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Abstract 

In a fluidized bed, the online temperature of the particles is important for monitoring 

the process and for monitoring the process and understanding the heat transfer 

mechanisms. In order to minimize the influence of the air on the particle temperature 

measurement, thermal cameras were recently used to determine the particle 

temperature non-invasively.  

When using a thermal camera to monitor the particles in a fluidized bed, especially in 

an ordinary fluidized bed, it is expected that some the particles in the thermal images 

will be blurry. The blurry particles can be caused by the particle movement and the 

thermal camera focus. In order to measure the particle temperature accurately, the 

clear particles and the blurry particles in the thermal images should be considered 

separately. In this thesis, based on the calibrated particle size and shape, only the 

pixels that represent the clear particles in the thermal images were identified and 

correlated to the particle temperature.  

Using this technique, the online temperature of the particles was measured together 

with the temperatures of the air and the fluidized bed wall. It was found that higher 

inlet air velocity and higher loaded particle mass can accelerate the heating process of 

the particles more than the heating process of the fluidized bed wall.  

At the temperature steady state, a two-compartment model was developed to correlate 

the heat transfer coefficients between the air and the particles and between the 

particles and the fluidized bed wall. It was found that the relationship between them 

depends on how the void fraction and the particle Reynolds number are related to the 

contact area between the particle and the zones (hot and cold) and the time that the 

particle spent in the zones.  
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𝑇𝑒𝑥 Exit air temperature  (𝐾) 

𝑇𝑔 
The air temperature used by Brown and 

Lattimer (2013)  
 

𝑇𝐻 Temperature of the hot zone  (𝐾) 

𝑇𝐻1
∗  Temperature of a particle enters the hot zone (𝐾) 

𝑇𝐻2
∗  Temperature of a particle leaves the hot zone (𝐾) 

𝑇𝑖𝑛 Inlet air temperature  (𝐾) 

𝑇𝑢𝑛𝑐𝑎𝑙 
Uncalibrated particle temperature measured 

from the thermal camera 
(𝐾) 

𝑇𝑡ℎ𝑟 Threshold used by Patil et al. (2015) (𝐾) 

〈𝑇𝑝〉𝑝𝑖𝑥 
Mean temperature of the pixels representing 

the particles used by Patil et al. (2015) 
(𝐾) 

𝑇𝑝,𝑠 
The particle temperature used by Brown and 

Lattimer (2013)  
(𝐾) 

𝑇𝑝 Particle temperature (𝐾) 

𝑇𝑤 Fluidized bed wall temperature (𝐾) 

𝑇𝑥𝑦
∗  

The temperature of the particle represented by 

(𝑆𝑥𝑦
∗ ) in the signal matrix and (𝐼𝑥𝑦

∗ ) in the 

thermal image 

(𝐾) 

Δ𝑇𝑎𝑠 
Characteristic temperature difference between 

the air and the solid 
(𝐾) 

Δ𝑇𝑎𝑝 
Mean temperature difference between the air 

and the particles 
(𝐾) 
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Δ𝑇𝑝𝑤 
Mean temperature difference between the 

particles and the fluidized bed wall 
(𝐾) 

Δ𝑇𝑠
𝑑𝑥

 Temperature gradient through a solid material (𝐾/𝑚) 

𝑈 Superficial air velocity (𝑚/𝑠) 

𝑈𝑖𝑛 Inlet air velocity (𝑚/𝑠) 

𝑈𝑚𝑐 
Maximum velocity required for the particles to 

be clear in the thermal image 
(𝑚/𝑠) 

𝑈𝑚𝑓 Minimum fluidization velocity (𝑚/𝑠) 

𝑈𝑝 Particle velocity (𝑚/𝑠) 

𝑈𝑡 Particle terminal velocity (𝑚/𝑠) 

𝑈𝑡
∗ 𝑈𝑡

∗ = 𝑈𝑡 [
𝜌𝑎
2

𝜇(𝜌𝑝−𝜌𝑎)𝑔
]
1/3

  (−) 

𝑉𝑏𝑒𝑑 Volume of the particle bed (𝑚3) 

𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 Volume of the loaded particles (𝑚3) 

𝑊(𝜆, 𝑇) 
Radiance for a wavelength 𝜆 in μm and a 

temperature 𝑇 in Kelvin (K)  

(𝑊 ∙ 𝑚−2

∙ 𝑠𝑟−1

∙ 𝜇𝑚−1) 

(𝑥, 𝑦) 
Coordinate of a pixel in the thermal image, an 

element in the signal matrix, or a particle in 

the thermal camera detection area 

 

𝑍 Grey level in an image  
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𝜀 Void fraction of the particle bed (−) 

𝜀𝑚𝑓 
Void fraction of the particle bed at the incipient 

fluidization 
(−) 

𝜂 

Ratio between the heat transfer coefficient from the 

air to the particles and the heat transfer coefficient 

from the particles to the fluidized bed wall, 𝜂 =
ℎ𝑎𝑝

ℎ𝑏𝑤
  

(−) 

𝜃 Dimensionless, 𝜃 =
𝑇𝑝−𝑇𝑤

𝑇𝑎−𝑇𝑤
  (−) 

𝜃𝑔𝑝 
A dimensionless term introduced by Brown and 

Lattimer (2013), 𝜃𝑔𝑝 =
𝑇−𝑚𝑖𝑛(𝑇𝑝,𝑠,𝑇𝑔)

𝑚𝑎𝑥(𝑇𝑝,𝑠,𝑇𝑔)−𝑚𝑖𝑛(𝑇𝑝,𝑠,𝑇𝑔)
  

 

𝜅𝐴 

Ratio of the contact areas between the particle and 

the hot zone, and between the particle and the cold 

zone 

 

𝜅𝑡 
Ratio of the residence times for a particle in the hot 

zone and in the cold zone 
 

𝜅ℎ 

Ratio of the heat transfer coefficients between the 

particle and the hot zone, and between the particle 

and the cold zone 

 

𝜇 Viscosity of air (𝑃𝑎 ∙ 𝑠) 

𝜇1(𝑘) 
Class mean grey level of the pixels in the grey level 

class [1,2, … , 𝑘] 
 

𝜇2(𝑘) 
Class mean grey level of the pixels in the grey level 

class [𝑘 + 1, 𝑘 + 2,… , 𝑍] 
 

𝜉 A defined item, 𝜉 =
ln(

𝑇𝐻2
∗ −𝑇𝐻

𝑇𝐻1
∗ −𝑇𝐻

)

ln(
𝑇𝐶2
∗ −𝑇𝐶

𝑇𝐶1
∗ −𝑇𝐶

)
   

𝜌𝑎 Density of air (𝑘𝑔 𝑚3⁄ ) 

𝜌𝑝 Density of particles (𝑘𝑔 𝑚3⁄ ) 

𝜌𝑤 Density of the fluidized bed wall (𝑘𝑔 𝑚3⁄ ) 

𝜎 Stefan-Boltzmann constant, 𝜎 = 5.670 × 10−8 (𝑊/𝑚2 ∙ 𝐾4) 

𝜎𝐵
2(𝑘) 

A between-class variance evaluate the goodness of 

the grey value 𝑘 as a threshold (Otsu, 1979) 
 

𝜆𝑚𝑎𝑥 
Peak wavelength of the spectral blackbody emissive 

power distribution 
(𝐽 𝑘𝑔 ∙ 𝐾⁄ ) 
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𝜙𝑠 Sphericity of the particles (−) 

𝜔1(𝑘) 
Sum of the probability distribution of the pixels in 

the grey level class [1,2, … , 𝑘] 
 

𝜔2(𝑘) 
Sum of the probability distribution of the pixels in 

the grey level class [𝑘 + 1, 𝑘 + 2,… , 𝑍] 
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1 Introduction 

1.1 Background of the thesis 

Fluidized bed is a device that has air continuously introduced and allows the solid 

particles within it to move like a fluid. It is widely used in many industries for 

different applications including drying, coating and granulation, due to its favourable 

heat transfer characteristics.  

The fluidization behaviour of the particles is dependent on their density and size and 

is indicated by the pressure drop. In order to fluidize the particles and allow the 

particles to circulate, the air velocity should be higher than the minimum fluidization 

velocity and lower than the particle terminal velocity.  

When hot air is introduced from the bottom of the fluidized bed, both the particles and 

fluidized bed wall are heated. The online temperatures of the air, the particles and the 

fluidized bed wall are important for monitoring the heating process and understanding 

the heat transfer mechanisms.  

In the past, temperature probes were widely used by researchers to measure the 

particle temperature in ordinary (e.g. column, tube, cylindrical) fluidized beds. 

Generally, when the measured position was closer to the top of the fluidized bed or 

closer to the fluidized bed wall, the measured temperature was decreased (Malek & 

Lu, 1964).  

The concept of temperature probes can be expressed as:  

𝑇 = 𝑓(𝑍) Eq. (1) 

Where 𝑇 represents the measured temperature, and 𝑍 represents the signal given by 

the temperature probes.  

The main advantage of temperature probes is that the correlation between the device 

signal and the measured temperature can be obtained easily. The main disadvantage is 

that direct contact between the temperature probes and the particles is required, while 

the contact between the temperature probes and the air surround the particles cannot 

be prevented.  
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From the Planck’s law, it is known that the radiation (including gamma rays, x-rays, 

ultraviolet, visible, infrared, and microwaves) emitted from an object is correlated to 

its temperature. Therefore, the temperature of a particle can be determined non-

invasively from its emitted radiation.  

Thermal camera is a device that can receive the infrared radiation emitted from its 

detection area and generate a signal matrix to represent the intensity of the received 

infrared radiation. It is a system mainly composed of a lens, an infrared sensor and a 

digital signal processor. As shown in Figure 1, there are several steps involved in 

taking a temperature measurement with a thermal camera.  

 

Figure 1. Temperature measurement using a thermal camera. 
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When a thermal camera receives infrared radiation from its detection area, it generates 

an array of signal values (signal matrix). For display, the signal matrix can be 

visualized as a thermal image. The thermal image could be a grey scale image (the 

colour of a pixel is represented by a grey value and varied from 0 to 255, where 0 is 

the black and 255 is the white), a RGB image (the colour of a pixel is represented by 

red, green and blue values and respectively varied from 0 to 255, where (0, 0, 0) is the 

black and (255, 255, 255) is the white) or an image in other formats. This process is 

unlikely to introduce error in the temperature measurement of the fluidizing particles.  

From the visualized thermal image, the particles that were within the detection area of 

the thermal camera can be observed. However, observation cannot be used 

scientifically to identify the pixels that represent the particles. Image segmentation is 

a technique that can divide an image into multiple segments (also known as sets of 

pixels, pixel clusters, image objects and etc.). In an image, pixels in the same pixel 

segment (pixel set, pixel cluster, image object and etc.) are connected to each other in 

eight directions (up, down, left, right, up-left, up-right, down-left and down-right). 

Sometimes, the connected directions can be simplified as four directions (up, down, 

left and right). Unconnected pixels belong to different pixel segments. For example, 

the pixel clusters 1-6 are segmented in Figure 1.  

In a fluidized bed, both the particles and the fluidized bed wall are in the detection 

area. If an inappropriate image segmentation is used, the pixels representing the 

particles and the pixels representing the fluidized bed wall could be divided within the 

same connected subsets (pixel cluster). This process is likely to introduce error in the 

particle temperature measurement.  

Based on the segmented pixel clusters, if the definition of a particle in the thermal 

image is given, then the pixel cluster that satisfies the definition (for example, the 

pixel clusters 2 in Figure 1) can be identified as a particle. The pixels within the 

identified pixels clusters are representing the particles in the thermal image. In this 

thesis, this process is referred as the pixel identification.  

It should be noticed that (Pal & Pal, 1993): “hundreds of image segmentation 

techniques are presented in the literature, but there is no single method which can be 

considered good for all images, nor are all methods equally good for a particular type 

of image”. If an inappropriate particle definition is used, the number of pixels 
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representing the particle may be more or less than it should be. This process is likely 

to introduce error in the particle temperature measurement.  

By reversing the visualization function, the element in the signal matrix that is 

corresponded to an identified pixel can be obtained. These elements are representing 

the particles in the signal matrix and can be correlated to the particle temperature 

(referred as the particle temperature calibration in Figure 1).  

The correlation function can be affected by the relationship between the infrared 

radiation emitted from the particles and received by the thermal camera, the 

relationship between the infrared radiation received by the thermal camera and the 

generated signal matrix by the infrared sensor, and the quality of the image 

segmentation.  

In summary, in order to use a thermal camera to online monitor the particle 

temperature in a fluidized bed accurately, the general steps are:  

i. Install the thermal camera and visualize the signal matrices into thermal 

images. The factors that need to be concerned are the specification of the 

thermal camera, the material of the window used on the fluidized bed and the 

focus plane of the thermal camera; 

ii. Segment the thermal images into pixel clusters, identify the pixel clusters that 

represent the particles. The factors that need to be concerned are the stability 

of the identification technique, and the uniformity of the relationship between 

the identified pixels and the particle temperature; 

iii. Obtain the signal values of the elements in the signal matrices that represent 

the particles and correlate them to the particle temperature. The factors that 

need to be concerned are the influence of the hot air, and the accuracy of the 

particle temperature measured for calibration. 

Recently, several researchers used thermal cameras successfully to measure the 

particle temperature non-invasively in flat fluidized beds (referred as a pseudo-2D 

fluidized bed, in comparison, an ordinary fluidized bed is referred as a 3D fluidized 

bed). The main advantages of a flat fluidized bed is that due to the restriction of the 

fluidized bed wall, all particles can be assumed to move in the same plane and can be 

continuously focused by the thermal camera.  
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However, most of the fluidized beds used in industries are ordinary 3D fluidized beds. 

Compared to the 2D fluidized bed, the contacts between the air and the particles, and 

between the particles and the fluidized bed wall are different in the ordinary 3D 

fluidized beds. In these fluidized beds, because the particles can move in three 

directions, not all particles can be focused by a thermal camera. It is expected that 

there will be many unfocused particles in the thermal images. Therefore, the effect of 

the thermal camera focus on the temperature measurement of the particles needs to be 

considered.  

During the heating process of the particles, heat transfer occurs between the air and 

the particles, between the air and the fluidized bed wall, and between the particles and 

the fluidized bed wall. The order of the air temperature, the particle temperature and 

the fluidized bed wall temperature indicates the directions of the heat transfer 

processes. The trends of the temperature differences between the air and the particles, 

between the air and the fluidized bed wall, and between the particles and the fluidized 

bed indicate the heat flux between them during the heat transfer processes.  

In the operation of a fluidized bed, inlet air velocity, inlet air temperature and loaded 

particle mass can affect the heat transfer processes between the air and the particles, 

between the air and the fluidized bed wall, and between the particles and the fluidized 

bed wall. In terms of the heat transfer coefficients for the above heat transfer 

processes, there are many empirical models in the literature can be used.  

However, those models are mainly addressing the heat transfer process between the 

air and the particles, or between the particles and the fluidized bed wall. Also, limited 

by the particle temperature measurement technique, the relationship between the heat 

transfer coefficients for the two processes are not established. In applications, 

researchers tend to empirically select a heat transfer coefficient for one of the heat 

transfer processes and fitting the heat transfer coefficient for the other. Because both 

of the heat transfer processes are affected by the particle fluidization, it is proposed in 

this thesis that the heat transfer coefficient between the air and the particles, and 

between the particles and the fluidized bed wall are correlated and can be addressed 

simultaneously.  

When the particle temperature does not change over time, a temperature steady state 

of the particles is reached. At this state, the total heat flux from the air to the particles 
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is equal to the total heat flux from the particles to the fluidized bed wall. By 

measuring the temperature difference between the air and the particles and between 

the particles and the fluidized bed wall, the overall heat transfer coefficients between 

the air and the particles, and between the particles and the fluidized bed wall can be 

compared.  

In this thesis, at the temperature steady state, a particle is considered to gain heat from 

somewhere that has higher temperature than it and lose the same amount of heat to 

somewhere that has lower temperature than it (as shown in Figure 2). The zone has 

temperature higher than the particle is referred as the hot zone and the zone has 

temperature lower than the particle is referred as the cold zone.  

 

Figure 2. Two-compartment model. 

Based on this, a two-compartment model (hot zone and cold zone) can be developed 

to describe the heat transfer process of a particle. The heat transfer process in each 

zone can be described by the heat transfer coefficient, the contact area between the 

zone and the particle, and the time that the particle spent in the zone. For 

simplification, the hot zone is set as the area where a particle is in full contact with the 

hot air, and the cold zone is set as the area where a particle is in contact with the 

fluidized bed wall. By experimentally measuring the temperature difference between 

the particles and the air, and between the particles and the fluidized bed wall, a 

balance equation between the heat gained and lost by the particle can be obtained.  
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1.2 Aims of the thesis 

Due to the complexity of the temperature measurement using thermal cameras, the 

primary aim of this thesis is to establish a method that can reliably measure the online 

temperature of the particles in a 3D fluidized bed.  

Using this method, the second aim of this thesis is to investigate the effect of the inlet 

air velocity, the inlet air temperature and the loaded particle mass on the particle 

temperature during the particle heating process. 

Based on the online measured particle temperature, the third aim of this thesis is to 

compare the heat transfer coefficient between the air and the particles and between the 

particles and the fluidized bed wall.  

1.3 Structure of the thesis 

In chapter 2, the literature related to the topics in this thesis is reviewed. In Chapter 3, 

the factors that are relevant to the installation of the thermal camera are considered. 

An experimental setup was designed to minimize the measurement error caused by 

the installation. In Chapter 4, the factors that are relevant to the identification of the 

pixels representing the particles in the thermal images are considered. An 

identification procedure was developed to improve the measurement accuracy. In 

Chapter 5, the factors that are relevant to the correlation between the identified pixels 

and the particle temperature are considered. Three correlation methods were 

compared and the optimum results were used. In Chapter 6, during the particle 

heating process, the online particle temperature was monitored using a thermal 

camera. In the meanwhile, the online temperatures of the inlet air, the exit air, the 

fluidized bed wall and the ambient of the fluidized bed were recorded using 

thermocouple probes. In Chapter 7, the heat transfer coefficient between the air and 

the particles and the heat transfer coefficient between the particles and the fluidized 

bed wall were compared at the particle temperature steady state. A two-compartment 

model is developed.  
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2 Literature Review 

2.1 Scope of review 

The fluidization behaviour of the particles is relevant to the density and size of the 

particles. The Geldart classification (Geldart, 1973) is widely used to indicate the 

relationship between the particle type and its fluidization behaviour. In a fluidized 

bed, pressure drop is an important indication of the particle fluidization state (Ergun, 

1952; Kunii & Levenspiel, 1991; Rhodes, 2008). The inlet air velocity should be 

higher than the minimum fluidization velocity (Chitester, Kornosky, Fan, & Danko, 

1984; Kunii & Levenspiel, 1991; Wen & Yu, 1966) and lower than the particle 

terminal velocity (Haider & Levenspiel, 1989; Kunii & Levenspiel, 1991; Turton & 

Clark, 1987). 

This chapter first reviewed the fundamental knowledge of the particle fluidization. 

The particle temperature in a fluidized bed can be measured by temperature probes 

(Baeyens & Goossens, 1973; Borodulya, Teplitsky, Markevich, Hassan, & 

Yeryomenko, 1991; Gunn & De Souza, 1974; Gunn & Khalid, 1975; Malek & Lu, 

1964; Petrovic, Thodos, & Illinois, 1968; Valenzuela & Glicksman, 1984; van 

Heerden, Nobel, & van Krevelen, 1953; Wadke, Hounslow, & Salman, 2005) and 

thermal cameras (Brown & Lattimer, 2013; Li et al., 2017; A. V. Patil, Peters, Sutkar, 

Deen, & Kuipers, 2015; Sutkar et al., 2015; Tsuji, Miyauchi, Oh, & Tanaka, 2010). 

Both of them have advantages and disadvantages. Compared to temperature probes, 

thermal cameras are more suitable for online monitoring of the particle temperature in 

a fluidized bed.  

This chapter then reviewed the concepts of the temperature probes and the thermal 

cameras.  

When a thermal camera is used to measure the particle temperature in a fluidized bed, 

the thermal image usually contains both the particles and the fluidized bed wall. It is 

first necessary to distinguish between pixels that represent particles and pixels that 

represent the fluidized bed wall. The process that divides an image into multiple 

segments is the image segmentation. In the literature, the fluidized beds that were 

online monitored using thermal cameras were flat fluidized beds (Brown & Lattimer, 
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2013; Li et al., 2017; A. V. Patil, Peters, Sutkar, et al., 2015; Sutkar et al., 2015; Tsuji 

et al., 2010).  

This chapter also reviewed the image segmentation techniques briefly and the 

methods used by the researchers for obtaining the particle temperature.  

However, most of the fluidized beds that were used to develop the empirical heat 

transfer models are ordinary (e.g. column, tube, cylindrical) 3D fluidized beds 

(Borodulya et al., 1991; Decker & Glicksman, 1983; Ganzha, Upadhyay, & Saxena, 

1982; Gunn, 1978; Gunn & Khalid, 1975; Malek & Lu, 1964; Mickley & Fairbanks, 

1955; Petrovic et al., 1968; Ranz & Marshall, 1952; Saxena & Ganzha, 1984; van 

Heerden et al., 1953; van Heerden, Nobel, & van Krevelen, 1951).  

This chapter then reviewed the trend of the particle temperature and the widely used 

empirical heat transfer models.  

2.2 Fundamental of particle fluidization 

2.2.1 The Geldart classification 

In order to describe the relationship between the fluidization behaviour and the 

properties of particles, the Geldart (1973) classification is generally used (as show in 

Figure 3). Based on the Geldart classification, the particle type can be described as 

(Litster & Ennis, 2004; Morl, Heinrich, & Peglow, 2007): Type A particles are 

usually with a mean particle size larger than 50 µ𝑚 and smaller than 200 µ𝑚, and 

with a density between 700 and 1400 𝑘𝑔 𝑚3⁄ . This type of particles can be easily 

fluidized and show some particulate expansion. Type B particles are usually with a 

mean particle size larger than 40 µ𝑚 and smaller than 500 µ𝑚, and with a density 

between 1400 and 4000 𝑘𝑔 𝑚3⁄ . This type of particles can also be fluidized easily 

but do not show any particulate expansion. Type C particles are usually with a mean 

particle size smaller than 50 µ𝑚. This type of particles are cohesive and fluidized 

poorly. Type D particles are relatively large and require higher air velocities for 

fluidization.  
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Figure 3. Diagram of the Geldart classification (Geldart, 1973). 

2.2.2 Pressure drop 

In a fluidized bed, pressure drop is generally used to indicate the fluidization state and 

the superficial fluid velocity required to fluidize a packed bed is known as the 

minimum fluidization velocity. As shown in Figure 4, in region OA, the bed remains 

fixed and pressure drop increases with increased fluid velocity; in region AB, the bed 

is partially fluidized and pressure drop decreases with increased fluid velocity; in 

region BC and afterwards, the bed is fully fluidized and pressure drop remains 

constant; the superficial fluid velocity in point A is the minimum fluidization velocity 

(Rhodes, 2008). 
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Figure 4. Ideal pressure drop velocity curve (Rhodes, 2008). 

When the particles are fully fluidized, the pressure drop in a fluidized bed can be 

calculated from the force balance of the particles and expressed as (Davidson & 

Harrison, 1971; Kunii & Levenspiel, 1991; Rhodes, 2008): 

∆𝑝 = 𝐻𝑏𝑒𝑑(1 − 𝜀)(𝜌𝑝 − 𝜌𝑎)𝑔 Eq. (2) 

Where ∆𝑝 is the pressure drop (𝑃𝑎), 𝐻𝑏𝑒𝑑 is the bed height (𝑚), 𝜀 is the void fraction, 

𝜌𝑝 is the density of particles (𝑘𝑔/𝑚3), 𝜌𝑎 is the density of air (𝑘𝑔/𝑚3), 𝑔 is the 

gravitational acceleration (𝑚/𝑠2). 

Generally, when the particles are fully fluidized, the relationship between the pressure 

drop and the air velocity can be described by the Ergun equation (Ergun, 1952): 

(−∆𝑝)

𝐻𝑏𝑒𝑑
= 150

𝜇𝑈

𝐷2
(1 − 𝜀)2

𝜀3
+ 1.75

𝜌𝑎𝑈
2

𝐷

(1 − 𝜀)

𝜀3
 Eq. (3) 

Where 𝜇 is the viscosity of air (𝑃𝑎 ∙ 𝑠), U is the superficial air velocity (𝑚/𝑠), and 𝐷 

is the particle diameter (𝑚). 

2.2.3 Minimum fluidization velocity 

The superficial air velocity at the incipient fluidization is the minimum fluidization 

velocity. It is the lowest air velocity required to fluidize the particles in a fluidized 

bed.  

By introducing the Archimedes number (𝐴𝑟): 
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𝐴𝑟 =
𝜌𝑎(𝜌𝑝 − 𝜌𝑎)𝑔𝐷

3

𝜇2
 Eq. (4) 

And the particle Reynolds number at the incipient fluidization (𝑅𝑒𝑝,𝑚𝑓): 

𝑅𝑒𝑝,𝑚𝑓 =
𝑈𝑚𝑓𝐷𝜌𝑎

𝜇
 Eq. (5) 

Where 𝑈𝑚𝑓 is the minimum fluidization velocity (𝑚/𝑠).  

The Ergun equation Eq. (3) can be written as (Kunii & Levenspiel, 1991): 

𝐴𝑟 = 150
(1 − 𝜀𝑚𝑓)

𝜀𝑚𝑓
3 𝜙𝑠2

𝑅𝑒𝑝,𝑚𝑓 + 1.75
1

𝜀𝑚𝑓
3 𝜙𝑠

𝑅𝑒𝑝,𝑚𝑓
2  Eq. (6) 

Where 𝜀𝑚𝑓 is the bed void fraction at the incipient fluidization and 𝜙𝑠 is the sphericity 

of the particles. 

The Eq. (6) can be rewrite as (Kunii & Levenspiel, 1991): 

𝐴𝑟 = 𝐾1𝑅𝑒𝑝,𝑚𝑓
2 + 𝐾2𝑅𝑒𝑝,𝑚𝑓 Eq. (7) 

Where, 

𝐾1 =
1.75

𝜀𝑚𝑓
3 𝜙𝑠

 Eq. (8) 

And,  

𝐾2 =
150(1 − 𝜀𝑚𝑓)

𝜀𝑚𝑓
3 𝜙𝑠2

 Eq. (9) 

It was found (Wen & Yu, 1966) that 𝐾1 and 𝐾2 stayed nearly constant depending on 

the particle type and size (when the air Reynolds number was between 0.001 and 

4000). They also predicated the minimum fluidization velocity with ±34% standard 

deviation.  

To calculate the minimum fluidization velocity of coarse particles, the values of 𝐾1 

and 𝐾2 were recommended (Chitester et al., 1984) as 28.7 and 0.0494, respectively. 

The Eq. (7) can be written as: 



24 

 

𝑅𝑒𝑝,𝑚𝑓 = [(28.7)
2 + 0.0494 𝐴𝑟]1/2 − 28.7 Eq. (10) 

To calculate the minimum fluidization velocity of fine particles, the values of 𝐾1 and 

𝐾2 were recommended (Wen & Yu, 1966) as 33.7 and 0.0408, respectively.  

The Eq. (7) can be written as: 

𝑅𝑒𝑝,𝑚𝑓 = [(33.7)
2 + 0.0408 𝐴𝑟]1/2 − 33.7 Eq. (11) 

Then the minimum fluidization velocity can be calculated using the Eq. (5). 

2.2.4 Particle terminal velocity 

In a fluidized bed, in order to fluidize the particles therein, the air velocity should be 

higher than the minimum fluidization velocity. Meanwhile, the air velocity should be 

lower than the particle terminal velocity to allow the particles to circulate in the 

fluidized bed.  

The particle terminal velocity can be estimated from the force balance of a single 

particle and expressed as (Kunii & Levenspiel, 1991): 

𝑈𝑡 = [
4𝐷(𝜌𝑝 − 𝜌𝑎)𝑔

3𝜌𝑎𝐶𝐷
]

1/2

 Eq. (12) 

Where 𝑈𝑡 is the particle terminal velocity and 𝐶𝐷 is the drag coefficient that can be 

determined empirically (Yow, Pitt, & Salman, 2005).  

In order to evaluate the particle terminal velocity directly, based on the equation form 

suggested by Turton and Clark (1987), Haider and Levenspiel (1989) presented 

following approximation: 

𝑈𝑡
∗ = [

18

(𝐷∗)2
+
2.335 − 1.744𝜙𝑠

(𝐷∗)0.5
]
−1

, 0.5 ≤ 𝜙𝑠 ≤ 1 Eq. (13) 

Where 𝑈𝑡
∗ and 𝐷∗ were defined as: 

𝑈𝑡
∗ = 𝑈𝑡 [

𝜌𝑎
2

𝜇(𝜌𝑝 − 𝜌𝑎)𝑔
]

1/3

=
𝑅𝑒𝑝

𝐴𝑟1/3
= (

4

3

𝑅𝑒𝑝

𝐶𝐷
)
1/3

 Eq. (14) 
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𝐷∗ = 𝐷 [
𝜌𝑎(𝜌𝑝 − 𝜌𝑎)𝑔

𝜇2
]

1/3

= 𝐴𝑟1/3 = (
3

4
𝐶𝐷𝑅𝑒𝑝

2)
1/3

 Eq. (15) 

𝑅𝑒𝑝 is the particle Reynolds number: 

𝑅𝑒𝑝 =
𝑈𝐷𝜌𝑎
𝜇

 Eq. (16) 

Graphically, the Eq. (13) can be presented as: 

 

Figure 5. Chart for finding the terminal velocity of a single particle (Haider & Levenspiel, 

1989). 

2.3 Concepts of temperature measurement 

2.3.1 Concept of temperature probes 

In order to measure the particle temperature in a fluidized bed, temperature probes 

were widely used by previous researchers (Baeyens & Goossens, 1973; Borodulya et 

al., 1991; Gunn & De Souza, 1974; Gunn & Khalid, 1975; Malek & Lu, 1964; 

Petrovic et al., 1968; Valenzuela & Glicksman, 1984; van Heerden et al., 1953; 

Wadke et al., 2005).  
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The concept of the temperature measurement using the thermistor probes (Gunn & De 

Souza, 1974; Wadke et al., 2005) is the temperature dependence of electrical 

resistance (Childs, Greenwood, & Long, 2000). In advance, the relationship between 

the temperature of a conductor and its electrical resistance need to be calibrated. 

Then, in measurement, the calibration results can be used to convert the electrical 

resistance to the temperature. Depending on the material of the conductor, the 

accuracy of the thermistor can be very high.  

Compared with the thermistors, the advantages of the thermocouples are their 

temperature range and speed of response (Childs et al., 2000). The concepts of the 

temperature measurement using the thermocouple probes (Baeyens & Goossens, 

1973; Borodulya et al., 1991; Gunn & Khalid, 1975; Malek & Lu, 1964; Petrovic et 

al., 1968; Valenzuela & Glicksman, 1984; van Heerden et al., 1953) are the 

thermoelectric effects including the Seebeck effect, the Peltier effect and the Thomson 

effect.  

The Seebeck Effect is described as (D. D. Pollock, 1971): “ When two dissimilar 

conductors, A and B, comprise a circuit, a current will flow in that circuit as long as 

the two junctions are at different temperatures, 𝑇 < 𝑇 + Δ𝑇. Conductor A is defined 

as being positive with respect to B if the current (electrons) flows from A to B at the 

colder junction.” (Figure 6). 

 

Figure 6. The Seebeck Effect (D. D. Pollock, 1971). 

The Peltier Effect is described as (D. D. Pollock, 1971): “When an electric current 

flows across a junction of two dissimilar metals, heat is liberated or absorbed. When 

the electric current flows in the same direction as the Seebeck current, heat is 

absorbed at the hotter junction and liberated at the colder junction.” (Figure 7). 

 

Figure 7. The Peltier Effect (D. D. Pollock, 1971). 
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Actually, the physical process described by the Seebeck effect and the Peltier effect is 

the same. This process can also be referred as the Peltier-Seebeck effect. 

The Thomson effect is described as (D. D. Pollock, 1971): “The change in the heat 

content of a single conductor of unit cross section when a unit quantity of electricity 

flows through it along a temperature gradient of 1 K.”  

Basically, a thermocouple probe is made of two dissimilar metal (Metal A and B in 

Figure 8). The two metals are electrically connected in one end, which is called the 

measuring (hot) junction. In another end, the two metals are thermally connected, 

which is called the reference (cold) junction. If temperatures of the two junctions are 

different, a voltage called electromotive force (EMF) will be generated (𝐸𝑀𝐹 = 𝑉𝐴 −

𝑉𝐵). As long as the cross-section of the two metal conductors are uniform along their 

length, the EMF is only affected by the temperature difference between the 

measurement (hot) junction and the reference (cold) junction, and not the temperature 

distribution along the conductor between them (J. Park & Mackay, 2003). Then the 

relationship between the EMF value and the temperature difference can be calibrated 

experimentally. 

 

Figure 8. Structure of a thermocouple (J. Park & Mackay, 2003). 

  

 

 

In a fluidized bed, when a thermocouple probe is used to measure the air temperature 

and the fluidized bed wall temperature, it should be noticed that the thermocouple 
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probes cannot respond to the temperature instantly and their measurement errors are 

affect by how the thermocouple probes are installed (R. Park et al., 1993).  

When a thermocouple probe is used to measure the particle temperature, in addition to 

the response time and the installation effects, the measurement can also be affected by 

the particle circulation and the surrounding air of the particles (Baeyens & Goossens, 

1973). Moreover, the inserted thermocouple probe has influence on the movement of 

particles (Leva, 1959).  

2.3.2 Concept of thermal cameras 

In order to improve the accuracy of the particle temperature measurement in a 

fluidized bed, thermal cameras were used by many researcher (Brown & Lattimer, 

2013; Li et al., 2017; A. V. Patil, Peters, Sutkar, et al., 2015; Sutkar et al., 2015; Tsuji 

et al., 2010). The concepts of the temperature measurement using thermal cameras are 

the Kirchhoff’s law of thermal radiation, the Planck’s law, the Stefan-Boltzmann’s 

law and the Wien’s displacement law.  

The Kirchhoff’s law can be illustrated by the Figure 9.  

 

Figure 9. The Kirchhoff’s law (Modest, 2003). 

When two identical black-walled enclosures, thermally insulated on the outside, with 

each containing a small object – one black and the other one not. After a long time, 

both entire enclosures and the objects within them will be at a single uniform 

temperature (Modest, 2003). This indicates that when an object is in thermodynamic 

equilibrium, its emittance and absorptance are the same. 
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The Planck’s law is reported by Max Planck (1901), which gives the spectral 

blackbody emissive power distribution (Williams, 2009):  

𝑊(𝜆, 𝑇) = 𝑒(𝜆)𝑐1/𝜋𝜆
5 [exp (

𝑐2
𝜆𝑇
) − 1] Eq. (17) 

Where 𝑊(𝜆, 𝑇) is the radiance (𝑊 ∙ 𝑚−2 ∙ 𝑠𝑟−1 ∙ 𝜇𝑚−1) for a wavelength 𝜆 in 𝜇𝑚 and 

a temperature 𝑇 in Kelvin (𝐾), 𝑐1 equals to 3.7418×108, 𝑐2 equals to 14387.9 and 

𝑒(𝜆) is the emissivity at a wavelength λ and can vary in the range 0 to 1.  

The Stefan-Boltzmann’s law gives the total radiation emitted from an object at a 

specific temperature and can be integrated from the Planck’s law (Modest, 2003; Pan 

& Atungulu, 2010; Williams, 2009): 

𝐸𝑏(𝑇) = ∫ 𝑊(𝜆, 𝑇)𝑑𝜆
∞

0

= 𝑒(𝜆)𝜎𝑇4 Eq. (18) 

Where 𝜎 is the Stefan-Boltzmann constant (5.670 × 10−8 𝑊/𝑚2 ∙ 𝐾4).  

The Wien’s displacement law gives the peak wavelength (𝜆𝑚𝑎𝑥) of the spectral 

blackbody emissive power distribution (Modest, 2003; Pan & Atungulu, 2010; 

Williams, 2009): 

𝜆𝑚𝑎𝑥 =
2898𝜇𝑚 ∙ 𝐾

𝑇
 Eq. (19) 

Where unit of temperature 𝑇 is Kelvin (K). 

From the above concepts, it is known that if the radiation emitted from an object can 

be measured, the temperature of the object can be determined non-invasively. 

Depends on the wavelength of the radiation, the radiation emitted from an object are 

classified in several categories (as shown in Figure 10): gamma rays, x-rays, 

ultraviolet, visible, infrared, and microwaves. 
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Figure 10. Names of the radiation with different wavelength (Pan & Atungulu, 2010). 

Due to the heating effect of the infrared radiation, it is preferred to be used to 

determine the object temperature. The devices used to receive the infrared radiation 

emitted from an object are the infrared sensors. The infrared sensors can be divided 

into two types, one is the thermal sensor (also called radiation temperature sensors) 

and the other is the photon or quantum sensor (Budzier & Gerlach, 2011). When the 

thermal sensors received infrared radiation, their temperature will be changed. The 

temperature change is then converted into an electric output signal. When the photon 

or quantum sensors received infrared radiation, an electric output signal is generated 

directly. The time required by this process is the exposure time (the detector time 

constant, or the integration time). For both types of the infrared sensors, the electric 

output signal generated can be correlated to the received infrared radiation and used to 

determine the object temperature.  

Generally, the wavelength-dependence of the photon or quantum sensors is much 

heavier than the thermal sensors (Budzier & Gerlach, 2011). In operation, cooling 

systems are also important for the photon or quantum sensors, but not necessary for 

the thermal sensors.  

The infrared sensors can be single-element sensors or multi-element sensors. The 

elements (sometimes also named as detectors) in the multi-element sensors are 

usually arranged in an array and called as the array sensors. Compared with the 

single-element sensors, the array sensors can output a matrix of the electric signal to 

indicate the received infrared radiation.  

A thermal camera is a system mainly composed of a lens, an array infrared sensor and 

a digital signal processor. Depending on the thermal camera module, more 
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components may be included, such as the system controller, the cooling system and 

etc.  

In operation, the noise (the mean small random variations of a signal) is an important 

factor that need to be concerned (Budzier & Gerlach, 2011). The main sources that 

cause the noise are: the thermal noise (also known as Johnson-Nyquist noise 

(Johnson, 1928; Nyquist, 1928)) that is related to the movement of the free charge 

carriers at the thermal sensor, the current noise that is related to the potential barrier 

that the charge carriers have to overcome (Budzier & Gerlach, 2011), the radiation 

noise that is related to the distribution of the object emission (Budzier & Gerlach, 

2011), and the temperature fluctuation noise that is related to the temperature of the 

thermal sensor (Budzier & Gerlach, 2011; Kruse, 2001). Typically, the noise in a 

continuous measurement process follows a normal distribution that can be described 

with expected value and variance (Budzier & Gerlach, 2011).  

2.4 Using thermal camera in a fluidized bed 

2.4.1 Fundamental of image segmentation 

Formally, the image segmentation can be defined as (Pal & Pal, 1993): if 𝐹 is the set 

of all pixels and 𝐹𝑑𝑒𝑓𝑖𝑛𝑒( ) is a uniformity (homogeneity) predicate defined on 

groups of connected pixels, then segmentation is a partitioning of the set 𝐹 into a set 

of connected subsets or regions (𝐹1, 𝐹2, … , 𝐹𝑛) such that:  

⋃𝐹𝑖

𝑛

𝑖=1

= 𝐹        𝑤𝑖𝑡ℎ        𝐹𝑖⋂𝐹𝑗 = ∅,        𝑖 ≠ 𝑗 Eq. (20) 

The uniformity predicate 𝐹𝑑𝑒𝑓𝑖𝑛𝑒(𝐹𝑖) = 𝑡𝑟𝑢𝑒 for all regions (𝐹𝑖) and 

𝐹𝑑𝑒𝑓𝑖𝑛𝑒(𝐹𝑖⋃𝐹𝑗) = 𝑓𝑎𝑙𝑠𝑒, when 𝐹𝑖 is adjacent to 𝐹𝑗.  

Threshold-based image segmentation is one of the simplest and most popular 

techniques for image segmentation (Fu & Mui, 1981; Pal & Pal, 1993; Taxt, Flynn, & 

Jain, 1989). The advantages of this technique are: the approaches and algorithms are 

easy to be programmed and the computational speed is fast. The disadvantages of this 

technique are (Fu & Mui, 1981; Pal & Pal, 1993; Taxt et al., 1989): the output is 

sensitive to the complexity of the image (such as, the size and shape of the object and 

the contrast between the object and the background) and is difficult to be evaluated.  
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Depending on the number of thresholds used for image segmentation, the threshold-

based image segmentation can be categorized as the bi-level thresholding (the single-

threshold method) or the multi-thresholding (the multi-threshold method) (Pal & Pal, 

1993).  

There are many algorithms (Kittler & Illingworth, 1986; Otsu, 1979; Wong & Sahoo, 

1989) can be used to compute the single-threshold. The Otsu’s method (Otsu, 1979) is 

one of the algorithms that has been widely used. In this method, the pixels of a given 

image were represented in 𝑍 grey levels [1,2, … , 𝑍]. Then the distribution of the grey 

values can be normalized and presented as a probability distribution: 

𝑝𝑖 =
𝑛𝑖
𝑁𝑖𝑚𝑔

 Eq. (21) 

Where 𝑝𝑖 is the probability of the pixels with grey level 𝑖, 𝑛𝑖 is the number of the 

pixels with grey level 𝑖, 𝑁𝑖𝑚𝑔 is the total number of pixels in the image. The sum of 

the total probability distribution (𝜔0) and the class mean grey level (𝜇0) are 

respectively:  

𝜔0 =∑𝑝𝑖

𝑍

𝑖=1

= 1 Eq. (22) 

𝜇0 =
∑ 𝑖𝑝𝑖
𝑍
𝑖=1

𝜔0
=∑𝑖𝑝𝑖

𝑍

𝑖=1

 Eq. (23) 

Any grey level 𝑘 can separate the pixels into two classes: [1,2, … , 𝑘] and 

[𝑘 + 1, 𝑘 + 2, … , 𝑍].  

For the pixels in the class [1,2, … , 𝑘], the sum of the probability distribution (𝜔1(𝑘)) 

and the class mean grey level (𝜇1(𝑘)) are respectively: 

𝜔1(𝑘) =∑𝑝𝑖

𝑘

𝑖=1

 Eq. (24) 

𝜇1(𝑘) =
∑ 𝑖𝑝𝑖
𝑘
𝑖=1

𝜔1
 Eq. (25) 
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For the pixels in the class [𝑘 + 1, 𝑘 + 2,… , 𝑍], the sum of the probability distribution 

(𝜔2(𝑘)) and the class mean grey level (𝜇2(𝑘)) are respectively: 

𝜔2(𝑘) = ∑ 𝑝𝑖

𝑍

𝑖=𝑘+1

 Eq. (26) 

𝜇2(𝑘) =
∑ 𝑖𝑝𝑖
𝑍
𝑖=𝑘+1

𝜔2
 Eq. (27) 

In order to evaluate the “goodness” of the grey value 𝑘 as a threshold, a between-class 

variance is defined as: 

𝜎𝐵
2(𝑘) = 𝜔1(𝑘)[𝜇1(𝑘) − 𝜇0(𝑘)]

2 + 𝜔2(𝑘)[𝜇2(𝑘) − 𝜇0(𝑘)]
2 Eq. (28) 

The optimal threshold 𝑘∗ is searched within the grey values range [0,1, … , 𝑍] to 

maximize the 𝜎𝐵
2(𝑘): 

𝜎𝐵
2(𝑘∗) = max

1≤𝑘≤𝑍
𝜎𝐵
2(𝑘) Eq. (29) 

Then Otsu (1979) suggested 𝑘∗ as the threshold of the image. 

The multi-threshold method can be explained as selecting several thresholds for the 

entire image or selecting single thresholds for each block that is divided from the 

entire image (Chow & Kaneko, 1972; Fu & Mui, 1981; Nakagawa & Rosenfeld, 

1979; Pal & Pal, 1993; Taxt et al., 1989; Yanowitz & Bruckstein, 1989).  

In addition to threshold-based image segmentation, there are other image 

segmentation techniques, such as region-based, edge-based, and neural network-based 

image segmentation. Compared to the threshold-based image segmentation that only 

considers the grey value of the pixels, these techniques also take into account the 

connectivity of the pixels.  

The region-based image segmentation (Calderon De Anda, Wang, & Roberts, 2005; 

Rajab, Woolfson, & Morgan, 2004) is to segment the image into meaningful pixel 

clusters based on their features/properties (e.g. area, perimeter, circularity, etc.). The 

edge-based image segmentation (Calderon De Anda et al., 2005; Canny, 1986) is to 

segment the image into meaningful pixel clusters based on the points of abrupt 

changes in grey values. The neural network-based image segmentation (Frei & Kruis, 
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2020) is to segment the image into meaning pixel clusters in a manner similar to some 

aspects of the human information processing system.  

2.4.2 Methods used by previous researchers 

In the literature, Tsuji et al. (2010) used a thermal camera to monitor the cooling 

process of fluidizing particles in a flat spout-fluidized bed with air introduced. The 

observation window was made of spinel. The thermal camera used was TVS-8502 

(NEC Avio Infrared Technologies Co., Ltd). Resolution of the thermal image was 

251 ×  236 𝑝𝑖𝑥𝑒𝑙𝑠. Size of each pixel in the thermal images was 0.33 𝑚𝑚. Frame 

rate was 120 𝑓𝑝𝑠. The particles were spherical aluminium particles and coated with 

black body paint (THI-1B, TASCO JAPAN). The mean particle diameter was 2 𝑚𝑚. 

The dimension of the vessel was 400 𝑚𝑚 (𝐻𝑒𝑖𝑔ℎ𝑡)  ×  76 𝑚𝑚 (𝑊𝑖𝑑𝑡ℎ)  ×

 21 𝑚𝑚 (𝐷𝑒𝑝𝑡ℎ). Initial temperature of the particles and the air was 423 𝐾 and 

292 𝐾, respectively. The particle cooling process was monitored for 8.1 𝑠.  

Tsuji et al. (2010) correlated the temperature of the particles measured by the thermal 

camera to the temperature of the particles measured by a thermocouple probe. In the 

thermal camera, the received infrared radiation by the thermal camera was correlated 

to the particle surface temperature using the Stefan-Boltzmann Law (Eq. (18)), and 

0.94 was used as the emissivity of the particles to obtain an uncalibrated temperature. 

The calibration expression they obtained was: 

𝑇𝑐𝑎𝑙 = 1.0466𝑇𝑢𝑛𝑐𝑎𝑙 + 8.0873 Eq. (30) 

Where 𝑇𝑐𝑎𝑙 is the calibrated particle temperature (𝐾), and 𝑇𝑢𝑛𝑐𝑎𝑙 is uncalibrated 

particle temperature measured from the thermal camera (𝐾).  

Tsuji et al. (2010) did not segment their thermal images (Figure 11). However, from 

the figure, it can be seen that both the particles and the fluidized bed wall are in the 

thermal images. Without image segmentation, the particles and the fluidized bed wall 

cannot be separated. Therefore, they roughly compared the temperature change of the 

particles directly based on the snapshots of the thermal images without quantifying 

the temperature of the particles.   
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Figure 11. Thermal images used by Tsuji et al. (2010). 

Brown and Lattimer (2013) used a thermal camera to monitor the heating process of 

fluidizing particles in a flat spout-fluidized bed with air introduced. The observation 

window was made of sodium chloride. The thermal camera used was FLIR SC655. 

The detector time constant and frame rate was 8 𝑚𝑠 and 200 𝑓𝑝𝑠, respectively. 

Resolution of the thermal image was 640 ×  120 𝑝𝑖𝑥𝑒𝑙𝑠. In the thermal images, 

about one pixel was occupied by a particle. The particles were glass beads with mean 

particle diameter 550 µ𝑚. The dimension of the fluidized bed was 

280 𝑚𝑚 (𝐻𝑒𝑖𝑔ℎ𝑡)  ×  56.4 𝑚𝑚 (𝑊𝑖𝑑𝑡ℎ)  ×  4.95 𝑚𝑚 (𝐷𝑒𝑝𝑡ℎ). Initial temperature 

of the particles and the air was same and around 295 𝐾. Then the air temperature was 

increased and the particles were heated. The particle heating process was monitored 

for 60 𝑠. 

Brown and Lattimer (2013) considered the influence of the observation window in the 

calibration procedure. They placed the particles on a copper plate coated in paint close 

to an ideal blackbody with low radiation reflection. The observation window was 

positioned just above the particles and multiple bare bead thermocouples were 

immersed in the particles. Then the whole setup was encompassed in a black body 

box with an opening for the thermal camera. The distance between the thermal camera 
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and the particles was same as it was in their experimental setup. The calibration 

expression they obtained was:  

𝑇𝑐𝑎𝑙 = 1.44𝑇𝑢𝑛𝑐𝑎𝑙 − 130.89 Eq. (31) 

Where 𝑇𝑐𝑎𝑙 is the calibrated particle temperature (𝐾), and 𝑇𝑢𝑛𝑐𝑎𝑙 is uncalibrated 

particle temperature measured from the thermal camera (𝐾). 

Brown and Lattimer (2013) also did not segment their thermal images (Figure 12). 

They used the average of the cross-sectional temperatures as the particle temperature 

and neglected the temperature of the stagnant particles. However, from the figure, it 

can be seen that the particles are not fully fluidized and neglecting the stagnant 

particles can result in inaccurate temperature measurement of the particles.  

 

Figure 12. Thermal images used by Brown and Lattimer (2013). 

Patil et al. (2015) used a thermal camera to monitor the cooling process of fluidizing 

particles in a flat spout-fluidized bed with nitrogen gas introduced. The observation 

window was made of sapphire glass. The thermal camera used was FLIR SC7600. 

The detector time constant and frame rate was 0.6 𝑚𝑠 and 10 𝑓𝑝𝑠, respectively. 
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Resolution of the thermal image was 250 ×  512 𝑝𝑖𝑥𝑒𝑙𝑠. The particles were glass 

beads. The mean particle diameter was 0.5 and 1 𝑚𝑚, respectively. The dimension of 

the fluidized bed was 200 𝑚𝑚 (𝐻𝑒𝑖𝑔ℎ𝑡)  ×  80 𝑚𝑚 (𝑊𝑖𝑑𝑡ℎ)  ×  15 𝑚𝑚 (𝐷𝑒𝑝𝑡ℎ). 

Initial temperature of the particles and the air was around 393 𝐾 and 293 𝐾, 

respectively. The particle cooling process was monitored for less than 60 𝑠. 

Patil et al. (2015) used a thermal camera and a high speed camera simultaneously. The 

threshold-based image segmentation was used first to identify the pixels representing 

the particles in their thermal images (Figure 13_a).  

 

Figure 13. Thermal images used by Patil et al. (2015). 

The threshold (𝑇𝑡ℎ𝑟) they used was calculated from the following equation (based on 

observation, they found it can result in good images): 

𝑇𝑡ℎ𝑟 = 0.25𝑇𝑏𝑔 + 0.75〈𝑇𝑝〉𝑝𝑖𝑥 Eq. (32) 

Where 𝑇𝑏𝑔 is the temperature of the pixels representing the background, and 〈𝑇𝑝〉𝑝𝑖𝑥 is 

the mean temperature of the pixels representing the particles in the previous thermal 

image. Initially, 〈𝑇𝑝〉𝑝𝑖𝑥 was picked manually in the first thermal image. Temperature 

of the background was assumed to be a constant. 
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Pixels with temperature higher than 𝑇𝑡ℎ𝑟 was then identified as the pixels representing 

the particles in the thermal images (Figure 13_b). These thermal images were then 

compared with the visual images from the high speed camera to extract the overlaying 

pixels as the final pixels that represent the particles in both the thermal images and the 

visual images.  

However, by comparing the Figure 13_a and the Figure 13_b, it can be found that 

some of the particles are also filtered by using the threshold-based image 

segmentation. Since the accuracy of the threshold-based image segmentation is 

affected by the complexity of the thermal images and the amount of the filtered 

particles cannot evaluated, uncertainty will be introduced in the online temperature 

measurement of the fluidizing particles.  Patil et al. (2015) fitted a tracer particle at 

the tip of thermocouple probe and placed the probe inside the fluidized bed. Then 

particle was positioned very close to the observation window. By pouring hot 

particles into the fluidized bed, they varied the temperature of the tracer particle. They 

also pointed that the calibrated particle temperature should be correlated to the digital 

level (i.e. signal value) rather than the uncalibrated particle temperature from the 

thermal camera. Therefore, a relationship between the calibrated particle temperature 

and the signal value of the pixel that represent the particle were obtained.  

Additionally, Patil et al. (2015) attached a sample particle to the tip of a straight wire. 

The particle was first immersed in the hot particle bed and then gradually lifted. In the 

meanwhile, they maintained a small background gas velocity of 0.1 m/s to keep the 

particle in a gas environment that has a temperature equal to the bulk temperature of 

the bed. By doing so, they estimated the error in the particle temperature when it 

moves between dense and isolated regions of the bed.  

Sutkar et al. (2015) used a thermal camera to monitor the wetting process of fluidizing 

particles in a flat spout-fluidized bed with nitrogen gas introduced. The observation 

window was made of sapphire glass. The thermal camera used was FLIR SC7600. 

The detector time constant and frame rate was 0.6 𝑚𝑠 and 100 𝑓𝑝𝑠, respectively. 

Resolution of the thermal image was 640 ×  512 𝑝𝑖𝑥𝑒𝑙𝑠. The particles were non-

porous glass beads and porous γ-Aluminium Oxide particles, respectively. The mean 

particle diameter was 1 𝑚𝑚. The dimension of the fluidized bed was 

180 𝑚𝑚 (𝐻𝑒𝑖𝑔ℎ𝑡)  ×  80 𝑚𝑚 (𝑊𝑖𝑑𝑡ℎ)  ×  18 𝑚𝑚 (𝐷𝑒𝑝𝑡ℎ). Initial temperature of 
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the particles was around 303 𝐾. Then water droplets with 293 𝐾 temperature was 

sprayed from the bottom of the fluidized bed. The spraying process was monitored for 

120 𝑠.  

Sutkar et al. (2015) used the same method as Patil et al. (2015). Their thermal images 

are shown in Figure 14. 

 

Figure 14. Thermal images used by Sutkar et al. (2015).  

Sutkar et al. (2015) and calibrated the particle temperature and the signal value of the 

pixel that represent the particle similar to the method used by Patil et al. (2015). 

Li et al. (2017) used a thermal camera to monitor the adsorption process of fluidizing 

particles in a flat spout-fluidized bed with gas (a mixture of nitrogen and carbon 

dioxide) introduced. The observation window was made of sapphire glass. The 

thermal camera used was FLIR X8400sc. The detector time constant and frame rate 

was 0.54 𝑚𝑠 and 40 𝑓𝑝𝑠, respectively. Resolution of the thermal image was 1280 ×

 1024 𝑝𝑖𝑥𝑒𝑙𝑠. The particles were zeolite 13X beads. The particle diameter was 

between 1.8 and 2 mm, respectively. The dimension of the fluidized bed was 

250 𝑚𝑚 (𝐻𝑒𝑖𝑔ℎ𝑡)  ×  80 𝑚𝑚 (𝑊𝑖𝑑𝑡ℎ)  ×  15 𝑚𝑚 (𝐷𝑒𝑝𝑡ℎ). Initial temperature of 

the particles and the gas was similar and around 291 𝐾. When the gas was introduced, 

the particles were heated up due to the CO2 adsorption. The adsorption process was 

monitored for 120 𝑠. 
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Li et al. (2017) also used a thermal camera and a high speed camera simultaneously. 

The threshold-based image segmentation was used first to identify the pixels 

representing the particles in their thermal images. They normalized the intensity of the 

thermal images into the scale 0 to 1 first and used 0.32 (picked from the trial error 

experimentation) as the threshold. Then the thermal image was compared with the 

visual images to extract the overlaying pixels as the final pixels that represent the 

particles in both the thermal images and the visual images. The scheme they used is 

shown in Figure 15. In the figure, IR image is referred as the thermal image. Li et al. 

(2017) calibrated the particle temperature and the signal value of the pixel that 

represent the particle similar to the method used by Patil et al. (2015). 

 

Figure 15. Thermal images used by Li et al. (2017). 

 

2.5 Heat transfer models in a fluidized bed 

2.5.1 Trend of the particle temperature 

In the literature, by using thermocouple probes, Malek and Lu (1964) studied the 

radial and axial temperature of the particle bed in a cylindrical spouted fluidized bed. 



41 

 

They drilled a series of holes on the fluidized bed wall that also allows the 

thermocouple probes to measure temperature at different axial position.  

Inside the fluidized bed, they also compared the temperatures measured by bare 

thermocouple probes and thermocouple probes covered by a fine screen (to prevent 

the contact of the particles). The two measured temperatures were found to be 

different when the measured position was closer to the bottom of the fluidized bed, 

but the difference was decreased when the measured position was closer to the top of 

the fluidized bed. Considering the particles near the bottom of the fluidized bed are 

more than the particles close to the top of the fluidized bed, this indicates that the 

particle temperature measured by thermocouple probes are affected by the particles 

and their surrounding air. It is therefore necessary to measure the particle temperature 

and the air temperature separately.  

As shown in Figure 16, their results shows that when the measured position was 

closer to the top of the fluidized bed or closer to the fluidized bed wall, temperature of 

the particle bed was decreased. This indicates that the temperature distribution inside 

a fluidized bed is related to the temperatures of the air and the fluidized bed wall.  

 

Figure 16. Typical temperature profile for a spouted bed (Malek & Lu, 1964). 

By using a thermal camera, Brown and Lattimer (2013) measured the particle 

temperature separately during the particle heating process in a flat fluidized bed. They 

also measure the air temperature using thermocouple probes. But limited by the 

identification and correlation methods, their measured temperatures were not able to 

be presented directly. Therefore, they introduced a dimensionless term (𝜃𝑔𝑝): 
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𝜃𝑔𝑝 =
𝑇 −𝑚𝑖𝑛(𝑇𝑝,𝑠, 𝑇𝑔)

𝑚𝑎𝑥(𝑇𝑝,𝑠, 𝑇𝑔) − 𝑚𝑖𝑛(𝑇𝑝,𝑠, 𝑇𝑔)
 Eq. (33) 

Where 𝑇 is the instantaneous measured temperature (particle temperature or the air 

temperature), 𝑇𝑝,𝑠 is the particle temperature, 𝑇𝑔 is the air temperature.  

Then the time averaged dimensionless term of the air and the particles were plotted 

against the bed height (H), as shown in Figure 17. However, limited by the 

experimental setup of the flat fluidized bed, they did not measure the fluidized bed 

wall temperature. Also, they did not compare the temperatures of the air, the particles 

and the fluidized bed wall with time.  

 

Figure 17. The 60 s time average dimensionless air and particle temperature distribution in the 

spouted regime at 3.0 𝑢𝑚𝑓 (Brown & Lattimer, 2013). 

By using a thermal camera, Patil et al. (2015) also measured the particle temperature 

separately during the particle cooling process in a flat fluidized bed. They added 

120°𝐶 particles in the fluidized bed with 20°𝐶 nitrogen gas supplied. In their 

experiment, they compared the effect of the inlet gas velocity and the loaded particle 

mass on the particle temperature with time (Figure 18). From their results, it can be 

found that when the inlet gas velocity was higher or the loaded particle mass was less, 
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the particle temperature was lower and closer to the cold gas temperature (20°𝐶). 

However, in their experiment, they assumed that the fluidized bed wall temperature 

did not change over time.  

 

Figure 18. Mean temperatures of particles with time in a cooling process (A. V. Patil, Peters, 

Sutkar, et al., 2015). 

2.5.2 Fundamental models 

Since the particle temperature can be measured more accurately using a thermal 

camera, it is interesting to investigate the heat transfer relevant to the particle 

temperature. Generally, there are three fundamental models to describe the heat 

transfer mechanisms in a fluidized bed: conduction, convection and radiation.  

The conduction is the heat transfer caused by the temperature gradient through a solid 

material (Han, 2012; Serth & Lestina, 2014). The heat transfer can be primarily 

described by the Fourier’s conduction law: 

𝑞𝑐𝑜𝑛𝑑 = −𝑘𝑠
Δ𝑇𝑠
𝑑𝑥

 Eq. (34) 

Where 𝑞𝑐𝑜𝑛𝑑 is the conduction heat flux per area (𝑊/𝑚2), 𝑘𝑠 is the thermal 

conductivity of the solid material (𝑊 𝑚 ∙ 𝐾⁄ ), and 
Δ𝑇𝑠

𝑑𝑥
 is the temperature gradient 

through the solid material (𝐾/𝑚). 
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The convection is the heat transfer caused by the air flow motion over a solid surface 

(Serth & Lestina, 2014). It can be described by:  

𝑞𝑐𝑜𝑛𝑣 = ℎ𝑎𝑠𝐴𝑎𝑠Δ𝑇𝑎𝑠 Eq. (35) 

Where 𝑞𝑐𝑜𝑛𝑣 is the convection heat flux (𝑊), ℎ𝑎𝑠 is the heat transfer coefficient 

between the air and the solid material (𝑊 𝑚2 ∙ 𝐾⁄ ), 𝐴𝑎𝑠 is the contact area between 

the air and the solid surface (𝑚2), and Δ𝑇𝑎𝑠 is the characteristic temperature 

difference between the air and the solid. 

The radiation is the heat transfer caused by the radiation emitted from the air and the 

solid. It can be described by the Stefan-Boltzmann’s law (Eq. (18)).  

In a fluidized bed, two heat transfer processes are mostly concerned (Davidson & 

Harrison, 1971): heat transfer between the particles and the fluidized bed wall, and 

heat transfer between the particles and the air.  

2.5.3 Particle-wall heat transfer coefficient  

When considering the heat transfer process between the particles and the fluidized bed 

wall, it is widely accepted that the particles in contact with the fluidized bed wall will 

be washed away by fresh bed particles, and the contact time of the particles and the 

fluidized bed wall controls the heat transfer process (Bao, Duan, Wu, & Zhao, 2020; 

Decker & Glicksman, 1983; Kunii & Levenspiel, 1991; Mickley & Fairbanks, 1955).  

As shown in Figure 19, particles will be resting on the fluidized bed wall for the time 

length 𝜏, and then be replaced by other particles.  

 

Figure 19. Models for heat transfer between particles and the fluidized bed wall. 
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For the large particles with short contact time, the heat transfer coefficient between 

the particles and the fluidized bed wall was correlated as (Kunii & Levenspiel, 1991): 

ℎ𝑏𝑤𝐷

(1 − 𝜀)𝑘𝑎
= 5.0 + 0.05𝑃𝑟𝑅𝑒𝑝 Eq. (36) 

Where ℎ𝑏𝑤 is the heat transfer coefficient between the particle bed and the wall 

(𝑊 𝑚2 ∙ 𝐾⁄ ), and 𝑘𝑎 is the thermal conductivity of the air (𝑊 𝑚 ∙ 𝐾⁄ ).  

𝑃𝑟 is the Prandtl number: 

𝑃𝑟 =
𝜇𝐶𝑝,𝑎

𝑘𝑎
 Eq. (37) 

Where 𝐶𝑝,𝑎 is the specific heat of the air (𝐽 𝑘𝑔 ∙ 𝐾⁄ ). 

Depending on the value of the particle Reynolds number, following heat transfer 

coefficients were also used (A. V. Patil, Peters, & Kuipers, 2015a): 

{
𝑁𝑢𝑏𝑤 = 5.0 + 0.05𝑃𝑟𝑅𝑒𝑝, 𝑅𝑒 < 150

𝑁𝑢𝑏𝑤 = 0.18𝑃𝑟1/3𝑅𝑒𝑝
0.8, 𝑅𝑒 > 150

 Eq. (38) 

Where 𝑁𝑢𝑏𝑤 is the Nusselt number for the particle bed contacted with the fluidized 

bed wall: 

𝑁𝑢𝑏𝑤 =
ℎ𝑏𝑤𝐷

𝑘𝑎
 Eq. (39) 

In the literature, there are many experimental studies and correlations for the heat 

transfer coefficient between the particles and the fluidized bed wall have been 

reported (Bao et al., 2020; Borodulya et al., 1991; Grewal & Saxena, 1980; Kim, Ahn, 

Kim, & Hyun Lee, 2003). But most of them are limited to a narrow range of 

conditions.  

2.5.4 Air-particle heat transfer coefficient 

When considering the heat transfer process between the air and the fluidizing 

particles, the heat transfer coefficient is model-dependent. Its calculated value can be 

greatly affected by the flow pattern of gas and of particles in the bed (Kunii & 

Levenspiel, 1991).  
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Among those models, by considering the void fraction (𝜀) of the particle bed, Gunn 

(1978) proposed a more general equation:  

𝑁𝑢𝑎𝑝 = (7 − 10𝜀 + 5𝜀
2) (1 + 0.7𝑅𝑒𝑝

0.2𝑃𝑟
1
3) 

+(1.33 − 2.4𝜀 + 1.2𝜀2)𝑅𝑒𝑝
0.7𝑃𝑟1/3 

Eq. (40) 

𝑁𝑢𝑎𝑝 is the Nusselt number for particles in the air: 

𝑁𝑢𝑎𝑝 =
ℎ𝑎𝑝𝐷

𝑘𝑎
 Eq. (41) 

Where ℎ𝑎𝑝 is the convective heat transfer coefficient between the air and the particles 

(𝑊 𝑚2 ∙ 𝐾⁄ ).  

For a single particle in the air, following equation were suggested by Ranz (Ranz & 

Marshall, 1952) and Rowe et al. (Davidson & Harrison, 1971):  

{
 

 𝑁𝑢𝑎𝑝 = 2 + 0.6𝑅𝑒𝑝
1/2
𝑃𝑟1/3, 𝑠𝑝ℎ𝑒𝑟𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎𝑖𝑟       

𝑁𝑢𝑎𝑝 = 2 + 0.74𝑅𝑒𝑝
1/2
𝑃𝑟1/3, 𝑠𝑖𝑛𝑔𝑙𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖𝑛 𝑎𝑖𝑟                        

𝑁𝑢𝑎𝑝 = 2 + 1.8𝑅𝑒𝑝
1/2
𝑃𝑟1/3, 𝑙𝑎𝑟𝑔𝑒 𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖𝑛 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑏𝑒𝑑 

 Eq. (42) 

2.6 Summary 

From the literature, it is known that the Geldart type of the particles, the bed pressure 

drop, the minimum fluidization velocity, and the particle terminal velocity can be 

obtained from the properties of the particles and the air. The Geldart type of the 

particles and the bed pressure drop can be used to indicate the particle fluidization 

behaviour. The minimum fluidization velocity and the particle terminal velocity can 

be used to give a range of the inlet air velocity.  

The thermistor probes can measure particle temperature based on the temperature 

dependence of electrical resistance. The thermocouple probes can measure particle 

temperature based on the thermoelectric effects. Both of these require direct contact 

with the particles and are affected by the air surrounding the particles.  

The thermal camera can measure particle temperature based on the Planck’s law. It is 

non-invasive and affected by relationship between the infrared radiation received by 
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the thermal camera, the infrared radiation emitted by the particles, and the particle 

temperature.  

In terms of identifying pixels that represent the particles in the thermal images, image 

segmentation can be used. The technique can be used based on threshold, region, 

edge, neural network, and etc. Previous researchers monitored the particles in flat 

(2D) fluidized bed using thermal cameras. They used the threshold-based image 

segmentation. The disadvantage of this technique is that the threshold is selected 

based on human observations and it is difficult to evaluate the identification results. 

After identifying the pixels representing the particles in the thermal images, previous 

researchers correlated the intensities of the identified pixels with the particle 

temperature by using stationary particles outside or inside the fluidized beds.  

From the literature, it is known that the particle temperature is affected by the 

temperatures of the air and the fluidized bed wall, the inlet air velocity, and the loaded 

particle mass. It is necessary to online monitor the temperatures of the air, the 

particles, and the fluidized bed wall separately.  

The heat transfer between the particles and the fluidized bed wall is determined by the 

time that the particles residence on the wall. The heat transfer between the air and the 

particles is affected by the void fraction of the particle bed, the particle Reynolds 

number, and the Prandtl number.  
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3 Experimental setup 

3.1 Particles 

In this thesis, Calcium carbonate particles (CaCO3, sand) were used. In order to obtain 

identifiable particles in the thermal images and to keep the particles as small as 

possible, the size of the particles were sieved to be between 1.0 × 10−3 𝑚 and 1.5 ×

10−3 𝑚 (so that the particle diameter in the thermal images will be around 10 pixels). 

At 20°𝐶, density (𝜌𝑝), specific heat (𝐶𝑝,𝑝), thermal conductivity (𝑘𝑝) of the particles 

is 2600 𝑘𝑔/𝑚3, 840 𝐽/𝑘𝑔 · 𝐾 and 1.9 𝑊/𝑚 · 𝐾, respectively (Kunii & Levenspiel, 

1991). The particles are classified into the Geldart type D.  

Figure 20 shows a microscope image of the particles. The microscope used was 

KEYENCE VHX-5000 with × 20 magnification. Resolution of the image is 

827 (𝐻)  ×  599 (𝐿) 𝑝𝑖𝑥𝑒𝑙𝑠.  

 

Figure 20. Calcium carbonate particles (CaCO3) under microscope (× 20).  

In terms of the particle irregularity, many indications can be used, such as:  
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{
  
 

  
 

𝑃2

4𝜋𝐴
, (Gray, 1971;  Rajab et al. , 2004)

√4𝜋𝐴

𝑃
, (Kudo, Yasuda,  Matsusaka, 2020)

4𝜋𝐴

𝑃2
, (Saha, Bajger,  Lee, 2017)

 Eq. (43) 

Where 𝐴 is the particle area and 𝑃 is the particle parameter in the image.  

In this thesis, the indication 
4𝜋𝐴

𝑃2
 is used, because it can give an irregularity value 

between 0 and 1. It is the circularity of the particles (𝐶). Therefore,  

𝐶 =  4𝜋𝐴/𝑃2 Eq. (44) 

In order to obtain the area and parameter of the particles in the microscope image, by 

observation, the threshold-based image segmentation was used. Then the pixel 

clusters representing the particles were obtained (Figure 21).  

 

Figure 21. Pixel clusters representing the particles in the microscope image. 

In the image, the particle area 𝐴 is counted as the number of pixels included in a pixel 

cluster. The particle parameter 𝑃 is counted as the total sides of the pixels, which are 

not connected with other pixels in the same pixel cluster.  



50 

 

An example is given by Figure 22. Pixel 0 is connected with pixels 1-4, so pixels 0-4 

are identified as a pixels cluster. Its area (𝐴) is the number of pixels included (i.e. 5). 

Its perimeter (𝑃) is the total sides of the pixels that are not connected with other pixels 

in the same pixel cluster (i.e. 12). Its circularity (𝐶) is then calculated to be around 

0.44.  

 

Figure 22. Example for calculating the particle size and shape. 

Then the mean area and the mean circularity of the particles in the microscope image 

was calculated as 5337 (±1660) and 0.54 (±0.1), respectively. These values can 

only be used to represent the particle size and shape in the microscope image and will 

be different in the thermal image. This is because the image resolution and the camera 

lens used by the microscope and the thermal camera are different (the thermal camera 

will be introduced later).  

3.2 Fluidized bed 

The fluidized bed used was GLATT-WSG-3. It consists of two parts. Its geometry is 

shown in Figure 23. Height of the lower component and the higher component is 

200 𝑚𝑚 and 260 𝑚𝑚, respectively. Radius of the bottom circular area and the top 

circular area is 100 𝑚𝑚 and 150 𝑚𝑚, respectively. Thickness of the fluidized bed 

wall is around 5 𝑚𝑚. Air enters from the bottom and leaves from the top. The air 

distributor on the bottom of the fluidized bed is made of steel with circular mesh (0.5 

mm in diameter). The pressure drop across the air distributor is around 200 Pa.  
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Figure 23. Dimension of the fluidized bed (GLATT-WSG-3). 

At 20°𝐶, density (𝜌𝑤), specific heat (𝐶𝑝,𝑤), and thermal conductivity (𝑘𝑤) of the steel 

wall is 7800 𝑘𝑔/𝑚3, 480 𝐽/𝑘𝑔 · 𝐾, and 45 𝑊/𝑚 · 𝐾, respectively. Density (𝜌𝑎), 

specific heat (𝐶𝑝,𝑎), thermal conductivity (𝑘𝑎) and viscosity (𝜇) of air is  

1.205 𝑘𝑔/𝑚3, 1005 𝐽/𝑘𝑔 · 𝐾, 0.026 𝑊/𝑚 · 𝐾 and 1.8 × 10−5 𝑘𝑔/𝑚 · 𝑠 (𝑃𝑎 · 𝑠), 

respectively (Kunii & Levenspiel, 1991). Gravitational acceleration (𝑔) was adopted 

as 9.81 𝑚/𝑠2. It is assumed that the properties of the steel wall and the air are 

constant during the experiments in this thesis.  

In order to fluidize the particles in this fluidized bed properly, the minimum air 

velocity and the particle terminal velocity need to be estimated.  

By using the mean particle size (1.25 × 10−3 𝑚), the minimum air velocity can be 

calculated from Eq. (4), Eq. (5), and Eq. (10). The calculated value is 0.85 𝑚/𝑠. 

By using the minimum particle size (1.0 × 10−3 𝑚) and assuming the particle 

sphericity is 0.5, the particle terminal velocity can be calculated from Eq. (12), Eq. 

(13), Eq. (14), and Eq. (15). The calculated value is 3.02 𝑚/𝑠.  

Therefore, the air velocity should be higher than 0.85 𝑚/𝑠 and lower than 3.02 𝑚/𝑠.  

In this thesis, the inlet air temperature will be increased from 30 ℃ to 50, 57, and 63 

℃, respectively. 
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3.3 Thermal camera 

In this thesis, a thermal camera with infrared thermal sensor was used. The thermal 

camera used was FLIR A655sc. The detector type is focal plane array (FPA, detectors 

are arranged in an array in the same plane), uncooled micro-bolometer (thermal 

sensor). In the thermal sensor, the detectors are arranged in 640(𝐻)  ×  480 (𝐿). 

Same as the manner in which the thermal detectors are arranged, the entire detection 

area of the thermal camera can be divided into several sub-detection areas. Each 

thermal detector receives thermal radiation from its corresponding sub-detection area. 

The spectral range is 7.5 − 14 µ𝑚, which means that only the thermal radiation with 

wavelength between 7.5 µ𝑚 and 14 µ𝑚 can be received by the detectors from the 

sub-detection areas. The detector pitch is 17 µ𝑚, which means that the physical size 

of each detector is 17 µ𝑚. The detector time constant is typical 8 𝑚𝑠, which means 

that the time required for the thermal detector to respond to the received thermal 

radiation is 8 𝑚𝑠.  

When a thermal detector receives thermal radiation, it generates a signal to indicate 

the intensity of the received thermal radiation. The thermal radiation received from 

the entire detection area is then represented by a signal matrix. The unit of the signal 

value is called raw count in the manual of the thermal camera. The available 

frequency of the thermal camera is 200/100/50/25/12.5/6.25/… Hz (i.e. the number of 

signal matrix outputs per second). The focal length, f-number and minimum focus 

distance of the thermal camera lens used was respectively 24.6 𝑚𝑚, 1.0 and 

250 𝑚𝑚. The instantaneous field of view (IFOV) was 0.68 𝑚𝑟𝑎𝑑.  

The output signal matrix from a thermal camera can be visualized as a thermal image. 

Since the visualization is an artificial process, the thermal image could be a grey scale 

image (the colour of a pixel is represented by a grey value and varied from 0 to 255, 

where 0 is the black and 255 is the white), a RGB image (the colour of a pixel is 

represented by red, green and blue values) or other image formats. 

The visualization can be expressed as: 

𝐼𝑥𝑦 = 𝑓(𝑆𝑥𝑦) Eq. (45) 
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Where 𝐼𝑥𝑦 represents a pixel in the thermal image with coordinate (𝑥, 𝑦) and colour 

value 𝐼(𝑥, 𝑦), and 𝑆𝑥𝑦 represents an element in the signal matrix with coordinate 

(𝑥, 𝑦) and signal value 𝑆(𝑥, 𝑦).  

In this thesis, MATLAB R2018b was used to write the programs.  

The signal matrix 𝑺 obtained from the thermal camera was visualized as a grayscale 

thermal image (represented by 𝑰, range of the grey value is 0 − 255, where 0 and 255 

is the black colour and white colour, respectively) using the following equation: 

𝐼𝑥𝑦 = 255 × (𝑆𝑥𝑦  − 𝑺𝑚𝑖𝑛)/(𝑺𝑚𝑎𝑥 − 𝑺𝑚𝑖𝑛) Eq. (46) 

Where 𝐼𝑥𝑦 represents a pixel in the thermal image with coordinate (𝑥, 𝑦) and colour 

value 𝐼(𝑥, 𝑦), 𝑆𝑥𝑦 represents an element in the signal matrix with coordinate (𝑥, 𝑦) 

and signal value 𝑆(𝑥, 𝑦), and 𝑺𝑚𝑖𝑛, 𝑺𝑚𝑎𝑥 are the minimum and maximum value in the 

signal matrix 𝑺, respectively.  

When a thermal image is obtained using a thermal camera, the pixel size can be 

estimated by (Budzier & Gerlach, 2011): 

𝑙𝑝𝑖𝑥𝑒𝑙 = 2𝐿 𝑡𝑎𝑛
𝐼𝐹𝑂𝑉

2
 Eq. (47) 

Where 𝑙𝑝𝑖𝑥𝑒𝑙 is the pixel size, 𝐿 is the distance between the focused plane and the lens, 

and 𝐼𝐹𝑂𝑉 is the instantaneous field of view. 

In this thesis, in order to minimize the pixel size so that more pixels can be occupied 

by a particle in the thermal images, the minimum focus distance of the thermal 

camera was used. 

Then the distance between the focused place and the lens was calculated as: 

𝐿 = (𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑜𝑐𝑢𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ)

= 250 − 24.5 = 225.5 𝑚𝑚 
Eq. (48) 

Using the Eq. (47),  

𝑙𝑝𝑖𝑥𝑒𝑙 = 2𝐿 𝑡𝑎𝑛
𝐼𝐹𝑂𝑉

2
≈ 0.15 𝑚𝑚 Eq. (49) 
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Then the particle diameter in the unit of pixels can be evaluated as: 

{
 
 

 
 𝐷min _𝑝𝑖𝑥𝑒𝑙 =

𝐷𝑚𝑖𝑛
𝑙𝑝𝑖𝑥𝑒𝑙

=
1.0 𝑚𝑚

0.15 𝑚𝑚
≈ 7 𝑝𝑖𝑥𝑒𝑙𝑠

𝐷max _𝑝𝑖𝑥𝑒𝑙 =
𝐷𝑚𝑎𝑥
𝑙𝑝𝑖𝑥𝑒𝑙

=
1.5 𝑚𝑚

0.15 𝑚𝑚
≈ 10 𝑝𝑖𝑥𝑒𝑙𝑠

 Eq. (50) 

Where 𝐷𝑚𝑖𝑛 is the minimum particle diameter (𝑚) and 𝐷𝑚𝑎𝑥 is the maximum particle 

diameter (𝑚).  

However, due to the errors (such as the system error, installation error and etc.), the 

range of the particle diameter in the unit of pixels does not have much value. It should 

only be used as an expectation of the thermal image quality.  

Strictly, during the detector time constant (8 𝑚𝑠), if a monitored object moved more 

than a pixel in the direction horizontal to the thermal camera, it will be blurry in the 

thermal image. The maximum velocity required for the particles to be clear in the 

thermal image (𝑈𝑚𝑐) can be calculated as:  

𝑈𝑚𝑐 =
1 𝑝𝑖𝑥𝑒𝑙

8 𝑚𝑠
=
0.15 𝑚𝑚

8 𝑚𝑠
≈ 0.02 𝑚/𝑠 Eq. (51) 

Therefore, due to the particle fluidization in a fluidized bed, it is expected that most of 

the particles in the thermal images are blurry. In order to measure the temperature of 

the fluidizing particles accurately using a thermal camera, the effect of the blurry 

particles on the temperature measurement must be considered.  

3.4 Installation 

In order to use the thermal camera to monitor the particles in a fluidized bed, an 

Infrared (IR) window is needed. Since the spectral range of the thermal camera is 

7.5 − 14 µ𝑚 and germanium has a uniform transmission percentage (around 46%) in 

the range, the material of the IR window was selected to be germanium coated with 

diamond (a thin layer for protection, its transmission is higher than 90 % in the 

range). The IR window was circular with a radius of 30 𝑚𝑚.  

The setup of the experiment is shown in Figure 24. The thermal camera was placed 

250 𝑚𝑚 from the centre of the fluidized bed to monitor the fluidizing particles using 

its minimum focus distance. Height of the thermal camera was 85 𝑚𝑚 from the 
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bottom of the fluidized bed. The IR window was fitted on the fluidized bed, 100 𝑚𝑚 

from the thermal camera and 150 𝑚𝑚 from the centre of the fluidized bed. Four K-

type thermocouple probes (temperature range is −75°𝐶 to + 260°𝐶, accuracy is 

± 2.5°𝐶, calibrated in advance) were used to measure the temperatures of the inlet air, 

the ambient, the fluidized bed wall and the exit air. In terms of the calibration, the 

four thermocouple probes were placed in a water bath (Stuart SWB3D Digital Water 

Bath) and temperatures of the probes were recorded every 1 second. The water was 

then heated from 20 ℃ to 90 ℃ and cooled from 90 ℃ to 20 ℃ (repeated three 

times). By comparing the temperatures measured by the four probes, it was concluded 

that the probes were consistent.  

The thermocouple probe measuring the inlet air was placed slightly above the air 

distributor and covered by a steel mesh, so that the probe contacted neither with the 

air distributor nor the particles. The thermocouple probe measuring the fluidized bed 

wall was placed outside and 85 𝑚𝑚 from the bottom of the fluidized bed. The 

thermocouple probe measuring the ambient was 100 𝑚𝑚 from the fluidized bed wall. 

The thermocouple probe measuring the exit air was in the centre of the fluidized bed 

and 300 𝑚𝑚 from the bottom. The average inlet air velocity can be measured before 

the air distributor of the fluidized bed by an air velocity meter (TSI 9545-A). 

 

Figure 24. Experimental setup.  

Since height of the thermal image is 640 𝑝𝑖𝑥𝑒𝑙𝑠, the distance between the thermal 

image bottom and the fluidized bed bottom (𝐻𝑖𝑚𝑎𝑔𝑒−𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟) is estimated as: 
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𝐻𝑖𝑚𝑎𝑔𝑒−𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 = 85 𝑚𝑚 −
640 × 𝑙𝑝𝑖𝑥𝑒𝑙

2
 𝑚𝑚 = 37 𝑚𝑚 Eq. (52) 

Figure 25 shows three images visualized from the signal matrices (1400 𝑔 particles 

were fluidized using 57°𝐶 and 2.0 𝑚/𝑠 inlet air velocity). From the figure, it can be 

observed that when a thermal camera is used to monitor the particles in a fluidized 

bed, both the particles and the fluidized bed wall are in the thermal images. The 

particles are present individually or in contact with other particles. It can be seen that 

some of the particles are clear, while others are blurry. Due to the fluidization, the 

number of the pixels representing the clear and blurry particles in the thermal images 

varies over time.  

 

Figure 25. Example of the thermal images. 

3.5 Summary 

In this thesis, calcium carbonate particles in the Geldart group D were fluidized in a 

cylindrical 3D fluidized bed. The area and circularity of the particles in the 

microscope image were calculated. 

Based on the properties of the particles and the air, the minimum fluidization velocity 

and the particle terminal velocity were also calculated. It is known that the air velocity 

should be roughly between 0.85 𝑚/𝑠 and 3.02 𝑚/𝑠. 
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In the setup of the fluidized bed, temperatures of the inlet air, the exit air, the fluidized 

bed wall, and the ambient can be online monitored by four K-type thermocouple 

probes. The particles can be online monitored by a thermal camera (FLIR A655sc).  

The number of pixels that will be occupied by a particle in the thermal image was 

evaluated. The maximum velocity of a particle that would cause it blurry in the 

thermal image was calculated. It is expected many particles will be blurry in the 

thermal image and their effect on the particle temperature measurement must be 

considered.  
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4 Particle identification 

4.1 Pixels representing the blurry particles 

When using a thermal camera to online monitor the fluidizing particles, some of the 

particles in the thermal images are clear, while others are blurry.  

One of the reason that cause the particles is the focus of the thermal camera. As 

shown in Figure 26, the blue outlines is real particle, and orange squares is the pixels 

representing the particle in the thermal image. When the particle is in focus of the 

thermal camera, the pixel cluster representing the particle in the thermal image will be 

similar to the actual particle that should be reflected the thermal image. When the 

particle is out focus, the pixel cluster representing the particle in the thermal image 

will be bigger (the particle is closer to the thermal camera) or smaller (the particle is 

further to the thermal camera) than it should be. In the meanwhile, the intensities of 

the pixels will also be affected.  

 

Figure 26. Blurry particles caused by the focus of the thermal camera.  

Another reason that cause the blurry particles is the movement of the particles. As 

shown in Figure 27, when the particle was not moved during the time that the thermal 

image was taken (i.e. its velocity was 0 𝑙𝑝𝑖𝑥𝑒𝑙/𝑡𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where 𝑙𝑝𝑖𝑥𝑒𝑙 is the pixel size 

and 𝑡𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is the detector time constant), the pixel cluster representing the particle 

in the thermal image will be similar to the actual particle that should be reflected the 

thermal image. When the particle was moved during the time that the thermal image 

was taken, the pixel cluster representing the particle in the thermal image will be 

stretched and more irregular than the real particle. In the meanwhile, the intensities of 

the pixels will also be affected. For example, if the particle velocity (𝑈𝑝) was 

1 𝑙𝑝𝑖𝑥𝑒𝑙/𝑡𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, the pixel cluster representing the particle in the thermal image will 

be stretched for one pixel in the direction of the particle velocity. The intensities of 
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the pixels in the front and end of the pixel cluster will be affected. If the particle 

velocity was 𝐷 𝑙𝑝𝑖𝑥𝑒𝑙/𝑡𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝐷 is the particle diameter), the pixel cluster 

representing the particle in the thermal image will be stretched for 
𝐷

𝑙𝑝𝑖𝑥𝑒𝑙
 pixels in the 

direction of the particle velocity. The intensities of all the pixels in pixel cluster will 

be affected.  

 

Figure 27. Blurry particles caused by the movement of the particles. 

In order to identify the pixels that not only represent the particles but also have the 

same relationship between the signal value (𝑆𝑥𝑦
∗ ) and the particle temperature (𝑇𝑥𝑦

∗ ), it 

is necessary to compare the corresponding signal values of the pixels representing the 

clear and blurry particles.  

4.1.1 Focus of the thermal camera 

As shown in Figure 28, an experiment was designed to compare the corresponding 

signal values of the pixels representing clear and blurry particles that are caused by 

the focus of the thermal camera. In this experiment, a particle was placed on a hot 

plate (STUART US152), the temperature of which was 50°𝐶. The thermal camera 

(FLIR A655sc) was used to monitor the particle. The focus distance of the thermal 

camera was fixed to its minimum focus distance (250 𝑚𝑚). The distance between the 

thermal camera and the particle was varied from 230 to 270 𝑚𝑚.  
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Figure 28. Blurry particle caused by the focus of the thermal camera (experimental setup). 

The signal matrices obtained from the thermal camera were visualized using the Eq. 

(46) and shown in Figure 29.  

 

Figure 29. Blurry particle caused by the focus of the thermal camera (thermal images). 

From the thermal images, it can be observed that when the distance between the 

thermal camera and the particle was 250 𝑚𝑚 (i.e. focused), the particle was clear. 

When the distance was greater or less than 250 𝑚𝑚 (i.e. unfocused), the particle was 

blurry. It can also be observed that when the particle was unfocused, its size in the 

thermal image was increased and its shape was closer to a circle.  

The corresponding signal value of the pixels representing the particle was picked 

manually from the centre of the particle. This experiment was repeated five times and 

the results were shown Figure 30.  
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Figure 30. Blurry particle caused by the focus of the thermal camera (signal value).  

From the results, it can be observed that when the particle was focused (clear), the 

signal value was maximized. When the released time was unfocused (blurry), the 

signal value was decreased. Since the particle temperature was not changed, it is then 

concluded that for pixels representing the focused and unfocused particles in the 

thermal images, the relationship between their corresponding signal value and the 

particle temperature is not the same. 

4.1.2 Movement of the particles 

As shown in Figure 31, an experiment was design to compare the corresponding 

signal values of the pixels representing clear and blurry particles that are caused by 

movement of the particles. In this experiment, a particle was hold by a tweezer and 

focused by the thermal camera (FLIR A655sc) using its minimum focus distance 

(250 𝑚𝑚). A steel plate uniformly heated by hot air was placed 500 𝑚𝑚 behind the 

particle as a background. Temperature of the steel place was measured by a 

thermocouple probe (approximately 50°𝐶).  
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Figure 31. Blurry particle caused by the movement of the particle (experimental setup). 

After the thermal camera was started to monitor the particle using 200 𝑓𝑝𝑠, the 

particle was released from the tweezer. Then longer falling time can lead to faster 

particle movement. Since the particle falls rapidly, it is assumed that the particle 

temperature does not change before and after being released. The signal matrices 

obtained from the thermal camera were visualized using the Eq. (46) and shown in 

Figure 32.  

 

Figure 32. Blurry particle caused by the movement of the particle (thermal images). 

In the images, the particle velocity (𝑈𝑝) was calculated using the following equation: 

𝑈𝑝 = √2𝑔(𝐻𝑓𝑎𝑙𝑙𝑖𝑛𝑔𝑙𝑝𝑖𝑥𝑒𝑙) Eq. (53) 
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Where 𝑔 is the gravitational acceleration (𝑚/𝑠2), 𝐻𝑓𝑎𝑙𝑙𝑖𝑛𝑔 is the falling height of the 

particle in the unit of pixels, and 𝑙𝑝𝑖𝑥𝑒𝑙 is the length of a pixel (𝑚). The value of 𝑙𝑝𝑖𝑥𝑒𝑙 

was calculated in the section 3.3. 

The corresponding signal value of the pixels representing the particle was picked 

manually from the centre of the particle. This experiment was repeated five times and 

the results were shown in Figure 33.  

 

Figure 33. Blurry particle caused by the movement of the particle (signal value). 

From the results, it can be observed that when the particle was not released (clear), the 

signal value was minimized. When the released time was increased (blurry), the signal 

value was also increased. Since the particle temperature was not changed, it is then 

concluded that the movement of the particles can affect the relationship between the 

signal value of the pixel cluster and the temperature of the particle represented by the 

pixel cluster.  

4.2 Threshold-based image segmentation 

Threshold based image segmentation can divide an image into multiple groups of 

pixels based on the pixel grey values. It is a widely used and fast computational 

method. In this method, single threshold or multiple thresholds can be selected. The 

distribution of the pixel grey values in the example thermal images are shown in 
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Figure 34. From the figure, it can be observed that the pixel grey values are 

continuously distributed and have several peaks and troughs.  

 

Figure 34. Distribution of the pixel grey values in the thermal images. 

Ideally, if a value exist that can significantly separate the distribution of the pixel grey 

values into two classes, the value can be used as a threshold to segment the thermal 

image (pixels having grey value higher than the value represent the particles, and 

pixels having grey value lower than the value represent the fluidized bed wall).  

4.2.1 Single-threshold method 

When the single-threshold method is used, in the thermal images, pixels that represent 

the particles are pixels whose grey values are above or below the selected single 

threshold. For example, in Figure 35, pixels whose grey values are greater than 0, 25, 

50, 75, 100, 125, 150, 175, 200, 225 and 250 were displayed in red colour. From the 

thermal images, it can be observed that when the selected single threshold was close 

to 0, more pixels representing the fluidized bed wall were included in the identified 

pixels. When the selected single threshold was close to 255, more pixels representing 

the particles were excluded from the identified pixels.  
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Figure 35. Pixels whose grayscale values are above the selected single threshold (Red colour). 
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By observation, when the threshold was between 75 and 175, within the identified 

pixels, most of the pixels were representing the particles (details are shown in Figure 

36).   

 

Figure 36. Pixels whose grayscale values are above 75, 125 and 175 (Red colour). 

From the Figure 36, it can be observed that using different grey value between 75 and 

175 as the single threshold can result in different number of pixels representing the 

clear and blurry particles.  

Although a variety of methods (for example, the Otsu’s method (Otsu, 1979) and the 

trial and error method (Li et al., 2017; A. V. Patil, Peters, Sutkar, et al., 2015; Sutkar 

et al., 2015)) can be used to select a grey value as the single threshold, it is not 

possible to consider whether the particles are clear or blurry in the thermal images. 
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Therefore, for the identified pixels that represent the particles, the relationship 

between their corresponding signal values and the particle temperature is different. 

This is the uncertainty caused by the single threshold method. Due to the fluidization 

of the particles, the complexity of the thermal images changes over time, which can 

exacerbate the uncertainty when online monitoring the particle temperature. 

4.2.2 Multi-threshold method 

When the multi-threshold method is used, in the thermal image, the pixels that 

represent the particles are pixels whose grey values are between the selected multiple 

thresholds.  

In Figure 37, the pixels whose grey values are within several grey value ranges (0-50, 

50-100, 100-150, 150-200 and 200-255) were displayed in red colour. It can be seen 

from the figure that the grey values of the pixels representing the same particle could 

be within different grey values ranges. The ranges that include the grey value of the 

pixels representing the clear and blurry particles were not the same.  

 

Figure 37. Pixels whose grayscale values are between the selected thresholds (Red colour). 

This multi-threshold method is also not possible to consider whether the particles are 

clear or blurry in the thermal images. The selection of the thresholds, the blurry 
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particles in the thermal images and the fluidization of the particles can cause 

uncertainty when the online monitoring the particle temperature. Therefore,  

4.3 Region-based image segmentation 

From the previous section, it can be found that using the threshold-based image 

segmentation is not able to accurately monitor the particle temperature online. Since 

the particle size and shape can be used for the pixel identification to filter the blurry 

particles, the region-based image segmentation was used in this thesis.  

In order to identify the pixels that represent the particles in the thermal images based 

on their particle size and shape, they must be calibrated first. Due to the influence of 

the thermal camera focus and the particle movement, it is difficult to calibrate the 

particle size and shape online. Therefore, an offline calibration experiment is 

designed.  

4.3.1 Offline calibration of the particle size and shape 

The experimental setup is shown in Figure 38. One hundred particles were place 

separately in an array (10 ×  10) on the germanium window 1, so that the particle 

number is known and the thermal radiation emitted from the background can be 

controlled. The thermal camera was placed above the particles to monitor them using 

its minimum focus distance (250 𝑚𝑚). The frame rate used was 1 fps. The 

germanium window 2 was placed between the particles and the thermal camera, the 

same setup as in the fluidized bed experiment (Figure 24). A water sink was placed on 

a hot plate and under the particles as a controllable background. The advantage of 

using a water sink is that a background having lower temperature than the particles 

can be created by adding ice. Compress air was used to prevent the generation of mist 

on the germanium window 1. Temperature of the germanium window 1 was measured 

using a K-type thermocouple probe (approximately 25°𝐶). It is assumed that the 

germanium window and the particles on it have the same temperature. 
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Figure 38. Calibration of the particle size and shape (experimental setup). 

In this experiment, temperature of the water was increased from 0°𝐶 to 70°𝐶. Then, 

the effect of the signal difference between the particles and the background on the 

particle size and shape was taken into consideration.  

Signal matrices obtained from this experiment was first converted to thermal images. 

In the thermal images, it is necessary to identify the pixels that represent the particles. 

From the experimental setup, it is known that the number of the pixel clusters 

representing the particles is one hundred and the number of the pixel clusters 

representing the background is one. Then it is expected that an appropriate threshold 

(a grey value) should separate the image into two parts, one of which contains only 

one pixel cluster that represent the background and the other contains one hundred 

pixel clusters that represent the particles. However, there are more than one threshold 

can do the job. It is still needed to select one from all of the threshold as the most 

appropriate threshold.  

In order to do so, any grey value (𝐼𝑛) that meet the following conditions were obtained 

at first:  

i. Pixels having grey value less than 𝐼𝑛 can be divided into 100 (or 1) pixel 

clusters based on their connectivity.  

ii. Pixels having grey value greater than 𝐼𝑛 can be divided into 1 (or 100) pixel 

clusters based on their connectivity.  
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The 100 and 1 pixel clusters were respectively indicating the number of the particles 

and the background in the thermal images.  

Among the obtained grey values, an optimal threshold (𝐼𝑜𝑡𝑠𝑢) can be obtained using 

the Otsu’s threshold method (Otsu, 1979). Using this threshold, the pixels in the 

thermal images were separated into two classes (class 1, pixels having grey value less 

than 𝐼𝑜𝑡𝑠𝑢; class 2, pixels having grey value greater than or equal to 𝐼𝑜𝑡𝑠𝑢). Figure 39 

shows several examples.  

In the figure, the difference between the maximum and the minimum values within 

the signal matrix was adopted as the absolute signal difference between the particle 

and the background. When the 100 pixel clusters were included in the pixel class 1, 

the signal difference was negative, and vice versa.  

It can be also observed from the figure that when the signal difference between the 

particles and the background was between - 249 and 241, pixels representing the 

particles cannot be identified in the thermal images.  
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Figure 39. Calibration of the particle size and shape (pixel classes from the thermal images). 

Using the method introduced in the section 3.1, the area and circularity of the pixel 

clusters that represent the particles in the thermal images can be obtained. Figure 40 

shows the cumulative distribution of the particle area and circularity. From the figure, 
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it can be seen that as long as the particles can be identified, their area and circularity 

were not affected by the signal difference between the particles and the background. 

The particle area (𝐴) was approximately between 40 (𝐴𝑚𝑖𝑛) and 100 (𝐴𝑚𝑎𝑥) pixels. 

The particle circularity (𝐶) was approximately between 0.4 (𝐶𝑚𝑖𝑛) and 0.65 (𝐶𝑚𝑎𝑥). 

 

Figure 40. Calibration of the particle size and shape (cumulative distribution). 
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Based on these two offline calibrated ranges, the pixels representing the particles in 

the thermal images obtained from the online monitoring process of the fluidized bed 

can be identified.  

4.3.2 Online identification of the particles in the thermal images 

In this thesis, a procedure was developed for the online identification. The primary 

step is using a grey value (𝐼𝑛) to divide the pixels in the thermal images in two classes 

(class 1, pixels having grey value less than 𝐼𝑛; class 2, pixels having grey value 

greater than or equal to 𝐼𝑛). By changing the 𝐼𝑛 from 0 to 255, there are 512 (2*256) 

pixel classes can be obtained. Figure 41 shows three examples, where the 𝐼𝑛 was 

equal to 75, 125 and 175, respectively. In the figure, the red areas within the blue 

frames were the pixels within the classes.  

Within each pixel class, the pixels were separated into multiple clusters based on their 

connection in four directions (up, down, right and left). Then the area (𝐴) and 

circularity (𝐶) of the pixel clusters can be obtained.  

In the thermal images, when a pixel cluster was representing a clear particle, its area 𝐴 

and circularity 𝐶 would be respectively between 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥, and between 𝐶𝑚𝑖𝑛 

and 𝐶𝑚𝑎𝑥. When a pixel cluster was representing a blurry particle, or contacted 

multiple particles, its area and circularity would be respectively out of the ranges. 

Therefore, the pixel clusters representing the clear particles can be obtained from the 

pixel classes (the red areas within the green frames in the Figure 41). After all the 

pixel classes had been processed, the identified pixels in all classes (512) were 

summarised. Then these pixels was the final identified pixels (an identified pixel is 

denoted as 𝐼𝑥𝑦
∗ ) that represent the clear particles in the thermal image. From the figure, 

it can be observed that using above procedure, pixels representing the individual and 

clear particles in the thermal images were identified successfully.  
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Figure 41. Online identification procedure. 

4.4 Summary 

By designing two experiments, it is found that when a thermal camera is used to 

monitor a particle with a constant temperature, the signal value of the particle 

(indicating the received infrared radiation from the particle) can be affected by the 
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focus of the thermal camera and the movement of the particle. When a particle is 

focused by the thermal camera and does not move, it is clear in the thermal image. 

Otherwise, the particle is blurry in the thermal image. The size and shape of the pixel 

clusters representing the clear and the blurry particles are different.  

The threshold – based image segmentation cannot distinguish the clear and blurry 

particles, it is not able to accurately monitor the particle temperature online. 

Therefore, an improved image segmentation based on the particle size and shape in 

the thermal images was developed in this thesis. By using an offline calibration 

method, the size and shape of the particles in the thermal images were measured and it 

is found that they are not affected by the signal difference between the particles and 

their background.  

By using developed the region-based image segmentation, in the thermal images that 

were obtained online, the pixels representing the individual and clear particles in the 

thermal images were identified. It is believed that the signal value corresponded to the 

identified pixels and the particle temperature have the same relationship.  
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5 Particle temperature calibration 

5.1 Effect of the air temperature 

When hot inlet air is introduced into the fluidized bed, it also emits thermal radiation. 

Therefore, it is necessary to determine whether the thermal radiation emitted from the 

hot air will affect the relationship between the signal values corresponding to the 

identified pixels and the particle temperature. Following experiment was designed 

Figure 42.  

 

Figure 42. Effect of hot inlet air on the relationship between the signal values corresponding 

to the identified pixels and the particle temperature (experimental setup). 

As shown in the figure, several particles were fixed on the tip of a K-type 

thermocouple probe. The thermal camera was used to monitor the particles at its 

minimum focus distance (250 𝑚𝑚). A germanium window was placed between the 

particles and the thermal camera, the same setup as in the fluidized bed experiment 

(Figure 24). A hot air gun was used to blow hot air between the particles and the 

thermal camera. Distance between the heat gun and the particles was 100 𝑚𝑚. 

Temperature of the hot air was measured using a K-type thermocouple probe. 

In this experiment, temperature of the hot air was increased from 25 to 400°𝐶. In the 

meanwhile, the average particle temperature was around 23.6°𝐶 during the process. 

The signal value of the particles measured using the thermal camera was plotted 

against the air temperature, as shown in Figure 43. 
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Figure 43. Effect of hot inlet air on the relationship between the signal values corresponding 

to the identified pixels and the particle temperature (results). 

From the results, it can be observed that when the air temperature was increased, the 

measured signal value of the particles was also increased. This was caused that the 

thermal radiation emitted from the hot air can also be received by the thermal camera.  

It can also be found that when the air temperature was less than 75°𝐶, the measured 

signal value of the particles was increased slightly and within the error bar. Therefore, 

in this thesis, when the inlet air temperature in the fluidized bed was less than 75°𝐶, 

the effect of the air temperature on the thermal camera measurement was neglected.  

5.2 Calibration Method A (outside, stationary) 

The first experiment was designed to correlate the obtained signal value of the 

particles to the particle temperature when the particles were outside the fluidized bed 

and placed stationary. The experimental setup was shown in Figure 44. As shown in 

the figure, particles were placed in a petri dish and heated by a hot plate (STUART 

US152). The surface temperature of the particles was measured using a K-type 

thermocouple probe. After the probe was placed, the surface of the particles was 

flattened. The thermal camera was used to monitor the particles at its minimum focus 

distance (250 𝑚𝑚). The frame rate used was 50 𝑓𝑝𝑠. A germanium window was 

placed between the particles and the thermal camera, the same setup as in the 

fluidized bed experiment (Figure 24). 
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Figure 44. Calibration method A (experimental setup). 

In this experiment, temperature of the particle was gradually increased from 25 to 

60°𝐶. The measured signal value of the particle was averaged from an area (1.5 ×

 1.5 𝑚𝑚) representing the particles in the thermal images. Then the measured signal 

value of the particles was plotted against the particle temperature, as shown in Figure 

45.  

 

Figure 45. Calibration method A (results). 

From the results, it can be found that the obtained signal value of the particles was 

linearly related to the particle temperature.  
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In this experiment, since the measurement of the thermocouple probe was affected by 

room temperature, the measured particle temperature could be slightly lower than the 

actual particle temperature.  

5.3 Calibration Method B (inside, stationary) 

The second experiment was designed to correlate the obtained signal value of the 

particles to the particle temperature when the particles were inside fluidized bed and 

stationary. The experimental setup was shown in Figure 46. In the fluidized bed, 

several particles were fixed on the tip of a K-type thermocouple probe, which was 

located in the centre of the fluidized bed. The thermal camera was used to monitor the 

particles at its minimum focus distance (250 𝑚𝑚). The frame rate used was 50 𝑓𝑝𝑠. 

Height of the thermal camera was 85 𝑚𝑚 from the bottom of the fluidized bed.  

 

Figure 46. Calibration method B (experimental setup). 

In this experiment, temperature of the inlet air was gradually increased from 25 to 

70°𝐶. The measured signal value of the particle was averaged from an area (1.5 ×

 1.5 𝑚𝑚)) representing the particles in the thermal images. Then the measured signal 

value of the particles was plotted against the particle temperature, as shown in Figure 

47. 
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Figure 47. Calibration method B (results).  

From the results, it can be found that the obtained signal value of the particles was 

linearly related to the particle temperature.  

In this experiment, since the measurement of the thermocouple probe was affected by 

inlet air temperature, the measured particle temperature could be slightly higher than 

the real particle temperature.  

Figure 48 compares the results from the offline and online probe methods. It can be 

found that when the measured signal value of the particles was low, for the same 

signal value, the measured particle temperature in the two methods was the same. 

When the measured signal value was high, for the same signal value, the measured 

particle temperature in the method A was lower. This indicates that the surrounding 

air of the thermocouple probe can affect the temperature measurement.  
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Figure 48. Compare the method A and B. 

5.4 Calibration Method C (inside, fluidizing)  

Since the particle temperature measured by a thermocouple probe can be affected by 

the surrounding air of the probe, this experiment was designed. In this experiment, the 

particles were inside the fluidized bed and fluidizing over time.  

As shown in Figure 49, the fluidized bed was thermal insulated. In a thermal insulated 

fluidized bed, it is assumed that when the temperature steady state is reached, the 

temperatures of the inlet air, the exit air, the particles and the fluidized bed wall 

temperature are the same. The loaded particle mass was 1200 𝑔. The thermal camera 

was placed 250 𝑚𝑚 from the centre of the fluidized bed to monitor the fluidizing 

particles using its minimum focus distance. The frame rate used was 50 𝑓𝑝𝑠. Height 

of the thermal camera was 85 𝑚𝑚 from the bottom of the fluidized bed. Three K-type 

thermocouple probes were used to measure the temperatures of the inlet air, the 

ambient, the fluidized bed wall and the exit air. When temperatures of the inlet air, the 

exit air and the fluidized bed wall did not change over time, the temperature steady 

state was reached and then the fluidizing particles were monitored using the thermal 

camera for 2 𝑚𝑖𝑛.  
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Figure 49. Calibration Method C (experiment). 

In this experiment, the inlet air temperature was increased gradually from 25 to 60°𝐶 

and ten temperature steady states were studied. In Figure 50, the number of pixels in 

the thermal images (2 𝑚𝑖𝑛) was plotted against their signal values.  

 

Figure 50. Total pixels in the thermal images (2 min).  

In order to correlate the obtained signal value of the pixels to the particle temperature, 

it is necessary to identify the pixels representing the particles in the thermal images 

first. However, it is expected that when the thermal radiation emitted from the 
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fluidized bed wall and the particles was close to each other, the particles in the 

thermal images were unidentifiable.  

In Figure 51, the number of pixels among the identified pixels that represent the 

particles in the thermal images (2 𝑚𝑖𝑛) was plotted against their signal values. In the 

figures, the fluidized bed temperature represents the same temperature of the inlet air, 

the exit air, the fluidized bed wall and the particles at the temperature steady state. 

 

Figure 51. Identified pixels in the thermal images (2 min).  

From the above figure, it can be observed that when the fluidized bed temperature 

was less than 49.8°𝐶, the particles in the thermal images were unidentifiable. When 

no pixel was identified in the 2 𝑚𝑖𝑛, the signal values corresponded to the pixels 

representing the particles and the fluidized bed wall were the same and calculated as 

the average of all values within the signal matrices obtained in the 2 𝑚𝑖𝑛.  

In Figure 52, the results of the method C were plotted and compared with the method 

A and B.  
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Figure 52. Compare the results from the method A, B, and C.  

From the figure, when the measured signal value of the particles was low, for the 

same signal value, the particle temperature measured in the three methods was 

similar. When the measured signal value of the particles was high, for the same signal 

value, the particle temperature measured in the method A was higher than in the 

method C, and higher than in the method B.  

In this thesis, when the measured signal value of the particles was less than 

17000 𝑟𝑎𝑤 𝑐𝑜𝑢𝑛𝑡, it was correlated to the particle temperature averaged from the 

three methods. When the measured signal value was greater than 17000 𝑟𝑎𝑤 𝑐𝑜𝑢𝑛𝑡, 

it was correlated to the particle temperature measured in the method C. The results are 

shown in Figure 53.  
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Figure 53. Correlate the measured signal value of the particles to the particle temperature. 

From the results, the correlation equation can be fitted as: 

𝑆𝑥𝑦
∗ = 133.6 × 𝑇𝑥𝑦

∗ + 10678 Eq. (54) 

Where 𝑆𝑥𝑦
∗  is an element in the signal matrix 𝑺 and is corresponded to an identified 

pixel 𝐼𝑥𝑦
∗  in the thermal image 𝑰, and 𝑇𝑥𝑦

∗  is the temperature of the particle represented 

by 𝑆𝑥𝑦
∗  in the signal matrix 𝑺 and 𝐼𝑥𝑦

∗  in the thermal image correspond to the 

element 𝑆𝑥𝑦
∗ .  

The equation can then be converted to:  

𝑇𝑥𝑦
∗ = 0.0075 × 𝑆𝑥𝑦

∗ − 79.9, (°𝐶) Eq. (55) 

5.5 Summary 

In this chapter, the effect of the flow air on the particle temperature measurement 

using a thermal camera is examined. It is found that when the air temperature is low, 

the effect is negligible.  

Then three calibration methods were used to correlate the particle temperature with its 

signal value in the thermal images. In the method A (outside, stationary), the particle 

was stationary and outside of a fluidized bed. The particle temperature was directly 

measured by a K-type thermocouple probe. In the method B (inside, stationary), the 

particle was inside of a fluidized bed and fixed on the tip of a K-type thermocouple 

y = 133.6x + 10678
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probe. The particle temperature was also directly measured by a K-type thermocouple 

probe. In the method C (inside, fluidizing), the particles was inside of a thermal 

insulated fluidized bed and can be fluidized as normal. The particle temperature was 

deduced from the temperatures of the inlet air, the exit, and the fluidized bed wall at 

the temperature steady state.  

By comparing the results in the three methods, an optimum calibration equation was 

fitted. This equation will be used in the following chapters to obtain the online 

particle temperature from the signal matrix output by the thermal camera.  
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6 Particle heating process 

In this chapter, the effect of the inlet air velocity, the inlet air temperature, and the 

loaded particle mass on the particle temperature was investigated, respectively. The 

experimental setup used is first introduced in the section 3.4, and repeated here 

(Figure 54). The fluidized bed was not insulated. Temperatures of the inlet air, the 

exit air, the fluidized bed wall, and the ambient were online measured by K-type 

thermocouple probes. Temperature of the particles was online measured by a thermal 

camera using the previous established method. Since the focus of the thermal camera 

and the movement of the particles are considered in the particle identification, and the 

air surrounding the particles is considered in the particle temperature calibration, the 

particle temperature measured by this method will be more accurate than the results in 

the literature.  

 

Figure 54. Experimental setup.  

At the beginning, the inlet air temperature was 30°𝐶. When the temperatures of the 

exit air and the fluidized bed wall did not change over time, the inlet air temperature 

was started to be increased by the heating system inside the fluidized bed. Then the 

particle heating process was started. The temperatures of the inlet air, the exit air, the 

particles, the fluidized bed wall, and the ambient were online measured every second 

and for 1600 second in total.  
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The time required by the fluidized bed heating system to heat the inlet air to a desired 

temperature (53, 57, and 63 ℃, respectively) was around 200 𝑠. Before 200 𝑠, the 

inlet air temperature was increased rapidly. Followed by the exit air temperature, the 

particle temperature, and the fluidized bed wall temperature. The particle heating 

process at this state was mainly determined by the fluidized bed heating system.  

In this thesis, the particle heating process was investigated after 200 𝑠. In order to 

compare the heating process of the particles and the fluidized bed wall, a term 𝜃 was 

defined as follow:  

𝜃 =
𝑇𝑝 − 𝑇𝑤

𝑇𝑎 − 𝑇𝑤
 Eq. (56) 

Where 𝑇𝑎 is the air temperature (𝐾), 𝑇𝑝 is the particle temperature (𝐾), and 𝑇𝑤 is the 

fluidized bed wall temperature (𝐾). From the order of the temperatures, it is known 

that 𝜃 is between 0 (the temperatures of the particles and the fluidized bed wall are 

same) and 1 (the temperatures of the air and the particles are same).  

6.1 Effect of the inlet air velocity 

In order to investigate the effect of the inlet air velocity on the particle heating 

process. The inlet air velocity used was 1.5, 2.0 and 2.5 𝑚/𝑠, respectively. The inlet 

air temperature used was around 57°𝐶. The loaded particle mass was 1200 𝑔. It 

should also be noticed that the detector time constant is typical 8 𝑚𝑠. The maximum 

velocity required for the particles to be clear in the thermal image is therefore 0.02 

𝑚/𝑠.  The online measured temperatures of the inlet air, the exit air, the particles, the 

fluidized bed wall and the ambient from 200 𝑠 to 1600 𝑠 are shown in Figure 55, 

Figure 56, and Figure 57, respectively.  
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Figure 55. Online monitoring of 1200 g particles heated by 1.5 m/s and 57°C inlet air. 

In Figure 55, the inlet air temperature was approximately 57°𝐶. The exit air 

temperature was increased from around 51 to 56°𝐶. The particle temperature was 

increased from 42 to 49°𝐶. The fluidized bed wall temperature increased from 31 to 

39°𝐶. The ambient was around 25°𝐶.  

 

Figure 56. Online monitoring of 1200 g particles heated by 2.0 m/s and 57°C inlet air. 

In Figure 56, the inlet air temperature was approximately 57°𝐶. The exit air 

temperature was increased from around 52 to 56°𝐶. The particle temperature was 
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increased from 45 to 53°𝐶. The fluidized bed wall temperature increased from 32 to 

41°𝐶. The ambient was around 25°𝐶.  

 

Figure 57. Online monitoring of 1200 g particles heated by 2.5 m/s and 57°C inlet air. 

In Figure 57, the inlet air temperature was approximately 57°𝐶. The exit air 

temperature was increased from around 52 to 55°𝐶. The particle temperature was 

increased from 46 to 54°𝐶. The fluidized bed wall temperature increased from 33 to 

43°𝐶. The ambient was around 26°𝐶.  

From the above three figures, it can be found that during the particle heating process, 

the order of the temperatures from high to low was always the inlet air temperature, 

the exit air temperature, the particle temperature, the fluidized bed wall temperature 

and the ambient temperature. This indicates the heat was transferred from the air to 

both the particles and the fluidized bed wall, from the particles to the fluidized bed 

wall, and then from the fluidized bed wall to the ambient.  

Figure 58 shows the temperature difference between the air (the average of the inlet 

air and the exit air temperatures) and the particle. From the figure, it can be found that 

due to the heating process of the particles, the temperature difference was decreased 

gradually with time. When the inlet air velocity was increased, at the same time, the 

temperature difference was decreased. This indicates that higher inlet air velocity can 

accelerate the heating process of the particles.  
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Figure 58. Effect of the inlet air velocity on the temperature difference between the air and the 

particles. 

Figure 59 shows the temperature difference between the air (the average of the inlet 

air and the exit air temperatures) and the fluidized bed wall. From the figure, it can be 

found that due to the heating process of the fluidized bed wall, the temperature 

difference was decreased gradually with time. When the inlet air velocity was 

increased, at the same time, the temperature difference was decreased. The results 

indicate that higher inlet air velocity can accelerate the heating process of the 

fluidized bed wall. 

 

Figure 59. Effect of the inlet air velocity on the temperature difference between the air and the 

fluidized bed wall. 
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Figure 60 shows the effect of the inlet air velocity on 𝜃. From the figure, it can be 

found that 𝜃 was increased slowly due to the particle heating process. When the inlet 

air velocity was increased, 𝜃 was increased and the particle temperature was closer to 

the air temperature. This indicates that the higher inlet air velocity can accelerate the 

heating process of the particles more than the heating process of the fluidized bed 

wall. 

 

Figure 60. Effect of the inlet air velocity on 𝜃. 

6.2 Effect of the inlet air temperature 

In order to investigate the effect of the inlet air velocity on the particle heating 

process. The inlet air velocity used was 2.0 𝑚/𝑠. The inlet air temperature used was 

around 50, 57, and 63°𝐶, respectively. The loaded particle mass was 1200 𝑔. The 

online measured temperatures of the inlet air, the exit air, the particles, the fluidized 

bed wall and the ambient from 200 𝑠 to 1600 𝑠 are shown in Figure 61, Figure 56, 

and Figure 62, respectively.  

In Figure 61, the inlet air temperature was approximately 50°𝐶. The exit air 

temperature was increased from around 47 to 50°𝐶. The particle temperature was 

increased from 42 to 47°𝐶. The fluidized bed wall temperature was increased from 32 

to 39°𝐶. The ambient was 27°𝐶 and did not change over time. 
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Figure 61. Online monitoring of 1200 g particles heated by 2.0 m/s and 50°C inlet air. 

In Figure 62, the inlet air temperature was approximately 63°𝐶. The exit air 

temperature was increased from around 57 to 61°𝐶. The particle temperature was 

increased from 49 to 61°𝐶. The fluidized bed wall temperature was increased from 32 

to 45°𝐶. The ambient was 26°𝐶 and did not change over time.  

 

Figure 62. Online monitoring of 1200 g particles heated by 2.0 m/s and 63°C inlet air. 
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From the above three figures, it is can be found that the order of the temperatures does 

not affected by the inlet air temperature. The heat transfer from the particles to the 

fluidized bed wall is higher than that of the hot air to the fluidized bed wall.  

Figure 63 shows the temperature difference between the air (the average of the inlet 

air and the exit air temperatures) and the particle. From the figure, it can be found that 

due to the heating process of the particles, the temperature differences were decreased 

gradually with time. At the early state, the temperature difference at the same time 

was higher when the air temperature (i.e. 50, 57, and 63°𝐶) was higher.  

 

Figure 63. Effect of the inlet air temperature on the temperature difference between the air 

and the particles. 

Figure 64 shows the temperature difference between the air (the average of the inlet 

air and the exit air temperatures) and the fluidized bed wall. From the figure, it can be 

found that the temperature difference was decreased gradually with time and the 

decreasing trend was limited affected by the air temperature. When the air 

temperature was higher, at the same time, the temperature difference was higher.  
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Figure 64. Effect of the inlet air temperature on the temperature difference between the air 

and the fluidized bed wall. 

Figure 65 shows the effect of the inlet air temperature on 𝜃.  

 

Figure 65. Effect of the inlet air temperature on 𝜃. 

From the figure, it can be found that 𝜃 was increased slowly due to the particle 

heating process and the increasing trend was limited affected by the inlet air 

temperature. This indicates that the when the inlet air temperature was changed, the 
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relationship between the heating processes of the particles and the heating process of 

the fluidized bed wall was limited affected. 

6.3 Effect of the loaded particle mass 

In order to investigate the effect of the inlet air velocity on the particle heating 

process. The inlet air velocity used was 2.0 𝑚/𝑠. The inlet air temperature used was 

around 57°𝐶. The loaded particle mass was 1000, 1200, and 1400 𝑔, respectively. 

The online measured temperatures of the inlet air, the exit air, the particles, the 

fluidized bed wall and the ambient from 200 𝑠 to 1600 𝑠 are shown in Figure 66, 

Figure 56, and Figure 67, respectively.  

In Figure 66, the inlet air temperature was approximately 57°𝐶. The exit air 

temperature was increased from around 52 to 56°𝐶. The particle temperature was 

increased from 42 to 50°𝐶. The fluidized bed wall temperature was increased from 

31 to 41°𝐶. The ambient was around 24°𝐶.  

 

Figure 66. Online monitoring of 1000 g particles heated by 2.0 m/s and 57°C inlet air. 

In Figure 67, the inlet air temperature was approximately 57°𝐶. The exit air 

temperature was increased from around 52 to 55°𝐶. The particle temperature was 

increased from 46 to 54°𝐶. The fluidized bed wall temperature was increased from 

33 to 43°𝐶. The ambient was around 26°𝐶. 
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Figure 67. Online monitoring of 1400 g particles heated by 2.0 m/s and 57°C inlet air. 

From the Figure 66, Figure 56, and Figure 67, it is can be found that the order of the 

temperatures does not affected by the loaded particle mass. The heat transfer from the 

particles to the fluidized bed wall is important.  

Figure 68 shows the temperature difference between the air (the average of the inlet 

air and the exit air temperatures) and the particle. From the figure, it can be found that 

due to the heating process of the particles, the temperature difference was decreased 

gradually with time. Generally, it is expected that less loaded particle mass can result 

in faster particle heating process. However, in this experiment, it can be seen that 

when the loaded particle mass was less, at the same time, the temperature difference 

was increased. This indicates that when the mass of the loaded particle is higher 

(1000g, 1200g, and 1400 g), the heat transfer rate between the air and the particles is 

higher. This could be caused by the non-uniform temperature distribution in the 

fluidized bed. When there are more particles, the fluidization of the particles becomes 

worse and most of the particles are likely to stay close to the bottom of the fluidized 

bed. 
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Figure 68. Effect of the loaded particle mass on the temperature difference between the air 

and the particles.  

Figure 69 shows the temperature difference between the air (the average of the inlet 

air and the exit air temperatures) and the fluidized bed wall.  

 

Figure 69. Effect of the loaded particle mass on the temperature difference between the air 

and the fluidized bed wall.  

From the figure, it can be found that the temperature difference was decreased 

gradually with time. When the loaded particle mass was increased, at the same time, 

the temperature difference for the 1000 𝑔 loaded particle mass was slightly higher 

than the temperature difference for the 1200 𝑔 loaded particle mass, significantly 
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higher than the temperature difference for the 1400 𝑔 loaded particle mass. This 

indicates that higher loaded particle mass can accelerate the heating process of the 

fluidized bed wall. 

Figure 70 shows the effect of the inlet air temperature on 𝜃. From the figure, it can be 

found that 𝜃 was increased slowly due to the particle heating process. When the 

loaded particle mass was increased, 𝜃 was increased and the particle temperature was 

closer to the air temperature. This indicates that the higher loaded particle mass can 

accelerate the heating process of the particles more than the heating process of the 

fluidized bed wall. 

 

Figure 70. Effect of the loaded particle mass on 𝜃. 

6.4 Validation 

Since the experiments were operated in the similar ambient environment, the heat 

transfer coefficient between the fluidized bed wall and the ambient should be a 

constant. Therefore, it can be used to validate the experimental results.  

In order to estimate the heat transfer coefficient between the fluidized bed and the 

ambient, the energy balance was used: 

𝐸𝑖𝑛𝑝𝑢𝑡 = 𝐸𝑝 + 𝐸𝑤 + 𝐸𝑙𝑜𝑠𝑡 Eq. (57) 
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Where 𝐸𝑖𝑛𝑝𝑢𝑡 is the total energy input from the air to particles and the fluidized bed 

wall (𝐽), 𝐸𝑝 is the energy that increases the particle temperature (𝐽), 𝐸𝑤 is the energy 

that increases the fluidized bed wall temperature (𝐽), and 𝐸𝑙𝑜𝑠𝑡 is the energy lost (𝐽).  

The overall energy balance from heating time 200 𝑠 to 1600 𝑠 was: 

𝐸𝑖𝑛𝑝𝑢𝑡 = ∫ 𝜌𝑎𝑈𝑖𝑛𝐴𝑖𝑛𝐶𝑝,𝑎[𝑇𝑖𝑛(𝑡) − 𝑇𝑒𝑥(𝑡)]𝑑𝑡
1600

200

 Eq. (58) 

𝐸𝑝 = 𝑚𝑝𝐶𝑝,𝑝[𝑇𝑝(1600) − 𝑇𝑝(200)] Eq. (59) 

𝐸𝑤 = 𝑚𝑤𝐶𝑝,𝑤[𝑇𝑤(1600) − 𝑇𝑤(200)] Eq. (60) 

𝐸𝑙𝑜𝑠𝑡 = ∫ ℎ𝑙𝑜𝑠𝑡𝐴𝑙𝑜𝑠𝑡[𝑇𝑤(𝑡) − 𝑇𝑎𝑚𝑏.(𝑡)]𝑑𝑡
1600

200

 Eq. (61) 

Where 𝜌𝑎 is the density of the air (𝑘𝑔 𝑚3⁄ ), 𝑈𝑖𝑛 is the inlet air velocity (𝑚/𝑠), 𝐴𝑖𝑛 is 

the cross-sectional area of fluidized bed air distributor (𝑚2), 𝐶𝑝,𝑎 is the specific heat 

capacity of air (𝐽 𝑘𝑔 ∙ 𝐾⁄ ), 𝑡 is the heating time (𝑠), 𝑇𝑖𝑛(𝑡) is the inlet air temperature 

at the heating time 𝑡 (𝐾), 𝑇𝑒𝑥(𝑡) is the exit air temperature at the heating time 𝑡 (𝐾), 

𝑚𝑝 is the loaded particle mass (𝑘𝑔), 𝐶𝑝,𝑝 is the specific heat capacity of the particles 

(𝐽 𝑘𝑔 ∙ 𝐾⁄ ), 𝑇𝑝(1600) is the particle temperature at the heating time 1600 s, 𝑇𝑝(200) 

is the particle temperature at the heating time 200 s, 𝑚𝑤 is the mass of fluidized bed 

wall (𝑘𝑔), 𝐶𝑝,𝑤 is the specific heat capacity of the fluidized bed wall (𝐽 𝑘𝑔 ∙ 𝐾⁄ ), 

𝑇𝑤(1600) is the fluidized bed wall temperature at the heating time 1600 s, 𝑇𝑤(200) is 

the fluidized bed wall temperature at the heating time 200 s, ℎ𝑙𝑜𝑠𝑡 is the heat transfer 

coefficient between the fluidized bed wall and the ambient air (𝑊 𝑚2 ∙ 𝐾⁄ ), 𝐴𝑙𝑜𝑠𝑡 is 

outside surface area of the fluidized bed wall (𝑚2), 𝑇𝑤(𝑡) is the fluidized bed wall 

temperature at the heating time 𝑡 (𝐾), 𝑇𝑎𝑚𝑏.(𝑡) is the ambient temperature at the 

heating time 𝑡 (𝐾).  

Then the ℎ𝑙𝑜𝑠𝑡 was calculated to be 154 ± 8% (𝑊 𝑚2 ∙ 𝐾⁄ ), which is approximately a 

constant. Therefore, it is validated that the experimental results are reliable.  

6.5 Summary 

In this chapter, during the particle heating process, the online temperature of the 

particles were measured by a thermal camera and the online temperatures of the inlet 
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air, the exit air, the fluidized bed wall and the fluidized bed ambient were measured 

by thermocouple probes.  

By introducing 𝜃 =
𝑇𝑝−𝑇𝑤

𝑇𝑎−𝑇𝑤
, the temperatures of the air (average of the inlet air and the 

exit air), the particles, and the fluidized bed wall can be compared. From the results, it 

was found that higher inlet air velocity can accelerate the heating process of the 

particles more than the heating process of the fluidized bed wall. Changing inlet air 

temperature did not change the relationship between the heating processes of the 

particles and the heating process of the fluidized bed wall significantly. It is found 

that higher loaded particle mass (1000 g, 1200 g, and 1400 g) can result in faster 

particle heating process. The reason may be that when there are more particles, the 

fluidization of the particles becomes worse and the particles are more likely to stay 

near the bottom of the fluidized bed.By assuming the heat transfer coefficient between 

the fluidized bed wall and the ambient was a constant, the measured temperatures 

were validated.  
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7 Heat transfer mechanism 

7.1 Temperature steady state 

7.1.1 Temperatures 

In this chapter, 1000 𝑔, 1200 𝑔 and 1400 𝑔 particles were loaded in the fluidized 

bed, respectively. The introduced inlet air velocity was 1.5, 2.0 and 2.5 𝑚/𝑠, 

respectively. At the beginning, temperature of the inlet air was 30°𝐶. When the 

temperatures of the exit air and the fluidized bed wall did not change over time, the 

inlet air temperature was increased to 50, 57 and 63°𝐶, respectively. The 

experimental parameters were illustrated in Figure 71.  

 

Figure 71. Parameters of the extended experiments. 

When the online temperatures of the inlet air, the exit air, the particles, the fluidized 

bed wall, and the ambient were not changing significantly for 100 𝑠, a temperature 

steady state was considered to be achieved.  

The temperatures measured within the 100 𝑠 were averaged, respectively. The results 

are shown in Table 1. Inlet air temperature in the parameter column is the set 

temperature on the control panel of the fluidized bed. The temperatures of inlet air, 

exit air, wall, and ambient were measured by thermocouple probes. The temperature 

of particle was measured by the thermal camera. 
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Table 1. Temperatures of the inlet air, the exit air, the particles, the fluidized bed wall, and the 

ambient at steady state. 

Parameters Inlet air Exit air Particle Wall Ambient 

Loaded 

particle 

mass (g) 

Inlet air 

velocity 

(m/s) 

Inlet air 

temperature 

(°C) 

(°C) 

1000 1.5 50 49.5 48.1 34.9 43.6 23.0 

1000 2.0 50 50.0 49.0 37.2 45.0 24.5 

1000 2.5 50 49.9 49.0 38.4 47.5 25.4 

1000 1.5 57 56.5 55.0 37.9 47.4 22.5 

1000 2.0 57 57.0 55.7 40.9 50.5 24.4 

1000 2.5 57 56.5 55.0 41.4 52.9 25.0 

1000 1.5 63 64.7 62.3 41.1 56.1 25.6 

1000 2.0 63 64.8 63.2 44.5 59.3 26.5 

1000 2.5 63 64.0 62.5 45.2 61.2 27.0 

1200 1.5 50 50.1 48.5 36.4 43.4 26.0 

1200 2.0 50 50.5 49.5 39.0 47.7 27.0 

1200 2.5 50 50.4 49.5 39.5 49.2 27.0 

1200 1.5 57 57.4 55.4 39.1 49.3 25.0 

1200 2.0 57 57.5 55.7 41.1 52.9 25.5 

1200 2.5 57 57.0 55.5 42.3 54.6 26.2 

1200 1.5 63 64.6 62.4 41.1 55.9 25.5 

1200 2.0 63 64.7 62.8 44.6 60.9 26.9 

1200 2.5 63 64.0 62.0 45.6 61.4 26.5 

1400 1.5 50 50.0 48.5 36.3 44.2 24.5 

1400 2.0 50 50.2 49.0 38.5 47.9 26.1 

1400 2.5 50 50.1 49.0 39.8 49.0 27.0 

1400 1.5 57 57.2 55.0 39.6 50.0 25.6 

1400 2.0 57 57.5 55.9 43.2 55.1 27.1 

1400 2.5 57 57.3 55.6 43.9 56.0 27.8 

1400 1.5 63 65.1 62.2 43.3 56.6 27.1 

1400 2.0 63 64.9 62.5 46.3 60.7 27.5 

1400 2.5 63 64.5 62.5 46.7 61.8 28.0 
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7.1.2 Bed height 

From the thermal images, the average distance between the identified particles and the 

bottom of the thermal image can be obtained in the unit of pixels (Figure 72).  

 

Figure 72. Distance between the identified particles and the bottom of the thermal image 

(pixels).  

Since the pixel size (𝑙𝑝𝑖𝑥𝑒𝑙) was 0.15 𝑚𝑚 = 0.15 × 10−3 𝑚, the distance between the 

bottom of the thermal image and the bottom of the fluidized bed (𝐻𝑖𝑚𝑎𝑔𝑒−𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟) 

was 37 × 10−3  𝑚. The unit of the distance between the identified particles and the 

thermal image bottom can be converted from pixels to meter (Figure 73).  
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Figure 73. Bed height (mm). 

From the results, it can be observed that when the inlet air velocity or the loaded 

particle mass was increased, the bed height was increased, while the effect of the inlet 

air temperature on the bed height was negligible.  

In this thesis, when the inlet air velocity is increased, the average height of the 

identified particles in the thermal images is increased as well.  
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7.1.3 Wall area and void fraction of the fluidized bed 

The fluidized bed wall area is the area of the particles in contact with the fluidized bed 

wall. The void fraction of the fluidized bed is the ratio of the air volume in the particle 

bed and the total volume of the particle bed.  

In order to calculate them from the bed height, following geometric model was used 

(Figure 74). It is assumed that the particles were uniformly distributed between the 

bottom of the fluidized bed and the height of the identified particles. 

 

Figure 74. Geometric model. 

As shown in the figure, the fluidization area of the particles is a frustrated cone (top 

radius is 150 𝑚𝑚, bottom radius is 100 𝑚𝑚, and height is 200 𝑚𝑚). When 𝐻𝑏𝑒𝑑 is 

the average height of the identified particles (𝑚), it can be calculated that:  

𝑅𝑏𝑒𝑑 = 0.1 +
𝐻𝑏𝑒𝑑
4

 Eq. (62) 

The contact area between the particles and the Fluidized bed wall can be calculated 

as: 

𝐴𝑏𝑒𝑑 = 𝜀𝜋𝑅𝑏𝑒𝑑 (𝑅𝑏𝑒𝑑 +√(0.4 + 𝐻𝑏𝑒𝑑)2 + 𝑅𝑏𝑒𝑑
2 ) − 0.19 Eq. (63) 

The total volume of the particle bed can be calculated as: 

 𝑉𝑏𝑒𝑑 = 𝜋𝑅𝑏𝑒𝑑
2

0.4 + 𝐻𝑏𝑒𝑑
3

− 0.0042 Eq. (64) 

Figure 75 shows the calculated fluidized bed wall area and Figure 76 shows the 

calculated total volume of the particle bed. 



107 

 

Since the particle density was 2600 𝑘𝑔/𝑚3, the volume of the particles can be 

calculated as: 

𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 =
𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

2600 𝑘𝑔/𝑚3
 Eq. (65) 

Where 𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 is the loaded particle mass (𝑘𝑔). 

Then the void fraction of the particle bed can be calculated using: 

𝜀 = 1 −
𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑉𝑏𝑒𝑑
 Eq. (66) 

The calculated void fractions are shown in Figure 77. 

From the results, it can be found that when the inlet air velocity was increased, the 

void fraction was increased. When the loaded particles mass was increased, the effect 

of the inlet air velocity on the void fraction was less significant. 
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Figure 75. Contact area between the particles and the Fluidized bed wall (𝑚2). 
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Figure 76. Total volume of the particle bed (𝑚3). 
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Figure 77. Void fraction of the particle bed. 

7.2 Overall heat transfer coefficient 

When the particle temperature does not change over time, it is considered that a 

temperature steady state is reached. At this state, the overall heat transferred from the 

air to the particles equals to the overall heat transferred from the particles to the 

fluidized bed wall.  

The heat transferred from the air to the particles can be expressed as:  

𝑞𝑎𝑝 = ℎ𝑎𝑝𝐴𝑎𝑝Δ𝑇𝑎𝑝 Eq. (67) 

Where 𝑞𝑎𝑝 is the overall heat flux from the air to the particles (𝑊), ℎ𝑎𝑝 is the heat 

transfer coefficient between the air and the particles (𝑊 𝑚2 ∙ 𝐾⁄ ), 𝐴𝑎𝑝 is the contact 
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area between the air and the particles (𝑚2), Δ𝑇𝑎𝑝 is the mean temperature difference 

between the air and the particles (𝐾).  

The heat transfer from the particles to the fluidized bed wall can be expressed as: 

𝑞𝑝𝑤 = ℎ𝑝𝑤𝐴𝑏𝑒𝑑Δ𝑇𝑝𝑤 Eq. (68) 

Where 𝑞𝑝𝑤 is the overall heat flux from the particles to the fluidized bed wall (𝑊), 

ℎ𝑝𝑤 is the heat transfer coefficient between the particles and the fluidized bed wall 

(𝑊 𝑚2 ∙ 𝐾⁄ ), 𝐴𝑏𝑒𝑑 is the fluidized bed contact area (𝑚2), Δ𝑇𝑝𝑤 is the mean 

temperature difference between the particles and the fluidized bed wall (𝐾).  

At the temperature steady state: 

𝑞𝑎𝑝 = 𝑞𝑝𝑤 Eq. (69) 

Which can be rewrite as: 

ℎ𝑎𝑝𝐴𝑎𝑝Δ𝑇𝑎𝑝 = ℎ𝑝𝑤𝐴𝑏𝑒𝑑Δ𝑇𝑝𝑤 Eq. (70) 

 

Therefore, the ratio between the heat transfer coefficient from the air to a single 

particle and the heat transfer coefficient from the particles to the fluidized bed wall 

can be calculated as:  

𝜂 =
ℎ𝑎𝑝

ℎ𝑝𝑤
=
𝐴𝑏𝑒𝑑Δ𝑇𝑝𝑤

𝐴𝑎𝑝Δ𝑇𝑎𝑝
 Eq. (71) 

This ratio can be used to indicate the heat transfer performance of the fluidized bed. 

𝐴𝑎𝑝 is calculated as (Gunn, 1978): 

𝐴𝑎𝑝 =
6(1 − 𝜀)

𝐷𝑚𝑒𝑎𝑛
𝑉𝑏𝑒𝑑 Eq. (72) 

Where 𝜀 is the void fraction of the particle bed, and 𝐷𝑚𝑒𝑎𝑛 is the mean particle 

diameter (𝑚).  

𝐴𝑏𝑒𝑑 was calculated in the section 7.1.3.  



112 

 

Using the Eq. (71), the ratio between the heat transfer coefficient from the air to a 

single particle and the heat transfer coefficient from the particles to the fluidized bed 

wall can be calculated. The results are shown in Figure 78.  

From the figures, it can be observed that 𝜂 is significantly affected by the inlet air 

velocity, while the effect of the inlet air temperature and the loaded particle mass on 𝜂 

is not clear.  

 

Figure 78. Calculated 𝜂. 

In Figure 79, 𝜂 is plotted against the void fraction of the particle bed 𝜀. From the 

figure, it can be observed that generally, increase bed void fraction can optimize the 

particle heating process. It can also be seen that when the loaded particles mass was 

higher (1.0 kg, 1.2 kg, and 1.4 kg), the η was less affected by the void fraction (ε). 
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Figure 79. 𝜂 and 𝜀. 

7.3 Two-compartment model 

In order to correlate the heat transfer process between the air and the particles, and 

between the particles and the fluidized bed wall, a two-compartment model is 

developed.  

In this model, particles are considered to circulate between a cold zone (closer to the 

fluidized bed wall) and a hot zone (away from the fluidized bed wall). In each zone, 

the particles are well-mixed.  

At the beginning, a single particle is considered.  

 

Figure 80. Two compartment model (single particle). 
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As shown in Figure 80, the temperature of the hot zone and the cold zone is denoted 

as 𝑇𝐻 and 𝑇𝐶, respectively.  

A particle enters the hot zone with temperature 𝑇𝐻1
∗  and leaves the hot zone with 

temperature 𝑇𝐻2
∗ . The time it spent in the hot zone is 𝑡𝐻. Then the temperature 

changing rate 
𝛥𝑇

𝑑𝑡
 of the particle within the hot zone can be expressed as: 

𝑚𝑝
∗𝐶𝑝,𝑝

𝛥𝑇

𝑑𝑡
= ℎ𝐻

∗ 𝐴𝐻
∗  (𝑇𝐻 − 𝑇

∗) Eq. (73) 

Where 𝑚𝑝
∗  is the particle mass (𝑘𝑔), 𝐶𝑝,𝑝 is the specific heat capacity of the particle 

(𝐽 𝑘𝑔 ∙ 𝐾⁄ ), ℎ𝐻
∗  is the heat transfer coefficient between the hot zone and the particle 

(𝑊 𝑚2 ∙ 𝐾⁄ ), 𝐴𝐻
∗  is the heat transfer area between the hot zone and the particle (𝑚2), 

𝑇∗ is the instantaneous particle temperature (𝐾). 

A particle enters the cold zone with temperature 𝑇𝐶1
∗  and leaves the hot zone with 

temperature 𝑇𝐶2
∗ . The time it spent in the hot zone is 𝑡𝐶. Then the temperature 

changing rate 
𝛥𝑇

𝑑𝑡
 of the particle within the hot zone can be expressed as: 

𝑚𝑝
∗𝐶𝑝,𝑝

𝛥𝑇

𝑑𝑡
= ℎ𝐶

∗𝐴𝐶
∗  (𝑇∗ − 𝑇𝐶) Eq. (74) 

Where 𝑚𝑝
∗  is the particle mass (𝑘𝑔), 𝐶𝑝,𝑝 is the specific heat capacity of the particle 

(𝐽 𝑘𝑔 ∙ 𝐾⁄ ), ℎ𝐶
∗  is the heat transfer coefficient between the hot zone and the particle 

(𝑊 𝑚2 ∙ 𝐾⁄ ), 𝐴𝐶
∗  is the heat transfer area between the hot zone and the particle (𝑚2), 

𝑇∗ is the instantaneous particle temperature (𝐾).  

Integrating Eq. (73) and Eq. (74) separately, following expression can be obtained: 

{
 
 

 
 𝑇𝐻2

∗ − 𝑇𝐻
𝑇𝐻1
∗ − 𝑇𝐻

= 𝑒
−𝑡𝐻 (

𝑚𝑝
∗ 𝐶𝑝,𝑝
ℎ𝐻
∗ 𝐴𝐻

∗ )⁄

𝑇𝐶2
∗ − 𝑇𝐶
𝑇𝐶1
∗ − 𝑇𝐶

= 𝑒
−𝑡𝐶 (

𝑚𝑝
∗ 𝐶𝑝,𝑝
ℎ𝐶
∗𝐴𝐶

∗ )⁄

 Eq. (75) 

Which is, 
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{
  
 

  
 

𝑡𝐻

(
𝑚𝑝
∗𝐶𝑝,𝑝
ℎ𝐻
∗ 𝐴𝐻

∗ )

= − ln (
𝑇𝐻2
∗ − 𝑇𝐻
𝑇𝐻1
∗ − 𝑇𝐻

)

𝑡𝐶

(
𝑚𝑝
∗𝐶𝑝,𝑝
ℎ𝐶
∗𝐴𝐶

∗ )

= − ln (
𝑇𝐶2
∗ − 𝑇𝐶
𝑇𝐶1
∗ − 𝑇𝐶

)

 Eq. (76) 

By comparing these two expression, following relationship can be obtained: 

𝑡𝐻
𝑡𝐶

ℎ𝐻
∗

ℎ𝐶
∗

𝐴𝐻
∗

𝐴𝐶
∗ =

ln (
𝑇𝐻2
∗ − 𝑇𝐻
𝑇𝐻1
∗ − 𝑇𝐻

)

ln (
𝑇𝐶2
∗ − 𝑇𝐶
𝑇𝐶1
∗ − 𝑇𝐶

)
 Eq. (77) 

If following items are defined: 

𝜅𝑡 =
𝑡𝐻
𝑡𝐶

 Eq. (78) 

𝜅ℎ =
ℎ𝐻
∗

ℎ𝐶
∗  Eq. (79) 

𝜅𝐴 =
𝐴𝐻
∗

𝐴𝐶
∗  Eq. (80) 

𝜉 =
ln (

𝑇𝐻2
∗ − 𝑇𝐻
𝑇𝐻1
∗ − 𝑇𝐻

)

ln (
𝑇𝐶2
∗ − 𝑇𝐶
𝑇𝐶1
∗ − 𝑇𝐶

)
 Eq. (81) 

𝜉 is originally defined in this thesis to integrate the temperatures of the hot zone, the 

cold zone, and the particles. It is a value that can be measured experimentally and can 

be used to indicate the heat transfer processes in the hot zone and in the cold zone.  

Then Eq. (77) can be rewrite as: 

𝜅𝑡𝜅ℎ𝜅𝐴 = 𝜉 Eq. (82) 

When 𝜅𝐴 is higher, the contact area between the hot zone and the particle is larger 

than the contact area between the cold zone the particle. When 𝜅ℎ is higher, the heat 

transfer coefficient between the hot zone and the particle is higher than the heat 

transfer coefficient between the cold zone and the particle. When 𝜅𝑡 is higher, the 

time that the particle spent in the hot zone is longer than the time that the particle 
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spent in the cold zone. When 𝜉 is increased, the heat transfer performance between 

the hot zone and the particle is improved more than the heat transfer performance 

between the cold zone and the particle.  

Ideally, the values of the items in Eq. (82) are different for different particles in the 

fluidized bed. For any particle denoted as 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖: 

𝜅𝑡(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)𝜅ℎ(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)𝜅𝐴(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝜉(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) Eq. (83) 

For simplification, it is assumed that there is a particle exist that can be used to 

represent all particles. When the particle reaches a temperature steady state, following 

relationship is obtained: 

{

𝑇𝐻1
∗ = 𝑇𝐶2

∗

𝑇𝐻2
∗ = 𝑇𝐶1

∗

𝑇𝐻1
∗ < 𝑇𝐻2

∗

𝑇𝐶1
∗ > 𝑇𝐶2

∗

 Eq. (84) 

At a temperature steady state, within the 100 𝑠 measurement time, the average 

particle temperature and the standard deviation were denoted as 𝑇𝑎𝑣𝑔
∗  and 𝑇𝑠𝑡𝑑

∗ , 

respectively. Since the measured particles included the particles in the hot zone and 

the particles in the cold zone, it is assumed that the particle was heated from (𝑇𝑎𝑣𝑔
∗ −

𝑇𝑠𝑡𝑑
∗ ) to (𝑇𝑎𝑣𝑔

∗ + 𝑇𝑠𝑡𝑑
∗ ) in the hot zone and cooled from (𝑇𝑎𝑣𝑔

∗ + 𝑇𝑠𝑡𝑑
∗ ) to (𝑇𝑎𝑣𝑔

∗ − 𝑇𝑠𝑡𝑑
∗ ) 

in the cold zone. Then, following expression was used:  

{
𝑇𝐻1
∗ = 𝑇𝐶2

∗ = 𝑇𝑎𝑣𝑔
∗ − 𝑇𝑠𝑡𝑑

∗

𝑇𝐻2
∗ = 𝑇𝐶1

∗ = 𝑇𝑎𝑣𝑔
∗ + 𝑇𝑠𝑡𝑑

∗  Eq. (85) 

Then Eq. (81) can be rewrite as: 

𝜉 =

ln (
𝑇𝑎𝑣𝑔
∗ + 𝑇𝑠𝑡𝑑

∗ − 𝑇𝐻
𝑇𝑎𝑣𝑔∗ − 𝑇𝑠𝑡𝑑

∗ − 𝑇𝐻
)

ln (
𝑇𝑎𝑣𝑔∗ − 𝑇𝑠𝑡𝑑

∗ − 𝑇𝐶
𝑇𝑎𝑣𝑔∗ + 𝑇𝑠𝑡𝑑

∗ − 𝑇𝐶
)

 Eq. (86) 

 

When it is assumed that hot zone is in the air and cold zone is on the fluidized bed 

wall, 𝑇𝐻 and 𝑇𝐶 is the inlet air temperature and the fluidized bed wall temperature, 

respectively. In Figure 81, the calculated 𝜉 is plotted against the void fraction ε.  
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Figure 81.  𝜉 and 𝜀. 

From the figure, it can be found that generally increase the void fraction of the 

particle bed can improve heat transfer between the hot zone and the particles.  

In the section 7.2, the ratio of the overall heat transfer coefficients between the 

particles and the air, and between the particles and the fluidized bed wall was 

calculated. In the literature, there are many models for calculating the two heat 

transfer coefficients. From the Eq. (82), it is known that when the different value of 

𝜅ℎ is used, the product of 𝜅𝐴 and 𝜅𝑡 is also different. This is because that the value of 

𝜅ℎ, 𝜅𝐴, and 𝜅𝑡 depend on the particle fluidization. In this thesis, 𝜉 is compared with 

four different values of 𝜅ℎ (𝜅ℎ1, 𝜅ℎ2, 𝜅ℎ3, and 𝜅ℎ4). 

𝜅ℎ1 is the ratio of the overall heat transfer coefficients calculated in the section 7.2:  

𝜅ℎ1 = 𝜂 Eq. (87) 

In terms of 𝜅ℎ2, the heat transfer model between the air and the particles used is the 

model suggested by Ranz (Ranz & Marshall, 1952). Patil et al., (2015) developed a 

model and tried different the heat transfer coefficient between the particles and the 

fluidized bed wall. They found that 350 (𝑊/𝑚2 ∙ 𝐾) can give the best fit between 

their experimental data and modelling results. Then the value of 𝜅ℎ2 is calculated as: 
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𝜅ℎ2 =

2 + 1.8𝑅𝑒𝑝
1/2
𝑃𝑟1/3

𝐷 𝑘𝑎

350
 

Eq. (88) 

In terms of 𝜅ℎ3, the heat transfer model between the air and the particles used is the 

model suggested by Ranz (Ranz & Marshall, 1952), the heat transfer model between 

the particles and the fluidized bed used is the model suggested by Kunii and 

Levenspiel, (1991).  

𝜅ℎ3 =
2 + 1.8𝑅𝑒𝑝

1/2
𝑃𝑟1/3

(1 − 𝜀)(5.0 + 0.05𝑃𝑟𝑅𝑒𝑝)
 Eq. (89) 

In terms of 𝜅ℎ4, the heat transfer model between the air and the particles used is the 

model suggested by Gunn (1978), the heat transfer model between the particles and 

the fluidized bed used is the model suggested by Kunii and Levenspiel, (1991). 

𝜅ℎ4 =
(7−10𝜀+5𝜀2)(1+0.7𝑅𝑒𝑝

0.2𝑃𝑟
1
3)+(1.33−2.4𝜀+1.2𝜀2)𝑅𝑒𝑝

0.7𝑃𝑟1/3

(1−𝜀)(5.0+0.05𝑃𝑟𝑅𝑒𝑝)
  Eq. (90) 

Figure 82, Figure 83, Figure 84, and Figure 85 compares 𝜉 with 𝜅ℎ1, 𝜅ℎ2, 𝜅ℎ3, and 

𝜅ℎ4, respectively.  

 

Figure 82. Compare 𝜉 and 𝜅ℎ1.  
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Figure 83. Compare 𝜉 and 𝜅ℎ2. 

 

Figure 84. Compare 𝜉 and 𝜅ℎ3. 
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Figure 85. Compare 𝜉 and 𝜅ℎ4.  

From the figures, it can be observed that when 𝜅ℎ1, 𝜅ℎ2, 𝜅ℎ3, and 𝜅ℎ4 is increased 

respectively, 𝜉 is increased as well.  

From the Eq. (82), it is known that: 

𝜅ℎ =
𝜉

𝜅𝐴𝜅𝑡
 Eq. (91) 

It is expected that when a particle is contacted with other particles, its contact area 

between the hot zone and the particle will be decreased. The contact area between the 

fluidized bed wall and the particle should be only affected by the particle itself and 

can be assumed as a constant. From the equation used by Gunn (1978) (𝐴𝑎𝑝 =

6(1−𝜀)

𝐷𝑚𝑒𝑎𝑛
𝑉𝑏𝑒𝑑), it is known that (1 − 𝜀) is correlated to the particle diameter (𝐷𝑚𝑒𝑎𝑛) in 

the same order, then it is deduced that (1 − 𝜀)2 is correlated to the (𝜅𝐴) in the same 

order. Since the particle fluidization is affected by the inlet air velocity, it is assumed 

that the time ratio 𝜅𝑡 is correlated to the particle Reynold number (𝑅𝑒𝑝) in the same 

order.  

Then the value of 𝜅ℎ can be estimated as:  

𝜅ℎ0 =
𝜉

(1 − 𝜀)2𝑅𝑒𝑝
 Eq. (92) 
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Figure 86, Figure 87, and Figure 88 compares the calculated 𝜅ℎ0 with 𝜅ℎ1, 𝜅ℎ2, 𝜅ℎ3, 

and 𝜅ℎ4 respectively.  

 

Figure 86. 𝜅ℎ0 and 𝜅ℎ1. 

 

Figure 87. 𝜅ℎ0 and 𝜅ℎ2. 
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Figure 88. 𝜅ℎ0 and 𝜅ℎ3 

 

Figure 89. 𝜅ℎ0 and 𝜅ℎ4 

From the figures, it can be observed that the relationships between 𝜅ℎ0 and 𝜅ℎ1, 

between 𝜅ℎ0 and 𝜅ℎ2, between 𝜅ℎ0 and 𝜅ℎ3, and between 𝜅ℎ0 and 𝜅ℎ4 can be fitting 

using one form: 

𝑦 = 𝑎𝑥𝑏 Eq. (93) 
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Where 𝑎, 𝑏 represents the consideration of the void fraction and the particle Reynolds 

number.  

The fitting curve can be obtained as:  

{
 
 
 
 

 
 
 
 𝜅ℎ0 =

𝜉

(1 − 𝜀)2𝑅𝑒𝑝
= 0.03𝜅ℎ1

0.85

𝜅ℎ0 =
𝜉

(1 − 𝜀)2𝑅𝑒𝑝
= 4.08𝜅ℎ2

0.13

𝜅ℎ0 =
𝜉

(1 − 𝜀)2𝑅𝑒𝑝
= 13𝜅ℎ3

0.17

𝜅ℎ0 =
𝜉

(1 − 𝜀)2𝑅𝑒𝑝
= 35𝜅ℎ4

0.18

 Eq. (94) 

Therefore, it is concluded that when the void fraction and the particle Reynolds 

number is given, the heat transfer coefficients between the hot zone (the air) and the 

particles and between the particles and the cold zone (the fluidized bed wall) are 

correlated. The relationship between them is depends on how the void fraction and the 

particle Reynolds number are related to the contact area between the particle and the 

zones (hot and cold) and the time that the particle spent in the zones.  

7.4 Summary  

In this chapter, temperatures of the inlet air, the exit air, the particles, the fluidized 

bed wall, and the ambient at a several temperature steady states were online 

measured.  

The bed height, the contact area between the particles and the fluidized bed wall, and 

the void fraction of the particle bed was calculated respectively. It was seen from the 

results that when the inlet air velocity or the loaded particle mass was increased, the 

bed height was increased, while the effect of the inlet air temperature on the bed 

height was negligible. When the inlet air velocity was increased, the void fraction of 

the particle bed was increased, while the effect of the inlet air temperature and the 

loaded particle mass on the void fraction was negligible.  

By calculation, it was found that increase the void fraction of the particle bed can 

increase the ratio between the overall heat transfer coefficient from the air to the 

particles and the overall heat transfer coefficient from the particles to the fluidized 

bed wall.  
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By suggesting that at the temperature steady state, the particles are circulating 

between a hot zone and a cold zone, a two-compartment model is developed. By 

comparing the heat transfer coefficients between the hot zone and the cold zone with 

the overall heat transfer coefficients and the heat transfer coefficients calculated from 

the models in the literature, it was found that the two heat transfer coefficients are 

correlated. The relationship between them is depends on how the void fraction and the 

particle Reynolds number are related to the contact area between the particle and the 

zones (hot and cold) and the time that the particle spent in the zones.  
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8 Conclusion 

In the experimental setup, a thermal camera was used to online monitor the 

temperature of the particles in a cylindrical 3D fluidized bed, while previous 

researchers used a flat pseude-2D fluidized bed.  

In the conversion of the thermal images to the particle temperature, it was found that 

the focus of the thermal camera and the movement of the particles can affect the 

measured particle temperature. It was also found that when the air temperature is 

lower than 75 ℃, the measured particle temperature will not be affected. Therefore, in 

the particle identification, the size and shape of the particles were calibrated using an 

offline method and were used to identify the clear particles in the thermal images 

(region-based image segmentation), while previous researchers didn’t use image 

segmentation or used threshold-based image segmentation (the output is difficult to be 

evaluated).  

In the particle temperature calibration, previous researchers used two methods: 

placing the particles on a hot plate outside the fluidized bed and using a thermocouple 

probe to measure the particle temperature, or fixing a particle directly on the tip of a 

thermocouple probe inside the fluidized bed. However, it is concerned that the 

measured temperature of the particles can be affected by the air surrounding the 

particles. Therefore, in addition to the two methods, a new calibration method was 

introduced in this thesis: particles were fluidized inside a thermal insulated fluidized 

bed, then at temperature steady state, the particle temperature was same as the 

temperatures of the air and the fluidized bed wall.  

In the experimental work, this thesis distinguished the temperatures of the air, the 

particles, the fluidized bed wall and the ambient in the particle heating process and 

studied the effect of the inlet air velocity, the inlet air temperature, and the loaded 

particle mass on the particle heating process. Due to the improved particle 

identification and particle temperature calibration, the measured particle temperature 

is more accurate than previous researchers.  

In the heat transfer mechanism, a two-compartment model was developed in this 

thesis to link the heat transfer between the particles and the air, and the heat transfer 

between the particles and the fluidized bed wall. In this model, it was proposed to use 
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the contact area between the particles and the two zones (hot and cold), the residence 

time of the particles in the two zones, and the heat transfer coefficients between the 

particles and the two zones to describe the temperature of the particles in a fluidized 

bed.  
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9 Future work  

Using thermal cameras with higher frame rate, smaller detector size and shorter 

detector time constant are expected to improve the accuracy of the particle 

temperature measurement and to allow the investigation of the online particle 

temperature distribution.  

After the particle temperature distribution can be measured accurately, the results can 

be used in the two-compartment to calculate the particle residence time in the hot and 

cold zones. For calculation, a numerical bootstrap algorithm developed by Prof. 

Hounslow can be used.  

When a thermal camera with high resolution is used in the future, a particle in the 

thermal image can be represented by numerous pixels (for example, several thousand 

pixels). Then it will be possible to use a complex image segmentation to identify the 

pixels representing the particles in the thermal images based on the texture of the 

particle. This texture is related to the surface of the particle and can be calibrated 

offline. It is expected that the texture-based image segmentation can online identify 

particles within different size classes.  

It is also interesting to develop a CFD-DEM model to predict the particle temperature. 

The modelling results can be compared with the measured particle temperature and 

the results calculated from the two-compartment model (numerical model). The 

advantage of using a CFD-DEM model is that the air flow and the particle collision 

can be considered in detail. The disadvantage of using a CFD-DEM model is that the 

amount of the particles and the processing time length are limited by the computer 

power. The advantage of using a numerical model is that it can be used predict a large 

amount of the particles and the processing time length can be long enough. The 

disadvantage of using a numerical model is that the air flow and the particle collision 

cannot be considered in detail. It is therefore necessary to compare the prediction 

results of the two models with the measured particle temperature distribution over 

time.   
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11 Appendix 

11.1 Monitoring particles from the top 

11.1.1 Experimental setup and with binder sprayed 

In this experiment, 1.6 kg small particles (calcium carbonate with diameter between 

150-180µm) were used with liquid (PEG1000) sprayed. The inlet airflow rate from 

the bottom was 0.05 m3/s (about 7 times of the minimum flow rate), 25°C. Sprayed 

binder was 40°C. Window 2 and window 3 are used for monitoring. For window 3, 

thermal camera can be placed horizontally or with an angle, while for window 2, 

thermal camera can only be placed with an angle for focusing on particles (Figure 90). 

 

Figure 90: Thermal camera set-up 

When a thermal camera was placed horizontally to monitor particles via window 3, 

before binder was sprayed and particles were stuck to the window, particulate flow 

can be observed. Figure 91 is an image captured by thermal camera with 50fps before 

binder was sprayed. In the figure, white background represents the steel wall and 

black objects are particles. It can be observed that particulate flow is clearly but 

individual particles cannot be distinguished by the thermal camera. After several 

minute particles were stuck to the window and nothing can be distinguished from the 

captured images. Form the experiment, it is also found that sprayed binder can 

accelerate the adhesion. 
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Figure 91: Monitor particles via window 3 

When the position of thermal camera was changed from window 3 to window 2, 

before binder was sprayed and particles were stuck on the window, nothing can be 

distinguished from the captured images as shown in Figure 92, which is an image 

captured by thermal camera with 50fps. However, when binder was sprayed, particles 

with higher temperature can be observed, which is caused by contacting with binder 

droplets as shown in Figure 93. 

 

Figure 92: Monitor particles via window 2, before binder was sprayed. 
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Figure 93: Monitor particles via window 2, after binder was sprayed. 

After the binder was sprayed for several minutes, it was found that binder droplets 

stuck on the window was solidified and nothing can be distinguished from the 

captured images. Form this experiment, it is found that the particles and droplets 

prefer to stick on the window 3 rather than window 2. Therefore, window 2 is more 

suitable for monitoring. Since window 2 is chosen, while the particulate flow cannot 

be distinguished from the captured image Figure 92. It is necessary to investigate the 

viability to use temperature capture via window 2 to indicate particle temperature 

first. 

11.1.2 Particles without liquid sprayed 

In this monitoring, 1.6kg small particles (calcium carbonate, 150-180µm) were 

fluidized for 1h in advance to perform a stable condition at 30⁰C and 40⁰C inlet air 

temperature separately. The air flow rate used was 0.05m3/s (about 7 times of the 

minimum flow rate). Temperatures of air at position b and c were measured by 

thermocouple probes every 5min. Temperature of particles was measured by thermal 

camera. Another two experiments without particles were conducted as well. The 

experiment set-up are shown in Figure 94. 
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Figure 94: Monitor the temperature of air and particles without water sprayed 

In Figure 95 and Figure 96, average temperature of particles was measured by thermal 

camera, while temperature air were measured by thermocouple probes. From Figure 

95 and Figure 94, it is found that air temperature at position c was always higher than 

the air temperature at position b and the effect of particles can be neglected. It can 

also be observed that, the temperature difference between air and particles were 

smaller with lower inlet air temperature (Figure 95) than with higher inlet air 

temperature (Figure 96). 

From this experiment, it is confirmed that reveal the effect of binder viscosity by air 

temperature only is not accurate, especially when the air temperature was measured 

off-line. 

 

Figure 95: Temperature of air and particles at low temperature condition (30°C). 
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Figure 96: Temperature of air and particles at high temperature condition (40°C). 

11.1.3 Particles with water sprayed 

In this monitoring, 1.6 kg small particles (calcium carbonate, 150-180µm) were 

fluidized for 1h in advance to perform a stable condition. Air flow rate from the 

bottom was 0.05m3/s (about 7 times of the minimum flow rate) and 45°C. The 

experiment set-up is shown in Figure 97. Water (25°C) was sprayed from 0min and 

stopped at 2min. The air temperature at position a and b were measured by 

thermocouple probes every 2min. Two experiments were conducted with different 

water spray rate, the water spray rate of group_1 was 1g/min spray rate, while the 

water spray rate of group_2 was 3g/min spray rate. The average temperature of 

particles was measured by thermal camera. 

 

Figure 97: Monitor the temperature of small particles with water sprayed. 



138 

 

This monitoring was conducted three times. The results are shown in Figure 98. In 

this figure, “Group_1 Particles” and “Group_2 Particles” are the average temperature 

of particles in two experiments. “Group_1 air at Position a” is the temperature of air at 

position a. “Group_1 air at Position b” is the temperature of air at position b. 

“Group_2 air at Position a” is the temperature of air at position a. “Group_2 air at 

Position b” is the temperature of air at position b. From the figure, it is observed that 

higher spray rate (group_2, 3g/min) was associated with higher temperature decrease 

of air and particles. It can also be observed that, with same spray rate, the temperature 

of air at position a and b were both lower than particles. 

It is therefore, concluded that:  

 Thermal camera can distinguish the temperature difference of particles caused 

by different spray rate; 

 Compared with particles, air temperature is easier to be affected by sprayed 

liquid. 
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Figure 98. Temperature of particles and air with different water spray rate 

 

11.1.4 Monitoring large particles with water sprayed  

In this monitoring, 400g large particles (glass beads, 1.0-1.2mm) were fluidized for 1h 

in advance to perform a stable condition. In order to monitor the contact between 
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particles and water droplets, particles were set to be moving in low velocity and 

fluidized bed was not fully fluidized, air flow rate from the bottom was 0.02m3/s 

(about 0.25 times of the minimum flow rate) and 25°C. The experiment set-up is 

shown in Figure 99. Water (25°C) was sprayed from 2min. Two experiments were 

conducted, the spray rate of water were 1g/min and 3g/min separately. Air injected 

from the bottom was 0.02m3/s and 25°C. The frame rate used by thermal camera was 

100fps.  

 

Figure 99. Monitor the temperature of large particles with water sprayed. 

The captured images at 0min, 1min, 2min, 3min, 4min and 5min with two spray rates 

are shown in Figure 100. From the figure, it can be observed that, before water was 

sprayed (0min, 1min and 2min), nothing can be distinguished from the captured 

images, since the temperature between different objects in the images are similar. 

After water was sprayed (3min, 4min and 5min), the temperature of objects (including 

a thermocouple probe and large particles) contacted with water droplets were 

decreased more, which make them distinguishable by a thermal camera. It can also be 

observed that, lower spray rate generated more contacts between particles and 

droplets than higher spray rate (by comparing the number of black spots at 3min, 

4min and 5min). 

It is therefore concluded that when applying a thermal camera to monitor granulation 

process, number of contacts between particles and droplets can be distinguished. 
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Figure 100. Comparison of the contact between particles and droplets with two different spray 

rates. 

11.2 CFD-DEM modelling 

In terms of modelling the particle heating process, continuum and discrete models are 

applicable. Continuum models treat moving solid phase as a “fluid”, while discrete 

models treat moving solid phase as individual particles. In terms of modelling gas 

phase, computational fluid dynamics models are generally used, which analyse fluid 

based on finite meshed cells. In terms of modelling granule growth, population 

balance models are widely used, which considers the change of granule size 

distribution during granulation. 
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The advantages of modelling fluidized bed granulator with CFD-DEM (computational 

fluid dynamics – discrete element method) model are: the collision between 

individual particles can be considered, the temperature of individual particles can be 

calculated. 

There are three basic models for DEM considering particle collision: soft-sphere 

model, hard-sphere model and hybrid of soft and hard sphere model. Hard-sphere 

model treats individual particles as rigid body and the collision only occurs 

instantaneously between two particles, while soft-sphere model treats individual 

particles as deformable body and more than two particles can be contacted at the same 

time. The hybrid model treats individual particles as deformable body but the 

collision limited to two particles only. Since in granulation, more than two particles 

are agglomerated, soft-sphere model is more suitable. 

Soft-sphere model was originally proposed by Cundall & Strack (1979). In normal 

direction, they used “spring” to describe the elastic repulsion force and “dashpot” to 

describe the energy dissipation. In tangential direction, “spring” and “dashpot” were 

used to represent the static friction and “frictional slider” was used to represents the 

dynamic friction. In calculation, a definition “overlap”, which indicates the intensity 

of the contact between two particles is first introduced.  

By assuming particles 𝑖 and 𝑗 in contact are still spheres, the force acting on the 

particle 𝑖 causing deformation when contacting with another particle can be written as 

(Kloss, Goniva, Hager, Amberger, & Pirker, 2012): 

�⃗⃗� = (Normal elastic force𝒇𝒄𝒏,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − Normal damping force𝒇𝒅𝒏,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) +

(Tangential elastic force𝒇𝒄𝒕,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − Tangential damping force𝒇𝒅𝒕,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  

= (𝑘𝑛𝛿𝑛�⃗⃗� − 𝛾𝑛𝝊𝒏,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) + (𝑘𝑡𝜹𝒕⃗⃗  ⃗ − 𝛾𝑡𝝊𝒕,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗  ⃗) (95) 

𝑘𝑛 =
4

3
𝑌∗√𝑅∗𝛿𝑛:  Elastic constant for normal contact (96) 

Effective Young’s modulus: 𝑌∗ = (
(1−𝜈𝑖

2)

𝑌𝑖
+
(1−𝜈𝑗

2)

𝑌𝑗
)

−1

 (97) 

Y: Young’s modulus (𝑃𝑎). 𝜈: Poisson ratio.  

Effective Radius: 𝑅∗ = (
1

𝑅𝑖
+

1

𝑅𝑗
)
−1

 (98) 

R: particle radius (𝑚)  

𝛿𝑛 = 𝑑 − (𝑅𝑖 + 𝑅𝑗):  Overlap distance of two spherical 

particles 
(99) 

𝑑 is the distance between the centre of two particles (𝑚).  
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�⃗⃗� : Unit vector from particle i to particle j. 

𝛾𝑛 = −2√
5

6
𝛽√𝑆𝑛𝑚∗ ≥ 0: Viscoelastic damping constant for normal 

contact 

(100) 

Constant: 𝛽 =
ln(𝑒)

√ln2(𝑒)+𝜋2
 (101) 

e: Coefficient of restitution.  

𝑆𝑛 = 2𝑌
∗√𝑅∗𝛿𝑛 (102) 

𝝊𝒏,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ : Normal component of the relative velocity of the two particles 

(𝑚/𝑠). 
 

𝑘𝑡 = 8𝐺∗√𝑅∗𝛿𝑛                    Elastic constant for tangential contact (103) 

Effective shear modulus: 𝐺∗ = (
2(2−𝜈𝑖)(1+𝜈𝑖)

𝑌𝑖
+
2(2−𝜈𝑗)(1+𝜈𝑗)

𝑌𝑗
)
−1

 (104) 

𝜹𝒕⃗⃗  ⃗: Tangential displacement vector between two spherical particles 

which is truncated to satisfy a frictional yield criterion. 
 

𝛾𝑡 = −2√
5

6
𝛽√𝑆𝑡𝑚∗ ≥ 0      Viscoelastic damping constant for 

tangential contact 

(105) 

𝑆𝑡 = 8𝐺
∗√𝑅∗𝛿𝑛 (106) 

Effective mass: 𝑚∗ = (
1

𝑚𝑖
+

1

𝑚𝑗
)
−1

 (107) 

m: particle mass (𝑘𝑔)  

𝒗𝒕,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗  ⃗: Tangential component of the relative velocity of the two 

particles (𝑚/𝑠) 
 

When(|𝜹𝒕⃗⃗  ⃗| ≥ 𝛿𝑡,𝑚𝑎𝑥) (Zhou, Kuang, Chu, & Yu, 2010), 𝒇𝒄𝒕,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −

𝒇𝒅𝒕,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ should be replaced by 𝒇𝒕,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Coulomb friction force:  

 

𝒇𝒕,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −𝜇𝑠|𝒇𝒄𝒏,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|𝜹�̂� , where 𝜹�̂� = 𝜹𝒕⃗⃗  ⃗ |𝜹𝑡⃗⃗  ⃗|⁄ , 𝛿𝑡,𝑚𝑎𝑥 =

𝜇𝑠((2 − 𝜈) 2(1 − 𝜈)⁄ )𝛿𝑛 
(108) 

𝜇𝑠: Particle-particle/wall sliding friction.  

Rolling friction torque:  

𝑴𝒓,𝒊𝒋
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜇𝑟|𝒇𝒏,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗⃗⃗ |𝝎𝑖�̂�

𝑛
, where 𝝎𝑖�̂�

𝑛 = 𝝎𝒊𝒋
𝒏⃗⃗⃗⃗⃗⃗ |𝝎𝒊𝒋

𝒏⃗⃗⃗⃗⃗⃗ |⁄  (109) 

Where 𝒇𝒏,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗⃗⃗  is the normal force between two particles (𝑁), 𝜇𝑟 is the Particle-

particle/wall rolling friction, 𝝎𝒊𝒋
𝒏⃗⃗⃗⃗⃗⃗  is the relative angular velocity between two 

particles (𝑟𝑎𝑑/𝑠). 

Torque by tangential forces: 

𝑴𝒕,𝒊𝒋
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑹𝒊𝒋⃗⃗ ⃗⃗  ⃗ × (𝒇𝑐𝑡,𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝒇𝑑𝑡,𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) (110) 

𝝊𝒊𝒋⃗⃗ ⃗⃗  = 𝝊𝒋⃗⃗  ⃗ − 𝝊𝒊⃗⃗  ⃗ + 𝝎𝒋⃗⃗ ⃗⃗  × 𝑹𝒋⃗⃗⃗⃗ − 𝝎𝒊⃗⃗ ⃗⃗  × 𝑹𝒊⃗⃗⃗⃗ , 𝝊𝒏,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (𝝊𝒊𝒋⃗⃗ ⃗⃗  ∙ �⃗⃗� ) ∙ �⃗⃗� , 𝝊𝒕,𝒊𝒋⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

(𝝊𝒊𝒋⃗⃗ ⃗⃗  × �⃗⃗� ) × �⃗⃗�  
(111) 

In terms of describing gas phase only, volume-averaged conservation equations for 

mass and momentum can be used and written as (A. V. Patil, Peters, & Kuipers, 

2015b): 
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𝜕

𝜕𝑡
(𝜀𝜌𝑔) + ∇ ∙ (𝜀𝜌𝑔𝑢𝑔⃗⃗⃗⃗ ) = 0 (112) 

𝜕

𝜕𝑡
(𝜀𝜌𝑔𝑢𝑔⃗⃗⃗⃗ ) + ∇ ∙ (𝜀𝜌𝑔𝑢𝑔⃗⃗⃗⃗ 𝑢𝑔⃗⃗⃗⃗ ) = −𝜀∇𝑝 − ∇ ∙ (𝜀𝜏 𝑔) + 𝑆 𝑝 + 𝜀𝜌𝑔𝑔  (113) 

Where 𝑡 is the time (𝑠), 𝜀 is the gas volume fraction, 𝜌𝑔 is gas density (𝑘𝑔/𝑚3), 𝑢𝑔⃗⃗⃗⃗  is 

the gas velocity (𝑚/𝑠), 𝑝 is the gas pressure (𝑃𝑎), 𝑆 𝑝 represents the source term for 

momentum originating from the particle phase. 

When a particle is moving in gas phase, three types of forces are exerted on it: steady 

state drag force, unsteady state force and body force. Steady state drag force 

represents the force caused by different velocity between the particle and fluid. 

Unsteady state force containing virtual mass force and basset force, represents the 

force caused by the acceleration of particle with respect to fluid. There are three terms 

in body force, pressure gradient force is caused by the pressure of fluid exerted on the 

particle, shear force is caused by the viscosity of fluid and gravitational force is 

caused by the gravity. With respect to the forces, coupling of CFD and DEM are 

basically classified as three types: one-way (forces on fluid), one-way (forces on 

particles) and two-way (forces on both fluid and particles). Since in fluidized bed 

granulation, the effects of fluid on particles and particles on fluid are both important, 

two-way coupling method is more suitable. 

In uniform fluid, drag force exerted on a particle is 𝒇𝒅,𝒊⃗⃗ ⃗⃗ ⃗⃗    
= steady state drag force + unsteady state forces + Body force 

= steady state drag force + (virtual mass force + Basset force) + (Pressure gradient 

force + shear force+ gravitational force)  

Steady state drag force: 𝑭𝑫⃗⃗⃗⃗  ⃗ = 𝐶𝐷
1

2
𝜌𝑝(�⃗⃗� − �⃗⃗� )|�⃗⃗� − �⃗⃗� |𝜋𝑅

2 (114) 

Where 𝜌𝑝 is the particle density (𝑘𝑔/𝑚3), �⃗⃗�  is the velocity of fluid and 

�⃗⃗�  is the velocity of particle (𝑚/𝑠). 
 

Particle Reynolds number 𝑅𝑒𝑟 =
𝜌𝑝𝐷|�⃗⃗� −�⃗⃗� |

𝜇
 (115) 

Where 𝐷 is the diameter of the particle (𝑚), 𝜌𝑝 is the particle density 

(𝑘𝑔/𝑚3) and 𝜇 is the fluid viscosity (𝑃𝑎 ∙ 𝑠).  
 

Drag coefficient 𝐶𝐷 are varied with different 𝑅𝑒𝑟 in different models.  

Normally virtual mass force and Basset force are neglected.  

Pressure gradient force: 𝑭𝒑⃗⃗ ⃗⃗  = −∫ 𝛁𝒑⃗⃗⃗⃗  ⃗𝑑𝑉
𝑐𝑣

 (116) 

Where 𝑝 is the gas pressure (𝑃𝑎) surrounding the particle and V is the 

particle volume (𝑚3). 
 

Shear force: 𝑭𝝉⃗⃗⃗⃗ = ∫ 𝛁𝝉⃗⃗⃗⃗  ⃗𝑑𝑉
𝑐𝑠

 (117) 

𝝉 = 𝜇𝑔[(∇�⃗⃗� ) + (∇�⃗⃗� )
−1]  (118) 

Where 𝜇𝑔 is the viscosity of the fluid (𝑃𝑎 ∙ 𝑠)  
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Gravitational force: 𝑭𝒈⃗⃗⃗⃗  ⃗ = 𝑚�⃗⃗�  (119) 

Where 𝑚 is the mass of the particle (𝑘𝑔) and �⃗⃗�  is the gravitational 

acceleration with direction (𝑚/𝑠2). 

 

 

In order to build a CFD-DEM to describe the granulation within a FBG, a soft-sphere 

model for DEM and two-way coupled with laminar model for CFD was initially built. 

The software used to simulate the model were LIGGGHTS (Kloss et al., 2012) for 

DEM, OpenFOAM (OpenFOAM, 2014) for CFD and CFDEM-Coupling (Kloss et 

al., 2012) for coupling between LIGGGTS and OpenFOAM. The parameters used in 

Table 2 are referenced from the model used by Zhou et al. (2010), The distance, in 

which forces between particles are calculated, was 1mm. Time step used by CFD and 

DEM were both 1.0×105s. 

Table 2 Parameters for the CFD-DEM model 

Number of particles 15000 

Particle diameter 4mm 

Particle density 2500kg/m3 

Particle-particle/wall sliding friction 0.4 

Particle-particle/wall rolling friction 0.04 

Particle-particle/wall restitution 

coefficient 

0.3 

Particle Young’s modulus 1.0×107 Pa 

Particle Poisson ratio 0.3 

Gas density 1.2kg/m-3 

Gas viscosity 1.8×10-5Pa∙s 

 

In this model, the geometry of the fluidized bed used was similar to it is in reality but 

without the distributor at the bottom. The generated mesh cells were fixed cube with 

0.01m in edge. Flow rate used was 0.10m3/s, 0.08m3/s and 0.06m3/s separately.  
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Figure 101. CFD-DEM Simulation of fluidized bed (future work). 

From the results in Figure 101, the effect of air flow rate on the movement of particles 

can be observed. It is found that higher air flow rate is associated with longer 

circulation interval and higher bed height. It is also found that at the bottom of the 

fluidized bed, there is an air layer preventing particles falling down. However, in 

reality, there is an air distributor at the bottom, which can minimise the formation of 

the air layer. It is therefore, concluded that the air distributor needs to be built in the 

fluidized bed geometry to perform an accurate simulation. 

11.3 Temperature distributions of the particles at steady state 

In the experiment introduced in the section 7.1, temperature distribution of the 

particles can also be obtained. However, limited by the image segmentation technique 

and the specification of the thermal camera, the temperature distribution is not 

accurate enough to be used.  
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In order to compare the particle temperature, the air temperature and the fluidized bed 

wall temperature, 𝜃 =
𝑇𝑝−𝑇𝑤

𝑇𝑎−𝑇𝑤
 was used to present the results. The results are shown in 

Figure 102, Figure 103, and Figure 104. 
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Figure 102 shows the distribution of the 𝜃 for 1000 g particles.  

 

Figure 102. Distribution of the 𝜃 for 1000 g particles.  
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Figure 103 shows the distribution of the 𝜃 for 1200 g particles.  

 

Figure 103. Distribution of the 𝜃 for 1200 g particles. 
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Figure 104 shows the distribution of the 𝜃 for 1400 g particles.  

 

Figure 104. Distribution of the 𝜃 for 1400 g particles. 


