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il Abstract

Treating damage to the nervous system is limited to targeting natural recovery, with
limited recourse if these mechanisms fail. The level of disruption between descending
systems and motor effectors is the major factor determining recovery in SCI. Attempts
have been made to reconnect descending motor signals with the correct muscles but
have struggled to restore motor control to pre-injury states. This thesis has tried to
address limitations in current devices by designing algorithms to control a brain machine
interface at the level of the spinal cord that provides functional electrical stimulation in a

closed loop manner incorporating synergy information extracted from muscle activity.

Synergy information is identified using dimensionality reduction algorithms. To determine
which method was suitable for online analysis the accuracy of commonly used algorithms
for synergy extraction and activity onset detection were compared. Findings from this
comparison challenge assumptions regarding the utility of various methods. The most
accurate algorithm, non-negative matrix factorization, was implemented online and
applied to isometric knee extensions at different angles. It was shown that in contrast to
the accepted view, proprioceptive feedback plays a significant role in synergy
recruitment. Using an interneuron population model, the experimentally observed
synergies were reproduced using only changes in afferent feedback. Using muscle
synergies as a target for motor control requires a method for generating specific
electromyography waveforms. An artificial neural network successfully learned the
relationship between stimulation parameters and electromyography for stimulation of the
rat hind limb. These algorithms were combined in a simulated injury environment using
the same interneuron model described previously with connections removed or reduced.
The combined algorithms were able to successfully restore muscle synergies to normal
levels in some injury conditions. These algorithms represent a system that uses closed
loop control of muscle synergy recruitment that could be implemented in a variety of

devices.
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Chapter 1: Introduction

1.1 General introduction

Traumatic injury resulting in partial or total loss of axons of descending spinal neurons
causes varying degrees of paralysis due to loss of communication between descending
motor control pathways and motor neurons (Nas et al., 2015). A brain machine interface
(BMI) is a device that uses measured neural activity to interact with another device (Vidal,
1973; Jackson and Fetz, 2011). One possible output device is an electrical stimulator
placed within or near the spinal cord (Zimmermann et al., 2011; Nishimura et al., 2013;
Grahn et al., 2014; Shanechi et al., 2014; Capogrosso et al., 2016). In theory a BMI could
bypass the injury site and link caudal neural activity with rostral motor neuron effectors,
restoring a level of control to the paralyzed area (Alam et al., 2016). The potential for
curative treatment for spinal cord injury has driven the development of a diverse array of
devices. These devices use different measures of neural activity and interpret this activity
in different ways. Most implementations then pair this activity with functional electrical
stimulation (FES) delivered at the level of the spinal cord, peripheral nerve or directly to
muscle fibres. These methods have succeeded in controlling simple movements such
as wrist flexion or primitive locomotion in animal models (Nishimura et al., 2013; Bouton
et al., 2016).

The initial potential of these devices is held back by limitations such as increased muscle
fatigue, difficulty adapting to new environments or new subjects and most devices require
extensive training periods (Thomas et al., 2003; Krauledat et al., 2008; Kindermans et
al., 2014). These limitations are indicative of the inability to effectively recruit spared
neural circuits. For instance FES results in reversal of the normal recruitment of motor
neurons, recruiting the largest most fatigable neurons first (Blair and Erlanger, 1933;
Laforet et al., 2009). This, among other factors, accounts for the increased fatigability
observed in paralyzed muscles (Jones et al., 1979; Rabischong and Ohanna, 1992;
Estigoni et al., 2014; Vromans and Faghri, 2018).

Limitations in current devices are reflective of their design philosophy, as most place
heavy emphasis on achieving a target movement, which not only limits the range of
movement produced but also takes focus away from network behaviour in a more

general sense. Moving away from movement orientated design goals may allow devices
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to create a wider range of more natural movements by better accessing spared spinal

circuitry.

The introduction to this thesis will provide background on the current understanding of
both the fundamental and higher order systems of motor control, providing insight into
how BMI performance may be improved. It will also cover key concepts in machine
learning that that will be used later in this thesis for flexible control of stimulation in a
variety of settings. Together this should explain the current gaps in device design and
how novel algorithms integrated into a BMI may allow for true closed loop control of the

paralyzed limb.

1.2 Theories of motor control

1.2.1 The “degrees of freedom” problem

Within the physical constraints of the musculoskeletal system there are a redundant and
significantly large number of ways to achieve a task, across the range of trajectories and
muscle activation patterns. Selection of a specific strategy for a given task involves
selection from a huge array of possible combinations requiring significant computational
effort. The difficulty of this task appears at odds with the efficient and reliable way in
which movements are performed (Frére and Hug, 2012). Two theories have been
proposed to solve this “degrees of freedom” (DOF) problem. The first is the optimal
control hypothesis, wherein the overall strategy for a task is primarily determined via
afferent feedback. This feedback modifies descending drive such that the movement is
optimized to maximize efficiency (Tresch et al., 2002; Corey B Hart and Giszter, 2010;
Bizzi and Cheung, 2013; Hirashima and Oya, 2016) The other theory is the muscle
synergy hypothesis’ wherein it is suggested that complex coordination of muscle activity
is generated by combining modules or patterns of control together (Bernstein, 1968). The
complexity is reduced from choosing many different muscle activations to instead
choosing from a smaller range of motor modules. The ‘optimal control hypothesis’ has
largely fallen out of favour in the field primarily due to the difficulty in determining what
precisely the nervous system defines as “optimal”. The ‘optimal control hypothesis
therefore falls outside the remit of this thesis; however, it is mentioned here as much

remains unclear regarding recruitment and the neural origin of muscle synergies.

14



1.2.2 The muscle synergy hypothesis

Muscle synergies are repeatable patterns of muscle activity over time, whereby certain
muscles are organized to contract together and others may be kept inactive (Bizzi and
Cheung, 2013). These patterns link the activity of multiple muscles thereby reducing the
DOF to recruitment of a limited set of synergies. Encoding of muscle synergies is
suggested to occur at the level of the spinal cord, however the precise details of this
encoding are still a hotly debated issue. It has been demonstrated that similar muscle
synergies can be extracted during locomotion from species with differently sized cerebral
cortex (Dominici et al., 2011). The similarity of these synergies, despite the difference in
cortical complexity, indicates that the neural candidate is likely at the level of the
brainstem or spinal cord (Dominici et al., 2011). This is supported by studies in stroke
patients with damage to the motor cortex where patients demonstrated merging of
muscle synergies in the affected arm compared to the healthy arm (Cheung et al., 2012;
Pan et al., 2018). Merging of synergies suggests that changes in motor control are made
because the cortex is unable to fully recruit intact networks located at a lower level. Work
has been done in frogs, mice and primates has shown that stimulation of interneurons in
the spinal cord can recruit patterns of co-ordinated muscle activity (Corey B. Hart and
Giszter, 2010; Levine et al., 2014; Takei et al., 2017). Despite these findings it is still
unclear what the direct neural encoding is and therefore they must be observed indirectly
through their effect on motor output in the form of patterns extracted from
electromyography (EMG) recordings (Corey B Hart and Giszter, 2010; Bizzi and Cheung,
2013).

To understand how muscle synergies are extracted from EMG signals the concept of
data dimensionality must be understood. Data dimensions refers to the number of
variables used to describe the data. A dataset describing a group of people may include
variables such as their height, weight, sex, etc. These variables may be related to each
other, such as height and weight and patterns can emerge under close inspection. It may
be that the pattern relating height and weight describe a similar amount of variance as
either variable on their own. These patterns can be more useful than the individual
measures in the same way that the body mass index may be more useful for some
purposes than either height or weight on their own. Dimensionality reduction algorithms
seek to identify these patterns and describe the dataset using a smaller number of
patterns. Synergy extraction algorithms attempt to reduce the dimensionality of a dataset

of EMGs to a smaller set of patterns of muscle activations that are easier to understand
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and analyse (Tresch and Cheung, 2006; Lacquaniti et al., 2012). In the case of the
muscle synergy hypothesis this reduction in complexity is assumed to be the reason the
body does this, and therefore a real neural encoding is being observed. It has been
instead suggested that the synergies extracted are no more real than the hypothetical
height/weight pattern mentioned, and that synergies emerge from EMG data because of
the biomechanical constraints of the task (Valero-Cuevas et al., 2009; Kutch and Valero-
Cuevas, 2012; Groote et al., 2014). The majority of evidence has fallen in favour of
synergies being reflective of the activity of networks of interneurons in the spinal cord,
but until this has been demonstrated conclusively the alternative must be kept in mind
when considering muscle synergy analysis (Corey B. Hart and Giszter, 2010; Levine et
al., 2014; Takei et al., 2017).

For use within a BMI device, muscle synergies appear to be a useful measure of network
output during efficient motor control. Linear combination of muscle synergies have been
shown to more efficiently describe muscle activity across a wide range of movements in
humans, including reaching tasks, trunk stability and walking in comparison to models
based on the activity of individual muscles alone (Takei and Seki, 2010; Lacquaniti et al.,
2012; Roh et al., 2012; Woijtara et al., 2014). The impairment of motor control in those
with altered synergy recruitment is also reflective of their role in efficient control. Synergy
analysis was performed on the impaired and unimpaired limb in stroke patients during
movement (Safavynia et al., 2011; Cheung et al., 2012; Pascual-Leone, 2013; Israely et
al., 2018). The synergies identified in the impaired limb resembled that of the unimpaired
limb, however some synergies were altered. Some synergies were merged together,
whilst some synergies were fractionated into new smaller patterns. Critically, the degree
of merging and fractionation was found to be related to both the severity of impairment
and the time since the initial injury, with merging being greatest in the most severely
impaired, and fractionation increasing as time passed. This suggests that cortical
damage results in disorganization of the modular synergy system with a resulting
impairment of motor control. Muscle synergies have also been shown to more efficiently
control a virtual arm than when controlled using individual EMG features (Antuvan et al.,
2016; Valk et al., 2019). This evidence supports the hypothesis that synergy information
is present during efficient control of the musculoskeletal system. Muscle synergies not
only solve the redundancy problem of selecting an efficient muscle activation pattern,
but may also account for much of the nonlinearity present in producing those patterns

(Brezina et al., 2000; Bizzi and Cheung, 2013). Muscle synergies therefore present a
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natural improvement as a control mechanism for a BMI device compared to movement

orientated devices.

1.2.3 Agonists, antagonists and synergists

One of the major complexities in the DOF problem is the number of muscles that directly
oppose each other. In the upper leg the contraction of the hamstrings and the contraction
of the quadriceps are diametrically opposed to each other and are referred to as an
antagonist pair. The definition of which muscle is the agonist, and which is the antagonist
is determined in a task dependent manner. The quadriceps are made up of four muscles;
the rectus femoris, vastus lateralis, vastus medialis and vastus intermedius that all work
together to extend the knee and are termed agonists when this is the desired movement.
This in turn makes the hamstrings; semitendinosus, biceps femoris and
semimembranosus, antagonists, as they work in opposition to the movement of the knee,
as flexors instead. Muscles are further defined as synergistic when they are active at the
same time during a task, but this does not indicate that they are working together or
indeed for the same purpose. As mentioned, many synergistic muscles may actively
impede efficiently carrying out a task, but this may still form an important role in motor
control. This naming convention is useful in certain contexts, however, as is so often the
case, this is a simplification of what really occurs. Very few muscles are entirely
antagonistic to each other, and their function is determined in a task dependent manner.
Further complicating the issue are multi joint muscles, or biarticular muscles, where the
function of a muscle can be dependent on a variety of factors such as joint position or
coactivation of contralateral muscles (Eccles et al., 1957; Buchanan et al., 1986; Knikou
and Rymer, 2002). Ultimately the network recruiting these muscles must receive input

from a wide variety of sources, including descending control and afferent feedback.

1.3 Systems of motor control

1.3.1 Base components

The fundamental unit of motor control is the motor unit which consists of a motor neuron
innervating a number of muscle fibres. The cell bodies for motor neurons are found within
the spinal cord in the ventral horn, but their axons extend out of the central nervous
system (CNS) into the periphery where they are bundled together in nerves surrounded
by fascia. Stimulation of these motor neurons, either at their cell body or their axons,

results in contraction of the muscle fibre which ultimately produces motor output. Motor
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neurons are recruited in a graded fashion depending on their size, from smallest to

largest (Henneman et al., 1965).

1.3.2 Descending efferent signals

Higher centres of motor control are in frequent communication with motor neurons in the
spinal cord, and each other. The major descending pathways for motor control are the
corticospinal, corticobulbar, reticulospinal, bulbospinal, rubrospinal and pontospinal
tracts (Kuypers, 1981; Lemon, 2008). It is the damage to these descending tracts that
causes the loss of volitional control in spinal cord injury. How “top-down” control co-
ordinates with lower centres of motor control is still an open question, however it is likely
to be handled by cortical centres, such as the motor and premotor cortex, and networks
of interneurons at the level of the spinal cord working together (Tresch et al., 2002; Corey
B Hart and Giszter, 2010; Bizzi and Cheung, 2013).

1.3.3 Central pattern generators

One of the more important interneuron networks are central pattern generators (CPG).
These circuits are crucially important for rhythmic tasks such as locomotion as they
produce cyclical output patterns without descending control (Grillner, 2011; Guertin,
2013). The independence of these centres has been demonstrated dramatically in the
mesencephalic cat, an animal model wherein a transection is made between the superior
colliculi and the thalamus. Via stimulation of the reticular formation these animals could
be made to walk and even keep pace with changes in treadmill speed (Shik and
Orlovsky, 1976; Mori et al., 1978). Although these centres can function without
descending input, afferent signals play an important role in modulating patterns in

response to perturbations (McCrea and Rybak, 2008).

The cyclical activity of CPGs is due to what are known as half-centre oscillators. The
rhythmic output of cells is not due to an intrinsic property of the neuron, but its reciprocal
excitation/inhibition with another neuron. As the activity of the cell rises, it causes its own
inhibition via excitation of another neuron which has mirrored connections. Whilst this
cyclical activity is an important output of CPGs, there is evidence to suggest that these
networks can be used flexibly to control motor output in a variety of conditions, not all of

which require or utilize rhythmic activation (York et al., 2019).
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1.4 Afferent feedback

Afferent fibres make up the majority of axons within nerve, outnumbering, motor axons
9:1 and play a significant role in healthy motor control (Gesslbauer et al., 2017). Control
of movement is possible in the absence of sensory feedback but swiftly becomes more
inaccurate as time increases or as obstacles are encountered (Gandevia et al., 1990;
Nielsen and Sinkjaer, 2002). This is especially true for the nervous system where afferent
fibres directly synapse onto motor neurons providing immediate access to error signals
during movement. Removal of these fibres in various conditions causes distinct motor
deficits that increase as a task continues in the absence of other sources of feedback.
Muscle afferents are classified into groups I-IV according to their diameter and they
respond to specific sensory inputs (Lloyd, 1943; Macefield et al., 1989) These fibres are
the primary source of our inherent sense of muscle velocity and the position of the limb

in space, which is termed proprioception.

1.4.1 Muscle spindles

The major sensory organ responsible for proprioception is the muscle spindle. Muscle
stretch is detected by the muscle spindle and relayed to the central nervous system by
the afferents primarily via the muscle spindle primary (group la) and muscle spindle
secondaries (group Il). These fibres convey different information regarding stretch. la
fibres are primarily related to changes in the length of the muscle and are highly adaptive,
in that they rapidly cease firing when muscle length ceases to change. This is in contrast
to group Il fibres which do not significantly respond to changes in muscle length (Darby
and Frysztak, 2013). The role of group Il fibres can be intuitively understood as a more
passive understanding of the muscles position in space versus reporting on movement.
In terms of reflexes la afferents are responsible for the stretch reflex and the
characteristic H-reflex where la fibres monosynaptically excite their homonymous motor
neurons in response to stimulation (Eccles et al., 1957). la fibres also control firing of the
synergistic antagonist muscles via polysynaptic inhibitory innervation of their motor
neurons. This facilitates the response known as reciprocal inhibition wherein antagonist

muscles are inhibited during activation of the agonist.

1.4.2 Golqgi tendon organ

The other sensory organ responsible for proprioception is the Golgi tendon organ. In

contrast to the muscle spindle, this organ signals for changes in muscle tension due to
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contraction. This is present even in the absence of muscle length change and is therefore
more representative of muscle force generation. Golgi tendon organs are innervated
solely by Ib fibres which go on to project to both homonymously and heteronymous motor
neurons making polysynaptic inhibitory and excitatory connections with them. This
results in autogenic inhibition which regulates muscle contraction to avoid fibres

damaging themselves. They excite antagonist muscles as part of the autogenic reflex.

1.4.3 Nociceptors and cutaneous fibres

The remaining muscle afferent fibre groups, Il and IV are more widely dispersed along
with AB and C fibres with sensory endings terminating in the skin and act as nociceptors
throughout (von During and Andres, 1990; Dubin and Patapoutian, 2010; Jankowski et
al., 2013). Some group Il fibres also act as cutaneous sensors and nociceptors (Nagi et
al., 2019).

1.5 Brain machine interfaces for the purposes of motor control

The term BMI was first used by Jaques Vidal who was inspired by the work of Hans
Berger in 1924 when he first described electroencephalogram (EEG) activity in the brain
(Vidal, 1973; Vidal, 1977). Vidal used visually evoked potentials in the visual cortex to
guide a digital cursor through a simple maze. This provided proof of concept that neural
activity could be used as a control mechanism. The umbrella term of BMI now refers to
a variety of devices including both invasive and non-invasive alternatives. Non-invasive
BMI’s attempt to measure neural activity without directly interfacing with nervous tissue,
most commonly using EEG signals recorded from the scalp (Asghari Oskoei and Hu,
2007; Atzori et al., 2014; Bouton et al., 2016). Invasive BMIs instead use neuronal firing
rates measured using electrodes placed either in close proximity or directly within
nervous tissue (Brus-Ramer et al., 2007; Campos et al., 2008; Zimmermann et al., 2011,
Dorn et al., 2012; Nishimura et al., 2013; Giagka et al., 2013; Raspopovic et al., 2014;
Grahn et al., 2014; Pani et al., 2016; Alam et al., 2016; Dura-Bernal et al., 2016).

The concept that links BMiIs is that neural activity in some form is recorded and used to
drive the activity of another machine. These machines can range from a digital cursor,
to a neural prosthetic hand, or, as is the goal of this thesis, simulating electrodes within
the nervous system. The variety of developed devices and the diversity of solutions to a
common problem could indicate an underlying flaw to the way in which the problem is

approached (Baranauskas, 2014). Advancement within the field is often supposed to be
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due to an increase in neural “resolution”, with increased sizes of recording or stimulating
arrays (Nordhausen et al., 1994; Maynard et al., 1997; Branner and Normann, 2000;
Davis et al., 2016). In the case of invasive BMIs, it is supposed that given a large enough
array of electrodes, that could record from every neuron related to a given activity,
performance could become indistinguishable from natural activity. However, oftentimes
large leaps in performance can be achieved with novel interpretation of neural activity
(Baranauskas, 2014). A shift away from decoding with respect to the observer, to
decoding with respect to the target goal achieved markedly better results than more
technological capable devices (Gilja et al., 2012). This result suggests that improvements
may be possible without technological leaps, but by using devices available today in

better ways.

There is currently no consensus on how to compare the performance of BMIs (Asghari
Oskoei and Hu, 2007; Eftekhar et al., 2010; Baranauskas, 2014; Mehryar, 2014).
Comparison is difficult as devices often target different injury states, movements, neural
activity and species. The information transfer rate of the device has been proposed as a
universal measure but this has only been reviewed with respect to devices applied to a
centre-out reaching task (Baranauskas, 2014). Information transfer rate is difficult to
calculate appropriately when the task differs from a centre-out reaching task, and even
more so when applied to devices with the aim to restore motor control. Despite this
difficulty, it is demonstrative that of the devices reviewed by Baranauskas, the best
performing devices had the highest information transfer rate. Even during simple
movements the estimated information transfer rate of the human nervous system is in
the region of ~10 bits/s, a large jump from the rate current invasive BMIs achieve of
~2 bits/s, especially as bit rate is measured on a logarithmic scale (Fitts, 1954). Whilst
the task of controlling a prosthetic and re-innervating a paralyzed limb require different
approaches, the overall goal is the same; to produce a movement that matches the
intention of the user. Rather than precise control over motors the output device is instead
imprecise control over muscle activity (measured as EMG waveforms). There are layers
of abstraction and non-linearity between neural decoding and the desired output;
however, the core task remains the same and therefore maximising information transfer
is likely to have a large effect on device performance. The best information transfer was
achieved by examining how neural activity encodes for a given task or activity, and what
that activity represents. Neural activity likely relates to a whole range of parameters,
rather than any single variable of movement (Panzeri et al., 2015). Therefore,
interpretation of neural activity must account for complex non-linear relationships such
21



as between motor neuron firing rates and contraction, and the most important information
must be accounted for. Muscle synergies are an attractive target for accounting for these

non-linear relationships in motor control.

Identifying muscle synergies and tailoring stimulation paradigms to correspond with one
another could result in a greater complexity of activations and inhibitions that mimic
natural movements. Experimental data shows that interneuron firing rates in the frog
spinal cord reflect the same synergy information as obtained from analysis of muscle
activity (Corey B Hart and Giszter, 2010). A pairing of these two forms of neural activity
may produce a BMI that can evoke more natural movements in a paralyzed limb.
Synergies could improve performance by taking advantage of natural co-ordination
within motor output allowing design of stimulation paradigms that best elicit those

synergies.

1.6 Machine learning

The field of machine learning covers a huge array of techniques that all share the general
principle of attempting to recreate the learning process electronically. Machine learning
was initially a theoretical approach to training networks in a biologically inspired fashion
to recreate biological like thinking. Following several Al “winters”, machine learning has
finally entered mainstream use in the form of speech recognition, image analysis and
trend prediction algorithms. This surge has largely been driven by increased access to
computing power and increasingly large datasets. It is a major advantage of machine
learning that algorithm performance can be improved by increasing either of these
variables. These algorithms also excel in situations where traditional modelling
approaches are held back, either due to a lack of understanding of the initial relationship

or require greater adaptive capabilities.

In gross overview, machine learning algorithms attempt to model a given relationship
between two datasets in order to make predictions from this model. This can be further
divided into supervised and unsupervised learning. This refers to whether the data is
initially labelled or not with relevant information. Supervised learning might use a set of
pictures with the contents of the image already described, whereas unsupervised
learning must create these labels as part of the learning process. There is a further
subdivision into classification and regression problems. For example, a classification
program might be asked to sort a set of pictures into different classes of animals within

the picture. A regression problem however asks for a continuous output to be predicted,
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the classic illustration of which is to predict stock prices based on previous months
reports. As another example of an unsupervised learning regression problem, a special
type of artificial neural network (ANN) known as an autoencoder has been used
previously for muscle synergy extraction (Spuler et al., 2016). This is an example of using
machine learning to learn the structure of data and can be combined with other

algorithms for increased performance in some applications.

ANNSs are a particularly popular topic within machine learning at present. These networks
are at least in part designed to resemble the process of integrating information through
a connected network of “neurons”. The functional unit of an ANN is a single neuron with
inputs and outputs, an example of which is shown in Figure 1-A (A). The incoming values
are multiplied by their weights, summed and then passed to the activation function of the
neuron. This activation function applies some operation to the input and then provides
that as the output. In principal this system is very simple, and in this case incapable of
anything interesting. To make these networks more useful two things are required; more

neurons and a way to alter weights towards a specified goal.

Including more neurons is relatively simple to explain, it simply involves adding more
connections between nodes, typically separated into different layers, with each layer only
connecting to the next in series (although more complex architectures have been used
for some purposes). The separation into layers is shown graphically in Figure 1-A (B)
which are commonly termed as input, output and hidden layers. Hidden layers are
termed such because it is not possible to directly observe their operation as a result of
training, only the final output. Networks for extremely complex tasks may have multiple
hidden layers of thousands of neurons, or even multiple networks connected in series.
These larger networks are termed deep learning. Although there is no formal definition
of the term any network of more than a handful of layers may reasonably be considered

deep.

Altering the weights between neurons requires a method and goal to drive this alteration.
The goal is termed the loss function, with the goal being to minimize the value of the loss
function relating the output of the network and its matching label. Common loss functions
include the mean squared error or the categorical cross entropy. The minimum value of
the loss function is found via gradient descent, a simplified graphical depiction of which
is shown in Figure 1-A (C). Determining the minimum value of this parabola requires the
function gradient (or direction of change) and a quantity to move down this gradient. The

gradient is determined simply by taking the first derivative and the step size is determined
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by the user (this is also known as the learning rate in machine learning). This process is
repeated iteratively, each step moving towards a minimum, in this case a global
minimum. However as seen in Figure 1-A (D) this may be only a local minimum, with
gradient “humps” preventing gradient descent from finding the global minimum. The
choice of start position within this function space can result in significantly different
outcomes between different training attempts. Careful choice of learning rate is essential
to avoid this. Too small and the network may become stuck in these local minima, too
large and the network will be unable to settle into any minima at all. Gradient descent is
computationally expensive if applied sequentially to each layer of weights. As mentioned
previously machine learning went through droughts of development known colloquially
as an Al winter. One of the important developments that allows ANNSs to alter weights
efficiently for deep networks was the backpropagation algorithm. This algorithm
calculates the gradient of the loss function starting from the output layer and carrying
terms of the calculation in reverse order through the network, hence the gradient

propagates backwards.
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Figure 1-A: Concepts in machine learning. A: An individual node of an ANN takes
the sum of its inputs, i, multiplied by their respective weights, w, and applies an
activation function, f, to determine its output. f may take any form but is usually a
non-linear function with some degree of “thresholding” whereupon certain values
cause the node to “fire” similar to biological neurons. B: Nodes are grouped into
layers with each node connected to each node in the next layer. These layers have
different names; input layers, where data is fed into the network, hidden layers, where
most computation takes place, and output layers, where the results of the network
are extracted. The weights and activation functions for each connection or layer may
be different and are fine-tuned during training. C: Weights are adjusted towards a
given target by minimizing a loss function. This is achieved via gradient descent. At
a given point x the gradient, V, is determined and the next value is a set step, y, down
this gradient. This process is repeated iteratively until the algorithm reaches a global
minimum, or in practice a set number of steps is reached. D: Gradient descent is not
an infallible process; local minima can be found that are significantly greater than the
global minimum. These local minima may not have a gradient to the true minimum
and training stalls. As the initial value for weights is usually randomly determined it is
possible that different training periods may yield significantly different outcomes
depending on this initial value.
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1.7 Aims and objectives

1.7.1 Synergy information has been shown to significantly improve the
performance of motor control algorithms. There is currently no real time method
that can relay this information to subjects or devices. Therefore, one aim of this
thesis was to produce an algorithm that can extract synergy information in real
time. During development of this algorithm the accuracy and speed of
computation for detection of muscle activity onset and muscle synergy
extraction was compared for the most commonly used methods. This algorithm
was then applied to isometric knee extensions to identify the influence of
proprioception on synergy recruitment. Following muscle synergy analysis of
the knee extension a mechanistic explanation for these findings was provided

by population modelling of interneuron networks at the level of the spinal cord.

1.7.2 FES of the peripheral nervous system is often performed in an ‘ad-hoc’
fashion wherein stimulation paradigms are tailored individually by experts
observing and maximising stimulus-response for a given set up. To perform this
automatically requires an algorithm that can learn a generalizable transfer
function between electrical stimulus and neural response. For the second aim of
this thesis: an ANN was designed to model this relationship and then predict the

required electrical stimulus for a given output.

1.7.3 Experiments investigating spinal cord or cortical injury currently involve
expensive and time intensive animal studies that involve significant impact on
quality of life. A computational model that replicates motor deficits observed
would reduce the time, cost and animals required for these experiments.
Furthermore, computational models can highlight mechanisms of action that
may not be easily understood from experimental data. Expanding upon the
previously developed interneuron model, for the third aim of this thesis,
alterations were made to the model to replicate different forms of nervous
system injury. This model was then used as a simulated environment to test the

previously described algorithms linked together as a closed loop BMI device.
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Chapter 2: General Methods

2.1 General Rationale

Conceptually a BMI device has two major functions. Determining a desired output and
producing that output. In practice it is also necessary to monitor the output produced and
to provide some level of error correction. In an ideal example neural activity and the
associated output are measured and manipulated at the level of specificity required. In
other words, if a device can achieve its goal using a gross measure of neural activity,
such as EMG recordings, this is superior to one that requires a more specific measure,
such as spike firing rates. However, in most circumstances our understanding is limited
as to what the level of specificity should be, or in our ability to access it. Some devices
attempt to address this problem by interfacing with the nervous system at the level of
most specificity e.g. neuronal spikes (Jackson et al., 2006; Shanechi et al., 2014; Alam
et al., 2016; Bouton et al., 2016). However, this solution requires complex models of
system dynamics to predict how individual neurons or spikes combine to produce gross
output. These models are often insufficient as demonstrated by the fact that task
performance is improved using a general measure of neural activity such as local field
potential (LFP) (Flint et al., 2013; So et al., 2014; Stavisky et al., 2015). Indeed, the
synergy hypothesis suggests that the CNS may take advantage of generalized patterns
to solve the motor control problem. The level of detail required is instead probably
specific for a given task. For the needs of a device controlling the paralyzed limb, the
target is to reproduce natural control of the limb as closely as possible. From this
perspective muscle synergies seem immediately attractive as an output measure. This
in turn necessitates collection of EMG recordings as a non-invasive measure of muscle
activity. This has the additional benefit of being widely used in a clinical setting. The EMG
waveform consists of indirect measurement of the summed electrical activity of muscle
fibres as they contract. Whilst there are limitations to our understanding of how EMG
waveforms translate into end point force, ultimately all active movements are the product
of EMG activity within different muscles. Therefore, a device that could specifically
produce a desired EMG could theoretically recreate any desired synergy. This argument
then determines the levels of specificity the device aim for: output measured at the level
of synergies, created by input aiming at the level of EMG signals. In this section | will

expand upon the methodologies used to achieve this goal.
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2.1.1 Rationale for an algorithm-based approach

At the gross level most BMI research can be divided into two fields; device development
(getting information into and out of the body) and algorithm research (what is done with
this information). Whilst device development is an exciting field with new advances
regularly increasing the number and quality of recorded signals that are accessible, it is
instructive to the importance of this work to briefly discuss why devices are ultimately
subordinate to algorithms. Imagine a perfect device, one that can record and stimulate
every individual neuron in the body with infinite accuracy. Whilst this device would truly
be a marvel, it would not be possible with algorithms currently available to readily
improve upon current treatment options. Indeed, the sea of available information would
make it very difficult to determine which information is relevant to a given task. Consider
the alternative of the perfect algorithm, one that can perfectly translate information
recorded into the required steps to produce the desired effect. Here the way forward is
extremely clear, to develop a device that can record and stimulate the specified locations.
In this hypothetical, the clear goals provided by the perfect algorithm lead to smoother
development than the current process of incrementally increasing recording density with
no clear understanding of what the task requirements are (unless the requirements for a
perfect algorithm are a perfect device, but such a Sisyphean task can still be better
approximated with available tools than with available algorithms). Hence work in this
project has focussed on the development of better algorithms for motor control and it is
assumed that the engineering developments required to implement them can be
achieved given time. In a similar vein, whilst consideration is given to algorithmic
complexity, it is presumed that the increase in speed that could be achieved by
implementation in an FPGA or ASIC device (an obvious necessity for an implantable

device) would dwarf the effects of more efficient code implementation.

2.2.1 Subjects and Ethical approval

Data collection from humans was conducted according to the Declaration of Helsinki and
all experimental protocols were approved by the University of Leeds Research Ethics
Committee (reference number BIOSCI 16-004). 17 healthy subjects of mixed gender
(male = 9, female = 8) with an age range of 18-30 (24.4+ 2.57 years) were recruited to
participate in this study. Exclusion criteria included previous knee or leg injuries, if
participants had done exercise within 48 hours prior to testing, knee stiffness or self-

reported pain, use of recreational or performance enhancing drugs, ingested alcohol in
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the previous 24 hours or were unable to provide informed consent. Subjects provided

informed written consent to the study, noting possible risks associated with the activity.

Experiments and procedures were performed in a manner that conformed to the United
Kingdom Animals (Scientific Procedures) Act 1986. Approval was granted by the local
Animal Welfare and Ethics committee (University of Leeds). 8 male Wistar rats (=2509)

were used for acute surgery conditions and were killed following each surgery.

2.2.2 Dataset size

A brief discussion on the reasons for the size of datasets described throughout this text.
In section 3.3.2 comparisons are made between the performance of different synergy
extraction methods on synthetically generated muscle activity. Comparisons were made
using one-way analysis of variance (ANOVA) followed by a Tukey’s multiple comparison
test. This is the most straightforward example of determining the required sample size;
as the data is synthetically generated it is possible to generate an initial estimate of the
dataset and then easily increase it as required to reach the required sample size. Power
analysis was performed using G*Power version 3.1.9.7. This power analysis was initially
calculated from 50 examples with an a value of 0.05, an effect size calculated post-hoc
as 0.535 and the appropriate group means and the within group standard deviation
approximated as 0.3. This analysis predicted that a sample size of 64 would be required
to reach a power of 0.95. As it is easy to increase the dataset size using the synthetic
synergy generation method described in section 2.4.5 it was decided to increase this to

100 samples.

Choice of sample size is more complex when considering other aspects of this thesis.
Descriptive statistical methods are not commonly applied to muscle synergy analysis as
they are primarily a method of identifying patterns within a dataset. The dataset is
required to be representative of the population and therefore must be of a certain size,
but this is not formally defined as with other statistical tests, as muscle synergies analysis
is of a more exploratory nature. Therefore, the number of participants selected was

chosen to match similar studies within the literature to ease comparison.

In machine learning determining the required sample size is often an empirical process
as more traditional methods of determining sample size such as power analysis are not
appropriate. Power analysis is unable to predict the required dataset size as there is no
null hypothesis to refute; only the end performance of the network. Often times networks

are trained on an initial “rule-of-thumb” estimate based on prior experience, such as the
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“one-in-ten” rule wherein one variable can be predicted for every 10 examples (Baum
and Haussler, 1989; Haykin, 2008; Alwosheel et al., 2018). If following initial training the
accuracy of the model is insufficient then more data is collected, or the model is adjusted
to try and fit the limitations of the dataset. It is often true that the larger the dataset the
better the performance of the model however the complexity of the model and the
relationship under investigation can significantly alter the amount of data required
(Halevy et al., 2009). Using the “one-in-ten” rule combined with the two parameters the
network was asked to predict (width and voltage) it would seem that the network would
require 20 animals for accurate training. However, it was found after early analysis that
performance was greater than predicted on a limited dataset and a smaller number would
likely suffice. To minimize the required animals a streamlined version of the process of
network training and prediction described in Chapter 4 was repeated after each surgery.
From this it was determined that the model was capable of sufficiently accurate

predictions after 8 animals.
2.3 Coding

Algorithms were tested and run using custom written Python 3.6 code and run on a
Windows 10 device, Intel® Core™ i5-8400 CPU, 16GB DDR4 ram at 3200Mhz. Code is
available via GitHub at https://github.com/gareth-york/neural-bridge. MIIND is available
at http://miind.sourceforge.net/ and the model files and simulation results are accessible
at https://github.com/hugh-osborne/isotask. Synergy extraction methods were
implemented using the scikit-learn library, excepting for NMF which used the nimfa

library. ANN’s were implemented using Keras running a Tensorflow backend.

2.4 Synergy Analysis

Whilst any task is made up of individual EMG’s (and the activity of individual motor
neurons within them), this is not the complete picture. To achieve the end goal of a task
there are an almost infinite number of combinations of EMG’s that could perform the
movement due to the overlap in function of certain muscle groups when considering force
endpoints, as well as the opposing nature of agonist and antagonist muscle groups. The
large overlap of combinations of muscles and contractions which could achieve a task is
known as the DOF problem and it contrasts strongly with the repeatable and efficient
(but not maximally efficient) way in which tasks tend to be carried out (Bizzi and Cheung,
2013). One proposed solution to this problem is the muscle synergy hypothesis, wherein
instead of calculating individual EMG profiles, the task is simplified to patterns of muscle
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activity that are combined in a smaller feature space. Synergies have been shown to
improve control of virtual and prosthetic limbs compared to the use of individual EMG
profiles (Antuvan et al., 2016; Valk et al., 2019; Furui et al., 2019). To extract synergies
from EMG waveforms a variety of algorithms have been used, which have been
previously compared (Tresch et al., 2006). These comparisons have been repeated here
in combination with a variety of methods for determining which parts of the EMG signal
are of interest. These algorithms were then used to extract synergies from an isometric
knee extension at different angles to examine the role of proprioception in synergy
recruitment. A population interneuron model was developed to model the effect of
afferent feedback on synergy recruitment using the model MIIND (Multiple instantiations

of interacting neural dynamics).

2.4.1 Data Collection

Surface EMG was recorded from seven muscles of the subjects dominant leg; rectus
femoris (RF), vastus lateralis (VL), vastus medialis (VM), semitendinosus (ST), biceps
femoris (BF), medial gastrocnemius (MG) and tibialis anterior (TA) — of which the MG
and TA were discarded due to low signal to noise (SNR) ratio. Data analysis was
therefore performed on the five remaining muscle recordings. The skin was prepared for
electrodes with shaving, cleaning with alcohol wipes and then application of conductive
electrode gel. Data was sampled at 2 KHz using wireless Delsys Trigno IM electrodes.
Electrodes were placed on the muscle belly, defined by landmarks based on anatomical
observations: VL-between the greater trochanter and the lateral epicondyle; VM - on the
distal fifth of the medial knee joint; RF - between the greater trochanter and the lateral
epicondyle; VM - on the distal fifth of the medial knee joint; RF - between the anterior
superior iliac spine and the superior pole of the patellar, and MG belly located in distal
third of the medial knee joint (Rainoldi et al., 2004). Data was principally collected by
Piyanee Sriya.

2.4.2 Movement Protocol

Subjects were asked to lay on a standard medical examination bed. They were then
shown how to perform an isometric knee extension with the leg brace attached to their
dominant leg. Subjects were shown the resulting EMG output recorded using a Delsys
Trigno system. Subjects were asked to perform an isometric knee extension at maximal
voluntary effort for five seconds, attempting to maximise RF activity. This was repeated

six times with a three-minute rest between contractions. The dominant knee was fixed at
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one of four angles using a Donjoy TROM locking knee brace at 0°, 20°, 60° and 90°. The
angle of the knee was always measured against the hip joint and the bony prominence
on the outside of the ankle. Data was collected in two different positions and sessions
for each subject. In position one the participant was supine with both legs flat against the
bed. In position two the contralateral leg was kept bent such that the foot is flat against
the bed so that both the knee and hip are fully flexed. The position selected for each
subject was randomized for their first session. In the second session the subject

performed the task in the other position.

2.4.3 Data Pre-processing

For testing of onset/offset detection algorithms signals were tested both with and without
standard filtering procedures. The filtering process involved an initial band-pass filter
(high pass = 20 Hz, low pass = 450 Hz, second order Butterworth filter), followed by
rectification and then finally a zero-lag high-pass filter (5 Hz, second order Butterworth
filter) to remove frequency changes induced by rectification. Each EMG channel was
normalized to the maximum value for that channel across all six contractions. For testing
of synergy extraction algorithms, filtering was always used, and visual inspection was
used to segment data into equal sections containing one burst. The synergy extraction

was performed on the averaged values across contractions for each EMG channel.

2.4.4 Onset/offset-detection

In high SNR conditions muscle contractions appear in EMG signals as “bursts” which are
sustained increases in the electrical signal. For most analysis only the contraction period
is of interest and therefore the signal burst must be separated from background noise.
The simplest way to do this is via visual inspection, which the human eye is excellent at,
but this is obviously not available to a computer algorithm. The most commonly used
automated method is a thresholding algorithm, wherein activity above the given threshold
is activity of interest and anything below threshold is discarded as noise (Staude et al.,
2001). The signal amplitude can be used for thresholding, but another common measure
is the root mean square (RMS) of “windows” of data. Another value that has been used
is sample entropy (SampEn), a measure of the entropy or variability of the signal
(Richman and Moorman, 2000; Zhang and Zhou, 2012). The accuracy of onset detection
and speed of calculation varies but it has been previously shown that SampEn is an
effective method for detecting activity onset in signals with aberrant spiking activity

(Zhang and Zhou, 2012). This is important in the context of a BMI device targeting the
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paralyzed limb as it is common to see involuntary spikes in the EMG signals of spinal
cord injured patients due to hyper-excitability of the motor unit (Elbasiouny et al., 2010).
In order to determine the most suitable threshold for this device the three measures
previously mentioned, amplitude, RMS and SampEn were tested for speed of
calculation, accuracy compared to visual inspection and their susceptibility to increasing

levels of noise and random spiking activity.

The three measures examined here were compared using previously collected EMG
signals from the upper leg muscles. The signal is split into windows of time 32ms long
with a 4ms overlap between windows. There is a compromise between processing time
and onset and offset resolution in the window length and overlap. The values used here
were found experimentally to have a good balance of accuracy and computation speed.
Onset and offset are determined as the window when the threshold value is crossed.
The performance of each measure can then be compared to visual inspection. The most
straightforward thresholding measure is to simply use the signal amplitude (or in this
case the average of the windowed section). RMS is another commonly used method for
onset detection and is also sometimes used as a measure of force produced. RMS is

calculated using equation (1):

1
Yoms = [FGF x5+ xF) &)

The most complex measure examined here is the SampEn of the signal. From the time
series with length n, {x1, x2, x3, ..., x»} a template vector with length m is constructed. Within
this template vector, vector pairs are compared using a distance function wherein pairs
are said to match if their distance is less than r and the number of matching pairs counted
as B™. This is repeated for the template vector A™ with length m + 1. From this the
SampEn of a signal can be calculated for a given value of m, and r by taking the negative

logarithm of these two counts as in equation (2):

SampEn(x,m,r) = —ln(';:—ig) 2
To determine the threshold for each measure Otsu’s method was used. Otsu’s method
is most commonly used in image filtering tasks to separate images into foreground and
background. However, at its essence this task consists of separating a signal into two
classes based off some threshold value (Otsu, 1979). In this case our two classes consist
of signal of interest and noise. This was found to produce better results across all signals

than a predetermined threshold value or a percentage-based threshold e.g. 30%
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maximum value. Otsu’s method seeks to minimize intraclass variance in the signals
histogram by comparing the variance across all possible threshold values. This is

calculated with equation (3):

02(t) = wo()ad(t) + w,(t)af(t) (3)

Where w are the probability weights of the two classes separated by threshold t and o
is variance. The probability weight for separation into two classes with a histogram

binning of L can be found with equation (4):

wo(t) = TiZop (D) (4)
w1 () = it p()

The algorithm then searches through all threshold values and finds the threshold that
minimizes the ¢2(t). Measures were then compared for speed of calculation and

accuracy compared to visual inspection.

To examine each measures susceptibility to disruption by sources of noise additional
tests were carried out. Differing levels of gaussian noise were added to the test signal
corresponding to no, low and high levels of additional noise (scaled to 0, 0.5 and 1 of
signal amplitude). It is noted that the original signals had an unknown level of noise
present, but that this was deemed a high SNR recording based off prior experience. Even
signals with relatively high SNR can still be contaminated with brief but frequent aberrant
spiking activity. It has been suggested that SampEn is a method for addressing this
activity that an amplitude-based threshold would not. Spikes were added to the signal in
increasing frequency that consisted of a spike between maximum and minimum signal
amplitude over the course of 5ms. This was also combined with the same process of
increasing levels of noise. Finally, it was noted that Zhang and Zhou did not include
standard filters in their paper examining SampEn’s suitability for onset detection (Zhang
and Zhou, 2012). Therefore, the effects of standard filtering process was examined on

the accuracy of each measure in signals with aberrant spiking.

2.4.5 Synthetic muscle synergy generation

In comparison to onset/offset detection algorithms, where visual inspection provides
easy access to accurate onset/offset values, there is no easy way to access the “ground
truth” when performing synergy analysis on real datasets. It is not possible to know with
100% certainty that the synergies extracted reflect real control patterns that generated

the movement (this is sometimes used as an argument that muscle synergies are due to
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biomechanical constraints or a “ghost in the machine”). Therefore, it is useful to generate
synthetic muscle activity from simulated synergies as this allows us to compare the
effectiveness of different techniques (Tresch et al., 2006). Here generation of synergies
was constrained according to commonly agreed facts regarding synergy structure.
Namely that synergy vectors are non-negative and that activation coefficients share
signal dynamics with EMG signals. The type of muscle activity to be generated was
modelled to reflect the same isometric knee extension activity that the synergy extraction
algorithm would be tested on. Therefore, the synergy vector was generated as 5 random
integers constrained to a floating point between 0 and 1. Activation coefficients were
generated using randomly selected contractions selected from the isometric knee
extension dataset, taken from a random patrticipant and random muscle. Based on initial
analysis of the isometric extension task it was determined that two synergies were
sufficient to describe this dataset. To provide maximum comparability to this dataset two
synergies were also chosen for the synthetic dataset. A small amount of gaussian noise
was added to the synthetic activation coefficient (scaled to 0.25 of signal amplitude).
These represent the ground truth synergies and they were combined using matrix
multiplication to generate 5 synthetic EMG signals. It was on these synthetic EMGs that
the performance of different synergy extraction methods was compared using cosine

similarity analysis.

2.4.6 Cosine similarity analysis

Determining the degree to which two vectors are related is a complex task, with a variety
of statistical methods available, such as Pearson’s correlation or cosine similarity
analysis. Cosine similarity analysis measures the cosine angle between vectors in a way
that is less sensitive than other methods to differences in Euclidean distance (having
different magnitudes in the projected multidimensional space). This value ranges
between 1 and -1 which corresponds to both extremes of similarity and dissimilarity. The
cosine of two vectors A and B can be calculated using equation (5):
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Cosine similarity analysis was used in a pairwise fashion to determine the similarity
between synergy vectors and activation coefficients across both simulated datasets and
human recordings (Rimini et al., 2017). In the case of comparing synergy extraction
algorithms across the simulated datasets, each algorithm’s extracted synergies were

normalized to the average cosine similarity with 100 randomly generated synthetic
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examples. The cosine value between these random examples and the extracted
synergies reflects any bias in the synthetic synergy generation algorithm. Normalizing to

this value should remove this bias.

2.4.7 Synergy extraction algorithms

As previously described, muscle synergies are hypothesised to be patterns of muscle
activity used to solve the DOF problem. These patterns are not initially observable from
visual inspection of the untransformed data as they exist in a lower data dimension (a
simple example of this is to compare a 3-dimensional sphere to a 2-dimensional slice of
that sphere. The reduced dimensions of the circle provide a reasonable approximation
of the sphere whilst being easier to visualise). Dimensions could be removed from the
dataset arbitrarily but this risks discarding much of the data of interest. Instead
dimensionality reduction algorithms seek to transform data into a new dimensional
space. This new dimensional space is constructed such that variability is concentrated
into a smaller set of information dense dimensions. Information theory shows that this
dimensionality reduction reflects latent structure in the data, in this case muscle
synergies (Lee and Seung, 2000). If these methods are successful, then certain
dimensions can be discarded as only containing a small portion of the variability of the
original dataset. There are a variety of methods available for synergy extraction and their
performance has been previously examined in various contexts (Tresch et al., 2006).
However, there remains some disagreement between studies on the most accurate
method for various datasets. Four of the most commonly used algorithms are principal
component analysis (PCA), independent component analysis (ICA), non-negative matrix
factorization (NMF) and factor analysis (FA). The implementation of these methods was
examined for speed in terms of calculation time and accuracy in terms of the cosine
similarity values between the real and extracted synergies. This accuracy was confirmed

using ANOVA and a Tukey multiple comparison test.

2.4.8 Principal component analysis

PCA attempts to concentrate data into a set of orthogonal principal component vectors
that explain the majority of variance in that data (Pearson, 1901; Hotelling, 1933). As the
majority of the variance is captured within the first few principal components, by only
including these components a dimensionality reduction is achieved. Let this dataset be
a matrix defined as X with size n x n where n is the length of the dataset and p is the

number of variables. It is important that the data is centred on a zero mean by subtracting
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its mean value from each variable. From this zero-meaned dataset, the covariance matrix

C, of p X p variables are then calculated using equation (6):
cov(X,Y) = =3I (X; — )Y — ) (6)

Where X and Y are variables within X and this process is repeated for all p. This matrix

is symmetrical and given in matrix notation takes the form:

_ XX
C (n-1)

From this the eigenvalues and eigenvectors can be calculated by diagonalizing the

matrix giving the form:
C =VLV

Where V is the matrix of eigenvectors and L is the matrix of eigenvalues arranged in
decreasing order. The eigenvectors are normalized, and this gives orthogonal unit
vectors, which can be interpreted as orthogonal axis on a chart. These axes are the
principal components which form the new variables that describe the dataset. The choice
of the first PCA axis is that which has the minimal total distance between data points and
the PCA axis. This is also the axis which captures the maximal variance of the data. This
procedure is repeated leading to the descending scale of importance in PCA components
seen in L. Additionally, each additional PCA component must be uncorrelated with the
previous components, which is equivalent to being orthogonal in the feature space. This
process is more efficiently calculated using singular value decomposition of X from which
it can be proven that singular vectors and values are equal or directly related to principal

directions and eigenvalues.

2.4.9 Factor analysis

FA has the closest degree of similarity to PCA, although it is approaching the same
problem from the opposite direction (Bartholomew et al., 2008). Whereas PCA attempts
to describe the observed dataset with a smaller number of “better” variables, FA
assumes that these smaller latent variables caused the observed dataset. The output of
PCA and FAis often highly similar, so the difference is partially academic, but it
influences understanding of how each technique functions. Consider the dataset X which

is made up of individual data points of p variables with each variable having n data points

37



such that X, = {x,x,, ..., x,}. Each variable can be described by a combination of m

common factors as in equation (7):
Xi=apuFitapF+- am Byt e (7)

Where F is the common factor, a is known as the factor loading or score and e is a factor
specific error term which is the variance that this factor cannot explain. Calculating these
factor scores is done in one of two ways, either using the principal component method
to account for the greatest variance (in which case the processes become
mathematically analogous at this point, although the scores are only proportional to the
principal components) or by common factor analysis selecting the least number of factors
that can account for the total variance in the set of variables. This is usually followed by
factor rotation to aid in data interpretation and to attempt to force closely related
subgroups of variables to score highly on just one factor. The choice of rotation method
largely relates to whether it is desirable for factors to be correlated or uncorrelated. In
this case an orthogonal rotation was chosen for uncorrelated factors for easier

comparison with the other synergy analysis technigues.

2.4.10 Independent component analysis

ICA is a blind source separation method which can be used to extract muscle synergies
from EMG data (Comon, 1994). Due to its name, and the fact that it is sometimes applied
to similar problems, it is sometimes unduly assumed that ICA and PCA are similar in
function. Besides attempting to find a set of basis vectors that describe the data, the two
techniques have little in common. In PCA the goal is to find basis vectors that capture
the most variance (within the other constraints of the algorithm). ICA attempts to find
vectors that are statistically independent of one another by maximizing the non-
Gaussianity of the vectors selected. In fact, for the purposes of synergy extraction one
of the core limitations of ICA is that it is not possible to determine the order or importance

of each identified source.

An intuitive understanding of the difference can be illustrated by the cocktail party
problem (McDermott, 2009). Imagine a room hosting a cocktail party with multiple
conversations being recorded by a set of microphones placed around the room. Each
microphone records the sounds from the party made up of the same set of sound sources
(the conversations) but receives a different mixture due to their placement in the room.
The problem here is to try and isolate and identify the original conversations from the

mixtures recorded. PCA is unlikely to extract the original signals unless by chance the
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principal components happen to align well along these signals. ICA on the other hand
puts greater emphasis on extracting the original sources. The first assumption is that the
observed data is made up of statistically independent signals at all time points (an
assumption that is, in practice, reasonably robust to violation). It is also assumed that
the original sources have non-Gaussian distributions, which is often true for biological

signals.

Following these assumptions ICA attempts to solve problems of the class defined by
eguation (8):

X = AS (8)

Where X is a vector with size p multivariate input measurements, S is the original source
vector also size p made up of independently distributed variables and Ais the p X p
mixing matrix. For a given dataset of X, ICA attempts to estimate both A and S. For our
purposes A represents the synergy vectors and S are the activation coefficients. There
are a variety of methods for estimating these matrices, here FastICA is used as a method
with an excellent balance of computation time, accuracy and robustness to noise. The
precise details of FastICA are presented in more detail by Hyvéarinen and Oja (2000) but
the process involves iteratively updating an initially random weighting for basis vectors
until the process converges on an estimated value of non-Gaussianity (Hyvarinen and
Oja, 2000).

2.4.11 Non-negative matrix factorization

As in the previous examples NMF attempts to find a reasonable approximation of a larger
dataset whilst reducing its overall dimensions. As with ICA, NMF can be applied to blind
source separation problems, in that it attempts to find basis vectors that approximate the
original pre-mixing signals (Tresch and Bizzi, 1999; Lee and Seung, 2000). NMF’s chief
advantage compared to other approaches for the purposes of synergy analysis is that
the constraint of non-negativity aligns well with muscle activity i.e. muscle activation is
never negative. NMF has also previously been shown to be more effective at identifying
latent structure in the data when compared to other techniques such as principal

component analysis (Ebied et al., 2018).

Consider the matrix X of size n X p where n is the length of the dataset and p are the
number of variables. In the case of NMF basis vectors are constructed via an iterative
algorithm, similar to ICA, but matrix values are constrained to be non-negative and the
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objective function varies, most commonly and used here is the Frobenius norm. This

class of problem can be defined by equation (9):

X = WC 9

Such that, Cis an N x n matrix where N is the chosen NMF rank factor. Each row of C
represents some structure in the time series similar to a PCA component. Wisap X N
matrix which, when multiplied by C, approximates X. Each column of W quantifies the
amount that the corresponding row in C contributes to the original data in X (Lee and
Seung, 2000; Donoho and Stodden, 2004; Berry et al., 2007; Torres-Oviedo and Ting,
2007). Each synergy is represented by the corresponding column in W and row in C. C
is termed the activation pattern of the synergy as it represents some underlying structure
of the original EMG time series. W is referred to as the muscle contribution vector of the
synergy as each component value indicates the contribution of the synergy’s activation
pattern to the associated muscle activity. This naming convention has been used to refer

to the equivalent outputs for each extraction algorithm examined.

There are a number of methods for calculating W and C but the method used here is an
implementation of Lee and Seung's multiplicative update rule (Lee and Seung, 2000). W
and C are initialized using an SVD approximation of the matrix and then iteratively

updated using equation (10) and (11) (Boutsidis and Gallopoulos, 2008):

n+1 n (WD

il < Yo (WmyTWneny (10)
n+1 n_ XECHTXp,
w[i,j] < w[l,]] (W"C"+1(C"+1)T)[i,j] (11)

This is repeated until the Frobenius norm of W and C ceases to decrease (within a

tolerance range) or a maximum number of runs is reached (n = 30).

2.4.12 Selection of rank factor

For the purposes of muscle synergy analysis rank factor is equivalent to the number of
synergies selected. It is the number of new dimensions that the data has been reduced
to e.g. from 5 EMG dimensions to 2 synergy dimensions means a rank factor of 2.
Selection of rank factor is critical to produce dimensionality reduction during synergy
extraction. PCA, NMF and FA can be sorted by the variance accounted for (VAF). In

these cases, rank factor was chosen consistent with previously literature such that rank
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factor was increased to the minimum required to be greater than 90%. VAF was
calculated for each synergy profile for both the individual muscle and for all muscles
collectively. If VAF was below 90%, the resulting synergies were discarded (Tresch et
al., 2006). In ICA this is not possible, and the choice must be made via other methods.
In this case it was decided that the number of components for ICA would be chosen to
match that agreed upon by the preceding methods as there was no disagreement

between them.

2.6 Neuronal Models

Our aim was to create a neural population model such that applying NMF to the firing
rate activity of the motor neuron populations would yield the same synergy patterns as
those identified in the EMG data. The model does not attempt to reproduce simulated
EMG signals. Instead, it was assumed that the cumulative activity of multiple motor units
described by the average activity of distinct motor neuron populations would serve as a
proxy for EMG. We first considered rate-based models which represent a population
metric, for example the average firing rate or oscillation frequency, abstracted from the
underlying individual neurons. Rate-based models are suitable for reproducing firing
rates in neural circuits, but there is no clear relationship with the state of the underlying
neural substrate (Wilson and Cowan, 1972; Kuramoto, 1991). Although not essential for
this work, considering detailed modelling with Rybak’s group, as well as future
requirements for the model, it was desirable to use a technique that retains a closer
relationship with the state of spiking neurons that comprise the neural circuit. Population
Density Techniques (PDTs) do so: they retain information about the state of neurons in

the circuits but calculate population level aggregates directly.

2.6.1 Population Density Technigues

PDTs model neural circuits in terms of homogeneous populations of neurons. The
individual neurons are described by a model, such as the leaky-integrate-and-fire model.
The model of an individual neuron is characterised by a so-called state space: the values
that determine the state of individual spiking neurons. For a simple neuron model this
can be its membrane potential. More complex models represent the state of other
elements such as synapses. PDTs represent a population by a single density function

that represents how neurons are distributed across the neuron’s state space.

2.6.2 MIIND
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MIIND is a neural simulator which implements a version of a PDT to simulate multiple
interacting populations of neurons (de Kamps et al., 2008; Marc, 2011). It can provide a
visual representation of the probability density function by displaying the density during
simulation. Figure 3-L shows an example of this visual representation. A network of
populations can be built in MIIND using a simple XML style code format to list the
individual populations and the connections between them. Populations in the network
interact via their average firing rates, which are assumed to be Poisson distributed spike
trains. For each connection, the firing rate of the source population becomes the average
rate of the Poisson distributed input spikes to the destination population. The connections
defined in the XML code, have three parameters: the post synaptic potential or
instantaneous synaptic efficacy, the number of individual connections between source
neurons and target neurons, and a delay which can be used to approximate time taken
for spike propagation and synapse transmission. The MIIND modelling framework was
developed by Hugh Osborne and Marc de Kamps.

2.6.3 The Spinal Circuit Model

MIIND was used to build a network of populations of exponential integrate and fire (EIF)
neurons according to the connectivity diagram in Figure 2-A. Table 2-A shows the
connection parameters for all populations in the model. All populations use the same

underlying neuron model as described in equation (12):

T = (V= Vreet) + Ape e (12)
Where v is the membrane potential, v,..s; = =70 mV, Ay = 1.48, vipres= —56 MV, and T =
3.3 ms. These parameters were chosen such that populations could produce a wide
range of average firing rates between 0 and 200 Hz to exhibit typical neuronal
frequencies. An EIF model was chosen in contrast to the more commonly used Hodgkin
Huxley style neurons. This is because the objective was not to reproduce the EMG
signals exactly, but to provide a concise explanation for overall synergy patterns. It is
expected that any particular description of activation of ion channels (as in a Hodgkin
Huxley style model) would have no significant impact on the population level activity or
synergy patterns in this task and would therefore dilute the power of the model. The main

structure of the network consists of two neural populations, named “Extensor
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Interneurons” and “Flexor Interneurons”, connected together in a network with five motor
neuron populations, one for each muscle. The Extensor and Flexor Interneuron
populations represent combinations of excitatory and inhibitory neurons and therefore
can project both kinds of connections to other populations in the network. Other studies
have previously described the connection motif of agonist inhibition with antagonist
excitation and this is utilised here to connect the interneuron and motor neuron
populations to elicit the agonist/antagonist relationship between the five muscles
(Sherrington, 1909; Doss and Karpovich, 1965; Bigland-Ritchie, 1981; Pierrot-
Deseilligny and Burke, 2005). These features, including the mutual inhibition between
the two interneuron populations, also appear in the McCrea and Rybak CPG model
(McCrea and Rybak, 2008). Although rhythm and pattern formation are not included in
this model, the implications for applying a CPG model to an isometric task are discussed
later.

All supraspinal activity comes from the Cortical Drive input and is responsible for the
“contraction”. There is a direct connection to the MN-RF motor neuron population
indicative of the muscle which is being maximally contracted in this task. Cortical Drive
also projects to the Extensor and Flexor Interneuron populations. As there are more
excitatory than inhibitory connections from the Extensor and Flexor Interneuron
populations to the motor neuron populations, the Cortical Drive indirectly causes
excitation of all motor neuron populations as well as MN-RF. During the simulation, the
input to the two interneuron populations begins at OHz before increasing to 260Hz over

1 second, then five seconds later, dropping back to OHz over 1 second.

It was hypothesised that the most important factor in shaping the observed synergies
would be the connectivity of the network model and that they could be modulated with a
proprioceptive input. To simulate changes in proprioceptive feedback due to the knee
angle, the Extensor Afferent Feedback input to the Extensor Interneuron population was
introduced and for different trials was altered between 110Hz and 180Hz. The Flexor
Afferent Feedback input was held constant. The average firing rate of each of the five
motor neuron populations was recorded at a rate of 10 KHz (corresponding to the 0.1ms
time step of the simulation) then sampled at 2ms intervals. NMF was performed on the

resultant time series as described for the experimental recordings.
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Population Source Post Average number of Connection Average
name population synaptic incoming connections to delay time firing rate

name delta each neuron (ms) where

efficacy defined
(mV) (Hz)

MN-RF Extensor -0.052 35 2

Interneurons
MN-VL Extensor -0.052 35 2

Interneurons
MN-VM Extensor -0.052 35 2

Interneurons
MN-ST Extensor -0.052 140 2

Interneurons
MN-BF Extensor -0.052 70 2

Interneurons
MN-RF Flexor -0.052 140 2

interneurons
MN-VL Flexor -0.052 70 2

interneurons
MN-VM Flexor -0.052 70 2

interneurons
MN-ST Flexor -0.052 35 2

interneurons
MN-BF Flexor -0.052 35 2

interneurons
MN-RF InhibRF -0.052 70 2
MN-ST InhibST -0.052 70 2
InhibST Extensor -0.052 70 2

interneurons
InhibRF Flexor -0.052 70 2

interneurons
Extensor Flexor -0.052 35 2
interneurons interneurons
Flexor Extensor -0.052 35 2
interneurons interneurons
Extensor Background 0.1 100 0 400
interneurons
Flexor Background 0.1 100 0 400
interneurons
InhibST Background 0.1 100 400
InhibRF Background 0.1 100 0 300
MN-RF Background 0.1 100 0 300
MN-VL Background 0.1 100 0 300
MN-VM Background 0.1 100 0 300
MN-ST Background 0.1 100 0 300
MN-BF Background 0.1 100 0 300
MN-RF Cortical drive 0.1 100 0 45*
MN-VL Cortical drive 0.1 100 0 20
MN-VM Cortical drive 0.1 100 0 20
MN-ST Cortical drive 0.1 100 0 20
MN-BF Cortical drive 0.1 100 0 20
Extensor Cortical drive 0.1 100 0 60
interneurons
Flexor Cortical drive 0.1 100 0 60
interneurons
Extensor Extensor 0.1 100 0 110to
interneurons  afferent input 180**
Flexor Flexor afferent 0.1 100 0 90
interneurons input
InhibST Extensor 0.1 100 0 110

afferent input
InhibRF Flexor afferent 0.1 100 0 10

input

* During the task, Cortical Input transitions from OHz to these values back to OHz

** Afferent input remains constant throughout the activity but is set between 110Hz and 180Hz to produce
different synergy patterns.

Table 2-A: Parameters relevant to each connection between populations and
from inputs in the model. Values for input activity are provided in the form of an

average firing rate.
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Finally, the network was augmented (The greyed area of Figure 2-A) to generate a knee
flexor bias for RF and an extensor bias for ST which was observed in the experimental
results. An additional excitatory connection was added to the model from the Extensor
Interneuron population to MN-ST, and from the Flexor Interneuron population to MN-RF.
This is equivalent to increasing the number of excitatory connections overall between
those populations. In order to modulate the effect of afferent feedback input on these
connections, two additional populations of inhibitory neurons were added to the model:
InhibST and InhibRF. This network motif of an additional excitatory drive coupled with a
controllable inhibitory input has previously been used to reproduce observed activity in
Semitendionsus and Rectus Femoris of a cat and further supports the use of CPG
models for human studies (Shevtsova et al., 2016).

In the experiment task, two positions were used to identify the effect of passive
insufficiency on the synergies recruited. It was expected that the contralateral hip position
would serve only to influence the degree of muscle stretch which in the model would
already be accounted for in the activity of the afferent feedback input. There is, therefore,
no analogue to hip position defined in the model.

2.7 Machine learning models “fuzzy” non-linear relationships

For FES, many devices use a posteriori information to determine how stimulation should
be delivered e.g. if stimulus at a site results in extension of the limb, that site is now
always used for extension. This approach does not attempt to understand how
stimulation produces movement and only constitutes a very simple transfer function
between input and output. Specific control of individual EMGs requires algorithms with a
greater degree of control over stimulation parameters than what is currently available.
Determining how electrical stimulation at a set of given points relates to electrical activity
at another point (in the form of EMG’s) is a multidimensional problem with a high degree
of variability between participants and different stimulation sites. A truly general transfer
function would allow for translation across all this variability; however, this is difficult to
achieve due to the increasing complexity of the functions shape as specificity decreases.
Stimulation at the periphery is more specific than the spinal cord, which is more so again
than at the cortex, and the complexity of individual control of a given muscle becomes
more problematic. No such algorithm currently exists, even in the periphery, which the

algorithms developed in this section aims to address. The algorithms here was used to
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control stimulation of the rat hindlimb at the level of the peripheral nerve for the purposes

of recruiting specified EMG waveforms.

2.7.1 Surgical Procedure

To collect the training dataset for the ANN the sciatic and tibial nerves were stimulated
with a large stimulation paradigm of mixed pulse width and voltages. A schematic
representation of the surgical preparation is shown in Figure 2-B (figure adapted from
Smith et al., 2018). Each rat was induced with a mixture of ketamine and xylazine (10:1)
delivered intraperitoneally and was maintained with a mixture of ketamine and saline
(1:1) delivered via carotid cannula. Proper anaesthetic plane was tested throughout
surgery via the toe pinch method. Normal body temperature was maintained (37+1°C)
via a thermometer-controlled heat blanket and heat lamp. Following the loss of paw
withdrawal, the right ventral hindlimb was exposed and an incision made lateral to the
femur. The sciatic nerve was exposed via blunt dissection proximal to the bifurcation into
tibial and peroneal nerves and the cuff attached at this point. In a subset of animals a
second cuff was also attached to the tibial nerve below the branch point. This was not
repeated in all animals due to the significant increase in time required to provide the
much larger stimulation paradigm required for stimulus across multiple sites. In all cases
the cuff was aligned lateral to the nerve, such that the stimulating wires within were
parallel to the nerve path. Cuffs were not sutured to avoid nerve compression and the
surgical site was kept moist with a non-conductive mineral oil. Test pulses were delivered
to ensure proper placement of the cuff. The Achilles tendon was then dissected and
attached to an ergometer via metal rings sutured into the end point. A pair of insulated
fine copper wires (40 AWG; 79 um in diameter) with 1.5- to 2-mm bared tips were
inserted in pairs into LG, MG, EDL, EHP and TA using a hypodermic needle (27 G). Test
pulses were again delivered to ensure placement of recording electrodes was correct.
The surgical site was then closed via a haemostat to prevent drying and to better simulate
in vivo conditions and joint position. Optimal response length was determined
experimentally in one animal by altering the length of the muscle, measured via

Microdrive on the stereotaxic setup.

47



1 — sciatic nerve
2 — tibial nerve

3 — peroneal nerve

a — lat. gastrocnemius
PulsePal -
Stimulation abcde

c — ext. digit. longus
/ \ ‘B\\ d — ext. hal. propr.

b — med. gastrocnemius

1 & — - ‘ e — tibialis anterior
a — Achilles tendon
Micro1401 —
EMG recording o
3
Ergometer

Figure 2-B: Surgical preparation for stimulation of the sciatic and tibial nerves.
The sciatic nerve (1) branches into the tibial (2) and common peroneal (3) nerves.
The peroneal nerve goes on to become the deep fibular nerve (The depiction of nerve
anatomy shown here is limited to nerves relevant to the experiment). The sciatic and
tibial nerves were exposed and stimulating cuffs were attached (red circles). EMG
recordings were taken from medial and lateral gastrocnemius (a,b), extensor
digitorum longus (c), extensor hallucis proprius (d) and tibialis anterior (e) via a pair
of copper hook electrodes inserted into the muscle belly. (Only a single pair is shown
here for clarity). Force recordings were made using an ergometer attached to a metal
ring sutured into the Achilles tendon. Adapted from Smith et al., 2018.
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2.7.2 Data collection

EMG recordings were made from 4 muscles of the rat hindlimb; extensor digitorum
longus (EDL), extensor hallucis proprius (EHP) medial and lateral gastrocnemius (MG,
LG) and tibialis anterior (TA). TA signals were discarded from all rats due to poor signal
quality. Force recordings were made via an ergometer attached to the Achilles tendon.
Although recordings were made from 8 animals, it was not possible to get high quality
responses from every muscle in any animal. Details on the number of recorded muscles
from each animal, the threshold potential and how the stimulus range compared to this
threshold, and an estimate of the rheobase for each animal are shown in table 2-B. The
threshold value was calculated as the voltage at which the minimum pulse width (100
Us) generated a response. Rheobase was estimated as the largest width signal (2000
us) with the smallest voltage that generated a response. This value does not reflect the
true rheobase as the pulse widths used here are not sufficiently long to approximate
infinite pulse width. However, for the stimulation dataset recorded this still provides
insight into the electrophysiological properties of the nerve. Data was sampled at 10Khz
using a CED micro 1401 data acquisition interface and Spike8 recording software
[Cambridge Electronic Design (CED), Cambridge, United Kingdom]. Electrodes were

placed within the central mass of the muscle belly.

2.7.3 Stimulation Protocol:

Stimulation was provided via a handmade multistrand stainless-steel wire in a flexible
epoxy cuff using the Sanworks PulsePal isolated stimulator via a custom written Python
program. Stimulus pulses were balanced biphasic square pulses with variable width
(100-2000 ps increments of 100 us) and voltage (100-2000mV in increments of 100mV).
The range of stimulus parameters was selected to cover both minimal i.e. no response
and maximal response within the resolution of the PulsePal device. The saturation point
for the muscles under examination was determined through exploratory stimulation. This
process involved manually adjusting stimulus voltage and width until the measured
response ceased to increase in peak to peak amplitude. This was repeated in each
animal at the start of recording and it was determined that across animals’ saturation
occurs at approximately 2V and 2000us, so this was determined to be the maximum

values for the stimulation paradigm.

These parameters create a stimulus paradigm of 400 pulses. Additionally, test pulses

were delivered as the first, last and every hundredth pulse leading to a total of 404 pulses
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in each stimulation paradigm. Test pulses were also balanced biphasic square pulses
with a fixed width and voltage (200 ys - 5000mV). To avoid inducing fatigue or other
changes in excitability of the nerve, pulses were separated by 3s. In those animals where
a second cuff was attached to the tibial nerve stimulation was provided to each cuff
separately as well stimulating both cuffs at the same time. When stimulus was provided

to both cuffs the stimulation parameters were kept the same for each cuff.

2.7.4 Data pre-processing and artificial neural network design

After collection, signals were segmented to remove signal artefact from a predefined
point following stimulus delivery synched with the PulsePal device. For training purposes
four parameters were extracted from the EMG signals; max amplitude, RMS, waveform
length and SampEn. Combinations of these values have been shown to result in a high
degree of waveform separation (Phinyomark et al., 2013). This training dataset and the
matching stimulation parameters were then shuffled to avoid bias from ordering. Data
was split into training and validation datasets in a 3:1 ratio. Network layers consist of an
input layer size corresponding to the EMG parameters for each muscle (or motor neuron
output when applied to the MIIND network), two hidden layers one of 2000 tanh and
another of 2000 leaky rectified linear units (leaky ReLu), and finally a linear output layer
of size 2 (corresponding to the stimulation parameters of pulse voltage and width). This
network was trained using the mean squared error as its loss function and an adaptive
gradient optimizer (initial learning rate = 0.05). Training occurred for 6000 epochs or
until validation accuracy ceased to improve for 50 epochs. The network accuracy was
reported and then for illustration purposes the network was asked to predict the training
dataset. This process was repeated with the dataset restricted to just 7 of the recorded
animals and the network was then asked to predict the dataset for the now unseen 8™
animal. A full description of the mathematics involved in tensor calculation is beyond the
scope of this thesis, but full documentation of the methods used here are available at:

https://keras.io/ and https://www.tensorflow.org/.
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Animal Muscles Muscles Ergometer Threshold Stimulus Estimated Tibial

ID Recorded with recording  value per range Rheobase Stimulation
clear muscle
signal
1 LG, MG LG X 700mV T-3T 300mV v
2 LG, MG LG, MG X 400mV T-3.5T 700mV v
3 EDL, EHP None v N/A N/A N/A X
4 EDL, EHP EDL, X 600mV EDL T-5T 500mV X
EHP 500mV EHP
5 LG, MG None v 1300mV - N/A N/A X
based on
ERG
response
6 LG, MG LG, MG v 1300mV T-1.3T 800mV X
7 EDL, EHP EDL, X 100mV T-20T 100mVv X
EHP
8 EDL, TA EDL, TA X 100mvVv T-20T 100mv X
Total
LG 3 2
MG 2 2
EDL 2 1
EHP 2 1
TA 1 0

Table 2-B: Summary of results measured per animal. Column two records the
muscles from which the signal was recorded. Column three records which of these
recordings were deemed of sufficient quality for further analysis. Indicated in column 4
are the animals from which ergometer recordings were collected. Column 5 records the
value at which the shortest stimulus pulse (100 ps) generated a response via the sciatic
cuff. This was deemed the threshold value and was calculated for each muscle in the
recording and is listed separately when this value differs between muscles. From this
value the stimulus range was calculated in terms of the maximum voltage within the
stimulus paradigm. The rheobase of each nerve was estimated as the smallest voltage
that the longest stimulus pulse (2000 us) elicited a response. Tibial stimulation indicates
in which animals’ tibial stimulation was attempted. Provided below this are the total
number of recordings for each muscle separated into EMG and ergometer recordings.

51



2.8 Closed loop control and MIIND injury modelling

The algorithmic implementation developed here was designed to test the ability of the
previously described algorithms to restore healthy muscle synergies in an in silico model.
In contrast to the implementation shown here, closed loop controllers in BMI devices
rarely incorporate motor output into the stimulation provided. This moves closer towards
true closed loop control by incorporating the produced synergies into future stimulation
signals. The MIIND network previously described in Section 2.6 was used as a basis for
modelling both healthy and injured states. Simulations have a direct advantage over
biological experiments as they have access to the ground truth when extracting
information from the system. This allows precise error measurement and comparison to
biological models. Stimulation was provided at selected sites in the interneuron network
and the motor neuron output measured. This formed the dataset to train the same ANN
described in Section 2.7, so this also provided an opportunity to further test the

generalizability of the algorithm to a new stimulation environment.

2.8.2 Network injury models

The previously established MIIND network was used as an example of a healthy
interneuron network. Two different injury types were targeted for modelling, cortical and
peripheral injury, and different degrees of injury of total or partial loss of connecting
neurons. The location of these injuries is shown in Figure 2-C. Cortical injury was
modelled by removal of descending input to either the extensor or flexor interneuron
pools or both, simulating an injury to the spinal cord or to the cortex itself as in stroke.
This leaves the afferent feedback, and inhibitory links between interneuron pools intact
but removes descending control. Peripheral injury was modelled by the removal of
afferent input to interneuron pools and was similarly replicated in unilateral and bilateral

injuries.
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2.8.3 Reconstruction of healthy synergies using an ANN

After simulation of the different injury types, synergies were extracted using NMF from
the resulting motor neuron outputs as previously described. These synergies were then
compared to the healthy output directly where possible, however as previously described
synergies were selected to account for 90% VAF which can lead to differing ranks of
synergy extracted. The MIIND network can simulate electrical stimulation at multiple
points in the form of an incoming excitatory connection. Whilst it would be possible within
the simulation, stimulation was restricted to excitatory stimulation as electrical inhibition
via FES is not well established and remains difficult to implement (Damiano et al., 2013;
Avendafio-Coy et al., 2017; Kim et al., 2018) Different sets of stimulation parameters
were fed into different points of the network dependent on the injury type. For cortical
injuries, interneuron pools for the injured site were targeted for stimulation. In peripheral
injuries stimulation at these sites makes less sense (particularly in the case of total loss
of connections from the injured pool) and therefore motor neurons were stimulated
individually. This abstracts the response of a real network wherein precise targeting of
each motor neuron is not possible. However, as is shown in Chapter 4 it is in principle
possible to selectively recruit a subset of EMG output from a given stimulation point. The
same network architecture described in Chapter 4 was then trained on the stimulation
and EMG parameters extracted from the injured MIIND network. From the predictions of
this network it is possible to predict the required stimulation to generate the healthy EMG
variables that produce the healthy synergies. These stimulation parameters were then

fed back into the simulation and compared to the healthy network output.
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Chapter 3: Online real time synergy analysis — proprioceptive feedback

and isometric knee extension

3.1 Abstract

Muscle synergies are hypothesized to be a solution for simplifying the DOF problem in
motor control. The methods for extracting muscle synergies are grouped together as
dimensionality reduction algorithms, and the effectiveness has been previously shown
to differ between datasets. To perform synergy analysis, it is also first required to define
the muscle activity of interest. This is usually performed via visual inspection, but
automated methods also exist. The performance in terms of speed and accuracy of
various onset/offset detection algorithms was compared on their own, and in combination
with dimensionality reduction algorithms on a synthetic dataset. From this the most
accurate of these algorithms, NMF, was used to investigate the role of proprioception in
control of muscle synergy recruitment. Proprioceptive feedback and its role in control of
isometric tasks is often overlooked. In this study recordings were taken from the upper
leg muscles during an isometric knee extension task where the knee was fixed at
different angles, limiting afferent feedback to proprioceptive sources. Subjects were
asked to voluntarily activate their rectus femoris muscle for four different internal knee
angles and for two different positions of the contralateral leg. Muscle synergy analysis
was used to identify canonical temporal patterns in the data. The second muscle synergy
showed a collection of patterns at differing angles and positions suggesting the
integration of functionally separate afferent signals into muscle activity. The MIIND neural
simulation platform was used to develop a spinal population model capturing the
combined activity of motor neuron populations for each of the five muscles. The model,
based on current understanding of neuromuscular activity in cats includes, for the first
time in a human study, separate inhibitory interneuron populations controlling the
bifunctional rectus femoris and semitendinosus. When applying the same synergy
analysis to the output activity from the model, it was possible to qualitatively reproduce
similar muscle synergy patterns and from there deduce three functionally separate

afferent signals responsible for the variation in the second synergy.

3.2 Introduction

Execution of a motor task is considered to be modular in nature and is modified by

sensory inputs from the periphery and descending input from the brain. This modular
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nature has been given many names, but the field has now largely agreed upon the term
muscle synergies. A similar consensus has not been reached on the methods for
identifying muscle synergies, although NMF and ICA are becoming more dominant in
terms of popularity, the effectiveness of different algorithms varies between studies. In
order to understand which method and its implementation would be most accurate for

our purposes it is necessary to compare these different methods.

The role of proprioceptive feedback in the recruitment of muscle fibres to counter load
experienced during a given task is well studied. However, its role in control of interactions
between muscles during isometric tasks is still poorly understood. The effect of
proprioceptive feedback in models of central motor control is controversial and is thought
to be only marginally involved in isometric tasks, especially if static and at a single joint.
A previous report on activation patterns in muscles of the upper arm during an isometric
task showed no change when arm position was altered (Roh et al., 2012). Furthermore,
a study of muscles in the hindlimb of a cat during a balance task showed an invariance
to starting position (Torres-Oviedo et al., 2006). However, in this chapter, evidence will
be presented for the opposing view and a mechanism is proposed for a role of

proprioception in the recruitment of muscles during an isometric task.

3.2.1 Current understanding of synergy recruitment does not adequately explain

the role of afferent feedback

There is great variation in the way a motor task can be performed, even at a single joint.
Each variation is produced from a combination of muscle recruitment patterns, often
described in terms of time. These patterns are commonly referred to as muscle
synergies. Their use by the CNS to alleviate the DOF problem is accepted but little is
known about the mechanism of their recruitment (Grillner, 1985; Bizzi et al., 1991; Tresch
et al., 2002). Similar synergies are reported across species, especially for routine
repetitive tasks like locomotion in vertebrates where antagonistic pairs are recruited at
and across joints to generate a coordinated alternating pattern of activity (Dominici et al.,
2011; Yang et al.,, 2019). Although not all neurons associated with this recruitment
pattern have been identified, their functional grouping into populations within the spinal
cord is undisputed, as is their ability to produce all locomotor output patterns observed
under fictive conditions (Martin et al., 2007). The current accepted model for control of
locomotion is a three layered CPG (McCrea and Rybak, 2008; Rybak et al., 2015). In

descending order, the three layers of this model rhythm generation, pattern formation
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and the motor neurons themselves. These descending layers interact with and control
the next layer or produce motor output in the case of the motor neurons. Although this
model can reproduce the rhythm, pattern and output from motor neurones during
locomotion the component parts of this network model have rarely been applied to

human activity (Markin et al., 2012; Shevtsova et al., 2016).

In this study, the experimental data reported clearly shows an influence of proprioceptive
feedback on the structure of observed synergies. Based on this experimental data a
model for isometric tasks in humans was created that uses key elements of the model
proposed by Rybak et al (Rybak et al., 2015).This model is described at the level of
populations of neurons and is simulated using population density techniques (PDTSs)
which have been shown to accurately model population aggregates (like firing rates)
while retaining a close correspondence to spiking neurons - more so than neural mass
models - without producing the overhead of simulating thousands of neurons (de Kamps
et al., 2019).

3.2.2 MIIND is a model of spiking neurons that efficiently models populations

In this study, for the first time in humans, it was possible to reproduce experimental
outcomes using a model of the CPG during a simple isometric task. This finding suggests
that the architecture of the model is possibly suited to reproduce the output of vertebrate
locomotor CPGs, even if recorded as muscle firing and not neurograms as in fictive
locomotor studies. The appropriateness of population models for investigating motor
function is further demonstrated here. The neural simulation software package, MIIND,
is introduced as a tool for easily prototyping and developing such population models and
producing theoretical activity output which aids in clear understanding of the functional

effect of model features (de Kamps et al., 2008; de Kamps et al., 2019).

MIIND is a software implementation of a method for simulating populations of neurons
using PDTs. Instead of directly simulating a finite population of neurons, PDTs instead
consider a probability density function (PDF) which describes the probability of finding a
neuron with a certain membrane potential or other state variable in the population. As
well as providing a computationally efficient method for simulation, the major benefit of
PDTs is that they can be used to calculate a theoretical average firing rate for the
population (as well as other metrics such as average membrane potential). This
eliminates the need for sampling, binning and smoothing techniques required with more

traditional methods of direct simulation. Because PDTs are still based on the model
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definition of the underlying neurons, the output activity remains linked to cell structure
and while other techniques can often rely on poorly justified assumptions regarding the
sources of variability (noise) in the population, PDTs isolate this assumption to the type
of distribution of random input spikes. MIIND by default assumes the input to be Poisson
distributed and provides a software environment for simulating the interaction of multiple
populations via their Poisson distributed average firing rates. MIIND's specific PDT
implementation is agnostic to the underlying neuron model and produces a visual
representation of the probability density function which makes building networks flexible
and provides an insight into the state of each population. MIIND is particularly well suited
to situations with known populations of neurons as the source of observed behaviour but
the observations themselves (such as EMG) are cumulative and indirect measures of

neural activity.

3.2.3 Experimental rationale

Establishing the effectiveness of onset/offset detection is more than simply a matter of
comparing the results to visual inspection. Hyperparameters such as how the data is
segmented or filtered before passing through the algorithm can affect performance for
different methods differently. These variables were kept consistent across testing
conditions to give each method a level playing field. As visual inspection is held as the
gold standard within the field it is reasonable to compare performance between
algorithms by eye. Performing this comparison suggests that costly computational cost
to SampEn calculation may not be as useful as previously suggested. Comparing
dimensionality reduction algorithms requires a ground truth to measure results against.
Therefore, the first step required a method for synthetic synergy generation to provide
this ground truth (Tresch and Cheung, 2006). The performance of the most commonly
used synergy extraction algorithms was then compared across different noise conditions,
differing levels of aberrant spiking activity, and in combination with onset/offset detection.
The results from these comparisons agree with previous findings about the effectiveness

of NMF but highlights how in certain circumstances ICA may be more effective.

To investigate the effect of afferent feedback on muscle synergy recruitment, we
examined the change in interactions among a group of selected muscles, at fixed knee
joint angles during an isometric knee extension. The interactions between homonymous
and heteronymous muscles are well known but rarely examined in the same isometric

task (Pierrot-Deseilligny and Burke, 2005). Recordings were made from seven muscles
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in healthy young subjects while they performed an isometric knee extension focusing on
voluntarily activating the rectus femoris muscle of the quadriceps. It was hypothesised
that this would result in the same synergies being recruited at all angles of the task and
that changes in the recruitment pattern of these synergies would reflect alterations to the
synergy (as opposed to recruitment of new synergies) due to static proprioceptive
feedback from muscle stretch. Observed changes to the recruitment of the quadriceps
and hamstrings, in combination with our model, suggest that afferent feedback does
affect the recruitment of muscle synergies during an isometric task. This clearly
demonstrates that assumptions regarding proprioceptive feedback in motor control have

not been sufficiently investigated.

3.3 Results

3.3.1 A moving average window accounts for aberrant spiking activity

The accuracy and speed of different thresholding methods for detecting EMG onset is
shown in Figure 3-A. Accuracy here is defined as the ability to detect the onset/offset of
muscle activity of interest. An accurate measure will identify the activity and exclude
noise. In this example of high SNR activity without spiking activity all measures perform
similarly, determining the onset of activity as closely as possible within the limits of the
sliding window. Of the three methods examined both average amplitude and RMS were
nearly instantaneous, whereas SampEn averaged at 0.59s for calculation time. Figure
3-B shows the accuracy of each measure in the presence of aberrant spiking. In this
case average amplitude and SampEn identify the activity of interest under all spiking
conditions whereas RMS becomes inaccurate selecting the entire signal as activity of
interest. This contrasts with findings in the literature which states that SampEn should
be superior under these conditions. Figure 3-C shows the changes that occur when SNR
ratio decreases in combination with aberrant spiking. Under low noise conditions each
algorithm is approximately as accurate as each other as seen in the left most column As
SNR decreases RMS is the first to show signs of decreasing accuracy, as seen in the
middle column, whereas both average amplitude and SampEn only starts to decrease
in accuracy until the very low SNR ratio condition in the right hand column, wherein each
measure begins to incorrectly identify some spikes as activity of interest. Figure 3-D
demonstrates the effects of standard filtering regimes on each of the onset algorithms. It
is apparent that each algorithm’s performance is degraded by the presence of normal

filtering methods, RMS and the average amplitude measure begin to incorrectly identify
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spikes as activity under the medium noise condition where previously using the average
amplitude this did not occur until the very low SNR condition. SampEn is particularly

badly affected, and incorrectly identifies spikes as activity even under the high SNR
condition.
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Figure 3-A: Comparison of accuracy and calculation speed of three algorithms
for detection of onset of muscle activity. EMG signal is recorded from rectus
femoris muscle via surface electrodes during an isometric knee extension (red). The
identified activity for each algorithm is shown overlaid on top of the muscle activity
(black). The three algorithms used for onset detection are the average, root mean
square (RMS) and sample entropy. The threshold for each value was determined
using an Otsu filter, commonly used in image/edge detection to filter a signal into two
groups, in this case muscle activity and baseline. Each algorithm included a sliding
window of 32ms with an overlap of 4ms. The only filtering methods applied to the data
was a rectification step in contrast to normal noise filtering processes including
bandpass/low pass filters. The speed of each algorithm was tested using the
hardware and implemented in Python 3 as noted in Chapter 2.3 and is indicated
above the signal.
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3.3.2 NMF performs best among common synergy extraction methods

The performance of different synergy extraction algorithms was also examined for speed
and accuracy. The four algorithms tested were PCA, ICA, factor analysis and NMF. To
compare the accuracy of these methods it is necessary to have access to the original
synergies that generated the EMG activity of interest. As described in section 2.4.5 EMG
signals were generated from synthetic synergies and the algorithms were then asked to
reverse this process and identify these muscle synergies. A representative example of
the synergies generated, and the resulting EMG waveforms are shown in Figure 3-E.
Both the synthetic synergies and the generated EMG waveforms are shown. Synergy
vectors represent the contribution of each “channel” which are equivalent to muscles in
real world terms. Synergy coefficients show when the synergy is recruited during a given
movement or contraction. These waveforms and synergies match well with previous

descriptions of muscle synergies and EMG waveforms.

The accuracy of each method was measured as the cosine similarity between the
extracted synergies and the real synergies. A representative example is shown in Figure
3-F, although later figures show the cosine similarity calculated as the average
performance over multiple synthetic synergies. In this example none of the extraction
methods extract the synergies with perfect accuracy, however NMF has the highest r
value for both synergies and for vectors and activation coefficients. Figure 3-G shows
the average cosine values normalized to the performance due to random chance.
Comparisons were made between these values using one-way analysis of variance
(ANOVA) followed by a Tukey’s multiple comparison test. Residuals were tested for
normality using a histogram and a Levene’s test for equal variance. This was followed
by a one-way ANOVA. The mean cosine similarity was found to be significantly different
for both synergy activation coefficients (F = 3951.02, p < 0.05) and for synergy vectors
(F = 3273.21, p < 0.05). A Tukey multiple comparison test identified the direction and
magnitude of this difference. For synergy activation coefficients all methods except FA
and PCA were found to be significantly different (mean difference = 0.0019, p = 0.550)
and that mean cosine similarity of NMF was significantly greater in comparison to all
other methods (NMF- PCA; mean difference = 0.3934, p < 0.05, NMF- FA; mean
difference = 0.3915, p < 0.05, NMF- ICA; mean difference = 0. 2974, p < 0.05). This
relationship was also found to be true for synergy vectors with FA and PCA being not
significantly different (mean difference = 0.0053, p = 0.678) and with NMF being

significantly more accurate in comparison to all other methods (NMF- PCA; mean
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difference = 0.0568, p < 0.05, NMF- FA; mean difference = 0.0515, p < 0.05, NMF-
ICA; mean difference = 0.1103, p < 0.05). NMF shows a clear advantage in accuracy for
identifying activation and synergy vectors. Of note here is the poor performance of ICA
which in some implementations has been indicated to be the most accurate (Tresch and
Cheung, 2006).

When different onset/offset detection algorithms were also used the performance of all
methods degraded as shown in Figure 3-H. A two-way ANOVA was required to identify
the effect of onset detection method and synergy extraction method on cosine similarity.
Residuals were tested for normality using a histogram and a Levene’s test for equal
variance. There were statistically significant interactions between cosine similarity for
both onset detection and between synergy extraction methods when examining synergy
activation coefficients (F = 327.63, p < 0.005 and F = 276.45, p < 0.005 respectively).
There was also a significant between group interaction for onset detection and synergy
extraction (F = 25.31, p < 0.005). This finding was also true when examining synergy
vectors with statistically significant interactions between cosine similarity for both onset
detection and between synergy extraction methods (F =7.43, p <0.005 and F =8.37, p
< 0.005 respectively) but there was no longer the same between group interaction (F =
1.25, p = 0.262). The simple main effects of these interactions were identified using
multiple pairwise comparisons. A table with the full pairwise comparisons is available in
the Appendices. Relevant results to this analysis are the significantly lower cosine values
for all algorithms across every onset detection algorithm. NMF continues to outperform
all other extraction algorithms in combination with each onset detection algorithm. Of

these methods a moving average reduced performance the least and SampEn the most.

In terms of calculation speed algorithms were compared for a single example of
EMGs. PCA was calculated in <0.0001s, FA, in 0.17s, ICA in 1.14s and NMF in 0.08s.
From these results NMF presents a balance between an acceptable calculation speed
(0.08s corresponds to 12.5 frames per second, or about half the speed that is required
for smooth capture of motion in video. This delay is small enough that other aspects of
the code are likely to dominate lag in implementation) and accuracy. PCA was faster
than NMF but had significantly lower r values when applied to the synthetic dataset.
Therefore, NMF was chosen as the method for further implementation within the online

synergy extraction algorithm.
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Figure 3-E: Example of simulated synergy coefficients and vectors and
resulting synthetic muscle activity. (TOP LEFT) Bar chart represents synergy
vectors corresponding to individual channel (muscle) contribution to the synergy 1
and 2 (black, red). Vectors were randomly generated numbers constrained to be
positive numbers between 0 and 1 due to the positive nature of muscle activity ruling
out negative synergies. (TOP RIGHT) Line graphs are synergy coefficients
corresponding to recruitment of synergy 1 and 2 across the muscle contraction
(black, red). Coefficients were generated by selecting a random muscle and
participant from a previously collected dataset of upper leg muscle EMGs recorded
during isometric knee extraction with an added Gaussian noise distribution centred
on 1 and scaled by 3, standard filtering (high pass= 20 Hz, low pass = 450 Hz, second
order Butterworth filter) and then normalized to maximum signal amplitude.
(BOTTOM) Synthetic muscle activity was generated by taking the dot product of the
two vector and coefficient matrices. These were then normalized to their maximum
amplitude.
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Figure 3-G: Average cosine similarity between synthetic synergies and
synergies extracted by four commonly used muscle synergy extraction
methods. Synergies were extracted from 100 examples of synthetically generated
muscle activity separated into synergy activation coefficients and vectors. Error bars
are standard deviation. Synergy extraction methods used were principal component
analysis (PCA), independent component analysis (ICA), factor analysis (FA) and
non-negative matrix factorization (NMF). Asterix and black bars above bar charts
indicate significance following ANOVA and Tukey multiple comparison test in relation
to mean cosine similarity of NMF. NMF was found to have significantly greater cosine
values than other methods for both activation coefficients (NMF— PCA; mean
difference = 0.3934, p < 0.05, NMF- FA; mean difference = 0.3915, p < 0.05, NMF-
ICA; mean difference = 0. 2974, p < 0.05) and for synergy vectors (NMF— PCA; mean
difference = 0.0568, p < 0.05, NMF- FA; mean difference = 0.0515, p < 0.05, NMF-
ICA; mean difference = 0.1103, p < 0.05).
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Figure 3-H: Effect of three different onset detection algorithms on synergy
detection accuracy of four commonly used muscle synergy extraction
methods. Synergies were extracted from 100 examples of synthetically generated
muscle activity following detection of muscle activity of interest by three onset
detection measures. The measures used was an average of the signal amplitude
(Amplitude), the root mean square (RMS) and the sample entropy (Sample Entropy).
Performance on raw data is shown for comparison (Raw). All detection algorithms
used a sliding window of 32ms with a 4ms overlap. Error bars are standard deviation.
Synergy extraction methods used were principal component analysis (PCA),
independent component analysis (ICA), factor analysis (FA) and non-negative matrix
factorization (NMF).
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3.3.3 Application of NMF to isometric knee extension task

Of the 7 different muscles of the leg recorded only 5 of these were used for further
analysis of activity and patterns as on examination the muscles TA and MG were always
inactive, as expected due to the nature of the task. Muscle synergies were extracted
from the EMGs recorded from 5 muscles across two different positions to examine how
proprioceptive feedback alters muscle synergy recruitment. The contralateral hip was
flexed or relaxed to induce passive insufficiency in the recorded leg to highlight
differences in proprioceptive feedback. A photo capturing the different leg positions is
shown in the Appendices. A spinal population circuit model was created with connections
between interneurons, motor neurons and afferent feedback, based on current CPG
models and accepted neural circuits (Pierrot-Deseilligny and Burke, 2005). The model
was generated after extraction of the experimentally observed muscle synergies.
Alterations were made to the overall structure of the model based on these findings (such
as the required additional excitatory connections required to replicate the bias towards
RF and ST) Figure 3-L shows the EMG signals for all five muscles after rectification and
smoothing, and the average firing rates of the motor neuron populations in the simulation.
It is difficult to discern the meaning of differences between the time series, highlighting

the need for analysis techniques such as NMF.

3.3.4 NMF identifies two muscle synergies from the EMG activity

To identify synergies appropriate for experiment-model comparison, NMF was
performed with a range of rank values, as previously mentioned the rank factor
corresponds to the number of synergies extracted. The appropriate rank to use was
chosen as the number required to raise the VAF above 90% which can be observed in
Figure 3-1 as the dotted line. In this case rank two raised VAF above this threshold.
Although 90% is an arbitrary threshold, and there are other methods for choosing
appropriate rank, patterns identified by three or more synergies were less consistent
across participants. As described in Section 2.4, each synergy consists of a column of
matrix W with length five (one value per muscle) and a row of matrix C representing a
time series describing some underlying structure of the original data. For each muscle,
the corresponding component of W, multiplied by C, gives the contribution of synergy,
s, to that muscle’s EMG. Cosine similarity analysis was performed on the synergy rows
and columns across participants for each position, synergy and angle. There is high

correlation between synergy 1 results among the participants, regardless of position and
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internal knee angle as seen in Table 3-A. Though not as high as synergy 1, there is also
high correlation between participants for synergy 2. Despite some variation, the r values
in Table 3-A suggest that there is a common pattern of muscle synergy recruitment

across all participants.

72



VAF

1.0

0.8

0.6

0.4+

0.2 1

0.0
Rank

Figure 3-I1: Average variance accounted for (VAF) scree plot for rank one to four
NMF dimensionality reduction across all angles and both positions of the
isometric knee extension task. The 90% VAF threshold indicates that two is the
appropriate rank to use and therefore the number of synergies to extract. Error bars
show Standard Error of the Mean (SEM).
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Synergy(s) Angle

Position 1 0° 20° 60° 90°
Muscle Contribution 1 0.92 0.94 0.88 0.89
Vector (W,s)

2 0.77 0.66 0.69 0.58
Activation pattern 1 0.96 0.97 0.97 0.97
(Cis)

2 0.66 0.75 0.73 0.69
Position 2
Muscle Contribution 1 0.94 0.93 0.92 0.89
Vector (W,y)

2 0.67 0.65 0.62 0.70
Activation pattern 1 0.96 0.96 0.97 0.96
(C.s)

2 0.68 0.74 0.73 0.76

Table 3-A: Synergy rows and columns (as defined in section 2.4.10) were
compared across all pairs of participants using cosine similarity analysis
following synergy extraction using NMF. Cosine similarity analysis outputs a value
between -1 (negatively correlated) 0 (uncorrelated) and 1 (positively correlated). For
both positions (activating or inactivating the contralateral hip flexors) and for all
internal knee angles, there is high correlation between subjects indicating that, during
the task, the same synergy patterns are being recruited by the majority of subjects.
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3.3.5 Synerqy 1: Coordinated, balanced recruitment of all muscles is a canonical

recruitment pattern in anisometric task

The NMF process generates, for each of the two synergies, a time series activation
pattern and a vector of five values, one for each muscle. Figure 3-J shows the vector
and time series of synergy 1 (A) and 2 (B) for both positions across different internal
knee angles. The activation patterns (line plots) should be considered in conjunction with
the five value muscle contribution vectors shown in the bar charts. Synergy 1 represents
general coordinated muscle recruitment as would be expected in an isometric extension
and contributes to the majority of the observed EMG activity. Because of this, the
activation pattern closely matches the overall profile observed in the raw EMG data (the
transition from low to high to low activity during the contraction). The high muscle
contribution values for all five muscles indicates that this activation pattern is present in
all five EMG recordings. Both the activation pattern and muscle contribution weights are
well conserved across all angles, positions, and muscle groups. Among the muscle
contribution values, there is a slight shift between 0° and 90° from a quadriceps bias to
a hamstring’s bias, however this change is less apparent in position 2. The well
correlated vector values in synergy 1 were used to eliminate outliers and reduce the
variability of synergy 2. If any synergy 1 vector value fell below 5 or above 6.3, we
removed that trial from the results. In many of the trials which were excluded, the time
series activation patterns were observably different from the average. While these could
represent other legitimate synergies, the two modal synergy pattern was chosen for
further investigation as representing the majority of subjects.

3.3.6 Synergy 2: The degree of muscle stretch requlates a balance between the

activity of agonist and antagonist muscles

The shape of the activation pattern of synergy 2 indicates that this synergy captures a
difference between the activity of each muscle during the resting and transition periods
at the beginning and end of the contraction. During the contraction, the contribution of
synergy 2 reduces to near zero because all muscles reach their maximal activity which
is the feature captured solely by synergy 1. The patterns of synergy 2 change for different
knee angles and position indicating that there is a proprioceptive effect on muscle
activation even in an isometric task such as this. In position 1, as the internal knee angle
is increased, there is a marked drop in the average of contribution vector values for the

antagonist muscles whereas the average of the agonist muscles shows the opposite
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trend. At 90°, the average magnitudes are the same for both muscle groups indicating
that the proprioceptive feedback is balanced. In individual cases, the vector values vary
as to which muscles receive a bias which is confirmed by the high variability of the data
at this angle. What is important is that there appears to be no preference for any muscles

in contrast to the lower angles.

3.3.7 Synerqy 2: At the limit of extension, afferent signals strongly affect synerqy

patterns in both positions

At 0°, in both positions, the contribution vector values for the agonist muscles are zero
while the antagonist muscles show high non-zero values. This indicates that the range
of activity of the antagonist muscles was reduced compared to the agonists. This is
consistent with additional excitation to the knee flexors or inhibition of the extensors when
the leg is near the limit of extension. In position 2 at 20°, the antagonist bias is flipped to
the agonists. Such a stark difference between 0° and 20° could be due to the nonlinear
nature of afferent feedback but it could also demonstrate two functionally different
afferent signals at play. One signal to represent extreme extension which is active at 0°
and another to represent the overall muscle stretch which at this angle and position
shows a bias towards the knee extensors. At 20°, the first signal may be switched off. In
position 1, the strong antagonist bias remains at 20°, suggesting that, if there is afferent

activity signalling the extension limit, it persists due to passive insufficiency.

3.3.8 Synergy 2: Across many angles and positions, there is a stronger bias

towards the bifunctional muscles

In many individual cases, the synergy 2 pattern sets the contribution vector value of
either RF or ST very high compared to the other muscles. In position 2, with the exception
of 0°, there is a higher average vector value for RF than any other muscle with a lower
variance. At 0° for both positions and at 20° in position 1 (near the extension limit) there
is a strong bias to ST compared to biceps femoris. At higher angles in position 1, the ST

bias appears to reduce and then vanish entirely.

3.3.9 The model reproduces synergies observed experimentally

During each MIIND simulation, the two afferent feedback inputs were kept constant and
the Cortical Drive input was changed from low to high activity to reproduce the

contraction behaviour. All populations produced average firing rates which were either
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Figure 3-J: Muscle synergies extracted using rank two NMF from an isometric
knee extension task at four internal angles of the knee (0°, 20°, 60°, and 90°). (N
= 17, mixed gender, male = 9, female = 8, age range of 18-30 (24.4+2.57years).
Subjects performed 6 contractions of 5s with the subject being asked to maximize
rectus femoris activity. NMF was performed on the average EMG of each subject’s 6
contractions. The experiment was repeated across two positions inactivating (red
values) or activating (blue) contralateral hip flexors. Line charts are activation
patterns identified by NMF as underlying structure in the original EMG time series.
Bar charts show the contribution of the associated activation pattern to the activity of
each of the five muscles in arbitrary units. Error bars represent standard error of the
mean. A: Synergy 1 demonstrates a balanced, coordinated contraction across
muscle groups in line with what is observed in the raw EMG data. B: Synergy 2 for
position 1 (top in red) shows the balancing of antagonist/agonist activations between
the quadricep muscles and hamstrings. Synergy 2 for position 2 (middle in blue)
shows the same extreme antagonist bias at 0°with the leg at maximal extension.
However, there is a strong agonist bias at 20°perhaps demonstrating the effect of
less passive insufficiency. RF:Rectus Femoris; VL:Vastus Lateralis; VM:Vastus
Medialis;ST:Semitendinosus; BF:Biceps Femoris
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passed to connected populations in the network or recorded for analysis. The activity of
the five motor neuron populations, MN-RF, MN-VL, MN-VM, MN-ST and MN-BF, was
analysed. The raw output from these populations is shown in Figure 3-L (top right). The
output is a great deal smoother than the overlaid EMG recording data due to MIIND’s
simulation technique and the lack of many of the experimental sources of noise. Though
there is undoubtedly a great deal more information available in the EMG traces, the
model is designed only to explain how the two synergies are produced and, as will be

shown, a smooth rise and fall in activity is sufficient.

The heat plots in Figure 3-L (top left) show the probability density functions produced by
MIIND for each population in the network. As shown in Section 2.6, the density function
describes the likelihood of finding a neuron from the population with a given membrane
potential. The top density plot shows the state of the MN-RF population during the period
before the action begins. The lower density plot shows the state when the input is
maximal. In the lower density plot, there is a higher probability of finding neurons at the
threshold (-51mV) indicating that the average firing rate of that population is higher. The
population transitions to the top density once again after the Cortical Drive returns to
zero. These transitions are also visible in the probability density functions of the other
motor neuron populations due to the indirect excitation from Cortical Drive via the
Extensor and Flexor Interneuron populations. Therefore, for all motor neuron
populations, as with the EMG signals, the average firing rate output shows an increase

to a high level of activity followed by a decrease to rest.

In the same manner as the EMG recordings, rank 2 NMF was performed on the time
series of average firing rates of the motor neuron populations in the model producing a
five-value muscle contribution vector and time series activation pattern for both
synergies. The afferent feedback inputs to the Extensor Interneuron, InhibRF and
InhibST populations were altered and the results were compared to those of the isometric
task. Figure 3-K shows the results from the NMF process. As seen in Figure 3-K (A) for
synergy 1, the activation pattern matches the shape of the descending input pattern from
the Cortical Drive input (5 seconds of maximal activity with a 1 second ramp up and
down). The five muscle contribution values are all well above zero indicating that the

activation pattern is a component in the activity of all the motor neuron populations.
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3.3.10 Changing afferent inputs A or B creates a bias in synergy 2 between

agonist and antagonist motor neuron populations

The synergy 2 seen in Figure 3-K (B) activation pattern drops to zero during the
contraction and returns to its starting value at the end. The degree to which this pattern
contributes to each motor neuron population’s activity changes with the different
combinations of afferent inputs. When afferent input A is higher than B, the activation
pattern contributes to the antagonist motor neuron populations significantly more than
the agonists as was observed in the experimental results. The additional excitation from
input A causes an imbalance in activity between the Extensor Interneuron population
and Flexor Interneuron population. The resultant higher firing rate of the Extensor
Interneuron population causes additional excitation of MN-ST and MN-BF and inhibition
of MN-RF, MN-VL and MN-VM. Therefore, during the entire contraction task including
the resting period, the antagonist motor neuron populations have a consistently higher
firing rate than the agonist populations. This is how a bias in the synergy pattern to either
the agonists or antagonists is controlled. As the difference between afferent inputs A and
B is reduced, the contribution of this pattern lowers until itis eliminated across all five
populations. For the EMG recordings, at 20° in position 2, the agonist/antagonist bias is
reversed. This can be reproduced in the model by increasing afferent input B above A
which creates a bias towards the agonist motor neuron populations in the contribution
vector. It is possible that as passive insufficiency is reduced in position 2, the afferent
feedback further shifts to the Flexor Interneurons following the trend identified with

increasing angle in position 1.

3.3.11 The additional connection strength to MN-RF and MN-ST produces a bias

for those two populations in synergy 2

In position 1, the contribution vector value of ST is higher than that of BF at 0°. This bias
remains at 20° then reduces at 60°before being eliminated entirely at 90°. The additional
connections between the Extensor Interneuron population and MN-ST cause the activity
of MN-ST to increase both during the rest and contraction periods (although the range is
reduced) which induces a higher contribution vector value for MN-ST compared to MN-
BF. This effect is “multiplied “by the higher activity of the Extensor Interneuron population
compared to the Flexor Interneuron population which explains why the bias is greater
when afferent input A is much higher than B. However, were this the only mechanism for

altering the bias, it should still be visible at 90°where the afferent inputs are balanced. In
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order to eliminate the bias, the inhibitory population InhibST is required to offset the
additional activity from the Extensor Interneuron population. This mechanism is mirrored
for the MN-RF population. In position 2 with the exception of 0°, RF has a consistently
high contribution vector value. The additional connections to MN-RF from the Flexor
Interneuron population enable a difference in the synergy pattern to that of MN-VL and

MN-VM and the InhibRF population allows modulation of the bias.

3.3.12 Afferent input C provides a strong bias in synerqy 2 for the antagonist

muscles during maximum extension

To produce the synergy 2 patterns at 0° in both positions and 20° in position 1, all that is
required is to provide a large amount of excitation through afferent input A. The sharp
change to the synergy patterns at 60°in position 1 and 20° in position 2 indicates that the
afferent input does not change linearly or there is a separate additional afferent signal
causing this pattern. In both cases, this can be modelled with a separate afferent input
C. In the model, at 0° in both positions, afferent inputs A and B are switched off and C is
switched on to produce the required pattern. If A and B remained active, the agonist
motor neuron populations in position 1 would be completely inhibited, eliminating both
synergies. Likewise, in position 2, afferent input C would need to be much higher to
overcome the opposing excitation of the Flexor Interneuron population from input B. At
maximal extension therefore, the model predicts a step change in afferent signals or an
entirely separate afferent pathway which is activated in this scenario. Although this
afferent input is labelled as a single pathway within the model it may correspond to one

or many sources that produce this step change in behaviour.

3.3.13 The model does not account for variation in afferent signals from trial to

trial

Figure 3-L shows the side by side comparison of the synergies extracted from the
simulation and average synergies from the EMG recordings for both positions. As
discussed above, many of the patterns and trends are captured by the model. However,
there are a few differences worthy of discussion. In position 1, the model produces no
contribution vector values in synergy 2 for MN-VL and MN-VM in contrast to the
experimental results. The model provides no variability in the inputs to these populations
and no mechanism for changing their activity in comparison to MN-RF. This is particularly

obvious at 90°where, in the experimental results, there is an equal chance of seeing a
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high contribution vector value for all muscles which leads to the common low average
vector value with high variability. The equivalent in the model is a zero-vector value for
all motor neuron populations in synergy 2. The trend in agonist/antagonist synergy bias
in position 1 which is perhaps extended to 20° in position 2 is not continued for 60° and
90°. The model currently offers no explanation for the changes in synergy pattern
although it is still possible to reproduce them by changing the afferent inputs and/or

cortical drive to specific motor neuron populations.

3.4 Discussion

The major findings of this study show that synergy recruitment during an isometric knee
extension is affected by proprioceptive feedback, and that these synergies can be
reproduced by a neural population model integrating afferent feedback. We also show
that the performance of automated methods of muscle activity analysis, whether it be
onset/offset detection or synergy extraction algorithms, varies dependent on the data
examined and the choice of hyper parameters. The synergies recruited during the
isometric task are well conserved across conditions and individuals, consisting of
simultaneous muscle activation and the balancing of agonist-antagonist recruitment
relative to internal angle of the knee. These results are further supported by findings from
a novel simulation of the local spinal circuits showing proprioception from muscles
contribute to synergy level organization of motor control in humans during isometric
tasks. Whilst our results are largely in line with previously established literature regarding
synergy recruitment, we differ in our finding that joint angle and therefore afferent
feedback regarding joint position alters synergy recruitment (Torres-Oviedo et al., 2006;
Roh et al., 2012; Sohn and Ting, 2016). We propose that in this case, because the
available synergies are constrained due to the nature of an isometric task, adaptation is
achieved through changes in recruitment. Inspection of the synergies extracted during
NMF analysis matches well with biomechanical interactions expected of the muscles,
with synergy 1 reflecting coordinated contraction of all muscle groups and synergy 2
reflecting the agonist-antagonist pairing of the hamstrings and quadriceps. The similarity
of each synergy’s activation pattern supports that these are the same synergies being
recruited at each angle. The changes observed in synergy 2 at different internal angles
of the knee demonstrates a clear effect of proprioception on synergy recruitment.
Quadriceps and hamstring activity in synergy 2 is balanced at a smaller angle when the
contralateral hip is flexed. This further reinforces that these changes reflect the influence

of afferent feedback due to change in relative muscle stretch requiring re-balancing of
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the agonist-antagonist activity. This finding challenges long held assumptions that

proprioception does not play a role in isometric tasks and synergy recruitment.

An important factor in justifying our results is the appearance of high contribution vector
values for the antagonist muscles in both synergies. When studying synergies using
NMF, it can be the case that the contribution vectors are almost entirely disjoint across
synergies. When this happens, it is an indication that the NMF process has simply
classified the original set of EMGs into matching groups. This can be confirmed if the
synergy activation patterns are almost identical to the associated EMGs. In our study,
the high antagonist contribution values in both synergy 1 and 2, coupled with the
activation pattern in synergy 2 being starkly different to the EMG time series, indicates

that NM has identified underlying structure in the data.

3.4.1 Evaluation of muscle activity analysis algorithms is data dependent

Two related methods of analysing EMG signals were evaluated in the first section of this
study, onset/offset detection and dimensionality reduction for the purposes of synergy
extraction. In an automated setting, determining the activity of interest is of vital
importance. Of the methods examined here a sliding window of average values was
found to be as effective as the more computationally intensive measure of SampEn.
Averaging was as effective in high noise conditions, as well as with extremely high
frequency spiking activity, conditions it has been suggested previously SampEn had a
distinct advantage in. Furthermore, whilst the performance of all algorithms was worse
in the presence of standard filtering methods, the performance of SampEn was
particularly badly affected, whereas a sliding average was still comparable to methods
of visual inspection. Using RMS as a measure was inferior in conditions except the no
noise signals and is therefore entirely unsuitable for onset/offset detection. With the
significant decrease in computation time associated with a sliding window it calls into
doubt the utility of SampEn as a measure for automated burst segmentation in an online

scenario.

The performance of synergy extraction algorithms was compared on synthetically
generated EMG signals. Of these methods the performance in terms of cosine similarity
advantages between methods was similar for determining synergy vectors whereas NMF
has a significant advantage in activation coefficients. Examining specific examples within
this dataset it becomes clear that of the four methods examined, NMF had much fewer

examples of poorly matched samples than other methods. This was particularly evident
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in the case of ICA wherein some matches outperformed NMF and in some cases it was
the worst performing method. In terms of computational speed PCA is performed almost
instantaneously and therefore has the greatest advantage when speed is of the utmost
importance. ICA on the other hand is the slowest of methods and would be unsuitable
with a naive implementation for real time uses. Finally, all methods appeared sensitive
to onset/offset detection algorithms. This is likely due to the inclusion of additional “noise”
data in comparison to visual segmentation which only includes activity of interest. NMF
appears to strike a balance between computation speed and accuracy, although it should
be noted that NMF calculation time increases steeply as the sample size increases. From
this result and due to its algorithmic restrictions being in line with assumptions regarding
muscle synergies, NMF was selected as the synergy extraction algorithm for further

testing.

3.4.2 Muscle synergies extracted from isometric extension of the knee are altered

in relation to internal angle of the knee

Our results contrast with findings that muscle synergies present during isometric force
generation in the hand are insensitive to changes in position or load (Roh et al., 2012).
The difference in findings may be reflective of either a different mode of control for
muscles of the upper limb or a difference in requirement and outcome of the task
resulting in recruitment of more stable synergies. Further examination is required to
investigate the cause of these differences. More striking still is the comparison to synergy
recruitment during postural perturbations these dynamic movements required five
synergies to adequately explain variance and yet none of these synergies were
significantly altered with changes in posture or initial limb configuration (Torres-Oviedo
et al., 2006). It would seem reasonable to assume that these conditions would be more
sensitive to changes in afferent drive due to the greater complexity of the movements
involved. We hypothesised that a fixed isometric task should isolate changes in muscle
synergies to those due to proprioceptive feedback. Greater restriction of movement may
necessitate alteration of synergy recruitment to produce changes in end-point forces,
whereas more dynamic movements might allow subtle postural changes to produce the
same outcome. To support our experimental findings, we identified a candidate network
which, when modulated by afferent feedback reproducing the experimentally observed

synergies.
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3.4.3 Interneuron modelling of the CPG demonstrates changes in levels of

afferent feedback are sufficient to alter synerqy recruitment

The mechanism of action is hard to determine in a human spinal cord due to the lack of
direct recordings from these circuits, but using MIIND, we built a population network
model based on biological evidence to propose the likely mechanism of action. This
simulation reproduced the same synergies as derived from the EMG data, changing the
afferent input to the neural populations in this model, the synergy recruitment trends
matched those observed with increasing internal knee angle. This model then
demonstrates how muscle synergies can be encoded in neural population circuits and
furthermore that synergy analysis of experimental data can be used to directly drive

model development.

This model’s similarity to previously studied spinal circuits supports conclusions that
synergy encoding takes place in the spinal cord (Hultborn et al., 1987; Saltiel et al., 2001,
Pierrot-Deseilligny and Burke, 2005; Dominici et al., 2011; Shevtsova et al., 2016).
Supraspinal input was provided to the MN-RF motor neuron population and Extensor
and Flexor Interneuron populations only and so specific bias e.g. in the antagonist
muscles, was introduced through the circuitry of the model itself leading to the patterns
observed in synergy 2. During this study, it became clear that altering the circuitry of the
model (and the level of afferent input) mainly affected the activity of each motor neuron
population at rest and its activity during maximal contraction. The contribution value of
synergy 2 in the simulation was found to be inversely proportional to the difference
between the maximal and minimal activity and this can also be observed in the

experimental results.

We have thus demonstrated that a model based on well understood afferent inputs to
spinal circuits that fits into existing CPG models of locomotion in cats, can be effectively
used to predict synergies in simple isometric tasks in humans (Jankowska et al., 1967,
Pratt and Jordan, 1987; McCrea and Rybak, 2008). This speaks to the robustness of the
mechanisms in the model. In particular, it is clear that synergy 2 relies on the reciprocal
inhibition between extensor and flexor populations which is also an important feature
required for locomotion. What remains unanswered is firstly whether the cortical drive
presented in this network bypasses the rhythm generation and pattern formation layers
of the CPG, and if the extensor and flexor populations can be co-active when mediating
a common drive to all muscles for voluntary tasks. Secondly, whether the full CPG model

can be applied to understanding other cyclical limb motion like locomotion in humans.
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Instead of using the traditional technique of direct simulation of individual neurons, we
have instead used the MIIND simulation package, an environment allowing easy
simulation of populations of neurons. It requires only the definition of connectivity at the
population level, making it easy to setup and adjust a population network during
development. Parameter tweaking is an inevitable part of the modelling process requiring
cycles of adjustment followed by simulation. Reducing the need for adjustments to the
neuron model itself was one reason why we used the simple exponential integrate and
fire instead of a more complex Hodgkin-Huxley style neuron. This model was able to
reproduce the desired synergy patterns without the need for the increased complexity of
the Hodgkin-Huxley model. While building the network model we experimented with
different connection configurations between populations. MIIND’s XML style code, used
to describe the network, made it simple to add, remove or adjust connections, as well as
to add further populations for the RF and ST bias. For one dimensional neuron models,
MIIND can simulate a population network with much greater speed than direct methods
and this allowed simulations to be run on a local machine without the need for high
performance computing, significantly improving the turnaround time between changing
and testing the model. From our experience here, we advocate the use of simple neuron
models where appropriate, i.e. reduce the dimensionality of the neural model as far as
possible. First, this increases simulation speed and second, this focuses thinking on

which are the essential neuronal mechanisms before simulation starts.

3.5 Conclusion

In conclusion, the comparisons between onset detection and synergy analysis methods
found a moving average and NMF were fast and accurate ways of identifying synergy
activity of interest. There was a clear effect identified of proprioceptive drive on the
pattern of muscle synergy recruitment during a voluntary task. We propose a likely
mechanism of action using a population model which reproduces the same synergy
patterns as those observed experimentally, thus pointing to the spinal cord as the site
for synergy encoding. Finally, this population network derived from earlier CPG models
points towards the fact that spinal circuit components can act in both rhythmic tasks such

as walking and in voluntary static tasks.

¢ A moving average window of raw signal amplitude was just as effective as more
computationally intense methods of onset detection
¢ NMF was most accurate amongst synergy extraction methods

o All onset detection algorithms degraded synergy extraction accuracy
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Afferent feedback alters synergy recruitment in an isometric knee extension task
The MIIND network successfully replicated the changes observed in
experimental findings by integrating afferent feedback into a model of the CPG

These findings challenge assumptions in the field regarding muscle synergy

recruitment and the way these findings are analysed
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Chapter 4: Control of stimulation paradigms using artificial neural

networks to generate EMG waveforms in the rat hind limb

4.1 Abstract

Electrical stimulation of a motor nerve produces activity in the nerves it innervates. The
relationship between the stimulation delivered and the resulting muscle activity follows a
complex non-linear relationship which varies depending on the location and type of
stimulus delivered. Whilst methods exist to establish the stimulus parameters required
to excite a nerve these methods are time-consuming to translate into a predictive model
and lack good generalizability. Furthermore, less has been done to examine precisely
the effect stimulus parameters have on the resulting EMG waveforms particularly when
stimulating at a more distant point on the nerve. The complexity of the problem is
compounded by the presence of branching points within a nerve which mean that

stimulation may recruit a range of muscles, some with more specificity than others.

Predicting the stimulus required to generate a specific waveform would allow a BMI
device to selectively generate a wide variety of motor outputs. ANN'’s are particularly well
suited for modelling this type of non-linear relationship with a good degree of
generalizability. This series of experiments was designed to test whether an ANN could
learn to predict EMG features for a given set of stimulation parameters applied to the
sciatic nerve in the rat hind limb (n = 8). Cuff electrodes were attached to the sciatic and
tibial nerve. Stimulation protocols were delivered to each cuff using the PulsePal 2.0
programmable stimulator varying the voltage and duration of the delivered pulse. These
parameters were exhaustively combined to provide total coverage of the stimulation
range. Motor response was measured using copper electrodes inserted into the muscle
belly and via an ergometer attached to the Achilles tendon. EMG parameters were
extracted from these signals and used to train an ANN. The EMG parameters of interest
were SampEn, RMS, peak value and waveform length. Following training this ANN was
then asked to predict the required stimulus pulse to generate a specific EMG waveform.
When trained on the entire dataset the network successfully predicted the stimulation
parameters required to generate a given dataset with an accuracy of 92%. To test the
networks ability to generalize over the variability between different animals, the network
was tasked with predicting the stimulation parameters for a subset (n = 1) of the dataset.
In this case the network failed to correctly predict the pulse width, but still accurately
predicts the pulse voltage. This may be due to a greater overlap in pulse width and
resulting EMG parameters and that pulse voltage is the major determining factor in EMG
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output. This algorithm provides a method for predicting and generating EMG waveforms
without human supervision. This algorithm could be integrated into a BMI device to allow

for targeted generation of EMG waveforms.

4.2 Introduction

There are well established methods for identifying the electrophysiological properties of
a nerve, such as its activation threshold (Bostock et al., 1998). Most commonly these
involve threshold-tracking wherein parameters such as the rheobase (minimum current
amplitude required to produce a response using an infinite width pulse) or chronaxie (the
pulse width which generates a response using exactly twice the rheobase amplitude) of
a nerve are determined from strength-duration curves (Bostock, 1983; Mogyoros et al.,
1996). By using these tools a variety of conditions affecting stimulation parameters have
been examined such as membrane potential, temperature or myelination (Brismar, 1981;
Bostock, 1983; Bostock and Bergmans, 1994). These features allow prediction of motor

output for a given stimulus.

Similarly, there are models and experimental data available that allow for modelling of
both single muscle fibres, motor units and whole EMG waveforms (Griep et al., 1978;
Dimitrov and Dimitrova, 1998; Rodriguez-Falces et al., 2012). Whilst it is possible to
generate detailed models of whole systems by combining these models into a larger
simulation, this approach swiftly becomes extremely complex and specific to a given
scenario. Adaptation to new scenarios is difficult and may require extensive amounts of
new experimental work to validate. Machine learning algorithms are ideally suited to
providing a degree of generalization to complex modelling problems, without having to

generate a new model architecture by hand.

Through further understanding of the electrophysiological properties of nerve and muscle
fibres it is hoped that new treatments for spinal cord injury may be possible via stimulation
of nerve fibres (Liberson et al., 1961; Moe and Post, 1962; Ho et al., 2014). Stimulation
of interneuron pools in anaesthetised frogs, turtles and mudpuppies have demonstrated
recruitment of complex movements or force vectors in multiple muscles (Saltiel et al.,
1998; Tresch et al., 2002). FES has also shown promise in encouraging recovery of
neural pathways when combined with exercise in humans (Field-Fote, 2001; Kapadia et
al., 2014). However, for a BMI device to restore motor control, further difficulties must be
overcome. The BMI device must be capable of modelling the response of muscles

separated by some distance, potentially across multiple branching points within a nerve.
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Ideally this system would able to account for the variability between subjects and be
flexible enough to transfer between different stimulus sites. This chapter demonstrates
that some of these difficulties can be overcome using ANNs. The ANN developed and
presented here successfully models EMG output resulting from electrical stimulation of
the sciatic nerve in the rat hindlimb and produces accurate generalizable predictions of

stimulus parameters.

4.2.1 Current methods of tuning stimulation parameters lack specificity and are

difficult to automate

Electrical stimulation has been used therapeutically at every level of the nervous system;
stimulation of the cortex for treatment resistant epilepsy or Parkinson's disease, surface
level peripheral nerve stimulation for foot drop and at the level of the spinal cord to help
rehabilitation following spinal cord injury (Field-Fote, 2001; Benabid, 2003; Kapadia et
al., 2014; Daly and Huggins, 2015; Chang, 2018; York and Chakrabarty, 2019). In spite
of this widespread usage a common limitation to all approaches is a high degree of
variability between patients. This necessitates individual adjustments for each case or
patient and the expertise of the operator performing this turning of stimulus parameters
can significantly affect the effectiveness of the treatment. The choice of stimulation
parameters is often adjusted ad-hoc as the stimulus/response relationship changes over
time due to any number of factors, including injury recovery, electrode decay or at a
shorter scale due to fatigue. The limitations in traditional methods are particularly
problematic in the field of BMI devices where the requirements for fine tuning can be
amplified, requiring adjustments every time the device is used. A more effective solution
requires an automated method that can cope with the differences between subjects. In
this regard the field of machine learning may hold the answer with novel application of
ANNS.

4.2.2 Machine learning algorithms are ideally suited to solving nonlinear problems

with incomplete knowledge

ANNs are modelled, at least in principle, to reflect similar principles of learning as
observed in their biological equivalents. Several features of the ANN learning process
make them well suited to the problem in hand. ANN’s learn through an iterative process
of updates across thousands of connections between nodes of the network. The number

of connections and nodes means that an ANN can model functions with a large number
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of variables which allows them to model highly non-linear functions. The iterative update
process provides a method for easily updating the ANN in relation to new data or to
changes in the original conditions; the network is simply re-trained on the new data.
ANNSs are also “black-box” solutions, in other words they do not require significant pre-
existing models of the system in question, simply large quantities of related data. This
comes with drawbacks, as it is not possible to understand precisely how the algorithm
comes to a particular output. However, they also exhibit a startling ability to generalize
from data they have observed to unknown circumstances. To summarize, ANNs provide
a means of modelling non-linear, variable relationships with the capability to generalize
across intersubject variability and to unknown conditions, provided the training dataset
is of sufficient quantity and quality of data. Therefore, they may be able to overcome the
difficulties previously described in modelling the transfer function between nerve

stimulation and motor output.

Other attempts have been made to use ANNs to control nerve stimulation. These
methods have varied in how they define their input and how they measure output. Some
algorithms use fixed stimulation patterns without the capacity to provide fine-tuned
control (Lan et al., 1994). Many algorithms use kinematic signals instead of EMG
waveforms as the input data (Riess and Abbas, 2000; Prentice et al., 2001; Hincapié et
al., 2005; Hincapie and Kirsch, 2009). Others have examined stimulating a limited
number of muscles (Giuffrida and Crago, 2005). In comparison to previous work the
network shown here has focused on increased detail in control over stimulus parameters
and using EMG signals recorded across multiple muscles. The granularity in selection of
stimulus parameters should allow for greater specificity in recruitment of EMG

waveforms.

4.2.3 Experimental rationale

The aim of this chapter was to establish if an ANN could model how stimulation of the
sciatic nerve relates to activity in LG, MG, EHP, EDL and TA muscles. Recordings were
made from 8 male Wistar rats following stimulation of the sciatic nerve, as well as tibial
stimulation in a subset of 2 rats. It was expected that stimulation of the sciatic nerve
would result in recruitment of all the recorded muscles. The addition of tibial nerve
stimulation was to allow for selective recruitment of EHP, EDL and TA. Difficulties were
faced in recording all muscles simultaneously and therefore it was not possible to

demonstrate this selectivity comprehensively. Tibial stimulation was therefore not
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analysed further within the ANN. The threshold response in the animal where tibial
stimulation was successful is available in the Appendices where the difference in

selectivity between stimulation sites is apparent.

LG, MG, EHP, EDL and TA were selected for recording for two reasons. Firstly, these
muscles share common innervation in the form of the sciatic nerve; but LG and MG, and
EHP, EDL and TA are separated by a branching point in the sciatic where the sciatic
becomes the tibial and peroneal nerves. The tibial goes on to innervate LG and MG
whereas the peroneal nerve goes on to innervate EHP, EDL and TA (by later branching
again into the deep fibular nerve which directly innervates EHP, EDL and TA). This gives
a distribution of muscles to examine with varying distance from the stimulation site, which
will highlight the networks ability to selectively recruit certain muscles. The second
reason was due to the ease of surgical access, both to the muscles themselves and the

innervating sciatic nerve.

Stimulating the sciatic nerve limits the transfer function to the lowest level of the CNS.
The peripheral nervous system provides a wide range of parameters the ANN must
account for to achieve accurate stimulus prediction. These include the stimulation
provided (which itself has the sub parameters of voltage, current, phase, length or width
of pulse and pulse shape), the site of stimulation, the stimulating apparatus and changes
in the output across the stimulation paradigm. The stimulating apparatus was kept the
same and concerted effort was made to keep the surgical set up consistent between
animals. The stimulation paradigm was designed to cover both minimal i.e. no response
and maximal response within the resolution of the PulsePal device. The saturation point
for the muscles under examination was determined through exploratory stimulation
through which it was determined that saturation occurs at approximately 2V and 2000us,

so this was determined to be the maximum values for the stimulation paradigm.

To ensure that the response to a set stimulus was the same across the experiment, the
response to a fixed test pulse (200 pus - 5000mV) was recorded throughout the
stimulation paradigm. If the response to the test pulse changed this could be accounted
for by normalizing to the calibration curve generated. The effect of muscle length on the
response was also accounted for by determining the maximal response to stimulation
across a range of muscle lengths. Correcting and accounting for these factors should
mean that the only difference between EMG waveforms is due to differences between

animals, and due to the stimulation parameters. Therefore, this dataset will test the
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ANN'’s ability to model these stimulation parameters as well as its ability to generalize

the variability of each animal’s response.

Parameters describing the EMG waveforms shape were the input to the ANN. These
parameters need to describe the waveform well enough that they distinguish two different
waveforms as being different. For sufficient specificity between waveforms four
parameters were chosen for extraction and training; max amplitude, waveform length,
RMS and SampEn. These measures have previously been demonstrated to provide a
high degree of accuracy in classification of EMG waveforms (Phinyomark et al., 2013).
Therefore, these parameters should provide sufficient detail for the ANN to distinguish

between different waveforms across the dataset.

The accuracy of the network’s prediction of stimulation parameters was examined using
the entire dataset of 8 animals. The accuracy of the network is simply measuring how
often the network’s prediction matches the true value for the entire dataset. This was
then compared to its performance predicting an unseen animal, which was achieved by
retraining the network on the same dataset with one animal removed. The network was
then asked to make predictions on the removed animals EMG output. The results of this
prediction suggest that ANNs are capable of modelling a generalizable transfer function
for electrical stimulation of the sciatic nerve that accounts for factors such as inter-animal

variability, non-linear and differential threshold responses.
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4.3 Results

During the stimulation experiments 5 muscles were recorded from (MG, LG, EDL, EHP
and TA) during stimulation, however TA was discarded from the training dataset as none
of the recordings were deemed of sufficiently SNR. Difficulties were faced in achieving
high quality recordings from each muscle in every animal, and in achieving high SNR
EMG and ergometer recordings at the same time. EMG recordings tended to be best for
pairs of muscles, EDL and EHP and MG and LG. These problems can be put down to
the long time period required for the surgical set-up and the stimulation paradigm
(>3hours). This precluded multiple recording attempts from one animal as it placed
animal welfare at risk. This time pressure was amplified in the cases of tibial stimulation
as the time required for stimulation was significantly increased (one recording session
required 7.5 hours). Therefore, it was decided to focus on sciatic stimulation for the
remaining animals as a trade-off between the time required and to maximise the

opportunity to record high SNR recordings of the muscles under investigation.

A representative set of EMG signals from each muscle and the ergometer reading in
response to the test signal (200 pus — 5000mV) is available in the appendices. The
response to threshold (T), subthreshold (0.5T) and suprathreshold (2T) stimulation is
shown in Figure 4-A. It should be noted that these responses were not recorded
separately, they are part of the normal stimulation paradigm, and are therefore included
in the ANN training dataset. Successful training would indicate that the ANN has learnt
in some way how the nerve responds to different stimulus in relation to these threshold

values.

4.3.1 Calibration for muscle length and changes across the stimulation paradigm

Calibration curves were calculated so that the EMG parameters could be corrected for.
changes across the simulation paradigm by normalizing to the value of this curve across
the dataset. The calibration curves were calculated from the test pulses delivered at
every 100th stimulation point. As can be seen in Figure 4-B these calibration curves are
different for each muscle. LG appears to decrease in max amplitude, RMS and SampEn.
The SampEn of MG also appears to have a “hump” in its response, peaking during the
middle of the stimulation protocol. Calibration curves were also calculated for changes
in the length of the muscle. This value was determined experimentally in one animal (rat

1) by repeated stimulation with the test pulse at a range of muscle lengths. The
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responses to stimulation at different muscle lengths are shown in Figure 4-C, and the

optimal length was found to be 33.5mm.

4.3.2 EMG parameters response to stimulation is a complex non-linear

relationship

The mean values for each EMG parameter across the total stimulation paradigm can be
seen in Figure 4-D. The relationship between stimulation width and voltage is unclear
from these values. The relationship is different for voltage and width, and for each
muscle. There appears to be linear phase in the response to increasing voltage in most
muscles. This linear phase is most clear in the max amplitude of EHP which follows a
clear increase in max amplitude as the voltage of the stimulation pulse increases. The
max amplitude of the other muscles reaches saturation point at much lower voltages, in
particular LG and MG have a very sharp rise to saturation, whereupon the increase in
voltage only results in a small increase in max amplitude. EDL is a mixture of the two
with an almost sigmoidal response in max amplitude, quickly reaching a saturation point
at a given threshold. The effect of width on max amplitude appears minimal which can
be seen as each “triangle” of responses in max amplitude are very similar. RMS appears
to share features with the max amplitude, as would be expected mathematically. EDL
and EHP show a linear increase in RMS response to increased voltage whereas pulse
width does not appear to have a significant effect on RMS. LG and MG appear to reach
the same saturation in RMS response as observed in max amplitude. Initially width
appears to have no effect, but at approximately 900 pus RMS drops significantly before
beginning to rise again with increase in voltage and width. This same change is observed
in the waveform length of the signal for MG and LG. The waveform length of EDL and
EHP shows a more linear response than the other parameters and it is unclear if
saturation occurs for this parameter within the stimulation range tested. The SampEn for
each parameter appears to follow an inversion of the previous patterns, as SampEn
decreases with increasing voltage. Furthermore, the same change in response at 900
us is observed for LG and MG. Each parameter investigated and each muscle appears
to demonstrate linearity in its response at certain points in the stimulation paradigm.
However, the response of the dataset as a whole is non-linear due to the presence of

saturation points and the variability in the responses of individual muscles.
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Figure 4-A: Representative examples of sub threshold, threshold and supra-
threshold signals. Signals are representative pairs selected from rat 2 (LG and MG)
and 4 (EDL and EHP). Recordings were taken from EDL, EHP, LG and MG via
copper wire inserted into the muscle belly. Where an inset trace is provided it is the
activity of interest of the muscle pair between the points indicated by the black arrows,
increased to a scale for easier visual analysis. Threshold is defined as the shortest,
smallest pulse that elicited a response; in this case the threshold was 100 pus — 600mV
for EDL and EHP and 100 ps — 400mV for LG and MG. Sub threshold signals are
stimulus pulses that failed to elicit a response, the pulse shown here is 100 us —
300mV and 100 pus — 200mV respectively, or half the threshold value. Supra-
threshold values are signals that are above threshold and are presumed to be near
the saturation point in their response. This is represented here with a stimulus pulse
twice the voltage of the threshold response, 100 ps — 1200mV.
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Figure 4-C: Calibration curve for changes in output due to muscle length.
Ergometer response was calibrated to the length which produced the maximum
response to a test pulse of (200 pus - 5000mV). The ergometer measured gross motor
output due to stimulation via a metal ring attached to the Achilles tendon. Test pulses
were delivered, and the output of the ergometer was measured between 30.5mm and
35mm measured using microdrive values on the stereotaxic apparatus that the animal
was placed in.
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4.3.2 Network training successfully predicted EMG parameters in known and

unknown conditions

The network training results for the entire dataset (n = 8) are shown in Figure 4-E and
can be observed to reach a local minimum without overfitting. Predictions of the network
based on the training data set are shown in Figure 4-H. The accuracy for this network
when trained on 8 animals and 75% of the data is 92% for the test dataset and 93% for
the validation data set. This demonstrates that the network has accurately modelled the
relationship between stimulation parameters and EMG parameters. When the network
was trained on 7 animals and given an unknown animal to predict training accuracy
reaches 82% for the test date set and 78% for the validation data set. The training curve
for this subset is shown in Figure 4-F. The results from the prediction on an unknown
animal are shown in Figure 4-H from which it can be observed that the voltage prediction
is again extremely accurate whereas the width prediction has become inaccurate. To
further examine why the width prediction is inaccurate the summed variance of EMG
parameters was compared across pulses with equal voltage and with equal. Pulses with
equal voltage had a summed variance of 12.17 and pulses with equal width had a
summed variance of 7.2. The difference in summed variance indicates that pulses with

egual voltage were more similar to each other than pulses with equal voltage.
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Figure 4-E: Artificial neural network performance across training epochs on a
complete dataset. Dataset consists of stimulation parameters and resulting EMG
parameters in the rat hindlimb (n = 8). Loss is measured using the binary cross-entropy
between the target value and network output. To detect overfitting network
performance is measured using two datasets, the train dataset which consists of data
the network has been trained on, and test which is data the network has not previously
seen (black, red, split of 0.75/0.25 between train and test datasets). Overfitting occurs
when the performance on train and test differs substantially or when test ceases to
improve. In this graph overfitting starts to be detected at approximately the 3000"
epoch but performance continues to increase on both datasets until the end of training.
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Figure 4-F: Artificial neural network performance across training epochs on an
incomplete dataset. Dataset consists of a subset of stimulation parameters and
resulting EMG parameters in the rat hindlimb (n = 7). One rat was removed from the
dataset to allow prediction of a completely unseen set of EMG recordings. Loss is
measured using the binary cross-entropy between the target value and network output.
To detect overfitting network performance is measured using two datasets, the train
dataset which consists of data the network has been trained on, and test which is data
the network has not previously seen (black, red, split of 0.75/0.25 between train and
test datasets). Overfitting occurs when the performance on train and test differs
substantially or when test ceases to improve. In this case overfitting is apparent early
in training due to the gap between train and test curves. Both curves continue to
improve across training. The gap suggests that the train dataset has insufficient
training data to fully learn the features in the test data.
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4.4 Discussion

The success of the network in predicting the results of stimulation of the peripheral nerve
demonstrates that an ANN can learn a representation of a generalized transfer function
between electrical stimulation and motor output. This is in spite of the clear non-linearity
and variability present in the recorded EMG parameters across muscles and animals.
This performance is capable of impressive results both in the “known” representation
and when tasked with predicting unseen data. This method provides
several improvements over current methods for stimulation control, such as pre-defined
stimulation thresholds or threshold tracking, as it provides precise control over the EMG
waveforms generated in an automated fashion. Compared to control by a predefined
stimulus paradigm this method has greater generalizability and can fit into an entirely
online process with very little adjustment. Furthermore, compared to a method using
predefined parameters, this method has greater specificity and adaptability as it allows

fine tuning of stimulation parameters as conditions change.

In the unknown condition the network is still capable of predicting the voltage of the
stimulation pulse, but accuracy drops sharply on width prediction. This drop-in
performance could simply be due to insufficient data as the dataset used for these
experiments was already very small by traditional machine learning standards (datasets
for complex language processing tasks can easily number in the millions and even
billions). However, this could also reflect a greater importance for pulse voltage in
determining EMG output in this circumstance. This is reflected in the lower summed
variance of EMG parameters with equal pulse width compared to equal pulse voltage.
This would suggest an overlap between EMG waveforms with equal pulse width. In
combination with other points among these findings this suggests that the network has
truly learnt a transfer function capable of generalizing between different conditions and

subjects, as opposed to a more specific overfitted function.

106



4.4.1 EMG parameters demonstrate non-linearity across muscles

There has been extensive work done in the peripheral nervous system examining the
motor response to electrical stimuli. (Fang and Mortimer, 1991; Singh et al., 2000;
Lertmanorat and Durand, 2004; Sauermann et al., 2007; Raikova et al., 2016). However,
the nervous system defies systematic treatment of the problem. The values shown in
Figure 4-D demonstrate some of the problems faced by any motor BMI in the variable
response of muscles to stimulation. Consider the differences in maximum amplitude
between the pairs of muscles LG and MG and EDL and EHP. As expected, LG and MG
closely mirror each other and as seen in table 2-B it was not possible to selectively recruit
LG or MG, likely due to limitations in the resolution of the PulsePal stimulator. LG and
MG show a high degree of sensitivity to stimulation at the point chosen and they saturate
quickly as voltage increased. However, at a certain point (approximately starting at pulse
widths greater than 900us) this saturation point drops in RMS, waveform length and
SampEN but not the max amplitude. This pattern is not apparent in EDL and EHP, but
as can be seen in the max amplitude of these muscles, as well as in Table 2-B and the
appendix figures, it was just possible to selectively recruit EHP before EDL within the
resolution of the PulsePal stimulator. Indeed, EHP is the only muscle examined that did
not consistently reach a saturation point in all animals, with clear triangular shape to its
stimulus/response curve in maximum amplitude that is still increasing in response to the
test pulses (200 pys — 5000mV). In comparison its partner EDL does appear to saturate
in amplitude, demonstrates a greater RMS than EHP but then is a mirror image of it in
terms of its waveform length. Finally, these patterns are inverted when examining the
SampEn of each muscle. What can be ascertained from all of this variability in response?
There is a linear section to the response of each parameter, but this section does not
cover the entirety of the response in any muscle, except EHP’s max amplitude. This is
compounded by the variable response for each muscle, which means that when the
dataset is considered as a whole the responses are highly non-linear. A traditional model
may be able to account for some of these non-linearities, but machine learning has

distinct advantages when modelling non-linear functions.
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4.4.2 An ANN learnt a generalized transfer function for electrical stimulus in the

peripheral nervous system and resultant EMG activity

The performance of the network on the full dataset of animals is remarkably good,
demonstrating a nearly perfect prediction of voltage and width across the stimulation
range, as seen in Figure 4-G. Width prediction falls in accuracy at the start and end of
stimulation, whereas voltage predictions are almost universally accurate, with the
exception of the test pulses of which only 4 examples are present in every dataset. If test
pulses are removed as outliers voltage prediction is almost perfect. The ANN developed
here is provides as a method for fine-tuned control of stimulation parameters with motor
output as a target, a claim that will be demonstrated in later chapters. However, limiting
the discussion to the results so far, the performance of the network must be further

scrutinized to ensure it has utility beyond the specific circumstances described here.

In any machine learning task, it is important to ensure that the fit of the model is correct.
Underfitting is easy to detect, the network’s performance is simply deemed to be poor
for whatever purpose it is required for. Overfitting is more difficult to define. An overfitted
network may produce excellent predictions on the data it is trained on but then give
nonsense answers when exposed to even slightly different data. This is a failure of the
network to generalize in a way that largely invalidates its usefulness. A model is only
usually useful if it can predict things about data that is unseen, as by definition this shows
something new. Partitioning of datasets is one way to demonstrate that a network has
not overfitted. In all cases during this study the dataset was split into training and test
datasets at a 3:1 ratio. If the performance differs significantly between training and test
datasets this can be an indicator that the network has overfitted. As seen in Figure 4-E
the difference between test and training datasets has only begun to diverge at 6000
training epochs, and both training curves were continuing to improve gradually at this
stage. On its own this would suggest that the network has learnt to generalize across the
values it has observed. However, the performance on an unknown animal is even more
promising in this regard. While partitioning of test and training datasets does remove
some of the information from the model, it is likely that the overall “shape” of the
relationship is maintained for each animal. As can be seen in Figure 4-F removing an
animal from the dataset has introduced a certain degree of overfitting but this is still within

acceptable levels.

The 82% test accuracy and 78% validation accuracy for an entirely unknown animal

suggests that the generalizability of the relationship learnt is sufficient to be of predictive
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use in new subjects. As can be seen in Figure 4-H the network is still able to successfully
predict stimulus voltage, but not width. The “prioritization” of the voltage of the pulse is
the same feature that a human would identify as important when attempting to model
this relationship. This insight into the working of the model gives greater confidence to
its predictive capabilities if it were given a dataset of a size more usual for machine
learning tasks. Whilst it is a truism in machine learning that performance increases as
dataset size increases, here it seems especially true that even a modest increase could

provide useful improvements.

4.5 Conclusion

The network design shown here was intended to control the output portion of a BMI
device for stimulating various areas of the CNS. To achieve this the network needed to
learn a transfer function between stimulation at one point and motor output measured at
another. The network was trained to predict the EMG parameters resulting from different
pulse voltages and widths delivered to the sciatic nerve in the rat hindlimb. This
prediction was made with a high degree of accuracy in the complete dataset. In the
subset of the dataset network performance dropped but was still capable of accurately
predicting the voltage parameter. The networks performance on an unseen animal
suggests that the network can generalize its results from one environment to another.

This idea will be further explored in the following chapter using an in silico simulation.

e Stimulation of the rat sciatic nerve produces a complex non-linear response in
muscles of the rat hindlimb

¢ An ANN was able to learn the stimulus/response relationship for stimulation of
the sciatic nerve

e The ANN was able to transfer learning from the group of animals it was trained
on to an unseen animal, indicating successful generalization of the transfer
function

e These results suggest that ANNs may be capable of learning a generalized
transfer function for stimulus/response of a nerve. This presents great opportunity

for more flexible and adaptable devices capable of treating a wider range of injury

types.
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Chapter 5: Closed-loop reconstruction of healthy muscle synergies using

a population model of cortical and peripheral injuries

5.1 Abstract

Experiments investigating the effects of damage to the nervous system face technical
and ethical difficulties. Using the MIIND network, demonstrated in Chapter 2.6, in this
chapter, an in silico model of acute peripheral and cortical damage to the nervous system
is presented. The synergies extracted from these injured networks demonstrate the
same hallmarks of synergy “injury” that are typically observed in injured human subjects;
fractionation and merging of existing synergy profiles. Having shown that the injury model
reflects real world conditions it was then asked if the algorithms previously described in
Chapters 3 and 4 could restore healthy synergy recruitment as had been suggested. The
same ANN architecture that was used to learn a transfer function in the peripheral
nervous system was similarly trained on data from the simulated model. Stimulation was
provided at different points depending on the injury type. In cortical injury models only
the damaged interneuron pool was stimulated, whereas for the peripheral injury models
the motor neurons were also directly stimulated. Motor response was measured using
motor neuron output as a correlate for EMG signals. In this case network training was
able to converge to an accuracy of 98% as simulated datasets can be made arbitrarily
large by repeated runs of the model. Following this training the network was asked to
predict the EMG output that would result from healthy synergies. This prediction was
then input into the simulated network and the response observed. In the case of cortical
injury, the network was successfully able to restore healthy synergy recruitment profiles.
This performance was not replicated for the peripheral injury, with the network being
unable to restore healthy synergies in the absence of afferent feedback. This may be a
failure of the ANN to address the increased complexity of the MIIND network or it may
be further evidence for a special role of afferent signals in synergy recruitment as
indicated in Chapter 3. This set of simulations and experiments demonstrate the
combined utility of this thesis’s work as the flexible basis of a BMI device for the treatment

of nerve injury in a variety of conditions.

5.2 Introduction

When investigating damage to the nervous system, whether it be spinal cord injury or a
peripheral injury, often the choice is limited to either human subjects or an animal model.

A simulated model of various injury types would be a useful alternative to biological
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models. Simulations have increased flexibility and ease of use compared to biological
models and are better able to focus on specific areas of interest in greater detail. For
example, in a model it is possible to examine very specific removal of certain pathways
or tracts. In comparison to an impact injury model it is impossible to know with 100%
certainty which pathways are affected by an injury and to what extent. The main
advantage of models, such as the MIIND network used here, is that the precise extent,
mechanics and behaviour of the model are all completely transparent and observable.
For testing and development of a BMI device it is imperative that there is certainty in the
model used as this allows precise testing of the device’s capabilities, rather than its

success or failure being reliant on a more or less complete injury condition.

There are also ethical and practical advantages to a simulated model compared to an
animal model or human subject. Human subjects are difficult to recruit and present
unique difficulties for experimental work often requiring specialized facilities. Animal
models also require special care, especially in the case of upper spinal cord injury,
requiring bladder expression and extensive follow up care. None of these limitations are
to suggest that these models have no use, but in the case of the experimental algorithms

developed during this thesis a simulated method is preferable.

The aim of this chapter was to develop and test the combination of the algorithms
described in Chapters 3 and 4 as a simulated BMI device. This required a simulated
model of damage to the nervous system that reflected changes to synergy recruitment
observed previously in human subjects. The same MIIND model previously described in
Chapter 2.6 was altered to replicate changes observed in synergy recruitment as
reported within the literature. Together these results demonstrate closed loop re-
construction of healthy synergies in an in silico model. This provides the basis for a BMI

device that could provide benefit in a variety of implementations.

5.2.1 Synerqy recruitment changes in set ways following injury

The changes in synergy recruitment post-injury due to trauma or stroke can be broadly
grouped into three categories; fractionation, merging and emergence of novel synergy
patterns. As synergy recruitment is the target motor output for our device it is important
that the injury model recreates changes observed in human subjects. These alterations
have been largely examined in stroke patients as it is hypothesized that the networks
responsible for recruiting synergies will be largely intact. These studies have found that

existing synergy profiles are altered in two ways that may reflect the extent of the injury,
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or the time since the injury occurred (Cheung et al., 2012; Pan et al., 2018). Merging of
synergies occurs in the most severe injuries wherein the previous set of healthy
synergies are apparently combined. The degree of merging that occurs correlates with
injury severity, with the most severely injured patients demonstrating the greatest degree
of merging. The other alteration is known as fractionation. Fractionation represents an
increase in synergy dimensions compared to healthy conditions. This is typically
observed in patients in the latter stages of recovery and may be reflective of adaptive
processes compensating for the injury. We may also consider the possibility of the
emergence of entirely new synergies. Novel synergy recruitment has not been previously
observed in humans following injury. If this is observed in the simulation it may reflect an
artefact of the stimulation, or it may be because recordings are not usually made in
patients immediately post-injury. As our network reflects an extreme acute case (with no
recovery) it may be that more extreme changes are present in completely or recently

disconnected networks.

5.2.2 True closed loop control requires integrating analysis of motor output with

the provided stimulation

Many BMI devices seek to implement closed loop control. This is usually defined as a
system or device wherein the response produced by the device goes on to affect the way
that input is then provided to produce the next output. Most devices in the field rely on
sensory feedback to close the loop via visual feedback. For true closed loop control error
correction should come directly from the output produced rather than assume the error
can be accounted for by the animal. In the example of Nishimura et al spinal stimulation
was provided to a set of flexor and extensor neurons in the monkey hindlimb to facilitate
walking (Nishimura et al., 2013). Error control is handled by the monkey visually
observing the produced movement. The simplicity of the neural encoding meant that
stimulation parameters did not have to be altered throughout the gait cycle and this was
sufficient to achieve unaided locomotion. In the healthy animal, feedback is provided at
the level of the spinal cord, at the point of “stimulation”, and certain types of afferent
feedback e.g. proprioception, fatigue, muscle load, should be available as the movement

is determined.

A BMI that incorporated the accounts for errors in the output might be capable of more
complex movements or for error correction to occur during a movement. This BMI would

much more closely mirror the way in which movements are produced during normal
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conditions. The error correction used in the device developed in this chapter moves
closer to this form of closed loop control by modelling output in terms of muscle
synergies. In this case adjustments were not made during the movement, but by placing
synergy restoration as the target output we account for the actual effect of stimulation.
In principle, the BMI described here is more capable of adapting to changes or errors

that would be present in a biological model.
5.3 Results

The stimulated network for control of the knee used in Chapter 3 was used as an injury
model by reducing or removing connections. The injury types that were broadly modelled
consisted of removing cortical drive (modelling stroke or incomplete spinal injury at a
rostral point) and the removal of afferent feedback (modelling a peripheral injury). The
location of these injuries within the network are shown in Figure 2-B. Injury type was
further split into targeting of the flexor or extensor interneurons as well as a bilateral injury
affecting both pools. The results of these injuries were examined using the synergy
extraction algorithm also described in Chapter 3. The ANN described in Chapter 4 was
then trained to stimulate and predict the resulting motor neuron output in a similar fashion
to how it was used to predict EMG output. Finally, the predictions from this network were
used to calculate the required stimulation to recreate healthy synergies. This stage was
only performed in the extensor injury condition as in principal the ANN’s performance

should not differ between these conditions.

5.3.1 The injury model recreates changes to synerqy recruitment in the same way

as observed in humans

In the injury model the synergies extracted from the 8 different unilateral injury types
were compared to the healthy model. These are shown in Figure 5-A for extensor injuries
and Figure 5-B for flexor injuries. The effect of afferent feedback was also examined

using the levels corresponding to 0 and 90 degrees as established in Chapter 3.

The rank factor for each condition was selected to account for >95% of the variance in
the original data set. This resulted in different numbers of synergies across conditions.
In the partial injury conditions one synergy was sufficient to account for the majority of
variance, whereas in the total injury conditions two synergies were required as seen in
5-A and 5-B. The results for bilateral injuries are shown in Figure 5-C. As is expected a

complete cortical injury abolishes synergy recruitment as motor neuron firing does not
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rise above background levels, but nominally this results in just one synergy being
“recruited”. In the bilateral peripheral injury, synergy recruitment is reduced to a single

rank reflecting balanced recruitment of all muscles.

The composition of the synergies recruited also differs from healthy synergies.
Interestingly the effect of afferent feedback is reduced across all conditions,
unsurprisingly in the case of total peripheral injuries where it was removed, but also in
cortical conditions where it was untouched. Across all injury conditions, partial injury
results in a merging of synergies resulting in a single balanced recruitment of all muscles.
The total injury conditions exhibit more drastic changes, and greater differences between
flexor and extensor injuries. As seen in Figure 5-A, extensor injury in both cortical and
peripheral conditions result in fractionated synergies. Synergy 1 appears to be a biased
recruitment of the quadriceps muscles, whereas synergy 2 appears intact at first but has
lost RF bias and recruitment of ST and BF are at levels closer to synergy 1. Taken
together this suggests that this synergy pattern is actually a fractionation of healthy
synergy 1 along the lines of flexor/extensor lines. Figure 5-B shows that the flexor injury
conditions demonstrate more drastic departure from healthy synergies with the
appearance of entirely novel recruitment patterns. Synergy 1 is common to both cortical
and peripheral injuries and seems to be biased towards RF, ST and BF, with minor
recruitment of VL and VM. In the cortical injury synergy 2 recruitment is entirely biased
towards the quadriceps muscle grouping. In the peripheral injury there is also biasing

towards the quadriceps muscles but curiously recruitment of RF is entirely absent.

For the most part the activation coefficients of the altered synergies are largely
preserved. Merged synergies are recruited mirroring the contraction period with no major
departure. In those conditions with two synergies recruited these recruitment curves are
more directly opposed to one another, with a steeper negative relationship in their

recruitment profiles.
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5.3.2 An ANN trained in the rat peripheral nervous system was able to learn a

transfer function for an in silico model of a complex interneuron network

Due to the simulated nature of the modelling process an arbitrarily large dataset could
be generated for training purposes. For this dataset conditions were replicated 1000
times for each condition as this was determined experimentally to be large enough to
remove dataset size as a determining factor in network performance. The network
architecture was left largely unchanged from its presentation in Chapter 4. The only
changes made were an increase from 20 to 25 EMG parameters, to account for the
change from 4 to 5 muscles, and stimulation was represented by a single “charge
injection” value which represents the combined effect of pulse width and voltage.
Network training results for each injury show that each network reaches a local minimum
without overfitting. The network accuracy results when the networks were trained on 75%

of the data were all greater than 95% for both the test and validation data set.

5.3.3 NMF reconstruction of healthy synergy recruitment was successful in a

subset of injury types

Following training, the network was asked to predict the stimulation required to generate
healthy synergies in the cortical and peripheral injury conditions for extensor injuries. The
effects of unilateral injury and the resulting reconstruction compared to healthy synergies
are shown in Figure 5-D. For cortical injuries healthy synergies were restored by
stimulation of the interneuron pools. In peripheral injuries healthy synergies were not
restored, instead the previously observed bias was switched to favour the extensor
muscle group. The effect of stimulation on bilateral injuries is shown in Figure 5-E. Again,
the cortical injury model was successfully restored to normal synergy recruitment and

peripheral injury was not. Stimulation resulted in recruitment of a novel secondary

synergy.
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5.4 Discussion

In this chapter an in silico model of different injuries to the nervous that reflects changes
in muscle synergy recruitment observed in stroke patients was investigated. The ANN
designed for the peripheral nervous system can flexibly be transferred to a model of the
spinal cord, despite the associated increase in network complexity. Finally, in
combination with online synergy analysis, these systems are capable of restoration of
healthy synergy recruitment in certain injury types but not others. This finding further
proves the importance of afferent feedback for normal synergy recruitment. The success
of the BMI algorithms demonstrated here are built on the previous findings of this thesis.
These successes improve on the state of the art by moving closer to “true” closed loop
motor control and the flexibility inherent to machine learning approaches allows for fine-

tuned control over stimulation.

5.4.1 The MIIND neuronal model can accurately simulate the effects of nervous
system injury

The injury types modelled here were selected to broadly reflect injuries affecting
interneurons recruiting extensor and flexor muscles. The model was a simple adjustment
to the same MIIND network that had previously helped elucidate the role of afferent
feedback in recruitment of muscle synergies during an isometric task. This architecture
was selected for three reasons. Firstly, this particular group of muscles has been used
as a model of synergistic recruitment as far back as Sherrington (Sherrington, 1910;
Duysens et al., 2013). Secondly the lower limb has been frequently neglected in the field
of BMI, despite its importance for a variety of tasks in normal life. Finally, a network
demonstrated in the upper leg may well work well in the lower leg as well and therefore
translate well to improvements aimed at treatment of foot drop, a relatively accessible

disease case for trial of experimental devices.

As mentioned MIIND has been used previously, including in this thesis, for modelling of
neuronal networks. However, the results shown here demonstrates an increased utility
in its ability to model injured networks equally well. Removing or reducing connections
between pools is a simplification of real-world injuries but despite this, complex and
realistic alterations result. This work naturally suggests further additions to the model
could be made, including introducing recovery and more dynamic Hebbian style

connection pruning.
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5.4.2 The ANN learns a general transfer function that is transferable from animal

data to human data

The success of the network is more impressive considering it was originally designed to
work in rodents, controlling a different set of muscles. This speaks further to the
generalizability of the ANN architecture described. It indicates that the system is capable
of adaptively learning representations between stimulation and motor output in a more
general sense. This presents opportunities for further investigation, both within the in

silico model and in other biological models.

5.4.3 Closed loop BMI control can restore healthy muscle synergies in some

injury states

Stimulation at the level of the spinal cord has the major advantage of removing
“unnatural” connections from a BMI device. In theory this allows for recruitment of intact
networks the body uses for motor coordination. Compared with stimulation in the
periphery, spinal stimulation often results in a diffuse response and it is difficult to recruit
a single desired muscle. This is partly the desired response, as this diffuse response is
due to recruitment of whole networks of neurons. However, it also comes with the
disadvantage of decreasing specificity. Recruiting a specific neuronal network, or sub
network, to produce a desired movement requires more specific stimulation to avoid
widespread recruitment of unnecessary muscles. The specificity problem increases the
further the source of the neural activity used is separated from the point of stimulation. A
device stimulating the cortex directly would require an extremely complex and precise
stimulation device coupled with a hitherto unprecedented understanding of the cortical
networks (at this stage, it would in principle be possible to model the working of the cortex
entirely within a computer, suggesting a level of understanding that remains firmly
science fiction). The experiments previously described in Chapter 4 describe stimulation
of the peripheral nervous system. This may be seen as the simplest condition to solve
but, as seen in the variable responses of the hindlimb muscles, stimulation swiftly
spreads to a variety of endpoints. In the cortical injury the system successfully restores
healthy synergy recruitment. This is despite the additional layer of separation posed by
the interneuron layer and the balancing required for the excitatory and inhibitory
connections. This suggests that the specificity problem may be tractable for machine

learning methods in a biological scenario.
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The failure to restore healthy synergies in the peripheral injury condition is more
enlightening than it may at first appear. In combination with the modelling work performed
in Chapter 3 it is clear that afferent feedback is a vital component for healthy synergy
recruitment. The stimulation sites in this chapter were purely excitatory and were limited
to either the interneuron pools solely or in combination with direct stimulation of the motor
neurons. It is interesting that even with direct, perfect access to motor neuron firing, the
network was unable to replicate the fine balancing between agonist/antagonist. It is not
the case that the network has failed at an impossible task, due to the nature of the MIIND
simulation there is a theoretical value of stimulation that would replicate the synergies
observed in the healthy state. That the network is unable to find this value in one
condition, yet succeeds perfectly in another, is indicative of a change in complexity
between these conditions. If the stimulation paradigm had included access to afferent
nodes then perhaps the model would have successfully restored synergies in the
peripheral injury as well. These nodes were not included within the accessible sites as it
is difficult in vivo to easily differentiate afferent nerves with sufficient specificity but this

represents a promising avenue for further investigation.

5.4.4 Model limitations

The results of this model simulation must be carefully considered with the assumptions
and limitations present in the model as well as the way in which stimulation was targeted
within it. Due to the way that stimulation is provided in the model, the simulation is
capable of perfectly mimicking natural signals, which is not true in vivo. Electrical
stimulation has limitations that prevent normal recruitment curves and completely
isolated charge injection. The selectivity of the stimulation sites is also not reflective of
current capabilities. As previously mentioned, the specificity problem results in
widespread recruitment of motor neurons. The precise targeting of individual motor
neurons provided here is possible in principle through high density array electrodes but
is difficult in practice. Similarly, even and balanced recruitment of a specific interneuron
pool would be near impossible in real world conditions, due to charge spreading to other

networks in physical proximity.

5.5 Conclusion

The work in this chapter brings together the algorithms described in Chapters 3 and 4 to
demonstrate restoration of healthy synergy recruitment using an in silico BMI in different

models of nervous system injury. An injury model of interneuron-controlled synergy
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recruitment was able to recreate the same alterations to synergy recruitment observed
in human injury conditions. The ANN used previously in Chapter 4 in the peripheral
nervous system was able to transfer to a new stimulation environment supporting the
idea that the network is capable of representing a generalized transfer function. Finally,
within this environment higher order motor control was used as a target for control of

stimulation paradigms, moving towards true closed loop BMI control.

e The MIIND network previously used to model upper leg muscles was able to
various types of injury and the resulting alterations in muscle synergy recruitment

e The ANN previously trained in the rat peripheral nerve successfully learnt the
stimulus/response relationship in an in silico model of spinal interneurons

¢ An in silico BMI device made by combining these algorithms was able to restore
healthy synergy recruitment in some injury conditions

e The BMI failed to restore synergy recruitment when afferent feedback was
abolished. This supports our previous findings that afferent feedback plays an
important role in synergy recruitment

e These algorithms together represent a BMI device capable of general restoration
of muscle synergy recruitment. This could be implemented in a variety of settings

for treatment of muscle weakness or paralysis.
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Chapter 6: Discussion

6.1 Summary of key findings

The field of BMIs is experiencing a surge in new devices, approaches and algorithms
that attempt to advance the cutting edge of what is possible. With this new drive it is
important to question common place assumptions in device design; challenging these
assumptions can sometimes provide significant improvements compared to the
resources invested. All the algorithms presented within this thesis attempt to address the
problems faced at different stages of a BMI device in novel ways. This thesis has
explored advances in the understanding of muscle synergies, stimulation control using
machine learning, population modelling of spinal circuits and how these can all be
integrated together in one device. Algorithm development within this thesis has strived
for a firm biological basis. This was done in an attempt to avoid falling into innovation for
innovations sake and to instead focus on integrating biological understanding into device
development. The algorithms developed represent a device capable of general signal
transfer between areas of the nervous system and moves towards closed loop control of

the paralyzed limb.

Initially the performance of an online implementation of various onset/offset detection
and synergy extraction algorithms was investigated, in terms of their accuracy and speed
in different settings and in combination with one another. Findings regarding the utility of
SampEn in data contaminated with aberrant spiking was challenged. It was also shown
for the first time the performance loss that occurs when these algorithms are combined.
The best performing algorithm, NMF, was then used to investigate the role of
proprioception in synergy recruitment during an isometric task. Contrary to some findings
in the field, changes were observed in the profile of synergy 2 in accordance with
changes in limb position reflecting the change in balancing of agonist/antagonist
activation due changes in muscle stretch. A mechanistic explanation for this was
proposed by modelling parts of the CPG spinal interneuron network and changing levels
of afferent feedback. This model successfully reproduced the synergies and their
changes in response to afferent feedback observed in human subjects. For the first time
in humans’ elements of the CPG were shown to be used for a non-locomotor task. A
clear role for afferent feedback in recruitment of muscle synergies was also
demonstrated. This set of algorithms represent the proposed “output” measure of the
device, with muscle synergies as the target. Next a method for control of stimulation of
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the nerve was developed using automated machine learning methods, which represents
the “input” control. An ANN was trained to predict with a high degree of accuracy the
EMG parameters recorded from muscles of the rat hind limb following stimulation of the
sciatic nerve. Furthermore, this network learnt a generalized transfer function capable of
translating the learnt relationship from a subset of animals to unknown conditions. This
network was also able to be repurposed and used in an entirely different in silico
environment further supporting the idea that the network can represent a generalized
transfer function. Finally, in this new in silico environment a novel method of modelling
injury to the nervous system was demonstrated in a way that replicates the major
changes in synergy recruitment observed in humans. Within this environment, output-
input algorithms were combined from previous chapters to demonstrate successful

restoration of healthy muscle synergy recruitment in cases of cortical injury.

6.2 Discussion of key findings

Through discussion of the findings of each chapter, an attempt will be made to provide
further understanding of the significance of these results when considered as a whole,
as well as to reflect on their limitations. In particular consideration for how these

experiments could be expanded upon as part of future work will be addressed.

6.2.1 Methodological assumptions affecting muscle synerqgy extraction

Before implementation of synergy extraction algorithms for the purposes of further
analysis or integration into a BMI, assumptions were first examined regarding the
performance of these algorithms in different conditions. Findings were compared in onset
detection using the gold standard of visual inspection, but for dimensionality reduction
we first had to implement a method of synthetic synergy generation. The findings in terms
of synergy extraction are in line with previous studies, however the difference between
ICA and NMF was limited in the conditions examined here which may explain the
disagreement between certain studies that have argued in favour of either approach
(Tresch and Cheung, 2006). In contrast the advantages of SampEn in avoiding aberrant
spiking activity can be replicated through careful selection of hyperparameters in a sliding
window using a simple average amplitude (Zhang and Zhou, 2012). This comes with a
significant decrease in calculation speed and was a superior measure for our purposes.
These methodological considerations reflect the need to consider carefully the data

these algorithms are applied to for maximal performance.
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6.2.2 Proprioceptive feedback into the recruiting interneuron network is vital for

healthy synergy output

Taking the results from the previous work into consideration a method for online synergy
extraction was developed and applied to an isometric task to explore the role of
proprioceptive feedback in synergy recruitment. By limiting the task to an isometric task
repeated at various internal angles of the knee it was hypothesised that afferent feedback
would be limited to proprioceptive sources. Therefore, any changes to synergy profiles
would reflect a change due to afferent feedback. Although the first synergy identified was
invariant to joint angle, the second synergy reflected a change in recruitment that
matched biomechanical expectations due to changes in muscle stretch. Whilst it seems
certain that sensory feedback must play a role in motor control at this level, previous
studies have shown surprisingly fixed synergy recruitment in conditions one might expect
afferent feedback to play a large role (Torres-Oviedo et al., 2006; Roh et al., 2012). This
is likely is due to the adaptability of the synergy recruitment process, where in more
dynamic conditions other changes may be made to recruit a preferred synergy pattern,
in the fixed state of an isometric task the synergy itself must be altered to produce the

movement.

This finding is interesting by itself, however it was further supported with a model of how
afferent feedback could be incorporated into synergy recruitment. Therefore, using the
lower levels of the CPG model developed by Rybak a model was created within the
MIIND framework that reflected the proposed interneuron network that recruits the
muscles under investigation (McCrea and Rybak, 2008). This model was created
specifically to have balanced cortical recruitment across all conditions, so that any
change observed would similarly be restricted in cause to the level of afferent feedback.
The replication of the experimental findings by the model supports the role of
proprioceptive feedback in synergy recruitment. This model suggests a great deal about
both the muscle synergy hypothesis as well as the current understanding of the CPG. It
suggests that muscle synergies are recruited flexibly from networks of spinal
interneurons that may have a variety of other purposes, and similarly it suggests that the
CPG is a flexible control system for tasks that require balancing of flexion/extension

within the lower limbs beyond locomaotion.

127



6.2.3 ANNSs are capable of learning generalized transfer functions in the nervous

system

Determining the relationship between stimulation at one point and the motor output at
another is a key step in a BMI for restoring motor control to the paralyzed limb. The
algorithm shown here attempts to leverage the advantages of machine learning in an
environment well suited to (and in spirit modelled on) them. Acquiring the large datasets
required for successful network training was a challenge in and of itself and required
specialized stimulator construction and more customised Python code. Despite this the
dataset described here is still small in scale compared to normal datasets for machine
learning. The network architecture described was capable of a very high degree of
accuracy in prediction of the stimulation parameters that generated a given set of EMG
parameters. This in and of itself may be relatively unimportant if the network has
overfitted to the training dataset. The performance on unknown data is the true test of
the network’s utility, as this describes its ability to generalize to new
conditions. Restricting the already small dataset for unknown conditions will certainly
affect the performance of the network. In spite of this the network adapted very well when
asked to predict an entirely unseen animal’'s EMG'’s, predicting voltage with similar levels
of accuracy and still providing an attempt at width prediction. This in itself may reflect the
network has learnt the relationship at a more general level as it has prioritized the more
“important” voltage parameter, as this describes a greater amount of variance within the
signals. It is entirely possible that with more data performance on width may increase

further.

This finding is only further supported by demonstration within a new setting.
Implementing this network within the in silico MIIND simulation involved insignificant
changes to the overall network architecture (input and output layers). Although previous
work demonstrated the MIIND model represents experimental muscle synergy response
it remained to be seen if it would also respond in a predictable way to stimulation. The
advantages of a simulated environment are clear here as it is possible to generate a
dataset of sufficient size that dataset size can be eliminated as a variable affecting
network performance. The networks performance is even better than in the animal
model, capable of predicting with almost perfect accuracy the resulting EMG parameters.
However, discussed below in Section 6.2.5, this increase in performance does not result

in an increased utility in all conditions.

128



6.2.4 The MIIND network is capable of modelling damage to the nervous system

Simulated models of injury conditions have both ethical and practical advantages as we
have already indicated with training of our ANN. The MIIND network allows flexible and
accurate modelling of neuronal networks in a variety of configurations, with an ease of
use that encourages rapid prototyping or adjustment to new conditions. The
demonstration of healthy synergy recruitment and the alterations that can occur with both
upstream and downstream damage suggests a platform for further motor control

research.

6.2.5 Restoration of healthy muscle synergies by an in silico BMI

The previous chapters algorithms were designed to have significance on their own, but
also as part of a larger device. In the final chapter these algorithms combined to produce
an in-silico representation of a BMI capable of restoration of healthy muscle synergies.
Motor output was measured using the online synergy extraction algorithm from Chapter
3, and these synergies were set as the target for this device. This is another advantage
to simulated environments as it allows our device to have access to pre-injury conditions,
which is an obvious caveat to the performance shown here. The ANN was used for
stimulus control and asked to predict the required stimulation to generate healthy
synergies in the injured network. For cortical injuries, reflecting a loss of descending
drive, this worked excellently for both the unilateral extensor injury as well as for a
bilateral injury reflecting a more widespread loss of function. However, for no condition
was the network able to restore synergy recruitment with the loss of afferent feedback in
peripheral injury conditions. This was true even when the network was given access to
a greater number of stimulation sites. As mentioned, the network learnt the
representation between stimulation and output exceedingly well in the simulated
conditions, so how was the network unable to produce healthy synergies? It is proposed
that this is due to the special and complex role that afferent feedback plays within this
network to balance agonist and antagonist recruitment. Compared to cortical drive,
afferent feedback influences a more specific subset of interneurons. Examining the
mistakes made by the network in the peripheral condition reveals that it switches bias in
this condition from the extensor muscles to the flexors, unable to provide the fine-tuned
balancing that normal afferent feedback provides. This demonstrates that whilst our
algorithms move closer to closed loop control it is vital that future devices take greater

account of afferent signals to more naturally restore motor control.
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6.3 Utility to the field

All scripts described herein are available at https://github.com/gareth-york/neural-bridge
and MIIND is available from http://miind.sourceforge.net/. These scripts were written with

the intention that they be easily implemented within different environments.

6.3.1 Synerqy detection algorithms, comparison and online implementation

The system of synergy detection algorithms and the comparison of performance are
available in two separate implementations. The system of tests shown in this thesis are
designed in a modular fashion such that if new measures or methods of onset/detection
or synergy extraction were developed it would be simple to compare them to previous
findings. Itis also simple to re-reset these algorithms for a different set of data conditions,
this is particularly useful in the case of synergy extraction algorithms where ICA and NMF
have variable performance between authors and implementations. The second section
provides the online synergy extraction using NMF and an average onset detection with
visual feedback of updated synergies in near real time. Participants are usually asked to
maximally recruit a given muscle or set of muscles within motor control studies, with or
without visual feedback on the EMG signal. It may be that providing synergy feedback

may allow more specific synergy recruitment and reduce variability between subjects.

6.3.2 Algorithms for automated stimulus control

The algorithms for producing the dataset for ANN training have more specific utility but
are an expansion on the algorithms provided by SanWorks for the PulsePal device. In
comparison to other isolated stimulators these algorithms allow for fine-tuned control of
stimulus parameters from up to four channels while outputting a standard TTL pulse for
triggered recording. This has the immediate advantage of freeing attention for the
operator but more so it allows for much greater complexity of stimulus paradigm as
shown in the experiments here. When combined with the ANN described here it provides
a powerful platform for stimulus/response measurement for a variety of devices or

recording scenarios.

6.3.3 Simulation of neural networks

The current capabilities of MIIND are significant, however the model is still undergoing
active development and new features are planned in the near future. Flexible modelling

of whole populations of neurons can be a useful tool in any number of settings, both for
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informing and being informed by experimental data. The simple addition of injury
modelling described here is only the beginning of what can be achieved with careful
thought. By running multiple simulations with incrementally increasing or decreasing
connection strength it would be feasible to model Hebbian plasticity amongst neurons or
recovery post injury. Analysing deficits in patient’'s synergy recruitment profiles could
identify potential injury sites and suggest more personalized treatment plans. Lastly the
network described here is a single modular block but there is nothing to prevent the
network from being arranged in concert with further networks. This could allow for models

of greater scope that can include more dynamic cortical control networks.

6.4 Clinical significance

6.4.1 Muscle synergies analysis for assessing physiotherapy in the elderly

Muscle weakness in the elderly is an incredibly common cause of falls and subsequent
hospitalizations. Preventative physiotherapy is often recommended for frail or elderly
patients (De Labra et al., 2015; Soukkio et al., 2018). Current methods for assessing
muscle weakness do not take into account the changes in synergy recruitment observed
due to change in limb position. This knowledge by itself may introduce new avenues for
improvement, but by using synergy analysis during standard testing may allow for better
understanding of a patient’s specific deficit. When this is understood it may be possible
to introduce movements or exercises that better target that deficit. This is particularly
relevant for patients with limited mobility or energy as they may only be capable of a

limited number of exercises and therefore, treatment efficiency must be maximized.

6.4.2 BMI for treatment of foot drop

The direct applicability of the combined algorithms shown here to a clinical setting can
only be considered in terms of currently available devices, as the hardware
implementation shown here is obviously not applicable to human subjects. As previously
mentioned, FES has been used previously for the treatment of foot drop via stimulation
of the peroneal nerve to recruit the unaffected motor neurons (Barbeau et al., 1999;
Embrey et al., 2010; Kesar et al., 2011; Melo et al., 2015; Ferrante et al., 2016). Electrical
stimulus is usually predefined and controlled either using a handheld remote or
increasingly are automatically triggered based off sensors in the shoe or by measuring
electromyography (EMG) signals from the muscles of the foot. FES is patrticularly

promising for treatment as it offers a curative solution to the aetiology of the condition,
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potentially to a stage where a prosthetic device is no longer required. However, despite
this potential, current devices are extremely limited in the methods by which stimulation
is delivered. Stimulus parameters are predefined at device fitting and rarely updated in
check-up sessions that may be months apart. This once again demonstrates the same
problems described previously; it relies on the expertise of the operator to select the
correct parameters; it does not update in line with changes in performance and the
choice of stimulation parameters is usually limited to a single variable. This may be why
current studies are mixed on the effectiveness of AFO versus FES devices. FES devices
show great promise for a subset of patients, but often the performance is much more
variable. If this is a failure of the device or due to differences in patient potential is
unknown, but one way to investigate this would be an algorithm similar to the one

described here.

It has been previously demonstrated that FES incorporating muscle synergies into the
stimulation control could restore healthy synergy patterns in patients with foot drop
(Ferrante et al., 2016). The ANN designed in Chapter 4, in combination with the
previously described online synergy analysis program could form a closed loop
stimulation device. This device would combine real time analysis of motor output with an
adaptable and more specific control of stimulation parameters to improve further on this
result. Furthermore, the collection of stimulation datasets for training would give
clinicians a much greater understanding of the precise patient deficit, in terms of muscle
weakness in concrete terms. This in turn may give greater understanding of why some
patients respond better to FES than others. Furthermore, the device training allows for
comparatively easy updating of stimulus control network compared to requiring a follow
up appointment. It would be feasible for updating to occur regularly on a home computer
allowing for the treatment provided to keep pace with a patient's recovery or decline

during use.

6.5 Future directions

6.5.1 ICA-PCA and autoencoders for synerqy extraction

The correct method for synergy extraction is not a settled issue. Indeed, although the
methods examined here represent the most commonly used methods suitable for online
analysis, there are other methods that bear further investigation. One such method is
PCA-ICA, wherein ICA is used to explore the new feature space defined by PCA. This

method has previously been shown to be more accurate than either ICA or NMF (Tresch
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and Cheung, 2006). This method was not explored here due to its exceedingly large
computational time precluding online use, but this was likely due to algorithm
implementation rather than inherent complexity. Another interesting method of synergy
extraction are autoencoders. Autoencoders are a special type of ANN wherein the target
output of the network is its input. Instead of using large hidden layers, an autoencoder
can reduce the number of nodes in the hidden layer compared to its inputs. The activity
of this hidden layer can be used to represent the synergy structure. This method has
also been shown to be more effective than ICA and NMF (Spuler et al., 2016).
Autoencoders also have the advantage of being easy to integrate into a larger deep
neural network, potentially directly into the ANN used for stimulation control. Comparing
these methods with the more commonly used ICA and NMF may have provided further
insight into why these methods are more effective, or if their performance is also dataset

dependent.

6.5.2 Expanded stimulus/response experiments at greater degrees of separation

Following the success of the ANN architecture at learning at generalized transfer function
in the periphery and in a simulation of spinal networks, the next obvious step is to attempt
to increase the separation a step further in the biological model. As argued previously,
stimulation at the level of the spinal cord reflects the optimal point for recruitment of
surviving neural networks in spinal cord injury. Attempts were made during the recording
of the peripheral dataset to collect spinal recordings; however, this was only possible in
a fraction of animals, and never with complete datasets. Increased focus at this level
could be achieved with off the shelf components and with existing surgical setups used
for stimulation during recovery. This study would fully test the limits of the architecture to

generalize at the level required for a spinal BMI to overcome the specificity problem.

On a less ambitious level, the control of stimulation was defined here by just two
parameters, although these were examined with more resolution than is usually
performed. Due to the ease with which the PulsePal can deliver precise patterns of
stimulation a variety of different parameters could also be examined for their effects on
motor output. A problem this may be of particular relevance to is the reversal of motor
curve recruitment. When the body recruits motor neurons it does it in order of smallest
to largest (as required for the task). However, when FES is used this order is reversed
with largest fibres recruited first. This has been suggested to be the cause of excessive

fatigue and the painful sensation that can accompany FES. Potentially this is due to how
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stimulation is delivered, perhaps a different pulse shape may result in normal recruitment

curves in certain combinations.

6.5.3 Isolating the role of afferent feedback for synergy recruitment in dynamic

tasks

The data presented in Chapter 3 demonstrates that afferent feedback has a role in
synergy recruitment during an isometric task. This is in direct contrast to some findings
in the hand and is at odds with findings of preserved synergies in dynamic conditions.
Clearly afferent feedback is required for healthy synergy generation as shown by their
abolition in conditions of complete removal of afferent signals. However as shown in
certain cases of rhizotomy of the dorsal root, synergies can be largely preserved in cases
where afferent feedback is significantly altered. Further investigation is required using
synergy analysis in a spectrum of tasks, with further modelling work. Tasks to investigate
further include non-isometric knee extension and flexion and locomotion, potentially
including the effects of perturbations under different states of afferent feedback. All of
these scenarios may bridge the gap between dynamic and static tasks and identify where
exactly afferent feedback enters the synergy recruitment pathway, and why it is

sometimes ignored.

6.5.4 Locomotion synergies and the CPG within the MIIND framework

In line with this thinking is the use of MIIND to further investigate the ways that
interneuron networks can be flexibly recruited to different tasks. This work demonstrated
that the lower levels of the CPG are implicated in synergy recruitment for isometric
extension of the knee. Synergy recruitment during locomotion has been extensively
studied previously and therefore the expected profiles are already known. Extending the
current MIIND network to include all layers of the CPG and to induce cyclical
excitation/inhibition would be a relatively simple addition. This would provide the same
justification for those findings as used here and would also extend the model to another
environment. More importantly it could also be attempted to try and elucidate further what
feedback or descending signals are required to cause one or the other to occur. Is it
entirely a cortically controlled process, or is the switch mostly accomplished via afferent
feedback? Developing the framework to answer these questions and others would
provide powerful evidence for the Rybak model of the CPG and potentially give a much

greater understanding of the fluidity of synergy recruitment networks.
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6.6 Concluding remarks

This project initially aimed to develop the algorithms required to drive a BMI to facilitate
communication across a region of nerve damage to provide novel new avenues of
treatment for spinal cord injury. Algorithms were designed from a top down perspective
considering the output and input sections of the end device. For output analysis it was
determined that muscle synergies are an ideal end target as the same solution used by
the CNS to simplify the problem of motor control. To achieve this an online synergy
analysis algorithm was developed based on tests determining the performance of the
most commonly used methods for synergy extraction and EMG activity detection. The
best of these algorithms was used to demonstrate that afferent feedback played a role
in synergy recruitment during an isometric knee extension to balance agonist/antagonist
activity between the hamstrings and quadriceps. The integration of sensory feedback
was further examined using a model of the CPG interneuron network in the MIIND
simulation framework. This model explained the experimental findings using only
changes in afferent feedback, further solidifying a role for proprioception in synergy
recruitment. The next stage of device development focused on determining input to the
system provided by the device in the form of electrical stimulation. An advanced isolated
stimulator was used to collect large datasets for training of an ANN for modelling the
relationship between peripheral nerve stimulation and resultant EMG parameters. The
response for each muscle was calibrated using excitation curves calculated using set
test pulses delivered throughout stimulation, and by establishing the optimal muscle
stretch through the use of an ergometer in response to the same test pulse. This network
successfully predicted the stimulation parameters required to generate a given EMG
waveform with a high degree of accuracy in a dataset of known animals. It was also
successful in predicting the voltage required when tested on a subset of unknown
animals. Prioritization of the voltage parameter is indicative of the learning process of
the network as it was determined by the variability accounted for by each parameter that
voltage is the more important of the two. Finally, having proven the effectiveness of each
algorithm individually, they were combined within an in silico models of different nerve
injuries. The combined algorithms were able to restore healthy synergy recruitment in
cases of cortical injury but not peripheral injury. This argues further for the importance of
normal afferent feedback in synergy recruitment. The system described here could be
readily adapted to available systems for treatment of certain types of nerve injury.

Furthermore, the individual algorithms have further application within the field of
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physiotherapy for the elderly. This work described here informs and could provide tools

for further investigation of the problems faced by BMI devices today.
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Appendices

Position 1

Appendix 1-A: Experimental set up. The effect of afferent feedback on muscle
recruitment was examined in two different positions of the contralateral hip to
maximize or minimize passive insufficiency due to contralateral hip position.
Subjects were asked to lay on a standard medical examination bed. They were
then shown how to perform an isometric knee extension with the leg brace
attached to their dominant leg. Subjects were shown the resulting EMG output
recorded using a Delsys Trigno system. Subjects were asked to perform an
isometric knee extension at maximal voluntary effort for five seconds, attempting
to maximise RF activity. The dominant knee was fixed at one of four angles using
a Donjoy TROM locking knee brace at 0°, 20°, 60° and 90°. In these pictures the
knee is at 90°. The angle of the knee was always measured against the hip joint
and the bony prominence on the outside of the ankle. Data was collected in both
positions for each subject. In position one the participant is supine with both legs
flat against the bed. In position two the contralateral leg was kept bent such that
the foot is flat against the bed so that both the knee and hip are fully flexed.
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Synergy extraction 1 | Onset detection1 @ Synergy extraction2 = Onset detection2 | Standard Error Degrees of freedom | P value

PCA Raw ICA Raw 0.0123 1593 <.0001
PCA Raw FA Raw 0.0123 1593 1
PCA Raw NMF Raw 0.0123 1593 <.0001
PCA Raw PCA Average 0.0123 1593 <.0001
PCA Raw ICA Average 0.0173 1593 <.0001
PCA Raw FA Average 0.0173 1593 0.0145
PCA Raw NMF Average 0.0173 1593 <.0001
PCA Raw PCA RMS 0.0123 1593 <.0001
PCA Raw ICA RMS 0.0173 1593 0.0016
PCA Raw FA RMS 0.0173 1593 0.0003
PCA Raw NMF RMS 0.0173 1593 <.0001
PCA Raw PCA SampEn 0.0123 1593 <.0001
PCA Raw ICA SampEn 0.0173 1593 <.0001
PCA Raw FA SampEn 0.0173 1593 <.0001
PCA Raw NMF SampEn 0.0173 1593 0.0001
ICA Raw FA Raw 0.0123 1593 <.0001
ICA Raw NMF Raw 0.0123 1593 <.0001
ICA Raw PCA Average 0.0173 1593 <.0001
ICA Raw ICA Average 0.0123 1593 <.0001
ICA Raw FA Average 0.0173 1593 <.0001
ICA Raw NMF Average 0.0173 1593 0.0066
ICA Raw PCA RMS 0.0173 1593 <.0001
ICA Raw ICA RMS 0.0123 1593 <.0001
ICA Raw FA RMS 0.0173 1593 <.0001
ICA Raw NMF RMS 0.0173 1593 0.1523
ICA Raw PCA SampEn 0.0173 1593 <.0001
ICA Raw ICA SampEn 0.0123 1593 <.0001
ICA Raw FA SampEn 0.0173 1593 <.0001
ICA Raw NMF SampEn 0.0173 1593 <.0001
FA Raw NMF Raw 0.0123 1593 <.0001
FA Raw PCA Average 0.0173 1593 0.0288
FA Raw ICA Average 0.0173 1593 <.0001
FA Raw FA Average 0.0123 1593 <.0001
FA Raw NMF Average 0.0173 1593 <.0001
FA Raw PCA RMS 0.0173 1593 0.0006
FA Raw ICA RMS 0.0173 1593 0.001
FA Raw FA RMS 0.0123 1593 <.0001
FA Raw NMF RMS 0.0173 1593 <.0001
FA Raw PCA SampEn 0.0173 1593 <.0001
FA Raw ICA SampEn 0.0173 1593 <.0001
FA Raw FA SampEn 0.0123 1593 <.0001
FA Raw NMF SampEn 0.0173 1593 0.0002
NMF Raw PCA Average 0.0173 1593 <.0001
NMF Raw ICA Average 0.0173 1593 <.0001
NMF Raw FA Average 0.0173 1593 <.0001
NMF Raw NMF Average 0.0123 1593 <.0001
NMF Raw PCA RMS 0.0173 1593 <.0001
NMF Raw ICA RMS 0.0173 1593 <.0001
NMF Raw FA RMS 0.0173 1593 <.0001
NMF Raw NMF RMS 0.0123 1593 <.0001
NMF Raw PCA SampEn 0.0173 1593 <.0001
NMF Raw ICA SampEn 0.0173 1593 <.0001
NMF Raw FA SampEn 0.0173 1593 <.0001
NMF Raw NMF SampEn 0.0123 1593 <.0001
PCA Average ICA Average 0.0123 1593 <.0001
PCA Average FA Average 0.0123 1593 1
PCA Average NMF Average 0.0123 1593 <.0001
PCA Average PCA RMS 0.0123 1593 0.9939
PCA Average ICA RMS 0.0173 1593 <.0001
PCA Average FA RMS 0.0173 1593 0.9996
PCA Average NMF RMS 0.0173 1593 <.0001
PCA Average PCA SampEn 0.0123 1593 <.0001
PCA Average ICA SampEn 0.0173 1593 <.0001
PCA Average FA SampEn 0.0173 1593 <.0001
PCA Average NMF SampEn 0.0173 1593 0.9981
ICA Average FA Average 0.0123 1593 <.0001
ICA Average NMF Average 0.0123 1593 <.0001
ICA Average PCA RMS 0.0173 1593 <.0001
ICA Average ICA RMS 0.0123 1593 0.9939
ICA Average FA RMS 0.0173 1593 <.0001
ICA Average NMF RMS 0.0173 1593 <.0001
ICA Average PCA SampEn 0.0173 1593 <.0001
ICA Average ICA SampEn 0.0123 1593 <.0001
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ICA Average FA SampEn 0.0173 1593 <.0001

ICA Average NMF SampEn 0.0173 1593 <.0001
FA Average NMF Average 0.0123 1593 <.0001
FA Average PCA RMS 0.0173 1593 1
FA Average ICA RMS 0.0173 1593 <.0001
FA Average FA RMS 0.0123 1593 0.9939
FA Average NMF RMS 0.0173 1593 <.0001
FA Average PCA SampEn 0.0173 1593 <.0001
FA Average ICA SampEn 0.0173 1593 <.0001
FA Average FA SampEn 0.0123 1593 <.0001
FA Average NMF SampEn 0.0173 1593 0.9993
NMF Average PCA RMS 0.0173 1593 <.0001
NMF Average ICA RMS 0.0173 1593 <.0001
NMF Average FA RMS 0.0173 1593 <.0001
NMF Average NMF RMS 0.0123 1593 0.9939
NMF Average PCA SampEn 0.0173 1593 <.0001
NMF Average ICA SampEn 0.0173 1593 <.0001
NMF Average FA SampEn 0.0173 1593 <.0001
NMF Average NMF SampEn 0.0123 1593 <.0001
PCA RMS ICA RMS 0.0123 1593 <.0001
PCA RMS FA RMS 0.0123 1593 1
PCA RMS NMF RMS 0.0123 1593 <.0001
PCA RMS PCA SampEn 0.0123 1593 <.0001
PCA RMS ICA SampEn 0.0173 1593 <.0001
PCA RMS FA SampEn 0.0173 1593 <.0001
PCA RMS NMF SampEn 0.0173 1593 1
ICA RMS FA RMS 0.0123 1593 <.0001
ICA RMS NMF RMS 0.0123 1593 <.0001
ICA RMS PCA SampEn 0.0173 1593 <.0001
ICA RMS ICA SampEn 0.0123 1593 <.0001
ICA RMS FA SampEn 0.0173 1593 <.0001
ICA RMS NMF SampEn 0.0173 1593 <.0001
FA RMS NMF RMS 0.0123 1593 <.0001
FA RMS PCA SampEn 0.0173 1593 <.0001
FA RMS ICA SampEn 0.0173 1593 <.0001
FA RMS FA SampEn 0.0123 1593 <.0001
FA RMS NMF SampEn 0.0173 1593 1
NMF RMS PCA SampEn 0.0173 1593 <.0001
NMF RMS ICA SampEn 0.0173 1593 <.0001
NMF RMS FA SampEn 0.0173 1593 <.0001
NMF RMS NMF SampEn 0.0123 1593 <.0001
PCA SampEn ICA SampEn 0.0123 1593 <.0001
PCA SampEn FA SampEn 0.0123 1593 1
PCA SampEn NMF SampEn 0.0123 1593 <.0001
ICA SampEn FA SampEn 0.0123 1593 <.0001
ICA SampEn NMF SampEn 0.0123 1593 <.0001
FA SampEn NMF SampEn 0.0123 1593 <.0001

Appendix 1-B: Pair wise comparisons following two-way ANOVA for mean cosine
similarity values for synergy activation coefficients between synthetic synergies
and extracted synergies for different synergy extraction algorithms and onset
detection algorithms. A two-way ANOVA was required to identify the effect of onset
detection method and synergy extraction method on cosine similarity for synergy
activation coefficients. Residuals were tested for normality using a histogram and a
Levene’s test for equal variance. There were statistically significant interactions between
cosine similarity for both onset detection and between synergy extraction methods (F =
327.63, p < 0.005 and F = 276.45, p < 0.005 respectively). There was also a significant
between group interaction for onset detection and synergy extraction (F = 25.31, p <
0.005). This was followed by multiple within group comparisons to identify the simple
main affects shown above.
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Synergy extraction1 | Onset detection1  Synergy extraction2 = Onset detection2 | Standard Error = Degrees of freedom = P value

PCA Raw ICA Raw 0.017497 1593 1
PCA Raw FA Raw -0.04354 1593 0.828
PCA Raw NMF Raw -0.07526 1593 0.0473
PCA Raw PCA Average 0.007083 1593 1
PCA Raw ICA Average 0.02458 1593 1
PCA Raw FA Average -0.03646 1593 0.9986
PCA Raw NMF Average -0.06818 1593 0.6907
PCA Raw PCA RMS 0.022594 1593 0.9997
PCA Raw ICA RMS 0.040091 1593 0.996
PCA Raw FA RMS -0.02095 1593 1
PCA Raw NMF RMS -0.05267 1593 0.9453
PCA Raw PCA SampEn 0.097099 1593 0.001
PCA Raw ICA SampEn 0.114596 1593 0.0194
PCA Raw FA SampEn 0.053559 1593 0.9373
PCA Raw NMF SampEn 0.021836 1593 1
ICA Raw FA Raw -0.06104 1593 0.2716
ICA Raw NMF Raw -0.09276 1593 0.0024
ICA Raw PCA Average -0.01041 1593 1
ICA Raw ICA Average 0.007083 1593 1
ICA Raw FA Average -0.05395 1593 0.9335
ICA Raw NMF Average -0.08568 1593 0.2839
ICA Raw PCA RMS 0.005097 1593 1
ICA Raw ICA RMS 0.022594 1593 0.9997
ICA Raw FA RMS -0.03844 1593 0.9974
ICA Raw NMF RMS -0.07017 1593 0.6436
ICA Raw PCA SampEn 0.079602 1593 0.4139
ICA Raw ICA SampEn 0.097099 1593 0.001
ICA Raw FA SampEn 0.036062 1593 0.9988
ICA Raw NMF SampEn 0.00434 1593 1
FA Raw NMF Raw -0.03172 1593 0.9871
FA Raw PCA Average 0.050624 1593 0.9608
FA Raw ICA Average 0.06812 1593 0.692
FA Raw FA Average 0.007083 1593 1
FA Raw NMF Average -0.02464 1593 1
FA Raw PCA RMS 0.066134 1593 0.7368
FA Raw ICA RMS 0.083631 1593 0.3249
FA Raw FA RMS 0.022594 1593 0.9997
FA Raw NMF RMS -0.00913 1593 1
FA Raw PCA SampEn 0.140639 1593 0.0006
FA Raw ICA SampEn 0.158136 1593 <.0001
FA Raw FA SampEn 0.097099 1593 0.001
FA Raw NMF SampEn 0.065377 1593 0.7532
NMF Raw PCA Average 0.082346 1593 0.3522
NMF Raw ICA Average 0.099843 1593 0.0905
NMF Raw FA Average 0.038805 1593 0.9972
NMF Raw NMF Average 0.007083 1593 1
NMF Raw PCA RMS 0.097856 1593 0.1084
NMF Raw ICA RMS 0.115353 1593 0.0178
NMF Raw FA RMS 0.054316 1593 0.9299
NMF Raw NMF RMS 0.022594 1593 0.9997
NMF Raw PCA SampEn 0.172361 1593 <.0001
NMF Raw ICA SampEn 0.189858 1593 <.0001
NMF Raw FA SampEn 0.128821 1593 0.0033
NMF Raw NMF SampEn 0.097099 1593 0.001
PCA Average ICA Average 0.017497 1593 1
PCA Average FA Average -0.04354 1593 0.828
PCA Average NMF Average -0.07526 1593 0.0473
PCA Average PCA RMS 0.015511 1593 1
PCA Average ICA RMS 0.033007 1593 0.9996
PCA Average FA RMS -0.02803 1593 0.9999
PCA Average NMF RMS -0.05975 1593 0.8589
PCA Average PCA SampEn 0.090015 1593 0.004
PCA Average ICA SampEn 0.107512 1593 0.0423
PCA Average FA SampEn 0.046475 1593 0.9819
PCA Average NMF SampEn 0.014753 1593 1
ICA Average FA Average -0.06104 1593 0.2716
ICA Average NMF Average -0.09276 1593 0.0024
ICA Average PCA RMS -0.00199 1593 1
ICA Average ICA RMS 0.015511 1593 1
ICA Average FA RMS -0.04553 1593 0.9852
ICA Average NMF RMS -0.07725 1593 0.4698
ICA Average PCA SampEn 0.072519 1593 0.5861
ICA Average ICA SampEn 0.090015 1593 0.004
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ICA Average FA SampEn 0.028978 1593 0.9999

ICA Average NMF SampEn -0.00274 1593 1
FA Average NMF Average -0.03172 1593 0.9871
FA Average PCA RMS 0.059051 1593 0.8698
FA Average ICA RMS 0.076548 1593 0.4868
FA Average FA RMS 0.015511 1593 1
FA Average NMF RMS -0.01621 1593 1
FA Average PCA SampEn 0.133556 1593 0.0017
FA Average ICA SampEn 0.151052 1593 0.0001
FA Average FA SampEn 0.090015 1593 0.004
FA Average NMF SampEn 0.058293 1593 0.881
NMF Average PCA RMS 0.090773 1593 0.196
NMF Average ICA RMS 0.10827 1593 0.0391
NMF Average FA RMS 0.047233 1593 0.979
NMF Average NMF RMS 0.015511 1593 1
NMF Average PCA SampEn 0.165278 1593 <.0001
NMF Average ICA SampEn 0.182775 1593 <.0001
NMF Average FA SampEn 0.121738 1593 0.0082
NMF Average NMF SampEn 0.090015 1593 0.004
PCA RMS ICA RMS 0.017497 1593 1
PCA RMS FA RMS -0.04354 1593 0.828
PCA RMS NMF RMS -0.07526 1593 0.0473
PCA RMS PCA SampEn 0.074505 1593 0.0528
PCA RMS ICA SampEn 0.092002 1593 0.178
PCA RMS FA SampEn 0.030965 1593 0.9998
PCA RMS NMF SampEn -0.00076 1593 1
ICA RMS FA RMS -0.06104 1593 0.2716
ICA RMS NMF RMS -0.09276 1593 0.0024
ICA RMS PCA SampEn 0.057008 1593 0.8987
ICA RMS ICA SampEn 0.074505 1593 0.0528
ICA RMS FA SampEn 0.013468 1593 1
ICA RMS NMF SampEn -0.01825 1593 1
FA RMS NMF RMS -0.03172 1593 0.9871
FA RMS PCA SampEn 0.118045 1593 0.0129
FA RMS ICA SampEn 0.135542 1593 0.0013
FA RMS FA SampEn 0.074505 1593 0.0528
FA RMS NMF SampEn 0.042783 1593 0.992
NMF RMS PCA SampEn 0.149767 1593 0.0002
NMF RMS ICA SampEn 0.167264 1593 <.0001
NMF RMS FA SampEn 0.106227 1593 0.0484
NMF RMS NMF SampEn 0.074505 1593 0.0528
PCA SampEn ICA SampEn 0.017497 1593 1
PCA SampEn FA SampEn -0.04354 1593 0.828
PCA SampEn NMF SampEn -0.07526 1593 0.0473
ICA SampEn FA SampEn -0.06104 1593 0.2716
ICA SampEn NMF SampEn -0.09276 1593 0.0024
FA SampEn NMF SampEn -0.03172 1593 0.9871

Appendix 1-C: Pair wise comparisons following two-way ANOVA for mean cosine
similarity values for synergy vectors between synthetic synergies and extracted
synergies for different synergy extraction algorithms and onset detection
algorithms. A two-way ANOVA was required to identify the effect of onset detection
method and synergy extraction method on cosine similarity for synergy vector. Residuals
were tested for normality using a histogram and a Levene’s test for equal variance.
There were statistically significant interactions between cosine similarity for both onset
detection and between synergy extraction methods (). There was also a significant
between group interaction for onset detection and synergy extraction (). This was
followed by multiple within group comparisons to identify the simple main affects shown
above.
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Appendix 1-E: Subthreshold, threshold and supra-threshold stimulation of the
rat peripheral nerve at two sites. The rat peripheral nerve (rat 2) was stimulated
using cuff electrodes attached to either the tibial or sciatic nerve. Stimulation was
delivered to either the tibial cuff, sciatic cuff or to both cuffs combined. The stimulus
delivered to either cuff in the combined condition was always equal. Threshold is
defined as the shortest, smallest pulse that elicited a response. The threshold value
differed depending on the cuff stimulated and are as follows; Sciatic 100 ps - 800mV,
Tibial and Combined 100 us - 600mV. Muscle activity was measured via copper wire
electrodes inserted into MG and LG. Sub threshold signals are stimulus pulses that
failed to elicit a response, the pulse shown here is 100 ps — 400mV and 100 us —
300mV respectively, or half the threshold value. Supra-threshold values were defined
as double the threshold value and are therefore 100 ps - 1600mV and 100 ps —
1200mV respectively.
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Appendix 1-F: Comparison of stimulus at threshold value for different
stimulating cuffs. This graph compares the response of LG and MG at the
determined threshold values for each cuff in rat 2. The sciatic and combined cuffs
were determined to have the same minimum threshold activation (100 ps - 600mV).
Note that this stimulus pulse elicits no response when delivered to the sciatic nerve
(TOP MIDDLE). The tibial nerve threshold was higher (100 ps - 800mV) but it can
be seen that stimulation at the sciatic or combined cuffs results in a significantly larger
response. This demonstrates the greater selectivity of the tibial cuff for LG/MG
recruitment. It is also possible to observe the additive effect on recruitment in the
combined trace at Tibial threshold value. Stimulation was delivered either to the tibial
cuff, sciatic cuff or to both cuffs combined. The stimulus delivered to either cuff in the
combined condition was always equal. Muscle activity was measured via copper wire
electrodes inserted into MG and LG.
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