-free	supernatants;	and	2)	directly,	mediated	by	growth	

inhibition	in	the	same	environment.	Significant	facilitative	and	inhibitory	interactions	

were	observed	through	indirect	competition.	One	strong	inhibitory	genospecies	level	

interaction	was	detected	where	genospecies	E	strains	consistently	suppressed	the	

growth	of	genospecies	A	strains.	On	average,	genospecies	E	also	displayed	facilitated	

growth	in	other	genospecies’	supernatants.	However,	indirect	interactions	mostly	varied	

largely	at	the	genotype	level,	and	in	general,	strains	that	produced	more	inhibitory	

supernatants	were	likely	to	grow	better	in	supernatants	of	other	strains.	This	indicated	a	

positive	trait	correlation	between	the	inhibitory	capacity	of	a	strain,	and	its	resistance	to	

inhibition	by	other	strains.	Clear	genospecies	effects	were	observed	also	when	in	direct	

competition.	Overall,	genospecies	A	demonstrated	a	high	susceptibility	to	direct	

inhibition,	while	genospecies	E	were	the	most	inhibitory	strains.	Mechanistically,	

increased	genospecies	A	susceptibility	was	associated	with	potential	regulatory	effects	of	

multiple	quorum	sensing	pathways,	while	genospecies	E	strains	exclusively	contained	a	

Vicibactin	siderophore	gene	cluster	and	displayed	the	relatively	highest	metabolic	

capacity	that	may	have	increased	its	competitive	ability	to	sequester	and	deplete	

resources.		
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Conclusions:	Together,	these	results	demonstrate	that	Rlt	shows	high	intraspecies	

phenotypic	diversity	which	is	linked	to	variation	in	resource	and	interference	

competition.	The	outcome	of	competitive	interactions	within	rhizobial	communities	

could	thus	affect	which	strains	get	to	establish	symbiosis	with	the	plant.	

	

6.2. Introduction 

 

Rhizobia	are	bacterial	symbionts	capable	of	providing	accessible	nitrogen	to	legumes	

in	return	for	carbon	and	can	be	exploited	agriculturally	to	increase	crop	yield	by	

improving	soil	nutrient	balance	(Lupwayi,	Clayton	and	Rice,	2006;	Mishra	et	al.,	2013).	

Natural	rhizobia	soil	populations	are	very	diverse	(Kumar	et	al.,	2015),	and	this	diversity	

could	be	driven	for	example	by	inter-	and	intra-plant	species	variation	(Kiers	and	

Denison,	2008;	Miranda-Sánchez,	Rivera	and	Vinuesa,	2016;	Kroll,	Agler	and	Kemen,	

2017;	Vuong,	Thrall	and	Barrett,	2017;	Clúa	et	al.,	2018),	by	abiotic	soil	factors	(Rice,	

Penney	and	Nyborg,	1977;	Harrison,	Jones	and	Young,	1989;	Xiong	et	al.,	2017;	Igiehon	

and	Babalola,	2018;	Liu	et	al.,	2019),	or	by	agricultural	management	practices	(Kiers,	

West	and	Denison,	2002;	Lupwayi,	Clayton	and	Rice,	2006;	Shu	et	al.,	2012;	Weese	et	al.,	

2015).	Moreover,	variation	in	rhizobial	diversity	can	be	driven	by	competition	with	other	

species	of	soil	bacteria	(Pugashetti,	Angle	and	Wagner,	1982;	Villacieros	et	al.,	2003;	

Hibbing	et	al.,	2010;	Teng	et	al.,	2015;	Lu	et	al.,	2017)	and	other	rhizobia	strains	for	plant	

nodulation	(Denison	and	Kiers,	2004;	Kiers	and	Denison,	2008;	Blanco,	Sicardi	and	

Frioni,	2010;	Wielbo	et	al.,	2011;	Barrett	et	al.,	2015).	For	example,	rhizobia	inoculant	

success	has	previously	been	shown	to	be	limited	by	competition	with	native	soil	

rhizobia,	which	are	often	able	to	outcompete	inoculant	strains	for	nodule	occupancy	

(Berg	et	al.,	1988;	Triplett	and	Sadowsky,	1992;	Blanco,	Sicardi	and	Frioni,	2010).	

Understanding	the	role	of	intraspecies	rhizobial	diversity	is	thus	important	as	it	could	

affect	productivity	of	the	legume-rhizobia	symbiosis	by	determining	which	strains	get	to	

form	the	symbiosis	with	the	plant	(Barrett	et	al.,	2015;	Pahua	et	al.,	2018;	Liu	et	al.,	

2019).		

	

Intraspecific	competition	between	rhizobia	strains	could	be	mediated	via	two	main	

mechanisms.	Firstly,	strains	can	compete	in	an	exploitative	(indirect)	manner	(Checcucci	
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et	al.,	2017).	Indirect	competitive	interactions,	such	as	when	a	strain	more	effectively	

metabolises	a	resource	so	that	it	becomes	limited	for	other	strains	to	utilise,	could	

suppress	strain	growth	in	communities	and	subsequently	reduce	the	symbiont	

population	diversity	in	the	rhizosphere	of	legume	hosts	(Ramachandran	et	al.,	2011;	

Becker	et	al.,	2012).	Strains	that	are	more	genetically	related	are	suggested	to	have	a	

stronger	competition	for	shared	resources	due	to	higher	niche	overlap	of	metabolic	

capabilities	(Griffin,	West	and	Buckling,	2004).	Additionally,	indirect	competition	can	be	

mediated	by	siderophores,	which	are	used	by	rhizobia	to	sequester	iron	and	

subsequently	inhibit	growth	of	competitor	strains	(Joshi	et	al.,	2008;	diCenzo	et	al.,	2014;	

Kramer,	Özkaya	and	Kümmerli,	2019).	Indirect	growth	suppression	has	previously	been	

evaluated	by	observing	the	interaction	between	strains	and	competitor	strain	

supernatants.	Supernatant	interactions	consider	the	resource	consumption	and	secreted	

metabolites	by	one	strain	into	growth	media	and	both	mechanisms	can	restrict	growth	of	

other	strains.	While	Rhizobium	supernatant	interactions	have	been	studied	at	the	

interspecies	level	with	other	microbes	(Plazinski	and	Rolfe,	1985;	Abd-Alla	et	al.,	2014),	

there	exists	only	one	study	where	the	supernatant	effects	between	two	Rhizobium	

leguminosarum	symbiovar	viciae	(Rlv)	strains	was	shown	to	affect	strain	nodulation	and	

nitrogen	fixation	efficiency	(Bladergroen,	Badelt	and	Spaink,	2003).	Rhizobia	can	also	

interact	via	interference	(direct)	competition,	whereby	strains	actively	prevent	one	

another’s	growth	(Ghoul	and	Mitri,	2016;	Checcucci	et	al.,	2017).	One	mechanism	by	

which	bacteria	can	inhibit	growth	of	neighbouring	strains	is	through	secretion	of	

quorum	sensing	chemical	signalling	molecules	that	increase	in	concentration	in	a	cell	

density-dependent	manner	and	lead	to	altered	regulation	of	gene	expression	of	sensitive	

strains	(Miller	and	Bassler,	2001;	Wisniewski-Dyé	and	Downie,	2002).	Quorum	sensing	

molecules	have	been	predominantly	identified	as	N-acyl	homoserine	lactones	(AHLs),	

and	Rhizobium	are	known	to	produce	the	greatest	diversity	of	these	quorum	sensing	

molecules	among	soil	bacteria	(Cha	et	al.,	1998;	Wisniewski-Dyé	and	Downie,	2002).	

Rhizobia	can	use	AHLs	to	regulate	growth	inhibition	and	surface	polysaccharide	

production	of	susceptible	neighbouring	strains,	in	addition	to	other	physiological	

activities	and	plant	interactions	(Schwinghamer	and	Brockwell,	1978;	Miller	and	Bassler,	

2001;	Wisniewski-Dyé	and	Downie,	2002;	Downie,	2010).	These	bacterial	quorum	

sensing	systems	have	been	suggested	to	be	advantageous	in	crowded	rhizospheres	of	

nodulated	legumes	where	strains	can	influence	colonization	functions	such	as	cell	
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motility,	root	adhesion	and	growth	of	rhizosphere	populations	(Wisniewski-Dyé	and	

Downie,	2002;	He	et	al.,	2003).	Previous	research	into	quorum	sensing	in	rhizobia	has	

used	Rlv	as	a	model	from	which	four	main	LuxI-type	AHL	synthase	genes	(cinI,	rhiI,	raiI,	

and	traI)	and	their	regulators	were	identified,	some	of	which	are	homologous	to	quorum	

sensing	systems	in	other	bacterial	species	(Miller	and	Bassler,	2001;	Wisniewski-Dyé	

and	Downie,	2002).	However,	the	variation	in	quorum	sensing	system-mediated	

competition	has	not	been	associated	with	observed	intraspecific	genetic	variation.	

	

In	addition	to	quorum	sensing	AHLs,	some	stains	of	Rhizobium	can	also	produce	

bacteriocins,	which	are	narrow-spectrum	growth	inhibitory	agents	and	active	only	

against	closely	related	strains	(Hirsch,	1979).	Rhizobium	leguminosarum	strains	have	

been	shown	to	produce	three	common	types	of	bacteriocins	called	small,	medium	and	

large	due	to	their	suggested	molecular	weights	and	diffusion	properties	(Hirsch,	1979;	

Sanchez-Contreras	et	al.,	2007).	Small	was	later	found	to	be	a	quorum	sensing	AHL,	and	

medium	was	found	to	be	an	RTX-like	protein	(Hirsch,	1979;	Schripsema	et	al.,	1996;	

Oresnik,	Twelker	and	Hynes,	1999;	Lithgow	et	al.,	2000).	Bacteriocin-producing	strains	

were	found	to	strongly	inhibit	growth	of	sensitive	strains,	alter	strain	community	

composition	in	liquid	media,	peat	cultures	and	natural	soil,	and	additionally	influence	

competition	for	nodule	occupancy	(Schwinghamer	and	Brockwell,	1978;	Hirsch,	1979;	

Bosworth,	Breil	and	Triplett,	1993;	Wilson,	Handley	and	Beringer,	1998;	Oresnik,	

Twelker	and	Hynes,	1999).	One	bacteriocin	called	trifolitoxin	can	be	produced	by	some	

Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	strains	and	it	can	induce	bacteriostatic	

properties	against	Rhizobium	leguminosarum	symbiovars	and	other	Rhizobium	species	as	

well	(Triplett	and	Barta,	1987;	Bosworth,	Breil	and	Triplett,	1993;	Robleto,	Borneman	

and	Triplett,	1998).	Additionally,	rhizobia	strains	can	carry	temperate	phage	which	have	

also	been	shown	to	suppress	growth	of	sensitive	strains	(Schwinghamer	and	Brockwell,	

1978;	Harrison	and	Brockhurst,	2017).	

	

Rhizobial	strains	can	also	interact	in	a	cooperative	manner,	and	this	is	more	likely	to	

occur	between	closely	related	individuals	within	a	community	(Zee	and	Bever,	2014;	

Barrett	et	al.,	2015).	The	reasons	for	maintenance	of	facilitative	interactions	is	debated,	

but	it	has	been	suggested	that:	1)	spatially	structured	environments	can	maintain	

cooperation	because	strains	are	likely	to	be	located	close	to	their	progenitors	and	
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genetically	similar	strains;	and	2)	cooperation	can	be	beneficial	by	increasing	the	

invasion	resistance	of	communities	(Bruno,	Stachowicz	and	Bertness,	2003;	Griffin,	West	

and	Buckling,	2004;	Hibbing	et	al.,	2010;	Zee	and	Bever,	2014).	Syntrophic	interactions	

between	rhizobia	(where	waste	products	from	one	strain	can	be	metabolised	by	another	

strain)	are	another	cooperative	mechanism.	This	cross-feeding	interaction	has	been	

observed	between	rhizobia	and	other	bacterial	species	(Silva	et	al.,	2019)	and	it	could	

facilitate	the	coexistence	of	rhizobia	strains	and	thereby	increase	their	chances	in	

initiating	symbiosis	(Bruno,	Stachowicz	and	Bertness,	2003;	Silva	et	al.,	2019).	In	support	

for	this,	nodulation	and	nitrogen	fixation	has	been	shown	to	increase	local	resources	at	

the	legume	root,	which	could	also	benefit	free-living	rhizobia	in	close	proximity	to	the	

nodule	(Zee	and	Bever,	2014;	Teng	et	al.,	2015).	Refining	facilitative	interactions	further,	

some	rhizobia	can	stimulate	legume	hosts	to	produce	nutrients	(e.g.	rhizopines)	

intended	only	for	genetically	similar	strains	close	to	the	root	(Zee	and	Bever,	2014;	

Barrett	et	al.,	2015).	In	addition,	rhizobial	quorum	sensing	can	also	instigate	facilitative	

interactions	by	increasing	nodulation	efficiency	of	related	strains,	and	by	inducing	

transfer	of	symbiotic	plasmids	and	islands	and	therefore	increasing	their	symbiotic	

capacity	(Miller	and	Bassler,	2001;	Wisniewski-Dyé	and	Downie,	2002;	Downie,	2010;	

Miao	et	al.,	2018).		

	

This	study	focused	on	investigating	direct	and	indirect	intraspecies	competitive	

interactions	between	Rhizobium	leguminosarum	strains	capable	of	forming	symbiosis	

with	clover;	an	agriculturally	important	forage	legume.	Specifically,	we	focused	on	

pairwise	interactions	between	24	genetically	diverse	Rhizobium	leguminosarum	strains	

belonging	to	three	distinct	subspecies	(genospecies	A,	C	and	E;	<	95%	average	nucleotide	

identity)	(Kumar	et	al.,	2015)	and	two	farming	treatments	(organic	and	conventional)	

with	the	aim	to	understand	whether	neutral,	facilitative	or	inhibitory	intraspecies	

interactions	are	linked	with	genetic	background	and	agricultural	practices	(Portella	et	al.,	

2009).	To	achieve	this,	indirect	facilitative	and	inhibitory	interactions	were	

characterised	by	comparing	the	growth	of	strains	in	their	own	supernatant	(accounting	

for	nutrient	consumption	and	production	of	secondary	metabolites)	compared	to	their	

growth	in	a	different	strain’s	supernatant.	Additionally,	inhibition	zones	produced	in	

direct	contact	on	soft	agar	plates	were	quantified	as	evidence	of	direct	growth	repression	

by	specific	strains.	To	understand	the	potential	underlying	mechanisms	of	competition,	
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strains	were	compared	regarding	their	metabolic	capacity	and	the	absence	and	presence	

of	genes	associated	with	quorum	sensing,	bacteriocins,	secondary	metabolites	and	

prophages	using	comparative	genomics.		

	

6.3. Methods 

6.3.1. Rhizobia strains 

 

Twenty-four	Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	strains	isolated	from	

organic	and	conventional	trial	(conventional	from	hereon)	farm	treatments	across	

Denmark	were	selected	from	the	NCHAIN	Rlt	isolate	collection	(Cavassim	et	al.,	2020).	

Strains	were	genetically	characterised	based	on	their	Rlt	subspecies	classification	as	

genospecies	(gs)	A,	C	and	E	(Kumar	et	al.,	2015)	and	further	labelled	into	four	categories	

based	on	environmental	origin:	organic	gsA	(OA,	n=6),	organic	gsC	(OC,	n=7),	organic	gsE	

(OE,	n=5)	and	conventional	gsC	(CC,	n=6)	(Table	6.1).	An	Average	Nucleotide	Identity	

(ANI)	value	greater	than	95%	is	accepted	to	equate	to	a	DNA-DNA	hybridisation	value	of	

70%,	and	therefore	would	indicate	strains	to	be	genetically	distinct	species	(Goris	et	al.,	

2007).	Within	genospecies	ANI	averaged	98.2%	and	ranged	between	96.8-99.9%	(ANI	

based	on	441,287	shared	single	nucleotide	polymorphisms	in	6,529	genes	present	in	at	

least	100	strains)	(Cavassim	et	al.,	2020).	Between	genospecies	ANI	values	averaged	

91.6%	and	ranged	between	90.2-97.7%	(Cavassim	et	al.,	2020).	Strains	were	routinely	

cultured	on	Tryptone	Yeast	(TY)	agar	or	liquid	media.	

	
 
Table 6.1 Twenty-four Rhizobium leguminosarum symbiovar trifolii strains isolated from Trifolium repens 
nodules across Danish farm sites. OA = organic genospecies A, OC = organic genospecies C, OE = organic 
genospecies E, and CC = conventional genospecies C. 

Genospecies 
category  

Strain names  

OA SM152B SM137B SM152A SM145B SM154C SM144A  

OC SM147A SM158 SM170C SM157B SM165A SM122A SM126B 

OE SM149A SM135B SM135A SM159 SM168A   

CC SM41 SM53 SM57 SM77 SM74 SM67  
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6.3.2. Measuring competitive and facilitative pairwise interactions between rhizobia 

strains 

6.3.2.1. Determining rhizobial interactions indirectly using TY supernatant assay 

 

Potential	facilitative	and	inhibitory	pairwise	strain	interactions	were	determined	

indirectly	based	on	each	strain’s	growth	in	the	supernatant	of	every	other	strain.	Strains	

were	revived	from	frozen	glycerol	stocks	in	40	ml	of	Tryptone	Yeast	broth	(TY	broth:	5	g	

tryptone,	2.5	g	yeast	extract,	1.47	g	CaCl2	per	litre	volume)	for	48	h	(28°C,	180	rpm).	600	

µl	from	each	40	ml	culture	was	saved	for	later	use	as	an	inoculum.	The	remaining	culture	

was	centrifuged	(10	minutes,	4000	rpm)	and	the	supernatant	was	filtered	through	a	0.2	

µm	syringe	filter.	An	equal	volume	of	fresh	100%	TY	broth	was	added	to	produce	a	50:50	

supernatant-broth	mixture	(supernatant	treatment)	for	each	strain.	Supernatant	

treatments	account	for	the	resource	consumption	and	secreted	metabolites	by	one	

strain,	both	of	which	could	affect	the	growth	of	other	target	strains	grown	in	said	

supernatant	treatments.	Additionally,	strains	were	grown	in	100%	TY	and	50%	TY	

(50:50	of	100%	TY	and	deionised	water)	broth	control	treatments.	The	50%	TY	control	

treatment	was	used	to	determine	a	strain’s	minimum	expected	growth	from	a	

supernatant	treatment	if	the	supernatant	invoked	no	inhibitory	effects	on	growth.	This	is	

because	the	amount	of	added	TY	broth	is	the	same	in	50%	control	and	supernatant	

treatments.	A	100%	TY	control	treatment	was	used	to	ensure	strains	grew	well	in	rich	

nutrient	medium	and	any	observed	reductions	in	growth	were	either	due	to	lower	

nutrient	broth	concentrations	(50%	TY	control)	or	inhibitory	metabolites	within	the	

supernatant	treatments.			

	

To	start	the	growth	assays,	200	µl	of	each	50:50	supernatant-broth	mixtures	were	added	

to	96	well	plates	with	5	replicates	per	strain.	Supernatant	treatments	were	inoculated	

with	the	initial	inocula	(~0.2	µl)	using	a	sterilised	microplate	pin	replicator	(Boekel).	One	

well	of	each	supernatant	treatment	was	inoculated	with	water	as	a	no	growth	control.	

Strains	were	grown	at	28°C	and	OD600	measurements	were	taken,	as	an	indicator	of	

growth,	at	0	hours,	24	h,	39	h,	48	h	and	62	h	after	strain	inoculation.	A	total	of	624	

inoculant-supernatant	combinations	were	analysed,	including	100%	and	50%	TY	

treatments.	Relative	growth	indices	(RGIs)	were	calculated	for	all	strains	in	all	

supernatant	treatments	after	62	h	growth	(Appendix	Figure	E.1).	RGI’s	were	calculated	
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Growth	(OD600)	of	strain	i	in	supernatant	j	
Growth	(OD600)	of	strain	i	in	supernatant	i	

	=		RGI	of	strain	i	

by	comparing	the	growth	of	strain	i	in	strain	j’s	cell-free	supernatant	in	relation	to	

growth	in	its	own	supernatant	for	each	combination	(Figure	6.1a)	using	the	following	

equation:	
	
 
 
 
 
 
Therefore,	a	value	of	1	indicates	strain	i	grows	equally	well	in	the	supernatant	of	strain	j	

as	in	its	own	supernatant.	If	a	strain	grows	to	a	higher	optical	density	in	another	strain’s	

supernatant	than	its	own,	it	receives	a	score	of	>1,	(i.e.	displays	facilitated	growth	from	

strain	j	supernatant).	The	converse	is	assumed	if	strain	i	grows	to	a	lower	optical	density	

in	strain	j	supernatant,	than	when	grown	in	its	own.	An	RGI	more	than	1	suggests	that	

nutrient	resources	are	left	behind	by	a	strain,	or	that	metabolites	excreted	by	a	strain	can	

be	used	for	additional	growth	by	another	strain.	An	RGI	less	than	1	could	suggest	that	the	

majority	of	nutrient	resources	available	have	been	consumed	by	a	strain,	therefore	

offering	no	additional	nutrients	than	a	50%	TY	control	treatment.	Alternatively,	it	could	

suggest	that	a	strain	has	secreted	inhibitory	metabolites	that	prevent	growth	of	other	

strains.	Therefore,	to	only	evaluate	the	effect	of	resource	consumption	on	rhizobial	

growth,	RGIs	were	calculated	comparing	a	strains’	growth	in	each	treatment	compared	

to	when	grown	in	the	50%	TY	control	treatment	(Figure	6.1a).	
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Strain i inoculant 
in 

Strain i
supernatant

Strain i inoculant 
in 

Strain j 
supernatant

Strain i inoculant 
in 

50% TY control 
(1:1 ratio 

100% TY:deionised water)

Strain i inoculant 
in 

100% TY control

OD600 OD600÷
=  RGI of strain i
compared to own 

supernatant growth

i) ii) OD600 OD600÷
=  RGI of strain i
compared to 50% 

TY growth

Strain i
inoculant

Filter for Strain i
cell free 

supernatant
Strain i growth 

in TY 48 h

Used in 
supernatant 

treatments for 
other strains

Strain i inoculant

Strain i growth 
in TY 48 h

Measure diameter of inhibition zones (IZ) produced by strains

Strain i culture spotted on top 
of soft agar lawn inoculated 

with Strain j

Strain i inoculated into soft 
agar lawn with Stain j
culture spotted on top

IZ
soft 
agar lawn

a) b)

Figure 6.1 Experimental designs for the a) indirect interaction supernatant assay and b) direct interaction spot plating assay. i) calculates the 
relative growth index (RGI) of strain i in the strain j supernatant compared to growth in its own supernatant, and ii) calculates the RGI of strain 
i in the strain j supernatant compared to growth in the 50% Tryptone Yeast broth control treatment. 
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6.3.2.2. Determining rhizobial interactions directly using spot assays on TY agar 

plates 

 
Direct	inhibitory	(interference)	pairwise	interactions	between	rhizobia	strains	were	

determined	by	spotting	a	liquid	culture	of	each	strain	on	a	bacterial	lawn	of	every	

other	strain	(Figure	6.1b).	Level	of	inhibition	was	determined	as	the	inhibition	halo	

diameter	of	the	bacterial	lawn	around	the	spotted	bacterial	colony.	For	the	assay,	

strains	were	grown	in	5	ml	TY	broth	for	48	h	at	28°C.	Optical	density	of	cultures	

showed	strains	had	grown	between	0.055-0.09	at	OD600.	OA	strains	had	significantly	

higher	initial	culture	spot	inoculum	ODs	compared	to	other	genospecies	groups	

(Kruskal-Wallis:	chi-squared	=	20.036,	df	=	3,	p	<	0.001).	However,	a	simple	linear	

regression	confirmed	that	no	significant	association	was	observed	between	the	size	of	

the	inhibition	zone	around	the	culture	spot	and	the	optical	density	of	the	inoculum	

used	for	the	assay	(Appendix	Figure	E.2;	CoeffinoculumOD:	-6.47,	p	>	0.05).	

	

400	µl	of	culture	was	then	mixed	with	40	ml	of	soft	TY	agar	(7.5%	grams	of	agar	per	

volume)	and	plated	in	square	petri-dishes	and	left	to	cool.	Two	plates	of	soft	agar	

were	made	for	each	strain	and	12	strain	were	spotted	on	each	plate.	Additionally,	

uninoculated	100%	TY	soft	agar	plates	were	used	as	a	control.	2	µl	of	each	rhizobia	

culture	was	spotted	onto	the	plates.	Also,	a	control	uninoculated	TY	broth	spot	was	

placed	in	the	corner	of	each	plate	as	a	control	to	ensure	no	inhibition	was	observed	

from	the	sterile	broth	alone.	Plates	were	incubated	at	28°C	and	imaged	with	digital	

camera	at	24,	48	and	72	h.		

	

The	inhibition	zone	diameters	and	culture	spot	diameters	were	compared	to	identify	

if	the	growth	of	the	spotted	strain	correlated	with	the	level	of	inhibition.	A	very	weak	

positive	correlation	was	identified	(Pearson’s	Correlation	R	statistic	=	0.34,	p	<	0.001)	

and	a	simple	linear	regression	found	inhibition	zone	diameters	increased	by	2.187	

mm	on	average	for	every	1	mm	increase	in	culture	spot	diameter	(Coeffspotdiameter:	

2.187,	p	<	0.001).	However,	this	relationship	was	heavily	biased	by	a	few	strains	

producing	small	inhibition	zones	(Appendix	Figure	E.3a).	When	these	samples	were	

removed	the	resulting	correlation	weakened	(Pearson’s	Correlation	R	statistic	=	0.17,	

p	<	0.01;	Appendix	Figure	E.3b)	and	a	simple	linear	regression	identified	that	

association	with	inhibition	zone	diameter	reduced	to	1.288	mm	on	average	for	every	

unit	increase	in	spot	diameter	(Coeffspotdiameter:	1.288,	p	<	0.01).	To	control	for	the	

growth	of	the	spotted	bacterium,	the	diameter	of	the	spotted	bacterial	culture	was	
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subtracted	from	the	diameter	of	the	inhibition	zone	in	all	analyses.	Inhibition	zone	

diameters	were	calculated	by	subtracting	the	Feret	diameter	of	the	culture	spot	by	

the	Feret	diameter	of	the	inhibition	zone	using	ImageJ	(v.1.52k).	All	strain	lawn	and	

spot	combinations	were	measured	in	3	technical	replicates	(with	the	exception	of	

strains	SM137B	and	SM122A	where	two	replicates	were	used,	and	strain	SM152B	

where	one	spotting	replicate	was	used).	All	replicates	were	used	to	calculate	average	

mean	inhibition	zones	for	all	pairwise	strain	combinations.		

	

6.3.3. Characterising the metabolic capacity of different rhizobia strains 

 
To	determine	differences	in	metabolic	capacity,	all	strains	were	grown	on	31	single	

substrates	using	EcoPlates	(Biolog	Hayward,	CA,	USA)	(Smith,	2018).	The	31	single	

substrates	were	defined	into	the	following	resource	type	groups;	amines,	amino	

acids,	carbohydrates,	carboxylic	acids,	complex	carbons,	and	phosphate	carbon	and	

water	as	a	control	(Table	6.2).	All	amino	acids	are	assumed	to	be	available	in	TY	broth	

as	subcomponents,	and	although	other	single	substrates	may	not	likely	be	present	

within	TY	broth,	they	provided	additional	understanding	of	a	strain’s	metabolic	

potential.	One	replicate	was	generated	for	each	strain,	therefore	strains	were	grouped	

by	genospecies	and	substrates	were	grouped	into	above	mentioned	resource	type	

groups	(Table	6.2),	to	enable	statistical	analysis.		

	

Before	measurements,	all	strains	were	grown	in	10	ml	TY	broth	for	48	h	(28°C,	180	

rpm),	centrifuged	to	form	a	pellet	and	re-suspended	into	10	ml	PBS	buffer,	and	

incubated	for	2	h	at	room	temperature	(Smith,	2018).	120	µl	of	bacterial	suspension	

was	added	to	each	of	the	31	Ecoplate	carbon	sources	and	water	control	wells	(Smith,	

2018).	Reduction	of	tetrazolium	dye	within	each	carbon	source	well	occurs	when	

microbes	can	metabolise	the	resource	and	subsequently	respire.	Plates	were	

incubated	at	28°C	and	OD590	measurements	of	the	developed	dye	coloration	were	

taken	at	72	h	(Smith,	2018).	ODs	were	normalized	by	subtracting	the	control	water	

well	OD	from	the	substrate	well	ODs	for	each	strain	(Appendix	Figure	E.4).	Strains	

generating	OD	values	greater	than	0	for	a	substrate	well	were	considered	being	able	

to	metabolise	that	particular	substrate	(Appendix	Figure	E.4).	To	indicate	whether	a	

strain	has	predominantly	resource	generalist	or	specialist	characteristics,	the	

catabolic	range	of	genospecies	was	determined	by	totalling	the	number	of	substrates	

metabolised	by	each	strain	and	was	further	used	to	calculate	the	mean	number	of	
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substrates	metabolised	per	genospecies	group.	Metabolically	generalist	strains	

(capable	of	metabolising	many	substrates)	might	be	able	to	better	deplete	the	TY	

broth	of	resources	resulting	in	supernatants	providing	fewer	available	remaining	

nutrients	to	other	strains.	Similarly,	metabolically	specialist	strains	(metabolise	few	

resources)	would	leave	behind	resources	in	their	supernatants	for	generalists	to	use,	

making	their	supernatants	more	facilitative.	

	

Additionally,	the	average	well	colour	development	(AWCD)	of	each	strain	calculates	

an	overall	metabolic	capability	of	each	genospecies,	and	how	efficient	strains	are	at	

depleting	resources.	Therefore,	AWCD	was	used	as	a	measure	of	strain’s	average	

metabolic	capacity	under	different	substrate	treatments.	AWCD	was	calculated	using	

72	h	OD590	measurements	of	each	well	(Garland	and	Mills,	1991;	Garland,	2006):		

	
	

!"#$ = [Σ() − #)]/.	
	
	
S	is	the	substrate	well	OD590	value,	C	is	the	control	well	OD590	value	and	n	is	the	

number	of	substrates	(i.e.	31	for	AWCD	across	all	substrate	treatments).	AWCD	

values	were	also	calculated	for	substrates	grouped	into	6	resource	type	groups	by	

molecular	characteristics	(Table	6.2;	Smith,	2018).	Strain	SM159	(OE)	was	removed	

from	the	analyses	due	to	abnormally	high	OD	values	likely	due	to	contamination.	
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Table 6.2 Ecoplate single substrate growth treatments grouped into 6 resource type groups, as previously 
(Smith, 2018). 

Resource type groups Ecoplate Substrates 
Amines Phenylethyl-Amine 

Putrescine 
Amino acids Glycyl-L-Glytamic Acid,  

L-Arginine 
L-Asparagine  
L-Phenylalanine 
L-Serine 
L-Threonine 

Carbohydrates D-Cellobiose 
D-Mannitol 
D-Xylose 
i-Erythrithol 
N-Acetyl-D-Glucosamine 
α-D-Lactose 
β-Methyl-D-Glucoside 

Carboxylic acids 2-Hydroxy Benzoic Acid 
4-Hydroxy Benzoic Acid 
D-Galactonic Acid γ-Lactone 
D-Galacturonic Acid 
D-Glucosaminic acid 
D-malic acid 
Itaconic Acid 
Pyruvic Acid Methyl Ester 
α-Ketobutyric Acid 
γ-Hydroxybutyric Acid 

Complex carbon sources Glycogen 
Tween 40 
Tween 80 
α-Cyclodextrin 

Phosphate carbon D,L- α-Glycerol Phosphate 
Glucose-1-Phosphate 

 
 
6.3.4. Comparative genomic analyses of candidate gene clusters linked with 

competition  

 
To	investigate	genetic	differences	in	metabolism	linked	to	the	presence	of	genes	

linked	with	quorum-sensing,	secondary	metabolites	and	prophages,	we	undertook	

comparative	genomics	analyses	using	various	online	platforms.		

	

To	compare	the	ability	of	strains	to	produce	different	bacteriocins	and	quorum-

sensing	responses,	we	used	BLASTn	to	search	for	genes	within	full	genome	

assemblies	of	the	24	strains	that	are	known	to	be	associated	with	these	pathways	in	

Rhizobium	leguminosarum	(Table	6.3)	(Schripsema	et	al.,	1996;	Wisniewski-Dyé	and	

Downie,	2002;	Gonzalez	and	Marketon,	2003;	McAnulla	et	al.,	2007).	Additionally,	to	

compare	other	known	mechanisms	of	strain	interactions	using	bioactive	compounds,	
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such	as	siderophores,	secondary	metabolite	biosynthesis	gene	clusters	were	searched	

for	using	antiSMASH	5.0	with	default	settings	(Blin	et	al.,	2019).	All	identified	

secondary	metabolite	clusters	containing	2	or	more	genes	were	counted	for	analysis,	

even	if	the	cluster	had	no	sequence	similarity	to	specific	known	clusters.	To	compare	

the	number	of	potential	prophage	regions	across	genospecies	groups,	putative	

prophage	regions	were	searched	for	in	each	strain	and	identified	as	either	‘intact’,	

‘incomplete’	or	‘questionable’	with	PHASTER	using	default	parameter	settings	(Arndt	

et	al.,	2016).	Only	intact	prophage	regions	were	considered	to	be	likely	active.		

	
Table 6.3 GenBank accessions of known quorum sensing and bacteriocin associated gene sequences. QS 
refers for quorum sensing. 

GenBank Accession Gene name Gene type Literature reference 
L06719.1  
(RHMTFXA2G) 
 

Rhizobium leguminosarum 
trifolii trifolitoxin (tfxA) 
gene and tfxB, tfxC, tfxD, 
tfxE, tfxF, tfxG genes 

Bacteriocin - 

AJ001518.1 medium bacteriocin  Bacteriocin RTX-like 
protein 

Oresnik et al., 1999 

AAF89990.1 cinI QS LuxI-type AHL 
synthases 

- 

AAF89989.1 cinR QS LuxR-type 
regulator 

- 

CBI71465.1 cinS QS regulator - 
RWX40560.1 raiI QS LuxI-type AHL 

synthases 
- 

AAC38173.1 raiR QS LuxR-type 
regulator 

- 

AAO21111.1 bisR QS LuxR-type 
regulator 

- 

AAO18654.1 traI QS LuxI-type AHL 
synthases 

- 

AAO21112.1 traR QS LuxR-type 
regulator 

- 

CAK10388.1 rhiI QS LuxI-type AHL 
synthases 

- 

CEG06613.1 rhiR QS LuxR-type 
regulator 

- 

CAX32456.1 expR QS LuxR-type 
regulator 

- 

 
 

6.3.5. Statistical Analysis 

 
Multiple	statistical	approaches	were	used	to	analyse	the	data,	including	mixed	effects	

models,	likelihood	ratio	(LR)	tests	and	parametric	bootstrapping	of	95%	confidence	

intervals.	Supernatant	interactions	where	a	strain	was	grown	in	its	own	supernatant	

(therefore	generating	an	RGI	of	1)	were	excluded	from	the	analysis,	to	avoid	biasing	
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data	distributions.	To	analyse	the	effects	of	genospecies	and	farm	treatment	group	on	

direct	and	indirect	inhibition	between	strains,	maximum	likelihood	(ML)	mixed	effect	

models	were	produced	for	both	supernatant	assays,	and	spot	plating	assays,	with	

lme4	R	package	(v.1.1-21).	For	supernatant	assays,	inoculant	genospecies	group	(OA,	

OC,	OE,	CC)	and	supernatant	genospecies	group	were	included	as	fixed	effects,	while	

individual	inoculant	strain	IDs	and	supernatant	strain	IDs	were	categorised	as	

crossed	random	effects.	For	spot	plating	assays,	liquid	culture	spot	genospecies	group	

(OA,	OC,	OE,	CC)	and	soft	agar	lawn	genospecies	group	were	included	as	fixed	effects,	

and	similarly,	individual	culture	spot	strain	IDs	and	soft	agar	lawn	strain	IDs	were	

classed	as	crossed	random	effects.	Random	effects	accounted	for	pseudo-replication	

and	their	variance	of	>	0	supported	their	incorporation	in	the	full	models.	LmerTest	

generated	t-values,	degrees	of	freedom	and	p-values	for	fixed	effect	parameters	in	the	

models.	To	identify	genospecies	group	differences	for	each	variable,	genospecies	

groups	were	ranked	by	average	value	and	the	genospecies	group	with	the	lowest	

value	set	as	the	intercept.	Therefore,	for	all	variables	in	all	models	the	intercept	was	

set	to	the	OA	genospecies	group.	Firstly,	the	full	models	were	generated	whereby	

fixed	effects	included	an	interaction.	The	significance	of	the	fixed	effects	interaction	

was	tested	by	the	likelihood	ratio	(LR)	test	using	anova()	by	comparing	the	full	

interaction	model	with	a	reduced	model	with	no	interaction.	If	Chi-squared	p-values	

were	<	0.05,	model	fits	were	determined	as	significantly	different.	In	addition,	the	

reliability	of	the	fixed	effects	was	determined	by	parametric	bootstrapping	of	fixed	

effects	as	95%	confidence	intervals	in	the	final	models	(bootMer	and	boot.ci	with	

1000	bootstrap	replicates).	Fixed	effect	parameters	with	95%	confidence	intervals	

that	contained	0	were	considered	as	non-reliable	effects.	The	bootstrapping	model	

displayed	warnings	of	failed	model	convergence	for	the	supernatant	assay	model	(30	

out	of	1000	permutations)	and	the	spot	plating	model	(52	out	of	1000	permutations).	

Due	to	the	original	model	converging	with	no	warnings,	and	the	arbitrary	nature	of	

the	threshold	for	model	convergence	warnings,	these	warnings	were	classified	as	

false	positive	convergence	warnings	(Bolker,	2020).	In	order	to	test	whether	some	

strains	influenced	the	observed	interaction	effects,	specific	strains	were	removed,	

and	the	models	were	rerun	to	confirm	fixed	effects	parameters	remained	significant.	

Similarly,	bootstrapping	displayed	warnings	of	failed	convergence	for	some	

permutations;	supernatant	assay	model	without	SM154C	and	SM168A	=	44	out	of	

1000	permutations;	spot	plating	assay	model	without	SM144A,	SM154C	and	SM145B	

=	38	out	of	1000	permutations.	Additionally,	warnings	regarding	singular	fits	were	
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generated	from	bootstrapping	for	the	following	models:	spot	plating	assay	model	=	

24	out	of	1000	permutations;	spot	plating	assay	model	without	SM144A,	SM154C	and	

SM145B	=	665	out	of	1000	permutations.	To	further	determine	if	OC	and	CC	strains	

displayed	significant	differences	in	inhibitory	activity	when	acting	as	the	inoculant	or	

supernatant/soft	agar	strain,	the	estimated	marginal	means	of	interactions	from	the	

mixed	effects	model	were	compared	using	emmeans	package	in	R	with	Tukey	

adjusted	p-value	correction	applied.	Furthermore,	to	identify	the	overall	trend	across	

supernatant	interactions,	Pearson’s	correlation	coefficient	and	simple	linear	

regression	(lm()	in	R)	was	used.	To	determine	whether	more	genetically	similar	

strains	displayed	more	neutral	indirect	interactions,	RGI	as	an	absolute	value	was	

correlated	to	ANI	using	a	linear	regression	with	White’s	robust	standard	errors	using	

R’s	sandwich	package	to	correct	for	homoscedasticity.	 

	

To	determine	whether	a	genospecies	and	farm	treatment	group	displayed	generalist	

or	specialist	traits,	the	number	of	single	substrates	each	strain	was	able	to	metabolise	

(OD590	>	0)	were	used	to	calculate	the	mean	number	of	metabolised	substrates	for	

each	genospecies	group.	Non-parametric	Kruskal	Wallis	test	was	used	to	compare	

metabolic	capacities	as	a	measure	of	AWCD	(across	31	single	substrate	treatments)	

and	to	determine	whether	genospecies	groups	could	metabolise	a	significantly	

different	number	of	single	substrates.	Dunn’s	post-hoc	test	was	used	to	identify	direct	

differences	between	groups	from	non-parametric	Kruskal-Wallis	tests	with	

Bonferroni	adjusted	p-values.	Pearson’s	R	correlation	coefficient	was	used	to	

determine	the	correlation	between	strain’s	RGI	in	supernatant	treatments	and	

metabolic	capacity	as	a	measure	of	AWCD	across	all	31	single	substrate	treatments.	

Principal	component	analysis	(PCA)	was	calculated	with	R	prcomp	using	singular	

value	decomposition	to	calculate	principal	components	for	explaining:	1)	metabolic	

capacity	(AWCD)	of	Rlt	strains	across	six	resource	type	groups;	and	2)	the	strain	

metabolic	capacity	across	single	substrate	treatments	(i.e.	not	grouped).	

PERMANOVA	using	adonis()	in	the	R	vegan	package	was	used	to	test	for	significance	

of	PCA	clustering	and	significant	pairwise	genospecies	interactions	were	identified	

with	post	hoc	testing	using	pairwise.adonis()	and	Bonferroni	p-value	correction.	

	

	 	



 

 198 

6.4. Results 

 

6.4.1. Facilitative and inhibitory rhizobial interactions were observed at both 

genospecies and genotype level 

6.4.1.1. Supernatant growth assays 

 

To	assess	resource-	and	metabolite-mediated	competitive	interactions	in	

pairwise	Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	strain	interactions,	the	

growth	of	Rlt	strains	in	the	supernatants	of	other	Rlt	strains	was	compared	after	48	

hours	of	initial	growth	resulting	in	a	total	of	576	pairwise	combinations	(Figure	6.2a).	

Strain	growth	in	the	supernatants	of	other	Rlt	strains	was	compared	to	when	the	

strain	was	grown	in	its	own	supernatant	(relative	growth	index:	RGI).	Low	relative	

growth	in	another	strain’s	supernatant	suggests	inhibitory	interactions	(RGI	<	1),	

whereas	high	relative	growth	indicates	more	facilitative	interactions	(RGI	>	1).	Both	

facilitative	and	inhibitory	interactions	were	identified	(Figure	6.2a),	but	overall	

indirect	interactions	were	predominantly	neutral	(mean	RGI:	1.006;	Appendix	Figure	

E.5a).	Some	strain	inoculant	and	supernatant	combinations	showed	extreme	

facilitative	or	inhibitory	interactions.	55	combinations	(9.55%)	had	RGI’s	<	0.75	

suggesting	they	grew	worse	in	other	strains	supernatants	compared	to	their	own.	

Also,	55	combinations	(9.55%)	had	RGI’s	>	1.25	suggesting	growth	in	other	strain	

supernatants	caused	increased	growth.	Additionally,	strains	that	were	genetically	

more	similar	were	likely	to	show	a	more	neutral	interaction	(i.e.	an	RGI	of	1;	

Appendix	Figure	E.5b).		

	

Genospecies	effects	predominantly	drove	the	interaction	between	inoculant	and	

supernatant	groups	(Figure	6.3a;	Appendix	Table	E.1;	X219,9	=	102.5,	p	<	0.0001).	On	

average,	genospecies	E	(OE)	strains	were	the	most	facilitated	in	the	supernatants	of	

other	strains	(Figure	6.3b),	and	on	average	their	supernatants	consistently	overly	

suppressed	genospecies	A	(OA)	growth	(compared	to	OA	inoculants	in	OA	

supernatants	as	the	model	intercept	reference	level;	Figure	6.2a;	CoeffsupOE:	estimate	

=		-0.382,	std.	error	=	0.056,	t	=		-6.791,	p	<	0.001).	Parametric	bootstrapping	of	95%	

confidence	intervals	further	confirmed	that	the	growth	inhibition	of	OA	inoculants	in	

OE	supernatants	was	a	reliable	effect	(Parametric	bootstrapping	95%	percentilesupOE	

(-0.4915,	-0.2797):	original	=	-0.382,	bias	=	-0.00124,	std.	error	=	0.0547).	

Additionally,	OE	inoculants	displayed	facilitated	growth	in	OA	supernatants,	and	this	
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facilitation	of	OE	inoculants	in	OA	supernatants	(compared	to	the	reference	level)	

was	also	confirmed	to	be	a	reliable	effect	(CoeffinocOE:	estimate	=	0.209,	std.	error	=	

0.068,	t	=	3.08,	p	<	0.01;	Parametric	bootstrapping	95%	percentileinocOE	(0.0721,		

0.3275):	original	=	0.209,	bias	=	-0.00322,	std.	error	=	0.0668).	

	

OA	strains	grew	to	lower	densities	in	OE	supernatants	than	in	50%	TY	control	

treatments.	Supernatant	treatments	are	composed	of	a	1:1	ratio	of	strain	supernatant	

and	100%	TY,	and	so	the	amount	of	added	TY	in	the	supernatant	treatment	equates	

to	a	50%	TY	treatment.	Therefore,	if	strains	grow	better	in	supernatant	treatments	

compared	to	the	50%	TY	control,	it	is	assumed	additional	nutrients	are	provided	by	

remaining	resources	in	the	supernatant.	Due	to	OA	strains	growing	worse	in	OE	

supernatants	compared	to	50%	TY,	this	suggests	that	OA	growth	inhibition	cannot	be	

purely	due	to	nutrient	resource	depletion	in	OE	supernatants	and	was	likely	

associated	with	other	inhibitory	processes	that	are	preventing	growth	up	to	densities	

expected	from	50%	TY	treatments	(Appendix	Figure	E.6).		

	

Furthermore,	genospecies	C	strains	isolated	from	either	organic	or	conventional	

farming	treatments	(OC	and	CC	respectively)	were	compared	to	observe	if	strain	

environmental	origin	influenced	strain	interactions,	and	to	control	for	genospecies	

effects.	On	average,	there	were	no	significant	differences	in	genospecies	interactions	

depending	on	whether	genospecies	C	strains	originated	from	organic	or	conventional	

farm	treatments	(Figure	6.3a:	Appendix	Table	E.2;	Appendix	Table	E.3).	OC	and	CC	

strains	grew	to	relatively	similar	densities	in	other	strain	supernatants	compared	to	

when	grown	in	their	own	supernatants	(Figure	6.3b;	Appendix	Table	E.2).	Similarly,	

the	average	growth	densities	of	other	genospecies	did	not	significantly	differ	between	

OC	and	CC	supernatant	treatments	(Figure	6.3c;	Appendix	Table	E.3).		

	

Rlt	interactions	were	also	evaluated	at	the	strain	level	for	genotype-specific	effects.	

SM168A	(OE)	grew	better	on	average	in	other	supernatant	treatments	than	its	own	

when	acting	as	the	inoculum	(Figure	6.2a;	RGIinoculant	=	1.381,	95%	conf.	int	=	1.316	–	

1.446),	and	its	supernatant	highly	suppressed	the	growth	of	other	strains	on	average	

(Figure	6.4;	RGIsupernatant	=	0.883,	95%	conf.	int	=	0.858	–	0.908).	Interestingly,	

SM168A	grew	worse	in	supernatant	treatments	compared	to	the	50%	TY	control	on	

average,	despite	displaying	one	of	the	highest	average	inoculant	RGI’s	out	of	the	24	

strains.	Conversely,	SM154C	(OA)	grew	significantly	worse	in	other	supernatant	
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treatments	on	average	(Figure	6.2a;	RGIinoculant	=	0.612,	95%	conf.	int	=	0.580	–	0.644),	

and	its	supernatant	facilitated	growth	of	other	strains	(Figure	6.3;	RGIsupernatant	=	

1.269,	95%	conf.	int	=	1.223	–	1.315).	To	ensure	group	interactions	were	not	

influenced	by	individual	strains,	SM168A	and	SM154C	were	omitted	and	the	model	

was	re-calculated.	Despite	strain	exclusion,	the	behaviours	of	OA	and	OE	groups	

remained	similar	and	statistically	significant,	indicative	that	the	genospecies-level	

strain	interactions	were	maintained	(Appendix	Table	E.4;	CoeffsupOE:	estimate	=	-

0.376,	std.	error	=	0.0505,	t	=	-7.446,	p	<	0.001;		CoeffinocOE:	estimate	=	0.122,	std.	

error	=	0.0547,	t	=	2.225,	p	<	0.05;	95%	percentilesupOE	(-0.4797,	-0.2740):	original	=	-

0.376,	bias	=	-0.0005,	std.	error	=	0.0529;	95%	percentileinocOE	(0.0113,		0.2298):	

original	=	0.122,	bias	=	-0.0006,	std.	error	=	0.0545).		

	

To	evaluate	how	facilitative	a	strain’s	supernatant	was	for	the	growth	of	other	strains	

in	comparison	to	whether	its	own	growth	was	facilitated	by	the	supernatants	of	other	

strains,	the	average	RGI	of	all	strains	grown	in	strain	i’s	supernatant	(suppressiveness	

as	supernatant)	was	correlated	with	the	average	RGI	of	strain	i	in	all	supernatant	

treatments	(growth	as	inoculant).	Overall,	a	positive	correlation	was	observed	

between	the	suppressiveness	of	a	Rlt	strain’s	supernatant	and	its	growth	as	an	

inoculant	(Figure	6.4;	Simple	linear	regression:	CoeffRGIsup	=	-0.8387,	p	<	0.0001;	

Pearson’s	Correlation	R	statistic	=	-0.701,	t	=	4.611,	p	<	0.001)	indicative	of	positive	

relationship	between	growth	and	inhibition.		

	

Together,	these	results	demonstrate	that	genospecies	effects	are	significantly	

associated	with	the	facilitative	and	inhibitory	indirect	interactions	observed	between	

strain	pair	combinations.	In	particular,	OE	strains	grew	well	in	the	supernatants	of	

other	strains,	and	produced	supernatants	that	were	suppressive	to	other	strains,	

especially	OA	strain	growth.	OA	strains	grew	comparatively	poorly	in	supernatants	of	

other	strains,	but	their	supernatants	were	mainly	facilitative	for	other	strains,	

especially	for	the	growth	of	OE	strains.	Moreover,	variation	was	also	observed	at	the	

individual	strain	level,	as	demonstrated	by	relatively	strong	effects	of	SM168A	and	

SM154C	strains.	

	

	

	



 

 201 

6.4.1.2. Direct inhibition assay 

 
To	assess	whether	strains	could	directly	inhibit	each	other’s	growth,	strains	were	

grown	in	soft	agar	lawns	and	liquid	cultures	of	other	strains	were	spotted	on	top	to	

observe	whether	spotted	strains	induced	zones	of	inhibition.	Inhibition	zones	were	

visible	after	2	days	growth,	and	after	72	hours	of	growth,	92	out	of	576	possible	

strain	combinations	(15.97%)	formed	inhibition	zones	of	varying	sizes	(Figure	6.2b).	

Similar	to	the	indirect	supernatant	growth	assay,	there	was	a	significant	interaction	

between	the	genospecies	groups	of	liquid	culture	spots	and	soft	agar	lawns,	

suggesting	the	genospecies	group	significantly	determined	whether	inhibition	zones	

were	formed	between	strains	(Figure	6.5a;	Appendix	Table	E.5;	X219,9	=	95.933,	p	<	

0.0001).		

	

Lawns	of	OA	strains	were	most	susceptible	to	inhibition	zones	formed	by	other	

strains	out	of	all	genospecies	groups	(Figure	6.5a).	Of	the	other	genospecies,	OE	

strains	seemed	to	be	the	most	capable	of	producing	inhibition	zones	on	OA	agar	

lawns	(compared	to	OA	inoculants	on	OA	lawns	as	the	model	reference	level;	

CoeffspotOE:	estimate	=	4.203,	std.	error	=	0.429,	t	=	9.80,	p	<	0.001;	parametric	

bootstrapping	of	95%	percentilespotOE	(3.355,		5.062):	original	=	4.203,	bias	-0.006,	

std.	error	=	0.445).	Similarly,	culture	spots	of	OE	strains	were	able	to	produce	

inhibition	zones	on	agar	lawns	of	at	least	one	strain	in	each	genospecies	group,	with	

the	exception	of	OC	strains	(Figure	6.2b),	which	were	resistant	to	inhibition	by	all	

other	strains	(Figure	6.2b;	Figure	6.5c).		

	

For	strains	isolated	from	different	farm	treatments,	there	were	no	significant	

differences	between	the	inhibitory	interactions	of	OC	and	CC	strains	with	other	

genospecies	groups	or	each	other	(Figure	6.5a;	Appendix	Table	E.6;	Appendix	Table	

E.7).	The	exception	to	this	was	that	OC	strains	were	able	to	produce	on	average	

significantly	slightly	larger	inhibition	zones	than	CC	strains	on	OA	soft	agar	lawns	

(Appendix	Table	E.6).	OC	and	CC	strains	produced	inhibition	zones	on	the	same	three	

OA	strains	and	one	OE	strain	(SM149A)	(Figure	6.2b).	Additionally,	both	OC	and	CC	

strains	were	not	susceptible	to	clear	inhibition	zone	formation	by	other	strains,	with	

the	exception	of	one	CC	strain	(SM53)	which	was	susceptible	to	inhibition	zones	by	all	

OE	strains	(Figure	6.2b).		
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OA	susceptibility	was	largely	driven	by	individual	strains	SM145B,	SM154C	and	

SM144A,	which	were	the	only	strains	to	induce	inhibition	zones	of	>	5	mm	(Figure	

6.2b).	However,	when	these	three	strains	were	removed	from	the	model,	OA	strains	

were	still	found	to	be	significantly	susceptible	to	inhibition	zone	production	by	OE	

strains,	indicating	the	genospecies	level	effects	were	still	maintained	(Appendix	Table	

E.8;	CoeffspotOE:	estimate	=	2.118,	std.	error	=	0.236,	t	=	8.968,	p	<	0.001;	95%	

percentilespotOE	(1.654,		2.597):	original	=	2.118,	bias	=	0.0123,	std.	error	=	0.238).		

	

Furthermore,	strains	that	grew	better	in	the	supernatants	of	other	strains	than	in	

their	own	(high	RGIs	as	inoculants)	did	not	necessarily	produce	inhibition	zones	

(Figure	6.6).	However,	if	strains	showed	signs	of	direct	interference	competition,	the	

size	of	the	inhibition	zone	positively	correlated	with	the	strains’	RGI	in	supernatant	

(Figure	6.6).	The	slope	of	this	association	was	additionally	found	to	differ	depending	

on	whether	inhibition	zones	had	a	diameter	more	than	5	mm	(Simple	linear	

regression:	CoeffInhibitionzone	=	0.040,	p	<	0.001)	or	less	than	5	mm	(Simple	linear	

regression:	CoeffInhibitionzone	=	0.0698,	p	<	0.05).	This	suggest	that	the	inhibition	seen	in	

supernatant	assays	was	not	always	driven	by	the	same	mechanisms	observed	in	

direct	competition	assays.	

	

Together,	these	results	show	that	differences	in	direct	interference	competition	

effects	are	evident	between	genospecies.	This	difference	of	interaction	was	

predominantly	observed	between	OE	and	OA	stains	with	OE	strains	proving	the	most	

capable	of	producing	inhibition	zones,	to	which	OA	strains	were	the	most	susceptible.	

Additionally,	direct	interference	competition	effects	correlated	to	varying	degrees	

with	the	negative	inhibitory	effects	observed	in	the	supernatant	assays.	However,	this	

was	not	always	the	case	and	strain	combinations	displayed	suppressive	interactions	

in	both	supernatant	and	the	soft	agar	environments.		

	



 

 203 
 

SM152B
SM137B
SM152A
SM145B
SM154C
SM144A
SM147A

SM158
SM170C
SM157B
SM165A
SM122A
SM126B
SM149A
SM135B
SM135A

SM159
SM168A

SM41
SM53
SM57
SM74
SM77
SM67

10
0%

 T
Y

50
%

 T
Y

SM
15

2B
SM

13
7B

SM
15

2A
SM

14
5B

SM
15

4C
SM

14
4A

SM
14

7A
SM

15
8

SM
17

0C
SM

15
7B

SM
16

5A
SM

12
2A

SM
12

6B
SM

14
9A

SM
13

5B
SM

13
5A

SM
15

9
SM

16
8A

SM
41

SM
53

SM
57

SM
74

SM
77

SM
67

Supernatant strain

In
oc

ul
an

t s
tra

in
0.5
1.0
1.5
2.0

RGI

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

●● ● ●

●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ● ● ●● ●

SM152B
SM137B
SM152A
SM145B
SM154C
SM144A
SM147A

SM158
SM170C
SM157B
SM165A
SM122A
SM126B
SM149A
SM135B
SM135A

SM159
SM168A

SM41
SM53
SM57
SM74
SM77
SM67

SM
15

2B
SM

13
7B

SM
15

2A
SM

14
5B

SM
15

4C
SM

14
4A

SM
14

7A
SM

15
8

SM
17

0C
SM

15
7B

SM
16

5A
SM

12
2A

SM
12

6B
SM

14
9A

SM
13

5B
SM

13
5A

SM
15

9
SM

16
8A

SM
41

SM
53

SM
57

SM
74

SM
77

SM
67

Inoculant strain

So
ft 

ag
ar

 la
w

n 
st

ra
in Inhibition

Zone
Diameter
(mm)

●

●
0
5
10
15

b) Direct Inhibition

OA

OC

OE

CC

ii)

a) Resource competition

OA OC OE CC

OA

OC

OE

CC

i)

ii)

iii)

i)

OA OC OE CC
Figure 6.2 Growth of 24 Rhizobium leguminosarum symbiovar trifolii strains grown in Tryptone Yeast 
broth depleted by other strains (supernatant) and on soft agar lawns of other strains. a) Indirect 
interaction of strains measured by calculating the relative growth indices (RGIs) of strains inoculated into 
each other’s supernatants (n=5). i) OA strains inoculated into OE strain supernatant growth treatments. 
(continued on following page). 
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Figure 6.2. continued. a) ii) Strain SM168A inoculated into all other 24 strains’ supernatants and control 
treatments of 100% TY and 50% TY broth. iii) SM154C similarly inoculated into 24 supernatant treatments 
and controls. b) The mean diameter of inhibition zones (mm) produced by strains spotted onto soft agar 
lawns of other strains. The size of the circles indicates the diameter of the inhibition zones. i) diameter of 
inhibition zones produced by OE strain spots on all soft agar strain lawns. ii) particularly susceptible OA 
strains to inhibition zones.  
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Figure 6.3 Average genospecies inoculant growth under different supernatant treatments. a) Mean 
relative growth indices (RGIs) of Rhizobium leguminosarum genospecies groups (OA, OC, OE, CC) 
inoculated (e.g. I-OA) into the supernatants of other genospecies groups (e.g. Sup-OA). b) Mean RGIs of 
each genospecies group inoculants in all other strain supernatants. c) Mean RGIs of all genospecies group 
inoculants in each genospecies group supernatant. Error bars display 95% confidence intervals. Rhizobia 
strain combinations were grouped by genospecies inoculant group and genospecies supernatant group. 
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Figure 6.4 The growth of Rlt strains as inoculants correlate with the suppressiveness of their supernatants. 
Growth of inoculant was calculated by averaging the Relative Growth Index (RGI) of strain i when grown in 
all other supernatant treatments (excluding control TY treatments). Suppressiveness of supernatant was 
calculated by averaging the RGI of all other strains grown in the supernatant of strain i. Grey line displays 
the regression line fit by linear model, and error bars display 95% confidence intervals. RGIs calculation is 
displayed in the methods. 
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Figure 6.5 Average genospecies inoculant inhibition zone formation on different soft agar treatments. a) 
Mean inhibition zone diameter (mm) of Rlt genospecies groups (OA, OC, OE, CC) when liquid cultures (e.g. 
I-OA) are spotted onto soft agar lawns of other genospecies groups strains (e.g. Sup-OA). b) Mean 
inhibition zone diameter around each genospecies group strains inoculated on soft agar lawns of all other 
strains. c) Mean inhibition zone diameter of all strain inoculants on soft agar lawns of each genospecies 
group. Error bars display 95% confidence intervals. Rhizobia strain combinations were grouped by 
genospecies inoculant group and genospecies soft agar group. 
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6.4.2. OE strains display a greater metabolic capacity than other genospecies  

 
To	compare	the	overall	metabolic	capacity	of	different	genospecies,	all	strains	were	

cultured	under	31	single	substrate	treatments	(Appendix	Figure	E.4)	(Smith,	2018).	

The	degree	of	specialist	versus	generalist	traits	were	determined	as	the	mean	

number	of	substrates	that	genospecies	were	able	to	metabolise	and	the	mean	

metabolic	capacity	was	measured	by	calculating	the	Average	Well	Colour	

Development	(AWCD)	across	substrate	wells	for	each	genospecies.		

	

On	average	OE	strains	were	found	to	metabolise	significantly	more	single	substrates	

than	OA	strains	(Kruskal-Wallis	X2	=	7.940,	df	=	3,	p-value	<	0.05;	Dunn’s	post	hoc	p	<	

0.05).	Furthermore,	OE	strains	also	displayed	higher	metabolic	capacity	than	OA	and	

CC	strains	(Figure	6.7a;	Kruskal	Wallis:	X2	=	11.152,	df	=	3,	p	<	0.05;	Dunn’s	post	hoc:	

0

5

10

15

20

0.5 1.0 1.5 2.0
Relative Growth Index of inoculant

In
hi

bi
tio

n 
zo

ne
 d

ia
m

et
er

 p
ro

du
ce

d 
by

 s
po

tte
d 

st
ra

in
 (m

m
)

Inhibition zone 
diameter

0 mm
less than 5 mm
more than 5 mm

Figure 6.6 Growth in supernatant correlated to size of inhibition zone on soft agar. If strains are able to 
produce an inhibition zone, it is more likely that they will have a larger inhibition zone on a strain’s agar 
lawn if they grew well in that same strain’s supernatant. Mean Relative Growth Index of strain i as 
inoculant in the supernatant of strain j (n=5) correlate to the mean inhibition zone diameter (mm) 
produced by strain i on soft agar lawns of strain j (n<=3). Regression lines are fit by linear model.   
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adjusted	p	<	0.05),	while	no	significant	difference	was	observed	between	overall	

metabolic	capacity	of	CC	and	OC	strains.	However,	metabolic	similarity	(calculated	by	

Euclidean	distance	of	31	single	substrate	treatment	OD	values)	did	not	strongly	

correlate	to	genetic	similarity	(Mantel	R	statistic	=	-0.2747,	p	>	0.05).			

	

To	further	determine	whether	strain	metabolism	profiles	clustered	by	genospecies	

groups,	the	metabolic	capacities	for	single	substrate	treatments	for	each	strain	was	

averaged	into	6	resource	type	groups	and	assessed	by	principal	components	analysis	

(PCA):	amines,	amino-acids,	carbohydrates,	carboxylic	acids,	complex	carbons	and	

phosphate	carbons	(Table	6.2).	Genospecies	and	farm	treatment	groups	were	found	

to	overlap	across	the	first	two	principal	components,	explaining	76%	of	the	total	

variance,	however	differences	between	genospecies	groups	were	identified	(Figure	

6.7c;	Appendix	Table	E.9;	PERMANOVA:	F3,22	=	3.8293,	p	<	0.01).	Specifically,	OE	was	

found	to	significantly	differ	in	metabolic	capacity	to	CC	(PERMANOVA	post	hoc	

adjusted	p	<	0.05).	The	separation	of	OE	strains	corresponds	to	their	increased	

metabolic	capacity	across	the	single	substrate	treatments	compared	to	other	strains,	

particularly	for	amino	acid	metabolism,	carbohydrates	and	phosphate	carbon	(Figure	

6.7d).	Similarly,	PCA	of	individual	substrates	did	not	separate	genospecies	groups,	

and	Glycyl-L-Glytamic	Acid	(amino	acid	group)	and	Tween	40	(Complex	carbon	

sources)	contributed	most	to	variance	of	PC1	and	PC2,	respectively	(Appendix	Figure	

E.7).	

	

As	supernatant	contents	were	largely	associated	with	nutrient	depletion,	the	

relatively	high	metabolic	capacity	of	OE	strains	would	suggest	that	these	strains	act	as	

generalists	and	were	therefore	able	to	access	a	greater	proportion	of	nutrients	left	

behind	in	supernatant,	to	facilitate	their	growth.	However,	no	significant	correlation	

was	observed	between	growth	of	strains	grown	in	100%	TY	broth	after	62	h	growth	

and	metabolic	capacity	for	any	of	the	31	single	substrate	treatments	(Pearson’s	

Correlation	Coefficient	R	<	±0.34	,	p	>	0.05)	or	6	resource	type	groups	(Pearson’s	

Correlation	Coefficient	R	<	±0.22,	p	>	0.05).	The	difference	in	observed	metabolic	

capacity	of	the	sampled	OA	and	OE	strains	substantially	influenced	the	resulting	

positive	correlation	between	RGI	and	resource	utilization	and	therefore	should	be	

noted	with	caution	(Figure	6.7b;	Pearson’s	correlation	R	=	0.55,	p	>	0.01).	

Consequently,	while	resource	competition	between	generalists	and	specialists	may	

have	contributed	to	the	observed	indirect	competitive	interactions	(Figure	6.2a),	it	is	
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likely	that	other	inhibitory	mechanisms	are	driving	interactions	(e.g.	direct	inhibition	

competition).		
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Figure 6.7 Metabolic differences between genospecies groups. a) Number of substrates metabolised and 
metabolic capacity based on Average Well Colour Development was calculated across 31 single substrate 
growth treatments for 23 Rlt strains grouped by their genospecies and environmental origin. * p < 0.05. b) 
Average Relative Growth Index (RGI) of inoculant strain grown in all other supernatant treatments 
correlated to the strain’s ability to metabolise the 31 carbon substrates (metabolic capacity as a measure 
of Average Well Colour Development). (Pearson’s correlation coefficient R = 0.55, p > 0.01). Regression 
line is fit by linear model.  c) Principal Components Analysis for metabolic capacity of 31 single substrate 
treatments averaged across 6 resource type groups showed OE strains separated from the other 
genospecies. Points represent Rlt strains and are coloured by genospecies and environmental origin. 
Spread of the strains indicates phenotypic variation amongst resource type groups. d) The association of 
the 6 resource type group variables to the first two principal components. Resource type groups are 
coloured by their percentage contribution of the total variance for principal components 1 and 2. 
Individual substrates within each resource type group can be found in Table 2, methods section. 
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6.4.3. Using comparative genomics to identify potential mechanisms underlying 

competitive differences between rhizobial strains 

 
To	explore	the	underlying	mechanisms	behind	indirect	and	direct	competitive	

interactions,	the	presence	of	genes	associated	to	1)	bacteriocins,	2)	secondary	

metabolite	clusters,	and	3)	prophages	were	searched	for.	Additionally,	the	presence	

of	genes	associated	with	4)	quorum	sensing	pathways	were	also	analysed,	as	quorum	

sensing	signals	can	be	linked	to	both	facilitative	and	inhibitory	interactions	between	

strains.	

	

The	presence	of	known	bacteriocins	were	searched	for	in	the	24	strains	(Figure	6.8;	

Additional	File	6:	Table	S7).	BLASTn	was	used	to	search	for	the	medium	Rhizobium	

bacteriocin.	The	medium	bacteriocin	was	identified	in	all	24	strains	with	a	percentage	

sequence	identity	between	92.76%	-	95.17%	to	the	medium	bacteriocin	reference	

sequence.	OA	strains	were	found	to	have	a	slightly	higher	percentage	sequence	

similarity	to	the	reference	sequence	compared	to	OE	strains	(Figure	6.8;	Additional	

File	6	Table	S7).	Additionally,	bacteriocin	trifolitoxin	genes	were	only	found	in	OE	

strain	SM135B,	but	only	the	putative	immunity	protein	tfxG	was	identified.	This	

suggests	that	while	SM135B	might	be	immune	to	the	effects	of	trifolitoxin,	the	strain	

was	unlikely	to	produce	the	toxin.	

	

Other	known	Rhizobium	leguminosarum	quorum	sensing	AHL	synthase	genes	(cinI,	

raiI,	rhiI,	and	traI)	and	their	related	regulatory	genes	were	searched	for	in	the	24	

strains	(Figure	6.8;	Additional	File	6:	Table	S7).	Not	all	quorum	sensing	pathways	

were	present	in	the	24	strains.	However,	cinI	and	cinR,	which	encode	the	small	

bacteriocin	AHL	(3OH-C14:1-HSL)	synthase	and	its	transcriptional	regulator,	were	

both	found	in	all	24	strains	with	high	percentage	identity	to	the	reference	sequence	

(Figure	6.8).	The	raiI/raiR	quorum	sensing	system	was	found	to	be	the	second	most	

common	(in	50%	of	strains).	Presence	of	both	raiI	and	raiR	together	were	only	found	

in	genospecies	C	strains	(OC/CC),	which	also	contained	rhiI/rhiR	system,	which	was	

absent	from	other	strains.	The	raiI/raiR	pathway	has	been	suggested	to	be	involved	

in	generation	of	short	chain	AHLs	and	to	be	some	extent	functionally	redundant	with	

rhiI/rhiR	pathways	(Wisniewski-Dyé	and	Downie,	2002).	Genes	expR	and	cinS,	

required	for	raiR	expression,	were	present	in	all	24	strains	(Figure	6.8).	Additionally,	

a	greater	variation	in	gene	content	and	percentage	identity	was	observed	between	
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organic	isolates	than	conventional	isolates	(Figure	6.8).	Furthermore,	three	inhibition	

zone	susceptible	OA	strains	(SM144A,	SM154C,	SM145B)	contained	traI,	traR	and	

bisR	genes	that	were	only	identified	together	in	these	strains	(Figure	6.8).	Presence	of	

traI,	traR	and	bisR	have	been	shown	to	greatly	increase	strain	sensitivity	to	the	small	

bacteriocin	(3OH-C14:1-HSL),	as	the	AHL	products	of	the	pathway	in	combination	with	

detection	of	small	can	further	mediate	growth	sensitivity	(Wilkinson	et	al.,	2002).		

	

All	genomes	were	also	screened	for	the	presence	of	secondary	metabolite	

biosynthesis	gene	clusters	(Figure	6.8).	For	each	strain,	the	number	of	gene	clusters	

were	identified	and	totalled	for	Type	III	polyketide	synthases	(T3PKS),	Bacteriocin,	

Terpene,	Arylopolyene,	Ectoine,	Homoserine	lactones,	Proteusin,	Pheganomycin-style	

protein	ligase-containing	cluster,	Non-ribosomal	peptide	synthetase	(NRPS)	and	

NRPS-like	clusters	(Appendix	Table	E.10).	Homoserine	lactones	were	the	most	

abundant	secondary	metabolite	biosynthesis	gene	clusters	in	all	strains.	Bacteriocin	

and	Proteusin	gene	clusters	were	not	found	in	CC	strains	but	were	present	in	at	least	

one	strain	of	all	other	genospecies	groups.	Additionally,	OA	strains	lacked	NRPS	

clusters,	which	were	identified	in	all	other	genospecies	groups.	All	OE	strains	

contained	an	NRPS	cluster	with	100%	identity	to	the	siderophore,	Vicibactin	(NCBI	

GenBank:	CP000138.1),	that	can	be	used	by	strains	to	sequester	iron	in	the	

rhizosphere	(Heemstra,	Walsh	and	Sattely,	2009;	Wright	et	al.,	2013).	On	the	other	

hand,	all	but	one	CC	strain	contained	an	NRPS	cluster	for	the	rhizosphere-expressed	

rhiABC	operon	of	undetermined	function,	which	is	regulated	by	the	OC/CC	strain	

exclusive	rhiI/rhiR	pathway	(NCBI	GenBank:	NC_014718.1)	(Cubo	et	al.,	1992;	

Rodelas	et	al.,	1999).	

	

Finally,	putative	prophage	regions	were	identified	in	genomes	(Figure	6.8).	In	total,	

an	intact	prophage	region	was	detected	in	two	OA	strains,	along	with	one	strain	each	

from	OC,	OE	and	CC	groups.	Additionally,	multiple	prophage	regions	were	identified	

as	questionable	or	incomplete	within	each	genospecies	group,	with	CC	strain	

genomes	containing	the	largest	number	of	totalled	questionable	and	incomplete	

prophage	regions.	However,	overall	the	number	prophage	regions	did	not	correlate	to	

suppressive	or	facilitative	ability	(Appendix	Table	E.11).		
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6.5. Discussion 

 

This	study	aimed	to	investigate	the	intraspecific	facilitative	and	inhibitory	

interactions	of	Rhizobium	leguminosarum	symbiovar	trifolii	(Rlt)	strains	in	terms	of	

indirect	exploitative	(resource)	competition	and	direct	interference	competition	

(growth	inhibition).	Significant	variation	in	competitive	ability	was	observed	between	

genospecies.	When	strains	were	grown	in	each	other’s	cell-free	supernatants,	OE	

strains	disproportionately	negatively	inhibited	OA	strain	growth,	and	significantly	

influenced	specific	strain	interactions.	While	both	facilitative	and	inhibitory	

interactions	were	identified,	strains	that	produced	more	inhibitory	supernatants	
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Figure 6.8 Percentage identity of Rhizobium leguminosarum bacteriocins and quorum sensing associated 
genes, and the number of secondary metabolite gene clusters and phages, found in 24 Rlt strains. 
Quorum sensing and bacteriocin genes heatmap colours correspond to increasing percentage identity of 
quorum sensing gene reference sequences to identified regions in each genome. Grey boxes highlight 
genes that were not present in a specific genome. Secondary metabolite gene cluster heatmap colours 
correspond to the number of gene clusters identified for each type of gene cluster. Phage heatmap 
colours correspond to the number of prophage regions of either intact, questionable or incomplete 
quality identified in each genome. Strains are clustered according to their genospecies environmental 
origin; OA = organic genospecies A, OC = organic genospecies C, OE = organic genospecies E, and CC = 
conventional genospecies C. Accession numbers for quorum sensing associated gene reference 
sequences can be found in Table 6.3. 
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tended	to	grow	well	in	other	strain	supernatants	on	average.	Conversely,	strains	that	

had	particularly	facilitative	supernatants	grew	less	well	in	the	supernatants	of	the	

other	strains.	This	association	could	also	potentially	be	a	result	of	resource	

competition	between	specialists	and	generalists.	The	direct	inhibitory	activation	and	

growth	of	OE	strains	could	also	be	triggered	by	quorum	sensing	interactions	with	

other	strains,	as	all	strains	were	found	to	contain	multiple	homoserine	lactone	

biosynthesis	gene	clusters.	The	synergistic	effects	of	multiple	quorum	sensing	signals	

could	contribute	to	the	observed	variation	of	interactions,	as	suggested	by	the	

identification	of	the	traI/traR/bisR	pathway	in	highly	inhibited	OA	strains.	

Additionally,	OE	strains	were	found	to	contain	Vicibactin	siderophore	synthesis	genes	

which	could	provide	some	competitive	advantage	to	sequester	resources	from	

neighbouring	strains.	Together	these	results	suggest	that,	intraspecific	competitive	

abilities	vary	largely	between	rhizobia	strains,	and	this	was	observed	at	both	

genospecies	and	genotype	levels.	In	the	field,	intraspecific	competition	is	a	potentially	

important	factor	shaping	symbiotic	specificity,	in	addition	to	plant-mediated	

selection,	where	the	most	competitive	strains	have	a	greater	chance	of	establishing	

symbiosis	with	the	plant.		

	

6.5.1. Supernatant-mediated interactions can be facilitative and inhibitory 

 

Indirect	inhibitory	and	facilitative	supernatant	interactions	were	significantly	

influenced	by	genospecies	effects	and	was	predominantly	driven	by	the	inhibition	of	

OA	strains	by	OE	strains.	This	is	in	line	with	previous	studies	that	have	associated	

Rhizobium	signalling	molecules	found	in	cell-free	supernatant	with	growth	inhibition	

and	symbiosis	establishment,	although	the	presence	of	these	interactions	were	not	

investigated	between	genospecies	(Bladergroen,	Badelt	and	Spaink,	2003;	Sanchez-

Contreras	et	al.,	2007;	Checcucci	et	al.,	2017).	For	example	Rlv	strain	RBL5523	

supernatant	was	found	to	suppress	nodulation	and	nitrogen	fixation	of	strain	

RBL5787,	through	secretion	of	temperature-sensitive	proteins	responsible	for	

infection	thread	formation	(Bladergroen,	Badelt	and	Spaink,	2003).	Interaction	

differences	between	genospecies	groups	observed	in	this	study	are	interesting,	as	

exclusive	phenotypic	distinction	between	genospecies	has	not	yet	been	observed	

(Kumar	et	al.,	2015).	These	results	suggest	that	maintenance	of	intraspecies	diversity	

and	genospecies	groups	could	be	linked	with	intraspecific	strain	interactions.	Despite	

genospecies	interaction	effects,	overall	the	competitiveness	and	cooperativeness	of	
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interactions	varied	largely	across	all	pairwise	strain	combinations	and	depended	on	

interactions	between	specific	genotypes	(Figure	6.2).	Additionally,	more	closely	

related	species	were	not	observed	to	show	more	inhibitory	interactions	towards	one	

another	(Appendix	Figure	E.5),	as	shown	in	previous	studies	using	multiple	different	

bacterial	species	(Becker	et	al.,	2012).	It	is	thus	possible	that	Rlt	competitive	

interactions	are	largely	driven	by	variation	in	accessory	genome	content,	that	

extensively	varies	between	and	within	genospecies	(Crossman	et	al.,	2008;	Kumar	et	

al.,	2015;	Cavassim	et	al.,	2019).		

	

Farming	practice	(gsC	organic	or	conventional	farm	isolates)	had	only	very	small	

effects	on	indirect	competitive	interactions.	This	is	in	contrast	with	previous	studies	

suggesting	that	industrialised	farming	managements	could	influence	rhizobial	

population	sizes,	diversity	and	subsequently	legume	root	nodulation	(Graham	and	

Vance,	2000).	Another	study	found	that	soybeans	inoculated	with	soil	from	

conventional	industrial	farm	sites	had	a	lower	biological	nitrogen	fixation	turnover	

compared	to	when	inoculated	with	soil	from	organic	treatments	(Schmidt,	Weese	and	

Lau,	2017).	These	soils	could	have	also	contained	a	higher	number	of	other	

rhizosphere	microbes,	which	is	another	added	complexity	to	the	functionality	of	

community	interactions	influencing	symbiotic	productivity.		

	

6.5.2. Growth inhibition was observed in direct interaction 

 

Clear	patterns	of	direct	inhibition	were	observed	at	both	genospecies	and	genotype	

levels.	OE	was	the	most	capable	of	producing	inhibition	zones	across	strains	and	

produced	inhibition	zones	on	all	but	one	OA	strain,	which	further	demonstrated	their	

ability	to	inhibit	OA	strain	growth	in	a	direct	capacity	as	well	as	indirectly	through	

supernatants.	On	the	other	hand,	gsC	seemed	to	be	the	most	resistant	to	inhibition	

zones,	but	their	susceptibility	to	inhibition	zones	and	their	ability	to	produce	

inhibition	zones	on	average	did	not	differ	between	conventional	and	organic	farming	

treatments	(Figure	6.2b).	Furthermore,	the	ability	to	produce	inhibition	zones,	and	

the	size	of	those	inhibition	zones,	was	found	to	vary	at	the	level	of	individual	strains.	

While	OA	was	found	to	be	the	most	susceptible	to	inhibition	zone	formation	by	all	

other	genospecies,	this	effect	was	predominantly	caused	by	three	OA	strains	

(SM145B,	SM154C	and	SM144A)	that	had	the	largest	inhibition	zones	with	diameters	

ranging	from	7.52	mm	to	19.85	mm.	Direct	inhibitory	rhizobia	interactions	displayed	
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through	inhibition	zone	production	have	also	been	observed	in	previous	studies	

(Hirsch,	1979;	Oresnik,	Twelker	and	Hynes,	1999;	Lithgow	et	al.,	2000;	Wilkinson	et	

al.,	2002;	McAnulla	et	al.,	2007).	Rhizobia	have	similarly	been	shown	to	produce	a	

range	inhibition	zone	sizes	when	plated	on	agar	lawns	of	other	rhizobial	strains,	and	

this	has	been	suggested	to	be	a	consequence	of	the	production	of	different	

bacteriocins	and	activity	of	quorum	sensing	associated	mechanisms	(see	section	4.3.2	

below)	(Hirsch,	1979;	Joseph,	Desai	and	Desai,	1983;	Schripsema	et	al.,	1996;	

Wilkinson	et	al.,	2002;	Joshi	et	al.,	2008).	However,	there	has	otherwise	been	limited	

investigation	of	direct	pairwise	competition	between	natural	rhizobia	isolates	on	

such	a	scale	(Hirsch,	1979),	with	previous	comparisons	predominantly	focusing	on	

less	than	10	strains.		

	

Together,	genospecies	groups	were	found	to	differ	in	competitiveness,	which	was	

largely	driven	by	both	direct	and	indirect	suppressive	effects	of	OE	supernatants	on	

OA	strain	growth	(Figure	6.2).	Furthermore,	OA	strains	were	consistently	suppressed	

by	OE	strains	even	though	all	strains	were	originally	isolated	from	across	different	

Danish	farm	sites.	However,	overall	the	correlation	between	negative	inhibitory	

effects	observed	in	the	supernatant	assays	and	direct	interference	competition	in	the	

soft	agar	assays	varied	largely	between	Rlt	strains.	Strain	combinations	that	displayed	

indirect	suppressive	interactions	in	supernatant	did	not	necessarily	produce	

inhibition	zones	when	in	direct	competition,	such	as	with	strain	SM126B.	This	further	

supports	the	theory	that	both	exploitative	(indirect)	and	interference	(direct)	

competition	occur	between	rhizobia	strain	combinations,	and	the	extent	to	which	

either	or	both	are	utilised	is	determined	at	the	strain	level.	While	it	is	well	known	that	

rhizobia	strains,	and	bacterial	species	in	general,	interact	through	both	direct	and	

indirect	mechanisms	(Hibbing	et	al.,	2010;	Checcucci	et	al.,	2017),	there	has	been	

limited	investigation	into	whether	strains	that	are	successful	indirect	competitors	are	

also	good	direct	competitors.		

	

6.5.3. Underlying mechanisms behind intraspecific competitive interactions 

6.5.3.1. Indirect competition could be partially mediated by resource competition 

 

No	correlation	between	metabolic	similarity	and	genetic	relatedness	was	found	in	

this	study,	and	despite	some	genospecies	level	patterns,	even	closely	related	

individual	genotypes	varied	considerably	in	their	competitive	effects	within	
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genospecies	(Figure	6.2a).	Previous	research	has	suggested	that	more	genetically	

related	strains	will	exert	relatively	stronger	competition	towards	each	other	through	

resource	competition,	because	they	are	more	likely	to	share	similar	metabolic	

pathways,	and	exhibit	a	resource	niche	overlap	(Russel	et	al.,	2017).	Such	relationship	

was	not	found	in	this	study,	potentially	because	a	complex	TY	medium	was	used	to	

grow	strains,	which	may	have	masked	niche	differences	that	are	visible	when	

growing	strains	in	a	more	resource	restricted	media.	

	

Additionally,	and	as	also	shown	in	other	studies,	no	metabolite	was	found	to	be	

exclusively	metabolised	by	a	single	genospecies;	this	supports	the	overall	influence	of	

individual	strain	interactions	being	the	dominant	signal	in	this	analysis	(Appendix	

Figure	E.4)	(Kumar	et	al.,	2015).	Similar	to	previous	research,	all	strains	used	in	this	

study	showed	the	greatest	phenotypic	variance	in	amino	acid	metabolism	and	general	

carbohydrate	metabolism,	such	as	sugars	(Wielbo	et	al.,	2010),	but	also	phosphate	

carbons	which	has	not	been	shown	previously	(Figure	6.7c-d).	OE	strains	were	able	to	

metabolise	the	greatest	number	of	single	substrates	and	displayed	a	high	metabolic	

capacity	across	31	single	substrate	treatments.	This	result	supports	the	hypothesis	

that	OE	strains	can	efficiently	deplete	nutrients	in	the	complex	TY	media,	acting	as	

generalists,	and	subsequently	produce	supernatants	that	are	poor	at	supporting	the	

growth	of	other	strains.	Correspondingly,	OA	strains	showed	much	lower	metabolic	

capacity	and	metabolised	fewer	substrates	in	general,	suggesting	they	may	display	

more	specialist	characteristics	and	leave	more	nutrients	unutilised	in	the	

supernatant,	which	could	facilitate	growth	of	other	strains.	However,	OA	strains	grew	

even	worse	in	OE	supernatants	(1:1	supernatant:100%	TY)	than	50%	TY	controls	

(Appendix	Figure	E.6),	which	suggests	that	inhibitory	mechanisms	other	than	purely	

resource	competition	are	being	observed.	This	is	because	theoretically	strains	should	

grow	better	in	supernatant	treatments	than	50%	TY	controls	as	supernatant	

treatments	contain	an	equal	amount	of	nutrients	to	50%	TY	control	treatments	plus	

any	additional	nutrients	left	behind	in	the	supernatant.		

	

All	five	OE	strains	were	found	to	contain	NRPS	cluster	orthologs	with	100%	identity	

to	Vicibactin	siderophore	production,	whereas	NRPS	clusters	were	absent	in	OA	

strain	genomes	(Appendix	Table	E.10).	Vicibactin	can	be	used	by	R.	leguminosarum	

strains	to	sequester	iron	from	rhizosphere	environments	and	is	associated	with	

productive	symbioses,	as	iron	is	vital	for	successful	nitrogenase	function	(Heemstra,	
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Walsh	and	Sattely,	2009;	Geetha	and	Joshi,	2013;	Wright	et	al.,	2013).	This	

sequestering	of	iron	from	other	non-producer	Rlt	strains	provides	siderophores	with	

antimicrobial-like	qualities,	as	it	prevents	the	growth	of	other	strains	without	the	

ability	to	compete	with	their	own	siderophores	(Kramer,	Özkaya	and	Kümmerli,	

2019).	This	could	further	suggest	that	OE	strains	are	capable	of	repressing	strain	

growth	through	secondary	metabolite	secretion	which	enables	resource	competition	

for	essential	molecules	such	as	iron,	thereby	increasing	their	competitive	advantage.	 

	

6.5.3.2. Direct competition is likely mediated by secondary metabolites 

 
Rhizobia	are	also	known	to	produce	bacteriocins,	antibiotics	and	lysogens	that	can	

inhibit	growth	and	nodulation	of	other	rhizobia	(Triplett	and	Sadowsky,	1992;	

Jousset	et	al.,	2011).	cinI/R	are	said	to	be	the	‘master	regulators’	of	downstream	AHL	

quorum	sensing	pathways	in	rhizobia,	including	regulating	production	of	the	small	

bacteriocin	(3OH-C14:1-HSL),	rhiI/R,	traI/R	and	raiI/R	pathways	(Lithgow	et	al.,	2000;	

Wisniewski-Dyé	and	Downie,	2002;	Sanchez-Contreras	et	al.,	2007).	AHL	quorum	

sensing	pathways	are	found	across	all	R.	leguminosarum	symbiovars,	and	producers	

are	immune	to	its	effects	(Hirsch,	1979).	All	24	strains	in	this	study	contained	cinI/R	

(Lithgow	et	al.,	2000),	but	similar	to	previous	studies	large	variation	in	the	presence	

of	downstream	inducer	and	regulator	quorum	sensing	genes,	such	as	rhiI/rhiR,	

raiI/raiR	and	traI/traR	likely	contributed	to	the	differences	in	facilitative	and	

inhibitory	interactions	(Wisniewski-Dyé	and	Downie,	2002).	

	

Both	inducer	and	regulator	genes	for	rhi	and	rai	quorum	sensing	pathways	were	

found	to	only	be	present	in	gsC	strains	(CC	and	OC)	(Figure	6.8).	These	two	pathways	

display	some	level	of	redundancy	as	they	can	produce	some	of	the	same	AHLs	

(Rodelas	et	al.,	1999).	While	these	pathways	previously	have	mainly	been	found	in	

Rhizobium	etli,	Rhizobium	leguminosarum	symbiovar	viciae	and	phaseoli	strains,	in	

this	study	these	pathways	were	also	found	in	Rlt	gsC	strains	(Wisniewski-Dyé	et	al.,	

2002;	Edwards	et	al.,	2009;	Downie,	2010).	The	function	of	the	raiI/raiR	pathway	is	

unknown,	but	raiI	can	be	activated	by	other	quorum	sensing	AHLs	determined	from	

symbiosis	plasmid-bound	genes,	suggesting	a	potential	association	to	symbiotic	

capability	(Wisniewski-Dyé	et	al.,	2002).	On	the	other	hand,	the	rhiI/rhiR	pathway	can	

be	induced	by	the	small	bacteriocin	(3OH-C14:1-HSL),	and	regulates	the	rhiABC	operon	

which	was	also	found	in	the	Rlt	gsC	strains	in	this	study	(and	previously	only	found	in	
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Rhizobium	leguminosarum	symbiovar	viciae	strains)	and	has	been	suggested	to	

influence	nodulation	efficiency	(Cubo	et	al.,	1992;	Rodelas	et	al.,	1999;	Wisniewski-

Dyé	and	Downie,	2002).	The	raiI/raiR	pathway	AHLs	have	also	been	suggested	to	

function	as	redundant	regulators	of	the	rhiABC	operon,	along	with	the	rhiI/rhiR	

pathway	(Rodelas	et	al.,	1999).	The	reason	for	the	redundancy	of	quorum	sensing	

systems	in	rhizobia	remains	unclear	but	could	potentially	provide	some	resilience	to	

inhibitory	quorum	sensing	mechanisms	imposed	by	other	rhizosphere	bacteria.		

	

The	greater	susceptibility	of	OA	strains	(SM144A,	SM154C,	SM145B)	to	inhibition	by	

other	strains	was	likely	due	to	the	presence	of	quorum-sensing	traI,	traR	and	bisR	

genes,	which	increases	strain	sensitivity	to	3OH-C14:1-HSL	(small	bacteriocin)	as	the	

traI	AHL	products	in	combination	with	detection	of	small	can	further	mediate	growth	

sensitivity	(Wilkinson	et	al.,	2002;	McAnulla	et	al.,	2007).	The	extensively	studied	

small	bacteriocin,	which	was	later	discovered	to	be	an	AHL,	is	known	to	produce	

inhibition	zones	more	than	10	mm	and	on	average	25	mm,	with	no	bacteriocin	

activity	detected	in	cell-free	culture	supernatants	of	producer	strains	(Hirsch,	1979;	

van	Brussel	et	al.,	1985;	Gray	et	al.,	1996;	Schripsema	et	al.,	1996;	Wilkinson	et	al.,	

2002;	Wisniewski-Dyé	and	Downie,	2002).	This	is	similar	to	the	inhibition	zones	

observed	in	this	study,	whereas	medium	bacteriocin-producing	strains	would	display	

smaller	inhibition	zones	<	10	mm	with	bacteriocin	activity	and	would	also	be	

detectable	in	supernatants	(Hirsch,	1979).	The	traI/traR/bisR	genes	are	also	involved	

in	regulating	recipient-induced	symbiosis	plasmid	transfer	through	quorum	sensing	

(Wilkinson	et	al.,	2002;	Danino	et	al.,	2003;	McAnulla	et	al.,	2007).	traI	is	a	LuxI-type	

protein,	induced	by	traR,	encoding	an	AHL	synthase	catalysing	the	synthesis	of	AHLs	

that	act	as	diffusible	quorum	sensing	signals	(Hwang	et	al.,	1994;	Wilkinson	et	al.,	

2002;	He	et	al.,	2003;	McAnulla	et	al.,	2007;	Lang	and	Faure,	2014).	Primarily,	traR	

expression	is	induced	by	BisR	in	donor	strains	containing	the	symbiosis	plasmid	in	

response	to	CinI	AHLs	made	by	recipient	strains,	such	as	the	small	bacteriocin	(3OH-

C14:1-HSL)	(Wisniewski-Dyé	and	Downie,	2002;	Danino	et	al.,	2003;	McAnulla	et	al.,	

2007).	In	addition,	the	transcriptional	regulator	traR	can	also	be	activated	once	a	

threshold	concentration	of	traI-produced	AHLs	is	reached	(Wilkinson	et	al.,	2002;	

McAnulla	et	al.,	2007;	Lang	and	Faure,	2014).	Therefore,	strains	carrying	the	full	

bisR/traR/traI	pathway	are	likely	to	confer	greater	sensitivity	to	3OH-C14:1-HSL	

producing	rhizobial	strains.	This	demonstrates	that	growth	sensitivity	can	be	

mediated	by	a	combination	of	quorum	sensing	pathways	(Wilkinson	et	al.,	2002)	and	



 

 220 

could	be	advantageous	for	regulating	growth	in	particularly	crowded	rhizospheres	of	

nodulated	legumes	and	for	increasing	symbiotic	capacity	of	communities	through	

conjugal	plasmid	transfer	(He	et	al.,	2003;	Downie,	2010).		

	

The	combination	of	potentially	indirect	and	direct	competition	displayed	by	OE	

strains	could	make	them	strong	rhizosphere	competitors.	The	most	competitive	

strains	in	the	rhizosphere	are	likely	those	capable	of	both	outcompeting	other	strains	

for	resources	and	also	producing	direct	inhibitory	metabolites	to	regulate	growth	of	

closely	related	neighbouring	strains,	which	could	provide	some	selective	advantage	

for	rhizosphere	persistence	and	symbiotic	establishment	(Schwinghamer	and	

Brockwell,	1978).	Therefore,	in	addition	to	resource	competition	between	strains,	it	

could	be	suggested	that	additional	direct	repression	of	strain	growth	through	quorum	

sensing	AHLs	and	bacteriocin	activity	also	plays	a	role	in	the	variation	of	Rlt	strain	

interactions	(Schripsema	et	al.,	1996;	Wisniewski-Dyé	and	Downie,	2002).		

	

6.5.4. Study limitations and future research 

 
Observing	interactions	between	Rlt	strains	in	conventional	TY	media	is	not	

necessarily	applicable	to	the	soil	rhizosphere	where	strains	would	naturally	interact.	

Bacterial	signalling	is	achieved	through	multiple	mechanisms,	some	of	which	were	

discussed	here,	and	all	of	which	are	strongly	influenced	by	the	environmental	context	

and	associated	microbial	community	structure	(Checcucci	et	al.,	2017).	For	example,	

gsC	strains	were	identified	as	the	only	genospecies	in	this	study	to	contain	both	rhiI	

and	rhiR	quorum	sensing	gene	orthologs,	which	have	previously	only	been	found	in	

Rlv	strains	and	may	provide	some	unknown	competitive	advantage	in	the	

rhizosphere	(Gray	et	al.,	1996;	Wisniewski-Dyé	and	Downie,	2002;	Sanchez-Contreras	

et	al.,	2007).		

	

Furthermore,	all	strains	were	originally	isolated	from	farm	sites	across	Denmark	

reflecting	only	a	small	fraction	of	rhizobial	strain	variation	within	one	country.	

Therefore,	it	would	be	interesting	to	see	whether	these	overall	genospecies	

interactions	would	be	maintained	at	an	international	level,	with	strains	isolated	from	

other	continents.	Additionally,	larger	sample	sizes	for	genospecies	and	farm	

treatment	groups	would	enable	more	robust	and	meaningful	comparisons.		
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Similarly,	no	differentiation	was	made	between	metabolites	or	resource	

concentrations	in	the	supernatant	treatments,	which	would	have	otherwise	provided	

additional	insight	to	understanding	the	exact	mechanisms	causing	the	observed	

interactions.	In	order	to	also	confidently	confirm	individual	strain	utilisation	profiles,	

additional	replicates	would	be	required	in	future	(Appendix	Figure	E.4).	Future	

investigations	could	use	mass	spectrometry	analyses	and	transcriptomics	to	measure	

gene	activity	and	to	identify	different	molecular	compounds	secreted	into	

supernatants.	Another	crucial	area	for	future	investigation	would	be	to	induce	

targeted	mutations	in	the	quorum	sensing	pathway	genes	that	are	putatively	involved	

in	the	direct	interactions	observed	within	this	study.	This	could	then	confirm	whether	

the	specific	quorum	sensing	mechanisms	are	influencing	these	direct	strain	

interactions.		

	

Strains	were	not	grown	in	co-cultured	environments	due	to	the	inability	to	

distinguish	strain	densities	from	one	another	based	on	selective	plating.	Recent	

advancements	in	sequencing	technologies	and	utilising	unique	strains	for	individual	

identification	(Chapter	1;	Fields	et	al.,	2019)	or	strain	ID	tagging	(Mendoza-Suárez	et	

al.,	2020)	will	be	crucial	for	transferring	study	of	these	interactions	into	larger	

microbial	communities	with	a	more	applicable	in	planta	context.	Future	

investigations	hope	to	use	these	interactions	to	understand	how	diversity	within	

pairwise	communities	can	affect	symbiotic	effectiveness	at	a	scaled-up	multi-strain	

community	level.	A	key	theory	would	also	be	to	test	if	more	competitive	rhizobia	are	

more	likely	to	form	symbiosis	when	in	direct	competition.	However,	this	may	prove	

challenging	due	to	the	complexity	of	higher-order	effects	of	multi-strain	interactions	

(Barrett	et	al.,	2015).	

	

6.5.5. Conclusions 

 
Host	interaction	with	the	abiotic	soil	environment	has	been	suggested	to	maintain	

functionally	diverse	Rhizobium	communities	composed	of	both	generalist	and	

specialist	strain	types	(Vuong,	Thrall	and	Barrett,	2017).	However,	intraspecific	

interactions	between	strains	within	microbial	communities	can	also	shape	species	

diversity.	In	this	study,	significant	variation	was	found	in	the	competitive	ability	of	Rlt	

strains	at	both	the	individual	strain	level,	and	between	genospecies.	These	

interactions	could	be	partially	explained	by	resource	competition	between	specialists	
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and	generalists	as	supported	by	genospecies	and	genotype-specific	metabolic	

profiles.	However,	secreted	compounds	also	likely	played	an	important	role	in	

addition	to	resource	utilisation,	including	secretion	of	quorum	sensing	molecules,	

bacteriocins	and	growth-inhibiting	secondary	metabolites.	The	inhibitory	

interactions	between	rhizobia	strains	could	potentially	have	a	detrimental	effect	on	

symbiosis	if	it	leads	to	a	reduced	likelihood	of	symbiotic	establishment.	It	is	therefore	

vital	to	consider	these	interactions	when	considering	compatible	strain	combinations	

for	agricultural	inoculants	in	order	to	avoid	conflict	with	other	co-inoculant	strains	or	

with	the	existing	native	rhizobial	strains.		
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Chapter 7. General Discussion  
 

7.1.  Introduction 

 

This	chapter	provides	an	overview	and	synthesis	of	all	the	thesis	results	and	

discusses	them	in	the	context	of	the	three	central	research	questions,	and	their	

significance	and	contribution	to	broader	knowledge	in	the	rhizobia	research	field.		

	

The	overall	purpose	of	this	PhD	project	was	to	determine	the	extent	of	Rhizobium	

leguminosarum	symbiovar	trifolii	(Rlt)	intraspecies	diversity	at	the	genetic	and	

phenotypic	levels,	with	particular	focus	on	identifying	differences	between	Rhizobium	

leguminosarum	genospecies.	The	three	specific	questions	were	to:	

	

1) Determine	if	the	diversity	of	Rlt	populations	can	be	explained	by	the	selective	

differences	of	white	clover	genotypes		

2) understand	if	Rlt	genetic	diversity	manifests	itself	in	the	gene	expression	profiles	

and	growth	phenotypes	of	strains	between	and	within	genospecies;	

3) identify	whether	intraspecific	Rlt	interactions	can	be	determined	by	genetic	

differences	between	genospecies	and	environmental	origins	of	strains.	

	

The	wider	implications	of	the	findings	and	avenues	for	future	research	are	

highlighted.	The	chapter	ends	the	thesis	with	a	general	conclusion	of	the	research	

provided.	

	

7.2.  Influence of white clover genotype selectivity on Rlt populations  

 

It	was	first	posed	whether	different	white	clover	cultivars	symbiotically	select	for	

different	rhizobia	strains	in	the	field.	If	so,	this	could	highlight	that	symbiotic	

specificity	extends	beyond	the	interspecies	level	and	is	also	important	at	the	

intraspecies	level	of	symbiotic	interactions.	Additionally,	differences	in	clover	

genotype	symbiotic	selectivity	could	partially	explain	the	large	intraspecies	diversity	

of	Rlt	as	populations	evolve	by	adaptive	evolution	to	symbiotic	engagement	with	

different	cultivars.	This	knowledge	could	then	be	utilised	to	aid	development	of	
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rhizobial	inoculant	x	clover	cultivar	combinations	that	are	optimally	genetically	

compatible	for	improved	agricultural	use.		

	

To	answer	this	question,	the	MAUI-seq	multiplexed	high	throughput	amplicon	

sequencing	(HTAS)	method	was	developed	to	enable	confident	evaluation	of	

intraspecies	diversity	from	environmental	DNA	samples	based	on	two	core	and	two	

accessory	genes.	This	was	achieved	by	decontaminating	amplicon	sequence	data	of	

chimeras	and	other	amplification	and	sequencing	errors	that	were	identified	using	

unique	molecular	identifiers	(UMIs).	Few	studies	have	used	HTAS	for	intraspecies	

ecological	diversity	studies	(Kinoti	et	al.,	2017;	Poirier	et	al.,	2018),	and	this	is	likely	

because	there	are	significant	concerns	that	genuine	allelic	sequence	variation	within	

highly	genetically	similar	DNA	samples	cannot	be	confidently	distinguished	from	

incurred	sequencing	PCR	errors.	MAUI-seq	implements	global	UMI-based	error	rates	

to	detect	and	correct	for	chimeras	and	other	erroneous	PCR	artefacts.	Multiple	

amplicons	(housekeeping	genes,	rpoB	and	recA,	and	symbiosis	genes,	nodA	and	nodD)	

were	used	to	discern	intraspecies	diversity	as	16S	rDNA	amplicons	are	too	highly	

conserved	to	sufficiently	determine	intraspecies	sequence	diversity	(Gaunt	et	al.,	

2001;	Case	et	al.,	2007;	Adékambi,	Drancourt	and	Raoult,	2009;	Vos	et	al.,	2012;	

Poirier	et	al.,	2018).	The	method	was	validated	using	known	synthetic	rhizobial	DNA	

mixtures	and	environmental	white	clover	nodule	samples	and	was	found	to	perform	

more	robustly	compared	to	established	amplicon	sequence	variant	clustering	

methods,	DADA2	and	UNOISE3	(Figure	2.3	and	Figure	2.4).		

	

The	validated	MAUI-seq	method	was	then	used	to	aid	determination	of	whether	five	

white	clover	genotypes	contained	significantly	different	Rlt	nodule	populations	based	

on	rpoB,	recA,	nodA	and	nodD	allele	frequencies	when	grown	under	field	conditions.	

Several	clover	genotypes	were	found	to	display	significantly	different	Rlt	diversity		

(Figure	3.4),	however	the	level	of	observed	intraspecies	diversity	was	influenced	by	

the	candidate	gene	and	whether	diversity	was	evaluated	at	the	level	of	individual	

genes	or	their	combinations.	Furthermore,	a	large	amount	of	sequence	variation	was	

observed	within	clover	genotypes	for	all	four	genes	(Figure	3.3).	rpoB	and	recA	alleles	

displayed	the	greatest	distinction	between	clover	genotypes	but	diversity	was	also	

associated	with	geographic	distance	between	samples	in	the	field	rather	than	solely	

resulting	from	host-filtering	by	the	plant.	The	combined	effect	of	plant	genotype	and	

geospatial	variation	in	allele	frequencies	has	similarly	been	shown	by	other	studies	
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(Aouani	et	al.,	1997;	Nleya,	Walley	and	Vandenberg,	2001;	Fagerli	and	Svenning,	

2005;	Argaw	and	Muleta,	2017;	Liu	et	al.,	2019),	as	well	as	with	the	samples	originally	

used	to	validate	MAUI-seq	(Figure	2.4).	This	is	likely	due	to	differences	in	local	

geographic	conditions	influencing	the	initial	microbial	rhizosphere	community	which	

is	then	further	selected	by	the	legume	genotype	(Vuong,	Thrall	and	Barrett,	2017;	Liu	

et	al.,	2019).	Symbiosis	genes	on	the	other	hand	showed	no	significant	distinction	

between	clover	genotypes	and	similarly	showed	no	association	to	geographic	

distance	between	samples.	This	was	surprising	as	influence	of	potential	nodulation-

based	symbiotic	selection	was	expected	to	reflect	in	differing	diversity	of	Rlt	

nodulation	genes	between	clover	genotypes.	However,	as	the	genotypic	differences	

between	clover	F2	crosses	were	unknown,	this	could	potentially	be	due	to	a	lack	of	

variation	in	the	mechanisms	determining	symbiotic	selectivity	between	crosses.		

Furthermore,	without	determining	the	intraspecies	diversity	of	the	rhizospheres	it	

remains	unclear	how	much	the	diversity	of	Rlt	nodule	populations	differ	from	the	

initial	rhizosphere	pools	for	each	sample.		

	

Rhizobia	from	soil,	rhizosphere	and	nodules	of	different	legume	species	have	been	

characterised	using	PCR-restriction	fragment	length	polymorphism	(RFLP)	of	16S-

23S	ribosomal	DNA	intergenic	spacers,	nodD	amplicon	sequencing,	and	insertion	

sequence	typing	(Bromfield,	Barran	and	Wheatcroft,	1995;	Laguerre	et	al.,	2003;	

McGinn	et	al.,	2016).	These	methods	are	useful	to	detect	sub-species	and	strain	level	

differences,	along	with	repetitive	extragenic	palindromic	polymerase	chain	reaction	

(rep-PCR)	fingerprinting	using	enterobacterial	repetitive	intergenic	consensus	(ERIC)	

primers	(McGinn	et	al.,	2016).	HTAS	is	also	a	popular	method	for	microbial	

community	diversity	analyses,	however	sequencing	errors	introduced	during	

amplification	and	sequencing	poses	challenges	even	for	interspecies	studies.	A	main	

advantage	of	MAUI-seq	over	other	established	HTAS	clustering	methods	(DADA2	and	

UNOISE3)	is	that	sequences	are	determined	as	genuine	using	UMI-based	error	rates,	

rather	than	rejecting	sequences	based	on	their	similarity	to	other	sequences	in	the	

dataset.	This	makes	the	MAUI-seq	method	different	to	DADA2	and	UNOISE3,	where	

sequences	are	classed	as	chimeras	if	they	can	be	created	as	recombinants	of	other	

sequences.	Especially	for	intraspecies	analysis,	this	risks	generating	false-positive	

rejections	of	genuine	alleles	in	datasets	containing	sequences	with	high	sequence	

similarity	(Edgar,	2016a).	Future	improvements	to	MAUI-seq	could	involve:	1)	

utilisation	of	a	statistical	model	to	determine	the	appropriate	secondary/primary	
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sequences	ratio	threshold	for	detecting	chimeras	rather	than	using	a	predefined	

threshold;	2)	using	recognisable	target	sequence	spike-in	controls	during	initial	

sample	processing	in	order	to	determine	absolute	abundance	of	sequence	alleles;	3)	

utilising	longer	amplicon	sequences	in	line	with	the	development	of	sequencing	

technologies;	4)	implementing	UMIs	at	both	ends	of	the	amplicon	region	as	an	

additional	confirmation	of	chimera	detection	(Burke	and	Darling,	2016).		

	

Another	advantage	of	MAUI-seq	is	that	the	approach	allows	assessment	of	

intraspecies	diversity	using	multiple	gene	amplicons	as	it	was	shown	that	observed	

intraspecies	diversity	can	be	influenced	by	choice	of	gene	candidates	(Figure	3.4).	

Using	multiple	amplicons	to	determine	Rlt	diversity	enabled	assessment	of	

intraspecies	diversity	from	the	perspective	of	both	horizontal	(plasmid-bound	nodA	

and	nodD)	and	vertical	(chromosomal-bound	rpoB	and	recA)	gene	transmission.	

However,	this	also	emphasised	how	the	gene	markers	must	be	chosen	with	careful	

consideration	to	the	research	questions	in	mind.	For	example,	symbiotic	specificity	

can	also	be	influenced	by	extracellular	polysaccharide	production,	plant-

identification	of	rhizobial	secretion	systems	and	detection	of	microbe-associated	

molecular	patterns.	Genes	associated	with	these	molecular	interactions	were	not	

evaluated	in	this	study	and	could	have	potentially	displayed	differences	in	selection	

by	clover	genotypes	(Perret,	Staehelin	and	Broughton,	2000;	Simms	and	Taylor,	2002;	

Wang,	Liu	and	Zhu,	2018).	These	genes	could	be	tested	in	future	to	evaluate	their	

association	with	intraspecies	symbiotic	specificity.	Additionally,	as	the	MAUI-seq	

method	is	applicable	to	any	type	of	environmental	sample,	it	would	have	been	

insightful	to	evaluate	the	rhizosphere	soil	community	compositions	to	determine	if	

Rlt	rhizosphere	populations	differed	between	clover	genotype	samples.	Furthermore,	

MAUI-seq	has	the	potential	to	be	used	for	other	types	of	amplicon	diversity	studies,	

and	in	this	case	could	be	further	used	to	monitor	the	general	soil	community	diversity	

based	on	16S	and	ITS	gene	regions.	

	

Together,	these	studies	aimed	to	evaluate	whether	different	clover	cultivars	could	

select	for	significantly	different	Rlt	genotypes	and	the	results	could	be	used	to	aid	

development	of	more	productive	clover	inoculants	that	are	matched	with	plant	

genotypes.	For	example,	future	analyses	could	focus	in	pure	check	clover	varieties	

(and	other	agriculturally	important	cultivated	legumes	(Stagnari	et	al.,	2017))	to	

determine	if	specific	clover	varieties	preferentially	select	for	different	Rlt	genotypes.	
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If	so,	this	would	suggest	there	is	significant	benefit	to	developing	highly	genetically	

compatible	rhizobia	inoculants	based	on	the	legume	genotype.		

	

7.3.  Transcriptomic and phenotypic intraspecies diversity of Rlt 

 

The	species	of	Rhizobium	leguminosarum	is	highly	genetically	diverse	and	contains	a	

species	complex	including	at	least	five	genetically	distinct	genospecies	(Kumar	et	al.,	

2015;	Cavassim	et	al.,	2020).	Despite	the	significant	genomic	differences	between	

genospecies,	no	phenotypic	traits	have	been	exclusively	associated	to	a	single	

genospecies	(Ravin,	1963;	Kumar	et	al.,	2015;	Smith,	2018).	It	is	unclear	to	what	

extent	transcriptional	variation	between	and	within	genospecies	is	also	evident.	If	

bacterial	genetic	distance	evidently	influences	gene	expression,	analysis	of	

transcriptional	differences	between	genospecies	could	highlight	the	advantages	of	

using	transcriptional	variation	as	a	phenotypic	parameter	for	taxonomic	species	

distinction.	Therefore,	this	study	used	a	multi-strain	approach	to	determine	whether	

Rlt	genetic	diversity	is	reflected	in	the	transcriptomes	of	strains,	and	furthermore	

how	this	transcriptomic	diversity	can	be	linked	to	phenotypic	traits.		

	

Although	genospecies	share	the	same	core	genome,	both	transcriptomic	and	

phenotypic	differences	were	identified	between	genospecies.	Genospecies	displayed	

differences	in	core	genome	transcriptome	profiles	and	showed	significant	expression	

differences	at	the	level	of	individual	core	genes	(Figure	4.1a).	Within	genospecies,	

core	genome	transcriptome	profiles	were	less	distinct	(Figure	4.1d).	Following	this	

trend,	increased	genetic	divergence	between	Rlt	strains	was	found	to	correlate	with	

an	increased	number	of	differentially	expressed	core	genes	(Figure	4.1f).	This	

suggests	that	Rlt	genetic	diversity	is	evident	at	the	gene	expression	level	of	the	core	

genome	which	contains	essential	genes	shared	by	all	strains	of	the	species.	To	

understand	the	potential	functional	implications	of	the	observed	transcriptional	

diversity,	co-expressed	core	genes	were	grouped	into	modules	and	expression	was	

correlated	to	growth	of	the	phenotypes.	Significant	correlations	were	identified	

between	the	expression	of	several	modules	and	phenotypic	growth	differences	

between	genospecies.	Core	gene	modules	enriched	with	gene	functions	related	to	

fundamental	bacterial	metabolism	were	found	to	also	significantly	differ	in	

expression	between	genospecies	(Figure	4.3).	Taken	together,	using	a	multi-strain	

experimental	design	to	capture	the	extent	of	species	level	expression	variation	
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enabled	identification	of	groups	of	species-conserved	co-expressed	genes	associated	

with	genospecies	differences	in	bacterial	metabolism.	However,	as	a	significant	

number	of	the	core	genes	have	unknown	functions,	future	work	could	further	

investigate	the	functional	relevance	of	differing	genospecies	expression	patterns,	and	

also	observe	whether	these	differences	are	reproducible	under	more	applicable	

rhizosphere-based	conditions.		

	

Variation	in	genome	architecture	and	gene	expression	was	additionally	utilised	to	

identify	transcriptional	units	that	were	conserved	across	genospecies.	This	was	

achieved	to	further	understand	the	extent	genetic	diversity	causes	differential	

regulation	of	transcription	between	genospecies	that	is	observable	at	the	operon	

level.	Overall,	94	transcriptional	units	were	found	to	be	conserved	across	all	five	Rlt	

genospecies,	with	approximately	1000	transcriptional	units	identified	for	each	

genospecies	individually.	Therefore,	differences	in	genome	organisation	and	gene	

content	have	the	potential	to	substantially	change	the	regulatory	organisation	of	

genomes	and	consequent	phenotypes	within	a	single	bacterial	species.	The	use	of	

genomic	and	transcriptomic	data	from	multiple	strains	with	differing	genomic	

compositions	offered	additional	verification	for	predicting	operons	and	additionally	

highlighted	the	variation	of	operon	architecture	within	Rlt	which	likely	contributes	to	

the	substantial	transcriptomic	and	phenotypic	diversity	observed	across	strains.	This	

investigation	has	generated	a	new	resource	of	putative	operons	from	five	Rlt	

genospecies	using	26	strains.	It	would	be	interesting	to	evaluate	differences	in	whole	

operon	expression	between	genospecies	at	the	operon	level.	Therefore,	future	work	

could	aim	to	test	if	the	94	conserved	operons	show	differences	in	expression	between	

genospecies,	which	would	also	confirm	suggested	regulatory	differences	between	

genospecies.	Moreover,	the	functional	associations	of	operons	found	exclusively	to	

specific	genospecies	could	be	further	explored	as	well	to	identify	enriched	pathways	

in	different	genospecies.		

	

Similar	to	previous	studies	(Kumar	et	al.,	2015),	Rlt	strains	displayed	large	variation	

in	growth	phenotypes	and	resource	metabolism	(Figure	4.2;	Figure	6.2;	Figure	6.7),	

however	no	identified	phenotype	was	exclusive	to	a	single	genospecies.	Metabolic	

versatility	has	been	associated	with	replicon	diversity	which	could	explain	the	lack	of	

metabolic	traits	exclusive	to	individual	genospecies	and	also	the	significant	variation	

in	metabolic	capacity	across	strains,	as	plasmids	containing	different	metabolic	
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pathways	can	transfer	between	strains	within	and	between	bacterial	species	(Mazur	

et	al.,	2013;	Ormeño-Orrillo	and	Martínez-Romero,	2013;	Cavassim	et	al.,	2020).	

While	no	genospecies-exclusive	phenotypes	have	been	identified,	it	was	observed	

that	some	genospecies	showed	clearly	distinct	growth	traits	and	varied	in	their	ability	

to	metabolise	specific	substrates	(Figure	4.2;	Appendix	Figure	E.4).	For	example,	a	

selection	of	representative	gsC	strains	were	collectively	the	slowest	(or	equally	the	

slowest)	growing	genospecies	in	100%	TY	broth	at	28°C	(Figure	4.2;	Appendix	Figure	

E.1).	However,	growth	phenotypes	did	not	necessarily	correlate	with	the	metabolic	

capability.	Although	gsA	strains	collectively	grew	to	the	highest	densities	in	100%	TY	

(compared	to	gsC	and	gsE),	gsA	strains	were	collectively	also	the	least	metabolically	

diverse	when	grown	in	single	substrates	(Figure	6.7a).	Similarly,	gsE	strains	on	

average	were	able	to	metabolise	the	most	substrates	and	displayed	the	greatest	

ability	to	metabolise	substrates	but	did	not	reach	the	highest	densities	in	TY	media	

compared	to	other	genospecies.	Moreover,	transcriptomic	and	phenotypic	

distinctions	between	genospecies	might	also	be	evident	under	different	environments	

other	than	the	TY	media	conditions	used	extensively	in	this	project.	The	advantages	

of	growing	rhizobia	in	complex	TY	media	are	that:	1)	the	bacteria	will	be	in	a	

metabolically	active	free-living	physiology;	2)	it	avoids	complications	of	removing	

plant	material	from	samples	for	sequencing;	and	3)	it	is	easier	to	ensure	growth	

conditions	are	consistent	between	strains	for	a	more	confident	comparison	of	

phenotypes.	It	has	been	noted	that	using	growth	conditions	with	a	variety	of	

substrates	could	reduce	the	potential	of	niche	overlap	between	strains,	and	

encourage	transcriptional	diversity	through	utilisation	of	different	substrates	(Vital	et	

al.,	2015).	While	TY	media	may	not	simulate	natural	soil	conditions,	the	complex	

medium	was	chosen	to	encourage	a	more	active	transcriptomic	state	that	is	not	

limited	by	lack	of	nutrients.	Previous	cross-species	transcriptome	comparisons	have	

utilised	gene	expression	data	from	various	open	repositories	where	experiments	

differed	in	experimental	conditions	(Stuart	et	al.,	2003;	Carrasco,	Tan	and	Duman,	

2011;	Kristiansson	et	al.,	2013;	Hosseinkhan,	Mousavian	and	Masoudi-Nejad,	2018).	

However,	different	environmental	conditions	can	greatly	influence	transcriptome	

expression	(Vital	et	al.,	2015;	Jiao	et	al.,	2018).	Therefore,	the	conditions	strains	are	

grown	under	must	be	comparable	when	doing	cross-species	or	cross-strain	analyses,	

as	it	is	crucial	that	growth	conditions	are	consistent	in	order	to	evaluate	relevant	

expression	patterns.	As	the	phenotypic	diversity	of	strains	under	free-living	

physiology	were	evaluated	in	this	project,	future	research	could	use	the	same	multi-
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strain	approach	to	characterise	genospecies	transcriptomic	and	phenotypic	traits	

under	bacteroid	physiologies	to	observe	Rlt	diversity	of	additional	relevant	

phenotypes	such	as	nitrogen	fixing	abilities	or	bacteroid	metabolism.		

	

With	consideration	to	the	wider	perspective	of	understanding	species	phenotypic	

variation,	a	significant	challenge	for	cross-species	analyses	is	the	limited	

representation	of	variation	within	species,	particularly	for	transcriptome	studies	

where	direct	species	comparisons	have	commonly	used	only	one	or	two	isolates	to	

represent	a	species	(Scaria	et	al.,	2013;	Kimes	et	al.,	2014;	González-Torres	et	al.,	

2015;	Vital	et	al.,	2015).	The	multi-strain	experimental	design	used	in	this	study	

aimed	to	rectify	this	by	considering	the	likely	variation	observed	within	species	in	

order	to	identify	true	transcriptional	differences	between	genetically	distinct	groups	

of	strains.	For	example,	utilisation	of	this	approach	identified	that	Rlt	genospecies	

have	differentially	expressed	core	genomes	(Figure	4.1a-c).	Transcriptomes	have	

been	considered	a	molecular	phenotype	capable	of	identifying	initial	species	

divergence,	however	the	amount	to	which	gene	expression	corresponds	to	definitive	

bacterial	species	difference	is	still	disputed	(Pavey	et	al.,	2010;	Wolf	et	al.,	2010;	Vital	

et	al.,	2015;	Dunning	et	al.,	2016).	Polyphasic	taxonomy	predominantly	classes	strains	

into	species	groups	through	genetic	similarity	and	also	with	consideration	of	

expected	characteristic	phenotypes	of	the	species	(Vandamme	et	al.,	1996;	Young,	

2016).	However,	this	idea	does	not	necessarily	align	well	to	bacterial	species	where	

large	species	accessory	genomes	can	convey	a	multitude	of	diverse	phenotypes	

(Young,	2016).	The	high	genetic	diversity	within	bacteria	species	is	largely	accounted	

for	by	various	forms	of	introgression,	which	can	make	identification	of	definitive	

species	traits	challenging	(Tettelin	et	al.,	2005;	McInerney,	McNally	and	O’Connell,	

2017).	Subsequently,	it	has	been	suggested	that	bacterial	taxonomy	should	be	defined	

by	core	gene	relationships,	and	that	morphological	and	metabolic	phenotypic	

similarity	should	not	be	a	strict	requirement	of	species	classification	(Chan	et	al.,	

2012;	Kumar	et	al.,	2015).	Transcriptomic	data	provide	the	informative	link	between	

genomic	and	phenotypic	variation	and	could	confirm	the	genomic	influence	on	

phenotypic	and	regulatory	divergence	of	strains	while	also	identifying	species	

phenotypes	that	do	not	necessarily	result	in	a	physiological	trait.	For	example,	gene	

expression	profiles	have	been	able	to	emphasise	regulatory	differences	in	strain	

physiology	to	a	greater	extent	than	by	phylogenetic	differences	alone	(Vital	et	al.,	

2015).	From	observing	transcriptome	differences	between	Rlt	genospecies,	
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transcriptome	profiles	from	multiple	strains	could	be	used	to	identify	species-specific	

regulatory	expression	differences	and	transcriptional	phenotypes	in	combination	

with	genomic	and	phenotypic	data.		

	

7.4.  Genetic diversity and environmental origins of strains as determinants of 

Rlt interactions 

 

This	thesis	has	explored	how	Rlt	intraspecies	genetic	diversity	is	potentially	

influenced	by	plant-mediated	interactions	and	local	growth	conditions.	The	large	

genetic	diversity	of	Rlt	was	additionally	shown	to	result	in	significant	transcriptomic	

and	phenotypic	intraspecies	variation.	The	final	aim	was	to	investigate	how	this	

genetic	and	phenotypic	diversity	might	influence	intraspecific	interactions	between	

strains.	Variation	in	rhizobial	community	diversity	can	be	driven	by	intraspecific	

competition	between	strains	for	nodule	occupancy	(Denison	and	Kiers,	2004;	Kiers	

and	Denison,	2008;	Blanco,	Sicardi	and	Frioni,	2010;	Wielbo	et	al.,	2011;	Barrett	et	al.,	

2015),	or	interactions	with	other	microbial	species	in	the	soil	(Pugashetti,	Angle	and	

Wagner,	1982;	Villacieros	et	al.,	2003;	Hibbing	et	al.,	2010;	Teng	et	al.,	2015;	Lu	et	al.,	

2017).	For	example,	it	is	well	documented	that	commercial	rhizobia	inoculants	are	

commonly	unable	to	compete	with	the	diverse	native	soil	rhizobia	in	the	field	for	

nodule	occupancy	(Berg	et	al.,	1988;	Denton	et	al.,	2003;	Blanco,	Sicardi	and	Frioni,	

2010;	Batista	et	al.,	2015;	Checcucci	et	al.,	2017;	Irisarri	et	al.,	2019;	Tartaglia	et	al.,	

2019).	Understanding	the	diversity	of	strain	interactions	could	be	used	in	future	work	

to	indicate	potential	strain	compatibilities	or	conflicts	which	may	affect	the	

productivity	of	the	legume	symbiosis,	such	as	by	selecting	inoculant	strains	that	can	

compete	against	native	rhizobia	and	persist	in	the	soil	(Barrett	et	al.,	2015;	Pahua	et	

al.,	2018;	Liu	et	al.,	2019).	However,	it	is	unclear	to	what	extent	intraspecific	

competitive	interactions	differ	within	rhizobia	communities.	Therefore,	this	project	

investigated	the	intraspecific	indirect	exploitative	competition	and	direct	

interference	competition	between	Rlt	strains	to	see	if	pairwise	Rlt	interactions	could	

be	determined	based	on	the	genetic	properties	(genospecies)	and	environmental	

origin	(conventional	or	organic	farming)	of	strains.		

	

Significant	variation	was	observed	in	both	direct	and	indirect	competitive	ability	of	

Rlt	strains	at	the	level	of	individual	strains	and	between	genospecies	(Figure	6.1).	

Genospecies	were	hypothesised	to	interact	differently	because	they	are	genetically	
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distinct	(Cavassim	et	al.,	2020)	and	shown	to	differ	in	the	expression	of	core	genes	

which	was	associated	with	differences	in	growth	phenotypes	and	putative	metabolic	

differences	(Figure	4.3	and	Figure	4.4).	Direct	and	indirect	competitive	interactions	

associated	with	genospecies	differences	were	largely	driven	by	the	overall	inhibitory	

action	of	gsE	strains	towards	the	growth	of	gsA	strains,	however	ultimately	

competitive	ability	varied	within	genospecies	too	(Figure	6.2	and	Figure	6.4).	

Interactions	were	suggested	to	be	explained	by	resource	competition	between	

specialist	and	generalist	strains	through	investigation	of	Ecoplate	data	inferring	

metabolic	capabilities	of	strains	(Figure	6.7).	Genetically	similar	strains	did	not	

necessarily	display	more	competitive	interactions,	despite	previous	research	

suggesting	that	more	genetically	related	strains	will	display	stronger	resource	

competition	towards	one	another	(Russel	et	al.,	2017).	Genetic	differences	between	

strains	were	identified	that	were	suggested	to	potentially	increase	the	susceptibility	

of	strains	to	other	rhizobia	strains,	and	additionally	other	properties	were	also	

identified	that	could	enable	strains	to	outcompete	and	inhibit	other	rhizobia	strains.	

For	example,	secreted	compounds	were	suggested	to	influence	competitive	ability	in	

addition	to	resource	utilisation,	including	secretion	of	quorum	sensing	signalling	

molecules,	bacteriocins	and	secondary	metabolites	(Figure	6.8).	Comparative	

genomic	analysis	also	identified	large	variation	in	the	presence	of	inducer	and	

regulator	genes	for	other	downstream	quorum	sensing	pathways,	such	as	rhiI/rhiR,	

traI/traR	and	raiI/raiR,	similarly	to	previous	investigations	(Wisniewski-Dyé	and	

Downie,	2002).	This	could	have	contributed	to	the	large	variation	in	observed	

facilitative	and	inhibitory	interactions	across	strains.	Further	exploration	of	the	

presence	of	quorum	sensing	pathway	genes	identified	that	the	greater	susceptibility	

of	specific	gsA	strains	(SM144A,	SM154C,	SM145B)	to	direct	growth	inhibition	was	

likely	the	result	of	the	presence	of	quorum-sensing	traI,	traR	and	bisR	genes,	which	

mediate	strain	growth	via	increased	sensitivity	to	the	quorum-sensing	AHL,	3OH-

C14:1-HSL	(small	bacteriocin)	(Hwang	et	al.,	1994;	Wilkinson	et	al.,	2002;	Danino	et	al.,	

2003;	He	et	al.,	2003;	McAnulla	et	al.,	2007;	Lang	and	Faure,	2014).	The	potential	

variation	in	quorum	sensing	capabilities	between	genospecies	was	further	supported	

by	the	identification	of	differentially	expressed	quorum	sensing	associated	genes,	and	

the	enrichment	of	quorum	sensing	genes	contributing	to	the	distinction	of	

genospecies	core	genome	expression	profiles	(Figure	4.1).	Additionally,	a	search	of	

secondary	metabolite	biosynthesis	gene	clusters	in	strain	genomes	identified	that	all	

gsE	strains	contained	a	non-ribosomal	peptide	synthetase	(NRPS)	gene	cluster	for	
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Vicibactin	siderophore	production.	This	siderophore	could	have	increased	the	

competitive	ability	of	gsE	strains	to	repress	strain	growth	through	antimicrobial	

activity	and	increased	resource	competition	for	crucial	molecules	like	iron	(Geetha	

and	Joshi,	2013;	Wright	et	al.,	2013;	Kramer,	Özkaya	and	Kümmerli,	2019).		

	

Overall,	this	analysis	highlighted	that	Rlt	strains	display	a	wide	range	of	competitive	

abilities	at	the	genotype	level	with	the	potential	to	influence	the	growth	of	other	

strains	utilising	both	direct	and	indirect	mechanisms.	While	this	analysis	explored	

multiple	mechanisms	to	potentially	explain	the	patterns	of	Rlt	strain	interactions,	

they	were	by	no	means	extensive.	Therefore,	a	key	area	for	future	study	would	be	to	

conduct	additional	comparative	genomic	analyses	to	investigate	metabolic	pathway	

differences	between	strains,	which	could	aid	identification	of	mechanisms	by	which	

strains	differ	in	their	competitive	resource	utilisation.	Future	work	could	also	utilise	

mass	spectrometry	to	identify	molecular	differences	between	strain	supernatants	

which	could	prove	insightful	for	understanding	why	some	strain	supernatants	were	

particularly	inhibitory	or	facilitative	to	strain	growth.		

	

It	was	additionally	hypothesised	that	Rlt	intraspecies	interactions	may	differ	between	

strains	isolated	from	different	environmental	origins.	This	is	because	Rlt	strains	were	

shown	to	cluster	by	genospecies	based	on	gene	content	similarity,	but	also	cluster	by	

geographic	origin	as	an	underlying	substructure	within	genospecies	clustering	

(Cavassim	et	al.,	2020).	This	could	suggest	that	within	genospecies	strains	have	

adapted	to	different	environments	which	may	influence	their	competitive	ability.	

When	competitive	interactions	of	gsC	strains	originating	from	conventional	or	

organic	farm	managements	were	compared,	it	was	found	that	on	average	

environmental	origin	was	not	significantly	associated	with	either	direct	or	indirect	

competitive	interactions	(Figure	6.3	and	Figure	6.5).	Similarly,	growth	of	gsA	strains	

was	consistently	directly	and	indirectly	suppressed	by	gsE	strains	despite	all	strains	

being	originally	isolated	from	multiple	different	organic	farm	sites	across	Denmark,	

suggesting	that	this	competitive	ability	is	likely	to	have	adapted	on	a	larger	

geographic	scale	and	could	be	replicable	across	farm	managements.	However,	the	

reduced	influence	of	environmental	origin	is	contradicted	by	previous	studies	which	

have	suggested	that	differing	farming	practices	can	influence	rhizobial	population	

size,	diversity,	nodulation	and	fixation	ability	(Graham	and	Vance,	2000;	Schmidt,	

Weese	and	Lau,	2017).	Therefore,	the	influence	of	different	farming	treatments	on	the	
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competitive	ability	of	strains	may	only	manifest	under	larger	scale	rhizosphere	

communities	or	when	strains	are	introduced	into	foreign	agricultural	conditions.	For	

example,	gsC	strains	(OC	and	CC)	were	the	only	strain	to	contain	both	inducer	and	

regulator	orthologs	for	either	rhi	or	rai	quorum	sensing	pathways	which	may	infer	a	

currently	unknown	competitive	advantage	in	the	rhizosphere	(Gray	et	al.,	1996;	

Wisniewski-Dyé	and	Downie,	2002;	Sanchez-Contreras	et	al.,	2007).	As	all	strains	

used	in	the	competition	assays	were	originally	isolated	from	farm	sites	across	

Denmark,	it	would	also	be	interesting	for	future	research	to	investigate	whether	

observed	genospecies-associated	patterns	are	replicable	across	other	countries	and	

continents.		

	

While	the	intraspecific	competition	assays	are	unable	to	answer	how	intraspecies	

competition	affects	symbiotic	success,	they	do	highlight	the	wide	diversity	of	

interactions	between	Rlt	strains	and	the	potential	importance	of	considering	these	

interactions	when	optimising	symbiosis.	Specifically,	inhibitory	interactions	between	

rhizobia	could	have	a	detrimental	effect	on	symbiotic	efficiency	if	strains	with	strong	

nitrogen	fixing	abilities	are	subsequently	unable	to	form	symbiosis	with	the	plant	

host	(Kiers	and	Denison,	2008;	Blanco,	Sicardi	and	Frioni,	2010;	Barrett	et	al.,	2015;	

Pahua	et	al.,	2018).	Therefore,	it	is	crucial	that	the	influence	of	intraspecies	

interactions	are	considered	when	developing	agricultural	inoculants	to:	1)	avoid	

conflicting	interactions	between	co-inoculant	strains;	and	2)	circumvent	

incompatibility	with	indigenous	rhizosphere	communities	which	may	reduce	

inoculant	effectiveness	(Berg	et	al.,	1988;	Triplett	and	Sadowsky,	1992;	Blanco,	

Sicardi	and	Frioni,	2010).	From	these	competition	experiments,	it	could	be	suggested	

that	gsA	and	gsE	should	not	be	used	as	co-inoculants	together,	as	gsE	may	inhibit	gsA	

growth	in	the	inoculum	mixture.	Relatedly,	it	could	be	suggested	to	avoid	using	gsA	

inoculants	on	soils	where	gsE	is	highly	abundant,	due	to	the	possibility	that	gsA	

inoculants	would	not	be	able	to	outcompete	the	native	soil	rhizobia.	However,	despite	

the	highly	competitive	phenotype	displayed	by	Rlt	gsE	strains,	they	have	so	far	only	

been	identified	in	low	abundance	in	clover	nodules	compared	to	other	genospecies,	

although	they	show	higher	frequencies	in	Rlv	populations	from	pea	and	faba	bean	

nodules	(Kumar	et	al.,	2015;	Boivin	et	al.,	2020;	Cavassim	et	al.,	2020).	Therefore,	

these	interactions	are	unlikely	to	be	directly	applicable	to	the	field	environment	

where	strains	must	deal	with	additional	abiotic	stressors	and	higher	order	effects	of	

community	interactions	with	other	plant	hosts	and	soil	microbes	(Barrett	et	al.,	
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2015).	A	central	theory	would	be	to	investigate	whether	highly	competitive	rhizobia	

in	pairwise	competition	assays	were	also	more	likely	to	form	symbiosis	with	the	

plant,	and	recent	advancements	in	sequencing	technologies	able	to	differentiate	

individual	strains	in	plant	nodules	will	be	crucial	for	scaling-up	these	interactions	

into	multi-strain	communities	in	planta	(Fields	et	al.,	2019;	Mendoza-Suárez	et	al.,	

2020).	Future	research	also	aims	to	utilise	these	pairwise	interactions	as	a	basis	for	

investigating	how	variations	in	rhizobial	intraspecies	diversity	influence	clover	yield	

in	greenhouse	studies.		

	

7.5.  Final remarks 

 

It	is	well	established	that	significant	genetic	and	phenotypic	diversity	is	present	in	

populations	of	Rhizobium	leguminosarum	to	the	extent	that	a	species	complex	of	at	

least	five	genetically	distinct	genospecies	have	been	identified	and	which	display	

diverse	metabolic	phenotypes	that	are	not	genospecies-exclusive	(Kumar	et	al.,	2015;	

Boivin	et	al.,	2020;	Cavassim	et	al.,	2020).	Therefore,	the	relevance	of	this	vast	genetic	

diversity	of	Rlt	and	the	extent	of	its	influence	on	the	phenotypes	and	rhizosphere	

interactions	associated	with	symbiosis	have	remained	unclear.	In	this	thesis,	the	

extent	of	Rlt	intraspecies	diversity	was	investigated	at	the	genetic	and	phenotypic	

levels,	with	a	specific	focus	to	identify	functional	differences	between	Rhizobium	

leguminosarum	genospecies	which	might	have	indicated	towards	their	maintained	

genetic	distinction.	This	thesis	identified	that	extensive	genetic	diversity	can	manifest	

in	significant	transcriptional	and	phenotypic	variation	across	Rlt	strains,	and	at	the	

intraspecies	level	this	diversity	can	influence	symbiont-selectivity	by	different	clover	

hosts	and	also	the	competitive	interactions	among	strains.	The	novel	development	of	

the	MAUI-seq	high	throughput	amplicon	sequencing	approach	described	in	this	thesis	

has	the	potential	to	further	impact	future	intraspecies	investigation	by	providing	a	

comprehensive	chimera	and	erroneous	sequence	detection	pipeline	and	by	

expanding	the	use	of	multiple	amplicons	to	confidently	characterise	diversity	at	levels	

of	low	sequence	divergence.	This	method	is	also	applicable	to	the	wider	use	of	

intraspecies	studies	with	other	microbial	species	using	alternative	environmental	

samples	or	research	requiring	monitoring	of	multiple	species	within	one	sample.	

Multi-strain	transcriptomics,	operon	prediction,	and	phenotype	experiments	

reported	in	this	thesis	have	also	demonstrated	that	multiple	strains	can	be	used	to	

capture	an	improved	representation	of	the	level	of	intraspecies	diversity	and	
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phenotypic	variation	of	a	species.	These	experiments	add	weight	to	the	arguments	

that	the	use	of	characteristics	displayed	by	a	single	strain	is	not	an	adequate	

representation	of	species-specific	traits.	As	the	number	of	whole	genome	sequences	

and	development	of	high	throughput	phenotypic	assays	increases,	the	level	of	

observable	intraspecies	diversity	for	many	bacterial	species	will	also	continue	to	

expand.	While	large	scale	pair-wise	competition	assays	between	Rlt	strains	identified	

that	significant	variation	in	interactions	could	be	partially	associated	with	

genospecies	differences,	the	extent	to	which	these	trends	could	be	replicated	in	an	

agricultural	setting	remain	unclear.	The	research	in	this	thesis	clearly	illustrates	that	

there	are	still	no	exclusive	phenotypes	identified	from	genospecies	genetic	

divergence	based	on	the	representative	strains	used	in	this	project,	but	some	

genospecies	on	average	have	been	demonstrated	to	display	some	phenotypes	to	a	

greater	extent	compared	to	others.	However,	this	also	raises	the	question	of	whether	

there	remain	any	genospecies-exclusive	phenotypes,	and	what	has	influenced	and	

maintained	this	genetic	separation	of	genospecies	groups.	To	better	understand	the	

implications	of	these	results,	future	investigations	could	address	the	level	of	

phenotypic	variation	observed	between	Rlt	strains	and	genospecies	groups	under	

bacteroid	physiologies,	as	this	thesis	has	singularly	focused	on	diversity	of	strains	in	

free-living	physiologies.	Beyond	the	scope	of	the	findings	from	these	experiments,	

this	thesis	has	laid	the	groundwork	for	future	investigations	into	the	significance	of	

intraspecies	diversity	for	symbiotic	effectiveness	in	the	rhizobia-legume	symbiosis.	

The	significant	functional	diversity	of	Rlt	strains	will	likely	have	implications	not	only	

for	symbiosis	but	for	general	ecosystem	functioning	as	well.	Utilising	this	

understanding	of	intraspecies	diversity	to	implement	optimised	precision	farming	

techniques	will	support	the	progression	to	securing	more	sustainable	global	food	

security	for	future	generations	(Sessitsch	et	al.,	2002;	Lupwayi,	Clayton	and	Rice,	

2006;	Checcucci	et	al.,	2017).	
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Appendices  
 
Appendix A. Chapter 2 
 
Appendix Table A.1 Synthetic community mixes sample design. 

Sample
ID 

Strain Community 
percentage 

(%) 

Strain Community 
percentage 

(%) 

Amplified
with 

Platinum 

Amplified 
with 

Phusion 

A1 SM3 100 SM170C 0 1 0 
A2 SM170C 100 SM3 0 1 0 
B1 SM3 50 SM170C 50 1 1 
B2 SM3 50 SM170C 50 1 1 
B3 SM3 50 SM170C 50 1 0 
C1 SM3 66.6 SM170C 33.3 1 1 
C2 SM3 66.6 SM170C 33.3 1 1 
C3 SM3 66.6 SM170C 33.3 1 0 
D1 SM3 90 SM170C 10 1 1 
D2 SM3 90 SM170C 10 1 1 
D3 SM3 90 SM170C 10 1 0 
E1 SM3 99 SM170C 1 1 1 
E2 SM3 99 SM170C 1 1 1 
E3 SM3 99 SM170C 1 1 0 
F1 SM170C 66.6 SM3 33.3 1 1 
F2 SM170C 66.6 SM3 33.3 1 1 
F3 SM170C 66.6 SM3 33.3 1 0 
G1 SM170C 90 SM3 10 1 1 
G2 SM170C 90 SM3 10 1 1 
G3 SM170C 90 SM3 10 1 0 
H1 SM170C 99 SM3 1 1 1 
H2 SM170C 99 SM3 1 1 1 
H3 SM170C 99 SM3 1 1 0 
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Appendix Figure A.1 Sampling sites for assessment of Rhizobium leguminosarum symbiovar trifolii diversity in 
root nodule samples. Sampling locations in the Aarhus University Science Park and a clover trial station in Store 
Heddinge. DNA was isolated from 100 nodules from four points (black dots) on each individual plot. 
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Appendix Figure A.2 Performance on DNA mixtures for rpoB. A and D) MAUI-seq. A) Observed proportion 
of SM170C rpoB reads versus the expected proportion. Pearson correlation for Phusion=0.996 and 
Platinum=0.956. D) Proportion of chimeras compared to total reads. B and E) DADA2. B) Observed 
proportion of SM170C rpoB reads versus the expected proportion. Pearson correlation for Phusion=0.999 
and Platinum=0.977. E) Proportion of chimeras compared to total counts. C and F) UNOISE3. C) Observed 
proportion of SM170C rpoB reads versus the expected proportion. Pearson correlation for Phusion=0.9998 
and Platinum=0.981. F) Proportion of chimeras compared to total counts. 
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Appendix Figure A.3 Performance on DNA mixtures for recA. A and D) MAUI-seq. A) Observed 
proportion of SM170C recA reads versus the expected proportion. Pearson correlation for 
Phusion=0.948 and Platinum=0.984. D) Proportion of chimeras compared to total reads. B and E) 
DADA2. B) Observed proportion of SM170C recA reads versus the expected proportion. Pearson 
correlation for Phusion=0.952 and Platinum=0.991. E) Proportion of chimeras compared to total counts. 
C and F) UNOISE3. C) Observed proportion of SM170C recA reads versus the expected proportion. 
Pearson correlation for Phusion=0.947 and Platinum=0.989. F) Proportion of chimeras compared to total 
counts. 
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Appendix Figure A.4 Performance on DNA mixtures for nodA. A and D) MAUI-seq. A) Observed 
proportion of SM170C nodA reads versus the expected proportion. Pearson correlation for 
Phusion=0.989 and Platinum=0.985. D: Proportion of chimeras compared to total reads. B and E) 
DADA2. B) Observed proportion of SM170C nodA reads versus the expected proportion. Pearson 
correlation for Phusion=0.999 and Platinum=0.998. E) Proportion of chimeras compared to total counts. 
C and F) UNOISE3. C) Observed proportion of SM170C nodA reads versus the expected proportion. 
Pearson correlation for Phusion=0.999 and Platinum=0.999. F) Proportion of chimeras compared to total 
counts. 
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Appendix Figure A.5 Performance on DNA mixtures for nodD. A and D) MAUI-seq. A) Observed 
proportion of SM170C nodD reads versus the expected proportion. Pearson correlation for 
Phusion=0.990 and Platinum=0.998. D) Proportion of chimeras compared to total reads. B and E) 
DADA2. B) Observed proportion of SM170C nodD reads versus the expected proportion. Pearson 
correlation for Phusion=0.998 and Platinum=0.998. E) Proportion of chimeras compared to total counts. 
C and F) UNOISE3. C) Observed proportion of SM170C nodD reads versus the expected proportion. 
Pearson correlation for Phusion=0.995 and Platinum=0.995. F) Proportion of chimeras compared to total 
counts. 
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Appendix Figure A.6 Individual Principal Components Analysis of four Rhizobium leguminosarum symbiovar 
trifolii genes clustered by MAUI-seq. DNA was isolated from 100 nodules from four points on each individual 
plot. A) rpoB, B) recA, C) nodA and D) nodD. 
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Appendix Figure A.7 Individual Principal Components Analysis of four Rhizobium leguminosarum symbiovar 
trifolii genes clustered by DADA2. DNA was isolated from 100 nodules from four points on each individual plot. 
A) rpoB, B) recA, C) nodA and D) nodD. 
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Appendix Figure A.8 Individual Principal Components Analysis of four Rhizobium leguminosarum symbiovar 
trifolii genes clustered by UNOISE3. DNA was isolated from 100 nodules from four points on each individual 
plot. A) rpoB, B) recA, C) nodA and D) nodD.  
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Appendix Figure A.9 FST calculated between samples for individual genes on reads clustered by MAUI-seq. A) 
rpoB, B) recA, C) nodA, and D) nodD. 
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Appendix Figure A.10 FST calculated between samples for individual genes on reads clustered by DADA2. A) 
rpoB, B) recA, C) nodA, and D) nodD. 
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Appendix Figure A.11 FST calculated between samples for individual genes on reads clustered by UNOISE3. A) 
rpoB, B) recA, C) nodA, and D) nodD. 
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Appendix B. Chapter 3 
 
Appendix Table B.1 Number of unique allele sequences identified with MAUI-seq UMI clustering method 
for Rlt genes rpoB, recA, nodA and nodD across all 39 field samples. Global Fixation Index (FST) values for 
each gene individually and in combination was calculated. Global FST values were calculated using the 
FinePop package in R.  

gene Total number of 
detected unique 
sequences 

Global FST 

rpoB 16 0.06738746 

recA 8 0.09951743 

nodA 23 0.1093755 

nodD 21 0.07441329 

all genes 68 0.08355223 

 
 
Appendix Table B.2 PERMANOVA results for individual allele abundances for all four Rlt genes combined. 
Pairwise allelic (Bray-Curtis) dissimilarity data was used as input into the analysis. Permutation: Free. 
Number of Permutations: 999. 

 
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

Clover genotype 4 0.93701 0.234254 3.7036 0.37429 0.001 

Plot 5 0.30141 0.060283 0.9531 0.1204 0.517 

Residuals 20 1.26501 0.06325 
 

0.50531 
 

Total 29 2.50343 
  

1 
 

 
 
Appendix Table B.3 PERMANOVA results for individual allele abundances for rpoB Rlt genes combined. 
Pairwise allelic (Bray-Curtis) dissimilarity data was used as input into the analysis. Permutation: Free. 
Number of Permutations: 999. 

 
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

Clover genotype 4 1.30291 0.32573 5.375 0.46206 0.001 

Plot 5 0.30483 0.06097 1.006 0.10811 0.43 

Residuals 20 1.21201 0.0606 
 

0.42983 
 

Total 29 2.81975 
  

1 
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Appendix Table B.4 PERMANOVA results for individual allele abundances for recA Rlt genes combined. 
Pairwise allelic (Bray-Curtis) dissimilarity data was used as input into the analysis. Permutation: Free. 
Number of Permutations: 999. 

 
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

Clover genotype 4 0.70817 0.177043 5.2474 0.47824 0.006 

Plot 5 0.09784 0.019568 0.58 0.06607 0.756 

Residuals 20 0.67478 0.033739 
 

0.45569 
 

Total 29 1.48079 
  

1 
 

 
 
Appendix Table B.5 PERMANOVA results for individual allele abundances for nodA Rlt genes combined. 
Pairwise allelic (Bray-Curtis) dissimilarity data was used as input into the analysis. Permutation: Free. 
Number of Permutations: 999. 

 
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

Clover genotype 4 0.79647 0.199118 2.12257 0.25796 0.022 

Plot 5 0.4149 0.082979 0.88455 0.13438 0.56 

Residuals 20 1.8762 0.09381 
 

0.60766 
 

Total 29 3.08756 
  

1 
 

 
 
Appendix Table B.6 PERMANOVA results for individual allele abundances for nodD Rlt genes combined. 
Pairwise allelic (Bray-Curtis) dissimilarity data was used as input into the analysis. Permutation: Free. 
Number of Permutations: 999. 

 
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

Clover genotype 4 1.1594 0.28986 2.678 0.29114 0.012 

Plot 5 0.6582 0.13164 1.2162 0.16527 0.295 

Residuals 20 2.1648 0.10824 
 

0.54359 
 

Total 29 3.9824 
  

1 
 

 
 
Appendix Table B.7 Two-way ANOVA results for clover genotype association with differences in recA 
genospecies relative nodule abundance. 

 
Df SumsOfSqs MeanSqs F value Pr(>F) 

Clover genotype 4 0 0 0 1 

Genospecies 5 15.821 3.164 365.597 0.001 

Clover genotype:Genospecies 20 1.237 0.062 7.144 0.001 

Residuals 150 1.298 0.009 
  

 
 
Appendix Table B.8 Two-way ANOVA results for clover genotype association with differences in rpoB 
genospecies relative nodule abundance. 

 
Df SumsOfSqs MeanSqs F value  Pr(>F) 

Clover genotype 4 0 0 0 1 

Genospecies 5 10.479 2.0957 210.43 0.001 

Clover genotype:Genospecies 20 2.042 0.1021 10.25 0.001 

Residuals 150 1.494 0.01 
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Appendix Table B.9 Linear mixed effects models for rpoB, recA, nodA and nodD. Model formula: allelic dissimilarity ~ geographicdistance + genotypedifference + (1|sample1_genotypeID) 
+ (1|sample2_genotypeID). 1sample1_genotypeID causes a singular fit but was still included in the model because it did not affect estimate quantities (see methods). 

M
od

el
 

AI
C 

BI
C 

Effect Variable Variance Std. Dev Estimate Std. Error df t value p-value 

rp
oB

 

-3
97

.3
 

-3
72

.9
 random sample1_genotypeID (Intercept) 0.001119  0.03345 / / / / / 

random sample2_genotypeID (Intercept) 0.008612  0.09280 / / / / / 
random residual 0.021630  0.14707 / / / / / 
fixed intercept / / 0.327651    0.047662    7.891664    6.875 0.000136  
fixed geographicdistance / / 0.003264    0.001128 431.720717    2.894 0.003997  
fixed genotypedifference_1 / / -0.059448    0.020038 291.731632   -2.967 0.003259  

re
cA

 

-2
33

.2
 

-2
08

.8
 random sample1_genotypeID (Intercept) 0.0008145  0.02854 / / / / / 

random sample2_genotypeID (Intercept) 0.0140704  0.11862 / / / / / 
random residual 0.0316484  0.17790 / / / / / 
fixed intercept / / 0.138631    0.058538    7.017869    2.368    0.0496 
fixed geographicdistance / / 0.002929    0.001358 422.511258    2.157    0.0316 
fixed genotypedifference_1 / / -0.013370    0.023754 286.884128   -0.563    0.5740 

no
dA

 

-1
84

.4
 

-1
59

.9
 random sample1_genotypeID (Intercept) 0.0001536  0.01239 / / / / / 

random sample2_genotypeID (Intercept) 0.0031531  0.05615 / / / / / 
random residual 0.0362925  0.19051 / / / / / 
fixed intercept / / 0.4709   0.03352   0.1145   14.046 1.44x10-8 
fixed geographicdistance / / 0.0004928 0.001425   0.03609    0.346    0.7297 
fixed genotypedifference_1 / / -0.04404   0.02470   0.03682   -1.783    0.0754 

no
dD

1  

-3
16

.3
 

-2
91

.9
 random sample1_genotypeID (Intercept) 2.737x 10-12  1.654x10-6 / / / / / 

random sample2_genotypeID (Intercept) 0.002871  0.05358 / / / / / 
random residual 0.02682 0.1638 / / / / / 
fixed intercept / / 0.4155   0.03004   0.1041   13.831 4.94x10-8 
fixed geographicdistance / / -0.0004326   0.001213   0.04347   -0.357     0.721 
fixed genotypedifference_1 / / -0.01459   0.02107   0.04320   -0.692     0.489 
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Appendix Figure B.1 Explanation example of allelic (Bray-Curtis) dissimilarity heatmaps. a) Samples with 
Rlt diversity that is more genetically similar within clover genotypes than between, b) Samples with Rlt 
diversity that is not associated to clover genotype differences. Bray-Curtis dissimilarity is shown on a scale 
ranging from low (red) to high (white) allelic dissimilarity. 
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Appendix Figure B.2 Pairwise allelic (Bray-Curtis) dissimilarity of 4 Rlt genes. The four genes analysed 
individually were housekeeping genes rpoB and recA, and symbiosis genes nodA and nodD. Samples are 
coloured by the clover genotype host they were isolated from. Bray-Curtis dissimilarity is shown on a scale 
ranging from low (red) to high (white) allelic dissimilarity. Each clover genotype was sampled from 2 plots 
and 3 points were sampled within each plot. Samples are grouped and coloured by their respective clover 
genotype host. 
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Appendix Figure B.3 Non-metric Multidimensional Scaling analysis of recA allelic dissimilarity with Klondike 
samples included. Two dimensions were specified for the analysis. Samples are grouped by their field plot 
and coloured by the clover genotype they were isolated from. 
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Appendix Figure B.4 Non-metric multidimensional scaling (NMDS) with intrinsic sequence vector 
variables fitted to NMDS coordinates. Allele sequences are numbered from greatest total abundant in the 
dataset to smallest, and therefore seq_1 in each analysis corresponds to the sequence with the greatest 
total abundance across all samples. Sequences with a fit p < 0.05 are displayed. Length of arrows and 
direction corresponds to scaled correlation coefficient (strong predictors have longer arrows) of fitted 
vectors and direction of vector correlation with NMDS coordinates. 
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Appendix Figure B.5 Principal Components Analysis (PCA) of relative allele abundance of Rlt genes rpoB, 
recA, nodD, nodA from nodule samples; and all genes in combination (all genes). Additionally, all Klondike 
samples from 3 plots were analysed by PCA using relative abundance of all 4 genes in combination. 
Samples are grouped by their respective plot (n = 3, 2 plots per clover genotype) and coloured by their 
clover genotype host. 
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Appendix Figure B.6 Pairwise Fixation index (FST) of 4 Rlt genes; rpoB, recA, nodA and nodD, and all genes 
in combination across samples from Block 1. Additionally, FST was calculated for all pairwise Klondike 
samples from three plots using all 4 genes in combination. FST is shown on a scale ranging from similar 
(red) to different (white) allelic diversity score. Samples are grouped and coloured by their clover 
genotype host.  
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Appendix Figure B.7 Euclidean geographic distance correlated to allelic (Bray-Curtis) dissimilarity. 
Relative abundance UMI sequence counts for nodA and nodD were considered individually, and all four 
genes were considered in combination (rpoB, recA, nodA and nodD). Correlation was calculated using 
Mantel’s R statistic. All samples from Block 1 were used for pairwise comparisons. 
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Appendix C. Chapter 4 
 
Appendix Table C.1 Rlt strain metadata. Strain names are provided, along with genospecies classification, 
phylogenetic branch grouping, strain country and farm management origin and experiment sequencing 
batch. DKO = Denmark organic management, DKC = Denmark conventional management, FRC = French 
conventional management, UKC = United Kingdom conventional management. C* = genospecies C strains in 
experimental batch 2 were treated as their own individual group. gsC* strains SM158 and SM170C in batch 
2 were in duplicate (rep1, rep2). 

Strain Genospecies Phylogenetic 
branch 

Origin Sequencing 
Batch 

SM128A A A1 DKO 1 

SM140A A A2 DKO 1 

SM151A A A1 DKO 1 

SM152B A A3 DKO 1 

SM154C A A3 DKO 1 

SM155A A A2 DKO 1 

SM12 B B3 UKC 1 

SM15 B B1 UKC 1 

SM3 B B2 UKC 1 

SM38 B B1 UKC 1 

SM7 B B2 UKC 1 

SM122A C C7 DKO 1 

SM157B C C7 DKO 1 

SM158 C C7 DKO 1 

SM170C C C6 DKO 1 

SM41 C C1 DKC 1 

SM53 C C1 DKC 1 

SM74 C C1 DKC 1 

SM101 C* C5 FRC 2 

SM105 C* C3 FRC 2 

SM107 C* C6 FRC 2 

SM111 C* C6 FRC 2 

SM112 C* C3 FRC 2 

SM113 C* C9 FRC 2 

SM114 C* C9 FRC 2 

SM115 C* C9 FRC 2 

SM116 C* C9 FRC 2 

SM118 C* C1 FRC 2 

SM119 C* C3 FRC 2 

SM121A C* C6 DKO 2 

SM122A C* C7 DKO 2 

SM125 C* C1 DKO 2 

SM126B C* C7 DKO 2 

SM127 C* C1 DKO 2 

SM132 C* C10 DKO 2 

SM134A C* C7 DKO 2 
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SM143 C* C4 DKO 2 

SM147A C* C8 DKO 2 

SM148A C* C7 DKO 2 

SM148B C* C7 DKO 2 

SM149B C* C7 DKO 2 

SM149C C* C7 DKO 2 

SM151C C* C8 DKO 2 

SM153A C* C7 DKO 2 

SM153C C* C7 DKO 2 

SM153D C* C7 DKO 2 

SM157B C* C7 DKO 2 

SM158 rep1 C* C7 DKO 2 

SM158 rep2 C* C7 DKO 2 

SM164A C* C4 DKO 2 

SM165A C* C7 DKO 2 

SM166A C* C8 DKO 2 

SM168C C* C8 DKO 2 

SM170A C* C6 DKO 2 

SM170C rep1 C* C6 DKO 2 

SM170C rep2 C* C6 DKO 2 

SM41 C* C1 DKC 2 

SM42 C* C1 DKC 2 

SM43 C* C1 DKC 2 

SM44 C* C1 DKC 2 

SM46 C* C1 DKC 2 

SM48 C* C6 DKC 2 

SM50 C* C1 DKC 2 

SM53 C* C1 DKC 2 

SM54 C* C1 DKC 2 

SM55 C* C1 DKC 2 

SM59 C* C1 DKC 2 

SM66 C* C1 DKC 2 

SM70 C* C1 DKC 2 

SM71 C* C1 DKC 2 

SM80 C* C1 DKC 2 

SM88 C* C3 FRC 2 

SM89 C* C6 FRC 2 

SM90 C* C9 FRC 2 

SM91 C* C9 FRC 2 

SM94 C* C9 FRC 2 

SM95 C* C3 FRC 2 

SM96 C* C9 FRC 2 

SM97 C* C9 FRC 2 

SM164B D D1 DKO 1 
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SM51 D D1 DKC 1 

SM72 D D2 DKC 1 

SM78 D D2 DKC 1 

SM79 D D1 DKC 1 

SM126A E E2 DKO 1 

SM135B E E3 DKO 1 

SM168A E E2 DKO 1 

 
 
Appendix Table C.2 Number of genes contributing more than they would on average (if all genes 
contributed equally) to Principal Component Analysis (PCA) PCs. If all genes contributed equally to a PC, 
they would each contribute 0.0236% to a PC. PCs were generated based on PoissonSeq normalised Log2 
transformed read counts for 4,229 core genes. 

 Between genospecies PCA Within gsC PCA 

4,229 core 
gene PCA 
Principal 

component 

Number of genes 
contributing more than 

average (average 
contribution would be 

0.0236%) 

Number of 
genes 

contributing 
more than 

average with a 
metacyc ID 

Number of genes 
contributing more 

than average (average 
contribution would be 

0.0236%) 

Number of 
genes 

contributing 
more than 

average with a 
metacyc ID 

PC1 1043 484 842 375 
PC2 1092 498 1104 470 
PC3 1064 496 1121 535 
PC4 902 399 923 440 
PC5 1068 505 1006 484 
PC6 1008 475 770 358 

 
 
Appendix Table C.3 Pearson’s correlation coefficient (R) between WGCNA Rlt core gene module and 
Tryptone Yeast (TY) broth growth condition correlations that remain significant after Benjamini-Hochberg 
correction (adjusted p-value). R correlations and adjusted p-values are shown in Figure 4.3. 

Module TY broth growth condition R p-value adjusted p-value 

Module 24 12.5% TY 28°C 0.628 0.000596 0.03008639 
Module 43 100% TY pH6 0.639 0.000441 0.02503724 

Module 43 100% TY 28°C 0.602 0.00113 0.03930164 

Module 43 25% TY 28°C 0.671 0.000176 0.01371122 

Module 16 100% TY pH5 0.719 0.0000346 0.00539527 

Module 16 100% TY pH6 0.664 0.000218 0.01509472 

Module 16 100% TY 28°C 0.727 0.0000255 0.00531337 

Module 16 12.5% TY 28°C 0.611 0.000914 0.03356538 

Module 16 100% TY 15 °C 0.614 0.000855 0.03335323 

Module 16 100% TY 20°C 0.777 0.00000305 0.00095036 

Module 16 25% TY 28°C 0.672 0.000171 0.01371122 

Module 9 100% TY pH5 -0.687 0.000107 0.01338136 

Module 9 100% TY pH6 -0.657 0.000265 0.01654357 

Module 9 100% TY 28°C -0.617 0.000796 0.03309899 
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Module 9 100% TY 20°C -0.789 0.00000167 0.00095036 

Module 9 25% TY 28°C -0.587 0.00162 0.0480863 

Module 8 25% TY 28°C 0.625 0.000639 0.03008639 

Module 10 6.25% TY 28°C -0.596 0.00132 0.04106391 

Module 20 100% TY pH6 -0.583 0.00178 0.0488946 

Module 20 100% TY 20°C -0.623 0.000675 0.03008639 

Module 20 25% TY 28°C -0.673 0.000166 0.01371122 

Module 28 6.25% TY 28°C -0.582 0.00180 0.0488946 

Module 1 100% TY 20°C -0.597 0.00129 0.04106391 

 
 
Appendix Table C.4 Two-way ANOVA for genospecies eigengene value differences for different modules.  

 
Df Sum Sq Mean Sq F value P-value 

genospecies 4 0.201 0.05016 2.089 0.0802 

module 47 0 0 0 1 

genospecies*module 188 23.602 0.12554 5.23 <2e-16 

Residuals 1008 24.197 0.02401 
  

 
 
Appendix Table C.5 TukeyHSD post hoc for genospecies eigengene value differences for different modules.  

Module Genospecies 
comparison 

diff lwr upr p adj 

3 D - B 0.49323784 0.03391945 0.95255622 0.01138355 

8 C - B -0.485699 -0.9109452 -0.0604528 0.00244247 

8 D - B -0.4776748 -0.9369932 -0.0183564 0.02303441 

9 C – B 0.43835275 0.01310656 0.86359894 0.02765643 

9 D – C -0.4300967 -0.8553429 -0.0048505 0.04033378 

11 D - B -0.5039173 -0.9632357 -0.0445989 0.00685657 

15 C - A 0.47219861 0.06815257 0.87624466 0.00129313 

16 C – A -0.4406899 -0.8447359 -0.0366438 0.00789866 

16 C - B -0.4458662 -0.8711124 -0.02062 0.0193678 

20 C – B 0.5023904 0.07714421 0.92763659 0.00094602 

23 D – B -0.5015916 -0.9609099 -0.0422732 0.00766878 

27 B – A 0.45271656 0.01295269 0.89248043 0.02841528 

27 C – A 0.40498416 0.00093811 0.8090302 0.04786713 

33 D – A -0.5293631 -0.969127 -0.0895992 0.000541 

40 B - A -0.4761462 -0.9159101 -0.0363823 0.00939912 

no module group E - A 0.54254786 0.0290143 1.05608142 0.01641593 

no module group E - D 0.55155966 0.02118447 1.08193484 0.02304465 
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Appendix Table C.6 Dunn’s post hoc for Module 16 mean expression difference between genospecies. P-
value correction using Benjamini-Hochberg. 

Genospecies 
Comparison 

Z Unadjusted p Adjusted p 

A - B 6.32E-02 9.50E-01 0.94960567 

A - C 3.52E+00 4.33E-04 0.00216518 

B - C 3.28E+00 1.04E-03 0.00391648 

A - C* 4.29E+00 1.80E-05 0.00026972 

B - C* 3.86E+00 1.12E-04 0.00084276 

C - C* -3.08E-01 7.58E-01 1 

A - D 5.34E-01 5.93E-01 0.98896279 

B - D 4.51E-01 6.52E-01 0.97830351 

C - D -2.7914693 5.25E-03 0.01311733 

C* - D -3.2494306 1.16E-03 0.00346909 

A - E 0.27061471 7.87E-01 0.98335922 

B - E 0.20961726 8.34E-01 0.96226894 

C - E -2.55988 1.05E-02 0.01963281 

C* - E -2.7791773 5.45E-03 0.01167788 

D - E -0.1807045 8.57E-01 0.91778518 

 
 
Appendix Table C.7 Dunn’s post hoc for Module 9 mean expression difference between genospecies. P-
value correction using Benjamini-Hochberg. 

Genospecies 
Comparison 

Z Unadjusted p  Adjusted p 

A - B 4.55E-01 0.64875666 0.81094583 

A - C -3.55E+00 0.00039084 0.00117251 

B - C -3.84E+00 0.00012281 0.00184218 

A - C* -3.48E+00 0.00050223 0.00125558 

B - C* -3.79E+00 0.00014867 0.00111502 

C - C* 1.21E+00 0.22502589 0.37504315 

A - D 4.03E-01 0.6868121 0.7924755 

B - D -5.01E-02 0.96005999 0.96005999 

C - D 3.79E+00 0.00015287 0.00076437 

C* - D 3.73E+00 0.00019516 0.00073187 

A - E -3.45E-01 0.72989362 0.78202888 

B - E -7.12E-01 0.47647973 0.71471959 

C - E 2.51E+00 0.01223683 0.02622178 

C* - E 2.10E+00 0.03532659 0.06623736 

D - E -6.69E-01 0.50374636 0.68692685 
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Appendix Table C.8 Linear mixed effects model for gene expression level of core and accessory genes. Expression levels were log transformed and PoissonSeq normalised read counts. 
Ortholog gene group ID and strain ID were classed as random effects. Model formula: expression_level ~ gene_type + (1|geneID) + (1|strainID).  

AI
C  

BI
C 

Effect Variable Variance Std. Dev Estimate Std. Error df t value p-value 

16
38

34
9.

3  

16
38

40
6.

1 

random geneID (Intercept) 4.83723   2.1994 / / / / / 
random strainID (Intercept) 0.05617   0.2370 / / / / / 
random Residual 0.66190   0.8136 / / / / / 
fixed Intercept / / 5.986   0.03098 0.01914   193.19    <0.0001 
fixed genetypeCore / / 2.482   0.03821 0.0001905    64.97    <0.0001 
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Appendix Table C.9 Dunn’s post hoc test for accessory genome size differences between genospecies. P-
value correction using Benjamini-Hochberg. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Genospecies 
Comparison 

Z Unadjusted p Adjusted p 

A – B  -2.6690262 7.61E-03 0.01901788 

A – C  -4.1982506 2.69E-05 0.00020174 

B – C  -1.2288065 2.19E-01 0.29883325 

A – C* -4.2554381 2.09E-05 0.00031296 

B – C* -0.439691 6.60E-01 0.70731531 

C – C* 1.2904744 1.97E-01 0.29532899 

A – D  -0.8511676 3.95E-01 0.49334533 

B – D  1.7404671 8.18E-02 0.15333194 

C – D  3.1087258 1.88E-03 0.0093948 

C* - D  2.8060125 5.02E-03 0.01504762 

A – E  -0.5459723 5.85E-01 0.67509803 

B – E  1.6844042 9.21E-02 0.15350598 

C – E  2.8252827 4.72E-03 0.0177146 

C* - E  2.4259495 1.53E-02 0.03271799 

D – E  0.1771155 8.59E-01 0.8594177 
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Appendix Figure C.1 Optimisation of raw gene expression count normalisation methods. DESeq2, TMM and PoissonSeq were tested. Total raw core gene counts for each 
sample correlated to eigengene values calculated using normalised DESeq2/TMM/PoissonSeq normalised, log transformed counts. The final column shows eigengene 
values calculated using PoissonSeq normalised counts once 4 identified outliers are removed. 3 subsets of 400 random core genes were selected to represent the 
normalisation across the 4,229 core gene expression data. Eigengenes for each subset were calculated for each strain. Eigengenes were calculated using the expression 
data normalised by one of the three methods, and then log transformed. Strains are coloured by their genospecies. The dataset contained two sample batches. The first 
batch has the following number of samples; gsA = 6, gsB = 5, gsC = 7, gsD = 5, gsE = 3. The second batch contains the following number of samples; gsC* = 59 + 2 biological 
duplicates. 
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Appendix Figure C.2 Optimisation of raw gene expression count normalisation methods. DESeq2, TMM and PoissonSeq were tested. Total normalised core gene counts for 
each sample correlated to eigengene values calculated using normalised DESeq2/TMM/PoissonSeq normalised, log transformed counts. The final column shows eigengene 
values calculated using PoissonSeq normalised counts once 4 identified outliers are removed. 3 subsets of 400 random core genes were selected to assess the 
normalisation across the 4229 core gene expression data. Eigengenes for each subset were calculated for each strain. Eigengenes were calculated using the expression data 
that was normalised using one of the three methods, and then log transformed. Strains are coloured by their genospecies. The dataset contained two sample batches. The 
first batch has the following number of samples; gsA = 6, gsB = 5, gsC = 7, gsD = 5, gsE = 3. The second batch contains the following number of samples; gsC* = 59 + 2 
biological duplicates. 
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Appendix Figure C.3 Evaluation of PoissonSeq normalisation after sample removal. Total raw core gene counts for each sample correlated to eigengene values calculated 
using PoissonSeq normalised, log transformed counts. PoissonSeq normalisation was further tested to evaluate how removal of gsC samples and 2-4 outliers affected 
normalisation and therefore distribution of samples from the first dataset containing multiple genospecies samples. 3 subsets of 400 random core genes were selected to 
assess the normalisation across the 4229 core gene expression data. Eigengenes for each subset were calculated for each strain. Eigengenes were calculated using the 
expression data that was PoissonSeq normalised after the second batch of gsC samples were removed, no outliers were removed (control) and 2-4 outliers were removed. 
Strains are coloured by their genospecies. The dataset contained two sample batches. The first batch has the following number of samples; gsA = 6, gsB = 5, gsC = 7, gsD = 
5, gsE = 3. The second batch contains the following number of samples; gsC* = 59 + 2 biological duplicates. 
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Appendix Figure C.4 Evaluation of PoissonSeq normalisation after sample removal. Total normalised core gene counts for each sample correlated to eigengene values 
calculated using PoissonSeq normalised, log transformed counts. PoissonSeq normalisation was further tested to evaluate how removal of gsC samples and 2-4 outliers 
affected normalisation and therefore distribution of samples from the first dataset containing multiple genospecies samples. Eigengenes were calculated using the 
expression data that was PoissonSeq normalised after the second batch of gsC samples were removed, no outliers were removed (control) and 2-4 outliers were removed. 
3 subsets of 400 random core genes were selected to assess the normalisation across the 4229 core gene expression data. Eigengenes for each subset were calculated for 
each strain. Strains are coloured by their genospecies. The dataset contained two sample batches. The first batch has the following number of samples; gsA = 6, gsB = 5, gsC 
= 7, gsD = 5, gsE = 3. The second batch contains the following number of samples; gsC = 59 + 2 biological duplicate. 
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Appendix Figure C.5 Correlation of PoissonSeq normalised log transformed core gene counts for 
biological replicates of Rlt strains a) SM158 (gsC) and b) SM170C (gsC). c) Correlation of pairwise average 
nucleotide identity (ANI) values generated from 282 core genes from all 196 NCHAIN strains and 6529 
genes present in at least 100 out of 196 NCHAIN strains. d) The number of shared orthologous genes 
between pairwise strain comparisons correlated to number of differentially expressed genes between 
pairwise strain comparisons. Genes were identified as differentially expressed if they had a GFOLD 
change of more than ±2. (Continued on following page).  
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Appendix Figure C.5 continued. e) Correlating average nucleotide identity (ANI) based on 6,529 genes against z-
scores for the Euclidean distance of number of shared orthologous gene groups (genes shared between strains) 
and z-scores for Euclidean distance of gene expression distance. Expression distance was calculated using only 
genes that were identified with a GFOLD > ±2 in at least one pairwise comparison. Red line displays the rolling 
average (n=100) for DEGs number. Blue line displays the rolling average (n=100) for number of shared 
orthologous gene groups. Red and dark blue dots highlight the strain comparisons which are biological 
replicates for number of core DEGs and number of shared orthologous gene groups, respectively. f) The number 
of Rlt NCHAIN genomes containing gene (196 maximum) correlated to median PoissonSeq normalised log 
transformed expression counts for gene in 85 strain samples. Pearson’s Correlation Coefficient: R = 0.415, p < 
0.0001. 
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Appendix Figure C.6 WGCNA module and meta-module detection. a) Soft threshold power optimisation using 
scale independence and mean connectivity. b) WGCNA module detection using gene connectivity cluster 
dendrogram and height dendrogram tree cutting threshold. Clustering dendrogram. c) Meta-module detection 
using module eigengene clustering by correlation. 
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Appendix Figure C.7 Growth (OD600) 26 Rlt strains in 200µl 100% Tryptone Yeast (TY) broth at 28°C after 
48 hours correlated to growth (OD600) of strains when grown for transcriptome analysis at the point of 
RNA stabilisation (48 hours). For transcriptome analysis, strains were grown in 5ml 100% TY broth + 1µM 
7,4’-dihydroxyflavone (clover flavonoid stock concentration solubilised in DMSO) for 48 hours, 28°C, 180 
rpm. Pearson’s Correlation Coefficient: R = 0.55, p-value < 0.01. 
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Appendix Figure C.8 PCA of 4,229 core genes expression for 26 Rlt strains displaying a) principal components 3 
and 4 and b) principal components 5 and 6. c) Core gene expression average linkage hierarchical clustering 
based on Euclidean distances calculated from Log2(n+1) transformed normalised core gene expression values 
for all 85 Rlt samples. Additionally, PCA analysis of 4,229 core genes expression for 59 gsC strains (plus 2 
strains in duplicate) displaying d) principal components 3 and 4 and e) principal components 5 and 6. Strains 
are coloured by their genospecies grouping in a), b) and c) and by their gsC phylogenetic subbranch for d) to 
e). 
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Appendix Figure C.9 Scaled, normalised Log2(n+1) transformed gene expression counts for genes in a) Module 
16 and b) Module 9. Strains are ordered and coloured by genospecies. gsC* = 59 strains. The growth of strains 
in 100% TY broth (OD600) is displayed by increasing grey-scale colour intensity. 
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Appendix Figure C.10 a) A significant positive correlation was observed between growth of strains in TY broth 
and the mean expression of genes in Module 16 (Pearson’s correlation: R =0.26, p< 0.05). b) A significant 
negative correlation observed between growth of strains in TY broth and mean expression of genes in Module 
9 (Pearson’s correlation R = -0.42, p < 0.001). Linear model line and Pearson’s Correlation Coefficient excludes 
outliers identified as growth less than 0.3 OD600. 
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Appendix D. Chapter 5 
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Appendix Figure D.1 Correlation between gsB adjacent genes intergenic distance and Pearson’s correlation R 
statistic value. Intergenic distance axis is presented on a log10 scale. To log the intergenic distance axes, first a 
constant was added to all intergenic distance values of the absolute value of the most negative intergenic 
distance measure (for gsB this was 55 bp) plus 1, so that all distances were above 1 for log transformation of 
the axis. 
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Appendix Figure D.2 Correlation between gsB adjacent genes intergenic distance and deviance score. 
Intergenic distance and deviance score axes are presented on a log10 scale. To log the intergenic distance 
axes, first a constant was added to all intergenic distance values of the absolute value of the most negative 
intergenic distance measure (for gsB this was 55 bp) plus 1, so that all distances were above 1 for log 
transformation of the axis. 
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Appendix Figure D.4 Genospecies A transcriptional units generated using the following filtering 
parameters: R correlation > 0.8, deviance < 3, intergenic distance < 200 bp, must be adjacent gene pair in at 
least 3 strains. Nodes are genes colour coded by: Blue = core, Purple = accessory, Pink = genospecies 
enriched, Green = symbiosis. Edge colour increases from blue to purple with increased gene expression 
correlation between adjacent pairs. Edge thickness increases with decreasing deviance score. ▲ Indicates 
the nodABCIJ operon. 
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*

▲

Appendix Figure D.5 Genospecies C transcriptional units generated using the following filtering parameters: 
R correlation > 0.8, deviance < 3, intergenic distance < 200 bp, must be adjacent gene pair in at least 3 
strains. Nodes are genes colour coded by: Blue = core, Purple = accessory, Pink = genospecies enriched, 
Green = symbiosis. Edge colour increases from blue to purple with increased gene expression correlation 
between adjacent pairs. Edge thickness increases with decreasing deviance score. *identifies the 
rhizosphere induced operon (rhiABC). ▲ Indicates the nodABCIJ operon. 
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Appendix Figure D.6 Genospecies D transcriptional units generated using the following filtering 
parameters: R correlation > 0.8, deviance < 3, intergenic distance < 200 bp, must be adjacent gene pair in at 
least 3 strains. Nodes are genes colour coded by: Blue = core, Purple = accessory, Pink = genospecies 
enriched, Green = symbiosis. Edge colour increases from blue to purple with increased gene expression 
correlation between adjacent pairs. Edge thickness increases with decreasing deviance score. ▲ Indicates 
the nodABCIJ operon. 
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Appendix Figure D.7 Genospecies E transcriptional units generated using the following filtering 
parameters: R correlation > 0.8, deviance < 3, intergenic distance < 200 bp, must be adjacent gene pair in 
at least 3 strains. Nodes are genes colour coded by: Blue = core, Purple = accessory, Pink = genospecies 
enriched, Green = symbiosis. Edge colour increases from blue to purple with increased gene expression 
correlation between adjacent pairs. Edge thickness increases with decreasing deviance score. ▲ Indicates 
the nodABCIJ operon. 
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Appendix Figure D.8 Distribution of transcriptional unit size for 94 cross-genospecies conserved 
transcriptional units. The number of transcriptional units made up of n number of genes across all 5 
genospecies.  
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Appendix Figure E.1 Growth curves of strains 24 Rhizobium leguminosarum symbiovar trifolii strains grown in each 
other’s supernatants in pairwise combinations. Data was grouped by genospecies and farm treatment categories. 
Strains were additionally grown in 100% and 50% Tryptone Yeast (TY) broth as controls.  Optical density (OD600) of 
strains was measured for 62 hours, and values were normalized by subtracting the 0 h time point optical density. 
Error bars represent one standard error of the mean. OA = organic genospecies A (n = 6, blue), OC = organic 
genospecies C (n =7, dark green), OE = organic genospecies E (n = 4, pink), and CC = conventional genospecies C (n 
= 6, light green). 



 

 286 

 
  

0

5

10

15

20

0.05 0.06 0.07 0.08 0.09
Optical Density of inoculum for liquid culture spot (OD600)

In
hi

bi
tio

n 
zo

ne
 d

ia
m

et
er

 (m
m

)

Genospecies group
OA
OC
OE
CC

Appendix Figure E.2 Optical density of strain inocula used for liquid culture spotting compared to inhibition 
zone diameter produced from culture spot on soft lawns of all other strains. Inhibition zone diameter was 
calculated by deducting the Feret diameter of the culture spot from the Feret diameter of the inhibition zone. 
Points are coloured by the genospecies grouping of the inoculum strain.  
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Appendix Figure E.3 a) Correlation between the diameter of the inhibition zone (mm) and the diameter of the 
liquid culture spot (mm) after 72 hours growth. b) Correlation between the diameter of the inhibition zone (mm) 
and the diameter of the liquid culture spot (mm) after 72 hours growth after removal of liquid culture spots with a 
diameter of less than 1 mm. 
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Appendix Figure E.4 Metabolic capacity of 23 Rhizobium leguminosarum symbiovar trifolii strains on 31 single substrate growth treatments. Ability to metabolise substrates 
was determined using Biolog Ecoplates and measuring OD590 nm of tetrazolium dye in each well. OD590 nm values were normalised by subtracting control well OD (water) from 
the substrate well OD after 72 hours growth. Values of 0.00 OD590 nm or less were identified as no observable substrate metabolism (red), values of more than 0.00 OD590 nm 
were considered to have putative capacity to metabolise the substrate (blue). 
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Appendix Figure E.5 a) Distribution of the Relative Growth Index of all strains grown in each other’s 
supernatants. Relative growth index is calculated as described in the methods. b) ANI of interacting strains 
correlated to relative growth index (RGI) distance from 1 (neutral interaction) of strain grown in other strain’s 
supernatant (Simple linear model with robust standard errors: CoeffANI  = -0.64755, std. error = 0.14621, t = -
4.4291, p < .001) 



 

 290 

 
 

CC 

OE 

OC 

OA 

OA OC OE CC 
Supernatant 

strain 

In
oc

ul
an

t 
st

ra
in

 

RGI 

Appendix Figure E.6 Relative growth indices (RGIs) of Rhizobium leguminosarum symbiovar trifolii strains 
inoculated into each other’s supernatants. RGIs calculation is displayed in the methods by comparing a strains 
growth in another strain’s supernatant relative to its growth in 50% Tryptone Yeast (TY) broth.  Supernatant 
growth treatments constituted of Rhizobium strain supernatant and an equal volume of 100% Tryptone Yeast 
Broth (TY). OA = organic genospecies A, OC = organic genospecies C, OE = organic genospecies E, and CC = 
conventional genospecies C. 
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Appendix Figure E.7 Principal Components analysis for metabolic utilization of each individual single substrate 
Ecoplate treatments by 23 Rlt strains. a) points each represent a Rhizobium strain and is coloured and grouped 
by genospecies group. PC1 accounted for 38.9% of the variance, and PC2 explained for 23.6% of the variance. 
b) The association of the variables to the first two principle components, which are coloured by percentage 
contribution of each specific variable to the first two principle components. OA = organic genospecies A, OC = 
organic genospecies C, OE = organic genospecies E, and CC = conventional genospecies C. 
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Appendix Table E.1 Linear mixed effects models for supernatant indirect inhibition assay.  Model formula: Mean Relative Growth Index ~ inoculant group * supernatant 
group + (1|inoculant strain) + (1|supernatant strain). 
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Effect Variable Variance Std. Dev Estimate Std. Error df t value p-value 
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el

 

-8
58

.3
 

-7
76

.3
 random Inoculant strain 

(Intercept) 
0.010893 0.10437 / / / / / 

random Supernatant strain 
(Intercept) 

0.007039 0.08390 / / / / / 

random Residual 0.008800 0.09381 / / / / / 
fixed Intercept / / 0.968512    0.057290   50.202794   16.905   < 2e-16 *** 
fixed InocOC / / 0.070689    0.062247   29.375171    1.136 0.265290 
fixed InocOE / / 0.208752    0.067683   29.260421    3.084 0.004426 ** 
fixed InocCC / / 0.074302    0.064567   29.322551    1.151 0.259127 
fixed SupOC / / -0.111758    0.051786   32.171426   -2.158 0.038488 * 
fixed SupOE / / -0.382209    0.056283   31.990536   -6.791 1.13e-07 *** 
fixed SupCC / / -0.006766    0.053705   32.088460   -0.126 0.900528 
fixed InocOC:SupOC / / 0.103648    0.030363 505.043471    3.414 0.000693 *** 
fixed InocOE:SupOC / / 0.039788    0.032367 505.043471    1.229 0.219540 
fixed InocCC:SupOC / / 0.005379    0.030933 505.043471    0.174 0.862029 
fixed InocOC:SupOE / / 0.247622    0.032367 505.043471    7.650 1.02e-13 *** 
fixed InocOE:SupOE / / 0.219678    0.036332 505.043471    6.046 2.88e-09 *** 
fixed InocCC:SupOE / / 0.253220    0.033533 505.043471    7.551 2.03e-13 *** 
fixed InocOC:SupCC / / 0.040557    0.030933 505.043471    1.311 0.190414 
fixed InocOE:SupCC / / 0.013217    0.033533 505.043471    0.394 0.693638 
fixed InocCC:SupCC / / -0.003805    0.032796 505.043471   -0.116 0.907690 
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Appendix Table E.2 Estimated marginal means of genospecies supernatant effects on genospecies inoculant growth. Estimates are calculated based on the full model 

Filter by sup-genospecies contrast estimate      SE    df  lower.CL  upper.CL  t.ratio  p.value 

OA Sup-OA - Sup-OC 0.11176 0.0555 37.2 -0.03745 0.261 2.014 0.2012 

Sup-OA - Sup-OE 0.38221 0.0603 37 0.21997 0.5444 6.336 <.0001 

Sup-OA - Sup-CC 0.00677 0.0576 37.1 -0.14801 0.1615 0.118 0.9994 

Sup-OC-Sup-OE 0.27045 0.0579 35.9 0.11442 0.4265 4.669 0.0002 

Sup-OC - Sup-CC -0.10499 0.055 35.9 -0.25325 0.0433 -1.908 0.243 

Sup-OE - Sup-CC -0.37544 0.0599 35.9 -0.5368 -0.2141 -6.267 <.0001 

OC Sup-OA - Sup-OC 0.00811 0.0547 35 -0.13946 0.1557 0.148 0.9988 

Sup-OA - Sup-OE 0.13459 0.0592 34.2 -0.02539 0.2946 2.272 0.1248 

Sup-OA - Sup-CC -0.03379 0.0565 34.2 -0.18632 0.1187 -0.598 0.9319 

Sup-OC - Sup-OE 0.12648 0.0576 34.9 -0.02878 0.2817 2.197 0.1439 

Sup-OC - Sup-CC -0.0419 0.0547 35 -0.18947 0.1057 -0.766 0.8693 

Sup-OE - Sup-CC -0.16838 0.0592 34.2 -0.32836 -0.0084 -2.842 0.036 

OE Sup-OA - Sup-OC 0.07197 0.0559 38.4 -0.07806 0.222 1.288 0.5759 

Sup-OA - Sup-OE 0.16253 0.0615 40.5 -0.00235 0.3274 2.641 0.0546 

Sup-OA - Sup-CC -0.00645 0.058 38.4 -0.16215 0.1492 -0.111 0.9995 

Sup-OC - Sup-OE 0.09056 0.0596 40.6 -0.06898 0.2501 1.52 0.435 

Sup-OC - Sup-CC -0.07842 0.0559 38.4 -0.22845 0.0716 -1.404 0.5049 

Sup-OE - Sup-CC -0.16898 0.0615 40.5 -0.33386 -0.0041 -2.746 0.0427 

CC Sup-OA - Sup-OC 0.10638 0.055 35.9 -0.04187 0.2546 1.933 0.2327 

Sup-OA - Sup-OE 0.12899 0.0599 35.9 -0.03237 0.2903 2.153 0.1561 

Sup-OA - Sup-CC 0.01057 0.0576 37.1 -0.1442 0.1653 0.184 0.9978 

Sup-OC - Sup-OE 0.02261 0.0579 35.9 -0.13342 0.1786 0.39 0.9795 

Sup-OC - Sup-CC -0.09581 0.0555 37.2 -0.24502 0.0534 -1.727 0.3247 

Sup-OE - Sup-CC -0.11842 0.0603 37 -0.28066 0.0438 -1.963 0.2203 
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Appendix Table E.3 Estimated marginal means of genospecies inoculant growth under different genospecies  supernatant treatments. Estimates are calculated based on the 
full model 

Filter by inoc-genospecies contrast estimate      SE    df  lower.CL  upper.CL  t.ratio  p.value 

OA Sup-OA - Sup-OC   0.11176 0.0555 37.2 -0.03745 0.261 2.014 0.2012 

Sup-OA - Sup-OE   0.38221 0.0603 37 0.21997 0.5444 6.336 <.0001 

Sup-OA - Sup-CC 0.00677 0.0576 37.1 -0.14801 0.1615 0.118 0.9994 

Sup-OC - Sup-OE 0.27045 0.0579 35.9 0.11442 0.4265 4.669 0.0002 

Sup-OC - Sup-CC -0.10499 0.055 35.9 -0.25325 0.0433 -1.908 0.243 

Sup-OE - Sup-CC -0.37544 0.0599 35.9 -0.5368 -0.2141 -6.267 <.0001 

OC Sup-OA - Sup-OC 0.00811 0.0547 35 -0.13946 0.1557 0.148 0.9988 

Sup-OA - Sup-OE 0.13459 0.0592 34.2 -0.02539 0.2946 2.272 0.1248 

Sup-OA - Sup-CC -0.03379 0.0565 34.2 -0.18632 0.1187 -0.598 0.9319 

Sup-OC - Sup-OE 0.12648 0.0576 34.9 -0.02878 0.2817 2.197 0.1439 

Sup-OC - Sup-CC -0.0419 0.0547 35 -0.18947 0.1057 -0.766 0.8693 

Sup-OE - Sup-CC -0.16838 0.0592 34.2 -0.32836 -0.0084 -2.842 0.036 

OE Sup-OA - Sup-OC 0.07197 0.0559 38.4 -0.07806 0.222 1.288 0.5759 

Sup-OA - Sup-OE 0.16253 0.0615 40.5 -0.00235 0.3274 2.641 0.0546 

Sup-OA - Sup-CC -0.00645 0.058 38.4 -0.16215 0.1492 -0.111 0.9995 

Sup-OC - Sup-OE 0.09056 0.0596 40.6 -0.06898 0.2501 1.52 0.435 

Sup-OC - Sup-CC -0.07842 0.0559 38.4 -0.22845 0.0716 -1.404 0.5049 

Sup-OE - Sup-CC -0.16898 0.0615 40.5 -0.33386 -0.0041 -2.746 0.0427 

CC Sup-OA - Sup-OC 0.10638 0.055 35.9 -0.04187 0.2546 1.933 0.2327 

Sup-OA - Sup-OE 0.12899 0.0599 35.9 -0.03237 0.2903 2.153 0.1561 

Sup-OA - Sup-CC 0.01057 0.0576 37.1 -0.1442 0.1653 0.184 0.9978 

Sup-OC - Sup-OE 0.02261 0.0579 35.9 -0.13342 0.1786 0.39 0.9795 

Sup-OC - Sup-CC -0.09581 0.0555 37.2 -0.24502 0.0534 -1.727 0.3247 

Sup-OE - Sup-CC -0.11842 0.0603 37 -0.28066 0.0438 -1.963 0.2203 
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Appendix Table E.4 Linear mixed effects models for supernatant indirect inhibition assay, with strains SM154C and SM168A removed.  Model formula: Mean Relative Growth 
Index ~ inoculant group * supernatant group + (1|inoculant strain) + (1|supernatant strain). 
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 random Inoculant strain 

(Intercept) 
0.005460  0.07389 / / / / / 

random Supernatant strain 
(Intercept) 

0.004472  0.06687 / / / / / 

random Residual 0.005380  0.07335 / / / / / 
fixed Intercept / / 0.95298     0.04749   49.78721   20.067   < 2e-16 *** 
fixed InocOC / / 0.04985     0.04790   29.84159    1.041   0.30640 
fixed InocOE / / 0.12176     0.05473   29.51277    2.225   0.03389 * 
fixed InocCC / / 0.06182     0.04950   29.75175    1.249   0.22147 
fixed SupOC / / -0.04500     0.04422   31.52945   -1.017   0.31670 
fixed SupOE / / -0.37603     0.05050   31.12300   -7.446 2.13e-08 *** 
fixed SupCC / / 0.05627     0.04569   31.41836    1.231   0.22728 
fixed InocOC:SupOC / / 0.07326     0.02654 419.05229    2.760   0.00603 ** 
fixed InocOE:SupOC / / 0.02403     0.02973 419.05229    0.808   0.41934 
fixed InocCC:SupOC / / -0.03337     0.02702 419.05229   -1.235   0.21757 
fixed InocOC:SupOE / / 0.27146     0.02973 419.05229    9.131   < 2e-16 *** 
fixed InocOE:SupOE / / 0.32202     0.03543 419.05229    9.089   < 2e-16 *** 
fixed InocCC:SupOE / / 0.27555     0.03068 419.05229    8.980   < 2e-16 *** 
fixed InocOC:SupCC / / 0.01389     0.02702 419.05229    0.514   0.60742 
fixed InocOE:SupCC / / -0.04022     0.03068 419.05229   -1.311   0.19061 
fixed InocCC:SupCC / / -0.03882     0.02841 419.05229   -1.367   0.17246 
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Appendix Table E.5 Linear mixed effects models for spot plating direct inhibition assay.  Model formula: Mean inhibition zone diameter ~ inoculant group * supernatant 
group + (1|inoculant strain) + (1|supernatant strain). 
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74
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57
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 random Spot strain 

(Intercept) 
0.1207    0.3474 / / / / / 

random Soft strain 
(Intercept) 

8.2418    2.8709 / / / / / 

random Residual 2.2852    1.5117 / / / / / 
fixed Intercept / / 3.4994      1.2072   26.3757    2.899   0.00745 ** 
fixed SpotOC / / 3.2443      0.3940 115.5787    8.234 3.12e-13 *** 
fixed SpotOE / / 4.2026      0.4288 115.5787    9.800   < 2e-16 *** 
fixed SpotCC / / 2.0357      0.4089 115.5787    4.979 2.26e-06 *** 
fixed SoftOC / / -3.4994      1.6337   25.6712   -2.142   0.04185 * 
fixed SoftOE / / -3.4994      1.7781   25.6712   -1.968   0.05995 
fixed SoftCC / / -3.4994      1.6954   25.6712   -2.064   0.04925 * 
fixed SpotOC:SoftOC / / -3.2443      0.4679 528.9775   -6.934 1.20e-11 *** 
fixed SpotOE:SoftOC / / -4.2026      0.5093 528.9775   -8.252 1.25e-15 *** 
fixed SpotCC:SoftOC / / -2.0357      0.4856 528.9775   -4.192 3.24e-05 *** 
fixed SpotOC:SoftOE / / -2.9500      0.5093 528.9775   -5.793 1.19e-08 *** 
fixed SpotOE:SoftOE / / -3.9534      0.5543 528.9775   -7.132 3.26e-12 *** 
fixed SpotCC:SoftOE / / -1.6708      0.5285 528.9775   -3.161   0.00166 ** 
fixed SpotOC:SoftCC / / -3.2443      0.4856 528.9775   -6.681 6.01e-11 *** 
fixed SpotOE:SoftCC / / -3.9154      0.5285 528.9775   -7.408 5.08e-13 *** 
fixed SpotCC:SoftCC / / -2.0357      0.5039 528.9775   -4.040 6.14e-05 *** 
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Appendix Table E.6 Estimated marginal means of genospecies soft agar treatment effect on inhibition zone formation by different genospecies spotted inoculants. Estimates 
are calculated based on the full model 

Filter by soft-genospecies contrast estimate      SE    df  lower.CL  upper.CL  t.ratio  p.value 

OA I-OA - I-OC -3.2443 0.409 132 -4.307 -2.181 -7.942 <.0001 

I-OA - I-OE -4.2026 0.445 132 -5.36 -3.046 -9.452 <.0001 

I-OA - I-CC -2.0357 0.424 132 -3.139 -0.933 -4.802 <.0001 

I-OC - I-OE -0.9583 0.43 132 -2.077 0.16 -2.229 0.1208 

I-OC - I-CC 1.2086 0.409 132 0.146 2.272 2.958 0.019 

I-OE - I-CC 2.1669 0.445 132 1.01 3.324 4.874 <.0001 

OC I-OA - I-OC 0 0.387 108 -1.01 1.01 0 1 

I-OA - I-OE 0 0.421 108 -1.099 1.099 0 1 

I-OA - I-CC 0 0.402 108 -1.048 1.048 0 1 

I-OC - I-OE 0 0.407 108 -1.063 1.063 0 1 

I-OC - I-CC 0 0.387 108 -1.01 1.01 0 1 

I-OE - I-CC 0 0.421 108 -1.099 1.099 0 1 

OE I-OA - I-OC -0.2942 0.437 167 -1.428 0.84 -0.673 0.907 

I-OA - I-OE -0.2492 0.476 167 -1.483 0.985 -0.524 0.9532 

I-OA - I-CC -0.3649 0.453 167 -1.541 0.812 -0.805 0.852 

I-OC - I-OE 0.045 0.46 167 -1.148 1.238 0.098 0.9997 

I-OC - I-CC -0.0707 0.437 167 -1.204 1.063 -0.162 0.9985 

I-OE - I-CC -0.1157 0.476 167 -1.35 1.118 -0.243 0.9949 

CC I-OA - I-OC 0 0.409 132 -1.063 1.063 0 1 

I-OA - I-OE -0.2872 0.445 132 -1.444 0.87 -0.646 0.9168 

I-OA - I-CC 0 0.424 132 -1.103 1.103 0 1 

I-OC - I-OE -0.2872 0.43 132 -1.406 0.832 -0.668 0.9089 

I-OC - I-CC 0 0.409 132 -1.063 1.063 0 1 

I-OE - I-CC 0.2872 0.445 132 -0.87 1.444 0.646 0.9168 
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Appendix Table E.7 Estimated marginal means of genospecies spotted inoculant inhibition zone formation on different genospecies soft agar treatments. Estimates are 
calculated based on the full model 

Filter by inoc-genospecies contrast estimate      SE    df  lower.CL  upper.CL  t.ratio  p.value 

OA Soft-OA - Soft-OC 3.499 1.78 30.8 -1.346 8.34 1.961 0.2247 

Soft-OA - Soft-OE 3.499 1.94 30.8 -1.774 8.77 1.802 0.2919 

Soft-OA - Soft-CC 3.499 1.85 30.8 -1.529 8.53 1.89 0.2533 

Soft-OC - Soft-OE 0 1.88 30.8 -5.1 5.1 0 1 

Soft-OC - Soft-CC 0 1.78 30.8 -4.846 4.85 0 1 

Soft-OE - Soft-CC 0 1.94 30.8 -5.274 5.27 0 1 

OC Soft-OA - Soft-OC 6.744 1.78 30.4 1.908 11.58 3.789 0.0036 

Soft-OA - Soft-OE 6.449 1.94 30.4 1.186 11.71 3.329 0.0116 

Soft-OA - Soft-CC 6.744 1.85 30.4 1.725 11.76 3.651 0.0051 

Soft-OC - Soft-OE -0.294 1.87 30.4 -5.384 4.8 -0.157 0.9986 

Soft-OC - Soft-CC 0 1.78 30.4 -4.836 4.84 0 1 

Soft-OE - Soft-CC 0.294 1.94 30.4 -4.969 5.56 0.152 0.9987 

OE Soft-OA - Soft-OC 7.702 1.79 31.3 2.843 12.56 4.3 0.0009 

Soft-OA - Soft-OE 7.453 1.95 31.3 2.164 12.74 3.823 0.0031 

Soft-OA - Soft-CC 7.415 1.86 31.3 2.372 12.46 3.989 0.002 

Soft-OC - Soft-OE -0.249 1.89 31.3 -5.363 4.86 -0.132 0.9992 

Soft-OC - Soft-CC -0.287 1.79 31.3 -5.146 4.57 -0.16 0.9985 

Soft-OE - Soft-CC -0.038 1.95 31.3 -5.327 5.25 -0.019 1 

CC Soft-OA - Soft-OC 5.535 1.78 30.8 0.69 10.38 3.102 0.0203 

Soft-OA - Soft-OE 5.17 1.94 30.8 -0.104 10.44 2.662 0.0563 

Soft-OA - Soft-CC 5.535 1.85 30.8 0.507 10.56 2.989 0.0266 

Soft-OC - Soft-OE -0.365 1.88 30.8 -5.465 4.73 -0.194 0.9973 

Soft-OC - Soft-CC 0 1.78 30.8 -4.846 4.85 0 1 

Soft-OE - Soft-CC 0.365 1.94 30.8 -4.909 5.64 0.188 0.9976 
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Appendix Table E.8 Linear mixed effects models for spot plating direct inhibition assay with OA strains SM144A, SM154C and SM145B removed.  Model formula: Mean 
inhibition zone diameter ~ inoculant group * supernatant group + (1|inoculant strain) + (1|supernatant strain). 
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 random Spot strain 

(Intercept) 
0.0000    0.0000 / / / / / 

random Soft strain 
(Intercept) 

3.9822    1.9955 / / / / / 

random Residual 0.4959    0.7042 / / / / / 
fixed Intercept / / 2.23290     1.01318   23.12783    2.204   0.03776 * 
fixed SpotOC / / 0.71154     0.22069 462.00000    3.224   0.00135 ** 
fixed SpotOE / / 2.11815     0.23619 462.00000    8.968   < 2e-16 *** 
fixed SpotCC / / 0.31570     0.22728 462.00000    1.389   0.16548 
fixed SoftOC / / -2.23290     1.27009   23.12784   -1.758   0.09197 
fixed SoftOE / / -2.23290     1.35932   23.12784   -1.643   0.11398 
fixed SoftCC / / -2.23290     1.30801   23.12784   -1.707   0.10120 
fixed SpotOC:SoftOC / / -0.71154     0.27664 462.00000   -2.572   0.01042 * 
fixed SpotOE:SoftOC / / -2.11815     0.29608 462.00000   -7.154 3.33e-12 *** 
fixed SpotCC:SoftOC / / -0.31570     0.28490 462.00000   -1.108   0.26840 
fixed SpotOC:SoftOE / / -0.41731     0.29608 462.00000   -1.409   0.15938 
fixed SpotOE:SoftOE / / -1.86894     0.31688 462.00000   -5.898 7.12e-09 *** 
fixed SpotCC:SoftOE / / 0.04923     0.30492 462.00000    0.161   0.87180 
fixed SpotOC:SoftCC / / -0.71154     0.28490 462.00000   -2.497   0.01285 * 
fixed SpotOE:SoftCC / / -1.83093     0.30492 462.00000   -6.005 3.89e-09 *** 
fixed SpotCC:SoftCC / / -0.31570     0.29341 462.00000   -1.076   0.28250 
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Appendix Table E.9 PERMANOVA of strains’ metabolic capacity for 6 resource type groups based on 
average well colour development of 31 single substrate growth treatments. Genospecies groups correspond 
to OA, OC, OE and CC. 

 
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

Genospecies group 3 0.12932 0.043108 3.8293 0.3768 0.006 

Residuals 19 0.21389 0.011257 0.6232 
  

Total 22 0.34321 1 
   

 
 
Appendix Table E.10 The number of secondary metabolite biosynthesis gene clusters identified in 24 
Rhizobium leguminosarum symbiovar trifolii strains. antiSMASH was used to identify the gene clusters, and 
putative clusters were only counted if gene cluster regions contained at least 2 identifiable metabolite 
biosynthesis related genes. The strain can be divided into 4 genospecies/environmental origin groups; OA = 
organic genospecies A, OC = organic genospecies C, OE = organic genospecies E, and CC = conventional 
genospecies C. T3PKS = Type III polyketide synthases, Hserlactone = Homoserine lactone cluster, Fused = 
Pheganomycin-style protein ligase-containing cluster, NRPS = Non-ribosomal peptide synthetase cluster. 
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CC 

SM67 1 0 1 1 1 4 0 0 1 0 

SM77 2 0 1 1 1 4 0 0 1 1 

SM74 2 0 1 1 1 3 0 0 0 1 

SM57 2 0 1 1 1 4 0 0 0 1 

SM53 2 0 1 1 1 4 0 0 0 1 

SM41 1 0 1 1 1 4 0 0 0 1 

 
 
 

OA 

SM144A 2 1 1 1 1 4 1 0 0 0 

SM154C 2 1 1 1 1 2 1 0 0 0 

SM145B 2 1 1 1 1 4 1 0 0 0 

SM152A 2 1 1 1 1 3 1 0 0 0 

SM137B 1 1 1 1 1 3 1 0 0 0 

SM152B 1 1 2 1 1 2 0 0 0 0 

 
 
 

OC 

SM126B 2 0 1 1 1 3 0 0 0 1 

SM122A 2 1 1 1 1 4 0 0 0 0 

SM165A 1 2 1 1 1 4 1 0 0 0 

SM157B 1 2 1 1 1 4 1 0 0 0 

SM170C 2 1 1 1 1 4 0 0 0 1 

SM158 2 1 1 1 1 4 0 0 0 0 

SM147A 2 1 1 1 1 3 0 1 1 0 

 
 

OE 

SM168A 1 1 1 1 1 5 1 0 1 1 

SM159 1 1 1 1 1 4 0 0 0 1 

SM135A 1 2 1 1 1 4 1 0 0 1 

SM135B 2 1 1 1 1 4 1 0 0 1 

SM149A 1 1 1 1 1 4 1 0 0 1 
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Appendix Table E.11 The number of putative prophage regions identified in 24 Rhizobium leguminosarum 
symbiovar trifolii strains. Prophage regions were identified using PHASTER, which assigns a completeness 
score to identified regions based on the proportion of phage-related genes within the region; ‘intact’, 
‘questionable’ or ‘incomplete’. The strain can be divided into 4 genospecies/environmental origin groups; 
OA = organic genospecies A, OC = organic genospecies C, OE = organic genospecies E, and CC = conventional 
genospecies C. 
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CC 

SM67 0 1 5 

SM77 1 2 3 

SM74 0 0 2 

SM57 0 2 2 

SM53 0 0 2 

SM41 0 0 5 

 
 
 

OA 

SM144A 0 1 2 

SM154C 0 0 3 

SM145B 0 1 3 

SM152A 1 0 3 

SM137B 0 0 4 

SM152B 1 0 3 

 
 
 

OC 

SM126B 0 0 0 

SM122A 0 0 1 

SM165A 1 0 1 

SM157B 0 1 0 

SM170C 0 0 2 

SM158 0 0 2 

SM147A 0 0 1 

 
 

OE 

SM168A 0 0 5 

SM159 0 0 4 

SM135A 1 0 2 

SM135B 0 0 0 

SM149A 0 0 5 
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