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ii. Abstract 

Treating damage to the nervous system is limited to targeting natural recovery, with 

limited recourse if these mechanisms fail. The level of disruption between descending 

systems and motor effectors is the major factor determining recovery in SCI. Attempts 

have been made to reconnect descending motor signals with the correct muscles but 

have struggled to restore motor control to pre-injury states. This thesis has tried to 

address limitations in current devices by designing algorithms to control a brain machine 

interface at the level of the spinal cord that provides functional electrical stimulation in a 

closed loop manner incorporating synergy information extracted from muscle activity. 

Synergy information is identified using dimensionality reduction algorithms. To determine 

which method was suitable for online analysis the accuracy of commonly used algorithms 

for synergy extraction and activity onset detection were compared. Findings from this 

comparison challenge assumptions regarding the utility of various methods. The most 

accurate algorithm, non-negative matrix factorization, was implemented online and 

applied to isometric knee extensions at different angles. It was shown that in contrast to 

the accepted view, proprioceptive feedback plays a significant role in synergy 

recruitment. Using an interneuron population model, the experimentally observed 

synergies were reproduced using only changes in afferent feedback. Using muscle 

synergies as a target for motor control requires a method for generating specific 

electromyography waveforms. An artificial neural network successfully learned the 

relationship between stimulation parameters and electromyography for stimulation of the 

rat hind limb. These algorithms were combined in a simulated injury environment using 

the same interneuron model described previously with connections removed or reduced. 

The combined algorithms were able to successfully restore muscle synergies to normal 

levels in some injury conditions. These algorithms represent a system that uses closed 

loop control of muscle synergy recruitment that could be implemented in a variety of 

devices.  
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Chapter 1: Introduction  

 

1.1 General introduction 

Traumatic injury resulting in partial or total loss of axons of descending spinal neurons 

causes varying degrees of paralysis due to loss of communication between descending 

motor control pathways and motor neurons (Nas et al., 2015). A brain machine interface 

(BMI) is a device that uses measured neural activity to interact with another device (Vidal, 

1973; Jackson and Fetz, 2011). One possible output device is an electrical stimulator 

placed within or near the spinal cord (Zimmermann et al., 2011; Nishimura et al., 2013; 

Grahn et al., 2014; Shanechi et al., 2014; Capogrosso et al., 2016). In theory a BMI could 

bypass the injury site and link caudal neural activity with rostral motor neuron effectors, 

restoring a level of control to the paralyzed area (Alam et al., 2016). The potential for 

curative treatment for spinal cord injury has driven the development of a diverse array of 

devices. These devices use different measures of neural activity and interpret this activity 

in different ways. Most implementations then pair this activity with functional electrical 

stimulation (FES) delivered at the level of the spinal cord, peripheral nerve or directly to 

muscle fibres. These methods have succeeded in controlling simple movements such 

as wrist flexion or primitive locomotion in animal models (Nishimura et al., 2013; Bouton 

et al., 2016).  

The initial potential of these devices is held back by limitations such as increased muscle 

fatigue, difficulty adapting to new environments or new subjects and most devices require 

extensive training periods (Thomas et al., 2003; Krauledat et al., 2008; Kindermans et 

al., 2014). These limitations are indicative of the inability to effectively recruit spared 

neural circuits. For instance FES results in reversal of the normal recruitment of motor 

neurons, recruiting the largest most fatigable neurons first (Blair and Erlanger, 1933; 

Laforet et al., 2009). This, among other factors, accounts for the increased fatigability 

observed in paralyzed muscles (Jones et al., 1979; Rabischong and Ohanna, 1992; 

Estigoni et al., 2014; Vromans and Faghri, 2018).  

Limitations in current devices are reflective of their design philosophy, as most place 

heavy emphasis on achieving a target movement, which not only limits the range of 

movement produced but also takes focus away from network behaviour in a more 

general sense.  Moving away from movement orientated design goals may allow devices 
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to create a wider range of more natural movements by better accessing spared spinal 

circuitry.   

The introduction to this thesis will provide background on the current understanding of 

both the fundamental and higher order systems of motor control, providing insight into 

how BMI performance may be improved. It will also cover key concepts in machine 

learning that that will be used later in this thesis for flexible control of stimulation in a 

variety of settings. Together this should explain the current gaps in device design and 

how novel algorithms integrated into a BMI may allow for true closed loop control of the 

paralyzed limb.  

1.2 Theories of motor control  

1.2.1 The “degrees of freedom” problem 

Within the physical constraints of the musculoskeletal system there are a redundant and 

significantly large number of ways to achieve a task, across the range of trajectories and 

muscle activation patterns. Selection of a specific strategy for a given task involves 

selection from a huge array of possible combinations requiring significant computational 

effort. The difficulty of this task appears at odds with the efficient and reliable way in 

which movements are performed (Frère and Hug, 2012). Two theories have been 

proposed to solve this “degrees of freedom” (DOF) problem. The first is the optimal 

control hypothesis, wherein the overall strategy for a task is primarily determined via 

afferent feedback. This feedback modifies descending drive such that the movement is 

optimized to maximize efficiency (Tresch et al., 2002; Corey B Hart and Giszter, 2010; 

Bizzi and Cheung, 2013; Hirashima and Oya, 2016) The other theory is the muscle 

synergy hypothesis’ wherein it is suggested that complex coordination of muscle activity 

is generated by combining modules or patterns of control together (Bernstein, 1968). The 

complexity is reduced from choosing many different muscle activations to instead 

choosing from a smaller range of motor modules. The ‘optimal control hypothesis’ has 

largely fallen out of favour in the field primarily due to the difficulty in determining what 

precisely the nervous system defines as “optimal”. The ‘optimal control hypothesis 

therefore falls outside the remit of this thesis; however, it is mentioned here as much 

remains unclear regarding recruitment and the neural origin of muscle synergies.  

 

 



 
 
 

15 
 
 

1.2.2 The muscle synergy hypothesis 

Muscle synergies are repeatable patterns of muscle activity over time, whereby certain 

muscles are organized to contract together and others may be kept inactive (Bizzi and 

Cheung, 2013). These patterns link the activity of multiple muscles thereby reducing the 

DOF to recruitment of a limited set of synergies. Encoding of muscle synergies is 

suggested to occur at the level of the spinal cord, however the precise details of this 

encoding are still a hotly debated issue. It has been demonstrated that similar muscle 

synergies can be extracted during locomotion from species with differently sized cerebral 

cortex (Dominici et al., 2011). The similarity of these synergies, despite the difference in 

cortical complexity, indicates that the neural candidate is likely at the level of the 

brainstem or spinal cord (Dominici et al., 2011). This is supported by studies in stroke 

patients with damage to the motor cortex where patients demonstrated merging of 

muscle synergies in the affected arm compared to the healthy arm (Cheung et al., 2012; 

Pan et al., 2018). Merging of synergies suggests that changes in motor control are made 

because the cortex is unable to fully recruit intact networks located at a lower level. Work 

has been done in frogs, mice and primates has shown that stimulation of interneurons in 

the spinal cord can recruit patterns of co-ordinated muscle activity (Corey B. Hart and 

Giszter, 2010; Levine et al., 2014; Takei et al., 2017). Despite these findings it is still 

unclear what the direct neural encoding is and therefore they must be observed indirectly 

through their effect on motor output in the form of patterns extracted from 

electromyography (EMG) recordings (Corey B Hart and Giszter, 2010; Bizzi and Cheung, 

2013). 

To understand how muscle synergies are extracted from EMG signals the concept of 

data dimensionality must be understood. Data dimensions refers to the number of 

variables used to describe the data. A dataset describing a group of people may include 

variables such as their height, weight, sex, etc. These variables may be related to each 

other, such as height and weight and patterns can emerge under close inspection. It may 

be that the pattern relating height and weight describe a similar amount of variance as 

either variable on their own. These patterns can be more useful than the individual 

measures in the same way that the body mass index may be more useful for some 

purposes than either height or weight on their own.  Dimensionality reduction algorithms 

seek to identify these patterns and describe the dataset using a smaller number of 

patterns. Synergy extraction algorithms attempt to reduce the dimensionality of a dataset 

of EMGs to a smaller set of patterns of muscle activations that are easier to understand 
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and analyse (Tresch and Cheung, 2006; Lacquaniti et al., 2012). In the case of the 

muscle synergy hypothesis this reduction in complexity is assumed to be the reason the 

body does this, and therefore a real neural encoding is being observed. It has been 

instead suggested that the synergies extracted are no more real than the hypothetical 

height/weight pattern mentioned, and that synergies emerge from EMG data because of 

the biomechanical constraints of the task (Valero-Cuevas et al., 2009; Kutch and Valero-

Cuevas, 2012; Groote et al., 2014). The majority of evidence has fallen in favour of 

synergies being reflective of the activity of networks of interneurons in the spinal cord, 

but until this has been demonstrated conclusively the alternative must be kept in mind 

when considering muscle synergy analysis (Corey B. Hart and Giszter, 2010; Levine et 

al., 2014; Takei et al., 2017).   

For use within a BMI device, muscle synergies appear to be a useful measure of network 

output during efficient motor control. Linear combination of muscle synergies have been 

shown to more efficiently describe muscle activity across a wide range of movements in 

humans, including reaching tasks, trunk stability and walking  in comparison to models 

based on the activity of individual muscles alone (Takei and Seki, 2010; Lacquaniti et al., 

2012; Roh et al., 2012; Wojtara et al., 2014). The impairment of motor control in those 

with altered synergy recruitment is also reflective of their role in efficient control. Synergy 

analysis was performed on the impaired and unimpaired limb in stroke patients during 

movement (Safavynia et al., 2011; Cheung et al., 2012; Pascual-Leone, 2013; Israely et 

al., 2018). The synergies identified in the impaired limb resembled that of the unimpaired 

limb, however some synergies were altered. Some synergies were merged together, 

whilst some synergies were fractionated into new smaller patterns. Critically, the degree 

of merging and fractionation was found to be related to both the severity of impairment 

and the time since the initial injury, with merging being greatest in the most severely 

impaired, and fractionation increasing as time passed. This suggests that cortical 

damage results in disorganization of the modular synergy system with a resulting 

impairment of motor control. Muscle synergies have also been shown to more efficiently 

control a virtual arm than when controlled using individual EMG features (Antuvan et al., 

2016; Valk et al., 2019). This evidence supports the hypothesis that synergy information 

is present during efficient control of the musculoskeletal system. Muscle synergies not 

only solve the redundancy problem of selecting an efficient muscle activation pattern, 

but may also account for much of the nonlinearity present in producing those patterns 

(Brezina et al., 2000; Bizzi and Cheung, 2013). Muscle synergies therefore present a 
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natural improvement as a control mechanism for a BMI device compared to movement 

orientated devices.   

1.2.3 Agonists, antagonists and synergists  

One of the major complexities in the DOF problem is the number of muscles that directly 

oppose each other. In the upper leg the contraction of the hamstrings and the contraction 

of the quadriceps are diametrically opposed to each other and are referred to as an 

antagonist pair.  The definition of which muscle is the agonist, and which is the antagonist 

is determined in a task dependent manner. The quadriceps are made up of four muscles; 

the rectus femoris, vastus lateralis, vastus medialis and vastus intermedius that all work 

together to extend the knee and are termed agonists when this is the desired movement. 

This in turn makes the hamstrings; semitendinosus, biceps femoris and 

semimembranosus, antagonists, as they work in opposition to the movement of the knee, 

as flexors instead. Muscles are further defined as synergistic when they are active at the 

same time during a task, but this does not indicate that they are working together or 

indeed for the same purpose. As mentioned, many synergistic muscles may actively 

impede efficiently carrying out a task, but this may still form an important role in motor 

control. This naming convention is useful in certain contexts, however, as is so often the 

case, this is a simplification of what really occurs. Very few muscles are entirely 

antagonistic to each other, and their function is determined in a task dependent manner. 

Further complicating the issue are multi joint muscles, or biarticular muscles,  where the 

function of a muscle can be dependent on a variety of factors such as joint position or 

coactivation of contralateral muscles (Eccles et al., 1957; Buchanan et al., 1986; Knikou 

and Rymer, 2002). Ultimately the network recruiting these muscles must receive input 

from a wide variety of sources, including descending control and afferent feedback.  

1.3 Systems of motor control  

1.3.1 Base components 

The fundamental unit of motor control is the motor unit which consists of a motor neuron 

innervating a number of muscle fibres. The cell bodies for motor neurons are found within 

the spinal cord in the ventral horn, but their axons extend out of the central nervous 

system (CNS) into the periphery where they are bundled together in nerves surrounded 

by fascia. Stimulation of these motor neurons, either at their cell body or their axons, 

results in contraction of the muscle fibre which ultimately produces motor output. Motor 
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neurons are recruited in a graded fashion depending on their size, from smallest to 

largest (Henneman et al., 1965).  

1.3.2 Descending efferent signals  

Higher centres of motor control are in frequent communication with motor neurons in the 

spinal cord, and each other. The major descending pathways for motor control are the 

corticospinal, corticobulbar, reticulospinal, bulbospinal, rubrospinal and pontospinal 

tracts (Kuypers, 1981; Lemon, 2008). It is the damage to these descending tracts that 

causes the loss of volitional control in spinal cord injury. How “top-down” control co-

ordinates with lower centres of motor control is still an open question, however it is likely 

to be handled by cortical centres, such as the motor and premotor cortex, and networks 

of interneurons at the level of the spinal cord working together (Tresch et al., 2002; Corey 

B Hart and Giszter, 2010; Bizzi and Cheung, 2013).   

1.3.3 Central pattern generators 

One of the more important interneuron networks are central pattern generators (CPG). 

These circuits are crucially important for rhythmic tasks such as locomotion as they 

produce cyclical output patterns without descending control (Grillner, 2011; Guertin, 

2013). The independence of these centres has been demonstrated dramatically in the 

mesencephalic cat, an animal model wherein a transection is made between the superior 

colliculi and the thalamus. Via stimulation of the reticular formation these animals could 

be made to walk and even keep pace with changes in treadmill speed (Shik and 

Orlovsky, 1976; Mori et al., 1978). Although these centres can function without 

descending input, afferent signals play an important role in modulating patterns in 

response to perturbations (McCrea and Rybak, 2008).  

The cyclical activity of CPGs is due to what are known as half-centre oscillators. The 

rhythmic output of cells is not due to an intrinsic property of the neuron, but its reciprocal 

excitation/inhibition with another neuron. As the activity of the cell rises, it causes its own 

inhibition via excitation of another neuron which has mirrored connections. Whilst this 

cyclical activity is an important output of CPGs, there is evidence to suggest that these 

networks can be used flexibly to control motor output in a variety of conditions, not all of 

which require or utilize rhythmic activation (York et al., 2019). 
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1.4 Afferent feedback 

Afferent fibres make up the majority of axons within nerve, outnumbering, motor axons 

9:1 and play a significant role in healthy motor control (Gesslbauer et al., 2017). Control 

of movement is possible in the absence of sensory feedback but swiftly becomes more 

inaccurate as time increases or as obstacles are encountered (Gandevia et al., 1990; 

Nielsen and Sinkjaer, 2002). This is especially true for the nervous system where afferent 

fibres directly synapse onto motor neurons providing immediate access to error signals 

during movement. Removal of these fibres in various conditions causes distinct motor 

deficits that increase as a task continues in the absence of other sources of feedback. 

Muscle afferents are classified into groups I-IV according to their diameter and they 

respond to specific sensory inputs (Lloyd, 1943; Macefield et al., 1989) These fibres are 

the primary source of our inherent sense of muscle velocity and the position of the limb 

in space, which is termed proprioception.  

1.4.1 Muscle spindles 

The major sensory organ responsible for proprioception is the muscle spindle. Muscle 

stretch is detected by the muscle spindle and relayed to the central nervous system by 

the afferents primarily via the muscle spindle primary (group Ia) and muscle spindle 

secondaries (group II). These fibres convey different information regarding stretch. Ia 

fibres are primarily related to changes in the length of the muscle and are highly adaptive, 

in that they rapidly cease firing when muscle length ceases to change. This is in contrast 

to group II fibres which do not significantly respond to changes in muscle length (Darby 

and Frysztak, 2013). The role of group II fibres can be intuitively understood as a more 

passive understanding of the muscles position in space versus reporting on movement. 

In terms of reflexes Ia afferents are responsible for the stretch reflex and the 

characteristic H-reflex where Ia fibres monosynaptically excite their homonymous motor 

neurons in response to stimulation (Eccles et al., 1957). Ia fibres also control firing of the 

synergistic antagonist muscles via polysynaptic inhibitory innervation of their motor 

neurons. This facilitates the response known as reciprocal inhibition wherein antagonist 

muscles are inhibited during activation of the agonist.  

1.4.2 Golgi tendon organ 

The other sensory organ responsible for proprioception is the Golgi tendon organ. In 

contrast to the muscle spindle, this organ signals for changes in muscle tension due to 



 
 
 

20 
 
 

contraction. This is present even in the absence of muscle length change and is therefore 

more representative of muscle force generation. Golgi tendon organs are innervated 

solely by Ib fibres which go on to project to both homonymously and heteronymous motor 

neurons making polysynaptic inhibitory and excitatory connections with them. This 

results in autogenic inhibition which regulates muscle contraction to avoid fibres 

damaging themselves. They excite antagonist muscles as part of the autogenic reflex. 

1.4.3 Nociceptors and cutaneous fibres 

The remaining muscle afferent fibre groups, III and IV are more widely dispersed along 

with Aβ and C fibres with sensory endings terminating in the skin and act as nociceptors 

throughout (von Düring and Andres, 1990; Dubin and Patapoutian, 2010; Jankowski et 

al., 2013). Some group II fibres also act as cutaneous sensors and nociceptors (Nagi et 

al., 2019).  

1.5 Brain machine interfaces for the purposes of motor control 

The term BMI was first used by Jaques Vidal who was inspired by the work of Hans 

Berger in 1924 when he first described electroencephalogram (EEG) activity in the brain 

(Vidal, 1973; Vidal, 1977). Vidal used visually evoked potentials in the visual cortex to 

guide a digital cursor through a simple maze. This provided proof of concept that neural 

activity could be used as a control mechanism. The umbrella term of BMI now refers to 

a variety of devices including both invasive and non-invasive alternatives. Non-invasive 

BMI’s attempt to measure neural activity without directly interfacing with nervous tissue, 

most commonly using EEG signals recorded from the scalp (Asghari Oskoei and Hu, 

2007; Atzori et al., 2014; Bouton et al., 2016). Invasive BMIs instead use neuronal firing 

rates measured using electrodes placed either in close proximity or directly within 

nervous tissue (Brus-Ramer et al., 2007; Campos et al., 2008; Zimmermann et al., 2011; 

Dorn et al., 2012; Nishimura et al., 2013; Giagka et al., 2013; Raspopovic et al., 2014; 

Grahn et al., 2014; Pani et al., 2016; Alam et al., 2016; Dura-Bernal et al., 2016).  

The concept that links BMIs is that neural activity in some form is recorded and used to 

drive the activity of another machine. These machines can range from a digital cursor, 

to a neural prosthetic hand, or, as is the goal of this thesis, simulating electrodes within 

the nervous system. The variety of developed devices and the diversity of solutions to a 

common problem could indicate an underlying flaw to the way in which the problem is 

approached (Baranauskas, 2014). Advancement within the field is often supposed to be 
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due to an increase in neural “resolution”, with increased sizes of recording or stimulating 

arrays (Nordhausen et al., 1994; Maynard et al., 1997; Branner and Normann, 2000; 

Davis et al., 2016). In the case of invasive BMIs, it is supposed that given a large enough 

array of electrodes, that could record from every neuron related to a given activity, 

performance could become indistinguishable from natural activity. However, oftentimes 

large leaps in performance can be achieved with novel interpretation of neural activity 

(Baranauskas, 2014).  A shift away from decoding with respect to the observer, to 

decoding with respect to the target goal achieved markedly better results than more 

technological capable devices (Gilja et al., 2012). This result suggests that improvements 

may be possible without technological leaps, but by using devices available today in 

better ways. 

There is currently no consensus on how to compare the performance of BMIs (Asghari 

Oskoei and Hu, 2007; Eftekhar et al., 2010; Baranauskas, 2014; Mehryar, 2014). 

Comparison is difficult as devices often target different injury states, movements, neural 

activity and species. The information transfer rate of the device has been proposed as a 

universal measure but this has only been reviewed with respect to devices applied to a 

centre-out reaching task (Baranauskas, 2014). Information transfer rate is difficult to 

calculate appropriately when the task differs from a centre-out reaching task, and even 

more so when applied to devices with the aim to restore motor control. Despite this 

difficulty, it is demonstrative that of the devices reviewed by Baranauskas, the best 

performing devices had the highest information transfer rate. Even during simple 

movements the estimated information transfer rate of the human nervous system is in 

the region of ~10 bits/s, a large jump from the rate current invasive BMIs achieve of 

~2  bits/s, especially as bit rate is measured on a logarithmic scale (Fitts, 1954). Whilst 

the task of controlling a prosthetic and re-innervating a paralyzed limb require different 

approaches, the overall goal is the same; to produce a movement that matches the 

intention of the user. Rather than precise control over motors the output device is instead 

imprecise control over muscle activity (measured as EMG waveforms). There are layers 

of abstraction and non-linearity between neural decoding and the desired output; 

however, the core task remains the same and therefore maximising information transfer 

is likely to have a large effect on device performance. The best information transfer was 

achieved by examining how neural activity encodes for a given task or activity, and what 

that activity represents. Neural activity likely relates to a whole range of parameters, 

rather than any single variable of movement (Panzeri et al., 2015). Therefore, 

interpretation of neural activity must account for complex non-linear relationships such 
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as between motor neuron firing rates and contraction, and the most important information 

must be accounted for.  Muscle synergies are an attractive target for accounting for these 

non-linear relationships in motor control.  

Identifying muscle synergies and tailoring stimulation paradigms to correspond with one 

another could result in a greater complexity of activations and inhibitions that mimic 

natural movements. Experimental data shows that interneuron firing rates in the frog 

spinal cord reflect the same synergy information as obtained from analysis of muscle 

activity (Corey B Hart and Giszter, 2010). A pairing of these two forms of neural activity 

may produce a BMI that can evoke more natural movements in a paralyzed limb. 

Synergies could improve performance by taking advantage of natural co-ordination 

within motor output allowing design of stimulation paradigms that best elicit those 

synergies.  

1.6 Machine learning 

The field of machine learning covers a huge array of techniques that all share the general 

principle of attempting to recreate the learning process electronically. Machine learning 

was initially a theoretical approach to training networks in a biologically inspired fashion 

to recreate biological like thinking. Following several AI “winters”, machine learning has 

finally entered mainstream use in the form of speech recognition, image analysis and 

trend prediction algorithms.  This surge has largely been driven by increased access to 

computing power and increasingly large datasets. It is a major advantage of machine 

learning that algorithm performance can be improved by increasing either of these 

variables.  These algorithms also excel in situations where traditional modelling 

approaches are held back, either due to a lack of understanding of the initial relationship 

or require greater adaptive capabilities. 

In gross overview, machine learning algorithms attempt to model a given relationship 

between two datasets in order to make predictions from this model. This can be further 

divided into supervised and unsupervised learning. This refers to whether the data is 

initially labelled or not with relevant information. Supervised learning might use a set of 

pictures with the contents of the image already described, whereas unsupervised 

learning must create these labels as part of the learning process. There is a further 

subdivision into classification and regression problems. For example, a classification 

program might be asked to sort a set of pictures into different classes of animals within 

the picture. A regression problem however asks for a continuous output to be predicted, 
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the classic illustration of which is to predict stock prices based on previous months 

reports. As another example of an unsupervised learning regression problem, a special 

type of artificial neural network (ANN) known as an autoencoder has been used 

previously for muscle synergy extraction (Spüler et al., 2016). This is an example of using 

machine learning to learn the structure of data and can be combined with other 

algorithms for increased performance in some applications.  

ANNs are a particularly popular topic within machine learning at present. These networks 

are at least in part designed to resemble the process of integrating information through 

a connected network of “neurons”. The functional unit of an ANN is a single neuron with 

inputs and outputs, an example of which is shown in Figure 1-A (A). The incoming values 

are multiplied by their weights, summed and then passed to the activation function of the 

neuron. This activation function applies some operation to the input and then provides 

that as the output. In principal this system is very simple, and in this case incapable of 

anything interesting. To make these networks more useful two things are required; more 

neurons and a way to alter weights towards a specified goal.  

Including more neurons is relatively simple to explain, it simply involves adding more 

connections between nodes, typically separated into different layers, with each layer only 

connecting to the next in series (although more complex architectures have been used 

for some purposes). The separation into layers is shown graphically in Figure 1-A (B) 

which are commonly termed as input, output and hidden layers. Hidden layers are 

termed such because it is not possible to directly observe their operation as a result of 

training, only the final output. Networks for extremely complex tasks may have multiple 

hidden layers of thousands of neurons, or even multiple networks connected in series. 

These larger networks are termed deep learning. Although there is no formal definition 

of the term any network of more than a handful of layers may reasonably be considered 

deep.  

Altering the weights between neurons requires a method and goal to drive this alteration. 

The goal is termed the loss function, with the goal being to minimize the value of the loss 

function relating the output of the network and its matching label. Common loss functions 

include the mean squared error or the categorical cross entropy. The minimum value of 

the loss function is found via gradient descent, a simplified graphical depiction of which 

is shown in Figure 1-A (C). Determining the minimum value of this parabola requires the 

function gradient (or direction of change) and a quantity to move down this gradient. The 

gradient is determined simply by taking the first derivative and the step size is determined 



 
 
 

24 
 
 

by the user (this is also known as the learning rate in machine learning). This process is 

repeated iteratively, each step moving towards a minimum, in this case a global 

minimum. However as seen in Figure 1-A (D) this may be only a local minimum, with 

gradient “humps” preventing gradient descent from finding the global minimum. The 

choice of start position within this function space can result in significantly different 

outcomes between different training attempts. Careful choice of learning rate is essential 

to avoid this. Too small and the network may become stuck in these local minima, too 

large and the network will be unable to settle into any minima at all. Gradient descent is 

computationally expensive if applied sequentially to each layer of weights. As mentioned 

previously machine learning went through droughts of development known colloquially 

as an AI winter. One of the important developments that allows ANNs to alter weights 

efficiently for deep networks was the backpropagation algorithm. This algorithm 

calculates the gradient of the loss function starting from the output layer and carrying 

terms of the calculation in reverse order through the network, hence the gradient 

propagates backwards. 
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Figure 1-A: Concepts in machine learning. A: An individual node of an ANN takes 

the sum of its inputs, 𝑖, multiplied by their respective weights, 𝜔, and applies an 

activation function, 𝑓, to determine its output. 𝑓 may take any form but is usually a 

non-linear function with some degree of “thresholding” whereupon certain values 

cause the node to “fire” similar to biological neurons. B: Nodes are grouped into 

layers with each node connected to each node in the next layer. These layers have 

different names; input layers, where data is fed into the network, hidden layers, where 

most computation takes place, and output layers, where the results of the network 

are extracted. The weights and activation functions for each connection or layer may 

be different and are fine-tuned during training. C: Weights are adjusted towards a 

given target by minimizing a loss function. This is achieved via gradient descent. At 

a given point 𝑥 the gradient, ∇, is determined and the next value is a set step, 𝛾, down 

this gradient. This process is repeated iteratively until the algorithm reaches a global 

minimum, or in practice a set number of steps is reached. D: Gradient descent is not 

an infallible process; local minima can be found that are significantly greater than the 

global minimum. These local minima may not have a gradient to the true minimum 

and training stalls. As the initial value for weights is usually randomly determined it is 

possible that different training periods may yield significantly different outcomes 

depending on this initial value.  

 

𝜔1 

𝜔3 

𝜔2 

𝑖1 

𝑖2 

𝑖3 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑓ሺσ 𝜔1𝑖1 +  𝜔2𝑖2 + 𝜔3𝑖3ሻ  

A Input Hidden Output B 

C 
𝑥𝑛+1 =  𝑥𝑛 − 𝛾 ⋅ 𝛻𝐹ሺ𝑥𝑛) 𝑥1 

𝑥2 

𝑥3 

𝑥𝑖 

Initial 

Value 

Global 

Minimum 

D 

Global 

Minimum 

Local 

Minimum Initial 

Value 



 
 
 

26 
 
 

1.7 Aims and objectives 

1.7.1 Synergy information has been shown to significantly improve the 

performance of motor control algorithms. There is currently no real time method 

that can relay this information to subjects or devices. Therefore, one aim of this 

thesis was to produce an algorithm that can extract synergy information in real 

time. During development of this algorithm the accuracy and speed of 

computation for detection of muscle activity onset and muscle synergy 

extraction was compared for the most commonly used methods. This algorithm 

was then applied to isometric knee extensions to identify the influence of 

proprioception on synergy recruitment. Following muscle synergy analysis of 

the knee extension a mechanistic explanation for these findings was provided 

by population modelling of interneuron networks at the level of the spinal cord. 

1.7.2 FES of the peripheral nervous system is often performed in an ‘ad-hoc’ 

fashion wherein stimulation paradigms are tailored individually by experts 

observing and maximising stimulus-response for a given set up. To perform this 

automatically requires an algorithm that can learn a generalizable transfer 

function between electrical stimulus and neural response. For the second aim of 

this thesis: an ANN was designed to model this relationship and then predict the 

required electrical stimulus for a given output.   

1.7.3 Experiments investigating spinal cord or cortical injury currently involve 

expensive and time intensive animal studies that involve significant impact on 

quality of life. A computational model that replicates motor deficits observed 

would reduce the time, cost and animals required for these experiments. 

Furthermore, computational models can highlight mechanisms of action that 

may not be easily understood from experimental data. Expanding upon the 

previously developed interneuron model, for the third aim of this thesis, 

alterations were made to the model to replicate different forms of nervous 

system injury. This model was then used as a simulated environment to test the 

previously described algorithms linked together as a closed loop BMI device.  
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Chapter 2: General Methods 

2.1 General Rationale 

Conceptually a BMI device has two major functions. Determining a desired output and 

producing that output. In practice it is also necessary to monitor the output produced and 

to provide some level of error correction. In an ideal example neural activity and the 

associated output are measured and manipulated at the level of specificity required. In 

other words, if a device can achieve its goal using a gross measure of neural activity, 

such as EMG recordings, this is superior to one that requires a more specific measure, 

such as spike firing rates. However, in most circumstances our understanding is limited 

as to what the level of specificity should be, or in our ability to access it. Some devices 

attempt to address this problem by interfacing with the nervous system at the level of 

most specificity e.g. neuronal spikes (Jackson et al., 2006; Shanechi et al., 2014; Alam 

et al., 2016; Bouton et al., 2016). However, this solution requires complex models of 

system dynamics to predict how individual neurons or spikes combine to produce gross 

output. These models are often insufficient as demonstrated by the fact that task 

performance is improved using a general measure of neural activity such as local field 

potential (LFP) (Flint et al., 2013; So et al., 2014; Stavisky et al., 2015). Indeed, the 

synergy hypothesis suggests that the CNS may take advantage of generalized patterns 

to solve the motor control problem.  The level of detail required is instead probably 

specific for a given task. For the needs of a device controlling the paralyzed limb, the 

target is to reproduce natural control of the limb as closely as possible. From this 

perspective muscle synergies seem immediately attractive as an output measure. This 

in turn necessitates collection of EMG recordings as a non-invasive measure of muscle 

activity. This has the additional benefit of being widely used in a clinical setting. The EMG 

waveform consists of indirect measurement of the summed electrical activity of muscle 

fibres as they contract. Whilst there are limitations to our understanding of how EMG 

waveforms translate into end point force, ultimately all active movements are the product 

of EMG activity within different muscles. Therefore, a device that could specifically 

produce a desired EMG could theoretically recreate any desired synergy. This argument 

then determines the levels of specificity the device aim for: output measured at the level 

of synergies, created by input aiming at the level of EMG signals. In this section I will 

expand upon the methodologies used to achieve this goal. 
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2.1.1 Rationale for an algorithm-based approach 

At the gross level most BMI research can be divided into two fields; device development 

(getting information into and out of the body) and algorithm research (what is done with 

this information). Whilst device development is an exciting field with new advances 

regularly increasing the number and quality of recorded signals that are accessible, it is 

instructive to the importance of this work to briefly discuss why devices are ultimately 

subordinate to algorithms. Imagine a perfect device, one that can record and stimulate 

every individual neuron in the body with infinite accuracy. Whilst this device would truly 

be a marvel, it would not be possible with algorithms currently available to readily 

improve upon current treatment options. Indeed, the sea of available information would 

make it very difficult to determine which information is relevant to a given task. Consider 

the alternative of the perfect algorithm, one that can perfectly translate information 

recorded into the required steps to produce the desired effect. Here the way forward is 

extremely clear, to develop a device that can record and stimulate the specified locations. 

In this hypothetical, the clear goals provided by the perfect algorithm lead to smoother 

development than the current process of incrementally increasing recording density with 

no clear understanding of what the task requirements are (unless the requirements for a 

perfect algorithm are a perfect device, but such a Sisyphean task can still be better 

approximated with available tools than with available algorithms). Hence work in this 

project has focussed on the development of better algorithms for motor control and it is 

assumed that the engineering developments required to implement them can be 

achieved given time. In a similar vein, whilst consideration is given to algorithmic 

complexity, it is presumed that the increase in speed that could be achieved by 

implementation in an FPGA or ASIC device (an obvious necessity for an implantable 

device) would dwarf the effects of more efficient code implementation.   

2.2.1 Subjects and Ethical approval 

Data collection from humans was conducted according to the Declaration of Helsinki and 

all experimental protocols were approved by the University of Leeds Research Ethics 

Committee (reference number BIOSCI 16-004). 17 healthy subjects of mixed gender 

(male = 9, female = 8) with an age range of 18-30 (24.4± 2.57 years) were recruited to 

participate in this study. Exclusion criteria included previous knee or leg injuries, if 

participants had done exercise within 48 hours prior to testing, knee stiffness or self-

reported pain, use of recreational or performance enhancing drugs, ingested alcohol in 
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the previous 24 hours or were unable to provide informed consent. Subjects provided 

informed written consent to the study, noting possible risks associated with the activity. 

Experiments and procedures were performed in a manner that conformed to the United 

Kingdom Animals (Scientific Procedures) Act 1986. Approval was granted by the local 

Animal Welfare and Ethics committee (University of Leeds). 8 male Wistar rats (≈250g) 

were used for acute surgery conditions and were killed following each surgery.  

2.2.2 Dataset size 

A brief discussion on the reasons for the size of datasets described throughout this text. 

In section 3.3.2 comparisons are made between the performance of different synergy 

extraction methods on synthetically generated muscle activity. Comparisons were made 

using one-way analysis of variance (ANOVA) followed by a Tukey’s multiple comparison 

test. This is the most straightforward example of determining the required sample size; 

as the data is synthetically generated it is possible to generate an initial estimate of the 

dataset and then easily increase it as required to reach the required sample size. Power 

analysis was performed using G*Power version 3.1.9.7. This power analysis was initially 

calculated from 50 examples with an α value of 0.05, an effect size calculated post-hoc 

as 0.535 and the appropriate group means and the within group standard deviation 

approximated as 0.3. This analysis predicted that a sample size of 64 would be required 

to reach a power of 0.95. As it is easy to increase the dataset size using the synthetic 

synergy generation method described in section 2.4.5 it was decided to increase this to 

100 samples. 

Choice of sample size is more complex when considering other aspects of this thesis. 

Descriptive statistical methods are not commonly applied to muscle synergy analysis as 

they are primarily a method of identifying patterns within a dataset. The dataset is 

required to be representative of the population and therefore must be of a certain size, 

but this is not formally defined as with other statistical tests, as muscle synergies analysis 

is of a more exploratory nature. Therefore, the number of participants selected was 

chosen to match similar studies within the literature to ease comparison.  

In machine learning determining the required sample size is often an empirical process 

as more traditional methods of determining sample size such as power analysis are not 

appropriate. Power analysis is unable to predict the required dataset size as there is no 

null hypothesis to refute; only the end performance of the network. Often times networks 

are trained on an initial “rule-of-thumb” estimate based on prior experience, such as the 
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“one-in-ten” rule wherein one variable can be predicted for every 10 examples (Baum 

and Haussler, 1989; Haykin, 2008; Alwosheel et al., 2018). If following initial training the 

accuracy of the model is insufficient then more data is collected, or the model is adjusted 

to try and fit the limitations of the dataset. It is often true that the larger the dataset the 

better the performance of the model however the complexity of the model and the 

relationship under investigation can significantly alter the amount of data required 

(Halevy et al., 2009). Using the “one-in-ten” rule combined with the two parameters the 

network was asked to predict (width and voltage) it would seem that the network would 

require 20 animals for accurate training. However, it was found after early analysis that 

performance was greater than predicted on a limited dataset and a smaller number would 

likely suffice. To minimize the required animals a streamlined version of the process of 

network training and prediction described in Chapter 4 was repeated after each surgery. 

From this it was determined that the model was capable of sufficiently accurate 

predictions after 8 animals.   

2.3 Coding 

Algorithms were tested and run using custom written Python 3.6 code and run on a 

Windows 10 device, Intel® Core™ i5-8400 CPU, 16GB DDR4 ram at 3200Mhz. Code is 

available via GitHub at https://github.com/gareth-york/neural-bridge. MIIND is available 

at http://miind.sourceforge.net/ and the model files and simulation results are accessible 

at https://github.com/hugh-osborne/isotask. Synergy extraction methods were 

implemented using the scikit-learn library, excepting for NMF which used the nimfa 

library. ANN’s were implemented using Keras running a Tensorflow backend.  

2.4 Synergy Analysis 

Whilst any task is made up of individual EMG’s (and the activity of individual motor 

neurons within them), this is not the complete picture. To achieve the end goal of a task 

there are an almost infinite number of combinations of EMG’s that could perform the 

movement due to the overlap in function of certain muscle groups when considering force 

endpoints, as well as the opposing nature of agonist and antagonist muscle groups. The 

large overlap of combinations of muscles and contractions which could achieve a task is 

known as the DOF problem and it contrasts strongly with the repeatable and efficient 

(but not maximally efficient) way in which tasks tend to be carried out (Bizzi and Cheung, 

2013). One proposed solution to this problem is the muscle synergy hypothesis, wherein 

instead of calculating individual EMG profiles, the task is simplified to patterns of muscle 
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activity that are combined in a smaller feature space. Synergies have been shown to 

improve control of virtual and prosthetic limbs compared to the use of individual EMG 

profiles (Antuvan et al., 2016; Valk et al., 2019; Furui et al., 2019). To extract synergies 

from EMG waveforms a variety of algorithms have been used, which have been 

previously compared (Tresch et al., 2006). These comparisons have been repeated here 

in combination with a variety of methods for determining which parts of the EMG signal 

are of interest. These algorithms were then used to extract synergies from an isometric 

knee extension at different angles to examine the role of proprioception in synergy 

recruitment. A population interneuron model was developed to model the effect of 

afferent feedback on synergy recruitment using the model MIIND (Multiple instantiations 

of interacting neural dynamics). 

2.4.1 Data Collection 

Surface EMG was recorded from seven muscles of the subjects dominant leg; rectus 

femoris (RF), vastus lateralis (VL), vastus medialis (VM), semitendinosus (ST), biceps 

femoris (BF), medial gastrocnemius (MG) and tibialis anterior (TA) – of which the MG 

and TA were discarded due to low signal to noise (SNR) ratio. Data analysis was 

therefore performed on the five remaining muscle recordings. The skin was prepared for 

electrodes with shaving, cleaning with alcohol wipes and then application of conductive 

electrode gel. Data was sampled at 2 KHz using wireless Delsys Trigno IM electrodes. 

Electrodes were placed on the muscle belly, defined by landmarks based on anatomical 

observations: VL-between the greater trochanter and the lateral epicondyle; VM - on the 

distal fifth of the medial knee joint; RF - between the greater trochanter and the lateral 

epicondyle; VM - on the distal fifth of the medial knee joint; RF - between the anterior 

superior iliac spine and the superior pole of the patellar, and MG belly located in distal 

third of the medial knee joint (Rainoldi et al., 2004). Data was principally collected by 

Piyanee Sriya.  

2.4.2 Movement Protocol 

Subjects were asked to lay on a standard medical examination bed. They were then 

shown how to perform an isometric knee extension with the leg brace attached to their 

dominant leg. Subjects were shown the resulting EMG output recorded using a Delsys 

Trigno system. Subjects were asked to perform an isometric knee extension at maximal 

voluntary effort for five seconds, attempting to maximise RF activity. This was repeated 

six times with a three-minute rest between contractions. The dominant knee was fixed at 
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one of four angles using a Donjoy TROM locking knee brace at 0°, 20°, 60° and 90°. The 

angle of the knee was always measured against the hip joint and the bony prominence 

on the outside of the ankle. Data was collected in two different positions and sessions 

for each subject. In position one the participant was supine with both legs flat against the 

bed. In position two the contralateral leg was kept bent such that the foot is flat against 

the bed so that both the knee and hip are fully flexed. The position selected for each 

subject was randomized for their first session. In the second session the subject 

performed the task in the other position. 

2.4.3 Data Pre-processing 

For testing of onset/offset detection algorithms signals were tested both with and without 

standard filtering procedures. The filtering process involved an initial band-pass filter 

(high pass = 20 Hz, low pass = 450 Hz, second order Butterworth filter), followed by 

rectification and then finally a zero-lag high-pass filter (5 Hz, second order Butterworth 

filter) to remove frequency changes induced by rectification. Each EMG channel was 

normalized to the maximum value for that channel across all six contractions. For testing 

of synergy extraction algorithms, filtering was always used, and visual inspection was 

used to segment data into equal sections containing one burst. The synergy extraction 

was performed on the averaged values across contractions for each EMG channel. 

2.4.4 Onset/offset-detection 

In high SNR conditions muscle contractions appear in EMG signals as “bursts” which are 

sustained increases in the electrical signal. For most analysis only the contraction period 

is of interest and therefore the signal burst must be separated from background noise. 

The simplest way to do this is via visual inspection, which the human eye is excellent at, 

but this is obviously not available to a computer algorithm. The most commonly used 

automated method is a thresholding algorithm, wherein activity above the given threshold 

is activity of interest and anything below threshold is discarded as noise (Staude et al., 

2001). The signal amplitude can be used for thresholding, but another common measure 

is the root mean square (RMS) of “windows” of data. Another value that has been used 

is sample entropy (SampEn), a measure of the entropy or variability of the signal 

(Richman and Moorman, 2000; Zhang and Zhou, 2012). The accuracy of onset detection 

and speed of calculation varies but it has been previously shown that SampEn is an 

effective method for detecting activity onset in signals with aberrant spiking activity 

(Zhang and Zhou, 2012). This is important in the context of a BMI device targeting the 
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paralyzed limb as it is common to see involuntary spikes in the EMG signals of spinal 

cord injured patients due to hyper-excitability of the motor unit (Elbasiouny et al., 2010). 

In order to determine the most suitable threshold for this device the three measures 

previously mentioned, amplitude, RMS and SampEn were tested for speed of 

calculation, accuracy compared to visual inspection and their susceptibility to increasing 

levels of noise and random spiking activity. 

The three measures examined here were compared using previously collected EMG 

signals from the upper leg muscles. The signal is split into windows of time 32ms long 

with a 4ms overlap between windows. There is a compromise between processing time 

and onset and offset resolution in the window length and overlap. The values used here 

were found experimentally to have a good balance of accuracy and computation speed. 

Onset and offset are determined as the window when the threshold value is crossed. 

The performance of each measure can then be compared to visual inspection. The most 

straightforward thresholding measure is to simply use the signal amplitude (or in this 

case the average of the windowed section). RMS is another commonly used method for 

onset detection and is also sometimes used as a measure of force produced. RMS is 

calculated using equation (1): 

𝑥𝑟𝑚𝑠 =  √
1

𝑥
ሺ𝑥1

2 + 𝑥2
2 + ⋯ 𝑥𝑛

2ሻ             (1) 

The most complex measure examined here is the SampEn of the signal.  From the time 

series with length 𝑛, {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} a template vector with length 𝑚 is constructed. Within 

this template vector, vector pairs are compared using a distance function wherein pairs 

are said to match if their distance is less than 𝑟 and the number of matching pairs counted 

as 𝐵𝑚. This is repeated for the template vector 𝐴𝑚  with length 𝑚 +  1. From this the 

SampEn of a signal can be calculated for a given value of 𝑚, and 𝑟 by taking the negative 

logarithm of these two counts as in equation (2): 

𝑆𝑎𝑚𝑝𝐸𝑛ሺ𝑥, 𝑚, 𝑟ሻ =  − lnሺ
𝐴𝑚ሺ𝑟ሻ

𝐵𝑚ሺ𝑟ሻ
ሻ            (2) 

To determine the threshold for each measure Otsu’s method was used. Otsu’s method 

is most commonly used in image filtering tasks to separate images into foreground and 

background. However, at its essence this task consists of separating a signal into two 

classes based off some threshold value (Otsu, 1979). In this case our two classes consist 

of signal of interest and noise. This was found to produce better results across all signals 

than a predetermined threshold value or a percentage-based threshold e.g. 30% 
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maximum value. Otsu’s method seeks to minimize intraclass variance in the signals 

histogram by comparing the variance across all possible threshold values. This is 

calculated with equation (3): 

𝜎𝑤
2 ሺ𝑡ሻ =  𝜔0ሺ𝑡ሻ𝜎0

2ሺ𝑡ሻ +  𝜔1ሺ𝑡ሻ𝜎1
2ሺ𝑡ሻ            (3) 

Where 𝜔 are the probability weights of the two classes separated by threshold 𝑡 and 𝜎 

is variance. The probability weight for separation into two classes with a histogram 

binning of 𝐿 can be found with equation (4): 

𝜔0ሺ𝑡ሻ =  σ 𝑝ሺ𝑖ሻ𝑡−1
𝑖=0               (4) 

𝜔1ሺ𝑡ሻ =  σ 𝑝ሺ𝑖ሻ𝐿−1
𝑖=𝑡  

The algorithm then searches through all threshold values and finds the threshold that 

minimizes the 𝜎𝑤
2 ሺ𝑡ሻ. Measures were then compared for speed of calculation and 

accuracy compared to visual inspection.   

To examine each measures susceptibility to disruption by sources of noise additional 

tests were carried out. Differing levels of gaussian noise were added to the test signal 

corresponding to no, low and high levels of additional noise (scaled to 0, 0.5 and 1 of 

signal amplitude). It is noted that the original signals had an unknown level of noise 

present, but that this was deemed a high SNR recording based off prior experience. Even 

signals with relatively high SNR can still be contaminated with brief but frequent aberrant 

spiking activity. It has been suggested that SampEn is a method for addressing this 

activity that an amplitude-based threshold would not. Spikes were added to the signal in 

increasing frequency that consisted of a spike between maximum and minimum signal 

amplitude over the course of 5ms. This was also combined with the same process of 

increasing levels of noise. Finally, it was noted that Zhang and Zhou did not include 

standard filters in their paper examining SampEn’s suitability for onset detection (Zhang 

and Zhou, 2012). Therefore, the effects of standard filtering process was examined on 

the accuracy of each measure in signals with aberrant spiking.  

2.4.5 Synthetic muscle synergy generation 

In comparison to onset/offset detection algorithms, where visual inspection provides 

easy access to accurate onset/offset values, there is no easy way to access the “ground 

truth” when performing synergy analysis on real datasets. It is not possible to know with 

100% certainty that the synergies extracted reflect real control patterns that generated 

the movement (this is sometimes used as an argument that muscle synergies are due to 
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biomechanical constraints or a “ghost in the machine”). Therefore, it is useful to generate 

synthetic muscle activity from simulated synergies as this allows us to compare the 

effectiveness of different techniques (Tresch et al., 2006). Here generation of synergies 

was constrained according to commonly agreed facts regarding synergy structure. 

Namely that synergy vectors are non-negative and that activation coefficients share 

signal dynamics with EMG signals. The type of muscle activity to be generated was 

modelled to reflect the same isometric knee extension activity that the synergy extraction 

algorithm would be tested on. Therefore, the synergy vector was generated as 5 random 

integers constrained to a floating point between 0 and 1. Activation coefficients were 

generated using randomly selected contractions selected from the isometric knee 

extension dataset, taken from a random participant and random muscle. Based on initial 

analysis of the isometric extension task it was determined that two synergies were 

sufficient to describe this dataset. To provide maximum comparability to this dataset two 

synergies were also chosen for the synthetic dataset. A small amount of gaussian noise 

was added to the synthetic activation coefficient (scaled to 0.25 of signal amplitude). 

These represent the ground truth synergies and they were combined using matrix 

multiplication to generate 5 synthetic EMG signals. It was on these synthetic EMGs that 

the performance of different synergy extraction methods was compared using cosine 

similarity analysis.  

2.4.6 Cosine similarity analysis 

Determining the degree to which two vectors are related is a complex task, with a variety 

of statistical methods available, such as Pearson’s correlation or cosine similarity 

analysis. Cosine similarity analysis measures the cosine angle between vectors in a way 

that is less sensitive than other methods to differences in Euclidean distance (having 

different magnitudes in the projected multidimensional space). This value ranges 

between 1 and -1 which corresponds to both extremes of similarity and dissimilarity. The 

cosine of two vectors 𝐀 and 𝐁 can be calculated using equation (5): 

 cos 𝜃 =
‖𝐀‖‖ 𝐁‖

𝗔 ⋅ 𝗕
               (5) 

Cosine similarity analysis was used in a pairwise fashion to determine the similarity 

between synergy vectors and activation coefficients across both simulated datasets and 

human recordings (Rimini et al., 2017). In the case of comparing synergy extraction 

algorithms across the simulated datasets, each algorithm’s extracted synergies were 

normalized to the average cosine similarity with 100 randomly generated synthetic 
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examples. The cosine value between these random examples and the extracted 

synergies reflects any bias in the synthetic synergy generation algorithm. Normalizing to 

this value should remove this bias.   

2.4.7 Synergy extraction algorithms 

As previously described, muscle synergies are hypothesised to be patterns of muscle 

activity used to solve the DOF problem. These patterns are not initially observable from 

visual inspection of the untransformed data as they exist in a lower data dimension (a 

simple example of this is to compare a 3-dimensional sphere to a 2-dimensional slice of 

that sphere. The reduced dimensions of the circle provide a reasonable approximation 

of the sphere whilst being easier to visualise). Dimensions could be removed from the 

dataset arbitrarily but this risks discarding much of the data of interest. Instead 

dimensionality reduction algorithms seek to transform data into a new dimensional 

space. This new dimensional space is constructed such that variability is concentrated 

into a smaller set of information dense dimensions. Information theory shows that this 

dimensionality reduction reflects latent structure in the data, in this case muscle 

synergies (Lee and Seung, 2000). If these methods are successful, then certain 

dimensions can be discarded as only containing a small portion of the variability of the 

original dataset. There are a variety of methods available for synergy extraction and their 

performance has been previously examined in various contexts (Tresch et al., 2006). 

However, there remains some disagreement between studies on the most accurate 

method for various datasets. Four of the most commonly used algorithms are principal 

component analysis (PCA), independent component analysis (ICA), non-negative matrix 

factorization (NMF) and factor analysis (FA). The implementation of these methods was 

examined for speed in terms of calculation time and accuracy in terms of the cosine 

similarity values between the real and extracted synergies. This accuracy was confirmed 

using ANOVA and a Tukey multiple comparison test.  

2.4.8 Principal component analysis 

PCA attempts to concentrate data into a set of orthogonal principal component vectors 

that explain the majority of variance in that data (Pearson, 1901; Hotelling, 1933). As the 

majority of the variance is captured within the first few principal components, by only 

including these components a dimensionality reduction is achieved. Let this dataset be 

a matrix defined as 𝐗 with size 𝑛 × 𝑛  where 𝑛 is the length of the dataset and 𝑝 is the 

number of variables. It is important that the data is centred on a zero mean by subtracting 
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its mean value from each variable. From this zero-meaned dataset, the covariance matrix 

𝐂 , of 𝑝 × 𝑝  variables are then calculated using equation (6): 

𝑐𝑜𝑣ሺ𝑋, 𝑌ሻ  =  
1

𝑛−1
σ ሺ𝑋𝑖 − 𝑥ሻ𝑛

𝑖=1 ሻሺ𝑌𝑖 − 𝑦ሻ        (6) 

Where 𝑋 and 𝑌 are variables within 𝐗 and this process is repeated for all 𝑝. This matrix 

is symmetrical and given in matrix notation takes the form:  

𝐂 =
𝑋⊺𝑋 

ሺ𝑛−1ሻ
          

From this the eigenvalues and eigenvectors can be calculated by diagonalizing the 

matrix giving the form:  

𝐂 = 𝐕𝐋𝐕 

Where 𝐕 is the matrix of eigenvectors and 𝐋 is the matrix of eigenvalues arranged in 

decreasing order. The eigenvectors are normalized, and this gives orthogonal unit 

vectors, which can be interpreted as orthogonal axis on a chart. These axes are the 

principal components which form the new variables that describe the dataset. The choice 

of the first PCA axis is that which has the minimal total distance between data points and 

the PCA axis. This is also the axis which captures the maximal variance of the data. This 

procedure is repeated leading to the descending scale of importance in PCA components 

seen in 𝐋. Additionally, each additional PCA component must be uncorrelated with the 

previous components, which is equivalent to being orthogonal in the feature space. This 

process is more efficiently calculated using singular value decomposition of 𝐗 from which 

it can be proven that singular vectors and values are equal or directly related to principal 

directions and eigenvalues.  

2.4.9 Factor analysis 

FA has the closest degree of similarity to PCA, although it is approaching the same 

problem from the opposite direction (Bartholomew et al., 2008). Whereas PCA attempts 

to describe the observed dataset with a smaller number of “better” variables, FA 

assumes that these smaller latent variables caused the observed dataset. The output of 

PCA and FA is often highly similar, so the difference is partially academic, but it 

influences understanding of how each technique functions.  Consider the dataset 𝐗 which 

is made up of individual data points of 𝑝 variables with each variable having 𝑛 data points 



 
 
 

38 
 
 

such that 𝑋𝑝 =  {𝑥1, 𝑥2, … ,  𝑥𝑛}. Each variable can be described by a combination of 𝑚 

common factors as in equation (7): 

𝑋𝑖 = 𝑎𝑖1𝐹1 + 𝑎𝑖2 𝐹2 + ⋯  𝑎𝑖𝑚 𝐹𝑚 + 𝑒𝑖            (7) 

Where 𝐹 is the common factor, 𝑎 is known as the factor loading or score and 𝑒 is a factor 

specific error term which is the variance that this factor cannot explain. Calculating these 

factor scores is done in one of two ways, either using the principal component method 

to account for the greatest variance (in which case the processes become 

mathematically analogous at this point, although the scores are only proportional to the 

principal components) or by common factor analysis selecting the least number of factors 

that can account for the total variance in the set of variables. This is usually followed by 

factor rotation to aid in data interpretation and to attempt to force closely related 

subgroups of variables to score highly on just one factor. The choice of rotation method 

largely relates to whether it is desirable for factors to be correlated or uncorrelated. In 

this case an orthogonal rotation was chosen for uncorrelated factors for easier 

comparison with the other synergy analysis techniques.  

2.4.10 Independent component analysis  

ICA is a blind source separation method which can be used to extract muscle synergies 

from EMG data (Comon, 1994). Due to its name, and the fact that it is sometimes applied 

to similar problems, it is sometimes unduly assumed that ICA and PCA are similar in 

function. Besides attempting to find a set of basis vectors that describe the data, the two 

techniques have little in common. In PCA the goal is to find basis vectors that capture 

the most variance (within the other constraints of the algorithm). ICA attempts to find 

vectors that are statistically independent of one another by maximizing the non-

Gaussianity of the vectors selected. In fact, for the purposes of synergy extraction one 

of the core limitations of ICA is that it is not possible to determine the order or importance 

of each identified source.  

An intuitive understanding of the difference can be illustrated by the cocktail party 

problem (McDermott, 2009). Imagine a room hosting a cocktail party with multiple 

conversations being recorded by a set of microphones placed around the room. Each 

microphone records the sounds from the party made up of the same set of sound sources 

(the conversations) but receives a different mixture due to their placement in the room. 

The problem here is to try and isolate and identify the original conversations from the 

mixtures recorded. PCA is unlikely to extract the original signals unless by chance the 
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principal components happen to align well along these signals. ICA on the other hand 

puts greater emphasis on extracting the original sources. The first assumption is that the 

observed data is made up of statistically independent signals at all time points (an 

assumption that is, in practice, reasonably robust to violation).  It is also assumed that 

the original sources have non-Gaussian distributions, which is often true for biological 

signals.  

Following these assumptions ICA attempts to solve problems of the class defined by 

equation (8): 

𝐗 =  𝐀𝐒               (8) 

Where 𝐗 is a vector with size 𝑝 multivariate input measurements, 𝐒 is the original source 

vector also size 𝑝 made up of independently distributed variables and 𝐀 is the 𝑝 ×  𝑝 

mixing matrix. For a given dataset of 𝐗𝑁, ICA attempts to estimate both 𝐀 and 𝐒. For our 

purposes 𝐀 represents the synergy vectors and 𝐒 are the activation coefficients. There 

are a variety of methods for estimating these matrices, here FastICA is used as a method 

with an excellent balance of computation time, accuracy and robustness to noise. The 

precise details of FastICA are presented in more detail by Hyvärinen and Oja (2000) but 

the process involves iteratively updating an initially random weighting for basis vectors 

until the process converges on an estimated value of non-Gaussianity (Hyvärinen and 

Oja, 2000).  

2.4.11 Non-negative matrix factorization 

As in the previous examples NMF attempts to find a reasonable approximation of a larger 

dataset whilst reducing its overall dimensions. As with ICA, NMF can be applied to blind 

source separation problems, in that it attempts to find basis vectors that approximate the 

original pre-mixing signals (Tresch and Bizzi, 1999; Lee and Seung, 2000). NMF’s chief 

advantage compared to other approaches for the purposes of synergy analysis is that 

the constraint of non-negativity aligns well with muscle activity i.e. muscle activation is 

never negative. NMF has also previously been shown to be more effective at identifying 

latent structure in the data when compared to other techniques such as principal 

component analysis (Ebied et al., 2018). 

Consider the matrix 𝐗 of size 𝑛 ×   𝑝 where 𝑛 is the length of the dataset and 𝑝 are the 

number of variables. In the case of NMF basis vectors are constructed via an iterative 

algorithm, similar to ICA, but matrix values are constrained to be non-negative and the 
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objective function varies, most commonly and used here is the Frobenius norm. This 

class of problem can be defined by equation (9): 

𝐗 =  𝐖𝐂              (9)  

Such that, 𝐂 is an 𝑁 ×  𝑛 matrix where 𝑁 is the chosen NMF rank factor. Each row of 𝐂 

represents some structure in the time series similar to a PCA component. 𝐖 is a 𝑝 ×  𝑁  

matrix which, when multiplied by 𝐂, approximates 𝐗. Each column of 𝐖 quantifies the 

amount that the corresponding row in 𝐂 contributes to the original data in 𝐗  (Lee and 

Seung, 2000; Donoho and Stodden, 2004; Berry et al., 2007; Torres-Oviedo and Ting, 

2007). Each synergy is represented by the corresponding column in 𝐖 and row in 𝐂. 𝐂 

is termed the activation pattern of the synergy as it represents some underlying structure 

of the original EMG time series. 𝐖 is referred to as the muscle contribution vector of the 

synergy as each component value indicates the contribution of the synergy’s activation 

pattern to the associated muscle activity. This naming convention has been used to refer 

to the equivalent outputs for each extraction algorithm examined.   

There are a number of methods for calculating 𝐖 and 𝐂 but the method used here is an 

implementation of Lee and Seung's multiplicative update rule (Lee and Seung, 2000). 𝐖 

and 𝐂 are initialized using an SVD approximation of the matrix and then iteratively 

updated using equation (10) and (11) (Boutsidis and Gallopoulos, 2008): 

 

𝐂[𝑖,𝑗]
𝑛+1 ←  𝐂[𝑖,𝑗]

𝑛 ሺሺ𝐖𝒏ሻ𝑇𝐗ሻ[𝑖,𝑗]

ሺሺ𝐖𝒏ሻ𝑇𝐖𝒏𝐂𝒏ሻ[𝑖,𝑗]
                                           (10) 

𝐖[𝑖,𝑗]
𝑛+1 ←  𝐖[𝑖,𝑗]

𝑛 ሺ𝐗ሺ𝐂𝒏+𝟏ሻ𝑇𝐗ሻ[𝑖,𝑗]

ሺ𝐖𝒏𝐂𝒏+𝟏ሺ𝐂𝒏+𝟏ሻ𝑇ሻ[𝑖,𝑗]
                      (11) 

This is repeated until the Frobenius norm of 𝐖 and 𝐂 ceases to decrease (within a 

tolerance range) or a maximum number of runs is reached (𝑛 =  30).  

2.4.12 Selection of rank factor 

For the purposes of muscle synergy analysis rank factor is equivalent to the number of 

synergies selected. It is the number of new dimensions that the data has been reduced 

to e.g. from 5 EMG dimensions to 2 synergy dimensions means a rank factor of 2. 

Selection of rank factor is critical to produce dimensionality reduction during synergy 

extraction. PCA, NMF and FA can be sorted by the variance accounted for (VAF). In 

these cases, rank factor was chosen consistent with previously literature such that rank 
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factor was increased to the minimum required to be greater than 90%. VAF was 

calculated for each synergy profile for both the individual muscle and for all muscles 

collectively. If VAF was below 90%, the resulting synergies were discarded (Tresch et 

al., 2006). In ICA this is not possible, and the choice must be made via other methods. 

In this case it was decided that the number of components for ICA would be chosen to 

match that agreed upon by the preceding methods as there was no disagreement 

between them. 

2.6 Neuronal Models 

Our aim was to create a neural population model such that applying NMF to the firing 

rate activity of the motor neuron populations would yield the same synergy patterns as 

those identified in the EMG data. The model does not attempt to reproduce simulated 

EMG signals. Instead, it was assumed that the cumulative activity of multiple motor units 

described by the average activity of distinct motor neuron populations would serve as a 

proxy for EMG. We first considered rate-based models which represent a population 

metric, for example the average firing rate or oscillation frequency, abstracted from the 

underlying individual neurons. Rate-based models are suitable for reproducing firing 

rates in neural circuits, but there is no clear relationship with the state of the underlying 

neural substrate (Wilson and Cowan, 1972; Kuramoto, 1991). Although not essential for 

this work, considering detailed modelling with Rybak’s group, as well as future 

requirements for the model, it was desirable to use a technique that retains a closer 

relationship with the state of spiking neurons that comprise the neural circuit. Population 

Density Techniques (PDTs) do so: they retain information about the state of neurons in 

the circuits but calculate population level aggregates directly. 

2.6.1 Population Density Techniques 

PDTs model neural circuits in terms of homogeneous populations of neurons. The 

individual neurons are described by a model, such as the leaky-integrate-and-fire model. 

The model of an individual neuron is characterised by a so-called state space: the values 

that determine the state of individual spiking neurons. For a simple neuron model this 

can be its membrane potential. More complex models represent the state of other 

elements such as synapses. PDTs represent a population by a single density function 

that represents how neurons are distributed across the neuron’s state space. 

2.6.2 MIIND 
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MIIND is a neural simulator which implements a version of a PDT to simulate multiple 

interacting populations of neurons (de Kamps et al., 2008; Marc, 2011). It can provide a 

visual representation of the probability density function by displaying the density during 

simulation. Figure 3-L shows an example of this visual representation. A network of 

populations can be built in MIIND using a simple XML style code format to list the 

individual populations and the connections between them. Populations in the network 

interact via their average firing rates, which are assumed to be Poisson distributed spike 

trains. For each connection, the firing rate of the source population becomes the average 

rate of the Poisson distributed input spikes to the destination population. The connections 

defined in the XML code, have three parameters: the post synaptic potential or 

instantaneous synaptic efficacy, the number of individual connections between source 

neurons and target neurons, and a delay which can be used to approximate time taken 

for spike propagation and synapse transmission. The MIIND modelling framework was 

developed by Hugh Osborne and Marc de Kamps.  

 

2.6.3 The Spinal Circuit Model 

MIIND was used to build a network of populations of exponential integrate and fire (EIF) 

neurons according to the connectivity diagram in Figure 2-A. Table 2-A shows the 

connection parameters for all populations in the model. All populations use the same 

underlying neuron model as described in equation (12): 

𝜏
𝑑𝑣

𝑑𝑡
= ሺ𝑣 − 𝑣𝑟𝑒𝑠𝑡ሻ + Δ𝑇𝑒

𝑣−𝑣𝑡ℎ𝑟𝑒𝑠

Δ𝑇
           (12) 

Where 𝑣 is the membrane potential, 𝑣𝑟𝑒𝑠𝑡 = −70 mV, Δ𝑇 = 1.48, 𝑣𝑡ℎ𝑟𝑒𝑠= −56 mV, and 𝜏 = 

3.3 ms. These parameters were chosen such that populations could produce a wide 

range of average firing rates between 0 and 200 Hz to exhibit typical neuronal 

frequencies. An EIF model was chosen in contrast to the more commonly used Hodgkin 

Huxley style neurons. This is because the objective was not to reproduce the EMG 

signals exactly, but to provide a concise explanation for overall synergy patterns. It is 

expected that any particular description of activation of ion channels (as in a Hodgkin 

Huxley style model) would have no significant impact on the population level activity or 

synergy patterns in this task and would therefore dilute the power of the model. The main 

structure of the network consists of two neural populations, named “Extensor 
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Interneurons” and “Flexor Interneurons”, connected together in a network with five motor 

neuron populations, one for each muscle. The Extensor and Flexor Interneuron 

populations represent combinations of excitatory and inhibitory neurons and therefore 

can project both kinds of connections to other populations in the network. Other studies 

have previously described the connection motif of agonist inhibition with antagonist 

excitation and this is utilised here to connect the interneuron and motor neuron 

populations to elicit the agonist/antagonist relationship between the five muscles 

(Sherrington, 1909; Doss and Karpovich, 1965; Bigland-Ritchie, 1981; Pierrot-

Deseilligny and Burke, 2005). These features, including the mutual inhibition between 

the two interneuron populations, also appear in the McCrea and Rybak CPG model 

(McCrea and Rybak, 2008). Although rhythm and pattern formation are not included in 

this model, the implications for applying a CPG model to an isometric task are discussed 

later. 

All supraspinal activity comes from the Cortical Drive input and is responsible for the 

“contraction”. There is a direct connection to the MN-RF motor neuron population 

indicative of the muscle which is being maximally contracted in this task. Cortical Drive 

also projects to the Extensor and Flexor Interneuron populations. As there are more 

excitatory than inhibitory connections from the Extensor and Flexor Interneuron 

populations to the motor neuron populations, the Cortical Drive indirectly causes 

excitation of all motor neuron populations as well as MN-RF. During the simulation, the 

input to the two interneuron populations begins at 0Hz before increasing to 260Hz over 

1 second, then five seconds later, dropping back to 0Hz over 1 second. 

It was hypothesised that the most important factor in shaping the observed synergies 

would be the connectivity of the network model and that they could be modulated with a 

proprioceptive input. To simulate changes in proprioceptive feedback due to the knee 

angle, the Extensor Afferent Feedback input to the Extensor Interneuron population was 

introduced and for different trials was altered between 110Hz and 180Hz. The Flexor 

Afferent Feedback input was held constant. The average firing rate of each of the five 

motor neuron populations was recorded at a rate of 10 KHz (corresponding to the 0.1ms 

time step of the simulation) then sampled at 2ms intervals. NMF was performed on the 

resultant time series as described for the experimental recordings. 
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* During the task, Cortical Input transitions from 0Hz to these values back to 0Hz 

** Afferent input remains constant throughout the activity but is set between 110Hz and 180Hz to produce 
different synergy patterns. 

Population 
name 

Source 
population 
name 

Post 
synaptic 
delta 
efficacy 
(mV) 

Average number of 
incoming connections to 
each neuron 

Connection 
delay time 
(ms) 

Average 
firing rate 
where 
defined 
(Hz) 

MN-RF Extensor 
Interneurons 

-0.052 35 2  

MN-VL Extensor 
Interneurons 

-0.052 35 2  

MN-VM Extensor 
Interneurons 

-0.052 35 2  

MN-ST Extensor 
Interneurons 

-0.052 140 2  

MN-BF Extensor 
Interneurons 

-0.052 70 2  

MN-RF Flexor 
interneurons 

-0.052 140 2  

MN-VL Flexor 
interneurons 

-0.052 70 2  

MN-VM Flexor 
interneurons 

-0.052 70 2  

MN-ST Flexor 
interneurons 

-0.052 35 2  

MN-BF Flexor 
interneurons 

-0.052 35 2  

MN-RF InhibRF -0.052 70 2  
MN-ST InhibST -0.052 70 2  
InhibST Extensor 

interneurons 
-0.052 70 2  

InhibRF Flexor 
interneurons 

-0.052 70 2  

Extensor 
interneurons 

Flexor 
interneurons 

-0.052 35 2  

Flexor 
interneurons 

Extensor 
interneurons 

-0.052 35 2  

Extensor 
interneurons 

Background 0.1 100 0 400 

Flexor 
interneurons 

Background 0.1 100 0 400 

InhibST Background 0.1 100  400 
InhibRF Background 0.1 100 0 300 
MN-RF Background 0.1 100 0 300 
MN-VL Background 0.1 100 0 300 
MN-VM Background 0.1 100 0 300 
MN-ST Background 0.1 100 0 300 
MN-BF Background 0.1 100 0 300 
MN-RF Cortical drive 0.1 100 0 45* 
MN-VL Cortical drive 0.1 100 0 20 
MN-VM Cortical drive 0.1 100 0 20 
MN-ST Cortical drive 0.1 100 0 20 
MN-BF Cortical drive 0.1 100 0 20 
Extensor 
interneurons 

Cortical drive 0.1 100 0 60 

Flexor 
interneurons 

Cortical drive 0.1 100 0 60 

Extensor 
interneurons 

Extensor 
afferent input 

0.1 100 0 110 to 
180** 

Flexor 
interneurons 

Flexor afferent 
input 

0.1 100 0 90 

InhibST Extensor 
afferent input 

0.1 100 0 110 

InhibRF Flexor afferent 
input 

0.1 100 0 10 

Table 2-A: Parameters relevant to each connection between populations and 

from inputs in the model. Values for input activity are provided in the form of an 

average firing rate. 
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Finally, the network was augmented (The greyed area of Figure 2-A) to generate a knee 

flexor bias for RF and an extensor bias for ST which was observed in the experimental 

results. An additional excitatory connection was added to the model from the Extensor 

Interneuron population to MN-ST, and from the Flexor Interneuron population to MN-RF. 

This is equivalent to increasing the number of excitatory connections overall between 

those populations. In order to modulate the effect of afferent feedback input on these 

connections, two additional populations of inhibitory neurons were added to the model: 

InhibST and InhibRF. This network motif of an additional excitatory drive coupled with a 

controllable inhibitory input has previously been used to reproduce observed activity in 

Semitendionsus and Rectus Femoris of a cat and further supports the use of CPG 

models for human studies (Shevtsova et al., 2016). 

In the experiment task, two positions were used to identify the effect of passive 

insufficiency on the synergies recruited. It was expected that the contralateral hip position 

would serve only to influence the degree of muscle stretch which in the model would 

already be accounted for in the activity of the afferent feedback input. There is, therefore, 

no analogue to hip position defined in the model. 

 2.7 Machine learning models “fuzzy” non-linear relationships 

For FES, many devices use a posteriori information to determine how stimulation should 

be delivered e.g. if stimulus at a site results in extension of the limb, that site is now 

always used for extension. This approach does not attempt to understand how 

stimulation produces movement and only constitutes a very simple transfer function 

between input and output. Specific control of individual EMGs requires algorithms with a 

greater degree of control over stimulation parameters than what is currently available. 

Determining how electrical stimulation at a set of given points relates to electrical activity 

at another point (in the form of EMG’s) is a multidimensional problem with a high degree 

of variability between participants and different stimulation sites. A truly general transfer 

function would allow for translation across all this variability; however, this is difficult to 

achieve due to the increasing complexity of the functions shape as specificity decreases. 

Stimulation at the periphery is more specific than the spinal cord, which is more so again 

than at the cortex, and the complexity of individual control of a given muscle becomes 

more problematic. No such algorithm currently exists, even in the periphery, which the 

algorithms developed in this section aims to address. The algorithms here was used to 
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control stimulation of the rat hindlimb at the level of the peripheral nerve for the purposes 

of recruiting specified EMG waveforms.  

2.7.1 Surgical Procedure 

To collect the training dataset for the ANN the sciatic and tibial nerves were stimulated 

with a large stimulation paradigm of mixed pulse width and voltages. A schematic 

representation of the surgical preparation is shown in Figure 2-B (figure adapted from 

Smith et al., 2018). Each rat was induced with a mixture of ketamine and xylazine (10:1) 

delivered intraperitoneally and was maintained with a mixture of ketamine and saline 

(1:1) delivered via carotid cannula. Proper anaesthetic plane was tested throughout 

surgery via the toe pinch method. Normal body temperature was maintained (37±1°C) 

via a thermometer-controlled heat blanket and heat lamp. Following the loss of paw 

withdrawal, the right ventral hindlimb was exposed and an incision made lateral to the 

femur. The sciatic nerve was exposed via blunt dissection proximal to the bifurcation into 

tibial and peroneal nerves and the cuff attached at this point. In a subset of animals a 

second cuff was also attached to the tibial nerve below the branch point. This was not 

repeated in all animals due to the significant increase in time required to provide the 

much larger stimulation paradigm required for stimulus across multiple sites. In all cases 

the cuff was aligned lateral to the nerve, such that the stimulating wires within were 

parallel to the nerve path. Cuffs were not sutured to avoid nerve compression and the 

surgical site was kept moist with a non-conductive mineral oil. Test pulses were delivered 

to ensure proper placement of the cuff. The Achilles tendon was then dissected and 

attached to an ergometer via metal rings sutured into the end point. A pair of insulated 

fine copper wires (40 AWG; 79 µm in diameter) with 1.5- to 2-mm bared tips were 

inserted in pairs into LG, MG, EDL, EHP and TA using a hypodermic needle (27 G). Test 

pulses were again delivered to ensure placement of recording electrodes was correct. 

The surgical site was then closed via a haemostat to prevent drying and to better simulate 

in vivo conditions and joint position. Optimal response length was determined 

experimentally in one animal by altering the length of the muscle, measured via 

Microdrive on the stereotaxic setup.  

  



 
 
 

48 
 
 

  

Figure 2-B: Surgical preparation for stimulation of the sciatic and tibial nerves. 

The sciatic nerve (1) branches into the tibial (2) and common peroneal (3) nerves. 

The peroneal nerve goes on to become the deep fibular nerve (The depiction of nerve 

anatomy shown here is limited to nerves relevant to the experiment). The sciatic and 

tibial nerves were exposed and stimulating cuffs were attached (red circles). EMG 

recordings were taken from medial and lateral gastrocnemius (a,b), extensor 

digitorum longus (c), extensor hallucis proprius (d) and tibialis anterior (e) via a pair 

of copper hook electrodes inserted into the muscle belly. (Only a single pair is shown 

here for clarity). Force recordings were made using an ergometer attached to a metal 

ring sutured into the Achilles tendon. Adapted from Smith et al., 2018. 

1 – sciatic nerve 

2 – tibial nerve 

3 – peroneal nerve 

 

a – lat. gastrocnemius 

b – med. gastrocnemius 

c – ext. digit. longus 

d – ext. hal. propr. 

e – tibialis anterior 

 

α – Achilles tendon 

c d e a b 

3 

2 
1 

Ergometer 

Micro1401 – 

EMG recording 

PulsePal - 

Stimulation 

α 
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2.7.2 Data collection 

EMG recordings were made from 4 muscles of the rat hindlimb; extensor digitorum 

longus (EDL), extensor hallucis proprius (EHP) medial and lateral gastrocnemius (MG, 

LG) and tibialis anterior (TA). TA signals were discarded from all rats due to poor signal 

quality. Force recordings were made via an ergometer attached to the Achilles tendon. 

Although recordings were made from 8 animals, it was not possible to get high quality 

responses from every muscle in any animal. Details on the number of recorded muscles 

from each animal, the threshold potential and how the stimulus range compared to this 

threshold, and an estimate of the rheobase for each animal are shown in table 2-B. The 

threshold value was calculated as the voltage at which the minimum pulse width (100 

µs) generated a response. Rheobase was estimated as the largest width signal (2000 

µs) with the smallest voltage that generated a response. This value does not reflect the 

true rheobase as the pulse widths used here are not sufficiently long to approximate 

infinite pulse width. However, for the stimulation dataset recorded this still provides 

insight into the electrophysiological properties of the nerve. Data was sampled at 10Khz 

using a CED micro 1401 data acquisition interface and Spike8 recording software 

[Cambridge Electronic Design (CED), Cambridge, United Kingdom]. Electrodes were 

placed within the central mass of the muscle belly. 

2.7.3 Stimulation Protocol: 

Stimulation was provided via a handmade multistrand stainless-steel wire in a flexible 

epoxy cuff using the Sanworks PulsePal isolated stimulator via a custom written Python 

program. Stimulus pulses were balanced biphasic square pulses with variable width 

(100-2000 µs increments of 100 µs) and voltage (100-2000mV in increments of 100mV). 

The range of stimulus parameters was selected to cover both minimal i.e. no response 

and maximal response within the resolution of the PulsePal device. The saturation point 

for the muscles under examination was determined through exploratory stimulation. This 

process involved manually adjusting stimulus voltage and width until the measured 

response ceased to increase in peak to peak amplitude. This was repeated in each 

animal at the start of recording and it was determined that across animals’ saturation 

occurs at approximately 2V and 2000µs, so this was determined to be the maximum 

values for the stimulation paradigm.   

These parameters create a stimulus paradigm of 400 pulses. Additionally, test pulses 

were delivered as the first, last and every hundredth pulse leading to a total of 404 pulses 
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in each stimulation paradigm. Test pulses were also balanced biphasic square pulses 

with a fixed width and voltage (200 µs - 5000mV). To avoid inducing fatigue or other 

changes in excitability of the nerve, pulses were separated by 3s. In those animals where 

a second cuff was attached to the tibial nerve stimulation was provided to each cuff 

separately as well stimulating both cuffs at the same time. When stimulus was provided 

to both cuffs the stimulation parameters were kept the same for each cuff.  

2.7.4 Data pre-processing and artificial neural network design 

After collection, signals were segmented to remove signal artefact from a predefined 

point following stimulus delivery synched with the PulsePal device. For training purposes 

four parameters were extracted from the EMG signals; max amplitude, RMS, waveform 

length and SampEn. Combinations of these values have been shown to result in a high 

degree of waveform separation (Phinyomark et al., 2013). This training dataset and the 

matching stimulation parameters were then shuffled to avoid bias from ordering. Data 

was split into training and validation datasets in a 3:1 ratio. Network layers consist of an 

input layer size corresponding to the EMG parameters for each muscle (or motor neuron 

output when applied to the MIIND network), two hidden layers one of 2000 tanh  and 

another of 2000 leaky rectified linear units (leaky ReLu), and finally a linear output layer 

of size 2 (corresponding to the stimulation parameters of pulse voltage and width). This 

network was trained using the mean squared error as its loss function and an adaptive 

gradient optimizer (initial learning rate = 0.05).  Training occurred for 6000 epochs or 

until validation accuracy ceased to improve for 50 epochs. The network accuracy was 

reported and then for illustration purposes the network was asked to predict the training 

dataset. This process was repeated with the dataset restricted to just 7 of the recorded 

animals and the network was then asked to predict the dataset for the now unseen 8th 

animal. A full description of the mathematics involved in tensor calculation is beyond the 

scope of this thesis, but full documentation of the methods used here are available at: 

https://keras.io/ and https://www.tensorflow.org/.  

  



 
 
 

51 
 
 

 

   

Animal 
ID 

Muscles 
Recorded 

Muscles 
with 
clear 
signal 

Ergometer 
recording 

Threshold 
value per 
muscle 

Stimulus 
range 

Estimated 
Rheobase 

Tibial 
Stimulation 

1 LG, MG LG  700mV T-3T 300mV  

2 LG, MG LG, MG  400mV T-3.5T 700mV  

3 EDL, EHP None  N/A N/A N/A  

4 EDL, EHP EDL, 
EHP 

 600mV EDL 
500mV EHP 

T-5T 500mV  

5 LG, MG None  1300mV - 
based on 
ERG 
response 

N/A N/A  

6 LG, MG LG, MG  1300mV  
 

T-1.3T 800mV  

7 EDL, EHP EDL, 
EHP

 100mV T-20T 100mV  

8 EDL, TA EDL, TA  100mV T-20T 100mV  

        

 Total       
 LG 3 2     
 MG 2 2     
 EDL 2 1     
 EHP 2 1     
 TA 1 0     

         

Table 2-B: Summary of results measured per animal. Column two records the 

muscles from which the signal was recorded. Column three records which of these 

recordings were deemed of sufficient quality for further analysis. Indicated in column 4 

are the animals from which ergometer recordings were collected. Column 5 records the 

value at which the shortest stimulus pulse (100 µs) generated a response via the sciatic 

cuff. This was deemed the threshold value and was calculated for each muscle in the 

recording and is listed separately when this value differs between muscles. From this 

value the stimulus range was calculated in terms of the maximum voltage within the 

stimulus paradigm. The rheobase of each nerve was estimated as the smallest voltage 

that the longest stimulus pulse (2000 µs) elicited a response. Tibial stimulation indicates 

in which animals’ tibial stimulation was attempted. Provided below this are the total 

number of recordings for each muscle separated into EMG and ergometer recordings.  
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2.8 Closed loop control and MIIND injury modelling 

The algorithmic implementation developed here was designed to test the ability of the 

previously described algorithms to restore healthy muscle synergies in an in silico model. 

In contrast to the implementation shown here, closed loop controllers in BMI devices 

rarely incorporate motor output into the stimulation provided.  This moves closer towards 

true closed loop control by incorporating the produced synergies into future stimulation 

signals. The MIIND network previously described in Section 2.6 was used as a basis for 

modelling both healthy and injured states. Simulations have a direct advantage over 

biological experiments as they have access to the ground truth when extracting 

information from the system. This allows precise error measurement and comparison to 

biological models. Stimulation was provided at selected sites in the interneuron network 

and the motor neuron output measured. This formed the dataset to train the same ANN 

described in Section 2.7, so this also provided an opportunity to further test the 

generalizability of the algorithm to a new stimulation environment.  

2.8.2 Network injury models 

The previously established MIIND network was used as an example of a healthy 

interneuron network. Two different injury types were targeted for modelling, cortical and 

peripheral injury, and different degrees of injury of total or partial loss of connecting 

neurons. The location of these injuries is shown in Figure 2-C. Cortical injury was 

modelled by removal of descending input to either the extensor or flexor interneuron 

pools or both, simulating an injury to the spinal cord or to the cortex itself as in stroke. 

This leaves the afferent feedback, and inhibitory links between interneuron pools intact 

but removes descending control. Peripheral injury was modelled by the removal of 

afferent input to interneuron pools and was similarly replicated in unilateral and bilateral 

injuries.  
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2.8.3 Reconstruction of healthy synergies using an ANN 

After simulation of the different injury types, synergies were extracted using NMF from 

the resulting motor neuron outputs as previously described. These synergies were then 

compared to the healthy output directly where possible, however as previously described 

synergies were selected to account for 90% VAF which can lead to differing ranks of 

synergy extracted. The MIIND network can simulate electrical stimulation at multiple 

points in the form of an incoming excitatory connection.  Whilst it would be possible within 

the simulation, stimulation was restricted to excitatory stimulation as electrical inhibition 

via FES is not well established and remains difficult to implement (Damiano et al., 2013; 

Avendaño-Coy et al., 2017; Kim et al., 2018) Different sets of stimulation parameters 

were fed into different points of the network dependent on the injury type. For cortical 

injuries, interneuron pools for the injured site were targeted for stimulation. In peripheral 

injuries stimulation at these sites makes less sense (particularly in the case of total loss 

of connections from the injured pool) and therefore motor neurons were stimulated 

individually. This abstracts the response of a real network wherein precise targeting of 

each motor neuron is not possible. However, as is shown in Chapter 4 it is in principle 

possible to selectively recruit a subset of EMG output from a given stimulation point. The 

same network architecture described in Chapter 4 was then trained on the stimulation 

and EMG parameters extracted from the injured MIIND network. From the predictions of 

this network it is possible to predict the required stimulation to generate the healthy EMG 

variables that produce the healthy synergies. These stimulation parameters were then 

fed back into the simulation and compared to the healthy network output. 
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Chapter 3: Online real time synergy analysis – proprioceptive feedback 

and isometric knee extension 

 

3.1 Abstract 

Muscle synergies are hypothesized to be a solution for simplifying the DOF problem in 

motor control. The methods for extracting muscle synergies are grouped together as 

dimensionality reduction algorithms, and the effectiveness has been previously shown 

to differ between datasets. To perform synergy analysis, it is also first required to define 

the muscle activity of interest. This is usually performed via visual inspection, but 

automated methods also exist. The performance in terms of speed and accuracy of 

various onset/offset detection algorithms was compared on their own, and in combination 

with dimensionality reduction algorithms on a synthetic dataset. From this the most 

accurate of these algorithms, NMF, was used to investigate the role of proprioception in 

control of muscle synergy recruitment. Proprioceptive feedback and its role in control of 

isometric tasks is often overlooked. In this study recordings were taken from the upper 

leg muscles during an isometric knee extension task where the knee was fixed at 

different angles, limiting afferent feedback to proprioceptive sources. Subjects were 

asked to voluntarily activate their rectus femoris muscle for four different internal knee 

angles and for two different positions of the contralateral leg. Muscle synergy analysis 

was used to identify canonical temporal patterns in the data. The second muscle synergy 

showed a collection of patterns at differing angles and positions suggesting the 

integration of functionally separate afferent signals into muscle activity. The MIIND neural 

simulation platform was used to develop a spinal population model capturing the 

combined activity of motor neuron populations for each of the five muscles. The model, 

based on current understanding of neuromuscular activity in cats includes, for the first 

time in a human study, separate inhibitory interneuron populations controlling the 

bifunctional rectus femoris and semitendinosus. When applying the same synergy 

analysis to the output activity from the model, it was possible to qualitatively reproduce 

similar muscle synergy patterns and from there deduce three functionally separate 

afferent signals responsible for the variation in the second synergy.  

3.2 Introduction 

Execution of a motor task is considered to be modular in nature and is modified by 

sensory inputs from the periphery and descending input from the brain. This modular 
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nature has been given many names, but the field has now largely agreed upon the term 

muscle synergies. A similar consensus has not been reached on the methods for 

identifying muscle synergies, although NMF and ICA are becoming more dominant in 

terms of popularity, the effectiveness of different algorithms varies between studies. In 

order to understand which method and its implementation would be most accurate for 

our purposes it is necessary to compare these different methods.   

The role of proprioceptive feedback in the recruitment of muscle fibres to counter load 

experienced during a given task is well studied. However, its role in control of interactions 

between muscles during isometric tasks is still poorly understood. The effect of 

proprioceptive feedback in models of central motor control is controversial and is thought 

to be only marginally involved in isometric tasks, especially if static and at a single joint. 

A previous report on activation patterns in muscles of the upper arm during an isometric 

task showed no change when arm position was altered (Roh et al., 2012). Furthermore, 

a study of muscles in the hindlimb of a cat during a balance task showed an invariance 

to starting position (Torres-Oviedo et al., 2006). However, in this chapter, evidence will 

be presented for the opposing view and a mechanism is proposed for a role of 

proprioception in the recruitment of muscles during an isometric task. 

3.2.1 Current understanding of synergy recruitment does not adequately explain 

the role of afferent feedback 

There is great variation in the way a motor task can be performed, even at a single joint. 

Each variation is produced from a combination of muscle recruitment patterns, often 

described in terms of time. These patterns are commonly referred to as muscle 

synergies. Their use by the CNS to alleviate the DOF problem is accepted but little is 

known about the mechanism of their recruitment (Grillner, 1985; Bizzi et al., 1991; Tresch 

et al., 2002). Similar synergies are reported across species, especially for routine 

repetitive tasks like locomotion in vertebrates where antagonistic pairs are recruited at 

and across joints to generate a coordinated alternating pattern of activity (Dominici et al., 

2011; Yang et al., 2019). Although not all neurons associated with this recruitment 

pattern have been identified, their functional grouping into populations within the spinal 

cord is undisputed, as is their ability to produce all locomotor output patterns observed 

under fictive conditions (Martin et al., 2007). The current accepted model for control of 

locomotion is a three layered CPG (McCrea and Rybak, 2008; Rybak et al., 2015). In 

descending order, the three layers of this model rhythm generation, pattern formation 
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and the motor neurons themselves. These descending layers interact with and control 

the next layer or produce motor output in the case of the motor neurons. Although this 

model can reproduce the rhythm, pattern and output from motor neurones during 

locomotion the component parts of this network model have rarely been applied to 

human activity (Markin et al., 2012; Shevtsova et al., 2016).  

In this study, the experimental data reported clearly shows an influence of proprioceptive 

feedback on the structure of observed synergies. Based on this experimental data a 

model for isometric tasks in humans was created that uses key elements of the model 

proposed by Rybak et al (Rybak et al., 2015).This model is described at the level of 

populations of neurons and is simulated using population density techniques (PDTs) 

which have been shown to accurately model population aggregates (like firing rates) 

while retaining a close correspondence to spiking neurons - more so than neural mass 

models - without producing the overhead of simulating thousands of neurons (de Kamps 

et al., 2019). 

3.2.2 MIIND is a model of spiking neurons that efficiently models populations  

In this study, for the first time in humans, it was possible to reproduce experimental 

outcomes using a model of the CPG during a simple isometric task. This finding suggests 

that the architecture of the model is possibly suited to reproduce the output of vertebrate 

locomotor CPGs, even if recorded as muscle firing and not neurograms as in fictive 

locomotor studies. The appropriateness of population models for investigating motor 

function is further demonstrated here. The neural simulation software package, MIIND, 

is introduced as a tool for easily prototyping and developing such population models and 

producing theoretical activity output which aids in clear understanding of the functional 

effect of model features (de Kamps et al., 2008; de Kamps et al., 2019). 

MIIND is a software implementation of a method for simulating populations of neurons 

using PDTs. Instead of directly simulating a finite population of neurons, PDTs instead 

consider a probability density function (PDF) which describes the probability of finding a 

neuron with a certain membrane potential or other state variable in the population. As 

well as providing a computationally efficient method for simulation, the major benefit of 

PDTs is that they can be used to calculate a theoretical average firing rate for the 

population (as well as other metrics such as average membrane potential). This 

eliminates the need for sampling, binning and smoothing techniques required with more 

traditional methods of direct simulation. Because PDTs are still based on the model 
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definition of the underlying neurons, the output activity remains linked to cell structure 

and while other techniques can often rely on poorly justified assumptions regarding the 

sources of variability (noise) in the population, PDTs isolate this assumption to the type 

of distribution of random input spikes. MIIND by default assumes the input to be Poisson 

distributed and provides a software environment for simulating the interaction of multiple 

populations via their Poisson distributed average firing rates. MIIND's specific PDT 

implementation is agnostic to the underlying neuron model and produces a visual 

representation of the probability density function which makes building networks flexible 

and provides an insight into the state of each population. MIIND is particularly well suited 

to situations with known populations of neurons as the source of observed behaviour but 

the observations themselves (such as EMG) are cumulative and indirect measures of 

neural activity. 

3.2.3 Experimental rationale 

Establishing the effectiveness of onset/offset detection is more than simply a matter of 

comparing the results to visual inspection. Hyperparameters such as how the data is 

segmented or filtered before passing through the algorithm can affect performance for 

different methods differently. These variables were kept consistent across testing 

conditions to give each method a level playing field. As visual inspection is held as the 

gold standard within the field it is reasonable to compare performance between 

algorithms by eye. Performing this comparison suggests that costly computational cost 

to SampEn calculation may not be as useful as previously suggested. Comparing 

dimensionality reduction algorithms requires a ground truth to measure results against. 

Therefore, the first step required a method for synthetic synergy generation to provide 

this ground truth (Tresch and Cheung, 2006). The performance of the most commonly 

used synergy extraction algorithms was then compared across different noise conditions, 

differing levels of aberrant spiking activity, and in combination with onset/offset detection. 

The results from these comparisons agree with previous findings about the effectiveness 

of NMF but highlights how in certain circumstances ICA may be more effective.  

To investigate the effect of afferent feedback on muscle synergy recruitment, we 

examined the change in interactions among a group of selected muscles, at fixed knee 

joint angles during an isometric knee extension. The interactions between homonymous 

and heteronymous muscles are well known but rarely examined in the same isometric 

task (Pierrot-Deseilligny and Burke, 2005). Recordings were made from seven muscles 
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in healthy young subjects while they performed an isometric knee extension focusing on 

voluntarily activating the rectus femoris muscle of the quadriceps. It was hypothesised 

that this would result in the same synergies being recruited at all angles of the task and 

that changes in the recruitment pattern of these synergies would reflect alterations to the 

synergy (as opposed to recruitment of new synergies) due to static proprioceptive 

feedback from muscle stretch. Observed changes to the recruitment of the quadriceps 

and hamstrings, in combination with our model, suggest that afferent feedback does 

affect the recruitment of muscle synergies during an isometric task. This clearly 

demonstrates that assumptions regarding proprioceptive feedback in motor control have 

not been sufficiently investigated.  

3.3 Results 

3.3.1 A moving average window accounts for aberrant spiking activity 

The accuracy and speed of different thresholding methods for detecting EMG onset is 

shown in Figure 3-A. Accuracy here is defined as the ability to detect the onset/offset of 

muscle activity of interest. An accurate measure will identify the activity and exclude 

noise. In this example of high SNR activity without spiking activity all measures perform 

similarly, determining the onset of activity as closely as possible within the limits of the 

sliding window. Of the three methods examined both average amplitude and RMS were 

nearly instantaneous, whereas SampEn averaged at 0.59s for calculation time. Figure 

3-B shows the accuracy of each measure in the presence of aberrant spiking. In this 

case average amplitude and SampEn identify the activity of interest under all spiking 

conditions whereas RMS becomes inaccurate selecting the entire signal as activity of 

interest. This contrasts with findings in the literature which states that SampEn should 

be superior under these conditions. Figure 3-C shows the changes that occur when SNR 

ratio decreases in combination with aberrant spiking. Under low noise conditions each 

algorithm is approximately as accurate as each other as seen in the left most column As 

SNR decreases RMS is the first to show signs of decreasing accuracy, as seen in the 

middle column,  whereas both average amplitude and SampEn only starts to decrease 

in accuracy until the very low SNR ratio condition in the right hand column, wherein each 

measure begins to incorrectly identify some spikes as activity of interest. Figure 3-D 

demonstrates the effects of standard filtering regimes on each of the onset algorithms. It 

is apparent that each algorithm’s performance is degraded by the presence of normal 

filtering methods, RMS and the average amplitude measure begin to incorrectly identify 
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spikes as activity under the medium noise condition where previously using the average 

amplitude this did not occur until the very low SNR condition. SampEn is particularly 

badly affected, and incorrectly identifies spikes as activity even under the high SNR 

condition.  
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Figure 3-A: Comparison of accuracy and calculation speed of three algorithms 

for detection of onset of muscle activity. EMG signal is recorded from rectus 

femoris muscle via surface electrodes during an isometric knee extension (red). The 

identified activity for each algorithm is shown overlaid on top of the muscle activity 

(black). The three algorithms used for onset detection are the average, root mean 

square (RMS) and sample entropy. The threshold for each value was determined 

using an Otsu filter, commonly used in image/edge detection to filter a signal into two 

groups, in this case muscle activity and baseline. Each algorithm included a sliding 

window of 32ms with an overlap of 4ms. The only filtering methods applied to the data 

was a rectification step in contrast to normal noise filtering processes including 

bandpass/low pass filters. The speed of each algorithm was tested using the 

hardware and implemented in Python 3 as noted in Chapter 2.3 and is indicated 

above the signal.  
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3.3.2 NMF performs best among common synergy extraction methods 

The performance of different synergy extraction algorithms was also examined for speed 

and accuracy. The four algorithms tested were PCA, ICA, factor analysis and NMF. To 

compare the accuracy of these methods it is necessary to have access to the original 

synergies that generated the EMG activity of interest. As described in section 2.4.5 EMG 

signals were generated from synthetic synergies and the algorithms were then asked to 

reverse this process and identify these muscle synergies. A representative example of 

the synergies generated, and the resulting EMG waveforms are shown in Figure 3-E. 

Both the synthetic synergies and the generated EMG waveforms are shown. Synergy 

vectors represent the contribution of each “channel” which are equivalent to muscles in 

real world terms. Synergy coefficients show when the synergy is recruited during a given 

movement or contraction. These waveforms and synergies match well with previous 

descriptions of muscle synergies and EMG waveforms.  

The accuracy of each method was measured as the cosine similarity between the 

extracted synergies and the real synergies. A representative example is shown in Figure 

3-F, although later figures show the cosine similarity calculated as the average 

performance over multiple synthetic synergies. In this example none of the extraction 

methods extract the synergies with perfect accuracy, however NMF has the highest r 

value for both synergies and for vectors and activation coefficients. Figure 3-G shows 

the average cosine values normalized to the performance due to random chance. 

Comparisons were made between these values using one-way analysis of variance 

(ANOVA) followed by a Tukey’s multiple comparison test. Residuals were tested for 

normality using a histogram and a Levene’s test for equal variance. This was followed 

by a one-way ANOVA. The mean cosine similarity was found to be significantly different 

for both synergy activation coefficients (F = 3951.02, p < 0.05) and for synergy vectors 

(F = 3273.21, p < 0.05). A Tukey multiple comparison test identified the direction and 

magnitude of this difference. For synergy activation coefficients all methods except FA 

and PCA were found to be significantly different (mean difference = 0.0019, p = 0.550) 

and that mean cosine similarity of NMF was significantly greater in comparison to all 

other methods (NMF– PCA; mean difference = 0.3934, p < 0.05,  NMF– FA; mean 

difference = 0.3915, p < 0.05, NMF– ICA; mean difference = 0. 2974, p < 0.05). This 

relationship was also found to be true for synergy vectors with FA and PCA being not 

significantly different (mean difference = 0.0053, p = 0.678) and with NMF being 

significantly more accurate in comparison to all other methods (NMF– PCA; mean 
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difference = 0.0568, p < 0.05,  NMF– FA; mean difference = 0.0515, p < 0.05, NMF– 

ICA; mean difference = 0.1103, p < 0.05). NMF shows a clear advantage in accuracy for 

identifying activation and synergy vectors. Of note here is the poor performance of ICA 

which in some implementations has been indicated to be the most accurate (Tresch and 

Cheung, 2006).  

When different onset/offset detection algorithms were also used the performance of all 

methods degraded as shown in Figure 3-H.  A two-way ANOVA was required to identify 

the effect of onset detection method and synergy extraction method on cosine similarity. 

Residuals were tested for normality using a histogram and a Levene’s test for equal 

variance. There were statistically significant interactions between cosine similarity for 

both onset detection and between synergy extraction methods when examining synergy 

activation coefficients (F = 327.63, p < 0.005 and F = 276.45, p < 0.005 respectively). 

There was also a significant between group interaction for onset detection and synergy 

extraction (F = 25.31, p < 0.005). This finding was also true when examining synergy 

vectors with statistically significant interactions between cosine similarity for both onset 

detection and between synergy extraction methods (F = 7.43, p < 0.005 and F = 8.37, p 

< 0.005 respectively) but there was no longer the same between group interaction (F = 

1.25, p = 0.262). The simple main effects of these interactions were identified using 

multiple pairwise comparisons. A table with the full pairwise comparisons is available in 

the Appendices. Relevant results to this analysis are the significantly lower cosine values 

for all algorithms across every onset detection algorithm. NMF continues to outperform 

all other extraction algorithms in combination with each onset detection algorithm. Of 

these methods a moving average reduced performance the least and SampEn the most. 

In terms of calculation speed algorithms were compared for a single example of 

EMGs.  PCA was calculated in <0.0001s, FA, in 0.17s, ICA in 1.14s and NMF in 0.08s. 

From these results NMF presents a balance between an acceptable calculation speed 

(0.08s corresponds to 12.5 frames per second, or about half the speed that is required 

for smooth capture of motion in video. This delay is small enough that other aspects of 

the code are likely to dominate lag in implementation) and accuracy. PCA was faster 

than NMF but had significantly lower r values when applied to the synthetic dataset. 

Therefore, NMF was chosen as the method for further implementation within the online 

synergy extraction algorithm.    
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  Figure 3-E: Example of simulated synergy coefficients and vectors and 

resulting synthetic muscle activity. (TOP LEFT) Bar chart represents synergy 

vectors corresponding to individual channel (muscle) contribution to the synergy 1 

and 2 (black, red). Vectors were randomly generated numbers constrained to be 

positive numbers between 0 and 1 due to the positive nature of muscle activity ruling 

out negative synergies. (TOP RIGHT) Line graphs are synergy coefficients 

corresponding to recruitment of synergy 1 and 2 across the muscle contraction 

(black, red).  Coefficients were generated by selecting a random muscle and 

participant from a previously collected dataset of upper leg muscle EMGs recorded 

during isometric knee extraction with an added Gaussian noise distribution centred 

on 1 and scaled by 3, standard filtering (high pass= 20 Hz, low pass = 450 Hz, second 

order Butterworth filter) and then normalized to maximum signal amplitude. 

(BOTTOM) Synthetic muscle activity was generated by taking the dot product of the 

two vector and coefficient matrices. These were then normalized to their maximum 

amplitude.  
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Figure 3-G: Average cosine similarity between synthetic synergies and 

synergies extracted by four commonly used muscle synergy extraction 

methods. Synergies were extracted from 100 examples of synthetically generated 

muscle activity separated into synergy activation coefficients and vectors. Error bars 

are standard deviation. Synergy extraction methods used were principal component 

analysis (PCA), independent component analysis (ICA), factor analysis (FA) and 

non-negative matrix factorization (NMF). Asterix and black bars above bar charts 

indicate significance following ANOVA and Tukey multiple comparison test in relation 

to mean cosine similarity of NMF. NMF was found to have significantly greater cosine 

values than other methods for both activation coefficients (NMF– PCA; mean 

difference = 0.3934, p < 0.05, NMF– FA; mean difference = 0.3915, p < 0.05, NMF– 

ICA; mean difference = 0. 2974, p < 0.05) and for synergy vectors (NMF– PCA; mean 

difference = 0.0568, p < 0.05, NMF– FA; mean difference = 0.0515, p < 0.05, NMF– 

ICA; mean difference = 0.1103, p < 0.05). 

 

 

 

* * * * * * 
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  Figure 3-H: Effect of three different onset detection algorithms on synergy 

detection accuracy of four commonly used muscle synergy extraction 

methods. Synergies were extracted from 100 examples of synthetically generated 

muscle activity following detection of muscle activity of interest by three onset 

detection measures. The measures used was an average of the signal amplitude 

(Amplitude), the root mean square (RMS) and the sample entropy (Sample Entropy). 

Performance on raw data is shown for comparison (Raw). All detection algorithms 

used a sliding window of 32ms with a 4ms overlap. Error bars are standard deviation. 

Synergy extraction methods used were principal component analysis (PCA), 

independent component analysis (ICA), factor analysis (FA) and non-negative matrix 

factorization (NMF). 
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3.3.3 Application of NMF to isometric knee extension task 

Of the 7 different muscles of the leg recorded only 5 of these were used for further 

analysis of activity and patterns as on examination the muscles TA and MG were always 

inactive, as expected due to the nature of the task. Muscle synergies were extracted 

from the EMGs recorded from 5 muscles across two different positions to examine how 

proprioceptive feedback alters muscle synergy recruitment. The contralateral hip was 

flexed or relaxed to induce passive insufficiency in the recorded leg to highlight 

differences in proprioceptive feedback. A photo capturing the different leg positions is 

shown in the Appendices. A spinal population circuit model was created with connections 

between interneurons, motor neurons and afferent feedback, based on current CPG 

models and accepted neural circuits (Pierrot-Deseilligny and Burke, 2005). The model 

was generated after extraction of the experimentally observed muscle synergies. 

Alterations were made to the overall structure of the model based on these findings (such 

as the required additional excitatory connections required to replicate the bias towards 

RF and ST) Figure 3-L shows the EMG signals for all five muscles after rectification and 

smoothing, and the average firing rates of the motor neuron populations in the simulation. 

It is difficult to discern the meaning of differences between the time series, highlighting 

the need for analysis techniques such as NMF. 

3.3.4 NMF identifies two muscle synergies from the EMG activity 

To identify synergies appropriate for experiment-model comparison, NMF was 

performed with a range of rank values, as previously mentioned the rank factor 

corresponds to the number of synergies extracted. The appropriate rank to use was 

chosen as the number required to raise the VAF above 90% which can be observed in 

Figure 3-I as the dotted line. In this case rank two raised VAF above this threshold. 

Although 90% is an arbitrary threshold, and there are other methods for choosing 

appropriate rank, patterns identified by three or more synergies were less consistent 

across participants. As described in Section 2.4, each synergy consists of a column of 

matrix 𝐖 with length five (one value per muscle) and a row of matrix 𝐂 representing a 

time series describing some underlying structure of the original data. For each muscle, 

the corresponding component of 𝐖∗𝑠 multiplied by 𝐂∗𝑠 gives the contribution of synergy, 

𝑠, to that muscle’s EMG. Cosine similarity analysis was performed on the synergy rows 

and columns across participants for each position, synergy and angle. There is high 

correlation between synergy 1 results among the participants, regardless of position and 
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internal knee angle as seen in Table 3-A. Though not as high as synergy 1, there is also 

high correlation between participants for synergy 2. Despite some variation, the r values 

in Table 3-A suggest that there is a common pattern of muscle synergy recruitment 

across all participants. 
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Figure 3-I: Average variance accounted for (VAF) scree plot for rank one to four 

NMF dimensionality reduction across all angles and both positions of the 

isometric knee extension task. The 90% VAF threshold indicates that two is the 

appropriate rank to use and therefore the number of synergies to extract. Error bars 

show Standard Error of the Mean (SEM). 
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 Synergy(s)    Angle 

Position 1  0° 20° 60° 90° 

Muscle Contribution 

Vector (𝐖∗𝑠) 

1 0.92 0.94 0.88 0.89 

 2 0.77 0.66 0.69 0.58 

Activation pattern 

(𝐂∗𝑠) 

1 0.96 0.97 0.97 0.97 

 2 0.66 0.75 0.73 0.69 

      

      

Position 2      

Muscle Contribution 

Vector (𝐖∗𝑠) 

1 0.94 0.93 0.92 0.89 

 2 0.67 0.65 0.62 0.70 

Activation pattern 

(𝐂∗𝑠) 

1 0.96 0.96 0.97 0.96 

 2 0.68 0.74 0.73 0.76 

Table 3-A: Synergy rows and columns (as defined in section 2.4.10) were 

compared across all pairs of participants using cosine similarity analysis 

following synergy extraction using NMF. Cosine similarity analysis outputs a value 

between -1 (negatively correlated) 0 (uncorrelated) and 1 (positively correlated).  For 

both positions (activating or inactivating the contralateral hip flexors) and for all 

internal knee angles, there is high correlation between subjects indicating that, during 

the task, the same synergy patterns are being recruited by the majority of subjects. 
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3.3.5 Synergy 1: Coordinated, balanced recruitment of all muscles is a canonical 

recruitment pattern in anisometric task 

The NMF process generates, for each of the two synergies, a time series activation 

pattern and a vector of five values, one for each muscle. Figure 3-J shows the vector 

and time series of synergy 1 (A) and 2 (B) for both positions across different internal 

knee angles. The activation patterns (line plots) should be considered in conjunction with 

the five value muscle contribution vectors shown in the bar charts. Synergy 1 represents 

general coordinated muscle recruitment as would be expected in an isometric extension 

and contributes to the majority of the observed EMG activity. Because of this, the 

activation pattern closely matches the overall profile observed in the raw EMG data (the 

transition from low to high to low activity during the contraction). The high muscle 

contribution values for all five muscles indicates that this activation pattern is present in 

all five EMG recordings. Both the activation pattern and muscle contribution weights are 

well conserved across all angles, positions, and muscle groups. Among the muscle 

contribution values, there is a slight shift between 0° and 90° from a quadriceps bias to 

a hamstring’s bias, however this change is less apparent in position 2. The well 

correlated vector values in synergy 1 were used to eliminate outliers and reduce the 

variability of synergy 2. If any synergy 1 vector value fell below 5 or above 6.3, we 

removed that trial from the results. In many of the trials which were excluded, the time 

series activation patterns were observably different from the average. While these could 

represent other legitimate synergies, the two modal synergy pattern was chosen for 

further investigation as representing the majority of subjects. 

3.3.6 Synergy 2: The degree of muscle stretch regulates a balance between the 

activity of agonist and antagonist muscles 

The shape of the activation pattern of synergy 2 indicates that this synergy captures a 

difference between the activity of each muscle during the resting and transition periods 

at the beginning and end of the contraction. During the contraction, the contribution of 

synergy 2 reduces to near zero because all muscles reach their maximal activity which 

is the feature captured solely by synergy 1. The patterns of synergy 2 change for different 

knee angles and position indicating that there is a proprioceptive effect on muscle 

activation even in an isometric task such as this. In position 1, as the internal knee angle 

is increased, there is a marked drop in the average of contribution vector values for the 

antagonist muscles whereas the average of the agonist muscles shows the opposite 
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trend. At 90°, the average magnitudes are the same for both muscle groups indicating 

that the proprioceptive feedback is balanced. In individual cases, the vector values vary 

as to which muscles receive a bias which is confirmed by the high variability of the data 

at this angle. What is important is that there appears to be no preference for any muscles 

in contrast to the lower angles. 

3.3.7 Synergy 2: At the limit of extension, afferent signals strongly affect synergy 

patterns in both positions 

At 0°, in both positions, the contribution vector values for the agonist muscles are zero 

while the antagonist muscles show high non-zero values. This indicates that the range 

of activity of the antagonist muscles was reduced compared to the agonists.  This is 

consistent with additional excitation to the knee flexors or inhibition of the extensors when 

the leg is near the limit of extension. In position 2 at 20°, the antagonist bias is flipped to 

the agonists. Such a stark difference between 0° and 20° could be due to the nonlinear 

nature of afferent feedback but it could also demonstrate two functionally different 

afferent signals at play. One signal to represent extreme extension which is active at 0° 

and another to represent the overall muscle stretch which at this angle and position 

shows a bias towards the knee extensors. At 20°, the first signal may be switched off. In 

position 1, the strong antagonist bias remains at 20°, suggesting that, if there is afferent 

activity signalling the extension limit, it persists due to passive insufficiency. 

3.3.8 Synergy 2: Across many angles and positions, there is a stronger bias 

towards the bifunctional muscles 

In many individual cases, the synergy 2 pattern sets the contribution vector value of 

either RF or ST very high compared to the other muscles. In position 2, with the exception 

of 0°, there is a higher average vector value for RF than any other muscle with a lower 

variance. At 0° for both positions and at 20° in position 1 (near the extension limit) there 

is a strong bias to ST compared to biceps femoris. At higher angles in position 1, the ST 

bias appears to reduce and then vanish entirely. 

3.3.9 The model reproduces synergies observed experimentally 

During each MIIND simulation, the two afferent feedback inputs were kept constant and 

the Cortical Drive input was changed from low to high activity to reproduce the 

contraction behaviour. All populations produced average firing rates which were either  
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Figure 3-J:  Muscle synergies extracted using rank two NMF from an isometric 

knee extension task at four internal angles of the knee (0°, 20°, 60°, and 90°). (N 

= 17, mixed gender, male = 9, female = 8, age range of 18-30 (24.4±2.57years).  

Subjects performed 6 contractions of 5s with the subject being asked to maximize 

rectus femoris activity. NMF was performed on the average EMG of each subject’s 6 

contractions. The experiment was repeated across two positions inactivating (red 

values) or activating (blue) contralateral hip flexors.  Line charts are activation 

patterns identified by NMF as underlying structure in the original EMG time series. 

Bar charts show the contribution of the associated activation pattern to the activity of 

each of the five muscles in arbitrary units. Error bars represent standard error of the 

mean. A: Synergy 1 demonstrates a balanced, coordinated contraction across 

muscle groups in line with what is observed in the raw EMG data. B: Synergy 2 for 

position 1 (top in red) shows the balancing of antagonist/agonist activations between 

the quadricep muscles and hamstrings. Synergy 2 for position 2 (middle in blue) 

shows the same extreme antagonist bias at 0°with the leg at maximal extension. 

However, there is a strong agonist bias at 20°perhaps demonstrating the effect of 

less passive insufficiency. RF:Rectus Femoris; VL:Vastus Lateralis; VM:Vastus 

Medialis;ST:Semitendinosus; BF:Biceps Femoris 

 



 
 
 

78 
 
 

passed to connected populations in the network or recorded for analysis. The activity of 

the five motor neuron populations, MN-RF, MN-VL, MN-VM, MN-ST and MN-BF, was 

analysed. The raw output from these populations is shown in Figure 3-L (top right). The 

output is a great deal smoother than the overlaid EMG recording data due to MIIND’s 

simulation technique and the lack of many of the experimental sources of noise. Though 

there is undoubtedly a great deal more information available in the EMG traces, the 

model is designed only to explain how the two synergies are produced and, as will be 

shown, a smooth rise and fall in activity is sufficient. 

The heat plots in Figure 3-L (top left) show the probability density functions produced by 

MIIND for each population in the network. As shown in Section 2.6, the density function 

describes the likelihood of finding a neuron from the population with a given membrane 

potential. The top density plot shows the state of the MN-RF population during the period 

before the action begins. The lower density plot shows the state when the input is 

maximal. In the lower density plot, there is a higher probability of finding neurons at the 

threshold (-51mV) indicating that the average firing rate of that population is higher. The 

population transitions to the top density once again after the Cortical Drive returns to 

zero. These transitions are also visible in the probability density functions of the other 

motor neuron populations due to the indirect excitation from Cortical Drive via the 

Extensor and Flexor Interneuron populations. Therefore, for all motor neuron 

populations, as with the EMG signals, the average firing rate output shows an increase 

to a high level of activity followed by a decrease to rest. 

In the same manner as the EMG recordings, rank 2 NMF was performed on the time 

series of average firing rates of the motor neuron populations in the model producing a 

five-value muscle contribution vector and time series activation pattern for both 

synergies. The afferent feedback inputs to the Extensor Interneuron, InhibRF and 

InhibST populations were altered and the results were compared to those of the isometric 

task. Figure 3-K shows the results from the NMF process. As seen in Figure 3-K (A) for 

synergy 1, the activation pattern matches the shape of the descending input pattern from 

the Cortical Drive input (5 seconds of maximal activity with a 1 second ramp up and 

down). The five muscle contribution values are all well above zero indicating that the 

activation pattern is a component in the activity of all the motor neuron populations. 
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3.3.10 Changing afferent inputs A or B creates a bias in synergy 2 between 

agonist and antagonist motor neuron populations 

The synergy 2 seen in Figure 3-K (B) activation pattern drops to zero during the 

contraction and returns to its starting value at the end. The degree to which this pattern 

contributes to each motor neuron population’s activity changes with the different 

combinations of afferent inputs. When afferent input A is higher than B, the activation 

pattern contributes to the antagonist motor neuron populations significantly more than 

the agonists as was observed in the experimental results. The additional excitation from 

input A causes an imbalance in activity between the Extensor Interneuron population 

and Flexor Interneuron population. The resultant higher firing rate of the Extensor 

Interneuron population causes additional excitation of MN-ST and MN-BF and inhibition 

of MN-RF, MN-VL and MN-VM. Therefore, during the entire contraction task including 

the resting period, the antagonist motor neuron populations have a consistently higher 

firing rate than the agonist populations. This is how a bias in the synergy pattern to either 

the agonists or antagonists is controlled. As the difference between afferent inputs A and 

B is reduced, the contribution of this pattern lowers until itis eliminated across all five 

populations. For the EMG recordings, at 20° in position 2, the agonist/antagonist bias is 

reversed. This can be reproduced in the model by increasing afferent input B above A 

which creates a bias towards the agonist motor neuron populations in the contribution 

vector. It is possible that as passive insufficiency is reduced in position 2, the afferent 

feedback further shifts to the Flexor Interneurons following the trend identified with 

increasing angle in position 1. 

3.3.11 The additional connection strength to MN-RF and MN-ST produces a bias 

for those two populations in synergy 2 

In position 1, the contribution vector value of ST is higher than that of BF at 0°. This bias 

remains at 20° then reduces at 60°before being eliminated entirely at 90°. The additional 

connections between the Extensor Interneuron population and MN-ST cause the activity 

of MN-ST to increase both during the rest and contraction periods (although the range is 

reduced) which induces a higher contribution vector value for MN-ST compared to MN-

BF. This effect is “multiplied “by the higher activity of the Extensor Interneuron population 

compared to the Flexor Interneuron population which explains why the bias is greater 

when afferent input A is much higher than B. However, were this the only mechanism for 

altering the bias, it should still be visible at 90°where the afferent inputs are balanced. In 
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order to eliminate the bias, the inhibitory population InhibST is required to offset the 

additional activity from the Extensor Interneuron population. This mechanism is mirrored 

for the MN-RF population. In position 2 with the exception of 0°, RF has a consistently 

high contribution vector value. The additional connections to MN-RF from the Flexor 

Interneuron population enable a difference in the synergy pattern to that of MN-VL and 

MN-VM and the InhibRF population allows modulation of the bias. 

3.3.12 Afferent input C provides a strong bias in synergy 2 for the antagonist 

muscles during maximum extension 

To produce the synergy 2 patterns at 0° in both positions and 20° in position 1, all that is 

required is to provide a large amount of excitation through afferent input A. The sharp 

change to the synergy patterns at 60°in position 1 and 20° in position 2 indicates that the 

afferent input does not change linearly or there is a separate additional afferent signal 

causing this pattern. In both cases, this can be modelled with a separate afferent input 

C. In the model, at 0° in both positions, afferent inputs A and B are switched off and C is 

switched on to produce the required pattern. If A and B remained active, the agonist 

motor neuron populations in position 1 would be completely inhibited, eliminating both 

synergies. Likewise, in position 2, afferent input C would need to be much higher to 

overcome the opposing excitation of the Flexor Interneuron population from input B. At 

maximal extension therefore, the model predicts a step change in afferent signals or an 

entirely separate afferent pathway which is activated in this scenario. Although this 

afferent input is labelled as a single pathway within the model it may correspond to one 

or many sources that produce this step change in behaviour.  

3.3.13 The model does not account for variation in afferent signals from trial to 

trial 

Figure 3-L shows the side by side comparison of the synergies extracted from the 

simulation and average synergies from the EMG recordings for both positions. As 

discussed above, many of the patterns and trends are captured by the model. However, 

there are a few differences worthy of discussion. In position 1, the model produces no 

contribution vector values in synergy 2 for MN-VL and MN-VM in contrast to the 

experimental results. The model provides no variability in the inputs to these populations 

and no mechanism for changing their activity in comparison to MN-RF. This is particularly 

obvious at 90°where, in the experimental results, there is an equal chance of seeing a 
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high contribution vector value for all muscles which leads to the common low average 

vector value with high variability. The equivalent in the model is a zero-vector value for 

all motor neuron populations in synergy 2. The trend in agonist/antagonist synergy bias 

in position 1 which is perhaps extended to 20° in position 2 is not continued for 60° and 

90°. The model currently offers no explanation for the changes in synergy pattern 

although it is still possible to reproduce them by changing the afferent inputs and/or 

cortical drive to specific motor neuron populations. 

3.4 Discussion 

The major findings of this study show that synergy recruitment during an isometric knee 

extension is affected by proprioceptive feedback, and that these synergies can be 

reproduced by a neural population model integrating afferent feedback. We also show 

that the performance of automated methods of muscle activity analysis, whether it be 

onset/offset detection or synergy extraction algorithms, varies dependent on the data 

examined and the choice of hyper parameters. The synergies recruited during the 

isometric task are well conserved across conditions and individuals, consisting of 

simultaneous muscle activation and the balancing of agonist-antagonist recruitment 

relative to internal angle of the knee. These results are further supported by findings from 

a novel simulation of the local spinal circuits showing proprioception from muscles 

contribute to synergy level organization of motor control in humans during isometric 

tasks. Whilst our results are largely in line with previously established literature regarding 

synergy recruitment, we differ in our finding that joint angle and therefore afferent 

feedback regarding joint position alters synergy recruitment (Torres-Oviedo et al., 2006; 

Roh et al., 2012; Sohn and Ting, 2016). We propose that in this case, because the 

available synergies are constrained due to the nature of an isometric task, adaptation is 

achieved through changes in recruitment. Inspection of the synergies extracted during 

NMF analysis matches well with biomechanical interactions expected of the muscles, 

with synergy 1 reflecting coordinated contraction of all muscle groups and synergy 2 

reflecting the agonist-antagonist pairing of the hamstrings and quadriceps. The similarity 

of each synergy’s activation pattern supports that these are the same synergies being 

recruited at each angle. The changes observed in synergy 2 at different internal angles 

of the knee demonstrates a clear effect of proprioception on synergy recruitment. 

Quadriceps and hamstring activity in synergy 2 is balanced at a smaller angle when the 

contralateral hip is flexed. This further reinforces that these changes reflect the influence 

of afferent feedback due to change in relative muscle stretch requiring re-balancing of 
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the agonist-antagonist activity. This finding challenges long held assumptions that 

proprioception does not play a role in isometric tasks and synergy recruitment.  

An important factor in justifying our results is the appearance of high contribution vector 

values for the antagonist muscles in both synergies. When studying synergies using 

NMF, it can be the case that the contribution vectors are almost entirely disjoint across 

synergies.  When this happens, it is an indication that the NMF process has simply 

classified the original set of EMGs into matching groups. This can be confirmed if the 

synergy activation patterns are almost identical to the associated EMGs. In our study, 

the high antagonist contribution values in both synergy 1 and 2, coupled with the 

activation pattern in synergy 2 being starkly different to the EMG time series, indicates 

that NM has identified underlying structure in the data. 

3.4.1 Evaluation of muscle activity analysis algorithms is data dependent 

Two related methods of analysing EMG signals were evaluated in the first section of this 

study, onset/offset detection and dimensionality reduction for the purposes of synergy 

extraction. In an automated setting, determining the activity of interest is of vital 

importance. Of the methods examined here a sliding window of average values was 

found to be as effective as the more computationally intensive measure of SampEn. 

Averaging was as effective in high noise conditions, as well as with extremely high 

frequency spiking activity, conditions it has been suggested previously SampEn had a 

distinct advantage in. Furthermore, whilst the performance of all algorithms was worse 

in the presence of standard filtering methods, the performance of SampEn was 

particularly badly affected, whereas a sliding average was still comparable to methods 

of visual inspection. Using RMS as a measure was inferior in conditions except the no 

noise signals and is therefore entirely unsuitable for onset/offset detection. With the 

significant decrease in computation time associated with a sliding window it calls into 

doubt the utility of SampEn as a measure for automated burst segmentation in an online 

scenario. 

The performance of synergy extraction algorithms was compared on synthetically 

generated EMG signals. Of these methods the performance in terms of cosine similarity 

advantages between methods was similar for determining synergy vectors whereas NMF 

has a significant advantage in activation coefficients. Examining specific examples within 

this dataset it becomes clear that of the four methods examined, NMF had much fewer 

examples of poorly matched samples than other methods. This was particularly evident 
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in the case of ICA wherein some matches outperformed NMF and in some cases it was 

the worst performing method. In terms of computational speed PCA is performed almost 

instantaneously and therefore has the greatest advantage when speed is of the utmost 

importance. ICA on the other hand is the slowest of methods and would be unsuitable 

with a naive implementation for real time uses. Finally, all methods appeared sensitive 

to onset/offset detection algorithms. This is likely due to the inclusion of additional “noise” 

data in comparison to visual segmentation which only includes activity of interest. NMF 

appears to strike a balance between computation speed and accuracy, although it should 

be noted that NMF calculation time increases steeply as the sample size increases. From 

this result and due to its algorithmic restrictions being in line with assumptions regarding 

muscle synergies, NMF was selected as the synergy extraction algorithm for further 

testing.  

3.4.2 Muscle synergies extracted from isometric extension of the knee are altered 

in relation to internal angle of the knee 

Our results contrast with findings that muscle synergies present during isometric force 

generation in the hand are insensitive to changes in position or load (Roh et al., 2012). 

The difference in findings may be reflective of either a different mode of control for 

muscles of the upper limb or a difference in requirement and outcome of the task 

resulting in recruitment of more stable synergies. Further examination is required to 

investigate the cause of these differences. More striking still is the comparison to synergy 

recruitment during postural perturbations these dynamic movements required five 

synergies to adequately explain variance and yet none of these synergies were 

significantly altered with changes in posture or initial limb configuration (Torres-Oviedo 

et al., 2006). It would seem reasonable to assume that these conditions would be more 

sensitive to changes in afferent drive due to the greater complexity of the movements 

involved. We hypothesised that a fixed isometric task should isolate changes in muscle 

synergies to those due to proprioceptive feedback. Greater restriction of movement may 

necessitate alteration of synergy recruitment to produce changes in end-point forces, 

whereas more dynamic movements might allow subtle postural changes to produce the 

same outcome. To support our experimental findings, we identified a candidate network 

which, when modulated by afferent feedback reproducing the experimentally observed 

synergies.  
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3.4.3 Interneuron modelling of the CPG demonstrates changes in levels of 

afferent feedback are sufficient to alter synergy recruitment 

The mechanism of action is hard to determine in a human spinal cord due to the lack of 

direct recordings from these circuits, but using MIIND, we built a population network 

model based on biological evidence to propose the likely mechanism of action. This 

simulation reproduced the same synergies as derived from the EMG data, changing the 

afferent input to the neural populations in this model, the synergy recruitment trends 

matched those observed with increasing internal knee angle. This model then 

demonstrates how muscle synergies can be encoded in neural population circuits and 

furthermore that synergy analysis of experimental data can be used to directly drive 

model development.  

This model’s similarity to previously studied spinal circuits supports conclusions that 

synergy encoding takes place in the spinal cord (Hultborn et al., 1987; Saltiel et al., 2001; 

Pierrot-Deseilligny and Burke, 2005; Dominici et al., 2011; Shevtsova et al., 2016). 

Supraspinal input was provided to the MN-RF motor neuron population and Extensor 

and Flexor Interneuron populations only and so specific bias e.g. in the antagonist 

muscles, was introduced through the circuitry of the model itself leading to the patterns 

observed in synergy 2. During this study, it became clear that altering the circuitry of the 

model (and the level of afferent input) mainly affected the activity of each motor neuron 

population at rest and its activity during maximal contraction. The contribution value of 

synergy 2 in the simulation was found to be inversely proportional to the difference 

between the maximal and minimal activity and this can also be observed in the 

experimental results.  

We have thus demonstrated that a model based on well understood afferent inputs to 

spinal circuits that fits into existing CPG models of locomotion in cats, can be effectively 

used to predict synergies in simple isometric tasks in humans (Jankowska et al., 1967; 

Pratt and Jordan, 1987; McCrea and Rybak, 2008). This speaks to the robustness of the 

mechanisms in the model. In particular, it is clear that synergy 2 relies on the reciprocal 

inhibition between extensor and flexor populations which is also an important feature 

required for locomotion. What remains unanswered is firstly whether the cortical drive 

presented in this network bypasses the rhythm generation and pattern formation layers 

of the CPG, and if the extensor and flexor populations can be co-active when mediating 

a common drive to all muscles for voluntary tasks. Secondly, whether the full CPG model 

can be applied to understanding other cyclical limb motion like locomotion in humans. 
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Instead of using the traditional technique of direct simulation of individual neurons, we 

have instead used the MIIND simulation package, an environment allowing easy 

simulation of populations of neurons. It requires only the definition of connectivity at the 

population level, making it easy to setup and adjust a population network during 

development. Parameter tweaking is an inevitable part of the modelling process requiring 

cycles of adjustment followed by simulation. Reducing the need for adjustments to the 

neuron model itself was one reason why we used the simple exponential integrate and 

fire instead of a more complex Hodgkin-Huxley style neuron. This model was able to 

reproduce the desired synergy patterns without the need for the increased complexity of 

the Hodgkin-Huxley model. While building the network model we experimented with 

different connection configurations between populations. MIIND’s XML style code, used 

to describe the network, made it simple to add, remove or adjust connections, as well as 

to add further populations for the RF and ST bias. For one dimensional neuron models, 

MIIND can simulate a population network with much greater speed than direct methods 

and this allowed simulations to be run on a local machine without the need for high 

performance computing, significantly improving the turnaround time between changing 

and testing the model. From our experience here, we advocate the use of simple neuron 

models where appropriate, i.e. reduce the dimensionality of the neural model as far as 

possible. First, this increases simulation speed and second, this focuses thinking on 

which are the essential neuronal mechanisms before simulation starts.  

3.5 Conclusion 

In conclusion, the comparisons between onset detection and synergy analysis methods 

found a moving average and NMF were fast and accurate ways of identifying synergy 

activity of interest. There was a clear effect identified of proprioceptive drive on the 

pattern of muscle synergy recruitment during a voluntary task. We propose a likely 

mechanism of action using a population model which reproduces the same synergy 

patterns as those observed experimentally, thus pointing to the spinal cord as the site 

for synergy encoding. Finally, this population network derived from earlier CPG models 

points towards the fact that spinal circuit components can act in both rhythmic tasks such 

as walking and in voluntary static tasks. 

• A moving average window of raw signal amplitude was just as effective as more 

computationally intense methods of onset detection 

• NMF was most accurate amongst synergy extraction methods 

• All onset detection algorithms degraded synergy extraction accuracy 



 
 
 

88 
 
 

• Afferent feedback alters synergy recruitment in an isometric knee extension task 

• The MIIND network successfully replicated the changes observed in 

experimental findings by integrating afferent feedback into a model of the CPG 

• These findings challenge assumptions in the field regarding muscle synergy 

recruitment and the way these findings are analysed 

  



 
 
 

89 
 
 

Chapter 4: Control of stimulation paradigms using artificial neural 

networks to generate EMG waveforms in the rat hind limb 

4.1 Abstract 

Electrical stimulation of a motor nerve produces activity in the nerves it innervates. The 

relationship between the stimulation delivered and the resulting muscle activity follows a 

complex non-linear relationship which varies depending on the location and type of 

stimulus delivered. Whilst methods exist to establish the stimulus parameters required 

to excite a nerve these methods are time-consuming to translate into a predictive model 

and lack good generalizability. Furthermore, less has been done to examine precisely 

the effect stimulus parameters have on the resulting EMG waveforms particularly when 

stimulating at a more distant point on the nerve. The complexity of the problem is 

compounded by the presence of branching points within a nerve which mean that 

stimulation may recruit a range of muscles, some with more specificity than others.  

Predicting the stimulus required to generate a specific waveform would allow a BMI 

device to selectively generate a wide variety of motor outputs. ANN’s are particularly well 

suited for modelling this type of non-linear relationship with a good degree of 

generalizability. This series of experiments was designed to test whether an ANN could 

learn to predict EMG features for a given set of stimulation parameters applied to the 

sciatic nerve in the rat hind limb (𝑛 = 8). Cuff electrodes were attached to the sciatic and 

tibial nerve. Stimulation protocols were delivered to each cuff using the PulsePal 2.0 

programmable stimulator varying the voltage and duration of the delivered pulse. These 

parameters were exhaustively combined to provide total coverage of the stimulation 

range. Motor response was measured using copper electrodes inserted into the muscle 

belly and via an ergometer attached to the Achilles tendon. EMG parameters were 

extracted from these signals and used to train an ANN. The EMG parameters of interest 

were SampEn, RMS, peak value and waveform length. Following training this ANN was 

then asked to predict the required stimulus pulse to generate a specific EMG waveform. 

When trained on the entire dataset the network successfully predicted the stimulation 

parameters required to generate a given dataset with an accuracy of 92%. To test the 

networks ability to generalize over the variability between different animals, the network 

was tasked with predicting the stimulation parameters for a subset (𝑛 = 1) of the dataset. 

In this case the network failed to correctly predict the pulse width, but still accurately 

predicts the pulse voltage. This may be due to a greater overlap in pulse width and 

resulting EMG parameters and that pulse voltage is the major determining factor in EMG 
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output. This algorithm provides a method for predicting and generating EMG waveforms 

without human supervision. This algorithm could be integrated into a BMI device to allow 

for targeted generation of EMG waveforms. 

4.2 Introduction 

There are well established methods for identifying the electrophysiological properties of 

a nerve, such as its activation threshold (Bostock et al., 1998). Most commonly these 

involve threshold-tracking wherein parameters such as the rheobase (minimum current 

amplitude required to produce a response using an infinite width pulse) or chronaxie (the 

pulse width which generates a response using exactly twice the rheobase amplitude) of 

a nerve are determined from strength-duration curves (Bostock, 1983; Mogyoros et al., 

1996). By using these tools a variety of conditions affecting stimulation parameters have 

been examined such as membrane potential, temperature or myelination (Brismar, 1981; 

Bostock, 1983; Bostock and Bergmans, 1994). These features allow prediction of motor 

output for a given stimulus.  

Similarly, there are models and experimental data available that allow for modelling of 

both single muscle fibres, motor units and whole EMG waveforms (Griep et al., 1978; 

Dimitrov and Dimitrova, 1998; Rodriguez-Falces et al., 2012). Whilst it is possible to 

generate detailed models of whole systems by combining these models into a larger 

simulation, this approach swiftly becomes extremely complex and specific to a given 

scenario. Adaptation to new scenarios is difficult and may require extensive amounts of 

new experimental work to validate. Machine learning algorithms are ideally suited to 

providing a degree of generalization to complex modelling problems, without having to 

generate a new model architecture by hand. 

Through further understanding of the electrophysiological properties of nerve and muscle 

fibres it is hoped that new treatments for spinal cord injury may be possible via stimulation 

of nerve fibres (Liberson et al., 1961; Moe and Post, 1962; Ho et al., 2014). Stimulation 

of interneuron pools in anaesthetised frogs, turtles and mudpuppies have demonstrated 

recruitment of complex movements or force vectors in multiple muscles (Saltiel et al., 

1998; Tresch et al., 2002). FES has also shown promise in encouraging recovery of 

neural pathways when combined with exercise in humans (Field-Fote, 2001; Kapadia et 

al., 2014). However, for a BMI device to restore motor control, further difficulties must be 

overcome. The BMI device must be capable of modelling the response of muscles 

separated by some distance, potentially across multiple branching points within a nerve. 



 
 
 

91 
 
 

Ideally this system would able to account for the variability between subjects and be 

flexible enough to transfer between different stimulus sites. This chapter demonstrates 

that some of these difficulties can be overcome using ANNs. The ANN developed and 

presented here successfully models EMG output resulting from electrical stimulation of 

the sciatic nerve in the rat hindlimb and produces accurate generalizable predictions of 

stimulus parameters.  

4.2.1 Current methods of tuning stimulation parameters lack specificity and are 

difficult to automate 

Electrical stimulation has been used therapeutically at every level of the nervous system; 

stimulation of the cortex for treatment resistant epilepsy or Parkinson's disease, surface 

level peripheral nerve stimulation for foot drop and at the level of the spinal cord to help 

rehabilitation following spinal cord injury (Field-Fote, 2001; Benabid, 2003; Kapadia et 

al., 2014; Daly and Huggins, 2015; Chang, 2018; York and Chakrabarty, 2019). In spite 

of this widespread usage a common limitation to all approaches is a high degree of 

variability between patients. This necessitates individual adjustments for each case or 

patient and the expertise of the operator performing this turning of stimulus parameters 

can significantly affect the effectiveness of the treatment. The choice of stimulation 

parameters is often adjusted ad-hoc as the stimulus/response relationship changes over 

time due to any number of factors, including injury recovery, electrode decay or at a 

shorter scale due to fatigue. The limitations in traditional methods are particularly 

problematic in the field of BMI devices where the requirements for fine tuning can be 

amplified, requiring adjustments every time the device is used. A more effective solution 

requires an automated method that can cope with the differences between subjects. In 

this regard the field of machine learning may hold the answer with novel application of 

ANNs.  

4.2.2 Machine learning algorithms are ideally suited to solving nonlinear problems 

with incomplete knowledge 

ANNs are modelled, at least in principle, to reflect similar principles of learning as 

observed in their biological equivalents. Several features of the ANN learning process 

make them well suited to the problem in hand. ANN’s learn through an iterative process 

of updates across thousands of connections between nodes of the network. The number 

of connections and nodes means that an ANN can model functions with a large number 
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of variables which allows them to model highly non-linear functions. The iterative update 

process provides a method for easily updating the ANN in relation to new data or to 

changes in the original conditions; the network is simply re-trained on the new data. 

ANNs are also “black-box” solutions, in other words they do not require significant pre-

existing models of the system in question, simply large quantities of related data. This 

comes with drawbacks, as it is not possible to understand precisely how the algorithm 

comes to a particular output. However, they also exhibit a startling ability to generalize 

from data they have observed to unknown circumstances. To summarize, ANNs provide 

a means of modelling non-linear, variable relationships with the capability to generalize 

across intersubject variability and to unknown conditions, provided the training dataset 

is of sufficient quantity and quality of data. Therefore, they may be able to overcome the 

difficulties previously described in modelling the transfer function between nerve 

stimulation and motor output.    

Other attempts have been made to use ANNs to control nerve stimulation. These 

methods have varied in how they define their input and how they measure output. Some 

algorithms use fixed stimulation patterns without the capacity to provide fine-tuned 

control (Lan et al., 1994). Many algorithms use kinematic signals instead of EMG 

waveforms as the input data (Riess and Abbas, 2000; Prentice et al., 2001; Hincapié et 

al., 2005; Hincapie and Kirsch, 2009). Others have examined stimulating a limited 

number of muscles (Giuffrida and Crago, 2005). In comparison to previous work the 

network shown here has focused on increased detail in control over stimulus parameters 

and using EMG signals recorded across multiple muscles. The granularity in selection of 

stimulus parameters should allow for greater specificity in recruitment of EMG 

waveforms.  

4.2.3 Experimental rationale 

The aim of this chapter was to establish if an ANN could model how stimulation of the 

sciatic nerve relates to activity in LG, MG, EHP, EDL and TA muscles. Recordings were 

made from 8 male Wistar rats following stimulation of the sciatic nerve, as well as tibial 

stimulation in a subset of 2 rats. It was expected that stimulation of the sciatic nerve 

would result in recruitment of all the recorded muscles. The addition of tibial nerve 

stimulation was to allow for selective recruitment of EHP, EDL and TA. Difficulties were 

faced in recording all muscles simultaneously and therefore it was not possible to 

demonstrate this selectivity comprehensively. Tibial stimulation was therefore not 
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analysed further within the ANN. The threshold response in the animal where tibial 

stimulation was successful is available in the Appendices where the difference in 

selectivity between stimulation sites is apparent.  

LG, MG, EHP, EDL and TA were selected for recording for two reasons. Firstly, these 

muscles share common innervation in the form of the sciatic nerve; but LG and MG, and 

EHP, EDL and TA are separated by a branching point in the sciatic where the sciatic 

becomes the tibial and peroneal nerves. The tibial goes on to innervate LG and MG 

whereas the peroneal nerve goes on to innervate EHP, EDL and TA (by later branching 

again into the deep fibular nerve which directly innervates EHP, EDL and TA). This gives 

a distribution of muscles to examine with varying distance from the stimulation site, which 

will highlight the networks ability to selectively recruit certain muscles. The second 

reason was due to the ease of surgical access, both to the muscles themselves and the 

innervating sciatic nerve.  

Stimulating the sciatic nerve limits the transfer function to the lowest level of the CNS. 

The peripheral nervous system provides a wide range of parameters the ANN must 

account for to achieve accurate stimulus prediction. These include the stimulation 

provided (which itself has the sub parameters of voltage, current, phase, length or width 

of pulse and pulse shape), the site of stimulation, the stimulating apparatus and changes 

in the output across the stimulation paradigm.  The stimulating apparatus was kept the 

same and concerted effort was made to keep the surgical set up consistent between 

animals. The stimulation paradigm was designed to cover both minimal i.e. no response 

and maximal response within the resolution of the PulsePal device. The saturation point 

for the muscles under examination was determined through exploratory stimulation 

through which it was determined that saturation occurs at approximately 2V and 2000µs, 

so this was determined to be the maximum values for the stimulation paradigm.   

To ensure that the response to a set stimulus was the same across the experiment, the 

response to a fixed test pulse (200 µs - 5000mV) was recorded throughout the 

stimulation paradigm. If the response to the test pulse changed this could be accounted 

for by normalizing to the calibration curve generated. The effect of muscle length on the 

response was also accounted for by determining the maximal response to stimulation 

across a range of muscle lengths. Correcting and accounting for these factors should 

mean that the only difference between EMG waveforms is due to differences between 

animals, and due to the stimulation parameters. Therefore, this dataset will test the 
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ANN’s ability to model these stimulation parameters as well as its ability to generalize 

the variability of each animal’s response. 

Parameters describing the EMG waveforms shape were the input to the ANN. These 

parameters need to describe the waveform well enough that they distinguish two different 

waveforms as being different. For sufficient specificity between waveforms four 

parameters were chosen for extraction and training; max amplitude, waveform length, 

RMS and SampEn. These measures have previously been demonstrated to provide a 

high degree of accuracy in classification of EMG waveforms (Phinyomark et al., 2013). 

Therefore, these parameters should provide sufficient detail for the ANN to distinguish 

between different waveforms across the dataset.   

The accuracy of the network’s prediction of stimulation parameters was examined using 

the entire dataset of 8 animals. The accuracy of the network is simply measuring how 

often the network’s prediction matches the true value for the entire dataset. This was 

then compared to its performance predicting an unseen animal, which was achieved by 

retraining the network on the same dataset with one animal removed. The network was 

then asked to make predictions on the removed animals EMG output. The results of this 

prediction suggest that ANNs are capable of modelling a generalizable transfer function 

for electrical stimulation of the sciatic nerve that accounts for factors such as inter-animal 

variability, non-linear and differential threshold responses.  
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4.3 Results 

During the stimulation experiments 5 muscles were recorded from (MG, LG, EDL, EHP 

and TA) during stimulation, however TA was discarded from the training dataset as none 

of the recordings were deemed of sufficiently SNR. Difficulties were faced in achieving 

high quality recordings from each muscle in every animal, and in achieving high SNR 

EMG and ergometer recordings at the same time. EMG recordings tended to be best for 

pairs of muscles, EDL and EHP and MG and LG. These problems can be put down to 

the long time period required for the surgical set-up and the stimulation paradigm 

(>3hours). This precluded multiple recording attempts from one animal as it placed 

animal welfare at risk. This time pressure was amplified in the cases of tibial stimulation 

as the time required for stimulation was significantly increased (one recording session 

required 7.5 hours). Therefore, it was decided to focus on sciatic stimulation for the 

remaining animals as a trade-off between the time required and to maximise the 

opportunity to record high SNR recordings of the muscles under investigation.  

A representative set of EMG signals from each muscle and the ergometer reading in 

response to the test signal (200 µs – 5000mV) is available in the appendices. The 

response to threshold (T), subthreshold (0.5T) and suprathreshold (2T) stimulation is 

shown in Figure 4-A. It should be noted that these responses were not recorded 

separately, they are part of the normal stimulation paradigm, and are therefore included 

in the ANN training dataset. Successful training would indicate that the ANN has learnt 

in some way how the nerve responds to different stimulus in relation to these threshold 

values.  

4.3.1 Calibration for muscle length and changes across the stimulation paradigm 

Calibration curves were calculated so that the EMG parameters could be corrected for. 

changes across the simulation paradigm by normalizing to the value of this curve across 

the dataset. The calibration curves were calculated from the test pulses delivered at 

every 100th stimulation point. As can be seen in Figure 4-B these calibration curves are 

different for each muscle. LG appears to decrease in max amplitude, RMS and SampEn. 

The SampEn of MG also appears to have a “hump” in its response, peaking during the 

middle of the stimulation protocol. Calibration curves were also calculated for changes 

in the length of the muscle. This value was determined experimentally in one animal (rat 

1) by repeated stimulation with the test pulse at a range of muscle lengths. The 
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responses to stimulation at different muscle lengths are shown in Figure 4-C, and the 

optimal length was found to be 33.5mm.  

4.3.2 EMG parameters response to stimulation is a complex non-linear 

relationship 

The mean values for each EMG parameter across the total stimulation paradigm can be 

seen in Figure 4-D. The relationship between stimulation width and voltage is unclear 

from these values. The relationship is different for voltage and width, and for each 

muscle. There appears to be linear phase in the response to increasing voltage in most 

muscles. This linear phase is most clear in the max amplitude of EHP which follows a 

clear increase in max amplitude as the voltage of the stimulation pulse increases. The 

max amplitude of the other muscles reaches saturation point at much lower voltages, in 

particular LG and MG have a very sharp rise to saturation, whereupon the increase in 

voltage only results in a small increase in max amplitude. EDL is a mixture of the two 

with an almost sigmoidal response in max amplitude, quickly reaching a saturation point 

at a given threshold. The effect of width on max amplitude appears minimal which can 

be seen as each “triangle” of responses in max amplitude are very similar. RMS appears 

to share features with the max amplitude, as would be expected mathematically. EDL 

and EHP show a linear increase in RMS response to increased voltage whereas pulse 

width does not appear to have a significant effect on RMS.  LG and MG appear to reach 

the same saturation in RMS response as observed in max amplitude. Initially width 

appears to have no effect, but at approximately 900 µs RMS drops significantly before 

beginning to rise again with increase in voltage and width. This same change is observed 

in the waveform length of the signal for MG and LG. The waveform length of EDL and 

EHP shows a more linear response than the other parameters and it is unclear if 

saturation occurs for this parameter within the stimulation range tested. The SampEn for 

each parameter appears to follow an inversion of the previous patterns, as SampEn 

decreases with increasing voltage. Furthermore, the same change in response at 900 

µs is observed for LG and MG. Each parameter investigated and each muscle appears 

to demonstrate linearity in its response at certain points in the stimulation paradigm. 

However, the response of the dataset as a whole is non-linear due to the presence of 

saturation points and the variability in the responses of individual muscles.  
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Figure 4-A: Representative examples of sub threshold, threshold and supra-

threshold signals. Signals are representative pairs selected from rat 2 (LG and MG) 

and 4 (EDL and EHP). Recordings were taken from EDL, EHP, LG and MG via 

copper wire inserted into the muscle belly. Where an inset trace is provided it is the 

activity of interest of the muscle pair between the points indicated by the black arrows, 

increased to a scale for easier visual analysis. Threshold is defined as the shortest, 

smallest pulse that elicited a response; in this case the threshold was 100 µs – 600mV 

for EDL and EHP and 100 µs – 400mV for LG and MG. Sub threshold signals are 

stimulus pulses that failed to elicit a response, the pulse shown here is 100 µs – 

300mV and 100 µs – 200mV respectively, or half the threshold value. Supra-

threshold values are signals that are above threshold and are presumed to be near 

the saturation point in their response. This is represented here with a stimulus pulse 

twice the voltage of the threshold response, 100 µs – 1200mV. 



 
 
 

98 
 
 

  

 

   
F

ig
u

re
 

4
-B

: 
C

h
a
n

g
e

 
in

 

re
s

p
o

n
s

e
 t

o
 t

e
s
t 

p
u

ls
e
s
 f

o
r 

e
a
c

h
 

m
u

s
c
le

 
a

c
ro

s
s

 
th

e
 

s
ti

m
u

la
ti

o
n

 
p

a
ra

d
ig

m
. 

 

F
o
u

r 
p

a
ra

m
e

te
rs

 w
e

re
 u

s
e

d
 

to
 

tr
a

in
 

a
n
 

a
rt

if
ic

ia
l 

n
e
u

ra
l 

n
e
tw

o
rk

 
to

 
p

re
d
ic

t 
h

o
w

 

s
ti
m

u
la

ti
o
n

 
re

s
u
lt
s
 

in
 

E
M

G
 

w
a

v
e
fo

rm
s
, 

m
a

x
 
a
m

p
lit

u
d
e

, 

ro
o
t 

m
e

a
n

 
s
q

u
a
re

 
(R

M
S

),
 

w
a

v
e
fo

rm
 le

n
g

th
 a

n
d

 s
a
m

p
le

 

e
n
tr

o
p
y
. 

T
o
 

c
o
rr

e
c
t 

fo
r 

c
h

a
n

g
e

s
 

th
a

t 
o

c
c
u
rr

e
d
 

a
c
ro

s
s
 

th
e
 

s
ti
m

u
la

ti
o
n
 

p
a
ra

d
ig

m
 
a
 
te

s
t 

p
u
ls

e
 
w

a
s
 

d
e
liv

e
re

d
 

a
t 

th
e
 

s
ta

rt
 

a
n
d

 

e
n
d

 
o

f 
th

e
 

p
a
ra

d
ig

m
 

a
n
d

 

e
v
e
ry

 1
0
0
 p

u
ls

e
s
 d

e
liv

e
re

d
. 

T
h
e

 
te

s
t 

p
u
ls

e
 

d
e
liv

e
re

d
 

c
o

n
s
is

te
d
 

o
f 

a
 

b
a

la
n
c
e

d
 

b
ip

h
a

s
ic

 
s
q

u
a

re
 
w

a
v
e
 
(2

0
0

 

µ
s
 
- 

5
0
0
0
m

V
).

 
C

h
a
n
g
e
s
 
in

 

re
s
p
o

n
s
e

 
to

 
th

e
 

te
s
t 

p
u

ls
e

 

c
a

n
 

b
e
 

c
a

lc
u

la
te

d
 

a
n
d

 

c
o

rr
e

c
te

d
 f

o
r 

d
u
ri
n

g
 t

ra
in

in
g
 

b
y
 

n
o
rm

a
liz

in
g
 

to
 

th
is

 

c
o

rr
e

c
ti
o

n
 c

u
rv

e
. 
 

 



 
 
 

99 
 
 

   

Figure 4-C: Calibration curve for changes in output due to muscle length. 

Ergometer response was calibrated to the length which produced the maximum 

response to a test pulse of (200 µs - 5000mV). The ergometer measured gross motor 

output due to stimulation via a metal ring attached to the Achilles tendon. Test pulses 

were delivered, and the output of the ergometer was measured between 30.5mm and 

35mm measured using microdrive values on the stereotaxic apparatus that the animal 

was placed in.  
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4.3.2 Network training successfully predicted EMG parameters in known and 

unknown conditions  

The network training results for the entire dataset (𝑛 = 8ሻ are shown in Figure 4-E and 

can be observed to reach a local minimum without overfitting. Predictions of the network 

based on the training data set are shown in Figure 4-H. The accuracy for this network 

when trained on 8 animals and 75% of the data is 92% for the test dataset and 93% for 

the validation data set. This demonstrates that the network has accurately modelled the 

relationship between stimulation parameters and EMG parameters. When the network 

was trained on 7 animals and given an unknown animal to predict training accuracy 

reaches 82% for the test date set and 78% for the validation data set. The training curve 

for this subset is shown in Figure 4-F. The results from the prediction on an unknown 

animal are shown in Figure 4-H from which it can be observed that the voltage prediction 

is again extremely accurate whereas the width prediction has become inaccurate. To 

further examine why the width prediction is inaccurate the summed variance of EMG 

parameters was compared across pulses with equal voltage and with equal. Pulses with 

equal voltage had a summed variance of 12.17 and pulses with equal width had a 

summed variance of 7.2. The difference in summed variance indicates that pulses with 

equal voltage were more similar to each other than pulses with equal voltage.  
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Figure 4-E:  Artificial neural network performance across training epochs on a 

complete dataset. Dataset consists of stimulation parameters and resulting EMG 

parameters in the rat hindlimb (n = 8). Loss is measured using the binary cross-entropy 

between the target value and network output. To detect overfitting network 

performance is measured using two datasets, the train dataset which consists of data 

the network has been trained on, and test which is data the network has not previously 

seen (black, red, split of 0.75/0.25 between train and test datasets). Overfitting occurs 

when the performance on train and test differs substantially or when test ceases to 

improve. In this graph overfitting starts to be detected at approximately the 3000th 

epoch but performance continues to increase on both datasets until the end of training.  
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Figure 4-F:  Artificial neural network performance across training epochs on an 

incomplete dataset. Dataset consists of a subset of stimulation parameters and 

resulting EMG parameters in the rat hindlimb (n = 7). One rat was removed from the 

dataset to allow prediction of a completely unseen set of EMG recordings. Loss is 

measured using the binary cross-entropy between the target value and network output. 

To detect overfitting network performance is measured using two datasets, the train 

dataset which consists of data the network has been trained on, and test which is data 

the network has not previously seen (black, red, split of 0.75/0.25 between train and 

test datasets). Overfitting occurs when the performance on train and test differs 

substantially or when test ceases to improve. In this case overfitting is apparent early 

in training due to the gap between train and test curves. Both curves continue to 

improve across training. The gap suggests that the train dataset has insufficient 

training data to fully learn the features in the test data.  
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4.4 Discussion 

The success of the network in predicting the results of stimulation of the peripheral nerve 

demonstrates that an ANN can learn a representation of a generalized transfer function 

between electrical stimulation and motor output. This is in spite of the clear non-linearity 

and variability present in the recorded EMG parameters across muscles and animals. 

This performance is capable of impressive results both in the “known” representation 

and when tasked with predicting unseen data. This method provides 

several improvements over current methods for stimulation control, such as pre-defined 

stimulation thresholds or threshold tracking, as it provides precise control over the EMG 

waveforms generated in an automated fashion. Compared to control by a predefined 

stimulus paradigm this method has greater generalizability and can fit into an entirely 

online process with very little adjustment. Furthermore, compared to a method using 

predefined parameters, this method has greater specificity and adaptability as it allows 

fine tuning of stimulation parameters as conditions change.  

In the unknown condition the network is still capable of predicting the voltage of the 

stimulation pulse, but accuracy drops sharply on width prediction. This drop-in 

performance could simply be due to insufficient data as the dataset used for these 

experiments was already very small by traditional machine learning standards (datasets 

for complex language processing tasks can easily number in the millions and even 

billions). However, this could also reflect a greater importance for pulse voltage in 

determining EMG output in this circumstance. This is reflected in the lower summed 

variance of EMG parameters with equal pulse width compared to equal pulse voltage. 

This would suggest an overlap between EMG waveforms with equal pulse width. In 

combination with other points among these findings this suggests that the network has 

truly learnt a transfer function capable of generalizing between different conditions and 

subjects, as opposed to a more specific overfitted function.  
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4.4.1 EMG parameters demonstrate non-linearity across muscles 

There has been extensive work done in the peripheral nervous system examining the 

motor response to electrical stimuli. (Fang and Mortimer, 1991; Singh et al., 2000; 

Lertmanorat and Durand, 2004; Sauermann et al., 2007; Raikova et al., 2016). However, 

the nervous system defies systematic treatment of the problem. The values shown in 

Figure 4-D demonstrate some of the problems faced by any motor BMI in the variable 

response of muscles to stimulation. Consider the differences in maximum amplitude 

between the pairs of muscles LG and MG and EDL and EHP.  As expected, LG and MG 

closely mirror each other and as seen in table 2-B it was not possible to selectively recruit 

LG or MG, likely due to limitations in the resolution of the PulsePal stimulator. LG and 

MG show a high degree of sensitivity to stimulation at the point chosen and they saturate 

quickly as voltage increased. However, at a certain point (approximately starting at pulse 

widths greater than 900µs) this saturation point drops in RMS, waveform length and 

SampEN but not the max amplitude. This pattern is not apparent in EDL and EHP, but 

as can be seen in the max amplitude of these muscles, as well as in Table 2-B and the 

appendix figures, it was just possible to selectively recruit EHP before EDL within the 

resolution of the PulsePal stimulator. Indeed, EHP is the only muscle examined that did 

not consistently reach a saturation point in all animals, with clear triangular shape to its 

stimulus/response curve in maximum amplitude that is still increasing in response to the 

test pulses (200 µs – 5000mV). In comparison its partner EDL does appear to saturate 

in amplitude, demonstrates a greater RMS than EHP but then is a mirror image of it in 

terms of its waveform length. Finally, these patterns are inverted when examining the 

SampEn of each muscle. What can be ascertained from all of this variability in response? 

There is a linear section to the response of each parameter, but this section does not 

cover the entirety of the response in any muscle, except EHP’s max amplitude. This is 

compounded by the variable response for each muscle, which means that when the 

dataset is considered as a whole the responses are highly non-linear. A traditional model 

may be able to account for some of these non-linearities, but machine learning has 

distinct advantages when modelling non-linear functions. 
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4.4.2 An ANN learnt a generalized transfer function for electrical stimulus in the 

peripheral nervous system and resultant EMG activity  

The performance of the network on the full dataset of animals is remarkably good, 

demonstrating a nearly perfect prediction of voltage and width across the stimulation 

range, as seen in Figure 4-G. Width prediction falls in accuracy at the start and end of 

stimulation, whereas voltage predictions are almost universally accurate, with the 

exception of the test pulses of which only 4 examples are present in every dataset. If test 

pulses are removed as outliers voltage prediction is almost perfect. The ANN developed 

here is provides as a method for fine-tuned control of stimulation parameters with motor 

output as a target, a claim that will be demonstrated in later chapters. However, limiting 

the discussion to the results so far, the performance of the network must be further 

scrutinized to ensure it has utility beyond the specific circumstances described here.   

In any machine learning task, it is important to ensure that the fit of the model is correct. 

Underfitting is easy to detect, the network’s performance is simply deemed to be poor 

for whatever purpose it is required for. Overfitting is more difficult to define. An overfitted 

network may produce excellent predictions on the data it is trained on but then give 

nonsense answers when exposed to even slightly different data. This is a failure of the 

network to generalize in a way that largely invalidates its usefulness. A model is only 

usually useful if it can predict things about data that is unseen, as by definition this shows 

something new.  Partitioning of datasets is one way to demonstrate that a network has 

not overfitted. In all cases during this study the dataset was split into training and test 

datasets at a 3:1 ratio. If the performance differs significantly between training and test 

datasets this can be an indicator that the network has overfitted. As seen in Figure 4-E 

the difference between test and training datasets has only begun to diverge at 6000 

training epochs, and both training curves were continuing to improve gradually at this 

stage. On its own this would suggest that the network has learnt to generalize across the 

values it has observed. However, the performance on an unknown animal is even more 

promising in this regard. While partitioning of test and training datasets does remove 

some of the information from the model, it is likely that the overall “shape” of the 

relationship is maintained for each animal. As can be seen in Figure 4-F removing an 

animal from the dataset has introduced a certain degree of overfitting but this is still within 

acceptable levels.  

The 82% test accuracy and 78% validation accuracy for an entirely unknown animal 

suggests that the generalizability of the relationship learnt is sufficient to be of predictive 
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use in new subjects. As can be seen in Figure 4-H the network is still able to successfully 

predict stimulus voltage, but not width. The “prioritization” of the voltage of the pulse is 

the same feature that a human would identify as important when attempting to model 

this relationship. This insight into the working of the model gives greater confidence to 

its predictive capabilities if it were given a dataset of a size more usual for machine 

learning tasks. Whilst it is a truism in machine learning that performance increases as 

dataset size increases, here it seems especially true that even a modest increase could 

provide useful improvements.  

4.5 Conclusion 

The network design shown here was intended to control the output portion of a BMI 

device for stimulating various areas of the CNS. To achieve this the network needed to 

learn a transfer function between stimulation at one point and motor output measured at 

another. The network was trained to predict the EMG parameters resulting from different 

pulse voltages and widths delivered to the sciatic nerve in the rat hindlimb. This 

prediction was made with a high degree of accuracy in the complete dataset. In the 

subset of the dataset network performance dropped but was still capable of accurately 

predicting the voltage parameter. The networks performance on an unseen animal 

suggests that the network can generalize its results from one environment to another. 

This idea will be further explored in the following chapter using an in silico simulation.  

• Stimulation of the rat sciatic nerve produces a complex non-linear response in 

muscles of the rat hindlimb 

• An ANN was able to learn the stimulus/response relationship for stimulation of 

the sciatic nerve 

• The ANN was able to transfer learning from the group of animals it was trained 

on to an unseen animal, indicating successful generalization of the transfer 

function 

• These results suggest that ANNs may be capable of learning a generalized 

transfer function for stimulus/response of a nerve. This presents great opportunity 

for more flexible and adaptable devices capable of treating a wider range of injury 

types.  
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Chapter 5: Closed-loop reconstruction of healthy muscle synergies using 

a population model of cortical and peripheral injuries 

5.1 Abstract 

Experiments investigating the effects of damage to the nervous system face technical 

and ethical difficulties.  Using the MIIND network, demonstrated in Chapter 2.6, in this 

chapter, an in silico model of acute peripheral and cortical damage to the nervous system 

is presented. The synergies extracted from these injured networks demonstrate the 

same hallmarks of synergy “injury” that are typically observed in injured human subjects; 

fractionation and merging of existing synergy profiles. Having shown that the injury model 

reflects real world conditions it was then asked if the algorithms previously described in 

Chapters 3 and 4 could restore healthy synergy recruitment as had been suggested.  The 

same ANN architecture that was used to learn a transfer function in the peripheral 

nervous system was similarly trained on data from the simulated model. Stimulation was 

provided at different points depending on the injury type. In cortical injury models only 

the damaged interneuron pool was stimulated, whereas for the peripheral injury models 

the motor neurons were also directly stimulated. Motor response was measured using 

motor neuron output as a correlate for EMG signals. In this case network training was 

able to converge to an accuracy of 98% as simulated datasets can be made arbitrarily 

large by repeated runs of the model. Following this training the network was asked to 

predict the EMG output that would result from healthy synergies. This prediction was 

then input into the simulated network and the response observed. In the case of cortical 

injury, the network was successfully able to restore healthy synergy recruitment profiles. 

This performance was not replicated for the peripheral injury, with the network being 

unable to restore healthy synergies in the absence of afferent feedback. This may be a 

failure of the ANN to address the increased complexity of the MIIND network or it may 

be further evidence for a special role of afferent signals in synergy recruitment as 

indicated in Chapter 3. This set of simulations and experiments demonstrate the 

combined utility of this thesis’s work as the flexible basis of a BMI device for the treatment 

of nerve injury in a variety of conditions.                    

5.2 Introduction 

When investigating damage to the nervous system, whether it be spinal cord injury or a 

peripheral injury, often the choice is limited to either human subjects or an animal model. 

A simulated model of various injury types would be a useful alternative to biological 
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models. Simulations have increased flexibility and ease of use compared to biological 

models and are better able to focus on specific areas of interest in greater detail. For 

example, in a model it is possible to examine very specific removal of certain pathways 

or tracts. In comparison to an impact injury model it is impossible to know with 100% 

certainty which pathways are affected by an injury and to what extent. The main 

advantage of models, such as the MIIND network used here, is that the precise extent, 

mechanics and behaviour of the model are all completely transparent and observable.  

For testing and development of a BMI device it is imperative that there is certainty in the 

model used as this allows precise testing of the device’s capabilities, rather than its 

success or failure being reliant on a more or less complete injury condition.  

There are also ethical and practical advantages to a simulated model compared to an 

animal model or human subject. Human subjects are difficult to recruit and present 

unique difficulties for experimental work often requiring specialized facilities. Animal 

models also require special care, especially in the case of upper spinal cord injury, 

requiring bladder expression and extensive follow up care. None of these limitations are 

to suggest that these models have no use, but in the case of the experimental algorithms 

developed during this thesis a simulated method is preferable. 

The aim of this chapter was to develop and test the combination of the algorithms 

described in Chapters 3 and 4 as a simulated BMI device. This required a simulated 

model of damage to the nervous system that reflected changes to synergy recruitment 

observed previously in human subjects. The same MIIND model previously described in 

Chapter 2.6 was altered to replicate changes observed in synergy recruitment as 

reported within the literature. Together these results demonstrate closed loop re-

construction of healthy synergies in an in silico model. This provides the basis for a BMI 

device that could provide benefit in a variety of implementations.   

5.2.1 Synergy recruitment changes in set ways following injury 

The changes in synergy recruitment post-injury due to trauma or stroke can be broadly 

grouped into three categories; fractionation, merging and emergence of novel synergy 

patterns. As synergy recruitment is the target motor output for our device it is important 

that the injury model recreates changes observed in human subjects. These alterations 

have been largely examined in stroke patients as it is hypothesized that the networks 

responsible for recruiting synergies will be largely intact. These studies have found that 

existing synergy profiles are altered in two ways that may reflect the extent of the injury, 
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or the time since the injury occurred (Cheung et al., 2012; Pan et al., 2018). Merging of 

synergies occurs in the most severe injuries wherein the previous set of healthy 

synergies are apparently combined. The degree of merging that occurs correlates with 

injury severity, with the most severely injured patients demonstrating the greatest degree 

of merging. The other alteration is known as fractionation. Fractionation represents an 

increase in synergy dimensions compared to healthy conditions. This is typically 

observed in patients in the latter stages of recovery and may be reflective of adaptive 

processes compensating for the injury. We may also consider the possibility of the 

emergence of entirely new synergies. Novel synergy recruitment has not been previously 

observed in humans following injury. If this is observed in the simulation it may reflect an 

artefact of the stimulation, or it may be because recordings are not usually made in 

patients immediately post-injury. As our network reflects an extreme acute case (with no 

recovery) it may be that more extreme changes are present in completely or recently 

disconnected networks.  

5.2.2 True closed loop control requires integrating analysis of motor output with 

the provided stimulation 

Many BMI devices seek to implement closed loop control. This is usually defined as a 

system or device wherein the response produced by the device goes on to affect the way 

that input is then provided to produce the next output. Most devices in the field rely on 

sensory feedback to close the loop via visual feedback. For true closed loop control error 

correction should come directly from the output produced rather than assume the error 

can be accounted for by the animal. In the example of Nishimura et al spinal stimulation 

was provided to a set of flexor and extensor neurons in the monkey hindlimb to facilitate 

walking (Nishimura et al., 2013). Error control is handled by the monkey visually 

observing the produced movement. The simplicity of the neural encoding meant that 

stimulation parameters did not have to be altered throughout the gait cycle and this was 

sufficient to achieve unaided locomotion. In the healthy animal, feedback is provided at 

the level of the spinal cord, at the point of “stimulation”, and certain types of afferent 

feedback e.g. proprioception, fatigue, muscle load, should be available as the movement 

is determined.  

A BMI that incorporated the accounts for errors in the output might be capable of more 

complex movements or for error correction to occur during a movement. This BMI would 

much more closely mirror the way in which movements are produced during normal 
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conditions. The error correction used in the device developed in this chapter moves 

closer to this form of closed loop control by modelling output in terms of muscle 

synergies. In this case adjustments were not made during the movement, but by placing 

synergy restoration as the target output we account for the actual effect of stimulation. 

In principle, the BMI described here is more capable of adapting to changes or errors 

that would be present in a biological model.  

5.3 Results 

The stimulated network for control of the knee used in Chapter 3 was used as an injury 

model by reducing or removing connections. The injury types that were broadly modelled 

consisted of removing cortical drive (modelling stroke or incomplete spinal injury at a 

rostral point) and the removal of afferent feedback (modelling a peripheral injury). The 

location of these injuries within the network are shown in Figure 2-B. Injury type was 

further split into targeting of the flexor or extensor interneurons as well as a bilateral injury 

affecting both pools. The results of these injuries were examined using the synergy 

extraction algorithm also described in Chapter 3. The ANN described in Chapter 4 was 

then trained to stimulate and predict the resulting motor neuron output in a similar fashion 

to how it was used to predict EMG output. Finally, the predictions from this network were 

used to calculate the required stimulation to recreate healthy synergies. This stage was 

only performed in the extensor injury condition as in principal the ANN’s performance 

should not differ between these conditions.  

5.3.1 The injury model recreates changes to synergy recruitment in the same way 

as observed in humans 

In the injury model the synergies extracted from the 8 different unilateral injury types 

were compared to the healthy model. These are shown in Figure 5-A for extensor injuries 

and Figure 5-B for flexor injuries. The effect of afferent feedback was also examined 

using the levels corresponding to 0 and 90 degrees as established in Chapter 3.  

The rank factor for each condition was selected to account for >95% of the variance in 

the original data set. This resulted in different numbers of synergies across conditions. 

In the partial injury conditions one synergy was sufficient to account for the majority of 

variance, whereas in the total injury conditions two synergies were required as seen in 

5-A and 5-B. The results for bilateral injuries are shown in Figure 5-C. As is expected a 

complete cortical injury abolishes synergy recruitment as motor neuron firing does not 
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rise above background levels, but nominally this results in just one synergy being 

“recruited”. In the bilateral peripheral injury, synergy recruitment is reduced to a single 

rank reflecting balanced recruitment of all muscles. 

The composition of the synergies recruited also differs from healthy synergies. 

Interestingly the effect of afferent feedback is reduced across all conditions, 

unsurprisingly in the case of total peripheral injuries where it was removed, but also in 

cortical conditions where it was untouched. Across all injury conditions, partial injury 

results in a merging of synergies resulting in a single balanced recruitment of all muscles. 

The total injury conditions exhibit more drastic changes, and greater differences between 

flexor and extensor injuries. As seen in Figure 5-A, extensor injury in both cortical and 

peripheral conditions result in fractionated synergies. Synergy 1 appears to be a biased 

recruitment of the quadriceps muscles, whereas synergy 2 appears intact at first but has 

lost RF bias and recruitment of ST and BF are at levels closer to synergy 1. Taken 

together this suggests that this synergy pattern is actually a fractionation of healthy 

synergy 1 along the lines of flexor/extensor lines. Figure 5-B shows that the flexor injury 

conditions demonstrate more drastic departure from healthy synergies with the 

appearance of entirely novel recruitment patterns. Synergy 1 is common to both cortical 

and peripheral injuries and seems to be biased towards RF, ST and BF, with minor 

recruitment of VL and VM. In the cortical injury synergy 2 recruitment is entirely biased 

towards the quadriceps muscle grouping. In the peripheral injury there is also biasing 

towards the quadriceps muscles but curiously recruitment of RF is entirely absent. 

For the most part the activation coefficients of the altered synergies are largely 

preserved. Merged synergies are recruited mirroring the contraction period with no major 

departure. In those conditions with two synergies recruited these recruitment curves are 

more directly opposed to one another, with a steeper negative relationship in their 

recruitment profiles.  
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5.3.2 An ANN trained in the rat peripheral nervous system was able to learn a 

transfer function for an in silico model of a complex interneuron network  

Due to the simulated nature of the modelling process an arbitrarily large dataset could 

be generated for training purposes. For this dataset conditions were replicated 1000 

times for each condition as this was determined experimentally to be large enough to 

remove dataset size as a determining factor in network performance. The network 

architecture was left largely unchanged from its presentation in Chapter 4. The only 

changes made were an increase from 20 to 25 EMG parameters, to account for the 

change from 4 to 5 muscles, and stimulation was represented by a single “charge 

injection” value which represents the combined effect of pulse width and voltage. 

Network training results for each injury show that each network reaches a local minimum 

without overfitting. The network accuracy results when the networks were trained on 75% 

of the data were all greater than 95% for both the test and validation data set.  

5.3.3 NMF reconstruction of healthy synergy recruitment was successful in a 

subset of injury types 

Following training, the network was asked to predict the stimulation required to generate 

healthy synergies in the cortical and peripheral injury conditions for extensor injuries. The 

effects of unilateral injury and the resulting reconstruction compared to healthy synergies 

are shown in Figure 5-D. For cortical injuries healthy synergies were restored by 

stimulation of the interneuron pools. In peripheral injuries healthy synergies were not 

restored, instead the previously observed bias was switched to favour the extensor 

muscle group. The effect of stimulation on bilateral injuries is shown in Figure 5-E. Again, 

the cortical injury model was successfully restored to normal synergy recruitment and 

peripheral injury was not. Stimulation resulted in recruitment of a novel secondary 

synergy.  
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5.4 Discussion 

In this chapter an in silico model of different injuries to the nervous that reflects changes 

in muscle synergy recruitment observed in stroke patients was investigated. The ANN 

designed for the peripheral nervous system can flexibly be transferred to a model of the 

spinal cord, despite the associated increase in network complexity. Finally, in 

combination with online synergy analysis, these systems are capable of restoration of 

healthy synergy recruitment in certain injury types but not others. This finding further 

proves the importance of afferent feedback for normal synergy recruitment. The success 

of the BMI algorithms demonstrated here are built on the previous findings of this thesis. 

These successes improve on the state of the art by moving closer to “true” closed loop 

motor control and the flexibility inherent to machine learning approaches allows for fine-

tuned control over stimulation.  

5.4.1 The MIIND neuronal model can accurately simulate the effects of nervous 

system injury 

The injury types modelled here were selected to broadly reflect injuries affecting 

interneurons recruiting extensor and flexor muscles. The model was a simple adjustment 

to the same MIIND network that had previously helped elucidate the role of afferent 

feedback in recruitment of muscle synergies during an isometric task. This architecture 

was selected for three reasons. Firstly, this particular group of muscles has been used 

as a model of synergistic recruitment as far back as Sherrington (Sherrington, 1910; 

Duysens et al., 2013). Secondly the lower limb has been frequently neglected in the field 

of BMI, despite its importance for a variety of tasks in normal life. Finally, a network 

demonstrated in the upper leg may well work well in the lower leg as well and therefore 

translate well to improvements aimed at treatment of foot drop, a relatively accessible 

disease case for trial of experimental devices.  

As mentioned MIIND has been used previously, including in this thesis, for modelling of 

neuronal networks. However, the results shown here demonstrates an increased utility 

in its ability to model injured networks equally well. Removing or reducing connections 

between pools is a simplification of real-world injuries but despite this, complex and 

realistic alterations result. This work naturally suggests further additions to the model 

could be made, including introducing recovery and more dynamic Hebbian style 

connection pruning.  



 
 
 

122 
 
 

5.4.2 The ANN learns a general transfer function that is transferable from animal 

data to human data 

The success of the network is more impressive considering it was originally designed to 

work in rodents, controlling a different set of muscles. This speaks further to the 

generalizability of the ANN architecture described. It indicates that the system is capable 

of adaptively learning representations between stimulation and motor output in a more 

general sense. This presents opportunities for further investigation, both within the in 

silico model and in other biological models.   

5.4.3 Closed loop BMI control can restore healthy muscle synergies in some 

injury states 

Stimulation at the level of the spinal cord has the major advantage of removing 

“unnatural” connections from a BMI device. In theory this allows for recruitment of intact 

networks the body uses for motor coordination. Compared with stimulation in the 

periphery, spinal stimulation often results in a diffuse response and it is difficult to recruit 

a single desired muscle. This is partly the desired response, as this diffuse response is 

due to recruitment of whole networks of neurons. However, it also comes with the 

disadvantage of decreasing specificity. Recruiting a specific neuronal network, or sub 

network, to produce a desired movement requires more specific stimulation to avoid 

widespread recruitment of unnecessary muscles.  The specificity problem increases the 

further the source of the neural activity used is separated from the point of stimulation. A 

device stimulating the cortex directly would require an extremely complex and precise 

stimulation device coupled with a hitherto unprecedented understanding of the cortical 

networks (at this stage, it would in principle be possible to model the working of the cortex 

entirely within a computer, suggesting a level of understanding that remains firmly 

science fiction). The experiments previously described in Chapter 4 describe stimulation 

of the peripheral nervous system. This may be seen as the simplest condition to solve 

but, as seen in the variable responses of the hindlimb muscles, stimulation swiftly 

spreads to a variety of endpoints. In the cortical injury the system successfully restores 

healthy synergy recruitment. This is despite the additional layer of separation posed by 

the interneuron layer and the balancing required for the excitatory and inhibitory 

connections. This suggests that the specificity problem may be tractable for machine 

learning methods in a biological scenario. 
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The failure to restore healthy synergies in the peripheral injury condition is more 

enlightening than it may at first appear. In combination with the modelling work performed 

in Chapter 3 it is clear that afferent feedback is a vital component for healthy synergy 

recruitment. The stimulation sites in this chapter were purely excitatory and were limited 

to either the interneuron pools solely or in combination with direct stimulation of the motor 

neurons. It is interesting that even with direct, perfect access to motor neuron firing, the 

network was unable to replicate the fine balancing between agonist/antagonist. It is not 

the case that the network has failed at an impossible task, due to the nature of the MIIND 

simulation there is a theoretical value of stimulation that would replicate the synergies 

observed in the healthy state. That the network is unable to find this value in one 

condition, yet succeeds perfectly in another, is indicative of a change in complexity 

between these conditions. If the stimulation paradigm had included access to afferent 

nodes then perhaps the model would have successfully restored synergies in the 

peripheral injury as well. These nodes were not included within the accessible sites as it 

is difficult in vivo to easily differentiate afferent nerves with sufficient specificity but this 

represents a promising avenue for further investigation. 

5.4.4 Model limitations 

The results of this model simulation must be carefully considered with the assumptions 

and limitations present in the model as well as the way in which stimulation was targeted 

within it. Due to the way that stimulation is provided in the model, the simulation is 

capable of perfectly mimicking natural signals, which is not true in vivo. Electrical 

stimulation has limitations that prevent normal recruitment curves and completely 

isolated charge injection. The selectivity of the stimulation sites is also not reflective of 

current capabilities. As previously mentioned, the specificity problem results in 

widespread recruitment of motor neurons. The precise targeting of individual motor 

neurons provided here is possible in principle through high density array electrodes but 

is difficult in practice. Similarly, even and balanced recruitment of a specific interneuron 

pool would be near impossible in real world conditions, due to charge spreading to other 

networks in physical proximity. 

5.5 Conclusion  

The work in this chapter brings together the algorithms described in Chapters 3 and 4 to 

demonstrate restoration of healthy synergy recruitment using an in silico BMI in different 

models of nervous system injury. An injury model of interneuron-controlled synergy 
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recruitment was able to recreate the same alterations to synergy recruitment observed 

in human injury conditions. The ANN used previously in Chapter 4 in the peripheral 

nervous system was able to transfer to a new stimulation environment supporting the 

idea that the network is capable of representing a generalized transfer function. Finally, 

within this environment higher order motor control was used as a target for control of 

stimulation paradigms, moving towards true closed loop BMI control.  

• The MIIND network previously used to model upper leg muscles was able to 

various types of injury and the resulting alterations in muscle synergy recruitment 

• The ANN previously trained in the rat peripheral nerve successfully learnt the 

stimulus/response relationship in an in silico model of spinal interneurons  

• An in silico BMI device made by combining these algorithms was able to restore 

healthy synergy recruitment in some injury conditions  

• The BMI failed to restore synergy recruitment when afferent feedback was 

abolished. This supports our previous findings that afferent feedback plays an 

important role in synergy recruitment 

• These algorithms together represent a BMI device capable of general restoration 

of muscle synergy recruitment. This could be implemented in a variety of settings 

for treatment of muscle weakness or paralysis.  
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Chapter 6: Discussion 

 

6.1 Summary of key findings 

The field of BMIs is experiencing a surge in new devices, approaches and algorithms 

that attempt to advance the cutting edge of what is possible. With this new drive it is 

important to question common place assumptions in device design; challenging these 

assumptions can sometimes provide significant improvements compared to the 

resources invested. All the algorithms presented within this thesis attempt to address the 

problems faced at different stages of a BMI device in novel ways. This thesis has 

explored advances in the understanding of muscle synergies, stimulation control using 

machine learning, population modelling of spinal circuits and how these can all be 

integrated together in one device. Algorithm development within this thesis has strived 

for a firm biological basis. This was done in an attempt to avoid falling into innovation for 

innovations sake and to instead focus on integrating biological understanding into device 

development. The algorithms developed represent a device capable of general signal 

transfer between areas of the nervous system and moves towards closed loop control of 

the paralyzed limb.  

Initially the performance of an online implementation of various onset/offset detection 

and synergy extraction algorithms was investigated, in terms of their accuracy and speed 

in different settings and in combination with one another. Findings regarding the utility of 

SampEn in data contaminated with aberrant spiking was challenged. It was also shown 

for the first time the performance loss that occurs when these algorithms are combined. 

The best performing algorithm, NMF, was then used to investigate the role of 

proprioception in synergy recruitment during an isometric task. Contrary to some findings 

in the field, changes were observed in the profile of synergy 2 in accordance with 

changes in limb position reflecting the change in balancing of agonist/antagonist 

activation due changes in muscle stretch. A mechanistic explanation for this was 

proposed by modelling parts of the CPG spinal interneuron network and changing levels 

of afferent feedback. This model successfully reproduced the synergies and their 

changes in response to afferent feedback observed in human subjects. For the first time 

in humans’ elements of the CPG were shown to be used for a non-locomotor task. A 

clear role for afferent feedback in recruitment of muscle synergies was also 

demonstrated. This set of algorithms represent the proposed “output” measure of the 

device, with muscle synergies as the target. Next a method for control of stimulation of 
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the nerve was developed using automated machine learning methods, which represents 

the “input” control. An ANN was trained to predict with a high degree of accuracy the 

EMG parameters recorded from muscles of the rat hind limb following stimulation of the 

sciatic nerve. Furthermore, this network learnt a generalized transfer function capable of 

translating the learnt relationship from a subset of animals to unknown conditions. This 

network was also able to be repurposed and used in an entirely different in silico 

environment further supporting the idea that the network can represent a generalized 

transfer function. Finally, in this new in silico environment a novel method of modelling 

injury to the nervous system was demonstrated in a way that replicates the major 

changes in synergy recruitment observed in humans. Within this environment, output-

input algorithms were combined from previous chapters to demonstrate successful 

restoration of healthy muscle synergy recruitment in cases of cortical injury.  

6.2 Discussion of key findings 

Through discussion of the findings of each chapter, an attempt will be made to provide 

further understanding of the significance of these results when considered as a whole, 

as well as to reflect on their limitations. In particular consideration for how these 

experiments could be expanded upon as part of future work will be addressed.  

6.2.1 Methodological assumptions affecting muscle synergy extraction 

Before implementation of synergy extraction algorithms for the purposes of further 

analysis or integration into a BMI, assumptions were first examined regarding the 

performance of these algorithms in different conditions. Findings were compared in onset 

detection using the gold standard of visual inspection, but for dimensionality reduction 

we first had to implement a method of synthetic synergy generation. The findings in terms 

of synergy extraction are in line with previous studies, however the difference between 

ICA and NMF was limited in the conditions examined here which may explain the 

disagreement between certain studies that have argued in favour of either approach 

(Tresch and Cheung, 2006). In contrast the advantages of SampEn in avoiding aberrant 

spiking activity can be replicated through careful selection of hyperparameters in a sliding 

window using a simple average amplitude (Zhang and Zhou, 2012). This comes with a 

significant decrease in calculation speed and was a superior measure for our purposes. 

These methodological considerations reflect the need to consider carefully the data 

these algorithms are applied to for maximal performance.  
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6.2.2 Proprioceptive feedback into the recruiting interneuron network is vital for 

healthy synergy output 

Taking the results from the previous work into consideration a method for online synergy 

extraction was developed and applied to an isometric task to explore the role of 

proprioceptive feedback in synergy recruitment. By limiting the task to an isometric task 

repeated at various internal angles of the knee it was hypothesised that afferent feedback 

would be limited to proprioceptive sources. Therefore, any changes to synergy profiles 

would reflect a change due to afferent feedback. Although the first synergy identified was 

invariant to joint angle, the second synergy reflected a change in recruitment that 

matched biomechanical expectations due to changes in muscle stretch. Whilst it seems 

certain that sensory feedback must play a role in motor control at this level, previous 

studies have shown surprisingly fixed synergy recruitment in conditions one might expect 

afferent feedback to play a large role (Torres-Oviedo et al., 2006; Roh et al., 2012). This 

is likely is due to the adaptability of the synergy recruitment process, where in more 

dynamic conditions other changes may be made to recruit a preferred synergy pattern, 

in the fixed state of an isometric task the synergy itself must be altered to produce the 

movement.  

This finding is interesting by itself, however it was further supported with a model of how 

afferent feedback could be incorporated into synergy recruitment. Therefore, using the 

lower levels of the CPG model developed by Rybak a model was created within the 

MIIND framework that reflected the proposed interneuron network that recruits the 

muscles under investigation (McCrea and Rybak, 2008). This model was created 

specifically to have balanced cortical recruitment across all conditions, so that any 

change observed would similarly be restricted in cause to the level of afferent feedback. 

The replication of the experimental findings by the model supports the role of 

proprioceptive feedback in synergy recruitment. This model suggests a great deal about 

both the muscle synergy hypothesis as well as the current understanding of the CPG. It 

suggests that muscle synergies are recruited flexibly from networks of spinal 

interneurons that may have a variety of other purposes, and similarly it suggests that the 

CPG is a flexible control system for tasks that require balancing of flexion/extension 

within the lower limbs beyond locomotion.   
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6.2.3 ANNs are capable of learning generalized transfer functions in the nervous 

system  

Determining the relationship between stimulation at one point and the motor output at 

another is a key step in a BMI for restoring motor control to the paralyzed limb. The 

algorithm shown here attempts to leverage the advantages of machine learning in an 

environment well suited to (and in spirit modelled on) them. Acquiring the large datasets 

required for successful network training was a challenge in and of itself and required 

specialized stimulator construction and more customised Python code. Despite this the 

dataset described here is still small in scale compared to normal datasets for machine 

learning. The network architecture described was capable of a very high degree of 

accuracy in prediction of the stimulation parameters that generated a given set of EMG 

parameters. This in and of itself may be relatively unimportant if the network has 

overfitted to the training dataset. The performance on unknown data is the true test of 

the network’s utility, as this describes its ability to generalize to new 

conditions.  Restricting the already small dataset for unknown conditions will certainly 

affect the performance of the network. In spite of this the network adapted very well when 

asked to predict an entirely unseen animal’s EMG’s, predicting voltage with similar levels 

of accuracy and still providing an attempt at width prediction. This in itself may reflect the 

network has learnt the relationship at a more general level as it has prioritized the more 

“important” voltage parameter, as this describes a greater amount of variance within the 

signals. It is entirely possible that with more data performance on width may increase 

further.  

This finding is only further supported by demonstration within a new setting. 

Implementing this network within the in silico MIIND simulation involved insignificant 

changes to the overall network architecture (input and output layers). Although previous 

work demonstrated the MIIND model represents experimental muscle synergy response 

it remained to be seen if it would also respond in a predictable way to stimulation. The 

advantages of a simulated environment are clear here as it is possible to generate a 

dataset of sufficient size that dataset size can be eliminated as a variable affecting 

network performance. The networks performance is even better than in the animal 

model, capable of predicting with almost perfect accuracy the resulting EMG parameters. 

However, discussed below in Section 6.2.5, this increase in performance does not result 

in an increased utility in all conditions.  
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6.2.4 The MIIND network is capable of modelling damage to the nervous system 

Simulated models of injury conditions have both ethical and practical advantages as we 

have already indicated with training of our ANN. The MIIND network allows flexible and 

accurate modelling of neuronal networks in a variety of configurations, with an ease of 

use that encourages rapid prototyping or adjustment to new conditions. The 

demonstration of healthy synergy recruitment and the alterations that can occur with both 

upstream and downstream damage suggests a platform for further motor control 

research.  

6.2.5 Restoration of healthy muscle synergies by an in silico BMI 

The previous chapters algorithms were designed to have significance on their own, but 

also as part of a larger device. In the final chapter these algorithms combined to produce 

an in-silico representation of a BMI capable of restoration of healthy muscle synergies. 

Motor output was measured using the online synergy extraction algorithm from Chapter 

3, and these synergies were set as the target for this device. This is another advantage 

to simulated environments as it allows our device to have access to pre-injury conditions, 

which is an obvious caveat to the performance shown here. The ANN was used for 

stimulus control and asked to predict the required stimulation to generate healthy 

synergies in the injured network. For cortical injuries, reflecting a loss of descending 

drive, this worked excellently for both the unilateral extensor injury as well as for a 

bilateral injury reflecting a more widespread loss of function. However, for no condition 

was the network able to restore synergy recruitment with the loss of afferent feedback in 

peripheral injury conditions. This was true even when the network was given access to 

a greater number of stimulation sites. As mentioned, the network learnt the 

representation between stimulation and output exceedingly well in the simulated 

conditions, so how was the network unable to produce healthy synergies? It is proposed 

that this is due to the special and complex role that afferent feedback plays within this 

network to balance agonist and antagonist recruitment. Compared to cortical drive, 

afferent feedback influences a more specific subset of interneurons. Examining the 

mistakes made by the network in the peripheral condition reveals that it switches bias in 

this condition from the extensor muscles to the flexors, unable to provide the fine-tuned 

balancing that normal afferent feedback provides. This demonstrates that whilst our 

algorithms move closer to closed loop control it is vital that future devices take greater 

account of afferent signals to more naturally restore motor control.  
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6.3 Utility to the field 

All scripts described herein are available at https://github.com/gareth-york/neural-bridge 

and MIIND is available from http://miind.sourceforge.net/. These scripts were written with 

the intention that they be easily implemented within different environments.  

6.3.1 Synergy detection algorithms, comparison and online implementation  

The system of synergy detection algorithms and the comparison of performance are 

available in two separate implementations. The system of tests shown in this thesis are 

designed in a modular fashion such that if new measures or methods of onset/detection 

or synergy extraction were developed it would be simple to compare them to previous 

findings. It is also simple to re-reset these algorithms for a different set of data conditions, 

this is particularly useful in the case of synergy extraction algorithms where ICA and NMF 

have variable performance between authors and implementations. The second section 

provides the online synergy extraction using NMF and an average onset detection with 

visual feedback of updated synergies in near real time. Participants are usually asked to 

maximally recruit a given muscle or set of muscles within motor control studies, with or 

without visual feedback on the EMG signal. It may be that providing synergy feedback 

may allow more specific synergy recruitment and reduce variability between subjects.  

6.3.2 Algorithms for automated stimulus control  

The algorithms for producing the dataset for ANN training have more specific utility but 

are an expansion on the algorithms provided by SanWorks for the PulsePal device. In 

comparison to other isolated stimulators these algorithms allow for fine-tuned control of 

stimulus parameters from up to four channels while outputting a standard TTL pulse for 

triggered recording. This has the immediate advantage of freeing attention for the 

operator but more so it allows for much greater complexity of stimulus paradigm as 

shown in the experiments here. When combined with the ANN described here it provides 

a powerful platform for stimulus/response measurement for a variety of devices or 

recording scenarios.  

6.3.3 Simulation of neural networks  

The current capabilities of MIIND are significant, however the model is still undergoing 

active development and new features are planned in the near future. Flexible modelling 

of whole populations of neurons can be a useful tool in any number of settings, both for 
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informing and being informed by experimental data. The simple addition of injury 

modelling described here is only the beginning of what can be achieved with careful 

thought. By running multiple simulations with incrementally increasing or decreasing 

connection strength it would be feasible to model Hebbian plasticity amongst neurons or 

recovery post injury. Analysing deficits in patient’s synergy recruitment profiles could 

identify potential injury sites and suggest more personalized treatment plans. Lastly the 

network described here is a single modular block but there is nothing to prevent the 

network from being arranged in concert with further networks. This could allow for models 

of greater scope that can include more dynamic cortical control networks.  

6.4 Clinical significance 

6.4.1 Muscle synergies analysis for assessing physiotherapy in the elderly  

Muscle weakness in the elderly is an incredibly common cause of falls and subsequent 

hospitalizations. Preventative physiotherapy is often recommended for frail or elderly 

patients (De Labra et al., 2015; Soukkio et al., 2018). Current methods for assessing 

muscle weakness do not take into account the changes in synergy recruitment observed 

due to change in limb position. This knowledge by itself may introduce new avenues for 

improvement, but by using synergy analysis during standard testing may allow for better 

understanding of a patient’s specific deficit. When this is understood it may be possible 

to introduce movements or exercises that better target that deficit. This is particularly 

relevant for patients with limited mobility or energy as they may only be capable of a 

limited number of exercises and therefore, treatment efficiency must be maximized.    

6.4.2 BMI for treatment of foot drop 

The direct applicability of the combined algorithms shown here to a clinical setting can 

only be considered in terms of currently available devices, as the hardware 

implementation shown here is obviously not applicable to human subjects. As previously 

mentioned, FES has been used previously for the treatment of foot drop via stimulation 

of the peroneal nerve to recruit the unaffected motor neurons (Barbeau et al., 1999; 

Embrey et al., 2010; Kesar et al., 2011; Melo et al., 2015; Ferrante et al., 2016). Electrical 

stimulus is usually predefined and controlled either using a handheld remote or 

increasingly are automatically triggered based off sensors in the shoe or by measuring 

electromyography (EMG) signals from the muscles of the foot. FES is particularly 

promising for treatment as it offers a curative solution to the aetiology of the condition, 
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potentially to a stage where a prosthetic device is no longer required. However, despite 

this potential, current devices are extremely limited in the methods by which stimulation 

is delivered. Stimulus parameters are predefined at device fitting and rarely updated in 

check-up sessions that may be months apart. This once again demonstrates the same 

problems described previously; it relies on the expertise of the operator to select the 

correct parameters; it does not update in line with changes in performance and the 

choice of stimulation parameters is usually limited to a single variable. This may be why 

current studies are mixed on the effectiveness of AFO versus FES devices. FES devices 

show great promise for a subset of patients, but often the performance is much more 

variable. If this is a failure of the device or due to differences in patient potential is 

unknown, but one way to investigate this would be an algorithm similar to the one 

described here.  

It has been previously demonstrated that FES incorporating muscle synergies into the 

stimulation control could restore healthy synergy patterns in patients with foot drop 

(Ferrante et al., 2016). The ANN designed in Chapter 4, in combination with the 

previously described online synergy analysis program could form a closed loop 

stimulation device. This device would combine real time analysis of motor output with an 

adaptable and more specific control of stimulation parameters to improve further on this 

result. Furthermore, the collection of stimulation datasets for training would give 

clinicians a much greater understanding of the precise patient deficit, in terms of muscle 

weakness in concrete terms. This in turn may give greater understanding of why some 

patients respond better to FES than others. Furthermore, the device training allows for 

comparatively easy updating of stimulus control network compared to requiring a follow 

up appointment. It would be feasible for updating to occur regularly on a home computer 

allowing for the treatment provided to keep pace with a patient's recovery or decline 

during use.  

6.5 Future directions 

6.5.1 ICA-PCA and autoencoders for synergy extraction 

The correct method for synergy extraction is not a settled issue. Indeed, although the 

methods examined here represent the most commonly used methods suitable for online 

analysis, there are other methods that bear further investigation. One such method is 

PCA-ICA, wherein ICA is used to explore the new feature space defined by PCA. This 

method has previously been shown to be more accurate than either ICA or NMF (Tresch 
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and Cheung, 2006). This method was not explored here due to its exceedingly large 

computational time precluding online use, but this was likely due to algorithm 

implementation rather than inherent complexity. Another interesting method of synergy 

extraction are autoencoders. Autoencoders are a special type of ANN wherein the target 

output of the network is its input. Instead of using large hidden layers, an autoencoder 

can reduce the number of nodes in the hidden layer compared to its inputs. The activity 

of this hidden layer can be used to represent the synergy structure. This method has 

also been shown to be more effective than ICA and NMF (Spüler et al., 2016). 

Autoencoders also have the advantage of being easy to integrate into a larger deep 

neural network, potentially directly into the ANN used for stimulation control. Comparing 

these methods with the more commonly used ICA and NMF may have provided further 

insight into why these methods are more effective, or if their performance is also dataset 

dependent.  

6.5.2 Expanded stimulus/response experiments at greater degrees of separation 

Following the success of the ANN architecture at learning at generalized transfer function 

in the periphery and in a simulation of spinal networks, the next obvious step is to attempt 

to increase the separation a step further in the biological model. As argued previously, 

stimulation at the level of the spinal cord reflects the optimal point for recruitment of 

surviving neural networks in spinal cord injury. Attempts were made during the recording 

of the peripheral dataset to collect spinal recordings; however, this was only possible in 

a fraction of animals, and never with complete datasets. Increased focus at this level 

could be achieved with off the shelf components and with existing surgical setups used 

for stimulation during recovery. This study would fully test the limits of the architecture to 

generalize at the level required for a spinal BMI to overcome the specificity problem. 

On a less ambitious level, the control of stimulation was defined here by just two 

parameters, although these were examined with more resolution than is usually 

performed. Due to the ease with which the PulsePal can deliver precise patterns of 

stimulation a variety of different parameters could also be examined for their effects on 

motor output. A problem this may be of particular relevance to is the reversal of motor 

curve recruitment. When the body recruits motor neurons it does it in order of smallest 

to largest (as required for the task). However, when FES is used this order is reversed 

with largest fibres recruited first. This has been suggested to be the cause of excessive 

fatigue and the painful sensation that can accompany FES. Potentially this is due to how 
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stimulation is delivered, perhaps a different pulse shape may result in normal recruitment 

curves in certain combinations.  

6.5.3 Isolating the role of afferent feedback for synergy recruitment in dynamic 

tasks  

The data presented in Chapter 3 demonstrates that afferent feedback has a role in 

synergy recruitment during an isometric task. This is in direct contrast to some findings 

in the hand and is at odds with findings of preserved synergies in dynamic conditions. 

Clearly afferent feedback is required for healthy synergy generation as shown by their 

abolition in conditions of complete removal of afferent signals. However as shown in 

certain cases of rhizotomy of the dorsal root, synergies can be largely preserved in cases 

where afferent feedback is significantly altered. Further investigation is required using 

synergy analysis in a spectrum of tasks, with further modelling work. Tasks to investigate 

further include non-isometric knee extension and flexion and locomotion, potentially 

including the effects of perturbations under different states of afferent feedback. All of 

these scenarios may bridge the gap between dynamic and static tasks and identify where 

exactly afferent feedback enters the synergy recruitment pathway, and why it is 

sometimes ignored.  

6.5.4 Locomotion synergies and the CPG within the MIIND framework  

In line with this thinking is the use of MIIND to further investigate the ways that 

interneuron networks can be flexibly recruited to different tasks. This work demonstrated 

that the lower levels of the CPG are implicated in synergy recruitment for isometric 

extension of the knee. Synergy recruitment during locomotion has been extensively 

studied previously and therefore the expected profiles are already known. Extending the 

current MIIND network to include all layers of the CPG and to induce cyclical 

excitation/inhibition would be a relatively simple addition. This would provide the same 

justification for those findings as used here and would also extend the model to another 

environment. More importantly it could also be attempted to try and elucidate further what 

feedback or descending signals are required to cause one or the other to occur. Is it 

entirely a cortically controlled process, or is the switch mostly accomplished via afferent 

feedback? Developing the framework to answer these questions and others would 

provide powerful evidence for the Rybak model of the CPG and potentially give a much 

greater understanding of the fluidity of synergy recruitment networks.  
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6.6 Concluding remarks 

This project initially aimed to develop the algorithms required to drive a BMI to facilitate 

communication across a region of nerve damage to provide novel new avenues of 

treatment for spinal cord injury. Algorithms were designed from a top down perspective 

considering the output and input sections of the end device. For output analysis it was 

determined that muscle synergies are an ideal end target as the same solution used by 

the CNS to simplify the problem of motor control. To achieve this an online synergy 

analysis algorithm was developed based on tests determining the performance of the 

most commonly used methods for synergy extraction and EMG activity detection. The 

best of these algorithms was used to demonstrate that afferent feedback played a role 

in synergy recruitment during an isometric knee extension to balance agonist/antagonist 

activity between the hamstrings and quadriceps. The integration of sensory feedback 

was further examined using a model of the CPG interneuron network in the MIIND 

simulation framework. This model explained the experimental findings using only 

changes in afferent feedback, further solidifying a role for proprioception in synergy 

recruitment. The next stage of device development focused on determining input to the 

system provided by the device in the form of electrical stimulation. An advanced isolated 

stimulator was used to collect large datasets for training of an ANN for modelling the 

relationship between peripheral nerve stimulation and resultant EMG parameters. The 

response for each muscle was calibrated using excitation curves calculated using set 

test pulses delivered throughout stimulation, and by establishing the optimal muscle 

stretch through the use of an ergometer in response to the same test pulse. This network 

successfully predicted the stimulation parameters required to generate a given EMG 

waveform with a high degree of accuracy in a dataset of known animals. It was also 

successful in predicting the voltage required when tested on a subset of unknown 

animals. Prioritization of the voltage parameter is indicative of the learning process of 

the network as it was determined by the variability accounted for by each parameter that 

voltage is the more important of the two. Finally, having proven the effectiveness of each 

algorithm individually, they were combined within an in silico models of different nerve 

injuries. The combined algorithms were able to restore healthy synergy recruitment in 

cases of cortical injury but not peripheral injury. This argues further for the importance of 

normal afferent feedback in synergy recruitment. The system described here could be 

readily adapted to available systems for treatment of certain types of nerve injury. 

Furthermore, the individual algorithms have further application within the field of 
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physiotherapy for the elderly. This work described here informs and could provide tools 

for further investigation of the problems faced by BMI devices today.  
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Appendices 

  

Position 1 Position 2 

Appendix 1-A: Experimental set up.  The effect of afferent feedback on muscle 
recruitment was examined in two different positions of the contralateral hip to 
maximize or minimize passive insufficiency due to contralateral hip position. 
Subjects were asked to lay on a standard medical examination bed. They were 
then shown how to perform an isometric knee extension with the leg brace 
attached to their dominant leg. Subjects were shown the resulting EMG output 
recorded using a Delsys Trigno system. Subjects were asked to perform an 
isometric knee extension at maximal voluntary effort for five seconds, attempting 
to maximise RF activity. The dominant knee was fixed at one of four angles using 
a Donjoy TROM locking knee brace at 0°, 20°, 60° and 90°. In these pictures the 
knee is at 90°. The angle of the knee was always measured against the hip joint 
and the bony prominence on the outside of the ankle. Data was collected in both 
positions for each subject. In position one the participant is supine with both legs 
flat against the bed. In position two the contralateral leg was kept bent such that 
the foot is flat against the bed so that both the knee and hip are fully flexed.  
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Synergy extraction 1  Onset detection 1 Synergy extraction 2 Onset detection 2 Standard Error Degrees of freedom P value 

PCA Raw ICA Raw 0.0123 1593 <.0001 

PCA Raw FA Raw 0.0123 1593 1 

PCA Raw NMF Raw 0.0123 1593 <.0001 

PCA Raw PCA Average 0.0123 1593 <.0001 

PCA Raw ICA Average 0.0173 1593 <.0001 

PCA Raw FA Average 0.0173 1593 0.0145 

PCA Raw NMF Average 0.0173 1593 <.0001 

PCA Raw PCA RMS 0.0123 1593 <.0001 

PCA Raw ICA RMS 0.0173 1593 0.0016 

PCA Raw FA RMS 0.0173 1593 0.0003 

PCA Raw NMF RMS 0.0173 1593 <.0001 

PCA Raw PCA SampEn 0.0123 1593 <.0001 

PCA Raw ICA SampEn 0.0173 1593 <.0001 

PCA Raw FA SampEn 0.0173 1593 <.0001 

PCA Raw NMF SampEn 0.0173 1593 0.0001 

ICA Raw FA Raw 0.0123 1593 <.0001 

ICA Raw NMF Raw 0.0123 1593 <.0001 

ICA Raw PCA Average 0.0173 1593 <.0001 

ICA Raw ICA Average 0.0123 1593 <.0001 

ICA Raw FA Average 0.0173 1593 <.0001 

ICA Raw NMF Average 0.0173 1593 0.0066 

ICA Raw PCA RMS 0.0173 1593 <.0001 

ICA Raw ICA RMS 0.0123 1593 <.0001 

ICA Raw FA RMS 0.0173 1593 <.0001 

ICA Raw NMF RMS 0.0173 1593 0.1523 

ICA Raw PCA SampEn 0.0173 1593 <.0001 

ICA Raw ICA SampEn 0.0123 1593 <.0001 

ICA Raw FA SampEn 0.0173 1593 <.0001 

ICA Raw NMF SampEn 0.0173 1593 <.0001 

FA Raw NMF Raw 0.0123 1593 <.0001 

FA Raw PCA Average 0.0173 1593 0.0288 

FA Raw ICA Average 0.0173 1593 <.0001 

FA Raw FA Average 0.0123 1593 <.0001 

FA Raw NMF Average 0.0173 1593 <.0001 

FA Raw PCA RMS 0.0173 1593 0.0006 

FA Raw ICA RMS 0.0173 1593 0.001 

FA Raw FA RMS 0.0123 1593 <.0001 

FA Raw NMF RMS 0.0173 1593 <.0001 

FA Raw PCA SampEn 0.0173 1593 <.0001 

FA Raw ICA SampEn 0.0173 1593 <.0001 

FA Raw FA SampEn 0.0123 1593 <.0001 

FA Raw NMF SampEn 0.0173 1593 0.0002 

NMF Raw PCA Average 0.0173 1593 <.0001 

NMF Raw ICA Average 0.0173 1593 <.0001 

NMF Raw FA Average 0.0173 1593 <.0001 

NMF Raw NMF Average 0.0123 1593 <.0001 

NMF Raw PCA RMS 0.0173 1593 <.0001 

NMF Raw ICA RMS 0.0173 1593 <.0001 

NMF Raw FA RMS 0.0173 1593 <.0001 

NMF Raw NMF RMS 0.0123 1593 <.0001 

NMF Raw PCA SampEn 0.0173 1593 <.0001 

NMF Raw ICA SampEn 0.0173 1593 <.0001 

NMF Raw FA SampEn 0.0173 1593 <.0001 

NMF Raw NMF SampEn 0.0123 1593 <.0001 

PCA Average ICA Average 0.0123 1593 <.0001 

PCA Average FA Average 0.0123 1593 1 

PCA Average NMF Average 0.0123 1593 <.0001 

PCA Average PCA RMS 0.0123 1593 0.9939 

PCA Average ICA RMS 0.0173 1593 <.0001 

PCA Average FA RMS 0.0173 1593 0.9996 

PCA Average NMF RMS 0.0173 1593 <.0001 

PCA Average PCA SampEn 0.0123 1593 <.0001 

PCA Average ICA SampEn 0.0173 1593 <.0001 

PCA Average FA SampEn 0.0173 1593 <.0001 

PCA Average NMF SampEn 0.0173 1593 0.9981 

ICA Average FA Average 0.0123 1593 <.0001 

ICA Average NMF Average 0.0123 1593 <.0001 

ICA Average PCA RMS 0.0173 1593 <.0001 

ICA Average ICA RMS 0.0123 1593 0.9939 

ICA Average FA RMS 0.0173 1593 <.0001 

ICA Average NMF RMS 0.0173 1593 <.0001 

ICA Average PCA SampEn 0.0173 1593 <.0001 

ICA Average ICA SampEn 0.0123 1593 <.0001 
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ICA Average FA SampEn 0.0173 1593 <.0001 

ICA Average NMF SampEn 0.0173 1593 <.0001 

FA Average NMF Average 0.0123 1593 <.0001 

FA Average PCA RMS 0.0173 1593 1 

FA Average ICA RMS 0.0173 1593 <.0001 

FA Average FA RMS 0.0123 1593 0.9939 

FA Average NMF RMS 0.0173 1593 <.0001 

FA Average PCA SampEn 0.0173 1593 <.0001 

FA Average ICA SampEn 0.0173 1593 <.0001 

FA Average FA SampEn 0.0123 1593 <.0001 

FA Average NMF SampEn 0.0173 1593 0.9993 

NMF Average PCA RMS 0.0173 1593 <.0001 

NMF Average ICA RMS 0.0173 1593 <.0001 

NMF Average FA RMS 0.0173 1593 <.0001 

NMF Average NMF RMS 0.0123 1593 0.9939 

NMF Average PCA SampEn 0.0173 1593 <.0001 

NMF Average ICA SampEn 0.0173 1593 <.0001 

NMF Average FA SampEn 0.0173 1593 <.0001 

NMF Average NMF SampEn 0.0123 1593 <.0001 

PCA RMS ICA RMS 0.0123 1593 <.0001 

PCA RMS FA RMS 0.0123 1593 1 

PCA RMS NMF RMS 0.0123 1593 <.0001 

PCA RMS PCA SampEn 0.0123 1593 <.0001 

PCA RMS ICA SampEn 0.0173 1593 <.0001 

PCA RMS FA SampEn 0.0173 1593 <.0001 

PCA RMS NMF SampEn 0.0173 1593 1 

ICA RMS FA RMS 0.0123 1593 <.0001 

ICA RMS NMF RMS 0.0123 1593 <.0001 

ICA RMS PCA SampEn 0.0173 1593 <.0001 

ICA RMS ICA SampEn 0.0123 1593 <.0001 

ICA RMS FA SampEn 0.0173 1593 <.0001 

ICA RMS NMF SampEn 0.0173 1593 <.0001 

FA RMS NMF RMS 0.0123 1593 <.0001 

FA RMS PCA SampEn 0.0173 1593 <.0001 

FA RMS ICA SampEn 0.0173 1593 <.0001 

FA RMS FA SampEn 0.0123 1593 <.0001 

FA RMS NMF SampEn 0.0173 1593 1 

NMF RMS PCA SampEn 0.0173 1593 <.0001 

NMF RMS ICA SampEn 0.0173 1593 <.0001 

NMF RMS FA SampEn 0.0173 1593 <.0001 

NMF RMS NMF SampEn 0.0123 1593 <.0001 

PCA SampEn ICA SampEn 0.0123 1593 <.0001 

PCA SampEn FA SampEn 0.0123 1593 1 

PCA SampEn NMF SampEn 0.0123 1593 <.0001 

ICA SampEn FA SampEn 0.0123 1593 <.0001 

ICA SampEn NMF SampEn 0.0123 1593 <.0001 

FA SampEn NMF SampEn 0.0123 1593 <.0001 

Appendix 1-B: Pair wise comparisons following two-way ANOVA for mean cosine 

similarity values for synergy activation coefficients between synthetic synergies 

and extracted synergies for different synergy extraction algorithms and onset 

detection algorithms. A two-way ANOVA was required to identify the effect of onset 

detection method and synergy extraction method on cosine similarity for synergy 

activation coefficients. Residuals were tested for normality using a histogram and a 

Levene’s test for equal variance. There were statistically significant interactions between 

cosine similarity for both onset detection and between synergy extraction methods (F = 
327.63, p < 0.005 and F = 276.45, p < 0.005 respectively). There was also a significant 

between group interaction for onset detection and synergy extraction (F = 25.31, p < 

0.005). This was followed by multiple within group comparisons to identify the simple 

main affects shown above.  
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Synergy extraction 1  Onset detection 1 Synergy extraction 2 Onset detection 2 Standard Error Degrees of freedom P value 

PCA Raw ICA Raw 0.017497 1593 1 

PCA Raw FA Raw -0.04354 1593 0.828 

PCA Raw NMF Raw -0.07526 1593 0.0473 

PCA Raw PCA Average 0.007083 1593 1 

PCA Raw ICA Average 0.02458 1593 1 

PCA Raw FA Average -0.03646 1593 0.9986 

PCA Raw NMF Average -0.06818 1593 0.6907 

PCA Raw PCA RMS 0.022594 1593 0.9997 

PCA Raw ICA RMS 0.040091 1593 0.996 

PCA Raw FA RMS -0.02095 1593 1 

PCA Raw NMF RMS -0.05267 1593 0.9453 

PCA Raw PCA SampEn 0.097099 1593 0.001 

PCA Raw ICA SampEn 0.114596 1593 0.0194 

PCA Raw FA SampEn 0.053559 1593 0.9373 

PCA Raw NMF SampEn 0.021836 1593 1 

ICA Raw FA Raw -0.06104 1593 0.2716 

ICA Raw NMF Raw -0.09276 1593 0.0024 

ICA Raw PCA Average -0.01041 1593 1 

ICA Raw ICA Average 0.007083 1593 1 

ICA Raw FA Average -0.05395 1593 0.9335 

ICA Raw NMF Average -0.08568 1593 0.2839 

ICA Raw PCA RMS 0.005097 1593 1 

ICA Raw ICA RMS 0.022594 1593 0.9997 

ICA Raw FA RMS -0.03844 1593 0.9974 

ICA Raw NMF RMS -0.07017 1593 0.6436 

ICA Raw PCA SampEn 0.079602 1593 0.4139 

ICA Raw ICA SampEn 0.097099 1593 0.001 

ICA Raw FA SampEn 0.036062 1593 0.9988 

ICA Raw NMF SampEn 0.00434 1593 1 

FA Raw NMF Raw -0.03172 1593 0.9871 

FA Raw PCA Average 0.050624 1593 0.9608 

FA Raw ICA Average 0.06812 1593 0.692 

FA Raw FA Average 0.007083 1593 1 

FA Raw NMF Average -0.02464 1593 1 

FA Raw PCA RMS 0.066134 1593 0.7368 

FA Raw ICA RMS 0.083631 1593 0.3249 

FA Raw FA RMS 0.022594 1593 0.9997 

FA Raw NMF RMS -0.00913 1593 1 

FA Raw PCA SampEn 0.140639 1593 0.0006 

FA Raw ICA SampEn 0.158136 1593 <.0001 

FA Raw FA SampEn 0.097099 1593 0.001 

FA Raw NMF SampEn 0.065377 1593 0.7532 

NMF Raw PCA Average 0.082346 1593 0.3522 

NMF Raw ICA Average 0.099843 1593 0.0905 

NMF Raw FA Average 0.038805 1593 0.9972 

NMF Raw NMF Average 0.007083 1593 1 

NMF Raw PCA RMS 0.097856 1593 0.1084 

NMF Raw ICA RMS 0.115353 1593 0.0178 

NMF Raw FA RMS 0.054316 1593 0.9299 

NMF Raw NMF RMS 0.022594 1593 0.9997 

NMF Raw PCA SampEn 0.172361 1593 <.0001 

NMF Raw ICA SampEn 0.189858 1593 <.0001 

NMF Raw FA SampEn 0.128821 1593 0.0033 

NMF Raw NMF SampEn 0.097099 1593 0.001 

PCA Average ICA Average 0.017497 1593 1 

PCA Average FA Average -0.04354 1593 0.828 

PCA Average NMF Average -0.07526 1593 0.0473 

PCA Average PCA RMS 0.015511 1593 1 

PCA Average ICA RMS 0.033007 1593 0.9996 

PCA Average FA RMS -0.02803 1593 0.9999 

PCA Average NMF RMS -0.05975 1593 0.8589 

PCA Average PCA SampEn 0.090015 1593 0.004 

PCA Average ICA SampEn 0.107512 1593 0.0423 

PCA Average FA SampEn 0.046475 1593 0.9819 

PCA Average NMF SampEn 0.014753 1593 1 

ICA Average FA Average -0.06104 1593 0.2716 

ICA Average NMF Average -0.09276 1593 0.0024 

ICA Average PCA RMS -0.00199 1593 1 

ICA Average ICA RMS 0.015511 1593 1 

ICA Average FA RMS -0.04553 1593 0.9852 

ICA Average NMF RMS -0.07725 1593 0.4698 

ICA Average PCA SampEn 0.072519 1593 0.5861 

ICA Average ICA SampEn 0.090015 1593 0.004 
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ICA Average FA SampEn 0.028978 1593 0.9999 

ICA Average NMF SampEn -0.00274 1593 1 

FA Average NMF Average -0.03172 1593 0.9871 

FA Average PCA RMS 0.059051 1593 0.8698 

FA Average ICA RMS 0.076548 1593 0.4868 

FA Average FA RMS 0.015511 1593 1 

FA Average NMF RMS -0.01621 1593 1 

FA Average PCA SampEn 0.133556 1593 0.0017 

FA Average ICA SampEn 0.151052 1593 0.0001 

FA Average FA SampEn 0.090015 1593 0.004 

FA Average NMF SampEn 0.058293 1593 0.881 

NMF Average PCA RMS 0.090773 1593 0.196 

NMF Average ICA RMS 0.10827 1593 0.0391 

NMF Average FA RMS 0.047233 1593 0.979 

NMF Average NMF RMS 0.015511 1593 1 

NMF Average PCA SampEn 0.165278 1593 <.0001 

NMF Average ICA SampEn 0.182775 1593 <.0001 

NMF Average FA SampEn 0.121738 1593 0.0082 

NMF Average NMF SampEn 0.090015 1593 0.004 

PCA RMS ICA RMS 0.017497 1593 1 

PCA RMS FA RMS -0.04354 1593 0.828 

PCA RMS NMF RMS -0.07526 1593 0.0473 

PCA RMS PCA SampEn 0.074505 1593 0.0528 

PCA RMS ICA SampEn 0.092002 1593 0.178 

PCA RMS FA SampEn 0.030965 1593 0.9998 

PCA RMS NMF SampEn -0.00076 1593 1 

ICA RMS FA RMS -0.06104 1593 0.2716 

ICA RMS NMF RMS -0.09276 1593 0.0024 

ICA RMS PCA SampEn 0.057008 1593 0.8987 

ICA RMS ICA SampEn 0.074505 1593 0.0528 

ICA RMS FA SampEn 0.013468 1593 1 

ICA RMS NMF SampEn -0.01825 1593 1 

FA RMS NMF RMS -0.03172 1593 0.9871 

FA RMS PCA SampEn 0.118045 1593 0.0129 

FA RMS ICA SampEn 0.135542 1593 0.0013 

FA RMS FA SampEn 0.074505 1593 0.0528 

FA RMS NMF SampEn 0.042783 1593 0.992 

NMF RMS PCA SampEn 0.149767 1593 0.0002 

NMF RMS ICA SampEn 0.167264 1593 <.0001 

NMF RMS FA SampEn 0.106227 1593 0.0484 

NMF RMS NMF SampEn 0.074505 1593 0.0528 

PCA SampEn ICA SampEn 0.017497 1593 1 

PCA SampEn FA SampEn -0.04354 1593 0.828 

PCA SampEn NMF SampEn -0.07526 1593 0.0473 

ICA SampEn FA SampEn -0.06104 1593 0.2716 

ICA SampEn NMF SampEn -0.09276 1593 0.0024 

FA SampEn NMF SampEn -0.03172 1593 0.9871 

Appendix 1-C: Pair wise comparisons following two-way ANOVA for mean cosine 

similarity values for synergy vectors between synthetic synergies and extracted 

synergies for different synergy extraction algorithms and onset detection 

algorithms. A two-way ANOVA was required to identify the effect of onset detection 

method and synergy extraction method on cosine similarity for synergy vector. Residuals 

were tested for normality using a histogram and a Levene’s test for equal variance. 

There were statistically significant interactions between cosine similarity for both onset 

detection and between synergy extraction methods (). There was also a significant 

between group interaction for onset detection and synergy extraction (). This was 

followed by multiple within group comparisons to identify the simple main affects shown 

above.  
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  Appendix 1-E:  Subthreshold, threshold and supra-threshold stimulation of the 

rat peripheral nerve at two sites. The rat peripheral nerve (rat 2) was stimulated 

using cuff electrodes attached to either the tibial or sciatic nerve. Stimulation was 

delivered to either the tibial cuff, sciatic cuff or to both cuffs combined. The stimulus 

delivered to either cuff in the combined condition was always equal. Threshold is 

defined as the shortest, smallest pulse that elicited a response. The threshold value 

differed depending on the cuff stimulated and are as follows; Sciatic 100 µs - 800mV, 

Tibial and Combined 100 µs - 600mV. Muscle activity was measured via copper wire 

electrodes inserted into MG and LG. Sub threshold signals are stimulus pulses that 

failed to elicit a response, the pulse shown here is 100 µs – 400mV and 100 µs – 

300mV respectively, or half the threshold value. Supra-threshold values were defined 

as double the threshold value and are therefore 100 µs - 1600mV and 100 µs – 

1200mV respectively. 
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Appendix 1-F:  Comparison of stimulus at threshold value for different 

stimulating cuffs.  This graph compares the response of LG and MG at the 

determined threshold values for each cuff in rat 2. The sciatic and combined cuffs 

were determined to have the same minimum threshold activation (100 µs - 600mV). 

Note that this stimulus pulse elicits no response when delivered to the sciatic nerve 

(TOP MIDDLE).  The tibial nerve threshold was higher (100 µs - 800mV) but it can 

be seen that stimulation at the sciatic or combined cuffs results in a significantly larger 

response. This demonstrates the greater selectivity of the tibial cuff for LG/MG 

recruitment. It is also possible to observe the additive effect on recruitment in the 

combined trace at Tibial threshold value. Stimulation was delivered either to the tibial 

cuff, sciatic cuff or to both cuffs combined. The stimulus delivered to either cuff in the 

combined condition was always equal. Muscle activity was measured via copper wire 

electrodes inserted into MG and LG.  
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