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Abstract 

The ability to withstand environmental variability is a key component of an ecosystem’s 

stability, and with predictions of continued change in both the mean and variability of 

environmental conditions, it is of vital importance to understand how ecosystems respond to 

both existing and unexpected fluctuations in environmental variability. Marine and terrestrial 

ecosystems will not be affected by these changes in isolation; however, marine and terrestrial 

ecology are often treated as separate disciplines, slowing the progress of cross-realm 

research. In this thesis I aim to determine whether an explicit consideration of patterns of 

environmental variation, and species responses to these, can help to move beyond binary 

marine-terrestrial distinctions towards a more generalised formulation of ecological responses 

to environmental change, that hold across marine and terrestrial systems. I adopt a bottom-up 

approach, initially assessing the effects of environmental variability on primary productivity in 

marine systems by developing of a new index of marine primary productivity sensitivity relative 

to environmental variability, from which marine regions of low resilience can be identified 

(Chapter 2). I then combine this index with an existing index for the terrestrial realm to identify 

general trends in cross-realm sensitivity to variability (Chapter 3). I also investigate trends in 

marine and terrestrial community structure across trophic levels along gradients of primary 

productivity sensitivity to determine if the effects of environmental variability can be tracked 

through the food web, via changes in resource availability and predictability (Chapter 4). This 

approach provides a clear path from climate variability to primary productivity and on to higher 

trophic level species, while also bridging the marine-terrestrial divide. It is hoped that this work 

will provide a foundation for future cross-realm macroecological studies aimed at 

understanding the role of environmental variability in shaping ecosystems, and how this is 

likely to change with our changing climate. 
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1 General Introduction 

1.1 The marine-terrestrial divide 

Marine and terrestrial ecology have historically been treated as separate disciplines, being 

taught on separate degree programs, published in separate journals and presented at separate 

conferences (Chase, 2000; Menge et al., 2009; Rafaelli et al., 2005; Steele, 1991b; Stergiou 

and Browman, 2005). The separation between the disciplines has also caused the 

development of two languages and two approaches to what may be very similar topics (Rafaelli 

et al., 2005). Both marine and terrestrial ecology include the study of population dynamics, 

trophic structure, food webs and increasingly, responses to environmental change, however 

differences arise in how hypotheses are developed (Chase, 2000) and where the emphasis is 

placed on subsequent explanatory processes (Steele, 1991a; Stergiou and Browman, 2005). 

For example, in terrestrial ecology population structure and persistence are generally 

considered to be governed by internal dynamics such as predator-prey interactions and density 

dependence (Steele, 1985, 1991a), whereas in the marine realm the focus is placed on the 

external dynamics of long-term environmental control, due to tighter coupling between the 

scales of physical and biological processes (Steele, 1985; Steele and Henderson, 1994; 

Section 1.1.1).  

This separation between the disciplines has occurred due to the existence of ‘fundamental 

differences’ between the realms stemming from a water versus air-based medium. In the first 

instance the majority of marine animals have a 3D environment available to them, compared 

to a 2D environment for all land animals except birds and a small number of mammals. On top 

of this, the different viscosities of water versus air (Dawson and Hamner, 2008) and the relative 

openness of the marine realm (Paine, 2005; Rafaelli et al., 2005) results in large disparities 

between the realms ranging from dispersal distances to locomotory strategies. Differences are 

also apparent in the structuring of marine and terrestrial ecosystems. In the marine realm body 

size and life span typically increase linearly with trophic level from producers to predators 

(Steele, 1991b) and species can fill multiple trophic levels throughout their lifespan, resulting 

in size-structured populations (Trebilco et al., 2013). The relationship between the size and 

lifespan of organisms with trophic level in the terrestrial realm is more complex (Steele, 1991b), 

as plants and herbivores are typically the longest lived and largest species and both herbivores 

and predators can cover a large range of sizes and life spans. Terrestrial species however 

tend to remain within the same trophic level throughout life, resulting in population  
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structure being classified by trophic level (Trebilco et al., 2013). The existence of these 

fundamental differences has consistently been viewed as a barrier to comparative study, 

impeding the advancement of cross-realm communication and integration (Steele, 1991a; 

Stergiou and Browman, 2005). 

1.1.1 John Steele and the importance of scale 

In 1985 John Steele published the first of a series of papers examining the differences between 

the marine and terrestrial realms and advocating the need for increased integration of the 

disciplines. In his seminal paper, Steele (1985) highlighted the different temporal scales of 

environmental variance experienced in each realm as a result of a water versus air based 

medium. In the marine realm, short-term variability is buffered by the thermal capacity of the 

ocean, and large patterns of ocean circulation are semi-predictable due to the fixed boundaries 

of landmasses, resulting in environmental variance that increases with the length of time 

examined (Steele, 1985; Steele et al., 2019). The terrestrial realm on the other hand 

experiences high environmental variance that remains constant from days to decades due to 

the lack of barriers to atmospheric circulation (Steele, 1985; Steele et al., 2019). This difference 

can be better described in terms of the temporal autocorrelation structure of variability and its 

subsequent position on the colour spectrum (Halley, 1996; Keshner, 1982). The increased 

environmental predictability and dampened short-term variability exhibited in the marine realm 

displays positive temporal autocorrelation, where subsequent time points are more correlated 

within a time series (Rohani, 2004), and is reflective of reddened spectra or ‘red noise’ on the 

colour spectrum (Steele, 1985). ‘White noise’ represents environmental time series that are 

temporally uncorrelated and highly variable at both short and long temporal scales (Halley, 

1996; Rohani, 2004), characteristic of the constant high-frequency variance exhibited in the 

terrestrial realm (Steele, 1985).  

The distinction between marine and terrestrial environments of red and white noise 

respectively is not a strict dichotomy however, as across coastal areas and in large freshwater 

bodies a white-red gradient from terrestrial-aquatic environments often occurs (Cyr and Cyr, 

2003; Vasseur and Yodzis, 2004) and both realms exhibit flatter spectra at temperate latitudes 

compared to in polar and equatorial regions (Vasseur and Yodzis, 2004). Recent research also 

suggests that short term variability in the marine realm driven by local ‘weather’ rather than 

large-scale ‘climate’ is considerably higher than previously thought (Bates et al., 2018). The 

red-white contrast in spectral colour across realms is predominantly exhibited in abiotic 

variables (Weber and Talkner, 2001), however population density time series that are usually 

reddened (Petchey, 2000; Pimm and Redfearn, 1988) have also been shown to differ between  



 16 

 

Figure 1.1: Differences in the temporal and spatial scales of the marine and terrestrial realm. Plots showing 
differences in the temporal and spatial scales of physical and biological processes in the terrestrial (A) and marine 
(B) realm. Physical processes in the terrestrial realm cover a smaller temporal scale but larger spatial scale than 
marine equivalents and are uncoupled from biological processes (A). In the marine realm physical and ecological 
processes are closely coupled due to the long temporal scale of physical processes (B). Adapted from Steele 
(1991b).  

marine and terrestrial environments (Ariño and Pimm, 1995; Steele, 1985). Steele (1985) 

accurately predicted that these differences in the temporal scales of variability structure would 

likely lead to different adaptations, with marine and terrestrial populations adapted to long 

versus short-term environmental variability respectively (Section 1.2.1).  

In further papers Steele detailed important differences in both the temporal and spatial scales 

of physical and biological processes in each realm (Steele, 1991a, 1991b; Steele and 

Henderson, 1994). For example, the slower transfer of heat and energy in large water bodies 

results in physical processes such as eddies lasting considerably longer in the marine realm 

compared to their terrestrial counterparts - for years compared to days (Steele, 1991b). 

Spatially however, they cover an area an order of magnitude smaller (Figure 1.1; Steele, 

1991b). This results in physical and biological processes being tightly coupled in the marine 

realm due to the large temporal scales of physical processes overlapping with ecological 

processes (Figure 1.1B; Steele, 1991b; Steele and Henderson, 1994), whereby each life stage 

of a marine organism can be reliant on a different physical ocean process (Steele, 1991b). In 

the terrestrial realm, ecological processes have a longer temporal scale and are completely 

separated from atmospheric processes (Figure 1.1A). It is this disparity in physical and 

biological coupling which has led to the temporal dynamics of marine populations being 

attributed to external control compared to internal dynamics in terrestrial systems (Steele and 

Henderson, 1994).  

Considerable differences thus clearly do exist between the marine and terrestrial realms which 

at times will necessitate a realm-specific approach (Carr et al., 2003), however Steele 
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maintained that this should not be necessary in all contexts and criticised the restrictive criteria 

typically imposed in comparative studies which reinforced or did not account for differences in 

scale, making comparisons unviable (Steele, 1985). Steele argued that differences in scale 

proved problematic when comparisons were attempted at the same scale in each realm 

(Steele, 1985, 1991a, 1991b), however if realm-specific spatial and temporal scales were 

employed then cross-realm comparisons would be possible and could provide more rigorous 

testing of ecological hypotheses, revealing generalised patterns that hold across realms.  

1.1.2 Progress since Steele - Bridging the divide 

In the decades since Steele’s initial publication, an increasing number of comparative studies 

have been conducted and cross-fertilisation of ideas is increasing (Webb, 2012). New insights 

have been gained from examining similar species found in contrasting environmental settings, 

for example in marine versus terrestrial vertebrate carnivores (Tamburello et al., 2015) and 

propagule dispersal in macroalgae versus angiosperms (Kinlan and Gaines, 2003); in different 

species occurring in similar environmental settings such as benthic versus soil ecosystems 

(Dawson, 2009; Dawson and Hamner, 2008); and by grouping functionally analogous species 

for comparison irrespective of environment such as cross-realm predator-prey biomass 

relationships (Cebrian, 2015; Hatton et al., 2015). Reviews of the impacts of large-scale 

climate patterns now regularly include a cross realm approach (e.g. Ottersen et al., 2001; 

Stenseth et al., 2002, 2003; Section 1.2) and Dawson and Hamner (2008) have shown that 

when viewed from a biophysical perspective, both water and air can be quantitatively analysed 

via fluid dynamics revealing cross-realm differences that are statistical rather than 

fundamental. Whilst these advances show a promising move in the right direction for the 

integration of marine and terrestrial ecology, the idea of fundamental differences between the 

realms has persisted and it has been suggested that some studies are still plagued by a 

terrestrially oriented viewpoint (Dawson and Hamner, 2008). A special journal issue dedicated 

to the progress made since Steele concluded that whilst communication has improved, barriers 

are still in place (Stergiou and Browman, 2005). It is worth noting that this special issue was 

published in a specialised marine journal. The global scope of the threat of climate change 

makes the remaining separation increasingly disadvantageous, and the need to determine 

how both realms will respond to the growing pressures of a changing climate has resulted in 

an increasing number of studies beginning to explore the benefits of a cross-realm approach 

to ecology (e.g. Blowes et al., 2019; Burrows et al., 2011; Parmesan and Yohe, 2003; Pinsky 

et al., 2019; Sunday et al., 2012; Wiens, 2016). 
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1.2 Life under environmental variability  

Confirming Steele’s hypothesis regarding appropriate scales for comparison, at long temporal 

scales coupling between physical and biological processes occurs in both realms (Steele, 

1991a) and several large-scale patterns of climate variability such as the El Niño Southern 

Oscillation (ENSO; Philander, 1990) and the North Atlantic Oscillation (NAO) are now known 

to have wide-ranging influences across the marine and terrestrial realms (Ottersen et al., 2001; 

Stenseth et al., 2002, 2003). Through their governance of micro-scale weather conditions 

these large-scale patterns of climate variability influence the physical and biological processes 

controlling the phenology, composition, abundance and distribution of organisms across 

trophic levels in freshwater, terrestrial and marine ecosystems (Blenckner and Hillebrand, 

2002; Drinkwater et al., 2003; Henson et al., 2012; Mysterud et al., 2003; Ottersen et al., 2001; 

Stenseth et al., 2003). For example, NAO-driven warming of sea surface and air temperatures 

has lengthened the growing season for both phytoplankton (Racault et al., 2012; Reid et al., 

1998) and terrestrial plants (Myneni et al., 1997); sea surface temperature (SST) in the Pacific 

driven by ENSO is a more accurate predictor of maize yield in Africa than terrestrial rainfall 

(Cane et al., 1994); differences between ENSO warm El Niño and cold La Niña periods can 

switch the Humboldt Current Eastern Boundary Upwelling System (EBUS) from a sardine to 

an anchovy dominated ecosystem (Alheit and Niquen, 2004); and North Atlantic SST driven 

by the Atlantic Multi-decadal Oscillation (AMO) has been correlated with variability in the Indian 

summer monsoon (Goswami et al., 2006) and precipitation across the majority of the United 

States, with subsequent effects on river flows (Enfield et al., 2001) and nutrient inputs in coastal 

areas (Goberville et al., 2010; Harley et al., 2006). Thus, despite emphasis on the role of 

internal processes in determining terrestrial population dynamics (Section 1.1.1), the role of 

patterns such as the NAO in the terrestrial realm are now readily accepted (e.g. Blenckner and 

Hillebrand, 2002; Hurrell and Deser, 2010; Mysterud et al., 2003; Stenseth et al., 2002).  

1.2.1 Sensitivity to variability 

Despite cross-realm linkages in large scale patterns of variability, the different physical 

structure of marine and terrestrial environments results in contrasting levels of environmental 

variability manifesting in each realm (Steele, 1985; Section 1.1.1). As well as determining 

physical conditions, environmental variability interacts with demographic processes to 

influence life history traits (Dawson and Hamner, 2008), population dynamics (García-Carreras 

and Reuman, 2011; Ruokolainen et al., 2009) and extinction risk (Heino and Sabadell, 2003; 

Mustin et al., 2013; Ripa and Lundberg, 1996; Ruokolainen and Fowler, 2008). Reddened 

environments are more likely to favour specialist species (Righetti et al., 2019) with persistence 
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or ‘slow’ life history traits such as late maturity, suited to long runs of predictable conditions 

(Kindsvater et al., 2016), whereas generalist species are favoured in white environments with 

greater stochasticity (Righetti et al., 2019; Suryan et al., 2009). These adaptations to variability 

influence an ecosystem’s ability to withstand anomalous climate fluctuations. The Climatic 

Variability Hypothesis (Stevens, 1989) demonstrates that populations living in more variable 

environments have wider environmental tolerances, and combined with being generalists, are 

more able to absorb fluctuating environmental conditions (Holling, 1973). Species in stable, 

reddened environments, on the other hand, are typically less well adapted to fluctuating 

environmental conditions and are less able to absorb climate anomalies (Holling, 1973; Pintor 

et al., 2015). Furthermore, long runs of poor environmental conditions are more likely to occur 

with reddened environmental variability, which - combined with specialist species with reduced 

adaptability - can put populations at risk of extinction (Dawson and Hamner, 2008; Mustin et 

al., 2013).  

The ability to withstand environmental variability is a key component of an ecosystem’s stability 

(Harrison, 1979a) and with predictions of continued change in both the mean and variability of 

environmental conditions (Section 1.2.2), it is of vital importance to understand how 

ecosystems respond to both existing variability and unexpected fluctuations in their governing 

environmental conditions (Easterling et al., 2000; Harrison, 1979a; Ma et al., 2015). An 

ecosystem’s ability to persist in its current state in the face of external pressure is a marker of 

both its resilience and resistance to stress events (Harrison, 1979a; Holling, 1973; Seddon et 

al., 2016; Webster et al., 1975). Resistance is typically defined in terms of a population or 

ecosystem’s immediate response to a stress event, with a resistant population showing smaller 

fluctuations in size and avoiding displacement. Resilience on the other hand is a population or 

ecosystem’s ability to return to its pre-impact state after the stress period has passed (Webster 

et al., 1975). ‘Sensitivity’ encapsulates this combination of resistance and resilience and 

provides a measure of ecosystem health and stability relative to the magnitude of a stress 

event (Seddon et al., 2016). Healthy ecosystems with high resistance and/or high resilience 

and therefore low sensitivity, are able to persist for long periods of time in the face of 

environmental variability, expected or otherwise, by either exhibiting minimal perturbation and 

absorbing the impact in the first instance (resistance) or by quickly returning to normal post-

event (resilience; Holling, 1973). However, many of the world’s ecosystems are currently 

degraded from decades of anthropogenic exploitation and pollution (Halpern et al., 2008) and 

are now facing a barrage of new pressures from a changing climate. Increasing pressure on 

already degraded ecosystems progressively reduces their resilience so that when an 

unexpected event such as a climate anomaly occurs, their resiliency limits are passed, 

resulting in a rapid change to a new ecosystem state (Beaugrand et al., 2008; Holling, 1973). 
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Amplified responses and slowed recovery rates in populations to unexpected climate events 

are indicative of an ecosystem having low resistance and resilience and being highly sensitive 

to environmental variability (Scheffer et al., 2009; Smith, 2011a).  

1.2.2 Climate change and variability 

Environmental variability (IPCC, 2019; Jentsch et al., 2007) and extreme environmental events 

(Easterling et al., 2000; Ma et al., 2015; Vasseur et al., 2014) are predicted to increase with 

climate change, with the potential for wide-ranging ecological impacts which are currently far 

less well understood than responses to changes in mean environmental conditions (Sydeman 

et al., 2013; Thornton et al., 2014). Evidence already suggests that El Niño years are 

increasing in frequency (becoming less red; Power et al., 2013) whilst Northern Hemisphere 

weather systems are experiencing longer ‘stalled periods’ of the same weather pattern 

(becoming more reddened), increasing the likelihood of persistent heat and associated 

extreme weather events (Mann et al., 2017). The Northern Hemisphere has so far experienced 

the fastest rates of warming in the last century (IPCC, 2007), however it is the Southern 

Hemisphere and low latitude tropical regions that are predicted to be first affected by weather 

extremes and increased variability (Beaumont et al., 2011; Diffenbaugh and Giorgi, 2012). The 

predicted expansion of Hadley cells, which govern sub-tropical atmospheric circulation and 

winds, could see poleward shifts in both upwelling location and intensity in EBUS (Bakun et 

al., 2015; Kang and Lu, 2012; Lu et al., 2007; Rykaczewski et al., 2015) causing poleward 

shifts in primary productivity due to the change in distribution of upwelled nutrients (Thomas et 

al., 2012), and further desertification of subtropical areas through increasing inland 

temperatures (Lu et al., 2007). Increased pressure gradients resulting from higher inland 

temperatures could also cause lateral transfers in marine productivity from increased offshore 

advection (Bakun et al., 2015). These predicted geographical shifts in marine productivity could 

result in substantial changes to resource availability with reductions in the tropics and 

increases at higher latitudes, which combined with changes to inland precipitation (Enfield et 

al., 2001) could have consequences for coastal ecosystems in both realms. Marine 

ecosystems subsidise coastal terrestrial environments with particulate matter, detritus and 

living plant and animal biomass (Heck et al., 2008) and can contribute more energy and 

biomass to the system than terrestrial primary production (Polis and Hurd, 1996), whilst 

terrestrial precipitation governs the horizontal transfer of nutrients and freshwater into coastal 

marine environments through its effects on river flow and run-off (Enfield et al., 2001; 

Goberville et al., 2010; Harley et al., 2006).  
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Given the scope of influence of environmental variability on both physical and biological 

ecosystem processes, considerable concern exists about the ecosystem impacts of it altering 

with climate change (Easterling et al., 2000; García-Carreras and Reuman, 2011; Wigley et 

al., 1998). Species responses to environmental variability can vary markedly (Morris et al., 

2008; Stenseth et al., 2002; Vasseur et al., 2014) both across space (von Holle et al., 2010) 

and trophic level (Durant et al., 2007; Thackeray et al., 2010, 2016), and population responses 

to global change are not guaranteed to be consistent or occur at the same rate across realms 

(Blowes et al., 2019; Pinsky et al., 2019). This extensive spatial variation in responses to 

environmental variability makes it necessary to account for the current bias in climate change 

studies to date focussing largely on temperature effects in northern, temperate latitudes 

(Harley et al., 2006; Pearce-Higgins et al., 2015). Furthermore, as anomalous environmental 

conditions could be expected to elicit different responses in marine and terrestrial ecosystems 

(Section 1.2.1), comparative studies of the responses of organisms to different regimes of 

environmental variability will be necessary to determine whether general responses to climate 

change are likely. To date, estimating spectral colour for environmental variables explicitly 

linked to biotic data using empirical rather than modelled data has rarely been attempted 

(García-Carreras and Reuman, 2011; Gilljam et al., 2019). Identifying ecosystems in both 

marine and terrestrial realms exhibiting amplified responses to climate anomalies within the 

context of their underlying variability structure could therefore help to assess which regions are 

most at risk from a changing environmental variability regime (Smith, 2011a). 

1.3 Is macroecology the answer? 

First defined by Brown and Maurer (1989), macroecology identifies statistical relationships 

between organisms and their environment at large spatial and temporal scales, to reveal 

generalised patterns explaining the distribution, abundance and diversity of species. The 

unifying potential of macroecology for marine and terrestrial research was identified by Steele 

(1991b), who proposed that looking at a macro scale could overcome the challenges posed 

by the different temporal and spatial scales encountered in marine and terrestrial systems. 

This is due to the relative simplicity of phenomena which are emergent at large scales 

compared to the complexity when looking at a community ecology level (Lawton, 1999), 

resulting in the most general ecological patterns and most fundamental differences becoming 

apparent in the abiotic and biotic features of marine and terrestrial data at macroecological 

scales (Dawson and Hamner, 2008; Lawton, 1999; Rafaelli et al., 2005; Webb, 2012). Whilst 

originally a terrestrially dominated discipline (Rafaelli et al., 2005), increases in marine data 

availability (Section 1.3.2) have led to a number of classical macroecological patterns being 
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demonstrated across realms. For example, species abundance distributions (SADs; Gray et 

al., 2006; Webb, 2012), species-range size relationships (Gaston, 2003), species-area 

relationships (SAR; Drakare et al., 2006) and latitudinal diversity gradients (Fisher et al., 2010; 

Hillebrand, 2004) all exhibit similar patterns in both realms. A macroecological approach has 

also revealed parallels in predator-prey scaling laws in each realm (Cebrian, 2015; Hatton et 

al., 2015) and instances of realm-independent explanatory processes, for example variation in 

species’ home range size is better explained by shared life history traits than by realm 

(Tamburello et al., 2015). Differences have also been demonstrated between the realms at a 

macroecological scale, for example Horne et al. (2015) showed that size clines along latitudinal 

gradients were the opposite in each realm with oxygen being the main limiting factor in the 

marine realm compared to voltinism (the number of broods produced per year) in terrestrial 

systems.  

1.3.1 A dynamic macroecology for climate change 

A macroecological approach has proven to be a useful tool in identifying similarities and 

differences in the organisational structure of cross-realm environments, however this simplicity 

of approach can make it difficult to infer the underlying processes behind observed patterns. 

To further improve the utility of macroecological patterns, a more dynamic, mechanistic 

approach to macroecology is developing to increase understanding of the underlying 

processes driving patterns of diversity (Connolly et al., 2017; McGill and Potochnik, 2018), with 

temporal and spatial data implicitly included in analyses and patterns integrated within 

ecological frameworks (Beck et al., 2012; Brown and Maurer, 1989; Fisher et al., 2010; McGill, 

2010b; McGill et al., 2007; Tyler et al., 2012; Webb, 2012). Climate change presents several 

opportunities to further develop this new approach to macroecology, as the different scenarios 

predicted to occur under climate change provide the opportunity for pseudo-experimental 

testing of macroecological hypotheses (Kerr et al., 2007). Comparative cross-realm analyses 

will also provide more thorough and novel opportunities to test new and existing hypotheses 

(Steele, 1985; Webb, 2012). It will also be important to understand and incorporate the 

influence local processes can have on large scale patterns (Kissling et al., 2010) of climate 

variability, particularly as some links between the environment and ecology only become 

apparent at large scales (Webb, 2009).  

This improved, process driven macroecology will be invaluable for predicting global responses 

to climate change (Kerr et al., 2007). The prevalence of cross-realm climatic linkages (Section 

1.2) makes it reasonable to assume that variability in macro-scale patterns of climate will affect 

marine and terrestrial realms in tandem, however the existence of cross-realm 
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macroecological patterns does not necessarily signify shared causal mechanisms (Webb, 

2012) or shared responses to change. Determining whether there are corresponding 

mechanisms driving patterns and their responses across realms will greatly enhance our ability 

to predict future change (Fisher et al., 2010). A global, macroecological approach has already 

been used to reveal differences in the pace of climate change across realms and subsequent 

effects on species distributions (Burrows et al., 2011, 2014), and to show that the signal of 

large climate patterns can successfully be detected in changes in macro patterns of species 

diversity (Fisher et al., 2008). Considering the spatial and temporal scales of environmental 

variation is another potentially useful way of unifying climate focussed studies across realms, 

with tighter coupling between physical and biological scales expected in more oceanic 

compared to more terrestrial systems (Steele, 1991a, 1991b). With increasing levels of change 

occurring in natural systems reliable measures for effective unification, monitoring and 

prediction are needed, however environmental variability has yet to be formally incorporated 

into a macroecological approach that can be used to predict patterns of change and is 

applicable both across trophic levels and realms.  

1.3.2 Data availability for macroecology 

Recent advances in remote sensing technologies (Section 1.3.2.1) and the collection, 

compilation and storage capacity of large-scale ecological data (Section 1.3.2.2) have greatly 

enhanced the ability to conduct cross-realm macroecological comparisons, and the importance 

of big data to the future of macroecology in both realms is now widely acknowledged (Beck et 

al., 2012; Edgar et al., 2016; Keith et al., 2012; Kerr et al., 2007).  

1.3.2.1 Remote sensing  

Despite being available for over 40 years, remote sensing data has only recently become 

widely used in studies of ecological change due to previous difficulties in combining datasets 

recorded by satellites with differing technological capabilities and a lack of clear understanding 

in, or availability of, their associated uncertainties (Hollmann et al., 2013). Progress on this 

front has been aided by the designation of essential climate variables (ECVs) by the Global 

Climate Observing System (GCOS; GCOS, 2010). ECVs, specified for atmospheric, marine 

and terrestrial systems and covering physical, biological and chemical components, are 

variables considered essential for monitoring and predicting the impacts of climate change 

(Bojinski et al., 2014). In response to these designations, agencies around the world have set 

up initiatives both to collect new satellite data and to synthesise existing data for these 

variables into single, homogenised datasets. For example, the European Space Agency’s 

(ESA) Climate Change Initiative (CCI) aims to produce easily accessible datasets for 13 ECVs 
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in collaboration with user needs (Hollmann et al., 2013; Plummer et al., 2017). Crucially these 

datasets are made freely available, often at a range of processing levels, spatial resolutions 

and geographic projections to suit the different needs and skillsets of physical versus biological 

modellers, making the data more accessible to ecologists who may be unused to working with 

satellite derived data. As a result of these projects we now have ~30 years of consistent, high 

resolution datasets covering large spatial scales, which can be used to further the identification 

of macroecological trends of climate impacts.  

Remote sensing has proven particularly useful for mapping global primary productivity. In the 

marine realm both ocean colour (surface chlorophyll-a (Chl-a)) and physical variables 

necessary for primary productivity (e.g. sea surface temperature) are designated ECVs 

(Bojinski et al., 2014), ensuring the continued collection and synthesis of new data products 

such as the ESA’s Ocean Colour Climate Change Initiative (OC-CCI; Jackson et al., 2017; 

Lavender et al., 2015). Remotely sensed measurements of ocean colour provide temporally 

and spatially explicit measures of Chl-a concentration and have become a common proxy for 

marine photosynthetic biomass (Blondeau-Patissier et al., 2014; Cullen, 1982; Hirata et al., 

2012; McClain, 2009; Sathyendranath and Platt, 1997), expanding the scope of studies beyond 

the limited availability of physical phytoplankton distribution and abundance data (Hays et al., 

2005). Whilst there are too many examples to provide an exhaustive list, satellite derived 

primary productivity data in the marine realm has been used to determine: decadal trends in 

Chl-a concentration (Beaulieu et al., 2013; Gregg and Rousseaux, 2014; Marrari et al., 2017); 

climate impacts on phytoplankton composition (Rousseaux and Gregg 2012; Rousseaux and 

Gregg 2015) and phenology (Cabré et al., 2016; Friedland et al., 2018; González Taboada 

and Anadón, 2014; Henson et al., 2013; Racault et al., 2012, 2017); driving mechanisms of 

phytoplankton variability (Nieto and Mélin, 2017a; Signorini et al., 2015); and signals of climate 

change (Henson et al., 2010). For terrestrial primary productivity there are two measures 

related to productivity designated as ECVs (Leaf Area Index and Above-ground biomass; 

Bojinski et al., 2014), however the most similar in scale and simplicity to ocean colour is the 

Enhanced Vegetation Index (EVI; Solano et al., 2010) which measures global vegetation 

canopy ‘greenness’. As with marine primary productivity, these datasets have been used to 

examine large scale trends in terrestrial primary productivity in relation to climate (e.g. 

Holmgren et al., 2013; Nemani et al., 2003).  

Advances in remote sensing have also led to the development of more detailed, nested spatial 

delineations of the marine and terrestrial realms with both static boundaries, such as 

Longhurst’s biogeographic regions (Longhurst, 1995a, 2007; Sathyendranath et al., 1995), the 

Pelagic Provinces of the World (Spalding et al., 2012), Marine Ecoregions of the World 



 25 

(Spalding et al., 2007) and Ecoregions2017 (Dinerstein et al., 2017), and dynamic boundaries 

accounting for seasonal variation (Reygondeau et al., 2013), all of which better enable 

hypothesis testing of macroecological patterns at a range of spatial scales. 

1.3.2.2 Biological data repositories 

As well as advances in remote sensing data, macroecology is also benefiting from the 

development of large open access database compilations for empirically collected biological 

data (Edgar et al., 2016). These include the BioTIME database (Dornelas et al., 2014, 2018) 

for assemblage time series of cross-realm species abundances, the Global Biodiversity 

Information Facility (GBIF; https://www.gbif.org) for global species observation records, the 

Ocean Biogeographical Observation System (OBIS; https://www.obis.org) for global ocean 

biodiversity observations and the COMADRE (Salguero-Gómez et al., 2016) and COMPADRE 

(Salguero-Gómez et al., 2015) animal and plant matrix population model databases. These 

databases do require consideration in terms of the different methodologies employed in the 

individual studies and whether standardisation is required, and the data within them can also 

be messy and unstructured data (Edgar et al., 2016). Nevertheless, they provide an invaluable 

resource of temporal, georeferenced records which can be integrated with satellite data for 

climate variables to investigate global trends across trophic levels. Satellite tagging also 

provides another important resource of georeferenced species data, particularly for migratory 

species, and has been used to produce striking records of large-scale species distributions 

(e.g. Harrison et al., 2018). 

1.4 Sensitivity in primary productivity as a unifying approach 

Primary productivity provides an ideal foundation for cross-realm macroecological analysis as 

it can be directly associated with both environmental drivers (e.g. Hays et al., 1993) and higher 

trophic level responses (e.g. Visser and Holleman, 2001), due to the dependence of primary 

producers on abiotic forcing and their essential role at the base of marine and terrestrial food 

webs. Similarities in cross-realm primary productivity responses to environmental change have 

already been demonstrated for phenology (Section 1.2; Chambers et al., 2013; Parmesan and 

Yohe, 2003; Root et al., 2003; Thackeray et al., 2010), with warming temperatures causing 

earlier leaf emergence, flower blooming and lengthened growing seasons in terrestrial systems 

(Mysterud et al., 2003; Post and Stenseth, 1999), comparable to earlier bloom times observed 

in marine phytoplankton (Edwards and Richardson, 2004a). Furthermore, whilst terrestrial 

primary producers are typically not as closely coupled to scales of environmental variability as 

marine producers (Section 1.1.1; Steele, 1991b), their responses to environmental variation 
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are similarly variable across space (von Holle et al., 2010) and trophic level (Durant et al., 

2007; Thackeray et al., 2010, 2016) as in marine systems, with trophic mismatch and wider 

ecosystem consequences an inevitable result (Durant et al., 2005; Stenseth and Mysterud, 

2002; Toszogyova and Storch, 2019; Visser and Holleman, 2001). Environmental variability 

can also modify global gradients of primary producer diversity and richness (Righetti et al., 

2019) and differentially effect higher trophic level patterns of richness depending on the mean 

productivity of an area, with high variability and high mean productivity associated with 

reductions in richness (Toszogyova and Storch, 2019). As a result, primary resource 

availability and predictability can act as both an explanatory and predictive mechanism for 

population responses to environmental change.  

1.4.1 A Vegetation Sensitivity Index for the terrestrial realm 

The publication of a global Vegetation Sensitivity Index (VSI) for terrestrial primary productivity 

(Seddon et al., 2016) has opened up new avenues for macroecological examinations of 

environmental variability impacts. Using remote sensing data for canopy greenness and driving 

climate variables of productivity, Seddon et al. (2016) determined the sensitivity of global 

terrestrial primary productivity relative to variability in temperature, precipitation and cloud 

cover over a 14-year time series (2000-2013) at high spatial resolution (5 km). By coupling 

terrestrial primary productivity directly with abiotic variables Seddon et al. (2016) identified 

specific regions and ecosystems in which primary productivity is especially sensitive to current 

environmental variability (Figure 1.2), whereby high sensitivity indicates an amplified response 

in primary productivity relative to environmental variability, indicative of an ecosystem having 

low resilience (Scheffer et al., 2009; Smith, 2011a). The index also makes it possible to extract 

the contribution each climate variable makes towards driving sensitivity in any given pixel 

(Figure 1.3). The VSI therefore provides crucial guidance on where wider ecosystem impacts 

are likely to occur, both now and in the future, as a result of changes in resource availability 

and predictability due to a changing environmental variability regime, thus focussing future 

research efforts.  

1.4.2 A Phytoplankton Sensitivity Index for the marine realm 

Marine phytoplankton are the dominant primary producers of the oceans and are likely to be 

the first indicators of a marine ecosystem’s changing sensitivity to environmental variability 

(Dutkiewicz et al., 2019; Hays et al., 2005; Taylor et al., 2002). With rapid life cycles, population 

growth rates and almost exclusive abiotic control (Hays et al., 2005; Racault et al., 2017; Taylor   
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Figure 1.2: Vegetation Sensitivity Index. A global map of terrestrial primary productivity sensitivity relative to 
variability in temperature, precipitation and cloud cover. The index ranges from 0 (low sensitivity) to 100 (high 
sensitivity). Due to right skew in the data and the volume of data points, the colour scale has been band shifted by 
2.5 standard deviations (the default in ArcGIS) to better reflect the spread of the data. Pixel resolution, 5 km; time 
period, 2000-2013. Continental outlines were modified from a shapefile using QGIS. Raw data and code to produce 
the figure were sourced from Seddon et al. (2016). 

 

 

 

Figure 1.3: Composite map of the Vegetation Sensitivity Index. Composite map of the contribution of climatic 
driver variability to the VSI, showing which climate variable has the highest influence on sensitivity in a given pixel 
(temperature (blue), cloud cover (green) and precipitation (yellow)). Pixel resolution, 5 km; time period, 2000-2013. 
Continental outlines were modified from a shapefile using QGIS. Raw data and code to produce the figure were 
sourced from Seddon et al. (2016). 
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et al., 2002), both the abundance, phenology and global distribution of phytoplankton can be 

attributed to variability in environmental parameters and particularly to temperature and wind 

(Botsford et al., 2006; Drinkwater et al., 2003; Falkowski and Oliver, 2007; González Taboada 

and Anadón, 2014; Kahru et al., 2010; Raitsos et al., 2006; Righetti et al., 2019; Yokomizo et 

al., 2010). By acting in synergy to control stratification of the water column, the upwelling of 

nutrients, and the position and strength of major surface currents in the ocean, these abiotic 

variables determine the occurrence of suitable oceanic conditions, light and nutrient availability 

necessary for phytoplankton growth (Hays et al., 2005; Hinder et al., 2012; Kahru et al., 2010). 

Phytoplankton blooms support the vast majority of marine food webs and due to tight trophic 

coupling in the marine realm (Steele, 1991b) the effects of variability in phytoplankton biomass 

can quickly propagate up the food web via trophic amplification (Henson et al., 2009; Kirby and 

Beaugrand, 2009; Poloczanska et al., 2016; Stock et al., 2014), with potential impacts for 

ecosystem structure and composition (Beaugrand, 2009; Edwards and Richardson, 2004a; 

Harley et al., 2006; Richardson and Schoeman, 2004) and higher trophic level recruitment 

(Beaugrand et al., 2003; Cushing, 1990; Hjort, 1914; Platt et al., 2003). In extreme cases 

producers are predicted to be the first to go extinct in response to changes in environmental 

variability: phytoplankton are particularly susceptible to temperature variability (Burgmer and 

Hillebrand, 2011), which has the potential to trigger bottom-up extinction cascades within food-

webs (Kaneryd et al., 2012). Species rich ecosystems are particularly at risk where high inter-

specific competition results in lower mean phytoplankton population densities (Borrvall and 

Ebenman, 2008a; Kaneryd et al., 2012). The effects of environmental variability throughout 

marine systems will therefore largely be mediated via phytoplankton responses (Hays et al., 

2005).  

Despite the importance of environmental variability as a driver of marine primary productivity 

and the ecological implications of it altering with climate change, a corresponding global index 

to the VSI of marine primary productivity sensitivity to environmental variability has yet to be 

derived. Obtaining a spatially resolved, global picture of phytoplankton responses to climate 

variability is particularly important to understand the full scope of marine responses to climate 

change at broad scales, as phytoplankton responses to changes in average climatic conditions 

are known to vary considerably across ecosystems, preventing extrapolation across regions 

(Häder et al., 2014). Global declines in marine primary productivity levels have also been 

recorded in recent decades (Capuzzo et al., 2018; Edwards et al., 2020; Gregg and 

Rousseaux, 2014, 2019; Roxy et al., 2016) and global gradients of marine primary producer 

diversity and richness can be modified by environmental variability (Righetti et al., 2019). A 

Phytoplankton Sensitivity Index (PSI) would provide a base layer from which the resilience of 

marine ecosystems to current environmental variability at the primary production level could 
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be determined, along with the specific climate elements responsible. This in turn could be used 

to predict future responses to global change, providing a clear path from climate variability to 

primary productivity and on to higher trophic level species responses, whilst also bridging the 

marine-terrestrial divide by enabling general cross-realm patterns to be identified by combining 

a PSI with the existing VSI. Thanks to advances in remote sensing, reliable ocean colour 

estimates are now also available for global phytoplankton biomass (Section 1.3.2.1). Whilst 

these datasets do not capture the entirety of marine primary production (e.g. subsurface 

phytoplankton (Blondeau-Patissier et al., 2014; Cullen, 1982, 2015; Huisman et al., 2006), they 

provide sufficient estimates for assessing change at large spatial and temporal scales. Using 

these remotely sensed recordings of greenness as a measure of total primary productivity 

across realms could also overcome the differences in temporal scale of individual marine and 

terrestrial primary producers.  

1.4.3 Linking a sensitivity index to higher trophic levels 

Environmental variability also affects species dynamics and processes at higher trophic levels 

(Section 1.2.1; Dawson and Hamner, 2008; Ma et al., 2015; Suryan et al., 2009), influencing 

population dynamics (Ruokolainen et al., 2009), growth rates (Lawson et al., 2015), extinction 

risk (Ruokolainen and Fowler, 2008) and the turnover and abundance of species within 

communities (Ives et al., 1999). Alongside general environmental variability, extreme 

environmental events are increasing in frequency (Section 1.2.2; Easterling et al., 2000; Ma et 

al., 2015) with extreme temperature events in particular causing a significant threat to higher 

trophic level community dynamics (Ma et al., 2015; Vasseur et al., 2014). Species responses 

to environmental variability can vary markedly (Morris et al., 2008; Stenseth et al., 2002; 

Vasseur et al., 2014) and evidence suggests that compositional change (Blowes et al., 2019) 

and species turnover (Pinsky et al., 2019) in populations is currently occurring at different rates 

across realms (Section 1.2.2). With increasing levels of change occurring in natural systems, 

reliable measures for effective detection of change across trophic levels are needed.  

Combining global estimates of climatic variability and primary productivity sensitivity with 

macroecological diversity indices describing the abundance distribution of diverse marine and 

terrestrial assemblages could be an effective way of achieving this. Due to primary producers 

forming the base of the food web and the tight coupling between production and consumption 

in trophic interactions (Cushing, 1990; Durant et al., 2007), the availability and predictability of 

primary producers are integrally linked to the abundance and distribution of higher trophic level 

populations (Cushing, 1990; Durant et al., 2005). As a result, regions that are sensitive to 

current variability at a primary producer level might already be exhibiting detectable signals of 
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related change at higher trophic levels. Species abundance distributions (SADs) identify 

patterns of commonness and rarity in communities, and can provide an early warning signal 

of community change or disturbance (Matthews and Whittaker, 2014; Sæther et al., 2013b) as 

their descriptive parameters vary systematically with external influences, including 

environmental variance (Sæther et al., 2013b). Furthermore, a principal feature of SADs is that 

species identities are not included in the distributions (McGill et al., 2007), lending them to 

comparisons of contrasting communities with few or no shared species (e.g. Whittaker, 1975) 

and cross-realm communities (e.g. Gray et al., 2006). SADs can also be used to compare 

community structure along environmental gradients (Cotgreave and Harvey, 1994; Hubbell, 

1979; Hurlbert, 2004; Whittaker, 1960), to identify changes in core and transient species 

through time (Magurran and Henderson, 2003), and to detect directional long-term community 

changes (Thibault et al., 2004).  

In correlating the VSI and PSI with parameters describing well-known macroecological 

patterns of higher trophic level diversity such as SADs, an indirect link would be provided to 

determine environmental variability impacts on the stability of dependent higher trophic level 

populations. Patterns in higher trophic level responses could also be examined both along 

gradients of primary productivity sensitivity and across realms to identify similarities and 

differences in population responses. By incorporating a level of environmental explanation into 

exhibited trends, having predictive capacity across both trophic levels and realms, and being 

able to feed into existing macroecological patterns of species diversity, a fully global index of 

primary productivity sensitivity to environmental variability could both bridge the marine-

terrestrial divide and make a valuable contribution to a more mechanistic and process-driven 

macroecology. 

1.5 Thesis structure 

In this thesis I aim to determine whether an explicit consideration of patterns of environmental 

variation and species responses to these, can help to move beyond binary marine-terrestrial 

distinctions towards a more generalised formulation of ecological responses to environmental 

change, that hold across marine and terrestrial systems and across trophic levels. The 

remainder of this thesis is structured as follows:  

Chapter 2 The Phytoplankton Sensitivity Index: Determining the sensitivity of 

marine primary productivity to environmental variability 

In Chapter 2 I adapt the methods of Seddon et al. (2016) to produce a Phytoplankton Sensitivity 

Index (PSI) for the marine realm, determining global marine primary productivity sensitivity 
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relative to current levels of variability in three governing drivers of phytoplankton growth: 

temperature, wind speed and light availability. I produce a series of global maps to visualise 

different aspects of the PSI, including the global distribution of phytoplankton sensitivity to 

climate variability and geographic variation in the influence of specific climate driver variability 

on phytoplankton sensitivity. I identify marine regions exhibiting amplified responses in primary 

productivity that are less likely to be resilient to future changes in environmental variability. I 

discuss possible causes of the spatial distribution of high and low sensitivity areas and the 

subsequent implications of the index for the marine realm under a changing climate. 

Chapter 3  A global picture of sensitivity: Comparing the sensitivity of marine and 

terrestrial primary productivity to environmental variability 

In Chapter 3 I combine the PSI developed in Chapter 2 with Seddon et al’s (2016) Vegetation 

Sensitivity Index (VSI) for the terrestrial realm. I investigate the potential of this Combined 

Sensitivity Index (CSI) to bridge the marine-terrestrial divide, in terms of its ability to aide in the 

identification of global cross-realm patterns and potential to direct future research into higher 

trophic level responses. I investigate if differences in the spatial and temporal scales of marine 

and terrestrial environments can be overcome by examining patterns in sensitivity at a range 

of spatial scales, including global degrees of latitude, hemispheres and biogeographic regions. 

To be effective as a mechanistic and dynamic macroecological pattern, the CSI needs to 

provide both explanatory power in terms of its environmental drivers and facilitate analyses of 

its temporal dynamics (Fisher et al., 2008). I therefore also examine patterns in climate driver 

influence on sensitivity at both global and regional spatial scales across realms and explore 

links between the temporal scales of environmental and primary productivity variability along 

gradients of sensitivity. 

Chapter 4 Temporal trends in Species Abundance Distributions: Comparing marine 

and terrestrial community structure along gradients of environmental 

variability 

In Chapter 4 I use global community assemblage data from the BioTIME database (Dornelas 

et al., 2018) and sensitivity data from the PSI (Chapter 2) and VSI (Seddon et al., 2016) for 

the marine and terrestrial realms respectively, to investigate the structure of species 

abundance distributions (SADs) for cross-realm communities along gradients of primary 

productivity sensitivity. I investigate whether there are differences in the evenness of 

communities existing in high versus low primary productivity sensitivity environments, and 

whether there are similarities in this across realms. By combining temporally explicit SADs with 

environmental variability derived ecosystem sensitivity, I aim to identify trends in marine and 
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terrestrial community structure attributable to environmental pressure. In doing so I aim to 

show that the effects of environmental variability via the PSI and VSI are detectable in higher 

trophic level systems dependent on primary productivity stability, providing a contiguous link 

through macroecological patterns from the abiotic to the biotic from which underlying 

processes can be better determined. Given the dominance of temperature as a driver of higher 

trophic level community change and climate sensitivity (Ma et al., 2015; Pinsky et al., 2019), I 

also examine the relationship between SAD structure and temperature variability. 

Chapter 5  General Discussion 

In Chapter 5 I synthesise the results of Chapters 2-4, discussing the main findings and the 

contributions they make to advancing a process-driven macroecology. I also discuss avenues 

of future research which could further build on the work presented here. 
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2 The Phytoplankton Sensitivity Index: 

Determining the sensitivity of marine 

primary productivity to environmental 

variability 

 

2.1 Abstract 

Identifying how sensitive or resilient ecosystems are to changes in current, short term 

environmental variability gives important insight into a region’s likely responses to future 

environmental change. With growth and biomass predominantly under abiotic control, 

variability in primary productivity within an ecosystem can be used to determine sensitivity to 

climate variability. In 2016 Seddon et al. published a new metric, the Vegetation Sensitivity 

Index (VSI), which maps global terrestrial vegetation sensitivity to variability in three climate 

parameters (temperature, precipitation and cloudiness). Here, I use remote sensing data to 

produce a corresponding Phytoplankton Sensitivity Index (PSI) for the marine realm, 

identifying global phytoplankton sensitivity to current environmental variability within a 14-year 

time series (2000-2013). Adapted from Seddon et al's (2016) VSI, the PSI enables the 

identification of marine regions exhibiting amplified responses in primary productivity relative 

to current levels of variability in three governing drivers of phytoplankton growth: temperature, 

wind speed and light availability. A series of global maps are produced to visualise different 

aspects of the PSI, including the global distribution of phytoplankton sensitivity to climate 

variability and geographic variation in the influence of specific climate driver variability on 

phytoplankton sensitivity. High sensitivity marine regions are concentrated in species rich 

tropical and polar regions, whilst low sensitivity regions are concentrated in oligotrophic gyres 

at temperate latitudes. Temperature variability drives sensitivity in consistent latitudinal bands, 

whilst light and wind influence is more interspersed. By highlighting regions with lower 

resilience to current environmental variability at the primary producer level, the PSI provides 

crucial guidance on where wider ecosystem impacts are likely to occur as a result of changes 

in resource availability and predictability and a changing environmental variability regime, thus 

focussing future research efforts.   
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2.2 Introduction 

The environmental conditions ecosystems are exposed to vary in both time and space. In 

marine ecosystems this ranges from large-scale, semi-predictable climate cycles such as the 

El Niño Southern Oscillation (ENSO; Philander, 1990) in the Pacific Ocean, to localised 

extreme weather events such as tropical storms (Stenseth et al., 2003). This variability 

influences numerous aspects of ecosystem structure and function including species richness 

(Righetti et al., 2019), population dynamics (Pöysä et al., 2016), life history traits (Suryan et 

al., 2009) and subsequent extinction risk (Kaneryd et al., 2012; Mustin et al., 2013). The ability 

to withstand such variability is a key component of an ecosystem’s stability (Harrison, 1979b) 

and with predictions of continued change in both the mean and variability of environmental 

conditions (IPCC, 2019; Jentsch et al., 2007), it is of vital importance to understand how marine 

ecosystems respond to both existing variability and unexpected fluctuations in their governing 

environmental conditions (Easterling et al., 2000; Harrison, 1979b).  

The inherent level of environmental variability within a region, in part, determines an 

ecosystem’s ability to withstand climate fluctuations. The Climatic Variability Hypothesis 

(Stevens, 1989) has demonstrated that populations living in more variable environments, such 

as high latitudes and shallower waters, have wider environmental tolerance and are therefore 

more able to absorb fluctuating environmental conditions. High variability regions also promote 

generalist species with ‘fast’ life history traits (Winemiller and Rose, 1992), which combined 

with a wider environmental tolerance, increases their resistance to environmental fluctuations 

(Holling, 1973). Less variable environments on the other hand are more likely to favour 

specialist species (Righetti et al., 2019) with persistence or ‘slow’ life history traits such as late 

maturity, suited to long runs of predictable conditions (Kindsvater et al., 2016). As a result, 

these populations are typically less well adapted to fluctuating environmental conditions and 

are less able to absorb climate anomalies (Holling, 1973; Pintor et al., 2015). Considerable 

concern therefore exists about the ecosystem impacts of inherent levels of environmental 

variability altering with climate change (García-Carreras and Reuman, 2011; Wigley et al., 

1998). Evidence already suggests that El Niño years are increasing in frequency (Power et al., 

2013) whilst Northern Hemisphere weather systems are experiencing longer ‘stalled periods’ 

of the same weather pattern, increasing the likelihood of persistent heat and associated 

extreme weather events (Mann et al., 2017).  

An ecosystem’s ability to persist in its current state in the face of external pressure is a marker 

of both its resilience and resistance to stress events (Harrison, 1979b; Holling, 1973; Webster 

et al., 1975). Resistance is typically defined in terms of a population or ecosystem’s immediate 
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response to a stress event, with a resistant population showing smaller fluctuations in size and 

avoiding displacement (Webster et al., 1975). Resilience on the other hand is a population or 

ecosystem’s ability to return to its pre-impact state after the stress period has passed (Webster 

et al., 1975). ‘Sensitivity’ encapsulates this combination of resistance and resilience and 

provides a measure of ecosystem health and stability relative to the magnitude of a stress 

event (Seddon et al., 2016). Healthy ecosystems with high resistance and/or high resilience 

and therefore low sensitivity are able to persist for long periods of time in the face of 

environmental variability, expected or otherwise, by either exhibiting minimal perturbation and 

absorbing the impact in the first instance (resistance) or by quickly returning to normal post-

event (resilience; Holling, 1973). However, many of the world’s marine ecosystems are 

currently degraded from decades of anthropogenic exploitation and pollution (Halpern et al., 

2008) and are now facing a barrage of new pressures from a changing climate. Increasing 

pressure on already degraded ecosystems progressively reduces their resilience so that when 

an unexpected event such as a climate anomaly occurs, their resiliency limits are passed 

resulting in a rapid change to a new ecosystem state (Beaugrand et al., 2008; Holling, 1973). 

Amplified responses in populations to unexpected climate events are indicative of an 

ecosystem having low resistance and being highly sensitive to environmental variability 

(Scheffer et al., 2009; Smith, 2011a). Reduced recovery rates (low resilience) in a population 

can be indicated by high memory effects, whereby population anomalies are strongly 

determined by anomalous values at previous time points (De Keersmaecker et al., 2015). 

Identifying ecosystems exhibiting amplified responses and high memory effects could 

therefore help to assess which regions are most at risk from a changing environmental 

variability regime.  

Marine phytoplankton are likely to be the first indicators of a marine ecosystem’s changing 

sensitivity to environmental variability (Hays et al., 2005). With rapid life cycles, population 

growth rates and almost exclusive abiotic control (Hays et al., 2005; Racault et al., 2017; Taylor 

et al., 2002), both the abundance, phenology and global distribution of phytoplankton can be 

attributed to variability in environmental parameters and particularly to temperature and wind 

(Drinkwater et al., 2003; Falkowski and Oliver, 2007; González Taboada and Anadón, 2014; 

Raitsos et al., 2006; Yokomizo et al., 2010). The dominance of phytoplankton as the sole 

producer across much of the oceans also means that phytoplankton blooms support the vast 

majority of marine food webs, and due to tight trophic coupling in the marine realm the effects 

of variability in phytoplankton biomass can quickly propagate up the food web via trophic 

amplification (Henson et al., 2009; Kirby and Beaugrand, 2009; Poloczanska et al., 2016; Stock 

et al., 2014), with potential impacts for ecosystem structure and composition (Beaugrand, 

2009; Edwards and Richardson, 2004a; Harley et al., 2006; Richardson and Schoeman, 2004) 
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and higher trophic level recruitment (Beaugrand et al., 2003; Cushing, 1990; Hjort, 1914; Platt 

et al., 2003). This is particularly the case in species rich ecosystems where high inter-specific 

competition results in lower mean phytoplankton population densities (Kaneryd et al., 2012). 

Taken together, this means that despite not being a poster child of marine climate change 

impacts (e.g. coral bleaching, kelp die-off), the effects of environmental variability throughout 

marine systems will be largely mediated through phytoplankton responses (Hays et al., 2005).  

Here, I adapt an existing Vegetation Sensitivity Index (VSI) for the terrestrial realm (Seddon et 

al., 2016) to create a Phytoplankton Sensitivity Index (PSI) for the marine realm, identifying 

global phytoplankton sensitivity to current environmental variability within a 14-year time series 

(2000-2013; as used in the VSI to enable future cross-realm comparability (Chapter 3)). 

Obtaining a spatially-resolved global picture of phytoplankton responses to climate variability 

is particularly important as their responses to changes in average climatic conditions are 

known to vary considerably across ecosystems, preventing extrapolation to other regions 

(Häder et al., 2014). The PSI enables the identification of marine regions exhibiting amplified 

responses in primary productivity relative to current levels of variability in three governing 

drivers of phytoplankton growth: temperature, wind speed and light availability. I produce a 

series of maps to investigate global marine primary productivity sensitivity, each visualising a 

different aspect of the PSI. These include the global distribution of phytoplankton resistance 

(amplified responses) and resilience (memory effects) to climate variability and global 

geographic variation in the influence of specific climate driver variability on phytoplankton 

sensitivity.  

2.3 Materials and Methods 

2.3.1 Satellite data 

14 year (2000–2013) monthly time series were retrieved for all variables on a geographic 

projection. Using monthly composites as opposed to daily data reduces the impact of missing 

data on estimated values (Morel et al., 2007; Racault et al., 2014). Where possible, datasets 

were chosen that contained data merged from multiple satellites, which has been shown to 

improve spatial and temporal coverage compared to individual satellite sensors (Kahru et al., 

2010; Morel et al., 2007; Racault et al., 2015). Table 2.1 provides a summary of all variable 

datasets used. 

Ocean colour derived Chlorophyll a (Chl-a; mg m-3), a commonly used proxy for phytoplankton 

biomass (Blondeau-Patissier et al., 2014; Cullen, 1982; Hirata et al., 2012; McClain, 2009; 
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Sathyendranath and Platt, 1997) and Essential Climate Variable (ECV; Bojinski et al., 2014), 

was used to estimate marine primary productivity. Remotely sensed level 3 Chl-a at 9 km 

resolution was retrieved from Version 3.1 of the European Space Agency (ESA) Ocean Colour 

Climate Change Initiative (OC-CCI) project (Hollmann et al., 2013; Lavender et al., 2015; 

Sathyendranath et al., 2018); http://www.esa-oceancolour-cci.org/). The OC-CCI dataset 

features an updated algorithm selection to improve coverage in Case 2 (coastal) waters 

(Brewin et al., 2015; Lavender et al., 2015; Müller et al., 2015), and merges ocean colour data 

from the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging 

Spectroradiometer (MODIS)-Aqua and Visible Infrared Imaging Radiometer Suite (VIIRS) 

satellites, which are band-shifted and bias-corrected to the Sea-viewing Wide Field-of-view 

Sensor (SeaWiFs) satellite. Data was logarithmically transformed (base10) and bias corrected 

(OC-CCI PUG; Grant et al., 2017) prior to analysis due to the log-normal distribution of global 

Chl-a. 

Blended sea surface winds (SSW; m s-1) at 0.25° spatial resolution were obtained from the 

National Climatic Data Centre (NCDC) and the National Ocean and Atmospheric 

Administration (NOAA; Zhang et al., 2006; http://www.ncdc.noaa.gov/data-

access/marineocean-data/blended-global/blended-sea-winds). This dataset is a blend of six 

satellites: Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-

E), Special Sensor Microwave Imager (SSMI) F15, F14 and F13, Quick Scatterometer 

(QuikSCAT) and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), 

with daily means calculated from four 6-hourly global snapshots per day, at 10 m above sea 

level. Vector wind speeds were calculated according to the formula: 

" =	%&' + )'	 (1) 

where u is the sea surface wind x-component and v is the sea surface wind y-component. 

Bilinear interpolation was used to transform the data to 9 km resolution. April and May 2008 

were found to have anomalous maximum values (6.5 x 108 m s-1) which were removed prior to 

calculating wind speed. Wind speed was used as opposed to wind stress as the corresponding 

wind stress product to the blended sea winds dataset ended in 2011. 

Photosynthetically available radiation (PAR; Einstein m-2 d-1) gives a measure of the amount 

of sunlight reaching the ocean surface, calculated by subtracting the amount of light reflected 

by the surface (satellite recorded) from a constant value for light availability above the cloud 

layer, and performs as a proxy for cloudiness. No merged, multi-satellite datasets were 

available for this variable, so data was obtained for the SeaWiFs, MODIS Terra and Aqua 

satellites separately and averaged. These datasets have previously been corrected for spatial 
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and temporal biases with respect to each other (Frouin et al., 2003, 2012). All data were level 

3 Standard Mapped Images (SMI) at 9 km resolution and were sourced from NASA’s ocean 

colour website (http://oceancolor.gsfc.nasa.gov/cms/). Negative minimum values present in 

the MODIS Terra data for months 01, 02 and 11 across all years were removed prior to 

averaging.  

Sea surface temperature (SST; °C), also an ECV (Bojinski et al., 2014), at 0.25° spatial 

resolution was obtained from the NOAA Optimum Interpolation Sea Surface Temperature 

(OISST) V.2 datasets (Reynolds, 2009; Reynolds et al., 2007; 

http://www.ncdc.noaa.gov/oisst). The OISST comprises two datasets: an integrated dataset 

using Advanced Very High Resolution Radiometer (AVHRR) infrared satellite data, bias 

adjusted to in situ ship and buoy data (available for 2000-2013), and AVHRR data merged with 

AMSR-E data (available for 2002-2011). The addition of AMSR-E improves spatial coverage 

over the open ocean due to the lower susceptibility of microwave scanners to cloud cover 

(Reynolds et al., 2007). A correction procedure akin to that done for PAR by Frouin et al. (2012) 

was conducted to correct the AVHRR dataset for the years AMSR-E was not active. Briefly, 8-

year monthly means were calculated for the overlap time period of both datasets (2003-2010). 

The AVHRR combined means were then subtracted from the AVHRR + AMSR-E means for 

each month to obtain a correction factor, which was then added to AVHRR months outside of 

AVHRR + AMSR-E activity. Plots showed better alignment between the datasets after addition 

of the correction factor (Appendix A Figure A-1). Bilinear interpolation was used to transform 

the data to 9 km resolution.  

A land mask was created to exclude land areas from the analysis using the MODIS version 6 

digital elevation model (DEM) land-water layer (ftp://landsc1.nascom.nasa.gov/outgoing/c6_ 

dem/geo/). The DEM is provided as a set of tiles at nominal 500 m and 1 km resolution, which 

were extracted and mosaicked onto a 1 km global grid. This was transformed to 9 km resolution 

in QGIS. Of the 8 categories in the land-water layer specifying inland water, ocean and land 

areas, data points containing shallow ocean, deep ocean and moderate or continental ocean 

were retained, all other values were masked as land. 
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Table 2.1: Summary of input variables used and source information. 

Variable Description Source 

Chl-a (mg m-3) 9 km resolution, monthly 

Merge of: SeaWiFs, MERIS, 
MODIS-Aqua & VIIRS 

ESA OC-CCI;  

http://catalogue.ceda.ac.uk/uuid/ 
9c334fbe6d424a708cf3c4cf0c6 

a53f5 (Sathyendranath et al., 2018) 

Sea surface temperature (°C) 0.25° resolution, daily 

AVHRR & AMSR-E 

NOAA OISST; 
http://www.ncdc.noaa.gov/oisst 

(Reynolds, 2009; Reynolds et al., 
2007) 

Sea surface winds (m s-1) 0.25° resolution, daily 

Merge of: SSM/I, AMSR-E, 
TMI, QuikSCAT, 

NCDC; 
http://www.ncdc.noaa.gov/data-

access/marineocean-data/blended-
global/blended-sea-winds (Zhang et 

al., 2006) 

Photosynthetically available 

radiation (Einstein m-2 d-1) 

9 km resolution, daily 

Merge of: SeaWiFs, MERIS, 
MODIS-Aqua & MODIS-

Terra 

NASA; 
http://oceancolor.gsfc.nasa.gov/cms/ 

(Frouin et al., 2012) 

2.3.2 Phytoplankton Sensitivity Index 

To ensure the global index of primary productivity sensitivity was comparable across realms 

for future analyses (Chapter 3), the PSI was calculated following Seddon et al's (2016) 

methodology for the VSI wherever possible. A summary schematic of the calculation procedure 

for the PSI is presented in Figure 2.1.  

2.3.2.1 Determining drivers of productivity 

In addition to the 3 climate variables already described, a one-month-lagged (t-1) Chl-a 

anomaly variable was created from the Chl-a time series (months in the time series shifted 

forward by one month, i.e. Jan 01 becomes Feb 01) to investigate the role of memory effects 

in determining sensitivity (i.e. do anomalies of Chl-a in the previous month determine Chl-a 

anomalies in subsequent months, indicating lack of recovery and low resilience). As evidence 

already exists to show that phytoplankton are capable of responding to climate perturbations 

within a month (Schaum and Collins, 2014) it wasn’t deemed necessary to try alternative 
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lengths of time lag for the PSI. Months across all variable time series with a mean SST below 

-2 °C were then masked to remove ice covered areas from the analysis. 

As I was specifically interested in the effects of variability, each variable time series was 

transformed and standardised to z-score anomalies (Equation 2), giving the number of 

standard deviations a value is away from the population mean.  

*+,- =
.+,-,/ − 1+,-222⃗ ,/

4+,-222⃗ ,/
(2) 

Where x is a variable’s (v) value for a specific month (m) and pixel (p), µ is the per pixel mean 

for a month over the 14-year time series (522⃗ ) and 4 is the per pixel standard deviation for a 

month over the time series.  

To account for collinearity between the climate variables, principal components regression 

(PCR) was used to estimate the relative importance of each climate variable in driving Chl-a 

variability per pixel. First, principal components analysis (PCA) was performed on the 4 

explanatory variables (3 climate and t-1) per pixel, per month across the z-score anomaly time 

series. The PCA was only performed for months which had more than 4 years of complete 

cases within the time series (i.e. the same month in more than 4 years where all variables had 

available data after temperature masking and removal of missing data). The linearly 

uncorrelated principal components produced were then regressed against the monthly Chl-a 

z-score anomalies using ordinary least squares regression to give estimated regression 

coefficients (Equation 3). 

6578ℎ6:;,+,-222⃗ ~=81+,-222⃗ + =82+,-222⃗ + =83+,-222⃗ + =84+,-222⃗ B (3) 

Where lm denotes a linear model, Z indicates the z-score anomaly time series and PCx are the 

principal components for each pixel and month over the time series.  

Following Seddon et al. (2016), the estimated regression coefficients for principal components 

found to have a significant relationship (setting P < 0.1 as in Seddon et al. (2016) to increase 

sample size) with Chl-a were multiplied by the loading scores of their respective principal 

component axis to transform them back to the scale of the original z-score anomalies. These 

were then summed across the principal components for each variable (Equation 4).  
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Figure 2.1: Summary schematic of the Phytoplankton Sensitivity Index (PSI) calculation methods. Flow chart 
summarising the methods used to calculate the PSI. 
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E7F+,-222⃗ ,G × 6IGB = J;,+,-222⃗ ,/ (4) 

Where r is the estimated regression coefficient for a pixel and month over the time series for 

each principal component axis (a), ls is the loading scores for the principal component axis and 

R is the regression coefficient transformed back to the scale of the z-score anomalies for each 

variable. The absolute values of the final regression coefficients were then summed across 

months for each variable and divided by the number of months with significant regression 

coefficients to give the relative strength of global Chl-a - climate variability relationships 

(Equation 5), hereafter referred to as climate weights.  

8K+,/ =
∑ MJ;,+,-222⃗ ,/N
-222⃗ OPQR
-222⃗ OSGT

U-222⃗ ,+,/
(5) 

The climate weights were then scaled between 0 and 100 with respect to each other, using 

the minimum and maximum regression coefficient values across all four variables for use in 

the final PSI calculation (Section 2.3.2.2, Equation 7). 

2.3.2.2 Determining sensitivity of productivity 

To calculate the final sensitivity metric, months found to have a significant Chl-a – climate 

relationship in the PCR were extracted for each variable from the raw (pre z-score transformed) 

times series. These time series were then seasonally de-trended by subtracting the 14-year 

monthly mean from each per pixel monthly value for each variable, and the standard deviation 

was calculated (Equation 6).  

47.+,-,/ − 1+,-222⃗ ,/B (6) 

Plotting the mean against the standard deviation for each variable’s time series revealed the 

presence of non-linear mean-variance relationships in the data (Appendix A Figure A-2). Non-

linear (quadratic) least squares regression models were therefore fitted to the mean-variance 

relationship for each variable, the residuals of which were standardised between 0-100 and 

used for the final estimated variance anomaly values. Using the estimated variances for each 

variable, the per-pixel ratio of Chl-a - climate anomalies was calculated, log10 transformed and 

standardised to bring all variables onto a common scale and provide a non-weighted measure 

of sensitivity. The final sensitivity value per pixel was then calculated as the sum of the non-

weighted sensitivity for each variable multiplied by its respective climate weight (Equation 7).  

=VW+ =Elog
[\
7(8ℎ6:+,GT]- + 1) ()+,GT]-⁄ + 1)B ∗ 8K+,/ (7) 
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2.3.2.3 Uncertainty layers 

Uncertainties for the specific satellite datasets used can be found in their source materials; for 

our purposes here, uncertainties refer solely to their use within the index. To examine the 

global accuracy of the Chl-a satellite data, the standard error of the mean for each pixel was 

mapped using the standard deviation of satellite error per pixel divided by the square root of 

the number of satellite observations per pixel, averaged over the times series. The standard 

deviation of the error of the pixels is a centred, bias corrected measure of the likelihood of 

satellite measurements differing from in situ measurements based on the root-mean-square 

difference of satellite and in situ values (Equation 8; Grant et al., 2017). Both the root-mean-

square difference and number of observations per pixel are available as variables in the OC-

CCI Chl-a product.  

4+ = `aF5Ib+
' − c+

'a (8) 

Where 4 is the standard deviation, rmsd is the root-mean-square difference and c is the satellite 

bias correction factor. Standard errors for Chl-a are low in all the major ocean basins, 

moderately high along equatorial currents and highly productive coastal areas (see Appendix 

A Figure A-3 for global Chl-a distribution) and highest in sub-polar regions (Appendix A Figure 

A-4). In highly productive, turbid waters characteristic of coastal seas the depth range of 

satellites can be substantially reduced (Grant et al., 2017), resulting in a lower Chl-a recording 

than may be obtained from an in situ measurement. Differences between satellite and in situ 

measurements can also be a result of the large differences in the spatial scales of 

measurements being compared and/or the quantity of in situ measurements available in a 

region for comparison. Having said this, 97% of pixels in the PSI have at least 15 observations 

per recording and 99% of pixels have standard deviations lower than 0.3, and the absolute 

values of the standard errors are not high enough to compromise the integrity of the results.  

2.3.3 Visualising the Phytoplankton Sensitivity Index 

Several maps were produced to visualise different aspects of the PSI. Firstly, the PSI 

sensitivity values were mapped to visualise the global distribution of marine primary 

productivity sensitivity to climate variability. Due to right skew in the index a stretch was applied 

to the mapped colour scale in QGIS, saturating values either side of the top and bottom 2.5 

standard deviations of the index (the default in ArcGIS and used by Seddon et al. (2016) for 

mapping the VSI). This maximised the clarity of geographical variability within the central 95% 

of the indices whilst saturating fewer than 5% of pixels.  
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To identify geographic variation in the influence of climate variability on sensitivity, composite 

maps were produced for the PSI. These maps allocate each climate variable to a separate 

colour band and plot the highest valued (i.e. most important) variable per pixel. To determine 

the contribution of an individual climate variable’s variability on final sensitivity, the coefficient-

weighted sensitivities for each variable were extracted and plotted before being combined to 

give the final index (Section 2.3.2.2, Equation 7). To visualise regional differences in correlation 

strength between primary productivity and climate anomalies, a composite map was also 

produced for the climate weights of each variable (Section 2.3.2.1, Equation 5).  

To investigate the global distribution of memory effects and their role in determining primary 

productivity sensitivity, a map of the regression coefficients for the Chl-a one-month time lag 

(t-1) variable was produced. Data was also recorded and mapped for the PSI on how many 

months during the year a significant relationship (P < 0.1) between Chl-a and climate 

anomalies occurred per pixel, to determine if regional differences are present in the continuity 

of climate correlation with primary productivity.  

Data was downloaded via FTP using the FileZilla Client 3.21.0, or via Wget for HTTP. Satellite 

data modification was conducted in the Unix shell using a combination of Climate Data 

Operators (CDO, version 1.8.2) and NetCDF Operators (NCO; Zender, 2008). Data analyses 

were conducted in MATLAB and the R project for statistical computing (R Core Team 2015, 

version 3.3.2) using the cowplot (Wilke, 2018), data.table (Dowle and Srinivasan, 2018), 

dev.tools (Wickham et al., 2018), dplyr (Wickham et al.,  2018), ggplot2 (Wickham, 

2016), grateful (Rodriguez-Sanchez, 2017), maptools (Bivand and Lewin-Koh, 2018), 

nlme (Pinheiro et al., 2018), raster (Hijmans, 2017), readr (Wickham et al., 2017), rgdal 

(Bivand et al., 2018), rgeos (Bivand and Rundel, 2018), sp (Pebesma and Bivand, 2005), 

tidyr (Wickham and Henry, 2018), tidyverse (Wickham, 2017), viridis (Garnier, 2018a) 

and viridisLite (Garnier, 2018b) packages. Image processing was carried out in QGIS 

and R version 3.3.2.  

2.4 Results 

The PSI provides a global picture of marine primary productivity sensitivity to environmental 

variability, from which areas with amplified responses in primary productivity relative to 

environmental variability can be identified (Figure 2.2). Sensitivity in the PSI ranges from 0 

(low sensitivity) to 100 (high sensitivity). As ocean-colour derived Chl-a is a proxy for 

phytoplankton biomass, high sensitivity indicates a large response in phytoplankton biomass 

relative to environmental variability, whilst low sensitivity indicates a small or equivalent  
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Figure 2.2: Phytoplankton Sensitivity Index. A global map of marine primary productivity (based on satellite 
derived measurements of ocean colour – Chl-a) sensitivity relative to variability in sea surface temperature, sea 
surface winds and photosynthetically available radiation. The index ranges from 0 (low sensitivity) to 100 (high 
sensitivity). Due to right skew in the data and the volume of data points, the colour scale has been band shifted by 
2.5 standard deviations (the default in ArcGIS) to better reflect the spread of the data. Pixel resolution, 9 km; time 
period, 2000-2013. Areas in black indicate no data availability. Continental outlines were modified from a shapefile 
using QGIS. 

 

Figure 2.3: Low sensitivity regions of the Phytoplankton Sensitivity Index (PSI). A zoomed in map of the PSI 
showing the Baltic (top left) and Black Seas (bottom right), which exhibit low marine primary productivity sensitivity 
relative to variability in sea surface temperature, sea surface winds and photosynthetically available radiation. In 
other words, phytoplankton biomass is less variable than the environment in these regions. The index ranges from 
0 (low sensitivity) to 100 (high sensitivity). Due to right skew in the data and the volume of data points, the colour 
scale has been band shifted by 2.5 standard deviations (the default in ArcGIS) to better reflect the spread of the 
data. Pixel resolution, 9 km; time period, 2000-2013. Areas in black indicate no data availability. Continental outlines 
were modified from a shapefile using QGIS. 
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Figure 2.4: Composite map of the Phytoplankton Sensitivity Index. Composite map of the contribution of 
climatic driver variability to the PSI, showing which driver has the highest influence on sensitivity in a given pixel 
(sea surface temperature (SST; blue), photosynthetically available radiation (PAR; green) and sea surface wind 
(SSW; yellow)). Pixel resolution, 9 km; time period, 2000-2013. Areas in black indicate no data availability. 
Continental outlines were modified from a shapefile using QGIS.  

 

 

Figure 2.5: Composite map of marine climate weights. Composite map of the mean climate coefficient weights 
for the PSI from multiple linear regressions between primary productivity and three climate drivers, showing which 
climate driver has the strongest correlation with primary productivity in a given pixel (sea surface temperature (SST; 
blue), photosynthetically available radiation (PAR; green) and sea surface wind (SSW; yellow)). Pixel resolution, 9 
km; time period, 2000-2013. Areas in black indicate no data availability. Continental outlines were modified from a 
shapefile using QGIS. 
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Figure 2.6: Differences in climate influence in the Arabian and Red Sea. Composite maps of the Arabian and 
Red Sea showing climatic driver variability influence on the PSI (A) and mean climate coefficient weights for the 
PSI (B) from multiple linear regressions between primary productivity, sea surface temperature (SST; blue), 
photosynthetically available radiation (PAR; green) and sea surface wind (SSW; yellow). PAR has the highest 
influence on primary productivity sensitivity in the Arabian and Red Sea region (A) despite SSW being more strongly 
correlated with primary productivity (B). Pixel resolution, 9 km; time period, 2000-2013. Areas in black indicate no 
data availability. Continental outlines were modified from a shapefile using QGIS. 

response in phytoplankton biomass relative to environmental variability. High primary 

productivity sensitivity is largely concentrated in sub-polar and equatorial regions (Figure 2.2), 

and particularly in the Guinea and Canary Current, North Brazil Shelf, Antarctic, Barents and 

Greenland Sea large marine ecosystems (LME; Appendix A Figure A-5). The major ocean 

basins are dominated by mid-low sensitivities with particularly low sensitivity areas present in 

the Baltic Sea, the Black Sea (Figure 2.3) and the South Pacific Ocean basin (Figure 2.2). The 

PSI is heavily right skewed with a mean sensitivity of 16.98 ± 6.72 sd and only 0.65% of pixels 

exhibiting sensitivity greater than or equal to 50, equating to an area of 304,137 km2 of the 

total ocean index area of 46,706,040 km2.  

Distinct regions of climate variability influence on primary productivity sensitivity are present in 

the PSI (Figure 2.4). Across the major ocean basins SST influence dominates in relatively 

consistent latitudinal bands, interspersed with overlapping bands of PAR and SSW influence 

(Figure 2.4). Areas of PAR and SST influence are predominantly focussed in upwelling regions 

and along South Equatorial Currents (see Appendix A Figure A-6 for a global map of ocean 

currents). The polar regions of the PSI appear a lot more mixed, with no particular climate 

variable having a consistently dominant influence on sensitivity. Geographic patterns in the 

climate weights broadly correspond to those seen in climate variability influence on sensitivity, 

with SST variability maintaining distinctive bands across the major ocean basins (Figure 2.5). 

However, there are some instances where dominant climate variability influence on sensitivity  
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Figure 2.7: Global map of the memory effects coefficient. A global map of the coefficient weights for the one-
month primary productivity (Chl-a) time lag (t-1) variable from monthly linear regressions between Chl-a and Chl-a 
at t-1. This shows areas where Chl-a anomalies in previous months are a strong predictor of Chl-a anomalies in 
subsequent months. High values indicate strong memory effects and reduced recovery rates within the system, 
suggesting decreased resilience. The coefficient weights are scaled between 0 (low memory effects) and 100 (high 
memory effects). Pixel resolution, 9 km; time period, 2000-2013. Areas in black indicate no data availability. 
Continental outlines were modified from a shapefile using QGIS.  

 

Figure 2.8: Number of months with a significant (P < 0.1) coefficient in the principal components regression. 
Number of months per pixel with a significant (P < 0.1) relationship between primary productivity (Chl-a), climate 
variation (sea surface temperature, sea surface wind and photosynthetically available radiation) and a one-month 
Chl-a time lag (t-1) variable in the principal components regression, highlighting areas with consistent, year-round 
Chl-a climate relationships. Pixel resolution, 9 km; time period, 2000-2013. Areas in black indicate no data 
availability. Continental outlines were modified from a shapefile using QGIS. 
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does not correspond to the variable with the strongest correlation with Chl-a anomalies, for 

example in coastal areas of the Arabian and Red Seas (Figure 2.6).  

There is a strong correlation between sensitivity, memory effects and year-round continuity of 

significant (P < 0.1) Chl-a–climate variability relationships. Low sensitivity areas such as the 

South Pacific basin correspond to areas which exhibit high memory effects (Figure 2.7) and 

year-round significant (P < 0.1) relationships between primary productivity variability and 

climate variability (Figure 2.8). Conversely, high sensitivity areas such as the Guinea Current 

LME and sub-polar regions correspond to areas with low memory effects (Figure 2.7) and 

fewer months in a year with a significant relationship between primary productivity variability 

and climate variability (Figure 2.8). 

2.5 Discussion 

Satellite derived measures of phytoplankton biomass (Chl-a) were used to produce a global 

index of georeferenced marine primary productivity sensitivity to variability in three governing 

variables of the marine environment: temperature, wind and radiation. The global PSI identifies 

regions with amplified primary productivity responses, and hence higher sensitivity, to 

environmental variability. The PSI also identifies regions which remain stable in spite of high 

variability, suggesting that they may be more resistant to future increases in climate variability. 

Together, this provides a base layer from which the sensitivity of marine ecosystems to current 

environmental variability at a primary production level can be determined, along with the 

specific climate elements responsible; this in turn can be used to predict future responses to 

global change. 

2.5.1 Global patterns of sensitivity 

2.5.1.1 Low sensitivity 

Low sensitivity is achieved in the PSI when primary productivity variability is similar to, or lower 

than climate variability (Appendix A Figure A-7) and when correlation between primary 

productivity and climate anomalies is weak (Appendix A Figure A-8), but consistent throughout 

the year (Figure 2.8). The year-round correlation between Chl-a and climate anomalies 

indicates that low sensitivity regions have high predictability throughout the year, whilst the low 

strength of the correlations suggests that primary productivity is minimally responsive to 

climate variability in these regions. This low responsiveness to climate variability is further 
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reflected in the high memory effects observed in these regions (Figure 2.7), indicating that 

previous primary productivity anomalies are a bigger driver of sensitivity than climate.  

The regions exhibiting the lowest phytoplankton sensitivity in the PSI were in the temperate 

mid-latitudes where environmental variability is higher and generalist species with wide 

tolerance limits are preferentially selected (Pintor et al., 2015; Righetti et al., 2019; Stevens, 

1989). The mid-latitudes are also characterised by low phytoplankton species richness 

(Righetti et al., 2019), which increases mean population densities so that unexpected 

population fluctuations driven by climate anomalies are less likely to cross extinction thresholds 

(Kaneryd et al., 2012). In combination this enables an extreme climate event to occur without 

triggering an amplified ecological response, reflecting the increased resistance and resilience 

of certain ecosystems to anomalous environmental conditions (Smith, 2011b). The Hudson 

Bay region of North-East Canada for example, exhibits low primary productivity sensitivity 

(Figure 2.2) despite experiencing anomalous climate conditions (Appendix A Figure A-7).  

The lowest sensitivities in the PSI predominantly occur in the large oligotrophic gyres of the 

Pacific, Atlantic and Indian ocean basins, which are often considered ‘ocean deserts’ (Signorini 

et al., 2015) due to their low productivity and biomass. Oligotrophic gyres are governed by 

large-scale patterns of atmospheric circulation which drive large, circulating oceanic currents 

(Appendix A Figure A-6). The sides of these circulatory currents are broad and slow moving, 

with westward flow of the equatorial currents deepening the mixed layer depth on the western 

edge preventing the upwelling of nutrient rich water for phytoplankton growth (Mann and 

Lazier, 2006). The narrow, fast eastward flow concentrates productivity along the Eastern 

boundaries of the gyres where a shallower pycnocline enables the upwelling of nutrient-rich 

water to the euphotic zone (Mann and Lazier, 2006), creating an Eastern Boundary Upwelling 

System (EBUS). The central regions of the gyres remain permanently stratified, causing the 

vertical profile of Chl-a and nutrients to be more or less constant year-round (Mann and Lazier, 

2006). Whilst these regions are not as unproductive as commonly thought (locally occurring 

eddies can stimulate random bursts of growth; Mann and Lazier, 2006), production is still 

considerably lower in the central gyres than in shelf, coastal and upwelling areas. As a result, 

there is little phytoplankton biomass to amplify regardless of climate variability, and small 

bursts of productivity that do occur might not be reflected in the final index if they occur 

infrequently during the 14-year time series. The Pacific gyres are most likely to see 

phytoplankton variability through the aeolian transport of iron, as iron limitation is more likely 

to prevent growth in these regions than nitrate limitation (Behrenfeld and Kolber, 1999; Kolber 

et al., 1994; Martin et al., 1994). 
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The oligotrophic gyres cover ~60% of the ocean surface (Marañón et al., 2003), and climate 

change is causing them both to increase in size (McClain et al., 2004; Polovina et al., 2008; 

Signorini et al., 2015) and become more oligotrophic (Signorini et al., 2015). Whilst the 

expansion of low sensitivity areas of the oceans could be considered a beneficial result of 

climate change, the reality may not be desirable. Dominant phytoplankton types are known to 

be regionally variable (Alvain et al., 2008; Cabré et al., 2016; Uitz et al., 2010), with low 

biomass regions typically characterised by smaller phytoplankton types (e.g. 

picophytoplankton; Marañón et al., 2001) than high biomass regions (e.g. nano- and 

microphytoplankton; Cabré et al., 2016). Expansion of low productivity areas (Behrenfeld et 

al., 2006) could therefore lead to regional changes in dominant phytoplankton size class and 

functional type, with increases in picophytoplankton likely (Agawin et al., 2000) at the expense 

of microphytoplankton. This has the potential to cause regime shifts and/or considerable 

restructuring of ecosystems as changes in phytoplankton community composition could lead 

to changes in zooplankton composition through consumer specificity, which could then be 

propagated up the food web. Indeed, global declines in marine primary productivity have 

already been recorded in recent decades (Capuzzo et al., 2018; Gregg and Rousseaux, 2014, 

2019; Rousseaux and Gregg, 2015; Roxy et al., 2016) with wider ecosystem effects already 

apparent (Capuzzo et al., 2018). It is worth noting that reported declines in marine primary 

productivity are not universal. Marrari et al. (2017) identified increasing trends in LMEs 

surrounding South America over the last ~20 years, however this could be the result of climate 

induced geographic shifts in plankton distribution which could also have negative 

consequences for marine ecosystems (Section 2.5.1.2). 

2.5.1.2 High sensitivity 

High sensitivity occurs in the PSI when primary productivity variability is amplified relative to 

environmental variability, for example in the Southern Ocean surrounding Antarctica (Appendix 

A Figure A-7), and when correlation between primary productivity and climate anomalies is 

infrequent (Figure 2.8) but strong (Appendix A Figure A-8). The infrequent correlation between 

Chl-a and climate anomalies indicates that these environments have low predictability from 

month to month, whilst the strength of correlations when they do occur suggests that primary 

productivity can be very responsive and hence has low resistance to climate in these regions. 

The low memory effects observed in these regions (Figure 2.7) suggest that whilst not being 

resistant to variability these regions could be resilient, with producers exhibiting an increased 

ability to recover from perturbations, however they also suggest that climate is the strongest 

driver of primary productivity anomalies thus resulting in high sensitivity. 
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High phytoplankton sensitivity in the PSI is largely concentrated in tropical and polar LMEs 

(Appendix A Figure A-5) typified by high productivity (Appendix A Figure A-3) and is likely 

caused by a combination of factors. First, organisms living at latitudinal extremes are more 

likely to be living closer to their environmental tolerance limits and adapted to a narrow abiotic 

niche (Sunday et al., 2011, 2012), making them more vulnerable and less resistant to 

anomalous environmental conditions (Brierley and Kingsford, 2009; Poloczanska et al., 2013). 

Combined with this the pace of climate change is most rapid in the tropics and polar regions 

(IPCC, 2018). The latitudinal gradient in high sensitivity observed in the PSI (Figure 2.2) could 

therefore be reflective of where the biggest changes in both the mean and variability of climate 

are currently occurring. As a result, even if climate anomalies are relatively low, mean 

conditions could have already increased to a point where species have been forced to the 

edge of their tolerance limits. Additionally, high anthropogenic exploitation in tropical and polar 

LMEs will have degraded these ecosystems and progressively lowered their resilience 

(Halpern et al., 2008).  

As well as being highly productive, high sensitivity tropical LMEs are also species rich (De 

Monte et al., 2013; Righetti et al., 2019; Soccodato et al., 2016), supporting existing theoretical 

work showing a positive correlation between species richness and vulnerability to climate 

variability (Borrvall and Ebenman, 2008a; Burgmer and Hillebrand, 2011; Kaneryd et al., 2012). 

Species rich environments are more vulnerable to variability due to increased interspecific 

competition reducing population sizes closer to extinction thresholds (Kaneryd et al., 2012). 

Low correlation between species responses to environmental variability can further increase 

vulnerability as differential population fluctuations are further amplified by anomalous climate 

events (Borrvall and Ebenman, 2008a; Kaneryd et al., 2012). Combined with lower mean 

population densities from high species richness, the increased climatic stability of tropical 

environments will promote specialist species with persistence traits adapted to a narrow abiotic 

niche, further reducing their ability to absorb climate fluctuations (Righetti et al., 2019). 

High productivity in tropical regions is typically driven by the upwelling of nutrient rich waters 

in EBUS (Section 2.5.1.1), or by the addition of nutrients from riverine run off in coastal areas 

(Reid et al., 2003). These regions are also usually shelf areas which exhibit seasonal 

stratification and shallower mixed layer depths, both of which promote phytoplankton growth 

and are predominantly governed by temperature and wind (Mann and Lazier, 2006). 

Temperature and wind anomalies can therefore considerably alter biomass levels by causing 

a stronger stratification barrier to mixing if the temperature gradient increases above average, 

or by driving phytoplankton and nutrients out of the euphotic zone with increased wind-driven 

turbulence and upwelling (Bakun, 1990; Bakun et al., 2015; Kahru et al., 2010; Thomas and 
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Brickley, 2006). The Chile-Peruvian EBUS and Pacific equatorial currents are also heavily 

influenced by the El Niño Southern Oscillation (ENSO) index (Bakun et al., 2015), which has 

been shown to affect the inter-annual variability of phytoplankton (Behrenfeld et al., 2006) and 

oscillated between strong El Niño and La Niña years 6 times during the 2000-2013 time series. 

Whilst it might be expected that wind would be the biggest driver of sensitivity in EBUS 

governed by ENSO, as it is changes in atmospheric circulation that trigger a change from El 

Niño to La Niña, in the ocean the switch is reflected in temperature anomalies (Philander, 

1990; Stenseth et al., 2003). As such, temperature and radiation anomalies are the strongest 

drivers of sensitivity along the length of eastern boundary currents such as the Peru and 

Benguela currents (Figure 2.4) and have the strongest relationship with Chl-a in upwelling 

regions (Figure 2.5). Wind influence on sensitivity becomes more important as these currents 

diverge at the equator and are forced West along the South Equatorial currents due to the 

Coriolis force, with the displaced water being replaced by nutrient-rich upwelling from the 

Equatorial Counter Current. It is in these areas, such as the Gulf of Guinea, that high sensitivity 

occurs. 

Not all high sensitivity areas in the PSI are EBUS. The waters off Costa Rica and Angola are 

also high sensitivity, high biodiversity hotspots due to the presence of thermal domes 

(Mazeika, 1967; Wyrtki, 1964). Thermal domes are caused by the interaction of wind and 

circulating currents allowing a central core of nutrient-rich cold water to upwell to the euphotic 

zone, whilst maintaining a deeper pycnocline in the waters surrounding the dome (Wyrtki, 

1964). The domes can be seasonal (e.g. Angola dome; Mazeika, 1967) or persist year-round 

(e.g. Costa Rica; Wyrtki, 1964). The centre and size of the domes, and hence productivity 

levels, fluctuate from year to year in response to variability in currents driven by climate 

variability (Fiedler, 2002). The sub-polar regions of Antarctica are also dominated by a 

continuous band of high sensitivity. This region is highly productive due to upwelling caused 

by divergence between the Antarctic Circumpolar and Antarctic Subpolar currents, driven by 

opposing East and West wind drifts circling Antarctica (Mann and Lazier, 2006), however no 

single climate variable appears to dominate as a driver of sensitivity here (Figure 2.4).  

Whilst the majority of the oceans were found to exhibit mid-low sensitivities and are likely 

resilient to environmental variability, high sensitivities being concentrated in regions of high 

phytoplankton biomass is concerning. These high primary productivity regions support some 

of the most highly productive, diverse and commercially valuable higher trophic level 

ecosystems (Bakun et al., 2015). If current climate variability is already leading to amplified 

responses in primary productivity, the increased variability which is predicted to occur in these 

locations (Henson et al., 2017) could cause more variable and less predictable patterns of 
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primary production, affecting resource availability and predictability throughout the food web. 

Furthermore, whilst the breadth of an organism’s tolerance to environmental variability in terms 

of abiotic requirements is applicable at all trophic levels, higher trophic levels will also be 

affected by the breadth of food sources available to them. The wider ecosystem impacts of 

high phytoplankton sensitivity could therefore be far greater in tropical and polar ecosystems 

where specialist consumers are restricted by both their environmental niche and food 

availability, increasing the likelihood of extinction cascades (Kaneryd et al., 2012). The 

expansion of Hadley cells, which govern sub-tropical atmospheric circulation and winds, could 

also see poleward shifts in both upwelling location and intensity in EBUS (Bakun et al., 2015; 

Kang and Lu, 2012; Lu et al., 2007; Rykaczewski et al., 2015), leading to poleward transfers 

in productivity (Thomas et al., 2012) and perhaps extending areas of high sensitivity along their 

extent.  

2.5.2 Limitations and future research 

A caveat of all satellite measures of primary productivity is that they can only record what is 

observable at the surface (Blondeau-Patissier et al., 2014); production occurring either deeper 

within the water column or consumed by grazers is not recorded (Cullen, 1982; Huisman et 

al., 2006). In many marine environments, especially during summer periods, the Chl-a and 

production maxima (which may be separate) can occur subsurface (Mann and Lazier, 2006), 

Cullen 2015). For example, if the pycnocline is within the euphotic zone and there is enough 

turbulence to cause some mixing across it but not enough to carry nutrients all the way to the 

surface, the highest nutrient availability for phytoplankton growth will be just above the 

pycnocline causing the production maxima to occur there (Mann and Lazier, 2006). The 

production maxima might also not be reflected by the Chl-a maxima due to zooplankton 

grazing decreasing phytoplankton biomass as it is produced. It is possible that increased 

mixing and a transport of productivity from the surface to near nutrient upwelling at the 

pycnocline could be interpreted as a considerable drop in phytoplankton biomass due to a 

wind anomaly, thus classifying an area as more sensitive than it actually is. However, high 

productivity within the water column occurs in those areas already identified by the PSI as the 

most productive and sensitive and so its exclusion should not have a major qualitative effect 

on the index or its interpretation. 

Nutrient availability is a key governing factor of phytoplankton growth and whilst the climate 

variables chosen as phytoplankton drivers in the PSI act as proxies for nutrient availability, the 

explicit inclusion of nutrient availability as a driving variable would undoubtedly improve the 

index. Nutrient availability was not included in the PSI due to poor data availability; there are 
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currently no datasets with appropriate spatial and temporal coverage for oceanic nutrient 

levels. This is starting to improve however, with the development of datasets such as 

Yasunaka et al's (2014) nutrient dataset for the North Pacific basin. Whilst it is not currently 

possible to include nutrients as a driving variable in the global PSI, for areas where high 

resolution nutrient data is available the PSI could be recalculated at a regional level to include 

this. This could be particularly useful for accurately assessing the contribution of environmental 

variability to sensitivity in coastal areas receiving high riverine nutrient input (Reid et al., 2003) 

such as Amazonia and the South China Sea (Weber et al., 2019), as this will not be captured 

by wind-driven mixing and will be further affected in the future by variability in terrestrial 

precipitation (Harley et al., 2006). 

The global PSI provides a baseline against which responses to environmental variability across 

marine ecosystems can be further investigated. By highlighting regions with lower resilience 

to current environmental variability at the primary producer level, the index provides crucial 

guidance on where wider ecosystem impacts are likely to occur as a result of changes in 

resource availability and predictability and a changing environmental variability regime, thus 

focussing future research efforts. However, as found in the global distribution of phytoplankton 

responses to changing mean conditions (Häder et al., 2014), phytoplankton responses to 

environmental variability are not consistent across ecosystems. Whilst there may be some 

consistency within ecosystems of a similar type such as EBUS, my results suggest that 

extrapolation across latitudes or functionally different ecosystems would be inappropriate. 

Even within similar systems, care would have to be taken to ensure regional differences in 

dominant climate driver influence on sensitivity were accounted for in any predictions of future 

change. 

Given these caveats, the PSI is not intended to be viewed as a final, definitive picture of marine 

primary productivity responses to climate variability. However, it does provide an important – 

and global reference layer of primary productivity responses to current climate variability that 

can be used in its current form to guide future research, and as a data product it can be 

expanded and further developed. The broad correspondence between the climate weights 

(Figure 2.5) and climate variability influence on sensitivity (Figure 2.4), can help to guide 

monitoring programmes aimed at predicting outcomes of future variability as those variables 

most closely correlated with primary productivity also determine climate influence on primary 

productivity. More generally, by applying the same basic methodology as used for the 

terrestrial VSI (Seddon et al., 2016), there is also potential to link the two indices to create a 

truly global picture of the sensitivity of primary productivity to environmental variability (Chapter 

3). This is of interest because, despite differences in the typical spatial and temporal scales of 
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climatic variability in the two realms (Steele, 1991b), they can be affected by similar climatic 

processes (e.g. ENSO (Philander, 1990) and the North Atlantic Oscillation (Ottersen et al., 

2001)), and there is some evidence that human activity is causing marine and terrestrial 

variability regimes to become more similar (Steele, 1989, 1991b). Equally important, the PSI 

provides an additional environmental layer which can be used to better understand the 

environmental drivers of spatial and temporal patterns in the distributions of species at higher 

trophic levels, including those from which humanity most benefits. 
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3 A global picture of sensitivity: Comparing 

the sensitivity of marine and terrestrial 

primary productivity to environmental 

variability 

 

3.1 Abstract 

Marine and terrestrial ecology have traditionally been viewed as separate disciplines due to 

the existence of ‘fundamental differences’ between the realms (Steele, 1985), however the 

need to determine how both realms will respond to a changing climate has resulted in an 

increased focus on cross-realm approaches to ecology. Primary productivity provides an ideal 

foundation for a cross-realm, macroecological approach, as it can be directly associated with 

both environmental data (e.g. Hays et al. 2005) and higher trophic level responses (e.g. Visser 

and Holleman, 2001). Furthermore, similarities in cross-realm primary productivity responses 

to environmental change have already been demonstrated (e.g. Chambers et al., 2013). Here, 

I combine the Phytoplankton Sensitivity Index (PSI) developed in Chapter 2 with Seddon et 

al's (2016) Vegetation Sensitivity Index (VSI) for the terrestrial realm. I investigate the potential 

of this Combined Sensitivity Index (CSI) to bridge the marine-terrestrial divide in terms of its 

ability to aide in the identification of global cross-realm patterns of sensitivity at a range of 

spatial scales (global degrees of latitude, hemispheres and biogeographic regions), to provide 

explanatory power in terms of its environmental drivers and to facilitate analyses of its temporal 

dynamics. A global, cross-realm latitudinal gradient of increased primary productivity sensitivity 

relative to environmental variability in the tropics and towards the poles is identified at both 

degree of latitude and hemispheric scales in the CSI and within each individual index; regional 

scales are less effective for reliably demonstrating the gradient. The influence of climate drivers 

on sensitivity shows strong realm dependence, with marginal differences between the 

influence of driving climate variables present in the marine realm compared to strongly varied 

influence in the terrestrial realm. In combining these indices, a truly global macroecological 

view of environmental variability influence on primary productivity is provided, that can be used 

as a basis on which to examine the responses of communities at higher trophic levels. 
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3.2 Introduction 

In 1985 John Steele published the first of a series of papers advocating the need for increased 

integration of marine and terrestrial ecology. Despite the commonly held view of the time that 

‘fundamental differences’ between the two realms prevented such research, Steele (1985, 

1991a, 1991b) argued that at appropriate spatial and temporal scales cross-realm 

comparisons were both possible and more importantly, valid, with the potential to provide 

rigorous testing of ecological hypotheses and reveal generalised patterns that held across 

realms. Over the last three decades the idea of fundamental differences between marine and 

terrestrial realms has persisted (Dawson and Hamner, 2008) and continued to manifest in the 

ways we teach, publish and develop marine and terrestrial disciplines (Chase, 2000; Menge 

et al., 2009; Rafaelli et al., 2005; Stergiou and Browman, 2005). The global scope of the threat 

of climate change has made this separation increasingly disadvantageous, and the need to 

determine how both realms will respond to the growing pressures of a changing climate has 

resulted in an increasing number of studies now beginning to examine the benefits of a cross-

realm approach to ecology (Blowes et al., 2019; Pinsky et al., 2019; Wiens, 2016). However, 

differences in the spatial and temporal scales of biological and physical processes in marine 

and terrestrial environments (Figure 1.1; Steele, 1991a) can prove problematic for comparative 

studies when comparisons are attempted at the same scale in each realm (Steele, 1991a).  

The unifying potential of macroecology for marine and terrestrial research was identified by 

Steele (1991b), who proposed that looking at a macroecological scale could overcome the 

challenges posed by the different temporal and spatial scales encountered in marine and 

terrestrial systems. Macroecology can be used both to discern generalised patterns and reveal 

key differences in the abiotic and biotic features of marine and terrestrial data (Dawson and 

Hamner, 2008; Lawton, 1999; Rafaelli et al., 2005; Webb, 2012) due to the relative simplicity 

of phenomena which are emergent at large scales, compared to the complexity when looking 

at a community ecology level (Lawton, 1999). This simplifying approach is not without 

problems, however. Whilst macroecological patterns such as the species abundance 

distribution and latitudinal diversity gradient provide valuable insights on global demography, 

their explanatory power in isolation is limited (Fisher et al., 2008, 2010; McGill, 2003). To 

further improve the utility of macroecological patterns, a more dynamic, mechanistic 

macroecology with temporal and spatial data implicitly included in analyses is developing to 

aide in the interpretation of the underlying processes behind observed patterns (Beck et al., 

2012; Fisher et al., 2010; McGill, 2010a; McGill et al., 2007; Tyler et al., 2012; Webb, 2012). 

The prevalence of cross-realm climatic linkages (discussed below) makes it reasonable to 
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assume that variability in macro-scale patterns of climate will affect marine and terrestrial 

realms in tandem, however whether there are corresponding similarities in the sensitivity of 

their responses across realms, and hence in their resilience to environmental variability, is 

currently unknown.  

Marine and terrestrial systems are known to both be affected by large scale patterns of climate 

variability, due to tight coupling between ocean and atmospheric processes (Steele, 1991b; 

Steele and Henderson, 1994). For example, the El Niño Southern Oscillation (ENSO; 

Philander, 1990) and the North Atlantic Oscillation (NAO) drive the micro-scale weather 

conditions which determine the physical and biological processes controlling primary 

productivity in freshwater, terrestrial and marine systems (Blenckner and Hillebrand, 2002; 

Mysterud et al., 2003; Ottersen et al., 2001). Despite the presence of such cross-realm 

linkages, the different physical mediums of marine and terrestrial environments (water versus 

air based) result in contrasting levels of inherent environmental variability manifesting in each 

realm (Steele, 1985). This level of inherent environmental variability can be better described 

in terms of its autocorrelation structure and position on the colour spectrum (Halley, 1996; 

Keshner, 1982). Marine ecosystems, which have low inherent environmental variability, are 

characterised by a ‘red noise’ variability structure (Steele, 1985) due to the buffering effects of 

the ocean causing positive temporal autocorrelation within environmental time series (Rohani, 

2004). Terrestrial environments on the other hand are typified by ‘white noise’ (Steele, 1985), 

with environmental time series that are temporally uncorrelated and highly variable at both 

short and long temporal scales (Halley, 1996; Rohani, 2004). Whilst predominantly a 

characteristic of abiotic variables (Weber and Talkner, 2001), variability structure can also 

interact with demographic processes to influence life history traits (Dawson and Hamner, 

2008). For example, specialist species are favoured in predictable, reddened environments, 

whereas generalists are favoured in white environments with greater stochasticity (Righetti et 

al., 2019; Suryan et al., 2009; Weimerskirch, 2007). Coupled with large differences in the 

temporal scales of functionally equivalent marine and terrestrial organisms (e.g. marine 

phytoplankton live for a matter of days, compared to centuries for trees; Steele, 1991b), 

anomalous environmental conditions could be expected to elicit different responses in marine 

and terrestrial ecosystems.  

Primary productivity provides an ideal foundation for a cross-realm macroecological pattern as 

it can be directly associated with both environmental data (e.g. Hays et al. 2005) and higher 

trophic level responses (e.g. Visser and Holleman, 2001), due to the dependence of primary 

producers on abiotic forcing and their essential role at the base of marine and terrestrial food 

webs. Cross-realm similarities in primary productivity responses to environmental change have 
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already been demonstrated for phenology (Chambers et al., 2013; Parmesan and Yohe, 2003; 

Root et al., 2003; Thackeray et al., 2010), with warming temperatures causing earlier leaf 

emergence, flower blooming and lengthened growing seasons in terrestrial systems (Mysterud 

et al., 2003; Post and Stenseth, 1999), comparable to earlier bloom times observed in marine 

phytoplankton (Edwards and Richardson, 2004b). Furthermore, whilst terrestrial primary 

producers are typically not as closely coupled to scales of environmental variability as marine 

producers (Steele, 1991b), their responses to environmental variation are similarly variable 

across space (von Holle et al., 2010) and trophic level (Durant et al., 2007; Thackeray et al., 

2010, 2016) as in marine systems, with trophic mismatch and wider ecosystem consequences 

an inevitable result (Durant et al., 2005; Stenseth and Mysterud, 2002; Toszogyova and 

Storch, 2019; Visser and Holleman, 2001). Environmental variability is also known to modify 

global gradients of primary producer diversity and richness (Righetti 2019) and can 

differentially effect higher trophic level patterns of richness depending on the mean productivity 

of an area, with high variability and high mean productivity associated with reductions in 

richness (Toszogyova and Storch, 2019). As a result, primary resource availability and 

predictability can act as both an explanatory and predictive mechanism for population 

responses to environmental change. 

The Phytoplankton Sensitivity Index (PSI) developed in Chapter 2 successfully identified 

marine regions in which primary productivity is especially sensitive to different elements of 

climate variation, thus indicating where environmental variability is influencing marine primary 

productivity resilience at a global scale. Here, I combine the PSI with Seddon et al's (2016) 

corresponding Vegetation Sensitivity Index (VSI) for the terrestrial realm, which determines 

the sensitivity of global terrestrial primary productivity to variation in temperature, water 

availability and cloud cover, over a 14-year time series (2000-2013). I investigate the potential 

of this Combined Sensitivity Index (CSI) for primary productivity sensitivity relative to 

environmental variability to bridge the marine-terrestrial divide, in terms of its ability to aide in 

the identification of global cross-realm patterns and potential to direct future research into 

higher trophic level responses. I investigate if differences in the spatial and temporal scales of 

marine and terrestrial environments can be overcome by examining patterns in sensitivity at a 

range of spatial scales, including global degrees of latitude, hemispheres and biogeographic 

regions. Exploring patterns in sensitivity across global degrees of latitude, I test whether the 

latitudinal gradient in sensitivity qualitatively identified in the PSI (Chapter 2), holds 

quantitatively in both realms. A hemispheric scale will show if there are any key differences in 

primary productivity responses in Northern and Southern hemispheres, shedding light on the 

potential disadvantages of the current northern, temperate bias in climate change research. 

By incorporating analyses at a regional scale I examine at what spatial scale patterns are best 
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captured in each realm. I also compare and contrast patterns of sensitivity within each realm 

to ascertain at what level primary productivity responses to climate variability are realm 

dependent. To be effective as a mechanistic and dynamic macroecological pattern, the CSI 

needs to provide both explanatory power in terms of its environmental drivers and facilitate 

analyses of its temporal dynamics (Fisher et al., 2008, 2010). I therefore also examine patterns 

in climate driver influence on sensitivity at both global and regional spatial scales across realms 

and explore links between the temporal scales of environmental and primary productivity 

variability along gradients of sensitivity. 

3.3 Materials and Methods 

3.3.1 The Vegetation Sensitivity Index (VSI) 

Full details of the methods used to calculate the VSI can be found in Seddon et al. (2016). A 

summary of the input variables used and any differences in methodology between the 

calculation of the PSI (Chapter 2, 2.3.2) and VSI are given below. All code and raw data for 

calculating the VSI was downloaded from the Oxford University Research Archive repository 

(available at: https://ora.ox.ac.uk/objects/uuid:896bf37f-a56b-4bc0-9595-8c9201161973). 

As with the PSI, a 14 year (2000–2013) monthly time series was used for all variables for the 

VSI. The Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13C2 Enhanced 

Vegetation Index (EVI; Solano et al., 2010) was used as a measure of terrestrial primary 

productivity. The EVI measures vegetation canopy greenness and employs a feedback system 

to minimise canopy-soil variations and provide higher sensitivity in high biomass regions than 

earlier products, such as the Normalized Difference Vegetation Index (NDVI) (Justice et al., 

1998; Solano et al., 2010). The EVI also saturates less easily in high density areas than the 

NDVI (Solano et al., 2010). Whilst other satellite products are available that more closely 

correlate with total terrestrial producer biomass, by measuring just ‘greenness’ the EVI only 

records the photosynthetic component of terrestrial producers (i.e. leaves versus tree trunks) 

and therefore more closely correlates with the ocean colour measurements used to calculate 

the PSI. Precipitation, cloudiness and temperature were used as driving climate variables of 

productivity, which were also obtained from MODIS derived products. The MOD07_L2 

Atmospheric Profile product was used for air temperature. An insolation proxy was developed 

for cloud cover based on the MOD35_L2 Cloud Mask product, which gives a ratio of the 

proportion of cloudy to clear sky days per pixel. For precipitation, a ratio of actual 

evapotranspiration to potential evapotranspiration was used, derived from the MOD16 Global 

Evapotranspiration product. All variables were available at, or transformed to, 5 km spatial 
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resolution on a geographic projection. To calculate the VSI, minimum thresholds were used 

for EVI and temperature; pixels with EVIs < 0.1 were excluded due to being predominantly 

barren, and months with mean temperatures < 0 °C were excluded. All other methods are as 

described for the PSI in Chapter 2, Section 2.3.2.  

Whilst the Chlorophyll-a (Chl-a) and Photosynthetically Available Radiation (PAR) variables 

used to calculate the PSI were available at high spatial resolutions (4 km), the coarser 

resolution (0.25°) of Sea Surface Temperature and Wind (SST/W) satellite data available for 

the marine environment prevented the PSI from also being calculated at 5 km resolution. It 

was instead calculated at 9 km resolution as described in Chapter 2. This difference in spatial 

resolution between the VSI and the PSI prevented a single global index from being produced, 

however the two indices were combined into a single data frame post-calculation to enable 

global analyses of sensitivity. 

3.3.2 Selecting biogeographic regions for spatial analyses 

Several methods exist for partitioning the world’s oceans into defined regions (reviewed in 

Krug et al. (2017)). Most notably, Longhurst (1995, 2007) and Sathyendranath et al. (1995) 

categorised the global oceans into 4 primary biomes (Coastal, Westerlies, Trades and Polar) 

and 54 biogeochemical provinces based on the physical parameters expected to drive 

phytoplankton production. Here, I use Longhurst’s biogeographic provinces as a foundation 

for further analysis within the PSI. As the PSI is a global snapshot of the combined time series 

with seasonality removed, the fixed boundary approach of Longhurst’s biomes is considered 

appropriate. Satellite data retrieval in polar regions can be inefficient through large parts of the 

year due to limited light availability, leading some studies to exclude the Polar biomes from 

analyses (e.g. Roy, 2018). I retained all of the biomes for initial analyses however, to establish 

if anomalous results required their removal. For the terrestrial realm, the Ecoregions2017 

(Dinerstein et al., 2017) classification system was used. Ecoregions2017 is an updated version 

of the Terrestrial Ecoregions of the World (TEOW; Olson et al., 2001) regionalisation and 

categorises the world into 8 biogeographic realms, each containing 14 possible biomes further 

split into a total of 846 distinct ecoregions. 846 was deemed too many regions for our purposes 

and so regions were grouped solely by biogeographic realm and biome, giving a total of 63 

distinct regions. Full details and mapped representations of the regionalisations can be found 

in Appendix B (Figure B-1-Figure B-3). For consistency with the Longhurst scheme, hereafter 

I refer to the eight Ecoregions2017 biogeographic realms as ‘biomes’ and the fourteen biomes 

as ‘provinces’. I use ‘realm’ to distinguish between the marine and terrestrial environment.  
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3.3.3 Scales of sensitivity 

The PSI and VSI were first mapped together to produce a Combined Sensitivity Index (CSI) 

and visualise the global distribution of the sensitivity of primary productivity relative to climate 

variability. Due to right skew in the indices a stretch was applied to the mapped colour scale 

in QGIS, saturating values either side of the top and bottom 2.5 standard deviations of the 

indices (the default in ArcGIS, and as used in Seddon et al. (2016)). This maximised the clarity 

of geographical variability within the central 95% of the indices, whilst saturating fewer than 

5% of pixels. A Pearson’s correlation test was performed to determine if there was a simple 

relationship between the median sensitivity of both the CSI and each individual index with 

absolute degrees of latitude. To test whether the observed range of sensitivity varied with 

latitude at a global scale, the correlation between the 2.5%-97.5% (95%) range in sensitivity 

and absolute degrees of latitude was also calculated for the three indices. To account for 

potentially more complex relationships, Generalized Additive Models (GAMs) were fitted to 

each index individually and to the combined index. GAMs were modelled using the mgcv 

package (Wood, 2011) in R version 3.3.2 (R Core Team, 2018), with absolute latitude fitted as 

a smooth term (grouped by hemisphere) using the default thin plate regression splines, a 

Gaussian distribution and identity link function. Each model was weighted by the number of 

pixels present in each degree of latitude. To investigate similarities in within realm hemispheric 

trends of sensitivity, the difference between median sensitivities and the 95% range of 

sensitivities at corresponding Northern and Southern latitudes were calculated for each index. 

To investigate similarities in between realm hemispheric trends of sensitivity, quadratic linear 

models were fitted to the median and 95% range of sensitivities per degree of latitude for each 

hemisphere, with realm fitted as an interaction. Due to the disparity in land and ocean extent 

between the hemispheres, models were fitted up to -60° Latitude in the Southern hemisphere 

and up to 80° Latitude in the Northern hemisphere. 

To establish if latitudinal differences in sensitivity were detectable at smaller spatial scales, the 

above analyses were repeated at the province level (as defined in Section 3.3.2) for both the 

PSI and VSI, with province centroid latitude used as the measure of absolute latitude. 

Relationships within and between biomes and sensitivity for each index were further 

investigated using a linear mixed effects model with random intercepts (lme4; Bates et al., 

2012). Sensitivity was modelled as a function of biome as a fixed effect in the model, with 

province nested within biomes fitted as random effects to account for non-independence within 

the data due to geographic structuring (Harrison et al., 2018b). Finally, linear models were 

fitted to the log10-transformed mean sensitivity of each province against log10-transformed 

variance, to test for mean-variance relationships in each index. 
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3.3.4 Temporal dynamics of sensitivity 

I predicted that similar realm-independent characteristics in primary productivity and climate 

variability would be found along gradients of sensitivity. To investigate this, the temporal 

dynamics of the raw time series of the input variables were examined. For initial exploratory 

analyses, marine and terrestrial coordinates were selected from the global sensitivity index 

map that were coastally adjacent and/or latitudinally equivalent and of comparable sensitivity. 

Time series were extracted for 1° grid squares around the selected coordinates for the VSI 

and 2° grid squares for the PSI to ensure a similar number of pixels were analysed for each 

index (400 and 493 for the VSI and PSI respectively). Mean monthly values were then 

calculated for Chl-a and EVI for each grid square across the time series, and monthly z-score 

anomalies were calculated for Chl-a, EVI and the climate variables. The z-score anomalies 

provide a standardised measure of variability across variables by transforming monthly values 

to the number of standard deviations the value is away from the 14-year monthly mean (See 

Chapter 2, Equation 2 for full calculation details). 

After initial inspection of the mean and anomaly time series plots, spectral analysis was 

performed on a wider range of coordinates to investigate trends in the temporal autocorrelation 

of environmental and primary productivity variability within the time series, across gradients of 

sensitivity. Spectral analysis quantifies the temporal autocorrelation within a time series, which 

can then be used to produce colour coefficients, classifying variability as white (no 

autocorrelation) or reddened (positive autocorrelation). For the spectral analysis, 50 pixels 

were randomly selected from each index with low (0-20), medium (40-60) and high (80-100) 

sensitivities, using a seed of 27 (150 pixels selected in total per index). As with the initial 

exploratory plots, the raw time series for all variables were extracted from pixels within a 1° 

and 2° grid square from the randomly selected pixel for the VSI and PSI respectively, and z-

score anomalies were calculated. Spectral densities and frequencies were then calculated for 

each time series using the spec.pgram function in R, using the default settings for zero-

padding and tapering. Spectral density can only be calculated on complete time series so 

pixels with missing data were excluded from the analyses. The final number of locations 

included in the analysis for each variable and sensitivity index are summarised in Appendix B, 

Table B-1. The spectral component (ß) or ‘noise’, was estimated following Vasseur and Yodzis 

(2004) as the negative slope of a linear regression between log10 spectral density and log10 

frequency. Each time series was then categorised as white (0 ≤ ß ≤ 0.5), pink (0.5 < ß ≤ 1.5) 

or red (1.5 < ß ≤ 2). The mean sensitivity of pixels within each grid square was also calculated 

to rank ß by sensitivity level. A linear regression model was fitted to each variable’s ß values 

to test for effects of mean sensitivity and realm on noise frequency.  
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3.3.5 Climate influence on sensitivity 

To identify geographic variation in the influence of climate variability on sensitivity, composite 

maps were produced for the global index. These maps allocate each climate variable to a 

separate colour band and plot the highest valued (i.e. most important) variable per pixel. To 

determine the contribution of an individual climate variable’s variability on final sensitivity, the 

coefficient-weighted sensitivities for each variable were extracted and plotted before being 

combined to give the final index (see Chapter 2, Section 2.3.2.2 for full details). To visualise 

regional differences in correlation strength between primary productivity and climate variability, 

a composite map was also produced for the climate weights of each index (see Chapter 2, 

Section 2.3.2.1 for climate weight details). Whilst these maps show which climate variable has 

the highest influence per pixel, no information is given on the interactions between climate 

variables across regions. 

To quantify the relative importance of each climate variable’s anomalies (climate variability 

normalised by mean and variance) on the final sensitivity metric and to identify interactions 

between them at regional scales, a boosted regression tree (BRT) analysis was performed 

using R’s gbm package (Ridgeway, 2017), with primary productivity sensitivity modelled 

against the three climate drivers’ anomalies for each index. BRT models combine regression 

trees and boosting to model complex data and improve predictive performance (Elith et al., 

2008). Regression trees use recursive binary splits to partition data into smaller, simpler 

segments which models can be fitted to. With boosting, trees are added sequentially and 

adaptively to the residuals of prior trees without altering the trees already fitted, with the final 

model being a linear combination of thousands of trees (Elith et al., 2008). BRT models offer 

several advantages over other modelling techniques as they can inherently model variables of 

different classes (e.g. continuous, binomial, categorical), can fit complex non-linear 

relationships with interactions between variables, require no data transformations and are able 

to handle missing data and outliers (Elith et al., 2008).  

The two main parameters which must be set for a BRT are tree complexity (tc) and learning 

rate (lr). tc, the number of nodes or splits a tree can have, is used to model interactions 

between the predictor variables (Elith et al., 2008). A tc of 1 means that no interactions are 

modelled. lr determines the amount of influence each new tree has on the model, a smaller lr 

increases the number of trees required (Elith et al., 2008). Cross-validation (CV) error is used 

to select the values of tc and lr which produce the best fitting model. With each iteration 

(addition of a tree), CV tests a model fitted to a training fraction of the dataset against the 

remaining portion of the dataset and produces an error value (Elith et al., 2008). Data is 

selected randomly from the training fraction without replacement using a bag fraction 
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parameter to introduce stochasticity, i.e. a bag fraction of 0.5 will randomly select 50% of the 

training dataset at each iteration to fit the model (Elith et al., 2008). This process determines 

the optimum number of trees, tc and lr required for lowest error, which is then applied to the 

full dataset for the final model.  

To account for spatial variation in sensitivity and climate driver influence, the BRT models were 

derived at the province level with the best fitting model selected from learning rates of 0.01, 

0.005, 0.001 and 0.0005 and tree complexities of 4, 6, 10 and 20. As recommended by Elith 

et al. (2008), a bag fraction of 0.5 and training fraction of 0.8 were also used in the initial 

parameter set up, with a Gaussian distribution and a maximum number of 10,000 trees fitted. 

Each dataset was shuffled before use to ensure the training fraction wasn’t geographically 

ordered and the same random seed (27) was set for each model run. Best fitting models were 

those with the lowest CV error and a minimum of 1000 trees. As I was interested in the interplay 

between the three climate variables on sensitivity in each province, further tests were not 

conducted to see if variables could be dropped to further improve model fit. Three VSI biomes 

(AF08, AU11 and IN10) could not be included in the BRT analysis as they contained too few 

pixels for a model to be fitted. The final input parameters for the best BRT model fit for each 

province can be found in Appendix B Table B-2 and Table B-3 for the PSI and VSI respectively. 

From the final model output, the relative importance of each variable’s anomalies to sensitivity 

prediction were extracted and plotted for each province to conduct regional comparisons of 

the relative influence of each climate variable on sensitivity. These values are scaled between 

0-100 to enable comparison between variables, with low values indicating that the variable is 

not relevant for sensitivity prediction. To compare the BRT model output for climate variable 

influence with the climate interactions observed within the indices, the climate composite maps 

were also reproduced as normalised bar plots with values for sensitivity influence and climate 

weights averaged over each province. 

Data analyses were conducted in the R project for statistical computing (R Core Team 2018, 

version 3.3.2) using the caret (Jed Wing et al., 2018), cowplot (Wilke, 2018), data.table 

(Dowle and Srinivasan 2018), dev.tools (Wickham et al., 2018), dplyr (Wickham et al.,  

2018), ggplot2 (Wickham, 2016), grateful (Rodriguez-Sanchez, 2017), lattice (Sarkar, 

2008), Matrix (Bates and Maechler, 2018), raster (Hijmans, 2017), readr (Wickham et 

al., 2017), reshape2 (Wickham, 2007), rgdal (Bivand et al., 2018), rgeos (Bivand and 

Rundel, 2018), sp (Pebesma and Bivand, 2005), viridis (Garnier, 2018a), viridisLite 

(Garnier, 2018b) and zoo (Zeileis and Grothendieck, 2005) packages. Image processing was 

carried out in QGIS and R.   
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3.4 Results 

3.4.1 Scales of sensitivity 

 
Figure 3.1: Combined Phytoplankton and Vegetation Sensitivity Indices (P/VSI) with regionalisation. A 
global map of primary productivity sensitivity relative to variability in three climate variables (PSI: sea surface 
temperature, sea surface winds, photosynthetically available radiation; VSI: temperature, precipitation, cloudiness). 
The index ranges from 0 (low sensitivity) to 100 (high sensitivity). The sensitivity index is overlaid with Longhurst’s 
Marine Biogeographic Regions (PSI) and Ecoregions2017 (VSI) boundaries (black lines), which are used for all 
spatial analyses. Full details of biomes and provinces used can be found in Appendix B (Figure B-1-Figure B-3). 
Due to right skew in the data and the volume of data points, the colour scale has been band shifted by 2.5 standard 
deviations (the default in ArcGIS) to better reflect the spread of the data. Pixel resolution, 9 km (PSI), 5 km (VSI); 
time period, 2000-2013. Areas in black indicate no data availability. Terrestrial areas in grey are predominantly 
barren areas, created using a minimum vegetation threshold. Continental outlines were modified from a shapefile 
using QGIS.  

Combining the VSI with the PSI produces a global, cross-realm picture of primary productivity 

sensitivity to climate variability, from which patterns in amplified primary productivity responses 

relative to climate variability can be discerned at a range of scales. In both indices, sensitivity 

ranges from 0 (low sensitivity) to 100 (high sensitivity). My results show that latitudinal 

gradients in global primary productivity sensitivity are realm-independent, with high sensitivity 

marine areas carrying over terrestrial landmasses in sub-polar and equatorial regions (Figure 

3.1). Likewise, the mid-low sensitivities of the major ocean basins carry across landmasses at 

their respective latitudes (Figure 3.1). Both median sensitivity (r = 0.56, P < 0.001) and the 

95% range of sensitivities (r = 0.78, P < 0.001) are significantly, positively correlated with 

absolute degree of latitude at a global scale. GAM analysis further confirmed that significant 

positive correlations exist between median sensitivity (P < 0.001, deviance explained = 92.6%), 

the 95% range of sensitivities (P < 0.001, deviance explained = 98.8%) and absolute degrees 
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Figure 3.2: Latitudinal gradients of sensitivity for the combined index. Boxplot showing the spread of 
sensitivity for each degree of latitude for the combined sensitivities of the marine PSI and terrestrial VSI (A), and 
the results of generalized additive models (GAM) fitted to the median (B) and 95% range (97.5% quantile–2.5% 
quantile) (C) of sensitivities for each degree of latitude, by hemisphere. GAMs are weighted by the number of pixels 
in each latitudinal band. 

of latitude in each hemisphere, with similar non-linear trends present in each (Figure 3.2). In 

the Northern hemisphere median sensitivity peaks at 24.7°N and 50.6°N and troughs at 

15.0°N, 34.9°N and 60.3°N, compared to peaks at 32.9°S, 54.0°S and 75.5°S and troughs at 

20.9°S, 38.7°S and 61.3°S in the Southern hemisphere (Figure 3.2B). The 95% range of 

sensitivities peaks at 25.0°N, 25.8°S and 74.9°S, and troughs at 16.4°N, 31.4°N, 20.7°S and 

37.0°S. For both the median and 95% range of sensitivities, the highest values occur in the 

Southern hemisphere (Figure 3.2). 

Within the individual indexes average sensitivity is similar (Mean sensitivity: VSI, 18.02 ± 7.12 

sd; PSI, 16.98 ± 6.72 sd), with each index also exhibiting a similar proportion of sensitive to 

non-sensitive regions (number of pixels with sensitivity > 50: number of pixels with sensitivity 

≤ 50; PSI, 0.006; VSI, 0.004 equating to areas of 304,137 km2 and 85,905 km2 out of a total of 

46,706,040 km2 and 23,732,010 km2 for the PSI and VSI respectively). Median sensitivity is 

significantly positively correlated with degree of absolute latitude in both the PSI (r = 0.54, P < 

0.001) and VSI (r = 0.41, P < 0.001) in a non-linear relationship (Figure 3.3A-B; Figure 3.4A- 
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Figure 3.3: Latitudinal gradients of sensitivity in the marine PSI. Boxplot showing the spread of sensitivity for 
each degree of latitude in the PSI (A), and the results of generalized additive models (GAM) fitted to the median (B) 
and 95% range (97.5% quantile–2.5% quantile; C) of sensitivities for each degree of latitude, by hemisphere. GAMs 
are weighted by the number of pixels in each latitudinal band. 

B), present in both Northern and Southern hemispheres (GAM: PSI, P < 0.001, deviance 

explained = 95.1%; VSI, P < 0.001, deviance explained = 86.8%). The variability of this 

relationship does however differ between the two realms. In the PSI, median sensitivity in both 

hemispheres shows marginal changes between 0-40° Latitude, before increasing towards 

polar latitudes (Figure 3.3B). The VSI on the other hand shows considerably more variation in 

median sensitivity in both hemispheres, even at low latitudes (Figure 3.4B). In the Northern 

hemisphere median sensitivity peaks at 9.7°N, 25.7°N and 53.7°N in the PSI (Figure 3.3B) and 

at 24.7°N and 48.4°N in the VSI (Figure 3.4B). Troughs occur at 20.9°N, 38.8°N and 65.5°N 

in the PSI versus 13.5°N, 34.3°N and 65.0°N in the VSI. In the Southern hemisphere median 

sensitivity peaks at 17.7°S, 53.8°S and 74.9°S in the PSI (Figure 3.3B) and 38.0°S in the VSI 

(Figure 3.4B). Troughs occur at 8.1°S, 37.9°S and 61.3°S in the PSI and at 20.9°S and 47.8°S 

in the VSI. Whilst the number and respective latitudes of peaks and troughs are similar in each 

realm, the magnitude of change is much larger in the VSI. Despite this difference, both marine 

and terrestrial indexes exhibit similar median sensitivities across hemispheres at equivalent 

latitudes (Figure 3.5).  
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Figure 3.4: Latitudinal gradients of sensitivity in the terrestrial VSI. Boxplot showing the spread of sensitivity 
for each degree of latitude in the VSI (A), and the results of generalized additive models (GAM) fitted to the median 
(B) and 95% range (97.5% quantile–2.5% quantile; C) of sensitivities for each degree of latitude, by hemisphere. 
GAMs are weighted by the number of pixels in each latitudinal band 

 

 

Figure 3.5: Hemispheric differences in sensitivity in the PSI and VSI. The difference between median sensitivity 
and the 95% range of sensitivities in the Northern and Southern hemispheres at single, absolute degrees of latitude, 
with quadratic linear models fitted to each variable, in the PSI (A) and VSI (B).  
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The 95% range of sensitivity values are more strongly correlated with degree of absolute 

latitude than median sensitivities in both the PSI (r = 0.77, P < 0.001) and VSI (r = 0.77, P < 

0.001), with an exponential increase in ranges occurring above ~40 °Latitude (Figure 3.3C; 

Figure 3.4C). As with median sensitivity this significant, positive relationship is non-linear 

(Figure 3.3C; Figure 3.4C) and present in both Northern and Southern hemispheres (GAM: 

PSI, P < 0.001, deviance explained = 99%; VSI, P < 0.001, deviance explained = 97.1%). In 

the Northern hemisphere the 95% range of sensitivities peak at 6.9 °N in the PSI (Figure 3.3C) 

and at 27.4°N in the VSI (Figure 3.4C), and trough at 30.9°N for the PSI and at 14.3°N and 

36.5°N for the VSI. In the Southern hemisphere the 95% range of sensitivities peaks at 8.7°S 

and 74.4°S in the PSI and at 26.7°S and 49.2°S in the VSI, and troughs at 28.0°S in the PSI 

and at 17.3°S, 34.6°S and 52.0°S in the VSI. The 95% range of sensitivities are not as 

consistent across hemispheres as median sensitivities in either index, particularly above ~40° 

Latitude (Figure 3.5), where the Southern hemisphere exhibits higher values. Within 

hemispheres a significant interaction of realm was found for the 95% range of sensitivities 

against latitude in both the Northern (F5,158 = 426.1, R2 = 0.929, P < 0.001) and Southern (F5,106 

= 147.4, R2 = 0.868, P < 0.01) hemispheres, and for median sensitivity in the Southern 

hemisphere (F5, 106 = 31.1, R2 = 0.576, P < 0.001). No interaction between realm and latitude 

was found for median sensitivity in the Northern hemisphere (F5,158 = 15.7, R2 = 0.311, P = 

0.390), though this is likely due to poor model fit (Appendix B Figure B-4A). 

Latitudinal gradients in sensitivity are less easily detected at regional scales in both the PSI 

and the VSI, with median sensitivity broadly similar across biomes and provinces (Figure 3.6). 

Median province sensitivity was uncorrelated with latitude for both indices (PSI, r = -0.002, P 

= 0.988; VSI, r = 0.095, P = 0.455) and GAM model fit was poor (Appendix B Figure B-5A & 

C). Within and between biome variance (95% range) in province sensitivity is however 

significantly correlated with latitude in both indices (PSI, r = 0.445, P < 0.001; VSI, r = 0.546, 

P < 0.001), with an increase in variance towards the poles particularly visible for the PSI (Figure 

3.6A). The 95% range of province sensitivities significantly increase with latitude in both 

hemispheres for the PSI (GAM: P < 0.001, deviance explained = 93.3%) with troughs at 22.8°N 

and 31.0°S (Appendix B Figure B-5B). The VSI also exhibits a significant relationship in both 

hemispheres between latitude and the 95% range of province sensitivities (GAM: P < 0.01, 

deviance explained = 88.2%). The Northern hemisphere exhibits a smooth increase with small 

changes in gradient occurring at 20.1°N and 27.9°N in the northern hemisphere. The Southern 

hemisphere relationship is more variable with peaks at 5.0°S, 21.0°S, and 36.3°S and troughs 

at 13.6°S, 28.5°S and 39.1°S (Appendix B Figure B-5D). Further supporting this latitudinal 

gradient, the polar biome in the PSI has higher sensitivity (3.003 ± 0.924 se, t = 3.250) than 

the trades, westerlies and coastal biomes which showed minimal differences. This pattern is 
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Figure 3.6: Latitudinal gradients of marine and terrestrial province sensitivity. Boxplots showing the spread 
of sensitivity for each province, grouped by biome for the marine PSI (A) and terrestrial VSI (B). The boxplots are 
ordered by the latitude of the centroid of each province. Biomes and provinces are based on Longhurst’s Marine 
Biogeographic Regions for the PSI and Ecoregions2017 for the VSI. Full details of biomes and provinces can be 
found in Appendix B (Figure B-1-Figure B-3).  

 

 

Figure 3.7: Mean-Variance relationships in marine and terrestrial province sensitivities. The relationship 
between the mean and variance of sensitivity in each province, grouped by biome, for the marine PSI (A) and 
terrestrial VSI (B). The solid line represents a linear model fitted to the log10-transformed mean and variance of 
each province. Longhurst’s Marine Biogeographic Regions biomes are used for the PSI and Ecoregions2017 
biomes are used for the VSI. Full details of biomes and provinces can be found in Appendix B (Figure B-1-Figure 
B-3).  
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Figure 3.8: Time series plots of marine and terrestrial high and low sensitivity areas. Mean primary 
productivity (green) and primary productivity and climate z-score anomalies (blue) for corresponding marine and 
terrestrial regions of low (A, B) and high (C, D) sensitivity. Mean monthly values were calculated for 1° (400 pixels) 
grid squares for the terrestrial VSI and 2° (493 pixels) grid squares for the marine PSI. The green shaded area in 
the mean primary productivity plots shows the mean ± standard deviation. Anomalies show the difference in 
standard deviations between the mean monthly value and the 14-year (2000-2013) monthly mean. (A) South Pacific 
Gyre (SPSG; 151 W, 14 S); (B) Australian shrubland (AU13; 126 E, 28.7 S); (C) Gulf of Guinea (GUIN; 8.3 E, 2.2 
N); (D) African tropical forest (AF01; 11.4 E, 2.2 N). The central map panel shows the combined Phytoplankton and 
Vegetation Sensitivity Index.  

repeated in the VSI with polar biomes having higher sensitivity (Antarctica: 7.105 ± 2.961 se, 

t = 2.400; Palearctic: 1.894 ± 1.292, t= 1.466; Rock and Ice: 2.092 ± 2.946, t= 1.728) than 

temperate and equatorial biomes. The only terrestrial biome that differed from this pattern was 

Australasia, which is also more sensitive than surrounding biomes (1.946 ± 1.297, t=1.501). 

Provinces with higher mean sensitivities were also found to be significantly more variable in 

both the PSI (Figure 3.7A; F1,52 = 30.43, R2 = 0.357, P < 0.001) and VSI (Figure 3.7B; F1,61 = 

44.15, R2 = 0.410, P <0.001).  

Examination of the input variable time series for locations within the PSI and VSI of comparable 

sensitivity and latitude, revealed distinct and realm-independent characteristics in primary 
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Figure 3.9: Spectral frequency plots for PSI and VSI variables. Plots showing the spectral component (ß) and 
‘colour’ of variance in primary productivity (A), temperature (B), radiation (C) and wind and precipitation (D) z-score 
anomaly time series for the PSI (○) and VSI (△). The colour of time-series noise is categorised as white (0 ≤ ß ≤ 
0.5), pink (0.5 < ß ≤ 1.5) or red (1.5 < ß ≤ 2), with reddened spectra indicating positivite temporal autocorrelation in 
the anomalies. The spectral component was estimated as the negative slope of a log10 linear regression between 
the spectral density and frequency of each time series. Lines show linear regressions fitted to noise frequency 
against mean sensitivity for the PSI (black) and VSI (grey). 

productivity (Figure 3.8). Areas characterised by low sensitivity in both realms exhibit long 

periods with consistently positive or negative primary productivity anomalies and have a lower 

frequency of yearly changes in mean primary productivity (Figure 3.8A-B). By contrast, high 

sensitivity areas show constant switching between positive and negative primary productivity 

anomalies throughout the time series, with a higher frequency repeating pattern in mean 

primary productivity (Figure 3.8C-D). The time series also suggest closer coupling between 

climate and primary productivity anomalies throughout the time series in low sensitivity regions. 
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In the South Pacific oligotrophic gyre (Figure 3.8A) positive SST anomalies align with negative 

Chl-a anomalies and vice versa, whilst in Western Australia (Figure 3.8B) positive precipitation 

and negative temperature anomalies coincide with positive EVI anomalies. In high sensitivity 

areas, consistent correlations between primary productivity and climate anomalies are less 

apparent due to the high frequency of positive to negative switches in the primary productivity 

anomalies. 

Despite these apparent trends, spectral analysis did not find evidence of realm-independent 

patterns in the temporal autocorrelation of primary productivity anomalies across gradients of 

sensitivity (Figure 3.9A). Mean sensitivity and noise frequency were also unrelated for all 

climate variables in the PSI and VSI. Temporal autocorrelation did however significantly differ 

between marine and terrestrial realms for three of the four variables. Primary productivity 

(Figure 3.9A; F2,145 = 8.99, R2 = 0.098, P < 0.001) and temperature (Figure 3.9B; F2,285 = 543, 

R2 = 0.791, P < 0.001) were both significantly reddened in the marine realm compared to the 

terrestrial realm. The reverse was seen for wind and precipitation with the terrestrial variable 

(precipitation) being significantly pinker than the marine variable (Figure 3.9D; F2,216 = 39.6, R2 

= 0.261, P < 0.001). Both radiation variables (PAR and cloudiness) were characterised by 

white noise frequencies, with no difference observed between the marine and terrestrial realms 

(Figure 3.9C).  

3.4.2 Climate influence on sensitivity 

Distinct regions of climate variable influence on primary productivity sensitivity are present in 

both indices (Figure 3.10). In the VSI, precipitation and cloudiness variability are the dominant 

drivers of primary productivity sensitivity (Figure 3.10) and have the strongest relationships 

with EVI (Appendix B Figure B-7). Eastern continental margins are particularly driven by 

precipitation, whilst cloudiness drives sensitivity in large tropical forested areas. In the PSI, 

SST influence dominates across the major ocean basins in relatively consistent latitudinal 

bands, interspersed with overlapping bands of PAR and SSW influence (Figure 3.10). This 

pattern is also broadly reflected in the strength of Chl-a relationships with climate (Appendix B 

Figure B-7), with both dominating in relatively consistent latitudinal bands, particularly in the 

sub-tropics. The polar regions of the PSI appear a lot more mixed, with no particular climate 

variable having a consistently dominant influence on sensitivity. Interactions between climate 

variables and their influence on sensitivity differ markedly between the PSI and VSI at regional 

scales (Figure 3.11). Within and between biomes in the PSI, differences between the three 

climate variables in terms of importance to sensitivity prediction are marginal (Figure 3.11A). 

SST has slightly higher overall importance for sensitivity in 20 of the 54 provinces, whilst SSW  
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Figure 3.10: Composite map of the global sensitivity index. Composite map of the contribution of climatic driver 
variability in the terrestrial VSI (temperature (blue), cloudiness (green), precipitation (yellow)) and marine PSI (sea 
surface temperature (SST; blue), photosynthetically available radiation (PAR; green) and sea surface wind (SSW; 
yellow)), showing which driver has the highest influence on sensitivity in a given pixel. The sensitivity index is 
overlaid with Longhurst’s Marine Biogeographic Regions (PSI) and Ecoregions2017 (VSI) boundaries (white lines), 
which are used for all spatial analyses. Full details of biomes and provinces used can be found in Appendix B 
(Figure B-1-Figure B-3). Pixel resolution, 9 km (PSI), 5 km (VSI); time period, 2000-2013. Areas in black indicate 
no data availability. Terrestrial areas in grey are predominantly barren areas, created using a minimum vegetation 
threshold. Continental outlines were modified from a shapefile using QGIS.  

and PAR both have the highest influence in 17 provinces. There are some exceptions where 

a province has one particularly dominant or insignificant variable, including the Sub Antarctic 

Province (SANT) where PAR anomalies have particularly little influence and the Australia-

Indonesia Coastal Province (AUSW) where SST anomalies have lower influence (Figure 

3.11A). This uniformity in climate variable importance in the PSI was also observed in both the 

overall influence of climate within the sensitivity index (Appendix B Figure B-10A) and in the 

strength of climate – Chl-a relationships (Figure B-7 & Figure B-10B). BRT models performed 

best in the Trades and Westerlies biomes and poorest in the Polar biome. In the Coastal biome 

model fit was generally good except for in the Guinea Current Coastal Province (GUIN).  

In contrast to the PSI, considerable differences were found in within- and between-biome 

climate influence in the VSI (Figure 3.11B). Precipitation has the highest relative importance 

to sensitivity prediction in 34 of the 60 provinces, with cloudiness and temperature having the 

highest importance in 11 and 15 provinces respectively. Single variable dominance in 

prediction importance is visible for several provinces, for example in Afrotropic Mediterranean 

forests, woodland and scrub (AF12) and Indomalayan deserts and xeric shrublands (IN13) 

upwards of 60% of climate influence was contributed by a single variable (Figure 3.11B). When  
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Figure 3.11: Regional influence of climate on the PSI and VSI. The relative importance of each climate variable’s 
anomalies on final sensitivity prediction for the PSI (A) and VSI (B) from the results of a boosted regression tree 
analysis fitted to each province. The dashed line shows the minimum cross-validation error for each province’s 
model fit. A lower value indicates a better model fit. Biomes in the VSI with only one province are from left to right, 
Antarctica, Oceania and Rock and Ice. 

looking at climate interactions within the VSI composites (Appendix B Figure B-11) 

precipitation dominance is even higher, having the highest overall influence on sensitivity in 52 

of the 63 provinces and contributing 50% or more of the sensitivity in 26 of those (Appendix B 

Figure B-11A). Precipitation also displays the strongest correlation with EVI in the majority of 

provinces (Appendix B Figure B-11B). Not all provinces show such extremes of climate 

influence however, tundra (**11) provinces in particular show evenness between the climate 

variables across all biomes comparable to that seen in the PSI. BRT model fit for the VSI 

performed best in the Afrotropic, Australasia and Oceania biomes. Model fit is good on the 

whole in the remaining biomes, with each having a single poorly performing province. 

3.5 Discussion 

The Phytoplankton Sensitivity Index (PSI; Chapter 2) for the marine realm was combined with 

the Vegetation Sensitivity Index (VSI; Seddon et al., 2016) for the terrestrial realm to produce 
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a Combined Sensitivity Index (CSI) of global primary productivity sensitivity relative to 

environmental variability. I investigated the potential of the CSI to identify generalised, global 

patterns in cross-realm sensitivity, to provide explanatory power in terms of its environmental 

drivers and to facilitate analyses of its temporal dynamics. In doing so, I have shown the 

existence of a global, cross-realm macroecological pattern in primary productivity sensitivity 

relative to environmental variability, which holds across a range of spatial scales. A latitudinal 

gradient of increasing sensitivity towards the poles is visible at both degree of latitude and 

hemispheric scales in the CSI and within each individual index; regional scales are less 

effective for reliably demonstrating the gradient. I have also identified evidence of realm-

independent trends in the temporal dynamics of primary productivity and climate anomalies 

along gradients of sensitivity. By combining the two indexes, I have produced a truly global 

macroecological view of environmental variability that can be used as a basis on which to 

examine the responses of communities at higher trophic levels. 

3.5.1 Scales of sensitivity 

3.5.1.1 Global latitudinal gradient 

Latitudinal gradients form the basis of numerous macroecological patterns known to occur in 

both marine and terrestrial realms for a range of attributes (e.g. species diversity (Fisher et al., 

2008), range size (Stevens, 1989)). Qualitative analysis of the PSI and VSI indicated that this 

might also be the case for primary productivity sensitivity (Figure 3.1). Quantitative analyses 

confirmed the existence of a significant positive correlation in both the median and 95% range 

of sensitivities with degree of latitude, indicating the presence of a global gradient of increasing 

sensitivity towards the poles in both the CSI (Figure 3.2), PSI (Figure 3.3) and VSI (Figure 3.4). 

In all three indexes the latitudinal gradient is strongest in the 95% range of sensitivities, 

reflecting the heavy right skew present in the PSI and VSI. This also suggests that whilst the 

highest sensitivities are concentrated in sub-polar and tropical latitudes, these latitudes also 

contain the widest, and in many cases full, range of sensitivities. As a result, high latitude alone 

cannot be directly predictive of high sensitivity but does increase its likelihood. This is in 

contrast to low sensitivity temperate regions (~20-40° Latitude) particularly in the Southern 

hemisphere, where the range of sensitivities is much narrower (Figure 3.2A) giving latitude 

higher predictive power. Incorporating longitudinal bins into the analyses could help to further 

delineate trends in sensitivity at latitudes with high sensitivity ranges.  

Whilst the latitudinal gradient observed in the CSI is present in both the PSI and VSI, inter-

realm differences in the sensitivity gradient do occur that are either masked in the CSI or driven 

specifically by one index. Firstly, an increase in tropical sensitivity is present in both the median 



 79 

and 95% range of sensitivities in the VSI (Figure 3.4B-C), which is subsequently reflected in 

the CSI (Figure 3.2). In the PSI an equatorial peak is only apparent in the 95% range of 

sensitivities (Figure 3.3C), with median sensitivity remaining consistently low throughout the 

tropics (Figure 3.3A-B). Secondly, high sensitivity in high Southern latitudes in the CSI is driven 

exclusively by the PSI due to the VSI not extending beyond 60°S, however the trajectory of 

sensitivities in the VSI for the Southern hemisphere (Figure 3.4B-C) suggests that if the VSI 

also continued beyond 60°S, it would support the pattern observed in the PSI and CSI. The 

increased variability of the median and 95% range of sensitivities in the Southern hemisphere 

for the VSI is also diluted in the CSI when combined with the less variable PSI. These 

differences suggest that whilst the latitudinal gradient holds true at a global, integrated level, 

examining the individual indexes could provide a greater level of explanatory power in terms 

of realm specific detail and should be considered in future comparative studies.  

3.5.1.2 Hemispheric scale 

Significant, positive relationships between latitude and sensitivity were identified via GAM 

analysis in both Northern and Southern hemispheres for the CSI (Figure 3.2B-C), PSI (Figure 

3.3B-C) and VSI (Figure 3.4B-C). Within each index, these hemispheric trends in sensitivity 

exhibit a high degree of similarity at corresponding degrees of latitude (Figure 3.5). Median 

sensitivity in particular shows minimal differences between hemispheres along the full range 

of latitudes in each index (Figure 3.5). The 95% range of sensitivities also share a high degree 

of similarity across hemispheres between ~0-40° Latitude, after which the range of sensitivity 

in the Southern hemisphere surpasses that in the Northern hemisphere in both indexes (Figure 

3.5). These results indicate that within 40°N – 40°S, primary productivity vulnerability to climate 

variability is equivalent across hemispheres within each index and could perhaps allow for 

extrapolation across hemispheres. Beyond this range the hemispheres should be considered 

separately as a northern, temperate focus could result in Southern hemisphere vulnerability 

being underestimated. Within hemispheres a significant interaction of realm was identified for 

both the median and 95% range of sensitivities in the Southern hemisphere, and for the 95% 

range of sensitivities in the Northern hemisphere, indicating that whilst the overall latitudinal 

gradient is similar in each realm, marine and terrestrial hemispheric trends are distinguishable 

from one another. This is due to the terrestrial realm exhibiting slightly higher 95% range values 

than the marine realm in both the Northern (Appendix B Figure B-4B) and Southern (Appendix 

B Figure B-4D) hemispheres. Differences in curvature of the trend, though significant, are 

marginal (Appendix B Table B-4-Table B-7). For median sensitivity an interaction with realm 

was only identified in the Southern hemisphere, with the VSI exhibiting more curvature than 

the marine PSI (Appendix B Figure B-4C). The lack of a significant interaction of realm for 
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median sensitivity in the Northern hemisphere could suggest that the trends are realm 

independent, however it is more likely a result of poor model fit (R2 = 0.311) owing to the 

increased variability of the terrestrial gradient (Appendix B Figure B-4A). These results reaffirm 

that the latitudinal gradient in increasing sensitivity towards the poles is a general pattern that 

holds true in both realms and hemispheres but requires realm dependent consideration for 

maximum inference. Full statistical output can be found in Appendix B Table B-4-Table B-7. 

3.5.1.3 Regional scale 

A latitudinal gradient in sensitivity could not be demonstrated at a regional spatial scale for 

either the marine or terrestrial realm. Median province sensitivities were uncorrelated with 

province centroid latitude in both indexes and correlation between the 95% range of 

sensitivities and province centroid latitude, whilst significant, was weaker than for sensitivity 

per degree of latitude. Regional levels of geographical organisation are therefore of limited use 

for inferring sensitivity, due to the overlapping spread of sensitivities between provinces and 

the lack of differentiation between biomes in both indexes (Figure 3.6). The large ranges in 

pixel sensitivity observed within the majority of marine provinces (Figure 3.6A) suggests that 

sensitivity within individual provinces isn’t cohesive, however it could also indicate that the 

Longhurst regionalisation isn’t fine scale enough to accurately capture patterns within the index 

(discussed further in Section 3.5.3). Whilst the terrestrial provinces also display high variance 

within province sensitivities (Figure 3.6B), the Ecoregions2017 includes a finer scale 

regionalisation than the level employed here (see Section 3.3.2) which might reduce this 

variance. Despite the lack of cohesiveness within provinces, there is weak evidence of 

cohesiveness at a biome level. In keeping with higher sensitivities being found at higher 

latitudes, the mixed effects model results identified the polar biomes as having significantly 

higher sensitivities than temperate and tropical biomes in both realms, and also as having 

higher province variances (Figure 3.7). Due to the previously discussed uncertainties with polar 

satellite data (Section 3.3.2) these results should be treated with caution, however as they are 

neither anomalous nor unexpected, it was not thought necessary to exclude the data. 

Additionally, whilst the polar biomes could be distinguished from other biomes, the 

regionalisation is still of limited use as any inference could just as easily be obtained from 

latitude, given the high latitude positioning of polar biomes. 

3.5.2 Temporal dynamics  

A key component of advancing macroecological theory is the ability to incorporate and infer 

temporal dynamics related to the pattern, in order to better determine underlying processes 

(Fisher et al., 2008, 2010). In examining cross-realm primary productivity mean and anomaly 
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times series alongside climate anomaly time series for regions of equivalent sensitivity and 

latitude, I found evidence of similar trends in the temporal dynamics of primary productivity 

occurring within regions of similar sensitivity, irrespective of realm (Figure 3.8). Low sensitivity 

areas in both realms showed greater stability and higher temporal autocorrelation across years 

indicative of ‘red noise’, compared to low temporal autocorrelation and instability (white noise) 

across years in high sensitivity regions. Similarities in cross-realm variability structures such 

as in these time series are not without precedent; white-red gradients in variability from 

terrestrial-marine environments are known to occur, particularly in coastal environments 

(Vasseur and Yodzis, 2004). The consistent correlation between climate and primary 

productivity anomalies visible in the low sensitivity yearly time series, particularly with respect 

to temperature and precipitation for the marine and terrestrial realms respectively (Figure 3.8A-

B), is further reflected in the year-round significant climate-primary productivity anomaly 

relationships identified in the P/VSI (Appendix B Figure B-6). High sensitivity regions on the 

other hand exhibit fewer months in a year with significant climate-primary productivity anomaly 

relationships (Appendix B Figure B-6), consistent with there being minimal discernible patterns 

between the primary productivity and climate anomaly time series (Figure 3.8C-D). These 

results suggest that similar processes determine sensitivity in both marine and terrestrial 

realms, and that despite differences in the temporal and spatial scales of producer life histories 

(Steele, 1991a), their responses to environmental variability are comparable.  

Further examination of these trends via spectral analysis did not find further support for them, 

however. In light of the apparent trends in the anomaly time series, I expected to find trends of 

increasing sensitivity with decreasing temporal autocorrelation (i.e. a correlation between high 

sensitivity and white noise). Conversely, spectral analysis results found all variable spectral 

densities to be uncorrelated with gradients of sensitivity, and primary productivity, temperature, 

wind and precipitation anomaly time series to be significantly realm-dependent (Figure 3.9). 

Radiation was the only climate variable to exhibit a white frequency structure in both the PSI 

and VSI, with no discernible difference in spectral frequencies between the two realms. Inter-

realm differences in the autocorrelation structure of climate variable anomalies are not 

surprising. The buffering effects of the ocean promote reddened environmental spectra 

(Rohani, 2004; Steele, 1985), whilst terrestrial abiotic variables exhibit white or weakly 

reddened variance structures (Gilljam et al., 2019). Within primary productivity anomalies there 

is weak evidence of the expected negative trend between sensitivity and temporal variability 

structure, with higher mean sensitivities exhibiting lower spectral frequencies of variation 

(Figure 3.9A), however it is not significant. The lack of significance between temporal 

autocorrelation and mean sensitivity could be a result of the right skew present in the PSI and 

VSI towards lower sensitivities. Whilst initial pixels were selected based on their sensitivity 
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level from low-high, the pixels selected within each 1° or 2° square surrounding the initial pixel 

would not necessarily have been of a similar sensitivity level due to the predominance of low 

sensitivities in the indices, resulting in there being no mean sensitivity values above 40 in the 

analyses. Another possible cause is missing data. Spectral frequency analysis requires 

complete time series to run, however missing data disproportionately affects Chl-a in high 

sensitivity pixels in the marine index (Appendix B Figure B-8), further reducing the chances of 

high sensitivity pixels being included in the analyses. Whilst as a proportion of high sensitivity 

pixels the amount of missing data appears large, in terms of the total number of pixels it is a 

very small amount and largely due to data being unavailable in the Southern Ocean during 

Southern hemisphere winter months (Dr Tom Jackson, ESA OC-CCI developer, pers comm.), 

where there are high concentrations of high sensitivity pixels. All other variables in both the 

PSI and VSI had complete data series. Whilst EVI in the terrestrial index had complete time 

series (Appendix B Figure B-9), the small number of high sensitivity pixels could have 

prevented a trend from being detected. 

To date, estimating colour for environmental variables explicitly linked to biotic data has only 

been done once and only for variables correlated with terrestrial animal populations (Gilljam et 

al., 2019). Our work suggests that at the current time, spectral frequency cannot be used as 

an indicator of primary productivity sensitivity in the marine or terrestrial realm and further 

analyses at longer temporal scales or with more complete time series would be required to 

clarify the contrast in results between the time series trends and spectral analysis. Having said 

this, whilst the time series of the examined variables displayed realm-dependent spectral 

frequencies, the relationship (or lack thereof) with sensitivity exhibited by each variable was 

realm-independent. It is therefore possible that further analyses with improved data coverage 

could identify common trends between time-series variance and sensitivity across realms.  

3.5.3 Climate influence on sensitivity 

Despite the latitudinal similarities in sensitivity across realms, there are considerable 

differences in climate influence on sensitivity between the two realms. Water limitation is the 

dominant driver of primary productivity sensitivity across much of the terrestrial realm, whereas 

in the marine realm dominant influence is much more evenly spread across the three climate 

drivers (Figure 3.10). When looking at interactions between climate variables and the level of 

climate driver dominance, inter-realm differences are even more pronounced (Figure 3.11). In 

the marine realm BRT analysis identified temperature, wind and radiation anomalies as all 

being equally important to sensitivity prediction, with marginal differences present between 

variables within provinces and no visible distinctions between biomes (Figure 3.11A). The 
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terrestrial realm by contrast exhibits highly varied and dominant climate influences both within 

and between provinces, and also shows some biome continuity (Figure 3.11B). Precipitation 

anomalies are the best predictor of primary productivity sensitivity in tropical terrestrial biomes 

which are most likely to suffer water limitation, with the exception of tropical forest provinces 

which favour cloudiness. Given the canopy density in these regions and the micro-climates 

that exist in tropical forests this is not surprising. The Arctic biomes are more even in their 

climate interactions; temperature is generally the most important driver of sensitivity in the 

Palearctic biome over Europe and Russia, whilst cloudiness and precipitation tend to dominate 

in the North American Nearctic biome. Interestingly, provinces which appear in multiple biomes 

exhibit vastly different results. For example, for the Mediterranean Forests, Woodlands and 

Scrub province (**12) precipitation accounts for over 60% of sensitivity in the Afrotropic and 

Australasia biomes with temperature having minimal influence, however in the Neotropic 

biome temperature is the dominant variable accounting for ~55% of predictive power. This 

suggests that generalising climate influence across recurring provinces would be 

inappropriate, requiring them to be considered either individually or in conjunction with their 

corresponding biome. 

The lack of variation in climate variable influence observed in the BRT results for the PSI could 

be due to the greater inertia of the marine realm, and the longer timescales required for climate 

anomalies to induce change in the physical composition of large bodies of water. It is also 

possible that variables not included in the index, such as nutrient availability, could be more 

directly influential on marine primary productivity sensitivity than climate anomalies. A third 

possibility is the size of the provinces used in the analysis. When patterns of climate influence 

in the marine realm are compared against the Longhurst provinces (Figure 3.10) multiple areas 

of influence within the same province are apparent in certain regions, such as the Indian S. 

Subtropical Gyre (ISSG) province. With each BRT model being fitted to an entire province it is 

likely that within province differentiation is masked and averaged in the final output, thus not 

accurately reflecting the patterns observed within the data. This could also be contributing to 

provinces which have best fitting models with tree complexities of 20 (Appendix B Table B-2-

Table B-3), indicating a high level of interaction occurring within the data.  

The Ecoregions2017 provinces used for the VSI are considerably smaller than the Longhurst 

provinces so may better capture variation present in the terrestrial data, resulting in the 

considerable between biome variation observed in the VSI model output. Nieto and Mélin's 

(2017) BRT analysis of the Gulf of Guinea lends support to this. Nieto and Mélin (2017) found 

considerable variation in climate driver influence on chlorophyll variation when employing a 

BRT analysis with a much finer scale regionalisation than used here for the marine realm, 
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dividing the GUIN Longhurst province into 56 cells. This could also explain the poor model fit 

found here when operating at the scale of the entire GUIN province. As BRT analysis puts 

breaks in the data until best fit is achieved, it had originally been intended to run the BRT with 

increasing levels of geographic structuring complexity (i.e. run on the PSI with no structuring, 

run with biomes included and then run with provinces included) to determine if the model would 

agree with the structuring suggested by the biogeographic classification system used. 

Unfortunately, the computing power and time required to run the BRT for one marine biome 

alone made it unfeasible to apply the method to biomes or the full dataset.  

My results suggest that the Longhurst classification structure could be prohibitively large for 

capturing regional patterns in marine responses to environmental variability. Particularly in 

dynamic regions, phytoplankton habitats can be considerably smaller than Longhurst’s 

delineations (Weber et al., 2019). Alternative classification systems for the marine realm have 

been proposed more recently such as Marine Ecoregions of the World (MEOW; Spalding et 

al., 2007), an in-depth delineation of coastal and shelf waters into 232 distinct ecoregions, and 

the Pelagic Provinces of the World (PPOW; Spalding et al., 2012), which uses oceanographic 

and taxonomic biogeographic features to classify the pelagic realm into 37 provinces and 7 

biomes. The PPOW could be a more appropriate alternative to the Longhurst biomes for these 

analyses given it is more recent and places a larger emphasis on biological patterns in setting 

its boundaries, however the lack of coverage in coastal areas would have proved problematic 

(Appendix B Figure B-12). The PPOW is intended for use in conjunction with the MEOW to 

provide global coverage, however many of the 232 MEOW coastal ecoregions would have 

been too small to adequately fit models to for both the GAM and BRT analyses. For more 

temporally or spatially explicit analyses than performed here, a dynamic boundary approach 

to account for seasonal variation as seen in Reygondeau et al. (2013) for pelagic areas, or a 

more fine scale regionalisation such as the MEOW for coastal areas would be beneficial. 

Whilst a regional spatial scale proved ineffective for identifying patterns in climate drivers, this 

does not reduce the efficacy of the sensitivity indices to act as mechanistic macroecological 

patterns, given that climate influence can be examined on a pixel by pixel basis. It does 

however mean that averaging over regions, particularly in the PSI, would be unwise. The lack 

of cross-realm trends in climate influence on sensitivity suggests that whilst the outcomes of 

the indices in terms of primary productivity responses and ecosystem resilience are 

comparable across realms, the influence of climate must be considered separately. The BRT 

analysis also shows that simply identifying the dominant driving climate variable of sensitivity, 

without accounting for interactions between climate variables or their level of dominance may 

lead to inaccurate conclusions about their importance on the observed primary productivity 
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response. Incorporating climate interactions therefore provides valuable additional information 

on vulnerable areas identified in the sensitivity indices and for the terrestrial realm in particular, 

establishes key climate variables for monitoring and/or predicting future vulnerability to 

environmental variability in different regions. 

3.5.4 Implications and future research 

In combining the PSI with the VSI I have shown the existence of a global, cross-realm 

macroecological pattern in the latitudinal gradient of primary productivity sensitivity relative to 

environmental variability. Visible at both global and hemispheric scales, the gradient shows 

both where extrapolation across hemispheres could be possible and where the hemispheres 

must be considered separately, with subsequent implications for the northern, temperate focus 

of much climate research. Whilst inter-realm differences in sensitivity are minor, they suggest 

that examining the individual indexes could provide a greater level of explanatory power in 

terms of realm specific detail and should be considered in future comparative studies. 

Differences in the influence of dominant climate variables on sensitivity between the realms, 

and particularly their interactions with other climate drivers, must also be taken into account 

when making cross-realm comparisons in sensitivity, and particularly when predicting or 

inferring causal mechanisms. Overall, the CSI reveals interesting structure in the global 

distribution of primary productivity sensitivity. Whilst some of this structure can be predicted by 

latitude, not all of it can. The lack of clear marine – terrestrial distinction in primary productivity 

sensitivity, with both realms exhibiting similar levels of high and low sensitivity, lends the CSI 

to further use as a base layer for cross-realm comparative studies. If we accept that 

environmental variability – and responses to it – are key in driving community composition and 

life history evolution, then properly accounting for it is important. By incorporating the CSI into 

future comparative studies on responses to climate change and the global distribution of 

species, more nuanced analyses and interpretations will be possible than with a simple marine 

versus terrestrial model. It will also enable predictions for marine and terrestrial communities 

that are likely to share certain features, for example in terms of macroecological summaries of 

diversity such as species abundance distributions (SADs; Chapter 4) or species composition 

in terms of life history. 
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4 Temporal trends in Species Abundance 

Distributions: Comparing marine and 

terrestrial community structure along 

gradients of environmental variability 

 

4.1 Abstract 

Species responses to environmental variability can vary markedly (Morris et al., 2008; 

Stenseth et al., 2002; Vasseur et al., 2014) and are not guaranteed to be consistent across 

realms. With increasing levels of change occurring in natural systems, reliable measures for 

effective detection of change across trophic levels are needed. Species abundance 

distributions (SADs) identify patterns of commonness and rarity in communities, and can 

provide an early warning signal of community change or disturbance (Matthews and Whittaker, 

2014; Sæther et al., 2013b). Here, I use global community assemblage data from the BioTIME 

database (Dornelas et al., 2018) with sensitivity data from the Phytoplankton Sensitivity Index 

(PSI; Chapter 2) and Vegetation Sensitivity Index (VSI; Seddon et al., 2016) for the marine 

and terrestrial realms respectively, to investigate the structure of SADs for cross-realm 

communities along gradients of primary productivity sensitivity to environmental variability 

through time. A significant trend of decreasing community evenness with increasing primary 

productivity sensitivity was identified in the terrestrial realm, however no significant evidence 

was found of a corresponding correlation between marine community structure and gradients 

of primary productivity sensitivity. There was also no evidence of changes in community mean 

through time in either realm. Overall, marine communities exhibited lower evenness than 

terrestrial communities. By combining temporally explicit SADs with environmental variability 

derived ecosystem sensitivity, I have identified trends in marine and terrestrial community 

composition attributable to environmental pressure, providing a contiguous link through 

macroecological patterns from the abiotic to the biotic from which underlying processes can 

be better determined. 
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4.2 Introduction 

Environmental variability affects species dynamics and processes (Dawson and Hamner, 

2008; Ma et al., 2015; Suryan et al., 2009) influencing population dynamics (Ruokolainen et 

al., 2009), growth rates (Lawson et al., 2015), extinction risk (Ruokolainen and Fowler, 2008) 

and the turnover and abundance of species within communities (Ives et al., 1999). Alongside 

general environmental variability, extreme environmental events are increasing in frequency 

(Easterling et al., 2000; Ma et al., 2015) with extreme temperature events in particular causing 

a significant threat to higher trophic level community dynamics (Ma et al., 2015; Vasseur et al., 

2014). Species responses to environmental variability can vary markedly (Morris et al., 2008; 

Stenseth et al., 2002; Vasseur et al., 2014) and population responses to global change are not 

guaranteed to be consistent across realms. Evidence already suggests that compositional 

change (Blowes et al., 2019) and species turnover (Pinsky et al., 2019) in populations is 

currently occurring faster in the marine than terrestrial realm. With increasing levels of change 

occurring in natural systems, increased understanding of the drivers of population and 

community dynamics is needed to enable effective detection of change across trophic levels.  

Whilst higher trophic level species can be directly impacted by abiotic conditions, for example 

through temperature effects on metabolic rates, a major route of environmental variability 

impacts on higher trophic level populations is via indirect effects on resource availability and 

predictability (Durant et al., 2007). Primary producers respond directly to direct environmental 

control, and form a link between production and consumption in trophic interactions, such that 

the availability and predictability of primary producers is integrally linked to both the abundance 

and distribution of higher trophic level communities (Cushing, 1990; Toszogyova and Storch, 

2019) and abiotic conditions. Combining estimates of primary productivity sensitivity to climatic 

variability with metrics describing the distribution and structure of diverse marine and terrestrial 

population assemblages could therefore provide a way of identifying the drivers behind higher 

trophic level population change. Regions that are sensitive to current variability at a primary 

producer level might already be exhibiting detectable signals of related change at higher 

trophic levels. To test this, a measure of higher trophic level community dynamics is required 

that can be correlated to environmental drivers and resource availability; the species 

abundance distribution (SAD; Preston, 1948) is one such measure.  

SADs are one of the most universal descriptors of community structure in ecology, identifying 

and quantifying patterns of commonness and rarity in communities by considering how 

abundance (total number of individuals) is distributed between species within a community. 

Across all ecosystems examined to date, both marine and terrestrial, a classic hollow- or J-
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curve is produced on the arithmetic scale, indicative of many rare species and few common 

ones (McGill et al., 2007). A principal feature of SADs is that they are unlabelled: species 

identities are not included in the distributions (McGill et al., 2007). This makes the SAD well-

suited to comparisons of contrasting communities with few or no shared species (e.g. 

Whittaker, 1975), including cross-realm communities (e.g. Gray et al., 2006). Comparisons of 

contrasting cross-realm communities have identified differences in the structure of marine and 

terrestrial SADs (Gray et al., 2005), however very similar structures can be observed when 

examining communities within the same functional groups (Gray et al., 2006). As well as 

comparing different communities, SADs have also been used to compare community structure 

along environmental gradients of productivity (Latitudinal: Hubbell, 1979; Elevational: 

Whittaker, 1960) and habitat complexity (Cotgreave and Harvey, 1994; Hurlbert, 2004), with 

all showing greater evenness in distributions at higher levels of productivity and complexity.  

Although spatial SAD studies have revealed important trends, it has been argued that temporal 

scale must also be accounted for when calculating SADs (Magurran, 2007), as it will 

undoubtedly affect the shape of the distribution and could lead to better inference of the 

underlying ecological processes behind observed distributions. For example, changes in SAD 

structure through time can identify both changes in core and transient species within a 

population (Magurran and Henderson, 2003) and directional long-term community changes 

due to resource allocation (Thibault et al., 2004), succession (Wilson et al., 1996) and 

anthropogenic pressure (Bhat and Magurran, 2006). Placing SADs into the context of the 

abiotic environment has also been advocated to aid the identification of processes and 

mechanisms responsible for patterns observed in SADs (McGill et al., 2007). It has since been 

shown that environmental stochasticity can influence the shape of the final SAD distribution 

with the parameters describing SADs varying systematically with environmental variance 

(Sæther et al., 2013b), meaning that SADs can provide an early warning signal of community 

change or disturbance due to environmental variability (Dornelas, 2010; Matthews and 

Whittaker, 2015; Sæther et al., 2013b). 

Several models exist for fitting SADs to abundance data (reviewed in Baldridge et al., 2016 

and McGill et al., 2007), however the Poisson lognormal distribution (Bulmer, 1974) has 

several benefits if the aim is to determine change in assemblages resulting from environmental 

forcing. Firstly, it employs a discrete parametric approach with well-defined sampling 

assumptions, complementary to both the normal distribution typical of logarithmic population 

abundances (Sæther et al., 2013b) and the discrete nature of count abundance data (Bulmer, 

1974). Secondly, the lognormal distribution provides an equivalently good fit to empirical SADs 

as the log-series and negative binomial distributions (Baldridge et al., 2016) and performs 
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particularly well in marine communities (Connolly et al., 2014). Whilst some studies have found 

contrasting results to this (e.g. Ulrich et al., 2010), these have typically looked at the goodness 

of fit of SAD distributions on rank abundance data as opposed to count abundance data 

(Baldridge et al., 2016). Perhaps most importantly however, is the ease of interpretation of its 

two key parameters describing community structure: mu and sigma. mu provides a measure 

of the mean abundance of a community whilst sigma provides a measure of the evenness, or 

spread, of abundances within a community (Sæther et al., 2013b). A community with high 

evenness indicates that the majority of species have similar abundances, resulting in the 

spread of abundances (sigma) being low. A community with low evenness on the other hand 

contains species with a wide range of abundances (high sigma) and can be an indication of 

high species turnover. It is through variation in the sigma parameter that changes in 

assemblage structure can be identified (Sæther et al., 2013b). 

By correlating the Vegetation Sensitivity Index (VSI; Seddon et al., 2016) and Phytoplankton 

Sensitivity Index (PSI; Chapter 2) with parameters describing SADs that emerge at the 

community level, an indirect link would be provided to determine environmental variability 

impacts on community stability across trophic levels, including dependent higher trophic level 

populations. Incorporating measures of environmental variability would also allow for more 

nuanced comparisons to be made than in previous comparative analyses of community 

structure that have relied on simple marine-terrestrial divisions. Here, I compare the structure 

of Poisson lognormal SADs through time fitted to 43 marine and 49 terrestrial communities 

extracted from the BioTIME community assemblage database (Dornelas et al., 2018) along 

gradients of primary productivity sensitivity. By combining temporally explicit SADs with 

ecosystem sensitivity derived from environmental variability, I aim to identify trends in marine 

and terrestrial community structure attributable to environmental pressure, which could lead to 

their use as environmental indicators of change (McGill et al., 2007). To do this, I also test for 

differences in the evenness (sigma) of communities existing in high versus low primary 

productivity sensitivity environments within and across realms. I predict that areas 

characterised by high sensitivity and high environmental variability will show lower evenness 

in SADs, and hence higher sigma values, though time. Given the dominance of temperature 

as a driver of higher trophic level community change and climate sensitivity (Ma et al., 2015; 

Pinsky et al., 2019), I also investigate trends in community structure against the temporal 

autocorrelation structure of temperature variability. In this chapter I aim to show that the effects 

of environmental variability via the PSI and VSI are detectable in higher trophic level 

communities dependent on primary productivity stability, providing a contiguous link through 

macroecological patterns from the abiotic to the biotic from which underlying processes can 

be better determined.  
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4.3 Materials and Methods 

4.3.1 Biodiversity data 

All abundance data was obtained from the BioTIME database (Dornelas et al., 2018). BioTIME 

is an open-source database of compiled assemblage time series, comprising 12,623,386 

species abundance records for marine, freshwater and terrestrial taxa covering all the major 

continents and marine biomes (Dornelas et al., 2018). To be included in BioTIME, datasets 

are required to have a minimum of 2 years of recordings, a consistent sampling methodology 

through time, a majority of individuals identified to species level, and to have sampled 

assemblages with all observed individuals identified and counted (Dornelas et al., 2018). From 

the initial BioTIME database (downloaded on 20/08/2018) datasets were selected which 

covered the 2000-2013 time series of the PSI and VSI, contained recordings for month as well 

as year, and used count abundance as oppose to density or biomass to ensure that the SADs 

were not influenced by methodological differences in the abundance measurements (Connolly 

et al., 2005). After filtering for these conditions and SAD calculation compatibility (Section 

4.3.3), 56 marine and 56 terrestrial datasets remained for analysis. Abundance observations 

within datasets were temporally aggregated on a monthly basis and then within months were 

spatially aggregated to 0.1° (~121 km2) Latitude and Longitude. Within monthly 0.1° 

aggregations separate sampling events were not differentiated, thereby assuming that 

repeated species observations were repeated observations of the same individuals. The 

maximum observed count was therefore used for the final abundance of any repeated 

observations within monthly aggregations. As previously stated, this method assumes that 

repeated observations across sampling events are recording the same individuals. This could 

lead to species abundances being underestimated if sampling events are recording different 

individuals, which are then being aggregated. An alternative approach would be to maintain 

sample integrity within 0.1° monthly aggregations, whereby repeated observations of species 

would be classed as distinct observations. In this case the species would have increased 

abundance in the SAD, however this could also lead to overestimations of abundance. A third 

option would be to calculate SADs at the sample level rather than the study/dataset level. From 

this point forward individual BioTIME datasets will be referred to as ‘communities’. 

4.3.2 Sensitivity and climate data 

To calculate the average primary productivity sensitivity associated with individual BioTIME 

communities, the coordinates of abundance observations for each selected BioTIME 

community were used to extract corresponding sensitivity values from a raster grid of the PSI  



 91 

 

Figure 4.1: BioTIME abundance data distribution. Distribution of BioTIME abundance sampling data used to 
calculate Species Abundance Distributions for the marine (blue) and terrestrial (green) realms. 43 datasets were 
selected for the marine realm and 49 for the terrestrial realm. All datasets either partially, or fully cover the 2000-
2013 time period used to calculate the Phytoplankton Sensitivity Index (Chapter 2) and Vegetation Sensitivity Index 
(Seddon et al., 2016).  

 

Table 4.1: Summary details of BioTIME datasets included in analyses.  

Realm Datasets Observations Biomes Taxa 

Marine 43 551,892 Polar ecoregions; Temperate shelf and 

sea ecoregions; Tropical seas; Tropical 

coral;  

Benthos; Plants; 

Birds; Fish; 

Invertebrates; 

Mammals 

Terrestrial 49 123,670 Boreal forests/Taiga Tundra; Deserts 

and xeric shrublands; Mediterranean 

forests, woodlands and scrubs; 

Temperate broadleaf and mixed 

forests; Temperate coniferous forest; 

Temperate grasslands, savannas and 

shrublands; Tropical and subtropical 

grasslands, savannas and shrublands; 

Tropical and subtropical moist 

broadleaf forests;  

Plants; Birds; 

Reptiles; 

Invertebrates; 

Mammals;  
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(9 km, 81 km2 resolution) and VSI (5 km, 25 km2 resolution) using the raster package 

(Hijmans, 2020) in R (R Core Team 2018, Version 3.5.1). These community specific sensitivity 

values were then averaged to provide a mean value of sensitivity per community, from which 

community SAD parameters could be ranked. As the results of Chapter 3 suggested that 

trends could be better captured by variation in PSI and VSI sensitivities rather than the mean, 

the standard deviation of sensitivities corresponding to abundance observations within each 

BioTIME community were also calculated. Abundance values with no corresponding sensitivity 

value (i.e. no matching coordinates between the dataset and the P/VSI) were removed, 

reducing the final number of BioTIME communities to 43 for the marine realm and 49 for the 

terrestrial realm (See Figure 4.1 for final BioTIME coverage, Table 4.1 for summary details of 

the included communities and Appendix C Table C-1 for full details). Sea surface and air 

temperature data was extracted from the raw time series used to calculate the PSI and VSI for 

the coordinates of each abundance observation within the selected BioTIME communities. To 

compare SADs along gradients of temperature variability, spectral analysis was performed on 

the temperature z-score anomalies following the methods detailed in Chapter 3, Section 3.3.4. 

Spectral analysis quantifies the level of temporal autocorrelation within a time series, which 

can then be used to produce colour coefficients, classifying variability as white (no 

autocorrelation) or reddened (positive autocorrelation; Vasseur and Yodzis, 2004).  

4.3.3 Species Abundance Distributions 

The poilog package (Grøtan and Engen, 2008) was used in R (R Core Team 2018, Version 

3.5.1) to fit the Poisson lognormal distribution to the BioTIME abundance data and estimate 

the mean (mu) and standard deviation (sigma) parameters for each distribution using 

maximum likelihood estimation (MLE; Matthews and Whittaker, 2014). Following Baldridge et 

al., (2016), the start values for the mu and sigma parameters were set as the mean and 

standard deviation of log10 abundance for each distribution. Due to this, months with a single 

observation, months where each observation had an abundance count of 1 and individual 

abundance counts of zero had to be removed as the standard deviation could not be calculated 

on single data points or zeros (log101), and zero values could not be logged. SAD models were 

fitted to each BioTIME study ID (signifying an independent dataset/community) and date (mm-

yyyy) combination to produce temporal SAD parameters of community structure, resulting in 

1,171 SADs for the marine realm and 877 for the terrestrial realm. The mean and standard 

deviation of community mu and sigma values were then calculated to obtain average SAD 

parameter values for each community for further analysis (Section 4.3.4). Parametric 

bootstrapping was used to determine the goodness-of-fit of the models, as recommended by 

(Matthews and Whittaker, 2014). Parametric bootstrapping simulates new sets of observations 
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using the estimated species abundance model parameters, from which the deviance between 

the model and the simulated data and the model and the empirical data can be compared to 

determine model fit (Connolly et al., 2009). An aggregate goodness-of-fit statistic is produced 

from the bootstraps whereby values of < 0.5 and > 0.95 indicate lack of fit. Here, 1,000 

bootstraps were performed for each SAD model. The Poisson lognormal distribution provided 

a good fit for all models (Appendix D Figure D-1). 

4.3.4 Community trends across realms  

To investigate the relationship between the mean and evenness of community SADs along 

gradients of sensitivity, linear mixed effects models with random intercepts (lme4; Bates et al., 

2015) were fitted to the average mu and sigma parameters of each community’s SADs, against 

the mean and standard deviation of community sensitivities fitted as fixed effects. To account 

for variation between the focal species of SADs the broad taxonomic group of each community, 

as defined by BioTIME (Table 4.1), was fitted as a random effect. Significance was determined 

using a likelihood ratio test with Kenward Roger approximation (pbkrtest; Halekoh and 

Højsgaard, 2014) as recommended by Luke (2017). To determine if there was a relationship 

between community structure through time and sensitivity level, linear regression models were 

fitted to each community’s mu and sigma parameters against the date (mm-yyyy) of the 

distributions. Communities were required to have a minimum of 8 time series points to be 

included in the analyses. The slopes of these linear regressions were then plotted against 

mean community sensitivity. To determine if community composition is influenced by 

temperature variability, the averaged mu and sigma parameters for each community over the 

whole time series were plotted against the spectral frequency of sea surface temperature and 

air temperature within each marine and terrestrial community area respectively. To test for 

realm dependence in the structure of community SAD distributions, Student’s t-Tests were 

performed on the average mu and sigma parameters for each community, by realm. 

Data analyses were conducted in the R project for statistical computing (R Core Team 2018, 

version 3.5.1) using the car (Fox and Weisberg, 2019), carData (Fox et al., 2019), cowplot 

(Wilke, 2019), dev.tools (Wickham et al., 2018), dplyr (Wickham et al., 2020), ggplot2 

(Wickham, 2016), grateful (Rodriguez-Sanchez, 2018), lme4 (Bates et al., 2015), Matrix 

(Bates and Maechler, 2019), mgcv (Wood, 2011), nlme (Pinheiro et al., 2019), pbkrtest 

(Halekoh and Højsgaard, 2014), poilog (Grøtan and Engen, 2008), purrr (Henry and 

Wickham, 2019), raster (Hijmans, 2020), readr (Wickham et al., 2018), rgdal (Bivand et 

al., 2019), sp (Pebesma and Bivand, 2005), stringr (Wickham, 2019b), tibble (Müller and 
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Wickham, 2019), tidyr (Wickham and Henry, 2020), tidyverse (Wickham et al., 2019), 

viridis (Garnier, 2018a) and viridisLite (Garnier, 2018b) packages. 

4.4 Results 

 

Figure 4.2: Species Abundance Distributions along gradients of PSI and VSI mean sensitivity. The average 
mean (mu parameter; A, C) and evenness (sigma parameter; B, D) with associated error (sd) of species 
abundances for each community, plotted against the mean PSI or VSI sensitivity of each community for the marine 
(A, B) and terrestrial (C, D) realm. SADs were calculated for each month-year combination of a community’s time 
series within 2000-2013. Sensitivity values were extracted from the PSI and VSI for the corresponding coordinates 
of community abundance measurements. Trendlines are based on the results of linear mixed effects models fitted 
to average community mu and sigma values against mean community sensitivity from the PSI or VSI, with taxa 
included as a random effect. Communities are grouped by their BioTIME associated taxa. 

The mean sensitivity of communities was uncorrelated with the means (mu) of community SAD 

distributions in both the marine (0.009 ± 0.347 se, t = 0.272; Figure 4.2A) and terrestrial realm 

(0.041 ± 0.039 se, t = 1.048; Figure 4.2C). Mean community standard deviation or evenness 

(sigma) on the other hand displayed a significant positive trend with mean community 

sensitivity in the terrestrial realm (0.030 ± 0.013 se, t = 2.267; F1,45.7 = 4.952, P < 0.05; Figure 

4.2D). A weak, negative trend was visible in the marine realm (Figure 4.2B), however this was 

not significant (-0.026 ± 0.014 se, t = -1.801; F1,40.1 = 3.121, P = 0.085). The means of  
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Figure 4.3: Species Abundance Distributions along gradients of PSI and VSI sensitivity standard deviation. 
The average mean (mu parameter; A, C) and evenness (sigma parameter; B, D) with associated error (sd) of 
species abundances for each community, plotted against the standard deviation of PSI or VSI sensitivity for each 
community for the marine (A, B) and terrestrial (C, D) realm. SADs were calculated for each month-year combination 
of a community’s time series within 2000-2013. Sensitivity values were extracted from the PSI and VSI for the 
corresponding coordinates of community abundance measurements. Trendlines are based on the results of linear 
mixed effects models fitted to average community mu and sigma values against the standard deviation of 
community sensitivity from the PSI or VSI, with taxa included as a random effect. Communities are grouped by their 
BioTIME associated taxa. 

community SAD distributions were also uncorrelated with the standard deviation of community 

sensitivity in both the marine (-0.015 ± 1.442 se, t = -0.195; Figure 4.3A) and terrestrial realm 

(0.072 ± -0.212 se, t = 0.881; Figure 4.3C), as were community standard deviations (Marine: 

0.033 ± 2.156 se, t = 1.078; Terrestrial: 0.015 ± 1.275 se, t = 0.519). No evidence was found 

of a relationship between community composition through time and sensitivity level: the slopes 

of linear regressions for mu and sigma through time were uncorrelated with community 

sensitivity, with the majority of communities exhibiting a slope of zero across all sensitivity 

levels (Figure 4.4). No relationship was found between the structure of SAD distributions and 

temperature variability in either realm (Figure 4.5; Marine: mu, 1.260 ± 0.091 se, t = 0.064, 

sigma, 1.377 ± 0.965 se, t = 1.631; Terrestrial: mu, 0.573 ± -1.484 se, t = -0.794, sigma, 1.357 

± -0.7754 se, t = -0.111). Community SAD distributions are realm dependent with respect to 

evenness but not to mean, with average community sigma parameters being significantly  
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Figure 4.4: Community composition through time against mean community sensitivity for the marine (A,B) 
and terrestrial (C,D) realm. The slope of linear regressions between the mean (mu; A, C) and evenness (sigma; 
B, D) of species abundance distributions through time for each community, against the mean sensitivity of each 
community. Communities were required to have a minimum of 8 time points to be included in the analyses. 

higher in the marine than terrestrial realm (Marine: 2.318; Terrestrial: 1.490; t = 4.964, df = 

83.845, P < 0.01). No significant difference was found between average community mu 

parameters for the marine and terrestrial realms (Marine: 0.073; Terrestrial: 0.381; t = -0.591, 

df = 78.99, P = 0.556). Removal of outliers with unusually high mean values in both realms 

(Appendix D Figure D-2) did not change the result and the outliers were not obviously 

anomalous to warrant their removal. Within each realm the mu and sigma parameters were 

uncorrelated (Appendix D Figure D-3).  

4.5 Discussion 

Environmental stochasticity is known to affect species dynamics and processes (Dawson and 

Hamner, 2008; Ma et al., 2015; Suryan et al., 2009), influencing the turnover and abundance 

of species within communities (Ives et al., 1999). This influence can be detected in changes in 

the structure of species abundance distributions (SADs), with communities expected to 

become less even (have a greater spread of species abundances) with increasing  
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Figure 4.5: Species Abundance Distributions along gradients of temperature temporal autocorrelation. The 
average mean (mu parameter; A, C) and evenness (sigma parameter; B, D) with associated error (sd) of species 
abundances for each community, plotted against the spectral frequency of temperature for each community in the 
marine (A, B) and terrestrial (C, D) realm. SADs were calculated for each month-year combination of a community’s 
time series within 2000-2013. Spectral frequencies were calculated for sea surface temperature and air temperature 
for the 2000-2013 time series for the corresponding coordinates of each community’s abundance measurements. 
Trendlines are based on the results of linear mixed effects models fitted to average community mu and sigma 
values against the spectral frequency of community temperature through the time series, with taxa included as a 
random effect. Communities are grouped by their BioTIME associated taxa. 

environmental variability (Sæther et al., 2013b). One way these effects can manifest in higher 

trophic levels is through population responses to variability in primary productivity. Here, 

marine and terrestrial assemblage data from the BioTIME database (Dornelas et al., 2018) 

was combined with sensitivity data from the Phytoplankton Sensitivity Index (PSI; Chapter 2) 

and Vegetation Sensitivity Index (VSI; Seddon et al., 2016) to investigate if trends were 

detectable in the structure of cross-realm community SADs along gradients of primary 

productivity sensitivity relative to environmental variability. A significant trend of decreasing 

community evenness with increasing primary productivity sensitivity was identified in the 

terrestrial realm. However, trends were inconsistent across realms with no significant evidence 

being found of marine community structure being correlated with gradients of primary 

productivity sensitivity. In placing SADs into the context of the abiotic environment I have 

shown that it is possible to detect trends in macroecological patterns of higher trophic level 
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species diversity that are directly related to global indices of primary productivity sensitivity, 

and hence indirectly to environmental variability. 

The sigma parameter of an SAD represents the standard deviation or evenness of abundances 

within a community, with a high sigma value indicating high standard deviation and low 

evenness and vice versa. The positive relationship identified between the sigma parameter for 

BioTIME community SADs and increasing primary productivity sensitivity in the terrestrial 

realm supports my prediction that communities would exhibit lower evenness, and hence a 

larger spread of species abundances, with increasing primary productivity sensitivity and 

environmental variability. Increased primary productivity sensitivity reflects lower resilience in 

producers to anomalous environmental variability, with an associated increased extinction risk 

(Burgmer and Hillebrand, 2011; Kaneryd et al., 2012). Increased environmental variability can 

also cause increased species turnover in populations, which can be indicated by low evenness 

(Sæther et al., 2013b). As a result, this trend suggests that certain terrestrial populations have 

low resilience to current increased fluctuations in primary resource availability and could be at 

increased risk of structural change with future increases in environmental variability. The 

positive trend demonstrated here also confirms that increased variability at the primary 

producer level can have a detectable influence on macroecological parameters describing 

higher trophic level community structure in the terrestrial realm.  

Past research examining SADs along productivity gradients found that greater evenness 

(lower sigma) occurs in regions with higher productivity (Hubbell, 1979; Hurlbert, 2004; 

Whittaker, 1960). Whilst I have not explicitly examined productivity levels here, I showed in 

Chapter 3 that increased sensitivity is associated with highly productive and species rich 

environments. Taken together, these results suggest the presence of inverse relationships 

between productivity and sensitivity with evenness. However, it is worth noting that an 

ecosystem can have high productivity without also having high sensitivity, diversity or richness 

(Whittaker, 1960), particularly at temperate latitudes where the majority of our community data 

is concentrated (Figure 4.1). Temperate regions typically have fewer species and have had 

less time to evolve niche differentiation, making it harder for rare species to take hold 

(Whittaker, 1965). Their SADs are therefore rather even, with more species of intermediate 

abundance and hence lower sigma (Whittaker, 1965). Tropical ecosystems on the other hand 

have more established niche differentiation and can maintain high species diversity resulting 

in more rare species, a greater spread of abundances and a less even population (Whittaker, 

1965). It would be interesting to see if existing trends in evenness with productivity gradients 

are supported with more recent data for tropical regions, or if this trend is counteracted by the 

increased sensitivity in these regions. 
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No significant evidence was found of community SAD structures varying with primary 

productivity sensitivity in the marine realm. However, whilst marine community structure is not 

significantly correlated with gradients of primary productivity sensitivity, a strong negative trend 

is present between community standard deviation and sensitivity suggesting that marine 

populations show increasing evenness with increasing sensitivity. The lack of significant trend 

could be due to weaker trophic coupling between primary productivity and higher trophic level 

taxa in the marine realm compared to in the terrestrial realm. Food chains in the marine realm 

are typically linear with zooplankton being the dominant consumer of phytoplankton. As a 

result, most marine taxa included in these analyses would be indirectly affected by 

phytoplankton sensitivity (surface phytoplankton fluctuations) through effects on their prey, e.g. 

marine mammals. The terrestrial realm by contrast contains herbivores within every included 

taxon, which are directly dependent upon primary producer stability. The trend not being 

significant and being the opposite direction to the trend found for the terrestrial realm could 

also suggest that community evenness in the marine realm is driven by factors other than 

primary productivity sensitivity.  

As well as cross-realm differences in trends between community SAD structural parameters 

and primary productivity sensitivity, cross-realm differences were also found in the SAD 

structural parameters themselves, with marine communities exhibiting significantly lower 

evenness (higher sigma) than terrestrial communities overall. This is perhaps surprising given 

the supposed homogeneity of the marine realm, as it could be expected that the increased 

stability of the marine realm would enable more similar species abundances to occur within 

communities. However, this result does support previous findings of higher species turnover 

in the marine realm (Blowes et al., 2019; Pinsky et al., 2019), which low evenness can be 

reflective of. The lack of relationship between mu and sigma within each realm despite this 

significant difference in cross-realm sigma is surprising and could have several causes. 

Increased dominance in the marine realm (i.e. common species being more common) would 

lead to an increased community standard deviation, as would a higher proportion of rare 

species, which could be reflective of poorer sampling in the marine realm. However, it is also 

possible that it is simply the result of a measurement effect whereby communities are 

censused differently in the two realms (Rafaelli et al., 2005). No compelling evidence was 

found of trends between taxonomic class and sensitivity in either realm, likely due to the small 

sample sizes of communities available for each taxon. I also found no evidence of differences 

in assemblage structure across taxa both within and between realms, again likely due to the 

small sample sizes. 
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The prevalence of slopes at, or close to zero in linear models of SAD parameters against time 

suggests that the communities have not undergone substantial change during the time series 

examined, at least at this aggregate scale. This is in contrast to the results of Blowes et al. 

(2019) who identified a faster rate of compositional change in marine versus terrestrial 

communities. This contrast between SAD and compositional metrics is likely due to the 

unlabelled nature of SADs, whereby species identities are not included in analyses. If 

immigration, emigration and/or extinction of species occur with a similar frequency and affect 

similar abundances within a time series, the overall evenness and richness of a community 

can remain the same, resulting in no detectable trend in SAD structure despite potentially high 

turnover of species (Brown et al., 2001; Dornelas et al., 2014; Hillebrand et al., 2018). 

However, whether masking of species turnover has occurred or not the lack of directional 

change in slopes is unsurprising given the short length of the time series examined. Despite 

the short time series, it is encouraging to note that communities in both low and mid-sensitivity 

environments across realms show no sign of significant change, suggesting that the 

communities are resilient to current levels of environmental variability effects on primary 

productivity. Whilst there was no evidence of directional change through time in community 

SAD structures, the error bars for each community in Figure 4.2 -Figure 4.3 suggest that there 

is some temporal variance within the individual communities during the time series. 

Despite temperature being a major driver of community change (Easterling et al., 2000; Ma et 

al., 2015; Pinsky et al., 2019; Poloczanska et al., 2013; Vasseur et al., 2014), no significant 

trends between community SAD structure and temperature autocorrelation were found in 

either realm. Whilst there is some suggestion of a positive trend between spectral frequency 

and community spread for the marine realm (Figure 4.5B), which would be consistent with 

marine communities experiencing more reddened temperature variability having lower 

evenness of abundances, this was not significant. My results do, however, further reflect the 

whiter nature of temperature temporal autocorrelation in terrestrial systems demonstrated in 

Chapter 3 (Figure 3.9), with terrestrial communities exhibiting spectral frequencies almost 

exclusively between 0 ≤ ß ≤ 0.5 compared to 0.5 ≤ ß ≤ 1.5 for marine communities (Figure 

4.5). The lack of trends found here is perhaps surprising given the recent wealth of research 

showing the considerable ecosystem effects of temperature anomalies over changes in mean 

conditions (Blowes et al., 2019; Easterling et al., 2000; Ma et al., 2015; Pinsky et al., 2019). 

This could indicate that individual extreme events are more important drivers of change than 

the general structure of variability experienced by an ecosystem, or that a longer time series 

would be required to detect trends due to general variability over single anomalous events. I 

also considered whether precipitation would be a more appropriate variable to use for the 

terrestrial realm, given that large parts of the terrestrial realm are water limited (Pearce-Higgins 
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et al., 2015; Seddon et al., 2016) and precipitation had been identified as the biggest driver of 

sensitivity in several regions (Chapter 3, Figure 3.11). However, preliminary investigations 

showed this not to be the case (Appendix D Figure D-4).  

Whilst within the PSI and VSI trends in sensitivity were strongest when looking at the range of 

sensitivities (Chapter 3), here trends in SAD structure were less visible when compared against 

the standard deviation of community PSI and VSI sensitivity rather than mean sensitivity. This 

could be due to the different focus of the analyses performed here. Trends in the spread of 

sensitivities within the PSI and VSI identified in Chapter 3 were most visible in spatial analyses 

of latitudinal gradients. The SAD analyses conducted here were focussed on temporal trends, 

with SADs fitted to BioTIME community-month (mm-yyyy) combinations regardless of the 

spatial extent of observations within each month. As a result, some BioTIME community-month 

combinations SADs were fitted to contained observations covering a large spatial extent 

(Appendix D Figure D-5A & C). Whilst I considered that the purely temporal focus of the 

analyses conducted here made it reasonable to spatially collate the abundance observations 

(the majority of SADs fitted cover less than 1° Latitude and Longitude (Appendix D Figure D-5B 

& D, Table D-1), spatial analysis such as conducted by Blowes et al. (2019) might be more 

likely to reveal gradients similar to those observed in the PSI and VSI. Data limitations however 

prevented a more thorough spatial analysis from being conducted. Despite the breadth of the 

BioTIME database, after filtering for abundance measure (i.e. count versus density) and time 

series the spatial extent of terrestrial community data was almost exclusively limited to a 

narrow range of latitudes and longitudes in North America, South Africa and East Asia, whilst 

marine data was heavily biased towards the West Atlantic and Southern Ocean surrounding 

Australia (Figure 4.1). The limited spatial coverage restricted the possibilities of doing spatial 

analyses along latitudinal gradients, similar to that of Blowes et al. (2019), which could further 

reveal where the effects of environmental variability on primary productivity resilience are 

already being felt in the community structure and stability of dependent higher trophic level 

populations.  

The limited spatial coverage also resulted in there being no communities with mean primary 

productivity sensitivities from the PSI and VSI above 50 included in the analyses, limiting the 

ability to draw conclusions regarding the effects of high sensitivity on community structure. 

Given visual indications of a negative trend between community evenness (sigma) and 

sensitivity in the marine realm (Figure 4.2B), it is possible that with an extended sensitivity axis 

this would have become significant and presented the opposite trend to that found in the 

terrestrial realm. It would also have enabled geographic separation of the existing terrestrial 

trend to investigate if evenness is correlated with the latitude and/or species richness of a 
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community as well as producer sensitivity, providing an extra layer of explanatory value. 

Theoretical studies suggest that species rich ecosystems are more vulnerable to the effects of 

increased climatic variability and face higher risks of extinction, particularly if species 

responses are uncorrelated within a community (Borrvall and Ebenman, 2008b; Kaneryd et 

al., 2012). With increased data availability the visual trends detected in spectral frequency 

might also become significant and inter-taxon patterns might be revealed.  

4.6 Conclusions 

In this study I have placed SADs into the context of the abiotic environment via global indexes 

of primary productivity sensitivity relative to environmental variability. In doing so, I have shown 

that it is possible to detect trends in the structure of higher trophic level communities directly 

related to primary productivity sensitivity and hence indirectly to environmental variability, 

providing a possible method of detecting future variability induced ecosystem change. I have 

shown that responses across realms are not consistent, with the lack of significant trends in 

the marine realm suggesting that (accepting the caveats discussed above) community stability 

is more resilient to increasing primary productivity sensitivity in marine than terrestrial 

communities. Having shown that the structure of SADs can be correlated with environmental 

variability and primary productivity sensitivity, a logical next step would be to introduce labelled 

SADs to increase understanding of individual species patterns within communities (McGill et 

al., 2007) and to further look into the roles of species turnover and core and transient species 

in community responses to environmental variability and primary resource sensitivity. Species 

turnover in labelled SADs would provide more detailed information on immigrations and 

extinctions, and is both more sensitive to (Dornelas et al., 2014) and more easily related to 

(Hillebrand et al., 2018) environmental change. Focal species identified during this process 

could then be further investigated in terms of their life history traits to determine which traits 

promote or impede longevity or community stability along gradients of climate sensitivity.  
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5 General Discussion 

The main aim of this thesis was to determine whether an explicit consideration of patterns of 

environmental variation, and species responses to these, could help to move beyond binary 

marine-terrestrial distinctions towards a more generalised formulation of ecological responses 

to environmental change, that hold across marine and terrestrial systems. To achieve this, I 

have created a new index of marine primary productivity sensitivity relative to environmental 

variability (Chapter 2) and explored its potential to bridge the marine-terrestrial divide (Chapter 

3), to explain environmental drivers of sensitivity (Chapter 3), and to understand variability in 

macroecological patterns of species abundance diversity (Chapter 4). Here, I summarise the 

key findings of this research (Section 5.1) and the contributions they make towards the 

advancement of cross-realm macroecology (Section 5.2). I also provide an overview of the 

main limitations of the work (Section 5.3) and detail future avenues of research that could 

further build on the work presented here (Section 5.4). 

5.1 Key findings 

I. The Phytoplankton Sensitivity Index (PSI) provides a global baseline of marine primary 

productivity sensitivity relative to environmental variability. Marine primary productivity 

is most sensitive to fluctuating environmental conditions in tropical and polar regions, 

coinciding with highly diverse and species rich ecosystems, indicating that these 

regions will be less resilient to future increases in environmental variability. The majority 

of the oceans exhibit low-mid sensitivities and are likely resistant to environmental 

variability at a primary producer level, however predicted expansion of low sensitivity 

areas could have considerable consequences for global phytoplankton composition. In 

adapting the methods of Seddon et al's (2016) existing Vegetation Sensitivity Index 

(VSI) for the terrestrial realm to create the PSI, the two indices are comparable and can 

be combined to create a truly global picture of primary productivity sensitivity and 

enable the identification of generalised cross-realm trends (Chapter 3). 

 

II. Primary productivity sensitivity successfully reveals general trends that hold across 

both marine and terrestrial realms and a range of spatial scales. Supporting the visual 

trends identified in Chapter 2, a cross-realm latitudinal gradient is present in primary 

productivity sensitivity at global and hemispheric scales, showing increasing sensitivity 

in the tropics and towards the poles. The gradient is more pronounced in the range of 

sensitivities than the mean across all spatial scales, suggesting that more widely used 
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average measures of change might miss key information. The Southern hemisphere is 

more sensitive than the Northern hemisphere at high latitudes (>40° Latitude) in both 

realms, indicating that the Northern bias in research effort may lead to 

underestimations of the predicted impacts of climate change in the Southern 

hemisphere. Regional scales are less effective for reliably demonstrating both the 

latitudinal gradient in sensitivity and for capturing patterns in climate driver influence, 

particularly in the marine realm, however this could be a reflection of the suitability of 

the regionalisation used. Whilst trends in sensitivity are realm-independent, there are 

considerable differences in the influence of - and interactions between - environmental 

drivers on sensitivity between the marine and terrestrial realms. In the marine realm, 

differences between the climate variables in their influence on sensitivity are marginal, 

whereas the terrestrial realm exhibits dominant climate influences which vary 

considerably in space and may have predictive value both within and between biomes. 

These differences in climate influence across realms must therefore be accounted for 

when interpreting the causes of sensitivity. I provide evidence of similar patterns of 

temporal structure in primary productivity anomalies across realms with similar abiotic 

correlations, however this warrants further investigation due to the lack of quantitative 

support in spectral analyses. This global, macroecological view of sensitivity to 

environmental variability can be used to examine the responses of higher trophic level 

communities along gradients of sensitivity (Chapter 4). 

 

III. Trends are detectable in the parameters of species abundance distributions (SADs) 

along gradients of primary productivity sensitivity. In accordance with predictions from 

theory, the community structure of terrestrial populations exhibits decreasing evenness 

with increasing sensitivity. Thus, trends can be detected in macroecological patterns of 

higher trophic level species diversity, directly related to indices of primary productivity 

sensitivity relative to environmental variability. Whilst marine community structure is not 

significantly correlated with gradients of primary productivity sensitivity, a strong 

negative trend is present between community standard deviation and sensitivity, 

suggesting that marine populations show increasing evenness with increasing 

sensitivity. Community structure shows further realm-dependence with marine 

populations having significantly lower evenness than terrestrial populations, supporting 

findings that species turnover is occurring faster in the marine than terrestrial realm 

(Blowes et al., 2019; Pinsky et al., 2019).  
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5.2 Contributions to cross-realm macroecology 

The work presented in this thesis provides several unique contributions to the development of 

cross-realm macroecology with integrated environmental explanatory power. By adapting the 

methods of Seddon et al. (2016) to create the PSI (Chapter 2) I have shown that examining 

the literature outside of your main realm of study can have fruitful results, and that methods 

developed for a feature of one realm (i.e. primary productivity; De Keersmaecker et al., 2015; 

Seddon et al., 2016) can successfully be applied to an equivalent feature in a different realm. 

This is important as journalistic separations between marine and ‘general’ ecology can reduce 

the examination of cross-realm literature and the subsequent extent of cross-realm fertilisation 

of ideas, impeding the rate of development and integration of ecological methods and theories 

across disciplines (Dawson, 2009; Menge et al., 2009; Rafaelli et al., 2005; Webb, 2012). I 

have also shown that by considering a common feature of all primary producers that can be 

measured in real time at a global scale (i.e. chlorophyll-a (Chl-a)), the differences in temporal 

and spatial scales of marine and terrestrial producer life histories can be overcome and 

generalised trends can successfully be identified across realms and at a range of spatial scales 

(Chapter 3). This work lends support to the approaches of Webb, (2012), who proposed that 

looking at a macroecological scale would likely be both revealing and unifying for marine-

terrestrial comparative studies, and Dawson and Hamner (2008), who argued that quantifying 

a feature in common units across realms would be a more effective way to approach 

comparative studies than simply stating ‘marine v terrestrial’ divisions. Dawson and Hamner 

(2008) used the example of Reynolds number for quantifying interactions between organisms 

and their fluid environment, here I have shown primary productivity sensitivity to be equally 

effective. 

The PSI is the first global measure to show phytoplankton sensitivity to variability in three 

governing variables of the marine environment, shedding light on the global distribution of 

marine resilience to short term environmental variability. From this I have identified a new 

latitudinal gradient in phytoplankton sensitivity concurrent with latitudinal gradients of 

phytoplankton species richness (Menegotto and Rangel, 2018; Righetti et al., 2019), with low 

sensitivity and low species richness coinciding in the midlatitudes and high sensitivity and high 

species richness occurring in the tropics. The PSI also shows that phytoplankton responses to 

environmental variability are not consistent across ecosystems, comparable to the global 

distribution of phytoplankton responses to changing mean conditions (Häder et al., 2014). In 

combining the PSI with the VSI (Chapter 3) the sensitivity status of marine and terrestrial 

realms to current levels of variability was found to be very similar, with both realms being 

dominated by low sensitivities. This is perhaps cause for some optimism given its implications 
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for global resiliency, however my results also reaffirm the results of other global studies (e.g. 

Beaumont et al., 2011; Diffenbaugh and Giorgi, 2012) that the impacts of climate change will 

be most strongly felt in the tropics and high latitudes, as they are already exhibiting signs of 

increased sensitivity and low resilience to current climate conditions. The P/VSI indices are 

also specific to primary productivity responses to environmental variability, however there are 

a multitude of other pressures currently facing both realms including ocean acidification, 

pollution, overexploitation and habitat change. As such, ecosystems must respond to the 

cumulative impact of all of these stressors and anthropogenic climate change at once and at 

a rate that has not previously been experienced. A valuable avenue of future research would 

be to combine the PSI and VSI with metrics of ecosystem responses to other stressors, which 

could shed light on cumulative ecosystem sensitivity to multiple stressors. 

To effectively bridge the marine-terrestrial divide, the PSI and VSI needed to exhibit general 

trends that held across realms at a range of spatial scales. The latitudinal gradient identified 

in primary productivity sensitivity achieved this at both global and hemispheric scales. The 

gradient also demonstrated where biases and/or conventions in current research practices 

could result in inaccurate or missed predictions. For example, the latitudinal sensitivity gradient 

shows that primary productivity responses between 40°N and 40°S are very similar and would 

perhaps allow for extrapolation across hemispheres, however above these ranges sensitivity 

in the Southern hemisphere outstrips that in the Northern hemisphere, particularly in the 

marine realm. This further confirms the disadvantages of the Northern, temperate bias in 

ecological research (Beck et al., 2012; Chambers et al., 2013; Pearce-Higgins et al., 2015), as 

it could result in predicted impacts in the Southern hemisphere being considerably 

underestimated. My findings at the regional scale also suggest that the widely used Longhurst 

classification structure (Longhurst, 1995a, 2007) could be prohibitively large for capturing 

regional patterns in marine responses to environmental variability and that within region 

variance needs to be considered when interpreting results. Finally, the gradient being 

considerably stronger in the range of sensitivities than the mean, suggests that the traditional 

focus on mean changes within regions or populations could result in missing important 

elements of variation or trends in population responses to change.  

The boosted regression tree analysis (BRT; Elith et al., 2008) performed in Chapter 3 to model 

interactions between climate drivers in the PSI and VSI was inspired by Nieto and Mélin (2017), 

who performed a similar BRT analysis for the Gulf of Guinea to determine the variability of 

ocean colour derived Chl-a in relation to a suite of 8 physical variables, including temperature 

and wind. The main difference between the BRT analysis conducted by Nieto and Mélin (2017) 

and the one conducted here was the spatial scale. Nieto and Mélin (2017) conducted their 
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analysis on 56, 200 x ~67 km cells, whereas my analysis was scaled up to global 

biogeographic regions. As far as I am aware, this is the first time BRT analysis has been 

attempted both at such a large spatial scale and to compare cross-realm environmental drivers 

of biotic change. Whilst the analysis conducted here revealed valuable insights on the relative 

dominance of drivers of primary productivity sensitivity, the increased scale did present some 

limitations. Due to computing power and time requirements it was not possible to run the 

analysis at either full index or biome scales as had originally been planned. The smaller spatial 

scale employed by Nieto and Mélin (2017) also enabled them to incorporate a greater range 

of driving variables than would be possible at larger spatial scales due to reduced data 

availability. Nonetheless, the BRT analysis provided valuable additional information with 

respect to climate influence on primary productivity sensitivity and established the upper spatial 

limits that BRT analyses can effectively be applied to for future studies.  

The analyses conducted in Chapter 4 build on the work of Sæther et al. (2013b), who promoted 

parametric methods of SAD analysis as a means to identify the influence of environmental 

stochasticity on community dynamics. Through the use of lognormal SAD distributions, I have 

shown that the statistical parameters of macroecological distributions of species diversity can 

be analysed in conjunction with gradients of primary productivity sensitivity, identifying 

differences in community structure across realms indirectly attributable to environmental 

variability, due to direct influences on primary resource stability. My results support existing 

work showing that increased environmental stochasticity causes lower evenness in lognormal 

population abundance models (Sæther et al., 2013b) in the terrestrial realm. The negative 

(non-significant) trend identified in the marine realm of increasing community evenness with 

increasing stochasticity presents an interesting juxtaposition to this theory and requires 

additional work to determine if the expected influences of external variability on community 

structure are realm dependent. That being said, I have shown that gradients of primary 

productivity sensitivity can provide an effective link for correlating environmental stochasticity 

with community structure both across realms and trophic levels, thus demonstrating that 

primary productivity is an effective currency on which to build cross-realm macroecology. 

5.3 Limitations  

The main limitations of the PSI are the uncertainties associated with using satellite data, given 

that it is entirely created from remotely sensed variables and can only represent sea surface 

production. Ocean colour measurements in particular are known to be less accurate in coastal 

waters due to increased suspended sediments and dissolved organic matter in surface run off, 

however the European Space Agency (ESA) Ocean Colour Climate Change Initiative (OC-
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CCI; Plummer 2017) Chlorophyll-a (Version 3.1) product I used featured an updated algorithm 

to improve coverage in such waters (Brewin et al., 2015; Lavender et al., 2015; Müller et al., 

2015) and was the best available dataset at the time. A new version of the OC-CCI product 

(Version 4.0) was released in March 2019 (followed by Version 4.2 in December 2019 as the 

Chl-a variable in Version 4.0 was faulty) using NASA’s most recent reprocessing of the 

satellites, however the algorithms used to calculate the final Chl-a product were the same as 

in Version 3.1 so differences will be minimal and unlikely to have an effect on the PSI output. 

No marine wind datasets are considered to be without limitations (Kent et al., 2013) and the 

dataset used to create the PSI exhibits higher variability than in situ buoy data (Peng et al., 

2013), however it was chosen as it was the highest spatial resolution global dataset available 

for the time period of the study. Any biases present in the data could be accounted for in 

regional studies as regional quantifications of over or under-estimates of wind speed are 

available (Kent et al., 2013; Peng et al., 2013).  

In all cases I chose datasets that combined data from multiple satellite datasets bias-corrected 

with respect to one another, to both maximise spatial and temporal coverage and to reduce 

uncertainties and missing data. Even with combined products missing data can still occur as 

was found for Chl-a pixels during Southern hemisphere winter months, however this affected 

fewer than 14% of pixels and so would have been unlikely to affect the results of the final index. 

Even with the caveats discussed, these datasets are the best we currently have. They make it 

possible to determine the amount of primary productivity across the globe at any given time, 

removing the need to rely on spatially and temporally limited in situ datasets and vastly 

increasing the scope of macroecological studies. Furthermore, the Essential Climate Variable 

initiative (Bojinski et al., 2014; GCOS, 2010) ensures that they are produced to the high 

standard necessary for climate modelling.  

Whilst the PSI was created following the methods of Seddon et al. (2016), the PSI could 

actually be a more accurate reflection of primary producer sensitivity than the VSI. Due to the 

small size of phytoplankton, ocean colour measurements of Chl-a correspond almost directly 

to primary producer biomass. Combined with no anthropogenic exploitation, phytoplankton 

responses can be attributed entirely to abiotic drivers and zooplankton grazing. The 

relationship between terrestrial producer Chl-a measurements and biomass is more dynamic 

given the differences in mass between terrestrial producers and their photosynthetic 

components i.e. grass versus trees. On top of this, deforestation and agricultural practices 

could have large impacts on terrestrial primary productivity unrelated to climate which are not 

accounted for in the VSI. Whilst terrestrial Chl-a measurements may not directly correspond 

to producer biomass, by simply measuring ‘greenness’ the Enhanced Vegetation Index (EVI) 
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used in the VSI only records the photosynthetic component of terrestrial producers and 

therefore still closely correlates with the ocean colour measurements used in the PSI. 

Both the PSI and VSI are strongly right skewed towards low sensitivities. Whilst this is an 

encouraging result in terms of resilience implications for primary productivity in each realm, it 

restricted the possibilities for determining sensitivity-specific attributes of primary producers 

and their driving climate variables, as there are too few high sensitivity pixels to create an 

adequate gradient that spans the full spectrum of sensitivities. This limited both the spectral 

analysis investigating sensitivity specific traits in the temporal structures of primary productivity 

and climate driver variability (Chapter 3) and the identification of trends in higher trophic level 

community structure with sensitivity (Chapter 4), as there were insufficient mid-high sensitivity 

pixels to create a sensitivity gradient that went much above 40. Given that this is due to the 

current status of primary productivity sensitivity it is not something that necessarily requires 

correction or improvement per se, however there are theoretical and hypothetical future means 

of obtaining a full gradient for better identification of trends. For example, as satellite data 

continues to be collected in the future and the indices are updated, these analyses could be 

rerun at 10 yearly intervals to determine if trends in sensitivity have changed, potentially 

resulting in a full sensitivity gradient for trend analyses. Alternatively, the frequency of variation 

of the input variables to the indices could be modulated in line with climate predictions to predict 

where will become sensitive in the future, with analyses repeated on the sensitivity gradients 

produced. 

The spatial distribution of data availability in Chapter 4 limited the trend analyses that could be 

conducted. Despite the BioTIME database (Dornelas et al., 2018) containing an extensive 

amalgamation of species observation records, after filtering to meet the analysis requirements 

observations were almost exclusively limited to a narrow range of locations in North America, 

South Africa and East Asia on land, whilst marine data was heavily biased towards the North 

West Atlantic and Southern Ocean surrounding Australia (Figure 4.1). Even without filtering, 

gaps in global sampling intensity and coverage are evident within BioTIME and other similar 

large data compilations (e.g. the Ocean Biogeographic Information System (OBIS; 

https://www.obis.org) and the Global Biodiversity Information Facility (GBIF; 

https://www.gbif.org) due to the northern, temperate (and largely coastal) bias in global data 

collection (Chambers et al., 2013; Marco et al., 2017; Menegotto and Rangel, 2018; Titley et 

al., 2017; Trimble and van Aarde, 2012). Increased data coverage of Southern hemisphere 

oceanic systems and continental Africa, Asia and South America could both strengthen the 

trends identified here between community structure and environmental variability sensitivity 
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and enable the identification of new trends, particularly if biases in global taxa coverage 

improved in line with geographic coverage.  

5.4 Future directions 

Several avenues of further research are available which would make a valuable continuation 

of the work presented here, extending our understanding of both the causes of sensitivity and 

ecological responses to environmental variability, thus providing further explanations of the 

underlying processes behind observed trends in macroecological patterns in response to 

environmental variability. Here, I detail what I consider to be the most promising and/or urgent 

avenues of further investigation including: investigating the cause of sensitivity at a primary 

producer level (Section 5.4.1); extending SAD analyses to enable the identification of exemplar 

species and/or assemblages exhibiting persistence or change along gradients of 

environmental variability sensitivity (Section 5.4.2); and examining the life history traits of 

identified assemblages along gradients of sensitivity (Section 5.4.3).  

5.4.1 The causes of phytoplankton sensitivity 

In producing the PSI, I identified the spatial distribution of phytoplankton sensitivity to 

environmental variability (Chapter 2). Whilst I have discussed the possible causes of sensitivity 

in terms of abiotic conditions (Chapter 2, 2.5), examining the community composition and 

associated life history traits of phytoplankton along gradients of sensitivity would provide 

valuable explanatory information on why certain regions exhibit high or low sensitivity from a 

biotic perspective. Despite the relatively ‘open’ nature of the marine realm, phytoplankton 

composition is regionally variable (Alvain et al., 2008; Cabré et al., 2016; Uitz et al., 2010) with 

low biomass regions typically characterised by smaller phytoplankton types (e.g. 

picophytoplankton; Marañón et al., 2001) than high biomass regions (e.g. nano- and 

microphytoplankton; Cabré et al., 2016). The community composition of phytoplankton 

populations can also determine how likely productivity is to vary with environmental variability 

(Aiken et al., 2008; Cabré et al., 2016; Edwards and Richardson, 2004a; Hinder et al., 2012; 

Rousseaux and Gregg, 2012, 2015) and with a strong influence on oceanic optical properties, 

can be one of the fastest and most easily detected signals of climate driven change (Dutkiewicz 

et al., 2019). Furthermore, considerable shifts in both the distribution, composition and 

abundance of phytoplankton communities have been projected under climate change (Barton 

et al., 2016), on top of the global declines already occurring (Capuzzo et al., 2018; Rousseaux 

and Gregg, 2015). 
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The ocean colour measurements used to calculate the PSI do not provide the species identities 

associated with phytoplankton biomass recordings; however, remote sensing data is now 

available that can identify the size structure (Brewin et al., 2010; Kostadinov et al., 2010), class 

(e.g. diatoms, cyanobacteria, dinoflagellates; Brewin et al., 2017; Raitsos et al., 2008) and 

hence functional type (e.g. nitrogen fixers, calcifiers; IOCCG, 2014) of phytoplankton. This data 

could be used to identify trends in both the biological attributes of phytoplankton and rates of 

change in phytoplankton community composition along gradients of sensitivity (e.g. via labelled 

SADs, Section 5.4.2). The life history traits of identified phytoplankton classes such as cell 

size, nutrient requirements and stoichiometry (Litchman and Klausmeier, 2008; Moreno and 

Martiny, 2018) could then also be investigated to see if similar responses in phytoplankton to 

environmental variability can be explained by the traits of the producers in those environments 

(Litchman and Klausmeier, 2008). This methodology could be extended across the terrestrial 

realm to identify if there are cross-realm similarities in traits that promote persistence and 

resilience in producers in response to environmental variability. Whilst differences in the 

temporal and spatial scales at which marine and terrestrial producers live could make direct 

comparisons more problematic than simply comparing ‘greenness’, highlighting differences 

across the realms can still prove beneficial (Dawson and Hamner, 2008). 

5.4.2 Extending the SAD 

Having shown that the structure of SADs can be correlated with environmental variability and 

primary productivity sensitivity (Chapter 4), a natural extension would be to introduce labelled 

SADs, which have been proposed as a method of increasing the understanding of individual 

species patterns within communities that might otherwise be masked (Dornelas et al., 2006; 

McGill et al., 2007; Webb et al., 2002). For example, I found no evidence of trends in 

community evenness through time (Chapter 4), however this does not mean that community 

composition remained constant during the examined time series. If immigration, emigration 

and/or extinction events occur with a similar frequency and affect similar abundances the 

overall evenness of a population will remain the same, resulting in no detectable trend in SAD 

structure (Dornelas et al., 2014; Hillebrand et al., 2018). By labelling species these events 

would be identifiable and the role of species turnover via changes to core and transient species 

in community responses to environmental variability could be further investigated (e.g. 

Magurran and Henderson, 2003). This approach would combine trends in SAD community 

structure focussing on alpha diversity with temporal and spatial trends in species turnover 

focussed on beta diversity, whereby similarity indices such as Sørensen’s index (e.g. Santini 

et al., 2017) or Jaccard’s dissimilarity index (e.g. Baselga, (2010), Blowes et al. (2019) and 

Dornelas et al. (2014)) can be used to determine change in single communities through time 
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or multiple communities across space, thus allowing for the comparison of both within realm 

and cross-realm assemblages along gradients of sensitivity (McGill et al., 2015). Furthermore, 

species turnover is both more sensitive to (Dornelas et al., 2014) and more easily related to 

(Hillebrand et al., 2018) environmental change. As well as providing greater mechanistic 

inference of underlying processes in SADs, assemblages of interest identified during this 

process due to either their persistence or high rates of change could be further investigated in 

terms of their life history traits (Section 5.4.3), to determine which traits promote or impede 

longevity and community stability along gradients of climate sensitivity. 

5.4.3 Life history traits along gradients of sensitivity 

Life history traits (e.g. body size, age at maturity) can be examined either individually or in 

combination to assign organisms to particular life history strategies (LHS; Kindsvater et al., 

2016; Pecuchet et al., 2017). These strategies are adapted to the environmental variability 

regime an organism inhabits and are typically expressed along a slow-fast continuum 

(Kindsvater et al., 2016; Pecuchet et al., 2017), whereby slow LHS are characterised by 

species with low adult mortality, low abundance, large body size and few, large offspring (e.g. 

whales), and fast LHS reflect high adult mortality, high abundance, small body size and many, 

small offspring (e.g. sardines). Numerous LHS frameworks have been developed for different 

organisms, including the Competition – Stress – Ruderal (CSR) model for plants (Grime, 1988) 

and the Equilibrium – Periodic – Opportunistic (EPO) model for fish (Winemiller and Rose, 

1992). More recently, Kindsvater et al. (2016) extended the EPO and standard slow-fast 

continuum to include juvenile mortality, resulting in the Precocial – Opportunistic – Survivor – 

Episodic (POSE) framework. In the POSE framework adults and juveniles can have opposing 

strategies, for example a species with the Episodic LHS might have many small offspring but 

a large adult body size and life span to increase recruitment and survival in variable but 

predictable environments (Juan-Jordá et al., 2013; Kindsvater et al., 2016). The LHS 

expressed by an organism is adapted to environmental conditions through the influence of 

environmental variability structure (Dawson and Hamner, 2008) and resource availability and 

predictability (Durant et al., 2005; Weimerskirch, 2007) on demographic processes. Whether 

an organism finds variability in environmental conditions to be advantageous or detrimental is 

therefore dependent on its specific life history traits (Morris et al., 2008; Weimerskirch, 2007). 

Consequently, determining the traits and/or strategies that promote susceptibility versus 

resistance to primary productivity sensitivity is a logical next step in connecting the PSI and 

VSI with higher trophic level responses to environmental variability. 
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The spatial distribution of trait responses along environmental gradients can differ among 

organisms, preventing generalisations across groups (Pecuchet et al., 2018; Sunday et al., 

2012). As a result, a need has been expressed for increased “cross-habitat multi-trait analyses 

to foresee how environmental change will affect community structure and biodiversity at large” 

(Pecuchet et al., 2018). Examining cross-realm assemblages identified in labelled SAD 

analyses (Section 5.4.2) to determine cross-realm life history traits and corresponding 

strategies, both spatially and across trophic levels, associated with gradients of environmental 

variability sensitivity could make a valuable contribution towards this. Various methods are 

available for comparing trait distributions and/or life history strategies over environmental 

gradients, including biological traits analysis (e.g. Hewitt et al., 2019), community-weighted 

mean redundancy analysis (e.g. Pecuchet et al., 2018; see Kleyer et al., 2012 for a review of 

further multivariate methods) and demographic matrix population models (e.g. Capdevila et 

al., 2019). By using traits applicable to all organisms such as adult body size, offspring size, 

fecundity (number of offspring) and feeding type, trait responses can be compared across 

unrelated species and assemblages (Van der Plas et al., 2012). These traits also cover a range 

of biological processes (i.e. growth, reproduction and trophic interactions) and are likely to be 

influenced by environmental gradients (Beauchard et al., 2017; Pecuchet et al., 2018). The 

results of trait-based analyses could then be applied to a LHS framework such as POSE 

framework (Kindsvater et al., 2016) to investigate trends in the LHS of cross-realm 

assemblages. Whilst POSE was developed for the marine realm as a tool to detect the 

influence of fishing pressure on LHS, it could easily be applied to the terrestrial realm to enable 

cross-realm influences of environmental variability to be determined.  

Despite promising advances in methodologies for investigating the responses of life history 

traits to environmental forcing (Hewitt et al., 2019; Kindsvater et al., 2016; Pecuchet et al., 

2018; Sæther et al., 2013a; Suryan et al., 2009) and new initiatives such as the Open Traits 

Network (OTN; https://opentraits.org/), for many taxa data is too limited at present to make a 

global comparative study viable, particularly in the marine realm (Tyler et al., 2012). As a result, 

an initial within realm pilot study would likely have to be conducted on a taxon with known life 

history data availability such as zooplankton (Marine Species Traits; Marine Species Traits 

editorial board, 2020) or fish (FishBase; Froese and Pauly, 2019). If this were successful it 

would then present the opportunity to continue with a cross-realm comparison of equivalent 

functional types i.e. comparing zooplankton and terrestrial herbivores. In doing this I would be 

able to start the process of determining whether the influence of environmental variability can 

be detected in life history traits at a macroecological level. 
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5.5 Concluding remarks 

In 1991 Steele posited the question of whether satellite data for primary production would one 

day be the unifying tool macroecology needed, to bridge the gap between marine and 

terrestrial ecology and overcome the differences in scales of physical and biological processes:  

“To what extent do the physical and biological scales coincide: can these production rates 

(from satellite data) be related to the comparable physical data from remote sensing? And are 

the relationships similar in the oceans and on the land?” (Steele, 1991b) 

In this thesis I have shown that satellite derived measures of marine and terrestrial primary 

productivity can be successfully combined with remotely sensed measures of their physical 

drivers. Using an approach that provides a clear path from climate variability to primary 

productivity and on to higher trophic level species, I have identified generalised cross-realm 

patterns in primary productivity sensitivity relative to environmental variability that overcome 

the different scales of the marine and terrestrial realm, and integrated these with 

macroecological patterns of higher trophic level species diversity. This work provides a 

foundation for future cross-real comparative macroecological studies aimed at understanding 

the role that environmental variability has played in shaping the distribution of life on Earth, 

and how this is likely to change with our changing climate. 
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Appendix A Chapter 2 Supplementary Figures 

 

Figure A-1: Correction verification for sea surface temperature (SST) satellite data. Two satellite datasets 
were used for the SST variable: AVHRR (available 2000-2013) and AVHRR & AMSR-E (available 2002-2011). To 
correct the AVHRR data outside of the range of AVHRR & AMSR-E, 8-year monthly means were created for the 
2003-2010 overlap period for each dataset. The AVHRR monthly means were subtracted from the AVHRR & 
AMSR-E means to provide a correction factor, which could be added to AVHRR months pre-2002 and post-2011. 
Plots show frequency polygons of the 8-year monthly means for July for the uncorrected AVHRR and AVHRR & 
AMSR-E datasets (A), the corrected AVHRR and AVHRR & AMSR-E datasets (B) and the difference between the 
monthly means of the AVHRR and AVHRR & AMSR-E before and after correction of the AVHRR data (C). 
Correction procedure methodology based on Frouin et al. (2012). 
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Figure A-2: Mean-variance relationships in the input variables of the Phytoplankton Sensitivity Index (PSI). 
Plots of the non-linear mean-variance relationships in the input variables for the PSI: log10 Chl-a (A), sea surface 
temperature (SST; B), sea surface winds (SSW; C) and photosynthetically available radiation (PAR; D). Due to the 
volume of input pixels (> 9,000,000) a random sample of 1,000 were selected for each variable to create the plots. 



 150 

 

Figure A-3: Annual distribution of global chlorophyll. Global distribution of mean log10 chlorophyll-a (mg m-3) 
for the 2000-2013 time series. 

 

 

Figure A-4: Mean standard error of the OC-CCI Chl-a observations. Mean standard error of the OC-CCI Chl-a 
observations, calculated for the period 2000-2013 as the mean monthly standard deviation of all Chl-a observations 
per 9 km pixel, divided by the square root of the number of observations per pixel. This shows the extent to which 
satellite observations are likely to differ from in-situ observations. Areas in black indicate no data availability. 
Continental outlines were modified from a shapefile using QGIS. 
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Figure A-5: Map showing large marine ecosystem (LME) designations. 

 

 

 

Figure A-6: Global map of the world's major ocean currents. By Dr. Michael Pidwirny (see 
http://www.physicalgeography.net) - http://blue.utb.edu/paullgj/geog3333/lectures/physgeog.html, 
[http://skyblue.utb.edu/paullgj/geog3333/lectures/oceancurrents-1.gif original image], Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=37108971. 
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Figure A-7: Global primary productivity and climate anomalies. Maps showing the global anomalies for the 3 climate drivers (sea surface temperature (SST; A), sea surface 

winds (SSW; B) and photosynthetically available radiation (PAR; C) and chlorophyll-a (Chl-a; D). The anomalies are calculated from seasonally detrended time series for months 

with a significant (P < 0.1) relationship between primary productivity and climate variability in the principal components regression. Anomalies are standardised between 0-100. 
Areas in black indicate no data availability. Pixel resolution, 9 km; time period, 2000-2013. Continental outlines were modified from a shapefile using QGIS. 
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Figure A-8: Global strength of primary productivity-climate variability relationships. Maps of the significant (P < 0.1) regression coefficients from the principal components 

regression between Chl-a anomalies and sea surface temperature (SST; A), sea surface winds (SSW; B) and photosynthetically available radiation (PAR; C) variability. 

Coefficients are standardised between 0-100. Areas in black indicate no data availability. Pixel resolution, 9 km; time period, 2000-2013. Continental outlines were modified from 

a shapefile using QGIS.
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Appendix B Chapter 3 Supplementary Figures 

 

 
Figure B-1: Key of Longhurst's Marine Biogeographic Regions. Map showing the 54 provinces of Longhurst's 
Marine Biogeographic Regions colour coded by their primary biomes: coastal (blue); polar (green); trades (yellow) 
and westerlies (purple). The number in each province corresponds to its province code label and name shown in 
the index below the map. 
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Figure B-2: Key of Ecoregions2017 realms. Map showing the 9 major realms of the Ecoregions2017 classification 
system. The 2-letter code after each realm name in the legend forms the first half of a region’s code, with the second 
half coming from the biome code (Figure B-3) e.g. Boreal Forests in the Palearctic would be PA06. For consistency 
with Longhurst’s biogeographic regions used to regionalise the PSI, the Ecoregions2017 realms are referred to as 
biomes within the main text. 

 

 

Figure B-3: Key of Ecoregions2017 biomes. Map showing the 14 major biomes of the Ecoregions2017 
classification system. The 2-digit number after each biome name in the legend forms the second half of a region’s 
code, with the first half coming from the realm code (Figure B-2) e.g. Boreal Forests in the Palearctic would be 
PA06. For consistency with Longhurst’s biogeographic regions used to regionalise the PSI, the Ecoregions2017 
realms are referred to as provinces within the main text. 
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Figure B-4: Hemispheric trends in the median and 95% range of sensitivities for the PSI and VSI. Plots 
showing the difference in trends between median sensitivity and latitude in the Northern (A) and Southern (C) 
hemisphere, and between the 95% range of sensitivities and latitude in the Northern (B) and Southern (D) 
hemisphere for the PSI and VSI. The solid lines represent quadratic linear models fitted to the median and 95% 
range of sensitivities against degree of latitude. Whilst the plots extend to -80° Latitude in the Southern hemisphere, 
for statistical analysis the models were only fitted up to -60° Latitude. Shaded areas show the standard error. 
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Figure B-5: GAM model fit for the median and 95% range of marine and terrestrial province sensitivities. 
Results of GAM models fitted to the median (A, C) and 95% range (97.5% quantile – 2.5% quantile) (B, D) of 
province sensitivities for the marine PSI (A, B) and terrestrial VSI (C, D). GAMs were weighted by the number of 
pixels in each province. 
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Figure B-6: Number of months with a significant (P < 0.1) coefficient in the principal components 
regression. Number of months per pixel with a significant (P < 0.1) relationship between primary productivity (PSI: 
Chl-a; VSI: EVI), climate variation (PSI: sea surface temperature, sea surface wind and photosynthetically available 
radiation; VSI: temperature, precipitation and cloudiness) and a one-month primary productivity time lag (t-1) 
variable in the principal components regression, highlighting areas with consistent, year-round Chl-a climate 
relationships. Pixel resolution, 9 km (PSI), 5 km (VSI); time period, 2000-2013. Areas in black indicate no data 
availability. Terrestrial areas in grey are predominantly barren areas, created using a minimum vegetation threshold. 
Continental outlines were modified from a shapefile using QGIS. 

 
Figure B-7: Composite map of global climate weights. Composite map of the mean climate coefficient weights 
for the marine PSI and terrestrial VSI from multiple linear regressions between primary productivity and three 
climatic drivers (PSI: sea surface temperature (blue), photosynthetically available radiation (green) and sea surface 
wind (yellow); VSI: temperature (blue), cloudiness (green), precipitation (yellow)). Pixel resolution, 9 km (PSI), 5 km 
(VSI); time period, 2000-2013. Areas in black indicate no data availability. Terrestrial areas in grey are 
predominantly barren areas, created using a minimum vegetation threshold. Continental outlines were modified 
from a shapefile using QGIS. 
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Figure B-8: Data availability of high, medium and low sensitivity Chlorophyll-a pixels. Bar plots showing data 
availability for high (A; 80-100), medium (B; 40-60) and low (C; 0-20) sensitivity Chl-a pixels. To be included within 
the sensitivity analyses for a particular month, pixels were required to have a minimum of 4 years of month specific 
of data across the 2000-2013 time series, i.e. data for July over 4 or more years. Pixels with 4 or more years of 
data were included in analyses (inc, dark blue), pixels with less than 4 years of data were not included (not_inc, 
yellow) and some pixels had no data at all (no_data, turquoise). High sensitivity had the highest proportion of pixels 
with no data availability from Apr-Oct. All pixels within each sensitivity bracket were extracted to determine data 
availability. 
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Figure B-9: Data availability of high, medium and low sensitivity Enhanced Vegetation Index pixels. Bar 
plots showing data availability for high (A; 80-100), medium (B; 40-60) and low (C; 0-20) sensitivity EVI pixels. To 
be included within the sensitivity analyses for a particular month, pixels were required to have a minimum of 4 years 
of month specific of data across the 2000-2013 time series, i.e. data for July over 4 or more years. Pixels with 4 or 
more years of data were included in analyses (inc, dark blue), pixels with less than 4 years of data were not included 
(not_inc, yellow) and some pixels had no data at all (no_data, turquoise). All pixels had full data availability for EVI. 
I also found this to be the case for all climate variables used in both the PSI and VSI. All pixels within each sensitivity 
bracket were extracted to determine data availability. 
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Table B-1: Number of locations used in spectral analysis for each index. Number of locations from 150 
randomly selected pixels with complete time series which could be included in spectral analysis for each variable 
and index. 

Variable PSI VSI 

Primary productivity 43 105 

Temperature 147 141 

Radiation 77 141 

Wind/Precipitation 78 141 
 

Table B-2: Model fit parameters for each PSI BRT model. Parameters for the best fitting model for each PSI 
biome in the BRT analysis. 

Province Biome Learning
rate 

Tree 
complexity 

Minimum cross-
validation error 

Number of 
trees 

ALSK Coastal 0.001 20 37.6 1015 

ARAB Coastal 5e-04 10 26.58 2133 

AUSE Coastal 5e-04 4 18.33 1001 
AUSW Coastal 5e-04 6 16.37 1777 

BENG Coastal 5e-04 20 13.35 1356 

BRAZ Coastal 5e-04 6 15.26 1001 

CAMR Coastal 5e-04 10 20.96 1003 

CCAL Coastal 0.001 20 10.26 2926 

CHIL Coastal 5e-04 10 26.45 1456 

CHIN Coastal 5e-04 20 57.17 1000 

CNRY Coastal 5e-04 10 18.31 1000 
EAFR Coastal 0.001 20 14.56 1028 

FKLD Coastal 5e-04 20 31.52 4488 

GUIA Coastal 5e-04 6 38.09 1095 

GUIN Coastal 5e-04 4 119.71 1955 

INDE Coastal 5e-04 10 47 1646 

INDW Coastal 5e-04 6 32.96 1263 

NECS Coastal 0.001 20 44.04 1144 
NEWZ Coastal 5e-04 20 17.9 1490 

NWCS Coastal 0.001 20 19.83 1018 

REDS Coastal 5e-04 6 47.15 1020 

SUND Coastal 5e-04 4 30.25 1022 

ANTA Polar 0.005 20 109.51 7503 

APLR Polar 0.01 20 229.57 4300 

ARCT Polar 0.001 20 59.4 9917 

BERS Polar 5e-04 20 62.44 9740 



 162 

BPLR Polar 0.01 20 111.52 8403 

SARC Polar 5e-04 20 57.33 7656 

ARCH Trades 0.001 10 15.64 2684 

CARB Trades 0.001 20 20.49 1201 
ETRA Trades 5e-04 20 39.18 1833 

ISSG Trades 5e-04 20 8.74 9978 

MONS Trades 0.001 20 11.51 3399 

NATR Trades 0.001 10 16.73 1890 

NPTG Trades 0.005 20 8.59 2179 

PEQD Trades 5e-04 20 16.2 6372 

PNEC Trades 5e-04 20 11.44 4147 

SATL Trades 5e-04 20 12.94 9992 
WARM Trades 0.001 20 8.92 1836 

WTRA Trades 5e-04 20 27.8 1132 

GFST Westerlies 5e-04 6 10.53 1000 

KURO Westerlies 0.001 20 17.17 1031 

MEDI Westerlies 5e-04 20 22.57 4643 

NADR Westerlies 0.005 10 18.82 1011 

NASE Westerlies 5e-04 20 8.25 4902 

NASW Westerlies 5e-04 20 7.94 6149 
NPPF Westerlies 0.005 20 14.49 1180 

NPSW Westerlies 0.005 20 8.53 3147 

PSAE Westerlies 5e-04 10 37.16 3840 

PSAW Westerlies 5e-04 20 49.49 1524 

SANT Westerlies 0.001 20 40.07 9979 

SPSG Westerlies 0.005 20 10.57 4059 

SSTC Westerlies 5e-04 20 11.09 10000 
TASM Westerlies 5e-04 20 8.46 2079 
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Table B-3: Model fit parameters for each VSI BRT model. Parameters for the best fitting model for each VSI 
biome in the BRT analysis. 

Province Biome Learning 
rate 

Tree 
complexity 

Minimum cross-
validation error 

Number of 
trees 

AF01 Afrotropic 0.005 20 33.28 1108 

AF02 Afrotropic 5e-04 20 12.18 7071 
AF07 Afrotropic 0.005 20 14.05 8684 

AF09 Afrotropic 0.005 20 10.67 1147 

AF10 Afrotropic 0.005 20 10.2 1356 

AF12 Afrotropic 5e-04 10 12.31 9165 

AF13 Afrotropic 0.005 20 11.44 3251 

AF14 Afrotropic 0.001 10 38.96 2377 

AN11 Antarctica 0.001 6 101.92 1010 
AU01 Australasia 0.005 10 51.31 1030 

AU02 Australasia 0.001 20 15.61 1692 

AU04 Australasia 5e-04 20 18.73 6919 

AU07 Australasia 0.005 20 18.17 3889 

AU08 Australasia 0.001 20 7.95 9971 

AU10 Australasia 0.001 20 56.78 1433 

AU12 Australasia 0.005 20 8.74 1696 

AU13 Australasia 0.01 20 8.85 4813 
AU14 Australasia 0.001 6 53.03 1004 

IN01 Indomalayan 5e-04 20 34.22 9865 

IN02 Indomalayan 5e-04 20 24.13 9994 

IN03 Indomalayan 0.001 20 17.75 1439 

IN04 Indomalayan 0.005 6 43.18 1001 

IN05 Indomalayan 5e-04 4 105.72 3745 

IN07 Indomalayan 0.001 4 18.86 1439 
IN09 Indomalayan 5e-04 10 12.52 4785 

IN13 Indomalayan 5e-04 20 16.07 10000 

IN14 Indomalayan 5e-04 10 40 4316 

NA99 Rock & Ice 0.001 4 183.92 1002 

NE02 Nearctic 0.001 10 9.79 2774 

NE03 Nearctic 0.001 10 10.89 5893 

NE04 Nearctic 5e-04 20 24.32 9990 

NE05 Nearctic 0.001 20 64.97 2968 
NE06 Nearctic 0.005 20 64.99 2062 

NE07 Nearctic 0.005 10 9.42 1017 

NE08 Nearctic 0.001 20 18.82 9987 

NE11 Nearctic 0.001 20 132.46 9997 
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NE12 Nearctic 5e-04 20 9.85 7806 

NE13 Nearctic 0.01 20 16 1161 

NO01 Neotropic 0.005 20 33.75 1383 

NO02 Neotropic 0.001 20 15.86 9949 
NO03 Neotropic 5e-04 20 18.5 6187 

NO04 Neotropic 0.001 6 98.86 4891 

NO07 Neotropic 0.001 20 12.81 10000 

NO08 Neotropic 0.01 20 16.41 1422 

NO09 Neotropic 5e-04 20 11.99 6490 

NO10 Neotropic 0.001 20 41.16 2526 

NO12 Neotropic 5e-04 20 11.54 7011 

NO13 Neotropic 5e-04 20 17.39 9980 
NO14 Neotropic 0.001 6 26.94 3805 

OC01 Oceania 5e-04 10 30.51 1954 

PA01 Palearctic 5e-04 20 28.85 6078 

PA04 Palearctic 0.005 20 30.67 2312 

PA05 Palearctic 5e-04 20 62.11 9235 

PA06 Palearctic 0.01 20 61.56 1909 

PA08 Palearctic 0.01 20 26.97 1188 

PA09 Palearctic 5e-04 10 33.63 9875 
PA10 Palearctic 0.001 20 67.57 4709 

PA11 Palearctic 0.005 20 111.45 7697 

PA12 Palearctic 0.005 20 16.37 1894 

PA13 Palearctic 0.01 20 26.66 3413 

 

Table B-4: Quadratic linear model output for median sensitivity against latitude with realm fitted as an 
interaction for the Northern hemisphere. 

 Estimate Standard 
Error t-value P 

(Intercept) 17.034 0.837 20.341 0.000 

Latitude_F -0.16 0.047 -3.385 0.001 

RealmTerrestrial 0.48 1.191 0.403 0.687 

I(Latitude_F^2) 0.003 0.001 4.643 0.000 

Latitude_F:RealmTerrestrial 0.061 0.068 0.896 0.372 

RealmTerrestrial:I(Latitude_F^2) -0.001 0.001 -0.863 0.389 
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Table B-5: Quadratic linear model output for the 95% range of sensitivities against latitude with realm fitted 
as an interaction for the Northern hemisphere. 

 Estimate Standard 
Error t-value P 

(Intercept) 20.681 0.941 21.987 0.000 

Latitude_F -0.6 0.053 -11.325 0.000 

RealmTerrestrial 3.566 1.338 2.665 0.008 

I(Latitude_F^2) 0.012 0.001 19.771 0.000 

Latitude_F:RealmTerrestrial 0.189 0.076 2.473 0.014 

RealmTerrestrial:I(Latitude_F^2) -0.003 0.001 -3.501 0.001 

 

Table B-6: Quadratic linear model output for median sensitivity against latitude with realm fitted as an 
interaction for the Southern hemisphere. 

 Estimate Standard 
Error t-value P 

(Intercept) 15.587 0.535 29.136 0.000 

Latitude_F 0.117 0.043 2.693 0.008 

RealmTerrestrial 4.169 0.757 5.511 0.000 

I(Latitude_F^2) 0.003 0.001 4.335 0.000 

Latitude_F:RealmTerrestrial 0.25 0.061 4.086 0.000 

RealmTerrestrial:I(Latitude_F^2) 0.004 0.001 3.413 0.001 

 

Table B-7: Quadratic linear model output for the 95% range of sensitivities against latitude with realm fitted 
as an interaction for the Southern hemisphere. 

 Estimate Standard 
Error t-value P 

(Intercept) 24.212 1.234 19.624 0.000 

Latitude_F 0.99 0.1 9.918 0.000 

RealmTerrestrial 2.979 1.745 1.708 0.091 

I(Latitude_F^2) 0.019 0.002 11.288 0.000 

Latitude_F:RealmTerrestrial 0.103 0.141 0.73 0.467 

RealmTerrestrial:I(Latitude_F^2) 0.006 0.002 2.645 0.009 
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Figure B-10: Regional climatic driver influence and weights for the marine PSI. (A) The contribution of each 
climate variable to overall sensitivity, calculated as the ratio of Chl-a:climate variable variance multiplied by the 
variable’s respective climate weight (climate variable-Chl-a regression coefficient), averaged per biome (plot 
corresponds to Figure 3.10). (B) Relative strength of the climate weight for each variable averaged per biome (plot 
corresponds to Figure B-7). The bars have been normalised to total 1. 
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Figure B-11: Regional climatic driver influence and weights for the terrestrial VSI. (A) The contribution of each 
climate variable to overall sensitivity, calculated as the ratio of EVI:climate variable variance multiplied by the 
variable’s respective climate weight (climate variable-EVI regression coefficient), averaged per biome (plot 
corresponds to Figure 3.10). (B) Relative strength of the climate weight for each variable averaged per biome (plot 
corresponds to Figure B-7). The bars have been normalised to total 1. Biomes in the VSI with only one province 
are from left to right, Antarctica, Oceania and Rock and Ice. 
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Figure B-12: Pelagic Provinces of the World (PPOW). The Pelagic Provinces of the World (PPOW) 
regionalisation (black lines) overlain on the Phytoplankton Sensitivity Index. Areas shaded in yellow are not covered 
by the PPOW. 
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Appendix C Chapter 4 BioTIME Metadata 
Table C-1: Metadata for BioTIME datasets used in analyses. References corresponding to the 'Ref' column follow the table. 

Realm ID Biome Taxa Title No. 
species 

No. 
samples 

Summary 
methods Ref. 

Marine 45 Tropical seas Fish MCR LTER Coral Reef Long-term 
Population and Community Dynamics 
Fishes 

338 1105 Transects 1, 2 

Marine 71 Polar ecoregions Marine plants Phytoplankton from the White Sea. 
Barents Sea. Norwegian Sea and Arctic 
Basin 1993-2003 

412 3250 Stations 3 

Marine 72 Polar ecoregions Marine 
invertebrates 

White Sea Plankton 107 7569 Various 4 

Marine 77 Temperate shelf and 
seas ecoregions 

Birds MEDITS Seabird surveys 1999 - 2000 - 
2002 

16 703 Transects 5, 6 

Marine 78 Temperate shelf and 
seas ecoregions 

Benthos IOW Macrozoobenthos monitoring Baltic 
Sea (1980-2005) (EurOBIS) 

212 19 Stations 7 

Marine 108 Multiple ecoregions Birds Seabirds of the Southern and South Indian 
Ocean (Australian Antarctic Data Centre) 

123 59928 Seabird 
Observations 

8 

Marine 112 Multiple ecoregions Fish NOAA Southeast Fishery Science Center 
(SEFSC) Commercial Pelagic Observer 
Program (POP) Data (SEFSC_POP) 

540 136554 Stations 9 

Marine 117 Temperate shelf and 
seas ecoregions 

Marine 
invertebrates 

South Western Pacific Regional OBIS 
Data Asteroid Subset (South Western 
Pacific OBIS) 

156 1394 Transects 10 

Marine 119 Temperate shelf and 
seas ecoregions 

Fish DFO Maritimes Research Vessel Trawl 
Surveys Fish Observations (OBIS 
Canada) 

231 13945 Transects 11 

Marine 121 Tropical coral Fish CRED Rapid Ecological Assessments of 
Fish Belt Transect Surveys and Fish 
Stationary Point Count Surveys in the 
Pacific Ocean 2000-2010 (OBIS-USA) 

148 11408 Transects 12 
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Realm ID Biome Taxa Title No. 
species 

No. 
samples 

Summary 
methods Ref. 

Marine 123 Temperate shelf and 
seas ecoregions 

Fish Maine Department of Marine Resources 
Inshore Trawl Survey 2000?2009 (OBIS-
USA) 

144 1750 Transects 13 

Marine 125 Temperate shelf and 
seas ecoregions 

Fish MARMAP Chevron Trap Survey 1990-
2009 (OBIS-USA) 

101 1205 Chevron traps 14 

Marine 142 Multiple ecoregions Fish Pelagic and Demersal Fish Database II. 
REVIZEE South Area (WSAOBIS) 

189 276 Traps and 
longlines 

15-17 

Marine 143 Temperate shelf and 
seas ecoregions 

Marine 
invertebrates 

COPEPODA-ESPOBIS Data Base IMO-
UdeC 

106 60 Transects 18,19 

Marine 152 Temperate shelf and 
seas ecoregions 

Marine 
invertebrates 

CMarZ (Census of Marine Zooplankton)-
Asia Database 

163 309 Stations 20 

Marine 163 Temperate shelf and 
seas ecoregions 

Benthos North Pacific Groundfish Observer (North 
Pacific Research Board) 

355 1827 Transects 21 

Marine 169 Temperate shelf and 
seas ecoregions 

All CalCOFI and NMFS Seabird and Marine 
Mammal Observation Data. 1987-2006 
(SEAMAP) 

185 56832 Stations 22-25 

Marine 171 Multiple ecoregions Mammals Bahamas Marine Mammal Research 
Organisation Opportunistic Sightings 
(SEAMAP) 

28 2362 Sightings 26 

Marine 172 Temperate shelf and 
seas ecoregions 

All POPA cetacean. seabird. and sea turtle 
sightings in the Azores area 1998-2009 
(OBIS SEAMAP) 

47 34883 Sightings 27-30 

Marine 176 Temperate shelf and 
seas ecoregions 

Marine 
invertebrates 

Atlantic Zone Monitoring Program 
Maritimes Region (AZMP) plankton 
datasets. In Fisheries and Oceans Canada 
- BioChem archive (OBIS Canada) 

320 1763 Stations 31 

Marine 182 Temperate shelf and 
seas ecoregions 

All Snow crab research trawl survey database 
(Southern Gulf of St. Lawrence. Gulf 
region. Canada) from 1988 to 2010 (OBIS 
Canada) 

33 5777 Bottom trawl 32 
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Realm ID Biome Taxa Title No. 
species 

No. 
samples 

Summary 
methods Ref. 

Marine 183 Temperate shelf and 
seas ecoregions 

Marine 
invertebrates 

DFO Maritimes Research Vessel Trawl 
Surveys Invertebrate Observations (OBIS 
Canada) 

16 4475 Stations 33 

Marine 189 Tropical seas Fish St. John. USVI Fish Assessment and 
Monitoring Data (2002 - Present) (NOAA-
CCMA) 

254 1510 Stations 34 

Marine 190 Tropical seas Fish St. Croix. USVI Fish Assessment and 
Monitoring Data (2002 - Present) (NOAA-
CCMA) 

247 2000 Traps 35 

Marine 199 Tropical seas Fish Taiwan bottom trawl survey 631 48 Bottom trawl 36 

Marine 204 Temperate shelf and 
seas ecoregions 

Benthos MACROBEL Long term trends in the 
macrobenthos of the Belgian Continental 
Shelf 

344 1049 Grab 37 

Marine 213 Temperate shelf and 
seas ecoregions 

Benthos Northeast Fisheries Science Center 
Bottom Trawl Survey Data (OBIS-USA) 

1023 35644 Bottom trawl 38 

Marine 271 Temperate shelf and 
seas ecoregions 

Fish Santa Barbara Coastal LTER 62 42 Transects 39 

Marine 272 Temperate shelf and 
seas ecoregions 

Marine 
invertebrates 

Santa Barbara Coastal LTER 36 50 Quadrats 40 

Marine 273 Temperate shelf and 
seas ecoregions 

Marine 
invertebrates 

Santa Barbara Coastal LTER 27 51 Transects 41 

Marine 287 Temperate shelf and 
seas ecoregions 

Fish Maine Department of Marine Resources 
Inshore Trawl Survey 2000?2009 (OBIS-
USA) 

82 493 Transects 42 

Marine 288 Temperate shelf and 
seas ecoregions 

Fish DFO Maritimes Research Vessel Trawl 
Surveys Fish Observations (OBIS 
Canada) 

195 6774 Transects 43 

Marine 295 Temperate shelf and 
seas ecoregions 

Fish Systematic global assessment of reef fish 
communities by the Reef Life Survey 
program 

450 1078 Nets? 44 
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Realm ID Biome Taxa Title No. 
species 

No. 
samples 

Summary 
methods Ref. 

Marine 296 Temperate shelf and 
seas ecoregions 

Marine 
invertebrates 

Systematic global assessment of reef fish 
communities by the Reef Life Survey 
program 

412 1077 Nets? 45 

Marine 297 Tropical coral Marine 
invertebrates 

MCR LTERCoral Reef Long-term 
Population and Community Dynamics 
Other Benthic Invertebrates. ongoing 
since 2005 

13 1825 Quadrats 46 

Marine 349 Temperate shelf and 
seas ecoregions 

Benthos St. M polychaete species time-series 141 89 Grabs 47,48 

Marine 359 Temperate shelf and 
seas ecoregions 

Fish SBC LTER Reef Kelp Forest Community 
Dynamics Fish abundance 

61 487 counts 49 

Marine 365 Temperate shelf and 
seas ecoregions 

Fish Hahei marine dataset (1997-2002) 44 1477 transects 50 

Marine 374 Temperate shelf and 
seas ecoregions 

Birds Monitoring site 1000 Shorebird Survey 70 13830 Pitfall traps 51 

Marine 425 Temperate shelf and 
seas ecoregions 

Benthos Faunal communities and habitat 
characteristics of the Big Bend seagrass 
meadows 2009–2010 

319 169 Tows 52 

Marine 428 Temperate shelf and 
seas ecoregions 

Fish Long term monitoring of fish abundances 
from coastal SKagerrak 

59 10725 Seine nets 53-56 

Marine 435 Polar ecoregions Marine 
invertebrates 

Zooplankton collected with a 2-m 700-um 
net towed from surface to 120 m aboard 
Palmer Station Antarctica LTER annual 
cruises off the western antarctic peninsula 
2009 - present 

40 300 Tows 57 

Marine 505 Temperate shelf and 
seas ecoregions 

All Fish and marine invertebrates from the 
Israeli Eastern Mediterranean sea 1990-4, 
2000, 2008-2012 

275 694 Trawl 58 

Terrestrial 60 Tropical and 
subtropical moist 
broadleaf forests 

Terrestrial 
plants 

Forest Census Plot on Barro Colorado 
Island 

325 8 Counts within 
defined area 

59-64 
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Realm ID Biome Taxa Title No. 
species 

No. 
samples 

Summary 
methods Ref. 

Terrestrial 67 Deserts and xeric 
shrublands 

Birds Animal Demography Unit - Coordinated 
Waterbird Counts (CWAC) (AfrOBIS) 

68 417 Counts within 
defined area 

65 

Terrestrial 194 Temperate 
coniferous forest 

Terrestrial 
invertebrates 

Spatial and temporal distribution and 
abundance of moths in the Andrews 
Experimental Forest. 1994 to 2004 

578 254 Transects 66 

Terrestrial 214 Temperate 
coniferous forest 

Terrestrial 
plants 

Long-term growth mortality and 
regeneration of trees in permanent 
vegetation plots in the Pacific Northwest 
1910 to present 

39 14565 Plots 67 

Terrestrial 217 Multiple ecoregions Birds Landbird Monitoring Program (UMT-
LBMP) 

268 43839 Point counts 68 

Terrestrial 221 Boreal forests/Taiga Terrestrial 
plants 

Vegetation Plots of the Bonanza Creek 
LTER Control Plots Species Count (1975 - 
2004) 

52 195 Plots 69 

Terrestrial 240 Deserts and xeric 
shrublands 

Terrestrial 
plants 

Pinon-Juniper (Core Site) Quadrat Data 
for the Net Primary Production Study at the 
Sevilleta National Wildlife Refuge New 
Mexico (2003-present ) 

167 2882 Habitats 70 

Terrestrial 242 Temperate broadleaf 
and mixed forests 

Terrestrial 
plants 

Lac Croche understory vegetation data set 
(1998 to 2006) 

12 298 Plots 71 

Terrestrial 255 Temperate broadleaf 
and mixed forests 

Terrestrial 
plants 

Multi-decade. spatially explicit population 
studies of canopy dynamics in Michigan 
old-growth forests 

22 508 Plots 72 

Terrestrial 294 Tropical and 
subtropical moist 
broadleaf forests 

Terrestrial 
invertebrates 

Tam Dao Butterfly communities 277 45 Traps 73,74 

Terrestrial 300 Temperate broadleaf 
and mixed forests 

Terrestrial 
invertebrates 

Insect Populations via Sticky Traps at 
KBS-LTER (Kellogg Biological Station. MI) 

21 5888 Stations 75 

Terrestrial 301 Temperate 
grasslands, savannas 
and shrublands 

Terrestrial 
invertebrates 

Konza LTER grasshopper monitoring.  
Konza Prairie LTER. KS 

51 38 Sites 76,77 
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Realm ID Biome Taxa Title No. 
species 

No. 
samples 

Summary 
methods Ref. 

Terrestrial 307 Temperate broadleaf 
and mixed forests 

Terrestrial 
plants 

Kellogg LTER seed bank 83 405 Stations 78 

Terrestrial 313 Temperate broadleaf 
and mixed forests 

Terrestrial 
invertebrates 

Successional Dynamics on a Resampled 
Chronosequence Core Old Field 
Grasshopper Sampling 

61 1409 Sweepnet 79 

Terrestrial 316 Deserts and xeric 
shrublands 

Reptiles Lizard pitfall trap data (LTER-II LTER-III) 21 2620 Pitfall traps for 
lizards 

80 

Terrestrial 317 Flooded grasslands 
and savannas 

Terrestrial 
plants 

Mangrove Forest Growth from the Shark 
River Slough Everglades National Park 
(FCE) South Florida from January 1995 to 
Present 

4 33 Tree 
measurements in 
permanent plots 

81 

Terrestrial 321 Deserts and xeric 
shrublands 

Mammals Small Mammal Exclosure Study. Jornada 
LTER.  SMES rodent trapping data 

19 11757 traps 82 

Terrestrial 324 Tropical and 
subtropical 
grasslands, savannas 
and shrublands 

Terrestrial 
plants 

Temporal evaluation of natural 
regeneration in a semi-deciduous forest in 
Pirenopolis. Goias. Brazil 

60 65 16 2x2m plots 
sampled in 5 years 

83 

Terrestrial 325 Tropical and 
subtropical 
grasslands, savannas 
and shrublands 

Terrestrial 
plants 

Temporal evaluation of natural 
regeneration in a semi-deciduous forest in 
Pirenopolis. Goias. Brazil 

91 79 16 5x5m plots 
sampled in 5 years 

84 

Terrestrial 326 Tropical and 
subtropical 
grasslands, savannas 
and shrublands 

Terrestrial 
plants 

Temporal evaluation of natural 
regeneration in a semi-deciduous forest in 
Pirenopolis. Goias. Brazil 

140 32 16 5x5m plots 
sampled in 2 years 

85 

Terrestrial 327 Mediterranean 
forests, woodlands 
and scrubs 

Mammals Fray Jorge Small Mammals 1989-2005 12 171843 Traps 86 

Terrestrial 340 Deserts and xeric 
shrublands 

Terrestrial 
plants 

Small Mammal Exclosure Study (SMES) 
Vegetation Data from the Chihuahuan 
Desert 

93 128 Transect plots 87 
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Realm ID Biome Taxa Title No. 
species 

No. 
samples 

Summary 
methods Ref. 

Terrestrial 348 Tropical and 
subtropical moist 
broadleaf forests 

Mammals Bats (Mammalia Chiroptera) in restinga in 
the municipality of Jaguaruna south of 
Santa Catarina Brazil. 

13 16 nets 88 

Terrestrial 352 Tropical and 
subtropical moist 
broadleaf forests 

Terrestrial 
plants 

Flooded forest plot sampling in Peru 98 120 Plots 89 

Terrestrial 353 Tropical and 
subtropical moist 
broadleaf forests 

Terrestrial 
plants 

La Planada Forest Dynamics Plots 180 2 Plots 90 

Terrestrial 357 Temperate 
grasslands, savannas 
and shrublands 

Mammals Small Mammal Trapping Webs on the 
Central Plains Experimental Range 

10 506 censuses 91 

Terrestrial 362 Tropical and 
subtropical 
grasslands, savannas 
and shrublands 

Mammals Plant and small-mammal responses to 
large-herbivore exclusion in an African 
savanna 

18 11052 transects 92,93 

Terrestrial 366 Deserts and xeric 
shrublands 

Mammals Small Mammal Exclosure Study (SMES) 24 342 Pitfall traps 94 

Terrestrial 369 Temperate broadleaf 
and mixed forests 

Terrestrial 
invertebrates 

Monitoring site 1000 Alpine research - 
Surface wandering beetles 

29 29 Quadrats / Cores 95 

Terrestrial 372 Temperate broadleaf 
and mixed forests 

Birds Monitoring site 1000 Village survey - Bird 
survey data 

219 1435 Permanent 
quadrats 

96 

Terrestrial 373 Temperate broadleaf 
and mixed forests 

Mammals Village survey Medium and large mammal 
survey data 

25 18189 Transects 97 

Terrestrial 375 Temperate 
coniferous forest 

Terrestrial 
invertebrates 

Surface of the earth wandering beetles 
survey data 

424 4553 Infrared video 
cameras 

98 

Terrestrial 376 Temperate broadleaf 
and mixed forests 

Birds Monitoring site 1000 forest and grassland 
research - Bird survey data -1st phase 

240 1122 Spot census 99 

Terrestrial 377 Temperate broadleaf 
and mixed forests 

Birds Monitoring site 1000 forest and grassland 
research - Bird survey data -2nd phase 

251 8735 Aggregated timed 
surveys 

100 
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Realm ID Biome Taxa Title No. 
species 

No. 
samples 

Summary 
methods Ref. 

Terrestrial 420 Tundra Birds Species composition and population 
fluctuations of alpine bird communities 
during 38 years in the Scandinavian 
mountain range 

47 99 sites 101 

Terrestrial 421 Temperate 
grasslands, savannas 
and shrublands 

Terrestrial 
invertebrates 

Boulder County Open Space butterfly 
diversity and abundance 

58 314 Transect? 102 

Terrestrial 422 Temperate 
coniferous forest 

Terrestrial 
invertebrates 

Monitoring site 1000 Alpine research - 
Butterfly Survey 

43 23 Fixed Point 103 

Terrestrial 423 Temperate 
coniferous forest 

Terrestrial 
invertebrates 

Monitoring site 1000 Alpine research - 
Butterfly Survey 

46 26 Transects 104 

Terrestrial 424 Temperate 
coniferous forest 

Terrestrial 
invertebrates 

Monitoring site 1000 Alpine research - 
Bumblebee Survey 

7 36 Transects 105 

Terrestrial 458 Temperate broadleaf 
and mixed forests 

Terrestrial 
invertebrates 

Beetles from the Bavarian Forest 179 176 Plots 106-
108 

Terrestrial 459 Temperate broadleaf 
and mixed forests 

Birds Birds from the Bavarian Forest 52 126 Plots 109- 
111 

Terrestrial 460 Temperate broadleaf 
and mixed forests 

Terrestrial 
plants 

Fungi from the Bavarian Forest 110 181 Plots 112-
114 

Terrestrial 461 Temperate broadleaf 
and mixed forests 

Terrestrial 
plants 

Lichens (obj) from the Bavarian Forest 26 188 Plots 115-
117 

Terrestrial 462 Temperate broadleaf 
and mixed forests 

Terrestrial 
plants 

Lichens (soil) from the Bavarian Forest 7 43 Plots 118-
120 

Terrestrial 463 Temperate broadleaf 
and mixed forests 

Terrestrial 
plants 

Mosses (obj) from the Bavarian Forest 34 188 Plots 121-
123 

Terrestrial 464 Temperate broadleaf 
and mixed forests 

Terrestrial 
plants 

Mosses (soil) from the Bavarian Forest 41 245 Plots 124-
126 

Terrestrial 465 Temperate broadleaf 
and mixed forests 

Terrestrial 
plants 

Plants from the Bavarian Forest 52 260 Plots 127-
129 
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Realm ID Biome Taxa Title No. 
species 

No. 
samples 

Summary 
methods Ref. 

Terrestrial 510 Temperate broadleaf 
and mixed forests 

Terrestrial 
invertebrates 

Butterfly fauna in Mount Gariwang-san 
Korea 

105 55 Transects 130 

Terrestrial 516 Tropical and 
Subtropical Moist 
Broadleaf Forests 

Mammals A large-scale fragmentation experiment for 
Neotropical bats 

45 225 Mist-nets 130-
135 
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Appendix D Chapter 4 Supplementary Figures 

 

 

Figure D-1: The goodness of fit of species abundance distribution models fitted to BioTIME community 
data. Plots showing the goodness-of-fit of Poisson lognormal species abundance distribution models fitted to 
monthly (mm-yyyy) community assemblage data from the BioTIME database for the marine (A) and terrestrial (B) 
realm. The boxplots show the spread of goodness-of-fit values obtained for all monthly SADs fitted within each 
BioTIME study (community) ID. Goodness-of-fit is based on the log-likelihood model deviance between the 
estimated model and the empirical data compared to simulated data from 1,000 parametric bootstraps. Values 
below 0.5 and above 0.95 indicate lack of fit. 
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Figure D-2: Boxplots of the mean of community Species Abundance Distributions in the marine and 
terrestrial realm. Boxplots showing the distribution of the mean (mu) parameter of SAD distributions fitted to 
BioTIME communities for the marine terrestrial realm. No significant difference was found in mu between realms 
either before (A) or after (B) the removal of outliers. The central line shows the mean rather than the median. 

 

 

 

Figure D-3: Relationship between the average mu and sigma parameters for each BioTIME community 
Species Abundance Distribution across realms. Scatter plots showing the average mean (mu) and standard 
deviation (sigma) of SAD distributions fitted to BioTIME communities in the marine (A) and terrestrial (B) realm. No 
correlation was present between mu and sigma in either realm. 
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Figure D-4: Species Abundance Distributions along gradients of precipitation temporal autocorrelation. The 
average mean (mu parameter; A) and evenness (sigma parameter; B) with associated error (sd) of species 
abundances for each community, plotted against the spectral frequency of precipitation for each community in the 
terrestrial. SADs were calculated for each month-year combination of a community’s time series within 2000-2013. 
Spectral frequencies were calculated for precipitation for the 2000-2013 time series for the corresponding 
coordinates of each community’s abundance measurements. Communities are grouped by their BioTIME 
associated taxa. 

 

 

Figure D-5: Differences in the spatial extent of abundance observations within Species Abundance 
Distributions in the marine and terrestrial realm. Scatter plots showing the spatial extent of abundance 
observations within SADs in the marine (A,B) terrestrial (C,D) realm. Each pixel in A and C shows the difference 
between the minimum and maximum latitude and longitude of abundance observations within SADs fitted to 
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BioTIME study ID mm-yyyy combinations. The colours in A and C show the different study IDs, however given the 
volume (43 for Marine (A), 49 for terrestrial (C)) it wasn’t possible to fit a colour scale that distinguished each of 
them, or feasible to include the legend. B and D show the same information as a density plot. Plots B and D show 
the density of fitted SADs within different spatial extents out of a total of 1,171 SADs for the marine realm and 877 
for the terrestrial realm. 60 hexagonal bins were used in the horizontal and vertical directions to plot the data. 

 

Table D-1: Proportion of SADs fitted covering different spatial extents. Proportion of SADs fitted to BioTIME 
study ID and mm-yyyy combinations with less than 1° or more than 10° between the minimum and maximum latitude 
and longitudes of abundance observations. Proportions are a percentage of 1,171 and 877 SADs fitted for the 
marine and terrestrial realms respectively. 

 Latitude ≤ 1° Longitude ≤ 1° Latitude ≥ 10° Longitude ≥ 10° 

Marine 52.8% 52.6% 10.5% 15.4% 

Terrestrial 66.7% 66.1% 17.8% 21.8% 

 

 


