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Abstract

This thesis develops the deformation theory of instantons on asymptotically
conical G2-manifolds, where an asymptotic connection at infinity is fixed. A
spinorial approach is adopted to relate the space of deformations to the kernel
of a twisted Dirac operator on the G2-manifold and to the eigenvalues of a
twisted Dirac operator on the nearly Kähler link. As an application, we use
this framework to study the moduli spaces of known examples ofG2-instantons
living on the Bryant-Salamon manifolds and on R7. We develop two methods
for determining eigenvalues of twisted Dirac operators on nearly Kähler 6-
manifolds and apply this to calculate the virtual dimension of the moduli
spaces that we study. In the case of the instanton of Günaydin-Nicolai, which
lives on R7, we show how knowledge of the virtual dimension of the moduli
space can be used to study uniqueness properties of this instanton.
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Chapter 1

Introduction

1.1 Introduction

Instantons are connections whose curvature satisfies a certain algebraic equation. In
this thesis we study the deformation theory of instanton connections on manifolds with
holonomy group G2 and which asymptote to a cone. The physical motivation for studying
instantons on G2-manifolds stems from the fact that such connections automatically
satisfy the Yang-Mills equation. Furthermore on a compact manifold G2-instantons are
absolute minima of the Yang-Mills energy functional. Interest in these connections has
grown significantly in recent years since the suggestion of Donaldson-Thomas [29] and
Donaldson-Segal [28] that it may be possible to define invariants from their moduli spaces.

The first example of a non-trivial G2-instanton was constructed on the principal G2-
bundle over R7 by Günaydin-Nicolai in 1995 [41] and we shall refer to this example as
the standard G2-instanton. Other examples of G2-instantons on non-compact manifolds
have been found in more recent years. Firstly, Clarke [20] found a family of instanton
connections on the manifold /S(S3) which was shown by Bryant-Salamon to carry a holon-
omy G2-metric [15]. The other G2-manifolds constructed by Bryant-Salamon are Λ2

−(S4)

and Λ2
−(CP 2) and examples of G2-instantons have been constructed on these spaces by

Oliveira [77]. Part of the work of Lotay-Oliveira [71] was to study the moduli spaces
of instantons on asymptotically conical G2-manifolds where the connections are required
to be invariant under a group action. In particular, they found a limiting connection of
Clarke’s family of instantons. The important observation here is that all of these exam-
ples of G2-instantons converge to instanton connections on the nearly Kähler 6-manifold
at infinity.

The deformation theory that we develop that relies on the analytic framework for el-
liptic operators on asymptotically conical manifolds that has been developed by Lockhart-
McOwen [67] and Marshall [72]. These tools enable one to determine when elliptic opera-
tors on non-compact manifolds are Fredholm, and hence a Kuranishi model is applicable
to study the moduli space of solutions. In the holonomy G2 setting, this framework has
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1.1 Introduction

been used to study the moduli space of associative and coassociative submanifolds by
Lotay [68, 69] and the moduli space of G2-structures by Karigiannis-Lotay [61]. In the
gauge theory setting Nakajima [76] has used a similar analysis to study the moduli space
of ASD instantons on asymptotically locally Euclidean hyperKähler 4-folds where a flat
connection at infinity is fixed.

Since the asymptotic connection in our setting is a nearly Kähler instanton it is inter-
esting to compare deformations of the G2-instanton with deformations of this asymptotic
connection. In particular there is a projection between the moduli spaces of these two
instantons and one can try to understand the properties of this map. The deformation
theory of nearly Kähler instantons has been developed by Charbonneau-Harland [18]
and we use many of the ideas and techniques they develop to analyse the asymptotic
connection.

This thesis studies the deformation theory of G2-instantons on asymptotically conical
manifolds by prescribing a fixed rate of decay at infinity. We take a spinorial approach and
relate deformations of theG2-instanton to the kernel of a Dirac operator on a Hilbert space
of spinors with fixed decay rate. In contrast to the compact case the index of the Dirac
operator controlling the deformation theory is not expected to be zero. The deformation
theory that we develop can be applied to the known examples of asymptotically conical
G2-instantons so we then move on to studying examples on each of the Bryant-Salamon
manifolds as well as the standard instanton on R7.

After covering the required background material and providing a literature review we
begin in Chapter 4 to study the fundamentals of gauge theory on an asymptotically conical
G2-manifold. Firstly we provide a slice theorem to show that the space of connections
modulo gauge is a smooth Hilbert manifold. We also show that the moduli space of
asymptotically conical G2-instantons is locally homeomorphic to the kernel of a twisted
Dirac operator. Our analysis shows that the virtual dimension of the space of solutions
to the linearised G2-instanton equation is determined by the spectrum of a twisted Dirac
operator on a nearly Kähler 6-manifold and we apply the implicit function theorem to
show the moduli space is a smooth manifold when the deformation theory is unobstructed.

In Chapter 5 we develop representation theoretic tools for determining the spectrum
of Dirac operators over homogeneous nearly Kähler 6-manifolds which are twisted by
the canonical connection on an associate bundle. These results are developed with the
known examples of asymptotically conical G2-instantons in mind, since the asymptotic
geometry and connection of each example is of this type. We determine the eigenvalues
of an operator which differs from the Levi-Civita Dirac operator by an algebraic term and
use this to provide bounds on the eigenvalues coming from group representations under
the Frobenius reciprocity theorem.

In Chapter 6 we begin to apply the results we have obtained to specific examples.
Firstly we study the examples of Clarke [20] and Lotay-Oliveira [71] and we apply the
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1.1 Introduction

results of the previous chapter to determine the virtual dimension of the moduli space. In
Chapter 7 we consider Oliveira’s examples [77] of G2-instantons on the Bryant-Salamon
manifolds Λ2

−(CP2) and Λ2
−(S4). For the example we consider over Λ2

−(S4) we show that
the Lichnerowicz formula is insufficient for determining the relevant eigenvalues and thus
much of the work in this chapter is to develop a method for calculating eigenvalues of
twisted Dirac operators. For this we generalise a method of Bär [4] to the case of a twisted
spinor on a nearly Kähler 6-manifold. As a result we determine the virtual dimension of
the given moduli space.

In Chapter 8 we study the standard instanton on R7, which we view as the metric
cone of S6. Here we must once again determine some eigenvalues of a twisted Dirac
operator, this time on S6, and we do so by providing another method for determining
the matrix of the operator on a finite dimensional subspace of the space of sections.
We write the operator as a sum of Casimir operators and use representation theoretic
techniques to calculate the first few eigenvalues explicitly– to the author’s knowledge this
method is has not appeared before in the literature. We use this to determine the virtual
dimension of the moduli space and as an application we show how, under an assumption
of unobstructedness, one can prove a global uniqueness for the standard instanton.
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Chapter 2

Geometry of G2-Manifolds and Nearly
Kähler 6-Manifolds

In this chapter we review some basic properties of the group G2 before introducing G2-
manifolds and nearly Kähler 6-manifolds. Our treatment focuses on the spin geometry of
these manifolds. We explain how the two geometries are related via the cone construction
and asymptotically conical G2-manifolds.

2.1 The Octonions and the Group G2

We begin with a brief introduction to the algebraic structures of normed division algebras
and cross products. A more comprehensive treatment can be found in [80]. Let A = Rn

be given the Euclidean inner product g0.

Definition 2.1.1. If A has the structure of a (possibly non-associative) algebra over R
with multiplicative identity 1 6= 0 such that

|ab| = |a||b| for all a, b ∈ A,

then A is called a normed division algebra.

Normed division algebras are completely classified and the classification consists of
precisely 4 possibilities:

R C H O
The Real Numbers The Complex Numbers The Quaternions The Octonions

The last entry in this list, the Octonions, is an 8-dimensional real vector space. The
standard basis is given by {1, e1, . . . , e7} and the multiplication is described by

eiej = −δij1 + εijkek

for i, j > 0 and where εijk is totally anti-symmetric. The multiplication is not associative
but satisfies a weaker condition called power associativity. The Octonions lead to our
first definition of the group G2 :
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2.1 The Octonions and the Group G2

Definition 2.1.2. The group G2 is the automorphism group of the Octonion algebra O.

If A is a normed division algebra, we write ImA = 〈1〉⊥ and call this the imaginary
part of A.

A cross product on a real inner-product space (V, g) is an alternating map × : V ×V →
V such that

g(u× v, u) = g(u× v, v) = 0

|u× v|2 = |u|2|v|2 − g(u, v)2

for all u, v ∈ V. If A is a normed division algebra then one can check that ImA carries
a natural cross product defined by a× b = 1

2
[a, b], where [ · , · ] is the commutator of the

algebra multiplication. In fact, this correspondence is a bijection: If V carries a cross
product then R ⊕ V can be given the structure of a normed division algebra. It then
follows from the classification of normed division algebras that Rn carries a non-vanishing
cross product precisely when n = 3 or n = 7. Let us package the geometry of the cross
product by defining a 3-form

ϕ0(u, v, w) = g0(u× v, w).

On R3 one has that ϕ0 = Vol3 is the standard volume form. In this sense the geometry
of the cross product on R3 does not define an interesting geometric structure– a choice
of cross product is equivalent to an orientation. On R7 on the other hand, the 3-form
ϕ0 is non-trivial. Various conventions exists for the 3-form ϕ0 ∈ Λ3(R7)∗, we adopt the
convention

ϕ0 = dx127 + dx347 + dx567 + dx145 + dx136 + dx235 − dx246

where x1, · · · , x7 are the standard coordinates on R7 and dxijk = dxi ∧ dxj ∧ dxk. Using
the Euclidean volume form Vol7 = dx1 ∧ . . . ∧ dx7 one can also form a 4-form ψ0 = ∗ϕ0

and this has coordinate expression

ψ0 = dx1234 + dx1256 + dx3456 − dx1357 + dx1467 + dx2367 + dx2457.

The relation
(uyϕ0) ∧ (vyϕ0) ∧ ϕ0 = 6g0(u, v)Vol7

holds for all u, v ∈ R7 and this observation hints at a relation between ϕ0 and the metric
and orientation on R7. This relation is made precise through the following theorem of
Robert Bryant [13]:

Theorem 2.1.3. Let G = {A ∈ GL(7,R) ; A∗ϕ0 = ϕ0}. Then G = G2 and G ⊂ SO(7).

Thus if A ∈ G2 then A preserves both the metric g0 and the orientation Vol7.
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2.1 The Octonions and the Group G2

Thinking of G2 as the group preserving the 3-form ϕ0 is for our purposes the most
useful description of the group. As a subgroup of SO(7) we see that G2 acts on R7 in the
obvious way. This representation is irreducible and called the standard representation of
G2. Furthermore this action is transitive on S6 ⊂ R7 and has isotropy SU(3), thus G2

fibres over S6 with fiber SU(3) and this reveals many of the topological properties of G2.

In particular one finds that G2 is 14-dimensional, compact, path connected and simply
connected. Furthermore SU(3) is the maximal subgroup of G2 and a choice of maximal
torus for SU(3) defines a maximal torus of G2 via the inclusion homomorphism.

The group G2 is an exceptional Lie group since the Dynkin diagram of the Lie algebra
g2 does not fall into any of the families An, Bn, Cn, Dn. The root diagram of g2 is

Figure 2.1: Root Diagram of g2

α1 = (1, 0)

α5 = (3/2,
√

3/2)
α4 = (1/2,

√
3/2)

α6 = (0,
√

3)

α3 = (−1/2,
√

3/2)
α2 = (−3/2,

√
3/2)

β1

β5
β4

β6

β3

β5

The fundamental roots are α4 and α6. Since G2 is simply connected irreducible rep-
resentations of the group and Lie algebra are in bijection. For i, j ≥ 0 we denote by
V(i,j) the complex irreducible representation with highest weight iα4 + jα6. The first few
irreducible representations are
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2.2 G2-Structures On Manifolds

• V(0,0) = C, the trivial representation

• V(1,0) = C7, the standard representation

• V(0,1) = (g2)C, the adjoint representation

• V(2,0) = Sym2
0(C7), symmetric trace-free 2-tensors.

A maximal subalgebra of g2 is given by su(3). Let us denote irreducible representations
of SU(3) by W(i,j), the first few representations being

• W(0,0) = C

• W(1,0) = C3

• W(0,1) = (C3)∗

• W(1,1) = su(3)C = sl(3,C).

One can observe from the root diagram that, as an SU(3) module, one has (g2)C =

W(1,1) ⊕W(1,0) ⊕W(0,1). The representation theory of these two Lie algebras is crucial to
this thesis and will be revisited in later chapters.

2.2 G2-Structures On Manifolds

The material covered in this section is based on [54]. Let M be a smooth oriented
7-manifold. For each p ∈M define (Λ3

+(T ∗M))p as the set of 3-forms

{λ ∈ Λ3
p(T

∗M) such that there exists an isomorphism Φ: TpM → R7 with (Φ−1)∗λ = ϕ0}

then (Λ3
+(T ∗M)) is isomorphic toGL(7,R)/G2 since ϕ0 is stabilised byG2. Let Λ3

+(T ∗M) =⋃
p∈M(Λ3

+(T ∗M))p, we call this the bundle of positive 3-forms and a section of this bundle
is called a positive 3-form. This is not a vector subbundle of Λ3(T ∗M) but rather an open
subbundle since both bundles have fibers of dimension 35.

Recall the frame bundle F →M is the bundle whose fibers is the set of isomorphisms
between TpM and R7. Let ϕ be a positive 3-form and let Q be the subset of F consisting
of the isomorphisms which identify ϕp with ϕ0. Then Q is a principal subbundle of F
whose fibres are isomorphic to G2. By definition then Q defines a G2-structure on M.

Conversely a G2-structure Q on M allow one to define a 3-form ϕ by pulling back the
G2-invariant 3-form ϕ0. This gives a 1-1 correspondence between positive 3-forms and
G2-structures on M and justifies the following definition (which is technically an abuse
of notation but is standard in the literature).

Definition 2.2.1. A choice of smooth section of Λ3
+(T ∗M) is called a G2-structure on

M.
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2.2 G2-Structures On Manifolds

Remark 2.2.2. There is a topological obstruction to the existence of a G2-structure,
namely a 7-manifold M carries a G2-structure if and only if M is spinnable, in other
words if and only if the first and second Stiefel-Whitney classes vanish.

Since G2 ⊂ SO(7) the G2-structure induces both an orientation and a metric on M .
One can in fact use the positive 3-form to explicitly construct a volume form Vol7 on M
(see [60] for details) and the induced metric g = gϕ is then defined by the relation

(ιuϕ) ∧ (ιvϕ) ∧ ϕ = 6gϕ(u, v)Vol7.

Thus one can also define a 4-form ψ := ∗ϕϕ, but it is important to note that the depen-
dence of g and ψ on ϕ is non-linear.

A G-structure on a manifold comes with intrinsic torsion. In the case at hand the
torsion measures the failure of the holonomy group of the Levi-Civita connection (induced
by gϕ) to be a subgroup of G2.

Definition 2.2.3. A G2-manifold is a 7-manifold M together with a torsion-free G2

structure ϕ. That is, we have Hol(∇) ⊆ G2 where ∇ is the Levi-Civita connection of gϕ.

A generic G2-structure will have non-zero torsion, so one can think about torsion-
free structures as optimal G2-structures. Indeed, Hitchin noted in [49] that torsion free
G2-structures are precisely the critical points of a natural functional on Γ(Λ3

+(M)).

Remark 2.2.4. One can be more precise with the notion of torsion by defining the torsion
tensor τ = ∇ϕ. By decomposing τ into irreducible components under the action of G2

one can define several classes of G2 structure. We shall consider only the torsion free
case so we omit further discussion of torsion classes.

The following result of Fernandez-Gray [32] gives an alternate characterisation of G2-
manifolds:

Theorem 2.2.5. Let (M,ϕ) be a G2-structure manifold. Then the following are equiva-
lent:

1. Hol(∇) ⊆ G2

2. ∇ϕ = 0

3. dϕ = dψ = 0.

We say that G2-manifolds are examples of manifolds with exceptional holonomy. This
is since, from the list of possible Riemannian holonomy groups given by Berger [9] in 1955,
the group G2 is called exceptional since it does not fall into a wider family of holonomy
groups. The only other exceptional holonomy group is Spin(7) and manifolds with this
holonomy group must necessarily have dimension 8. Having holonomy reduced from
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2.2 G2-Structures On Manifolds

SO(n) determines certain geometric structures, for example a reduction of the holonomy
group from SO(2n) to U(n) determines a Kähler structure. In the case at hand a special
holonomy manifold (and in particular a G2-manifold) carries a parallel spinor and is
therefore Ricci flat [48]. A good analogy to keep in mind is that G2-manifolds are 7-
dimensional analogues of Calabi-Yau 3-folds since these two classes of manifold arise from
studying different branches of string theory. Furthermore both have parallel spinors,
interesting submanifolds (called calibrated submanifolds) which are important from a
string theory perspective and also provide natural settings for the study of gauge theory.
We list here some of the known examles of G2-manifolds:

Example 2.2.6. 1. The first non-trivial examples of G2-manifolds were given by Bryant-
Salamon in [15], where they show that the total space of the vector bundles /S(S3)

(the spinor bundle of S3), Λ2
−(S4) and Λ2

−(CP2) carry metrics with full holonomy
G2, in other words Hol(∇) = G2. Their construction relies on having a large sym-
metry group acting (more precisely there is an isometric group action of cohome-
geneity one) and this allows one to reduce the torsion free condition to an ordinary
differential equation which can be solved explicitly.

2. Further non-compact examples have been given by Kovalev-Nordström [64] where
the geometry is asymptotically cylindrical and Foscolo-Haskins-Nordström in [34]
and [35] where the geometries are asymptotically locally conical and asymptotically
conical respectively.

3. The first compact examples of G2-manifolds were given by Joyce in [52]. This
construction relies on resolving orbifold singularities that occur from quotienting
the torus T 7 by a discrete group acting with fixed points. The idea is to resolve
the singularites, place a G2-structure with sufficiently small torsion on the resulting
smooth space, and show that one can the perturb to gain a torsion free structure. It
is important to note that this construction is non-explicit.

4. Further examples of compact G2-manifolds have been found by Kovalev [63] using
the so-called twisted connected sum construction. This was based on a suggestion
of Donaldson and has to date proved the most fruitful method of producing compact
examples. More recently compact examples have been given (via a third construction
method) by Joyce-Karigiannis in [56].

A rich source of study in G2-geometry is the study of calibrated submanifolds. These
are minimal submanifolds that are absolute minima in their homology classes and were
first introduced by Harvey-Lawson in [44]. They are of particular interest since the
condition of being a calibrated submanifold is a first order PDE, whereas the minimal
submanifold equation is second order, and solutions are automatically stable for the
area functional. These remarkable properties are mirrored by G2-instantons as will be

9



2.2 G2-Structures On Manifolds

explained in Chapter 3. Furthermore these two objects, calibrated submanifolds and
instantons, interact through bubbling phenomena. For that reason we give here a brief
overview of calibrated submanifolds in G2-geometry.

Definition 2.2.7. Let (M, g) be a Riemannian manifold. A k-form κ ∈ Ωk(M) is called
a calibration if

dκ = 0 (2.1)

κ(e1, . . . ek) ≤ 1 (2.2)

holds for any set of unit tangent vectors e1, . . . ek of TpM and for each p ∈M.

It is natural to ask which submanifolds yield equality in (2.2). This motivates the
next definition:

Definition 2.2.8. Let κ ∈ Ωk(M) be a calibration. A k-dimensional oriented submanifold
N is said to be calibrated by κ if

κ|N = VolN .

That is, we have κ(e1, . . . ek) = 1 for every orthonormal basis e1, · · · , ek of TpN.

The next proposition highlights why calibrated submanifolds are such worthwhile
objects of study:

Proposition 2.2.9 ([53, Proposition 3.7.2]). Let N be a compact calibrated submanifold.
Then N minimises volume within its homology class.

The case relevant to this thesis is when M = (M7, ϕ) is a G2-manifold. In this case
both the 3-form ϕ and the 4-form ψ are calibrations.

Definition 2.2.10. Let (M,ϕ) be a G2-manifold. We call submanifolds that are calibrated
by ϕ associative 3-folds. Similarly submanifolds calibrated by ψ are called coassociative
4-folds.

Whilst the Poincaré Lemma ensures that R7 can have no compact calibrated subman-
ifolds, the situation is different for the Bryant-Salamon manifolds.

Example 2.2.11. Recall that the Bryant-Salamon manifolds are topologically the total
spaces of certain vectors bundles. In each case the zero section of the vector bundle defines
a compact calibrated submanifold for the G2-structure.

1. On /S(S3), the spinor space of S3, the zero section defines an associative 3-fold
for the G2-structure. This is the unique compact associative submanifold for the
Bryant-Salamon G2-structure.

10



2.2 G2-Structures On Manifolds

2. On the other two Bryant-Salamon manifolds Λ2
−(CP 2) and Λ2

−(S4), the zero sections
define compact coassociative 4-folds for the G2-structures. In both cases the zero
section is the unique compact coassociative submanifold for the ambient manifold.

The deformation theory of associative and coassociative submanifolds was initiated
by McLean [73], where he showed that the deformations are controlled by Dirac-type
operators. When N is a compact associative, the deformation theory is controlled by
a self-adjoint twisted Dirac operator- hence (since associatives are odd dimensional) the
virtual dimension of the moduli space of deformations is 0. In contrast the moduli space
of deformations of a coassociative N is a smooth manifold with dimension b2

+(N) (the
dimension of the space of harmonic self-dual 2-forms on N).

On any manifold with a G2-structure there is a decomposition of the exterior bundles
determined by the irreducible representations of the group G2. We denote this splitting
Λk(T ∗M) =

⊕
d Λk

d where Λk
d(T

∗M) is a rank d vector bundle, fiberwise isomorphic to an
irreducible representation of G2 of dimension d. The splitting is

Λ1(T ∗M) = Λ1
7

Λ2(T ∗M) = Λ2
7 ⊕ Λ2

14

Λ3(T ∗M) = 〈ϕ〉R ⊕ Λ3
7 ⊕ Λ3

27.

Furthermore, the Hodge star operator yields isomorphic splittings

Λ7−k(T ∗M) =
⊕
d

∗
(
Λk
d(T

∗M)
)
.

We have explicit models for these spaces as follows:

Λ2
7 = {uyϕ ; u ∈ Λ1(T ∗M)} (2.3)

Λ2
14 = {α ∈ Λ2(T ∗M) ; α ∧ ψ = 0} = {α ∈ Λ2(T ∗M) ; ∗(α ∧ ϕ) = −α} (2.4)

Λ3
7 = {uyψ ; u ∈ Λ1(T ∗M)} (2.5)

Λ3
27 = {η ∈ Λ3(T ∗M) ; η ∧ ϕ = η ∧ ψ = 0}. (2.6)

Note that the fibers of Λ2
14 are isomorphic to g2, viewed via the standard association

g2 ⊂ so(7) ∼= Λ2(R7)∗. The fibers of Λ3
27 are isomorphic to Sym2

0(R7) and the map
between these two spaces is given explicitly in [80].

The spinor bundle of a 7-manifold is constructed from an irreducible representation of
Spin(7) arising by restricting a representation of the Clifford algebra Cl(R7) ∼= MatR(8)⊕
MatR(8). There are two choices of real spinor representation W+ and W−– they are both
8 dimensional and distinguished by the fact that the volume form Vol7 acts as ±1 onW±.

The resulting spin bundle is independent of this choice [65]. We make that choice that
the volume form acts as +1 since this will ensure our formula for Clifford multiplication

11



2.2 G2-Structures On Manifolds

is the standard one in the literature. We denote by s7 a fixed unit parallel spinor on M .
The stabiliser of s7 is G2 and this leads to another description

Λ2
14 = {α ∈ Λ2(T ∗M) ; α · s7 = 0}

of the bundle Λ2
14 corresponding to the adjoint representation of g2. The map Λ0⊕Λ1 →

/S(M), (f + v) 7→ (f + v) · s7 is an isomorphism [2] so that

/S(M) ∼= Λ0 ⊕ Λ1. (2.7)

The following result is stated in [2] but no proof is given, so we give a proof here for
completeness.

Lemma 2.2.12. The 3-form ϕ and 4-form ψ act with the following eigenvalues on the
subspaces of /S(M):

Λ0 Λ1

ϕ -7 1
ψ -7 1

.

Proof. Since ϕ is G2 invariant Schur’s lemma says that it preserves this decomposition
since Λ0 and Λ1 are irreducible representations of G2. Furthermore it must act as a
constant on each space and the action is traceless. We first consider the case Λ0: We
have that ψ = ∗ϕ = ϕ · Vol7 and a direct calculation shows that ϕ · ψ = 7Vol7 − 6ϕ. Let
ϕ · s7 = λs7 then we find

ϕ · ψ · s7 = ϕ2 · Vol7 · s7 = λ2s7

= (7Vol7 − 6ϕ) · s7 = (7− 6λ)s7.

Therefore λ = −7 or λ = 1. The eigenvalues of ϕ acting on Λ1 satisfy the same equation
and since ϕ is traceless we must have that ϕ acts as −7 on Λ0 and as 1 on Λ1.

Remark 2.2.13. Had we instead chosen Vol7 to act as -1, the eigenvalues of ϕ would
differ from those above by a minus sign, while the eigenvalues of ψ are independent of
this choice.

An argument similar to those of [69] and [18] yields the following corollary:

Corollary 2.2.14. Let α ∈ Ω2(M), then

α · s7 = ∗(α ∧ ψ) · s7.

Proof. Since the Λ2
14 component of α annihilates s7 we have that

α · s7 = π7(α) · s7.

12



2.3 Nearly Kähler Manifolds

Now π7(α) = vyϕ for some v ∈ Ω1(M) so Lemma 2.2.12 says

α · s7 = (vyϕ) · s7 = −1

2
{v, ϕ} · s7

= 3v · s7.

To find v, note that for v ∈ Λ1 we have ∗(∗(v ∧ ψ) ∧ ψ) = 3v (see [14] for details) and
thus we can calculate

∗(α ∧ ψ) = ∗(π7(α) ∧ ψ) = ∗((vyϕ) ∧ ψ)

= 3v

so that v = 1
3
∗ (α ∧ ψ) and the result follows.

Corollary 2.2.15. Let f ∈ Ω0(M) and u, v ∈ Ω1(M). Then Clifford multiplication of
the spinor (f + v) · s7 by u is

cl(u)(f + v) · s7 = (−〈u, v〉+ fu+ ∗(u ∧ v ∧ ψ)) · s7.

Recall the Dirac operator D : Γ(/S(M)) → Γ(/S(M)) is given in a local orthonormal
frame ei of T ∗M by the formula D(s) = ei · ∇is. It is easily verified that

D((f + v) · s) = (d∗v + df + ∗(dv ∧ ψ)) · s7

so we can write the Dirac operator as the 2× 2 matrix

D =

(
0 d∗

d ∗(ψ ∧ d ·)

)
. (2.8)

This agrees with the formula given in [59] for example, although we have found the
expression via different methods.

2.3 Nearly Kähler Manifolds

Let (Σ, g) be a Riemannian spin manifold and let /S(Σ) denote the real spinor bundle
associated to Σ. A spinor s ∈ Γ(/S(Σ)) is called a real Killing spinor if there exists a
non-zero real constant λ such that

∇Xs = λX · s (2.9)

for all X ∈ Γ(TΣ) and where ∇ is the Levi-Civita connection acting on the spin bundle.
From here on we fix Σ to be 6-dimensional.

Definition 2.3.1. A 6-manifold (Σ, g) together with a real Killing spinor s6 ∈ Γ(/S(Σ))

is called a nearly Kähler 6-manifold.

13



2.3 Nearly Kähler Manifolds

By scaling the metric, we can also scale the constant λ. In order that the Killing
spinor lifts to a parallel spinor on the cone we shall fix

λ =
1

2
.

Such a manifold is Einstein with Ric = 5g. The group fixing a Killing spinor on a 6-
manifold is SU(3) and the spinor defines an SU(3)-structure on Σ as described in [18].
This structure can be described in terms of a non-vanishing holomorphic (3, 0)-form
Ω and an almost complex structure J which allows us to define a fundamental 2-form
ω = g(J ·, ·). In a suitable local orthonormal frame these take the form

Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6)

ω = e12 + e34 + e56.

On a nearly Kähler manifold ω is not closed but the following equations are satisfied:

dω = 3ImΩ, dReΩ = 2ω2. (2.10)

In fact, a 6-manifold is nearly Kähler if and only if it is an SU(3)-structure manifold such
that (2.10) holds [37]. Observe that (2.10) shows that the almost complex structure J is
non-integrable, since comparing the type of ω and dω shows that the equation d = ∂ + ∂

does not hold. This almost complex structure satisfies

(∇XJ)X = 0 (2.11)

and this condition is also equivalent to the existence of a real killing spinor in dimension
6 [40]. Since (2.11) makes sense in any even dimension one can define a nearly Kähler 2n-
manifold to be an almost hermitian manifold such that this equation is satisfied. Nearly
Kähler manifolds were first studied by Wolf and Gray [89, 90, 91] and are sometimes
referred to as Gray manifolds.

The SU(3)-structure has non-vanishing torsion and therefore the holonomy group
of the Levi-Civita connection ∇ need not be an SU(3) subgroup. There is however a
distinguished connection on the tangent bundle with skew parallel torsion and holonomy
SU(3). This connection ∇can is known as the canonical connection and is defined via the
formula

g(∇can
X Y, Z) = g(∇XY, Z) +

1

2
ReΩ(X, Y, Z) (2.12)

for all X, Y, Z ∈ Γ(TΣ). It proves useful to define a one parameter family of connections
interpolating between the Levi-Civita connection and the canonical connection by setting

g(∇t
XY, Z) = g(∇XY, Z) +

t

2
ReΩ(X, Y, Z) (2.13)
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2.3 Nearly Kähler Manifolds

for t ∈ R. The torsion tensor T t of the connection ∇t is

g(X,T t(Y, Z)) = tReΩ(X, Y, Z).

The fact that the holonomy group of the canonical connection ∇can = ∇1 is a subgroup
of SU(3) follows from the equation

∇t
Xs6 =

1− t
2

X · s6.

For the purposes of this thesis, the most important examples of nearly Kähler 6-manifolds
will be the homogeneous ones. There are precisely four such manifolds

S6 = G2/SU(3), S3 × S3 = SU(2)3/SU(2)

CP3 = Sp(2)/Sp(1)× U(1), F1,2,3 = SU(3)/U(1)2.

Remark 2.3.2. Before the work of Foscolo-Haskins [33] in 2015 the only known nearly
Kähler 6-manifolds were the homogeneous ones. The authors showed that S6 and S3×S3

admit cohomogeneity one nearly Kähler structures.

In each case the homogeneous space G/H is reductive, meaning there is a splitting
g = h⊕m with m closed under the adjoint action of H. Here h = Lie(H) is the Lie algebra
of h and not a Cartan subalgeba of g. These coset spaces are called 3-symmetric since in
each case the subgroup H is fixed by an automorphism s of G satisfying s3 = Id. The
induced Lie algebra automorphism S also satisfies S3 = Id. This acts trivially on h and
non-trivially on m; one defines a almost complex structure J : m→ m via

S|m = −1

2
+

√
3

2
J. (2.14)

The Riemannian metric on each space is determined by the Killing form on g. In [75] it
is shown that − 1

12
is the normalisation that yields λ = 1

2
in the Killing spinor equation

(2.9), so the metric is induced from the bilinear form

B(X, Y ) = − 1

12
Trg(ad(X)ad(Y )) ∀X, Y ∈ g. (2.15)

We will refer to (2.15) as the nearly Kähler metric on g. Extending this metric by left
translation furnishes G/H with a G-invariant metric. The (1, 1)-form ω is then defined
as ω(·, ·) = g(J ·, ·) and we require the holomorphic volume form Ω to be a G-invariant
(3, 0)-form with |Ω|2 = 8 and this determines Ω up to a phase, i.e up to multiplication
by a unit complex number.

Following [42] we note that the tensors defining the SU(3)-structure admit local ex-
pressions as follows: Let {IA} be a basis for g such that Ia for 1 ≤ a ≤ 6 forms a basis for
m and Ii for 7 ≤ i ≤ dim(G) forms a basis of h. Assume furthermore that this basis is or-
thonormal with respect to B. This basis can be represented by left invariant vector fields
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2.3 Nearly Kähler Manifolds

ÊA on G and also by the dual basis êA of left invariant 1-forms. Denote by π : G→ G/H

the natural projection map g 7→ gH of the canonical bundle. Over an contractible set U
the canonical bundle admits a local section, in other words a map L : U → G such that
π ◦ L = idU . Put eA = L∗êA, then ea form an orthonormal basis for T ∗(G/H)|U and we
can therefore write ei = eiae

a with locally defined smooth functions eia. Let us denote by
Ea the dual frame, then this frame trivialises T (G/H) over U .

Let fCAB be the structure constants defined by [IA, IB] = fCABIC and use the nearly
Kähler metric to lower an index fABC := fDABδDC . The Maurer-Cartan equations take
the form

dea = −faibei ∧ eb −
1

2
fabce

b ∧ ec, (2.16)

dei = −1

2
f ibce

b ∧ ec − 1

2
f ijke

j ∧ ek. (2.17)

The components of the complex structure J defined in (2.14) are defined by J(Ia) = JabIb

and local expressions for the metric, almost complex structure and nearly Kähler form
are given by

g = δabe
a ⊗ eb (2.18)

J = Jabe
a ⊗ Eb (2.19)

ω =
1

2
Jabe

a ∧ eb. (2.20)

The final local coordinate expression we shall need is for the 3-form ReΩ and this is

ReΩ = −1

6
fabce

a ∧ eb ∧ ec. (2.21)

Reductive homogeneous spaces come with a distinguished connection, also called the
canonical connection, which lives on on the principal H bundle G → G/H. This is the
connection whose horizontal distribution is given by left translation of m. The tangent
bundle T (G/H) is associated to G→ G/H via the representation m of H. The canonical
connection coming from the reductive homogeneous structure therefore defines a connec-
tion on T (G/H) and this agrees with the connection (2.12), justifying the nomenclature.

Analogously to the G2 case the exterior bundles on a nearly Kähler 6-manifold split
according to how the fibres split as representations of SU(3). The splitting Λk(T ∗Σ) =⊕

d Λk
d, where Λk

d has fibre dimension d, is as follows:

Λ1(T ∗Σ) = Λ1
6 (2.22)

Λ2(T ∗Σ) = 〈ω〉R ⊕ Λ2
6 ⊕ Λ2

8 (2.23)

Λ3(T ∗Σ) = 〈ReΩ〉R ⊕ 〈ImΩ〉R ⊕ Λ3
6 ⊕ Λ3

12 (2.24)
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2.3 Nearly Kähler Manifolds

and there are isometric splittings Λ6−k =
⊕

d ∗(Λk
d). These spaces are modelled as follows:

(2.25)

Λ2
6 = Re

(
Λ2,0 ⊕ Λ0,2

)
= {vyRe(Ω) ; v ∈ Λ1} (2.26)

Λ2
8 = {α ∈ Λ2 ; ∗(α ∧ ω) = −α} (2.27)

Λ3
6 = {v ∧ ω ; v ∈ Λ1} (2.28)

Λ3
12 = Re{γ ∈ Λ2,1 ⊕ Λ1,2 ; γ ∧ ω = 0}. (2.29)

The bundle Λ2
8 has fibres isomorphic to su(3). Since the action of the group SU(3) fixes

the Killing spinor it is clear that the Lie algebra action annihilates it, hence we have
α ·s6 = 0 for any α ∈ Λ2

8. The Killing spinor s6 determines a bundle map from Λ0(T ∗Σ)⊕
Λ1(T ∗Σ)⊕ Λ6(T ∗M) to /S(Σ), defined by η 7→ η · s6 and Charbonneau-Harland [18] note
this is an isomorphism:

/S(Σ) ∼= Λ0(T ∗Σ)⊕ Λ1(T ∗Σ)⊕ Λ6(T ∗M). (2.30)

The almost complex structure can be constructed from this splitting; let Vol6 be the
volume element of the Clifford algebra, then one defines Vol6 · v · s6 = Jv · s6 for any
v ∈ Λ1. The forms ReΩ and ∗ω act as scalar multiples on the summands of this splitting:

Lemma 2.3.3 ([18, Lemma 2]). The subspaces of /S(Σ) isomorphic to Λ0,Λ1 and Λ6 are
eigenspaces of the operations of Clifford multiplication by ReΩ and ∗ω with the following
eigenvalues

Λ0 Λ1 Λ6

ReΩ 4 0 -4
∗ω -3 1 -3.

We would like to understand Clifford multiplication by 1-forms under this splitting of
the spin bundle. We begin with a lemma:

Lemma 2.3.4. For any α ∈ Ω2(Σ) we have that

α · s6 = (−(αyω)Vol6 − αyReΩ) · s6. (2.31)

Proof. Let πd denote projection from Λ2 to the subspace Λ2
d. The description (2.27) shows

that π8(α) · s6 = 0, so that

α · s6 = (π1(α) + π6(α)) · s6.

The π1 component of α is a multiple of ω so we calculate

ω · s6 = Vol6 · ∗ω · s6 = −3Vol6 · s6
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2.3 Nearly Kähler Manifolds

by Lemma 2.3.3. Since |ω|2 = 3 we see that π1(α) = 1
3
(αyω)ω and thus

π1(α) · s6 = (αyω)Vol6 · s6.

We have that π6(α) = vyReΩ for a unique v ∈ Λ1 and we find

vyReΩ · s6 = −1

2
{v,ReΩ} · s6 = −2v · s6

again by Lemma 2.3.3. An application of Schur’s lemma shows that v = 1
2
αyReΩ.

Therefore
π6(α) · s6 = −(αyReΩ) · s6.

Overall we see that
α · s6 = (−(αyω)Vol6 − (αyReΩ)) · s6.

Corollary 2.3.5. Clifford multiplication of a spinor (f + v + hVol6) · s6 by a 1-form
u ∈ Ω1(Σ) is given by

cl(u)(f+v+hVol6) ·s6 = (−(uyv)+fu−hJu−(u∧v)yReΩ−((u∧v)yω)Vol6) ·s6. (2.32)

Proof. Since the volume form anti-commutes with 1-forms we have that

cl(u)(f + v + hVol) · s6 = (fu+ u ∧ v − (uyv)− hJu) · s6

and the term (u ∧ v) · s6 is handled using the previous lemma.

We can apply these results to understand the Dirac operator on a nearly Kähler
manifold. Let Dt = cl ◦∇t : Γ(/S(Σ))→ Γ(/S(Σ)) be the Dirac operator constructed from
the connection ∇t acting on the spin bundle. Charbonneau-Harland [18] show that these
operators differ by a multiple of the action of ReΩ on the spin bundle:

Dt = D0 +
3t

4
ReΩ (2.33)

where D0 is the Levi-Civita Dirac operator. Note that, since ReΩ · v · s6 = 0 for any
1-form v, this family of operators have the same action on 1-forms, namely

Dt(v · s6) = (dv + d∗v + 2v) · s6.

Corollary 2.3.6. Under the splitting /S(Σ) ∼= Λ0 ⊕ Λ1 ⊕ Λ6 the Dirac operator is

Dt =

−3 + 3t d∗ 0

d 2− (d ·)yReΩ J d∗
0 ∗〈d ·, ω〉 3− 3t

 . (2.34)
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2.4 Asymptotically Conical G2-Manifolds

The link between Nearly Kähler and G2 geometry is via the cone construction. It was
noted by Hitchin in [48] that manifolds carrying parallel spinors can be defined by their
holonomy groups. Following this Bär [5] observed that a manifold admits a real Killing
spinor if and only the holonomy of its Riemannian cone fixes a spinor and hence the cone
of a nearly Kähler 6-manifold has holonomy group G2, this being the group that fixes a
spinor in dimension 7. One can describe the G2-structure on the cone of a nearly Kähler
6-manifold explicitly:

Definition 2.4.1. Let (Σ6, g6) be nearly Kähler. The G2 cone of Σ is C(Σ) = (0,∞)×Σ

together with the torsion-free G2 structure (C(Σ), ϕC) defined by

ϕC = r2ω ∧ dr + r3ImΩ

where r is the coordinate on (0,∞). The metric determined by ϕC is the cone metric
gC = dr2 + r2g6. We choose the orientation such that dr ∧ r6Vol6 is the volume form
on C. We call C a G2 cone and Σ the link of the cone. Finally, we denote the natural
projection map π : C(Σ)→ Σ.

A G2 cone is of course not complete, but we will consider complete G2-manifolds
whose geometry is asymptotically that of a G2 cone. The next definition makes this
notion precise.

Definition 2.4.2. Let (M, g, ϕ) be a non-compact G2-manifold. We call M an asymptot-
ically conical (AC) G2-manifold with rate µ < 0 if there exists a compact subset K ⊂M, a
compact, connected nearly Kähler 6-manifold Σ, a constant R > 1 and a diffeomorphism

h : (R,∞)× Σ→M \K

such that
|∇j

C

(
h∗(ϕ|M\K)− ϕC

)
|(r, σ) = O(rµ−j) as r →∞ (2.35)

for each σ ∈ Σ, for j = 0, 1, 2, . . . , where ∇C is the Levi-Civita connection for the cone
metric gC on C(Σ), ϕC is the G2-structure on the cone and | · | is calculated using gC .
We call M \K the end of M and Σ the asymptotic link of M .

Remark 2.4.3. We shall often drop the notation showing the dependence of a norm of
the form in (2.35) on a point in Σ. Such a norm is always to be understood pointwise in
Σ.

By thinking of |∇j
C

(
h∗(g|M\K)− gC

)
| as a function of r one can take a Taylor expan-

sion about r = 0 to show that g = gϕ satisfies the same asymptotic condition [61]

|∇j
C

(
h∗(g|M\K)− gC

)
| = O(rµ−j) as r →∞.
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In the same manner one finds that

|∇j
C

(
h∗(ψ|M\K)− ψC

)
| = O(rµ−j) as r →∞.

One must also remark that an AC G2-manifoldM can only have one end. This follows
from the Cheeger-Gromoll splitting theorem applied to a complete Ricci flat manifold [61].
If M were to have more than one end it would have reducible holonomy.

Example 2.4.4. 1. (R7, ϕ0) is clearly an AC G2-manifold with any rate µ < 0 since
C(S6) = R7 \ {0}. In our convention ϕC = ϕ0 and the induced metric is the
Euclidean metric.

2. Recall the Bryant-Salamon manifolds are the total spaces of certain vector bundles.
One can show that the geodesic distance from a point to the zero section of the
bundle gives each manifold an AC G2-structure. In the case of /S(S3) the asymptotic
link Σ = S3 × S3 and rate -3. The other Bryant-Salamon manifolds Λ2

−(S4) and
Λ2
−(CP2) have asymptotic links are CP3 and F1,2,3 respectively and the rate of

converge is -4 in both cases.

3. Foscolo, Haskins and Nordström find in [34] infinitely many new diffeomorphism
types of AC G2-manifolds with asymptotic link (a quotient of) S3 × S3.

2.5 Analysis on AC Manifolds

For the remainder of this thesis, unless stated otherwise, M will be an AC G2-manifold
with asymptotic link Σ and h the diffeomorphism identifying the end of M with the cone
on Σ. Weighted Sobolev spaces provide a natural setting for analysis on AC manifolds so
we now give an overview of their properties following [72]. Let us denote by M>t for any
t > R the subspace of M given by h((t,∞)× Σ).

Definition 2.5.1. A radius function ρ on M is a smooth function on M that satisfies the
following conditions. On the compact subset K of M , we define ρ = 1. Let x be a point
in M>2R, then h−1(x) = (r, y) for some r ∈ (2R,∞) and we define ρ(x) = r for such
a point. Finally, in the region h((R, 2R)× Σ), the function ρ is defined by interpolating
smoothly between its definition near infinity and its definition in the compact subset K,
in a decreasing fashion.

We will need to construct spaces of sections suitable for studying elliptic equations on
AC manifolds. For this let E → M be a vector bundle with a bundle metric and metric
connection ∇ and denote by the subscript loc the space of sections η such that fη lie in
the desired space for all smooth compactly supported functions f on M. For example,
Ck
loc(E) denotes the space of sections that in this sense lie in Ck(E).
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Definition 2.5.2. Let p ≥ 1, k ∈ N ∪ {0} and µ ∈ R. Let (M,ϕ) be an AC G2-manifold
and fix a radius function ρ. Let E be a vector bundle endowed with a bundle metric and
a metric connection ∇. Define a norm ‖·‖Lpk,µ on Lpk,loc sections η of E by defining

‖η‖Lpk,µ =

(
k∑
j=0

∫
M

∣∣ρj−µ∇jη
∣∣p ρ−7 dVolg

) 1
p

where | · | is calculated using the bundle metric. We let Lpk,µ(E) denote the completion
under this norm.

The weighted Sobolev spaces are Banach spaces and, when p = 2, Hilbert spaces. An
element η ∈ Lpk,µ(E) can be thought of as a section that is k times weakly differentiable
such that the derivative ∇jη is growing at most like rµ−j on the end of M. Indeed if
|η| = O(ρµ) on the end of M then η ∈ Lp0,µ+ε(E) for any ε > 0.

Denote Lpµ = Lp0,µ, then we have a weighted Hölder inequality [7]

‖ξ ⊗ η‖Lpµ+ν ≤ ‖ξ‖Lqµ‖η‖Lq′ν

where 1
p

= 1
q

+ 1
q′
. As in the familiar Lp case, this gives a duality pairing provided we

use the correct weight (Lpµ(E))∗ ∼= Lq−7−µ(E) where 1
p

+ 1
q

= 1. We will mostly work with
the Hilbert spaces L2

k,µ(E). For such spaces one has that
(
L2
k,µ(E)

)∗ ∼= L2
−k,−7−µ(E), but

in practice we will only ever be interested in the kernel of an elliptic operator on such a
space and we shall see that regularity properties ensure this kernel is in fact independent
of k. In this way we can always work with Sobolev spaces with a positive degree of
differentiability.

We will also require weighted Ck and C∞ spaces.

Definition 2.5.3. Let µ ∈ R and let k ∈ N ∪ {0}. The weighted Ck space Ck
µ(E) is the

subspace of Ck
loc(E) such that the norm

‖η‖Ckµ =
k∑
j=0

sup
M
|ρj−µ∇jη|

is finite. We also define C∞µ (E) = ∩k≥0C
k
µ(E). The spaces Ck

µ are Banach spaces but C∞µ
need not be.

The usual embedding theorems for Sobolev spaces can be adapted to the weighted
case, we state here only the results needed for our purposes. The theorem is stated using
µ-weighted Hölder spaces C l,α

µ (E), where α ∈ (0, 1) is the Hölder exponent. These are
spaces of sections with l continuous derivatives and controlled growth on the end of M .
The definition of a weighted Hölder space is stated here so that we can properly state the
relevant embedding theorems.
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2.5 Analysis on AC Manifolds

Definition 2.5.4. Let α ∈ (0, 1), let k ∈ N and let µ ∈ R. Let d(x, y) be the geodesic
distance between points x, y ∈M, let 0 < c1 < 1 < c2 be constants and let

H = {(x, y) ∈M ×M ; x 6= y, c1ρ(x) ≤ ρ(y) ≤ c2ρ(x) and there exists

a geodesic in M of length d(x, y) from x to y}.

A section η of a vector bundle E, endowed with a bundle metric and a metric connection
∇ is called Hölder continuous with exponent α if

[η]α = sup
(x,y)∈H

|η(x)− η(y)|E
d(x, y)α

<∞.

Here ∇ is used to identify the fibers Ex and Ey via parallel transport along a geodesic γ
connecting x and y (note we can find such a geodesic since (x, y) ∈ H).

The weighted Hölder space Ck,α
µ (E) of sections of E is the subspace of Ck,a

loc (E) such
that the norm

‖η‖Ck,αµ = ‖η‖Ckµ + [η]k,αµ

is finite, where
[η]k,αµ = [ρk+α−µ∇kη]α.

The spaces Ck,α
µ (E) is a Banach space and there are embeddings Ck,α

µ (E) → C l
µ(E)

whenever l ≤ k.With this definition in hand we can state the Sobolev embedding theorem
we require:

Theorem 2.5.5 (Weighted Sobolev Embedding Theorem). Let k, l ≥ 0 and let α ∈ (0, 1).

1. If k − 7
p
≥ l + α then there is a continuous embedding Lpk,µ(E) ↪→ C l,α

µ (E).

2. If k ≥ l ≥ 0 and k − 7
p
≥ l − 7

q
, p ≤ q and µ ≤ ν then there is a continuous

embedding Lpk,µ(E) ↪→ Lql,ν(E).

We choose to work with the spaces L2
k,µ for k ≥ 4 so that the sections we consider

are continuous. We can use the weighted embedding theorem to form a multiplication
theorem, adapting the argument of [19] to the weighted setting.

Theorem 2.5.6 (Weighted Sobolev Multiplication Theorem). Let ξ ∈ L2
k,µ(E), η ∈

L2
l,ν(F ) and suppose l ≥ k. If k > 7

2
then multiplication L2

k,µ(E)×L2
l,ν(F ) ↪→ L2

k,µ+ν(E⊗F )

is bounded, i.e there exists a constant C > 0 such that

‖ξ ⊗ η‖k,µ+ν ≤ C‖ξ‖k,µ‖η‖l,ν .

Proof. It suffices to show that each of the first k derivatives of ξ ⊗ η are in L2
µ+ν .
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2.5 Analysis on AC Manifolds

• Claim 1: If i > 7
2
then there’s a continuous pairing L2

i,µ(E)× L2
j,ν(F )→ L2

µ+ν(E ⊗
F ), (κ, τ) 7→ κ⊗ τ for any j ≥ 0.

Proof of claim 1: Let ξ ∈ L2
i,µ(E), then since i > 7

2
one notes that Theorem 2.5.5

ensures ξ ∈ C0
µ(E), so that ρ−µξ is bounded. It follows that ξ⊗η ∈ L2

µ+ν as required.

• Claim 2: If i ≤ 7
2
, j ≤ 7

2
and i+ j > 7

2
then there is a continuous pairing L2

i,µ(E)×
L2
j,ν(F )→ L2

µ+ν(E ⊗ F ) given by (κ, τ) 7→ κ⊗ τ.
Proof of claim 2: Since i + j > 7

2
there exist q, q′ such that i > 7

2
− 7

q
, j > 7

2
− 7

q′

and 1
q

+ 1
q′

= 1
2
. Then we are in a position to apply part 2 of Theorem 2.5.5 to see

there are embeddings

L2
i,µ(E) ↪→ Lq0,µ(E) = Lqµ(E)

L2
j,ν(F ) ↪→ Lq

′

0,ν(F ) = Lq
′

ν (F )

and thus there exists a constant C independent of ξ, η so that

‖κ‖Lqµ ≤ C‖κ‖L2
i,µ

‖τ‖
Lq
′
ν
≤ C‖τ‖L2

j,ν
.

Now applying the weighted Hölder inequality we get

‖κ⊗ τ‖L2
µ+ν
≤ ‖κ‖Lqµ‖τ‖Lq′ν ≤ C2‖κ‖L2

i,µ
‖τ‖L2

j,ν

which proves the claim.

So let ξ ∈ L2
k,µ(E) and η ∈ L2

l,ν(E). To conclude the proof we first note that ∇i(ξ ⊗ η) =∑
j C

j
i∇i−jξ⊗∇jη and furthermore∇i−jξ ∈ L2

k−(i−j),µ and∇jη ∈ L2
l−j,ν by the hypothesis

of the theorem. Now if k− (i− j) > 7
2
or l− j > 7

2
then we may appeal to claim 1 to see

that ξ ⊗ η ∈ L2
µ+ν . If this does not hold we notice that

k − (i− j) + l − j = k + l − i ≥ k >
7

2

so we may apply claim 2 instead.

At several instances we shall need to apply the implicit function theorem when working
with these Banach spaces. We state here two versions that will be used in subsequent
chapters.

Theorem 2.5.7 (Implicit Function Theorem, Version 1 [27] ). Let X1,X2 and Y be Banach
spaces and suppose F : X1 × X2 → Y is a smooth map with partial derivatives diF. If the
partial derivative (d2F) at a point (ξ1, ξ2) is surjective and admits a bounded right inverse
then for all η1 near ξ1 there is a solution η2 to the equation

F(η1, η2) = F(ξ1, ξ2).
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2.5 Analysis on AC Manifolds

Theorem 2.5.8 (Implicit Function Theorem, Version 2 [69]). Let X and Y be Banach
spaces and let U ⊂ X be an open neighbourhood of 0. Let F : U → Y be a Ck map, for
some k ≥ 1, with F(0) = 0. Suppose dF|0 : X → Y is surjective with kernel K such that
X = K⊕ Z for some closed subspace Z.

Then there exists open sets V ⊂ K and W ⊂ Z both containing 0, with V×W ⊂ U and a
unique Ck map G : V→W such that

F−1(0) ∩ (V×W) = {(x,G(x)) : x ∈ V}.
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Chapter 3

Background From Gauge Theory

In this chapter we review the framework for studying gauge theory on G2-manifolds,
nearly Kähler 6-manifolds and homogeneous manifolds. Gauge theory is the study of
connections on vector (or principal) bundles together with a gauge invariant curvature
condition. Applications of gauge theory in dimension 4 and below have been hugely
successful, most notably with applications to topology, with tools such as Donaldson and
Seiberg-Witten theory providing novel new invariants. We shall consider gauge theory in
dimension 6 and 7, so we first provide an overview of gauge theory in higher dimensions.

The study of gauge theory in dimension greater than four has a long history– the
first significant result came from James Simons who announced in 1977 that Yang-Mills
connections on spheres of dimension greater than four are unstable and this result was
published two years later in [12]. Further results concerning stability of Yang-Mills con-
nections on quotients of Sn and more general homogeneous spaces were obtained by
Bourguignon and Lawson in 1981 in [11]. In 1983 Donaldson [24] showed that his theory
of ASD instantons could be applied to give strong restrictions on the intersection form
of a differentiable four manifold. Around the same time generalisations of the ASD in-
stanton to higher dimensions were first considered by Corrigan, Devchand, Fairlie and
Nuyts in [21] and included in their list of examples were the Spin(7) and G2-instanton
equations on R8 and R7 respectively. A similar analysis was later provided for a general
Riemannian manifold by Reyes Carrion in [17]. The first examples of instantons on higher
dimensional Euclidean spaces were given for the Spin(7) case by Fubini-Nicolai [38] and
Fairlie-Nuyts [31] and for the G2 case by Günaydin-Nicolai in [41].

Early suggestions for defining invariants from instanton equations in higher dimensions
were given in [29] and [1] and around this time the first thorough study into Spin(7)-
instantons was carried out in the PhD thesis of Lewis [66]. The first major success in
the program came in 2000 when the Donaldson-Thomas invariant of Calabi-Yau 3-folds
was presented in [85]. Some of the technicalities of defining invariants from counting G2-
instantons over compact manifolds were studied in Donaldson-Segal [28]. In particular
they observed bubbling phenomena can occur for a 1-parameter family of G2-structures.
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Following this observation there has been much work to overcome the difficulties one
encounters from working with these moduli spaces. To define a suitable invariant one
must perform the instanton count (when the deformation theory is unobstructed the
moduli space is a 0-dimensional manifold) with a weight attached to each instanton-
in other words orient the moduli space as is familiar from Morse theory for example.
Following important initial work in this direction by Haydys [45] a system for orienting
the moduli space, by involving counts to solutions of gauge theoretic equations over
associative submanifolds, has been proposed by Haydys-Walpuski in [47] and further
work in this area can be found in [46] [23] and [22]. An alternate suggestion for a suitable
procedure for orienting the moduli space was given by Joyce in [55] and recent related
works [58, 57].

We shall consider G2-instantons on non-compact manifolds. Early work in this area
can be found in [79, 78] and the survey article [70] assesses the current state of play. The
manifolds under consideration in [70] fall into two families; the first is when the geometry
is asymptotically locally conical, which means it is asymptotic to a circle bundle over a
6-dimensional cone. The second is when the geometry is AC and it is the goal of this
thesis to develop the deformation theory for G2-instantons in this setting. For this we
begin by reviewing the basic setup of gauge theory.

Let (Xn, g) be an oriented n dimensional Riemannaian manifold, let P → X be a
principal G-bundle and let A be a connection on P . The bundle P comes with a gauge
group G = {principal bundle isomorphisms : P → P covering the identity}. The gauge
group acts on the space of connections A , heuristically via the formula

g(A) = gAg−1 − dgg−1,

and one may form the space of connections modulo gauge, B = A/G. We denote by AdP
the vector bundle of Lie algebra valued sections, which is associated to the bundle P via
the adjoint representation of G on g = Lie(G). The space of connections is an affine space
identified with Ω1(X,AdP ) = Γ(T ∗M ⊗AdP ) since any two connections differ by such a
section. A choice of connection A on P gives rise to a linear connection acting on sections
of AdP which we shall denote ∇A. This is extended in the usual way to Ω∗(M,AdP ) and
for a section f ∈ Γ(AdP ) we use the notation ∇Af = dAf interchangeably.

We assume G to be compact and semi-simple and endow the adjoint bundle with an
invariant inner product 〈 , 〉g coming from the Killing form on g. Given two Lie algebra
valued forms α ∈ Ωk(M,AdP ) and β ∈ Ωl(M,AdP ) we can form a real valued differential
form 〈α ∧ β〉g ∈ Ωk+l(M) by taking the inner product of the Lie algebra valued parts
of α and β and taking the wedge product of the exterior algebra valued parts as usual.
The space of connections comes equipped with a natural functional, called the Yang-Mills
functional, defined as

YM(A) = ‖FA‖2
L2 =

∫
M

〈FA ∧ ∗FA〉g
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where we view FA as a section of Λ2(T ∗M)⊗AdP. The Euler-Lagrange equation for this
functional is

d∗AFA = 0

which is called the Yang-Mills equation, and a connection whose curvature satisfies this
equation is called a Yang-Mills connection. Note that the Bianchi identity says that
dAFA = 0, so Yang-Mills connections can be thought of as connections with harmonic
curvature. Observe that the Yang-Mills functional is gauge invariant and so descends to
B.

To seek out Yang-Mills connections one typically simplifies the problem by choosing an
algebraic condition on the curvature that implies that the Yang-Mills equation holds. For
example if A is flat, which is to say that FA vanishes identically, the Yang-Mills equation
trivially holds. The condition of flatness is clearly gauge invariant, since the curvature
transforms as a tensor, and so the study of flat connections is a typical example of a gauge
theory. As previously mentioned one can often define invariants in such a setting, as an
example Taubes showed in [84] that one can recover the Casson invariant of homology
3-spheres from the moduli space of flat connections.

Another famous example comes from the study of ASD instanton connections on 4-
manifolds. If X is 4-dimensional then the Hodge star operator splits the space of 2-forms
on M into its ±1 eigenspaces, i.e we have a splitting Λ2(T ∗X) = Λ2

+ ⊕Λ2
−. A connection

A is called an ASD (anti-self-dual) instanton if it satisfies the gauge invariant condition
∗FA = −FA. It is clear that such a connection is Yang-Mills thanks to the Bianchi identity,
but one can use Chern-Weil theory to show that such a connection is in fact an absolute
minimum of the energy on a compact manifold. An ASD instanton comes with a notion
of topological charge, which is simply the second Chern number c2(E) of the bundle E on
which it lives. On a complex vector bundle an SU(r)-connection has Yang-Mills energy
bounded from below by 8π2c2(E).

Example 3.0.1 (Standard ASD Instanton). The first non-trivial ASD instanton with
structure group SU(2) was constructed in [8], where an ansatz of rotational symmetry
was posed. We provide here a very brief introduction to this ASD instanton as it is
important for understanding the bubbling behaviour of G2-instantons as was done in [71]
and will be covered in Chapter 6.

Give S3 the round metric so that (R4 \ {0}) is isometric to the Riemannian cone
C(S3) = (R+ × S3, dr2 + r2ground), where r is the coordinate on R+. We may view any
connection on R4 × SU(2) as a path in the space of connections on S3 × SU(2) with
bounded curvature at the origin so that the connection extends over the singular point.
In [8] a 1-parameter family of solutions to the ASD instanton were given, the parameter
describes the concentration of the curvature around the origin. For any scaling parameter
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3.1 Gauge Theory On G2-Manifolds

we call this the standard ASD instanton and denote it AASD. This connection extends
over 0 and (fixing the scaling parameter) has

|FAASD| =
1

(1 + r2)2
.

It follows that AASD has finite Yang-Mills action and in fact YM(AASD) = 8π2, in other
words AASD has topological charge equal to 1. If we view AASD as a path in the space
of connections modulo gauge on Q → S3 then AASD is a non-trivial loop starting and
ending at the trivial flat connection.

Another way of interpreting the ASD equation is as follows: Under the canonical
isomorphism Λ2(R4)∗ ∼= so(4) the splitting Λ2 = Λ2

+ ⊕ Λ2
− corresponds to the splitting

so(4) = su(2)+ ⊕ su(2)−. From this viewpoint an ASD instanton is a connection such
that (denoting the bundle Λ2

− as su(2)−)

FA ∈ Γ(su(2)− ⊗ AdP ),

in other words 2-form part of the curvature lies in the su(2)− subbundle of Λ2. One
advantage of viewing the ASD equation from this point of view is that the notion of
instanton generalises quite readily. Suppose the manifold X carries a K-structure and
K is a strict subgroup of SO(n), then since k ⊂ so(n) we get a subbundle of the bundle
of 2-forms on M , which we also denote by k. An instanton connection A on P is then
defined to be a connection such that

FA ∈ Γ(k⊗ AdP ).

Depending on the K-structure and its torsion classes such a connection may or may not
be Yang-Mills. We shall see that the two cases treated in this thesis will have the desirable
property of implying the Yang-Mills equation.

3.1 Gauge Theory On G2-Manifolds

Let (M7, ϕ) be a G2-manifold and recall that M admits a splitting of the bundle of
2-forms

Λ2(T ∗M) = Λ2
7 ⊕ Λ2

14

and the fibers of Λ2
14 are copies of the Lie Algebra g2.

Definition 3.1.1. Let P → M be a principal bundle and let A be a connection on P .
We call A a G2-instanton if

FA ∈ Γ(Λ2
14 ⊗ AdP ).
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3.1 Gauge Theory On G2-Manifolds

There are many alternative definitions of a G2-instanton that one could give; it is
useful to understand each equivalent condition so we list them here for the convenience
of the reader:

• Since the fibers of Λ2
14 are copies of g2 ⊂ so(7) and G2 is the group that stabilises

the parallel spinor s7 we see that a G2-instanton satisfies

FA · s7 = 0

where · denotes Clifford multiplication and only the 2-form part of FA acts on the
spinor bundle.

• A 2-form α ∈ Λ2(R7)∗ is in Λ2
14 if and only if α ∧ ψ = 0 [80] so A is a G2-instanton

if and only if
FA ∧ ψ = 0.

• The space Λ2
14 is characterised as the −1 eigenspace of the operator ∗(ϕ∧ ·) : Λ2 →

Λ2, so the G2-instanton equation can also be written

−FA = ∗(ϕ ∧ FA).

This version of the equation can readily be seen as a generalisation of the anti-self-
duality equation that defines an ASD instanton; an instanton is a connection whose
curvature lies in the -1 eigenspace of an operator on the space of 2-forms.

It is now easy to see that G2-instantons are Yang-Mills, since ∗FA = −ϕ ∧ FA we can
use the Bianchi identity and the fact that ϕ is closed to see that d∗AFA = 0. Similarly
to the case of ASD instantons on compact manifolds when the G2-manifold is compact
G2-instantons are not just critical for the Yang-Mills energy, they are in fact absolute
minima. To see this note that, since ϕ is closed, the characteristic class

κ(P ) = −
∫
M

〈FA ∧ FA〉g ∧ ϕ

is a topological invariant of the bundle. We assume that the chosen invariant inner
product is given by taking the trace (to avoid cumbersome constants) and calculate

κ(P ) = −
∫
M

〈FA ∧ FA〉g ∧ ϕ

= −
∫
M

〈FA ∧ FA ∧ ϕ〉g

= −〈FA, ∗2F 7
A − ∗F 14

A )〉L2

= −2‖F 7
A‖2 + ‖F 14

A ‖2
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3.1 Gauge Theory On G2-Manifolds

where F 7
A and F 14

A denote the projections of FA to the orthogonal subspaces Λ2
7 and Λ2

14

of Λ2 respectively. Combining this with the Yang-Mills energy one finds that

YM(A) = 3‖F 7
A‖2 + κ(P ).

One can also write this energy in terms of κ and ‖F 14
A ‖ but by assuming κ ≥ 0 we can

forget about this possibility. It is now clear that G2-instantons are stable as claimed.
Observe also that the G2-instanton equation is a first order PDE, whereas the Yang-Mills
equation is second order.

Following [79] one can also interpret G2-instantons from a Chern-Simons viewpoint.
Fix a reference connection A, which we assume to be a G2-instanton, then any other con-
nection B differs from A by an element of Ω1(M,AdP ). Note that TA = A×Ω1(M,AdP ),

so thinking of vectors on A as elements of Ω1(M,AdP ) we define a 1-form ρ by

ρ(B, a) =

∫
M

tr(FB ∧ a) ∧ ψ.

One can show that ρ is a closed 1-form and since A is contractible, it must be the exterior
derivative of some function ϑ. Moreover ρ vanishes on dB(Ω0(M,AdP ) ∼= TB(G ·A), the
directions tangent to the gauge orbits. Thus ρ descends to the quotient space B, and so
does ϑ, at least locally. If we write B = A+ b then ϑ becomes the multi-valued function

ϑ([B]) =
1

2

∫
M

(
dAb ∧ b+

2

3
b ∧ b ∧ b

)
∧ ψ

and one can show that ϑ(g · A) differs from θ(A) by
∫
σ
ψ for some σ ∈ H4(M,R). Note

ψ may not be an integral class, so it may not be possible to think of ϑ as a circle valued
function. The gradient dϑ = ρ is none the less well defined on B [79], so if one is simply
interested in the critical points of ϑ, i.e G2-instantons, this is not too problematic.

We list here some of the known examples of G2-instantons:

• The Levi-Civita connection of a G2-manifold is a G2-instanton. Thinking of the
Riemann curvature tensor R as an endomorphism 2-form, the fact that the Levi-
Civita connection has holonomy contained in G2 means that R(u, v) ∈ g2 and
the symmetries of the Riemann curvature tensor means that R ∈ Γ(g2 ⊗ g2) ⊂
Γ(Λ2(T ∗M)⊗ End(TM)).

• The first non-trivial example was given by Gunäydin-Nicolai in 1995, this is a
connection on G2 ×R7 → R7 and shall be referred to throughout this thesis as the
standard G2-instanton.

• Examples of G2-instantons on SO(3) bundles over Joyce’s compact G2-manifolds
have been given by Walpuski [86]. On twisted connected sum manifolds, examples
have been given by Menet et. al in [74] and Walpuski [87]. Similar to the problem
of constructing G2-structures on compact manifolds, the problem of finding G2-
instantons on compact manifold yields non-explicit examples.
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3.2 Gauge Theory on Nearly Kähler 6-Manifolds

• Recall the Bryant-Salamon manifolds are non-compact manifolds admitting co-
homegeneity one group actions. It is natural to look for instantons which are
also invariant under this action. This is essentially the idea behind the example of
Clarke [20] who found a one-parameter family of examples on /S(S3) = R4 × S3.

Examples on the other Bryant-Salamon manifolds Λ2
−(S4) and Λ2

−(CP2) were found
by Oliveria in [77]. In [71] Lotay-Oliveira studied the moduli space of G2-instantons
over R4×S3 (with both its asymptotically conical and asymptotically locally conical
structures) invariant under a given group action. Notably this lead to an instanton
on /S(S3) which arises as a limiting connection of Clarke’s family.

The important observation from the examples on this list is that those living over an
asymptotically conical G2-manifold have a well defined limit at infinity. In fact, the
connection at infinity is an instanton connection for the nearly Kähler link of the AC
G2-manifold.

It is worth noting that the work of Huang [51], which shows that the curvature tensor
of a G2-instanton on R7 can not lie in L2. More generally on a non-compact manifold, if
the G2-structure is d-linear, which is to say that ϕ = dκ and |κ(x)| ≤ 7(1 + dist(x0, x))

for some fixed base point x0, then the curvature of any G2-instanton cannot lie in L2.

3.2 Gauge Theory on Nearly Kähler 6-Manifolds

Throughout this section Σ denotes a compact nearly Kähler 6-manifold and Q → Σ

denotes a principal bundle with compact and semi-simple structure group. Since Σ has
an SU(3)-structure, the notion of instanton connection is simply that of an instanton for
the SU(3)-structure. Recall that there is an orthogonal splitting

Λ2(T ∗Σ) = Λ2
8 ⊕ Λ2

6 ⊕ 〈ω〉R

and that Λ2
8 has fibers isomorphic to su(3).

Definition 3.2.1. Let Q→ Σ be a principal bundle. A connection A∞ on Q is called a
nearly Kähler instanton (or a pseudo-Hermitian-Yang-Mills connection) if

FA∞ ∈ Γ(Λ2
8 ⊗Q).

As in the G2-case there are several equivalent definitions we could have given and we
list them below:

• Since the stabiliser of the Killing spinor s6 is SU(3), nearly Kähler instantons satisfy

FA∞ · s6 = 0.
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3.2 Gauge Theory on Nearly Kähler 6-Manifolds

• Since the decomposition of Λ2 is orthogonal, and Λ2
8 consists of real (1, 1) forms

which are orthogonal to ω, the nearly Kähler instanton equation is equivalent to

F
(2,0)
A∞

= F
(0,2)
A∞

= 0, ωyFA∞ = 0.

These equations are called the Hermitian-Yang-Mills equations, the name pesudo-
Hermitian-Yang-Mills connection is sometimes used since we are studying these
equations on a manifold with an SU(3)-structure that has non-vanishing torsion.

• The space Λ2
8 is the -1 eigenspace for the operator on 2-forms ∗(ω ∧ ·), thus nearly

Kähler instantons satisfy the anti-self-duality equation

−FA∞ = ∗(ω ∧ FA∞).

• Another equivalent formulation is that

FA∞ ∧ ImΩ = 0.

That this last viewpoint is equivalent to the other conditions requires a little more
work, the reader can find the proof in [92].

Now ω is not closed so it is not immediately obvious that A is Yang-Mills. However Xu
[93] observed that dA∞ ∗FA∞ = − dω∧FA∞ and since dω = 3ImΩ is a (3, 0)+(0, 3) form,
the wedge product dω ∧ FA∞ must vanish, so nearly Kähler instantons are Yang-Mills.

Xu [92] also studied a Chern-Simons formulation of nearly Kähler instantons. Define
a function on B = A/G by

ϑ∞(A∞) =
1

2

∫
Σ

Tr(F 2
A∞) ∧ ω

and observe that, since ω is not closed, this is not a topological invariant. In other
words, this is not a constant function. The picture here is somewhat different to the case
previously considered. Clearly ϑ∞ is gauge invariant, so defines a genuine function on B.

As noted by Xu [92, Remark 2.2.14] after fixing a reference connection A∞ one can use
dω = 3ImΩ to write ϑ∞ in the more familiar form

ϑ∞(A∞ + a) =
1

2

∫
Σ

(
FA∞ ∧ a−

2

3
a ∧ a ∧ a

)
∧ ImΩ.

One finds [92, Scetion 2.2] that

dϑ∞(A∞, a) =

∫
Σ

(FA∞ ∧ dA∞a) ∧ ω

and the Euler-Lagrange equation is dA∞(FA∞ ∧ω) which by the Bianchi identity is equiv-
alent to FA∞ ∧ ImΩ = 0. Thus critical points are precisely nearly Kähler instantons.
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3.3 Homogeneous Bundles and Invariant Connections

The most important example of a nearly Kähler instanton is the canonical connection,
this is a connection on TΣ and when Σ is homogeneous it can also be seen as a connection
on the bundle G→ G/H which we will refer to as the canonical bundle (this should not
be confused with the canonical bundle from complex geometry). It is shown in [43] that
the canonical connection defines a nearly Kähler instanton on TΣ and in [42] that it
defines an instanton on the canonical bundle. We will revisit the canonical connection in
Section 3.3, where it will be placed in the framework of homogeneous bundles.

Remark 3.2.2. It is easy to verify that a connection A∞ on Q → Σ is a nearly Käh-
ler instanton if and only if, denoting π : C(Σ) → Σ as the natural projection map, the
connection π∗A∞ is a G2-instanton on π∗Q. For this reason nearly Kähler instantons are
the natural model for G2-instantons on AC conical G2-manifolds, with decay conditions
imposed at infinity.

3.3 Homogeneous Bundles and Invariant Connections

This section covers standard material on homogeneous bundles, invariant connections
and Wang’s theorem. This material is covered in [62] and summaries can also be found
in [77] and [71].

Let G be a compact, connected Lie group with closed subgroup H and form the
homogeneous space G/H. Furthermore suppose this space is reductive so that g = h⊕m

and this splitting is respected by the adjoint action of H. Suppose E = G ×(H,ρ) V is a
vector bundle associated via some representation (V, ρ) of H. Examples of such bundles
are given by the tensor and spinor bundles, so we have a wealth of examples to work
with. We denote by ρL (resp. ρR) the left regular representation (resp. right regular
representation) acting on L2(G,E) via

ρL(g′)f(g) = f((g′)−1g)

ρR(g′)f(g) = f(gg′).

Then there is a standard association of sections of E and H-equivariant functions G→ V

given by

L2(E) ∼= L2(G, V )H = {f ∈ L2(G, V ) ; ρR(h)f = ρV (h)−1f for allh ∈ H}

(we choose to work with L2 sections as this is the natural setting in which to apply the
Frobenius reciprocity formalism which we use in subsequent chapters). We also denote
the induced Lie algebra action by ρ, thus L2(G, V )H also has the description

L2(G, V )H = {f ∈ L2(G, V ) ; ρR(X)f + ρV (X)f = 0 for allX ∈ h}.
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3.3 Homogeneous Bundles and Invariant Connections

The isomorphism L2(E) ∼= L2(G, V )H works as follows: If f ∈ L2(G, V )H note
that Xf ([g]) = [g, f(g)] is a well-defined section of L2(G ×(H,ρ) V ). Conversely if X ∈
L2(G ×(H,ρ) V ) then for each g ∈ G there is a unique vg such that X([g]) = [g, vg]. The
map fX : G → V, g 7→ vg is H equivariant and hence defines an element of L2(G, V )H .

Furthermore, the two maps X 7→ fX and f 7→ Xf are inverse to each other, so this
identification of sections and equivariant maps is indeed an isomorphism.

In this setting it is natural to studyG-invariant tensors, which are typically determined
by a natural algebraic constraint. For example, it is demonstrated in [62] that there exists
a one-to-one correspondence between G-invariant metrics on G/H and Ad(H)-invariant
metrics on m. This fact will be useful for understanding the Bryant-Salamon metrics in
Chapters 6 and 7.

Recall on a principal K-bundle π : Q→ X, over any manifold X, the structure group
K acts on the right and for any p ∈ P this action defines a homeomorphism K ∼= Qπ(p) =

π−1({p}).

Definition 3.3.1. Let Q → G/H be a principal K-bundle. We say that Q is a G-
homogeneous K-bundle if there is a lift of the natural left action of G on G/H to the
total space Q which commutes with the right action of K.

Let Q be a homogeneous K-bundle over G/H. Choose a point q0 ∈ π−1({eH}), then
for all h ∈ H, we see that h · q0 ∈ π−1({eH}). Thus, for each h ∈ H there exists a unique
k ∈ K such that h · q0 = q0 · k. This defines a map λ : H → K, we see that this is in fact
a homomorphism since q0 · λ(h1h2) = h1h2 · q0 = q0 · λ(h1) · λ(h2). We call λ the isotropy
homomorphism. This allows one to reconstruct the bundle Q: Consider the associated
bundle

Q×(H,λ) K = (G×K)/ ∼

where ∼ is the equivalence relation (gh, k) ∼ (g, λ(h)k) for all g ∈ G, h ∈ H and k ∈ K.
Then the map

G×(H,λ) K → Q, [(g, k)] 7→ g · q0 · k

defines an isomorphism of principal bundles. Thus, G-homogeneous K-bundles over G/H
are determined by isotropy homomorphisms λ : H → K. More precisely, isomorphism
classes of homogeneous K-bundles are in bijection with conjugacy classes of homomor-
phisms λ : H → K.

Suppose now we have a homogeneous K-bundle Q ∼= G×(H,λ)K and a representation
(V, ρ) ofK. Then the lift of theG-action toQ endows the associated bundle E = Q×(K,ρ)V

with an an action of G. Furthermore there is an isomorphism of homogeneous bundles

E ∼= G×(H,ρ◦λ) V.

A section s ∈ Γ(E) is then said to be invariant if, once viewed as and H-equivariant
map s : G→ V, it is constant. Thus we can decompose V into irreducible components for
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3.3 Homogeneous Bundles and Invariant Connections

the action of H on V and call a section s ∈ γ(E) a G-invariant section if it takes values
in a trivial component (if there are any).

We can also understand gauge transformations in the homogeneous setting. Let Q =

G ×(H,λ) K be a homogeneous K-bundle and consider gauge transformations of Q as
sections of c(Q) = Q ×(K,c) K where c(k1)k2 = k1k2k

−1
1 . Using the isomorphism c(Q) =

G×(H,c◦λ)K we can define aG-invariant section of c(Q) from an element k of the centraliser
of Λ(H) via the map

[g] 7→ [g, k]

where [ · ] denotes an equivalence class. We say a connection A is G-invariant if its con-
nection 1-form A ∈ Ω1(Q, k) is left invariant. The most familiar example of an invariant
connection is the canonical connection, which we now review.

Let Σ6 = G/H be a reductive nearly Kähler homogeneous space. Recall the canonical
1-form θ on G is the left invariant g-valued 1-form uniquely determined by

θ(X) = X for all X ∈ g.

The reductive property of the homogeneous space means that Acan := πh ◦ θ defines a
G-invariant connection on the canonical bundle G → G/H . It was verified in [42] that
the canonical connection defines a nearly Kähler instanton on this bundle. If λ : H → K

is any Lie group homomorphism, there is a canonical H-equivariant mapping

i : G→ G×λ K

given by
g 7→ [(g, e)]

where e ∈ K is the identity. By first extending Acan trivially to G × K one obtains a
connection Aλcan on G ×λ K. If λ is an injection we can use i to consider G ⊂ G ×λ K,
then by [65, Proposition 4.7] we have

Aλcan|G = λ∗Acan

and
FAλcan|G = λ∗FAcan

where λ∗ : g→ k is the induced Lie algebra homomorphism. The connection Aλcan defines
a nearly Kähler instanton on the associated bundle with Hol(Aλcan) = H.

In the same manner one can also view the canonical connection as living on a vector
bundle which has been associated via a linear representation of H. Let (V, λ) be such
a representation and form the associated bundle E = G ×λ V. Associating vector fields
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3.3 Homogeneous Bundles and Invariant Connections

with elements of C∞(G,m)H and sections with elements of C∞(G, V )H , the action of the
covariant derivative ∇Aλcan is [4]

∇Aλcan
X f(g) = ρR(X)f(g) =

d

dt

∣∣∣∣
t=0

f(getX(g)). (3.1)

In practice we will work with the canonical connection on a fixed associated bundle and
simply write Acan to denote the canonical connection living on this bundle.

The broader framework for studying invariant connections is provided by Wang’s the-
orem [88]. This gives an algebraic description of G-invariant connections on homogeneous
bundles.

Theorem 3.3.2 (Wang). Let Q = G ×(H,λ) K be a principal homogeneous K-bundle.
Then G-invariant connections on P are in one-to-one correspondence with morphisms Φ

of H representations
Φ: (m,Ad)→ (k,Ad ◦ λ).

The connection AΦ that corresponds to such a morphism Φ satisfies (AΦ−Acan)([1]) = Φ

where we identify linear maps m→ k with elements of (T ∗(G/H)⊗ AdQ)[1].

At various points we shall consider constructing G2-instantons over an asymptotically
conical manifold with a cohomegeneity one group action. The idea will be to apply
Wang’s theorem and look for a path in the space of invariant connections on the link,
which leaves one with an ODE to solve.

More generally let (G/H, g) be a Riemannian homogeneous space, form the Rie-
mannian cone C(X) = (R+ × X, dr2 + r2gX) (where r is the coordinate on R+) and
let π : C(X) → X be the natural projection map. If Q → G/H is a G-homogeneous
K-bundle then π∗Q carries an action of G defined in the obvious way on each radial
slice r =const. We shall call a connection A on π∗Q invariant if its connection 1-form
A ∈ Ω1(π∗Q, k) is left invariant under this action. In looking for solutions to instanton
equations in this setting we shall see that imposing invariance allows one to reduce to
solving an ODE. Since want a connection defined on a complete manifold we must impose
suitable boundary conditions to extend the connection to the entire, complete space.
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Chapter 4

Gauge Theory on Asymptotically
Conical G2-Manifolds

In this chapter we begin to study gauge theory on asymptotically conical G2-manifolds.
We begin by introducing the analytic setup under consideration. The study of gauge
theory on weighted spaces has been considered by Taubes [83], Nakajima [76] and Don-
aldson [25] among others so we borrow from these works to set up the basic machinery.
The original contributions of this thesis begin in Section 4.2. To specialise to the AC
G2-manifold setting we provide a slice theorem for the action of the gauge group and
thus provide local models for the space of connections modulo gauge. We then show that
the instanton moduli space is locally homeomorphic to the kernel of an elliptic operator
and use the implicit function theorem to show this moduli space is a smooth manifold
when the deformation theory is unobstructed. Finally we give a brief overview of what
is known about the obstruction spaces in question and adapt the work of [50] and [51] to
show that flat connections are unobstructed for certain decay rates.

4.1 Gauge Theory on Weighted Spaces

In this section we adapt the basic setup of gauge theory to the natural boundary condi-
tions that we choose to impose at infinity. Since we require polynomial decay at infinity
and study an elliptic equation, a natural choice of function spaces to work with is the
weighted Sobolev spaces. We show that, for reasonable decay rates, the machinery famil-
iar from the case of compact manifolds follows through to the present case.

To begin with let us fix some notation. We first adapt the weighted Sobolev spaces
from Definition 2.5.2 to sections of twisted bundles. Let p ≥ 1, k ∈ N ∪ {0} and µ ∈ R.
Let (M,ϕ) be an AC G2-manifold with radius function ρ and let P → M be a principal
bundle with connection A. In the notation of Definition 2.5.2 the vector bundle E in
question is E = T ⊗AdP with T being either a tensor or spinor bundle. Thus T inherits
a metric g and the Levi-Civita connection and these are combined with the metric 〈, 〉g
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4.1 Gauge Theory on Weighted Spaces

and connection A on AdP to furnish E with a metric and connection. The norm ‖·‖Lpk,µ
on Lpk,loc sections η of E = T ⊗ AdP is thus

‖η‖Lpk,µ =

(
k∑
j=0

∫
M

∣∣ρj−µ∇jη
∣∣p ρ−7 dVolg

) 1
p

where | · | is calculated using a combination of g and 〈, 〉g and ∇ = ∇LC⊗∇A is the tensor
product of the Levi-Civita connection on T and the connection ∇A on AdP. As before
Lpk,µ(T ⊗AdP ) denotes the completion under this norm. For convenience we shall adopt
the following notation:

Ωm
µ (M) := C∞µ (ΛmT ∗M), Ωm

k,µ(M) := L2
k,µ(ΛmT ∗M)

Ωm
µ (M,AdP ) := C∞µ (T ∗M ⊗ AdP ), Ωm

k,µ(M,AdP ) := L2
k,µ(ΛmT ∗M ⊗ AdP ).

Let us now make precise the concept of a G2-instanton decaying to a nearly Kähler
instanton. To do so we first fix a suitable framing of our bundle.

Definition 4.1.1. Let M be an asymptotically conical G2-manifold, with asymptotic link
Σ, and let P → M be a principal bundle over M . We call P asymptotically framed if
there exists a principal bundle Q→ Σ such that

h∗P ∼= π∗Q

where π : C(Σ)→ Σ is the natural projection map.

Remark 4.1.2. We loose no generality here since such a framing always exists. The
condition here is slightly more general than the setup of Taubes in [83] where it is assumed
that Q is trivial. When this is the case Taubes notes that if G is simple and simply
connected then P must also be trivial.

From now on we assume that P has a fixed asymptotic framing Q.

Definition 4.1.3. Let M be an asymptotically conical manifold. A connection A on an
asymptotically framed bundle P →M is called asymptotically conical with rate µ if there
exists a connection A∞ on Q→ Σ such that, denoting AC = π∗(A∞) we have

|∇j
C(h∗(A|M∞)− AC)|C = O(rµ−1−j) (4.1)

for all non-negative integers j, for some µ < 0 and where ∇C is a combination of the
Levi-Civita connection on the cone metric and AC. Here | · |C is the norm induced by the
cone metric and the metric on g. We say A is asymptotic to A∞ and call the quantity
µ0 := inf{µ ; A is asymptotically conical with rate µ} is called the fastest rate of converge
of A.
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4.1 Gauge Theory on Weighted Spaces

Remark 4.1.4. Although we choose to measure the rate of convergence with the conical
metric and the coordinate r on the cone, we could also have chosen to do so with respect
to the AC metric and the radius function, the rate of converge is the same. Note it is
natural to require the difference of the connections to be O(rµ−1) since a 1-form a on
the link Σ satisfies |π∗a|C = O(r−1) where π : C(Σ) → Σ is the projection map. The
requirement that µ < 0 is crucial to the analysis that follows; it could be interesting to
consider allowing non-negative rates but the methods we develop in this chapter will no
longer be applicable.

It follows from [77, Proposition 3] that, on an AC G2-manifold M , any G2-instanton
with pointwise curvature decay will have as a limit (if it exists) a nearly Kähler instanton
on the G2 on the asymptotic link Σ of M .

The weighted Sobolev spaces provide a suitable framework for studying AC connec-
tions. Recall the space of connections is an affine space; a choice of reference connection
A identifies the space of connections A with Ω1(M,AdP ), since any other connection B
is B = A+ a where a is a uniquely determined Lie algebra valued 1-form. We let

Ak,µ−1 =
{
A+ a ; a ∈ Ω1

k,µ−1(M,AdP )
}

be the space of L2
k,µ−1 connections and Aµ−1 = ∩k≥0Ak,µ−1 the space of C∞µ−1 connections.

We also need to introduce gauge transformations with specified decay properties.
Recall a gauge transformation g is an automorphism of the principal bundle that covers
the identity and that g acts on a connection A via the formula g · A = gAg−1 − dgg−1.

Following the setup of Nakajima in [76] suppose P → M is a principal G bundle, pick a
faithful representation G→ GL(V ) and form the associated bundle End(V ). We define

Gk+1,µ := {g ∈ C0(End(V )) ; ‖Id− g‖k+1,µ <∞, g ∈ G a.e}. (4.2)

Furthermore we define Gµ :=
⋂
l≥0 Gl,µ. The framework of weighted gauge groups has been

studied by Taubes in [83], Nakajima [76] and Donaldson [25] among others. As such we
are able to borrow a preliminary lemma:

Lemma 4.1.5 ([25, Proposition 4.12]). The pointwise exponential map defines charts
making Gk+1,µ into Hilbert Lie groups with Lie algebra modelled on Ω0

k+1,µ(M,AdP ) for
k ≥ 3. The group Gk+1,µ acts smoothly on Ak,µ−1 via gauge transformations when k ≥ 4.

Now we can define our main object of study:

Definition 4.1.6. Let M be an AC G2-manifold with asymptotic link Σ. Let P →M be
a bundle asymptotically framed by Q → Σ and let A∞ be a nearly Kähler instanton on
Q. The moduli space of G2-instantons asymptotic to A∞ with rate µ is

M(A∞, µ) = {G2-instantons A on P satisfying (4.1) asymptotic to A∞}/Gµ. (4.3)
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4.1 Gauge Theory on Weighted Spaces

To begin studying this moduli space we first try to understand it as the zero set of a
(non-linear) elliptic operator. Let us pick a reference connection A which we assume to
be a G2-instanton, then we can write any other connection B as B − A = a where a ∈
Ω1(M,AdP ). The relationship between the curvatures is FB−FA = dAa+a∧a and hence
the G2-instanton equation for B becomes the non-linear equation ψ ∧ (dAa+ a ∧ a) = 0.

From an analytic perspective it is advantageous to work instead with the G2-monopole
equation

dAf + ∗ (ψ ∧ (dAa+ a ∧ a)) = 0 (4.4)

for some f ∈ Ω0(M,AdP ). This is because adding the (local) gauge fixing condition
d∗Aa = 0 to (4.4) yields an elliptic equation. The gauge fixing condition mentioned here
will be explored later in the chapter. Ignoring the technicalities of the gauge fixing
conditions for the moment, note that the G2-monopole equation are precisely elements of
the zero set of the non-linear operator DA : Γ((Λ0⊕Λ1)⊗Ad(P ))→ Γ((Λ0⊕Λ1)⊗Ad(P ))

given by

DA =

(
0 d∗A

dA ∗(ψ ∧ (dA + · ∧ · ))

)
. (4.5)

To see that the linearisation of DA is elliptic we compare the expression for the Dirac
operator (2.8) and conclude the linearisation is the twisted Dirac operator DA where

DA =

(
0 d∗A

dA ∗(ψ ∧ dA )

)
. (4.6)

Nothing is lost in moving to this setup for if (f, A) satisfies the G2-monopole equation
(with a decay condition) then f = 0. Thus the zero set of DA consists of solutions B
to the G2-instanton equation together with the gauge fixing condition d∗A(B − A) = 0.

Similarly if (f, a) satisfies the linearised G2-monopole equation then f = 0. We delay the
proof of these facts until later in this section.

Being a twisted Dirac operator, DA is first order elliptic and formally self adjoint. The
kernel of DA consists of gauge fixed solutions to the linearised G2-monopole equation.
In studying the behaviour of this operator we are lead to consider various other Dirac
operators, so we briefly list those operators we will require. If A is an asymptotically
conical connection then there is a connection A∞ on Q → Σ and we define AC = π∗A∞

as in (4.1). Hence we have operators

Operator Bundle Formula

DA /S(M)⊗ AdP cl ◦ ∇LC ⊗∇A

DAC
/S(C)⊗ Ad(π∗Q) cl ◦ ∇LC ⊗∇AC

Dt
A∞

/S(Σ)⊗ AdQ cl ◦ ∇t ⊗∇A∞
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4.1 Gauge Theory on Weighted Spaces

The operator DA fits into the analytic framework for operators on AC manifolds which
has been developed by Lockhart-McOwen in [67] and by Marshall in [72], whose work
we now adapt to our setting. Suppose (M, g) is asymptotically conical and ρ is a radius
function, then gAcyl := ρ−2g is asymptotically cylindrical. Let E any vector bundle with
fibre metric induced from the Riemannian metric (the cases we shall consider all fall into
this category) and let TE : (E, g)→ (E, gAcyl) be the natural isometry from the conformal
change of AC to Acyl metrics. Let E and F be two such bundles over M . We will call
an operator K : Γ(E)→ Γ(F ) asymptotically conical with rate ν if

ρν(TF )−1K TE

is asymptotic to an operator K∞ that is invariant under the R+ action on M∞ =

h((R,∞) × Σ). Here two smooth order l operators K,L : Γ(E) → Γ(F ) are said to be
asymptotic if the following holds: Let Uσ be a finite an open cover of Σ, then over the
sets Vσ = h((R,∞)× Uσ) (which form an open cover of the end of M) the operators act
as rankF × rankE matrices of operators

(KVσ)ij =
∑

0≤|λ|≤l

(K)σλij ∂
λ

(LVσ)ij =
∑

0≤|λ|≤l

(L)σλij ∂
λ

(here λ is a multi index) and each such matrix satisfies

sup
t×Uσ

∣∣fσ∂λ1 ((K)νλ2ij − (L)νλ2ij

)∣∣
for all 1 ≤ i ≤ rankF, 1 ≤ j ≤ rankF, |λ1| ≥ 0 and 0 ≤ |λ2| ≤ l and where {fσ} is a
translation invariant partition of unity, subordinate to a finite open cover of M which
extends the cover {Vσ} of the end of M. A very detailed treatment of the constructions
mentioned here can be found in [72]. An important fact is that an AC rate ν order
l operator K : Γ(E) → Γ(F ) admits a bounded extension K : L2

k+l,µ(E) → L2
k,µ−ν(F ).

Assume the connection A that we work with is AC in the sense of (4.1). Our main cases
of interest are:

• E = Λ0(M)⊗ AdP, F = Λ1(M)⊗ AdP and TE = id, TF = ρ. The operator ∇A is
AC with rate 1, this follows straight from the AC condition on the connection (4.1)
in local coordinates. Similarly the operators dA and d∗A are AC with rate 1.

• E = F = /S(M)⊗Ad(P ) ∼= (Λ0⊕Λ1)⊗Ad(P ) and TE =

(
1 0
0 ρ

)
. As noted in [61]

the Dirac operator D is AC with rate 1. It then follows from the above example
that the twisted Dirac operator is AC since if s ∈ /S(M) and η ∈ AdP one has
DA(s⊗ η) = D(s)⊗ η + cl ◦

(
s⊗∇Aη

)
.
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4.1 Gauge Theory on Weighted Spaces

• E = F = Ad(P ) and TE = Id. The coupled Laplace operator d∗A dA is AC with rate
2. This follows from the fact that it is the composition of the AC rate 1 operators
d∗A and dA (this is proved in [72, Lemma 4.19]).

Furthermore the above operators are uniformly elliptic, which is to say they are elliptic
operators that converge to elliptic operators on the cone. The operators in consideration
converge to DAC and (dAC )∗ dAC which are built from the connection AC living on the
cone. Such operators come with estimates that ensure desirable regularity properties
analogous to the situation on a compact manifold.

Theorem 4.1.7 ([72, Theorem 4.21]). Suppose K : C∞c (E) → C∞c (F ) is a smooth uni-
formly elliptic, asymptotically conical operator of rate γ and order l ≥ 1. Suppose that
η ∈ L1

loc(F ) and ξ ∈ L1
loc(E) is a weak solution of Kξ = η.

If ξ ∈ Lp0,β+γ(E) and η ∈ Lpk,β(F ) then ξ ∈ Lpk+l,β+γ(E) with

‖ξ‖Lpk+l,β+γ(E) ≤ C
(
‖η‖Lpk,β(F ) + ‖ξ‖Lp0,β+γ(E)

)
where the constant C > 0 is independent of ξ.

Thus the kernel of an order l AC uniformly elliptic rate ν operatorK : L2
k+l,µ → L2

k,µ−ν

is independent of k, we therefore denote the kernel simply by KerKµ := KerK : L2
k+l,µ →

L2
k,µ−ν . Using this Sobolev estimate together with the weighted Sobolev embedding theo-

rem we find that the kernel of an AC uniformly elliptic operator has the desirable property
of consisting of smooth sections. To study the kernel of our operators we will need to
determine the set of critical weights which are determined by the asymptotic operators.

Definition 4.1.8. Let C be a G2-cone with asymptotic link Σ and AC = π∗(A∞). Let
KC be either the twisted Dirac operator DAC or the coupled Laplace operator d∗AC dAC
acting on sections of E = /S(C) ⊗ Ad(π∗(Q)) and E = Ad(π∗(Q)) respectively. The set
Wcrit(KC) of critical weights of the operator PC is

Wcrit(KC) = {λ ∈ R ; ∃ a non-zero homogeneous order λ section η of E with KC(η) = 0} .
(4.7)

In the case of a twisted spinor, a section η is homogeneous of order λ if

η = (f + (g dr + v)) · sC

(here sC denotes the parallel spinor on the cone) with f = rλπ∗(f∞), g = rλπ∗(g∞) and
v = rλ+1π∗(v∞), where f∞, g∞ ∈ Ω0(Σ,AdQ) and v∞ ∈ Ω1(Σ,AdQ) (equivalently η =

rµs∞ where s∞ is a spinor on Σ lifted to the cone). In general one has to allow for complex
critical weights but the formal self-adjoint property of the above operators in question
ensures all such weights are real. The set Wcrit(KC) is countable and discrete. Recall an
operator between Banach spaces is called Fredholm if it has finite dimensional kernel and
cokernel. An operator whose range admits a finite dimensional complementary subspace
automatically has closed range, so this is in particular true of Fredholm operators.
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Theorem 4.1.9. Let E andK be as above. Then the extension K : Lpk+l,µ(E)→ Lpk,µ−ν(F )

is Fredholm whenever µ ∈ R\Wcrit(KC). Furthermore if [µ, µ′] ∩Wcrit(PC) = ∅, then

KerKµ = KerKµ′ .

Thus the kernel of K is independent of the weight provided we do not pass through
any critical weights. For any k ≥ 4 and µ < 0 we define:

(d∗A dA)k,µ := d∗A dA : Ω0
k+2,µ(M,AdP )→ Ω0

k,µ−2(M,AdP ) (4.8)

(DA)k,µ := DA : L2
k+1,µ(/S(M)⊗ AdP )→ L2

k,µ−1(/S(M)⊗ AdP ). (4.9)

The last result we shall require is a Fredholm alternative for AC manifolds, see [72]
and [67] for the proof.

Theorem 4.1.10 ([72, Theorem 4.22]). Let K be an AC uniformly elliptic order l and
rate ν operator and suppose that µ 6∈ Wcrit(KC) so that the extension

K : L2
k+l,µ(E)→ L2

k,µ−ν(F )

is Fredholm. Then

1. There exists a finite dimensional subspace Oµ−ν of L2
k,µ−ν such that

L2
k,µ−ν(F ) = K(L2

k+l,µ(E))⊕ Oµ−ν (4.10)

and
Oµ−ν ∼= KerK∗−7−µ+ν . (4.11)

2. If µ > −7
2

+ ν then we can take

Oµ−ν = KerK∗−7−µ+ν .

3. The image of the extension K is the space

K(L2
k+l,µ(E)) =

{
η ∈ L2

k,µ−ν(F ) ; 〈η, κ〉L2(F ) = 0 for all κ ∈ Ker(K∗)−7−µ+ν

}
.

(4.12)

4.2 The Space of Connections Modulo Gauge

We now aim to give a description of the space of connections modulo gauge. Given a ref-
erence connection A we may view the gauge orbit Gk+1,µ ·A as a subset of Ω1

k,µ−1(M,AdP ).

The infinitesimal action of the µ-weighted gauge group is − dA : Ω0
k+1,µ(M,AdP ) →

Ω1
k,µ−1(M,AdP ) and our strategy is to show this image is closed and hence admits a

complement. We aim to find a particular complement for this image, which is called a
“slice” of the action and as usual is given by the Coulomb gauge fixing condition. The
upshot of this can be seen from the following thereom:
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4.2 The Space of Connections Modulo Gauge

Theorem 4.2.1 ([36, Section 3]). Suppose G is a group acting on a Banach manifold X.
If through each x ∈ X we can find a slice of the action (i.e an open submanifold Y such
that TyX = Ty(G · y)⊕ TyN for all y ∈ N and such that the restriction of the projection
X → X/G to Y is on-to-one) and if the action is free, then X/G is a smooth manifold.
If G is a Banach Lie group the same conclusion holds if a slice of the Lie algebra action
can be found.

Applying this theorem to the case of the weighted gauge groups Gk+1,µ action on
the space of connections Ak,µ−1 we see that a splitting of Ω1

k,µ−1(M,AdP ) into an (in-
finitesimal) orbit space and a complement shows the quotient space is a smooth Hilbert
manifold if the action is free. As in the case of a compact manifold the Coulomb gauge
fixing condition may not pick out a unique class representative globally, so we also give
a sufficient condition for this property to hold. Our strategy for this task is to develop
the Fredholm theory of the coupled Laplacian d∗A dA.

To learn when d∗A dA is Fredholm Theorem 4.1.9 tells us to look for homogeneous
order λ elements of the kernel of d∗AC dAC . Such a solution looks like f = rλξ for some
ξ ∈ Ω0(Σ,AdP ) and we calculate

d∗AC dACf = rλ−2
(
d∗A∞ dA∞ξ − λ(λ+ 5)ξ

)
so such a solution exists if and only if λ(λ + 5) is an eigenvalue of d∗A∞ dA∞ . Given that
the coupled Laplace operator is positive, we find that there are no critical weights in the
range (−5, 0). Therefore:

Proposition 4.2.2. Let A be an AC connection over an AC G2-manifold. If µ ∈ (−5, 0)

then the coupled Laplacian d∗A dA : Ω0
k+2,µ(M,AdP )→ Ω0

k,µ−2(M,AdP ) is Fredholm.

The next lemma is a gauged version of integration by parts on AC manifolds, the
proof goes through identically to [61, Lemma 4.16] but is given here for completeness.

Lemma 4.2.3. Let ξ ∈ Ωm−1
k,µ (M,AdP ) and η ∈ Ωm

l,ν(M,AdP ). If k, l ≥ 4 and µ+ν < −6

then
〈dAξ, η〉L2 = 〈ξ, d∗Aη〉L2 .

Proof. We apply Stoke’s theorem to the manifold with boundary M≤s = {x ∈M ; ρ(x) ≤
s} (note this satisfies ∂(M≤s) = {s} × Σ). Thus by Stoke’s theorem∫

M≤s

〈dAξ, η〉 −
∫
M≤s

〈ξ, d∗Aη〉 =

∫
M≤s

d〈ξ ∧ ∗η〉g =

∫
{s}×Σ

〈ξ ∧ ∗η〉g.

It remains to show that the integral on the right hand side vanishes at s → ∞. The
hypothesis of the theorem ensures |ξ ∧ η| = O(ρ−6−ε) for some ε > 0. We therefore have∣∣∣∣∫

{s}×Σ

〈ξ ∧ ∗η〉g
∣∣∣∣ ≤ ∫

{s}×Σ

|ξ ∧ ∗η| dVol{s}×Σ ≤ Cs−ε

which vanishes at s→∞ as required.
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4.2 The Space of Connections Modulo Gauge

Corollary 4.2.4. Let f ∈ Ker(d∗A dA)µ. If µ < 0 then dAf = 0.

Proof. We have seen that there are no critical weights of d∗A dA in the region (−5, 0), so
d∗A dAf = 0 and µ < 0 then f ∈ Ω0(M,AdP )k+2,µ0 for some µ0 < −5

2
and for any k. It

follows that dAf ∈ Ω1
k+1,µ0−1(M,AdP ). Integration by parts is valid for such and weight

and we see that
‖dAf‖L2 = 〈d∗A dAf, f〉L2 = 0.

The following useful lemma which is due to Marshall [72] is a straightforward ap-
plication of the maximum principle. We denote by ∆ = d∗ d the usual Laplacian on
functions.

Lemma 4.2.5. Let (M, g) be an asymptotically conical manifold. If µ < 0 then Ker(∆)µ =

{0}.

As an immediate corollary we find that harmonic sections of the adjoint bundle must
vanish:

Corollary 4.2.6. Let f ∈ Ker(d∗A dA)µ. If µ < 0 then f = 0.

Proof. Since f ∈ Ker(d∗A dA)µ we know by Corollary 4.2.4 that dAf = 0 and the connec-
tion is compatible with the inner product so that

∆|f |2 = d∗ d|f |2 = 2 d∗〈dAf, f〉 = 0.

So |f |2 is a harmonic function and hence zero.

Pausing for a moment we can finally justify our switch from the G2-instanton equation
to the G2-monopole equation (4.4).

Corollary 4.2.7. If µ < 0 and (f, A) ∈ Ω0
k+1,µ(M,AdP ) ⊕ A satisfies the G2-monopole

equation
dAf + ∗(ψ ∧ FA) = 0

then f = 0.

Proof. We apply d∗A to the G2-monopole equation dAf + ∗(ψ ∧ FA) = 0 and use that ψ
is closed together with the Bianchi identity to find that d∗A dAf = 0 and hence Corol-
lary 4.2.6 is applicable.

Corollary 4.2.8. Let A be an asymptotically conical G2-instanton. If µ < 0 and (f, a) ∈
L2
k+1,µ((Λ0 ⊕ Λ1)⊗ AdP ) satisfies the linearised G2-monopole equation

dAf + ∗(ψ ∧ dAa) = 0

then f = 0.
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4.2 The Space of Connections Modulo Gauge

Proof. Again we apply d∗A any observe that

d∗A dAf + ∗(ψ ∧ d2
Aa) = 0

and sinceA is aG2-instanton ψ∧d2
Aa = ψ∧[FA, a] = 0 so we may appeal to Corollary 4.2.6.

We return our attention to splitting the space of 1-forms. It is sufficient for our
purpose to work in the regime where −5 < µ < 0, since each known example (except for
the twistor lift of ASD instanton as given in [77]) has fastest rate of convergence in this
interval. Note from (4.8) that (d∗A dA)k,µ has trivial cokernel, since the adjoint maps from
the space with weight −5− µ < 0. The bounded inverse theorem then yields:

Lemma 4.2.9. Let (M, g) be an asymptotically conical G2-manifold and let A be an
asymptotically conical connection on a principal bundle P →M. If −5 < µ < 0 then the
coupled Laplacian

d∗A dA : Ω0
k+2,µ(M,AdP )→ Ω0

k,µ−2(M,AdP )

is an isomorphism of topological vector spaces.

This allows us to split the space of 1-forms, heuristically Ω1
l,µ−1(M,AdP ) = Im dA ⊕

Ker d∗A. Note however that the splitting may not be orthogonal, since the weights we
require need not be in the L2 integrable regime. Instead we make use of the following
basic lemma from Banach space theory:

Lemma 4.2.10. Suppose T : X → Y is a bounded linear operator between Banach spaces,
so that the kernel KerT is closed and admits a closed complement. A closed subspace
X0 ⊂ X is a complement to KerT if and only if

1. T |X0 is injective

2. T (X) = T (X0).

Proof. In a Banach space X two closed subsets X0 and K are complementary if and only
if they are algebraically complementary, which is to say X0 +K = X and X0 ∩K = {0}.
Let K be the kernel of the bounded linear operator T and let X0 be such that the above
conditions hold. Let x ∈ X0 ∩K, then we must have that x = 0. For any x ∈ X there is
a unique x0 ∈ X0 such that T (x) = T (x0), so we can write x = (x − x0) + x0 and since
x− x0 ∈ K we are done.

We would like to apply the above lemma with X = Ω1
k+1,µ−1(M,AdP ), T = d∗A and

X0 = dA(Ω0
k+2,µ(M,AdP )), thus we must first establish that the image of dA is closed.

Lemma 4.2.11. The operator dA : Ω0
k+2,µ(M,AdP ) → Ω1

k+1,µ−1(M,Ad) has closed im-
age.

46



4.2 The Space of Connections Modulo Gauge

Proof. Let {dAfn}∞n=1 be a sequence in dA(Ω0
k+2,µ(M,AdP )), and let a ∈ Ω1

k+1,µ−1(M,AdP )

be such that
‖dAfn − a‖k+1,µ−1 → 0.

Applying the bounded operator d∗A we see that d∗A dAfn converges to d∗Aa in Ω0
k,µ−1(M,AdP ).

Since d∗A dA admits a bounded inverse we find that fn converges to f := (d∗A dA)−1 d∗Aa in
Ω0
k+2,µ(M,AdP ). Finally we apply the bounded operator dA and see that

‖dAfn − dAf‖k+1,µ−1 → 0.

So a = dAf by uniqueness of limits and hence Im dA is closed.

Theorem 4.2.12 (Slice Theorem). Let −5 < µ < 0 then

Ω1
k+1,µ−1(M,AdP ) = Ker(d∗A : Ω1

k+1,µ−1(M,AdP )→ Ω0
k,µ−2(M,AdP ))⊕dA(Ω0

k+2,µ(M,AdP )).

(4.13)

Proof. We apply Lemma 4.2.10 to the operator d∗A : Ω1
k+1,µ−1(M,AdP )→ Ω0

k,µ−2(M,AdP ).

Since d∗A is AC this extension is bounded and hence the kernel is a closed subspace. We
claim that dA(Ω0

k+2,µ(M,AdP )) satisfies the hypothesis of Lemma 4.2.10. Firstly, as noted
above this is a closed subspace.
Claim 1: d∗A is injective when restricted to dA(Ω0

k+2,µ(M,AdP )).

To see this suppose that d∗A dAf = d∗A dAg for f, g ∈ Ω0
k+2,µ(M,AdP ). Then f − g is

harmonic and hence 0, so certainly dAf − dAg = 0.

Claim 2: d∗A dA(Ω0
k+2,µ(M,AdP )) = d∗A(Ω1

k+1,µ−1(M,AdP )).

This follows from Lemma 4.2.9.

The importance of this result is that it gives us a local description of the space
Bk+1,µ = Ak+1,µ−1/Gk+2,µ of connections modulo gauge. The infinitesimal action of the
gauge group Gk+2,µ is − dA : Ω0

k+2,µ(M,AdP ) → Ω1
k+1,µ−1(M,AdP ), so we can interpret

Theorem 4.2.12 as a so called “slice” theorem– we have found complements for the action
of the gauge group. If the action is free, it will follow from general theory that the
quotient space is a smooth manifold.

To see that the action is free set ΓA,µ = {g ∈ Gk,µ ; g ·A = A}. Recall we are viewing
gauge transformations as sections of End(V ) as defined in (4.2). By a standard argument
ΓA,µ is closed Lie subgroup of End(Vx), for some base point x, whose elements are covari-
antly constant sections of End(V ) [27, Section 4.2.2] (i.e sections g for which dAg = 0).

Recall G is assumed to be semi-simple and the inner product on the representation V

is assumed to be invariant. The connection A has Hol(A) ⊂ G so it preserves the inner
product on V and thus also preserves the induced inner product on End(V ) = V ⊗ V ∗.
Thus, regarding gauge transformations as sections of End(V ) as in (4.2), if g ∈ ΓA,µ then
|g − Id| ∈ Ω0

k+2,µ(M,AdP ) and ∆|g − Id|2 = 2 d∗〈dA(g − Id), g − Id〉 = 0. We have seen
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4.2 The Space of Connections Modulo Gauge

that such a function must vanish, so that ΓA,µ = Id. This is in contrast to the case when
M is compact since, in the AC case, reducible connections (those with Hol(A) a proper
subgroup of G) do not lead to singularities in the space of connections modulo gauge. As
a consequence, if we set

TA,µ,ε = {a ∈ Ker d∗A : Ω1
k+1,µ−1(M,AdP )→ Ω0

k,µ−2(M,AdP ) ; ‖a‖k,µ−1 < ε}. (4.14)

then TA,ε models a local neighbourhood of A in Bk+1,µ.We summarise this in the following
corollary:

Corollary 4.2.13. Let P → M be a principal G-bundle with G semisimple. If −5 <

µ < 0 then the moduli space Bk+1,µ = Ak+1,µ−1/Gk+2,µ is a smooth manifold and the sets
TA,µ,ε provide charts near [A].

Working with the local models TA,µ,ε amounts to solving Coulomb gauge condition
d∗Aa = 0. This condition picks out a unique gauge equivalence class locally but may not
do so sufficiently far away from A. The failure of a global gauge fixing is a reflection of
the rich topology of B [26]. Using the surjectivity of the coupled Laplacian we can prove
a weighted version of [27, Proposition 2.3.4] which gives a sufficient condition for solving
the Coulomb gauge condition:

Proposition 4.2.14. Let P → M be a principal G-bundle with G a compact Lie group
and let A ∈ Aµ−1 for µ ∈ (−5, 0). There is a constant c(A) > 0 such that if B ∈ Aµ−1

and B = A+ a satisfies
‖a‖L2

4,µ−1
< c(A)

then there is a gauge transformation g ∈ Gµ such that g(B) is in Coulomb gauge relative
to A.

Proof. We have that
g(A+ a) = A+ gag−1 − (dAg)g−1.

Write g = exp(χ) = eχ for a section χ of AdP , then we are looking to solve the nonlinear
equation F(χ, a) = 0 where

F(χ, a) = d∗A
(
(dAe

χ)e−χ − eχae−χ
)
.

The linearisaton of this operator is

dF(0,0)(ξ, b) = d∗A dAξ − d∗Ab.

We are in a position to apply the implicit function theorem. In the notation of The-
orem 2.5.7 we pick the Banach spaces X1 = Ω1

5,µ−1(M,AdP ),X2 = Ω0
4,µ(M,AdP ) and

Y the L2
3,µ−2 closure of d∗A(Ω1

µ−1(M,AdP )). By Lemma 4.2.9 (d2F)(0,0) is surjective and
therefore we can solve for small enough a. More precisely there is a constant c(A) for
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which we can solve the equation provided ‖a‖4,µ−1 < c(A) since we are topologising the
space of connections with the L2

4,µ norm. The solution g = exp(χ) is on the outset only
in G5,µ but we now bootstrap to show in fact g ∈ Gµ. For this we let u ∈ Gk,µ and note
that we can write

d∗A dAu = (dAuu
−1) y dAu+ u d∗Aau

−1 + dAu y a+ ua yu−1 dAu,

so if k ≥ 4 (so that u is continuous) and a lies in Ω1
µ−1(M,AdP ) (in particular a is

smooth) then the right hand side of this equation lies in L2
k,µ−2 and hence by elliptic

regularity u lies in L2
k+1,µ. Thus by bootstrapping our solution solution g ∈ G5,µ to the

Coloumb gauge equation fixing equation we see that g ∈ Gµ as claimed.

4.3 A Regularity Result

We observed that elements of the zero set of the operator DA from (4.5) consists of
(smooth) G2-instantons B together with the Coulomb gauge condition d∗A(B − A) = 0

which fixes a gauge near to A. The decay condition (4.1) we impose on connections in the
moduli space M(A∞, µ)k, that a neighbourhood of 0 in the zero set of DA : C∞µ−1 → C∞µ−2

is homeomorphic to a neighbourhood of [A] in M(A∞, µ). We now show that we may
instead study the moduli space using the weighted Sobolev spaces; this is advantageous
since these spaces are the natural setting for studying elliptic operators on AC man-
ifolds. Let us denote by M(A∞, µ)k the space of L2

k,µ−1 connections by L2
k+1,µ gauge

transformations. Note that the Sobolev multiplication theorem (Theorem 2.5.6) ensures
DA : L2

k+1,µ−1(/S(M)⊗ AdP )→ L2
k,µ−2(/S(M)⊗ AdP ) is bounded if k ≥ 3.

We use the regularity of uniformly elliptic, asymptotically conical operators to obtain
a result comparable to Donaldson and Kronheimer [27, Proposition 4.2.16].

Proposition 4.3.1. Let k ≥ 4 and −5 < µ < 0. Then the natural inclusionM(A∞, µ)k+1 ↪→
M(A∞, µ)k is a homeomorphism.

Proof. Suppose A is an asymptotically conical G2-instanton of rate µ and class L2
k,µ−1.,

we will show that there exists a gauge transform g such that g(A) is in L2
k+1,µ−1. Firstly

we know by Proposition 4.2.14 there is an ε > 0 such that any L2
k,µ−1 connection B with

‖A − B‖L2
k,µ−1

< ε can be gauge transformed into Coulomb gauge relative to A. Since
C∞µ−1 lies densely in L2

k,µ−1 we may pick a smooth connection B satisfying this condition,
then we know there exists a g in L2

k+1,µ with

d∗A(g−1(B)− A) = 0.

The Coulomb gauge condition is symmetric, so that A is also in Coulomb gauge relative
to g−1(B), i.e

d∗g−1(B)(A− g−1(B)) = 0. (4.15)
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Let us denote g(A) = B + a, then we can apply g to (4.15) deduce

d∗Ba = 0.

Furthermore we have the relation

∗(ψ ∧ dBa) = − ∗ (ψ ∧ FB)− ∗(ψ ∧ a ∧ a).

Now the weighted multiplication theorem Theorem 2.5.6 ensures that a ∧ a ∈ L2
k,2(µ−1)

and the curvature of B lies in C∞µ−2. Thus DB(a) ∈ L2
k,µ−2 and the asymptotically conical

uniformly elliptic estimates for the smooth operatorDB allow us deduce that a ∈ L2
k+1,µ−1.

That is, we have bootstraped to gain a degree of differentiability. This establishes the
surjectivity of the inclusion.
The map is clearly injective and continuous; to see it is a homeomorphism we show that
the two spaces have the same convergent sequences with their induced topologies. Let
{an}∞n=1 be a sequence in M(A∞, µ) which is convergent in the L2

k,µ−1 norm, i.e there is
some a∞ ∈ M(A∞, µ) with ‖an − a∞‖kµ−1 → 0 as n → ∞. Observe that, since an and
a∞ are in the zero set of DB, we have that

|DB(an − a∞)| = | ∗ (ψ ∧ (an ∧ an − a∞ ∧ a∞))| = |π7(an ∧ an − a∞ ∧ a∞)|

where the final equality follows from the facts that the Hodge star operator acts isomet-
rically and since the operation of wedging with ψ is an isomorphism of representations
between Λ2

7 and Λ6 which preserves the norm. To see that {an}∞n=1 also converges in the
L2
k+1,µ norm we observe that

‖an − a∞‖k+1,µ−1 ≤ C(‖DB(an − a∞)‖k,µ−2 + ‖an − a∞‖0,µ−1)

≤ C(‖an ∧ an − a∞ ∧ a∞‖k,µ−2 + ‖an − a∞‖0,µ−1)

≤ C ′(‖an‖k,−1‖an − a∞‖k,µ−1 + ‖a∞‖k,−1‖an − a∞‖k,µ−1 + ‖an − a∞‖0,µ−1)

with the constants C,C ′ > 0 coming from the elliptic estimate for the smooth operatorDB

and the weighted Sobolev multiplication Theorem 2.5.6. Now since {an}∞n=1 converges
in L2

k,µ−1 and there is a continuous embedding L2
k,µ−1 ↪→ L2

k,−1, the sequence ‖an‖k,−1

is bounded independent of n and therefore ‖an − a∞‖k+1,µ−1 → 0. Since the spaces
M(A∞, µ)k and M(A∞, µ)k+1 have the same convergent sequences, the inclusion is a
homeomorphism.

Note the weighted Sobolev embedding theorem ensures the spaces M(A∞, µ)k consists
of smooth connections. This yields the following important corollary; the moduli space
near [A] is modelled on a neighbourhood of 0 in the zero set of the non-linear elliptic
operator DA in any Sobolev extension.

Corollary 4.3.2. Let A be an AC G2-instanton, asymptotic to A∞ with rate µ where
−5 < µ < 0. The zero set of the operator DA : L2

k+1,µ−1(/S(M)⊗AdP )→ L2
k,µ−2(/S(M)⊗

AdP ) is independent of k ≥ 3 and a neighbourhood of A in M(A∞, µ) is homeomorphic
to a neighbourhood of 0 in (DA)−1(0).
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4.4 Fredholm and Index Theory of the Twisted Dirac Operator

4.4 Fredholm and Index Theory of the Twisted Dirac
Operator

Recall that the operator DA : L2
k+1,µ → L2

k,µ−1 is Fredholm when there are no non-zero
solutions to

DAC (rµs∞) = 0

where rµs∞ denotes a homogeneous order µ − 1 spinor on the cone. We will find an
expression for the Dirac operator on the cone in terms of the operator on the link Σ to
determine the solutions to this equation.

We begin by comparing the Dirac operators on the link Σ and the cone C. Let Σ

a nearly Kähler 6-manifold and (C, gC) = (Σ × R>0, dr
2 + r2g) be the cone on Σ. We

consider first the case of the ordinary Dirac operators

D0 : Γ(/S(Σ))→ Γ(/S(Σ))

DC : Γ(/S(C))→ Γ(/S(C))

arising from the Levi-Civita connection acting on the spin bundle.
Let ei be a local orthonormal frame for T ∗Σ, then E0 = dr, Ei = rei forms a local

orthonormal frame for T ∗C. We use the convention that an index of µ or ν runs from 0

to 6 whilst an index of i, j or k runs from 1 to 6. Denote by ∂i differentiation with respect
to the vector field dual to ei using the metric g and denote by Di differentiation with
respect to the vector field dual to Ei with respect to the metric gC . We write ∇C for the
Levi-Civita connection on the cone and ∇ for the Levi-Civita connection on Σ, similarly
we write dC , d for the exterior derivatives on the cone and Σ respectively.

The connection one form of the Levi-Civita connection on the cone should be metric
compatible and torsion free, which here means that dC = ∇C ∧ . Let ωij be the connection
one form of the Levi-Civita connection on T ∗Σ, so that ∇ei = −ωijej in this frame. Then
ωij = −ωji and

dei + ωij ∧ ej = 0 (4.16)

(this is equivalent to d = ∇∧).
On the cone we let Ωµ

ν = −Ων
µ be the Levi-Civita form, then testing that (4.16) holds we

first note that dE0 = d2r = 0 so that Ω0
i ∧ Ei = 0, and testing when i ≥ 0 we find

dCE
i = −Ωi

µ ∧ Eµ

= −Ωi
j ∧ rej − Ωi

0 ∧ dr

and also

dCE
i = dr ∧ ei + r dei

= dr ∧ ei − rωij ∧ ej.
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Since we know (4.16) holds we conclude that

Ωi
j = ωij, Ωi

0 = ei.

The connection acts on one forms as

∇Cvµe
µ =

(
dCvµ − vνΩν

µ

)
⊗ eµ.

Let Γµσν be the Christoffel symbols of the Levi-Civita connection on the cone, so that

EσΓµσν = Ωµ
ν

and γikj be the Christoffel symbols on the Levi-Civita connection on Σ so that

ekγikj = ωij.

Note that Γµ0ν = 0 and Γik0 = 1
r
δik. We take the natural Clifford algebra embedding of

Cln into Clevenn+1 given by ei 7→ EiE0. The action of the Dirac operator on Σ is

D0s = EiE0

(
∂is+

1

4
γkijE

0EjE0Eks

)
. (4.17)

The operator on the cone acts as

DC(s) = E0∇0s+ Ei

(
Dis+

1

4
ΓνiµE

µEνs

)
= E0∂s

∂r
+ Ei

(
Dis+

1

4

(
Γji0E

0Ejs+ Γ0
ijE

jE0s+ ΓkijE
jEks

))
= E0∂s

∂r
+ Ei

(
1

r
∂is+

1

4r

(
δijE

0Ejs− δijEjE0s+ γkijE
jEks

))
= E0∂s

∂r
− 1

2r
EiEiE0s+

1

r
Ei

(
∂is+

1

4
γkijE

0EjE0Eks

)
.

Thus we have that

DC = E0∂s

∂r
+

3

r
E0s+

1

r
Ei

(
∂is+

1

4
γkijE

0EjE0Eks

)
and comparing to (4.17) one finds

DC = E0 ·
(
∂

∂r
+

1

r

(
3 +D0

))
. (4.18)

Remark 4.4.1. The above calculation generalises easily to the case of (Xn, g) an n-
dimensional Riemanninan manifold and (C(X), dr2 + r2g) the (n+ 1)-dimensional cone
of X.
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4.4 Fredholm and Index Theory of the Twisted Dirac Operator

We would like to generalise this to the case of twisted spinors and twisted Dirac
operators. Recall the notation AC = π∗A∞ and consider the operators

D0
A∞ : Γ(/S(Σ)⊗ AdQ)→ Γ(/S(Σ)⊗ AdQ)

DAC : Γ(/S(C)⊗ Adπ∗Q)→ Γ(/S(C)⊗ Adπ∗Q).

These operators factor as follows:

D0
A∞ = cl6 ◦ (∇⊗ 1 + 1⊗∇A∞) = D0 ⊗ 1 + cl6 ◦ (1⊗∇A∞)

DAC = cl7 ◦ (∇C ⊗ 1 + 1⊗∇AC ) = DC ⊗ 1 + cl7 ◦ (1⊗∇AC )

it suffices consider the terms cl6(1 ⊗ ∇A∞) and cl7(1 ⊗ ∇AC ). We choose a local frame
{va} of AdQ and let ω̃ba = eiγ̃bia the the connection 1-form of ∇A and let Ω̃b

a = EiΓ̃bia be
the connection 1-form of ∇AC . Then π∗ω̃ = Ω̃ and we can apply a similar analysis to
before. Let sA be a local frame for the spin bundle. One finds

D0
A∞(fAasA ⊗ va) = D0(fAasA)⊗ va + EiE0fAasA ⊗ γ̃biavb

whilst

DAC (fAasA ⊗ va) = E0 ·
(
∂

∂r
fAasA +

1

r
(3 +D0)(fAasA)

)
⊗ va + (EifAasA)⊗ Γ̃biavb

= E0 ·
(
∂

∂r
fAasA +

1

r
(3 +D0)(fAasA)

)
⊗ va +

1

r
(EifAasA)⊗ γ̃biavb

= E0 ·
(
∂

∂r
+

1

r

(
3 +D0

A∞

))
(fAasA ⊗ va).

So the twisted Dirac operators satisfy the same relation as in the case of the ordinary
spin bundle

DAC = E0 ·
(
∂

∂r
+

1

r

(
3 +D0

A∞

))
. (4.19)

A simple calculation shows that the volume form Vol6 anti-commutes with the family of
Dirac operatorsDt

A∞ , so the spectrum of this operator is symmetric about 0. Furthermore
the spectrum of a Dirac operator is unbounded and discrete [10] and these facts combine
with (4.19) to describe the set of critical weights Wcrit(DAC ),

Proposition 4.4.2. The set of critical weights for the twisted Dirac operator

DA : L2
k+1,µ(/S(M)⊗ AdP )→ L2

k,µ−1(/S(M)⊗ AdP )

is Wcrit(DAC ) = {µ ∈ R : µ+ 3 ∈ SpecD0
A∞} where D

0
A∞ is the Dirac operator on the link

twisted by the asymptotic connection A∞. Furthermore this set is discrete, unbounded and
symmetric about −3. This operator is therefore Fredholm whenever µ+ 3 ∈ R\SpecD0

A∞ .
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4.4 Fredholm and Index Theory of the Twisted Dirac Operator

Recall that in studying the deformation theory of M(A∞, µ) we are lead to work
with the operator DA : L2

k+1,µ−1 → L2
k,µ−2 acting on a µ − 1 weighted Sobolev space,

since the kernel of this operator consists solutions to the linearised G2-instanton equation
converging with rate µ. Therefore let us set

W := {µ ∈ R ; µ+ 2 ∈ Spec(D0
A∞)}, (4.20)

so that DA : L2
k+1,µ−1 → L2

k,µ−2 is Fredholm whenever µ ∈ R \W and W is symmetric
about −2.

Remark 4.4.3. In [18] Charbonneau and Harland show that the linearised nearly Kähler
instanton equation on the link Σ is solved by one forms a satisfying DA∞(a · s) = 2a · s.
Therefore we may think of rate 0 deformations on cone C(Σ) as being deformations of
the nearly Kähler instanton A∞.

Recall the index of a Fredholm operator P is the quantity indP = dim(kerP ) −
dim(cokerP ). The Lockhart McOwen theory provides an index change formula that de-
scribes how the index varies as we vary the weight of the Sobolev space.

Definition 4.4.4. Let µ ∈ R and define

K(µ) =

{
ηC ∈ KerDAC ; ηC(r, σ) = rµ−1

m∑
j=0

(log r)jηj(σ) each ηjis a section of /S(Σ)⊗ AdQ

}
.

That is, K(µ) consists of sections in the kernel of DAC which are polynomials in log r

whose coefficients are homogeneous order µ spinors.

The importance of these spaces is that they describe the change in index as the
weight varies. We let k(µ) be the dimension of the dimension of the space K(µ) in
Definition 4.4.4.

Theorem 4.4.5. Let indµ denote the index of DA : L2
k+1,µ−1(/S(M)⊗AdP )→ L2

k,µ−2(/S(M)⊗
AdP ). If µ, µ′ ∈ R \W are such that µ ≤ µ′, then

indµ′DA − indµDA =
∑

ν∈W∩(µ,µ′)

k(ν).

Remark 4.4.6. Note the operator DA : L2
k+1,−3 → L2

k,−4 has index zero, this follows from
the fact it is self adjoint since the dual of the target space has the same weight as the
domain– in other words the kernel and cokernel are isomorphic. It follows that when
D0
A∞ has non-trivial kernel we have ind(DA)−2+ε = 1

2
(dim KerD0

A∞) for ε sufficiently
small that [−2,−2 + ε) contains no other critical weights. Observe that in this situation
the expected dimension is negative for all rates µ < −2. If −2 6∈ W then the same
observation shows that ind−2+εDA = 0.
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4.5 Structure of the Moduli Space

In analogy with the results of [72] we show that being self adjoint ensures that elements
of K(µ) have no polynomial terms.

Proposition 4.4.7. Suppose

DAC

(
rµ−1

m∑
j=0

(log r)jvj(σ)

)
= 0.

Then m = 0.

Proof. Let vC ∈ K(µ), then we may write

vC(r, σ) = rµ−1

m∑
j=0

(log r)jvj(σ).

Suppose for a contradiction that m > 0. Thinking of DACvC as a polynomial in log r we
first compare coefficients of (log r)m to find

D0
A∞vm = −(µ+ 2)vm.

Now comparing coefficients of (log r)m−1 we find

(µ+ 2)vm−1 +mvm +D0
A∞vm−1 = 0

and we us the self-adjointness of D0
A∞v to compute

m〈vm, vm〉L2(Σ) = −〈D0
A∞vm−1, vm〉L2(Σ) − (µ+ 2)〈vm−1, vm〉L2(Σ)

= −〈vm−1, D
0
A∞vm〉L2(Σ) − (µ+ 2)〈vm−1, vm〉L2(Σ)

= −〈vm−1,−(µ+ 2)vm〉L2(Σ) − (µ+ 2)〈vm−1, vm〉L2(Σ) = 0.

Thus vm = 0 which yields our contradiction.

This proposition shows that K(µ) is simply the −(µ+ 2) eigenspace for the operator
D0
A∞ . The dimension of these spaces therefore determines how indµDA varies as we change

the weight µ.

4.5 Structure of the Moduli Space

Suppose we work in a small enough neighbourhood of A in the space of L2
k,µ−1 connections

so that we may solve the Coulomb gauge condition. Then we have seen that the the zero
set of (DA)µ−1 consists of smooth sections and that its linearisation is Fredholm whenever
(µ+ 2) 6∈ SpecD0

A∞ .

Definition 4.5.1. For a given weight µ < 0 we define the rate µ infinitesimal deformation
space to be

I(A, µ) :=
{

(f, a) ∈ Ω0
k+1,µ−1(M,AdP )⊕ Ω1

k+1,µ−1(M,AdP ) ; DA(f, a) = 0
}
.

By AC uniform elliptic regularity this is independent of k and is finite dimensional.
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4.5 Structure of the Moduli Space

When DA : L2
k+1,µ−1 → L2

k,µ−2 is Fredholm it has closed range and finite dimensional
kernel, furthermore we can choose a finite dimensional subspace O(A, µ) of Ω0

k,µ−2(M,AdP )⊕
Ω1
k,µ−2(M,AdP ), called the obstruction space, such that

Ω0
k,µ−2(M,AdP )⊕Ω1

k,µ−2(M,AdP ) = DA

(
Ω0
k+1,µ−1(M,AdP )⊕ Ω1

k+1,µ−1(M,AdP )
)
⊕O(A, µ).

Again by elliptic regularity we have that O(A, µ) is isomorphic to the kernel of the adjoint
map (DA)l+1,−5−µ for any l ∈ N . If −5

2
< µ < 0 then the kernel of the adjoint is contained

in the target space and we may choose O(A, µ) = ker(DA)∗µ.

Remark 4.5.2. One can also describe the framework for study deformations of G2-
instantons in the form of an elliptic complex. In this weighted setting, the complex takes
the form

Ω0
µ(M,AdP ) Ω1

µ−1(M,AdP )
dA

Ω6
µ−2(M,AdP )

ψ ∧ dA
Ω7
µ−3(M,AdP ).

dA

Denote the cohomology groups of this complex by Hk
A,µ. We have already noted that the

zeroth cohomology group is trivial H0
A,µ = {0}, whilst H1

A,µ
∼= I(A, µ) and

H2
A,µ
∼= O(A, µ) provided −5 < µ < 0.

With this in hand we can apply the implicit function theorem to integrate our in-
finitesimal deformation theory.

Theorem 4.5.3. Let A∞ be a nearly Kähler instanton and let A be an AC G2-instanton
converging to A∞. Suppose that µ ∈ (R \W ) ∩ (−5, 0). There exists a smooth manifold
M̂(A, µ), which is an open neighbourhood of 0 in I(A, µ), and a smooth map π : M̂(A, µ)→
O(A, µ), with π(0) = 0, such that an open neighbourhood of 0 in π−1(0) is homeomorphic
to a neighbourhood of A in M(A∞, µ). Thus, the virtual dimension of the moduli space is
dimI(A, µ)− dimO(A, µ) and M(A∞, µ) is smooth if O(A, µ) = {0}.

Proof. For k ≥ 5 let

X =
(
Ω0
k+1,µ−1(M,AdP )⊕ Ω1

k+1,µ−1(M,AdP )
)
× O(A, µ)

and let
Y = Ω0

k,µ−2(M,AdP )⊕ Ω1
k,µ−2(M,AdP ).

Pick a sufficiently small neighbourhood of A so that we may solve the Coulomb gauge
condition. This in turn gives an open neighbourhood U of (0, 0) in Ω0

k,µ−1(M,AdP ) ⊕
Ω1
k,µ−1(M,AdP ).

We define a map of Banach spaces F : X→ Y by

F(v, w) = DA(v) + w
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4.6 A Word On Obstructions

and note F(0, 0) = 0. The differential of F at 0 acts as

dF|(0,0) : X→ Y

(v, w) 7→ DAv + w.

By the definition of the obstruction space dF|(0,0) is surjective and dF|(0,0)(v, w) = 0 if and
only if (DAv, w) = (0, 0). Thus kerdF|(0,0) = K = I(A, µ)× {0} is finite dimensional and
splits X. That is, there exists a closed Z ⊂ X such that K⊕ Z = X and we can moreover
write Z = Z1×O(A, µ) for some closed Z1 ⊂ Ω0

k+1,µ−1(M,AdP )⊕Ω1
k+1,µ−1(M,AdP ). We

are now in a position to apply the implicit function theorem Theorem 2.5.8 – we deduce
that there are open sets

V ⊂ I(A, µ)

W1 ⊂ Z1

W2 ⊂ O(A, µ)

and smooth maps Gj : V→Wj for j = 1, 2 such that

F−1(0) ∩ ((V×W1)×W2) = {((v,G1(v)) ,G2(v)) : v ∈ V}

in X = (I(A, µ)⊕ Z1)×O(A, µ). Therefore the kernel of F near (0, 0) is diffeomorphic to
an open subset of I(A, µ) containing 0.

Define M̂(A, µ) = V and π : M̂(A, µ)→ O(A, µ) by π(v) = G2(v). Then an open neigh-
bourhood of 0 in (DA)−1(0) is homeomorphic to an open neighbourhood of 0 in π−1(0).

Finally, Theorem 4.5.3 says a neighbourhood of 0 in the zero set of DA is homeomorphic
to a neighbourhood of A in the moduli space.

Remark 4.5.4. When µ ∈ W or when O(A, µ) 6= {0} the moduli space may not be
smooth, or may have larger than expected dimension.

4.6 A Word On Obstructions

From Theorem 4.5.3 we learn that the moduli space M(A∞, µ) is a smooth manifold
provided the operator DA : L2

k+1,µ−1 → L2
k,µ−2 is surjective. A typical method for proving

surjectivity is to apply Lichnerowicz-Bochner type formulae to prove the vanishing of the
kernel of the adjoint operator. In the weighted setting if the weight µ is not too negative,
then one has Ker((DA)µ−1)∗ ⊂ KerDA : L2

1 → L2 and so one might hope to prove and
L2-vanishing theorem for twisted harmonic spinors. Whilst this is not difficult when the
connection A is flat, the presence of a curvature term in the Lichnerowicz formula is
problematic in the case of a non-flat G2-instanton.
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4.6 A Word On Obstructions

The gauged Lichnerowicz formula for Ricci flat manifolds says that

D2
As = (∇A)∗∇As+ FA · s. (4.21)

Suppose first that A is flat. In this case one easily obtains a suitable vanishing theorem
in the manner of [61, Lemma 4.68]:

Proposition 4.6.1. Let M be an AC G2-manifold, let P → M be an asymptotically
framed bundle and let A be an AC flat connection. If ν < −5

2
then the kernel of

DA : L2
k+1,ν(/S ⊗ AdP )→ L2

k+1,ν(/S ⊗ AdP ) vanishes.

Proof. Suppose ν < −5
2
and let

(f, v) ∈ KerDA : L2
k+1,ν

(
(Λ0 ⊕ Λ1)⊗ AdP

)
→ L2

k,ν−1((Λ0 ⊕ Λ1)⊗ AdP ).

Since ν < 0 we have from Corollary 4.2.7 that f = 0. Thus by the Lichnerowicz formula
we have

0 = (∇A)∗∇Av (4.22)

and we would like to take the L2-inner product and integrate by parts to conclude. Note
that

〈(∇A)∗∇Av, v〉 = −gij〈(∇A
i ∇A

j vk), vm〉ggkm

= −gij∇i(〈∇A
j vk, vm〉ggkm) + gijgkm〈∇A

i vk,∇A
j vm〉g

= − d∗Y + |∇Av|2

where Y ∈ Ω1(M) is the 1-form Y = 〈∇Av, v〉g, which is of order O(ρ2ν−1) as ρ → ∞.
Let M≤s = {x ∈ M ; ρ(x) ≤ s} so that for s sufficiently large we have ∂M≤s = {s} × Σ.

Stokes’ theorem gives∣∣∣∣∣
∫
M≤s

(d∗Y )VolM

∣∣∣∣∣ =

∣∣∣∣∫
{s}×Σ

(Y yVolM)

∣∣∣∣ ≤ Cs2ν−1

∣∣∣∣∫
{R}×Σ

Vol{s}×Σ

∣∣∣∣ ≤ C̃s2ν+5 → 0

as s→∞. Note that ν − 1 < −7
2
and thus ∇Av ∈ L2

k,ν−1 ⊂ L2 so we can integrate both
sides of (4.22) to obtain

‖∇Av‖2
L2 = 0.

Finally, the Kato inequality gives |∇|v|| ≤ |∇Av|, so |v| is a harmonic function which by
Lemma 4.2.5 vanishes.

Corollary 4.6.2. Let A be an AC flat connection. If −5
2
< µ < 0 and µ 6∈ W then A is

unobstructed and M(A∞, µ) is a smooth manifold.

Proof. This follows immediately from Proposition 4.6.1 after recalling that the obstruc-
tion space of DA : L2

k+1,µ−1 → L2
k,µ−2 is isomorphic to the cokernel of this operator which

is identified with KerDA : L2
l+1,−5−µ → L2

l,−6−µ.
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4.6 A Word On Obstructions

If A is not flat, then one must try to deal with the term 〈FA ·s, s〉. If f ∈ Ω0(M,AdP )

then FA · f · s7 = 0 whenever A is a G2-instanton and for v ∈ Ω1(M,AdP ) on has
FA ·v ·s7 = −2(FAxv)·s7, where the differential form parts of v and FA act by contraction,
whilst the Lie algebra parts act adjointly. Arguing along the lines of [50, Lemma 3.5] we
show that we can at least control this term when dAv = 0.

Lemma 4.6.3. Let P →M be a principal bundle and let A be a G2-instanton on P. Let
v ∈ Ω1(M,AdP ) be such that dAv = 0, then the pointwise identity 〈FA · v, v〉 = 0 holds.

Proof. Since dAv = 0 we certainly have d2
Av = [FA, v] = 0 and we can calculate

0 = 〈∗([FA, v] ∧ ϕ), v〉g
= −〈∗([FA ∧ ϕ, v]), v〉g
= −〈∗([2 ∗ F 7

A − ∗F 14
A , v]), v〉g

= −2〈F 7
A, [v, v]〉g + 〈F 14

A , [v, v]〉g

where F 7
A and F 14

A are the projections of FA to Ω2
7(M,AdP ) and Ω2

14(M,AdP ) respectively.
Since A is a G2-instanton we have F 7

A = 0 and therefore the above equation says that
〈F 14

A , [v, v]〉 = −〈FA · v, v〉 = 0.

Therefore an L2-vanishing theorem will follow if one can prove that v ∈ Ω1(M,AdP )

and v·s7 ∈ KerDA : L2
1 → L2 implies dAv = 0. Let us set diA = πi◦dA where πi : Λ2 → Λ2

i is
a projection. A priori such a 1-form v satisfies d∗Av = d7

Av = 0, but from Proposition 4.6.1

we see that when A is flat it follows that d14
A v = 0 also (this is also proved in [51, Lemma

4.9]). In the general case one has to deal with curvature terms and the task is far more
complex.
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Chapter 5

The Lichnerowicz Formula and
Eigenvalue Bounds

The results of the previous chapter inform us that the virtual dimension of the G2-
instanton moduli space is determined by the spectrum of a twisted Dirac operator on a
nearly Kähler 6-manifold in an interval determined by the rate of converge of the example
being considered. This chapter develops methods for determining the relevant eigenval-
ues. Since for all known examples the nearly Kähler link in question is a homogeneous
space and the limiting connection is the canonical connection we are able to develop a
representation theoretic approach.

The problem of computing the spectrum of the Dirac operator on symmetric and ho-
mogeneous spaces has received much attention since the advent of spin geometry. To the
author’s knowledge the first complete computation of the spectrum of a Dirac operator
was done in the thesis of Sulanke [82] in 1979, where the Dirac spectrum of spheres was
calculated. Shortly after this the spectrum of the Dirac operator on the Grassmannian
manifolds Gr2(R2m) was calculated in [81]. The idea is to use Frobenius reciprocity to
provide a representation theoretic formula for the square of the Dirac operator then pro-
vide a so called branching rule for the homogeneous space G/H, which means determining
how each irreducible representation of G decomposes when the action is restricted to the
subgroup H. Bär [3, 4] gave a formula for the Dirac operator on a homogeneous manifold
and used this to calculate the matrix (and hence eigenvalues) of the Dirac operator on
finite dimensional subspaces of the space of spinor fields. By calculating the branching
rules of various group-subgroup pairs the Dirac spectra of a variety of homogeneous space
has been calculated and an excellent reference is [10, Section 15.5] where a list of known
examples is provided. The difficulty of determining the spectrum in this way is the cal-
culation of the relevant branching rule; this is a classic problem in representation theory
and is only known for a few group-subgroup pairs. It is worth noting that other methods
for calculating Dirac spectra exist. For example Bär [6] uses knowledge of the spectrum
of the Laplacian to calculate spectrum of Dirac operator on spheres and their quotients
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5.1 Frobenius Reciprocity

and Camporesi-Higuchi [16] use a separation of variables technique to calculate the Dirac
spectrum on spheres and hyperbolic spaces.

The methods we shall develop are not designed to calculate the entire twisted Dirac
spectrum– since we consider moduli spaces M(A∞, µ) for µ in some given interval (which
is determined by the rates for which the example in question is AC) we need only consider
the eigenvalues in this interval (shifted by 2). In most examples it will suffice to calculate
eigenvalues in the region [0, 2). For this reason we need not work with general branching
rules; knowledge of how the low dimensional irreducible representations branch for each
pair (G,H) is sufficient. In later chapters, when the Lichnerowicz formula is insufficient
for calculating eigenvalues, we calculate eigenvalues of the Dirac operator explicitly by
working on finite dimensional subspaces of the space of sections and calculating the matrix
of the induced endomorphism.

In this chapter the link Σ of the AC G2-manifold M is assumed to be a compact
homogeneous nearly Kähler 6-manifold Σ = G/H. We shall denote by Ĝ the set of
isomorphism classes of irreducible, complex unitary representations of G and for γ ∈ Ĝ
we write (Vγ, ρVγ ) to denote any class representative. Similarly Ĥ denotes the set of
isomorphism classes of irreducible, complex unitary representations of H and for γ ∈ Ĥ
a class representative is denoted (Wγ, ρWγ ).

5.1 Frobenius Reciprocity

To calculate eigenvalues explicitly we utilise results from harmonic analysis. The main
tool we shall require is the Frobenius reciprocity theorem which generalises the classical
Peter-Weyl theorem to the space of sections of an associated vector bundle.

Let us first briefly review the Peter-Weyl Theorem. For a compact Lie group this works
as follows: The left-regular representation ρL acts on L2(G,C) and one can ask how this
decomposes as a representation of G. Let (Vγ, ργ) be any irreducible representation of
G and note that any non-zero vector Φ ∈ V ∗γ = Hom(Vγ,C) defines a G equivariant
homomorphism Vγ → L2(G,C), defined by

v 7→ (g 7→ Φ(ργ(g
−1)v)).

The statement of the Peter-Weyl theorem is that L2(G,C) decomposes into an orthogonal
Hilbert sum of all the irreducible unitary representations, in which the multiplicity of each
irreducible representation is equal the dimension of the representation. More precisely

L2(G,C) ∼=
⊕
γ∈Ĝ

V ∗γ ⊗ Vγ.

The Frobenius reciprocity theorem generalises this construction to decompose (ρL, L
2(G, V )H)

as a representation of G. The left action of G on this space gives a representation which
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5.2 The Family of Dirac Operators

is said to be induced by the representation ρV and which is denoted IndGH(V ). Suppose we
have an irreducible representation Vγ of G and a non-trivial element Φ of Hom(Vγ, V )H .

Here Hom(Vγ, V )H denotes the space of H-equivariant maps Vγ → V

Hom(Vγ, V )H = {Φ ∈ Hom(Vγ, V ) ; Φ ◦ ρVγ (h) = ρV (h) ◦ Φ for all h ∈ H}.

Then for any v ∈ Vγ we have a map

Vγ → L2(G, V )H , v 7→ (g 7→ Φ(ρVγ (g
−1)v)). (5.1)

Frobenius reciprocity uses this construction to show that an irreducible representation
Vγ is contained in the induced representation if and only if Hom(Vγ, V )H 6= {0} and the
multiplicity of Vγ in the induced representation is dim(Hom(Vγ, V )H). Thus if we denote
by ResGH(Vγ) the restriction of (ργ, Vγ) to the subgroup H, we have

mult(Vγ, IndGH(V )) = mult(ResGH(Vγ), V ).

This construction enables one to decompose the space of sections of E := G ×H V into
an orthogonal Hilbert sum

L2(E) ∼= L2(G, V )H ∼=
⊕
γ∈Ĝ

Hom(Vγ, V )H ⊗ Vγ. (5.2)

The element of L2(G, V )H that one obtains via (5.1) from an element Φ⊗v ∈ Hom(Vγ, V )H⊗
Vγ will be denoted

F γ
Φ,v(g) = Φ(ρVγ (g

−1)v) (5.3)

Since G is assumed to be compact any irreducible representation must be finite di-
mensional. Furthermore, each summand in the above Hilbert space sum in fact lies
in C∞(G,E)H .

5.2 The Family of Dirac Operators

Let Σ = G/H be a compact, homogeneous nearly Kähler 6-manifold. We choose to work
with complex spinor bundle /SC(Σ) which is the associated bundle

/SC(Σ) = G×(H,ρ) S.

Here S, which we refer to as spinor space, is a complex eight dimensional vector space
which as an H-module is

S = C⊕m∗C ⊕ C (5.4)

where m∗C carries the adjoint action ofH and ρ is the representation defined by this action.
The splitting (5.4) of S as an H-module comes from the splitting /SC(Σ) = Λ0

C⊕Λ1
C⊕Λ6

C
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5.2 The Family of Dirac Operators

of the spinor bundle. We shall consider a twisting of the spinor bundle by an associated
bundle

E = G×(H,ρV ) V

constructed from some representation V of H. Thus the twisted spinor bundle is given
by

/SC(Σ)⊗ E = G×(H,ρS⊗ρV ) S ⊗ V

and so the one can hope to apply tools from Harmonic Analysis to study the family of
twisted Dirac operators. When the operator is twisted by the canonical connection, that
is A∞ = Acan in the notation of Chapter 4.1, the covariant derivative can be understood
using the Frobenius reciprocity theorem. Recall that D1

Acan
= cl ◦ ∇1,Acan is constructed

from the canonical connection acting both on the spinor bundle A and the associated
bundle E. We can therefore understand this operator using this formalism since (3.1)
says that

∇1,Acan
X s = ρR(X)s (5.5)

for s ∈ L2(G,S⊗V )H and where we think of a vector field X as an element of L2(G,m)H .

Recall g is given the nearly Kähler metric (2.15) and that {IA} denotes a basis for g such
that Ia for 1 ≤ a ≤ 6 forms a basis for m and Ii for 7 ≤ i ≤ dim(G) forms a basis of h.
The basis {Ia} defines a local frame {ea} of T ∗Σ|U as described in Section 2.3 and we can
think of these local 1-forms as equivariant maps from π−1U to m∗. By (5.5) the operator
D1
Acan

takes the form
D1
Acan

= cl(ea)ρR(ea) (5.6)

when acting on elements of L2(G,S ⊗ V )H . Furthermore we know from [18] that the
family of Dirac operators differ by the action of the 3-form ReΩon the spin bundle

Dt
Acan

= D1
Acan

+
3(t− 1)

4
ReΩ.

By combining these facts with the Frobenius reciprocity theorem we can understand
how each of these operators act with respect to the splitting of the space of sections given
in (5.3). First we collect some facts about induced actions on the homomorphisms spaces
contained in the space of sections.

Since the spinor space is a Clifford module one can act on a spinor with a tangent
vector (or equivalently covector) and for an irreducible representation Vγ this in turn
endows Hom(Vγ, S⊗V ) with an action cl( · ) of the Clifford algebra (note the equivariance
property may not be preserved). Vector fields (thought of as equivariant maps) act on
Hom(Vγ, S ⊗ V )H , preserving the equivariance condition, since the spinor bundle carries
an action of the Clifford bundle. By identifying T ∗[1](Σ) with m∗ the 3-form ReΩ defines
an element of Λ3(m∗) and this acts on the spinor space and hence on Hom(Vγ, S ⊗ V )H

preserving the equivariant condition.
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5.2 The Family of Dirac Operators

The next result is essentially the same result as [4, Proposition 1] but generalised
to the case of a twisted spinor. The proof goes through identically, but is given here
since the difference between the Dirac operators defined by the Levi-Civita and canonical
connections is in our case more explicit; it is determined by the 3-forms ReΩ.

Proposition 5.2.1. Let E be a vector bundle associated via a representation V of H and
split the space of sections

L2(/SC(Σ)⊗ E) ∼= L2(G,S ⊗ V )H ∼=
⊕
γ∈Ĝ

Hom(Vγ, S ⊗ V )H ⊗ Vγ.

For any γ ∈ Ĝ and for every t ∈ R, the operator Dt
Acan

leaves invariant the space
Hom(Vγ, S ⊗ V )H ⊗ Vγ and

Dt
Acan
|Hom(Vγ ,S⊗V )H⊗Vγ = (Dt

Acan
)γ ⊗ Id (5.7)

where (Dt
Acan

)γ : Hom(Vγ, S ⊗ V )H → Hom(Vγ, S ⊗ V )H is the operator

(Dt
Acan

)γΦ = −cl(Ia) ·
(
Φ ◦ ρVγ (Ia)

)
+

3(t− 1)

4
ReΩ · Φ. (5.8)

Proof. This is a consequence of the Frobenius reciprocity theorem, which enables us to
determine how the Lie algebra representation ρR acts under the decomposition

L2(G,S ⊗ V )H ∼=
⊕
γ∈Ĝ

Hom(Vγ, S ⊗ V )H ⊗ Vγ.

We use Frobenius reciprocity to understand the action of the canonical connection on
the map F γ

Φ,v(g) given in (5.3). To understand covariant differentiation by the connection
∇1,Acan we use (5.5) to identify this with the right regular action. Let Φ⊗v ∈ Hom(Vγ, S⊗
V )H⊗Vγ. Thinking of vector fields as H equivariant maps G→ m, we let X ∈ L2(G,m)H

be a vector field and calculate

(ρR(X)F γ
Φ,v)(g) =

d

dt

∣∣∣∣
t=0

F γ
Φ,v(ge

tX(g))

=
d

dt

∣∣∣∣
t=0

Φ(ρVγ (e
−tX(g)g−1)v)

=
d

dt

∣∣∣∣
t=0

Φ(ρVγ (e
−tX(g)) ◦ ρVγ (g−1)v)

= −(Φ ◦ ρVγ (X(g))) ◦ (ρVγ (g
−1)v).

Comparing to (5.6) we see that the Dirac operator D1
Acan

, which yields a globally well
defined section D1

Acan
F γ

Φ,v = cl(ea)ρR(ea)F γ
Φ,v, acts on Hom(Vγ, S⊗V )H⊗Vγ algebraically

as
D1
Acan
|Hom(Vγ ,S⊗V )H⊗Vγ (Φ⊗ v) = −

(
cl(Ia) ·

(
Φ ◦ ρVγ (Ia)

))
⊗ v.
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5.3 Eigenvalue Bounds

By (2.33) the action of Dt
Acan

differs from that of D1
Acan

by the 3-form ReΩ. In this way
the operator Dt

Acan
acts on Hom(Vγ, S ⊗ V )H ⊗ Vγ as

Dt
Acan
|Hom(Vγ ,S⊗V )H⊗Vγ (Φ⊗ v) =

(
−cl(Ia) ·

(
Φ ◦ ρVγ (Ia)

)
+

3(t− 1)

4
ReΩ · Φ

)
⊗ v

as required.

Note that under the isomorphism Hom(Vγ, S ⊗ V ) ∼= V ∗γ ⊗ S ⊗ V an H-equivariant
homomorphism corresponds to a vector fixed by theH action and the formula for (Dt

Acan
)γ

takes the form

(Dt
Acan

)γ = cl(Ia)ρV ∗γ (Ia) +
3(t− 1)

4
ReΩ. (5.9)

This point of view will be the one we adopt when calculating eigenvalues explicitly.

5.3 Eigenvalue Bounds

Throughout this chapter A is assumed to be an AC G2-instanton with fastest rate of
convergence µ0 < 0 and the limiting connection A∞ = Acan will be assumed to be the
canonical connection living on some bundle associated via a representation of H.We shall
consider the family of moduli spaces M(Acan, µ) with µ ranging from the fastest rate of
convergence of the example we are studying, to 0. We have seen the virtual dimension of
these moduli spaces jumps as we pass through eigenvalues in this interval shifted by 2.
Our method is to develop a representation theoretic Lichnerowicz formula to determine
the eigenvalues of a related Dirac operator.

The relevant Lichnerowicz type formula is calculated in [18] and we shall build on this
work. The formula gives the square of the Dirac operator as a sum of Casimir operators,
so we first remind the reader how these operators are constructed. Any representation
(V, ρ) of a Lie algebra g, equipped with an invariant inner product B, yields a quadratic
Casimir operator ρ(Casg) defined as ρ(Casg)v = ρ(IA)ρ(IA)v for any v ∈ V and where IA
is an orthonormal basis for g. In the case at hand the metric on g is the nearly Kähler
metric B(X, Y ) = − 1

12
Trg(ad(X)ad(Y )) and the metrics on m and h are the restrictions

of B. Since the Casimir operators commute with the group action they act as multiples
of the identity on irreducible representations and so we can write

ργ(Casg) = cgγId

ργ(Cash) = chγId.

These eigenvalues are calculated, for G and H such that G/H is a nearly Kähler 6-
manifold and using the above metric, in [18].
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5.3 Eigenvalue Bounds

To obtain a suitable Lichnerowicz formula we combine [18, Proposition 8] with the
results of [75] to obtain a formula for (D

1
3
Acan

)2. The operator we would like to calculate
eigenvalues for is D0

Acan
, however we are unable to calculate these eigenvalues directly

using our Lichnerowicz formula, we shall see that we are however able to calculate useful
eigenvalue bounds.

Lemma 5.3.1. Let G/H be a homogeneous nearly Kähler manifold. Let E be the vector
bundle obtained from G → G/H through some representation V of H. Let Acan be the
canonical connection on E, then (D

1
3
Acan

)2 preserves the decomposition Γ(/SC(Σ) ⊗ E) =

Γ(Λ0
C ⊗ E)⊕ Γ(Λ1

C ⊗ E)⊕ Γ(Λ6
C ⊗ E) and

(D
1
3
Acan

)2η = (−ρL(Casg)η + ρV (Cash)η + 4η) (5.10)

for any η ∈ Γ(/SC(Σ)⊗ E).

Proof. The formula is calculated for sections of Λ1
C⊗E in [18, Proposition 8] so we need

only consider the case where η ∈ (Λ0
C ⊕ Λ6

C)⊗ E. It is also shown in [18] that

(D
1
3
Acan

)2κ = (∇1,Acan)∗∇1,Acanκ+ 4κ

for κ ∈ Γ((Λ0
C⊕Λ6

C)⊗E) and so we aim to show this admits the required Casimir expres-
sion. It is a standard fact, see [75] for example, that the rough Laplacian (∇1,Acan)∗∇1,Acan

is identified with the action of a Casimir operator

(∇1,Acan)∗∇1,Acan = −ρR(Casm)

on L2(G, (Λ0(R6)∗⊕Λ6(R6)∗)⊗V )H . Note if κ ∈ L2(G, (Λ0
C(R6)∗⊕Λ6

C(R6)∗)⊗V )H then
we have ρR(X)κ + ρV (X)κ = 0 for any X ∈ h and therefore ρR(Cash) = ρV (Cash).
Combining this with the fact that ρL(Casg) = ρR(Casg) yields the result.

The operator (D
1
3
Acan

)2 preserves the decomposition 5.3, so as in Proposition 5.2.1 we

can define an operator (D
1
3
Acan

)2
γ on Hom(Vγ, S ⊗ V )H such that

(D
1
3
Acan

)2
γ ⊗ Id = (D

1
3
Acan

)2|Hom(Vγ ,S⊗V )H⊗Vγ . (5.11)

Since we are considering unitary representations the space Hom(Vγ, S ⊗ V )H carries a
natural inner product given by

〈X, Y 〉 = Tr(X∗Y )

where X∗ is the hermitian adjoint with respect to the hermitian inner products on Vγ and
S⊗V. The self-adjointness of (D

1
3
Acan

)2 ensures that the restriction to any of the subspaces
Hom(Vγ, S ⊗ V )H ⊗ Vγ defines a hermitian opertor, hence it is diagonalisable with real
eigenvalues. Furthermore the spectrum satisfies

Spec(D
1
3
Acan

)2 =
⋃
γ∈Ĝ

(D
1
3
Acan

)2
γ.
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5.3 Eigenvalue Bounds

It follows from Frobenius reciprocity and Lemma 5.3.1 that (D
1
3
Acan

)2
γ acts as the en-

domorphism
(D

1
3
Acan

)2
γ = −ρV ∗γ (Casg) + ρV (Cash) + 4 (5.12)

and it is not difficult to find a basis of Hom(Vγ, S ⊗ V )H that diagonalises this operator.
For this suppose that Vγ is an irreducible representation of G and let Vγ =

⊕
σ∈IW

γ
σ

be the decomposition of Vγ into irreducible representations of H, where I is a finite
sequence in Ĥ (note I may have repeated entries) and W γ

σ is any class representative
of σ. Similarly let us split S = ⊕µ∈JWµ and V = ⊕ν∈KWν where J and K are finite
sequences in Ĥ.
Suppose σ, µ, ν are such that one obtains an H-equivariant mapping via the composition

qσµν : Vγ → W γ
σ → Wµ ⊗Wν → S ⊗ V

where the first map is a projection, the second is an equivariant embedding and the third
is an inclusion. The set of distinct tripples (σ, µ, ν) for which such maps exist lead to
a basis {qσµν} of Hom(Vγ, S ⊗ V )H . The maps qσµν are readily seen to be eigenvectors of
(5.12) and the equation

(D
1
3
Acan

)2
γ(q

σ
µν) =

(
−cgγ + chν + 4

)
qσµν (5.13)

is satisfied, since the eigenvalues of ρVγ (Casg) and ρV ∗γ (Casg) are equal. Furthermore, since
we are considering only orthogonal decomposition into irreducible H-representations,
these map qσµν are mutually orthogonal. When calculating eigenvalues of twisted Dirac
operators explicitly we shall choose to work with this basis; as a consistency check for the
accuracy of our calculations we will show that this basis does indeed diagonalise (D

1
3
Acan

)2
γ

with the correct eigenvalues. We summarise some of the above discussion as a Corollary
to Lemma 5.3.1:

Corollary 5.3.2. Let Vγ be an irreducible representation of G, and let V =
⊕

ν∈KWν be
the decomposition of V into irreducible representations of H, where K is a finite sequence
in Ĥ. The eigenvalues and multiplicities of the operator (D

1
3
Acan

)2
γ are

Eigenvalue Multiplicity

−cgγ + chν + 4 dimHom(Vγ, S ⊗Wν)H

where cgγ is the eigenvalue of the Casimir operator on the irreducible representation Vγ with
respect to the inner product B from (2.15) and chν is the eigenvalue of the Casimir operator
on the irreducible representation W V

ν with respect to this metric. The eigenvalues of

(D
1
3
Acan

)γ are ±
√
−cgγ + chν + 4 and the

√
−cgγ + chν + 4 and −

√
−cgγ + chν + 4 eigenspaces

are isomorphic.
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5.3 Eigenvalue Bounds

Proof. We have a splitting

Hom(Vγ, S ⊗ V )H =
⊕
ν∈K

Hom(Vγ, S ⊗Wν)H

which is respected by the operator (D
1
3
Acan

)2
γ. Inspection of (5.10) reveals that (D

1
3
Acan

)2
γ

acts as a constant with the advertised value on each of these summands.
It follows that the eigenvalues of (D

1
3
Acan

)γ are given by ±
√
−cgγ + chν + 4 (verification

of this fact is given in [6] for example). Furthermore one can check that (D
1
3
Acan

)γ anti-
commutes with the action of the volume form Vol on the spin bundle and since Vol2 = −1

one sees that the volume form provides an isomorphism between the
√
−cgγ + chν + 4 and

−
√
−cgγ + chν + 4 eigenspaces.

Remark 5.3.3. We see from Corollary 5.3.2 why the task of calculating branching rules
is necessary to calculate the entire spectrum of a Dirac operator. One must find out which
of the spaces Hom(Vγ, S ⊗Wν)H are non-zero and therefore contribute eigenvalues to the
spectrum.

It may be the case that γ 6= γ′ but the operators (D
1
3
Acan

)2
γ and (D

1
3
Acan

)2
γ′ have an

eigenvalue in common, so one must take this into account in order to calculate the multi-
plicity of a given eigenvalue of (D

1
3
Acan

)2. Suppose for simplicity that a given eigenvalue of

(D
1
3
Acan

)2
γ does not occur for any other γ′ 6= γ, then inspection of (5.11) reveals that one

must multiply the multiplicity of this eigenvalue by the dimension of the representation
Vγ to get the multiplicity of that eigenvalue in the space of sections.

Note that the eigenvalues of −ρVγ (Casg) change as γ varies, whereas the eigenvalue of
ρV (Cash)+4 are fixed. Furthermore, large dimensional irreducible representations Vγ lead
to the Casimir operator −ρVγ (Casg) having a large positive eigenvalue. Intuitively this
should mean that, if Vγ is a large dimensional irreducible representation, the eigenvalues
of the operator (D

1
3
Acan

)2
γ are large. The following lemma allows us to compare eigenvalues

of operators in this way.

Lemma 5.3.4. Let X and Y be n×n Hermitian matrices with eigenvalues {λX1 , . . . , λXn }
and {λY1 , . . . , λYn } respectively. Let {λX+Y

1 , . . . λX+Y
n } be the set of eigenvalues of X + Y.

Then

min{|λX+Y
1 |, . . . , |λX+Y

n |} ≥
∣∣min{|λX1 |, . . . , |λXn |} −max{|λY1 |, . . . , |λYn |}

∣∣ .
Proof. First recall min{|λXi |}ni=1 = min‖v‖=1〈Xv, v〉 and max{|λYi |}ni=1 = max‖v‖=1〈Y v, v〉.
Note µl ≥ 0 is a lower bound on {|λX+Y

i |}ni=1 if and only if |〈(X + Y )v, v〉| ≥ µl for all
v ∈ Cn with ‖v‖ = 1.
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5.3 Eigenvalue Bounds

Now

|〈(X + Y )v, v〉| = |〈Xv, v〉+ 〈Y v, v〉|
≥ ||〈Xv, v〉| − |〈Y v, v〉||
≥
∣∣min{|λXi |}ni=1 −max{|λYi |}ni=1

∣∣
for all v ∈ Cn with ‖v‖ = 1. Hence

∣∣min{|λXi |}ni=1 −max{|λYi |}ni=1

∣∣ is a lower bound on
{|λX+Y

i |}ni=1.

Recall the operators (Dt
Acan

)γ from (5.7), as was the case for (D
1
3
Acan

)γ these anti-
commute with the volume form Vol so have spectra symmetric about 0 and satisfy

Spec(Dt
Acan

) =
⋃
γ∈Ĝ

Spec(Dt
Acan

)γ.

Recall that our task is to determine the eigenvalues of D0
Acan

in the region (µ0 + 2, 2)

where µ0 is the fastest rate of convergence of A, therefore we would like to know which
representations Vγ have eigenvalues in this region.

Suppose that the operator (D
1
3
Acan

)2
γ has eigenvalues λ2

1, · · · , λ2
n, then the eigenvalues

of (D
1
3
Acan

)γ are precisely ±λ1, · · · ± λn. Now since

(D0
Acan

)γ = (D
1
3
Acan

)γ −
1

4
ReΩ

and the eigenvalues of −1
4
ReΩ are contained in the set {±1, 0}, we can apply Lemma 5.3.4

to obtain lower bound on the smallest positive eigenvalue of (D0
Acan

)γ.

Theorem 5.3.5. Let Vγ be an irreducible representation of G. If the quantity

Lγ :=

√
min
ν
{−cgγ + chν + 4} − 1

is positive, then it is a lower bound on the smallest positive eigenvalue of (D0
Acan

)γ.

Proof. Inspection of Corollary 5.3.2 reveals that the smallest eigenvalue of (D
1
3
Acan

)γ is√
−cgγ + chν + 4. Since the eigenvalues of −1

4
ReΩ are contained in the set {±1, 0} we can

apply Lemma 5.3.4 to yield the result.

With this in hand we can outline our strategy for calculating the eigenvalues of D0
Acan

in (µ0 + 2, 2) is as follows:

1. Use Theorem 5.3.5 to rule out the irreducible representations Vγ such that (D0
Acan

)γ

has no eigenvalues in the interval (m, 2) where m = min{−2, µ0 + 2} and µ0 is the
fastest rate of converge of the example we are studying (usually we will just need
to consider eigenvalues in the region [0, 2)).
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5.3 Eigenvalue Bounds

2. For the remaining representations, if all maps in Hom(Vγ, S ⊗ V )H factor through
Λ1

C ⊗ V ⊂ S ⊗ V then (D0
Acan

)γ = (D
1
3
Acan

)γ on this space (this is thanks to
Lemma 2.3.3) and Corollary 5.3.2 informs us of the eigenvalues.

3. If there are maps factoring through (Λ0
C ⊕ Λ6

C) ⊗ E ⊂ S ⊗ E then ReΩ acts non-
trivially and one must work harder to calculate the relevant eigenvalues.

In the last case here, when ReΩ acts non-trivially, we shall attack the known examples
using two different methods. When the nearly Kähler 6-manifold is CP3 we adapt the
work of Bär [4] and develop a representation theoretic framework to calculate directly the
matrix (and hence the eigenvalues) of the Dirac operator on one of the homomorphism
spaces from via the formula (5.9). When the manifold is S6 we instead write the Dirac
operator as a sum of Casimir operators this again allows us to calculate the matrix and
eigenvalues of the Dirac operator on the relevant homomorphism spaces.
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Chapter 6

Deformations of Clarke’s Instantons

In this chapter we study G2-instantons on the Bryant-Salamon manifold R4×S3.We first
review the work of Lotay-Oliveira [71] where the moduli space of instantons which are
invariant under the action of SU(2)3 was studied (this being the symmetry group of the
Bryant-Salamon metric). In doing so we present the family of G2-instantons first found
by Clarke in [20] and then show that this instanton family admits a limiting connection
which can be interpreted as a removeable singularity phenomenon, essentially because
bubbling occurs. The original contributions of this thesis are given in Section 6.5. We
study the full moduli space of AC G2-instantons in which these examples live. We show
that the Lichnerowicz formula developed in the Chapter 5 is sufficient for determining
the virtual dimension of this moduli space.

6.1 Evolution Equations

In this section we show how to view the G2-instanton equation as an evolution equation,
based on the presentation given in [71, 70]. Until now the only SU(3)-structures con-
sidered have been nearly Kähler structures, so we first consider SU(3)-structures in full
generality. An SU(3)-structure on a manifold Σ is defined as a triple (J, ω, γ2) where J is
an almost complex structure, ω is a (1, 1)-form with respect to J and γ2 is a real 3-form
such that the relations

ω ∧ γ2 = 0 (6.1)

ω3 =
3

2
γ1 ∧ γ2 (6.2)

are satisfied, where γ1 = Jγ2. Suppose now that (Jt, ω(t), γ2(t)) is a 1-parameter family
of SU(3) structures where t is the parameter in some interval I, then we may define a G2
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6.1 Evolution Equations

structure on Σ× I with

ϕ = dt ∧ ω(t) + γ1(t) (6.3)

ψ =
ω2(t)

2
− dt ∧ γ2(t). (6.4)

Let us denote differentiation of a time dependent form α with respect to t by α̇, then the
above G2-structure will be torsion free (i.e dϕ = dψ = 0) precisely when the equations

dω = γ̇1, ω ∧ ω̇ = − dγ2 (6.5)

subject to the constraint dγ1 = dω2 = 0 for all t, are satisfied. These equations are known
as the Hitchin flow (although it is important to note that the system is not parabolic, so
does not define a geometric flow) and the constraint dγ1 = dω2 = 0 is known as the “half
flat” condition for the SU(3)-structure, since it implies half of the terms of the torsion
tensor must vanish. Furthermore it suffices to impose the half flat condition for initial
time since this property is preserved by the flow.

The metric on Σ× I determined by this construction is

g = dt2 + gt

where gt(·, ·) = ωt(·, Jt·) is the metric determined by the SU(3)-structure. We have of
course already seen a solution to the Hitchin flow; when the SU(3)-structure (J, ω,ReΩ)

on Σ is nearly Kähler the G2-cone (C(Σ), ϕC) = (Σ × R+, t2ω ∧ dt + t3ImΩ) solves the
Hitchin flow equations.

It is natural to consider the G2-instanton equation in the same framework. As in
Chapter 4 we shall assume that our principal bundle P → Σ × I is framed by Q → Σ,

in other words we have P = π∗Q for the natural projection map π : Σ× I → Σ and also
that the connection A on P is in temporal gauge, that is dtyA = 0. When this is the
case we shall write A = a(t) where a(t) is a path in the space of connections on Q. No
generality is lost here– P will always have such a framing and a temporal gauge may
always be chosen. One finds

FA = dt ∧ ȧ+ Fa(t)

where Fa(t) is the curvature of the connection a(t) on Q. Inserting this into the G2-
instanton equation FA ∧ ψ = 0 yields the evolution equation

ȧ ∧ ω
2

2
= Fa ∧ γ2, Fa ∧ ω2 = 0. (6.6)

Applying the Hodge star operator of the metric gt to this system yields the following
result:
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6.2 The Bryant-Salamon R4 × S3

Lemma 6.1.1 ([71, Lemma 1]). Let Σ be an SU(3) structure 6-manifold and give Σ× I
the G2 structure (6.3). Then G2 instantons A on P → Σ × I are in bijection with
1-parameter families of connections {a(t)}t∈R+ on Q→ Σ satisfying the equation

Jtȧ = − ∗t (Fa ∧ γ2) (6.7)

subject to the constraint ωtyFa = 0. Furthermore this constraint is compatible with the
evolution in the sense that if it holds for some t0 ∈ R+ then it holds for all t ∈ I.

6.2 The Bryant-Salamon R4 × S3

We begin by briefly introducing the construction of this metric, again based on the
presentation given in [71]. We consider an SU(3) structure on S3 × S3 = SU(2)2. Let
Ii for i = 1, 2, 3 be a basis of su(2) with [Ii, Ij] = 2εijkIk, then we may split su(2)2 =

su(2)+ ⊕ su(2)− where I+
i = (Ii, Ii) and I−i = (Ii,−Ii) provide bases for su(2)+ and

su(2)− respectively. We define η+
i and η−i to be dual to I+

i and I−i respectively. The
Maurer-Cartan relations take the form

dη+
i = −εijk(η+

j ∧ η+
k + η−j ∧ η+

k ), (6.8)

dη−i = −2εijkη
−
j ∧ η+

k . (6.9)

The group SU(2)3 acts on SU(2)2 as follows:

(g1, g2, g3) · (g̃1, g̃2) = (g1g̃1g
−1
3 , g2g̃2g

−1
3 )

and under this action we can impose SU(2)3 symmetry on our SU(3) structure; this yields
the following expressions:

ω = 4XY η−i ∧ η+
i (6.10)

γ1 = 8Y 3η−1 ∧ η−2 ∧ η−3 − 4X2Y εijkη
+
i ∧ η+

j ∧ η−k (6.11)

γ2 = 8X3η+
1 ∧ η+

2 ∧ η+
3 − 4Y 2Xεijkη

−
i ∧ η−j ∧ η+

k (6.12)

where X and Y are real valued functions of t ∈ R+. One finds that the Hitchin flow
equation (6.5) reduces to the coupled ODE

Ẋ =
1

2

(
1− X2

Y 2

)
, Ẏ =

X

Y
. (6.13)

Set Y = s and X = sF (s), then (6.13) becomes

d

ds
(sF ) =

1− F 2

2F
. (6.14)

Solutions are given by

F (s) =

√
1− c3s−3

3
(6.15)
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6.3 Clarke’s Instantons from Evolution Equations

where c > 0 and s ≥ c.This yields

X(s) =
s√
3

√
1− c3s−3 and Y (s) = s.

Let us choose c = 1 and define a coordinate r ∈ [1,+∞) as follows: recall t is the
arclength parameter along the geodesic parameterised by s, so we may set

t(r) =

∫ r

1

ds√
1− s−3

then our functions take the form

X =
r

3

√
1− r−3 and Y =

r√
3
.

This is the form of the solution that appears in Bryant-Salamon’s original construction.
This defines an asymptotically conical G2-manifold where the fastest rate of conver-

gence is µ = −3 [61]. Furthermore the limit as c → 0, where c is the parameter c from
(6.15), yields the conical G2-structure C(S3 × S3). If we view R4 × S3 as /S(S3), then
(R4 × S3) \ S3 ∼= R+ × SU(2)2 where S3 ⊂ R4 × S3 denotes the zero section of the
spinor bundle. This is the unique singular orbit for the action of SU(2)3 on R4 × S3.

This singular orbit is modelled as S3 = SU(2)3/SU(2)2 where SU(2)2 ⊂ SU(2)3 is the
group {(g1, g1, g2) ; gi ∈ SU(2)}. Furthermore this singular orbit is the unique compact
associative submanifold for the G2-structure.

6.3 Clarke’s Instantons from Evolution Equations

Clarke’s family of instantons have structure group SU(2) and live over the Bryant-
Salamon manifold R4× S3. Much like the G2-structure itself, this family of instantons is
SU(2)3-invariant. In [71] the moduli space of SU(2)3-invariant solutions was studied and
we begin by summarising this part of their work (the reader should note that their work
also considers invariant instantons for the asymptotically locally conical G2-structure on
R4 × S3).

The bundle P that we work with is topologically the trivial SU(2)-bundle over R4 ×
S3. Away from the singular orbit P is given the homogeneous structure P |(R4×S3)\S3 =

π∗Q where Q is the homogeneous bundle Q = SU(2)3 ×(∆SU(2),id) SU(2). We delay for
the moment explaining the extension of the group action over the singular orbit. Note
topologically both P and Q are trivial SU(2)-bundles.

We first consider the ODEs that arise as the SU(2)3-invariant G2-instanton equations
for the Bryant-Salamon G2-structure in this setting. After presenting this result we shall
consider the boundary conditions required to extend solutions over the zero section.
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6.3 Clarke’s Instantons from Evolution Equations

Proposition 6.3.1 ([71, Proposition 5]). Let A be an SU(2)3-invariant G2-instanton on
R+ × SU(2)3/SU(2), with gauge group SU(2). Up to an invariant gauge transformation
we have

A = xX

(
3∑
i=1

Ii ⊗ η+
i

)
+ yY

(
3∑
i=1

Ii ⊗ η+
i

)
where x, y : R+ → R satisfy

ẋ = Ẋ
X
x+ y2 − x2 = 1

2X

(
1− X2

Y 2

)
x+ y2 − x2

ẏ = 2Ẋ−3
X

y + 2xy = − 1
X

(
2 + X2

Y 2

)
y + 2xy.

To determine initial conditions for the above ODEs one first must extend the group
action over the singular orbit S3 = SU(2)3/SU(2). Extensions are determined by iso-
morphism classes of homogeneous SU(2)-bundles over SU(2)2/SU(2) which are in turn
determined by isotropy homomorphisms λ : SU(2) → SU(2). There are two possibilities,
λ is either the trivial homomorphism, which we denote 1, or the identity id. We denote
by Pλ the corresponding bundle over R4 × S3 whose extension is determined by λ.

Remark 6.3.2. A word of caution is advised here. The homomorphism denotes the
choice of extension of the group action over the singular orbit, it is not the isotropy
homomorphism of the homogeneous bundle at infinity.

In this section we consider the bundle P1, where the extension of the group action
over the singular orbit is the trivial one. The case of Pid will be considered in 6.4.

Lemma 6.3.3 ([71, Lemma 4]). The connection A in Proposition 6.3.1 extends smoothly
over the singular orbit S3 if x(t) is odd, y(t) is even, and their Taylor expansions around
t = 0 are

• x(t) = x1t+ x3t
3 + · · ·

• y(t) = y2t
2 + y4t

4 + · · · .

The solution to these equations was first found by Clarke in [20]. The theorem we
state is from [71], as it gives not just the existence of a solution, but also uniqueness in
this SU(2)3-invariant setting.

Theorem 6.3.4 ([71, Theorem 4]). Let A be an SU(2)3-invariant G2-instanton with gauge
group SU(2) on the Bryant-Salamon R4×S3, extending smoothly over the singular orbit
P1. Then A is one Clarke’s examples and in the notation of Proposition 6.3.1 there is an
x0 ∈ R such that

x(t) =
2x0X(t)

1 + x0(Y 2(t)− 1
3
)

and y(t) = 0.

The resulting connection, which we denote by Ax0 , is globally defined if and only if x0 ≥ 0.
Furthermore A0 is the trivial flat connection.
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6.4 The Limiting Connection of Lotay-Oliveira

These instantons are, in the notation of Definition 4.1.3, AC with asymptotic connec-
tion Acan and with fastest rate of convergence µ0 = −2. This is stated in [71, Proposition
7]. The parameter x0 describes the concentration of the instanton around the associative
S3.

6.4 The Limiting Connection of Lotay-Oliveira

Consider now the bundle Pid which extends the action over the singular orbit via the
identity homomorphism id : SU(2) → SU(2). The next theorem gives a local existence
theorem for G2-instantons defined near the singular orbit.

Theorem 6.4.1 ([71, Proposition 6]). Let S3 be the singular orbit in the Bryant-Salamon
manifold R4 × S3. There is a one-parameter family of SU(2)3-invariant G2-instantons,
defined in a neighbourhood os S3 and smoothly extending over S3 on Pid. The instantons
are parameterised by y0 ∈ R and, using the notation of Proposition 6.3.1, satisfy

x(t) =
2

t
+
y2

0 − 1

4
t+O(t3), y(t) = y0 +

y0

2

(
y2

0

2
− 3

)
t2 +O(t4).

Lotay-Oliveria note that, except for the case y0 = 0, numerics suggest that the con-
nections do not extend to define G2-instantons with decaying curvature. The special case
of y0 = 0 however does extend and we state this as a proposition.

Proposition 6.4.2 ([71, Theorem 5]). The G2-instanton Alim arising from the case y0 = 0

has
x(t) =

X(t)
1
2
(Y 2(t)− 1

3
)

and y(t) = 0

and defines a G2-instanton on the Bryant-Salamon G2-manifold R4 × S3.

One can check that Alim is, in the notation of Definition 4.1.3, AC with asymptotic
connection Acan and fastest rate of converge µ0 = −3. Note that this connection converges
faster than Clarke’s instantons.

This instanton allows one to compactify the invariant moduli space. Recall Clarke’s
instantons are parameterised by x0 ≥ 0, so to define a compactification one needs to
glue in a connection at x0 =∞. This can be understood more precisely by studying the
bubbling behaviour of Clarke’s instantons. This is the content of the next theorem, to
state this we first need to define suitable rescalings: For p ∈ S3 and δ > 0 define a map
spδ from the unit ball B1 ⊂ R4 by

spδ : B1 → Bδ × {p} ⊂ R4 × S3, x 7→ (δx, p).

Theorem 6.4.3 ([71, Theorem 6]). Let {Axi} be a sequence of Clarke’s G2-instantons
with xi →∞.
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6.5 Calculation of the Virtual Dimension

a Given any λ > 0, there is a sequence of positive real number δi = δ(xi, λ) → 0 as
xi →∞ such that: for all p ∈ S3, (spδi)

∗Axi converges uniformly with all derivatives
to the standard ASD instanton AASD on B1 ⊂ R4.

b The connection Axi converge uniformly with all derivatives to Alim given in Propo-
sition 6.4.2 on every compact subset of (R4 \ {0})× S3 as xi →∞.

In other words, Clarke’s instantons converge outside of the associative S3 to Alim

and they “bubble off” an ASD instanton on the normal bundle to this associative. The
fact that Alim actually extends over the associative can be interpreted as a removable
singularity phenomenon. Moreover, as this bubbling happens curvature concentrates on
the associative S3 and Lotay-Oliveira prove a conservation of energy statement. More
precisely [71, Corollary 2] if f is any compactly supported function then, in the sense of
currents, we have

lim
xi→∞

∫
R4×S3

f(|FAx1 |2 − |FAlim|2) dVolg = 8π2

∫
{0}×S3

f dVolg|{0}×S3 .

Remark 6.4.4. The standard ASD instanton AASD has Yang-Mills energy 8π2.

6.5 Calculation of the Virtual Dimension

The goal of this section is to calculate the virtual dimension of the moduli space of
instantons asymptotic to Acan. Since Clarke’s instantons form a 1-parameter family we
expect to see this deformation parameter in our calculation. This parameter should
appear at rate −2, in other words the kernel of the Dirac operator at infinity should be
non-trivial. Note that Ax0 and Alim live on (topologically) the same bundle and both
converge to the canonical connection on Q but (in the terminology of (4.1)) have fastest
rates of convergence −2 and −3 respectively. To determine the virtual dimension of the
moduli space M(Acan, µ) for µ ∈ (−3, 0) we shall determine the eigenvalues of D0

Acan
in the

interval (−1, 2). Since the eigenvalues of this operator are symmetric about 0, it suffices
to determine the eigenvalues in the interval [0, 2).

An asymptotic framing for the bundle P1 is provided by the homogeneous bundle
Q = SU(2)3 ×(∆SU(2),id) SU(2). Since away from the associative S3, we have P1 = π∗Q

where π : C(S3×S3)→ S3×S3 is the projection map. For any x0 > 0 the connection Ax0
is, in the sense of Definition 4.1.3, asymptotically conical with asymptotic limit A∞ = Acan

and with fastest rate of convergence −2. Thus to calculate the virtual dimension of the
moduli space we must calculate the eigenvalues of D0

Acan
which lie in the interval [0, 2).

Remark 6.5.1. The canonical connection on the bundle Q is shown in [18, Theorem 3]
to be a rigid nearly Kähler instanton.
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6.5 Calculation of the Virtual Dimension

We will calculate the relevant eigenvalues using the representation theoretic methods
developed in Chapter 5. The bundle AdQ is associated to the canonical bundle via the
adjoint representation of SU(2) on its Lie algebra. As a complexified representation the
vector space is (su(2))C = sl(2,C). Let us denote by Wi the unique irreducible represen-
tation of SU(2) with dimension (i + 1). Irreducible representations of SU(2)3 are then
given by V(i,j,k) := Wi ⊗Wj ⊗Wk. As a representation of SU(2) we have m∗C = W2 ⊕W2

so the complexified spinor space is S = W0 ⊕W2 ⊕W2 ⊕W0 and an application of the
Clebsch-Gordan rule shows that the twisted spinor space is

S ⊗ su(2)C = 2W4 ⊕ 4W2 ⊕ 2W0. (6.16)

The Frobenius reciprocity theorem says that the space of sections splits as

L2(/SC(S3 × S3)⊗ AdQ) ∼= L2(SU(2)3, S ⊗ su(2)C)SU(2)

∼=
⊕

γ∈ŜU(2)3

Hom(Vγ, S ⊗ su(2)C)SU(2) ⊗ Vγ (6.17)

where ŜU(2)3 denotes the set of isomorphism classes of irreducible representations of
SU(2)3 and Vγ is a class representative for γ. The action of the Casimir operators on
irreducible representations is given by

ρV(i,j,k)(Cassu(2)3) = c
su(2)3

(i,j,k)Id

ρWi
(Cassu(2)) = c

su(2)
i Id

where these eigenvalues of the Casimir operators are with respect to the nearly Kähler
metric. The eigenvalues are calculated in [18] to be

c
su(2)3

(i,j,k) = −3

2
(i(i+ 2) + j(j + 2) + k(k + 2))

c
su(2)
i = −1

2
i(i+ 2).

Since the adjoint representation of SU(2) is the 3-dimensional irreducible representa-
tion we see from Lemma 5.3.1 the relevant Lichnerowicz formula for (D

1
3
Acan

)2 is

(D
1
3
Acan

)2 = −ρL(Cassu(2)3) + ρW2(Cassu(2)) + 4 = −ρL(Cassu(2)3). (6.18)

Under the splitting (6.17) we have endomorphisms (D
1
3
Acan

)2
γ of Hom(Vγ, S⊗su(2)C)SU(2)

such that
(D

1
3
Acan

)2
γ ⊗ Id = (D

1
3
Acan

)2|Hom(Vγ ,S⊗su(2)C)SU(2)⊗Vγ . (6.19)

This operator takes the form

(D
1
3
Acan

)2
γ = −ρV ∗γ (Cassu(2)3) (6.20)

and furthermore Spec(D
1
3
Acan

)2 =
⋃
γ∈ŜU(2)3

Spec(D
1
3
Acan

)2
γ. This tells us precisely the eigen-

values of (D
1
3
Acan

)2 :

78



6.5 Calculation of the Virtual Dimension

Proposition 6.5.2. The spectrum of (D
1
3
Acan

)2 is

Spec(D
1
3
Acan

)2 =
{
−csu(2)3

(i,j,k) ; dim Hom(V(i,j,k), S ⊗ su(2)C)SU(2) 6= 0
}
.

We can use this to rule out representations that do not lead to eigenvalues of the
twisted Levi-Civita Dirac operator in the interval [0, 2). First let us recall the relation
between the various operators that we need:

The operator D1
Acan

is constructed from the canonical connection acting on both
the spinor space and the adjoint bundle. We can define endomorphisms (D1

Acan
)γ of

Hom(Vγ, S ⊗ su(2)C)SU(2) such that

(D1
Acan

)γ ⊗ Id = (D1
Acan

)|Hom(Vγ ,S⊗su(2)C)SU(2)⊗Vγ

and thus a family of endomorphisms (Dt
Acan

)γ of Hom(Vγ, S ⊗ su(2)C) via the formula

(Dt
Acan

)γ = (D1
Acan

)γ +
3(t− 1)

4
ReΩ.

Then one has
Spec(Dt

Acan
) =

⋃
γ

Spec(Dt
Acan

)γ

and we use this to obtain eigenvalue estimates for the Levi-Civita Dirac operators (D0
Acan

)γ.

Lemma 6.5.3. If Vγ 6= C then Spec(D0
Acan

)γ ∩ [0, 2) = ∅.

Proof. Let Vγ be an irreducible representation of SU(2)3 and suppose that dim Hom(Vγ, S⊗
sl(2,C))SU(2) 6= 0. Application of Theorem 5.3.5 shows that the smallest non-negative
eigenvalue of (D0

Acan
)γ is bounded below by

Lγ =
√
−csu(2)3

(i,j,k) − 1

where Vγ = V(i,j,k). The quantity Lγ does not yield a lower bound when Vγ = C and since
dim Hom(V(1,0,0), S ⊗ sl(2,C))SU(2) = 0 the representation V(1,0,0) need not be considered.
The next representation to consider is V(1,1,0), this yields the bound Lγ =

√
9 − 1 =

2, so this bound is sufficient for the statement of the theorem. Any other irreducible
representation Vγ leads to a large lower bound, which completes the proof.

To calculate the relevant eigenvalues we therefore only need consider those coming
from the trivial representation. Let Vγ = C and let us write S = W

(1)
0 ⊕W (1)

2 ⊕W (2)
2 ⊕

W
(2)
0 where W

(a)
i are distinct copies of the irreducible representation Wi. A basis of

Hom(C, S ⊗ su(2)C)SU(2) = Hom(C, S ⊗W2)SU(2) is given by the SU(2)-equivariant maps
q2,2

0 and q̃2,2
0 which factor as maps

q2,2
0 : C→ W

(1)
2 ⊗W2 → S ⊗W2

q̃2,2
0 : C→ W

(2)
2 ⊗W2 → S ⊗W2.
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6.5 Calculation of the Virtual Dimension

Notice that all maps in this homomorphism space factor through Λ1 ⊂ S. On this space
(6.20) says that (D

1
3
Acan

)2
γ ≡ 0. Furthermore Ker(D

1
3
Acan

)2
γ = Ker(D

1
3
Acan

)γ so we see that

(D
1
3
Acan

)γ also vanishes on this space. Finally, since all basis vectors factor through Λ1 ⊂ S

Lemma 2.3.3 ensures that ReΩ acts trivially on this space. Therefore (Dt
Acan

)γ = 0 for
all t, when Vγ is the trivial representation. We have proved:

Proposition 6.5.4. The only eigenvalue of D0
Acan

in the interval [0, 2) is 0 and has
multiplicity 2.

This result tells, by the observation in Remark 4.4.6 that ind−2+εDA = 1
2
dim KerD0

Acan

for ε sufficiently small, the virtual dimension of the moduli space:

Theorem 6.5.5. Let P be the trivial SU(2)-bundle over R4×S3, framed at infinity by the
homogeneous SU(2)-bundle over the nearly Kähler S3×S3 whose isotropy homomorphism
is the identity. Let Acan be the canonical connection on Q, then the virtual dimension of
the moduli space of G2-instantons asymptotic to Acan with rate µ is

virtdimM(Acan, µ) =

1 if µ ∈ (−2, 0)

−1 if µ ∈ (−3,−2).

Thus the virtual dimension of our moduli space coincides with that dimension of the
SU(2)3-invariant moduli space when µ ∈ (−2, 0). Observe that the virtual dimension is
negative for the weights µ ∈ (−3,−2) and thus the deformation theory is obstructed for
these weights.
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Chapter 7

Deformations of Oliveira’s Instantons

In this chapter we study moduli spaces of known instantons on the Bryant-Salamon man-
ifolds Λ2

−(CP2) and Λ2
−(S4). Firstly we consider Oliveira’s G2-instanton [77] on Λ2

−(CP2)

with structure group SO(3). We use the methods developed in the previous two chapters
to determine the virtual dimension of the moduli space in question. Next we consider
Oliveira’s G2-instanton with structure group SU(2) over Λ2

−(S4). Here we show that the
Lichnerowicz formula and eigenvalue bounds are insufficient for determining the virtual
dimension and to compensate for this we develop a method for calculating the matrix of
a twisted Dirac operator on a finite dimensional subspace of the space of sections. As a
consequence we explicitly determine some of the eigenvalues of the operator and hence
the virtual dimension. Finally we consider deformations of the spin connection on S4,
which was observed by Oliveira to pull back to a G2-instanton over Λ2

−(S4).

7.1 The Bryant-Salamon Λ2
−(CP2)

We begin this chapter with a brief overview of the Bryant-Salamon manifolds, based on
the material covered in [70] and [77]. Let (N, gN) be an even dimensional Riemannian
manifold. The twistor fibration π : T(N, gN) → N is the fibre bundle whose fibre at a
point is the space of orthogonal almost complex structures of TpN . In other words

TpN = {J ∈ SO(TpN) ; J2 = −IdTpN}.

When N has dimension 4 there is an identification of the twistor space with the unit
sphere bundle in Λ2

−(N), so the twistor fibration is an S2-bundle over N . The case of
interest to this thesis is when N4 is a self-dual quaternion Kähler manifold with positive
Ricci curvature. In this case it turns out [30] that the total space of the twistor fibration
carries a canonical nearly Kähler structure whose metric is

g6 =
1

2
gS2 + π∗gN
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−(CP2)

where gS2 is the round metric on the fibres of T. There are exactly two possibilities for
such a manifold, either N = S4 with the round metric or N = CP2 with the Fubini-Study
metric.

We consider first the case when N = CP2, then the twistor space is the space of flags
in C3 i.e the space of complex lines contained in planes in C3 and will be denoted F1,2,3.

The standard action of SU(3) on C3 gives rise to a transitive action of SU(3) on the space
of flags with isotropy subgroup T 2. At a suitable point of F1,2,3 the T 2 isotropy subgroup
of SU(3) that one obtains is the standard one [77]

T 2 =


eiθ 0 0

0 e−i(θ+φ) 0
0 0 eiφ


and we will work with this fixed subgroup throughout this section.

The Bryant-Salamon metric on the total space of Λ2
−(CP2) takes the form

g = f 2(s)gR3 + f−2(s)π∗gCP2

where s is the Euclidean distance to the zero section given by the fiber metric and

f(s) = (1 + s2)−
1
4 . (7.1)

The geodesic distance to the zero section then takes the form t(s) =
∫ s

0
f(u) du and this

allows us to rewrite the metric as

g = dt2 + s2(t)f 2(s(t))gS2 + f−2(s(t))π∗gCP2

where gS2 is the round metric on the unit sphere of a fibre in Λ2
−(CP2). One can also

describe the G2-structure explicitly. To gain a suitable local expression we first study
homogeneous structure of SU(3)/T 2.

Under the adjoint action the real representation m splits into three irreducible sub-
spaces m = m1 ⊕m2 ⊕m3 and we choose orthonormal bases {I1, I2}, {I3, I4} and {I5, I6}
respectively (if the reader is interested this decomposition is covered more explicitly in
[77]). As explained in 2.3 this induces a local frame for T ∗F1,2,3 which we denote e1, . . . e6.

Away from the zero section of Λ2
−(CP2) we can think of the geodesic distance t as a co-

ordinate. Let us define 2-forms

Ω1 = e12 − e34, Ω2 = e13 − e42, Ω3 = e14 − e23

Ω1 = e12 + e34, Ω2 = e13 + e42, Ω3 = e14 + e23 (7.2)

then the 3-form ϕ of the Bryant-Salamon G2-structure takes the form

ϕ = dt ∧ (a2(t)e12 − a2(t)e34 + c2(t)e56) + a2(t)c(t)(Ω2 ∧ e6 − Ω3 ∧ e5) (7.3)

where a(t) = 2f−1(t) and c(t) = 2s(t)f(t). From this viewpoint one sees that the G2-
structure is AC with |g − gC |g = O(t−4).
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7.2 Instantons on Λ2
−(CP2)

7.2 Instantons on Λ2
−(CP2)

Let us fix the standard basis Ii of so(3) with [Ii, Ij] = 2εijkIk. We choose the maximal
torus in SO(3) to be the one generated by 1

2
I1. Recall that SU(3)-homogeneous SO(3)-

bundles over F1,2,3 are determined by isotropy homomorphisms from T 2 to SO(3). It is
shown in [77] that there is a unique isotropy homomorphism λ which yields a bundle
Q = SU(3) ×λ SO(3) with non-trivial invariant connections and for which the pullback
π∗Q extends over the zero section CP2 of Λ2

−(CP2).

To describe this bundle we first note that the singular orbit of Λ2
−(CP2) is SU(3)/U(2) =

CP2 and so SU(3)-homogeneous SO(3)-bundles over the singular orbit are determined by
isotropy homomorphisms λ̃ : U(2) → SO(3). The adjoint action of U(2) on su(2) defines
a homomorphism

λ̃ : U(2)→ SO(3)

g 7→ Adg
(7.4)

where we view SO(3) as a subgroup of GL(su(2)). By viewing T 2 as the subgroup of U(2)

T 2 =

(
eiθ 0
0 eiφ

)
⊂ U(2)

we obtain a homomorphism T 2 → SO(3) by restriction of (7.4), this is

λ : T 2 → SO(3)

g 7→ Adg.
(7.5)

From now on λ denotes the homomorphism (7.5) and Q denotes the fixed homogeneous
bundle

Q = SU(3)×λ SO(3) (7.6)

Let us denote by P the extension of π∗Q to Λ2
−(CP2), here the group action over the

singular orbit is determined by the isotropy homomorphism (7.4). We denote by Acan

the pullback of the canonical connection on Q, this lives on P |Λ2
−(CP2)\CP2 . An invariant

connection on P then takes the form

A = Acan + h(t)(e5 ⊗ I2 + e6 ⊗ I3)

and one finds [77, Section 4.3.2] that the G2-instanton equation for such a connection
becomes

f−4h2 = 1, f−4 dh

ds
+ sh = 0 (7.7)

with boundary data d
ds

∣∣
s=0

f−2h = 0, lims→∞ h = 0. The first equation here, which is alge-
braic, implies h = ±f 2 and one can check that the second equation is then automatically
satisfied. Note that the paired equations have a 0-dimensional space of solutions, whilst
the linearisation of the system has a 1-dimensional space of solutions. We summarise this
result in the following theorem.
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Theorem 7.2.1 ([77] Theorem 8). The connection A given by

A = Acan ± f 2(s)(e5 ⊗ I2 + e6 ⊗ I3)

defines a G2-instanton on P. Moreover A is AC with limiting connection the canonical
connection living on the bundle Q.

The conenction A satisfies |A−Acan|g = O(t−3), so in the notation of (4.1) defines an
AC G2-instanton with fastest rate of convergence −2.

7.3 Eigenvalues of the Twisted Dirac Operator on F1,2,3

Again we denote by Q the bundle defined in (7.6). The basis of su(3)C = sl(3,C) that we
choose is {E12, E13, E23, E21, E31, E32, H12, H23}, where Eij is the elementary matrix with
a 1 in the (i, j)th entry and zeros elsewhere, and where

H12 = diag(1,−1, 0), H23 = diag(0, 1,−1).

The matrices H12 and H23 form a basis of a Cartan subalgebra given by the Lie algebra
of the group of diagonal matrices in SU(3), we denote this t2 = 〈H12, H23〉. Irreducible
representation are then determined by elements of the lattice

(t2)∗Z = {λ ∈ (t2)∗ ; λ(X) ∈ 2πiZ for all X ∈ Ker exp}.

Let us define linear functionals on t by

Li

a1 0 0
0 a2 0
0 0 a3

 = ai

for i = 1, 2, 3. Then Li ∈ (t2)∗Z and these functionals form a spanning set for (t2)∗. Note
they are subject to the relation L1 +L2 +L3 = 0. We choose to represent the lattice and
the functionals Li in the plane as 1

1All images in this chapter are credited to Jonny Evans https://github.com/jde27/lie-grp/
blob/master/notizen.pdf
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7.3 Eigenvalues of the Twisted Dirac Operator on F1,2,3

The fundamental Weyl chamber is the set {αL1−βL3 ; α, β ∈ R+} and so irreducible
representations of SU(3), which are determined by their highest weight, are in bijection
with (N ∪ {0})2. This is because a highest weight lies in the intersection of the Weyl
chamber with the lattice, and such a weight is precisely aL1− bL3 for (a, b) ∈ (N∪{0})2.

For a pair of natural numbers (a, b) let us denote by V(a,b) the unique complex irreducible
representation of SU(3) with highest weight aL1 − bL3. The branching rule for the T 2-
subgroup is easily determined by the weight diagram of given representation. Let us
consider as an example the adjoint representation (su(3)C, ρAd). Let H = diag(a1, a2, a3),

then one can calculate that ρAd(H)Eij = (ai − aj)Eij and it follows that the weight
diagram for the adjoint representation is

where 0 has multiplicity 2 (since SU(3) is rank 2) and all other weights have multiplicity
one. Let (W(a,b), ρ(a,b)) be the irreducible complex representation of t with ρ(a,b)(H12) = a

and ρ(a,b)(H23) = b, then one uses the relation L1 + L2 + L3 = 0 to calculate that

sl(3,C) = 2W(0,0) ⊕W(2,−1) ⊕W(−1,2) ⊕W(−1,−1) ⊕W(−2,1) ⊕W(1,−2) ⊕W(1,1).

The representation mC carries the adjoint action of T 2 and, as in [18], one can calculate
the weight space decomposition to be

mC = W(2,−1) ⊕W(−1,2) ⊕W(−1,−1) ⊕W(−2,1) ⊕W(1,−2) ⊕W(1,1).

Notice that as a representation of T 2 the spinor space is S = 〈1〉C ⊕ mC ⊕ 〈Vol〉C, with
T 2 acting trivially on the complement of mC, and that this decomposes identically to
sl(3,C).
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7.3 Eigenvalues of the Twisted Dirac Operator on F1,2,3

The eigenvalues of the Casimir operator one obtains from the nearly Kähler metric
are calculated in [18]. We may write

ρV(a,b)(Cassu(3)) = c
su(3)
(a,b) Id

ρW(c,d)
(Cast2) = ct

2

(c,d)Id

and the eigenvalues are

c
su(3)
(a,b) = −4

3

(
a2 + b2 + ab+ 3a+ 3b

)
(7.8)

ct
2

(c,d) = −4

3

(
c2 + cd+ d2

)
. (7.9)

Let us now examine the relevant Lichnerowicz formula. In the case at hand this takes
the form

(D
1
3
Acan

)2 = −ρL(Cassu(3)) + ρAd◦λ(Cast2) + 4

where ρAd◦λ acts on so(3)C. We split the space of sections using the Frobenius reciprocity
theorem

L2(/SC(F1,2,3)⊗ AdQ) ∼=
⊕

γ∈ŜU(3)

Hom(Vγ, S ⊗ so(3)C)T 2 ⊗ Vγ (7.10)

and define an operator (D
1
2
Acan

)2
γ by requiring that

(D
1
3
Acan

)2
γ ⊗ Id = (D

1
3
Acan

)2|Hom(Vγ ,S⊗so(3))C⊗Vγ . (7.11)

To calculate the eigenvalues of (D
1
3
Acan

)2 we must first determine the decomposition of
(so(3)C,Ad ◦ λ). One finds that, in a suitable basis of so(3)C, we have

Ad ◦ λ

eiθ 0 0
0 e−i(θ+φ) 0
0 0 eiφ

 =

ei(φ−θ) 0 0
0 1 0
0 0 ei(θ−φ)


and it follows that

(so(3)C,Ad ◦ λ) = W(−1,−1) ⊕W(0,0) ⊕W(1,1).

Remark 7.3.1. The reader is warned that we have chosen different generators of the
maximal torus of SU(3) to those in [77], so our labelling conventions are not the same.

With this in hand we can use Corollary 5.3.2 and (7.9) to state the eigenvalues of
(D

1
3
Acan

)2 :

Lemma 7.3.2. Let Vγ = V(a,b) be an irreducible representation of SU(3) such that

dim Hom(Vγ, S ⊗ so(3)C) 6= 0 and let (D
1
3
Acan

)2
γ be the operator defined by (7.11). The

eigenvalues and multiplicities of this operator are
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7.3 Eigenvalues of the Twisted Dirac Operator on F1,2,3

Eigenvalue Multiplicity

−csu(3)
(a,b) + 4 dim Hom(Vγ, S)T 2

−csu(3)
(a,b) dim Hom(Vγ, S ⊗ (W(−1,−1) ⊕W(1,1)))T 2 .

Again this allows us to bound the eigenvalues of (D0
Acan

)γ :

Corollary 7.3.3. Let Vγ be an irreducible representation of SU(3). If Vγ is not one of
the representations listed below then Spec(D0

Acan
)γ ∩ [0, 2] = ∅:

• The trivial representation V(0,0) = C

• The standard representation V(1,0) = C3

• The dual of the standard representation V(0,1) = (C3)∗

Proof. Let Vγ be an irreducible representation of SU(3), then the lower bound on smallest
positive eigenvalue of (D0

Acan
)γ that is given by Theorem 5.3.5 is

Lγ =

√
−csu(3)

γ − 1.

Using (7.8) we see that when Vγ = V(1,1) the lower bound that one obtains is Lγ =√
12− 1 > 2. For any other irreducible representation (excluding those stated above) the

bound is strictly larger and this completes the proof.

Let us therefore begin to examine the representations left on our list. The first case
to consider is when Vγ = V(0,0) is the trivial representation of SU(3). We should expect to
see a 2-dimensional kernel for (D0

Acan
)γ since invariant solutions appear from the trivial

representation and we know that the linearisation of the invariant G2-instanton equations
(7.7) has a 1-dimensional space of solutions.

To begin with, note that an application of Schur’s lemma shows Hom(C, S⊗so(3)C)T 2

is four dimensional. Let m(i,j) be a fixed weight vector for the weight aL1 − bL3 of the
representation mC ⊂ S and let w(i,j) be a fixed weight vector for the weight aL1 − bL3 of
the representation so(3)C. We set

q(0,0)(0,0) = 1⊗ w(0,0)

q̃(0,0)(0,0) = Vol⊗ w(0,0)

q(1,1)(−1,−1) = m(1,1) ⊗ w(−1,−1)

q(−1,−1)(1,1) = m(−1,−1) ⊗ w(1,1)

then {q(0,0)(0,0), q̃(0,0)(0,0), q(1,1)(−1,−1)q(−1,−1)(1,1)} forms a basis of

(S ⊗ so(3)C)T 2
∼= Hom(C, S ⊗ so(3)C)T 2
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7.3 Eigenvalues of the Twisted Dirac Operator on F1,2,3

where (S ⊗ so(3)C)T 2 is the space of T 2-invariant vectors in S ⊗ so(3)C. Let {Ia} be an
orthonormal basis for m and recall from (5.9) that

(D0
Acan

)γ = cl(Ia)ρC(Ia)−
3

4
ReΩ

on this space. Since the action involved here is the trivial one we see that (D0
Acan

)γ =

−3
4
ReΩ and the vectors q(0,0) and q(3,3) are, by Lemma 2.3.3, thus eigenvectors with

eigenvalues −3 and 3 respectively. In contrast the vectors q(1,1)(−1,−1), q(−1,−1)(1,1) define
equivariant maps that factor through Λ1 ⊗ so(3)C ⊂ S ⊗ so(3)C and it follows from
Lemma 2.3.3 that ReΩ acts trivially on these vectors. These observation yield the next
proposition:

Proposition 7.3.4. Let Vγ = C and let (D0
Acan

)γ be the operator on Hom(Vγ, S⊗so(3)C)T 2

given in (5.7). The eigenvalues of this operator are

Eigenvalue λ Multiplicity

0 2

3 1

−3 1

According to Corollary 7.3.3 the next case to consider is when the representation in
question is V(1,0) = C3, the standard representation of SU(3). Since the spinor space S is
the same as V(1,1) = sl(3,C) as a representation of T 2, we find

Hom(V(1,0), S ⊗ so(3)C)T 2
∼= Hom(V(1,1) ⊗ V(1,0),W(−1,−1) ⊕W(0,0) ⊕W(1,1))T 2 .

The weight diagram of V(1,1) ⊗ V(1,0) is
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7.3 Eigenvalues of the Twisted Dirac Operator on F1,2,3

and we observe that this does not contain any of the weights of (so(3)C,Ad◦λ) which are
{−L1 +L3, 0, L1−L3}. The only T 2-equivariant map from V(1,0) to S⊗ so(3)C is thus the
zero map and we can therefore omit the standard representation from our calculation. An
almost identical argument shows that V(0,1) = (C3)∗ does not contribute any eigenvalues
to the spectrum of the twisted Dirac operator.

Observe we have shown 2 is not an eigenvalue of (D0
Acan

)γ when Vγ is either the trivial
representation, the standard representation C3 or the dual of the standard representation
(C3)∗. Furthermore 2 cannot occur as an eigenvalue coming from any other representation
by Corollary 7.3.3. According to [18] perturbations of a nearly Kähler instanton A∞ on
a 6-manifold are given by 1-forms a ∈ Ω1(Σ,AdQ) such that DA∞(a · s6) = 2a · s6, so this
observation yields the following corollary:

Corollary 7.3.5. The canonical connection living on the homogeneous bundle Q defined
in (7.6) is a rigid nearly Kähler instanton.

We conclude this section by giving the virtual dimension of the moduli spaceM(Acan, µ)

of which Oliveira’s instanton is an element. This follows from Remark 4.4.6 since 0 is the
only eigenvalue of D0

Acan
in [0, 2) and has multiplicity 2.

Theorem 7.3.6. Let A be Oliveria’s G2-instanton with gauge group SO(3) on Λ2
−(CP2)

given in Theorem 7.2.1. The virtual dimension of the moduli space is

virtdimM(Acan, µ) = 1

for all µ ∈ (−2, 0).

Remark 7.3.7. Observe that inspection of the invariant G2-instanton equations revealed
that the linearised equation has a one-dimensional space of solutions whilst space of solu-
tions to the non-linear equation is zero-dimensional. It follows that the invariant moduli
space is obstructed. On the other hand if the AC moduli space is unobstructed then it must
be that connections in the moduli space (excluding Oliveira’s examples) are not invariant
under the given group action. This is because if we assume unobstructedness then the
moduli space is a smooth one-dimensional manifold.

Remark 7.3.8. Oliveira [77] also constructs a 2-parameter family of G2-instantons with
structure group SU(3) over Λ2

−(CP2). These connections also decay to the canonical con-
nection (although this is the canonical connection for a bundle with a different action to
that on the bundle over the end of Λ2

−(CP2)).The calculations involved are likely to be
lengthy and these examples are therefore not considered in this thesis. The methods used
above are however still applicable to this example. To the author’s knowledge, these are
the only known non-abelian examples that we do not consider.
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7.4 The Bryant-Salamon Λ2
−(S4).

7.4 The Bryant-Salamon Λ2
−(S4).

Under the isomorphism Sp(2) ∼= Spin(5) we see that Sp(2) acts transitively on S4 with
isotropy Spin(4) ∼= Sp(1)×Sp(1).We can lift this to an isometric action on the total space
of Λ2

−(S4) by asking that Sp(2) acts on an ASD 2-form via pull back. One can understand
the action of the isotropy group Sp(1)×Sp(1) on a fiber of Λ2

−(S4) by modelling a fibre as
the imaginary quaternions [77], the action is then (p, q) ·x = qxq for (p, q) ∈ Sp(1)×Sp(1)

and x ∈ ImH. The stabiliser of a non-zero imaginary quaternion under this action is
Sp(1)× U(1), so away form the zero section the principal orbits are

Sp(2)/Sp(1)× U(1) ∼= CP3.

Moreover since the action is isometric the principal orbits are diffeomorphic to level sets of
the norm function s = | · |2 on the fibers. The metric | · | on the fibers is Euclidean and will
be denoted gR3 . The unit sphere bundle of Λ2

−(S4) is the twistor fibration π : CP3 → S4

and carries a nearly Kähler structure.
As was the case for Λ2

−(CP2) the Bryant-Salamon metric takes the form

g = f 2(s)gR3 + f−2(s)π∗gS4

where f(s) = (1 + s2)−
1
4 . The geodesic distance to the zero section then takes the form

t(s) =

∫ s

0

f(u) du

and this allows us to rewrite the metric as

g = dt2 + s2(t)f 2(s(t))gS2 + f−2(s(t))π∗gS4

where gS2 is the round metric on the unit sphere of a fibre in Λ2
−(S4). Again we can

also describe the G2-structure explicitly in local coordinates. To gain a suitable local
expression we first study the homogeneous structure of Sp(2)/Sp(1)× U(1).

Recall the Lie algebra sp(2) is defined as

sp(2) = {X ∈ Mat2(H) ; X +X† = 0}

where X† is the quaternionic conjugate transpose of X. Let t = Lie(U(1)) and let i, j

and k denote the unit imaginary quaternions. We embed the subalgebra sp(1)⊕ t as(
q 0
0 ai

)
for a ∈ R. Under the reductive decomposition sp(2) = (sp(1) ⊕ t) ⊕ m a suitable model
for m is

m =

(
0 h
−h† bj + ck

)
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7.5 Instantons on Λ2
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where h is a quaternion, b, c ∈ R and h† is the quaternionic conjugate of h. Thus we
have a splitting of vector spaces m = H ⊕ 〈j,k〉R. As described in Section 2.3 a choice
of orthonormal basis for m determines a local frame for T ∗CP 3, we label the 1-forms
arising from the standard basis of H as e1, . . . e4 and the one-forms corresponding to j

and k respectively are labelled e5 and e6. Let us define local Sp(2)-invariant 2-forms Ωi

identically to (7.2), then the 3-form ϕ of the Bryant-Salamon structure takes the form

ϕ = dt ∧ (a2(t)e56 + b2(t)Ω1) + a(t)b2(t)(e6 ∧ Ω2 − e5 ∧ Ω3) (7.12)

where a(s) = 2sf(s2) and b(s) =
√

2f−1(s2). This viewpoint allows us to see that the
metric and indeed the G2-structure are again AC with |g − gC |g = O(t−4).

7.5 Instantons on Λ2
−(S4)

In [77] examples of Sp(2)-invariant G2-instantons with gauge group SU(2) were con-
structed. Here we give an overview of this construction. Again the framework for this is
provided by the framework of homogeneous bundles and Wang’s theorem.

Homogeneous SU(2)-bundles over CP3 = Sp(2)/Sp(1) × U(1) are determined by
isotropy homomorphisms λ : Sp(1) × U(1) → SU(2). By [77, Proposition 5] such a ho-
momorphism is either trivial, λ(g, eiθ) = diag(eilθ, e−ilθ) for l ∈ Z or λ(g, eiθ) = g where
we use the standard isomorphism Sp(1) ∼= SU(2). We consider first the homomorphisms
λl(g, e

iθ) = diag(eiθ, e−iθ) and delay consideration of the homomorphism λ(g, eiθ) = g

until Section 7.8 By [77, Lemma 1] the only one of the bundles

Ql := Sp(2)×λl SU(2)

to admit a non-trivial family of invariant connections is Q1. Let us therefore fix Q = Q1.

In the standard basis I1, I2, I3 of su(2) an invariant connection on Q is of the form

A = Acan + c(e5 ⊗ I1 + e6 ⊗ I2)

for c ∈ R. Let p : (Λ2
−(S4) \ S4) → CP3 denote the projection to the unit sphere bundle

of Λ2
−(S4), then the bundle p∗Q admits an extension to the total space of Λ2

−(S4) which
we denote P . Thus an invariant connection on P is of the form

A = Acan + h(e5 ⊗ I2 + e6 ⊗ I3)

with h a function of the geodesic distance coordinate t (or alternatively the Euclidean
distance s). The G2-instanton equation for A then becomes the system [77, Proposition
6]

f−4h2 = 1, f−4 dh

ds
+ sh = 0
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7.6 Eigenvalues of the Twisted Dirac Operator on CP3

together with boundary data d
ds

∣∣
s=0

f−2h = 0, lims→∞ h = 0. Note these equations are
identical to (7.7)– for more on the origins of this duality see [77, Remark 13]. Again the
first equation here, which is algebraic, implies the differential equation is automatically
satisfied. Thus:

Theorem 7.5.1 ([77, Theorem 5]). The connection

A = Acan ± f 2(s)(e5 ⊗ I2 + e6 ⊗ I3)

is a G2-instanton on the principal SU(2)-bundle P → Λ2
−(S4). Moreover A is AC with

limiting connection the canonical connection living on the bundle Q→ CP3.

This connection satisfies |A − Acan|g = O(t−3) so in the notation of (4.1) defines an
AC G2-instanton with fastest rate of convergence −2.

7.6 Eigenvalues of the Twisted Dirac Operator on CP3

Let us again denote by Q→ Sp(2)/Sp(1)× U(1) the homogeneous SU(2)-bundle associ-
ated via the homomorphism λ1(g, eiθ) = diag(eiθ, e−iθ). Using the framework developed
in Chapter 5 we aim here to determine which representations of Sp(2) could lead to
eigenvalues of D0

Acan
in the interval [0, 2). We look for eigenvalues in this range since the

connection A from Theorem 7.5.1 has fastest rate of convergence −2.

To achieve this we must first review the representation theory of the groups Sp(2) and
Sp(1) × U(1). Following [18] we choose the Cartan subalgebra of sp(2)C to be the space
of 2× 2 quaternionic matrices of the form diag(zi, wi) with z, w ∈ C. Let us call a weight
positive if it evaluates to a positive real number on the matrix idiag(2i, i). The matrices
H1 = idiag(0, i) and H2 = idiag(i,−i) are dual to the fundamental weights λ1 and λ2.

The irreducible complex representations of Sp(2) are thus determined by their highest
weight aλ1 + bλ2 for a, b ∈ N and we write (V(a,b), ρV(a,b)) for such a representation. The
first few representations are as follows

• V(0,0) = C the trivial representation

• V(0,1) = H2 = C4 the standard representation. The group Sp(2) acts on H2 by
matrix multiplication and hence on C4 via the isomorphism H2 ∼= C4 of complex
vector spaces.

• V(1,0) is a 5 dimensional representation which under the isomorphism Sp(2) ∼=
Spin(5) corresponds to the vector representation of Spin(5). This means that Spin(5)

acts adjointly on R5 ⊗ C ⊂ Cl(R5) ⊗ C. As noted in [18] the real 5 dimensional
representation

V R
(1,0) =

{(
x h
h† −x

)
; x ∈ R and h ∈ H

}
with the action being matrix commutation, satisfies V R

(1,0) ⊗R C = V(1,0).
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7.6 Eigenvalues of the Twisted Dirac Operator on CP3

It is worth noting that each irreducible representation of Sp(2) is isomorphic to its dual
representation. The final fact we need is that the Lie algebra sp(2) is 3-symmetric since
the map

S : sp(2)→ sp(2) (7.13)

S(X) =

(
1 0

0 e−
2π
3
i

)
X

(
1 0

0 e
2π
3
i

)
(7.14)

satisfies S3 = Id (here we view an elementX of sp(2) as a 2×2 skew quaterionic hermitian
matrix). This provides a reductive decomposition the Lie algebra sp(2) = (sp(1)⊕ t)⊕m.

The representation theory of Sp(1)×U(1) is straightforward since irreducible represen-
tations are precisely those of the formW⊗W ′ whereW is an irreducible representation of
Sp(1) andW ′ is an irreducible representation of U(1). For a ∈ N and b ∈ Z let us therefore
denote by (W(a,b), ρW(a,b)

) the unique (a + 1)-dimensional representation of Sp(1)× U(1)

on which U(1) acts with weight b. We realise the Lie algebra as

sp(1)⊕ t =

(
p 0
0 xi

)
(7.15)

for p ∈ sp(1) = ImH and x ∈ R so that sp(1) ⊕ t naturally forms a subalgebra of sp(2).

The spinor space S = C⊕mC ⊕ C is the following representation of Sp(1)× U(1) [18]

S = 〈1〉C ⊕W(1,−1) ⊕W(1,1) ⊕W(0,−2) ⊕W(0,2) ⊕ 〈Vol〉C.

Next we consider the Casimir operators on the irreducible representations V(a,b) and
W(c,d) of Sp(2) and Sp(1) × U(1) respectively. We know that the Casimir operators act
as multiples on the identity on these representations so

ρV(a,b)(Cassp(2)) = c
sp(2)
(a,b) Id

ρW(c,d)
(Cassp(1)⊕t) = c

sp(1)⊕t
(c,d) Id

and these constants are found in [18] to be

c
sp(2)
(a,b) = −

(
2a2 + 2ab+ b2 + 6a+ 4b

)
(7.16)

c
sp(1)⊕t
(c,d) = −

(
c(c+ 2) + d2

)
. (7.17)

Let us begin to apply these facts to study the spectrum of D
1
3
Acan

. By Corollary 5.3.2

we need to decompose (su(2)C,Ad ◦ λ1) as a representation of Sp(1)× U(1). The action
is simply the adjoint action of the maximal torus of SU(2) on su(2)C = sl(2,C) so the
decomposition is

(su(2)C,Ad ◦ λ1) = W(0,−2) ⊕W(0,0) ⊕W(0,2)

and ρAd◦λ1(Cassp(1)⊕t) acts as −4 on the W(−2,0) ⊕ W(0,2) subspace and acts trivially

on W(0,0). As in (5.11) we split the operator (D
1
3
Acan

)2 into endomorphisms (D
1
3
Acan

)2
γ

of Hom(Vγ, S ⊗ su(2)C)Sp(1)×U(1) for each irreducible representation Vγ of Sp(2). Let

Vγ = V(a,b) then using Corollary 5.3.2 we see that the eigenvalues of (D
1
3
Acan

)γ are
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Eigenvalue Multiplicity

−csp(2)
(a,b) + 4 dimHom(V(a,b), S)Sp(1)×U(1)

−csp(2)
(a,b) dimHom(V(a,b), S ⊗ (W(0,−2) ⊕W(0,2)))Sp(1)×U(1)

Again this will prove a useful consistency check when we come to calculate the matrices
of the twisted Dirac operators (Dt

Acan
)γ.

Recall that we are looking for eigenvalues of D0
Acan

in the interval [0, 2). We can use
Theorem 5.3.5 to eliminate most of the representation V(a,b) under consideration.

Lemma 7.6.1. Let Vγ be an irreducible representation of Sp(2). If Vγ is not one of the
following representations then (D0

Acan
)γ has no eigenvalues in the interval [0, 2]:

• V(0,0) the trivial representation

• V(0,1) the standard representation

• V(1,0) the vector representation of Spin(5).

Proof. This is a simple application of Theorem 5.3.5. When Vγ = V(0,2) we find that
Lγ =

√
12 − 1 > 2 whilst other irreducible representations which are not on the above

list yield a greater bound.

Thus we need only consider the 3 representations stated in Lemma 7.6.1. For nota-
tional convenience let us set [[W(a,b)]] := W(a,b) ⊕ W(a,−b) and recall the twisted spinor
space splits

S ⊗ su(2)C = S ⊕
(
S ⊗ [[W(0,2)]]

)
.

As representations of Sp(1)× U(1) these spaces are

S = 2W(0,0) ⊕W(1,1) ⊕W(1,−1) ⊕W(0,2) ⊕W(0,−2) (7.18)

S ⊗ [[W(0,2)]] = [[W(1,3)]]⊕ [[W(1,1)]]⊕ [[W(0,4)]]⊕ 2
(
[[W(0,2)]]⊕W(0,0)

)
. (7.19)

The space of sections admits a splitting

L2(S ⊗ AdQ) ∼=

 ⊕
γ∈Ŝp(2)

Hom(Vγ, S)Sp(1)×U(1) ⊗ Vγ

⊕
 ⊕
γ∈Ŝp(2)

Hom(Vγ, S ⊗ [[W(0,2)]])Sp(1)×U(1) ⊗ Vγ


and this is preserved by the operators (Dt

Acan
)γ. For each irreducible representation Vγ of

Sp(2) we will therefore consider the operators defined by the restriction of (Dt
Acan

)γ to
the spaces Hom(Vγ, S)Sp(1)×U(1) and Hom(Vγ, S ⊗ [[W(0,2)]])Sp(1)×U(1).
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The first case to consider is when Vγ = V(0,0) = C is the trivial representation. The
space Hom(C, S)Sp(1)×U(1) has dimension 2 and a basis is given by the maps q(0,0) : C →
Λ(0,0) ⊂ S and q(3,3) : C→ Λ(3,3) ⊂ S defined in the obvious way. On this space (D1

Acan
)γ =

cl(Ia)ρV ∗γ (Ia) ≡ 0 since the action is trivial. Now

(D0
Acan

)γ = (D1
Acan

)γ −
3

4
ReΩ

and so Lemma 2.3.3 tells us that q(0,0) and q(3,3) are eigenvectors of (D0
Acan

)γ with eigen-
values −3 and 3 respectively. Note that the sections these maps define correspond to the
Killing spinor s6 and Vol · s6.

Consider now the space Hom(Vγ, S ⊗ [[W(0,2)]])Sp(1)×U(1) when Vγ is the trivial repre-
sentation so that once again (D1

Acan
)γ acts trivially. This space has dimension 2 since S⊗

[[W(0,2)]] contains two trivial components coming from the subspaces W(0,2)⊗W(0,−2) and
W(0,−2)⊗W(0,2). Since the spaces in question are actually subspaces of m∗C⊗[[W(0,2)]] ⊂ S⊗
[[W(0,2)]] we find from Lemma 2.3.3 that ReΩ acts trivially on Hom(C, S⊗[[W(0,2)]])Sp(1)×U(1).

Therefore (Dt
Acan

)γ = 0 on this space for all t. We conclude that

Proposition 7.6.2. Let Vγ = C be the trivial representation of Sp(2). The eigenvalues
and multiplicities of (D0

Acan
)γ are

Eigenvalue Multiplicity

0 2

−3 1

3 1

The next case to be considered is when Vγ = V(0,1) is the standard representation of
Sp(2). Restricting to the action of the subgroup Sp(1) × U(1) one finds that V(0,1) =

W(1,0) ⊕ [[W(0,1)]] but inspection of (7.18) and (7.19) then reveals that there are no non-
trivial Sp(1)×U(1) equivariant maps from V(0,1) → S ⊗ su(2)C, so this case need not be
considered.

The last case to consider is when the representation in question is Vγ = V(1,0) the
vector representation of Spin(5). We present this in the next section as the calculations
involved here are more complicated.

7.7 Eigenvalues from the Vector Representation of Spin(5)

Throughout this section the representation of Sp(2) under consideration is Vγ = V(1,0)

the vector representation of Spin(5). Consider first the restriction of (Dt
Acan

)γ to the
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space Hom(V(1,0), S ⊗ [[W(0,2)]])Sp(1)×U(1). The branching of V(1,0) as a representation of
Sp(1)×U(1) is [18] V(1,0) = [[W(1,1)]]⊕W(0,0) and one therefore finds that Hom(V(1,0), S⊗
[[W(0,2)]])Sp(1)×U(1) has dimension four and a basis is given by the Sp(1)×U(1) equivariant
maps which factor

q
(i,j)
(k,l)(m,n) : V(1,0) → W(i,j) → W(k,l) ⊗W(m,n) ↪→ S ⊗ [[W(0,2)]]

where the first map is a projection and the second map is an embedding of W(i,j) in
W(k,l) ⊗W(m,n) ⊂ S ⊗ [[W(0,2)]]. The basis one obtains is{

q
(1,1)
(1,−1)(0,2), q

(1,−1)
(1,1)(0,−2), q

(0,0)
(0,−2)(0,2), q

(0,0)
(0,2)(0,−2)

}
,

observe that all of these maps factor through Λ1 ⊂ S so that ReΩ acts trivially on this
space. Using Corollary 5.3.2 and (7.16) we find that (D

1
3
Acan

)2
γ acts as multiplication by 8

on this space. The eigenvalues of (D
1
3
Acan

)γ are therefore ±
√

8, each with multiplicity 2.
Since ReΩ acts trivially on this space the spectrum is identical for each (Dt

Acan
)γ for each

t ∈ R.
Let us now consider the action of the operators (Dt

Acan
)γ|Hom(V(1,0),S)Sp(1)×U(1)

. The space
Hom(V(1,0), S)Sp(1)×U(1) four dimensional. A basis is provided by linearly independent
maps which factor

q(i,j) : V(1,0) → W(i,j) ↪→ S

with the first map being projection and the second being inclusion. This yields the basis

{
q(1,1), q(1,−1)q(0,0), q̃(0,0)

}
(7.20)

where q(0,0) maps into Λ(0,0) ⊂ S and q̃(0,0) maps into Λ(3,3) ⊂ S. The situation here is more
complicated than those previously considered since an Sp(1)×U(1)-equivariant map takes
values in the entire spinor space S, not just one of the subspaces (Λ(0,0⊕Λ(3,3)) or Λ1

C.We
know from Corollary 5.3.2 that (D

1
3
Acan

)γ = 12 on this space and the eigenvalues of (D
1
3
Acan

)γ

are thus ±
√

12. The complication arises because the 3-form ReΩ acts non-trivially on this
space. To calculate the eigenvalues of (D0

Acan
)γ on this space we work with formula (5.9).

We will seek to calculate the action ρV(1,0)(Ia)q
(i,j) where Ia is an orthonormal basis of m

and q(i,j) is one of the basis vectors from (7.20), as well as understanding the action of
Clifford multiplication and the almost complex structure in this basis.

The first job is to find an orthonormal basis with respect to the metric (2.15). We
choose to view the Lie algebra sp(2) as a subspace of Mat4(C) by viewing the quaternionic
algebra as an algebra of 2× 2 complex matrices in the standard way. From this point of
view the Killing form is [39]

Tr(adX ◦ adY ) = 6TrXY

for X, Y ∈ sp(2) ⊂ Mat4(C).
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One finds that

H1 =

(
i 0
0 0

)
=


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 H2 =

(
j 0
0 0

)
=


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


H3 =

(
k 0
0 0

)
=

i 0 0 0
0 −i 0 0
0 0 0 0

 H4 =

(
0 0
0 i

)
=


0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0


M1 =

(
0 0
0 j

)
=


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 M2 =

(
0 0
0 k

)
=


0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i


M3 = 1√

2

(
0 1
−1 0

)
= 1√

2


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 M4 = 1√
2

(
0 i
i 0

)
= 1√

2


0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0


M5 = 1√

2

(
0 j
j 0

)
= 1√

2


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 M6 = 1√
2

(
0 k
k 0

)
= 1√

2


0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0

 .

is an orthonormal set of generators with the matricesHi generating the subalgebra sp(1)⊕
t in (7.15). The complex structure in defined by restricting the map (7.13) to m =

〈M1, . . . ,M6〉R. A simple calculation yields

J(M1) = −M2 J(M2) = M1

J(M3) = M4 J(M4) = −M3

J(M5) = −M6 J(M6) = M5

and by calculating the structure constants of the algebra and appealing to the formula
(2.21) one finds that

ReΩ = e135 + e146 + e236 + e254 (7.21)

in the local frame {ea} of T ∗CP3 determined by the basis {Ma} of m ∼= m∗. With almost
complex structure and the 3-form ReΩ determined we can determine Clifford multiplica-
tion. This follows from the fact that (u ∧ v)yω = uyJv for any pair of 1-forms u and v,
since applying this to the formula for Clifford multiplication (2.32) yields an equivalent
formula

cl(u)(f + v + hVol) · s6 = (−uyv + fu− hJu− (u ∧ v)yReΩ− (uyJv)Vol) · s6. (7.22)

To calculate the matrix of (D1
Acan

)γ using (5.9) we must understand the action of ρV ∗
(1,0)

(Ma)

on Hom(V(1,0), S)Sp(1)×U(1). For this we note that

Hom(V(1,0), S)Sp(1)×U(1)
∼=
(
S ⊗ V ∗(1,0)

)
Sp(1)×U(1)

∼=
(
S ⊗ V(1,0)

)
Sp(1)×U(1)

97



7.7 Eigenvalues from the Vector Representation of Spin(5)

and this last space is the subspace of S⊗V(1,0) consisting of vectors fixed by the action of
the Sp(1)×U(1) subgroup of Sp(2). For the representation V(1,0) we choose basis vectors

I :=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , X :=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , Y :=


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0


Z :=


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , W :=


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0


and the action is matrix commutation.

To determine what the maps q(i,j) from (7.20) look like in the space
(
V(1,0) ⊗ S

)
Sp(1)×U(1)

we note first thatW(i,j)⊗W(k,l) contains a copy of the trivial representation of Sp(1)×U(1)

if and only if i = k and j = −l. We will therefore determine explicit decompositions
of the representation V(1,0) and the spinor space S into irreducible representations of
Sp(1)× U(1).

By calculating the action ρV(1,0)(Hi) on the basis matrices of V(1,0) we can determine
explicitly the decomposition V(1,0) = [[W(1,1)]]⊕W(0,0). Let us set

θ1 := X + iY, θ2 := W − iZ

θ1 := X − iY, θ2 := W + iZ

then one finds that W(0,0) = 〈I〉C whilst W(1,1) = 〈θ1, θ2〉C and W(1,−1) = 〈θ1, θ2〉C.
A similar analysis works for the representation m. If we define

φ1 := M3 + iM4, φ2 := M6 + iM5

φ1 := M3 − iM4, φ2 := M6 − iM5

then one finds that W(1,1) = 〈φ1, φ2〉C and W(1,−1) = 〈φ1, φ2〉C. With this in hand we can
look for invariant vectors in W(i,j) ⊗W(i,−j) ⊂ S ⊗ V(1,0). Abusing notation slightly let
us use the same notation as in (7.20) after identifying Hom(V(1,0), S)Sp(1)×U(1)

∼= (S ⊗
V(1,0))Sp(1)×U(1), then the basis becomes

q(0,0) = 1⊗ I

q̃(0,0) = Vol⊗ I

q(1,1) = φ1 ⊗ θ1 + φ2 ⊗ θ2

q(1,−1) = φ1 ⊗ θ1 + φ2 ⊗ θ2.

We can now proceed to calculate the matrix of the Dirac operator in this basis using the
formula

(D1
Acan

)γ = cl(Ma)ρV(1,0)(Ma). (7.23)
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Inspection of (7.22) reveals that cl(Ma)(1 ⊗ v) = Ma ⊗ v for v ∈ V(1,0) and we find that
ρV(1,0)(M1)I = ρV(1,0)(M2)I = 0 whilst

ρV(1,0)(M3)I = −
√

2X, ρV(1,0)(M4)I = −
√

2Y

ρV(1,0)(M5)I =
√

2Z, ρV(1,0)(M6)I = −
√

2W.

Applying these facts to (7.23) one finds

(D1
Acan

)γq
(0,0) =

√
2 (−M3 ⊗X −M4 ⊗ Y +M5 ⊗ Z −M6 ⊗W )

= − 1√
2

(
q(1,1) + q(1,−1)

)
.

Again by (7.22) we have that cl(Ma)(Vol⊗ v) = −J(Ma)⊗ v for v ∈ V(1,0) and thus

(D1
Acan

)γ q̃
(0,0) = −

√
2 (−M4 ⊗X +M3 ⊗ Y −M6 ⊗ Z −M5 ⊗W )

= − i√
2

(
q(1,1) − q(1,−1)

)
.

To calculate the action of the operator on q(1,1) we note that

ρV(1,0)(M1)θ1 = iθ2, ρV(1,0)(M2)θ1 = iθ2, ρV(1,0)(M3)θ1 =
√

2I

ρV(1,0)(M4)θ1 = −i
√

2I, ρV(1,0)(M5)θ1 = 0, ρV(1,0)(M6)θ1 = 0

and

ρV(1,0)(M1)θ2 = −iθ1, ρV(1,0)(M2)θ2 = θ1, ρV(1,0)(M3)θ2 = 0

ρV(1,0)(M4)θ2 = 0, ρV(1,0)(M5)θ2 = −i
√

2I, ρV(1,0)(M6)θ2 =
√

2I.

Since we know the action of the almost complex structure and have a local expression for
ReΩ we can again use (7.22) to calculate cl(Mi)Mj and we find

cl(M1)φ1 = −iφ2, cl(M1)φ2 = iφ1

cl(M2)φ1 = −φ2, cl(M2)φ2 = φ1

cl(M3)φ1 = −1 + iVol, cl(M5)φ2 = −i1− Vol

cl(M4)φ1 = −i1− Vol, cl(M6)φ2 = −1 + iVol.

Thus we find

(D1
Acan

)γ(φ1 ⊗ θ1 + φ2 ⊗ θ2) = cl(Ma)ρV(1,0)(Ma)(φ1 ⊗ θ1 + φ2 ⊗ θ2)

= 2
(
φ1 ⊗ θ1 + φ2 ⊗ θ2

)
+
√

2 (−41 + 4iVol)⊗ I

= −4
√

2q(0,0) + 4
√

2iq̃(0,0) + 2q(1,1) + 2q(1,−1).
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In an identical manner we calculate (D1
Acan

)γ(φ1 ⊗ θ1 + φ2 ⊗ θ2) and we find

(D1
Acan

)γ(φ1 ⊗ θ1 + φ2 ⊗ θ2) = −4
√

2q(0,0) − 4
√

2iq̃(0,0) + 2q(1,1) + 2q(1,−1).

Thus we have found the matrix of (D1
Acan

)γ in the basis q(0,0), q̃(0,0), q(1,1), q(1,−1) and given
that Lemma 2.3.3 informs of the action of ReΩ in this basis we can appeal to (5.8) and
find the matrix of (Dt

Acan
)γ to be

(Dt
Acan

)γ =


3(t− 1) 0 −4

√
2 −4

√
2

0 −3(t− 1) 4i
√

2 −4i
√

2
− 1√

2
− i√

2
0 2

− 1√
2

i√
2

2 0

 (7.24)

We perform a consistency check by noting that (D
1
3
Acan

)2
γ = diag(12, 12, 12, 12) as predicted

by (5.13). By calculating the eigenvalues of (D0
Acan

)γ we obtain the following proposition:

Proposition 7.7.1. Let Vγ = V(1,0) be the vector representation of Spin(5) = Sp(2) and
let (D0

Acan
)γ denote the twisted Dirac operator on Hom(V(1,0), S ⊗ su(2)C)Sp(1)×U(1) as in

(5.9). The eigenvalues are symmetric about zero, the ±λ eigenspaces are isomorphic and
the positive eigenvalues and multiplicities are:

Eigenvalue Multiplicity

√
8 2

1
2

+
√

57
2

1

−1
2

+
√

57
2

1

Observe now that 2 is not an eigenvalue of (D0
Acan

)γ when Vγ is either the trivial
representation, the standard representation or the vector representation and Lemma 7.6.1

ensures it is not an eigenvalue for any other representation. Therefore 2 is not in the
spectrum of D0

Acan
. Since deformations of a nearly Kähler instanton correspond to 1-forms

in the +2 eigenspace of the operator D0
Acan

[18] we obtain a corollary:

Corollary 7.7.2. Let Q→ CP3 be the homogeneous SU(2)-bundle

Q = Sp(2)×λ1 SU(2)

where λ1 : Sp(1)× U(1)→ SU(2) is the homomorphism λ1(g, eiθ) = diag(eiθ, e−iθ). Then
the canonical connection Acan on Q is a rigid nearly Kähler instanton.

We conclude this section by stating the virtual dimension of the moduli space we have
been studying. This follows from the observation in Remark 4.4.6:
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Theorem 7.7.3. Let Acan be the canonical connection on the homogeneous SU(2)-bundle
Q = Sp(2) ×λ1 SU(2). Let p : Λ2

−(S4) → CP3 denote the natural projection and let P be
the extension of the bundle p∗Q as described in [77]. The virtual dimension of the moduli
space M(Acan, µ) of G2-instantons on P asymptotic to Acan with rate µ is

virtdimM(Acan, µ) = 1

for all µ ∈ (−2, 0).

7.8 Pullback of the Spin Connection on S4

In [77] Oliveira showed that the Levi-Civita connection on the spinor bundle of S4 can
be pulled back to Λ2

−(S4) to define a G2-instanton for the Bryant-Salamon G2-structure.
More generally, any ASD instanton over S4 or CP2 can be pulled back to the Bryant-
Salamon manifolds to define a G2-instanton.

We can interpret the spin connection and its pullback homogeneous bundle language.
Using the isomorphism Sp(1) ∼= SU(2) the isotropy homomorphism λ : Sp(1) × Sp(1) →
SU(2) given by λ(g, g′) = g defines an Sp(2)-homogeneous SU(2)-bundle over S4 =

Sp(2)/Sp(1)×Sp(1). This is the frame bundle of the spinor bundle of S4 and the canonical
connection coincides with the Levi-Civita connection as S4 is a symmetric space. The
twistor projection enables one to lift the bundle and connection to an SU(2) bundle and
connection over CP3. The bundle here is the homogeneous bundle

Q = Sp(2)×λ̃ SU(2)

where λ̃(g, eiθ) = g and the connection Acan is the canonical connection. We pullback
Q and Acan to Λ2

−(S4); both the bundle and the connection automatically extend over
the zero section and it is verified in [77, Proposition 3] that this yields a G2-instanton.
We label this bundle P and still denote the canonical connection by Acan. The situation
here is somewhat different to those previously considered since the G2-instanton is AC
with any rate µ < 0 and so to determine the virtual dimension of the moduli space of
G2-instantons asymptotic to Acan for all rates one would need to calculate the entire
spectrum of D0

can. Doing so would require calculating the branching rule from Sp(2) to
Sp(1)× U(1), however we will not attempt this. We can however quite easily determine
the virtual dimension for a small interval of weights using the methods developed in
Chapter 5.

As is now familiar, we wish to determine the eigenvalues of D0
Acan

in the interval
[0, 2) (or possibly a bigger interval containing this one). This operator acts on section
of /S(CP3) ⊗ AdQ where the bundle AdQ is associated via the representation Ad ◦ λ̃ of
Sp(1) × U(1), and it is clear that the isomorphism class of this representation is W(2,0).
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Recalling the decomposition of the spinor space as an Sp(1)× U(1) representation from
(7.18) we find that the isomorphism class of twisted spinor space to be

S ⊗ su(2)C = 2W(2,0) ⊕ [[W(3,1)]]⊕ [[W(1,1)]]⊕ [[W(2,2)]]. (7.25)

Observe that Hom(C, S ⊗ su(2)C)Sp(1)×U(1) = {0} by Schur’s lemma, so this homomor-
phism space does not contribute any eigenvalues. The next case to consider is V(0,1)

which is the standard representation of Sp(2). The branching of this representation is
V(0,1) = W(1,0) ⊕ [[W(0,1)]] so this representation also contributes no eigenvalues.

The first irreducible representation of Sp(2) that contributes eigenvalues is V(1,0),
the vector representation of Spin(5). Recall the branching is V(1,0) = W(0,0) ⊕ [[W(1,1)]]

so Hom(V(1,0), S ⊗ su(2)C)Sp(1)×U(1) has dimension 2 and a basis is given by the maps
q

(1,1)
(1,1)(2,0), q

(1,−1)
(1,−1)(2,0), where q

(i,j)
(k,l)(m,n) which factor

V(1,0) → W(i,j) → W(k,l) ⊗W(m,n) ↪→ S ⊗ su(2)C

with the first map being an equivariant projection and the second being an equivariant
embedding. Let Vγ = V(1,0), from (5.12) and (7.16) we have that

(D
1
3
Acan

)2
γ = 8Id.

Now all maps in Hom(V(1,0), S ⊗ su(2)C)Sp(1)×U(1) actually map into m∗C ⊗ su(2)C and it

follows that ReΩ acts trivially on this space. We conclude that (Dt
Acan

)γ = (D
1
3
Acan

)γ for

all t and therefore the eigenvalues of (D0
Acan

)γ are the same as those of (D
1
3
Acan

)γ which are
±
√

8.

We do not consider calculating eigenvalues from any more representations but instead
provide bounds sufficient for us to state the virtual dimension of the moduli space under
consideration. Let Vγ = V(0,2), then the lower bound on the positive eigenvalues of
(D0

Acan
)γ that one obtains from Theorem 5.3.5 is Lγ =

√
12− 1. For any other irreducible

representation of Sp(2) we get a larger lower bound on the smallest positive eigenvalue
of the induced operator. Thus we have shown

Proposition 7.8.1. Let Acan be the canonical connection on the bundle Q = Sp(2) ×λ̃
SU(2). Then the operator D0

Acan
has no eigenvalues in the region (−

√
12 + 1,

√
12− 1).

As a result we are able to determine the virtual dimension of the moduli space for
certain rates:

Theorem 7.8.2. Let M(Acan, µ) be the moduli space of G2-instantons on P → Λ2
−(S4),

asymptotic to Acan with rate µ. Then the virtual dimension of the moduli space is

virtdimM(Acan, µ) = 0 for all µ ∈ (−
√

12− 1, 0).

Since both the invariant instanton equations and the virtual dimension of the AC
moduli space are identical in both cases considered in this chapter, the observations of
Remark 7.3.7 are equally applicable to the case considered above.
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Chapter 8

The Standard Instanton

In this chapter we consider the moduli space of AC G2-instantons on R7 with structure
group G2 and which decay to the canonical connection of S6 at infinity. We repeat the
process of calculating the virtual dimension of the moduli space but we use a different
method to that of the previous chapter for determining eigenvalues of the twisted Dirac
operator. We write the operator in question as a sum of Casimir operators and find two
bases that diagonalise the different terms in this expression. We again find the matrix of
the operator in a suitable basis of the relevant homomorphism space and by calculating
its eigenvalues we find the virtual dimension of the moduli space. As an application of the
deformation theory, we explore uniqueness properties of the G2-instanton of Günaydin
and Nicolai. This culminates with the main result of this chapter, Theorem 8.11.3, that a
G2-instanton on this bundle is either obstructed or is the instanton of Günaydin-Nicolai.

8.1 The Standard Instanton

Throughout this section we work with the AC G2-manifold M = R7 whose asymptotic
link is the homogeneous nearly Kähler manifold Σ = S6. There is a well known example
of a G2-instanton on R7 constructed by Günaydin and Nicolai [41]. This example was
recovered by Harland et al [42] via a different construction method, namely they con-
sidered the instanton equation on the cylinder over the nearly Kähler 6-sphere (which
is conformally equivalent to the Euclidean R7 \ {0}). This viewpoint makes it easier to
understand the asymptotics of the connection, in particular one easily observes that it
asymptotes to the canonical connection. We give here a very brief overview of the con-
struction before revisiting it in more detail in 8.9. The important fact we shall need here
is the rate at which the instanton converges.

Form a bundle Q over S6 via

Q = G2 ×(SU(3),ι) G2
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8.1 The Standard Instanton

where ι : SU(3) ↪→ G2 is the inclusion homomorphism. Topologically Q = G2 × S6 → S6

is the trivial G2 bundle over S6 but it helps to keep in mind the homogeneous structure.
Since the bundle Q is associated from the canonical bundle G2 → G2/SU(3) the canonical
connection lives on Q. Essentially Q extends the canonical bundle to a G2 bundle and the
canonical connection is the connection whose horizontal spaces are defined by the inclusion
of left translates of m. In particular, the canonical connection on Q has holonomy SU(3).

Other than the canonical connection Acan there is another G2-invariant connection
which is in fact flat. We denote this Aflat = Acan + a. Consider P = R7 × G2 so that
P |R7\{0} = π∗Q, the pullback of Q to the cone. Let (r, σ) ∈ (0,∞)×S6 and make the G2

invariant ansatz
A(r, σ) = Acan(σ) + f(r)a(σ)

where f is a function on R7 depending only on the radial coordinate r. It is shown in [42,
Section 5.3] that

f(r) =
1

Cr2 + 1
(8.1)

with C > 0 a constant yields a G2 instanton which extends over the origin in R7.

Remark 8.1.1. Harland et al [42] work on the cylinder over S6, with coordinates (σ, t)

for σ ∈ S6 and t ∈ R, so to change to the conical viewpoint considered here one makes the
change of variables r = et. Even after this change of variables the function given (8.1)
differs from the one found in [42] but this is simply a consequence of the normalisations
we have chosen. Namely the metric on g2 is − 1

12
th of the Killing form and our SU(3)

structure satisfies dω = 3ImΩ.

For any such f we define
Astd = Acan + fa

and call this the standard G2 instanton. It is clear from (8.1) that Astd aymptotes to the
canonical connection with fastest rate of convergence −2.

In the notation of Chapter 3 we set A = Astd and therefore A∞ = Acan. Since the
fastest rate of convergence is −2 we will consider the family of moduli spaces M(Acan, µ)

for µ ∈ (−2, 0). Recall we denote by W the set of critical weights for the operator
DA : L2

k+1,µ−1 → L2
k,µ−2. In the case at hand we expect that {−2,−1} ⊂ W for the

following reason: The deformation defined by the dilation (the R+ action on the end
of M) is ιρ ∂

∂ρ
FAstd and this is added with rate −2. The deformations determined by

translation in R7 are ι ∂
∂xi

FAstd and these are added with rate −1, therefore we expect the
+1 eigenspace of D0

Acan
has dimension at least 7.
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8.2 The Dirac Operator on G2/SU(3)

8.2 The Dirac Operator on G2/SU(3)

This section aims to understand the action of the Dirac operator on spinor fields from a
representation theoretic viewpoint. To calculate eigenvalues of the twisted Dirac operator
on S6 we use a different method to the one presented in previous chapters. Instead of
working directly with the definition of the Dirac operator we write the operator as a
sum of Casimir operators. In doing so we are able to calculate the matrix and hence the
eigenvalues of the Dirac operator.

Throughout this section the notation of Fulton and Harris in [39] is used, thus we
denote a complex irreducible representation of G2 by (V(i,j), ρV(i,j)), so that V(0,0) is the
trivial representation, V(1,0) = C7 is the standard representation and V(0,1) = (g2)C is the
adjoint representation. Similarly we denote complex irreducible representations of SU(3)

by (W(i,j), ρW(i,j)
) (note that in Chapter 7 the same representation was denoted V(i,j)) so

that W(1,0) = C3 and W(0,1) = (C3)∗

All representations under consideration are complex representations for simplicity. It
follows from Lemma 8.2.1 that the complexified tangent bundle is associated via the
representation (mC,Ad) = W(1,0) ⊕W(0,1) of SU(3) and it is worth noting that mC ∼= m∗C
as representations. The spinor space S = C⊕m∗C ⊕ C is

S = W(0,0) ⊕W(1,0) ⊕W(0,1) ⊕W(0,0) (8.2)

as an isomorphism class of SU(3) representations.
It will prove useful to have an explicit description of the embedding g2 ↪→ so(7) ∼=

Λ2(R7)∗ in term of the subalgebra su(3). Recall so(7) ∼= Λ2(R7)∗ splits as into irreducible
representations of G2 as Λ2(R7)∗ = Λ2

14 ⊕ Λ2
7 where the subscript denotes the dimension

of the irreducible component. We pick an orthonormal basis e1, . . . , e6, dt of (R7)∗ ∼=
(R6)∗⊕R∗ so that the summand R∗ is identified with 〈dt〉. Under the splitting R7 = R6⊕R
the action of SU(3) is the obvious one. The image of the embedding g2 ↪→ Λ2(R7)∗ is the
space of 2-forms α satisfying α ∧ ψ0 = 0. We decompose the space of 2-forms on R7 as
SU(3) modules:

Λ2(R7)∗ ∼= Λ2(R6)∗ ⊕
(
(R6)∗ ∧ dt

)
∼= Λ2

8 ⊕ Λ2
6 ⊕ 〈ω〉R ⊕

(
(R6)∗ ∧ dt

)
.

Recall the Lie algebra g2 is reductive with respect to the subalgebra su(3). This means
there is a splitting g2 = su(3)⊕m and the component m is closed under the adjoint action
of su(3). Furthermore, m is the orthogonal complement of su(3) with respect to the Killing
form on g2. We see that

m ⊂ Re
(
Λ2,0(R6)∗

)
⊕ 〈ω〉 ⊕

(
(R6)∗ ∧ dt

)
.
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8.2 The Dirac Operator on G2/SU(3)

The space m is a 6-dimensional space such that ψ0 ∧ η = 0 for all η ∈ m . A direct
calculation shows

ψ0 ∧ ω = 3Vol6

ψ0 ∧
(
ei ∧ dt+

1

2
eiyReΩ

)
= 0.

This yields the following lemma:

Lemma 8.2.1. Consider the Lie algebra g2 as a subspace of Λ2(R7)∗ via the standard
embedding. Then there is a splitting g2 = su(3) ⊕ m where su(3) is the space of ω anti-
self-dual 2-forms on R6 and

m = span
{
ea ∧ dt+

1

2
eayReΩ ; i = 1, . . . , 6

}
.

The space m is closed under the adjoint action of SU(3) and this splitting is orthogonal
with respect to the Killing form on g2. Furthermore the map

F : Λ1(R6)∗ → m (8.3)

F (v) = v ∧ dt+
1

2
vyReΩ (8.4)

is an isomorphism of SU(3) representations and an isometry with respect to the Euclidean
inner product on R6 and B|m on m.

The map F thus allows us to think of m, as an SU(3) module, as either (R6)∗ or as a
subspace of g2 and it will prove convenient to switch between these two viewpoints. The
importance of the above lemma is that it allows one to understand Clifford multiplication
on the space of sections of the spinor bundle on G2/SU(3) as we now explain.

We seek to extend the spinor space S to a representation of G2, this will allow elements
of m ⊂ g2 (which we may view as tangent vectors at a point) to act on the spinor bundle
and we can compare this action with that of Clifford multiplication. Extending S to a
representation of G2 means seeking an action that yields the splitting (8.2) when the
action is restricted to SU(3) ⊂ G2. Note that the standard representation V(1,0) = C7 of
G2 becomes the representation V(1,0) = W(0,0) ⊕W(1,0) ⊕W(0,1) when one restricts to the
subgroup SU(3) ⊂ G2 (this is the branching rule for V(1,0)). Thus V(1,0) ⊕ V(0,0) branches
to the correct representation of SU(3). To view S as the representation V(1,0) ⊕ V(0,0) of
G2 we use the isomorphism

C⊕m∗C ⊕ C = (C7)∗ ⊕ C

(z, v, w) 7→ (z dt+ v, w).

The action ρS of g2 on S that yields the above decomposition is

ρS(η)(z dt+ v, w) = (ηx7(z dt+ v), 0),
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8.2 The Dirac Operator on G2/SU(3)

where η ∈ g2 ⊂ Λ2(R7)∗ and x7 denotes the contraction from the Euclidean inner product
on (R7)∗ extended complex linearly to (C7)∗. This action is then extended to sections of
the spin bundle /SC = Λ0

C ⊕ Λ1
C ⊕ Λ6

C.
To compare this action to Clifford multiplication we calculate

ρS(F (u))(f, v, gVol) =

(
−uyv, fu− 1

2
(u ∧ v)yReΩ, 0

)
. (8.5)

Here y denotes the contraction map induced by the round metric, extended complex
linearly. This does not agree with the formula for Clifford multiplication given by (2.32),
so to fix this disparity we consider another representation on the spin bundle. There is
another natural representation of g2 on given by ρS̃(X) = Vol−1 ·ρS(X) ·Vol and we shall
see that the two representations ρS and ρS̃ together recover Clifford multiplication. To
see this we first need a simple lemma:

Lemma 8.2.2. Let (Σ,Ω, ω, J) be a nearly Kähler 6-manifold. Then the following iden-
tities hold

J ((u ∧ Jv)yReΩ) = (u ∧ v)yReΩ (8.6)

uyJv = (u ∧ v)yω (8.7)

for all u, v ∈ Λ1(T ∗Σ).

Corollary 8.2.3. After associating spinor fields with elements of L2(G2, S)SU(3) and vec-
tor fields with elements of L2(G2,m)SU(3), Clifford multiplication of a spinor s by a tangent
vector u takes the form

cl(u)s = (ρS(F (u))− ρS̃(F (u))) s (8.8)

where ρS is the representation (8.5) of g2 on S and ρS̃ = Vol−1 · ρ · Vol.

Proof. Recall that the action of the volume form on the spin bundle is Vol(f, v, hVol) =

(−h, Jv, fVol), one thus calculates that

(ρS(F (u))− ρS̃(F (u)))(f, v, hVol) =(
−uyv, fu− 1

2
(u ∧ v)yReΩ− hJu− 1

2
J((u ∧ Jv)yReΩ),−(uyJv)Vol

)
and an application of Lemma 8.2.2 shows that this exactly matches the formula for
Clifford multiplication given by (2.32).

Having found formulae for both covariant differentiation and Clifford multiplication
we can now consider the Dirac operators relevant to this setting. Recall the operators
Dt are built from the modified connections ∇t and that ∇1 is the canonical connection
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8.2 The Dirac Operator on G2/SU(3)

arising from the reductive homogeneous structure. We fix bases {Ia}6
a=1 for m and {Ii}14

i=7

for h which are orthonormal with respect to the nearly Kähler metric on g2. We know
from (5.6) that D1 = cl(Ia)ρR(Ia) and we can rewrite the form of this operator using
Corollary 8.2.3.

Corollary 8.2.4. After associating spinor fields with elements of L2(G2, S)SU(3) and vec-
tor fields with elements of L2(G2,m)SU(3), the Dirac operator of the canonical connection
D1 : Γ(/SC(Σ))→ Γ(/SC(Σ)) is

D1 = (ρS(Ia)− ρ̃S(Ia))ρR(Ia)s.

Let us therefore define operators

Dρ : Γ(/SC(Σ))→ Γ(/SC(Σ)) D̃ρ : Γ(/SC(Σ))→ Γ(/SC(Σ))

Dρ = ρS(Ia)ρR(Ia) D̃ρ = ρS̃(Ia)ρR(Ia)

so that D1 = Dρ−D̃ρ.We now explain how to view these operators as Casimir operators :
For i 6= j we set [[W(i,j)]] = W(i,j)⊕W(j,i). Recall that isomorphism class of the SU(3)

representation S is
S = W(0,0) ⊕ [[W(1,0)]]⊕W(0,0).

Since the actions ρS and ρR commute we can rewrite Dρ as:

Dρ =
1

2
(ρS⊗R(Casm)− ρS(Casm)− ρR(Casm))

where a representation ofG2 defines a representation of SU(3) by restriction and ρ(Casm) :=

ρ(Casg2)− ρ(Cassu(3)). Similarly the expression for D̃ρ is

D̃ρ =
1

2

(
ρS̃⊗R(Casm)− ρS̃(Casm)− ρR(Casm)

)
and in fact D̃ρ = Vol−1DρVol. Combining this with (2.33) yields a representation theoretic
formula for the Levi-Civita Dirac operator:

D0 = Dρ − (Vol−1DρVol)− 3

4
ReΩ. (8.9)

The discussions transfers easily to the homomorphism space decomposition of the space
of spinor fields provided by Frobenius reciprocity. If Vγ is an irreducible representation of
G2 then Hom(Vγ, S)SU(3) ⊗ Vγ embeds into the space of sections and we define operators
Dt
γ on Hom(Vγ, S)SU(3) such that

Dt
γ ⊗ Id = Dt|Hom(Vγ ,S)SU(3)⊗Vγ .

For each such homomorphism space the operator Dρ also defines an endomorphism
Dρ
γ via the formula

Dρ|Hom(Vγ ,S)SU(3)⊗Vγ = Dρ
γ ⊗ Id
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and we find Dρ
γ : Hom(Vγ, S)SU(3) → Hom(Vγ, S)SU(3) is the operator

Dρ
γ =

1

2

(
ρS⊗V ∗γ (Casm)− ρS(Casm)− ρV ∗γ (Casm)

)
. (8.10)

In the same way D̃ρ defines an endomorphism D̃ρ
γ and one has that

D̃ρ
γ = Vol−1Dρ

γVol

where Vol is the action of the volume form on m (induced by the Riemannian volume
form on S6) on spinor space. It then follows from the previous discussion and from (5.9)
that

D1
γ = Dρ

γ − (Vol−1Dρ
γVol)

and thus that
Dt
γ = Dρ

γ − (Vol−1Dρ
γVol) +

3(t− 1)

4
ReΩ. (8.11)

If we can therefore understand the operator Dρ
γ as well as the action of Vol and ReΩ in

a suitable basis then we can calculate the matrices of the family of Dirac operators on
the relevant homomorphism space. For this we need the eigenvalues of the g2 and su(3)

Casimir operators with respect to the nearly Kähler metric.
Let V(i,j) be an irreducible representation of g2 and let W(i,j) be an irreducible repre-

sentation of su(3), then we have

ρ(i,j)(Casg2) = cg2(i,j)Id

ρ(i,j)(Cassu(3)) = c
su(3)
(i,j) Id

and the eigenvalues are calculated in [18] to be

cg2(i,j) = −(i2 + 3j2 + 3ij + 5i+ 9j) (8.12)

c
su(3)
(i,j) = −(i2 + j2 + ij + 3i+ 3j). (8.13)

8.3 Some Warm Up Calculations

At this point we pause to outline how to use this formulation of the Dirac operator
to calculate some eigenvalues of the Levi-Civita-Dirac operator on S6. This is a useful
exercise, as the method we use is identical to the one we shall for the twisted Dirac
operator, but the calculations involved are less cumbersome.

Recall that the nearly Kähler S6 carries the standard round metric, so our method
should recover the well known eigenvalues of the Dirac operator on the round sphere.
The spectrum is [6]

SpecD0 = {±(3 + k) ; k ∈ N}
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so the eigenvalues we calculate should lie in this set. Furthermore, the multiplicity of an
eigenvalue ±(3 + k) is

mult(±(3 + k)) = 8

(
k + 5
k

)
.

If we can understand how the operator Dρ
γ from (8.10) and the volume form Vol act

on the given homomorphism space then we can calculate the matrix of the operator D1
γ.

Then if we know the action of the 3-form ReΩ in this basis, we can calculate the matrix
and eigenvalues of the operator D0

γ via (8.11).

Example 8.3.1. Let Vγ = C be the trivial representation of g2. Then the space Hom(C, S)SU(3)

is two dimensional with basis q(0,0) and q(3,3), which map into the subspaces Λ(0,0) and
Λ(3,3) of S. We have

Dρ
γ =

1

2
(ρS⊗C(Casm)− ρC(Casm)− ρS(Casm))

and ρC(Casm) = 0 and ρS⊗C(Casm) = ρS(Casm) so we see that Dρ
γ ≡ 0 and thus D1

γ ≡ 0.

The basis q(0,0) and q(3,3) correspond to the Killing spinor s6 and Vol·s6, which are parallel
sections with respect to ∇1 and hence harmonic spinors for D1. By Lemma 2.3.3 we see
that

−3

4
ReΩ = diag(−3, 3)

in this basis. So the matrix of D1
γ in this basis is

D0
γ = diag(−3, 3)

which corresponds to s6 and Vol · s6 being eigenspinors of D0 with eigenvalues −3 and
+3 respectively.

Next we carry out the same procedure for the standard representation of G2 :

Example 8.3.2. Let Vγ = V(1,0) be the standard representation ofG2. The space Hom(Vγ, S)SU(3)

has dimension four since Vγ = W(1,0)⊕W(0,1)⊕W(0,0). It proves helpful to split this space
into two components

Hom(V(1,0), S)SU(3) = Hom(V(1,0), V(1,0))SU(3) ⊕ Hom(V(1,0),C)SU(3).

Let q(i,j) be the projection maps q(i,j) : V(1,0) → W(i,j), then the maps q(1,0), q(0,1), q(0,0) form
a basis of Hom(V(1,0), V(1,0))SU(3) and we can extend this to a basis of Hom(V(1,0),C)SU(3)

by adding the map Vol · q(0,0). Under this splitting the operator Dρ
γ splits into a 3× 3 and

1×1 block diagonal matrix and arguing identically to the previous calculation we see that
Dρ
γ acts trivially on Hom(V(1,0),C)SU(3). Furthermore Dρ

γ acts on Hom(V(1,0), V(1,0))SU(3) as

1

2

(
ρV ∗

(1,0)
⊗V(1,0)(Casm)− ρV(1,0)(Casm)− ρV ∗

(1,0)
(Casm)

)
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and the basis maps q(1,0), q(0,1), q(0,0) are eigenvectors of ρV(1,0)(Casm) − ρV ∗
(1,0)

(Casm), the

eigenvalue of q(i,j) being −2(cg2(1,0) − c
su(3)
(i,j) ).

Consider the operator ρV(1,0)⊗V(1,0)(Casm), we can use the isomorphism Hom(V(1,0), V(1,0))SU(3)
∼=

Hom(V(1,0) ⊗ V(1,0),C)SU(3) to see that the SU(3) equivariant maps that factor

p(i,j) : V(1,0) ⊗ V(1,0) → V(i,j) → C

form a basis of eigenvectors of this operator. Now

V(1,0) ⊗ V(1,0)
∼= Λ2(V(1,0))⊕ Sym2(V(1,0))

∼= V(1,0) ⊕ V(0,1) ⊕ V(2,0) ⊕ V(0,0)

and since, except for the adjoint representation V(0,1), each summand contains a copy
of the trivial representation when restricted to a representation of SU(3), the basis we
obtain is p(0,0), p(1,0), p(0,1). The eigenvalues are

ρV(1,0)⊗V(1,0)(Casm)p(i,j) = cg2(i,j)

so to calculate the matrix of Dρ
γ in either of the bases presented above, it remains to

calculate the change of basis matrix.
From the above decomposition of V(1,0) ⊗ V(1,0) it is clear that p(0,0) = Id = q(0,0) +

q(1,0)+q(0,1). The trivial SU(3) component contained in so(7) lies in V(1,0) which is modelled
as the space {vy7ϕ0 : v ∈ (R7)∗}. If we model (R7)∗ as (R6)∗⊕〈dt〉, then the only SU(3)

invariant unit vector in (R7)∗ is dt, and dty7ϕ0 = ω. This is identified with the complex
structure J on the space W(1,0) ⊕W(0,1) and thus p(1,0) = iq(1,0) − iq(0,1). Finally write
p(2,0) = aq(0,0)+bq(1,0)+cq(0,1). Since p(2,0) defines a traceless map we find a+3b+3c = 0 and
since p(2,0)(v) = p(2,0)(v), p(1,0)(v) = p(1,0)(v) it must be that a = a, c = b. Self-adjointness
of p(2,0) gives a+ 6b = 0 and so we have calculated the change of basis relations:

p(0,0) = q(0,0) + q(1,0) + q(0,1)

p(1,0) = iq(1,0) − iq(0,1)

p(2,0) = −6q(0,0) + q(1,0) + q(0,1).

Using this together with the eigenvalues given in (8.12) and (8.13) we find that the matrix
of Dρ

γ in the basis q(i,j) is 
0 3 3 0

1 0 1 0

1 1 0 0

0 0 0 0

 .

It remains to understand the action of the volume form Vol and the 3-form ReΩ on
Hom(V(1,0), S)SU(3). Recall that the volume form satisfies Vol2 = −Id and that its left
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8.4 The Twisted Dirac Operator

action on Λ1 ⊂ S is precisely the action of the almost complex structure J . It follows
that, in the basis q(i,j), the volume form acts as the matrix

0 0 0 −1

0 i 0 0

0 0 −i 0

1 0 0 0


One therefore finds that

D1
γ = Dρ

γ − Vol−1Dρ
γVol =


0 3 3 0

1 0 2 i

1 2 0 −i
0 −3i −3i 0

 .

From Lemma 2.3.3 the action of ReΩ in this basis is given by the matrix diag(4, 0, 0,−4)

and so D0
γ is given by the matrix

D0
γ = D1

γ −
3

4
ReΩ =


−3 3 3 0

1 0 2 i

1 2 0 −i
0 −3i −3i 3


which has eigenvalues {±3,±4}.

Note in this second example, when Vγ had dimension 7, the eigenvalues that we
calculated (which each had multiplicity 1 for D0

γ) must have multiplicity at least 7 in the
space of sections. Note that ±3 is also an eigenvalue for the operator D0

γ when Vγ = C.
We know from [6] that the multiplicity of the eigenvalues ±3 in 8, therefore we have
found all of the eigenspinors of this eigenspace.

8.4 The Twisted Dirac Operator

This discussion generalises easily to the case of twisted spin bundles. To study the
standard G2 instanton we would like to form a similar representation-theoretic formula
for the twisted Dirac operator D0

Acan
: Γ(/SC(Σ) ⊗ (g2)C) → Γ(/SC(Σ) ⊗ (g2)C). Let us fix

(V, ρV ) = (S ⊗ (g2)C, ρS ⊗ Ad). As a representation of G2 this twisted spinor space is

V = (V(1,0) ⊕ V(0,0))⊗ V(0,1)

= V(1,1) ⊕ V(2,0) ⊕ V(0,1) ⊕ V(1,0).

The adjoint representation splits (g2)C = W(1,1) ⊕ [[W(1,0)]] as a representation of SU(3),
so as a representation of SU(3) the twisted spinor space is

V = ([[W(1,0)]⊕ 2W(0,0))⊗ (W(1,1) ⊕ [[W(1,0)]])

= [[W(2,1)]]⊕ 2[[W(2,0)]]⊕ 4W(1,1) ⊕ 4[[W(1,0)]]⊕ 2W(0,0).
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8.5 Application of The Lichnerowicz Formula

In terms of the Lie algebra action the space of sections of the twisted spin bundle is

L2(G2, V )SU(3) = {f ∈ L2(G2, V ) ; ρR(X)f + ρV (X)f = 0 for all X ∈ su(3)}. (8.14)

Consider the operator D1
Acan

acting on sections of E, this takes the form

D1
Acan

= cl ◦ ∇1,Acan .

Recall the connection∇1,Acan is simply the canonical connection acting on sections ofG×H
E, associated via the representation E. Thus ∇1,can

X f = ρR(X)f for f ∈ L2(G2, E)SU(3)

and X ∈ C∞(G,m). An analysis identical to the (untwisted) case of D1 yields a repre-
sentation theoretic formula for the twisted operator D1

Acan
via (5.6) and Corollary 8.2.3.

Proposition 8.4.1. Let Dρ
Acan

: L2(G2, E)SU(3) → L2(G2, E)SU(3) be the operator

Dρ
Acan

=
1

2
(ρS⊗R(Casm)− ρS(Casm)− ρR(Casm)) .

Under the association Γ(/S(Σ) ⊗ AdP ) ∼= L2(G2, E)SU(3) the twisted Levi-Civita Dirac
operator Dt

Acan
is

Dt
Acan

= Dρ
Acan
− Vol−1Dρ

Acan
Vol +

3(t− 1)

4
ReΩ. (8.15)

As in the case of the ordinary spin bundle this can be easily transferred to the homo-
morphism space decomposition of the space of section. For an irreducible representation
Vγ of G2 we define an endomorphism (Dρ

Acan
)γ of Hom(Vγ, S ⊗ (g2)C)SU(3) via

(Dρ
Acan

)γ =
1

2

(
ρS⊗V ∗γ (Casm)− ρS(Casm)− ρV ∗γ (Casm)

)
(8.16)

and it follows that the operators (Dt
Acan

)γ given in (5.9) take the form

(Dt
Acan

)γ = (Dρ
Acan

)γ − Vol−1(Dρ
Acan

)γVol +
3(t− 1)

4
ReΩ. (8.17)

8.5 Application of The Lichnerowicz Formula

Recall that the standard G2 instanton Astd has rate −2 and so we shall consider a family
of moduli spaces M(Acan, µ) for µ ∈ (−2, 0).We have seen that the expected dimension of
these moduli spaces varies as we pass through values λk which are in Spec(D0

Acan
)∩ [0, 2)

so we are lead to study the spectrum of this twisted Dirac operator in this interval. Let
us first determine the eigenvalues of (D

1
3
Acan

)2 using Corollary 5.3.2, as this will again
provide a useful consistency check. We can also use Theorem 5.3.5 to show that most
representation give rise to eigenvalues that do not fall into the interval [0, 2) that we are
interested in.

Let Vγ be an irreducible representation of G2, then the eigenvalues and multiplicities
of the operator (D

1
3
Acan

)2
γ are
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8.5 Application of The Lichnerowicz Formula

Eigenvalue Multiplicity

−cg2γ dim Hom(Vγ, S ⊗ (W(1,0) ⊕W(0,1)))SU(3)

−cg2γ − 5 dim Hom(Vγ, S ⊗W(1,1))SU(3)

where cg2γ is the eigenvalue of the Casimir operator on the irreducible representation Vγ
with respect to the inner product B from (2.15).

To see this we simply apply Corollary 5.3.2 to the case at hand. We have (g2)C =

W(1,0) ⊕W(0,1) ⊕W(1,1) and this yields the splitting

Hom(V(i,j), S⊗(g2)C)SU(3) = Hom(V(i,j), S⊗(W(1,0)⊕W(0,1)))SU(3)⊕Hom(V(i,j), S⊗W(1,1))SU(3).

The operator (D
1
3
Acan

)2
γ respects this splitting and inspection of (5.10), together with the

fact that csu(3)
(i,j) = c

su(3)
(j,i) , reveals that

(D
1
3
Acan

)2
γ|Hom(Vγ ,S⊗(W(1,0)⊕W(0,1)))SU(3)

= −cg2γ + c
su(3)
(1,0) + 4.

We know from (8.13) that csu(3)
(1,0) = −4, so the Dirac operator acts as the constant −cg2γ

on this space equivariant maps. A similar observation shows that (D
1
3
Acan

)2
γ acts as the

constant −cg2γ − 5 on Hom(Vγ, S ⊗W(1,1))SU(3).

Lemma 8.5.1. If Vγ is not one of the following irreducible representations of G2, then
the operator (D0

Acan
)γ, acting on Hom(Vγ, S⊗ (g2)C)SU(3), has no eigenvalues in the range

[0, 2):

1. V(0,0), the trivial representation

2. V(1,0), the standard representation

3. V(0,1), the adjoint representation.

Proof. By Corollary 5.3.2 the smallest possible eigenvalue of (D
1
3
Acan

)2
γ is −cg2γ − 5 and

it follows that the smallest possible non-negative eigenvalue of (D
1
3
Acan

)γ is (−cg2γ − 5)
1
2 .

Applying Theorem 5.3.5 to the case when Vγ = V(2,0) one finds that the lower one the
smallest positive eigenvalue one obtains is Lγ =

√
14− 5−1 = 2 so this bound is sufficient

for the statement of the lemma. When Vγ is an irreducible representation of higher
dimension one obtains a greater lower bound and the only irreducible representations of
lower dimension are those given in the statement of the lemma.

For the three representations in the above list we now compute the matrix of the
Dirac operator and the set of eigenvalues explicitly. We briefly outline a few conventions
used throughout the calculations:
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8.6 Eigenvalues from the Trivial Representation

Firstly Hom(Vγ, S ⊗ (g2)C)SU(3)
∼= Hom(S ⊗ Vγ, (g2)C)SU(3) and it will prove more

convenient to view the homomorphism space from the latter viewpoint when constructing
basis vectors. Furthermore since S = V(1,0)⊕ V(0,0) as a representation of G2 it will prove
convenient to decompose

Hom(S ⊗ Vγ, (g2)C)SU(3)
∼= Hom(V(1,0) ⊗ Vγ, (g2)C)SU(3) ⊕ Hom(V(0,0) ⊗ Vγ, (g2)C)SU(3)

as G2 modules. Recall we have the following models for irreducible representations of
G2 :

• V(1,0) = C7

• V(0,1) = (g2)C = {α ∈ C⊗ Λ2(R7)∗ ; α ∧ ψ0 = 0}

• V(2,0) = {η ∈ C⊗ Λ3(R7)∗ ; η ∧ ϕ0 = η ∧ ψ0 = 0}.

For irreducible representations of SU(3) we model

• W(1,0) = Λ(1,0)(R6)∗

• W(0,1) = Λ(0,1)(R6)∗

• W(1,1) = su(3) = {α ∈ Λ2(C6)∗ ; ∗(α ∧ ω) = 0}

where ω is the standard Kähler form on R6. Note thatW(1,1) embeds into V(0,1) by inclusion
and the embedding of W(1,0) into V(0,1) is given by the restriction of the embedding F of
(R6)∗ ⊗ C into (g2)C

F (v) = v ∧ dt+
1

2
v yReΩ.

8.6 Eigenvalues from the Trivial Representation

Let Vγ = V(0,0) be the trivial representation of G2. Then Schur’s lemma tells us that
Hom(C, S ⊗ (g2)C)SU(3)

∼= Hom(S, (g2)C)SU(3) is two-dimensional. A basis for this space
is given by the maps that factor through projections

q
(1,0)
(1,0) : S → W(1,0) → (g2)C

q
(0,1)
(0,1) : S → W(0,1) → (g2)C.

When Vγ is the trivial representation the operators
(
ρS⊗V ∗γ (Casm)− ρS(Casm)

)
and

ρV ∗γ (Casm) both vanish. We know that (Dρ
Acan

)γ is built from precisely these operators
and hence vanishes. Note also that Lemma 2.3.3 ensures that ReΩ acts as 0 on this space
since q(1,0)

(1,0) and q
(0,1)
(0,1) factor through Λ1 ⊂ S. Overall then (D0

Acan
)γ vanishes identically

on this space.

Proposition 8.6.1. Let Vγ = V(0,0), then the unique eigenvalue of (D0
Acan

)γ is 0 and has
multiplicity 2.
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8.7 Eigenvalues from the Standard Representation

8.7 Eigenvalues from the Standard Representation

Now let Vγ = V(1,0) be the standard representation ofG2. The space Hom(S⊗V(1,0), (g2)C)SU(3)

is ten dimensional. It is convenient to split this space as

Hom(S ⊗ V(1,0), (g2)C)SU(3)
∼= Hom(V(1,0) ⊗ V(1,0), (g2)C)SU(3) ⊕ Hom(C⊗ V(1,0), (g2)C)SU(3)

where V(1,0) is modelled as Λ0 ⊕ Λ1 ⊂ S. The matrix of (DAcan)γ will be block diagonal
with respect to this splitting, and the part acting on Hom(C ⊗ V(1,0), (g2)C)SU(3) is 0 by
the previous calculation.

It remains to calculate (DAcan)γ on Hom(V(1,0) ⊗ V(1,0), (g2)C)SU(3). Notice that

ρS⊗V ∗
(1,0)

(Cassu(3)) = ρ(g2)C(Cassu(3)) on Hom(S ⊗ V(1,0), (g2)C)SU(3)

so we can write the operator (Dρ
Acan

)γ as

(Dρ
Acan

)γ =
1

2
(ρS⊗V ∗

(1,0)
(Casg2)− ρ(g2)C(Cassu(3))− ρS(Casm)− ρV ∗

(1,0)
(Casm)). (8.18)

Our strategy for calculating the eigenvalues of this operator is:

• Find a basis diagonalising ρ(g2)C(Cassu(3)) + ρS(Casm) + ρV ∗
(1,0)

(Casm)

• Find a basis diagonalising ρS⊗V ∗
(1,0)

• Calculate the change of basis matrix and hence find the matrix of (D0
Acan

)γ.

• Calculate the eigenvalues of (D0
Acan

)γ.

To begin this task we construct a basis of Hom(V(1,0) ⊗ V(1,0), (g2)C)SU(3) by finding
non-zero SU(3)-equivariant maps

q
(i,j)(k,l)
(m,n) : V(1,0) ⊗ V(1,0) → W(i,j) ⊗W(k,l) → W(m,n) → (g2)C

and observe that on this space:

• q(i,j)(k,l)
(m,n) are eigenvectors of ρS(Casm) with eigenvalue cg2(1,0) − c

su(3)
(i,j)

• q(i,j)(k,l)
(m,n) are eigenvectors of ρV ∗

(1,0)
(Casm) with eigenvalue cg2(1,0) − c

su(3)
(k,l)

• q(i,j)(k,l)
(m,n) are eigenvectors of ρ(g2)C(Cassu(3)) with eigenvalue csu(3)

(m,n).

These maps are constructed from the following projection maps:

• V(1,0) → W(0,0), (u+ adt) 7→ a dt

• V(1,0) → W(1,0), (u+ adt) 7→ 1
2
(1 + iJ)u

• V(1,0) → W(0,1), (u+ adt) 7→ 1
2
(1− iJ)u
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8.7 Eigenvalues from the Standard Representation

• Λ1,1(R6)→ W(1,1), α 7→ α− 1
3
〈α, ω〉ω.

The basis of Hom(V(1,0) ⊗ V(1,0), (g2)C)SU(3) that we get is

Map Factorisation and Formula
q1 = q

(0,0)(1,0)
(1,0) V(1,0) ⊗ V(1,0) → W(0,0) ⊗W(1,0) → W(1,0) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ adt⊗ 1
2
(1 + iJ)v 7→ 1

2
a(1 + iJ)v 7→ F (1

2
a(1 + iJ)v)

q2 = q
(0,0)(0,1)
(0,1) V(1,0) ⊗ V(1,0) → W(0,0) ⊗W(0,1) → W(0,1) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ adt⊗ 1
2
(1− iJ)v 7→ 1

2
a(1− iJ)v 7→ F (1

2
a(1− iJ)v)

q3 = q
(1,0)(0,0)
(1,0) V(1,0) ⊗ V(1,0) → W(1,0) ⊗W(0,0) → W(1,0) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ 1
2
(1 + iJ)u⊗ bdt 7→ 1

2
b(1 + iJ)u 7→ F (1

2
b(1 + iJ)u)

q4 = q
(0,1)(0,0)
(0,1) V(1,0) ⊗ V(1,0) → W(0,1) ⊗W(0,0) → W(0,1) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ 1
2
(1− iJ)u⊗ bdt 7→ 1

2
b(1− iJ)u 7→ F (1

2
b(1− iJ)u)

q5 = q
(1,0)(1,0)
(0,1) V(1,0) ⊗ V(1,0) → W(1,0) ⊗W(1,0) → W(0,1) → (g2)C

(u+adt)⊗(v+bdt) 7→ 1
2
(1+iJ)u⊗ 1

2
(1+iJ)v 7→ 1

4
[((1+iJ)u)∧((1+iJ)v)]yΩ 7→

F (1
4
[((1 + iJ)u) ∧ ((1 + iJ)v)]yΩ)

q6 = q
(0,1)(0,1)
(1,0) V(1,0) ⊗ V(1,0) → W(0,1) ⊗W(0,1) → W(1,0) → (g2)C

(u+adt)⊗(v+bdt) 7→ 1
2
(1−iJ)u⊗ 1

2
(1−iJ)v 7→ 1

4
[((1−iJ)u)∧((1−iJ)v)]yΩ 7→

F (1
4
[((1− iJ)u) ∧ ((1− iJ)v)]yΩ)

q7 = q
(1,0)(0,1)
(1,1) V(1,0) ⊗ V(1,0) → W(1,0) ⊗W(0,1) → W(1,1) → (g2)C

(u+adt)⊗ (v+ bdt) 7→ 1
2
(1 + iJ)u⊗ 1

2
(1− iJ)v → 1

4
[((1 + iJ)u)∧ ((1− iJ)v)−

1
3
〈((1 + iJ)u) ∧ ((1− iJ)v), ω〉ω]

q8 = q
(0,1)(1,0)
(1,1) V(1,0) ⊗ V(1,0) → W(0,1) ⊗W(1,0) → W(1,1) → (g2)C

(u+adt)⊗ (v+ bdt) 7→ 1
2
(1− iJ)u⊗ 1

2
(1 + iJ)v → 1

4
[((1− iJ)u)∧ ((1 + iJ)v)−

1
3
〈((1− iJ)u) ∧ ((1 + iJ)v), ω〉ω]

Furthermore we can extend this to a basis of Hom(S ⊗ V(1,0), (g2)C)SU(3) by adding the
maps q9 = Vol · q(0,0)(1,0)

(1,0) and q10 = Vol · q(0,0)(0,1)
(0,1) .

The only term of the decomposition (8.18) of (Dρ
Acan

)γ that this basis does not diag-
onalise is ρS⊗V ∗

(1,0)
(Casg2). We choose a basis diagonalising this operator by considering

projections through the splitting of V(1,0) ⊗ V(1,0) into irreducible representations of G2:

p
(i,j)
(k,l) : V(1,0) ⊗ V(1,0) → V(i,j) → W(k,l) → g2,

these maps are eigenvectors of ρS⊗V ∗
(1,0)

(Casg2) with eigenvalue cg2(i,j). To relate the two
bases it is necessary to understand each of the projection maps involved in the above
construction, then by composition we will be able to understand how they are on an
element of V(1,0) ⊗ V(1,0).

Recall V(1,0) is the +2 eigenspace and V(0,1) the −1 eigenspace of the operator ∗7(ϕ0∧ · )
on Λ2(R7)∗. We have equivariant maps:

• V(1,0) ⊗ V(1,0) → V(1,0), u⊗ v 7→ (u ∧ v)yφ

• V(1,0) ⊗ V(1,0) → V(0,1), u⊗ v 7→ 2
3
(u ∧ v)− 1

3
∗7 (φ ∧ u ∧ v)
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8.7 Eigenvalues from the Standard Representation

• V(1,0) ⊗ V(1,0) → V(2,0), u⊗ v 7→ ∗7((uyφ) ∧ (vyφ))− 6
7
〈u, v〉φ.

The last map arises as follows: The space Λ3(V )∗ decomposes as Λ3(V ∗) ∼= Λ3
27⊕Λ3

7⊕〈ϕ〉,
where Λ3

7 = {vyψ : v ∈ Λ1(M) and Λ3
27 = V(2,0). It is well known that Λ3

27
∼= Sym2

0(V ), see
[80] for example. Let u, v ∈ V , the map u⊗ v 7→ ∗7((uyϕ)∧ (vyϕ)) is symmetric in u and
v, so its image lies in Λ3

27 ⊕ 〈ϕ〉. For the correct value µ therefore, ∗7((uyϕ) ∧ (vyϕ)) −
µ〈u, v〉ϕ ∈ Λ3

27. The condition to be checked is [∗7((uyϕ) ∧ (vyϕ))− µ〈u, v〉ϕ] ∧ ψ = 0.

Using that ‖ϕ‖2 = 7 and ∗7((uyϕ) ∧ (vyϕ)) ∧ ψ = (uyϕ) ∧ (vyϕ) ∧ ϕ = 6〈u, v〉Vol7 one
finds that µ = 6

7
. We also use the following projections

• Λ2(R7)∗ → W(1,0), v ∧ dt+ α 7→ 1
2
(1 + iJ)v

• Λ2(R7)∗ → W(0,1), v ∧ dt+ α 7→ 1
2
(1− iJ)v

• V(0,1) → W(1,1), v ∧ dt+ α 7→ 1
2
α− 1

2
∗6 (ω ∧ α)

• V(2,0) → W(1,0), α ∧ dt+ β 7→ 1
2
(1 + iJ) [(∗6β)xω]

• V(2,0) → W(0,1), α ∧ dt+ β 7→ 1
2
(1− iJ) [(∗6β)xω]

• V(2,0) → W(1,1), α ∧ dt+ β 7→ 1
3
α− 1

2
∗6 (ω ∧ α) + 1

6
∗6 (ω ∧ ∗6(ω ∧ α)).

The overall maps are then

Map Factorisation and Formula
p1 = p

(1,0)
(1,0) V(1,0) ⊗ V(1,0) → V(1,0) → W(1,0) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ F
(

1
2
(1 + iJ) [(u ∧ v)yImΩ + bJu− aJv]

)
p2 = p

(1,0)
(0,1) V(1,0) ⊗ V(1,0) → V(1,0) → W(0,1) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ F
(

1
2
(1− iJ) [(u ∧ v)yImΩ + bJu− aJv]

)
p3 = p

(0,1)
(1,0) V(1,0) ⊗ V(1,0) → V(0,1) → W(1,0) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ F
(

1
2
(1 + iJ)

[
2
3
(bu− av)− 1

3
[(u ∧ v)yReΩ]

])
p4 = p

(0,1)
(0,1) V(1,0) ⊗ V(1,0) → V(0,1) → W(0,1) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ F
(

1
2
(1− iJ)

[
2
3
(bu− av)− 1

3
[(u ∧ v)yReΩ]

])
p5 = p

(0,1)
(1,1) V(1,0) ⊗ V(1,0) → V(0,1) → W(1,1) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ 1
3
u ∧ v − 1

2
∗6 (ω ∧ u ∧ v) + 1

6
∗6 (ω ∧ ∗6(ω ∧ u ∧ v))

p6 = p
(2,0)
(1,0) V(1,0) ⊗ V(1,0) → V(2,0) → W(1,0) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ F
(

1
2
(1 + iJ) [Ju ∧ bω + aω ∧ Jv] xω

)
p7 = p

(2,0)
(0,1) V(1,0) ⊗ V(1,0) → V(2,0) → W(0,1) → (g2)C

(u+ adt)⊗ (v + bdt) 7→ F
(

1
2
(1− iJ) [Ju ∧ bω + aω ∧ Jv] xω

)
p8 = p

(2,0)
(1,1) V(1,0) ⊗ V(1,0) → V(2,0) → W(1,1) → (g2)C

(u+adt)⊗ (v+ bdt) 7→ ∗6((uyImΩ)∧ (vyImΩ))− 1
3
〈∗6(uyImΩ)∧ (vyImΩ), ω〉ω

Each map p(i,j)
(k,l) is an eigenvector of ρS⊗V ∗

(1,0)
(Casg2) with eigenvalue cg2(i,j).
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8.7 Eigenvalues from the Standard Representation

Lemma 8.7.1. Let u, v ∈ Λ1(R6)∗. The following identities hold:

i(1 + iJ) [(u ∧ v)yImΩ] =
1

4
[((1− iJ)u) ∧ ((1− iJ)v)]yΩ (8.19)

−i(1− iJ) [(u ∧ v)yImΩ] =
1

4
[((1 + iJ)u) ∧ ((1 + iJ)v)]yΩ (8.20)

(1 + iJ) [(u ∧ v)yReΩ] =
1

4
[((1− iJ)u) ∧ ((1− iJ)v)]yΩ (8.21)

(1− iJ) [(u ∧ v)y ReΩ] =
1

4
[((1 + iJ)u) ∧ ((1 + iJ)v)]yΩ (8.22)

u ∧ Jv − Ju ∧ v = ∗6((uyImΩ) ∧ (vyImΩ)) (8.23)

(u ∧ ω)xω = 2u. (8.24)

Combining all of these facts one finds that the bases p(i,j)
(k,l) and q

(i,j)(k,l)
(m,n) are related as

follows:

p1 = iq1 − iq3 −
i

2
q6

p2 = −iq2 + iq4 +
i

2
q5

p3 = −2

3
q1 +

2

3
q3 −

1

6
q6

p4 = −2

3
q2 +

2

3
q4 −

1

6
q5

p5 =
1

2
q7 +

1

2
q8

p6 = 2iq1 + 2iq3

p7 = −2iq2 − 2iq4

p8 =
1

2
iq7 −

1

2
iq8.

Recall the maps p(i,j)
(k,l) are eigenvectors of ρS⊗V ∗

(0,1)
(Casg2) with eigenvalue cg2(i,j) so that

in the basis p1, · · · , p8 we have

ρS⊗V ∗
(0,1)

(Casg2) = diag(−6,−6,−12,−12,−12,−14,−14,−14).

We have seen that the maps q(i,j)(k,l)
(m,n) are eigenvectors of −ρ(g2)C(Cassu(3)) − ρS(Casm) −

ρV ∗γ (Casm) with eigenvalue csu(3)
(i,j) + c

su(3)
(k,l) − c

su(3)
(m,n) − 2cg2(1,0). In the basis q1, . . . q8 we find

−ρg2(Cassu(3))− ρS(Casm)− ρV ∗γ (Casm) = diag(12, 12, 12, 12, 8, 8, 13, 13)

and (8.18) says that (Dρ
Acan

)γ is the sum of these two operators.
Furthermore ReΩ acts in the basis q1, . . . , q10 as the matrix diag(4, 4, 0, 0, 0, 0, 0, 0,−4,−4).

Since we know the action of each term in (8.18) in the different bases and the change of
basis matrix between the bases we can calculate the matrix of the twisted Levi-Civita
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8.8 Eigenvalues from the Adjoint Representation

Dirac operator in the basis q, . . . , q10 to be

(Dt
Acan

)γ =



3(t− 1) 0 −1 0 0 −4 0 0 0 0
0 3(t− 1) 0 −1 −4 0 0 0 0 0
−1 0 0 0 0 8 0 0 −i 0
0 −1 0 0 8 0 0 0 0 i
0 −1

4
0 1

2
0 0 0 0 0 − i

4

−1
4

0 1
2

0 0 0 0 0 i
4

0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 i 0 0 −4i 0 0 −3(t− 1) 0
0 0 0 −i 4i 0 0 0 0 −3(t− 1)


.

(8.25)
A consistency check is obtained by observing that Corollary 5.3.2 ensures the basis

q1, · · · q10 diagonalises (D
1
3
Acan

)2
γ. We find

(D
1
3
Acan

)2
γ = diag(6, 6, 6, 6, 6, 6, 1, 1, 6, 6)

as expected. By calculating the eigenvalues of (8.25) we obtain the following proposition:

Proposition 8.7.2. Let Vγ = V(1,0), the eigenvalues of (D0
Acan

)γ are symmetric about 0,
the ±λ eigenspaces are isomorphic and the non-negative eigenvalues and multiplicities
are:

Eigenvalue λ Multiplicity

1 1

−1
2

+
√

33
2

2

1
2

+
√

33
2

2

8.8 Eigenvalues from the Adjoint Representation

We now consider the case when Vγ = V(0,1) is the adjoint representation. We work on the
space Hom(S ⊗ V(0,1), (g2)C)SU(3). We have V(1,0) ⊗ V(0,1) = V(1,1) ⊕ V(2,0) ⊕ V(1,0) and the
summands split as reps of SU(3) as follows:

V(1,1) = [[W(2,1)]]⊕ [[W(2,0)]]⊕ 2W(1,1) ⊕ [[W(1,0)]]

V(2,0) = [[W(2,0)]]⊕W(1,1) ⊕ [[W(1,0)]]⊕W(0,0)

V(1,0) = [[W(1,0)]]⊕W(0,0).

We therefore see that Hom(S ⊗ V(0,1), (g2)C)SU(3) has dimension 12. As before we split
Hom(S ⊗ V(0,1), (g2)C)SU(3)

∼= Hom(V(1,0) ⊗ V(0,1), (g2)C)SU(3) ⊕ Hom(C⊗ V(0,1), g2)SU(3) so
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8.8 Eigenvalues from the Adjoint Representation

that the operator (Dρ
Acan

)γ is block diagonal and its action on Hom(C⊗ V(0,1), (g2)C)SU(3)

is 0.
To calculate the action of the operator on Hom(V(1,0) ⊗ V(0,1), (g2)C)SU(3) we again

pick two bases for this space which diagonalise the various Casimir operators from which
(8.18) tells us (Dρ

Acan
)γ is constructed. As before we first pick a basis consisting of maps

that factor as follows:

q
(i,j)(k,l)
(m,n) : V(1,0) ⊗ V(0,1) → W(i,j) ⊗W(k,l) → W(m,n) → (g2)C.

This time these maps are eigenvectors of the operator−ρg2(Cassu(3))−ρS(Casm)−ρV ∗γ (Casm)

with eigenvalue
c
su(3)
(i,j) + c

su(3)
(k,l) − c

su(3)
(m,n) − c

g2
(1,0) − c

g2
(0,1).

These maps are constructed from the projection maps from V to its subspaces as before
and, writing an element of V(0,1) as α + F (v) for α ∈ Λ2

8 and v ∈ Λ1, the maps

• V(0,1) → W(1,0), α + v ∧ dt+ 1
2
vyReΩ 7→ 1

2
(1 + iJ)v

• V(0,1) → W(0,1), α + v ∧ dt+ 1
2
vyReΩ 7→ 1

2
(1− iJ)v

• V(0,1) → W(1,1), α + v ∧ dt+ 1
2
vyReΩ 7→ α.

Map Factorisation and Formula
q1 = q

(0,0)(1,0)
(1,0) V(1,0) ⊗ V(0,1) → W(0,0) ⊗W(1,0) → W(1,0) → (g2)C

(u+ adt)⊗ (α + v ∧ dt+ 1
2
vyReΩ) 7→ F

(
a1

2
(1 + iJ)v

)
q2 = q

(0,0)(0,1)
(0,1) V(1,0) ⊗ V(0,1) → W(0,0) ⊗W(0,1) → W(0,1) → (g2)C

(u+ adt)⊗ (α + v ∧ dt+ 1
2
vyReΩ) 7→ F

(
a1

2
(1− iJ)v

)
q3 = q

(0,0)(1,1)
(1,1) V(1,0) ⊗ V(0,1) → W(0,0) ⊗W(1,1) → W(1,1) → (g2)C

(u+ adt)⊗ (α + v ∧ dt+ 1
2
vyReΩ) 7→ aα

q4 = q
(1,0)(1,1)
(1,0) V(1,0) ⊗ V(0,1) → W(1,0) ⊗W(1,1) → W(1,0) → (g2)C

(u+ adt)⊗ (α + v ∧ dt+ 1
2
vyReΩ) 7→ F

(
(1

2
(1 + iJ)u)yα

)
q5 = q

(0,1)(1,1)
(0,1) V(1,0) ⊗ V(0,1) → W(0,1) ⊗W(1,1) → W(0,1) → (g2)C

(u+ adt)⊗ (α + v ∧ dt+ 1
2
vyReΩ) 7→ F

(
(1

2
(1− iJ)u)yα

)
q6 = q

(1,0)(0,1)
(1,1) V(1,0) ⊗ V(0,1) → W(1,0) ⊗W(0,1) → W(1,1) → (g2)C

(u + adt) ⊗ (α + v ∧ dt + 1
2
vyReΩ) 7→ 1

4
[((1 + iJ)u) ∧ ((1 − iJ)v) − 1

3
〈((1 +

iJ)u) ∧ ((1− iJ)v), ω〉ω]

q7 = q
(0,1)(0,1)
(1,0) V(1,0) ⊗ V(0,1) → W(0,1) ⊗W(0,1) → W(1,0) → (g2)C

(u+ adt)⊗ (α + v ∧ dt+ 1
2
vyReΩ) 7→ F

(
1
4
[((1− iJ)u) ∧ ((1− iJ)v)]yΩ

)
q8 = q

(1,0)(1,0)
(0,1) V(1,0) ⊗ V(0,1) → W(1,0) ⊗W(1,0) → W(0,1) → (g2)C

(u+ adt)⊗ (α + v ∧ dt+ 1
2
vyReΩ) 7→ F

(
1
4
[((1 + iJ)u) ∧ ((1 + iJ)v)]yΩ

)
q9 = q

(0,1)(1,0)
(1,1) V(1,0) ⊗ V(0,1) → W(0,1) ⊗W(1,0) → W(1,1) → (g2)C

(u + adt) ⊗ (α + v ∧ dt + 1
2
vyReΩ) 7→ 1

4
[((1 − iJ)u) ∧ ((1 + iJ)v) − 1

3
〈((1 −

iJ)u) ∧ ((1 + iJ)v), ω〉ω].
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8.8 Eigenvalues from the Adjoint Representation

We extend this set to a basis of Hom(S ⊗ V(0,1), (g2)C)SU(3) by adding the three maps

q10 = Vol · q(0,0)(1,0)
(1,0)

q11 = Vol · q(0,0)(0,1)
(0,1)

q12 = Vol · q(0,0)(1,1)
(1,1) .

To diagonalise the operator ρS⊗V ∗γ (Casg2) we choose maps that factor as follows:

p
(i,j)
(k,l) : V(1,0) ⊗ V(0,1) → V(i,j) → W(k,l) → (g2)C.

These maps are eigenvectors of ρS⊗V ∗γ (Casg2) with eigenvalue cg2(i,j).

Let w ∈ V and β ∈ V(0,1), applying Schur’s lemma where necessary gives the required
projection maps to be:

• V(1,0) ⊗ V(0,1) → V(2,0), w ⊗ α 7→ ∧β − 1
4
(wyβ)yψ

• V(1,0) ⊗ V(0,1) → V(1,0), w ⊗ β 7→ wyβ

• V(2,0) → W(0,1), dt ∧ κ+ η 7→ 1
2
(1 + iJ)(κyReΩ)

• V(2,0) → W(1,1), dt ∧ κ+ η 7→ 1
3
κ− 1

2
∗6 (ω ∧ κ) + 1

6
∗6 (ω ∧ ∗6(ω ∧ κ))

• V(1,0) → W(1,0), u+ adt 7→ 1
2
(1 + iJ)u

The difficulty in working with this basis is that the space V(1,1) cannot be modelled as
a subspace of Λ∗(R7)∗. Instead we work with maps that factor through V(1,1) by noticing
that they must be orthogonal with respect to the natural inner product on the space
given by 〈X, Y 〉 = Tr(X∗Y ), since they factor through orthogonal subspaces. We can
therefore find expressions for the maps p(1,1)

(i,j) by ensuring the basis vectors are mutually
orthogonal. The basis vectors can be described as follows:
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8.8 Eigenvalues from the Adjoint Representation

Map Factorisation and Formula
p1 = p

(1,0)
(1,0) V(1,0) ⊗ V(0,1) → V(1,0) → W(1,0) → (g2)C

(u+ adt)⊗ (α + v ∧ dt+ 1
2
vyReΩ) 7→ 1

2
(1 + iJ)[uyα− 1

2
(u ∧ v)yReΩ− av]

p2 = p
(2,0)
(1,0) V(1,0) ⊗ V(0,1) → V(2,0) → W(1,0) → (g2)C

(u+ adt)⊗ (α+ v ∧ dt+ 1
2
vyReΩ) 7→ 1

2
(1 + iJ)[u∧ v+ aα− 1

4
(−(uyα)yReΩ +

avyReΩ)]

p3 = p
(1,1)
(1,0) V(1,0) ⊗ V(0,1) → V(1,1) → W(1,0) → (g2)C

orthogonal to p1 and p2

p4 = p
(1,0)
(0,1) V(1,0) ⊗ V(0,1) → V(1,0) → W(0,1) → (g2)C

(u+ adt)⊗ (α + v ∧ dt+ 1
2
vyReΩ) 7→ 1

2
(1− iJ)[uyα− 1

2
(u ∧ v)yReΩ− av]

p5 = p
(2,0)
(0,1) V(1,0) ⊗ V(0,1) → V(2,0) → W(0,1) → (g2)C

(u+ adt)⊗ (α+ v ∧ dt+ 1
2
vyReΩ) 7→ 1

2
(1− iJ)[u∧ v+ aα− 1

4
(−(uyα)yReΩ +

avyReΩ)]

p6 = p
(1,1)
(0,1) V(1,0) ⊗ V(0,1) → V(1,1) → W(0,1) → (g2)C

orthogonal to p4 and p5

p7 = p
(2,0)
(1,1) V(1,0) ⊗ V(0,1) → V(2,0) → W(1,1) → (g2)C

(u + adt)⊗ (α + v ∧ dt + 1
2
vyReΩ) 7→ aα + 1

3
(u ∧ v)− 1

2
∗6 (ω ∧ u ∧ v) + 1

6
∗6

(ω ∧ ∗6(ω ∧ u ∧ v))

p8 = p
(1,1)
(1,1) V(1,0) ⊗ V(0,1) → V(1,1) → W(1,1) → (g2)C

orthogonal to p7 and p9

p9 = p̃
(1,1)
(1,1) V(1,0) ⊗ V(0,1) → V(1,1) → W(1,1) → (g2)C

orthogonal to p7 and p8

Here p(1,1)
(1,1) and p̃

(1,1)
(1,1) factor through two different copies of W(1,1) contained in V(1,1).

For the maps p(i,j)
(k,l) with (i, j) 6= (1, 1) we can determine their expression in terms of qi as

before. The result is the following:

• p1 = −q1 + q4 − 1
4
q7

• p2 = 1
2
q1 + 1

2
q4 + 3q7

• p4 = −q2 + q5 − 1
4
q8

• p5 = 1
2
q2 + 1

2
q5 + 3

8
q8

• p7 = q3 + q6 + q9.

By explicitly computing the matrices of the maps q(i,j)(k,l)
(m,n) we are able to calculate the

norm of each map. They are as follows:

Lemma 8.8.1. Let ‖q‖2 := Trace(q†q), then the basis q(ij)(kl)
(mn) is orthogonal and

• ‖q(0,0)(1,0)
(1,0) ‖2 = 3

• ‖q(0,1)(0,1)
(1,0) ‖2 = ‖q(1,0)(1,0)

(1,0) ‖2 = 48
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8.8 Eigenvalues from the Adjoint Representation

• ‖q(1,0)(1,1)
(1,0) ‖2 = ‖q(0,1)(1,1)

(0,1) ‖2 = 12

• ‖q(0,0)(1,1)
(1,1) ‖2 = 8

• ‖q(1,0)(0,1)
(1,1) ‖2 = ‖q(0,1)(1,0)

(1,1) ‖ = 16
3
.

By ensuring the maps p(1,1)
(k,l) are orthogonal to the other basis maps, we obtain the

following :

• p3 = −8q1 − q4 + q7

• p6 = −8q2 − q5 + q8

• p8 = q6 − q9

• p9 = −4
3
q3 + q6 + q9.

We calculate the matrix of (D1
Acan

)γ in the basis q1, · · · , q12 in the same way as we have
done for the standard representation and find

(D1
Acan

)γ =



0 0 0 −4 0 0 8 0 0 0 0 0
0 0 0 0 −4 0 0 8 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0
−1 0 0 0 0 0 −4 0 0 −i 0 0
0 −1 0 0 0 0 0 −4 0 0 i 0
0 0 3

2
0 0 0 0 0 2 0 0 3i

2
1
2

0 0 −1 0 0 0 0 0 − i
2

0 0
0 1

2
0 0 −1 0 0 0 0 0 i

2
0

0 0 3
2

0 0 2 0 0 0 0 0 −3i
2

0 0 0 4i 0 0 8i 0 0 0 0 0
0 0 0 0 −4i 0 0 −8i 0 0 0 0
0 0 0 0 0 −i 0 0 i 0 0 0



.

The action of ReΩ in this basis is ReΩ = diag(4, 4, 4, 0, 0, 0, 0, 0, 0,−4,−4,−4) and this
allows us to calculate the matrix of (Dt

Acan
)γ via (2.33). Again it is a useful consistency

check to calculate the matrix of (D
1
3
Acan

)2
γ, we find that

(D
1
3
Acan

)2
γ = diag(12, 12, 7, 12, 12, 7, 12, 12, 7, 12, 12, 7)

as expected.

Proposition 8.8.2. Let Vγ = V(0,1), the eigenvalues of (D0
Acan

)γ are symmetric about 0,
the ±λ eigenspaces are isomorphic and the non-negative eigenvalues and multiplicities
are:
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Eigenvalue λ Multiplicity

1
2

+
√

57
2

2

−1
2

+
√

57
2

2

1
2

+
√

37
2

1

−1
2

+
√

37
2

1

Note we have shown that 1 occurs only as an eigenvalue of (D0
Acan

)γ when Vγ = V(1,0)

is the standard representation. Since this representation has dimension 7, we deduce that
the eigenvalue 1 of D0

Acan
has multiplicity 7 in the space of sections. Similarly the only

representation for which (D0
Acan

)γ has non-trivial kernel is when Vγ = C is the trivial
representation and the nullity is 2, so the dimension of the kernel of D0

Acan
in the space of

sections is 2. Furthermore there are no other eigenvalues of D0
Acan

in the interval [0, 2).
With this in hand our next theorem follows immediately:

Theorem 8.8.3. The virtual dimension of the moduli spaceM(Acan, µ) of AC G2-instantons
on P, decaying to Acan with rate µ ∈ (−2, 0) \ {1} is

virtdimM(Acan, µ) =

1 if µ ∈ (−2,−1)

8 if µ ∈ (−1, 0).

Establishing the virtual dimension of the moduli space is an important step towards
proving a uniqueness theorem for the standard instanton. If we assume this instanton
to be unobstructed then the above result provides a local uniqueness theorem for this
instanton. In other words, there are no other genuinely different instantons nearby in the
moduli space since the only deformations are those defined by the obvious scaling and
translation maps. Proving the unobstructedness of connections in the moduli space is a
difficult task since curvature terms complicate the usual method of applying Lichnerowicz
type formulae to L2 twisted harmonic spinors. We are however still able to apply the
deformation theory to study the class of unobstructed instantons, in the next section we
aim to build on Theorem 8.8.3 to attain a uniqueness result in this setting.

8.9 Applications of the Deformation Theory

This section proves that, under the assumption of unobstructedness, the standard instan-
ton is the unique G2 instanton on P = G2 × R7 → R7 which is asymptotic to Acan.
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8.10 Invariance of AC Instantons

Let A be an AC G2 instanton on P = G2×R7 → R7, converging to Acan. Throughout this
section we shall assume that A is unobstructed. Recall we may study the deformations
of A in terms an elliptic complex. The cohomology group

H1
A,µ =

Ker
(
ψ ∧ dA : Ω1

µ−1(M,AdP )→ Ω6
µ−2(M,AdP )

)
dA(Ω0

µ(M,AdP ))

satisfies H1
A,µ
∼= I(A, µ). Since we assume A to be unobstructed we know from Theo-

rem 8.8.3 that the dimension of these vector spaces are

dimH1
A,µ =

{
1 if µ ∈ (−2,−1)

8 if µ ∈ (−1, 0).

Furthermore we know by [18, Proposition 9] that these deformations are given by the
cohomology classes [

ι ∂
∂xi

FA

]
=
[
L ∂
∂xi

A
]

[
ιr ∂
∂r
FA

]
=
[
Lr ∂

∂r
A
]

where ∂
∂xi

, for i = 1, . . . , 7, are coordinate vector fields and r2 = xixi. In fact any Killing
field determines a deformation of A and one can ask which Killing fields actually preserve
the connection. Here we think of Killing fields X as elements of Lie(G2 nR7) and define
a map

L : Lie(G2 nR7)→ H1
A,− 1

2

L(X) = [LXA] .

Before investigating the properties of this map we pause to collect some facts about
the Lie group G2 nR7, the group generated by translations and rotation by a G2 matrix.
More precisely an element of G2 n R7 consists of a pair (g, v) where g is an element of
G2 and v ∈ R7. Denote by R the standard representation of G2, then the action of (g, v)

on a point p ∈ R7 is
(g, v) · p = R(g)p+ v.

Acting with two elements gives the composition formula

(g′, v′) · (g, v) = (g′g,R(g′)v + v′).

Denote by (G2)p the elements of G2 nR7 that fix a point p ∈ R7. Then (G2)p = {(g, p−
R(g)p) ; g ∈ G2} is a subgroup of G2 nR7 isomorphic to G2. Other connected subgroups
are of the form H n U for H a proper subgroup of G2 and U ⊂ R7 a vector subspace,
or Hp the isotropy subgroup of H fixing p. If a subgroup H n U ⊂ G2 n R7 does not
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8.10 Invariance of AC Instantons

fix a point in R7 then U is a vector space of positive dimension and it follows that the
subgroups of G2 nR7 that are isomorphic to G2 are precisely the groups (G2)p for some
p ∈ R7.

The set of connected proper Lie subgroups of G2 is

{SU(3), SO(4),U(2), SU(2)× U(1), SU(2), SO(3),U(1)2,U(1)} (8.26)

and we can use this to understand the kernel of the map L.

Proposition 8.10.1. The kernel of the map L is a Lie subalgebra of Lie(G2 n R7) iso-
morphic to g2.

Proof. First we show that KerL is a Lie subalgebra of Lie(G2 nR7). To avoid notational
clutter we shall write elements of H1

A,− 1
2

without square brackets indicating that they are
equivalence classes. Suppose that X, Y ∈ KerL, then there are fX , fY ∈ Ω0(M,AdP )

with L(X) = dAfX and L(Y ) = dAfY . Observe that

LX(dAfY ) = {ιX , d}(dfY + [A, fY ])

= [{ιX , d}A, fY ] + d{ιX , d}fY + [A, {ιX , d}fY ]

= [LXA, fY ] + dA(LXfY ).

Therefore we find

L([X, Y ]) = LXLYA− LYLXA

= dA(LXfY − LY fX) + [LXA, fY ]− [LYA, fX ]

= dA((LXfY − LY fX + [fX , fY ])

so L([X, Y ]) is in the trivial cohomology class. Suppose now that A is unobstructed,
then L maps from a 21 dimensional vector space to an 8 dimensional vector space KerL
must have dimension at least 13. Looking through the list (8.26) of subgroups of G2 we
observe that the only possibilities are

1. KerL = Lie(SU(3) nR6) where SU(3) acts in the obvious way

2. KerL = Lie(SU(3) n (R6 ⊕ R)) where SU(3) acts on R6 in the obvious way and
trivially on R

3. KerL = Lie(G2 nRn) for 1 ≤ n ≤ 7 where G2 acts trivially

4. KerL = Lie(SO(4) n R7) where SO(4) acts on R7 either trivially or by restriction
of the standard G2 action

5. KerL = Lie(G2)p for some p ∈ R7.
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If any of the cases 1− 4 were to hold then A would have translational symmetries, so we
must rule this out. Suppose then for a contradiction that A has translational symmetries,
then A is a (globally defined) 1-form such that LXA = 0, where X is the vector field
generating the translations under which A is invariant, thus X = ci

∂
∂xi

where ci are
constants and ∂

∂xi
are the coordinate vector fields on R7. Note that LXA = 0 implies

LXF = 0 and one can check that if F = Fij dxi ∧ dxj is any 2-form on Rn then LXF = 0

if and only if X(Fij) = 0 for all i, j. It follows that

X(|F |2) = X(FijFij) = 2FijX(Fij) = 0

so |F | is constant in the direction X. Pick p ∈ S6 such that {tp ; t ∈ R} is the line through
the origin generated by X, then

|FA|(tp) = c(A)

where c(A) ≥ 0 is a constant depending only on A.
Since A is asymptotically conical (up to gauge) there is a gauge transformation g such

that g · A = gAg−1 − dgg−1 satisfies

|g · A− AC | = |a| = O(rµ−1)

where AC = π∗Acan and a is defined as the difference of g · A and AC . Observe that

|Fg·A − FAC | = | dAa+ a ∧ a| = O(rµ−2),

in other words r2−µ|Fg·A − FAC | is a bounded function of r for some R > 0 and where
r ∈ [R,∞). Recall that FAC = π∗(FAcan) and therefore r2|FAC |(rp) = c(AC) where
c(AC) = |FAcan|ground > 0 is a constant independent of both r and p. We calculate

r2−µ|Fg·A − FAC |(rp) ≥ r2−µ||Fg·A| − |FAC ||(rp)
= r−µ|r2|FA| − r2|FAC ||)(rp)
= r−µ|r2c(A)− c(AC)|.

However −µ > 0 and c(AC) > 0 ensures r−µ|r2c(A) − c(AC)| is an unbounded function
of r, which yields our contradiction.

This proves the G2-invariance of unobstructed connections in the moduli space:

Proposition 8.10.2. Let A be an unobstructed AC G2-instanton on P, converging to
Acan. Then A is invariant under the action of (G2)p for some p ∈ R7.

Remark 8.10.3. Instead of the above symmetry argument one might hope to prove in-
variance of connections in the moduli space by showing that sufficiently fast decay ensures
this property holds. The author has not investigated this suggestion but it could prove in-
teresting and useful to do so.
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8.11 A Uniqueness Theorem

The constructions covered in this section come from [42]. Here we review their work
using the framework of Wang’s theorem, as has been done to study the moduli space of
invariant monopoles on the Bryant-Salamon manifolds Λ2

−(S4) and Λ2
−(CP2) in [77].

If Q→ G2/SU(3) is a homogeneous bundle we shall use Wang’s theorem to study

Minv(G2/SU(3), Q)

the space of G2-invariant nearly Kähler instantons modulo invariant gauge transfor-
mations. Principal G2-homogeneous G2-bundles are determined by homomorphisms
λ : SU(3) → G2. There are exactly two conjugacy classes of such a homomorphism; the
class of the trivial homomorphism and the class of the inclusion homomorphism. Hence
there are exactly two equivalence classes of principal homogeneous G2-bundles over S6.

In the first case, when λ(h) = 1 for all h ∈ SU(3), Wang’s theorem says to look for
morphisms of SU(3) representations

Φ: (m,Ad)→ R14

where R14 denotes 14 copies on the trivial representation. Since there are no such non-
zero maps the only invariant connection corresponds to Φ = 0 and this yields the trivial
flat connection.

The other case to be considered is when λ is the inclusion map ι : SU(3) → G2 and
we denote the associated bundle

Q = G2 ×(SU(3),ι) G2. (8.27)

In this case, Wang’s theorem instructs us to look for morphism of SU(3) representations

Φ: (m,Ad)→ (g2,Ad).

Working with complexified representations we see that a basis for Hom(mC, (g2)C)SU(3) is
given by the set {Id, J}, the identity map and the complex structure. If we identify such
a map a = xId + yJ , where x, y ∈ R, with the complex number z = x + iy, then the G2

invariant connection with
A([1]) = Acan([1]) + a (8.28)

is a nearly Kähler instanton precisely when z2 − z = 0 [42]. Other than the canonical
connection z = 0 the solutions to this equation are precisely the cube roots of unity.
Let us write A0, A1, A2 for the connections obtained from the solutions exp(2nπi

3
) for

n = 0, 1, 2. These connections are in fact flat and and since S6 is simply connected these
connections must be gauge equivalent. To see that the connections are in fact equivalent
through G2-invariant gauge transformations we construct them explicitly. Let P0 denote
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the canonical bundle P0 = G2 → G2/SU(3) so that SU(3) acts on the right of P0. Let
ωn = exp(2nπi

3
)Id3 ∈ SU(3), then {ωn}n=0,1,2 is the centre of SU(3) so the group of

invariant gauge transformations on Q is isomorphic to Z3. To understand the action of
this group on the space of invariant connections, note that the adjoint bundle of Q, as
defined in (8.27), is associated to P0 via the adjoint action of SU(3) on g2 and therefore
Aut(P0) acts on this bundle. This induces a linear action of Aut(P0) on Ω1(S6,AdQ) and
so forms a subgroup of the gauge group of Q. Write An for the G2-invariant connection
with An([1]) = Acan([1]) + an, where the an are linear maps an : m → g2. Then Z3 acts
on the g2 part of m∗ ⊗ g2. Since this action is a restriction of the adjoint action of SU(3)

on g2 = su(3)⊕m we observe that the Z3 subgroup acts trivially on su(3) ⊂ g2 and non-
trivially on m ⊂ g2. Indeed, this action is precisely the action inducing the 3-symmetry
map (2.14) since for the coset space in question S : m→ m is the map

S(X) = ω1Xω
−1
1 = −1

2
+

√
3

2
J.

The action of Sn maps a0 which is the inclusion m→ g2, to the maps an for n = 1, 2 so the
connections A0, A1, A2 are gauge equivalent (through invariant gauge transformations).

Now let π : C(Σ) → Σ denote projection from the cone to Σ. The action of G2 on
Q := G2×(H,ι)G2 lifts to an action on P = R7×G2 → R7 since the usual action of G2 on
R7 preserves length. Recall A is said to be invariant if its connection 1-form A ∈ Ω1(P, g2)

is left invariant under this action. It suffices to consider only connections A on P which
are in radial gauge, i.e dryA = 0, since such a gauge may always be chosen. Then an
invariant connection is determined as before in (8.28) but now we identify f1(r)Id+f2(r)J

with the complex valued function f(r) = f1(r) + if2(r). As demonstrated in [42] such a
connection is a G2 instanton if and only if f satisfies the differential equation

rf ′(r) = 2
(
f̄ 2(r)− f(r)

)
. (8.29)

Again we must remark that the coefficient of 2 is different from that found in [42, Section
5.3] due to our normalisation of the metric and the constraint dω = 3ImΩ. In [42, Section
5.3] it is shown that this is in fact the gradient flow equation for a real superpotential
“superpotential” W : C→ R where W (z) = 1

3
(z3 + z̄3)− |z|2. Clearly (8.29) is equivalent

to
r

2

d

dr
f =

∂W

∂f̄
.

If we view W as a function of two real variables then a quick calculation shows its has
exactly four critical points which are (viewed as complex numbers) 0 and the three cube
roots of unity. The unique local maximum is 0 whilst the other critical points are all
saddle points. To see the advantage of interpreting (8.29) as a gradient flow equation we
must first determine the relevant boundary data.
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Note that this construction only yields a connection A on π∗(Q) = (R7 \ {0}) × G2.
To get a connection on P we require A to extend over the origin. For this to happen it
is necessary and sufficient that the curvature be bounded at r = 0. The curvature of the
connection satisfies

|FA|2(σ, r) =
c1

r2
(|f̄ 2 − f |2 + |f̄f − 1|2) +

c2

r
|f ′|

with constants c1, c2 > 0. Thus f is required to satisfy

• |f̄ 2 − f | = O(r) as r → 0

• |f̄f − 1| = O(r) as r → 0

• |f ′| = O(r) as r → 0.

As in the previous section we ask that the connection we obtain decays to the canonical
connection, in other words we also impose the boundary condition

lim
r→∞

f(r) = 0.

Thus our boundary data requires that f(r) tends to a cube root of unity as r → 0 and that
f(r)→ 0 as r →∞. The space of invariant connections can therefore be identified with
the space of solutions to (8.29) satisfying the above boundary conditions. The solution
to this system

f0(r) =
1

Cr2 + 1

is the unique one (up to the scaling parameter C ∈ R+) with f(r) → 1 as r → 0

whilst other solutions are obtain by applying the 3-symmetry: f1(r) = exp(2πi
3

)f0(r) and
f2(r) = exp(4πi

3
)f0(r). Uniqueness follows from observing that the solutions are subject

to gradient flow away from a critical point and towards the unique local maximum of W.
Note that f0 is precisely the solution we have seen in (8.1) and that this solution yields
the standard instanton

Astd(r[1]) = Acan([1]) + f0(r)Id.

Let the G2 instantons defined by the functions fi be denoted Ãi, then the invariant gauge
transformations that related the connections Ai lift to the cone to relate the connections
Ãi. Thus we have uniqueness of solutions for the given boundary data together with the
fact that the 3 families of solutions are gauge equivalent. Therefore, the invariant moduli
space is determined precisely by the paramater C:

Proposition 8.11.1. Let A be a G2-instanton on the homogeneous principal bundle P
which decays to the canonical connection of the nearly-Kähler S6 at infinity. If A is
invariant under the action of G2 on P , then A = Astd is the standard G2-instanton.
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Remark 8.11.2. The constant C can be interpreted as the “size” of the instanton, in
other words how concentrated it is around the origin, and is related to the conformal
invariance of the G2-instanton equation [18]. It is worth noting that this parameter also
arises from the dilation map, so the invariant moduli space coincides with the moduli
space (4.3) for rates in the range −2 < µ < −1.

The importance of this result is that it can be combined with the results of the
previous section to prove a global uniqueness result for unobstructed instantons. Namely,
Proposition 8.10.2 says that any unobstructed instanton on P , AC to Acan, must be
invariant under the action of G2 on R7 which fixes some point, so uniqueness follows from
the above result.

Theorem 8.11.3. Let A be an AC G2-instanton on P , converging to Acan. Then either
A is obstructed or A is the standard G2-instanton.
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Chapter 9

Appendices

9.1 A Quaternionic Model of Spinor Space

We present here a model for the spinor space of R6 as H ⊕ H which, to the author’s
knowledge, has not appeared in the literature before. The basic idea is to model the
space as an SU(2)3-module.

Let us collect some facts about the group SU(2)3 and give a description of the spinor
space compatible with the action of this group. Recall that SU(2) ∼= Sp(1) where Sp(1) is
the group of unit quaternions which has Lie algebra sp(1) = ImH = 〈i, j,k〉. A natural
action of Sp(1)3 on H2 is

ρS(g1, g2, g3)(h1, h2) = (g1h1g
−1
3 , g2h2g

−1
3 ).

We label irreducible representations of Sp(1) = SU(2) by Vi for i ∈ N ∪ {0}. Here Vi is
the unique i+ 1 dimensional irreducible representation which is isomorphic to Symi(C2).

Irreducible representations of Sp(1)3 are then given by the representations Vi,j,k := V
(1)
i ⊗

V
(2)
j ⊗ V (3)

k and the branching rule for the diagonal subgroup ∆Sp(1) is easily calculated
using the standard Clebsch-Gordan rule for tensor products.

As a representation of Sp(1)3 we have that (H2, ρS) = V(1,0,1)⊕V(0,1,1) and the branch-
ing rule says that, as a representation of ∆Sp(1), we have (H2|∆Sp(1), ρS) = V0⊕V2⊕V2⊕V0.

This corresponds to the splitting H2 = ReH⊕ ImH⊕ ImH⊕ReH and also to the splitting
/S(Σ) = Λ0⊕Λ1⊕Λ6.Moreover, this is precisely the (isomorphism class of) representation
of Sp(1) that the spinor space should be. If e1, . . . , e6 denotes the standard orthonormal
basis of R6 then, under this splitting, the two copies of the adjoint representation V2 are
V2 = ImHodd :=< e1, e3, e5 > and V2 = ImHeven :=< e2, e4, e6 > . To relate S to H2

we make the associations e1 = i, e3 = j, e5 = k and e2 = i, e4 = j, e6 = k as well as
ReH = Λ0 and ReH = Λ6. Given that we know from Corollary 2.3.5 how to multiply a
spinor by a 1-form, we can understand Clifford multiplication in this setting. A spinor
s ∈ Λ0⊕Λ1⊕Λ6 can be written (h1, h2) where h1 = π0(s) +πodd(s), h2 = π6(s) +πeven(s)
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where π0 and π6 are projections to Λ0 and Λ6 respectively and πodd and πeven are projec-
tions to ImHodd and ImHeven respectively. Using this association one finds that

cl(e1)

(
h1

h2

)
=

(
1 0
0 −1

)(
ih1

ih2

)
(9.1)

cl(e2)

(
h1

h2

)
=

(
1 0
0 −1

)(
0 −1
1 0

)(
h1i
h2i

)
(9.2)

cl(e3)

(
h1

h2

)
=

(
1 0
0 −1

)(
jh1

jh2

)
(9.3)

cl(e4)

(
h1

h2

)
=

(
1 0
0 −1

)(
0 −1
1 0

)(
h1j
h2j

)
(9.4)

cl(e5)

(
h1

h2

)
=

(
1 0
0 −1

)(
kh1

kh2

)
(9.5)

cl(e6)

(
h1

h2

)
=

(
1 0
0 −1

)(
0 −1
1 0

)(
h1k
h2k

)
. (9.6)

Note the matrix
(

0 −1
1 0

)
corresponds to the action of the volume form on the spin

bundle. Clearly cl(ei)2 = −1 and a quick calculation shows that the Clifford relations
{cl(ei), cl(ej)} = −2δij are satisfied.
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