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Abstract 

Autologous mesenchymal stem cell (MSC) therapies have huge potential in 

addressing clinical challenges for otherwise intractable diseases. Label-free, 

intra-operative separation and enrichment of MSC subpopulations would provide 

a step change in delivery of such therapies. The long term goal of this research 

is to use binding proteins to provide a surface with switchable affinity, coupled 

with microfluidics to selectively bind and subsequently collect released cells. The 

specific aim of this thesis was to take the first steps towards achieving this goal, 

by identifying the most suitable binding proteins for cell capture and release in a 

prototype device and determining the feasibility of cell enrichment from complex 

clinical samples such as bone marrow aspirate. 

A prototype device was developed exploiting the cell surface marker CD271 to 

select for MSCs. Affimer binding proteins and a commercially available antibody 

were investigated for specific cell capture and release. Specificity for CD271+ 

cells was demonstrated via flow cytometry using two different cell types. CD271 

binding proteins were immobilised to a low-fouling substrate in a microfluidic 

channel and known mixtures of the two cell populations used to demonstrate 

specific cell capture. Increased flow rates allowed for bound cells to be released, 

collected and analysed, providing evidence that cells remained viable and 

minimally manipulated after enrichment. Clinical samples of bone marrow 

aspirate were then used in the same way and the results compared to gold 

standard methods of cell sorting.  

Results showed that the percentage of CD271+ cells selected from bone marrow 

mononuclear cell populations using the prototype device was similar to results 

obtained using established cell sorting methodologies. This work demonstrated 

that affinity capture via antibody technology, together with a surface designed to 

provide a controlled release mechanism, offers a high-throughput, minimally 

manipulative approach to select and enrich MSC populations for therapeutic 

applications.  
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Chapter 1: Introduction 

Over the last two decades there has been an overwhelming volume of research 

in respect of mesenchymal stem cells (MSCs) and their therapeutic potential. This 

has led to an increasing number of clinical trials involving MSC therapies 

addressing treatment of clinically intractable diseases such as cardiovascular 

disease, neurodegenerative diseases, spinal cord injury, musculoskeletal 

diseases, immune diseases and autoimmune diseases (1). Although the safety 

of MSC therapies is now widely accepted, their efficacy is still under much debate 

and the translation of MSC therapies to commercial products has been slow.  

One of the reasons for the slow rate of translation, and inconsistent clinical 

results, is the challenge involved in harvesting a therapeutic population of cells 

that are present at very small percentages among other cell types in the body. 

MSCs are reported to be present in the range of 1 in 10,000 to 1 in 100,000 cells 

in bone marrow mononuclear cell populations (BM-MNCs)(2), and 1000s of 

MSCs are thought to be required for effective cell therapies (3-5). Currently MSCs 

are enriched by their adherence to plastic, and culture-expanded to gain a larger 

number of cells for therapeutic use. This results in the use of a heterogeneous 

population of cells with unknown properties (6), and could be the reason that the 

efficacy of MSC-based therapies has been variable and not yet been proven. 

Furthermore, there are risks of contamination and phenotypic changes during cell 

culture (7), as well as the processes being time-consuming and expensive.   

Novel MSC enrichment technologies have the potential to change the way MSC 

therapies are delivered leading to more reliable and reproducible results to 

potentially demonstrate therapeutic efficacy. There is a clinical need to enrich a 

high purity population of cells with known properties, using a high-throughput 

technology and at low cost. Moreover, the cells must be minimally manipulated 

(biological characteristics not altered) during the enrichment process to ensure a 

high level of safety and reduce the regulatory requirements for translation. This 

thesis will describe the development of an MSC enrichment device which takes 

advantage of the beneficial properties of microfluidic technology and uses a high 

resolution affinity-capture based mechanism for cell enrichment. The device has 

been designed for intraoperative use with a patient’s own cells (autologous cells) 

therefore reducing both the risk of bio-contamination and the risk of immune 

rejection. Thus, this device has the potential to overcome the limitations 

associated with current MSC enrichment technologies and provide a high purity 

population of clinically beneficial cells for immediate use in autologous cell 

therapies. 
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This thesis will begin by introducing MSCs and reviewing the most recent clinical 

trials using MSC therapy. The therapeutic mechanisms of MSCs will be discussed 

and the main barriers to translation highlighted in more detail. A review of cell 

enrichment technologies used traditionally will demonstrate the limitations of 

these technologies regarding MSC enrichment, and emerging novel technologies 

will help inform this research project further. Finally, MSC surface antigens will 

be evaluated with regards to their ability to select a clinically beneficial population 

of cells. This  information is required for the affinity-based cell capture in this work.  

Following a review of the literature, the overall project aim and specific objectives 

will be described in Chapter 3, as well as chapter outlines for the subsequent 

chapters.  
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Chapter 2: Literature review 

2.1 Introduction to MSCs 

MSCs were first reported by Friedenstein and colleagues in 1970 (8), who 

demonstrated the isolation of clonogenic, proliferating fibroblastic cells from bone 

marrow and their ability to differentiate into bones and osteocytes. Their work was 

expanded upon in the next two decades and in 1999, Pittenger et al. (2) described 

the isolation, expansion and characterisation of multipotent human MSCs 

establishing chondrogenic, adipogenic and osteogenic lineages. Since then 

MSCs have been shown to differentiate into many other cell types including 

cardiomyocytes (9), endothelial cells (10), pancreatic islet cells (11) and neuron-

like cells (12) and this multipotency was thought of as the basis of their 

therapeutic potential. However as the field of MSC research progresses, it has 

been found that the differentiation potential of MSCs is likely to have minimal 

impact on tissue regeneration and the more prominent therapeutic mechanisms 

are related to the paracrine mechanisms and immunomodulatory properties of 

MSCs (1, 13-15)(Section 2.3). 

The regenerative properties of MSCs have been demonstrated when applied to 

a wide range of clinically intractable diseases through in vitro and in vivo pre-

clinical studies (1). This has led to an increasing number of clinical trials for MSC 

therapies over the last 15 years (Figure 2.1). Adult MSCs are an attractive cell 

source for therapies since they avoid the ethical and safety issues associated 

with embryonic and induced pluripotent stem cells. Moreover, they are relatively 

easy to harvest from many different tissues in the body through minimally invasive 

techniques. The therapeutic potential of MSCs is potentially wide-reaching, which 

is reflected in the broad range of disease areas where MSC therapies are being 

investigated. Section 2.2 reviews the latest results from clinical trials in some of 

the most widely investigated conditions. 
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Figure 2.1 The increasing number of registered clinical trials using MSCs  

A search of ClinicalTrials.gov from 01/01/2004 to 01/01/2019 using the 
search term of ‘mesenchymal stem cells’ was used to extract the above data 
which represents registered clinical trials globally. 

 

2.2 The therapeutic potential of MSCs 

A brief review of the current status of MSC therapies is included in this section, 

with a particular focus on the processing of MSCs prior to treatment, and the 

different treatment strategies that have been employed. Figure 2.2 shows a 

summary of some of the conditions where MSCs have the potential to provide 

therapeutic intervention.  
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Figure 2.2 The potential therapeutic applications of MSCs 

Examples of the different conditions where MSC therapies have been 
applied. This diagram was created with BioRender.com. 

 

2.2.1 Musculoskeletal applications of MSC therapies 

Approximately one in three people worldwide live with a chronic, painful 

musculoskeletal condition (16), accounting for the greatest proportion of 

persistent pain across all geographies and ages (17). Although musculoskeletal 

conditions affect people of all ages, the prevalence of conditions increases with 

age (16) and by 2050, the number of people aged 65 and over is expected to 

reach nearly 2.1 billion (18). There are huge concerns for the social and economic 

impact of an ageing population and therefore new treatments for age-related 

conditions is a global priority. Musculoskeletal diseases have therefore become 

one of the primary focuses for MSC therapy and Sections 2.2.1.1 and 2.2.1.2 

discuss the progress of MSC therapies for bone and cartilage regeneration 

respectively – two of the leading areas of research. 

2.2.1.1 MSC therapy for bone regeneration 

MSCs have been widely investigated for the treatment of non-union bone 

fractures due to the important role of MSCs in the natural bone healing process 

(13). In the normal bone healing process, resident stromal, stem and progenitor 

cells work together with pro-inflammatory and anti-inflammatory immune cells as 

well as circulating blood cells to coordinate complex cell signalling which leads to 

the regeneration of new bone (19). However, where injuries result in large bone 

defects, the normal bone healing process may not be sufficient and therapeutic 

intervention is required.   
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Various MSC-based strategies have been explored for this purpose, including 

systemic injection of MSCs (20), direct injection to the injury site (21, 22) and 

injection with pre-fabricated or injectable scaffold materials (23-25). Horwitz et al. 

(1999)(26) reported positive outcomes for the treatment of osteogenesis 

imperfecta by intravenous injection of un-manipulated bone marrow in three 

children, including an increase in total body bone mineral content due to the 

increased growth velocity and lower frequency of bone fractures. Despite this, 

there are reservations regarding the intravenous injection of MSCs since it has 

been reported that many of the cells become trapped in the lungs (27). 

Alternatively, MSCs have been injected by arterial delivery and there are studies 

which show this is a more effective route of administration (28-30). Unfortunately, 

there are still safety concerns surrounding the dose and velocity of injections due 

to changes in cerebral blood flow which increase the risk of stroke development 

(31). 

More favourably, local injection of MSCs overcomes some of the drawbacks 

discussed above. This method was first introduced over 20 years ago where 

Connolly et al. (1991)(32) used autologous bone marrow injection to stimulate 

healing in 18 out of 20 non-union tibial fracture patients. However little was known 

about the number or concentration of cells required for bone union. More recently 

this knowledge gap was addressed by Hernigou et al. (2005)(3), who related the 

number of MSCs in concentrated aspirate samples to the clinical healing of non-

union tibial fractures. It was found that bone union was achieved in 53 out of 60 

patients and where bone union had not occurred, the number of MSCs injected 

had been significantly lower than where treatment had been successful. They 

proposed that a graft requires more than 1000 MSCs per mL in order to be 

successful, with approximately 20 mL of bone marrow graft injected into each 

fracture site. This in turn suggests concentration of aspirate is essential since 

they found that there were on average only 600 MSCs per mL in bone marrow 

aspirate samples that were not concentrated.  

Finally, tissue engineering approaches utilising a variety of natural and synthetic 

biomaterials have been investigated for their therapeutic potential. These 

methods have the advantage of controlling the delivery of MSCs and the potential 

to enhance bone regeneration via the co-delivery of osteoinductive growth factors 

(13). Park et al. (2011)(23) highlighted the benefits of using a calcium phosphate 

cement mixed with alginate to increase cell viability, proliferation and osteogenic 

differentiation of MSCs in vitro, whilst Kim et al. (2007)(25) used a scaffold made 

from acrylated hyaluronic acid to deliver MSCs and bone morphogenic protein-2 

to rat calvarial defects in vivo. They found that there was the most mature bone 

formation in this treatment group compared to four control groups.  
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Although many pre-clinical studies have claimed to show the efficacy of MSC 

therapy for bone regeneration, published results from registered national and 

international clinical trials are lacking (13). A review carried out by Oryan et al. 

(2017)(13) stated that of 16 registered trials to treat long bone defects with MSCs, 

three treatment categories could be established; trials that used direct injection 

of MSCs without in vitro expansion (4 in total), trials that used direct injection of 

expanded MSCs (5 in total) and trials that used MSCs with bone substitutes (8 in 

total). However, of all of these trials only one trial in the last category had 

published results. Here, Liebergall et al. (2013)(33) used immunoselected MSCs 

(see Section 2.5.1.4) combined with platelet-rich plasma and demineralised bone 

matrix to treat 24 patients with tibial fractures. It was found that the treatment 

reduced the healing period by approximately 40 days compared to no 

intervention, however it was not possible to elucidate which factor/factors of the 

combined treatment contributed to the improved outcome.  

There are more published results available for the treatment of oral and 

craniofacial bone repair using MSCs - the majority of which report positive 

outcomes (34-38). Three of these studies use MSCs concentrated by a ‘bone 

marrow aspirate concentration’ system (BMAC-Kit; Harvest Technologies 

Corporation)(36-38)(see Section 2.5.1.2), one used bone marrow aspirate with 

no concentration (35) and the final study used cells enriched for MSCs in a 

bioreactor (34). The only study to report no difference between MSC treatment 

and control treatments was carried out using cells expanded in normal tissue 

culture conditions (39). 

At this point it is deemed too soon to advocate MSC therapy for bone 

regeneration due to the lack of published clinical trials and controversies in results 

(13). The major barriers to translation are reported to be the limited number of 

MSCs available for implantation (therefore often requiring in vitro expansion), the 

heterogeneity in the quality of MSCs from different donors and the lack of 

standardisation in procedures (40).  

 

2.2.1.2 MSC therapy for cartilage regeneration 

Unlike bone defects, cartilage defects have very limited ability to self-repair due 

to the avascular and aneural nature of cartilage tissue (41, 42). Cartilage loss can 

occur as a consequence of traumatic injury or through chronic degeneration 

which eventually leads to decreased mobility and can frequently progress to 

osteoarthritis – one of the most common musculoskeletal disorders and the 11th 

cause of disability in the world (43, 44). Current surgical interventions for cartilage 

damage include bone marrow stimulation, mosaicplasty and autologous 
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chondrocyte implantation, however there are inherent complications with such 

procedures, for example; donor site morbidity, high costs and the need for two 

operations (41, 45). Furthermore, for the treatment of osteoarthritis these 

interventions are restricted to the repair of focal defects and there are no 

treatments available for the global pathology of osteoarthritis (46). The innate 

ability of MSCs to differentiate into chondrocytes, as well as their 

immunomodulatory and inflammatory properties, provides an alternative 

therapeutic approach for the treatment of cartilage defects as well as related 

diseases such as osteoarthritis. 

Similarly to bone regeneration strategies, both cell therapy (direct injection of 

MSCs) and tissue engineering approaches (cell-scaffold combinations) have 

been investigated for cartilage repair. A systematic review of all in vitro, pre-

clinical and clinical studies of MSC therapy for cartilage repair was carried out by 

Goldberg and colleagues (2017)(42), who found that the majority of pre-clinical 

studies (85%) used tissue engineering approaches rather than direct injection. In 

clinical trials, MSCs were delivered in a suspension with various different co-

stimulators either through arthroscopic implantation, open surgery or intra-

articular injection. The review concluded that there was a lack of continuity 

between in vitro, pre-clinical and clinical studies and that the efficacy of MSC 

treatments was yet to be established.  

In a review of MSC therapy for the treatment of osteoarthritis, Freitag et al. 

(2016)(46) highlighted the clinical results from two methods of therapy – MSC 

scaffold transplantation techniques and MSC injectable techniques. Using a 

scaffold transplantation technique, Wakitani et al. (1994)(47) demonstrated that 

culture-expanded adherent MSCs embedded in a collagen gel and transplanted 

into rabbit knee articular cartilage defects resulted in some hyaline-like cartilage 

formation, however there was no significant difference between the cell-

transplanted group and the cell-free control group. Nejadnik et al. (2010)(48) 

compared autologous chondrocyte repair to the use of autologous MSCs (both 

cell types expanded in culture prior to transplantation) in 72 age-matched patients 

and found that BMSCs were as effective as chondrocytes for articular cartilage 

repair and had the advantages of one less knee surgery, reduced costs and 

minimised donor-site morbidity. Using an injectable technique, Emadedin et al. 

(2012)(49) used intra-articular injection of passage-2 MSCs to treat six patients 

with osteoarthritis of the knee. They found that six months post-injection, pain 

was reduced and walking distance was improved, however they proposed that 

repeat injections may have been more beneficial.  

Whilst the methods of treatment vary, so does the cell dosage in each case. In 

an in vitro study, it was found that hyaluronic acid hydrogels with higher cell 
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seeding density (60 million cells/mL) produced constructs with improved 

biomechanical properties compared to lower cell seeding densities (20 million 

cells/mL)(50). In a pre-clinical study, MSCs embedded in a collagen gel were 

transplanted into cartilage defects in rabbit knees and it was found that a cell 

seeding density of 50 million cells/mL resulted in significantly more cartilage 

matrix production than a cell seeding density of 1 million cells/mL (51). However, 

there is a need for caution in using high cell seeding densities associated with 

higher metabolic demands and the limited capacity for oxygen, carbon dioxide 

and other nutrients to diffuse within a graft (52). 

Whilst the safety of MSC treatment appears promising, the efficacy of treatments 

remains unclear due to the myriad of different strategies explored. What is clear, 

is the need for a single-stage procedure to avoid expensive, time-consuming and 

potentially harmful in vitro expansion of cells requiring a two stage procedure (42).  

2.2.2 MSC therapy for cardiovascular diseases 

Cardiovascular diseases are a leading cause of death in the world and are 

formally recognised by the United Nations as a major concern for global health 

(53). In 2015, there were an estimated 422.7 million cases of cardiovascular 

disease globally and 17.92 million deaths (53). As with musculoskeletal diseases, 

the risk of cardiovascular disease increases with age and therefore the 

implications of an ageing population must be addressed. Adult heart tissue has 

an inability to replace cells lost due to disease and MSC therapy has the potential 

to promote regeneration. Although cardiac cell-based therapies have shown 

limited cardiomyocyte differentiation capacity and poor long-term engraftment in 

vivo (14), there has been therapeutic benefit established via their paracrine 

mechanisms (see Section 2.3.3).  

Evidence to support the safety and efficacy of MSC therapy for cardiac 

regeneration has been collected via a number of independent clinical studies (54-

58). A randomised placebo-controlled trial showed that intra-myocardial 

injections of culture-expanded MSCs improved myocardial function in patients 

with ischaemic heart failure compared to phosphate buffered saline injections 

(54). Another clinical trial investigated the use of in vitro lineage-directed 

cardiopoietic stem cells derived from MSCs (and obtained from bone marrow 

aspirate) to treat advanced heart failure (55). It was found that intra-myocardial 

injection of cardiopoietic stem cells led to left ventricular reverse modelling – a 

marker of improved outcome in patients with advanced heart failure.  

Interestingly, a phase I and phase II randomised, blinded and placebo-controlled 

trial with 65 patients with ischaemic cardiomyopathy compared both culture-

expanded MSCs and MSCs derived from the concentration of whole bone 
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marrow, with placebo controls (58). It was found that trans-endocardial stem cell 

injection with MSCs derived from either method were safe and both resulted in 

some improved outcomes compared to placebo controls. However there were 

some measured outcomes that were only significantly improved for culture-

expanded MSCs rather than MSCs concentrated from bone marrow aspirate 

suggesting MSCs isolated by density gradient centrifugation (see Section 2.5.1.2) 

were inferior to culture-expanded MSCs (see Section 2.5.1.1). 

The majority of MSC therapies used in clinical studies for cardiac regeneration 

appear to utilise culture-expanded MSCs. Although these have provided a 

promising outlook, the expansion of cells in vitro requires expensive and time-

consuming procedures which more sophisticated isolation methods could avoid.  

2.2.3 MSC therapy for neurological diseases  

Neurological disorders are a large cause of disability and death worldwide. A 

systematic analysis for the Global Burden of Disease Study 2015 showed that 

the burden of neurological diseases had increased substantially over the previous 

25 years due to population ageing (59). It is predicted that the number of patients 

who will need neurological care will continue to grow in the coming decades. In 

addition, spinal cord injury (SCI) caused by traumatic events causes a substantial 

financial burden on health care systems due to the need for high-level acute care 

in the short term and associated secondary complications in the long term (60). 

Traffic accidents have been found to be the most common cause of SCI however 

falls in the elderly population are the second most common cause. 

For neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s 

disease, Huntingdon’s disease, amyotrophic lateral sclerosis (ALS) and multiple 

system atrophy, cumulative data has suggested common cellular and molecular 

pathological mechanisms (61). MSC transplantation in models of these diseases 

has improved survival rates, reduced pathology and rescued cognitive function 

decline. The proposed mechanisms for improvement include neuroprotection by 

secretion of neurotrophic factors, induction of neurogenesis, modulation of 

inflammation and prevention of misfolded protein aggregation (61).  

In terms of clinical trials, the majority reported to date have been early phase trials 

focussing on the demonstration of safety. For the treatment of multiple sclerosis 

and ALS, Karussis et al. (2010)(62) reported that intrathecal and intravenous 

injections of culture-expanded MSCs in 34 patients had no major adverse effects 

and elicited immunomodulatory effects. Similar trials for the treatment of ALS also 

confirmed the safety and possible benefits of MSC injections with pending phase 

II results (63-65). For the treatment of ischaemic stroke Lee et al. (2010)(66) 

carried out a long-term (5-year) assessment of 16 patients receiving intravenous 
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injection of culture-expanded MSCs compared to a control group. It was 

concluded that the MSC therapy was safe with no significant side effects whilst 

also showing some clinical improvement. In a randomised trial including 33 

patients with multiple system atrophy, the intra-arterial and intravenous injection 

of culture-expanded MSCs (2 doses of 40 million cells) reported no serious 

adverse effects and led to decreased deterioration compared to a placebo group 

(67).  

Similarly, the secretion of neuroprotective cytokines such as vascular endothelial 

growth factor, glial-cell-line-derived neurotrophic factor and brain-derived 

neurotrophic factor can increase neural regeneration, strengthen axon growth 

and revive damaged neurons in SCI (68). A systematic review carried out by Xu 

et al. (2019)(68) assessed the safety and efficacy of MSCs in treating SCI 

patients and found 11 studies that met the inclusion criteria. Meta-analysis of the 

11 studies showed that some sensory functions were significantly improved by 

MSC transplantation, however, there was no significant difference found in motor 

functions. In contrast, locomotor improvements have been reported in animal 

models using MSC transplantation (69, 70). There were no serious or permanent 

adverse effects reported from the 11 studies.  

MSC therapy for neurological diseases and SCI is in the early stages of clinical 

assessment but has so far been shown to be safe and has demonstrated some 

therapeutic effect. Similar to MSC therapies explored for cardiovascular disease, 

MSCs have been expanded in vitro in many of the clinical trials to date.  

2.2.4 MSC therapy for other diseases  

Although the main disease areas being targeted for potential treatment with 

MSCs have been discussed above, there are many other examples of where 

stem cell therapy has produced encouraging results in clinical studies. For 

example, in the treatment of graft versus host disease (GvHD), a prominent case 

study in 2004 showed donor MSCs expanded in culture and injected 

intravenously into a patient with acute GvHD (and unresponsive to all other 

therapy) had a rapid healing effect. This case study sparked the quick succession 

of numerous other studies including two large multicentre phase II trials also 

demonstrating remarkable efficacy (71, 72). MSC therapy has also been found to 

be safe and effective for digestive system disorders including liver disease (73), 

inflammatory bowel diseases (Crohn’s disease (74) and ulcerative colitis (75)) 

and coeliac disease (76). In particular, a related illness of Crohn’s disease - 

perianal fistulas - was successfully addressed by Dietz et al. (2017)(77), where 

83% of patients had complete clinical healing six months after implantation of 

MSCs in a bioabsorbable matrix.   
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2.2.5 Summary of MSC therapeutic potential demonstrated in 

clinical trials to date 

In conclusion, in the last two decades there has been a vast amount of in vitro, 

pre-clinical and clinical research into the safety and efficacy of MSC therapies. 

This brief review has focussed on the results of registered clinical trials in some 

of the most prevalent disease areas. The safety of MSCs has been confirmed 

with no serious or permanent adverse effects reported in any of the clinical trials 

reviewed. However, there appears to be controversial results regarding the 

efficacy of MSCs across the majority of conditions investigated. Although the 

outlook remains promising it is clear that there are limitations to current 

methodologies. These limitations and challenges are discussed in more detail in 

Section 2.4 - including the clinical need for the development of novel cell 

enrichment technologies. In addition, although the therapeutic mechanisms of 

MSCs are not completely understood, some key themes have been recognised 

which are outlined in Section 2.3. Isolation of MSC subpopulations with higher 

purities would help elucidate these specific mechanisms further and provides 

another motivation for the development of novel enrichment technologies. 

 

2.3 Potential therapeutic mechanisms of MSCs 

It is thought unlikely that there is a uniform MSC therapeutic mechanism for all 

disease states, however, there are common attributes that have been identified 

in many in vitro and in vivo studies that are likely to contribute to the beneficial 

effects of MSC therapies. The identified mechanisms are described below and 

summarised in Figure 2.3. 



 

1
3
 

 

Figure 2.3 The proposed therapeutic mechanisms of MSCs 

The differentiation potential, homing capabilities, paracrine effects and immunomodulatory behaviour of MSCs have been identified 
as therapeutic mechanisms in in vitro and in vivo studies. This diagram was created with BioRender.com and adapted from (78).
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2.3.1 Homing efficiency of MSCs 

When MSCs are injected systemically they have the ability to home to damaged 

tissues exhibiting inflammation (79, 80). This homing mechanism has been 

shown to involve important cell trafficking-related molecules such as chemokines, 

adhesion molecules and matrix metalloproteinases (MMPs)(1). Of these, some 

key mediators have been identified; the stromal-derived factor 1 (SDF-1)/C-X-C 

chemokine receptor type 4 (CXCR4) axis and the hepatocyte growth factor 

(HGF)/MET proto-oncogene (c-MET) receptor tyrosine kinase axis (81, 82). SDF-

1 and HGF are upregulated at sites of tissue damage and the results of an in vitro 

study carried out by Bo-Ra Son et al. (2006)(81) indicated that these factors along 

with MMPs could be involved in the migration of MSCs. Further in vivo evidence 

was reported by Kitaori et al. (2009)(83), where it was shown that SDF-1/CXCR4 

signalling was crucial for the recruitment of MSCs to a fracture site in a mouse 

model. 

In order for MSCs to reach damaged tissue, they must be able to transmigrate 

the endothelial barrier (84). Schmidt et al. (2006)(84) found that by direct cell-cell 

contacts, MSCs integrated into the endothelial wall of capillary vessels and could 

fully pass the endothelial barrier within 30 minutes of perfusion in an isolated 

heart. It was found by Rüster et al. (2006)(85) that the ability to interact with 

endothelial cells involved MSCs engaging vascular cell adhesion molecule-1 

(VCAM-1) and very late antigen-4 (VLA-4). It has also been demonstrated that 

inflammatory cytokines such as transforming growth factor β1, interleukin 1β and 

tumour necrosis factor-α (TNF- α) promoted invasion and migration of MSCs 

through the extracellular matrix by up-regulation of MMP activity (86).  

The molecules described above are proposed to drive the migration of MSCs 

however the precise mechanisms are not fully understood (78). Moreover, many 

intravenously administered MSCs become trapped in the lungs and do not reach 

the damaged tissue (87, 88). 

2.3.2 Differentiation potential of MSCs 

While the multipotent potential of MSCs has been largely documented in vitro and 

in vivo, there is accumulating evidence that their contribution to tissue 

regeneration is largely via indirect mechanisms rather than the direct replacement 

of lost tissue (1, 13, 78). Nevertheless, there are reports that describe the 

differentiation of transplanted MSCs in models of injury; Sasaki et al. (2008)(89) 

injected MSCs derived from green fluorescent protein (GFP) transgenic mice 

intravenously into back skin-injured mice and found GFP-positive cells 

associated with specific markers for keratinocytes, endothelial cells and pericytes 
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at the site of the wound – demonstrating the transdifferentation of injected MSCs 

as well as their homing efficiency. Li et al. (2010)(90) investigated the 

differentiation characteristics of MSCs transplanted into a mouse model of renal 

tubular injury. They reported that MSCs were able to differentiate toward renal 

tubular epithelium and contributed to the maintenance of structural integrity 

during the repair process. In contrast, Oryan et al. (2017)(13) suggested that 

MSCs indirectly contribute to cell differentiation (in the case of bone regeneration) 

via an MSC-mediated reduction in TNF-α, which inhibits osteoblast differentiation 

(91). 

It has been proposed that in order to benefit from MSC differentiation, local 

administration of cells or administration with a scaffold material is the preferred 

method (78). This is due to reports that systemically injected MSCs are likely to 

be trapped in the lungs and other tissues (88, 92) as discussed in Section 2.3.1.  

2.3.3  Paracrine effects of MSCs 

It is becoming more widely acknowledged that the therapeutic effects of MSCs 

are largely attributable to their ability to secrete a wide variety of cytokines, 

chemokines and growth factors (78). Once MSCs have migrated to damaged 

tissues, they interact with local stimuli such as inflammatory cytokines, ligands of 

Toll-like receptors and hypoxia, which signals MSCs to secrete molecules 

mediating processes such as angiogenesis and the prevention of cell apoptosis 

(1). It was found that the release of vascular endothelial growth factor and 

fibroblast growth factor 2 – both promotors of angiogenesis -  was increased when 

MSCs were exposed to the stimulants TNF-α, endotoxin and hypoxia (93). An 

increase in angiogenic factors could improve regional blood flow at a site of injury 

as well as stimulating autocrine mechanisms (93). Xu et al. (2007)(94) found that 

MSCs exhibited an anti-apoptotic effect mediated by the release of interleukin-6 

when in direct contact with lymphocytes.  

A multitude of other proteins that are upregulated by MSC paracrine mechanisms 

have been identified, including; Toll-like receptor 2/6 (95), transforming growth 

factor-β1 (96), interleukin-8, monocyte chemotactic protein-1, MMPs, pentraxin 3 

and cathepsin L (97), however, the majority of studies have been carried out in 

vitro. It is therefore necessary to systematically examine the MSC secretome in 

vivo to further inform MSC therapies (98).  

2.3.4 Immunomodulatory behaviour of MSCs 

The unique immunomodulatory behaviour of MSCs was first shown by Liechty et 

al. (2000)(99) when human MSCs were transplanted into foetal sheep early in 

gestation before and after the expected development of immunological 
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competence. They found that there was long-term engraftment of MSCs even 

after the development of immunological competence. It has since been found that 

MSCs have the ability to inhibit the activation and proliferation of T cells,  B cells, 

dendritic cells, macrophages and natural killer cells (100, 101). The underlying 

mechanisms of suppression are linked with inflammatory stimuli such as nitric 

oxide, indoleamine 2,3, dioxygenase, prostaglandin E2, tumour necrosis factor-

inducible gene 6 protein, chemokine ligand 2 and programmed death ligand 1 via 

stimulation of inflammatory cytokines such as interferon-γ, TNF-α and interleukin-

1 (1). 

As well as the inhibition of immune cells, MSCs also preferentially activate T-cell 

subsets with regulatory activity (Tregs) and maintain the capability of Tregs to 

suppress self-reactive T-effector responses (78, 102). This means that even 

short-lived MSCs could have long lasting effects on immunoregulation. These 

immunomodulatory properties have important implications for the treatment of 

autoimmune diseases and GvHD (Section 2.2.4).  

Furthermore, it has emerged that not only can MSCs negatively modulate a high-

inflammation environment but if the levels of inflammatory cytokines are low, 

MSCs stimulate cells of the immune system to release proinflammatory 

molecules and promote host defence (98). Monocytes arriving at an inflammatory 

environment can develop into M1 macrophages or M2 macrophages depending 

on microenvironmental cues (103). The M1 macrophages release 

proinflammatory cytokines stimulating local inflammation. This demonstrates that 

MSCs and macrophages have dynamic regulatory feedback and can switch 

between proinflammatory and anti-inflammatory activities to create a loop that 

prevents excessive tissue damage and promotes repair (103). 
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2.4 Clinical challenges of MSC therapy 

The large amount of research into MSCs and their therapeutic mechanisms has 

led to an increasing number of clinical trials using MSCs over the last 15 years 

(see Figure 2.1). However, there are still only a handful of therapies available 

commercially for clinical use and none are FDA-approved (104). Osiris 

Therapeutics (United States) completed the first major industry-sponsored phase 

III trial of allogeneic bone marrow-derived MSCs for treatment of GvHD in 2009 

(105). The product – Prochymal – did not result in a significantly different benefit 

compared to a placebo treatment. However, subset analysis revealed that 

children were more responsive than adults and this led to market approval for 

Prochymal in Canada to treat children with acute GvHD. A similar allogeneic MSC 

product for treatment of GvHD is approved for use in Japan (TEMCELL). 

The first MSC-based product approved for use in Europe was in 2018 to treat 

Crohn’s-related anal fistulas (105). The product - Alofisel - contains expanded 

human allogeneic MSCs extracted from adipose tissue. Two further MSC-based 

products are CARTISTEM and HeartSheet approved for use in Japan and South 

Korea respectively (104). CARTISTEM uses allogeneic umbilical cord-derived 

MSCs for the treatment of knee cartilage defects and HeartSheet uses cultured 

autologous skeletal myoblast cells for treatment of severe heart failure. Currently 

these are the only commercially available MSC-based products. 

This slow rate of translation is also reflected in the data used to create Figure 2.1. 

If the number of clinical trials is categorised by study phase, it becomes clear that 

the majority of studies are in early phase I/phase I or phase II, and that this trend 

has not changed over the past 15 years (Figure 2.4). There has been a slight 

increase in the percentage of clinical trials in Phase I in the last 15 years but a 

slight decline in the number of clinical trials in Phase II/Phase III. A small number 

of clinical trials have reached Phase IV in the last five years compared with none 

in the first 10 years. Altogether this data confirms that there is a hurdle between 

demonstrating the safety of MSC therapies and demonstrating the efficacy. Some 

of the key barriers to translation are discussed in Sections 2.4.1 and 2.4.2. 
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Figure 2.4 The percentage of registered clinical trials involving MSCs in 
each study phase  

This global data was extracted from ClinicalTrials.gov using a search term 
of ‘mesenchymal stem cells’ and filtered by year and phase of study. 

 

2.4.1 The lack of standardisation in MSC pre-clinical research and 

clinical trials for MSC therapy  

One of the reasons that efficacy has not yet been proven for many MSC therapies 

is the lack of standardisation between clinical trials and different research groups 

in the field. Following a review of published results from clinical trials (Section 

2.2), it is evident that there is no clear consensus on the most appropriate 

therapeutic strategy for MSCs, including the source of MSCs, the delivery method 

and what constitutes a beneficial dose of cells. This means that there is a lack of 

evidence behind each individual strategy. Although these limitations are common 

across all disease areas, it is likely that these factors will ultimately be application-

specific and there must be a concerted effort to design more large, multicentre 

studies using standardised protocols.  

In terms of sources of MSCs, bone marrow-derived MSCs (BM-MSCs) have been 

most commonly used (106), however, MSCs are found throughout the body and 

the best source for therapies remains unclear (46). Bone marrow has been 

traditionally used since it can be relatively easily accessed using already available 

tools (from bone marrow transplantation procedures) however, adipose tissue-

derived MSCs (AT-MSCs) and umbilical cord-derived MSCs (UC-MSCs) have 
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been found to be promising alternative sources that can be harvested through 

less invasive procedures (107). In a comparison of all three sources, Kern et al. 

(2006)(107) found that UC-MSCs had a higher proliferation capacity whereas AT-

MSCs contained the highest frequency of MSCs. Despite this, UC-MSCs were 

not as reliably sourced as AT-MSCs and BM-MSCs. MSCs have also been 

isolated from dental pulp tissue (108), skeletal muscle tissue (109), and amniotic 

fluid (110). 

A further debate concerns whether MSCs should be allogeneic or autologous for 

clinical therapies. MSCs are immunosuppressive with low immunogenicity and 

thus can avoid eliciting immune responses in recipients (111)(Section 2.3.4). 

They also have the advantage of being available as ‘off-the-shelf’ products which 

is favourable in terms of time, cost and quality assurance. It is noted that of the 

handful of commercially available products, all but one utilises allogeneic MSCs. 

Despite this, there are reports that allogeneic MSCs are not fully immune 

privileged and without immunosuppressive therapy can cause an immune 

response and graft rejection (112-114). A safer approach to MSC therapy is to 

use autologous cells where there is no possibility of immune rejection and no 

need for immunosuppressive therapies. Perhaps the reason that autologous cell 

therapies are lagging behind allogeneic cell therapies, is due to the lack of 

adequate technology available for autologous cell processing – the focus of this 

research project.  

 

2.4.2 Inadequate isolation methods for MSCs 

In the majority of clinical trials to date, the processing of cells prior to therapy has 

been via MSC isolation methods which have a number of limitations. In almost all 

of the clinical trials reviewed, cells were expanded in vitro to enrich a therapeutic 

population with sufficient cell numbers. There are a number of issues associated 

with the in vitro expansion of cells; first and foremost, the enrichment of MSCs 

based on their adherence to tissue-culture plastic yields a highly heterogeneous 

population (6). This means that large cell numbers are required since not all cells 

will be therapeutic in nature. Moreover, it could be the reason why the efficacy of 

treatments in clinical trials has been inconsistent - different culture methods yield 

different populations of cells with unknown properties. In addition, in vitro 

expansion requires Good Manufacturing Practices (115), is time-consuming 

(often taking weeks to acquire sufficient cell numbers) and costly. Finally, it has 

been shown that culturing MSCs in vitro – with growth factors - can change their 

characteristics, such as their becoming more susceptible to apoptosis and loss 

of clonogenic potential (7).  
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Enrichment of MSC populations for therapies is necessary since MSCs are 

present at 0.001–0.01% of mononuclear cells in bone marrow aspirates (2). 

Enriching MSCs by their adherence to tissue-culture plastic has been the most 

commonly adopted method, however techniques have also been used to 

concentrate the mononuclear cell fraction of bone marrow aspirate using density 

gradient centrifugation (Section 2.5.1.2). Unfortunately these methods also yield 

a heterogeneous population of cells, with low numbers of MSCs, resulting in 

many of the same limitations as culture-expanded cells. In one clinical trial, MSCs 

were isolated by immunoselection (33)(Section 2.5.1.4) providing a population of 

MSCs with higher purity. However no comparison was made with MSCs isolated 

by alternative techniques and therefore this study did not confirm whether this 

technique resulted in a greater therapeutic effect. There are also concerns with 

the safety of current immunoselection procedures (discussed in Section 2.5.1.4) 

and controversy over the specific identity of MSCs (discussed in Section 2.6.1) 

which further limit this study.  

There are inherent issues with the isolation techniques currently available for 

MSC processing prior to therapeutic applications and both Diogo et al. (2012)(6), 

and Zhu et al. (2013)(116), described the development of novel stem cell isolation 

and bioprocessing techniques as a crucial factor for the success of stem cell 

therapies. In Section 2.5, current MSC enrichment methods are reviewed in more 

detail as well as some of the emerging methods which have informed this 

research project. 

 

2.5 Introduction to cell sorting methods for MSC enrichment 

In this section, conventional methods of cell sorting will be discussed as well as 

their limitations in respect of MSC therapies. Following this there will be a review 

of the most promising future directions in this field. 

 

2.5.1 Traditional cell sorting methods for MSC enrichment 

2.5.1.1 Cell-culture based enrichment of MSCs  

MSCs can be enriched from different tissues in the body based on their 

preferential adherence to plastic. This mainly eliminates haematopoietic cells 

since they are non-adherent and can be discarded during medium exchange (6, 

117). However, some non-mesenchymal stem cells (stromal cells which do not 

conform to the current formal criteria – see Section 2.6.1) also adhere to the 

tissue culture plastic leading to a heterogeneous and undefined population of 
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cells. Steps have been taken to increase the purity of MSC populations during in 

vitro expansion, for example, using differential trypsinization and selective 

medium during cell culture; differential trypsinization is where MSCs are released 

from the tissue culture plastic during short incubation times but other cell types 

are not (117), and using different compositions of cell culture medium can favour 

the proliferation of various stem cells over other cell types (116). Unfortunately, 

there is no standardised conditioned medium for MSC culture due to the lack of 

a comprehensive list of conditioned medium components (118). Factors such as 

the glucose concentration, serum concentration, amino acids, inorganic salts and 

vitamins can affect the proliferation, morphology, clonogenicity and differentiation 

potential of isolated cells (118, 119). Although these techniques may increase the 

homogeneity of populations, enrichment by preferential adherence is unlikely to 

produce a pure population of MSCs for cell therapies.   

Moreover, there are several additional issues associated with the in vitro 

expansion of MSCs which are discussed in Section 2.4.2. Namely the 

requirement for Good Manufacturing Practices, the timely processes involved, 

the risk of contamination during cell culture and the high costs associated. The 

logistical aspects for large-scale manufacturing of cell therapies which require in 

vitro expansion are a huge challenge and barrier to translation.  

 

2.5.1.2 Density gradient centrifugation (DGC) for MSC enrichment 

Density gradient centrifugation (DGC) is one of the simplest methods of cell 

enrichment. A density gradient is established longitudinally in a test tube and the 

cell sample is added to the top (116). When the solution is centrifuged, cells with 

higher density cross the interface between the two layers and sediment at the 

bottom whilst cells that have a lower density settle at the interface (6).  

This method is commonly used to isolate mononuclear cells from bone marrow 

using a Ficoll-Paque density gradient (6)(Figure 2.5), however this technique has 

extremely low resolution and yields low numbers of MSCs (106). The resulting 

population is heterogeneous consisting of differentially matured B-cells, T-cells 

and monocytes as well as the more rare progenitor cells which includes 

haematopoietic stem cells and MSCs (120). DGC can be used as a preparative 

step for a higher resolution technique such as magnetic-activated cell sorting 

(MACS) or fluorescent-activated cell sorting (FACS)(Sections 2.5.1.3 and 

2.5.1.4), although this has also been found to considerably reduce the yield of 

bone marrow mononuclear cells (BM-MNCs) and therefore MSCs, with nearly 

75% loss of mononuclear cells using Ficoll-Paque DGC (120). In a separate 

study, it was found that red blood cell lysis of 6 mL of bone marrow aspirate 
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yielded the same number of MSCs as Ficoll-Paque DGC of 60 mL of bone marrow 

aspirate, suggesting that red blood cell lysis is a superior method to isolate 

mononuclear cells (121), although the higher volume of aspirate could also affect 

the mononuclear cell count independently from the isolation method. 

 

 

Figure 2.5 Density gradient centrifugation (DGC) for the isolation of 
mononuclear cells from bone marrow aspirate 

Bone marrow mononuclear cells are commonly isolated from bone marrow 
aspirate using a Ficoll-Paque density gradient. The left-hand side shows the 
density gradient solution and cell sample before centrifugation, and the 
right-hand side shows the solutions after centrifugation where the cells have 
been separated according to their density. This diagram was created with 
BioRender.com. 

 

An intraoperative bone marrow aspirate concentrate (BMAC) device 

(SmartPReP®2) has been developed which concentrates bone marrow total 

nucleated cells (122). The BMAC device was found to have a superior 

performance to other bone marrow aspirate concentration systems (BioCUE® 

and MAGELLAN®) in terms of the number and concentration of MSCs after 

centrifugation (123), and cells isolated from the BMAC device were also shown 

to have comparable functional activity to Ficoll-Paque DGC isolated cells and 

achieved a greater yield (122). However, no comparison to higher resolution 

techniques such as immunoselected cells has been made.  

Furthermore, it was found that contaminating cells in heterogeneous populations 

isolated by DGC compromised the therapeutic effect of MSCs (124, 125), and 

factors such as the centrifugation speed and washing buffers could impair the 

functionality and recovery of mononuclear cells (126). Mouquet et al. (2011)(125) 

found that 37% of rabbit BM-MNCs were apoptotic after Ficoll-Paque DGC and 
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the presence of apoptotic cells among mononuclear cells reduced the efficacy of 

cardiac cell therapy after myocardial infarction. Assmus et al. (2010)(124) 

reported how contaminating red blood cells affected the functionality of BM-

MNCs in a dose-dependent manner and the degree of contamination was a 

determining factor of the extent of recovery in patients with acute myocardial 

infarction. Finally, van Beem et al. (2008)(126) studied the effects of different 

DGC protocols and found that lower centrifugation speeds resulted in lower 

mononuclear cell recovery, and washing buffer without human serum albumin 

and heparin resulted in lower mononuclear cell recovery and impaired function 

measured by clonogenic capacity.  

DGC has a number of associated issues and although a simple method of 

enrichment, it is far from an ideal method. To attain high purity MSC populations, 

higher resolution techniques have been developed based on antibody labelling 

of specific antigens – described in Sections 2.5.1.3 and 2.5.1.4. 

 

2.5.1.3 Fluorescence activated cell sorting (FACS) for MSC enrichment 

Fluorescence-activated cell sorting (FACS or flow cytometry) relies on the 

specific labelling of antigen markers with fluorescently tagged monoclonal 

antibodies (6). Cells are labelled in a mixed suspension and analysed using a 

flow cytometer; inside the flow cytometer cells are drawn into a stream created 

by a surrounding sheath of isotonic fluid that creates laminar flow (127). This 

allows single cell analysis and is the basis of the high resolution of this technique. 

At an ‘interrogation point’, a laser is used to excite the fluorescent molecules to a 

higher energy state and upon returning to their resting states, the fluorochromes 

emit light energy at higher wavelengths. The use of multiple fluorochromes with 

similar excitation wavelengths but different emission wavelengths, allows several 

cell antigens to be detected simultaneously (127). The light signals are detected 

by photomultiplier tubes and converted to digital outputs for analysis.  

To sort cells using this technique, after laser excitation the single cells are 

separated into small droplets using mechanical vibration (6). The droplets pass 

through an electrical charging ring where a charge is placed on the droplet 

according to the fluorescence of the cell inside. The droplets then flow parallel to 

electromagnets and are deflected into collection tubes according to their charge 

(Figure 2.6).  
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Figure 2.6 Fluorescence-activated cell sorting (FACS) 

A sheath fluid creates laminar flow so that cells pass individually through a 
laser beam. Fluorescently labelled cells are excited by the laser and the 
emitted light is detected. Mechanical vibration then causes the flow to 
separate into small droplets which become charged according to the 
fluorescence of the cell inside. Droplets are then deflected by 
electromagnets into separate collection tubes based on their different 
charges. This diagram was created with BioRender.com. 

 

There is no doubt that FACS results in high purity cell separations due to the 

highly specific nature of monoclonal antibodies and the single cell analysis 

employed, however, this technique has limited capacity for point-of-care clinical 

applications and is much more widely used as an analytical and diagnostics tool. 

The reasons for this are as follows; firstly, the technique is limited by the time 

taken for high purity separations, although the single cell analysis has a relatively 

high throughput (5000 – 25,000 cells per second (128)), a large number of cells 

must be analysed for rare populations, and processing times are typically 

between three and six hours including pre-processing steps for immunostaining 

(6). The fact the cells are labelled with an antibody conjugated to a fluorophore is 

also undesirable for clinical applications since the labels remain attached to the 

cells post-separation. In addition, the cells are at risk of contamination during 

processing and experience high shear stress during the procedure which could 

lead to cell damage (6, 128). Finally, the equipment is large, very expensive, and 

requires skilled technicians to operate. 
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2.5.1.4 Magnetic activated cell sorting (MACS) for MSC enrichment 

Magnetic-activated cell sorting (MACS) is a trademark name (Miltenyi Biotec, 

Germany) for immunoselection using magnetic nanoparticles conjugated to 

monoclonal antibodies (6). The nanoparticles are approximately 50 nm in 

diameter and are biologically (as far as we know) and optically inert which has 

led to MACS beads becoming the gold standard for magnetic cell separation 

(129). The beads are mixed with cells in suspension, then passed through a 

column in a magnetic field. Cells bound to the antibody binders - conjugated to 

the magnetic beads - are retained in the column whilst unbound cells are eluted. 

The magnet is then removed so that bound cells can be collected (Figure 2.7). 

The columns are filled with a matrix of ferromagnetic steel-wool or iron-spheres 

which focus the magnetic field lines towards their surface inducing strong 

magnetic field gradients (129). Once the magnetic field is removed, the 

ferromagnetic matrix can no longer retain the bound cells and labelled cells can 

be collected.  
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Figure 2.7 Magnetic-activated cell sorting (MACS) 

Magnetic nanoparticles (MACS beads) conjugated to antibodies that 
recognise specific antigens on the surface of the desired cells, are incubated 
with a cell suspension prior to their application to a MACS column in a strong 
magnetic field. The unlabelled cells elute from the column and are collected. 
The magnetic field is then removed enabling the labelled cells to be 
collected. This diagram was created with BioRender.com 

 

Compared to FACS, MACS is easier to use, achieves higher throughput and 

comparable purity (after two consecutive cycles)(6, 130). Despite this, the 

throughput and purity depends on a number of factors including the starting 

population of cells and the particular MACS instrument and reagents used. 

Instruments are available for automatic processing of up to eight samples 

simultaneously (autoMACS™ Pro) and a closed and automated CE-certified 

system (CliniMACS® Plus) has been developed to process up to 1.2 x 1011 cells 

in one sterile run. However, the CliniMACS system is only approved for limited 

therapeutic applications and many of the reagents are intended for in vitro use 

only (129, 131). Multiple parameter MACS is possible by the enzymatic removal 

of magnetic beads after the initial step of isolation (MACS-MultiSort)(128), 

however this would inherently lead to longer processing times and higher costs. 

For MSC enrichment, the clinical-scale isolation of a subset of MSCs (CD271+) 

has been demonstrated using CliniMACS CD271 GMP MicroBeads (132), 

however this product is for research use and in vitro cell processing only. One of 

the reasons for this could be the major concern of interference caused by 
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magnetic beads in the purified population (116). Moreover the equipment and 

reagents are expensive and there is no information regarding the length of the 

full procedure. Although MACS is currently leading the way on cell enrichment, 

the main drawback is the fact that cells are labelled with magnetic nanoparticles 

and monoclonal antibodies which remain attached to the cell surface or are 

internalised through endocytosis after enrichment. This limitation is the motivation 

for developing minimally manipulative and intraoperative cell enrichment 

technologies for autologous MSC therapies.  

An additional limitation of both MACS and FACS for MSC enrichment is the lack 

of consensus on the most appropriate biomarkers for MSC isolation. A review of 

MSC surface markers used to enrich therapeutic populations of MSCs is included 

in Section 2.6, however it is believed that there is no single marker for the isolation 

of a pure population of MSCs.  

 

2.5.2 Emerging cell sorting methods for MSC enrichment 

The most frequently used cell sorting methods for MSC enrichment in clinical 

trials and/or used as standard practice for research purposes have been 

discussed in Section 2.5.1. In this section, methods that are currently being 

developed for MSC enrichment are reviewed including some of the most 

pioneering work to date.  

 

2.5.2.1 Microfluidic methods for MSC enrichment 

There has been a methodological shift away from macroscale technologies 

towards microscale technologies due to a number of beneficial properties these 

systems encompass, including; laminar flow, easy integration with mechanical, 

electrical and optical systems and low-cost fabrication (133). In addition, 

microfluidic systems can be under continuous operation in a closed system to 

prevent contamination. With regard to an intraoperative cell enrichment 

technology, a microfluidic device would have further benefits such as a small size 

- increasing portability, and the relatively low cost of fabrication would be 

favourable for a single use device essential for clinical applications. 

As a result of advances in microfluidic technologies, traditional macroscale 

methods of cell sorting such as FACS and MACS have been developed as 

microscale technologies (µFACS and µMACS). A µMACS device was developed 

by Adams et al. (2008)(134) with multi-target capabilities. The device 

incorporated microfabricated ferromagnetic strips to generate large magnetic 

field gradients within a microchannel. Two different magnetic tags had distinct 
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magnetisation and radius properties which caused labelled targets to be 

deflected at the corresponding ferromagnetic strips into different outlets. The net 

amplitude and direction of the force experienced by the target was governed by 

the sum of the fluidic drag and the magnetophoretic force. For successful 

deflection, the magnetophoretic force was required to exceed the fluidic drag 

component and since the balance of the forces has a non-linear dependence on 

the radius, the different magnetisation and radius of the magnetic tags allowed 

for multitarget sorting.  

This method achieved high purity and high throughput separations but was only 

capable of isolating targets such as bacteria, viruses and molecules with sizes 

smaller or comparable to the magnetic tag. This is because for larger targets 

(such as mammalian cells), the net amplitude and direction of the 

magnetophoretic force would no longer exceed the fluidic drag component and 

therefore additional adaptions to the method would be required. As well as this, 

this method still has many of the same limitations as macroscale MACS – 

including the requirement of labelling which is still present post-separation. 

Droplet microfluidics was used to analyse periosteal cells containing MSCs at 

different stages of osteogenic lineage commitment in a µFACS style device (135). 

Using fluorescent-conjugated antibodies against alkaline phosphatase and 

STRO-1 (prospective markers of MSCs – see Section 2.6.2), three distinct cell 

phenotypes were identified and enumerated using a microfluidic channel and 

optical detection system. At this stage the device was not able to sort the cells 

based on their signal and was used for identification and analysis purposes only. 

Baret et al. (2009)(136) achieved cell sorting in a µFACS device using a pulse of 

high-voltage alternating current to cause chosen droplets to deflect into a 

separate outlet by dielectrophoresis. This device was however limited to a low 

throughput of 2000 droplets per second and has not yet demonstrated separation 

using mammalian cells.   

Although harnessing some of the more advantageous aspects of microfluidics, 

the inherent issue of cell labelling remains relevant to these microfluidic 

technologies. To overcome these, an effort has been made to develop label-free 

microfluidic techniques using dielectrophoresis and field flow fractionation - 

described in Sections 2.5.2.2 and 2.5.2.3 respectively.   

 

2.5.2.2 Dielectrophoresis (DEP) for MSC enrichment 

Dielectophoresis (DEP) has the ability to sort cells based on their polarisability, 

which is determined by properties such as their size and shape, membrane 

integrity and morphology, cytoplasm conductivity and nucleus-cytoplasm volume 
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ratio (137). Cells exposed to an electric field experience mechanical forces due 

to the induced electric charges at interfaces such as the cell membrane and 

structural components inside the cell. The induced charges are small however, 

and since they are non-uniform in nature they produce an electric dipole moment 

in the cell. In a non-uniform electric field, the polarised cell experiences an electric 

field gradient causing the cell to move relative to its surroundings. Depending on 

the polarity of the induced dipole moment, the cell will either move towards 

regions of high electric field gradient (positive DEP) or regions of low electric field 

gradient (negative DEP)(Figure 2.8). The highest field gradients occur at the 

electrode edges which results in the trapping of cells experiencing positive DEP 

whilst the cells experiencing negative DEP can be removed using fluid flow.  

 

 

Figure 2.8 Dielectrophoresis (DEP) for cell separation 

Cells experience positive or negative dielectrophoresis according to the 
polarity of the induced dipole moment in a non-uniform electric field. If a cell 
is more polarisable than the surrounding medium, it will move towards 
regions of high electric field gradient (at the electrodes) and if a cell is less 
polarisable than the surrounding medium it will move to regions of low 
electric field gradient (away from the electrodes). Cells that are not trapped 
at the electrodes can be washed away using fluid flow. This diagram was 
created with BioRender.com. 

 

The DEP force experienced by a cell is dependent upon the Clausius-Mossotti 

factor which in turn is frequency dependent (138). Where the direction of the DEP 

force is independent of the applied voltage, the relative polarisability of the cells 

and the suspending medium can be manipulated by controlling the frequency of 

the applied electric field. For cell separation, the key is to find an operating 

frequency where the desired cell type experiences a different DEP force to the 

undesired cell types. This has been demonstrated a handful of times using cell 

lines derived from bone marrow stem cells (139), and to separate MSCs from 

differentiated cells (140, 141), however these studies use a maximum of three 

different cell types and separation from native BM-MNC populations has yet to 

be achieved. It is therefore unknown whether the dielectric properties of MSCs 
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will be sufficiently different to distinguish MSCs from all the other cell types 

present in BM-MNCs. 

Furthermore, the purities of cell populations enriched using DEP are often low 

and contaminated with unwanted cell types (116). Song et al. (2015)(141) used 

a DEP device to separate MSCs from differentiated osteoblasts and reported that 

purity could be increased from 50 % to ~80 %, however, this was at a low flow 

rate (1.8 µL/min) and did not use clinically relevant populations. Yoshioka et al. 

(2018)(139) used a DEP device to separate two bone marrow-derived cell lines 

with distinct DEP properties and observed similar purities (~80 %), however, 

there was very low cell recovery (~30 %) which would not be appropriate for 

capturing rare MSC populations.  

Currently DEP technologies are not sophisticated enough to enrich MSC 

populations from clinical samples with high purity. Moreover, cell damage is 

unavoidable for cells experiencing positive DEP (118) and problems can arise 

due to electrode fouling. In addition, when cells are kept in physiologically 

relevant medium with high conductivity, DEP can cause joule heating and 

electrochemical reactions to occur causing further concerns for cell viability.  

 

2.5.2.3 Field flow fractionation (FFF) for MSC enrichment 

Another cell separation method based only on physical parameters is field flow 

fractionation (FFF). This method relies on differences in cell morphology and 

biophysical differences such as cell mass, charge, size, density, shape and 

rigidity (6). Separation is achieved by combining laminar flow with an external 

perpendicular field applied to the channel (142)(Figure 2.9). Different fields have 

been applied to FFF including gravitational, centrifugal sedimentation and 

dielectrophoretic which in turn determines the distinguishing properties used for 

separation. According to the particular physical property or properties, cells are 

distributed differently in the flow profile leading to different elution times.  
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Figure 2.9 A field flow fractionation (FFF) device 

FFF combines laminar flow with an external field applied perpendicular to a 
channel and cells elute from the channel in different fractions based on their 
physical properties. The type of external field applied determines which cell 
properties the elution times depend upon. Different external fields have 
been used in FFF including gravitational, centrifugal sedimentation and 
dielectrophoretic. This diagram was created with BioRender.com and 
adapted from (143). 

 

There are only two examples of where FFF has been applied for the enrichment 

of MSCs; one using gravitational FFF (144) and another using DEP-FFF (145). 

The simpler device of the two - which uses gravitational FFF - was able to isolate 

populations of cells with MSC morphology from different sources, as well as 

enrich adipogenic progenitor cells from adipose tissue (144). However the purity 

of populations were not reported nor any further analysis of the cells post-

enrichment. The second example used a more sophisticated DEP-FFF device 

and enriched NG2-postive cells (a marker for stromal/pericyte cells) from a 

starting population of less than 2% in adipose tissue to 28% after enrichment in 

the device, achieving a 14-fold enrichment but still a relatively low overall purity 

(145).  

Similarly to the previously discussed physical-based methods, FFF has low 

resolution leading to low purity populations. Another limitation of FFF is the 

inherently low throughput of the technique, typically processing less than one 

million cells per run (146). 

 

2.5.2.4 Other microfluidic label-free cell sorting techniques for MSC 

enrichment 

There are a handful of examples where label-free microfluidic methods have been 

applied for MSC enrichment based simply on the different sizes of cells. Lee et 



- 32 - 

al. (2018)(147) used a spiral-shaped inertial microfluidic sorter to isolate MSCs 

from mouse bone marrow samples based on their larger size compared to other 

mouse bone marrow-derived cells. This method accomplished reasonable 

recoveries and enrichment but with low purities (~13%). Wu et al. (2009)(148) 

used a louver-array microstructure to enrich human amniotic fluid stem cells in 

which the smaller sized stem cells could flow through the gaps in the array 

whereas larger endothelial cells could not. High separation efficiencies were 

reported at 97% for two consecutive separations or 83% for one separation, 

however this was at low flow rates and no analysis was carried out on the cells 

post-enrichment. Finally, Jung et al. (2015)(149) used hydrodynamic filtration to 

isolate three subpopulations of human MSCs based on their different sizes. The 

smallest sized cells (<25 µM) were separated with the highest purity (reported at 

100%) and demonstrated specific surface markers of MSCs, however the 

throughput of the device was not described.  

There are a number of other microfluidic cell sorting techniques based on: 

microscale filters, deterministic lateral displacement, magnetophoresis, 

acoustophoresis and aqueous two-phase systems (150), however none of these 

have yet been applied for MSC enrichment. This is likely to be due to the fact that 

these label-free techniques potentially lack the specificity and high resolution 

required to enrich high purity populations. In light of this, the next section will 

introduce alternative affinity-capture based techniques for MSC enrichment. 

 

2.5.3 Affinity-capture based systems for MSC enrichment 

Affinity-capture based methods have the advantage of high specificity whilst 

avoiding external labelling of target cells. The principle of affinity-capture based 

methods is the use of highly specific binding molecules attached to a solid 

substrate to allow for specific cell capture and release. The most traditional 

binding molecule is an antibody – previously discussed in Sections 2.5.1.3 and 

2.5.1.4, where their use in FACS and MACS allows for high resolution cell 

separations via solution-based methods. However, over the past 30 years 

alternative non-antibody binding molecules (referred to as aptamers) have been 

developed which can hold some advantages over conventional antibody 

technology. Binding molecules that have the potential to be used as specific 

capture molecules in a cell enrichment device are reviewed in the following 

sections.  
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2.5.3.1 Aptamers as cell capture molecules for MSC enrichment 

RNA, DNA or peptide molecules with high specificity and binding affinity towards 

a target molecule are described as aptamers (151). Aptamers are selected using 

in vitro screening techniques such as the systematic evolution of ligands by 

exponential enrichment (SELEX) and phage display. 

SELEX is a technique used to screen large libraries of combinatorial RNA or 

ssDNA against a target molecule. RNA or ssDNA binders are eluted from the 

target molecule and reverse transcription polymerase chain reaction (RT-PCR) 

or PCR amplification is used to enrich a pool of target-specific binders. The 

process is repeated multiple times to result in highly specific aptamers which can 

be used for therapeutic applications (Figure 2.10). Phage display is an analogous 

technique to screen large libraries of peptide aptamers and is described in more 

detail in Chapter 5: Section 5.1.1. 
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Figure 2.10 Systematic evolution of ligands by exponential enrichment 
(SELEX) 

A ssDNA or RNA library is incubated with a target cell and unbound 
aptamers are washed away. Bound aptamers are eluted and can be further 
enriched with negative selection with non-target cells. Enriched aptamers 
are amplified using polymerase chain reaction (PCR)(or reverse 
transcription-PCR in the case of RNA) and the process is repeated multiple 
times to identify highly specific aptamers for target cells. This diagram was 
created with BioRender.com and adapted from (118). 

 

Aptamers are proposed to have advantages over antibodies for affinity-based cell 

capture, for example; they have uniform activity independent from batch 

synthesis, unlimited shelf-life and reversible heat-induced aptamer denaturation 

(151). Furthermore, there is opportunity to modify aptamers post-selection to 

enhance binding affinity and reduce non-specific binding. 

The therapeutic use of aptamers has been explored for a wide variety of 

applications with some treatments already FDA-approved (152). On the other 

hand, there has been limited investigation of the therapeutic use of aptamers for 

MSC enrichment, and the only example is presented by Guo et al. (2006)(153) 

who explored the use of DNA aptamers for the isolation and surface 

immobilisation of MSCs from porcine bone marrow. Using SELEX, and 

monitoring the enrichment of specific cell-binding aptamers using flow cytometry, 

36 clones were obtained and analysed. After initial analysis, one clone was 
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chosen for further characterisation demonstrating specific binding to porcine 

MSCs compared to human MSCs and a mouse cell line. The aptamer was 

biotinylated which enabled bound cells to be ‘fished out’ by anti-biotin microbeads 

and characterised post-enrichment. Aptamer-sorted cells proliferated and 

showed adipogenic and osteogenic differentiation whereas cells isolated by 

plastic adherence and cultured in the same conditions did not. Finally, biotinylated 

aptamer could be immobilised onto a surface and was shown to trap MSCs from 

an agitated cell suspension.  

This pioneering work demonstrates the efficacy of aptamers for cell enrichment 

applications, however, it requires further development to become a feasible 

platform for intraoperative clinical application. For example, aptamers must be 

isolated against human MSCs rather than porcine MSCs and the cells must be 

able to be released from the aptamer coated surface. In this case, the groups 

long term goal was to create an aptamer-coated scaffold for bone tissue 

engineering and therefore cell release would not have been a priority.  

In more recent work, a DNA aptamer was selected that was specific for human 

embryonic stem cells (hESCs) and could enrich hESCs from a mixture of human 

foreskin fibroblasts using biotinylated aptamer and streptavidin-labelled magnetic 

beads (154). The authors were also able to identify that the aptamer was binding 

to alkaline phosphatase expressed on the cells. This aptamer was then later 

implemented in a tissue engineering approach for osteochondral defect repair 

demonstrating the ability to recruit a higher number of MSCs to a scaffold with 

aptamer incorporated compared to a scaffold with no aptamer (155). Moreover, 

the aptamer scaffold was used in a full thickness rat osteochondral defect and 

displayed superior healing to a scaffold without aptamer. This study 

demonstrates the efficacy of aptamers in regenerative medicine and presents the 

opportunity for their implementation in an MSC enrichment technology.  

 

2.5.3.2 Affimers as cell capture molecules for MSC enrichment  

Peptide aptamers - “Affimers” - were first introduced as “Adhirons” in 2014 by the 

BioScreening Technology Group (BSTG) at the University of Leeds (156), and 

later referred to as Affimer proteins. Affimer proteins have the potential to be used 

as binding molecules in an affinity-capture based device with some advantages 

over traditional antibodies. For example, Affimers are easy to express in E. coli - 

therefore avoiding the use of animals and mammalian cell culture, and they do 

not contain cysteine residues - allowing the site-directed introduction of a cysteine 

for site-specific coupling of biotin/fluorescent labels to enhance their utility. 

Furthermore, for use as a binding molecule in an affinity-capture based device, 
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they have the advantage of being approximately ten times smaller than antibodies 

allowing increased packing density on a solid substrate, and they have tuneable 

affinity due to the ability to change the properties of selected Affimers via affinity 

maturation or mutagenesis. The affinity of binding molecules is a critical factor in 

this application since the cells need to be released from the solid substrate after 

capture. 

Peptide aptamers such as Affimers consist of a short amino acid sequence 

embedded within a small and very stable protein backbone referred to as a 

scaffold (157). The conformational constraint applied by the scaffold stabilises 

the insert loop and can increase the binding affinity to a specific ligand by as 

much as 1000 times compared to free peptide (157). In search of a highly stable 

protein scaffold for Affimer proteins, the consensus design concept was used to 

generate a scaffold based on a consensus sequence of plant-derived 

phytocystatins. This ensured that a scaffold with desirable properties such as a 

small size, monomeric, high solubility, and high stability - without the need for 

disulphide bonds and glycosylation - was generated for aptamer peptide 

presentation. Within the protein scaffold two loops of nine randomised amino acid 

positions were introduced to create an Affimer phage display library comprising 

of 1.3 x 1010 clones. The X-ray crystal structure of the Affimer scaffold is shown 

in Figure 2.11.  
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Figure 2.11 X-ray crystal structure of the Affimer scaffold  

The Affimer scaffold has a single alpha helix, four anti-parallel β strands and 
two loops of nine randomised amino acid positions (insertion sites) for library 
production. Residues 1-10 and 90-92 are not visible in the structure and are 
presumed to be disordered. The X-ray crystal structure is shown here at 
1.75 Å resolution. This image was taken from (156).  

 

In 2017, Tiede et al. (158) presented some of the outcomes of over 350 

successful screens of the Affimer library, including; Affimer binders selected 

against homologous protein family members – with the purpose to increase the 

understanding of intracellular signalling pathways, Affimers used as affinity histo-

chemistry reagents with high sensitivity, Affimers capable of blocking the 

biological function of specific receptors, and Affimers for in vivo rapid imaging of 

tumours. Moreover, in 2016 Sharma et al. (159) reported the use of Affimers in 

an electrochemical impedance biosensor for detection of human interleukin-8 (IL-

8). This application is the most relevant to this thesis since the biosensor 

consisted of Affimer proteins immobilised to a solid substrate used as capture 

molecules – the same intention as binding cell surface molecules in this work, 

however for whole cell capture.  

 

2.5.3.3 Antibodies as cell capture molecules for MSC enrichment 

Despite aptamers presenting a promising opportunity for use as specific cell 

capture molecules, the concept relies on the selection and identification of 
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suitable aptamers during in vitro screening of a target. In the case that an 

appropriate binding molecule cannot be identified for the intended application, 

antibodies provide a long-established method of specific antigen binding which 

could be utilised in an affinity-capture based device and are commercially 

available.  

Antibodies specific to a particular antigen are produced by mature B lymphocytes 

when an antigen is recognised as being foreign (160). The antibodies are 

released into the bloodstream and specifically bind with the foreign molecule 

allowing the immune system to eliminate the molecule from the system. 

Antibodies are immunoglobulins (Igs) which in their monomeric form are 

glycoproteins with a molecular weight of approximately 150 kDa (160). The basic 

structure of the monomer is a Y-shape which consists of four polypeptide chains 

– two heavy chains and two light chains connected by disulphide bonds (Figure 

2.12).  

Antibodies have dual functions, antigen binding and biological activity mediation. 

The different functions are carried out by different parts of the antibody; the 

fragment antigen binding (Fab fragment) contains the antigen binding site and 

the fragment crystallisable region (Fc region) can activate the immune system. 

The Fc region contains protein sequences common to all Igs as well as 

determinants unique to the individual classes (IgA, IgD, IgE, IgM and IgG), and 

are referred to as constant regions since they do not vary significantly among 

different Ig molecules within the same class. The Fab portion contains both heavy 

and light chains where one heavy and one light chain combine to form the specific 

antigen binding site of the antibody. The two heavy chains and the two light 

chains are identical in any given antibody meaning there are two identical antigen 

binding sites.  

Antibody technology has been successfully employed for MSC enrichment using 

solution-based methods - FACS and MACS (Sections 2.5.1.3 and 2.5.1.4), and 

could provide a suitable capture molecule in an affinity-capture based method of 

cell enrichment.  
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Figure 2.12 Structure of an antibody binding molecule 

An antibody has a Y-shaped structure which consists of four polypeptide 
chains – two heavy chains and two light chains connected by disulphide 
bonds. The Fc fragment is known as the constant region since it does not 
significantly vary between immunoglobulin molecules within the same 
immunoglobulin class. The Fab fragment is made up of light chains and 
heavy chains, and one light chain and one heavy chain combine to make a 
specific antigen binding site. CH=heavy chain constant region, VH=heavy 
chain variable region, CL=light chain constant region, VL=light chain 
variable region. This diagram was created with Biorender.com and adapted 
from (160). 

 

2.5.4 Summary of cell sorting methods for MSC enrichment 

In reviewing the limitations of conventional cell enrichment technologies, as well 

as evaluating the most promising technologies currently in development, the work 

to be carried out in this thesis will investigate the use of an affinity-capture based 

microfluidic device to enrich a subset of MSCs with therapeutic potential. By 

taking the advantageous aspects of microfluidic technologies and combining 

these with the high resolution of an affinity-capture based approach - without the 

need for extrinsic labelling, this project will develop a novel MSC enrichment 

device. Furthermore, alternative binding molecules (Affimers - Section 2.5.3.2) as 

well as commercially available antibodies (Section 2.5.3.3) will be explored as 

binding molecules to optimise cell capture and release in the device. In order to 

exploit specific antigen binding technology, an appropriate MSC surface molecule 

(antigen) must be identified and utilised. In the next section, the specific criteria 

and nomenclature for MSCs will be discussed, and the most promising surface 

markers for MSC enrichment reviewed.  
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2.6 MSC surface antigens for affinity-based cell capture  

In advance of reviewing the different MSC surface antigens, it is first necessary 

to discuss MSC nomenclature and the impact that differing MSC terminology has 

had on stem cell research - including attempts to standardise definitions and 

criteria such as specific surface molecule (antigen) expression.  

 

2.6.1  MSC nomenclature and specific surface antigen criteria 

MSCs were officially named as mesenchymal stem cells over 25 years ago by 

US biologist Arnold Caplan (161). This was based on their capacity to be induced 

to form a variety of mesodermal phenotypes and tissues in vitro (162). The term 

has since been used in over 700 clinical trials (see Figure 2.1) and in more than 

32,000 Medline-indexed articles (163). Despite this, MSCs have also been 

described in numerous other ways, for example; marrow stromal cells, 

multipotent stromal cells, mesodermal stem cells and mesenchymal stromal cells. 

The lack of a clear definition has resulted in inconsistencies and ambiguities in 

stem cell research (163, 164).  

Prompted by this, in 2005, the International Society for Cellular Therapy (ISCT) 

published a position statement for clarification of the nomenclature of MSCs 

(165). Here it was advised that the term “multipotent mesenchymal stromal cell” 

should be used for plastic-adherent cells and the term “mesenchymal stem cell” 

should be reserved for cells that demonstrate stem cell activity defined by clearly 

stated criteria. The ISCT criteria for MSCs was published in 2006 as follows (164): 

• Adherence to plastic 

• Specific surface antigen expression (see Table 2.1) 

• Multipotent differentiation potential  
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Table 2.1 ISCT minimal criteria for the specific surface antigen expression 
of MSCs 

 

POSITIVE (≥ 95%) NEGATIVE (≤ 2%) 

CD105 CD45 

CD73 CD34 

CD90 CD14 or CD11b 

 CD79α or CD19 

 HLA-DR 

 

The specific antigen expression criteria ensures there is a lack of expression of 

haematopoietic antigen that would likely be found in MSC cultures. This includes 

markers for leukocytes, haematopoietic progenitors, endothelial cells, monocytes 

and macrophages. The multipotent differentiation potential refers to trilineage 

differentiation to osteoblasts, adipocytes and chondroblasts under standard in 

vitro differentiating conditions.  

Despite these recommendations, the term mesenchymal stem cell is still widely 

used without observation of the criteria and assays commonly used to evaluate 

a cell’s ‘stemness’ can be easily misinterpreted (163). Furthermore, as the 

number of MSC sources increases it has been shown that the gene expression 

patterns, proteome and functionality of MSCs differs in accordance with their 

source and no general assumptions can be made between different populations 

(166).  

To date, misperception still exists and in 2017, Caplan suggested that his original 

nomenclature was misleading and a term such as medicinal signalling cell would 

be more appropriate (162). He proposed that since the main in vivo function of 

MSCs is not their multipotency, they should not be deemed a stem cell. However 

this shift in nomenclature is disputed by others in the field concerned that it could 

heighten assumptions of broad therapeutic use that have not yet been proven 

(163). It has been suggested that in order to make important advancements in 

the field of stem cell research, it will be crucial to rigorously control the use of the 

term MSC and stop its use as an umbrella term for multiple different cell types 

(163).  

With respect to the work carried out in this thesis, one specific cell surface antigen 

will be used to demonstrate the proof-of-concept of an affinity-capture based 

microfluidic device to enrich a subset of cells with therapeutic potential. It is noted 
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that the surface antigens defined by the ISCT do not uniquely identify MSCs and 

were proposed alongside the functional criteria to best recognise MSCs in line 

with current knowledge (164). However, these markers are also expressed on 

many other stromal cells including fibroblasts (166), meaning that they would not 

be suitable candidates for use as a single MSC marker in this project. Alternative 

MSC surface molecules have been proposed which could provide a more suitable 

candidate marker. The efficacy of these markers to be used to enrich a 

therapeutic population of cells is reviewed in the following section.  

 

2.6.2 Alternative MSC surface molecules (antigens) 

In 2014, Lv et al. (167) published a review of human MSC surface markers in 

which four molecules were highlighted as the most commonly used markers to 

select for MSCs. These four markers are the focus of this next section.  

 

2.6.2.1  STRO-1 selection of MSCs 

In 1991, Simmons et al. (168) described the generation and specificity of a murine 

IgM monoclonal antibody termed STRO-1 according to its reactivity with bone 

marrow stromal elements in vitro and in vivo. They found that STRO-

1+/glycophorin A- cells were enriched 100-fold for colony-forming unit-fibroblast 

(CFU-F) – an assay used to determine the clonogenic potential of cells and 

therefore assess the proportion of MSCs in a population. Glycophorin A is a 

marker associated with erythroid cells and since the majority of STRO-1+ cells 

co-expressed glycophorin A, they found it was necessary to deplete glycophorin 

A+ cells to enrich CFU-F. 

Psaltis et al. (2010)(169) used STRO-1 as a single marker for MSC isolation 

(without depletion of glycophorin A) and compared the activity of STRO-1+ 

immunoselected mesenchymal precursor cells (STRO-1-MPC) to cells isolated 

by plastic adherence (PA-MSC). They found that STRO-1-MPC had greater 

clonogenicity, proliferative capacity, multilineage differentiation potential and 

mRNA expression of MSC-related transcripts than PA-MSC. Furthermore, 

conditioned medium from STRO-1-MPC had greater paracrine activity with 

respect to cardiac cell proliferation and migration, and endothelial migration and 

tube formation – demonstrating the cardiovascular regenerative potential of 

STRO-1-MPC.  

Gronthos et al. (2003)(170) reported a CFU-F enrichment factor of approximately 

5000-fold using STRO-1 in combination with vascular cell adhesion molecule-1 

(VCAM-1/CD106) to isolate a minor subpopulation of STRO-1+ selected cells 
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(1.4 ± 0.3%) which equated to 0.02% of the total BM-MNC population. Cells 

immunoselected for STRO-1+/VCAM-1+ were also used by Martens et al. 

(2006)(171), in an athymic rat model of acute myocardial infarction which resulted 

in a dose-dependent induction of arteriogenesis and vascular network formation.  

Despite the fact that STRO-1 has been recognised as the ‘best-known MSC 

marker’ (172, 173), the molecular identity of the antigen remains elusive (174). It 

has been suggested that STRO-1 is an endothelial antigen and that its expression 

in MSCs is induced during in vitro culture only (175). This finding is supported by 

Lee et al. (2009)(176) who found that STRO-1 expression increased over 9 days 

in culture with no initial analysis of an un-cultured population. However it has also 

been proposed that STRO-1 binds to cell surface heat shock cognate 70 

(HSC70/HSPA8) and that additional investigation of this molecule could provide 

further insight into MSC biology (174).  

The practicality of using STRO-1 as an MSC marker for therapeutic applications 

is limited; it has been found that STRO-1 is not universally expressed in all MSC 

sources (167), for example there was no expression found in MSCs derived from 

adipose tissue (177) and umbilical cord matrix (178) - two promising alternative 

MSC sources to bone marrow. Moreover, the use of STRO-1 as a sole marker 

would yield an erythroid-contaminated population due to the high percentage 

(>95%) of STRO-1 cells which co-express glycophorin A (167, 168). 

2.6.2.2 CD271 selection of MSCs 

CD271 - also named low-affinity nerve growth factor receptor (LNGFR) - is a 

receptor for neurotrophins which stimulate neuronal cells to survive and 

differentiate (167). In 2002, Quirici et al. (179) found that positive selection using 

anti-CD271 antibodies isolated a homogenous and multipotent population of 

cells. They found that CFU-F for CD271+ cells were increased more than 60-fold 

compared with cells isolated by density gradient centrifugation and no residual 

CFU-F activity was observed in the CD271- fraction of cells. Furthermore, the 

CD271+ cells had greater capacity to give rise to adipocyte colonies and 

displayed increased calcium accumulation in their extracellular matrices after 

osteogenic differentiation compared to cells isolated by plastic adherence or 

negative selection of CD45-/glycophorin A- cells.  

Since then, Jones et al. (2002-2019)(180-186) have published a considerable 

amount of work regarding a subset of MSCs with phenotype 

CD271bright/CD45low i.e. high expression of the CD271 antigen and low 

expression of the CD45 antigen. They demonstrated that there was a significant 

correlation between the frequency of CFU-F and CD271bright/CD45low cells 

(180, 184), and that these cells expressed other classic markers of MSCs 
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including CD73, CD105, CD90, CD106 and alkaline phosphatase (184, 185). 

They suggested that the enumeration of cells of this phenotype could be used as 

an indicator of bone marrow sample quality (181) and would be suitable for intra-

operative quality control of bone marrow aspirates (180). The work of Jones and 

colleagues has focused on the identification of MSCs in vivo and has found that 

CD271 is the most differentially expressed marker on MSCs compared to other 

marrow cell populations (186).  

Further evidence supports the concept that CD271+ cells are a therapeutic cell 

population; Kuci et al. (2010)(187) reported their immunosuppressive and 

haematopoietic engraftment-promoting properties of immunoselected CD271+ 

cells and Hermida-Gómez et al. (2011)(188) reported the involvement of 

immunoselected CD271+ cells in spontaneous cartilage repair, and the superior 

quality of chondral repair using this subset of cells. Flores-Torales et al. 

(2010)(189) proposed CD271 as a sole marker for isolating MSCs from fresh 

samples of bone marrow. In their study, it was found that the percentage of 

CD271+ cells from 25 donors was significantly correlated with the percentage of 

CD90+/CD105+/CD45-/CD34-/CD79- cells, markers defined by the ISCT criteria 

though not inclusive of all specified markers (Section 2.6.1) 

Altogether these observations have resulted in the commercialisation of CD271 

as a preferred marker for the purification of a homogenous population of cells that 

contains all bone marrow MSC activity (186, 190). Despite this, similar to STRO-

1, CD271 is not a universal marker for MSCs and although CD271+ cells can be 

isolated from bone marrow and adipose tissue (191), expression was absent in 

umbilical cord matrix (192) and other sources (167). Furthermore, the necessity 

to exclude hematopoietic cells (CD34+ and CD45+ cells) prevents CD271 alone 

from being used to isolate a pure population of therapeutic cells (179, 193).  

 

2.6.2.3  CD146 selection of MSCs 

CD146 – also named melanoma cell adhesion molecule (MCAM) - is a cell 

adhesion protein involved in vascular endothelial cell activity and angiogenesis 

(167). CD146 expression on MSCs has been correlated to an increased capacity 

for multipotent differentiation (194), where Russell and colleagues (2010) 

determined that the tripotent clones expressed higher levels of CD146 than their 

unipotent counterparts. In addition to this, Sacchetti et al. (2007)(195) found that 

CD146 distinguished bone marrow MSCs from other osteogenic cell strains and 

was expressed at high levels on CFU-F but was expressed at decreased levels 

in non-clonal cultures, where mature osteoblastic cells were present. 

Furthermore, when CD45- cells were selected for CD146 by FACS, CFU-Fs were 
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enriched more than 800-fold from BM-MNC and ~80 % of CFU-F were recovered 

in this fraction.  

In addition to the clonogenic and multipotent potential of CD146+ cells, Sacchetti 

et al. (2007)(195) demonstrated that CD146+ cells were capable of transferring 

the haematopoietic microenvironment (HME) to heterotopic sites in vivo – 

revealing functional relationships between the establishment of the HME, 

progenitor cells in bone marrow and angiogenesis. Before this, relatively little was 

known about the role that BM-MSCs play in the HME, which is crucial for the 

regulation and maintenance of haematopoiesis (193). Tormin et al. (2011)(193) 

were then able to provide a greater insight into these relationships with their 

analysis of co-stained CD146 and CD271 BM-MNCs. In this study it was found 

that all assayable CFU-Fs were highly and exclusively enriched not only in the 

CD146+/CD271+ fractions of lineage-depleted cells but also in the CD146-

/CD271+ fraction of cells. They found that the differences in CD146 expression 

correlated with in situ localisation of cells and were able to identify a CD146-

/CD271+ phenotype for bone-lining cells and a CD146+/CD271+ phenotype for 

cells located in perivascular regions.  

Following this work, Maijenbrug et al. (2012)(196) investigated the effects of 

ageing on these two subpopulations – CD146+/CD271+ and CD146-/CD271+. 

They found that CD146 expression decreased with age and the main population 

in adults was CD146-/CD271+ and the main population in paediatric and foetal 

bone marrow was CD146+/CD271+. This is important to note when considering 

the application of cell therapies; patients requiring cell therapies could be of any 

age and therefore a marker that decreases in expression with age would not be 

suitable unless the relationship was consistent and well defined. 

  

2.6.2.4  Stage-specific embryonic antigen-4 (SSEA-4) selection of MSCs 

Stage-specific embryonic antigen-4 (SSEA-4) is an early embryonic glycolipid 

antigen commonly used as a marker for undifferentiated pluripotent human 

embryonic stem cells. In 2007, Gang et al. (197) proposed that SSEA-4 could 

also identify an adult mesenchymal stem cell population. They found that 

approximately 2–4% of human bone marrow cells expressed SSEA-4 and that its 

expression gradually increased in culture. They also found that when SSEA-4 

was used for the prospective isolation of MSCs, SSEA-4+ cells adhered to plastic 

and formed a homogenous cell monolayer whereas SSEA-4- cells failed to grow. 

SSEA-4+ cells demonstrated trilineage differentiation potential however no 

assessment of their clonogenic capacity was reported. 
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Beyond this work there is little evidence to support SSEA-4 as a reliable MSC 

surface marker. Zeddou et al. (2010)(192) reported the expression of SSEA-4 on 

MSCs cultured from bone marrow but not umbilical cord matrix, whereas others 

have reported no SSEA-4 expression on bone marrow cells (193, 198). Notably, 

there has been no direct comparison of the multipotency and clonogenicity of 

SSEA-4+ cells compared to cells isolated by plastic adherence or by other 

molecules (167). 

 

2.6.2.5 Other proposed markers for the selection of MSCs 

In addition to the markers discussed above, there have been various other 

markers used to isolate clonogenic MSCs from BM; including α6-integrin (CD49f) 

in combination with podocalyxin-like protein (PODXL)(199), stage specific 

antigen-3 (SSEA-3) in combination with CD105 (200) and CD200 (201). 

Furthermore, in search of unique MSC markers, research groups have reported 

molecules that are expressed only on MSCs compared to other marrow cells, 

such as the neural ganglioside GD2 (202). In further support of the perivascular 

niche of bone marrow derived MSCs, the pericyte marker 3G5 has been found to 

be expressed on adherent colony-forming cells (203) and STRO-1 selected cells 

(204). 

Various research has highlighted alternative or additional markers associated 

with the CD271+ subpopulation of MSCs; Sivasubramaniyan et al. (2013)(205) 

found that the type I integral membrane protein Sushi domain containing 2 

(SUSD2) was exclusively expressed on CD271+/CD45- cells and isolation of 

SUSD2+ cells enriched CFU-F approximately 70-fold. They propose that the 

W5C5 antibody - which reacts with SUSD2 - could provide a highly specific 

method for the isolation of BM-MSCs.  

Using CD56-specific 39D5 and MSCA-1-specific W8B2 monoclonal antibodies, 

Battula et al. (2009)(206) showed that these reagents were selectively expressed 

on CD271+ cells and no other bone marrow cells. CD271+/CD56+ and 

CD271+/MSCA-1+ subpopulations co-expressed established MSC markers and 

gave rise to CFU-F providing a more specific subset of cells for autologous cell 

therapies. It must also be noted that the MSCA-1 antigen has been found to be 

identical to tissue non-specific alkaline phosphatase (TNAP)(207) and TNAP is 

also thought of as a marker of MSCs. TNAP has been long known as a marker 

for mineralising cells, however it has also been found that TNAP activity within 

progenitor cells induces adipocyte and neuron differentiation as well as 

immunomodulation (208). 
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2.6.2.6 Summary of alternative MSC surface antigens for MSC selection 

Similarly to other properties of MSC, the determination of their specific surface 

antigen expression has been confounded by a lack of standardisation in the field. 

Analysis of surface markers has often been acquired after in vitro culture which 

can change the expression of markers according to the cell culture reagents (209) 

and confluence of cells (176). In addition, different cell sources have been used 

which further confuse the literature.  

While it is still considered that there is no consensus on a single surface molecule 

to identify MSCs (167), this thesis will focus on the utility of the CD271 antigen 

as a marker to enrich a therapeutic subpopulation of MSCs from bone marrow 

aspirate. There has been independent evidence from several research groups 

that CD271 antibodies can isolate a population of cells from bone marrow which 

are enriched for CFU-F and demonstrate trilineage differentiation potential. 

Moreover, CD271 has been shown to be expressed on freshly isolated bone 

marrow cells which is of crucial concern for this project since the aim is to develop 

a cell enrichment technology for intraoperative use with no in vitro expansion of 

cells prior to therapy. Finally, unlike STRO-1, the CD271 antigen has been 

identified, which means CD271 recombinant protein is available to buy – a factor 

that must be considered for the experiments carried out in this project.  

 

2.7  Summary and considerations for proposed research 

In consideration of all the literature, this research project proposes to design and 

fabricate a microfluidics-based device, with a cell capture surface based on 

affinity capture, to enrich a subset of CD271+ MSCs from clinical samples of bone 

marrow aspirate. Controlled flow will allow unbound cells to be washed away 

resulting in an enriched population of cells for potential use in autologous cell 

therapies. Mechanisms to release and collect the enriched cells will be explored 

including investigating pH change and increased fluid flow. In Section 2.5.3.1, the 

advantages of aptamers for use in specific cell capture were briefly discussed, 

and in Section 2.5.3.2 peptide aptamers named Affimers were introduced as 

alternative non-antibody binding proteins. Affimers, as well as commercially 

available antibodies, will be explored as capture molecules for CD271-expressing 

cells in the proposed microfluidic device. 
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Chapter 3: Introduction to research project 

This chapter will describe the specific research aim and objectives of this project 

and outline the results reported in each of the following chapters of work.  

 

3.1 Research aim 

The long-term goal of this research is to produce a cell sorting device that will 

enrich specific cells from clinically relevant samples within intraoperative times 

and without the need for extrinsic labelling. This would therefore be 

commensurate with the criteria for minimal manipulation for use in autologous 

cell therapies. The aim of the research described in this thesis was to develop a 

prototype microfluidic device for affinity-based capture of CD271+ cells and 

assess the feasibility of using the device for enriching cells from clinical bone 

marrow aspirates.  

 

3.2 Research objectives 

3.2.1 Objective 1 

To screen Affimer libraries in order to identify CD271-specific binding proteins 

and to investigate their potential use as capture molecules for CD271+ cells 

The efficacy of CD271 as a biomarker to be used in order to enrich a therapeutic 

population of MSCs was described in Section 2.6.2.2. The use of novel peptide 

aptamers (“Affimers”) as non-antibody protein binding proteins was described in 

Section 2.5.3.2. The first objective of this research project was to use the in vitro 

screening technique of phage display to select for CD271-specific binding 

proteins from the Affimer libraries. The specificity of selected Affimers to CD271 

would then be investigated and compared to commercially available antibodies 

with the intention of immobilising the most appropriate binding protein to a solid 

substrate in a microfluidic channel for specific cell capture (Objective 2). 

 

3.2.2 Objective 2 

To design and fabricate a prototype microfluidic device capable of specific 

capture and release of CD271+ cells 

The clinical need for novel MSC enrichment methods was described in Section 

2.4.2. The benefits of microfluidic technologies were described in Section 2.5.2.1. 
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The second objective of this research project was to design and fabricate a 

prototype microfluidic device with affinity-based capture of CD271+ cells. The 

device would be designed to overcome the limitations of current MSC enrichment 

technologies to achieve enrichment with: high specificity, minimal manipulation, 

no extrinsic labelling of cells and within intraoperative timeframes. 

 

3.2.3 Objective 3 

To evaluate the feasibility of specific capture of CD271+ cells from clinical 

samples of bone marrow aspirate using a prototype microfluidic device 

The third objective of this research project was to investigate the CD271+ 

population of cells in clinical samples of bone marrow aspirate and evaluate the 

feasibility of enriching the CD271+ subpopulation using the prototype microfluidic 

device. The efficacy of the device will be compared to current ‘gold standard’ cell 

sorting methods - MACS and FACS - and assessed against the required criteria 

for novel MSC enrichment technologies. 

 

3.3 Chapter outlines 

3.3.1 Chapter 4 

Chapter 4 describes the materials and methods common to all chapters in this 

thesis, whereas materials and methods exclusive to one chapter are described 

in the relevant chapter.  

3.3.2 Chapter 5 

Chapter 5 describes the results from phage display screening of human 

recombinant CD271 protein. Three candidate Affimer proteins from the phage 

display screening were produced and purified and their binding to CD271 

recombinant protein characterised using enzyme linked immunosorbent assays 

and surface plasmon resonance. One Affimer protein was investigated for 

specific capture of CD271+ cells from dental pulp stromal cells and a CD271+ 

cell line, assessed via flow cytometry. The specificity of Affimer proteins was 

compared to a commercially available CD271 antibody and the most suitable 

binding protein investigated for specific cell capture in a prototype microfluidic 

device. 

 



- 50 - 

3.3.3 Chapter 6 

Chapter 6 describes the design, fabrication and optimisation of a prototype 

microfluidic device. The device was fabricated using soft lithography techniques 

and specific cell capture and release optimised using a CD271+ cell line and 

CD271- cells. Analysis of the cells post-enrichment was carried out to assess the 

viability, proliferation and manipulation (in terms of cell labelling) of enriched cells 

compared to control cells which had not been enriched in the microfluidic device. 

The device was also compared to current methods of MSC enrichment – MACS 

and FACS – in terms of specificity and cell recovery. 

 

3.3.4 Chapter 7 

Chapter 7 describes the use of conventional cell enrichment technologies (MACS 

and FACS) to enrich and characterise a subpopulation of CD271+ cells from 

clinical samples containing BM-MNCs. Once critical information such as the 

percentage and number of CD271+ cells was established, the enrichment of 

CD271+ cells from clinical samples using the prototype device was assessed. 

The performance of the device was compared to MACS and FACS and evaluated 

against the criteria required for a novel MSC enrichment technology. 

 

3.3.5 Chapter 8 

Chapter 8 discusses the different factors that must be considered for future 

work and summarises the thesis conclusions.  
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Chapter 4: Material and Methods 

This Chapter will detail the general materials and methods used throughout this 

thesis. Materials and methods that are specific to only one chapter are detailed 

in the appropriate chapter of work. 

 

4.1 Cell culture 

Cell culture refers to the in vitro expansion of cells either harvested directly from 

the tissue or derived from an established cell line. Cells harvested directly from 

tissue are known as primary cells, they are cultured until they reach confluence 

(i.e. occupy all available space in a tissue culture flask) and then subcultured (i.e. 

passaged) into a new tissue culture flask to allow more room for growth. Cells 

derived from primary sources have a finite life span before they lose their ability 

to proliferate. Established cell lines are immortalised through a process called 

transformation, these cells have the ability to proliferate indefinitely and are 

known as continuous cell lines (210). 

Different cell types require different culture conditions, however, the culture 

vessel will inevitably contain; a medium that supplies essential nutrients, 

antibiotics to prevent infection and serum (usually foetal bovine serum, FBS) that 

provides various hormones, growth and adhesion factors, lipids and minerals 

(211). Culture vessels are usually kept at 37 °C and at pH 7.4. The growth 

medium controls the pH by incorporating a bicarbonate based buffer system and 

the percentage of CO2 in air is controlled exogenously. All cell culture is 

maintained in a sterile environment and handled using aseptic technique.  

 

4.1.1 Dental pulp stromal cell (DPSC) culture 

Dental pulp stromal cells (DPSCs) were used for flow cytometry experiments to 

assess whether Affimer proteins bound to CD271+ cells. DPSCs were harvested 

from extracted third molars obtained with consent through the Leeds School of 

Dentistry Skeletal Tissues Research Tissue Bank (Dental Research Ethics 

Committee approval 160916/AP/211). Cells were received cryopreserved at 

passage 2. 

Cells were thawed and resuspended in Minimum Essential Medium (MEM) - 

Alpha Eagle with Earle’s BSS (Lonza, BE12-169F) supplemented with 10% FBS 

(Sigma Aldrich, F7524), 1% L-glutamine (200 mM, Sigma, G7513) and 1% 

penicillin streptomycin solution (P/S, Sigma, P4458). Cultures were incubated at 
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37 °C, 5% CO2 and passaged when 80-90% confluent. Cells were detached from 

culture flasks by addition of 3-5 mL trypsin-EDTA solution (Sigma, T4049). Cells 

from passages 3 to 5 were used for all experiments.  

 

4.1.2 SH-SY5Y cell culture 

SH-SY5Y neuroblastoma cells, which constitutively express CD271, were used 

to assess whether Affimer proteins bound to CD271+ cells and to optimise cell 

capture and release in a prototype microfluidic device. SH-SY5Y cells were kindly 

donated by the Faculty of Biological Sciences (University of Leeds) and received 

cryopreserved at passage 13. The cells were originally provided to the Faculty of 

Biological Sciences by Dr. J. A. Sim (University of Manchester, Manchester, UK). 

Cells were thawed and resuspended in Dulbecco’s Modified Eagle Medium:F12 

(DMEM:F12, Lonza, BE12-719F) supplemented with 10% FBS and 1% P/S 

solution. Cultures were incubated at 37 °C, 5% CO2 and passaged when 80-90% 

confluent. Cells were detached from culture flasks by addition of 3-5 mL trypsin-

EDTA solution. Cells were used up to passage 30.  

 

4.1.3 Fibroblast cell culture 

Human fibroblast cells were used as CD271- cells during the optimisation of 

specific cell capture in a prototype microfluidic device. Primary dermal fibroblasts 

from normal adults were purchased from ATCC (PCS-201-012). The cells were 

thawed and re-suspended in DMEM - high glucose cell culture medium (Sigma, 

D5671) supplemented with 10% FBS (Sigma Aldrich,  F7524), 1% L-Glutamine 

(200 mM, Sigma, G7513) and 1% P/S solution (Sigma, P4458). Cultures were 

incubated at 37 °C, 5% CO2 and passaged when 80-90% confluent. Cells were 

detached from culture flasks by addition of 3-5 mL trypsin-EDTA solution (Sigma, 

T4049). Cells were used up to passage 10. 

 

4.2 Surface plasmon resonance (SPR) 

Surface plasmon resonance (SPR) is a label-free, non-destructive method to 

characterise ligand binding. The technique involves immobilising a ligand to a 

metal film (usually gold) which is placed at the interface of two dielectric media 

(212)(Figure 4.1). Medium 1 is a prism which has a higher refractive index (n1), 

and medium 2 is the analyte solution which has a lower refractive index (n2). 

When a plane-polarised light beam hits the prism, the light is bent towards the 
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plane of the interface when moving from medium 1 to medium 2. Total internal 

reflection can be achieved by adjusting the incident angle (θ) so it is greater than 

the critical angle (θC)(where sin(θC)=n2/n1). Under total internal reflection 

conditions, evanescent waves are formed in the lower refractive index medium 

(n2).  

Surface plasmons are electromagnetic waves confined to the metal-dielectric 

interface. The surface plasmons can be excited by the evanescent wave and this 

phenomenon is termed surface plasmon resonance (SPR). The magnitude of the 

wave is related to the dielectric constant of medium 2 and when surface plasmon 

resonance occurs, the intensity of the reflected light decreases sharply. 

Adsorption and desorption on the gold surface i.e. analyte association and 

dissociation, changes the refractive index of medium 2 near the metal-dielectric 

interface therefore changing the angle required for resonance. 

 

 

 

Figure 4.1 Surface plasmon resonance (SPR) schematic 

Total internal reflection occurs when the incident angle (θ) is greater than 
the critical angle (θC)(where sin(θC)=n2/n1). This causes evanescent waves 
to form in the analyte solution which has a lower refractive index than the 
prism (n1 > n2). Evanescent waves cause surface plasmons at the interface 
to become excited, termed surface plasmon resonance (SPR). Association 
and dissociation of analyte causes a change in the refractive index of the 
analyte solution (n2)  which changes the angle required for SPR. 

 

SPR is an analogous system to the desired method of cell capture within a 

microfluidic cell enrichment device, making it an ideal method to assess CD271 

protein binding to selected Affimer proteins (Section 5.2.10). SPR analysis was 

also used during the development of the prototype device to assess whole cell 
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binding to a functionalised surface (Section 6.2.2). The specific protocols for 

these experiments are described in the respective sections.  

 

4.3 Self-assembled monolayers (SAMs) 

Self-assembled monolayers (SAMs) contain a head group, a backbone and a 

specific terminal group (213). The head group guides the self-assembly process 

linking the hydrocarbon chain to the surface through a strong bond. The 

hydrocarbon chains form a packed monolayer through inter-molecular 

interactions such as van der Waals, and the specific terminal group allows 

different molecules such as proteins to be anchored to the monolayer.  

To create a non-fouling surface for specific cell capture in this work, a 

polyethylene glycol (PEG) monolayer terminated with a carboxylic acid group 

(HS-C11-(EG)6-OCH2-COOH, ProChima Surfaces TH 003-m11.n6) was formed 

on gold-coated surfaces (used for specific cell capture) prior to functionalisation. 

A non-fouling surface was required to help prevent non-specific adsorption of 

unwanted cell types in the device, and PEG monolayers are commonly used for 

this purpose (214).  

 

4.4 Crosslinking chemistry for the immobilisation of proteins to 

a solid surface 

For the work in this thesis, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide).HCl 

(EDC) and N-hydroxysuccinimide (NHS) crosslinking chemistry was used to 

immobilise proteins to various different surfaces, including; a CM5 substrate (GE 

Healthcare, Chapter 5: Section 5.2.10), a gold-coated glass disk (Xantec 

Bioanalytics, Chapter 6: Section 6.2.2) - both for SPR analysis - and a gold-

coated substrate in the prototype microfluidic device (Chapter 6: Section 6.2.3 

and 6.2.5). A CM5 substrate has a carboxymethylated dextran matrix attached to 

a gold surface, whereas the gold-coated substrates were first coated with a SAM 

terminated with a carboxylic acid group. Carbodiimide compounds are commonly 

used for labelling or crosslinking to carboxylic acids, and EDC is water soluble so 

allows for aqueous crosslinking (215). 

The crosslinking reaction mechanism is summarised as follows; EDC reacts with 

carboxylic acid groups on the surface to create an unstable intermediate, NHS is 

added to form a stable amine-reactive ester which allows for efficient conjugation 

of primary amines at a physiological pH (Figure 4.2). 
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Figure 4.2 EDC crosslinking reaction mechanism 

EDC reacts with carboxylic acid groups to form an unstable intermediate. 
NHS is added to form a more stable amine-reactive ester which reacts with 
primary amines at physiological pH. This diagram was created with 
BioRender.com.  

 

4.5 Analysis of flow cytometry data using CytExpert software  

CytExpert software was used to analyse all flow cytometry data recorded in this 

thesis. With the exception of viability testing (Chapter 6: Section 6.3.6), single 

cells were gated on the occasion of each analysis in order to exclude cellular 

debris and doublets which could lead to false positive results. An example of the 

gating strategy is shown in Figure 4.3 for the analysis of SH-SY5Y cells used 

during the optimisation of cell capture and release in a prototype microfluidic 

device (Chapter 6: Section 6.3.2). 
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Figure 4.3 Flow cytometry gating strategy for single cells 

For all flow cytometry data excluding viability testing, single cells were gated; 
first, intact cells were gated to exclude cellular debris (top left panel), then 
single cells were gated to exclude doublets (top right panel). The bottom 
panels show a comparison of intact cells (bottom left panel) and single cells 
(bottom right panel) on a forward scatter area against forward scatter height 
contour plot. Contour plots indicate the density of cells using contour lines 
and different colours; in CytExpert software, red indicates the area of highest 
cell density in the centre of the plot and dark blue indicates the areas of 
lower cell density at the edges of the plot. This example shows the gating of 
SH-SY5Y single cells used during the optimisation of cell capture and 
release in a prototype microfluidic device.   

 

4.6 Statistical analysis 

All statistical analysis was carried out using IBM SPSS Statistics 25 software. The 

Shapiro Wilk test of normality was used to assess the distribution of replicates, 

and if the replicates were normally distributed an independent samples t-test was 
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used to compare means. If the replicates were not normally distributed, a Mann 

Whitney U test was used to compare means. For the experiments carried out in 

Chapter 5, the n value represents the number of technical replicates carried out 

in each experiment. In Chapters 6 and 7, a minimum of three biological replicates 

were carried out for each experiment (each replicate carried out on a different 

day using a different device). In addition, in Chapter 7 where donor samples are 

used, bone marrow mononuclear cells from multiple donors were combined for 

each experiment and the n value represents the number of replicates carried out 

on different days with different donor samples (unless otherwise specified).  
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Chapter 5:  

Identification of suitable binding proteins for the capture of 

CD271+ cells  

5.1 Introduction 

To address Objective 1 (Section 3.2.1), this chapter of work aimed to identify a 

suitable binding protein for the capture of CD271+ cells in a cell enrichment 

device.  

Affimer proteins were selected against human CD271 recombinant protein using 

phage display (Section 5.3.1), and target-specific clones identified by phage 

enzyme-linked immunosorbent assay (phage ELISA, Section 5.3.1.4) and DNA 

sequencing (Section 5.3.1.5). Once target-specific clones were identified, the 

unique insert sequences were sub-cloned into an E. coli expression vector and 

produced in E. coli cells (Section 5.3.2). Affimer proteins were purified and their 

binding to CD271 protein assessed using ELISA and SPR (Section 5.3.3). Finally, 

Affimer proteins displaying specific binding to CD271 recombinant protein were 

investigated for their specific binding to CD271+ cells present in DPSC 

populations and SH-SY5Y neuroblastoma cells (CD271+ cell line)(Section 5.3.4).  

The following sections will detail the processes involved in phage display 

selection of target-specific Affimers and the production and purification of Affimer 

proteins.  

 

5.1.1 Phage display 

Phage display is a powerful in vitro screening technique used to identify ligands 

for proteins and other macromolecules (216). A filamentous bacteriophage can 

display polypeptide or protein sequences as fusion coat proteins on the phage 

surface. This can be used to create libraries of up to 1010 different variants (217). 

The phage phenotype and genotype are physically linked such that the gene 

encoding the displayed molecule is packed within the same virion as a single-

stranded DNA, meaning that identical phage particles will be obtained from the 

same E Coli. clone.  

Phage display was used in this work to identify potential ligands for CD271 protein 

expressed on MSCs. The phage display library was created by the BioScreening 

and Technology Group (BSTG) at the University of Leeds, and is based on a 

consensus phytocystatin sequence, modified and truncated for use as a non-

antibody protein scaffold now referred to as an Affimer (formerly an “Adhiron”)  
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(156). Briefly, the coding region of the Affimer scaffold was cloned between NheI 

and NotI restriction sites in a phagemid vector which allowed the production of an 

Affimer/truncated-pIII fusion coat protein in ER2738 suppressor cells for phage 

display. The library was constructed by splice overlap extension of two PCR 

products to introduce two nine-amino acid variable regions (see Chapter 2: 

Section 2.5.3.2, Figure 2.11), estimated to contain ~1.3 x 1010 independent 

clones. A small subsection of the library contained only one variable loop region 

(158). 

Phage display relies on multiple cycles of biopanning to select highly specific 

ligands against target molecules. Figure 5.1 shows a typical biopanning cycle; 

the target protein is immobilized on a solid substrate, the phage display library is 

incubated with the immobilized target, unbound phage are washed away and 

bound phage are eluted and amplified in bacteria ready for the next selection 

round. In this work, the target protein was biotinylated prior to phage display 

biopanning facilitating immobilisation to biotin-binding solid substrates. In each 

biopanning round the biotin-binding substrate was changed to minimise non-

specific binding. After three biopanning rounds, the binding activity of bound 

phage was tested in a phage ELISA (see Section 5.1.2).   
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Figure 5.1 Schematic illustrating phage display biopanning  

The phage library is incubated with an immobilised target and unbound 
phage are washed away. Bound phage are eluted and amplified in E. coli 
cells ready for the next biopanning round. Typically three or four rounds of 
biopanning are carried out in order to enrich target-specific ligands with the 
desired binding behaviour. This diagram was created with BioRender.com. 

 

5.1.2 Enzyme-linked immunosorbent assay (ELISA) 

An enzyme-linked immunosorbent assay (ELISA) is a plate-based assay which 

enables the quantification of substances such as proteins, peptides and 

hormones (218). There are various formats an ELISA can be carried out in 

however the principle remains the same - an antigen is immobilised to a plate 

and recognised by, and then complexed with, an antigen-specific antibody 

conjugated to an enzyme. The enzyme activity can be detected by reaction with 

a substrate that produces a measurable product. The enzyme used for detection 

in this work was horseradish peroxidase (HRP) which reacts with 3,3',5,5'-

tetramethylbenzidine (TMB) substrate to produce a soluble blue product 

measured at 620 nm. ELISAs were used in this study for two purposes; to check 

that proteins were successfully biotinylated, and to assess the binding activity of 

different clones isolated by phage display. The different ELISA formats used in 

the work in this chapter are outlined below. 
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5.1.2.1 Direct ELISA to check for biotinylation 

The ELISA format used to check the successful biotinylation of proteins was a 

direct ELISA. The biotinylated protein was directly adsorbed onto the well plate 

and a streptavidin-HRP conjugate was used for detection (Figure 5.2). This 

detection strategy takes advantage of the well-known avidin-biotin interaction, 

which is the strongest non-covalent interaction known (219). A streptavidin 

molecule can bind up to four biotin molecules making it an ideal approach for the 

detection of bound molecules.  

 

 

Figure 5.2 Direct ELISA format for detecting biotinylated protein 

In the direct ELISA format, a protein is directly adsorbed onto a solid 
substrate and complexed with a primary antibody conjugated to an enzyme. 
In this case, the protein is biotinylated and streptavidin is used instead of a 
primary antibody, which is conjugated to HRP and detected via reaction with 
TMB substrate. This diagram was created with BioRender.com. 

 

5.1.2.2 Sandwich ELISA to assess binding behaviour of individual clones 

A phage ELISA was carried out to assess the binding behaviour of clones 

selected by phage display biopanning. The format of the phage ELISA was a 

“sandwich” ELISA with indirect detection. The wells were coated with streptavidin 

as a capture molecule for the biotinylated target protein and bound phage was 

detected via an anti-phage-HRP antibody (Figure 5.3).  

Sandwich ELISAs were also carried out to assess the binding behaviour of 

purified Affimer proteins - streptavidin was again used as a capture molecule and 

HRP-conjugated secondary antibodies were used as detection molecules.  
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Figure 5.3 Sandwich ELISA format for assessing phage binding behaviour 
to target protein 

In a sandwich ELISA, a capture molecule is used to immobilise the antigen 
to a solid substrate. In this case, streptavidin was used to capture 
biotinylated proteins. Bound phage was detected via an anti-phage-HRP 
secondary antibody and HRP activity measured using TMB substrate. This 
diagram was created with BioRender.com 

 

5.1.3 DNA sequencing 

DNA sequencing is the process of determining the nucleotide sequence of a 

piece of DNA. This is commonly carried out by Sanger sequencing, where the 

target DNA is first copied many times making fragments of different lengths. At 

the end of each fragment is a dideoxy nucleotide which terminates the chain and 

is marked with a particular colour of dye depending on the nucleic base (A, T, C 

or G)(220). The dye at the end of each fragment can be detected and produces 

a chromatogram where the DNA sequence can be read from the peaks. 

To identify the phage display clones responsible for specific binding in the phage 

ELISA, clones were sent to an external facility for DNA sequencing. DNA 

sequencing was also carried out after DNA sub-cloning (Section 5.1.4.2) to 

confirm the correct Affimer sequence had been cloned.  
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5.1.4 Recombinant protein production and purification methods 

Recombinant proteins are widely used throughout biological and biomedical 

sciences and the technology of their production and purification is now relatively 

simple (221). Despite this, different proteins require different protocols and these 

must be optimised for each individual protein. The strategy used for Affimer 

protein production and purification has been previously optimised by the BSTG 

and is outlined in Figure 5.4. In the following section, the individual techniques 

involved are described.  

 

 

Figure 5.4 Affimer protein production and purification overview 

 

5.1.4.1 Polymerase Chain Reaction (PCR) 

Affimer insert sequences are amplified prior to DNA sub-cloning using the 

polymerase chain reaction (PCR). PCR is based on the ability of DNA polymerase 

to synthesize DNA complementary to a template strand (222).  

Briefly, a DNA template that contains the target sequence is heated to a high 

temperature to denature the DNA strands. A primer sequence (complementary 

to the target sequence) is required to provide the starting point for DNA 

polymerase and nucleotide bases are added to provide the ‘building blocks’ for 

1. Affimer DNA sequence cloned into an E. coli
expression vector 

(Section 5.1.4.2 and 5.2.6)

2. Protein expressed in BL21 Star™ (DE3) E. coli 
cells with IPTG induction

(Section 5.1.4.3 and 5.2.7)

3. Cells lysed and Ni-NTA resin used to purify the 
soluble His-tagged Affimer protein

(Section 5.1.4.4 and 5.2.7)

4. Gel electrophoresis used to check the efficiency 
and purity of Affimer proteins

(Section 5.1.4.5 and 5.2.7)
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new DNA strands. The temperature is lowered to enable the DNA primers to 

attach to the template DNA, then raised again for the polymerase to make new 

strands of DNA. Through repeated cycles, thousands to millions of DNA copies 

are generated (223). 

 

5.1.4.2 DNA sub-cloning 

Recombinant DNA technology is the process of joining two or more DNA 

segments to generate a single molecule capable of autonomous replication in a 

given host (224). In the case of DNA sub-cloning, a previously cloned DNA 

segment is the insert sequence, cloned into a plasmid or bacteriophage cloning 

vector. 

Figure 5.5 shows a schematic of a basic sub-cloning protocol; both insert DNA 

and vector DNA are treated with restriction endonucleases and purified using 

agarose or polyacrylamide gel electrophoresis (Section 5.1.4.5). The digested 

components are combined and treated with DNA ligase, then introduced into 

competent E. coli cells. An antibiotic resistance gene in the plasmid allows 

transformants to be identified by using the appropriate antibiotic in cell cultures.  
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Figure 5.5 DNA sub-cloning schematic 

A basic protocol for DNA sub-cloning involves digesting both donor 
plasmid and recipient plasmid with restriction endonucleases and ligating 
the digested products. An antibiotic resistance gene is included so that 
transformants can be selected. This diagram was created with 
BioRender.com 

 

5.1.4.3 Protein expression in E. coli cells 

E. coli as an expression host is fast, inexpensive and useful in many cases of 

protein production (221). For Affimer protein production, the BL21 Star™ (DE3) 

E. coli strain is commonly used which is compatible with the T7 lacO promoter 

system. Affimer proteins are produced as fusions to an N-terminal hexahistidine 

affinity tag which enables purification via immobilised metal affinity 

chromatography (Section 5.1.4.4).  

Using a T7 system, protein expression is induced using isopropyl-β-D-

thiogalactoside (IPTG) which triggers transcription of the lac operon. Cells are 

grown to high densities and IPTG is added at mid-to-late log phase of growth to 

achieve maximal yields. A low temperature (25 °C) is used during induction so 

that recombinant proteins remain soluble.  
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5.1.4.4 Protein purification using immobilised metal affinity 

chromatography (IMAC) 

Once the recombinant protein has been expressed in E. coli cells, it is extracted 

by cell lysis. The lysis buffer contains a cocktail of enzymes and protease 

inhibitors to break down the cell wall, and has a relatively high ionic strength to 

promote protein solubility and stability. The soluble protein can then be purified 

using immobilised metal affinity chromatography (IMAC). This process uses a 

resin such as nickel-nitrilotriacetic acid (Ni-NTA)(for His-tagged proteins) where 

the histidine residues bind to the nickel ions whilst other proteins can be washed 

away. The His-tagged protein can be eluted using an elution buffer with a high 

concentration of imidazole (300 mM) which competes for binding to the nickel 

resin. Wash buffers contain a low concentration of imidazole (20 mM) to elute 

weakly bound contaminants.  

 

5.1.4.5 Polyacrylamide and agarose gel electrophoresis 

Gel electrophoresis is a method used to separate mixtures of DNA, RNA or 

proteins according to their molecular size (225). An electrical field is applied such 

that one end of the gel is positively charged and the other is negatively charged. 

Molecules move through the gel according to their size and charge with smaller 

molecules travelling at a faster speed. DNA and RNA are negatively charged 

molecules and are therefore pulled towards the positive end of the gel. However 

proteins may not carry an appropriate negative charge and are mixed with a 

detergent – sodium dodecyl sulphate (SDS) - beforehand. This causes the 

proteins to unfold and have a negative charge proportional to the polypeptide 

chain length.    

Typically DNA and RNA fragments are separated on agarose gels and proteins 

on SDS polyacrylamide (SDS-PAGE) gels. A DNA-binding dye is used in the 

agarose gel solution which can be visualised under UV light. Coomassie blue is 

used to stain SDS-PAGE gels where the intensity of the bands is usually 

proportional to the amount of protein, providing a semi-quantitative method. 

 

5.1.5 Mass spectrometry 

Mass spectrometry measures the mass to charge ratio (m/z) of ions and can be 

used for a number of applications including proteomics. For this work, mass 

spectrometry was used to determine the mass of an Affimer protein before and 

after reaction with biotin-maleimide (Section 5.2.9).  
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In mass spectrometry, samples are loaded into a mass spectrometer, vaporised, 

and ionised by an ion source. The mass spectrometer used in this case was an 

ion mobility enabled mass spectrometer (IMEMS) which uses Travelling Wave 

Ion Mobility. In an IMEMS, ions move through a buffer-filled guide where their 

charge determines the magnitude of the interaction with the buffer gas, which 

affects the mobility of the ions (226). The ions are therefore separated, and then 

detected. 

 

5.2 Materials and Methods 

5.2.1 Biotinylation of phage display target: CD271-His recombinant 

protein 

The target protein was biotinylated prior to phage display biopanning to facilitate 

immobilisation to biotin-binding substrates. 

Human CD271-His recombinant protein was purchased from Sino Biological 

(13184-H08H) and biotinylated according to a protocol previously optimised by 

the BSTG. Protocols optimised by the BSTG were used throughout phage display 

screening (Section 5.2.3), for DNA sub-cloning (Section 5.2.6), and for Affimer 

protein production and purification (Section 5.2.7).  

A 10 mM solution of EZ-Link® NHS-SS biotin (Thermo Scientific, 21441) in 

dimethylsulphoxide (DMSO, Sigma-Aldrich,  D8418) was prepared and 0.64 µL 

incubated with CD271-His recombinant protein (0.2 mg/mL, 130 µL) for 1 h at RT. 

The amount of biotin solution used was proportional to the molecular weight of 

the protein (45-60 kDa). To remove excess biotin, Zeba Spin Desalting Columns, 

7K MWCO (Thermo Scientific, 89882) were used according to the manufacturer’s 

instructions. An equal volume of 80% glycerol was added to the biotinylated 

protein and stored at -20 °C. 

 

5.2.2 Direct ELISA to determine biotinylation of target protein 

A direct ELISA (Section 5.1.2.1) was carried out to check that the target protein 

had been successfully biotinylated. 

Phosphate-buffered saline (PBS) was aliquoted into Nunc-Immuno™ 

MaxiSorp™ strips (Thermo Scientific, 469949, 50 µL per well) and biotinylated 

CD271-His protein was added in different volumes (1 µL and 0.01 µL) to two 

wells. Two additional wells contained PBS only. The wells were incubated at 4 °C 

overnight then washed 3x with 300 µL PBST (PBS containing 0.1% Tween 20) 
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on a plate washer (TECAN HydroFlex). Wells were blocked with 10x Blocking 

Buffer (Sigma, B6429, 250 µL per well) and incubated for 3 h at 37 °C before 

washing was repeated (3x 300 µL PBST). High sensitivity streptavidin-HRP 

(Thermo Scientific, 21130) was diluted 1:1000 in 2x Blocking Buffer (10x Blocking 

Buffer diluted in PBST) and 50 µL was added to each well. After 1 h incubation 

on a vibrating platform shaker (Heidolph VIBRAMAX 100; speed setting 3) the 

plate was washed 6x (300 µL PBST) and 50 µL TMB substrate (SeramunBlau® 

fast TMB substrate solution, Seramun,  S-001-TMB) added per well. The colour 

was allowed to develop for 5 min and the absorbance was measured at 620 nm.  

 

5.2.3 Phage display screening of target protein: biotinylated CD271-

His recombinant protein 

Two phage display screens of biotinylated CD271-His protein were carried out 

using two slightly different protocols. The first protocol included overnight 

washing with the aim to wash away any weakly bound or non-specifically bound 

phage (protocol 1). The second protocol eliminated the overnight washing steps 

in order to capture clones with weaker affinity to the target protein (protocol 2). 

The second protocol also eluted bound phage to investigate change in pH as a 

possible release mechanism in the final cell enrichment application.  

In the first phage display screen, a yeast small ubiquitin-like modifier (ySUMO) 

protein was screened alongside CD271-His protein as a positive control known 

to produce hits from the Affimer library (156). In the second phage display screen, 

a tubulin protein was used as a positive control (158). In both screens, the first 

biopanning round was carried out on streptavidin-coated wells, the second on 

streptavidin-coated magnetic beads, and the third on NeutrAvidin-coated wells. 

The solid substrate was changed in each biopanning round to reduce non-specific 

binding. 

5.2.3.1 First biopanning round 

Streptavidin coated (high binding capacity) 8-well strips (Thermo Scientific,  

15501) were blocked with 2x Blocking Buffer (250 μL per well) and incubated 

overnight at 37 °C. The phage display library (40 µL) was diluted 1 in 10 with 2x 

Blocking Buffer and pre-panned in the pre-blocked wells for 2 h on a vibrating 

platform shaker at RT. The phage were moved to a new pre-blocked well every 

40 min. Pre-panning was carried out to reduce non-specific binding to the 

streptavidin-coated wells. At the same time, biotinylated target was immobilised 

to a pre-blocked streptavidin-coated well by incubating for 2 h on a vibrating 

platform shaker at RT. 
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Immobilised target protein was washed 3x with PBST (300 µL per well) on a plate 

washer. The pre-panned phage was added to the target wells and incubated for 

2 h on a shaker (125 rpm). The plate was washed 27x with PBST (300 µL per 

well) to wash away unbound phage. Bound phage were eluted by addition of 

glycine-HCl (0.2 M, 100 µL, pH 2.2) for 10 min at RT, then neutralised with tris-

HCl (1 M, 15 µL, pH 9.1) and incubated with ER2738 E. coli cells in 2TY media1 

(8 mL, A600 ~0.6). Any bound phage remaining in the target well was eluted with 

addition of triethylamine (Sigma-Aldrich, T0886, 1 mM in PBS, 100 µL, pH 10.75) 

for 6 min at RT, neutralised with tris-HCl (1 M, 50 µL, pH 7) and added to the 

ER2738 E. coli cell culture.  

The cell culture was incubated for 1 h at 37 °C shaking at low speed (90 rpm). 

Phage-infected ER2738 cells (1 μL – representing 100 - 250 colony forming units) 

were plated on a LB carb plate (lysogeny broth agar plates containing 100 μg/mL 

carbenicillin) and incubated overnight at 37 °C. The remaining cells were 

centrifuged at 3000 g for 5 min then plated on a LB carb plate and incubated 

overnight at 37 °C. 

Colonies on the 1 μL plate were counted and the total number of colony forming 

units per 8 mL cell culture was calculated. The plate containing the remaining 

cells was scraped and diluted in 2TY carb (2TY media containing 100 μg/mL 

carbenicillin) to make 8 mL cultures (A600=0.2). Cell cultures were incubated for 

1 h at 37 °C, 230 rpm. M13K07 helper phage (0.32 μL, titre ca. 1014/mL) was 

added and incubated for a further 30 min at 37 °C, 90 rpm. Kanamycin (25 mg/mL, 

16 μL) was added and incubated overnight at 25 °C, 170 rpm.  

The phage-infected cultures were centrifuged at 3500 g for 10 min. The phage-

containing supernatant was transferred to a fresh tube and a small aliquot was 

taken for the second biopanning round. Polyethylene glycol-sodium chloride 

(PEG-NaCl) precipitation solution (2 mL, 20% (w/v) PEG 8000, 2.5 M NaCl) was 

added to the remaining supernatant and incubated overnight at 4 °C. The 

precipitated phage was centrifuged at 4,816 g for 30 min, the pellet resuspended 

in TE buffer2 (320 μL) and stored at 4 °C. 

5.2.3.2 Second biopanning round 

Streptavidin beads (Dynabeads® MyOne™ streptavidin T1, 10 mg/mL, 

Invitrogen, 656.01/656.02, 20 μL) were washed 2x in PBST and blocked using 2x 

Blocking Buffer (100 μL) overnight on a Stuart SB2 fixed speed rotator (20 rpm). 

The beads were centrifuged at 800 g for 1 min and immobilised on a magnet. The 

 

1 2TY media (per litre): 10 g yeast extract, 16 g tryptone, 5 g sodium chloride  
2 TE buffer: 10 mM Tris, 1 mM EDTA, pH 8.0 
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phage-containing supernatant from the first biopanning round was blocked with 

10x Blocking Buffer (60 μL) and pre-panned on the pre-blocked streptavidin 

beads for 2 h on the fixed speed rotator. At the same time, biotinylated target (10 

μL) was added to pre-blocked beads with 2x Blocking Buffer (300 μL) and 

incubated for 2 h on the rotator to immobilise the target protein.  

The beads with immobilised protein were centrifuged at 1000 g for 1 min, placed 

on a magnet and washed 3x in 2x Blocking Buffer (1 mL). The beads with pre-

panned phage were centrifuged at 1000 g for 1 min and placed on a magnet so 

that the supernatant containing the pre-panned phage could be removed and 

added to the immobilised target. The pre-panned phage and the beads with 

immobilised target were mixed and transferred to pre-blocked wells of a deep well 

96 plate (Thermo Scientific, 95040450). 

For protocol 1: A pre-programmed protocol “Phage_Display_Competition” (see 

Appendix A: KingFisher Flex Protocol “Phage_Display_Competition”) was used 

on the KingFisher Flex (an automated system for handling magnetic beads). At 

the end of the protocol, the beads were released into PBS (100 μL) and 

transferred into Protein LoBind Tubes. The wells were washed with PBST with 

20% glycerol (200 μL) and added to the tubes to a total volume of 1 mL. The 

tubes were incubated for 24 h on a rotator with 1x buffer change. The samples 

were centrifuged at 800 g for 30 s then transferred to a pre-blocked deep well 96 

well plate. A second pre-programmed protocol “Phage_Display_Wash_Elute” 

(see Appendix B: KingFisher Flex Protocol "Phage_Display_Wash_Elute") was 

used on the Kingfisher Flex to elute the phage into glycine-HCl and triethylamine 

as in the first biopanning round.  

For protocol 2: A pre-programmed protocol “Phage_Display_Standard” (see 

Appendix C: KingFisher Flex Protocol “Phage_Display_Standard”) was used on 

the KingFisher Flex. At the end of the protocol the beads were released into 

glycine-HCl, then triethylamine, and neutralised with tris-HCl as in the first 

biopanning round. No overnight washing was carried out.  

For both protocols, once the bound phage had been eluted, samples were treated 

in the same way as the first biopanning round; incubation with ER2738 E. coli 

cells (8 mL cultures), plated on LB carb plates overnight and phage prepared for 

the third biopanning round using M13K07 helper phage.  

5.2.3.3 Third biopanning round  

NeutrAvidin Coated (HBC) 8-well strips (Thermo Scientific, 15508) were blocked 

with 2x Blocking Buffer (250 μL) and incubated overnight at 37 °C. Phage 

containing supernatant (220 μL) from the second biopanning round was pre-

panned in the pre-blocked wells for 4 h at RT, shaking (Heidolph VIBRAMAX 100; 
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speed setting 3). The pre-panned phage was moved to a new well every hour. At 

the same time, biotinylated target (10 μL) was incubated in a pre-blocked well for 

immobilisation.  

The immobilised target and a blank negative control well (also pre-blocked) were 

washed 3x with PBST (300 μL per well) on a plate washer. Pre-panned phage 

(100 μL) and 10x Blocking Buffer (40 μL) were added to the target well and the 

negative control well, and incubated for 1 h on a shaker. Wells were washed 27x 

with PBST (300 μL per well) on a plate washer. 

For protocol 1: PBST with 20% glycerol (250 μL) was added and incubated 

shaking overnight with 1x buffer change. Wells were washed 27x with PBST (300 

μL per well) on a plate washer. The bound phage was eluted as previously 

described and added to ER2738 cell cultures. 

For protocol 2: No overnight washing was carried out. Bound phage were eluted 

at pH 9, pH 7, pH 5 and using the standard protocol with pH 2.2 and pH 10.75 

(Section 5.2.3.1). Each elution was neutralised with tris-HCl (1 M, pH 7, 50 μL) 

and added to separate ER2738 cell cultures.  

For both protocols, after 1 h amplification in E. coli cells (5 mL cultures), a range 

of volumes (0.1 μL, 1 μL, 10 μL) were plated on LB carb plates and incubated 

overnight at 37 °C. Ten microlitres of cell suspension containing phage eluted 

from the negative well was also plated for comparison.  

 

5.2.4 Phage ELISA to assess the binding behaviour of individual 

clones  

A sandwich ELISA (section 5.1.2.2) was carried out to investigate the binding 

behaviour of individual clones from the final round of phage display biopanning. 

Colonies from the final round of biopanning were picked and grown in a 96-well 

V-bottom deep well plate in 2TY carb (200 μL per well) overnight at 27 °C, shaking 

(750 rpm, Heidolph incubator 1000 and Titramax 1000). The overnight culture (10 

μL) was transferred to fresh 2TY carb (200 μL) and incubated for 1 hour at 37 °C, 

1200 rpm. M13K07 helper phage (titre ca. 1014/mL) was diluted 1:1000 in 2TY 

carb and added (10 μL per well) to the fresh cultures. The cultures were incubated 

for 30 min at 400 rpm. Kanamycin stock (25 mg/mL) was diluted 1:20 in 2TY carb 

and added at 10 μL per well to the phage-infected cultures. The cultures were 

incubated overnight at RT and 750 rpm. 

Streptavidin in PBS (2.5 μg/mL) was aliquoted (50 μL per well) into F96 Maxisorp 

Nunc-immuno plates (Thermo Scientific, 442404) and incubated overnight at        
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4 °C. The plates were blocked with 3x Blocking Buffer (100 μL per well) and 

incubated overnight at 37 °C. The plates were washed 1x with PBST (300 μL per 

well) on a plate washer. Biotinylated target protein was diluted 1:100 in 2x 

Blocking Buffer and aliquoted (50 μL per well) in one half of the plate and 2x 

Blocking Buffer (50 μL per well) was incubated in the second half of the plate 

(negative control wells). The plates were incubated for 2 h at room temperature, 

300 rpm, then washed 1x with PBST (300 μL per well). 

The phage-infected cultures were centrifuged at 3500 g for 5 min. The phage-

containing supernatant was added (40 μL per well) with 10x Blocking Buffer (10 

μL per well) to one well with biotinylated target and one negative control well. The 

plate was incubated for 1 hour at RT and 300 rpm. After 1x wash with PBST (300 

μL per well), anti-Fd-Bacteriophage-HRP (Seramun Diagnostica GmbH,  A-020-

1-HRP) was diluted 1:1000 in 2x Blocking Buffer and added at 50 μL per well. 

The plate was incubated for 1 h at 300 rpm and washed 6x with PBST (300 μL 

per well). TMB substrate (Seramun, S-001-TMB) was aliquoted at 50 μL per well 

and the colour developed for 5 min. The absorbance was measured at 620 nm 

on a microplate reader. 

 

5.2.5 DNA sequencing of individual clones from the phage ELISA 

Clones that demonstrated target-specific binding in the phage ELISA were sent 

to an external facility for DNA sequencing (Section 5.1.3).  

Phage-infected cultures (1 μL) prepared for the phage ELISA were transferred to 

2TY carb (4 mL) and grown overnight at 37 °C at 230 rpm. The cells were 

centrifuged at 4700 g for 15 min and the plasmid DNA extracted and purified 

using a QIAprep Spin Miniprep Kit (QIAGEN, 27106) according to the 

manufacturer’s instructions. The DNA was eluted in 50 μL purified water and sent 

to Genewiz for sequencing (15 μL at 100 ng/μL). 

 

5.2.6 Sub-cloning of unique DNA sequences 

Unique DNA sequences were subcloned (Section 5.1.4.2) from the pDHis 

phagemid vector to a pET11a expression vector for Affimer protein production 

and purification. 

The pET11a plasmid was digested with NheI and NotI restriction enzymes; 

pET11a plasmid (50 μg), sterile deionised water (150 μL), CutSmart™ Buffer (50 

μL, supplied with NEB restriction enzymes), NheI-HF™ (25 μL, NEB,  R3131S) 

and NotI-HF™ (25 μL, NEB,  R3189S) were mixed and incubated for 6 h at           
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37 °C. The total volume was divided between four tubes and Antartic 

Phosphatase Reaction Buffer (14 μL, 10x, NEB, B0289S) and Antartic 

Phosphatase (1 μL, 5000 units/mL, NEB, M0289S) were added and incubated 

for 15 min at 37 °C. The tubes were incubated at 65 °C for 5 min to heat inactivate 

the Antartic Phosphatase. A 10x Orange G Loading Dye (14 μL, 30% Glycerol; 

0.2% Orange G; H2O) was added and the digested vector separated on a 0.7% 

agarose gel. The digested vector was extracted from the gel using a FastGene 

Gel Extraction/PCR kit (FastGene, FG-91302) according to the manufacturer’s 

instructions. The vector DNA was stored at -20 °C. 

DNA sequences from the phagemid vector were amplified using PCR (Section 

5.1.4.1); sterile water (14.3 μL), 5x Phusion HF Buffer (5 μL, supplied with 

Phusion DNA polymerase), dNTP Mix (25 mM, MP Biomedicals, NTPMX255), 

DMSO (0.75 μL, supplied with Phusion DNA polymerase), Forward Primer (5’ – 

ATGGCTAGCAACTCCCTGGAAATCGAAG, 10 μM, 2 μL), Reverse Primer (5’ – 

TTACTAATGCGGCCGCACAAGCGTCACCAACCGGTTTG, 10 μM, 2 μL), 

Phusion High-Fidelity DNA Polymerase (0.25 μL, Thermo Scientific, F-530) and 

template DNA (phagemid vector, 0.5 μL, 100 ng/μL) were mixed. The PCR 

thermocycling conditions are shown in Table 5.1. DpnI (0.5 μL, NEB, R0176) was 

added to each PCR tube and incubated for 1 h at 37 °C. The amplified DNA was 

purified using a FastGene Gel Extraction/PCR kit according to the manufacturer’s 

instructions and eluted in 50 μL sterile water. 

 

Table 5.1 PCR thermocycling conditions 

Cycle step Temperature (°C) Time Cycles 

Initial denaturation 98 30 s 1 

Denaturation 

Annealing 

Extension 

98 

54 

72 

20 s 

20 s 

20 s 

 

30 

Final extension 

Hold 

72 

4 

10 min 

Hold 

1 

 

The PCR-amplified DNA sequences were digested with the same restriction 

enzymes as the pET11a vector. Sterile water (3.5 μL), CutSmart™ Buffer (6 μL), 

NheI-HF™ (0.25 μL) and NotI-HF™ (0.25 μL) were added and incubated at         

37 °C overnight. The digest products were purified using a FastGene Gel 
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Extraction/PCR kit according to the manufacturer’s instructions. The insert DNA 

was separated on a 2% agarose gel and stored at -20 °C. 

Digested insert DNA was ligated with digested pET11a vector DNA; 10x T4 DNA 

ligase buffer (supplied with T4 DNA ligase), vector DNA (75 ng), insert DNA (25 

ng), sterile water (14 μL) and T4 DNA ligase (1 μL, NEB, M0202) were incubated 

at RT overnight. A ligation reaction was also set up with no insert DNA as a 

negative control. The ligation reactions were transformed into XL1-Blue 

supercompetent cells (Agilent Technologies, 200236), plated on LB carb plates 

and incubated overnight at 37 °C.  

Single colonies were picked and grown in 4 mL 2TY carb overnight at 37 °C, 230 

rpm. The cultures were centrifuged at 4816 g for 15 min and the plasmid DNA 

extracted using QIAprep Spin Miniprep Kit (QIAGEN, 27106) according to the 

manufacturer’s instructions. Aliquots (15 μL, 100 ng/μL) of each DNA sample 

were sent for DNA sequencing (Genewiz) to ensure the correct sequence had 

been sub-cloned into the pET11a vector. 

 

5.2.7 Affimer protein production and purification 

Once it had been confirmed that the intended sequence had been sub-cloned 

into the pET11a vector, Affimer protein was produced and purified as described 

below.  

The DNA sequences were transformed into BL21 Star™ (DE3) chemically 

competent E. coli cells (Life Technologies, C6010-03), plated on LB carb plates 

and incubated overnight at 37 °C. A single colony was picked from each plate 

and grown up in 2TY carb (7 mL) at 37 °C, 230 rpm for 5 h. The starter culture (5 

mL) was transferred to pre-warmed 2TY carb (400 mL) and grown to OD600 ~0.8. 

The cultures were induced with IPTG (200 µL, 1 M) and incubated overnight at 

25 °C and 150 rpm. Cells were harvested by centrifugation at 4816 g for 15 min. 

The cell pellets were resuspended in a 1:50 ratio (of original culture volume) in 

lysis buffer3 (to a total volume of 8 mL) supplemented with Lysozyme® (80 µL, 

Sigma-aldrich, L6876-1G), Triton™ X-100 (80 µL, Sigma-aldrich, X100), 

Benzonase® Nuclease, Purity >99% (3.2 µL, Novagen®, 70664) and Halt 

protease inhibitor cocktail, EDTA-free (100X, 80 µL, Thermo Scientific,  78439). 

The cells were incubated for 20 min on a fixed speed rotator. Non-specific 

proteins were denatured in a water bath at 50 °C for 20 min. Cell debris was 

 

3 Lysis buffer: 50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, 10% glycerol, pH 7.4 
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removed by centrifugation at 4816 g for 20 min. Further centrifugation at 12 000 

g for 20 min removed any remaining cell debris and insoluble proteins.   

Amintra Ni-NTA resin (800 µL, Expedeon, ANN0100/ANN0025) was washed in 

wash buffer4 (5 mL) by centrifugation at 1000 g for 1 min. The soluble protein 

fractions were incubated with the resin for 1 h on a fixed speed rotator. The resin 

was washed several times (>5) by centrifugation at 1000 g for 1 min, then 

transferred to an equilibrated Pierce Centrifuge Column (Thermo Scientific, 

89897). The resin was washed on the column in wash buffer until the A280 reading 

(measured with a NanoDrop Lite Spectrophotometer) was consistently <0.09. 

The Affimer was eluted from the column in elution buffer5 (1 mL elutions) until no 

more protein was present.   

The insoluble protein fraction, soluble protein fraction, unbound protein, first 

wash, final wash and elutions were separated on a SDS-PAGE (15%) gel. The 

Affimers were dialysed into PBS, 5% glycerol, 1 mM dithiothreitol (DTT) and 

stored at -80 °C.   

 

5.2.8 Sandwich ELISA to investigate Affimer protein binding to 

CD271-Fc recombinant protein 

A sandwich ELISA (Section 5.1.2.2) was carried out to investigate the binding 

behaviour of the purified Affimer proteins. Since both the Affimer proteins and the 

CD271 recombinant protein had a His tag, detection via an anti-His tag antibody 

was not possible. To resolve this, a second CD271 recombinant protein was 

purchased from Sino Biological (13184-H02H-50), which was fused with the Fc 

region of human IgG1. The CD271-Fc protein was biotinylated in the same way 

as the CD271-His protein (Section 5.2.1) to allow immobilisation to a streptavidin-

coated ELISA plate.  

Streptavidin-coated plates were prepared and blocked as previously described 

(Section 5.2.4). Biotinylated CD271-Fc protein was diluted 1:100 in 2x Blocking 

Buffer and aliquoted at 50 µL per well for positive wells, whilst negative wells 

contained 2x Blocking Buffer only. The plate was incubated for 1 h on a vibrating 

platform shaker and washed 1x in PBST (300 µL per well). Affimers were added 

(10 µg/mL, 50 µL per well) and incubated for 1 h on a vibrating platform shaker. 

The plate was washed 1x with PBST (300 µL per well) and Anti-6X His tag® 

antibody-HRP (50 µL per well, Abcam, ab1187) was added 1:1000 in 2x Blocking 

 

4 Wash buffer: 50 mM NaH2PO4, 500 mM NaCl, 20 mM imidazole, pH 7.4 
5 Elution buffer: 50 mM NaH2PO4, 500 mM NaCl, 300 mM imidazole, 20% glycerol, pH 

7.4 
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Buffer. The plate was incubated for 1 h on a vibrating platform shaker. After 10x 

washes with PBST (300 µL per well), TMB (50 µL per well) was added and 

developed for 5 min. Absorbance was measured at 620 nm. 

 

5.2.9 Biotinylation of Affimer proteins 

Affimer insert sequences were expressed in an Affimer scaffold with a C-terminal 

cysteine to allow for site-specific labelling. A fraction of the purified Affimers were 

labelled with biotin to allow immobilisation to a streptavidin-coated substrate.  

Immobilised tris(2-carboxyethyl)phosphine (TCEP) disulphide-reducing gel (150 

µL, Thermo Scientific, 77712) was washed 3x with PBS containing 1 mM EDTA 

(300 µL). PBS containing 50 mM EDTA (4 µL) and Affimer (150 µL, 0.5 mg/mL) 

were added to the gel and incubated on a fixed speed rotator for 1 h. The gel was 

discarded and the Affimer molecules (with reduced cysteine’s,130 µL) were 

reacted with biotin malemide (Sigma-Aldrich, B1267, 6 µL, 2 mM) for 2 h at RT. 

Zeba Spin Desalting Columns, 7K MWCO (Thermo Scientific, 89882) were used 

to remove any excess biotin according to the manufacturer’s instructions. An 

equal volume of 80 % glycerol (130 µL) was added and the Affimers were stored 

at -20 °C. A direct ELISA was carried out to check biotinylation (Section 5.2.2) as 

well as mass spectrometry analysis (Section 5.1.5).  

 

5.2.10 Surface plasmon resonance analysis of Affimers binding 

to CD271 recombinant protein 

Surface plasmon resonance (SPR, Section 4.2) was used to characterise Affimer 

protein binding to CD271 recombinant protein, including the specificity and affinity 

of binding interactions.  

A 4-channel BIACORE 3000 instrument and BIACORE 3000 control software 

were used to collect data. The first set of experiments was carried out using a 

carboxymethylated dextran substrate where both CD271 recombinant proteins 

(CD271-His and CD271-Fc), and a negative control protein were immobilised to 

the substrate via crosslinking chemistry (Section 4.4). pH scouting was carried 

out prior to binding assays to find the pH at which proteins were immobilised to 

the sensor surface most efficiently. 
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5.2.10.1 Assessing the appropriate pH for protein immobilisation to a 

CM5 sensor substrate (pH scouting) 

The sensor substrate CM5 (GE Healthcare Life Sciences, BR100399) was 

docked and running buffer (0.1 M sodium acetate, pH 5.6) injected over all four 

flow cells. Target protein (15 μL at a concentration of 5 μg/mL) was injected in 

different pH buffers at 5 μL/min and the response units recorded before and after 

the injection. The pH range investigated included pH 7.4 (PBS), pH 5.6 (running 

buffer - 0.1M sodium acetate), pH 5.5, pH 5.0 and pH 4.5 (all 10 mM sodium 

acetate buffers). This range was chosen because efficient pre-concentration of 

the protein at the sensor surface requires the pH to lie between the pka of the 

surface and the isoelectric point of the protein. Between each buffer, a high salt 

wash (1 M NaCl, 15 μL) was injected to regenerate the substrate surface. The 

immobilisation buffer was chosen based on the increase in response units whilst 

minimising the compromise on biological pH. An example of pH scouting for 

CD271-Fc protein is shown in Figure 5.6 where pH 5.0 was chosen for 

immobilisation. 
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Figure 5.6 SPR Sensogram showing pH scouting for CD271-Fc 
recombinant protein 

pH scouting was carried out to assess the efficiency of protein 
immobilisation at different pHs. CD271-Fc recombinant protein (5 µg/mL) 
was injected at 5 µL/min in PBS (pH 7.4), running buffer (0.1 M sodium 
acetate, pH 5.6), 10 mM sodium acetate, pH 5.5, 10 mM sodium acetate, 
pH 5.0 and 10 mM sodium acetate, pH 4.5. A high salt solution wash (1 M 
NaCl) was carried out between each immobilisation to regenerate the 
substrate surface. pH 5.0 was considered the best compromise between 
efficiency and biological pH, however the protein concentration was 
increased to 10 µg/mL for binding assays.  

 

5.2.10.2 Protein immobilisation to a CM5 sensor substrate 

Proteins were immobilised to a CM5 sensor substrate using EDC and NHS 

crosslinking chemistry (Section 4.4).  

A mock immobilisation was carried out on flow cell 1 where no protein was 

immobilised. TNAP recombinant protein (His tag)(TNAP-His, Sino Biological, 

10440-H08H-50) was immobilised on flow cell 2 as a negative control, CD271-

His protein was immobilised on flow cell 3 and CD271-Fc protein was immobilised 

on flow cell 4. The flow rate was set to 5 μL/min. An NHS aliquot and an EDC 

aliquot (supplied with Amine Coupling Kit, GE Healthcare Life Sciences, 

BR100050) were mixed together in equal amounts (70 μL total) and injected to 

activate the sensor surface. The target protein was injected in the pre-determined 

buffer until the desired amount of units were immobilised (~10x the molecular 

weight of the protein). Unreacted protein was washed off the surface by a high 

salt solution (5 μL, 1 M NaCl) and unreacted sites were capped using 

ethanolamine hydrochloride (35 μL, 1.0 M, supplied with the Amine Coupling Kit, 
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GE Healthcare Life Sciences, BR100050). An example immobilisation of CD271-

His protein is shown in Figure 5.7. 

 

 

Figure 5.7 SPR sensogram showing the immobilisation of CD271-His 
recombinant protein to a CM5 sensor substrate 

Proteins were immobilised onto a CM5 sensor substrate via NHS/EDC 
crosslinking chemistry. In the above example, CD271-His protein (10 
µg/mL) was injected over the activated surface at 5 µL/min until the desired 
amount of protein was immobilised (~10x the molecular weight of the 
protein). A high salt solution wash (1 M NaCl) was carried out to wash away 
unreacted material and 1 M ethanolamine hydrochloride was injected to cap 
unreacted sites. 257.4 units of CD271-His were immobilised in the example 
above.  

 

5.2.10.3 SPR binding assays 

For the binding assays, Affimer protein was dialysed into PBS and injected in two-

fold concentration steps from 25 nM to 400 nM over all four flow cells. An 

automated method was used with 3 minute injections at 50 µL/min with running 

buffer of PBS with 0.1% Tween 20.  

A second sensor substrate CM5 was assembled for a further experiment. The 

same procedure of pH scouting and immobilisation was carried out with the 

following proteins immobilised; flow cell 1 had no protein immobilised, flow cell 2 

had CD45-Fc protein (Sino Biological, 10086-H02H) immobilised as a negative 

control, flow cell 3 had CD271-Fc protein immobilised in reducing conditions (5 
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mM DTT in the immobilisation buffer) and flow cell 4 had CD271-Fc immobilised 

in non-reducing conditions (no DTT in the immobilisation buffer). The Affimers 

were injected over all four flow cells in two-fold concentration steps beginning at 

3.125 nM and increasing to 50 nM for 6 min at 50 μL/min. The running buffer was 

PBS with 0.1% Tween 20. 

BIAevaluation software was used to analyse data and overlay curves from all four 

flow cells. For all experiments, the baseline was normalised before any injections 

and the sensogram from flow cell 1 (or a non-binding flow cell) subtracted from 

all other curves to minimise refractive index effects. BIAevaluation software was 

also used to carry out kinetic analysis of binding curves to find the equilibrium 

binding constant of Affimer and target protein interactions. 

 

5.2.11 Sandwich ELISA to investigate CD271 binding to 

Affimers when tethered to a solid substrate 

In a cell enrichment device, Affimers would be tethered to a solid substrate for 

cell capture. To investigate binding in this format, a sandwich ELISA (Section 

5.1.2.2) with biotinylated Affimers tethered to a streptavidin-coated ELISA plate, 

was carried out.  

Streptavidin-coated plates were prepared and blocked as previously described 

(Section 5.2.4). Biotinylated Affimer (10 µg/mL in 2x Blocking Buffer) was added 

to positive wells, whilst negative wells contained 2x Blocking Buffer only. The 

plate was incubated for 1 h at RT on a shaker (300 rpm). After 1x PBST wash 

(300 µL per well), CD271-Fc protein was added at 50 µL per well (1:100 in 2x 

Blocking Buffer). The concentration of CD271-Fc protein was not determined due 

to the small amount of reagent available. The plate was incubated for 1 h at RT 

with shaking (300 rpm) and washed 1x with PBST (300 µL per well). Mouse 

monoclonal anti-human IgG Fc antibody (Abcam, ab31925) was added at 50 µL 

per well (1:10000 in 2x Blocking Buffer) and incubated for 1 h at RT with shaking 

(300 rpm). The plate was washed 1x with PBST (300 µL per well) and rabbit anti-

mouse immunoglobulins/HRP (Dako, P0260) were added at 50 µL per well 

(1:1000 in 2x Blocking Buffer) for 1 h, RT, shaking (300 rpm). The plate was 

washed 10x with PBST (300 µL per well) and TMB substrate added (50 µL per 

well). The absorbance was measured at 620 nm.  
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5.2.12 Flow cytometry analysis of Affimer proteins binding to 

CD271+ cells 

Flow cytometry (see Chapter 2: Section 2.5.1.3) was used to compare CD271 

antibody and CD271 Affimer protein binding to CD271+ cells. CD271 Affimer 

protein and CD271 antibody were titrated to find the optimum concentration for 

cell labelling. IgG1-PE isotype-matched control antibody (BD BioSciences, 

555749) was used at the same concentration as CD271-PE antibody, and a 

control of unlabelled cells was analysed alongside all samples.  

Cells were detached from culture flasks using trypsin-EDTA solution (3-5 mL). 

The cell suspension was counted using a haemocytometer and diluted to a 

concentration of 5 x 106 cells/mL in FACS buffer6. Aliquots (100 µL) were 

dispensed into Falcon™ round-bottom polypropylene tubes (FACS tubes, 

Corning, 352063) and Affimer protein added to different tubes at 20 µg/mL, 10 

µg/mL, 5 µg/mL and 2.5 µg/mL. Human CD271 phycoerythrin-conjugated 

antibody (CD271-PE, Miltenyi Biotec,130-113-983) was added to different tubes 

at the manufacturer’s recommended working concentration (0.5 µg/mL), 0.25 

µg/mL and 0.125 µg/mL. Cells were incubated in the dark at 4 °C for 30 min.  

Cells were washed by adding 2 mL FACS buffer and centrifuging at 300 g for 5 

min. For indirect Affimer protein labelling, a secondary antibody was used for 

fluorescent detection. Streptavidin Alexa Fluor 488 conjugate (Thermo Scientific, 

S-11223) was added (1 µg/mL) and incubated in the dark at 4 °C for 30 min. 

Washing was repeated and samples were resuspended in 350 µL FACS buffer 

for analysis.  

A CytoFLEX S Flow Cytometer was used to record data. A minimum of 10,000 

events were collected for each experiment and analysed using CytExpert 

software (see Chapter 4: Section 4.5) 

 

5.2.13 Magnetic-activated cell sorting of CD271+ cells  

CD271+ cells were pre-enriched prior to flow cytometry analysis using MACS 

(see Chapter 2: Section 2.5.1.4). A CD271 MicroBead kit was purchased from 

Miltenyi Biotec (130-099-023) and used according to the manufacturer’s 

instructions (227), summarised below.  

Cells were detached from culture flasks using trypsin-EDTA solution (3-5 mL). 

The cell suspension was counted using a haemocytometer and re-suspended in 

 

6 FACS buffer: PBS (Lonza, 17-516F) 0.5% bovine serum albumin (BSA, Sigma 
Aldrich, A9647) and 0.05% sodium azide, filter sterilised (0.22 µm) 
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60 µL MACS buffer7 per 107 cells. CD271 MicroBeads and FcR Blocking Reagent 

(40 µL each per 107 cells) were added, mixed and incubated for 15 min at 4 °C. 

Cells were washed by adding 2 mL MACS buffer per 107 cells and centrifuged at 

300 g for 10 min. Cells were resuspended in 500 µL MACS buffer per 108 cells.  

A LS column (Miltenyi Biotec, 130-042-401) was placed in the magnetic field of a 

MACS separator. The column was prepared by rinsing with 3 mL MACS buffer 

before the cell suspension was applied. The column was washed with 3x 3 mL 

MACS buffer. The flow-through containing unbound cells were collected and 

counted using a haemocytometer. The column was removed from the magnetic 

field, 5 mL of MACS buffer added, and a plunger (supplied with the LS column) 

was used to flush out bound cells. Bound cells were counted using a 

haemocytometer. 

Bound and unbound cells were labelled with CD271-PE antibody, IgG1-PE 

isotype-matched control antibody and Affimer protein at the pre-determined 

concentrations from Section 5.2.12. The different populations were analysed 

using a flow cytometer as described in Section 5.2.12. 

 

5.2.14 Fluorescent labelling of Affimer proteins for flow 

cytometry experiments 

Affimer proteins were labelled with Alexa Fluor 647 C2 maleimide (Thermofisher 

Scientific, A20347) for direct detection in flow cytometry experiments. This was 

carried out using the same labelling method as for the biotinylation of Affimer 

proteins (Section 5.2.9), using the C-terminal cysteine for site-specific labelling. 

Labelling was carried out directly after purification (Section 5.2.7).  

Fluorescently-labelled Affimer proteins were separated on an SDS-PAGE gel 

(Section 5.1.4.5) alongside unlabelled Affimer proteins with known concentration. 

The intensity of the bands of Affimer proteins with known concentration was 

plotted and used to estimate the concentration of the fluorescently-labelled 

Affimers.  

The fluorescently-labelled Affimers were titrated for flow cytometry analysis using 

the same protocol as Section 5.2.12. Once an appropriate working concentration 

had been defined, fluorescently-labelled Affimer protein labelling was compared 

to antibody labelling also described in Section 5.2.12. 

 

 

7 MACS buffer: PBS (Lonza, 17-516F), 2 mM EDTA (Sigma Aldrich, E7889), 0.5% BSA 
(Sigma Aldrich, A9647), filter sterilised 
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5.3 Results and Discussion 

5.3.1 Phage display selection of CD271-specific Affimer proteins 

A commercial source of CD271-His recombinant protein was purchased for 

phage display screening. Screening was carried out in collaboration with the 

BSTG established at the University of Leeds in 2010. Two Affimer libraries were 

screened in total; one with a single variable loop region and the other with two 

variable loop regions (see Section 5.1.1), the two libraries were mixed and 

screened at the same time.  

The aim of phage display screening was to identify Affimer proteins which were 

highly specific towards CD271 protein, and thus able to act as capture molecules 

for MSCs in a microfluidic device. Various Affimer proteins were used as controls 

during the experiments described in this chapter. All control Affimer proteins were 

selected according to published data demonstrating target-specific binding.  

 

5.3.1.1 Biotinylation of phage display target: CD271-His recombinant 

protein 

The commercially sourced CD271-His recombinant protein was biotinylated 

using EZ-Link™ Sulfo-NHS-SS-Biotin (Section 5.2.1). This was to facilitate the 

immobilisation of the target protein to streptavidin/NeutrAvidin-coated wells and 

beads for phage display screening. An ELISA indicated that the biotinylation had 

been successful (Figure 5.8); wells that had been coated with the biotinylated 

protein reacted with streptavidin-HRP and TMB substrate to produce a soluble 

blue reaction product whereas wells where no protein was present remained 

clear. This provided reassurance that the target protein would be bound to 

streptavidin/NeutrAvidin-coated substrates during the phage display protocol.  
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Figure 5.8 ELISA results showing that CD271-His recombinant protein was 
successfully biotinylated  

An ELISA was carried out to see if the protein had been successfully 
biotinylated. Wells A and B were coated with biotinylated CD271 protein, 
wells C and D were coated with Blocking Buffer only. The blue reaction 
product is produced when TMB substrate reacts with streptavidin-HRP 
which has bound to biotin. The results shown here indicate that the protein 
was successfully biotinylated. In wells A and B, 1 µL and 0.01 µL of 
biotinylated CD271 protein were added to 50 µL PBS respectively. The 
concentration of biotinylated CD271 protein was not calculated due to the 
limited sample available. 

 

5.3.1.2 Phage display screening of biotinylated CD271 recombinant protein 

using a protocol with additional washing steps 

Two protocols of phage display screening were explored – a protocol with 

additional washing steps and a protocol with less stringent washing. Initially, a 

protocol with additional washes was used to isolate only the highest affinity 

binders. A ySUMO protein was screened alongside CD271 protein as it is known 

to produce positive hits from the Affimer libraries (156). 

After three rounds of biopanning, bound phage particles were eluted from wells 

coated with the target protein and wells with no target protein. The eluted phage 

were amplified in ER2738 E. coli cells and a range of volumes (0.1 µL, 1 µL, 10 

µL) were plated on LB carb plates overnight (Section 5.2.3.3). Colony-forming 

units were counted the following day to estimate the success of the screening 

process. If a large amplification in clone numbers is observed between negative 

and positive plates, it is more likely that phage particles have bound specifically 

to the target protein. The number of colonies on the CD271 positive plate was 19 

times greater than from the CD271 negative plate. The number of colonies on the 

ySUMO positive plate was >4000 times greater than from the ySUMO negative 

plate (Table 5.2). This was an early indication that fewer specific binders had 

been isolated for the CD271 target compared to the ySUMO target.   

 

A B C D 
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Table 5.2 The number of colony-forming units per 5 mL culture after three 
rounds of phage display biopanning 

After three rounds of phage display biopanning, bound phage particles were 
eluted from target protein wells (positive wells) and no-protein wells 
(negative wells) and amplified in ER2738 E. coli cells. After one hour, the 
cell suspensions were plated on LB carb plates in a range of volumes (0.1 
µL, 1 µL, 10 µL) and colonies were counted on the following day. The 
number of colony-forming units per 5 mL of cells was calculated for both 
positive and negative wells, where colony-forming units on the negative 
plate represent non-specific binding. The greater the amplification between 
negative and positive plates, the more likely it is that target-specific Affimer 
clones have been selected. ySUMO protein was screened alongside CD271 
as it is known to produce positive hits from the Affimer library (156). 

 

Target protein 

Colony-forming units/5 mL cells (102) 

Positive plate Negative plate 

CD271 4500 240 

ySUMO 240000 55 

 

5.3.1.3 Phage display screening of biotinylated CD271 recombinant protein 

using a protocol with less stringent washing 

The second protocol offered the opportunity to isolate weaker binders, this was 

important since for a cell enrichment application using positive selection, the cells 

need to be released from the binding protein after capture. Additionally, using this 

protocol, the bound phage were eluted to investigate pH change as a possible 

cell release mechanism.  

Table 5.3 details the number of colony-forming units on positive plates compared 

to negative plates for the elutions at different pH values. During this biopanning 

method, a tubulin protein was screened alongside CD271-His recombinant 

protein as a positive control (158). For CD271-His recombinant protein, the 

amplification between negative and positive plates was >20 times. For the tubulin 

protein, amplification was >100 times. The difference between positive and 

negative plates for CD271 protein was similar to the first phage display screen 

(around 20 times greater), suggesting that the number of specific clones identified 

from both screens would be similar. The difference between positive and negative 

plates for tubulin protein was around 5 times greater than for CD271 protein 

suggesting that the number of specific clones identified for CD271 protein would 

be less than the number of specific clones identified for tubulin protein.  

The majority of clones from the CD271 biopanning were eluted using the standard 

elution protocol – addition of 0.2 M glycine-HCl pH 2.2 then 1 mM triethylamine 
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pH 10.75. However, there were also clones eluted at pH 9.0, 7.0 and 5.0 

signifying pH change could be a possible cell release mechanism.  

 

Table 5.3 The number of colony-forming units per 5 mL culture after three 
rounds of phage display standard biopanning with elutions at different pH 
values 

After three rounds of phage display biopanning, bound phage particles were 
eluted from the target protein wells (positive wells) and no protein wells 
(negative wells), using different pH buffers, and amplified in ER2738 E. coli 
cells. After one hour, the cell suspensions were plated on LB carb plates in 
a range of volumes (0.1 µL, 1 µL, 10 µL) and colonies were counted on the 
following day. The number of colony-forming units per 5 mL of cells was 
calculated for both positive and negative wells where colony-forming units 
on the negative plate represent non-specific binding. The greater the 
amplification between negative and positive plates, the more likely it is that 
target-specific Affimer clones have been selected. Tubulin protein was 
screened alongside CD271 as it is known to produce positive hits from the 
Affimer libraries (158). 

 

Target protein 

 

pH elution 

Colony-forming units/5 mL cells 

(102) 

Positive plate Negative plate 

CD271 9.00 730 370 

7.00 770 

5.00 3100 

2.20 and 10.75 > 8000 

Tubulin 2.20 and 10.75 19000 170 

 

5.3.1.4 Determining the specificity of individual clones via phage ELISA 

Individual clones from the positive colony plates (thought to be positive hits as 

these cells were infected with bound phage) were randomly selected for 

subsequent analysis by phage ELISA (Section 5.2.4). Clones were picked, 

cultured and infected with helper phage to produce phage particles. The phage 

ELISA format mimics the phage display selection process by immobilising the 

biotinylated target protein onto a streptavidin-coated well. Phage from each 

individual clone were then added both to a well coated with target protein (positive 

well) and a well with no protein (negative well). Bound phage were detected using 

a HRP-conjugated anti-phage antibody. 
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For the first screening protocol, 92 clones from the CD271 positive plate were 

analysed, alongside four clones from the ySUMO positive control plate. Figure 

5.9 shows that only eight of these 92 clones demonstrated target-specific binding 

in the phage ELISA. This can be seen by a larger absorbance value detected in 

the positive well versus the negative well i.e. phage binding to wells coated with 

target-protein but not to wells with no protein. The four clones from the ySUMO 

screen also demonstrated target-specific binding.  

For the second screening protocol, 24 clones from each pH elution were 

analysed, alongside four clones from the tubulin positive control plate. Figure 5.10 

shows that nine CD271 clones demonstrated target-specific binding. 

Interestingly, the majority of these (seven out of the nine clones) were eluted at 

pH 9, with one additional clone eluted at pH 7 and one at pH 5, confirming that 

pH change could potentially be used as a cell release mechanism. The four 

positive control clones all demonstrated tubulin-specific binding.   
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Figure 5.9 Phage ELISA results of clones from the first phage display 
screen 

Phage ELISA results of 92 CD271 clones selected after three rounds of 
phage display biopanning. A larger absorbance value of the target protein-
coated well (green) compared to the no-protein well (blue) indicates that the 
clone bound specifically to the target protein. Upper panel: CD271 clones 1-
48, lower panel: CD271 clones 49-92 and ySUMO clones 1-4 (positive 
controls). CD271 clones 13, 27, 41, 45, 48, 77, 91 and 92 were investigated 
further.   
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Figure 5.10 Phage ELISA results of clones from the second phage display 
screen eluted at different pH values 

Phage ELISA results of 92 clones selected after three rounds of phage 
display biopanning and eluted using different pH buffers. A larger 
absorbance value of the target protein-coated well (green) compared to the 
no protein well (blue) indicates the clone binds specifically to the target 
protein. Upper panel: CD271 clones 1-48, lower panel: CD271 clones 49-92 
and tubulin clones 1-4 (positive controls, also eluted at pH 2.2 and 10.75). 
CD271 clones 2, 3, 11, 14, 18, 19, 21, 34 and 56 were investigated further.  
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5.3.1.5 DNA sequencing of clones indicating CD271-specific binding 

The clones that demonstrated target-specific binding were sent for DNA 

sequencing. Table 5.4 shows the unique Affimer insert sequences for the variable 

loop regions. Three unique sequences were identified; one from the first phage 

display screen and two from the second phage display screen. One sequence 

(CD271-1) was from the Affimer library with one variable loop region and two 

sequences (CD271-2 and CD271-3) were from the Affimer library with two 

variable loop regions.  

 

Table 5.4 Affimer variable loop sequences for clones identified in phage 
ELISAs 

Individual clones which showed specific binding in the phage ELISAs were 
sent for DNA sequencing. All clones from the first phage display screen were 
from the two-loop Affimer library and were identical (CD271-3). Two unique 
sequences were found from second phage display screen, one from the two-
loop Affimer library (CD271-2) and one from the single-loop Affimer library 
(CD271-1).  

Affimer 

sequence 

ID 

Frequency of 

sequence 

Loop 1 sequence Loop 2 sequence 

CD271-1 1 (from second 

screen) 
HGHWPFLDQ - 

CD271-2 8 (from second 

screen) 
SGHWPFDHH GLHAELRMM 

CD271-3 8 (from first 

screen) 
SQPLEFNWW TWQYYRKLN 

 

5.3.2 Producing and purifying Affimer proteins 

The three unique Affimer sequences CD271-1, CD271-2 and CD271-3 were sub-

cloned from the phagemid vector into a bacterial expression vector (Sections 

5.1.4.2 and 5.2.6), and Affimer proteins were recombinantly produced and 

purified (Sections 5.1.4 and 5.2.7). This was to enable more extensive 

characterisation of their binding to the target protein, and subsequently, cells 

expressing the target protein (Section 5.3.3).   
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5.3.2.1 DNA sub-cloning of Affimer insert sequences 

The insert DNA from the pDHis phagemid vector was sub-cloned into a pET11a 

expression vector. The insert DNA was amplified from the phagemid vector using 

PCR (Section 5.1.4.1 and 5.2.6), and both the insert DNA and the pET11a vector 

DNA were digested with NotI and NheI restriction enzymes to allow ligation of the 

compatible ends. Figure 5.11 shows the digested insert DNA separated on a 2% 

agarose gel. The Affimer insert DNA is expected to be around 300 base pairs 

which was confirmed by comparison to a DNA ladder.  

 

 

Figure 5.11  Agarose gel (2%) showing Affimer double-digested insert DNA  

Insert DNA was double-digested with restriction enzymes in preparation for 
ligation into an expression vector. The double-digested insert DNA was run 
on a 2% agarose gel and compared to a DNA ladder. Wells marked with an 
X were DNA sequences sub-cloned at the same time as CD271-1, CD271-
2 and CD271-3 but not discussed in this thesis. All insert DNA was 
approximately 0.3 kilobases (kb) which is the expected number of base pairs 
for Affimer insert DNA.  

 

Following ligation reactions (Section 5.2.6), the ligated samples were introduced 

into XL1-Blue supercompetent cells by bacterial transformation and samples 

were incubated overnight on LB carb plates at 37 °C. A negative ligation reaction 

with no insert DNA was set up as a control and no colonies grew. In comparison, 

colonies grew for all three insert DNA ligations. Single colonies were picked and 

the plasmid DNA extracted using a miniprep kit (Section 5.2.6). DNA sequencing 

of the isolated plasmids confirmed the correct Affimer sequences had been sub-

cloned into the pET11a vector.  
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5.3.2.2 Protein production and purification of Affimer proteins 

Affimer proteins were recombinantly produced and purified as described in 

Section 5.2.7. Following cell lysis and centrifugation, soluble His-tagged Affimer 

proteins were eluted from a Ni-NTA column using a buffer containing a high 

concentration (300 mM) of imidazole. Aliquots of the insoluble, soluble, unbound, 

first wash and final wash were taken to analyse on a 15% SDS-PAGE gel 

(Section 5.1.4.5), along with aliquots of each of the 1 mL elution samples (Figure 

5.12). From the gel images it can be seen that the Affimer proteins were of the 

expected size (~13 kDa) with some dimers present in Affimers CD271-1 and 

CD271-2. Dimers can form due to the C-terminal cysteine residue on the Affimer 

scaffold contributing to the formation of disulphide bridges.  
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Figure 5.12 SDS-PAGE gels (15%) of purified Affimer proteins 

Affimer proteins were purified using a Ni-NTA column and eluted in 1 mL 
fractions. The Affimer proteins were of the expected mass (~13 kDa) with 
some dimers present in CD271-1 and CD271-2. PL is a protein ladder 
(Thermofisher Scientific, 26616), I is the insoluble fraction, S is the soluble 
fraction, U is the unbound fraction, W1 is the first wash, FW is the final wash 
and E1 - E4 are respective elutions. All gels were stained with Coomassie 
blue.  
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5.3.3 Characterisation of Affimer-CD271 protein binding 

Once the Affimer proteins had been purified, more extensive characterisation of 

Affimer binding to CD271 could be carried out. The two main methods used for 

characterisation were ELISA (Section 5.2.8 and 5.2.11) and SPR (Section 

5.2.10). In order to carry out a sandwich ELISA (Section 5.1.2.2), a new CD271 

recombinant protein was bought with an Fc tag rather than a His tag (Sino 

Biological, 13184-H02H). The DNA sequence encoding the CD271 extracellular 

domain was fused with the Fc region of human IgG1 at the C-terminus. The 

secreted recombinant protein is a disulphide–linked homodimeric protein. Using 

a CD271-Fc protein allowed detection via the His tag on the Affimer scaffold 

without interference from a His tag on the CD271 recombinant protein.   

 

5.3.3.1 Biotinylation of CD271-Fc recombinant protein for characterisation 

assays 

The CD271-Fc recombinant protein was biotinylated for immobilisation to a 

streptavidin coated surface as described in the phage ELISA (Section 5.2.4). The 

protein was biotinylated in the same way as the CD271-His recombinant protein 

(Section 5.2.1) and a direct ELISA (Section 5.1.2.1) showed successful 

biotinylation (Figure 5.13). 
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Figure 5.13 ELISA showing the successful biotinylation of CD271-Fc 
recombinant protein 

An ELISA was carried out to see if the CD271-Fc recombinant protein had 
been successfully biotinylated. Different volumes of biotinylated CD271-Fc 
recombinant protein were added to 50 µL PBS and reacted with a 
streptavidin-HRP conjugate and TMB substrate. The protein showed strong 
absorbance at 620 nm indicating biotin was present, and the absorbance 
value decreased as the quantity of protein decreased. The concentration of 
the biotinylated CD271 protein was not measured due to the limited sample 
volume. Bars represent the mean result ± standard error of the mean (SEM), 
n=2 technical replicates. 

 

5.3.3.2 Sandwich ELISA to investigate Affimer protein binding to CD271-Fc 

recombinant protein 

It was important to check that the purified Affimer proteins demonstrated the 

same specific binding behaviour to CD271 protein as was observed by phage 

ELISA. This was achieved by carrying out a sandwich ELISA (Section 5.1.2.2) in 

the same format as the phage ELISA (Section 5.2.4) – wells were first coated 

with streptavidin, then coated with biotinylated CD271 protein and bound Affimer 

proteins were detected via an anti-His tag antibody. A GFP-18 Affimer was used 

as a negative control against biotinylated CD271 protein whilst a NDM1-21 

Affimer was used as a positive control against its own biotinylated target protein 

New Delhi metallo-beta-lactamase 1 (NDM1). 
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Figure 5.14 indicates that Affimers CD271-1 and CD271-2 demonstrated specific 

binding comparable to the positive control, however Affimer CD271-3 did not 

demonstrate any specific binding. Although a small amount of binding was 

observed for the negative control, it was of significantly smaller magnitude than 

the observed specific binding (for normally distributed data). 

 

 

Figure 5.14 Sandwich ELISA showing Affimers CD271-1 and CD271-2 
bound to CD271-Fc recombinant protein 

A sandwich ELISA was carried out to investigate if purified Affimer proteins 
bound to their target protein. Affimer proteins CD271-1 and CD271-2 
showed a large difference in absorbance between the wells coated with 
biotinylated target protein (CD271) and the wells coated with Blocking Buffer 
only and were taken forward for further investigation (***p<0.00001). 
CD271-3 Affimer was not taken forward for further investigation (n.s.=not 
significant). GFP-18 Affimer was used as a negative control and NDM1-21 
Affimer used as a positive control (*p<0.05). Statistical analysis was carried 
out by an independent t-test for normally distributed data (CD271-1, CD271-
2, CD271-3 and GFP-18 replicates). Statistical analysis was carried out by 
Mann-Whitney U test for NDM1-21 replicates since data was not normally 
distributed according to the Shapiro Wilk test of normality. Bars represent 
the mean result ± SEM, n=3 technical replicates.  
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5.3.3.3 Biotinylation of CD271-1 and CD271-2 Affimer proteins for 

characterisation assays 

Affimers CD271-1 and CD271-2  were biotinylated so that the Affimer proteins 

could be immobilised to a streptavidin surface. Binding in this format was crucial 

since in a cell capture device the Affimers would be immobilised to a solid 

substrate. Affimers were biotinylated via their C-terminal cysteine residue using 

biotin-malemide (Section 5.2.9). As before, a direct ELISA (Section 5.1.2.1) 

showed that both Affimers were successfully biotinylated (Figure 5.15).  

 

 

Figure 5.15 ELISA results showing the successful biotinylation of CD271-1 
and CD271-2 Affimer proteins 

Different volumes of biotinylated CD271-1 and CD271-2 Affimer proteins 
were added to 50 µL PBS and reacted with a streptavidin-HRP conjugate 
and TMB substrate. The proteins both showed strong absorbance at 620 
nm indicating biotin was present. The absorbance value decreased as the 
volume added decreased. The concentration of the biotinylated Affimer 
proteins was measured via bicinchoninic acid (BCA) assay at a later date 
(CD271-1: 9 µM, CD271-2: 6 µM). Bars represent the mean value ± SEM, 
n=2 technical replicates.  
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Additionally, the Affimers were analysed before and after biotinylation by mass 

spectrometry, and the masses compared with the calculated mass from their 

amino acid sequences. Good agreement was seen between the calculated 

masses and the mass spectrometry results and the mass spectrometry results 

again confirmed the addition of biotin-malemide (see Table 5.5). 

 

Table 5.5 Mass spectrometry results of biotinylated Affimer proteins 

The Affimer proteins were analysed via mass spectrometry before and after 
biotinylation to verify the addition of biotin-malemide (451.54 Da). The 
expected masses of the proteins were also calculated from the amino acid 
sequence of the Affimer proteins. There was good agreement between the 
calculated masses and the mass spectrometry results and the results 
confirmed the successful biotinylation of Affimers CD271-1 and CD271-2. 

Affimer protein Calculated mass 

from sequence (Da) 

Mass spectrometry 

result (Da) 

CD271-1 11608.08 11606.43 

CD271-2 12359.02 12357.82 

Biotinylated CD271-1 12058.62 12059.30 

Biotinylated CD271-2 12809.56 12810.25 

 

5.3.3.4 Sandwich ELISA to investigate whether CD271-Fc recombinant 

protein bound to biotinylated Affimers when tethered to a solid 

substrate 

With reassurance that the Affimers were biotinylated, a sandwich ELISA was 

carried out in the format analogous to cell capture in a microfluidic device. Wells 

were coated with streptavidin, then with biotinylated Affimer protein. Human 

CD271-Fc protein was added and after washing, bound target was detected via 

anti-human IgG antibody and anti-mouse IgG HRP antibodies. A biotinylated 

ToxinB-18 Affimer was used as a negative control as well as a human CD45-Fc 

recombinant protein in place of human CD271-Fc recombinant protein. 

Figure 5.16 shows that only Affimer CD271-1 showed a strong absorbance in the 

sandwich ELISA meaning that CD271-Fc protein was bound. None of the 

negative controls showed any specific binding, nor did Affimer CD271-2.  
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Figure 5.16 Sandwich ELISA results showing that CD271-Fc recombinant 
protein bound to CD271-1 Affimer when it was tethered to a solid 
substrate 

A sandwich ELISA was carried out to investigate if CD271-Fc recombinant 
protein bound to biotinylated Affimer proteins when they were tethered to a 
solid substrate (representative of cell capture within a cell separation 
device). There was a significantly larger absorbance value when CD271-Fc 
recombinant protein was added to a well coated with biotinylated CD271-1 
Affimer protein compared to a well coated with Blocking Buffer only 
(*p<0.05). There was no significant difference between the positive and 
negative wells for CD271-2 Affimer protein or ToxinB-18 Affimer protein 
(negative control). CD45 (Fc tag) recombinant protein was also used as a 
negative control and no significant differences between positive and 
negative wells were observed. Statistical analysis was carried out by Mann 
Whitney U test since data was not normally distributed according to the 
Shapiro Wilk test of normality. Bars represent the mean value ± SEM, n=3 
technical replicates.  

 

5.3.3.5 SPR analysis of Affimer CD271-1 binding to CD271 recombinant 

protein 

Next, the binding of Affimer CD271-1 was investigated using SPR (Sections 4.2 

and 5.2.10). A dextran CM5 substrate was used to covalently immobilise CD271 

protein via amine coupling (Section 4.4), and the CD271-1 Affimer was injected 
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into the flow cell at a range of concentrations. The SPR was carried out in this 

format since there was a limited amount of CD271 protein available, and only a 

small amount of protein is required for immobilisation compared to the amount 

required for multiple analyte injections. pH scouting was carried out prior to 

immobilisation to find the optimal pH for protein attachment to the surface 

(Section 5.2.10.1). Binding was detected by a change in the surface plasmon 

resonance and recorded as a sensogram in response units (RUs).  

There were four flow cells in total, the first flow cell was used as a reference cell 

with no protein immobilised. The second flow cell contained the originally 

screened CD271 protein (CD271-His recombinant protein) and the third flow cell 

contained the CD271-Fc recombinant protein used in the ELISA characterisation 

assays (Section 5.2.8). The final flow cell was immobilised with TNAP-His 

recombinant protein as a negative control.  

Figure 5.17 shows that Affimer CD271-1 displayed specific binding to the flow 

cells containing immobilised CD271 protein. It was however observed that 

Affimer CD271-1 showed a larger response to the CD271-Fc recombinant protein 

compared to the CD271-His recombinant protein, requiring further investigation 

(see below). Additionally, it was found that as the concentration of CD271-1 

Affimer injected was increased, the binding curves reached a maximum response 

and then began to dissociate during the injection period. It was hypothesised that 

the dissociation during the analyte injection could be caused by aggregation of 

the Affimers at higher concentrations. 
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Figure 5.17 SPR sensograms showing CD271-1 Affimer protein binding 
specifically to CD271 recombinant protein 

CD271-Fc recombinant protein (pink), CD271-His recombinant protein 
(blue) and TNAP-His recombinant protein (red) were immobilised to a CM5 
substrate. A reference cell had no protein immobilised (black) and was 
subtracted from all other flow cells to minimise refractive index effects. 
CD271-1 Affimer proteins were injected for 180 s at 50 µL/min at the 
concentrations indicated.  

 

To further investigate the specific binding of Affimer CD271-1, a second CM5 

substrate was functionalised. In this experiment, the aim was to further explore 

the larger binding response observed for the CD271-Fc protein compared to the 

CD271-His protein. To do this, a CD45-Fc protein was immobilised in one flow 

cell to ensure that the Affimer was not binding to the Fc portion of the protein. In 

addition, the CD271-Fc protein was immobilised under reducing conditions (with 

5 mM DTT added to the immobilisation buffer) as well as non-reducing conditions 

(no DTT added to immobilisation buffer) to assess whether binding was 

preferable due to the homodimeric form of the CD271-Fc protein compared to the 

monomeric form of the CD271-His protein. As previously, one flow cell was used 

as a reference cell with no protein immobilised. The Affimer was injected at a 
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lower concentration range to avoid aggregation of Affimers at high 

concentrations.  

The data gathered from this additional experiment (shown in Figure 5.18) 

confirms that CD271-1 Affimer binds specifically to the CD271 antigen rather than 

the Fc portion of the protein. Further to this, there was no difference in the binding 

behaviour of Affimer CD271-1 to CD271-Fc protein in reducing conditions 

compared to non-reducing conditions. This suggests that there was another 

reason for the greater response to the CD271-Fc protein, such as a difference in 

the quality of the target proteins.  

 

Figure 5.18 SPR sensogram showing CD271-1 Affimer protein binding 
specifically to CD271 recombinant protein in reducing and non-reducing 
conditions  

A second CM5 substrate was immobilised with CD271-Fc recombinant 
protein in non-reducing conditions (NRC, pink), CD271-Fc recombinant 
protein in reducing conditions (RC, purple) and CD45-Fc recombinant 
protein in non-reducing conditions (black). A reference cell had no protein 
immobilised (green). The reference cell had a drifting baseline so the cell 
with CD45-Fc recombinant protein immobilised was subtracted from all 
other flow cells to minimise refractive index effects (no binding was observed 
to CD45-Fc recombinant protein). The black arrows represent where 
CD271-1 Affimer was injected at increasing concentrations: A – 3.125 nM, 
B – 6.25 nM, C – 12.5 nM, D – 25 nM, E – 50 nM. CD271-1 Affimer was 
injected for 360 s at 50 µL/min. 
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To determine the approximate affinity of the binding interaction between CD271-

1 Affimer and CD271-Fc protein, BIAevaluation software was used to perform a 

kinetic fitting to the binding curve. The fitting was performed on an individual 

binding curve rather than a global fit, so must be considered an estimation only.  

The kinetic fitting was performed on a curve when 25 nM CD271-1 Affimer had 

been injected into a flow cell with CD271-Fc protein immobilised (Figure 5.19). 

The fitting estimated the equilibrium dissociation constant (KD) to be 10 nM with 

a small chi squared value indicating a good statistical fit (Table 5.6). The KD of 

antibodies is typically in the nanomolar range with high affinity antibodies in the 

low nanomolar range, and very high affinity antibodies in the picomolar range 

(228), therefore a KD of 10 nM is considered to be of high affinity. The optimum 

affinity of binders in a cell enrichment device must be investigated to ensure cells 

can be released for subsequent use. However, the affinity of Affimer proteins 

could be increased or decreased as required using affinity maturation or 

mutagenesis respectively.  

 

 

Figure 5.19 Kinetic fitting of Affimer CD271-1 binding to CD271-Fc protein 
using BIAevaluation software 

BIAevaluation software was used to estimate the association and 
dissociation rate constants for CD271-1 Affimer binding to CD271-Fc 
recombinant protein. The kinetic fitting was performed on the binding curve 
where 25 nM CD271-1 Affimer was injected into a flow cell immobilised with 
CD271-Fc recombinant protein in non-reducing conditions. The chi squared 
value for the fit was small (see Table 5.6) indicating it was a good statistical 
fit.  
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Table 5.6 Calculated constants from BIAevaluation kinetic fitting 

The association rate constant, dissociation rate constant and therefore the 
equilibrium dissociation constant were calculated from the kinetic fitting 
shown in Figure 5.19. It was found that the equilibrium dissociation constant 
was 10 nM. 

Affimer Association 

rate 

constant 

(ka)(M-1 s-1) 

Dissociation 

rate 

constant 

(kd)(s-1) 

Equilibrium 

dissociation 

constant 

(KD)(M) 

Chi2 

CD271-1 2 x 105 2 x 10-3 10 x 10-9 0.08 

 

 

5.3.4 Characterisation of Affimer binding to CD271+ cells 

The binding of Affimer CD271-1 to CD271+ cells was examined using two 

different flow cytometry approaches; indirect labelling of biotinylated Affimer 

protein using a streptavidin Alexa Fluor 488 conjugate (Section 5.2.12), and direct 

labelling of Affimer protein by Alexa Fluor 647 C2 maleimide (Section 5.2.14). 

Affimer binding was compared to antibody binding and was investigated using 

dental pulp stromal cells (DPSCs) as well as a CD271+ cell line (SH-SY5Y 

neuroblastoma cells).  

 

5.3.4.1 Antibody and Affimer titrations for flow cytometry analysis using 

indirectly labelled Affimer 

The first stage of characterisation was to carry out antibody and Affimer titrations 

to investigate the working concentration of both binding molecules. A CD271 

antibody conjugated to a phycoerythrin fluorescent dye (CD271-PE) was 

purchased from Miltenyi Biotec which has a manufacturer’s recommended 

working concentration of 0.5 µg/mL. It was considered that the antibody could be 

used reliably at lower concentrations and therefore a concentration range of 0.5-

0.125 µg/mL was examined. This was the first flow cytometry analysis of Affimers 

binding to cell surface markers and so the working concentration of Affimers in 

this application was unknown. The concentration of Affimer used in ELISA 

characterisation assays provided a starting point.  

Figure 5.20 shows that antibody CD271-PE binds to a small percentage of 

DPSCs compared to an isotype-matched control antibody and unlabelled cells. It 

also demonstrated that no difference in labelling was observed when the 

concentration of the antibody was lowered to 0.125 µg/mL. Figure 5.21 shows 
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that biotinylated Affimer CD271-1 can be used for flow cytometric analysis at 

lower concentrations than in ELISA assays (2.5 µg/mL compared to 20 µg/mL) 

without any differences observed in labelling.  

Figure 5.21 also shows a comparison of Affimer and antibody binding to DPSCs. 

The percentage positive for fluorescein isothiocyanate (FITC) labelling (indirect 

Affimer labelling) was 2.51% and the percentage positive for PE labelling 

(antibody labelling) was 2.11%. Despite the fact that these two values are close, 

the percentage of CD271+ cells in a DPSC population is very low, and possibly 

unreliable to compare antibody and Affimer binding. It was therefore decided to 

pre-enrich CD271+ cells to gain a larger target population.  

 

 

Figure 5.20 Flow cytometry histograms showing that CD271-PE antibody 
can be used reliably at lower concentrations 

CD271-PE antibody (Miltenyi Biotec) and IgG1-PE isotype-matched control 
antibody (BD Biosciences) were incubated with DPSCs at three different 
concentrations – 0.5 µg/mL, 0.25 µg/mL and 0.125 µg/mL. Histogram A 
shows DPSCs incubated with the isotype-matched control antibody 
compared to unlabelled DPSCs, and histogram B shows DPSCs labelled 
with CD271-PE antibody compared to unlabelled DPSCs. It was found that 
the antibodies could be used at the lowest concentration without any effect 
on the result. 
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Figure 5.21 Flow cytometry histograms comparing CD271-1 Affimer and 
CD271 antibody binding to DPSCs 

Histogram A shows different concentrations of Affimer CD271-1 binding to 
DPSCs compared to unlabelled DPSCs (red). In these experiments, 
biotinylated Affimer was used with a Streptavidin Alexa Fluor 488 conjugate 
detected in the FITC channel. Histogram B shows the same population of 
DPSCs incubated with CD271-PE antibody (at the previously determined 
concentration, red) compared to unlabelled DPSCs (pink), and DPSCs 
incubated with IgG1-PE (isotype-matched control antibody, green). It was 
found that the Affimer concentration did not affect cell binding and therefore 
Affimers could be used at the lowest concentration. It was also determined 
that the population of CD271+ cells in DPSCs was too low to make an 
accurate conclusion regarding the comparison of Affimer and antibody 
binding. 
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5.3.4.2 MACS enrichment of DPSCs prior to Affimer and antibody 

comparison using indirectly labelled Affimer 

In order to accurately compare Affimer and antibody binding, a larger population 

of CD271+ cells would be beneficial. To achieve this, DPSCs were pre-enriched 

for CD271+ cells using CD271 magnetic microbeads (Miltenyi Biotec). After 

incubation with the microbeads, cells were passed through a column surrounded 

by a strong magnetic field. CD271+ cells attached to microbeads should be 

retained in the column while the remaining cells should be washed from the 

column. The different cell fractions were then analysed by flow cytometry using 

both CD271 antibody (different clone to CD271 microbeads) and Affimer.  

Figure 5.22 compares antibody and Affimer binding to the different cell 

populations. It can be seen that where antibody was used for labelling (histogram 

A) a clear enrichment was established in the bound population (contour plot F). 

However, where Affimer was used for labelling (histogram B), all populations 

exhibited a small amount of fluorescence and no clear enrichment was seen 

(contour plot J).  
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Figure 5.22 Flow cytometry comparison of Affimer and antibody binding 
to MACS-enriched CD271+ cells from DPSC populations 

CD271+ cells were enriched from DPSCs using MACS technology. The 
eluate from the MACS column (unbound population), the cells retained in 
the column (bound population) and an unsorted population of cells were 
each incubated with CD271-PE antibody (histogram A, contour plots C-F: C 
– unlabelled unsorted population, D – labelled unsorted population, E – 
labelled unbound population, F – labelled bound population) or biotinylated 
CD271-1 Affimer (histogram B, contour plots G-J: G – unlabelled unsorted 
population, H – labelled unsorted population, I – labelled unbound 
population, J – labelled bound population). The bound population contained 
an enriched fraction of CD271+ cells identified by the CD271-PE antibody 
however not by the CD271-1 Affimer. 

 

A further experiment was carried out to troubleshoot the positive fluorescence 

observed for all populations when labelled with Affimer. In this experiment, a 

second Affimer was used as a negative control (ToxinB-18 Affimer, shown not to 

bind to CD271 recombinant protein in ELISA experiments (Section 5.3.3.4)) and 

the streptavidin Alexa Fluor 488 conjugate alone. The results of this experiment 

are shown in Figure 5.23. 



- 109 - 

The antibody bound specifically to a small percentage of the DPSC population 

(2.88%), consistent with previous antibody labelling. In contrast, both Affimers 

(CD271-1 and negative control ToxinB-18) and the streptavidin Alexa Fluor 488 

conjugate, all displayed positive labelling (6.18% and 5.95% for the ToxinB-18 

Affimer and streptavidin Alexa Fluor 488 conjugate respectively, 12.10% for the 

CD271-1 Affimer).  

 

 

Figure 5.23 Flow cytometry histograms showing extra control experiments 
carried out to investigate Affimer CD271-1 binding to DPSCs 

In histogram A, unseparated DPSCs were incubated with CD271-PE 
antibody (pink), IgG1-PE isotype-matched control antibody (green) or 
unlabelled (red). In histogram B, DPSCs were incubated with biotinylated 
CD271-1 Affimer (orange), biotinylated ToxinB-18 Affimer (negative control, 
green), streptavidin Alexa fluor 488 conjugate (negative control, pink) or 
unlabelled (red). A small percentage (2.88%) was CD271 antibody-positive 
compared to the unlabelled and isotype control. A shift in fluorescence was 
observed for both negative controls (ToxinB-18 Affimer - 6.18% positive, 
streptavidin Alexa fluor 488 conjugate - 5.95% positive, compared to 
unlabelled cells) and a larger percentage of 12.10% positive for CD271-1 
Affimer.  

5.3.4.3 Direct labelling of CD271-1 Affimer for flow cytometry analysis 

In the previous experiments using indirect Affimer labelling, there was a 

consistently low level of binding observed for all cell populations even when using 

the secondary antibody (streptavidin Alexa Fluor 488) alone. This suggests that 

the positive fluorescence observed for cell populations labelled with Affimer could 

have been artefactual due to non-specific labelling by streptavidin Alexa Fluor 

488. Moreover, the CD271-1 Affimer displayed a higher percentage of positive 

staining when directly compared to a control Affimer and the streptavidin Alexa 

Fluor 488 alone, suggesting that the CD271-1 Affimer could be displaying specific 
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binding to the small fraction of DPSCs that were CD271+. To investigate this 

further and to eliminate the artefactual labelling from the streptavidin Alexa Fluor 

488 conjugate, direct fluorescent labelling of Affimer CD271-1 was carried out 

(Section 5.2.14). 

An Alexa Fluor 647 C2 maleimide was used to fluorescently label Affimer CD271-

1 via its C-terminal cysteine residue (same principle as biotinylation, Section 

5.2.9). At the same time, a GFP-32 Affimer was fluorescently labelled to use as 

a negative control. To verify that the Affimers were correctly labelled, and 

estimate the concentration of the labelled Affimers, samples were separated on 

a 12% SDS-PAGE gel (Figure 5.24). A dilution series of unlabelled Affimer with 

known concentration was used alongside samples with unknown concentration.  

Imaging of the gels before Coomassie staining indicated that both Affimers were 

fluorescently labelled. There was dimer present in all samples, however in 

samples fluorescently labelled, more than 75% of sample had successfully 

reacted with Alexa Fluor 647 C2 maleimide, and since dimers were not labelled 

(disulphide bridges between Affimers prevent reaction with maleimide) it was not 

judged as a major concern for flow cytometry analysis. 
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Figure 5.24 SDS-PAGE (12%) gels showing Affimers CD271-1 and GFP-32 
labelled with Alexa Fluor 647 C2 maleimide 

Affimers CD271-1 and GFP-32 (to be used as a negative control) were 
conjugated to Alexa Fluor 647 C2 maleimide via the cysteine residue on the 
Affimer scaffold. Unlabelled Affimer of known concentration was run as a 
dilution series to calculate the concentration of the labelled Affimers. For 
Affimer CD271-1, wells 1 and 12 show protein ladders, wells 2-9 show a 
dilution of Affimer CD271-1 from 1 mg/mL to 0.05 mg/mL and well 11 shows 
Affimer CD271-1 conjugated to Alexa Fluor 647 C2 maleimide. For GFP-32, 
wells 1 and 15 show protein ladders, wells 2-9 show a dilution series of 
Affimer GFP-32 from 1 mg/mL to 0.05 mg/mL, well 11 shows GFP-32 
Affimer dialysed into PBS (unknown concentration), well 12 shows Affimer 
GFP-32 conjugated to Alexa Fluor 647 C2 maleimide and well 13 shows 
Affimer GFP-32 conjugated to biotin maleimide. On the right-hand side of 
each gel, an image is shown of the fluorescently labelled Affimers before 
Coomassie staining. All samples had dimers present however when 
labelled, >75% of protein was fluorescently labelled monomer.  

 

5.3.4.4 Affimer titrations for flow cytometry analysis using directly labelled 

Affimer 

The fluorescently labelled Affimers were titrated to see the effect of concentration 

on cell labelling with fluorescently-tagged Affimers. The proportion of cell labelling 

decreased as the concentration of Affimer decreased suggesting that the cells 
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interacted non-specifically with the fluorescently-tagged Affimer at high 

concentrations (Figure 5.25). 

 

 

Figure 5.25 Flow cytometry histograms showing fluorescently-tagged 
CD271-1 Affimer titrations  

DPSCs were incubated with different concentrations of fluorescently-tagged 
CD271-1 Affimer. Histogram A shows unlabelled DPSCs (red) and DPSCs 
labelled with 20 µg/mL Affimer (green), 10 µg/mL Affimer (pink) and 5 µg/mL 
Affimer (orange). Histogram B shows unlabelled DPSCs (red) and DPSCs 
labelled with 2.5 µg/mL Affimer (green), 1.25 µg/mL Affimer (pink) and 0.625 
µg/mL Affimer (orange). At higher concentrations of fluorescently-tagged 
Affimer there was a large shift in fluorescence which reduces as the Affimer 
concentration was reduced.  

 

Figure 5.26 displays a comparison of directly labelled CD271-1 Affimer (at the 

lowest concentration tested) with CD271 antibody, and also with a non-specific 

GFP-32 Affimer at the same concentration. Here it can be seen that although the 

binding of CD271 antibody and CD271-1 Affimer is similar (3.86% and 5.24% 

respectively), the positive labelling of GFP-32 Affimer is almost identical to the 

positive staining of the CD271-1 Affimer (5.29% and 5.24% respectively - Figure 

5.26, panel B). 
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Figure 5.26 Flow cytometry histograms showing fluorescently labelled 
Affimer and antibody comparison 

The same population of DPSCs was incubated with both CD271 antibody 
and fluorescently labelled CD271-1 Affimer. Histogram A shows DPSCs 
unlabelled (red), labelled with IgG1-PE (isotype-matched control, green) 
and labelled with CD271-PE antibody (pink). Histogram B shows DPSCs 
unlabelled (red), labelled with GFP-32 Affimer (negative control, green) and 
CD271-1 Affimer (pink). A small positive percentage was observed for cells 
incubated with CD271 antibody (3.86%). A larger positive percentage was 
observed for cells incubated with CD271-1 Affimer (5.24%), which was 
almost identical to the positive percentage observed for a non-specific 
Affimer (GFP-32, 5.29%).   

  

5.3.4.5 MACS enrichment of DPSCs prior to Affimer and antibody 

comparison using directly labelled Affimer 

It was previously seen that a CD271+ population of cells could be enriched from 

DPSCs using CD271 microbeads (Figure 5.22) and that this enriched population 

was more useful in providing conclusive results with respect to antibody and 

Affimer binding. The same MACS enrichment procedure was carried out and 

analysed with directly-labelled CD271-1 Affimer and CD271 antibody.   

No clear enrichment of CD271+ cells was seen using either the CD271 antibody 

or the CD271-1 directly-labelled Affimer (Figure 5.27). The bound population after 

MACS enrichment was less than 300,000 cells and did not appear to be enriched 

for CD271+ cells when analysed by flow cytometry. The previous MACS 

enrichment results observed with CD271 antibody labelling were not reproduced. 

As before, a shift in fluorescence was observed in all populations when labelled 

with Affimer. 
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Figure 5.27 Flow cytometry comparison of Affimer and antibody binding to 
MACS-enriched CD271+ cells using directly labelled Affimer 

DPSCs were enriched using MACS technology. The eluate from the MACS 
column (unbound population), the cells retained in the column (bound 
population) and an unsorted population of cells were each incubated with 
CD271-PE antibody (histogram A, contour plots C-F: C – unlabelled 
unsorted population, D – labelled unsorted population, E – labelled unbound 
population, F – labelled bound population) or biotinylated CD271-1 Affimer 
(histogram B, contour plots G-J: G – unlabelled unsorted population, H – 
labelled unsorted population, I – labelled unbound population, J – labelled 
bound population). There was no clear enrichment of CD271+ cells seen 
from either antibody or Affimer labelling.  

 

5.3.4.6 Flow cytometry analysis of CD271-1 Affimer and CD271 antibody 

binding to SH-SY5Y cells using directly labelled Affimer 

When it was found that the CD271+ population of DPSCs could not be 

consistently enriched, a new strategy was sought to compare antibody and 

Affimer labelling of CD271+ cells. A search of the literature revealed a 
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neuroblastoma cell line that constitutively expressed CD271 (229). The cell line 

– named SH-SY5Y – was obtained and analysed by flow cytometry using both 

CD271 antibody and CD271-1 Affimer.  

The antibody results confirmed the fact that SH-SY5Y cells express CD271 with 

approximately 80% of the population labelling positive for CD271-PE antibody 

(Figure 5.28, panel A). The Affimer labelling results for both CD271-1 and GFP-

32 were again very similar and not comparable with antibody labelling 

(approximately 5% and 6% positively labelled respectively, Figure 5.28, panel B). 

The Affimer labelling suggested a small amount of non-specific binding and was 

in good agreement with the DPSC flow cytometry data. 

 

 

Figure 5.28 Flow cytometry comparison of Affimer and antibody binding to 
SH-SY5Y cells  

SH-SY5Y cells were used to compare Affimer and antibody binding since 
there is literature evidence that this cell line expresses CD271 (229). 
Histogram A shows CD271 antibody (pink) binding to SH-SY5Y cells 
compared to an isotype-matched control antibody (IgG1-PE, green) and 
unlabelled cells (red). Histogram B shows CD271-1 Affimer (pink) binding to 
SH-SY5Y cells compared to a non-specific Affimer (GFP-32, green) and 
unlabelled cells (red). The antibody labelling confirmed that SH-SY5Y cells 
express CD271 (~80% CD271 antibody positive). The CD271-1 Affimer 
labelling was similar to the GFP-32 Affimer labelling and only labelled a 
small percentage of the SH-SY5Y cells (~5-6%).  

 

5.4 Conclusions 

In this chapter, human CD271 recombinant protein was screened against Affimer 

libraries containing approximately 1.3 x 1010 independent clones. Two screens 

were carried out using two different protocols for biopanning. Three unique clones 

were identified as potential binders to human CD271 protein and were 

characterised by ELISA and SPR. Following initial characterisation with CD271 
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recombinant protein, one Affimer (CD271-1) displayed specific binding, with an 

equilibrium dissociation constant estimated to be 10 nM – comparable to that of 

a typical antibody. This Affimer was further investigated with cells expressing 

CD271 protein, and the binding behaviour compared with that of a CD271 

antibody. It was found that the Affimer did not display the same binding behaviour 

as a CD271 antibody. This was compared using two different labelling methods 

and two different cell types. 

There is evidence that suggests the success of phage display screening relies 

heavily upon the quality of the target protein (158, 230). The phage display 

screens carried out here only resulted in the identification of three unique clones 

and this could be due to the quality of the CD271-His recombinant protein that 

was used. It can be difficult to achieve high quality soluble proteins for membrane 

proteins with large hydrophobic transmembrane domains, and with extended 

extracellular regions made up of multiple domains (231), as is the case for 

CD271. This is because they are often flexible and unstable leading to challenges 

at all stages of protein production including expression, solubilisation and 

purification (232). From the initial colony counting it could be seen that the 

amplification from negative to positive colony plates was not as large as was 

observed in the case of both positive control proteins. Colony counting is an early 

indicator of the likeliness that specific binders have been selected.  

Additionally, during the characterisation assays the Affimer clones exhibited 

preferable binding to the CD271-Fc recombinant protein compared with the 

CD271-His variant. It was hypothesised that this CD271-Fc recombinant protein 

could be of better quality than the originally screened protein. In previous Affimer 

library screens it has been found that when several commercial sources of the 

same protein were screened, only one source selected suitable Affimers (158). 

To investigate this further a third screen using both proteins – CD271-His and 

CD271-Fc – was carried out by the BSTG group. The results were consistent with 

the initial screens where only a handful of unique clones were identified from 

screening both CD271 proteins – three in total (data not shown). There was some 

cross reactivity between clones screened against the CD271-His protein with the 

CD271-Fc protein (and vice versa) however only for two out of three of the unique 

sequences.  

For this research project it was decided not to investigate the newly identified 

sequences any further. When phage display screening is carried out, it is hoped 

that a large pool of unique clones will be selected, which are then narrowed down 

during characterisation, resulting in a handful of appropriate binders for the 

desired application. Unfortunately, when only a handful of unique clones are 

selected in the initial stages, it becomes increasingly unlikely that a suitable 
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binder will be found. It was therefore considered not likely that the third screen 

would result in a specific binder for CD271+ cells.  

There were no further commercial sources of CD271 protein available to buy (at 

this time), however in future, a different screening strategy could be considered 

such as whole cell biopanning. By using whole cell biopanning the antigen source 

is presented to the phage display library in its native conformation along with post-

translational modifications (230, 231). This increases the chances of isolating 

binders appropriate for in vivo applications. However, whole cell biopanning can 

be challenging due to high backgrounds of non-relevant proteins with 

comparatively low abundance of target protein.  

Jones et al. (2016)(231) developed a method for whole cell biopanning using 

transient transfection of the target protein to increase the target antigen density 

on the cell surface. As well as this, GFP was transiently transfected alongside the 

target protein to enable cell sorting to select cells with high expression of the 

target protein. The host cell line was alternated between biopanning rounds to 

minimise binding to host cell proteins and a low pH wash reduced the enrichment 

of phage clones bound non-specifically. They found that the method was able to 

isolate high affinity binders which showed better binding to cells than those 

isolated from the same library but panned on soluble protein.  

Likewise, Crepin et al. (2017)(233) used whole-cell biopanning with a synthetic 

phage display library of nanobodies (single domain antibodies) and successfully 

isolated nanobodies against follicle-stimulating hormone receptor overexpressed 

in L-cells. Similarly to Jones et al., a number of modifications were made to 

decrease non-specific nanobodies present in the final elution fraction. These 

included two initial depletion steps with wild type L-cells reducing the initial 

number of phages, and reducing the number of cells used for enrichment. The 

resulting nanobodies exhibited inhibitory behaviour on follicle-stimulating 

hormone-dependent cyclic adenosine monophosphate accumulation.  

Alfaleh et al. (2017)(230) provide a detailed review of studies where different 

strategies for whole cell biopanning have been optimised. Methods have been 

developed to screen low numbers of cells - such as a microfluidic phage display 

system (234), and the use of microselection to target single rare cells amongst a 

heterogeneous population of cells (235). In addition, strategies have been utilised 

to further reduce non-specific binding such as the removal of dead cells and 

cellular debris prior to biopanning (236), as well as the optimisation of 

temperature and incubation times during biopanning (237, 238). Giordano et al. 

(2001)(239) developed a washing method using differential centrifugation which 

eliminated the need for repeated washing steps.  
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Although these studies highlight several novel cell-based biopanning strategies, 

the success still relies heavily upon the nature of the antigen. For example, 

Hoogenboom et al. (1999)(240) expressed two antigens of interest in Chinese 

hamster ovary cells but was only able to select receptor specific binders to one 

of the antigens. Where binders were successfully isolated, the antigen in question 

is characterised by a large, highly glycosylated immunogenic extracellular 

domain. In contrast, where binders were not selected, the antigen is 

characterised by short, heavily glycosylated extracellular loops of approximately 

40 amino acids and has low immunogenicity.  

The CD271 receptor contains an extracellular domain containing four 40-amino 

acid repeats followed by a serine/threonine-rich region containing the CD271 

antigen (241). Whole cell biopanning for CD271+ cells would require its own 

optimisation but has the potential to provide binders which would recognise 

CD271 in its native confirmation on the cell surface membrane rather than to the 

recombinant protein only. 

However, for this research project the priority was to develop a microfluidic cell 

enrichment device, and during the characterisation of Affimers their binding was 

compared to a commercially-available CD271 antibody. Reliable and 

reproducible binding was established with the CD271 antibody providing a 

suitable candidate binding molecule for cell capture within a cell enrichment 

device. Although there are potential advantages of using Affimers as cell capture 

molecules (Chapter 2: Section 2.5.3.2), the antibody provided a good starting 

point for development of this technology.  

The work in this chapter has also established a cell line model which could be 

used during proof-of-concept stages. Whilst carrying out the initial 

characterisation of Affimer-target-cell binding, it was found that the percentage of 

CD271+ cells in a DPSC population was very low and could not be reliably 

enriched by CD271 microbeads. There are varying reports of CD271 expression 

of DPSCs found in the literature, Ducret et al. (2016)(242) found that 2.4% of the 

CD31 negative population (to exclude endothelial and leukocytic cells) of dental 

pulp cells expressed CD271, however this decreased to less than 1% upon in 

vitro expansion. The same pattern was observed by Tomlinson et al. (2016)(243), 

where uncultured dental pulp cells were found to express 1.24 ± 0.46% CD271 

but an average expression of 0.2% was found across passages 2 to 4. Pan et al. 

(2016)(244) investigated expression across eight different donors and discovered 

that CD271 expression ranged from 1.57% to 6.35% (no in vitro expansion). 

Alvarez et al. (2015)(245) reported unusually high CD271 expression in passage 

4-8 dental pulp cells at 10.6%, however the flow cytometry gating strategies are 

not detailed in their paper.  
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Due to the low and varying levels of expression of CD271 on cultured DPSCs, it 

was decided to carry out experiments during the device development stages 

using a neuroblastoma cell line where approximately 80% of cells were found to 

express CD271. Not only is high expression of CD271 an advantage (not 

requiring any pre-enrichment techniques) but established cell lines grow 

indefinitely, providing a good supply of cells for experiments. Once proof-of-

concept had been shown using an established cell line, clinical utility was 

investigated using primary cells.  

In conclusion, novel binding proteins – Affimers – were investigated for use as 

cell capture molecules in a cell enrichment device. At this time, no binders were 

found to be suitable for the application. Instead, an appropriate antibody was 

found to reliably bind to CD271+ cells and a neuroblastoma cell line was found 

to express a high percentage of CD271. In Chapter 6, the development of a cell 

enrichment device will be described using a CD271 antibody as a capture 

molecule, and the efficacy of the device validated using the neuroblastoma cell 

line.   
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Chapter 6:  

Developing a prototype microfluidic device for CD271-specific 

cell capture and release 

6.1 Introduction 

The aim of the work carried out in this chapter was to design, fabricate and 

evaluate a prototype microfluidic device capable of specific cell capture and 

release. In Chapter 5, a CD271 antibody was identified which reliably bound to 

CD271+ cells and was thus able to act as a capture molecule in a prototype 

device. A device was designed using Autodesk Fusion360 (Section 6.2.4.1), 

fabricated and assembled into a prototype device (Sections 6.1.1 and 6.2.4.3) 

and a series of experiments carried out to evaluate the specificity of cell capture 

(Section 6.3.2). Once cell capture and release had been optimised (Section 

6.3.3), post-enrichment analysis was carried out on cells that had been captured 

and released in the device to ensure they remained viable (Section 6.3.6 and 

6.3.7) and were minimally manipulated during the enrichment procedure (Section 

6.3.8).  

 

6.1.1 Soft lithography techniques 

Soft lithography refers to a branch of photolithography adapted to process 

photoresists for the fabrication of microfluidic devices (246), such as the device 

described in this chapter. Standard photolithography was primarily developed for 

microelectronics whereas soft lithography is termed as such as it deals with 

mechanically soft materials. The most widely used material is 

polydimethylsiloxane (PDMS) since it has low cost, it is biocompatible, and has 

high durability (247).  

In this work, soft lithography techniques were used to fabricate microfluidic 

channels using a negative mould, where PDMS is poured into the mould, cured 

and then released from the mould (Figure 6.1). A typical procedure for making a 

negative mould is outlined in Figure 6.2. The procedure requires a mask and a 

light source to pattern a photosensitive resist (248). However in this work, a 

maskless aligner was used which eliminates the need for a mask and directly 

exposes the pattern onto the resist-covered substrate. The photoresist is spin-

coated onto a substrate with the spin speed determining the coat thickness. The 

photoresist is then pre-baked so that its solvent is evaporated before exposure to 

UV radiation (an optimum wavelength of 365 nm for SU-8 photoresists). Post-

baking is necessary to aid crosslinking of the exposed photoresist before a 
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developer is applied to dissolve the remainder of the photoresist. A negative 

mould is the result of the procedure which is then ready for PDMS casting.  

 

 

 

Figure 6.1 The process of making PDMS channels using a negative mould 

A negative PDMS mould is typically fabricated using photolithography 
techniques (see Figure 6.2). PDMS is poured into the mould and cured for 
24 h at 65 °C. The PDMS can then be released from the mould creating 
ridges which act as microfluidic channels.  

 

 

Figure 6.2 A typical photolithography procedure to make a PDMS mould 

Flow diagram adapted from (248). 
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6.2 Materials and Methods 

6.2.1 Flow cytometry analysis of the CD271 expression of human 

dermal fibroblast cells and the CD34 expression of SH-SY5Y 

cells 

Flow cytometry (Chapter 2: Section 2.5.1.3) was used to verify that human dermal 

fibroblast cells (Section 4.1.3) did not express the CD271 antigen on their cell 

surface and that SH-SY5Y cells (Section 4.1.2) did not express the CD34 antigen. 

This information was required to verify the controls used during the experiments 

described in this chapter. 

For the fibroblast cells, the same antibodies and protocol was used as described 

in Chapter 5: Section 5.2.12. Briefly, CD271-PE antibody (Miltenyi Biotec, 130-

091-885) and IgG1-PE isotype-matched control antibody (BD Biosciences, 

555749) were incubated with cells in the dark at 4 °C for 30 min. Cells were 

washed by adding 2 mL FACS buffer and centrifuging at 300 g for 5 min. Cells 

were re-suspended in 350 µL FACS buffer and analysed using a CytoFLEX S 

Flow Cytometer.  

The same procedure was used for the analysis of SH-SY5Y cells using a CD34-

PE antibody (Miltenyi Biotec, 130-113-741).  

 

6.2.2 SPR analysis of CD271+ cells binding to CD271 antibody on a 

gold surface 

Surface plasmon resonance (SPR, Section 4.2) is an established method to 

characterise protein-protein, DNA-DNA and DNA-protein interactions, however, 

more recently it has also been used to study whole cell interactions. Ogura et al. 

(2016)(249) published a method to detect the interactions of anti-TNF agents with 

transmembrane TNF-α on living whole cells, and Mizuguchi et al. (250) described 

a similar technique using epidermal carcinoma A431 cells as an analyte, and 

immobilised epidermal growth factor as a ligand, with the aim of future 

applications in drug discovery against membrane receptors on pathological cells. 

In this work, it was decided to use SPR as an initial method of assessment for 

the specific cell capture of CD271+ cells on a CD271-antibody functionalised 

surface - analogous to cell capture in the microfluidic device. Two CD271 

antibodies were investigated for specific cell capture, a CD271 antibody 

conjugated to phycoerythrin dye (CD271-PE, Miltenyi Biotec, 130-091-885, 

previously shown to bind to CD271+ cells in Chapter 5: Section 5.3.4) and a 
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CD271 antibody conjugated to biotin (CD271-biotin, Miltenyi Biotec, 130-113-

419).  

An Autolab ESPIRIT Data Acquisition 4.3 was used for SPR analysis, where 

antibodies were immobilised on a gold-coated glass disk (Xantec Bioanalytics). 

The disk was cleaned using the following protocol: 

• 10 min sonication in acetone 

• Wash in beaker of 100% ethanol 

• 10 min sonication in fresh beaker of 100% ethanol 

• Wash in fresh beaker of 100% ethanol  

and then coated with a monothiol-alkane-PEG self-assembled monolayer (SAM, 

Section 4.3)(ProChima Surfaces TH 003-m11.n6) terminated with a carboxylic 

acid group (HS-C11-(EG)6-OCH2-COOH). The disk was incubated in the SAM 

solution (1 mM in 95% ethanol, 5% acetic acid) for 24 h minimum at RT prior to 

use. Excess SAM molecules were washed from the disk using 100% ethanol and 

the disk dried using a nitrogen gun. The glass disk was loaded on to the Autolab 

ESPIRIT hemi-cylinder using a drop of immersion oil. 

The Autolab ESPIRIT has two flow cells which can be run simultaneously with 

continuous mixing during injections. All injections were carried out such that 

buffer was injected until the baseline was stable, then the analyte was added 

whilst measuring and with continuous mixing.  

 

6.2.2.1 Assessing the appropriate pH for protein immobilisation (pH 

scouting) 

pH scouting was carried out to assess a favourable pH for CD271-PE 

immobilisation. pH 8.0 sodium phosphate buffer was injected into one flow cell 

and pH 7.0 sodium phosphate buffer was injected into the second flow cell. When 

the baseline was stable, 5 µg/mL CD271-PE antibody (diluted in the respective 

buffer) was injected for 6-10 min (until saturation). After the injection, the injection 

needles were washed, the flow cell drained and fresh buffer injected. The surface 

was regenerated with 10 mM sodium hydroxide for 2 min before the next two 

buffers were tested. A pH range of pH 8.0-pH 4.0 was investigated and a 

compromise of pH 5.0 sodium acetate buffer was selected for CD271-PE 

immobilisation. Using pH 5.0 sodium acetate buffer resulted in ~50% of the 

maximum coverage and was closer to biological pH than pH 4.0 - which resulted 

in a higher coverage (Figure 6.3).  
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Figure 6.3 pH scouting for the immobilisation of CD271-PE antibody 

CD271-PE antibody was immobilised on the SPR disk in buffers of different 
pH (range pH 8.0 – pH 4.0). Antibody was injected for 6-10 minutes and the 
antibody loading evaluated. pH 5.0 sodium acetate buffer was selected as 
the immobilisation buffer for binding assays as a compromise between 
antibody loading and biological pH.  

 

For the CD271-biotin antibody, streptavidin was first immobilised onto the glass 

disk at a pH of 5.0 (10 mM sodium acetate buffer) following an online protocol 

(251), summarised below. 

 

6.2.2.2 Protein immobilisation onto the gold-coated glass disk 

For binding assays for both antibodies, the monolayer was first activated using 

NHS and EDC crosslinking chemistry (see Section 4.4); equal volumes of NHS 

(GE Healthcare, BR-1000-50, 200 mM) and EDC (GE Healthcare, BR-1000-50, 

800 mM) were mixed with an equal volume of 2-(N-morpholino)ethanesulfonic 

acid (MES) buffer8. MES buffer was injected into both channels until the baseline 

was stable, and then 125 µL of the NHS/EDC solution was injected for 10 min. 

Between each injection, buffer was injected until the baseline was stable. Sodium 

acetate buffer (pH 5.0, 10 mM, 50 µL) was injected and when stable, 20 µg/mL 

CD271-PE antibody (50 µL, final concentration 10 µg/mL) injected until 

saturation.  

 

8 MES buffer: MES hydrate (Sigma, M2933), pH 5.5  
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For the immobilisation of CD271-biotin, 250 µg/mL streptavidin in sodium acetate 

buffer (50 µL, final concentration 125 µg/mL) was injected for 10 min. After the 

immobilisation of streptavidin, unreacted sites were capped by injection of 1 M 

ethanolamine, pH 8.5 (supplied with amine coupling kit, GE Healthcare, BR-

1000-50) for 10 min. Finally, CD271-biotin antibody was injected in PBST (20 

µg/mL, final concentration 10 µg/mL) until saturation.  

 

6.2.2.3 SPR binding assays to study whole cell interactions 

When the antibodies were immobilised, alpha MEM culture medium with 0.005% 

Tween 20 was injected and used as a running buffer throughout the cell binding 

assays. For each injection, 75 µL of medium was injected followed by 75 µL of 

cell suspension. The concentration of cell suspensions started at 3.125 x 105 

cells/mL and increased two-fold to a concentration of 2.0 x 107 cells/mL. The SPR 

signal was measured for 15 min, the needles washed, the flow cell drained and 

running buffer injected until a stable baseline was achieved.  

After the highest cell concentration was injected and a stable baseline 

established, the pH was increased by injection of glycine-NaOH (80 mM, pH 8.5). 

The pH was gradually increased to pH 10.0 (in 0.5 steps) until there was no 

further change in the SPR angle. Between each pH, running buffer (Alpha MEM 

culture medium with 0.005% Tween 20) was injected until the baseline was 

stable.         

 

6.2.3 Colorimetry experiment to investigate the immobilisation of 

CD271 antibody to the channel surface 

To ensure that antibody was uniformly present on the channel surface, a 

colorimetry experiment was carried out on the channel surface substrate. The 

substrate was a gold-coated glass slide or silicon wafer (see Section 6.2.4.2 for 

fabrication details), with an adhesion layer of 5 nm titanium and a gold layer of 50 

nm – similar to the gold-coated SPR glass disk (Section 6.2.2). From SPR 

experiments, it was decided to use a CD271-biotin antibody for specific cell 

capture (see Section 6.3.1.1) which could be detected by an alkaline 

phosphatase (ALP) conjugated anti-biotin secondary antibody (Miltenyi Biotec, 

130-092-612) and reacted with 5-bromo-4-chloro-3-indolyl phosphate 

(BCIP)/nitro blue tetrazolium (NBT) substrate (Sigma Aldrich, B5655) to produce 

a blue-purple reaction product which precipitates onto the gold surface (252). 
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A series of controls was carried out alongside the test condition to ensure the 

antibody was immobilised via NHS/EDC crosslinking only. Six conditions were 

tested in total, including a titration of the secondary antibody: 

1. Full immobilisation with secondary antibody concentration of 1 µg/mL 

2. Full immobilisation with secondary antibody concentration of 0.5 µg/mL 

3. Full immobilisation with secondary antibody concentration of 0.1 µg/mL 

4. Immobilisation without streptavidin 

5. Immobilisation without CD271-biotin antibody  

6. Immobilisation without secondary antibody 

Two replicates of each condition were carried out.  

The same procedure of antibody immobilisation was carried out as for the SPR 

disk; the gold-coated glass slide was incubated with SAM solution (ProChima 

Surfaces TH 003-m11.n6, 1 mM in 95% ethanol, 5% acetic acid) at RT for 24 h 

minimum. The slide was washed with 100% ethanol and dried using a nitrogen 

gun. The slide was washed with MES buffer for 5 min in a shaker (Stuart orbital 

incubator S150) then incubated with NHS and EDC solution (200 mM NHS (150 

µL), 800 mM EDC (150 µL)) in an equal volume of MES buffer for 15 min at RT. 

Washing with MES buffer was repeated for 5 min and then in sodium acetate 

buffer (10 mM, pH 5.0) for 5 min. All washing steps were carried out on a shaker. 

A solution of streptavidin (250 µg/mL in sodium acetate buffer (10 mM, pH 5.0)) 

was spotted in test conditions and buffer spotted in control conditions. Spots were 

2 µL in volume and pipetted directly onto the gold surface.  

After 15 min, the spots were pipetted off and the slide washed with sodium 

acetate buffer (10 mM, pH 5.0) for 5 min. A solution of 1 M ethanolamine (pH 8.5) 

was pipetted over the entire surface of the slide and incubated for 10 min to cap 

unreacted sites on the monolayer. Washing with sodium acetate buffer was 

repeated then the buffer changed to PBST for 5 min. CD271-biotin (10 µg/mL in 

PBST) was spotted in the test conditions and buffer only spotted for control 

conditions. The substrate was incubated for 30 min before washing in PBST for 

5 min. The slide was incubated in 1% bovine serum albumin (BSA, in PBST) for 

30 min and then washed. Anti-biotin ALP (1 µg/mL, 0.5 µg/mL and 0.1 µg/mL in 

PBST) was spotted in test conditions and incubated for 45 min. The slide was 

washed in PBST twice, then three times in PBS for 5 min each. 

After the last wash, the slide was placed in BCIP/NBT substrate (1 tablet 

dissolved in 10 mL distilled water) and incubated for 10 min. The slide was 

washed three times in water (2 min each) and dried. Photographs were taken 

using a Zeiss AX10 microscope and AxioCam MRc 5 camera with 10x 

magnification.  
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6.2.4  Design, fabrication and assembly of a prototype microfluidic 

device 

6.2.4.1 Overall device design using Autodesk Fusion360 software 

The initial design for a prototype microfluidic device was drawn in Autodesk 

Fusion360 software. The design consisted of a gold-coated substrate which could 

be functionalised with antibodies for specific cell capture. On top of the gold 

surface, four PDMS channels were designed to allow microfluidic flow, with inlets 

from the top side of the device and outlets from the bottom side of the device. 

This was designed so that the fluid flow would be in the direction of gravity to 

increase cell recovery. The gold substrate had four holes where the outlets were, 

and a bottom layer of PDMS was designed to secure the outlet tubing in place. 

The bottom layer of PDMS had four 1 mm cylinder protrusions so it would fit flush 

with the 1 mm gold substrate.  

On top of the channels a Perspex clamp was designed to hold the channels in 

place, and a Perspex rig was designed to hold the PDMS, gold substrate, and 

clamp structure. The Perspex rig had indents where valves could sit to control the 

fluid flow before fluid entered the channels. The Autodesk Fusion360 design is 

shown in Figure 6.4.  
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Figure 6.4 Autodesk Fusion360 design for a prototype microfluidic device 

An overall device design was drawn using Autodesk Fusion360 software. 
The top left photo shows the full device, the top right photo shows a closer 
view of the microfluidic channels, the bottom left photo shows a side view of 
the channels and the bottom right photo shows the top view of the channels.  

 

6.2.4.2 Fabrication of a gold-coated surface for antibody functionalisation 

Once an overall design had been established, the individual parts were drawn in 

2D in L-Edit v12.6 (Figure 6.5), and fabricated. Two different substrates were 

used as a basis for the gold-coated substrate – standard glass slides (Fisher 

Scientific, 12373118) and silicon wafers (650 – 700 micron thickness, 150 mm 

diameter). The glass slides were scribed in half and the silicon wafers were cut 

using a wafer saw to the same size as half a glass slide (25 mm x 37.5 mm). Four 

3 mm-diameter holes were laser cut from the substrate to allow for the outlet 

tubing (see Figure 6.4 and Figure 6.5).  
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Figure 6.5 L-Edit drawing of the gold-coated substrate, microfluidic 
channels and clamp for fabrication 

The Perspex clamp (grey), the gold substrate (blue), and the microfluidic 
channels (green) were drawn in 2D in L-edit. The red circles and rectangles 
show laser-cut holes in the Perspex clamp for screws (larger red circles), 
inlet tubing (smaller red circles) and to view the channels (red rectangles), 
and the blue circles show holes in the gold substrate for the outlet tubing. 
The channel dimensions were 25.5 mm in length and 900 µM in width.  

 

Once the holes in the substrate had been laser cut, the substrates were coated 

with a 50 nm layer of gold using an e-beam evaporator (Leybold). The substrates 

were cleaned using piranha solution (70% sulphuric acid, 30% hydrogen 

peroxide) and placed in an oxygen plasma for 5 min, 50 W. The substrates were 

dehydrated on a hot plate for 5 min at 200 °C before placed in the evaporation 

chamber. A 5 nm layer of titanium was used as an adhesion layer. Figure 6.6 

shows gold-coated substrates ready for antibody functionalisation.  
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Figure 6.6 Gold-coated substrate for antibody functionalisation 

Glass slides or silicon wafer were coated with a 5 nm titanium adhesion layer 
and a 50 nm gold layer using an e-beam evaporator.  

 

6.2.4.3 Microfluidic channel design and fabrication of a PDMS mould using 

SU-8 photoresist 

The microfluidic channel design was drawn in L-Edit v12.6 and consisted of four 

individual channels, 25.5 mm in length and 900 µM in width (shown in green in 

Figure 6.5). Four channels were designed so that each channel could be used 

for separate control experiments. The dimensions were designed so that the 

channels would fit on half a microscope slide, had a low aspect ratio, and were 

similar to a microfluidic device used by Qasaimeh et al. (2017)(253) to capture 

CD138-expressing cells. 

A PDMS mould was made using standard soft lithography techniques (see 

Section 6.1.1). A silicon wafer (Nova Electronic Materials) was cleaned using 

piranha solution (70% sulphuric acid, 30% hydrogen peroxide) and placed in an 

oxygen plasma for 5 min, 50 W. The wafer was dehydrated on a hot plate for 5 

min at 200 °C, then spin-coated with SU-8 photoresist (MicroChem formulations 

50-100) according to the manufacturer’s recommendations for 100 µM thickness. 

The spin-coated wafer was pre-baked for 5 min at 65 °C and soft-baked for a 

further 25 min at 95 °C. A Maskless Aligner (MLA-150) was used to pattern the 

microfluidic channels directly onto the resist-covered wafer (375 nm, dose 1600). 

The patterned wafer was post-baked for 1 min at 65 °C then the temperature 

ramped to 95 °C for 10 min. After post-exposure baking, SU-8 photoresist was 

developed in EC solvent (MicroChem) for 11 min with a solvent change after 6 

min. The wafer was hard-baked at 200 °C for 5 min to reduce cracks in the mould.  

The height of the ridges in the mould were measured using a surface profiler 

(Alpha-Step IQ) to estimate the height of the PDMS channels subsequently made 
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from the mould. A 5 mm PDMS gasket was laser cut from Perspex and attached 

to the wafer using double-sided sticky tape (3M™ VHB™). The finished PDMS 

mould is shown in Figure 6.7. 

 

 

Figure 6.7 PDMS mould fabricated using photolithography techniques 

A PDMS mould was fabricated using SU-8 negative photoresist and a 
maskless aligner. Four microfluidic channels were patterned onto the 
photoresist to create channels with height of 90-100 microns. A 5 mm PDMS 
gasket was made from Perspex and attached to the wafer using double-
sided sticky tape.  

 

PDMS (Sylgard 184, Dowsil) was mixed in a ratio of 10:1, siloxane: curing agent, 

and degassed in a vacuum chamber. The PDMS was poured into the mould and 

levelled using a glass slide to scrape away excess. The mould was placed in an 

oven at 65 °C for 24 h. The PDMS was released out of the mould using a scalpel 

and 1.5 mm holes punched at each inlet for inlet tubing.  

 

6.2.4.4 Fabrication of a bottom-layer PDMS mould using a milling machine 

The mould for the bottom layer of PDMS was required to have four 1 mm cylinder 

indentations so that the PDMS would have four 1 mm cylinder protrusions that 

would fit flush with the laser-cut holes in the gold substrate. The PDMS mould 

was drawn in 3D in Autodesk Fusion360 (Figure 6.8) and milled from 10 mm 

Perspex using a computer numerical control (CNC) milling machine (Roland). 

The PDMS was mixed and cured as described in Section 6.2.4.3.  
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Figure 6.8 Bottom layer PDMS mould fabricated using a milling machine 

The bottom layer PDMS mould was drawn in Autodesk Fusion360 (left-hand 
side) and fabricated using a CNC milling machine (right-hand side). The four 
1 mm indentations were designed so that the PDMS had four 1 mm 
protrusions and would fit flush with the holes in the gold-coated substrate.  

 

6.2.4.5 Assembly of a prototype device 

The Perspex clamp and rig were laser cut and assembled using M3 and M6 

screws. Acetone was used to solvent-weld the smaller pieces of Perspex. 

Polytetrafluoroethylene (PTFE) tubing (0.3 mm inner diameter, 1.6 mm outer 

diameter) was cut and assembled as inlet tubing, and 1 mm inner diameter, 1.6 

mm outer diameter PTFE tubing was cut and assembled as outlet tubing. A larger 

diameter outlet tubing was used to reduce fluidic resistance at the outlet and 

prevent leaks in the channel. Four-way valves (IDEX Health & Science, V101L) 

were positioned so that buffer or cell suspension could be injected to waste before 

injection into the channels, thus reducing the possibility of air bubbles entering 

the channels. The assembled device is shown in Figure 6.9. 
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Figure 6.9 Fabricated and assembled prototype device 

The prototype device was assembled using screws and solvent welding. 
PTFE tubing was used for inlet and outlet tubing. Four-way valves were 
positioned to control the fluid flow before fluid entered the channels.  

 

6.2.5 Prototype device experiment protocols 

For all experiments using the prototype device, the gold substrate was 

functionalised in the same way as for the colorimetry experiment (Section 6.2.3) 

using a PEG SAM and NHS/EDC crosslinking chemistry (Sections 4.3 and 4.4), 

streptavidin and a CD271-biotin antibody. Each solution was pipetted onto the 

substrate and incubated for 10 min. Between each solution the substrate was 

washed by pipetting buffer over the surface and for each buffer change the new 

buffer was incubated for 2 min before the subsequent solution. The substrate was 

incubated with 1% BSA for 30 min to help prevent non-specific adsorption of 

proteins to the substrate surface, then dried using a nitrogen gun, and assembled 

with the PDMS channels onto the Perspex rig. The channels were manually 

flushed with 1% BSA, then a syringe pump (PHD 2000 Programmable, Harvard 

Apparatus) was programmed at a low flow rate (1 µL/min) for 30-60 min. The 

buffer was changed to the running buffer for the experiment, and injected for 30-

60 min before cell suspension injection.  

The cells for each experiment were harvested using 3-5 mL trypsin-EDTA 

solution (Sigma, T4049), filtered through a 40 micron cell strainer (Corning, 

352340) and counted using a haemocytometer. For each injection, buffer or cell 

suspension was injected to waste to purge the tubing of any air bubbles, then the 

four-way valve rotated to inject the medium into the channel. Cell suspensions 

were kept on ice before and after injection into the device.  
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6.2.5.1 Experiments using single cell populations 

The initial experiments carried out using the prototype device used single cell 

populations to determine the specificity of cell capture. Channels were 

functionalised with either CD271-biotin antibody (Miltenyi Biotec, 130-113-419) 

or CD34-biotin antibody (Miltenyi Biotec, 130-113-177), both at 10 µg/mL. Three 

conditions were tested in total: 

1. CD271+ SH-SY5Y cells in a CD271-biotin functionalised channel 

2. CD271- fibroblast cells in a CD271-biotin functionalised channel 

3. CD271+ SH-SY5Y cells in a CD34-biotin functionalised channel 

Two running buffers were investigated during the initial experiments; serum-free 

alpha MEM culture medium with 0.005% Tween 20 and MACS buffer9 with 

0.005% Tween 20. Cells were suspended in running buffer at a concentration of 

2.5 million cells/mL. Cell suspensions (50 µL) were injected into a channel using 

a syringe pump programmed at 100 µL/min. The cells were incubated in the 

channel for 5 min to allow sedimentation of the cells to the channel surface then 

unbound cells were washed away at 5 µL/min, until no more cells were moving.  

Photos were taken at the same location of the channel before the cell injection, 

during the 5 min incubation and after the 5 µL/min buffer wash. Using ImageJ, 

the number of cells in each photo could be estimated as follows: for each photo 

the smooth continuous background was subtracted by setting a rolling ball radius 

(e.g. 6 pixels), the threshold was adjusted, and the number of particles above 25 

pixels analysed. The same values were set for all associated images. The 

number of ‘cells’ before the cell injection (i.e. background fouling on the channel 

surface) was subtracted from both the ‘5 min incubation’ and ‘after 5 µL/min wash’ 

photos. The percentage of cells bound could then be calculated.  

 

6.2.5.2 Experiments using mixed cell populations 

To assess specific cell capture from mixed cell populations, SH-SY5Y cells and 

fibroblast cells were mixed in different ratios and the mixed populations injected 

into the device. The following ratios were evaluated (SH-SY5Y cells: fibroblast 

cells); 100: 0, 75: 25, 50: 50, 25: 75, 12: 88, 6: 94, 3: 97, 1.5: 98.5. The mixed cell 

populations were injected into the device using the same procedure as above 

(Section 6.2.5.1), using MACS buffer with 0.005% Tween 20 as the running buffer 

 

9 MACS buffer: PBS (Lonza, 17-516F), 2 mM EDTA (Sigma Aldrich, E7889), 0.5% BSA 
(Sigma Aldrich, A9647), filter sterilised 
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(see Section 6.3.2) and at a total cell concentration of 20 million cells/mL (see 

Section 6.3.3.2). 

The results from the device were compared to the specificity of flow cytometry. 

For flow cytometry analysis, SH-SY5Y and fibroblast cells were mixed in the 

same ratios as described above and analysed using a Cytoflex S cytometer. The 

mixed populations were suspended in FACS buffer10 and labelled with a CD271-

PE antibody (Miltenyi Biotec, 130-113-421, 0.5 µg/mL) or an isotype-matched 

control antibody (IgG1-PE, BD Biosciences, 555749, 0.5 µg/mL). Unlabelled cells 

were also analysed for gating purposes. The cells were incubated with the 

antibody for 15 min at 4 °C in the dark. FACS buffer (2 mL) was added to each 

FACS tube and the cells washed by centrifugation for 5 min at 300 g and 4 °C. 

Cells were re-suspended in 350 µL FACS buffer and 20,000 events were 

collected for each sample. Flow cytometry events were gated for single cells 

using the gating strategy shown in Chapter 4: Section 4.5.  

 

6.2.5.3 Fluorescent labelling of cells  

To confirm the specificity of cell capture within the device, the two cell types were 

fluorescently labelled with different coloured cell trackers and analysed using a 

multiband filter set (Semrock, LF488/561-B-000) and a multichannel imaging 

system (Photometrics DV2™). 

Cells were fluorescently labelled 24 hours prior to testing as it was found that 

fluorescent labelling affected the cell binding behaviour when carried out 

immediately prior to testing. SH-SY5Y cells were labelled with green cell tracker 

(Invitrogen, C7025) and fibroblast cells were labelled with red cell tracker 

(Invitrogen, C34552). The cell trackers were warmed to RT and re-suspended in 

filtered DMSO to make 10 mM solutions. The solutions were diluted to 10 µM in 

serum-free culture medium and warmed to 37 °C. Culture medium was removed 

from the cell culture flask, replaced with cell tracker solution and incubated for 

30-45 min in the cell culture incubator. Cell tracker solution was removed and the 

cells incubated in their normal culture conditions until the following day.  

The mixed cell population experiments with fluorescently-labelled cells were 

carried out in the same way as Section 6.2.5.2 but only 100% SH-SY5Y, 50% 

SH-SY5Y,  25% SH-SY5Y and 6% SH-SY5Y populations were evaluated.  

 

 

10 FACS buffer: PBS (Lonza, 17-516F), 0.5% BSA (Sigma Aldrich, A9647) and 0.05% 
sodium azide, filter sterilised (0.22 µm) 
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6.2.6 Post-enrichment analysis 

6.2.6.1 Investigating the viability of cells post-enrichment 

The viability of cells post-enrichment was investigated using flow cytometry. SH-

SY5Y cells that had been captured and released in the device were collected and 

their viability compared to cells suspended in medium, on ice, for the same 

duration (medium control) and cells that had been injected into the device at 

different flow rates but with no incubation period (microfluidic controls). A new 

channel design with higher throughput (see Section 6.3.5) was used for viability, 

proliferation (Section 6.2.6.2), manipulation (Section 6.2.6.3) and cell recovery 

(Section 6.2.6.4) experiments. 

The cell enrichment procedure in the new channels was carried out as follows; 

cells were injected into the device at a concentration of 20 million cells/mL at 100 

µL/min and incubated with no flow for 5 min. Unbound cells were washed away 

at 20 µL/min for 100 µL to ensure cells reached the end of the outlet tubing (70 

µL tubing volume). Bound cells were collected directly into a FACS tube at 320 

µL/min for 200 µL. The flow rates used for the buffer wash and cell release were 

four times higher than previously used because the new channel design branched 

into four separate channels. Microfluidic controls were injected into the device at 

three different flow rates; 100 µL/min, 500 µL/min and 3000 µL/min for 200 µL, 

and collected directly into a FACS tube. Medium controls were kept on ice at the 

same cell concentration (20 million cells/mL, 50 µL) for the duration of the 

experiment. 

All cells were centrifuged at 300 g, 4 °C for 5 min and re-suspended in ice-cold 

FACS buffer. A 7-amino-actinomycin D (7-AAD) Staining Solution (Miltenyi 

Biotec, 130-111-568, 0.525 µg/mL) was added to each tube and incubated in the 

dark for at least 5 min before analysis. A Cytoflex S flow cytometer was used for 

analysis and 20,000 events recorded for each sample. 

Cells that had been through a MACS column were also analysed in the same way 

for comparison to a “gold standard” method of cell enrichment.   

 

6.2.6.2 Investigating the proliferation of cells post-enrichment 

To look at the longer-term viability and function of the cells, bound and released 

cells were seeded in  24-well plates and their proliferation assessed at two 

different time points using a Pico green assay for dsDNA quantification. The same 

controls were used as for viability testing (Section 6.2.6.1) – medium controls and 

microfluidic controls.  
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After the enrichment procedure in the device (carried out in the same way as 

Section 6.2.6.1), the cells were counted and seeded at 40,000 cells per well in 

normal SH-SY5Y cell culture medium (0.5 mL per well) in two 24-well plates 

(Corning, 3526). Each experimental condition was carried out in triplicate (with 

the exception of the captured and released population where 1-3 replicates were 

carried out depending on the number of cells collected) and the entire experiment 

carried out three times on different days with different cells and a new device. 

After 2 days in culture, the cells in one plate were washed twice with PBS and 

lysed with 0.1% Triton-X100 (200 µL per well) with repeated freeze/thaw cycles; 

the cell culture plate was frozen at -80 °C for 10 min then thawed at 37 °C for 10 

min. After thawing, the cell suspension was mixed and the freeze/thaw cycle 

repeated twice more. 

A Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen, P11496) was used to 

quantify the dsDNA in each sample. A standard curve was prepared using 

lambda DNA supplied with the kit (100 µg/mL in TE buffer11) and lysed cells were 

diluted 20-fold in TE buffer. Quant-iT™ PicoGreen® dsDNA reagent  (supplied 

with the kit) was diluted 200-fold and protected from light until ready to use. All 

standards and samples were pipetted in triplicate in a 96-well plate (Corning, 

3599), 100 µL per well. Quant-iT™ PicoGreen® dsDNA reagent was added at 

100 µL per well and incubated in the dark for 5 min. The samples were excited at 

480 nm and the fluorescence emission intensity measured at 520 nm using a 

spectrofluorometer (Thermo Scientific Varioskan® flash).  

The fluorescence mean value of the blank wells was subtracted from all 

standards and samples. A standard curve was plotted in Origin and the dsDNA 

content of the samples calculated using linear regression analysis.  

The second 24-well plate was processed in the same way 5 days after seeding 

to assess cell proliferation between the two time points and the relative difference 

between samples.  

 

6.2.6.3 Investigating the manipulation of cells during the enrichment 

process 

In order to have significant advantages over current affinity-based enrichment 

technologies, the cells must be minimally manipulated during the procedure. For 

an initial analysis of the cell manipulation, flow cytometry was used to assess if 

any of the antibody immobilised on the channel surface was present on the cells 

 

11 TE buffer: 200 mM tris-HCl, 20 mM EDTA, pH 7.5 (supplied with Quant-iT™ 
PicoGreen™ dsDNA Assay Kit, Invitrogen, P11496) 
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after they had been captured and released. This was carried out by incubating 

the cells with an anti-biotin-PE conjugated secondary antibody (Miltenyi Biotec, 

130-111-068) to detect if any of the CD271-biotin antibody was present. A further 

experimental condition using CD271-biotin and anti-biotin-PE as a secondary 

antibody was conducted alongside to ensure the CD271 antigen was not affected 

by the capture and release process.   

Samples were processed through the device as described in Section 6.2.6.1. Two 

samples of captured and released cells were collected, one for incubation with 

anti-biotin-PE and one for incubation with CD271-biotin antibody (and 

subsequent labelling with anti-biotin-PE). Samples were centrifuged at 300 g at 

4 °C for 5 min and re-suspended in 100 µL FACS buffer for antibody labelling. 

Labelling was carried out according to the manufacturer’s recommendations; 

each antibody was used at a dilution of 1:50 (2 µL in 100 µL) and incubated for 

10 min in the dark at 4 °C. Cells were washed by addition of 2 mL FACS buffer 

and centrifuged at 300 g and 4 °C for 5 min. Cells were re-suspended in 100 µL 

FACS buffer for secondary antibody labelling or 350 µL FACS buffer for analysis.  

Control samples at a concentration of 20 million cells/mL were suspended in 

medium on ice for the duration of the cell enrichment experiment and labelled at 

the same time as test samples. Control samples were labelled with anti-biotin-PE 

and CD271-biotin for comparison, as well as a sample unlabelled for gating 

purposes.  

A Cytoflex S Flow Cytometer was used to record data and at least 10,000 events 

were collected in the single cells gate (see Chapter 4: Section 4.5 for flow 

cytometry gating strategy).  

 

6.2.6.4 Investigating cell recovery from the prototype device 

The cell recovery from the device was calculated and compared to the recovery 

of cells from a MACS column.  

A SH-SY5Y cell suspension (20 million cells/mL, 200 µL) was injected into the 

device at 100 µL/min and then immediately washed out with 400 µL buffer (at 100 

µL/min). Cells were counted using a haemocytometer and a percentage 

calculated from the original volume of cells injected (4 million cells in a 200 µL 

injection, plus 210,000 cells in the tubing volume from the syringe to the valve 

after flushing out air bubbles). The percentage recovery was compared to cells 

which had been through a MACS column following the standard MACS protocol 

but with no microbead labelling; unlabelled cells were pipetted into the column in 

a 500 µL volume and the column was washed with 3x 3 mL MACS buffer. The 
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cells were centrifuged at 300 g for 5 min to re-suspend in a smaller volume for 

counting.  

   

6.3 Results and Discussion 

6.3.1 Immobilisation of a CD271 antibody to a gold substrate for 

specific cell capture 

A prototype device was designed and the individual parts fabricated and 

assembled as described in Section 6.2.4. The design of the device relies upon 

the specific capture of cells on the surface of a functionalised microfluidic 

channel. The first step was to ensure that a CD271 antibody (for specific cell 

capture) could be immobilised to the channel surface in a uniform manner and 

via a controlled mechanism.  

The proposed mechanism of immobilisation was the same method used in 

Chapter 5: Section 5.2.10 for SPR analysis, using a PEG monolayer (Section 4.3) 

and crosslinking chemistry (Section 4.4). The gold-coated wafer substrate 

prepared in Section 6.2.4.2 was first incubated with a SAM to help prevent non-

specific binding to the channel surface, and carboxylic acid groups in the 

monolayer were activated by NHS and EDC chemistry. 

Two CD271 antibodies were initially investigated; one conjugated to 

phycoerythrin dye (CD271-PE) and the other conjugated to biotin (CD271-biotin). 

The CD271-PE antibody was found to reliably bind to CD271+ cells during the 

work carried out in Chapter 5: Section 5.3.4. The CD271-biotin antibody was 

purchased from the same supplier (Miltenyi Biotec) and was produced by an 

identical clone. The CD271-PE antibody was immobilised directly to the SAM via 

NHS and EDC crosslinking, whereas in the case of the CD271-biotin antibody, 

streptavidin was immobilised to the SAM then CD271-biotin bound to the 

streptavidin (Section 6.2.2.2).  

During the development of a prototype device, an established cell line was used 

to optimise cell capture and release rather than primary cells. This was because 

primary cells were of limited supply and were only used when the efficacy of the 

device had been recognised. Established cell lines are continuous which means 

they can divide indefinitely ensuring a good supply of cells for preliminary 

experiments. In Chapter 5: Section 5.3.4.6, it was shown that the SH-SY5Y cell 

line expresses the CD271 antigen and can therefore act as a positive cell line for 

specific cell capture. For a negative control, primary human dermal fibroblast cells 
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were purchased which do not express the CD271 antigen. This was confirmed 

by flow cytometry analysis as shown in Figure 6.10.  

 

 

Figure 6.10 Flow cytometry histograms showing CD271- fibroblast cells and 
CD271+ SH-SY5Y cells used for optimisation of specific cell capture 

The left panel shows fibroblasts analysed by flow cytometry either 
unlabelled (pink), labelled with an isotype-matched control antibody (IgG1-
PE, green) or labelled with a CD271-PE antibody (red). All histograms are 
identical showing that fibroblasts do not express the CD271 antigen on their 
cell surface. The panel on the right shows the same analysis of SH-SY5Y 
cells for comparison. SH-SY5Y cells were either unlabelled (red), labelled 
with an isotype-matched control antibody (IgG1-PE, green) or labelled with 
a CD271-PE antibody (pink). The pink histogram shows a large percentage 
of SH-SY5Y cells are positive for anti-CD271-PE labelling compared to the 
negative controls, and therefore express the CD271 antigen on their cell 
surface.  

 

6.3.1.1 Surface plasmon resonance analysis of specific cell capture 

Initial analysis of specific cell capture on a surface functionalised with either 

CD271-PE or CD271-biotin was measured via SPR. The SPR experiments were 

carried out on an Autolab ESPIRIT SPR instrument which has sensor substrates 

almost identical to the channel surface in the prototype device. The SPR sensor 

discs were purchased from Xantec Bioanalytics and are glass discs with a gold 

layer of approximately 50 nm. In this work, gold-coated glass slides and gold-

coated silicon wafers were used as a surface for antibody functionalisation - both 

with a gold layer of approximately 50 nm.  

During SPR measurements it was found that using a layer of streptavidin and a 

CD271-biotin antibody reduced non-specific cell fouling to the gold surface 

compared to using a CD271-PE antibody alone (Figure 6.11). After the last cell 
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injection on the CD271-biotin functionalised surface, 411 response units were 

recorded in the flow cell where SH-SY5Y cells had been injected compared to 

2.5 response units in the flow cell where fibroblast cells had been injected. After 

the last cell injection on the CD271-PE functionalised surface, 129 response units 

were recorded in the flow cell where SH-SY5Y cells had been injected compared 

to 29 response units in the flow cell where fibroblast cells had been injected. This 

means there was proportionally 37 times more non-specific binding on the 

CD271-PE functionalised surface.  

This could be for a number of reasons; firstly, the protocols differed slightly in that 

the unreacted sites on the monolayer were blocked using ethanolamine after the 

immobilisation of streptavidin (and before the immobilisation of CD271-biotin 

antibody) whereas for the CD271-PE antibody, ethanolamine was not used as it 

was thought that any unreacted sites on the monolayer would no longer be active 

by the time cells were injected (at least 2 hours later due to the harvesting and 

transport of cells).  

Further to this, the SPR results observed for both CD271-PE and CD271-biotin 

functionalised surfaces could not be repeated and therefore reliable conclusions 

could not be drawn. During repeats, SH-SY5Y cells bound to the functionalised 

surface during the injection (i.e. the SPR angle increased) however, when buffer 

was injected after the cells were bound, cells were immediately washed from the 

surface (the SPR angle decreased to the baseline level). In comparison, the SPR 

sensogram shown in Figure 6.11, shows that the SH-SY5Y cells remained bound 

to the surface until the pH of the running buffer was increased.  

It was decided to investigate the CD271 antibody conjugated to biotin for cell 

capture in the prototype device. This was because the initial result indicated less 

non-specific binding using this antibody and it was also available at a higher 

concentration meaning it was more economical and there would be less batch-

to-batch variation between experiments.  

The initial results indicated that by using a pH 9.0 buffer, more than 70% of bound 

cells could be released from the functionalised surface. This is important because 

the cells need to be released from the surface post-enrichment in order to use 

them in cellular therapies. This preliminary result suggests a change in pH could 

be used as a mechanism for cell release. 
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Figure 6.11 SPR sensograms showing CD271+ cells binding to CD271 
antibodies immobilised to a gold surface 

The upper panel shows SPR measurements recorded when SH-SY5Y cells 
and fibroblast cells were injected onto a CD271-biotin functionalised surface 
(310 - 330 units immobilised). The lower panel shows SPR measurements 
recorded when both cell types were injected onto a CD271-PE 
functionalised surface (170 - 200 units immobilised). More non-specific 
binding was observed on the CD271-PE functionalised surface compared 
to the CD271-biotin functionalised surface.  
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6.3.1.2 Colorimetry assessment of antibody immobilisation on the channel 

surface 

During SPR measurements, the immobilisation of antibody on the surface can be 

measured by a change in the SPR angle (Section 4.2). However, for the 

immobilisation of an antibody on the microfluidic channel surface this information 

was not available. Instead, a colorimetry experiment was carried out to ensure 

that antibody was present and coating the surface in a uniform manner. A series 

of controls were also tested to ensure antibodies were immobilised via 

crosslinking chemistry and were not present through any other interaction with 

the surface.  

An anti-biotin-ALP secondary antibody was used with BCIP/NBT substrate for 

detection of the CD271-biotin antibody on the gold surface (Section 6.2.3). It was 

found that where the correct biochemistry had been applied, antibody was 

present on the gold surface (Figure 6.12). There was a small amount of 

secondary antibody present when no CD271-biotin antibody was present (Figure 

6.12 - panels 5a and 5b), however a clear difference was observed where 

antibody was present (Figure 6.12 - panels 1a and 1b). The pixel intensity of a 

22x22 pixel square (drawn in the top right corner for each image) was quantified 

using ImageJ (Figure 6.13). The average pixel intensity for replicates 6a and 6b 

(where no secondary antibody was used) was subtracted from all other values 

and the result reported as the absolute value. There was an average difference 

of 22 pixel intensity units when CD271 antibody was present in test condition 1 

to when no CD271 antibody was present in test condition 5. Altogether, this result 

provided confidence that the channel surface would be functionalised and 

antibodies would be available for specific cell capture within the prototype device.  
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Figure 6.12 Colorimetry experiment showing CD271-biotin was present on 
the gold channel surface 

The upper left panel shows a macroscopic image of the gold substrate 
spotted with CD271-biotin antibody or relevant control condition. The upper 
right panel shows the same substrate microscopically imaged. The bottom 
table details each of the conditions tested, corresponding to the numbers 
displayed on the upper panels (two repeats of each condition – a and b). 
sAb=secondary antibody.  

1. Full immobilisation (sAb – 1 

µg/mL ) 

2. Full immobilisation (sAb – 0.5 

µg/mL) 

3. Full immobilisation (sAb – 

0.1 µg/mL) 

4. Immobilisation without 

streptavidin (sAb – 1 µg/mL) 

5. Immobilisation without 

CD271-biotin antibody (sAb 

– 1 µg/mL) 

6. Immobilisation without 

secondary antibody 
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Figure 6.13 The pixel intensity of images from each test condition of the 
colorimetry experiment 

ImageJ was used to quantify the pixel intensity of a square (22x22 pixels) 
in the top right corner of each of the microscope images shown in Figure 
6.12. The test conditions correspond to the table shown in Figure 6.12. 
The background staining observed for test condition 5 (where no CD271 
antibody was present) is comparable to test condition 3 (where secondary 
antibody was used at 10x lower concentration). There is a clear difference 
between test conditions 1 and 5 where the secondary antibody was used 
at the same concentration. No statistical analysis was carried out due to 
the low number of replicates. Bars represent the mean value and error 
bars represent the standard error of the mean (n=2 technical replicates).  

 

6.3.2 Investigating specific cell capture and release in the prototype 

device using single cell populations 

The aims of the first experiments using the prototype device were to assess the 

specificity of cell capture using single cell populations. Furthermore, the protocol 

of cell enrichment was refined including the buffer used for cell suspension and 

washes, and the procedure for injecting, capturing, releasing and collecting 

enriched cells.  

Using the two cell populations described in Section 6.3.1, different combinations 

of specific and non-specific antibody were tested with different cells. The 

substrate was functionalised with either CD271-biotin antibody or CD34-biotin 

antibody. It was confirmed that SH-SY5Y cells did not express the CD34 antigen 
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on their cell surface and therefore should not bind to a channel functionalised with 

CD34-biotin antibody (Figure 6.14). 

 

 

Figure 6.14 Flow cytometry analysis showing SH-SY5Y cells do not express 
the CD34 antigen  

SH-SY5Y cells were labelled with CD34-PE antibody (red), an isotype-
matched control antibody (IgG1-PE, pink), or unlabelled (green). The 
histograms show that SH-SY5Y cells do not express the CD34 antigen since 
there is no PE fluorescence detected for cells labelled with CD34-PE 
compared to the isotype control antibody and unlabelled cells.  

 

Cell suspensions were injected into the device via a syringe pump at 100 µL/min 

flow rate and a 5 minute incubation period allowed cells to sediment and interact 

with the cell surface. Buffer washes at 5 µL/min were used to wash away unbound 

cells. Two buffers were trialled as running buffers in these experiments: Alpha 

MEM cell culture medium with 0.005% Tween 20 and MACS buffer12 with 0.005% 

Tween 20. Each experiment was carried out in a single channel of the four-

channel device (see Figure 6.5 for details of the channel design).   

Figure 6.15 shows an example of a specific interaction in the device, where SH-

SY5Y cells (CD271+) have been injected into a channel functionalised with a 

CD271-biotin antibody. Figure 6.16 shows an example of a non-specific 

interaction in the device, where fibroblast cells (CD271-) have been injected into 

a channel functionalised with CD271-biotin antibody. Figure 6.17 shows a non-

 

12 MACS buffer: PBS, 2 mM EDTA and 0.5% BSA 
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specific interaction in the device where SH-SY5Y cells (CD271+) have been 

injected into a channel functionalised with CD34-biotin antibody. 

Images were taken in the same location of the channel before a cell suspension 

injection, during the 5 minute incubation period and after a 5 µL/min buffer wash. 

Using ImageJ it was possible to analyse the number of ‘particles’ above a set 

number of pixels (25 pixels), and therefore using all three images it was possible 

to estimate the percentage of cells bound for each experiment (shown in Figure 

6.18). There was a significant difference between specific interactions and non-

specific interactions in the device. 

 

 

Figure 6.15 An example of a specific interaction in the prototype device 
using SH-SY5Y cells (CD271+) and a CD271 antibody-functionalised 
channel 

Images were taken of the same section of channel before the cell 
suspension injection, during the 5 minute incubation period and after a 5 
µL/min buffer wash. The top row shows images taken with a microscope 
camera, and the bottom row shows the same images analysed by ImageJ 
for particles above 25 pixels. These images show the injection of SH-SY5Y 
cells (CD271+) into a channel functionalised with a CD271-biotin antibody.  

  



- 148 - 

 

Figure 6.16 An example of a non-specific interaction in the prototype 
device using fibroblast cells (CD271-) and a CD271-biotin functionalised 
channel  

Images were taken of the same section of channel before the cell 
suspension injection, during the 5 minute incubation period and after a 5 
µL/min buffer wash. The top row shows images taken with a microscope 
camera, and the bottom row shows the same images analysed by ImageJ 
for particles above 25 pixels. These images show the injection of fibroblast 
cells (CD271-) into a channel functionalised with a CD271-biotin antibody.  
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Figure 6.17 An example of a non-specific interaction in the prototype device 
using SH-SY5Y cells (CD271+) and a CD34-biotin functionalised channel  

Images were taken of the same section of channel before the cell 
suspension injection, during the 5 minute incubation period and after a 5 
µL/min buffer wash. The top row shows images taken with a microscope 
camera, and the bottom row shows the same images analysed by ImageJ 
for particles above 25 pixels. These images show the injection of SH-SY5Y 
cells (CD271+) into a channel functionalised with a CD34-biotin antibody.  
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Figure 6.18 The percentage of cells bound in a prototype device for different 
antibody/cell interactions 

The percentage of cells bound after a 5 µL/min buffer wash was estimated 
using ImageJ. Data shown here is data collated from experiments using both 
Alpha MEM culture medium and MACS buffer as running buffers. There was 
a significant difference between the specific interaction (CD271-biotin/SH-
SY5Y cells) and non-specific interactions (CD271-biotin/fibroblast cells and 
CD34-biotin/SH-SY5Y cells), p<0.01, n=6. Statistical analysis was carried 
out using a Mann Whitney-U test since not all data was normally distributed 
according to the Shapiro Wilk test of normality. Bars represent the mean 
result and error bars represent the SEM. 

 

Next, the percentage of cells bound using different running buffers was compared 

(Figure 6.19). It was found that there was no significant difference between the 

percentage of cells bound using either Alpha MEM or MACS buffer in any of the 

antibody/cell combinations.  

However, it was assumed that there could be small advantages to using MACS 

buffer, for example; MACS buffer contains 0.5% BSA which could help prevent 

non-specific binding and it is not susceptible to pH change. On the other hand, 

Alpha MEM culture medium contains a carbonate buffering system and in 

atmospheric conditions the pH of the medium can rise due to carbon dioxide 

diffusing out. For these reasons, it was decided to use MACS buffer as the cell 

suspension buffer for future experiments. 



- 151 - 

 

 

Figure 6.19 The percentage of cells bound in the prototype device using 
different running buffers 

Alpha MEM culture medium with 0.005% tween 20 and MACS buffer with 
0.005% Tween 20 were investigated as running buffers for cell enrichment 
experiments. It was found that there was no significant difference between 
the percentage of cells bound for any of the different antibody/cell 
interactions using either buffer. (n.s.=not significant, n=3). Statistical 
analysis was carried out using a Mann Whitney-U test since not all data was 
normally distributed according to the Shapiro Wilk test of normality. Bars 
represent the mean result and error bars represent the SEM. 

 

It was also found that as the flow rate was increased, cells began to release from 

the cell surface with only 6 ± 3% of cells (mean value ± SEM, n=3) remaining 

bound after a buffer wash at 160 µL/min (Figure 6.20). Since releasing bound 

cells by increasing the flow rate was found to be effective, using buffer solutions 

with an increased pH was not investigated at this time. The impact of higher flow 

rates on cell viability was investigated and the results shown later in this chapter 

(Sections 6.3.6 and 6.3.7).  



- 152 - 

 

Figure 6.20 The percentage of bound cells when the flow rate was increased 

The flow rate of buffer washes was increased from 5 µL/min to 160 µL/min 
and the number of cells bound after each wash was estimated using ImageJ. 
Each coloured line represents one experiment and the dashed line 
represents the mean value (n=6). As the flow rate was increased, bound 
SH-SY5Y cells (CD271+ cells) were released from the channel surface 
functionalised with CD271-biotin antibody. 

 

6.3.3 Optimising cell capture and release in the prototype device 

6.3.3.1 Reducing cell clumping  

The initial experiments carried out with the prototype device showed that specific 

cell capture and release was achievable, however, there were still areas that 

required optimisation. For example in Figure 6.18 it can be seen that the 

percentage of bound cells was inconsistent between individual experiments. The 

reason for this was because cells in the small-diameter (0.3 mm) tubing during 

the 5 minute incubation period formed large cell clumps, and during the buffer 

wash the large cell clumps would “drag” bound cells from the channel surface. 

Therefore when the photo was taken after the buffer wash, the number of cells 

was diminished from the true value.   

To overcome this issue a second inlet tubing was installed for the buffer wash 

(Figure 6.21). This allowed the cell suspension to be injected via one syringe 

pump (PHD 2000 Programmable, Harvard Apparatus) and inlet tubing, and the 
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buffer wash to be injected via a second syringe pump (NE-1000 Programmable, 

KF Technology) and inlet tubing. Adapting the protocol in this way meant that no 

cells incubated in the small-diameter tubing would flow across the cell surface 

when cells were bound, and the tubing could be flushed out before subsequent 

experiments. Using this protocol increased the consistency between experiments 

and ensured accurate data was being recorded (see Section 6.3.3.2). 

 

 

 

 Figure 6.21 A second inlet tubing was installed for buffer washes 

A second inlet tubing was installed in the second channel of the four-channel 
prototype device. This allowed the cell suspension to be injected via the first 
inlet tubing (indicated by the blue arrow and labelled in the schematic), and 
the buffer wash to be injected via the second inlet tubing (indicated by the 
red arrow and labelled in the schematic). Using the second channel only, 
meant cell clumps formed in the inlet tubing did not lead to inaccurate data 
collection. See Figure 6.5 for further description of this schematic.  
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6.3.3.2 Investigating the initial cell concentration  

A further area of optimisation was to investigate the initial concentration of the 

cell suspension injected into the device. This was important in order to capture 

the maximum number of cells during one incubation period. Initial experiments 

were carried out at a concentration of 2.5 million cells/mL, to maximise the 

number of cells available for capture 5, 10 and 20 million cells/mL were trialled 

as initial cell concentrations.  

It was found that increasing the initial cell concentration increased the number of 

cells bound during one 5 minute incubation (Figure 6.22) and that there was no 

significant difference between the percentage of cells bound at different cell 

concentrations (Figure 6.23). This meant it was beneficial to use the highest cell 

concentration of 20 million cells/mL. Although saturation of the channel surface 

was not observed, cell concentrations higher than 20 million cells/mL were not 

investigated because at the higher cell concentrations the cells began to clump 

together and caused more variable results.  

 

Figure 6.22 The number of cells bound increased when the initial cell 
concentration was increased 

The initial cell suspension concentration was investigated with the aim to 
bind the maximum number of cells on the channel surface during one 
incubation. The number of cells bound to the channel surface increased as 
the initial concentration of the cell suspension was increased. The dashed 
line connects the median values, bars represent the mean values and the 
error bars represent the SEM.  
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Figure 6.23 There was no difference in the percentage of cells bound when 
the initial cell concentration was increased 

The initial cell suspension concentration was investigated with the aim to 
bind the maximum number of cells to the channel surface during one 
incubation. There was no significant difference between the percentage of 
cells bound to the channel surface as the initial concentration of the cell 
suspension was increased (n.s.=not significant, n=3). The dashed line 
connects the median values, bars represent the mean values and the error 
bars represent the SEM. Statistical analysis was carried using an 
independent samples t-test as the data was normally distributed according 
to the Shapiro-Wilk test of normality. 

 

When comparing this data to the data recorded using the one-inlet device, it can 

be seen that the percentage of cells bound after the buffer wash was significantly 

higher and more consistent when using the second inlet tubing for buffer washes 

(Figure 6.24). Using the two-inlet device, the average percentage of cells bound 

in a 100% CD271+ population was 83 ± 3% (mean ± SEM, n=12), compared with 

60 ± 7% (mean ± SEM, n=6) for the earlier data recorded using only one inlet 

tubing. 
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Figure 6.24 Comparison of data recorded using one-inlet device and two-
inlet devices 

For a 100 % SH-SY5Y population of cells, the percentage of cells bound 
after a 5 µL/min buffer wash was calculated using ImageJ. The percentage 
bound using a one-inlet device was compared to the percentage bound 
using a device with two inlets - designed to avoid large cell clumps distorting 
the percentage of cells bound to the channel surface. It was found that there 
was a significant difference in the percentage of cells bound using the two 
different device designs, with a higher and more consistent percentage of 
cells bound using a two-inlet device. Statistical analysis was carried out 
using an independent samples t-test as data was normally distributed 
according to the Shapiro Wilk test of normality (n=6 and n=12 respectively). 
Bars represent the mean values, the error bars represent the SEM and the 
dashed line connects the median values.  

 

Further to this, the release of cells at higher flow rates was investigated using the 

optimised protocol. It was found that the profile of cell release was more 

consistent and predictable using the two-inlet device (Figure 6.25). SH-SY5Y 

cells reliably bound to the channel surface using flow rates of up to 20 µL/min and 

when flow rates were increased above 20 µL/min, cells were released. After 

buffer washes at 40 µL/min and 80 µL/min, only 1.7 ± 0.7% (mean ± SEM, n=12) 

of cells remained bound to the channel surface.  
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Figure 6.25 The percentage of bound cells remaining when the flow rate 
was increased using the two-inlet device 

The flow rate of buffer washes was increased from 5 µL/min to 80 µL/min 
and the percentage of cells bound after each wash was calculated using 
ImageJ. Each coloured line represents one experiment and the dashed line 
represents the mean (n=12). SH-SY5Y cells reliably bound to the channel 
surface up to flow rates of 20 µL/min and released from the surface at flow 
rates above 20 µL/min. 

 

6.3.4 Investigating specific cell capture and release in the prototype 

device using mixed cell populations 

6.3.4.1 Analysis of mixed cell populations using the prototype device and 

flow cytometry 

Once specific cell capture and release in the prototype device was optimised, the 

next aim was to increase the complexity of cell populations and assess specific 

cell capture from mixed cell populations. The fibroblast and SH-SY5Y cells were 

mixed together in different ratios and the mixed populations injected into the 

device using the protocol optimised in Section 6.3.3 (using one channel in the 

device only, with two inlets).  

It was found that as the percentage of CD271+ SH-SY5Y cells in the initial cell 

population was decreased, the number of cells bound to the channel surface also 

decreased (Figure 6.26). This indicated that CD271+ cells were specifically 
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captured from mixed cell populations. The device performance was then 

compared to a gold standard method of cell enrichment – flow cytometry or 

FACS. Mixed cell populations of the same ratios were analysed by flow cytometry 

(Figure 6.27) and the number of CD271-expressing cells detected by flow 

cytometry compared to the number of cells bound to the channel surface (Figure 

6.28).  

 

 

Figure 6.26 The percentage of cells bound to the channel surface 
decreased as the percentage of CD271+ cells in the population decreased 

SH-SY5Y cells and fibroblast cells were mixed in different ratios and injected 
into the prototype device. Photos were taken during the 5 minute incubation 
period (shown on the left-hand side of each panel) and after a 5 µL/min 
buffer wash (shown on the right-hand side of each panel).The number of 
cells bound to the surface decreased as the percentage of SH-SY5Y cells 
in the initial population decreased.  
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Figure 6.27 Flow cytometry analysis of mixed cell populations  

SH-SY5Y cells and fibroblast cells were mixed in different ratios and 
analysed by flow cytometry. The top panel shows how the two different 
populations have been gated according to their forward and side scatter. 
The middle panel shows the CD271 expression of each population 
compared to an isotype control antibody (IgG1-PE) and unlabelled cells. The 
bottom panel shows how the number of cells in each population changes in 
the different mixed cell populations.  
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Figure 6.28 Microfluidic device and flow cytometry comparison using 
mixed cell populations 

SH-SY5Y cells and fibroblast cells were mixed in different ratios and the 
percentage of CD271+ SH-SY5Y cells detected by the prototype device (red 
circles) compared to the number of CD271+ SH-SY5Y cells detected by flow 
cytometry (black squares). The data was normalised such that in an initial 
100% SH-SY5Y population, 100% of CD271+ cells were detected by each 
method. The upper panel shows all percentages tested from 100% to 0% 
SH-SY5Y, the bottom panel shows the lower percentages only (25% to 0% 
SH-SY5Y – highlighted by the blue dashed box in the upper panel). 



- 161 - 

There was good overall agreement between the two methods of cell enrichment 

however by only analysing a small section of the channel at a time (approximately 

1/12th), the device (or the method used for analysis) was not as sensitive as flow 

cytometry at detecting the lower percentages of CD271+ cells. Further to this, in 

a 75% population of CD271+ cells, there was a large discrepancy between the 

device data and the flow cytometry data. It could be that the relationship is non-

linear and more complex than can be rationalised using this data only.  

The cell capture efficiency of the device can be estimated by comparing the 

percentage of cells bound in the device to the percentage of cells in the initial cell 

population. For a more accurate analysis of the capture efficiency, the percentage 

of cells captured in a 0% CD271+ cell population was subtracted from all other 

populations to negate the effects of non-specific binding. By doing this, the 

capture efficiency of the device - taking into account all the different populations 

analysed - was calculated to be 45 ± 11% (mean ± SEM, n=8). Evidently, this 

value is relatively low. 

As previously discussed, the sensitivity of the device (or analysis method) 

decreased as the percentage of CD271+ cells decreased, therefore subgroup 

analysis of the data may provide more useful information. The higher percentage 

populations (25-100% CD271+ cells) were analysed separately to the lower 

percentage populations (12.5-1.5% CD271+ cells) and from this analysis, the 

capture efficiency was calculated to be 70 ± 10% and 20 ± 3% respectively (mean 

± SEM, n=4). These values emphasise the challenges involved in capturing cells 

present at low percentages, however this result could also be an artefact of the 

analysis method at lower percentages. Currently, the cells bound in only 1/12th of 

the device were analysed, this means that at lower percentages of CD271+ cells, 

there could have been greater inaccuracy in the result due to the smaller number 

of CD271+ cells present. In Chapter 7, different device protocols and methods of 

analysis are optimised to assess the binding of a low percentage of CD271+ cells.  

For comparison, the detection efficiency according to the flow cytometry results 

was calculated. As before, the percentage of CD271+ cells detected in a 0% 

CD271+ population was subtracted from all other populations. The detection 

efficiency of the flow cytometry results was calculated to be 71 ± 5% (mean ± 

SEM, n=8). The capture efficiency of the device was therefore comparable to flow 

cytometry at higher percentages of CD271+ cells. The same subgroup analysis 

of the flow cytometry data revealed that the detection efficiency was 81 ± 8% for 

the higher percentage populations (25–100% CD271+ cells) and 62 ± 4% for the 

lower percentage populations (12.5–1.5% CD271+ cells), showing that the 

detection efficiency of the flow cytometry method also decreased at lower 

percentages, however it was still much greater than the device efficiency.  
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The capture efficiency of affinity-based microfluidic devices is often reported in 

the literature. Although there are no affinity-based microfluidic devices based on 

the capture of CD271+ cells (or any other MSC surface marker), there are many 

devices described for the capture of circulating tumour cells (CTCs) using anti-

epithelial cell adhesion molecule (EpCAM) antibodies. These are discussed in 

detail in Chapter 8: Section 8.1.2. The possibility of using a hybrid microfluidic 

technology, with a high throughput pre-enrichment step, is also discussed in 

Chapter 8: Section 8.1.4. This could result in an increased percentage of CD271+ 

cells in a second stage of enrichment using this technology. Further development 

of the device to increase the throughput for clinical application and to allow 

analysis of the cells post-enrichment, is described in Section 6.3.5.  

 

6.3.4.2 Analysis of mixed cell populations with fluorescent labelling 

To further confirm the results of Section 6.3.4.1, and to assess the purity of 

captured cells, the two cell populations were fluorescently labelled with different 

coloured cell trackers. SH-SY5Y cells were labelled with green cell tracker and 

fibroblasts were labelled with red cell tracker (Section 6.2.5.3, Figure 6.29). Using 

a multiband filter set (Semrock, LF488/561-B-000) and a multichannel imaging 

system (Photometrics DV2™), spatially identical but spectrally distinct images 

were acquired simultaneously to determine if the CD271+ cells were the cells 

bound to the channel surface.  

 

 

Figure 6.29 SH-SY5Y and fibroblast cells fluorescently labelled with green 
and red cell tracker respectively 

On the left-hand side, SH-SY5Y cells are shown labelled with green cell 
tracker. On the right-hand side, fibroblast cells are shown labelled with red 
cell tracker. Labelling was carried out 24 h prior to testing in the device.  

 

Four different populations were analysed; 100%, 50%, 25% and 6% SH-SY5Y 

populations, made up to a 100% with fibroblast cells. These experiments 
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confirmed the specificity of cell binding in the device as the majority of cells 

labelled with green cell tracker (CD271+ SH-SY5Y cells) bound to the 

functionalised surface, whereas the majority of cells labelled with red cell tracker 

(CD271- fibroblast cells) were washed away (Figure 6.30). A small percentage of 

fibroblasts bound to the channel in some cases, however, this was not of great 

concern since in all cases the CD271+ cells were significantly enriched from the 

initial cell population (approximately 13-fold enrichment observed from a 6% SH-

SY5Y original population).  

Using ImageJ, the purity of the enriched populations was estimated by counting 

the number of cells labelled with green cell tracker after the 5 µL/min buffer wash, 

and comparing with the number of cells labelled with red cell tracker. From the 

four different populations analysed – 6% SH-SY5Y, 25% SH-SY5Y and 50% SH-

SY5Y the calculated purity was 80 ± 3% (mean ± SEM) after enrichment. The 

purity of enriched populations was therefore consistent at even the lowest 

percentage analysed.  
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Figure 6.30 Specific cell capture confirmed using fluorescently-labelled 
mixed cell populations 

SH-SY5Y cells were stained with green cell tracker and fibroblasts were 
stained with red cell tracker. The two cell types were mixed to make 
populations of 100% SH-SY5Y, 50% SH-SY5Y, 25% SH-SY5Y and 6% SH-
SY5Y. Photos on the left-hand side were taken during the 5 minute 
incubation period. Photos on the right-hand side were taken after a 5 µL/min 
buffer wash. The majority of non-specific fibroblast cells were washed away 
whilst the majority of specific SH-SY5Y cells bound to the channel surface. 
ImageJ software was used to convert the images to RGB colour and the two 
spectrally distinct images were merged. 
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6.3.5 Increasing the surface area for cell capture and release 

The worked carried out thus far demonstrated the efficacy of the device using a 

cell line that expressed the CD271 antigen and cells that did not express the 

CD271 antigen. To progress this work further and to show clinical utility, the 

number of cells processed and collected from the device needed to be increased 

further. This was for two reasons; firstly, clinical samples of bone marrow 

mononuclear cells typically contain less than 0.04% of CD271+ cells (Chapter 7: 

Section 7.3.1) and therefore large numbers of cells need to be processed to 

enrich (and visualise in the device) such a small percentage of cells. Secondly, 

to investigate the viability and manipulation of cells post-enrichment, a substantial 

number of cells needed to be collected to carry out post-enrichment analysis. Two 

device iterations were investigated to increase the surface area available for cell 

capture, detailed in the sections below.   

6.3.5.1 Device iteration 1: using multiple-port manifolds 

The prototype device was originally designed with four channels, however, it was 

only possible to operate one channel at a time due to the syringe pump and valve 

arrangement. Simultaneous use of the channels would therefore increase the 

throughput of the device by four times, allowing enough cells to be captured for 

post-enrichment analysis.  

The first method trialled for simultaneous cell injection was using a 9-port 

manifold (IDEX Health & Science). Two manifolds were positioned so that all four 

channels were controlled by two valves (Figure 6.31), one valve and manifold for 

cell injection and one valve and manifold for buffer injection. The remaining 4 

ports of each manifold were blocked with microfluidic plugs. 
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Figure 6.31 Manifolds incorporated into device design for simultaneous 
operation of four parallel channels 

Two 9-port manifolds were positioned between the four-way valves and the 
channels so that each valve could operate four parallel channels 
simultaneously. One manifold was used for cell injection and the other 
manifold was used for buffer injection. 

 

Using this design resulted in uneven cell distribution between the four channels, 

ranging from over 500 cells in channel 2 to less than 50 cells in channel 4 (Figure 

6.32). This could have been due to the manifold itself, or the fact that having 

multiple inlets and outlets meant that microscopic differences in the channels led 

to less fluidic resistance in some channels than others. For example, the clamping 

of the PDMS could slightly favour channels on one side of the device compared 

to the other, or the position of outlet tubing could provide less resistance in one 

channel compared to another. Furthermore, the use of extra tubing exacerbated 

cell clumping issues (indicated in Figure 6.31) and it was considered that a 

simpler design would be more beneficial.  



- 167 - 

 

Figure 6.32 Distribution of cells in four parallel channels using 9-port 
manifolds for simultaneous operation 

When 9-port manifolds were used for simultaneous operation of four parallel 
channels, the cells were unevenly distributed between the channels 
demonstrated by the vast difference in the number of cells bound (indicated 
in the bottom right corner of each image). In addition, using longer tubing 
before the cells entered the channels meant that large cell clumps formed 
(indicated by red arrows).  

 

6.3.5.2 Device iteration 2: branched channel design 

The second device iteration involved changing the channel design; rather than 

having four separate channels that required eight separate inlets and four 
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separate outlets, it was hypothesised that two inlets (one for cells and one for 

buffer) and just one outlet would provide more even flow, eradicating some of the 

complications introduced by the first device iteration. It was also hypothesised 

that having the channels closer together would reduce the effects of uneven 

clamping. 

The design was first drawn in COMSOL in order to check the flow would be 

theoretically even in all channels (Figure 6.33). Once this was confirmed, the 

design was drawn in L-edit and a PDMS mould made using soft lithography 

techniques as previously described (Section 6.2.4.3). Using the new channel 

design, cells were more evenly distributed between all four channels, with the 

number of cells bound ranging from 900 to 1400 in all four channels (Figure 6.34). 

The more even cell distribution also led to an overall increased number of cells 

bound in the four channels during one incubation period, with an average of 320 

cells bound per image using device iteration 1 compared to an average of 1198 

cells bound per image using device iteration 2. It was therefore concluded that 

device iteration 2 would be suitable to collect enough cells for post-enrichment 

analysis, where the surface area available for cell capture was increased by 4.8 

times compared to when using one single straight channel (see Figure 6.5) in 

previous experiments.  
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Figure 6.33 COMSOL simulation showing the theoretical flow in a two-inlet, 
one-outlet four-channel design 

COMSOL simulations predicted the flow to be even in four parallel channels 
using a two-inlet, one outlet design. The top image shows the entire design 
and the bottom image is a closer view of the middle section of the four 
channels. 
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Figure 6.34 Cell distribution in four parallel channels using a two-inlet, one 
outlet channel design 

When a two-inlet, one outlet channel design was used for simultaneous 
operation of four parallel channels, the cells were evenly distributed 
between the channels. There were no large cell clumps due to the shortened 
tubing length and the surface area available for cell capture was increased 
by 4.8 times.  

 

6.3.6 Investigating the viability of cells post-enrichment 

Due to the low percentage of CD271+ cells in clinical samples, post-enrichment 

analysis was carried out using SH-SY5Y cells that had been captured and 
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released in the prototype device. The first parameter analysed was the viability 

of cells, carried out via flow cytometry analysis using a 7-AAD viability stain 

(Section 6.2.6.1).  

From the initial experiments, it was found that the number of intact cells was 

significantly decreased in control samples suspended in different medium. It was 

found that when cells were suspended in the buffer used for device experiments 

(MACS buffer with 0.005% Tween 20) the number of intact cells decreased 

dramatically compared to when cells were suspended in MACS buffer or Alpha 

MEM culture medium (Figure 6.35). It was therefore decided to carry out a 

controlled study into the effects of different buffers on the number of intact cells 

to ensure the buffer used for device experiments would not be detrimental to cells, 

since the loss of cell membrane integrity is a characteristic of cell death. 

 

 

Figure 6.35 Variability in the percentage of intact cells when cells were 
suspended in different buffers 

The upper panels show the forward/side scatter analysis of cells suspended 
in Alpha MEM culture medium and MACS buffer, and the lower panel shows 
the forward/side scatter analysis of cells suspended in MACS buffer with 
0.005% Tween 20. The percentage of intact cells dramatically decreased 
when 0.005% Tween 20 was added to the buffer.   
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6.3.6.1 Investigating the viability of cells in different buffer solutions  

To investigate the percentage of intact cells further, one million cells were either 

kept in serum-free cell culture medium, serum-free cell culture medium with 

0.005% Tween 20, MACS buffer, or MACS buffer with 0.005% Tween 20. The 

volume of the medium was 50 µL replicating the cell concentration used during 

device experiments (20 million cells/mL). 

It was found that after 2-3 hours in each medium, there was no significant 

difference in the percentage of intact cells when suspended in MACS buffer 

compared to serum-free cell culture medium (Figure 6.36). However, it was found 

that when 0.005% Tween 20 was added to either serum-free medium or MACS 

buffer the percentage of intact cells decreased significantly (p<0.05 and p<0.01 

respectively).  
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Figure 6.36 The percentage of intact cells when suspended in different 
medium  

The percentage of intact cells was compared when cells were suspended in 
serum-free medium, serum-free medium with 0.005% Tween 20, MACS 
buffer or MACS buffer with 0.005% Tween 20. Cells were at a concentration 
of 20 million cells/mL in 50 µL for 2-3 hours before analysis via flow 
cytometry. Statistical analysis was carried out by an independent samples 
T-test as data was normally distributed according to the Shapiro Wilk test of 
normality. (n.s.= not significant, *p<0.05, **p<0.01, n=3). Bars represent the 
mean values and error bars represent the SEM. 

 

Tween 20 was initially added to running buffer during device experiments to 

reduce non-specific binding (as was used for SPR experiments, Section 6.3.1.1) 

however even at low concentrations it was found to have a detrimental effect on 

the percentage of intact cells. Although there was no significant difference 

between culture medium and MACS buffer, it was noted that cells suspended in 

culture medium produced more consistent results than cells suspended in MACS 

buffer. It was therefore decided to carry out all future experiments in serum-free 

cell culture medium with no additional supplements to ensure the highest 

percentage of intact cells.  
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6.3.6.2 Investigating the viability of cells captured and released in the 

prototype device 

Once the running buffer for device experiments had been optimised, the viability 

of cells bound and released in the device could be compared without any 

interfering factors. The viability of cells bound and released was compared to 

microfluidic controls (where the cells had been through the device at different flow 

rates with no incubation), and medium controls (where the cells had been kept in 

cell culture medium, on ice, for the duration of the experiment). Further to this, 

cells were also processed through a MACS column (in MACS buffer but without 

microbead labelling) and their viability analysed in the same way. 

Repeats were carried out on different days using different cell cultures therefore 

natural biological variability was captured. The viability of cells according to the 

7-AAD viability stain was reported from all the events recorded by the flow 

cytometer i.e. no gates were drawn around intact cells or single cells since cells 

damaged in the device may no longer be intact.  

The results showed that there was no significant difference in the viability of cells 

between any of the conditions tested (Figure 6.37). It was observed that the 

results for the captured and released cells were more consistent than for any of 

the controls, this could be because only healthy viable cells are bound in the 

device (due to the specific antibody interaction for capture) and therefore intact 

and dead cells are washed away in the buffer wash. This result indicates that the 

cells were not harmed by the process of being captured and released in the 

device or by experiencing high flow rates (higher than those used for cell release) 

- as far as this limited analysis can show.   
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Figure 6.37 Cell viability after enrichment in the prototype device  

The viability of cells which had been captured and released in the prototype 
device was compared to cells which had been through the device at different 
flow rates with no incubation (100 µL/min, 500 µL/min and 3000 µL/min) and 
cells which had not been through the device (medium control). Cells were 
also processed through a MACS column for comparison, or incubated in 
MACS buffer for the duration of the experiment. The viability of cells was 
evaluated using a 7-AAD viability stain and analysed using a flow cytometer. 
No significant difference was found between any of the conditions tested. 
Statistical analysis was carried out using an independent samples t-test or 
Mann Whitney U test to compare means depending on whether the data 
was normally distributed according to the Shapiro Wilk test of normality. 
Bars represent the mean values and error bars represent the SEM (n=4).  

 

6.3.7 Investigating the proliferation of cells post-enrichment 

For viability testing, the cells were analysed immediately after enrichment in the 

device. To establish if there were any adverse effects which may not be observed 

immediately, enriched cells were seeded at 40,000 cells/well in a 24-well plate 

and cultured for five days. On day two and day five, cell cultures were lysed and 

a Pico green dsDNA quantification kit (Invitrogen, P11496) was used to compare 

the quantity of dsDNA in each sample. The fold-increase in dsDNA content from 

day two to day five was calculated to negate differences in cell counting/cell 

seeding density, and the same medium and microfluidic controls were used as in 

previous experiments. 
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It was found that cells that had been captured and released in the device were 

able to proliferate at a comparable rate to cells that had not been through the 

device, and cells that had been through the device but not captured. There was 

no significant difference between any of the conditions tested (Figure 6.38). There 

are a number of potential sources of error associated with the experimental 

procedure for dsDNA quantification, including the human error associated with 

manual cell counting and the numerous pipetting steps in the dsDNA assay itself. 

Small differences in cell seeding density could lead to greater differences in the 

proliferation rate since cell density is a critical factor determining the proliferation 

of cells in culture (254). Although there was noticeable variation between 

replicates carried out on different days (each replicate series connected by a 

dashed line in Figure 6.38), in all experiments there was a minimum two-fold 

increase in the dsDNA present on day five compared to day two. The lowest fold-

increase was observed from a medium control replicate suggesting that factors 

beside the microfluidic device had an effect on the rate of proliferation.  
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Figure 6.38 The fold-increase in dsDNA content between day two and day 
five of cells cultured post-enrichment 

After enrichment in the microfluidic device, cells were seeded at 40,000 
cells/well in a 24-well tissue culture plate. On day two and day five cells were 
lysed and the dsDNA content of each well quantified. The fold-increase 
between day two and day five was calculated to compare the proliferation 
rate of cells enriched in the device, to microfluidic and medium controls. 
There was no significant difference found between any of the conditions 
tested and there was a minimum 2-fold increase between day two and day 
five in all replicates. Statistical analysis was carried out using an 
independent samples t-test as the data was normally distributed according 
to the Shapiro-Wilk test of normality. Bars represent the mean result and 
error bars represent the SEM. The dashed lines connect the data points 
recorded in the same experiment.  

 

6.3.8  Investigating the manipulation of cells post-enrichment 

One of the key limitations of current affinity-based enrichment technologies is the 

need to pre-label cells with antibodies which remain attached to the cells post-

enrichment. The enrichment technology developed here aims to be minimally 

manipulative and does not require any pre-labelling steps. The antibody 

interaction in the device is designed to be transient so that once cells are released 

from the antibody-functionalised surface they have no antibody attached to their 

cell surface. To evaluate whether this was the case, cells that had been captured 
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and released in the device were collected and labelled with anti-biotin-PE 

antibody to see if any of the CD271-biotin antibody on the functionalised surface 

remained attached to the cells post-release. The same antibody labelling was 

carried out on cells that had not been processed in the device.  

As well as testing whether any antibody was attached to the cells, it was also 

necessary to check whether the CD271 antigen was still present on the cell 

surface and unaffected by the cell release process. For this, cells that had been 

captured and released were labelled with the CD271-biotin antibody and then 

anti-biotin-PE secondary antibody. 

When analysed by a flow cytometer, it was found that less than 4% of cells that 

had been captured and released in the device were positive for anti-biotin-PE 

antibody, and there was no significant difference between the captured and 

released cells compared to cells that had not been through the device (Figure 

6.39). Similarly, there was no significant difference in the percentage of positive 

cells labelled with CD271-biotin and anti-biotin-PE when captured and released 

compared to control cells. These results indicated that the antibody interaction in 

the device is only transient and no antibody remains attached to the cell surface 

post-release, nor is the antigen affected by the cell release process. 

Although these results are encouraging, it is noted that further experiments are 

required to ensure that cells are truly minimally manipulated. For example, a 

transient interaction with an antibody may still affect downstream cell signalling 

processes and to assess this it would be necessary to carry out more in-depth 

gene expression analysis.  
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Figure 6.39 The percentage of antibody attached to the cell surface post-
enrichment 

To investigate whether any antibodies from the device were attached to the 
cells post-enrichment, captured and released cells were labelled with anti-
biotin-PE (anti-biotin test, shown in red) and compared to cells that had not 
been processed in the device (anti-biotin control, shown in black). To 
investigate whether the CD271 antigen was still present on the cell surface 
after the cell release process, captured and released cells were labelled with 
CD271-biotin and anti-biotin-PE as a secondary antibody (CD271-biotin 
test, blue) and compared to cells that had not been processed in the device 
(CD271-biotin control, green). No significant difference was found between 
either of the test and control conditions (n.s.=not significant, n=3). Statistical 
analysis was carried out using an independent samples t-test since the data 
was normally distributed according to the Shapiro Wilk test of normality. 
Bars represent the mean values and the error bars represent the SEM. 

 

6.3.9 Cell recovery from the device  

Finally, the cell recovery from the device was calculated to ensure that cells were 

not lost in the microfluidic tubing during processing. A known volume and 

concentration of SH-SY5Y cells was injected into the device followed by a 400 

µL buffer wash (100 µL/min flow rate) to flush cells out of the tubing and channels 

(Section 6.2.6.4). The recovered cells were counted using a haemocytometer. 

For comparison, cells were also processed through a MACS column using the 

standard protocol but without microbead labelling. The cells in the eluate from the 

column were counted and compared to the cells recovered from the microfluidic 

device. 
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It was found that there was no significant difference in the percentage of cells 

recovered using either method and that the percentage of cells recovered from 

the device was more than 80% for each replicate (Figure 6.40). This result 

demonstrates that there is no significant loss of cells in the microfluidic tubing 

compared to a gold standard method of cell enrichment.  

 

 

Figure 6.40 The percentage of cells recovered from the device compared to 
a MACS column 

The cell recovery from the device was calculated and compared to the cell 
recovery from a MACS column. It was found that there was no significant 
difference in the cell recovery from both methods and the cell recovery from 
the device was above 80% in all replicates. Statistical analysis was carried 
out using an independent samples t-test since the data was normally 
distributed according to the Shapiro Wilk test of normality. Bars represent 
the mean values and the error bars represent the SEM (n=3).  

 

6.4  Conclusions 

This Chapter describes the design, fabrication and development of a microfluidic 

device capable of the specific cell capture of CD271+ cells. The specificity of the 

device was confirmed using different antibody-functionalised channels and 

different cell combinations, as well as using mixed cell populations to compare 

the device performance to a gold standard method of cell sorting. Moreover, it 

was shown that the enrichment process had no effect on the viability or 
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proliferation of cells and that according to the analysis carried out thus far, the 

cells could be classified as minimally manipulated.    

For Human Cells, Tissues and Cellular and Tissue-Based Products (HCT/Ps), 

regulatory guidance from the FDA (section 1271.10(a)(1), (21 CFR 

1271.10(a)(1))) states that a HCT/P must be minimally manipulated and defines 

this as ‘processing that does not alter the relevant biological characteristics of 

cells or tissues’ (255). The data described in this chapter showed no significant 

difference between cells processed in the device compared to non-processed 

cells, however, the experiments carried out here only demonstrate an initial 

assessment and more in-depth studies would be required to be certain. For 

example, analysis must be carried out using clinically-relevant cells rather than 

cell lines, and the therapeutic potential of the cells tested in relevant applications 

in vitro and in vivo.  

The device has been shown to be comparable to FACS in terms of cell capture 

efficiency (for cell populations containing >25% of the target population) and 

comparable to MACS in terms of cell viability and recovery. The device has also 

been shown to enrich target populations with purities of approximately 80%. What 

is more, the device has significant advantages over both MACS and FACS in that 

no pre-labelling steps are required - which could lead to shorter processing times 

- and that no antibody is attached to the cells post-enrichment.  

Currently, FACS is more suited to diagnostic applications due to the expense of 

instruments, and the expertise required for operation (256), whereas MACS 

provides a more cost-effective approach for clinical applications. However at this 

time the majority of MACS products are only certified for in vitro use (131), and 

there are varied reports on the safety of using iron-oxide containing nanoparticles 

for in vivo applications. There have been several reports indicating phenotypical 

alterations to cells labelled with iron-oxide containing particles for cell tracking 

purposes (257-259), however it has been shown that the iron levels used for 

magnetic resonance imaging and magnetic targeting of stem cells are typically 

several orders of magnitude higher than those used for microbead labelling (260). 

The same study by Müller et al. (2017)(260) used MACS technology to enrich 

CD133+ HSCs and CD271+ MSCs and assessed the impact of the stem cells as 

well as the co-injected microbeads on the cardiac remodelling processes after 

myocardial infarction. The study was carried out in immunodeficient mice and it 

was found that 48 hours after transplantation no microbeads could be detected 

in the cells or surrounding heart tissue and improvements of cardiac function were 

reported.    
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Conversely, there is evidence to suggest that the ligation of receptors utilised for 

positive selection of cells has detrimental effects on downstream cellular 

processes. A study by Bhattacharjee et al. (2017)(261) found that monocytes 

isolated by positive selection using CD14 microbeads were impaired due to the 

microbead-blocked CD14 receptors. Stimulation by lipopolysaccharide led to 

activation and increased proliferation of monocytes isolated by negative selection 

however the response by positively selected cells was reduced and the cells did 

not proliferate. Similarly, in a comparison of FACS, positive selection by MACS 

and negative selection by MACS, Beliakova-Bethell et al. (2014)(262) reported 

changes in the gene expression of positively-selected cells compared to negative 

selection and FACS.  

There are still insufficient studies exploring the effects of antibody-labelling on 

cellular processes for in vivo application and effects are likely to be dependent on 

the specific application of the cell therapy as well as the dose of cells required. 

Although the prototype device investigated in this chapter ligates CD271 cell 

surface receptors, the ligation is transient and no receptors remain blocked when 

the cells are collected from the device (i.e. before transplantation as a cellular 

therapy). Gene expression analysis of collected cells would elucidate whether the 

transient interaction affects any cell signalling processes and would further 

confirm if this novel enrichment method is advantageous over current affinity-

based methods.  

The work carried out in this chapter has provided proof-of-concept data for the 

use of a microfluidic device with affinity-based cell capture. In order to progress 

this technology further, the work in Chapter 7 investigates the feasibility of 

enriching CD271+ cells from clinical samples of bone marrow aspirate.   
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Chapter 7:  

Enriching CD271+ cells from clinical samples of bone marrow 

aspirate 

7.1 Introduction  

In Chapter 6, a prototype cell enrichment device was developed for the specific 

capture of CD271+ cells, and optimised using a cell line known to constitutively 

express CD271. The work in this chapter aimed to establish the potential clinical 

utility of the device using cells derived from clinical bone marrow aspirates, 

typically with very low percentages of CD271+ cells. Initially, cells were 

characterised using existing cell enrichment technologies – MACS and FACS 

(Section 7.3.1) and the therapeutic potential of the enriched population 

investigated using a CFU-F assay (Section 7.1.1 and 7.3.4). Once critical 

information such as the typical number of CD271+ cells in BM-MNC populations 

had been established, enrichment of CD271+ cells was investigated using the 

prototype device (Section 7.3.6).  

In Chapter 6, it was found that the capture efficiency of the device was low (~20%) 

when the target population was present at low concentrations of the total cell 

population. However, this could have been due to the analysis method where 

only a small section of the channel was analysed during one experiment. This 

would lead to greater inaccuracies where fewer CD271+ cells were present. In 

this chapter, different device protocols and methods of analysis were investigated 

(Section 7.3.7), as well as using a channel with greater surface area (developed 

in Chapter 6: Section 6.3.5) to gain a greater perspective of the binding of low 

percentage CD271+ populations typical of clinical samples.  

 

7.1.1 Colony forming units-fibroblast (CFU-F) assay 

A colony forming units-fibroblast (CFU-F) assay is an assay used to assess the 

number of MSCs present in a population of cells. When Friedenstein and 

colleagues first described MSCs in 1970 (263), their ability to generate colonies 

when plated at a low seeding density was a definitive property (264). To date, 

this remains one of the only accepted methods to identify MSCs. The method is 

relatively simple, cells are seeded at low densities, cultured in cell-culture medium 

and typically, adherent colonies are counted after 14 days. Unfortunately, several 

variables such as the initial seeding density, the medium used for culture and the 

colony counting method can make it difficult to compare results between different 

studies (265).  
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In this chapter of work, a CFU-F assay was performed after the enrichment and 

depletion of CD271+ cells from BM-MNC populations and the generation of CFU-

Fs compared.  

 

7.2 Materials and Methods 

7.2.1 Bone marrow sample processing 

Bone marrow aspirate samples from 15 different donors were used to carry out 

the experiments described in this chapter. All samples were taken 

intraoperatively following informed consent (REC reference number 

06/Q1206/127 from the NRES Committee Yorkshire & the Humber–Leeds East) 

from patients admitted to Leeds General Infirmary for orthopaedic surgery. 

Patients did not have any known systemic illness, cancer, or metabolic diseases. 

Donor age ranged from 27 to 64 years. All bone marrow aspirates were 

consistently harvested from the same location (zone 6) of the posterior region of 

the iliac crest as previously described (266). 

Samples were received as 4 mL volumes immediately following harvesting and 

were filtered through a 70 micron filter (Falcon, 352350). A 10x concentrate of 

red blood cell lysis buffer (BioLegend, 420301) was diluted to 1x with distilled 

water and warmed to RT. A 1 mL aliquot of bone marrow aspirate was added to 

19 mL of lysis buffer, vortexed and incubated for 10 min at RT. Samples were 

centrifuged at 350 g for 5 min and the BM-MNCs re-suspended in 2 mL Alpha 

MEM culture medium (Lonza, BE12-169F). The centrifugation was repeated once 

more and the cells re-suspended in freezing medium (10% DMSO, 30% FBS, 

60% Alpha MEM). BM-MNCs were frozen in 1 mL aliquots in specialised  freezing 

containers (Sigma, C1562) which provided a cooling rate of 1 °C/min in a -80 °C 

freezer. After 24 h, the vials were transferred to a -180 °C cryotank.  

 

7.2.2 Enrichment of CD271+ cells using MACS and FACS 

BM-MNC populations were enriched for CD271+ cells using existing cell sorting 

methods – MACS and FACS. This was carried out in order to gain information 

with regards to the typical percentage and number of CD271+ cells in clinically-

relevant populations.  
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Cryopreserved BM-MNCs, prepared as described in Section 7.2.1, were thawed 

at 37 °C and added dropwise to thawing medium13 (4 mL per 1 mL vial thawed). 

Cells were washed by centrifugation for 10 min at 300 g and re-suspended in 10 

mL thawing medium for 15 min for Deoxyribonuclease I (DNase I) treatment. 

Cells were then counted using a haemocytometer and a fraction of unseparated 

cells set aside on ice for FACS analysis.  

The remaining cell suspension was centrifuged for 10 min at 300 g and re-

suspended in 60 µL of MACS buffer14 (with 0.1 mg/mL DNase I (Sigma, 

11284932001)) per 107 cells. FcR blocking agent and CD271 microbeads 

(Miltenyi Biotec, 130-099-023) were added (40 µL per 107 cells) and incubated 

for 15 min at 4 °C (and mixed every 5 min). Cells were washed by adding 1-2 mL 

of MACS buffer (per 107 cells) and centrifuged for 5 min at 350 g. Cells were re-

suspended in MACS buffer (500 µL for up to 108 cells) and passed through a cell 

strainer (Corning, 352350, 70 micron).  

A LS column (Miltenyi Biotec, 130-042-401) was placed in the magnetic field of a 

MACS separator and prepared by rinsing with MACS buffer (3 mL). The cell 

suspension was applied to the column and the flow through collected (CD271-

depleted population). The column was washed with MACS buffer (3x 3 mL) and 

the flow-through added to the CD271-depleted population of cells. The column 

was removed from the magnetic field and 5 mL MACS buffer added. The plunger 

supplied with the column was used to flush out CD271-enriched cells.  

CD271-depleted and enriched populations were centrifuged (10 min, 350 g) and 

re-suspended in a smaller volume of MACS buffer for counting. Cells were 

aliquoted into Falcon™ round-bottom polypropylene tubes (FACS tubes, 

Corning, 352063; 1 million cells per tube for CD271-depleted and unseparated 

populations, all cells for CD271-enriched population) and labelled with antibodies 

according to Table 7.1. Human fibroblasts (known not to express the CD271 

antigen – see Chapter 6: Figure 6.10) were added to the CD271-enriched cells 

to provide a final population of 1 million cells. This was to minimise the loss of 

CD271-enriched cells during processing, for example in centrifugation steps. Due 

to the much higher forward and side scatter of fibroblast cells, they were easily 

eliminated from all analyses. UltraComp eBeads™ Compensation Beads 

 

13 Thawing medium: MEM - Alpha Eagle with Earle’s BSS (Lonza, BE12-169F) 
supplemented with 0.1 mg/mL Deoxyribonuclease I (DNase I, Sigma, 
11284932001), 10% FBS (Sigma Aldrich,  F7524), 1% L-Glutamine (200 mM, 
Sigma, G7513) and 1% P/S solution (Sigma, P4458) 

14 MACS buffer: PBS (Lonza, 17-516F), 2 mM EDTA (Sigma, E7889), 0.5% BSA 
(Sigma, A9647), filter sterilised 
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(Invitrogen, 01-2222-41) were used to compensate for fluorescence spectral 

overlap and the compensation matrix applied to all samples. 

Antibody-labelled samples were incubated in the dark at 4 °C for 15 min. Cells 

were washed by addition of ice cold FACS buffer15 (2 mL per tube) and 

centrifuged (5 min, 300 g). The supernatant was aspirated using Pasteur pipettes 

and the cells re-suspended in 350 µL for analysis. Propidium iodide (PI) or 7-AAD 

staining was carried out 5 min prior to analysis with no washing steps required. A 

Cytoflex S flow cytometer was used to record events or a BD Influx™ cell sorter 

for sterile FACS. Flow cytometry data was analysed using CytExpert software 

and gated for single cells (see Chapter 4: Section 4.5). 

For sterile FACS, sorted cells were collected into 1.5 mL Eppendorf tubes with 

0.5 mL Alpha MEM culture medium (Lonza, BE12-169F) supplemented with 20% 

FBS (Sigma Aldrich, F7524), 1% L-glutamine (200 mM, Sigma, G7513) and 1% 

P/S solution (Sigma, P4458). Sorted cells were seeded in 24-well plates for CFU-

F analysis (Section 7.2.4). 

 

15 FACS buffer: FACS buffer: PBS (Lonza, 17-516F, 0.5% BSA (Sigma, A9647), 0.05% 
sodium azide, filter sterilised (0.22 µm) 
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Table 7.1 Antibody labelling for FACS 

 Anti-CD271 

antibody 

Monoclonal 

CD271-PE, 

human 

(Miltenyi 

Biotec, 130-

113-983) 

Anti-CD45 

antibody 

Monoclonal 

CD45-FITC, 

human 

(Miltenyi 

Biotec, 130-

110-679) 

Dead cell 

staining 

PI/7AAD 

(BioLegend, 

421301)/(Miltenyi 

Biotec, 130-111-

568) 

Cells or 

beads 

Unseparated 

cells 

N/A N/A N/A Cells 

Unseparated 

cells 

N/A N/A 14 µg/mL/0.525 

µg/mL 

Cells 

Unseparated 

cells 

N/A 7.5 µg/mL N/A Beads  

Unseparated 

cells 

0.5 µg/mL N/A N/A Beads  

Unseparated 

cells 

Isotype 

control 

Monoclonal, 

mouse IgG1-

PE 

(BD 

Biosciences, 

555749) 

0.5 µg/mL 

Isotype 

control 

Monoclonal, 

mouse IgG2a-

FITC 

(Miltenyi 

Biotec, 130-

113-833) 

7.5 µg/mL 

14 µg/mL/0.525 

µg/mL 

Cells 

Unseparated 

cells 

0.5 µg/mL 7.5 µg/mL 14 µg/mL/0.525 

µg/mL 

Cells 

CD271-depleted 

cells 

0.5 µg/mL 7.5 µg/mL 14 µg/mL/0.525 

µg/mL 

Cells 

CD271-enriched 

cells  

0.5 µg/mL 7.5 µg/mL 14 µg/mL/0.525 

µg/mL 

Cells 
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7.2.3 Investigating the viability of cells in cryopreserved and fresh 

bone marrow aspirate samples 

To study the effects of the cryopreservation and thawing process, a population of 

BM-MNCs was analysed without cryopreservation. The bone marrow aspirate 

sample was processed as described in Section 7.2.1, but after the cells were 

washed in Alpha MEM culture medium, the cells were re-suspended in FACS 

buffer and aliquoted into FACS tubes. Cells were labelled according to Table 7.1 

(“unseparated cells”) using the same procedure as described in Section 7.2.2. 

Data was recorded using a Cytoflex S flow cytometer and analysed using 

CytExpert software (see Chapter 4: Section 4.5). 

 

7.2.4 Investigating the clonogenic potential of enriched CD271+ cells 

The cell populations sorted by MACS and FACS were seeded in well plates and 

cultured for 14 days. The original BM-MNC population (unseparated cells) and 

the CD271-depleted population were both seeded at 50,000 cells/cm2 in a 6-well 

culture plate (Corning, 3516). The CD271-enriched population from MACS was 

further sorted by FACS into a population characterised by high CD271 expression 

and low CD45 expression (CD271bright/CD45low population). This population 

was seeded in a 24-well cell culture plate (Corning, 3526) at 200 - 1600 cells/cm2 

depending on the number of cells collected from FACS and the number of 

replicates carried out. Results were normalised to the cell seeding density. All 

populations were cultured in Alpha MEM culture medium supplemented with 20% 

FBS, 1% P/S and 1% L-glutamine (0.5 mL per well for 24-well plate cultures, 2 

mL per well for 6-well plate cultures). Medium was changed on day seven and 

the colonies stained on day 14. 

For colony staining, the medium was removed and the cultures were washed 

twice with PBS. The PBS was then removed and cultures were fixed with 

methanol for 5 min at RT. The methanol was removed and the culture plates air-

dried in a sterile tissue culture hood. Giemsa staining solution (Sigma, GS500) 

was prepared by diluting 1: 20 in deionised water and added to each well for 30-

45 min at RT. The stain was removed and the culture plates washed twice with 

deionised water. The culture plates were air-dried and colonies with more than 

20 cells counted microscopically.  
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7.2.5 Estimating the number of CD271 molecules (antigens) on cell 

membranes of CD271+ cells 

The number of CD271 antigens expressed on the cell membranes of different 

CD271+ populations was investigated using BD Quantibrite™ Beads (BD 

Biosciences, 340495). This experiment was carried out so that avidity effects 

could be taken into account when comparing the capture and release behaviour 

of the SH-SY5Y cell line compared to clinically-relevant populations.  

SH-SY5Y cells were cultured and harvested as described in Chapter 4: Section 

4.1.2. Cells were counted using a haemocytometer and 2.5 x 105 cells aliquoted 

per FACS tube. Cells in one tube were unlabelled, cells in a second tube were 

incubated with CD271-PE (Miltenyi Biotec, 130-113-421, 0.5 µg/mL) and cells in 

a third tube were incubated with an isotype-matched control antibody (IgG1-PE, 

BD Biosciences, 555749, 0.5 µg/mL). Cells were incubated in the dark for 10 min 

at 4 C. Cells were washed by adding 2 mL FACS buffer and centrifuged (10 min, 

300 g). The supernatant was aspirated and the cells re-suspended in 350 µL 

FACS buffer for analysis.  

The BD Quantibrite™ Beads were re-suspended in 0.5 mL FACS buffer and 

vortexed. Beads and cell events were recorded using a Cytoflex S flow cytometer 

and analysed using CytExpert software. The beads were gated according to their 

forward and side scatter and 10,000 events collected. The singlet bead 

population was analysed using a histogram plot of PE fluorescence in linear 

values. The beads consisted of four levels of PE conjugation; low beads, med-

low beads, med-high beads and high beads, producing four peaks in the 

histogram. Four gates were established around the four peaks (Figure 7.1, left 

panel) and the mean PE fluorescence value from each gate recorded. A linear 

regression was plotted of the Log10 value of the mean PE fluorescence and the 

Log10 value of the known amount of PE molecules per bead in each of the four 

categories (Figure 7.1, right panel). The mean PE fluorescence was then 

recorded for the SH-SY5Y cells and the number of PE molecules per cell 

calculated from the linear regression analysis. This method assumes there is a 

1: 1 ratio of PE molecules to monoclonal antibody. 
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Figure 7.1 Flow cytometry analysis of BD Quantibrite™ Beads  

The Quantibrite beads contained beads with four different levels of PE 
conjugation. A flow cytometry gate was drawn around the peak of each set 
of beads and the mean PE fluorescence value recorded (left panel). The 
Log10 value of the mean PE fluorescence was plotted against the Log10 
value of PE molecules per bead (information supplied with the beads)(right 
panel). The linear regression was used to calculate the number of PE 
molecules per bead for different CD271+ populations (Section 7.3.5). 

 

The same settings were applied to analyse a population of CD271bright/CD45low 

cells. The number of PE molecules per cell was also calculated for SH-SY5Y cells 

labelled with an isotype-matched control antibody and this number subtracted 

from antibody-labelled populations.  

 

7.2.6 Investigating the enrichment of CD271+ cells from clinical 

bone marrow aspirate using the prototype microfluidic device 

Using the current design of the prototype microfluidic device, BM-MNC 

populations required pre-enrichment before analysis. This was because the 

current processing capabilities of the device are limited and further device 

development is required before whole BM-MNC populations can be enriched.  

The device was prepared as described in Chapter 6: Section 6.2.5. BM-MNC 

populations were pre-enriched using MACS as described in Section 7.2.2 but with 

a longer incubation with DNase I (60 min) prior to any centrifugation steps. The 

longer incubation before any centrifugation steps eliminated cell clumping 

observed previously. CD271-enriched and CD271-depleted cell populations were 

counted and stained with calcein AM (Biotium, 30002) to allow easier 

identification above the channel background. A staining solution of 2 µM calcein 

AM was prepared in MACS buffer. Cells were washed by centrifugation (10 min, 
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300 g) and re-suspended in the staining solution for 30 min at RT. The cells were 

washed by centrifugation (10 min, 300 g) and CD271-enriched cells re-

suspended in 200 µL (the minimum loading volume of a 1 mL syringe used for 

cell suspension injection into the device). A fraction of the CD271-depleted 

population was diluted and prepared in the same volume for an equivalent 

comparison.  

Cell suspensions were injected into the device using the same protocol as 

described in Chapter 6: Section 6.2.6.1. Briefly, the cell suspension was injected 

at 100 µL/min and incubated for 2 - 5 min. Unbound cells were washed away at 

20 µL/min and the number of cells captured from each population compared. 

Photos were taken using a Hamamatsu ORCA-ER-1394 camera and analysed 

using ImageJ. For fluorescent images, the brightness and contrast were set at 

constant values for every image.   

 

7.3 Results and Discussion 

7.3.1 MACS and FACS analysis of clinical samples of bone marrow 

aspirate 

Established cell enrichment technologies - MACS and FACS - were used to 

investigate the percentage of CD271+ cells typically present in clinical bone 

marrow aspirates in these initial experiments.  

A commercially-available CD271 microbead kit (Miltenyi Biotec) was used to 

enrich CD271+ cells and the enriched population analysed using a flow cytometer 

(Section 7.2.2). An unseparated population was also analysed for comparison 

alongside the population of cells eluted from the MACS column (CD271-depleted 

population). All populations were labelled with a CD271-PE antibody (Miltenyi 

Biotec) - compatible with the CD271 microbead kit - and a CD45-FITC antibody 

(Miltenyi Biotec). A CD45 antibody was used in combination with a CD271 

antibody in order to recognise a population of CD271bright/CD45low cells which 

have been well characterised in the literature (Chapter 2: Section 2.6.2.2). 

UltraComp eBeads™ Compensation Beads (Invitrogen) were used to 

compensate for fluorescence spectral overlap and the compensation matrix 

applied to all samples. Unlabelled samples and samples labelled with isotype-

matched control antibodies were analysed alongside test samples for gating 

purposes (see Chapter 4: Section 4.5 for an example of flow cytometry gating of 

single cells).  
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The CD271 microbead kit bound 0.38 ± 0.08% of BM-MNCs with a total cell 

recovery of 46 ± 8% from the MACS column (mean ± SEM, n=3). When analysed 

by flow cytometry, it was found that an average of 4.7 ± 1.6% of the CD271-

enriched population was the desired CD271bright/CD45low cell phenotype 

(mean ± SEM, n=3), enriched on average 125-fold from the unseparated 

population (range 84-fold to 193-fold, n=3). It was also found that the 

CD271bright/CD45low population was entirely depleted from the CD271-

depleted population in all experiments. Representative flow cytometry plots from 

one experiment are shown in Figure 7.2. 
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Figure 7.2 Flow cytometry dot plots showing MACS separated BM-MNC 
populations 

Dot plots A-C show unseparated BM-MNC populations either unlabelled (A), 
labelled with isotype-matched controls (B), or labelled  with CD271-PE and 
CD45-FITC antibodies (C). Dot plot D shows the MACS BM-MNC CD271-
enriched population and dot plot E shows the MACS BM-MNC CD271-
depleted population labelled with the same CD271-PE and CD45-FITC 
antibodies. A red box gate has been drawn around the 
CD271bright/CD45low population according to the unlabelled and isotype 
control samples. In the unseparated population, 0.03% of total single cells 
are in the box, in the CD271-enriched population, 2.53% of total single cells 
are in the box and in the CD271-depleted population, 0.00% of total single 
cells are in the box (as with the unlabelled and isotype-matched controls). 
500,000 events were collected for unseparated and CD271-depleted 
populations, 200,000 events were collected for CD271-enriched 
populations.  

 

When considering the actual number of CD271bright/CD45low cells rather than 

the percentage of the total single cell population, the average number of 

CD271bright/CD45low cells in an unseparated BM-MNC sample was 50 ± 15 

cells recorded from 200,000 total events, and 2500 ± 1500 cells in the MACS BM-

MNC CD271-enriched populations (mean ± SEM, n=3 (three separate 

experiments using BM-MNCs pooled from multiple donors). This is an average 

enrichment of 50-fold. Both the percentage and number of cells must be 

considered since the number of therapeutic cells is ultimately important for a cell 

therapy however the percentage demonstrates the purity of the population. The 
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large variation in the number of CD271bright/CD45low cells between 

experiments is expected since bone marrow aspirate samples were collected 

from different donors and factors such as the total aspiration volume were not 

controlled. It has been shown that the number of CD271bright/CD45low cells 

decreases 7-fold in a second draw of bone marrow aspirate compared to the first 

(aspirated from the same location)(180). The percentages and number of 

CD271bright/CD45low cells are summarised in Table 7.2.  

 

Table 7.2 Summary of results from the initial characterisation of BM-MNCs 
using MACS enrichment and subsequent flow cytometry analysis 

Data shown represents the mean ± SEM (n=3).  

 Unseparated 

population 

CD271-

enriched 

population 

CD271-

depleted 

population 

Average 

enrichment 

factor 

Percentage of 

CD271bright/CD45low 

cells (%) 

0.04 ± 0.02 4.7 ± 1.6 0.0 ± 0.0  118-fold 

Number of 

CD271bright/CD45low 

cells (per 200,000 

events) 

50 ± 15 2500 ± 

1500 

1 ± 1 50-fold 

 

The percentage of CD271bright/CD45low events reported by Cuthbert et al. 

(2012)(180) was in the range 0.001 – 0.100% with a median value of 0.026%. 

This is in good agreement with the percentage of CD271bright/CD45low events 

recorded in this work (0.04 ± 0.02%, range 0.02 – 0.08%). Furthermore, Jones et 

al. (2006)(184) used CD271-based positive selection and reported 0.3 ± 0.1% of 

cells were in the enriched fraction with 5.2 ± 1.5% MSC purity assessed by flow 

cytometry. Again, these results are comparable to the results found in this work 

where 0.38 ± 0.08% of cells were in the enriched fraction with 4.7 ± 1.6% MSC 

purity. Interestingly, Jones et al. experienced much improved recovery rates 

compared with those achieved in this work (77 ± 17% compared to 46 ± 8%) 

which could be caused by differences in the experimental procedure such as 

incubation times, centrifugation parameters and cell counting methods. 
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7.3.2 Investigating the impact of cryopreservation on the percentage 

and number of CD271bright/CD45low cells in clinical samples 

of bone marrow aspirate 

The flow cytometry results described above confirmed that the CD271 microbead 

kit successfully enriched CD271+ cells from BM-MNCs, however, it was also 

found that the percentage of viable cells was less than 21% when analysed by 

flow cytometry (Figure 7.3, upper right panel). It was hypothesised that the reason 

for this was because the cells were thawed immediately prior to analysis with no 

in vitro culture. To test this hypothesis, a fresh sample of bone marrow aspirate 

was analysed without cryopreservation.  

It was found that when the BM-MNCs were not cryopreserved, the viability 

increased to 74% according to PI viability staining (Figure 7.3, lower right panel). 

However the increase in viability was due to the shift of one population in 

particular (marked by a red box in Figure 7.3) which appeared to become 

apoptotic after cryopreservation and thawing. Fortunately the desired 

CD271bright/CD45low population are small cells that reside in the population 

marked by an orange box in Figure 7.3, therefore the viability of 

CD271bright/CD45low cells should be largely unaffected by the cryopreservation 

process. Previous research supports this data, demonstrating that the surface to 

volume ratio of a cell has an impact on its viability after cryopreservation (267). 

This is because larger cells have a smaller transfer surface for heat and mass 

transfer, and cryopreservation with high viability depends on the ability of water 

to flow out of the cell faster than the thermal flow. If the thermal flow is equal to 

the water flow, the freezing rate will induce intracellular water crystallisation 

during the osmotic exit of water leading to cell death.  

In further support of this, the percentage of CD271bright/CD45low cells in the 

fresh sample was analysed and it was found that 0.05% of cells were the desired 

CD271bright/CD45low cells (Figure 7.4), which is within the SEM recorded from 

the thawed samples (0.04 ± 0.02%, mean ± SEM, n=3, Section 7.3.1). In contrast, 

the total number of desired cells was greater in the fresh sample compared to the 

thawed samples since there was an overall greater number of single cells in the 

fresh sample (500,000 total events collected, then gated for single cells (see 

Chapter 4: Section 4.5)). In the fresh sample there were 84 

CD271bright/CD45low cells recorded from 200,000 events compared to an 

average of 50 ± 15 from three thawed samples. This data is summarised in Table 

7.3. 
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Figure 7.3 Flow cytometry analysis of the viability of BM-MNCs in fresh and 
thawed samples 

Flow cytometry was used to assess the percentage of viable cells in 
samples of BM-MNCs when samples had been thawed or were analysed 
fresh. A gate was set according to an unlabelled sample (left-hand side) and 
compared to a sample labelled with propidium iodide (PI) viability stain 
(right-hand side). It was found that the percentage of viable cells was less 
than 21% when samples had been cryopreserved and then thawed, 
compared to 74% when samples were analysed fresh. 500,000 events were 
collected for the thawed sample and 100,000 events were collected for the 
fresh sample. The red box indicates a population of cells that became 
apoptotic after cryopreservation whereas cells in the orange box appeared 
to be unaffected by cryopreservation.  



- 197 - 

 

Figure 7.4 The percentage and number of CD271bright/CD45low cells in a 
thawed sample compared to a fresh sample of BM-MNCs 

The percentage and number of CD271bright/CD45low cells in a thawed 
sample was compared to the percentage and number in a fresh sample. 
Samples were labelled with CD271-PE antibody and CD45-FITC antibody 
and 500,000 total events were collected. There were 0.03% cells in the 
CD271bright/CD45low gate in the thawed sample shown here and 0.05% in 
the fresh sample. As well as this, due to the higher percentage of single cells 
in the fresh sample the actual number of CD271bright/CD45low cells was 
greater. The fresh sample was analysed using the same template and 
therefore the same CD271bright/CD45low gate as for the data shown in 
Figure 7.2.  

 

Table 7.3 Summary of results from fresh and thawed samples of BM-MNCs 

Data shown represents the mean ± SEM for thawed samples (n=3). Only 
one replicate was carried out with a fresh sample due to limited sample 
availability. 

 Thawed samples Fresh sample 

Percentage of 

CD271bright/CD45low 

cells (%) 

0.04 ± 0.02 0.05 

Number of 

CD271bright/CD45low 

cells (per 200,000 

events) 

50 ± 15 84 

 

In order to draw accurate conclusions from this data, further analysis of fresh 

samples would be necessary to see if there was a significant difference between 
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the percentage and number of CD271bright/CD45 low cells in thawed and fresh 

samples from a range of different donors or using donor-matched samples. 

However due to limited sample availability, further repeats with fresh samples 

were not carried out and the information gathered from this experiment is taken 

as an indication only. 

Despite this, there is evidence in the literature that supports this preliminary data 

to suggest that cryopreservation does in fact decrease the viability of BMNCs but 

does not affect their function. Yang et al. (2016)(268) observed an overall 

significant decrease in the viability of the BM-MNC population after 

cryopreservation but no significant difference in the progenitor subpopulations 

before and after cryopreservation. Moreover the beneficial effect of fresh and 

frozen BM-MNCs was comparable in an ischemic stroke model. This study and 

further studies (269, 270) verify that cryopreserved BM-MNCs maintain their 

bioactivity in vitro and in vivo and support the data shown here which suggests 

that the functional population are somewhat resistant to cryopreservation – 

possibly due to the small size of the cells. 

Although this information is important for the design of further experiments, in the 

desired application cells would be processed within the same surgery and 

therefore not cryopreserved. The fact that there may be a greater number of 

CD271bright/CD45low cells in fresh samples is beneficial for the final application 

and must be considered as this technology is progressed further.  

 

7.3.3 Comparison of the total cell recovery from MACS and FACS 

and the impact on the number of CD271bright/CD45low cells 

In the first instance, the characterisation of BM-MNCs was carried out by pre-

enriching CD271+ cells using MACS and then analysing or sorting using flow 

cytometry/FACS. However, it was noted that the percentage recovery of total 

cells from the MACS column was low (46 ± 8%) and therefore direct sorting via 

FACS could lead to a greater total cell recovery and consequently a greater 

number of CD271bright/CD45low cells collected from one experiment (avoiding 

the potential loss of cells in the MACS column). 

A direct comparison of two experiments processing a similar number of BM-

MNCs found that there was no apparent advantage of using FACS directly (Table 

7.4). The main reason for this was the fact that cell clumping hindered both 

methods equally. When cells have been exposed to freeze/thawing, 

environmental stresses can accelerate the rate of death resulting in the release 

of ‘sticky’ DNA molecules from dying cells (271). This causes the cells to clump. 
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To counteract this, endonuclease DNase I was used at a concentration of 0.1 

mg/mL in the thawing medium (with a 15 min incubation prior to MACS 

processing) and in the MACS buffer to minimise cell clumping from free DNA 

molecules.  

Although DNase I treatment reduced cell clumping, the problem was not 

eradicated entirely and filtering through a 70 micron filter was required 

immediately prior to FACS. This led to a large loss of cells from the initial cell 

count and equated to a similar final cell count to the recovered cell population 

from the MACS column (also filtered through a 70 micron filter before application 

to the MACS column; numbers highlighted in red in Table 7.4). It is therefore 

unsurprising that a similar number of CD271bright/CD45 low cells were collected 

from the two methods. If cell clumping could be eradicated further, it is possible 

that directly sorting by FACS could lead to a greater number of 

CD271bright/CD45low cells, however, at this point there was no advantage of 

sorting cells via FACS directly. For the final experiments described in this Chapter 

(Sections 7.3.6 and 7.3.8), the DNase I protocol was optimised further to include 

a longer incubation time before any centrifugation steps which eradicated cell 

clumping entirely. It would therefore be interesting to repeat this comparison with 

the optimised protocol, however this was outside the scope of this work. 

In contrast, at this time, there were several disadvantages to using FACS directly; 

to label and sort the entire population of BM-MNCs required 20 times more 

antibody and took four times longer cell sorting time compared to labelling and 

sorting a MACS pre-enriched sample. The longer processing times also 

exacerbated cell clumping issues. It was therefore decided to continue pre-

enriching CD271+ cells using MACS prior to cell sorting using FACS.  
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Table 7.4 MACS and FACS comparison for BM-MNC processing 

A comparison of two experiments processing a similar number of BM-MNCs 
using either MACS and FACS or FACS only.  

Process MACS and FACS FACS only 

Initial cell count 96,900,000 92,400,000 

(40,249,993 counted 

by flow cytometer*) 

Calculated cell recovery 

from MACS 

37% (35,853,000) N/A 

Percentage of captured 

cells (%) 

0.40 N/A 

Total number of 

CD271bright CD45low 

cells collected from 

FACS 

3524 3222 

Number of CD271bright 

CD45low cells collected 

from FACS (per 106 

cells) 

983 800 

Antibody required 8 µL 160 µL 

Time required 1 h 4 h 

*cells filtered through a 70 micron filter immediately prior to FACS causing large 

cell loss 

 

7.3.4 The clonogenic potential of CD271-enriched and depleted BM-

MNC populations 

Once a protocol had been established to enrich CD271+ cells from clinical 

samples of bone marrow aspirate, the clonogenic potential of the different 

populations was assessed via a CFU-F assay (Sections 7.1.1 and 7.2.4). The 

samples were processed in the same way as described in Section 7.2.1 then pre-

enriched using CD271 microbeads (Section 7.2.2). The enriched population was 

sorted using FACS under sterile conditions and the CD271bright/CD45low 

population collected. The CD271bright/CD45low population, the CD271-depleted 

population from the MACS column, and an unseparated population of cells were 

seeded at low densities in well plates and cultured for 14 days. On the 14th day, 
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colonies were stained with Giemsa stain and counted microscopically (Section 

7.2.4).   

It was found that in all but one case, there were no colonies present in the CD271-

depleted cell populations (n=6, where two separate experiments were carried out, 

with three technical replicates for each experiment)(Figure 7.5). This was 

significantly different to an unseparated population of cells which contained a low 

percentage of CD271+ cells (n=6 (same replicates as above); p<0.005, Figure 

7.7). In the CD271bright/CD45low population, three out of five replicates were 

enriched for CFU-F (Figure 7.6) and it was proposed that the two replicates with 

no colonies could be outliers. This was because in the first and second 

experiments (wells 1 and 2 in Figure 7.6) all the CD271bright/CD45low cells 

collected from FACS were seeded in one well and produced several colonies. 

However in the third experiment, the collected CD271bright/CD45low cells were 

seeded in triplicate (wells 3, 4 and 5 in Figure 7.6) and colonies were only visible 

in one well – the well seeded first (well 3). This could suggest that the cells were 

unevenly distributed between the wells leading to anomalous results.  

The outlying results were excluded from statistical analysis and it was found that 

CFU-F were significantly enriched in the CD271bright/CD45low population 

compared to the unseparated populations of BM-MNCs (p<0.05, n=3). On 

average, CFU-F were enriched 220-fold in the CD271high/CD45low populations 

compared to the unseparated populations. Furthermore, from a qualitative 

perspective, colonies from the CD271bright/CD45low population were typically 

larger and more dense than those from the unseparated populations (Figure 7.5 

and Figure 7.6). 
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Figure 7.5 Macroscopic and microscopic images of colonies formed by unseparated and CD271-depleted BM-MNC populations 
after 14 days 

A CFU-F assay was carried out to assess the clonogenic potential of the different cell populations sorted by MACS and FACS. The 
original BM-MNC population (unseparated cells) and CD271-depleted cells from the MACS column were seeded at 50 000 cells/cm2. 
After 14 days in culture, colonies were stained with Giemsa stain and counted microscopically. Three technical replicates were carried 
out for each experiment, with two separate experiments carried out in total. BM-MNC samples from multiple donors were combined 
for each experiment.
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Figure 7.6 Macroscopic and microscopic images of colonies formed by CD271bright/CD45low cells after 14 days 

A CFU-F assay was carried out to assess the clonogenic potential of the different cell populations sorted by MACS and FACS. 
CD271bright/CD45low cells were seeded at 200 - 1600 cells/cm2. After 14 days in culture, colonies were stained with Giemsa stain 
and counted microscopically. Between one and three technical replicates were carried out for each experiment, with three separate 
experiments carried out in total. BM-MNC samples from multiple donors were combined for each experiment.
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Figure 7.7 The number of colony-forming units in enriched and depleted 
populations of CD271+ cells 

The number of colonies formed by different populations of cells sorted by 
MACS and FACS were counted microscopically and normalised according 
to cell seeding density. Significantly less colonies were found in CD271-
depleted populations compared to populations of unseparated cells (where 
CD271+ cells were present at a low percentage)(p<0.005, n=6). 
Significantly more colonies were found in CD271-enriched populations 
(CD271bright/CD45low) compared to unseparated populations of cells 
(p<0.05, n=3). Statistical analysis was carried out using a Mann Whitney U 
test since data was not normally distributed according to the Shapiro Wilk 
test of normality. Bars represent the mean values, dashed lines represent 
median values and error bars represent the SEM. 
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This data is supported by Cuthbert et al. (2012)(180), who investigated the 

clonogenic potential of CD271bright/CD45low cells and found that there was a 

linear relationship between the number of CD271bright/CD45low cells and the 

number of CFU-F. In their study, bone marrow aspirates were examined using a 

single-platform, lyse-no-wash protocol with 25 different donor samples, providing 

a robust analysis of CD271-enriched populations. In addition, Tormin et al. 

(2011)(193) reported that CFU-Fs were exclusively enriched in CD271+ 

populations when compared to CD45+ and CD271- populations.  

In this work, the availability of samples limited the number of replicates carried 

out, and cells in the CD271bright/CD45low population were seeded at densities 

as low as 200 cells/cm2. It was previously discussed that seeding at low densities 

could have lead to inaccuracies between replicates if samples were not 

homogenous, which resulted in what were assumed to be outlier results. In the 

unseparated and CD271-depleted populations, cells were consistently seeded at 

a higher density of 50,000 cells/cm2 which could be why these populations 

demonstrated more reliable results. There was one result in the CD271-depleted 

population that could be suggested as an outlier, however there was no rationale 

to exclude this result and it was still found that the number of colonies in CD271-

depleted populations was significantly different to the number of colonies in an 

unseparated population. In addition to the different seeding densities, increased 

uncertainty arises from the fact that CFU-F counting is subjective and does not 

take into account the different sizes of colonies. In the paper described above 

(180), digital measurements of total colony area were used alongside manual 

counting for a more accurate representation.  

 

7.3.5 Estimating the number of CD271 molecules (antigens) on the 

cell membranes of CD271+ cells 

Once the typical number of CD271+ cells in clinical samples of bone marrow 

aspirate had been estimated and their clonogenic potential determined, the aim 

was to investigate the feasibility of enriching these cells using the prototype 

device. One consideration before doing this was to compare the number of 

CD271 molecules (antigens) on the cell membranes of SH-SY5Y cells (used in 

Chapter 6 to optimise cell capture and release in the device) to the number of 

CD271 molecules (antigens) on the cell membranes of cells in the CD271-

enriched populations of BM-MNCs. This was important because the number of 

antigens on each cell surface could affect how the cells bind and release in the 

device. For example, a high number of antigens on the cell surface may cause 

cells to be bound more tightly to the immobilised antibody due to avidity effects. 
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To estimate the number of CD271 antigens on the different cell surfaces, BD 

Quantibrite™ Beads (BD Biosciences) were used according to the 

manufacturer’s protocol described in Section 7.2.5.  

It was found that cells in the CD271bright/CD45low population of cells had over 

75,000 CD271 antigens per cell assuming a 1:1 binding ratio of monoclonal 

antibody and conjugated PE molecules (Table 7.5). Assuming an average cell 

diameter of 16 µM (272), this estimates the density of antigens to be 93 molecules 

per µM2. The number of CD271 antigens on SH-SY5Y cells was an order of 

magnitude lower than for the CD271bright/CD45low cells, and assuming an 

average cell diameter of 12 µM (272), only 8 molecules per µM2. Although these 

numbers are only estimates, this data would appear logical since the 

CD271bright/CD45low cells display a higher fluorescence signal than SH-SY5Y 

cells. This experiment has helped provide quantitative data in this respect. To 

further confirm these estimates, additional analysis could be carried out using 

ELISA or quantitative real-time PCR, however these methods would also be 

indirect measurements of the number of CD271 molecules. 

Since the number of CD271 antigens reported here is an order of magnitude 

higher for CD271bright/CD45low cells, and 12 times more dense on the cell 

surface, it must be considered that the binding behaviour of these cells could be 

different to SH-SY5Y cells in the device and it is possible different release 

mechanisms may need to be explored. 
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Table 7.5 The number of PE molecules per cell when labelled with a CD271-
PE conjugated monoclonal antibody 

The number of PE molecules per cell was estimated using Quantibrite™ 
Beads and flow cytometry analysis. The CD271bright/CD45low population 
of cells had comparable numbers of PE molecules to the ‘high’ beads. The 
SH-SY5Y cells were comparable to the ‘med-low’ beads. The number of PE 
molecules per cell of SH-SY5Y cells labelled with an isotype control antibody 
has been subtracted from both cell populations.  

Population of cells PE molecules/cell 

CD271bright/CD45low 75861 

SH-SY5Y 3686 

Low beads 474 

Med-low beads 5359 

Med-high beads 23843 

High beads 62336 

 

 

7.3.6 Investigating the enrichment of CD271+ cells from clinical 

samples using the prototype device 

In order to assess the capture of CD271+ cells in the prototype device, BM-MNCs 

were first enriched by MACS. This was necessary due to the low numbers of 

CD271+ cells in whole BM-MNC populations and the current processing 

capabilities of the device. At this stage, the aim was to carry out proof-of-concept 

experiments with cells from clinically relevant samples, however the technology 

would need further development before being capable of processing whole bone 

marrow samples with no pre-enrichment.   

BM-MNCs were pre-enriched for CD271+ cells as described in Section 7.2.2. The 

CD271-enriched and depleted populations from MACS were both fluorescently 

labelled with a live cell stain (calcein AM) so that the low number of captured cells 

could be easily detected above background. The populations were injected into 

the device using the same protocol as described for previous experiments 

(Section 7.2.6) and a photo was taken at four different locations in the centre of 

each branched channel. The number of cells captured at each location for each 

population was compared.  

From this initial trial, no significant difference could be detected between the 

CD271-enriched and CD271-depleted populations (data not shown). This could 
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be because one image only captures the activity in approximately 1/60th of the 

channel and therefore four images still only captures the activity in approximately 

7% of the channel. Further to this, the total volume of the channels is 11 µL and 

the sample loading requires a minimum volume of 200 µL – this means that the 

population is significantly diluted and only a small proportion of the cells can be 

captured in one incubation.  

It was also noted that more non-specific binding was observed when the CD271-

depleted population was used compared to when non-specific fibroblast 

populations were used previously (Chapter 6: Section 6.3.2). Moreover, the cell 

concentrations of CD271-enriched and CD271-depleted populations were 

considerably different as the CD271-enriched population from MACS typically 

consisted of between 200,000 and 400,000 cells whereas the CD271-depleted 

population consisted of between 60 million and 80 million cells. In these initial 

experiments the CD271-depleted population was diluted to a concentration of 20 

million cells/mL according to the optimised protocol in Chapter 6: Section 6.3.3.2. 

However, if non-specific binding is proportional to the number of cells present, 

having considerably different cell concentrations could obscure results. In further 

trials, the CD271-depleted population was diluted to a cell concentration 

comparable to that of the CD271-enriched population (Section 7.3.8).  

 

7.3.7 Optimising a device protocol for the enrichment of CD271+ 

cells from clinical samples using a cell line model 

To develop a protocol which may be able to show a more accurate representation 

of CD271-enriched and CD271-depleted populations in the device, modelling of 

CD271-enriched and CD271-depleted populations was carried out using mixtures 

of SH-SY5Y (CD271+) and fibroblast (CD271-) cells used during the optimisation 

of cell capture and release (Chapter 6: Section 6.3.4). From previous experiments 

carried out in Section 7.3.1, it was expected that in a pre-enriched population of 

BM-MNC CD271+ cells from MACS, there would be between 1000 and 6000 

CD271+ cells and approximately 200,000 non-specific cells (see Figure 7.2, 

panel D for flow cytometry analysis of a pre-enriched population of BM-MNC 

CD271+ cells). Therefore 1000 – 6000 SH-SY5Y cells were mixed with 200,000 

fibroblast cells and compared to CD271-depleted populations of 200,000 

fibroblast cells only.  

Two trials were carried out using the model populations; the first used repeat 

injections of the cell suspension to enable analysis of a greater total volume of 

the sample, and the second approach involved taking images of the entire 
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channel surface area to gain a more accurate assessment of the number of 

captured cells. The results from these trials are described in Section 7.3.7.1 and 

7.3.7.2. 

 

7.3.7.1 Trial one: model CD271-enriched and CD271-depleted populations 

with repeat injections  

The model CD271-enriched population in trial one had 5000 SH-SY5Y cells and 

195,000 fibroblast cells. The model CD271-depleted population had 200,000 

fibroblast cells. The model populations were loaded into a 1 mL syringe in 200 µL 

volumes and injected 10 µL at a time. Each injection was incubated for 2 minutes 

before unbound cells were washed away at 20 µL/min. The subsequent cell 

suspension injections were also injected at 20 µL/min to ensure that already 

captured cells were not released from the channel surface. Photos were taken at 

four different locations (in the centre of each branched channel, as in Section 

7.3.6) after each buffer wash, and the number of cells compared after one 

injection with images acquired after subsequent injections.  

For the model CD271-enriched population, it was found that the cells captured in 

each image ranged from zero to three cells after one injection (Figure 7.8, top 

panel). If the cell suspension was truly homogenous, the number of SH-SY5Y 

cells in one image would be expected to be four or five cells after one incubation 

(25,000 SH-SY5Y cells/mL, 275 SH-SY5Y cells in 11 µL injection volume, four or 

five cells in 1/60th of the channel). Since cells at low concentrations are unlikely 

to be homogenous and due to the inherent error associated with manual cell 

counting, it would be reasonable to suggest the cells observed were in the 

expected range.  

After seven injections, the number of cells captured in each image ranged from 

two to four cells. Although there was a slight increase observed after seven 

injections it was not of the order expected. The largest increase was observed in 

channel 1 – from zero to four cells. This was because after the first incubation, 

the cell suspension of the subsequent cell injection was no longer evenly 

distributed between the four channels. Using the current design of the prototype 

device, a short incubation period is necessary for cells to interact with the channel 

surface. In these circumstances, the incubation with no flow causes cells to also 

sediment in the inlet tubing which affects the distribution of cells when injected 

into the channels. For these reasons, it was decided that repeat injections were 

not an efficient way to analyse CD271-enriched populations in the device at this 

time. 
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For the model CD271-depleted population, it was found that after seven injections 

no cells were captured in the four locations of the channel analysed (Figure 7.8, 

bottom panel). In contrast to the initial trials using BM-MNC CD271-enriched and 

depleted populations, there was a difference observed between model CD271-

enriched and depleted populations with respect to the number of cells captured. 

This supported the hypothesis that the greater amount of non-specific binding 

observed originally (described in Section 7.3.6), could have been obscured due 

to the higher cell concentrations of CD271-depleted populations.    
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Figure 7.8 Model CD271-enriched and CD271-depleted populations were 
analysed using repeated injections into the prototype device 

Model CD271-enriched and CD271-depleted populations were mixed using 
SH-SY5Y cells as CD271+ cells and fibroblasts as non-specific cells. The 
model populations were injected 10 µL at a time for the total available 
volume of sample. In the CD271-enriched population, several cells were 
captured and remained bound to the channel surface throughout repeated 
injections. In channels 1 and 4, the number of cells captured increased with 
the number of injections however this was not observed in channels 2 and 
3. No cells were observed to be captured in the CD271-depleted population. 
All cells are indicated by a red arrow and one image is missing due to 
experimental error. 
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7.3.7.2 Trial two: model CD271-enriched and CD271-depleted populations 

with assessment of entire channel surface area 

The results from trial one (described above) suggested that repeated injections 

were not feasible using the current device design due to cell sedimentation. An 

alternative approach to assess a larger volume of sample was therefore used, 

which was to take photos of the entire surface area of the channel after one 

incubation period. This allowed a more accurate assessment of cell numbers 

given that only 7% of the channel was assessed in previous protocols. 

Two model CD271-enriched populations were investigated in trial two; one with 

2500 SH-SY5Y cells and 200,000 fibroblast cells, and a second with 4000 SH-

SY5Y cells and 200,000 fibroblast cells. These numbers were chosen according 

to the mean and SEM values recorded from three experiments carried out in 

Section 7.3.1, and should result in approximately 138 and 220 cells in the channel 

after one incubation, respectively. The model CD271-depleted population 

comprised of 200,000 fibroblast cells only. Model populations were fluorescently 

labelled as previously described for trial one. The populations were injected into 

the device at 100 µL/min, incubated for 5 min and then unbound cells washed 

away at 20 µL/min. Once all unbound cells had been washed away, photos were 

taken of the entire channel surface area. 

For the CD271-enriched population with 2500 SH-SY5Y cells, it was found that 

ten cells were captured after one incubation (Figure 7.9). For the CD271-enriched 

population with 4000 SH-SY5Y cells it was found that 45 cells were captured after 

one incubation. This means there was a factor of 4.5 difference between the 

number of cells captured from the two model CD271-enriched populations where 

in theory there should have only been a factor of 1.6 difference. In addition, the 

number of cells bound was 14-fold and 5-fold lower than expected according to 

the initial cell concentration injected. It was discussed previously that there are 

inherent issues with manual cell counting and the accuracy of processing low 

numbers of cells that could lead to unexpected results. Further repeats and a 

range of different cell concentrations would need to be analysed to gather more 

reliable quantitative data.   

Importantly, as in trial one, there was a difference observed between the model 

CD271-enriched populations and the model CD271-depleted population. For the 

CD271-depleted population there were five cells in total captured, however three 

of the cells were attached to debris present in the channel (indicated by a red 

dashed box in Figure 7.11). It was therefore decided to use the protocol from trial 

two to analyse clinical samples of BM-MNC CD271-enriched and depleted 

populations. 
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Figure 7.9 Assessment of entire channel surface area after injection of a 
model CD271-enriched population with 2500 SH-SY5Y cells 

A model CD271-enriched population was mixed using 2500 SH-SY5Y cells 
and 200,000 fibroblast cells. Ten microlitres of cell suspension was injected 
and incubated for 5 minutes. After the unbound cells were washed away, 
photos were taken of the entire channel surface area. 10 cells were captured 
in total, marked by red arrows. The top image shows the channel using 
bright field microscopy and the bottom image shows the same view using 
fluorescence microscopy. Cells were stained with a live cell stain (calcein 
AM) to allow easier identification.  
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Figure 7.10 Assessment of entire channel surface area after injection of a 
model CD271-enriched population with 4000 SH-SY5Y cells 

A model CD271-enriched population was mixed using 4000 SH-SY5Y cells 
and 200,000 fibroblast cells. Ten microlitres of cell suspension was injected 
and incubated for 5 minutes. After the unbound cells were washed away, 
photos were taken of the entire channel surface area. 45 cells were captured 
in total, marked by red arrows. The top image shows the channel using 
bright field microscopy and the bottom image shows the same view using 
fluorescence microscopy. Cells were stained with a live cell stain (calcein 
AM) to allow easier identification. 
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Figure 7.11 Assessment of entire channel surface area after injection of a 
model CD271-depleted population 

The model CD271-depleted population consisted of 200,000 fibroblast cells. 
Ten microlitres of cell suspension was injected and incubated for 5 minutes. 
After the unbound cells were washed away, photos were taken of the entire 
channel surface area. Five cells were captured in total however three cells 
were attached to debris in the channel – marked by the dashed red box. 
Captured cells are marked by a red arrow. The top image shows the channel 
using bright field microscopy and the bottom image shows the same view 
using fluorescence microscopy. Cells were stained with a live cell stain 
(calcein AM) to allow easier identification. 

7.3.8 Using the optimised device protocol to assess BM-MNC 

CD271-enriched and CD271-depleted populations 

BM-MNCs were processed as described in Section 7.2.6 and the CD271-

enriched population obtained using MACS. The CD271-enriched population was 

centrifuged, counted and re-suspended in a volume of 200 µL for injection into 

the prototype device. The CD271-depleted population (after MACS separation) 

was centrifuged, counted and diluted to a concentration of 1 million cells/mL in 

200 µL (200,000 cells in 200 µL – comparable to the number of cells in the 

CD271-enriched population from MACS). A third population was prepared in 

which 4000 SH-SY5Y cells were spiked into 200,000 cells from the CD271-

depleted population. This population represented the model CD271-enriched 

population used in Section 7.3.7.2 however with a more accurate representation 
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of non-specific cells. Of course it is important to remember that the model 

populations may not behave in the same way as the BM-MNC populations due 

to the differing number of CD271 molecules on the cell surface (Section 7.3.5). 

However, the model populations provide additional data required since the 

availability of clinical samples was limited.  

It was found that there was a greater number of cells captured in the SH-SY5Y 

spiked population (Figure 7.12) and the BM-MNC CD271-enriched population 

(Figure 7.13) than the BM-MNC CD271-depleted population (Figure 7.14). As 

was previously observed, there was more non-specific binding than when using 

fibroblast cells however when the cell concentrations were normalised there was 

still a clear difference between BM-MNC CD271-enriched and depleted 

populations. The result from trial two (Section 7.3.7.2) and the results from this 

experiment are summarised and compared in Table 7.6. 

The percentage of cells captured in each population was estimated by 

approximating the total number of cells in the channel during the five minute 

incubation period, and comparing this to the number of cells captured after the 

20 µL/min buffer wash. The total number of cells in the channel during the 

incubation period was calculated by: 

1. Counting the number of cells in four representative images from each 

repeat (12 images in total) 

2. Calculating an average from the 12 images (17 ± 2, mean ± SEM) 

3. Multiplying the average by 60 (60 images taken for entire surface area of 

the channel) 

This calculation resulted in an approximation of 1000 ± 90 cells in the channel 

during the five minute incubation period (mean ± SEM, n=12). The percentage of 

cells captured after a 20 µL/min buffer wash could then be estimated. From three 

repeats including two model CD271-enriched populations and one BM-MNC 

CD271-enriched population, the percentage of cells captured was 5.9 ± 1.0%. 

When the number of ‘non-specific’ cells captured from the model CD271-depleted 

and BM-MNC CD271-depleted populations was subtracted from the CD271-

enriched populations, the percentage of cells captured was 4.1 ± 0.6%. These 

numbers are in good agreement with the percentage of CD271bright/CD45low 

cells identified in three sterile FACS repeats (4.7 ± 1.6%)(Table 7.6).
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Figure 7.12 Assessment of entire channel surface area when a BM-MNC CD271-depleted population spiked with 4000 SH-SY5Y 
cells was injected into the prototype device 

A MACS separated BM-MNC CD271-depleted population was spiked with 4000 SH-SY5Y cells and injected into the prototype device. 
After a 5 min incubation, unbound cells were washed away at 20 µL/min and photos were taken of the entire channel surface area. 
Cells were stained with a live cell stain (calcein AM) to enable detection above the channel background and bound cells are marked 
with red arrows. The BM-MNC CD271-depleted population spiked with 4000 SH-SY5Y cells was injected at 1 million cells/mL and the 
number of cells captured (normalised to cell concentration) is reported in Table 7.6.
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Figure 7.13 Assessment of entire channel surface area when a BM-MNC CD271-enriched population of cells was injected into the 
prototype device 

A MACS separated BM-MNC CD271-enriched population was injected into the prototype device. After a 5 min incubation, unbound 
cells were washed away at 20 µL/min and photos were taken of the entire channel surface area. Cells were stained with a live cell 
stain (calcein AM) to enable detection above the channel background and bound cells are marked with red arrows. The BM-MNC 
CD271-enriched population was injected at 1.9 million cells/mL and the number of cells captured (normalised to cell concentration) is 
reported in Table 7.6.
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Figure 7.14 Assessment of entire channel surface area when a BM-MNC CD271-depleted population was injected into the 
prototype device 

A MACS separated BM-MNC CD271-depleted population was injected into the prototype device. After a 5 min incubation, unbound 
cells were washed away at 20 µL/min and photos were taken of the entire channel surface area. Cells were stained with a live cell 
stain (calcein AM) to enable detection above the channel background and bound cells are marked with a red arrow. The BM-MNC 
CD271-depleted population was injected at 1 million cells/mL and the number of cells captured (normalised to cell concentration) is 
reported in Table 7.6. 
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Table 7.6 Summary of results using model CD271-enriched and depleted 
populations and BM-MNC CD271-enriched and depleted populations in the 
prototype device and compared with FACS 

Row  Repeat 1: 

model 

CD271-

enriched 

population 

(Section 

7.3.7.2) 

Repeat 2: 

SH-SY5Y 

spiked BM-

MNC 

CD271-

depleted 

population 

(Section 

7.3.8) 

Repeat 3: 

BM-MNC 

CD271-

enriched 

population 

(Section 

7.3.8) 

Mean ± 

SEM 

(n=3) 

1 Number of cells 

captured from 

enriched population* 

44 55 77 N/A 

2 Number of cells 

captured from 

depleted population* 

2 26 N/A 

3 Row 1 – Row 2 42 29 51 41 ± 6 

5 Percentage of cells 

captured including all 

cells (%) 

4.4 5.5 7.7 5.9 ± 1.0 

4 Percentage of cells 

captured excluding 

‘non-specific’ cells (%) 

4.2 2.9 5.1 4.1 ± 0.6 

5 Percentage of 

CD271bright/CD45low 

cells sorted by sterile 

FACS 

   4.7 ± 1.6 

* Number of cells normalised to cell concentration of 1 million cells/mL 

 

Although the data presented here is based on cell counts only, it has provided an 

early indication of the efficacy of the prototype device using clinically relevant 

populations. From this data it appears that the prototype device captures a similar 

percentage of cells to the percentage of CD271bright/CD45low cells identified by 
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sterile FACS from pre-enriched BM-MNC populations. It must however be noted 

that the method has made multiple assumptions and does not include the errors 

associated with these assumptions. The numbers processed by the prototype 

device need to be greatly increased for a more accurate assessment and to allow 

collection of cells post-enrichment.  

From this preliminary experiment it was found that the cells could be released 

from the antibody-functionalised surface by increasing the flow rate (as previously 

found in Chapter 6: Section 6.3.2 for SH-SY5Y CD271+ cells) however it was not 

possible to elucidate what flow rate would be most suitable with the small number 

of cells captured. In Section 7.2.5, it was estimated that the number of CD271 

antigens on the surface of CD271bright/CD45low cells was an order of magnitude 

higher than for SH-SY5Y cells and therefore higher flow rates may be required 

for the release of cells. Some of the cells captured in this experiment released at 

lower flow rates (<1 mL/min), however to release all cells higher flow rates were 

required (>1 mL/min). Analysis of a greater number of cells is required to optimise 

the release of CD271bright/CD45low cells in the prototype device.  

Post-enrichment analysis of CD271bright/CD45low cells would also need to be 

carried out to ensure that if higher flow rates are required, it does not affect the 

viability or function of cells. Fluidic force has been commonly used for cell 

detachment however there are concerns that the shear stress involved could 

result in cell damage (273). The effects of flow acceleration on cancer cell lines 

adhered to functionalised surfaces was explored by Cheung et al. (2009)(274). 

They found that low acceleration resulted in significant cell deformation, however 

there was negligible deformation under high flow acceleration. It has also been 

found that shear stress can change the cell microenvironment; Wang et al. 

(2005)(275) investigated the relationship between shear stress and endothelial 

differentiation of an murine embryonic cell line, and Chowdhury et al. (2010)(276) 

demonstrated that cell softness dictates the stress-induced spreading of mouse 

embryonic stem cells and could drive the differentiation of cells.  

In this work, post-enrichment analysis was carried out on a SH-SY5Y 

neuroblastoma cell line (Chapter 6: Section 6.3.6) which included assessing the 

viability and proliferation capacity of cells enriched in the device. Here it was 

found that there were no detrimental effects of cell detachment via increased flow 

rates, however, it was previously discussed that more in-depth analysis is 

required to confirm this. Whilst utilising shear stress to detach cells has the 

advantages of being simple and inexpensive, more sophisticated methods could 

result in less harmful methods of detachment. 

Alternative methods have been explored for MSC detachment including; 

temperature-sensitive polymers (277), light-sensitive polymers (278) and 
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electrochemical harvesting and bulk pH decrease on polyelectrolyte monolayers 

(279). Some of the data reported in Chapters 5 and 6 suggested pH-mediated 

release could be used as a release mechanism; pH mediated release was 

observed in SPR analysis of SH-SY5Y cells on a CD271 antibody-functionalised 

surface (Chapter 6: Section 6.3.1.1) and pH-mediated release of Affimers was 

used during phage display selection of CD271-specific Affimers (Chapter 5: 

Section 5.3.1.2). Although there were no CD271-specific Affimers established in 

this work, aptamers such as Affimers have the potential to be selected with 

specific properties which could aid the detachment of cells. Zhu et al. (2012)(280) 

used surface-immobilised aptamers to capture a leukaemia cell line which could 

then be released by a moderate increase in temperature.  

At this time, increased flow rates were used to detach cells from the channel 

surface however as the device is developed further, more work will be required 

to assess if this is the most suitable method of detachment.   

 

7.4 Conclusions 

In this chapter of work, the previously optimised prototype device has been 

evaluated with clinical samples of bone marrow aspirate. The overall aim of the 

device is to be able to enrich a population of cells that could be used in cell 

therapies. A CD271bright/CD45low population of cells has been well 

characterised in the literature and has been shown to have high clonogenic and 

multipotent potential (see Chapter 2: Section 2.6.2.2). The device was therefore 

designed to capture CD271+ cells in an antibody-functionalised microfluidic 

channel. This concept allows controlled fluid flow to wash away undesired cells 

resulting in a therapeutic population of cells with higher purity.  

Clinical bone marrow aspirates were supplied with informed consent from 

patients undergoing orthopaedic surgery, and MACS and FACS were used to 

characterise the CD271bright/CD45low cell population. The percentage and 

number of CD271bright/CD45low cells in BM-MNC populations was very low and 

therefore different protocols were investigated to demonstrate the efficacy of the 

prototype device. At this stage, only preliminary data has been collected, limited 

by the availability of clinical samples and the low number of CD271+ cells. To 

progress this technology further, a number of considerations must be taken into 

account; the number of cells required for cell therapies, the throughput 

capabilities of the device, different sources of MSCs and the possibility of a hybrid 

microfluidic technology. Each of these considerations are discussed in detail in 

Chapter 8.  
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Chapter 8: Future work and thesis conclusions 

8.1 Considerations for future work 

8.1.1 The number of cells required for MSC therapies 

To progress this technology further, the total number of cells required to have a 

clinically beneficial effect in any MSC therapy must be considered, and currently, 

this number is largely unknown. Chapter 2: Section 2.2 summarises the results 

from recent clinical trials to treat a number of different diseases in which the 

number of MSCs used varies from 106 to 108 million cells/mL with no consensus 

on what constitutes an effective dose. Furthermore, these trials use cells that 

have been expanded in vitro or have been concentrated using density gradient 

centrifugation. They therefore comprise of a heterogeneous population of cells 

with unknown therapeutic effect.  

Hernigou et al. (2005)(3) used density gradient centrifugation to concentrate bone 

marrow aspirate for treatment of non-union fractures in 60 patients. They found 

that successful treatments contained an average of 55,000 MSCs (calculated by 

extrapolation of CFU-F results) compared to an average of 19,000 MSCs for 

patients where bone union was not obtained. This study provided an indication of 

the number of MSCs required for the treatment of non-union bone fractures, 

however, a large volume of aspirate was taken from patients (300 mL) and only 

a small fraction of this was assessed for CFU-F potential. This method could 

therefore inaccurately predict the number of MSCs injected into the fracture site.  

In 2018, two studies were published by Petters et al. (4, 5) investigating the use 

of CD271-selected MSCs as a single stage treatment (without prior in vitro 

expansion of cells) for cartilage repair. Recognising the potential of intraoperative 

therapies, Petters first investigated different biomarkers for isolating CFU-Fs from 

ovine bone marrow and then used the population isolated by the defined marker 

to generate a cartilage graft consisting of clinically approved collagen type I 

hydrogel and the non-expanded MSC population (4). They found that CD271 was 

the most effective marker and that CD271-selected cells were capable of 

producing a cartilage graft comparable to a heterogeneous population of 

unseparated BM-MNCs - despite the fact that the CD271-selected cells were 

seeded at a significantly reduced volume (6.25% of the volume used for 

unseparated BM-MNCs). The actual number of CD271-positive MSCs seeded in 

the graft was reported as 4207, demonstrating that a minimal number of CD271+ 

cells were able to populate the graft with viable cells with adequate chondrogenic 

potential. The authors discussed that enriching the CD271 subset of MSCs 
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depletes non-chondrogenic differentiable cells and results in a usable volume of 

cells (4). 

In the second study, the same cartilage grafts were investigated however using 

human bone marrow rather than ovine bone marrow (5). Here it was found that 

at the final time point (day 35) the number of cells in the CD271+ graft was 2.2-

fold higher than in grafts with unseparated BM-MNCs, even though the CD271+ 

grafts were originally seeded with 4% of the cells that were seeded for 

unseparated BM-MNCs (9000 cells per graft vs. 225,000 cells per graft). The 

sulphated glycosaminoglycan (sGAG) content (present in cartilage tissue) was 

also higher in CD271+ grafts compared to unseparated BM-MNC grafts. The 

greater chondrogenic potential of CD271-selected MSCs was also reported by 

Mifune et al. (2013)(281) in both in vitro and in vivo studies however these cells 

were culture-expanded after CD271-selection.  

The studies suggest that if pre-enriched, non-expanded cells are used for MSC 

therapies, the number of cells required is in the thousands rather than the 

millions. Further in vivo proof of concept studies are required for CD271-selected 

cell therapies which could clarify the ideal cell dose.  

 

8.1.2 Increasing the throughput of the device for clinical application 

Evidently, to enrich cell numbers on this scale, the throughput of the device must 

be increased. Currently only a small fraction of the cell suspension was able to 

be analysed in the device due to the laborious methods involved. The most 

effective way to analyse the number of cells captured was to photograph the 

entire surface area of the channel which still resulted in the identification of less 

than 150 cells. The volume of the current channel is 11 µL in total and the 

minimum reliable loading volume (due to sample injection from a 1 mL syringe) 

is ~200 µL. Therefore in one incubation, only ~5% of the cell suspension was 

being analysed. If repeat injections could be successfully employed then the 

number of cells captured could be increased to 1000’s rather than 100’s.  

The current limitation of repeated injections was the fact that the cells sedimented 

during the incubation period in the absence of flow. This meant that the cell 

distribution was not homogenous and led to an inefficient method of cell capture. 

If a mixing mechanism was incorporated into the device, repeat injections would 

become feasible and allow for easier methods of analysis. A mixing mechanism 

could be incorporated where the flow continued in a sample loop away from the 

microfluidic channel so cells remained in a homogenous suspension and were 

available for repeat injections.  
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Moreover, if cell capture could be achieved under continuous flow conditions it 

would be of even greater benefit. Chueng et al. (2009)(274) reported that 

‘although difficult’, it was possible to capture moving cancer cells at low flow rates 

(1 µL/min) in an N-cadherin antibody-functionalised channel, however the capture 

efficiency was ~50% compared to almost 100% when a 5 min incubation with no 

flow was used. Cell capture at low flow rates was not observed in this work 

however with some channel modifications this could become a possibility. To 

improve the capture efficiency of microfluidic devices, microstructures such as 

microposts, micropillar and herringbones mixer have been designed such that the 

flow is changed from streamlined to chaos or vortex (282). This increases the 

contact frequency between cells and the functionalised substrates leading to a 

higher capture efficiency. It must however be noted that increasing contact 

frequency between cells and functionalised substrates could also compromise 

purity due to a greater amount of non-specific binding. The efficiency and purity 

of various devices with incorporated microstructures are discussed below.  

Nagrath and colleagues (283) describe the capture of circulating tumour cells 

(CTCs) on a chip with an array of microposts functionalised with anti-epithelial-

cell-adhesion-molecule (EpCAM) antibodies. At a flow rate of 1-2 mL/hour the 

capture efficiency was 65% with a purity of approximately 50%. Improved capture 

efficiencies have been reported in similar devices – Gleghorn et al. (2010)(284) 

used staggered obstacle arrays that optimised CTC-wall interactions and 

reported a capture efficiency of 85% with 68% purity. Finally, a capture efficiency 

as high as 98% was found by Sheng et al. (2012)(285) who also investigated 

properties such as channel depth as a factor of capture efficiency. They found 

that as the channel depth was increased the capture efficiency decreased, 

however a decreased channel depth compromised purity.  

The decreased capture efficiency was observed to be due to the reduced 

interactions between the cells and the aptamer-functionalised channel top and 

bottom, and the decreased purity was observed to be due to the geometric 

trapping of non-specific cells in channels with a smaller channel depth. For 

example, the channel with the greatest depth (44 µM) had a capture efficiency of 

~92% and a purity of ~80% compared with the smallest channel depth (24 µM) 

which had a capture efficiency of ~98% with a purity of ~20% - clearly 

demonstrating the compromise between capture efficiency and purity with 

increased contact frequency, either due to non-specific capture or trapping of 

cells. 

In devices comprising of herringbones mixers; a study compared the capture 

efficiency of CTCs using a flat device or a herringbones mixer device and found 

that the capture efficiency was <8% in the flat device at 0.48 mL/hour and a 
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maximum of ~30% at the lowest flow rate applied (0.12 mL/hour), compared with 

~40% and ~80% for the herringbones device respectively (286). The 

herringbones device was then enlarged for use with clinical samples and 

compared to a micropost-based device. The herringbones device was still found 

to have superior capture efficiency - ~26% higher than the micropost-based 

device – however both devices achieved purities of <15%. Another herringbones 

device reported 90-92% capture efficiency of CTCs at flow rates as high as 3.6 

mL/hour (287). In this study a high purity of 84% was achieved whilst maintaining 

the capture efficiency of ~90% by increasing the width of herringbone grooves to 

avoid cell trapping. To avoid the complicated microfabrication steps involved in 

the above devices, Cheng et al. (2016)(288) created a 3D scaffold chip fabricated 

from PDMS and found that at flow rates less than 6 mL/hour there was more than 

90% capture efficiency but there was no information on the population purity. 

Affinity-based capture in microfluidic devices has been widely explored for the 

capture of CTCs due to the fact that CTCs ubiquitously express EpCAM and 

blood cells do not, providing a specific biomarker for CTC isolation. There are no 

reports of microfluidic devices with antibody-based capture for MSCs perhaps 

owing to the fact that there is no consensus on a specific biomarker for MSCs. In 

this work CD271 was chosen due to a significant amount of literature evidence 

showing that this biomarker isolates a subset of MSCs with high clonogenic 

potential (Chapter 2: Section 2.6.2.2). However different strategies could be 

explored using this platform technology and the most effective population of 

MSCs for MSC therapies is not yet known.  

A device developed to capture circulating plasma cells (CPCs) in multiple 

myeloma used the plasma cell biomarker CD138 (253). Using a herringbones 

mixer device it was reported that the capture efficiency was between 40–70% 

depending on parameters such as flow rate, antibody concentration and cell 

suspension. The purity was also low at 1–5% necessitating CD138 staining after 

capture for an accurate analysis of CPCs present. This demonstrates the 

challenges involved using different biomarkers and the requirement for 

optimisation in each case. The capture efficiency of the device described in this 

thesis was found to be ~70% for target populations greater than 25% however 

~20% for target populations less than 25% (Chapter 6: Section 6.3.4.1). The 

purity was consistently high at 80 ± 3% for populations higher than 6% initial 

target cell concentration (lower percentage target populations were not 

assessed). With further optimisation of the capture efficiency at lower target cell 

concentrations, this device shows great potential for enriching a high purity MSC 

subpopulation.   
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If the device and protocols could be developed to capture a greater number of 

cells, the throughput could be further optimised by increasing the number of 

parallel channels. In this work the throughput was increased 4.8-fold by changing 

the channel design (Chapter 6: Section 6.3.5.2) therefore this is a relatively 

simple way to reduce the time taken for enrichment, with the final aim to enrich 

cells within an intraoperative timeframe.  

 

8.1.3 Investigating different sources of MSCs to increase the 

number of CD271+ cells available for capture 

Whilst increasing the throughput of the device is essential, the percentage of 

CD271bright/CD45low cells in BM-MNC populations is inherently low. To gain a 

larger therapeutic population of cells, different sources of MSC could be explored. 

Adipose tissue has been suggested as a rich source of MSCs where 1–10% of 

the stromal fraction are MSCs (289). In a comparison of bone marrow and 

adipose tissue it was found that approximately 11% of the stromal vascular 

fraction of adipose tissue (AT-SVF) was CD271+ compared to 2% in BM-MNCs 

(290). However, CFU-Fs were only enriched in the CD271-enriched BM-MNCs 

not the CD271-enriched AT-SVF population. On further analysis it was 

established that a subset of cells with high proliferative and clonogenic abilities 

could be isolated by CD271 selection from adipose tissue however only from 

lipoaspiration samples not abdominoplasty samples.   

Another study investigated the relationship between donor age and CD271 

expression of adipose tissue-derived mesenchymal stem cells (AT-MSCs) from 

cosmetic liposuction patients (191). Here it was found that there was a negative 

correlation with age however even the average lowest proportion of CD271+ cells 

(1.8% for ages 51-65) was higher than that typically found in BM-MNC 

populations. No CFU-F assessment was carried out in the study. In a comparison 

of foetal and adult MSCs from different sources, there was an average of 8.4% 

CD271+ cells from AT-MSCs and 3.7% in BM-MNCs (291). Unfortunately, CFU-

F analysis was reported as adult versus foetal MSCs therefore no direct 

comparison between BM-MNCs and AT-MSCs. Altogether, the evidence does 

suggest a higher proportion of CD271+ cells in adipose tissue removed by 

lipoaspiration, however whether these cells have the same clonogenic potential 

as CD271+ cells from BM-MNCs needs to be confirmed.   

Furthermore, the cryopreservation process was not optimised in this work, which 

was speculated to cause a significant decrease in viability of BM-MNCs (Chapter 

7: Section 7.3.2). The detrimental effects were not able to be fully established 

however it was hypothesised that immediate processing of cells would lead to a 
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higher number of CD271+ cells in BM-MNC populations. Differences in 

membrane permeability and surface to volume ratio causes cells to have varying 

responses to cryopreservation leading to differences in viability when thawed 

(292). This highlights the necessity of protocol optimisation for different cell types.  

 

8.1.4 Developing a hybrid microfluidic technology  

Finally, a microfluidic device based on affinity capture to enrich a specific 

population of MSCs is likely to always require pre-processing steps. In this work, 

the red blood cells were lysed to obtain a mononuclear cell fraction and CD271+ 

cells were pre-enriched from the mononuclear cell fraction using MACS 

technology. The aim of this novel device is to overcome limitations associated 

with MACS such as the attachment of magnetic microbeads and lengthy pre-

labelling steps, therefore this would not suffice as a pre-processing step.  

Instead, the aim is to develop a hybrid microfluidic technology incorporating a 

high throughput, less specific pre-processing step in the first stage of the device 

and a highly specific, affinity-based capture in the second stage of the device. A 

hybrid technology such as this would provide a high purity population of MSCs in 

an enclosed and portable device suitable for use within an operating theatre.  

The proposed technology for the first stage of the device is currently being 

developed within this research group. Smith et al. (2017)(293) describe the 

development of surface acoustic wave–dielectrophoresis (SAW-DEP) technology 

which combines acoustophoresis (a density-based separation method) and 

dielectrophoresis (a separation method based on the dielectric properties of a 

cell) in order to overcome the limitations of each individual method and provide a 

rapid, label-free cell separation method. In the publication the separation of viable 

and non-viable dental pulp stem cells was demonstrated using a SAW-DEP 

device with throughput of 104 cells/minute (293). Current work has increased this 

throughput further and is working towards the separation of individual cell types 

from whole blood. This technology would provide an ideal method of pre-

enrichment in the first stage of a hybrid microfluidic device.  

 

8.2 Thesis conclusions and summary 

In conclusion to this thesis, each of the objectives described in Chapter 3 have 

been completed and the research aim has been achieved. During the completion 

of objective 1 (Section 3.2.1), an appropriate binding molecule for affinity-capture 

of CD271+ cells was established, as well as the identification of a cell line model 



- 229 - 

for use during the proof-of-concept stages of development. These aspects were 

essential to achieving the research aim; reliable and highly specific binding of 

CD271+ cells is fundamental to enriching a population of cells with high purity, 

and since the number of CD271+ cells in clinical samples is extremely low, 

optimising cell capture and release in the device using clinical samples would 

have posed an extraordinary challenge.  

During the completion of objective 2 (Section 3.2.2), a prototype microfluidic 

device was designed and fabricated, and it was discovered that the device could 

effectively capture CD271+ cells from mixed cell populations. Through several 

device iterations, cell capture and release was optimised and allowed the 

collection of enriched CD271+ cell line populations. Post-enrichment analysis 

suggested that cells remained viable, able to proliferate under normal cell culture 

conditions, and had no antibody attached to the cell surface post-release – a 

significant advantage compared to current affinity-based cell sorting methods.  

Finally, the completion of objective 3 (Section 3.2.3) evaluated the feasibility of 

capturing CD271+ cells from clinical samples of bone marrow aspirate. It was 

found that the device captured a comparable number of cells to the number of 

CD271+ cells found in typical bone marrow aspirates analysed using established 

cell sorting methods. This was a significant step towards demonstrating clinical 

utility and progressing the device towards commercialisation.  

In summary, this technology is in the early stages of the development process, 

initial proof-of-concept has been demonstrated using a cell line, and preliminary 

data with clinical samples indicates it is a viable method to enrich CD271+ cells. 

Further development of the device to enable repeat injections into the device, or 

capture under continuous flow, would allow a clinically relevant number of cells 

to be collected for MSC therapies. This technology could be combined with a 

high-throughput microfluidic technology to provide a novel, rapid, highly specific 

and minimally manipulative method of stem cell enrichment. 
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Appendix A: KingFisher Flex Protocol 

“Phage_Display_Competition” 

Protocol Step Plate Volume 

(µL) 

Settings 

Tipcomb  96 deep well tip 

comb 

  

Pick-Up: 

Tipcomb 

KingFisher 96 KF 

plate 

  

Collect Beads Plate: Binding 

Microtiter deep 

well 96 plate 

 Collect count 1 

Collect time (s) 1 

Binding Plate: Binding 

Microtiter deep 

well 96 plate 

300 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:00:10 

Speed: fast 

Mix time [hh:mm:ss]: 

01:00:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 1 Plate: Wash 1 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 
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End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 2 Plate: Wash 2 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 3 Plate: Wash 3 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 4 Plate: Wash 4 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 
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Collect beads, count: 5 

Collect time (s): 30 

Particle Release Plate: pH elution 

KingFisher 96 KF 

plate 

100 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:10 

Speed: Fast 

Leave: Tipcomb 96 deep well tip 

comb 
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Appendix B: KingFisher Flex Protocol 

"Phage_Display_Wash_Elute" 

Protocol Step Plate Volume 

(µL) 

Settings 

Tipcomb  96 deep well tip 

comb 

  

Pick-Up: 

Tipcomb 

KingFisher 96 KF 

plate 

  

Collect Beads Plate: Binding 

Microtiter deep 

well 96 plate 

 Collect count 1 

Collect time (s) 1 

Binding Plate: Binding 

Microtiter deep 

well 96 plate 

300 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:00:10 

Speed: fast 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 1 Plate: Wash 1 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 
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Wash 2 Plate: Wash 2 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 3 Plate: Wash 3 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 4 Plate: Wash 4 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

pH Elution Plate: pH elution 100 Beginning of Step 
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KingFisher 96 KF 

plate 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:07:30 

Speed: slow 

Post mix[hh:mm:ss]: 

00:00:05 

Speed: Bottom mix 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Triethylamine 

Elution 

Plate: 

Triethylamine 

KingFisher 96 KF 

plate 

100 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:03:30 

Speed: slow 

Post mix[hh:mm:ss]: 

00:00:05 

Speed: Bottom mix 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Leave: Tipcomb 96 deep well tip 

comb 
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Appendix C: KingFisher Flex Protocol 

“Phage_Display_Standard” 

Protocol Step Plate Volume 

(ul) 

Settings 

Tipcomb  96 deep well tip 

comb 

  

Pick-Up: 

Tipcomb 

KingFisher 96 KF 

plate 

  

Collect Beads Plate: Binding 

Microtiter deep 

well 96 plate 

 Collect count 1 

Collect time (s) 1 

Binding Plate: Binding 

Microtiter deep 

well 96 plate 

300 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:00:10 

Speed: fast 

Mix time [hh:mm:ss]: 

01:00:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 1 Plate: Wash 1 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 
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End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 2 Plate: Wash 2 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 3 Plate: Wash 3 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Wash 4 Plate: Wash 4 

Microtiter deep 

well 96 plate 

950 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:01:00 

Speed: slow 

End of step 
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Collect beads, count: 5 

Collect time (s): 30 

pH Elution Plate: pH elution 

KingFisher 96 KF 

plate 

100 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:07:30 

Speed: slow 

Post mix[hh:mm:ss]: 

00:00:05 

Speed: Bottom mix 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Triethylamine 

Elution 

Plate: 

Triethylamine 

KingFisher 96 KF 

plate 

100 Beginning of Step 

Release beads [hh:mm:ss]: 

00:00:00 

Mixing/Heating Parameters 

Mix time [hh:mm:ss]: 

00:03:30 

Speed: slow 

Post mix[hh:mm:ss]: 

00:00:05 

Speed: Bottom mix 

End of step 

Collect beads, count: 5 

Collect time (s): 30 

Leave: Tipcomb 96 deep well tip 

comb 

  

 


