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Abstract

Modern VLSI transistor densities allow large systems to be implemented within a

single chip. As technologies get smaller, fundamental limits of silicon devices are

reached resulting in lower design yields and post-deployment failures. Many-core

systems provide a platform for leveraging the computing resource on offer by deep

sub-micron technologies and also offer high-level capabilities for mitigating the issues

with small feature sizes. However, designing for many-core systems that can adapt to

in-field failures and operation variability requires an extremely large multi-objective

optimisation space. When a many-core reaches the size supported by the densities of

modern technologies (thousands of processing cores), finding design solutions in this

problem space becomes extremely difficult.

Many biological systems show properties that are adaptive and scalable. This the-

sis proposes a self-optimising and adaptive, yet scalable, design approach for many-

core based on the emergent behaviours of social-insect colonies. In these colonies

there are many thousands of individuals with low intelligence who contribute, with-

out any centralised control, to complete a wide range of tasks to build and maintain

the colony. The experiments presented translate biological models of social-insect in-

telligence into simple embedded intelligence circuits. These circuits sense low-level

system events and use this manage the parameters of the many-core’s Network-on-

Chip (NoC) during runtime.

Centurion, a 128-node many-core, was created to investigate these models at large

scale in hardware. The results show that, by monitoring a small number of signals

within each NoC router, task allocation emerges from the social-insect intelligence

models that can self-configure to support representative applications. It is demon-

strated that emergent task allocation supports fault tolerance with no extra hardware

overhead. The response-threshold decision making circuitry uses a negligible amount

of hardware resources relative to the size of the many-core and is an ideal technology

for implementing embedded intelligence for system runtime management of large-

complexity single-chip systems.
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1.1. Overview

The advancement of silicon implementation technologies has recently reached a stage

in its development where integrated circuit performance and cost has revolutionised

the use of, capabilities of and number of electronic devices that we use during our

day-to-day lives. The improvements in transistor densities, switching frequencies and

lower power consumption of integrated circuits over the last decade now allows us

to use complex embedded systems in more and more applications; from advanced

medical devices to the high-power embedded computing requirements of autonomous

vehicles.

However, as state-of-the-art device technologies come ever-closer to the atomic scale,

challenges intrinsic to deep sub-micron fabrication emerge [1][2]. Engineers are re-

quired to include large design tolerances to ensure that their designs will not fail after

it leaves the manufacturing line, confounded by the device variability challenges that

mean a design that works comfortably within specifications on one silicon die may

not work on the die created on the next wafer [3]. Unfortunately as feature sizes get

smaller, these problems are only going to be of more importance as design margins

tighten and very small scale variations of the silicon wafer become the overriding con-

cern [4][5]. Thus the fundamental unit of the digital designer’s toolkit, the transistor,

is becoming less and less reliable with more variation in its key behavioural properties.

Whilst engineering suffers from such unreliable and varied fundamental blocks, some

of the great feats of natural systems have been found to be due to inherent variability

and unreliability within the building-blocks of biological systems [6] [7] [8] [9] [10].

There are clearly some value for engineering systems in such processes that biology

has developed to overcome and exploit these low level problems. With a suitable

model extracted and translated from particular biological processes, there is no reason

that engineered systems could not also adapt to variation and cope with faults in their

constituent parts.
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1.1.1. Many-Core Systems

Hardware co-processors typically provide a performance improvement as well as re-

duced power (and thus thermal) load compared to a general propose processor imple-

mentation. The hardware co-processor model also scales well with parallel problems

and so has been used heavily in high performance, embarrassingly parallel applications

such as graphics pipelines. Many-core systems [11][12] aim to take this approach to

an architectural level whereby lots of heterogeneous hardware accelerators (or pro-

cessing cores with hardware accelerators attached) are connected together with levels

of specialism such that the resulting task architectures distributes thermal and power

load across the die and reducing the occurrence of processing “hotspots”.

As well as Dark Silicon [13][14], many-cores can also be used to tackle the issue of

device variability and post-manufacture failures through the use of the classic fault-

tolerance technique N-modular redundancy. With several copies of the same co-

processor within the many-core architecture, it is easily seen that the tasks undertaken

by a under-performing or failed core (due to device variation or a post-manufacture

fault due to device degradation) can be undertaken by another co-processor of the

same type located at a different geometric area of the die that may not suffer from the

same inherent silicon characteristics.

1.1.2. Many-Core Design Challenges

Whilst many-core architectures seem well poised to tackle the previously discussed

problems, they also bring a large number of different complex issues when designing

systems for such an architecture. Many-core architectures tend to be organised in a

grid-like fashion on the die with a Network-on-Chip (NoC) used to interconnect the

co-processors, also known as Processing Elements (PE). A NoC has many similarities

with standard computer networking but tends to be simpler with more deterministic

workings. Starting from a grid of PEs, a many-core designer would need to determine:

1) The task (or co-processor) that each PE is specialised for

- The thermal/power budget of this task, which may limit what tasks the adjacent
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PEs can undertake

- The expected data throughput of this task, including the thermal requirements

on the NoC local to the PE

- A list of tasks/PEs that this node will need to communicate with before, during

or after data processing, including specific throughput requirements

2) A routing strategy that connect tasks that need to communicate together, with

throughput and thermal requirements on the NoC paths met

- Analysis of alternative/redundant routing paths and how these affect the calcu-

lation of each data-transfer pathway in the task graph

- Choice of routing protocol. This will impact the routing paths, some protocols

require significant buffering or less deterministic routing strategies

- Analysis, prediction and elimination of any deadlock or livelock scenarios within

the chosen NoC routing strategy

3) Consider fault scenarios that will change the balance of tasks in the many-core due

to PE failure or the performance of the NoC (e.g. a link that may fail, or a link that has

to reduce throughput due to unexpected thermal environment)

- This will require re-analysis of all the previous parameters for the different fault

scenarios or environmental changes

This is a huge amount of analysis that scales exponentially with not only the number of

nodes in the many-core, but also with the number of tasks mapped to it. If many-core

is going to be the platform that allows us to fully utilise future silicon devices then

not only must it support a huge number of processing elements, but we must also be

able to use it in a multi-application environment. Despite these problems, we see some

aspects of many-core design already being used in embedded systems [15], and it is a

active research field with lots of outstanding challenges [16][12].
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1.1.3. Bio-Inspired Hardware

The huge number of interacting design parameters of a many-core system has many

similarities with complex systems found within biology. Natural optimisation methods

such as evolution and development have emerged as biology’s way of navigating very

high-dimensional pareto-front tradeoffs. Using biological inspiration in electronic sys-

tems design has been a mature research area for many years now. Despite this, we have

not seen an uptake of using biologically inspired models to solve problems in hardware

design for the commercial electronics world. There are many reasons for this gap, but

the following are some of the main factors:

• Cost of implementing the biological model in hardware is high and non-scalable

[17]

• An advance in technology has rendered the problem the biological inspiration

solves as redundant [18]

• The biological model is difficult to validate against a set of requirements [19]

• Difficulty integrating the systems application with the biological model [20] [21]

As designing for many-core systems allows a degree of abstraction away from the

digital substrate with the design challenges at a much higher level, this opens the pos-

sibility of a different bio-inspired approach than the traditional ”building-blocks” up

approach seen in many bio-inspired research projects. The model of a processing ele-

ment communicating with other processing elements via the NoC opens up a link with

many highly-scalable biological models.

1.1.4. Social Insect Intelligence

Large social insect colonies also require a wide range of important tasks to be under-

taken to build and maintain the colony and in most nests there are many thousands of

workers available to offer their assistance to ensure the expansion and survival of the

colony. However, there is a crucial equilibrium between the number of workers per-

forming each task that must not only be maintained but must also continuously adapt
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to sudden changes in environment and colony need. What is most fascinating is that

social insects can sustain this balance without any centralised control and with colony

members that have relatively little intelligence when considered on their own. Due to

this simplicity and evident scalability it would seem that social insects have evolved

an interesting scalable approach to task allocation that could be applied to very large

many-core systems.

When evaluating a bio-inspired hardware system there are several implementation pos-

sibilities and abstractions to chose from. In this work, relevancy to near-future hard-

ware platforms was considered a priority. Device densities have reached a stage where

large amounts of computing power are available per chip, this is reflected in the recent

rise of high-performance consumer embedded systems (e.g. smartphones [22]). There-

fore, it is felt that applicability to modern systems is highly important. This motivates

the creation of a large-scale many-core system as part of this work. The emphasis on

applicability to hardware systems also drives the implementation and evaluation of the

biological models. These models could be evaluated using simulation models, starting

from biologically “true” models and refining them such that they can be applied to the

hardware system. However there are two reasons for not following this route:

(a) The biological models for social-insect intelligence are relatively new, a consol-

idated model is not available [23] and the research into these models is active.

Modelling techniques used for the biological models that this work takes inspi-

ration from are not coherent across the models, with Kauffman networks [24],

oscillatory dynamics models [25] and Markov chains [26] being used. Further

work would be required in this field to use a direct implementation of the bio-

logical models as a starting point for the embedded intelligence.

(b) Simulation of the biological models would also require simulation of the many-

core system. One millisecond of a behavioural simulation of a 128-core Cen-

turion takes around 1 hour to complete and so running an experiment of one

second (as used in the experiments in this thesis) would have taken a large num-

ber of days to complete. As each experiment consists of averaging from a large

number (100 in most experiments) of initial parameters, experiments would take

an infeasible amount of time. Therefore an abstraction of the many-core would
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also be required for simulation. Architecture of efficient large-scale processor

simulations abstract the cores to tasks running on a CPU or cluster (for exam-

ple [27]). This requires precise modelling of communication structures between

nodes (critical due to the use of wormhole routing between nodes) and also a

modelling of time to allow frequency scaling of cores to be supported. The in-

tended low level hardware signals that the embedded intelligence hooks into will

need to be extracted, abstracted and then integrated into the biological simula-

tion model. Understanding how to achieve this becomes more difficult as the

many-core abstraction level increases, which is a direct counter to the need of a

high node abstraction level for simulation scalability purposes. Modelling of the

NoC could also help with gaining accuracy in the simulation model, at the cost

of adding overhead to the simulation time. There are many NoC developments

and simulation models [28]. When the constraints of proven large scalability

and a hardware implementation are applied to a survey of existing NoC devel-

opments [28], only three NoCs out of the 60 evaluated had both been imple-

mented for FPGA or ASIC (to ensure applicability to near-future technologies)

and supported over 50 processing cores (to prove scalability).

Therefore, in this work simulation is not used as the primary evaluation method. All

inputs and outputs of the embedded intelligence interact directly with hardware sig-

nals. This has the benefit of:

• A shorter experiment runtime, an experiment of one second only takes one sec-

ond to run and around 250ms to collect the data and set up the next experiment

run.

• No issues with simulation-reality gaps or need to prove correctness of a simula-

tion model to the target hardware platform that it is simulating.

• A hardware-suitable implementation of the biological model is enforced that

does not require complex operations that are hardware-resource expensive (e.g.

large matrices, solving of differential equations, floating point arithmetic).

• Direct manipulation of low-level hardware signals. This is inherently a hardware-

resource efficient approach, allowing support of the largest number of cores pos-
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sible.

• A hardware platform with unique access to low-level many-core signals that can

be used be other many-core research experiments without the effort of configur-

ing, deploying and debugging a NoC that is not designed for low-level manipu-

lation of its control signals.

Smaller simulations were used during development of the models using behavioural

simulation of a 24 core Centurion, however the results of these not presented as the

intelligence models developed for them are used in the hardware experiments that are

presented in the thesis.

1.2. Hypotheses

The work presented in this thesis establishes how many-core systems can be made

more robust by using emergent self-organisation based on the decision pathways of in-

dividuals of social-insect colonies. The intelligence is ensured to be hardware efficient

by taking inspiration from a simple biological model and through research study using

a large-scale hardware platform typical of near-future many-core systems.

In this thesis I propose and evaluate a new source of biological inspiration for digital

electronic systems based on the following hypothesis:

Hypothesis: Embedded social insect intelligence models derived from studies of the

social insects can exhibit highly-scalable adaptive behaviours suitable for managing

complex digital electronic systems.

With the following supporting sub-hypotheses:

Sub Hypothesis 1: Models of task allocation in social insect colonies provide appro-

priate inspiration for enabling self-organising task mappings for many-core systems.

Sub Hypothesis 2: The decision making processes of individual social insects can in-

spire embedded intelligence circuitry that allow run-time self-optimisation of digital

sub-systems to be achieved.



24 Chapter 1. Introduction

1.3. Research Contributions

During the undertaking of this work the following research contributions have been

made to the field of digital electronics:

• The creation of Centurion many-core system a 128-node many-core platform

for experimenting with large scale many-core systems in hardware.

• The design of the Configurable Intelligence Array, a novel artificial intelligence

hardware platform based on simplified aspects of spiking neural networks but

highly optimised for efficient FPGA and digital circuit implementations.

• Selection and Evaluation of two reference task allocation models from the bi-

ological literature and understanding of their strengths and weaknesses when

applied in an artificial emergent environment.

• Methodologies for converting response-threshold based artificial intelligent be-

haviours into forms that are suitable for embedding in modern digital systems.

1.4. Thesis Structure

This thesis consists of eight chapters and is structured as follows:

• Chapter 2 gives an outline of the trends of modern VLSI design and summarises

the problems that are expected to arise in the medium term that could spell the

end of the device size and performance scaling that we have been accustomed to

over the last few decades. It also introduces many-core systems and autonomic

computing as potential design solutions to these problems.

• Chapter 3 explores the biological literature to gain understanding on how social

insect colonies are organised and describes the key biological models created to

capture the adaptive properties of large social insect colonies.

• Chapter 4 introduces the Centurion 128-node many-core platform designed for

the experiments presented in this thesis and describes its FPGA implementation.
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• Chapter 5 is a second implementation chapter that covers the design of the Con-

figurable Intelligence Array, which is then embedded within Centurion and used

to implement the social insect-inspired models.

• Chapter 6 presents the results of experiments that validate the emergent be-

haviour of the social insect intelligence when used to control aspects of the

Centurion platform.

• Chapter 7 expands on the adaptive behaviour goals of investigated in Chapter

6 with a fault injection experiment and shows how adaptive behaviours can be

implemented using the Configurable Intelligence Array.

• Chapter 8 reviews the social-insects as a source of bio-inspiration for adaptive

systems and suggests improvements and further work that could be undertaken

with the models, Centurion and the Configurable Intelligence Array.
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Chapter 2

Challenges of Large Scale VLSI Design
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2.1. Overview

The continuous advancement of semiconductor based technologies has enabled many

digital electronic engineering paradigms as transistor densities and power consump-

tion improved over time with each new technology. Today, this allows digital engi-

neers to build complex Systems-on-Chips (SoCs), comprised of hundreds of digital

sub-systems, all integrated together into one silicon die. It has been a relatively fast-

paced transformation period, driven by the unrelenting Moore’s law [29], that has seen

large shifts in digital system design methodology as each step forward allowed design-

ers to use a higher level of complexity and abstraction. This has resulted in engineers

advancing from a transistor-to-transistor design based on hand drawn circuit diagrams,

to the specification description based EDA tool flows that we enjoy today, within only

a few decades.

However, this advancement of digital hardware has been focused sharply on silicon-

based transistors and these have fundamental physical properties (e.g. leakage current

[30], heat dissipation) that at certain technology sizes will start to affect how many

transistors can be integrated into a chip. In general the smaller the transistor the more

such properties become a fundamental limitation to the density and performance of

silicon-based transistors, resulting in our classical route of technological advancements

eventually grinding to a halt. Dennard Scaling [31] was the first of these properties to

fail and has forced a change in the design of complex VLSI systems, with many other

limitations likely to be hit in the near future if digital hardware with silicon-based

transistors prevails . Modern design paradigms such as Many-Core Systems built on

Networks-on-Chip (NoCs) promise new ways of overcoming imminent limitations, but

with the penalty of an extremely costly (indeed almost prohibitive) increase in design

complexity.

This chapter will introduce the problems that current and near-future deep sub-micron

VLSI technologies will need to overcome to realise the next generation of high-performance

digital electronic systems. Hardware implementation device trends and challenges are

explored in Section 2.2. Many-Core Systems and their design challenges are then in-

troduced in Section 2.3. Finally, Section 2.4 will introduce the Autonomic Computing
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paradigm as a means of tackling these challenges.

2.2. Present and Upcoming Challenges in VLSI Devices

2.2.1. Future Technology Trends

As we start to reach silicon’s fundamental physical and performance limits, research

into the next-generation digital device technologies has focussed on either finding a

replacement for silicon as an implementation technology or using the silicon fabric

in novel ways to extract more performance per device. This is a broad and specu-

lative field and so the 2015 reporting of the International Technology Roadmap for

Semiconductors (ITRS)[32] and the 2018 reporting of the follow up group IEEE In-

ternational Roadmap For Devices and Systems (IRDS) [33] provide a useful summary

of the medium-term challenges that the technology presented in this thesis aims to

address.

The ITRS and IRDS reports are produced to detail upcoming challenges in the semi-

conductor industry and are prepared by representative experts from several industrial

bodies including: European Semiconductor Industry Association, Japan Electronics

and Information Technology Industries Association, Korean Semiconductor Industry

Association, Semiconductor Industry Association and Taiwan Semiconductor Industry

Association [32]. Therefore it can be considered a reliable indicator of the problems

that the semiconductor industry feel are most important to tackle. The ITRS/IRDS

reports consider a wide range of consumer application uses: from high-performance

data centre use, low-power IoT applications and also requirements of future mobile de-

vices that strike a tough balance between power and embedded high-performance [34]

[1]. Most of the sub-reportings summarise that in the medium term many electronics

fields will require either a replacement for CMOS technologies or use of CMOS tech-

nologies in advanced ways. They predict that the growth of use cases and demand for

ever more computation power will continue for at least the next 20 years and so these

medium term challenges are likely to be required and will drive research directions for

the foreseeable future.
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The following summaries explore some of the most pressing challenges for digital

VLSI systems.

2.2.2. Dennard Scaling and Dark-Silicon

Recently we have reached a fundamental transistor size where Dennard scaling starts

to break down [13]. Previously the threshold voltage of the transistors on the die

would scale together with the supply voltage, allowing the supply voltage to drop with

each process generation. However, now the supply or threshold voltage cannot be

dropped without simultaneously increasing either the transistor delay or leakage [11],

forcing the supply voltage through each recent process generation to be fixed. This has

dire consequences when combined with the scaling in transistor density as the power

required by the chip will increase exponentially with each generation, to the point that

we cannot provide the power required to switch all the transistors on a chip at their

maximum frequency or even remove the thermal energy produced by this switching

[35].

This limitation has been dubbed Dark Silicon and has been highlighted as a crucial

problem for the semiconductor industries, with predictions claiming that at an 8nm

process over 50% of a chip may need to be powered off to act as thermal buffering

[13]. Further analysis in [36] suggests that this figure can be reduced with DVFS

management. Their experiments show that between features sizes and, even with a

40% Dark Silicon overhead at 8nm, the performance benefits of a smaller feature size

outweigh the Dark Silicon overhead when overall system performance is considered.

These results however are dependant on a thermal analysis and use of DFVS, this

will be application specific and requires extra design analysis and runtime manage-

ment which may not scale to very large systems. Designs are starting to use 7nm

processes and the evaluation presented in [37] implemented a 64-core design using a

7nm FinFET technology. The results aligned with the predictions of [13], using high-

performance FinFETs (Super-Threshold) and a 15W power budget it was found that

the system had a Dark Silicon overhead of 64% (i.e. only 36% of the design cores

could be run at full speed at once). If lower performance, but more power-efficient,

Near Threshold FinFETs were used then this overhead improved to 19%.
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Consequently, several research directions have emerged to tackle the Dark Silicon

problem, of which many-core systems are one of them [11][12]. Four possible direc-

tions for Dark Silicon mitigation have been outlined in [14]:

1. Smaller dies: By reducing the number of transistors per die the overall power

and thermal requirements of the die can be reduced. However this approach

neglects the fact that the area of the die is a fundamental requirement for heat

dissipation performance and so the frequency of operation is then limited, in-

creasingly an issue as transistor density (and therefore the intensity of hotspots)

increases. This approach is also restricted in cost savings as the design costs

will remain largely the same, if not increasing due to the need to fit the design

into a smaller area. This could even require several chips to achieve the required

functionality, practically reversing the trend to fit complex systems within on

chip with the effect of increasing system power consumption and unnecessary

overheads such as greater off-chip communication channels (requiring more IO

pads and more complex PCB layouts).

2. Part-time logic: Whilst Dark Silicon is important for maintaining power and

thermal constraints, it should be emphasised that the silicon does not have to

be completely unused all the time and can instead be used for circuitry that

is of either low frequency operation or of infrequent use. Through the use of

techniques such as clock gating and Dynamic Voltage and Frequency Scaling

(DVFS), the energy consumption of specific parts of the chip can be controlled.

This has seen some application in modern multi-cores as a “turbo” function

where the frequency of some cores is scaled back to allow another core to run at a

higher frequency. By careful scheduling of the application or scheduling the use

of DVFS it is also possible to move some of the problem to the temporal domain;

parts of the system are run at full performance until the thermal capacity of the

chip is reached at which point the performance is reduced until the chip has had

time to cool. This technique also favours assigning large parts of the chip to

memories such as caches, as only a small subset of the memory is accessed (and

therefore active) at any one time giving a high “darkness” per square millimetre

when compared to computational logic despite being operated at its maximum
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frequency. However few applications will benefit from just a de-facto increase

in cache resources so a vast amount of silicon will have to be left dark and is

thus wasted.

3. Specialised co-processors: An elaboration of the previous technique is to utilise

the dark silicon for specialised co-processors. The co-processors consist of spe-

cialised hardware accelerators that perform a specific operation with far greater

performance and energy efficiency than the general purpose processor. They are

also clock gated and may support DVFS, allowing them to be disabled when

not in use. Execution switches between a general purpose processor and the co-

processors (possibly many copies of the same for a parallel application) in such a

way that the most efficient core for a particular operation is always used. Unused

cores are switched off resulting in a reduction in total switching capacitance for

a particular operation, this is in contrast with the previous approach where the

aim is to minimise energy use through frequency and voltage management. This

approach makes full use of unused dark silicon and it can be envisioned that

systems will consist of hundreds or thousands of tiny co-processors residing in

otherwise wasted silicon resources. Some care will be required at the design

stage to ensure that energy savings are not compromised by inefficient commu-

nication between the cores and new programming tools will be required to shield

the underlying complexity of the many-core away from the programmer without

jeopardising the potentially great improvements offered by co-processor driven

architectures.

4. New material or silicon breakthrough: The final hope for combating dark sili-

con comes from changes in the silicon platform itself, a possible move is away

from MOSFET technologies due to their fundamental limits on leakage current

at room temperature. Two candidate technologies highlighted in [14] are tunnel-

FETs (TFETs) and Nanoelectromechanical system (NEMS) switches, both of

which offer significantly better leakage performance. However these processes

also have their limitations: TFETs are unsuited to be applied to high perfor-

mance circuitry due to lower on-currents and NEMS technology suffers from

slow switching times. This limits their immediate integration into chips, but
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they are a key focus of future semiconductor fabrication research and may in-

deed find niche applications.

From this survey it is clear that Dark Silicon is going to be a significant problem that

we must overcome if we are still going to reap the benefits of increasing transistor

density. Unless new materials or breakthroughs at the physical layer are made, it is

almost certainly going to fundamentally change the way we design complex digital

systems; indeed with the adaptation of many-core it could be said that this change has

already started to happen. Out of the above directions, it seems that the first is not

only rather bleak in terms of future innovation but it is also not particularly scalable or

future proof. It will raise the cost of systems, introduce longer engineering times and

limit the amount of complexity we can achieve within a system.

In contrast, the fourth direction is the most encouraging in terms of a more holis-

tic solution of the issues regarding dark silicon and indeed the ITRS highlights novel

fabrication substrates such as graphene and spin materials as of significant research in-

terest in their Emerging Research Materials [38] and Emerging Research Devices [39]

summaries from 2013. Alternative silicon based technologies are explored in the Pro-

cess Integration, Devices and Structures summary (also from 2013) [40], with a focus

on sub 10nm technologies and three-dimensional architectures; but with also a strong

focus on improving reliability and other fabrication scaling issues. The 2018 IRDS

Metrology report [41] shows that the field has evolved slightly with the challenges

focussing on both sub-7nm technology and also larger feature sizes. Implementation

of 3D structures (e.g. finFETs) is a key element of the report and so a large focus of

this report covers device measurement and feature implementation verification for 3D

structures. This shows that whilst building these structures at feature sizes of 10nm is

feasible, managing and verifying yield is still a large challenge despite introduction of

new fundamental structures. The report also introduces the idea that research into AI

predictions of yield using models of a process combined with process parameters and

measurement points could be used to predict die measurements that cannot be taken

for scale reasons.

The broad range of research directions suggested by the ITRS (shown in the Executive

Summary of all ITRS assessments [34] [1]) suggests that it is not clear what silicon’s
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replacement will be or indeed when it will disrupt silicon’s dominance. Therefore,

the principal method for a medium-term approach to tackling dark silicon should be

through the second and third research directions [42].

2.2.3. Device Variability

This problem is exaggerated when another major problem affecting modern semicon-

ductors is considered, namely fabrication related issues such as process variability and

manufacturing defects. During fabrication it is impossible to keep the physical charac-

teristics of all transistors and interconnections consistent across the chip and so some

local variation in performance occurs. As the size of transistors continuously shrinks

these margins become more significant to the point that it becomes inevitable that some

parts of a chip will be out of stable operating range for a given operating environment

whilst other parts may be well within their margins. No two dies are the same and so

this variability is seen not only across the billions of transistors on the chip, but then

again across the millions of chips produced in a manufacturing run. Therefore a de-

tailed characterisation of the maximum operating parameters of each individual chip

is not possible as this would require exhaustive testing (of all potentially critical paths)

under a huge range of operating conditions to expose all possible faults.

Consequently the technique of binning [43] is now a common practice of the semi-

conductor manufacturers; each device is evaluated with a simple test depending on the

operating feature required and then device guarantees are based on the performance

of this test. For example a microprocessor manufacturer may bin their products based

on the maximum frequency at which they can operate without faults, this may be well

below the design maximum frequency of the device but it would allow a device to still

be sold in spite of a lower performance; this is far better from a yield perspective than

disposing of all under-performing chips. However, binning is clearly limited by the

binning metric used to evaluate it and may still require very large reductions in perfor-

mance of many devices in a production run to get a reasonable yield. Variability issues

are only going to get worse with smaller fabrication processes; and so the reduction

of performance may be so severely limiting that little of the advantage offered by a

new process may actually be exploited by the device. Also the binning metric does not
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scale well with the many-core approach taken to combat dark silicon, in both terms of

testing time and effectiveness of binning; with hundreds of cores on the chip it only

takes one under-performing core to render the whole device destined for a poor device

binning even if all other cores work perfectly well at their maximum performance,

drastically limiting the yield of potential for high performing devices [3]. Thus it does

not seem that binning is a sustainable approach to tackling variation for very large

scale many-cores with thousands of processing elements.

2.2.4. Device Degradation and Ageing

A further challenge that has only relatively recently started to affect device yield is

faults induced post-manufacture by transistor ageing and electromigration. These de-

fects are surveyed in [44] (presented in an IEEE magazine), where three mechanisms

for transistor ageing are identified: hot-carrier injection which increases the threshold

voltage of the transistor (and thus limits the maximum switching speed); bias tempera-

ture instability which also increases the threshold voltage and oxide breakdown which

will break down the transistor dielectric over time, eventually leading to a complete

catastrophic failure of the transistor. Electromigration however occurs in the tracks

between transistors: the accidental drifting of atoms with electrons causes the tracks

to thin, increasing the resistance to the point that an open track may occur. As these

permanent faults are impossible to mitigate through manipulation of controllable pa-

rameters (i.e. voltage, temperature), we will also need to mitigate ageing effects geo-

metrically at runtime; analysis at time of manufacture is not longer sufficient. This has

been done in the past with N-modular redundancy, where N copies of each processing

unit exist on the device and their outputs are used to vote and thus can both detect

faulty modules and provide a correct output. However the voter can still be subject to

the permanent faults introduced here and if the processing unit is of high performance

then the total power required by the redundancy scheme will be multiplied by N, with

severe dark silicon implications. Thus, we shall either need to rely on cold spares

which would be advantageous for dark silicon but could potentially be quite wasteful

depending on system granularity, or utilise the adaptive nature of reconfigurable device

technologies such as Field Programmable Gate Arrays (FPGAs).
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2.3. Many-Core Systems

To tackle these issues when designing for high-density silicon devices, we can change

our design paradigm to manage the complexity of having so much computation on-

chip whilst also managing co-dependent design constraints to ensure as much as the

circuity on the device as possible is operating within design limits. As highlighted by

the ITRS reports, a level of abstraction of interest is at the data-processor level and is

encapsulated by the field of Many-Core Systems. These are large SoCs consisting of

a high number of processing cores but implemented with a more generic architectures

and processing cores than specialist high-core-count SoCs such as graphics cards or

dedicated algorithm accelerators. The More than Moore 2018 IRDS report [2] predicts

many-core systems as the only way to achieve performance targets assuming incre-

mental improvement of the thermal and power density of dies. The report predicts a

4.0GHz maximum mobile processor speed by 2025 with this speed getting worse as

technologies reduce in size (due to increased impact of parasitics), to the point where

the average frequency of a CPU in a mobile SoC will be 700MHz by 2034. To coun-

teract this the number of processing cores is increased, reaching 194 GPU cores and

170 CPU cores for a mobile SoC by 2034. A modern mobile SoC, for example the

Apple A13 [22], consists of six CPU cores (two at 2.65GHz, four running significantly

slower) and four GPU cores. The expansion of this SoC to the IRDS processing core

densities will require a large shift in the design of software, hardware and run-time

management to use the large number of processors effectively.

Many-core computing has been of research interest for many years within the parallel

computation research field, a field that has steadily become more integrated with hard-

ware research as the increasing transistor density allows more and more parallel com-

putation to take place within a single chip. In an attempt to tackle engineering prob-

lems such as scalability, many parallel architectures have been proposed and evolved

over the years including: systolic arrays[45], wavefront arrays [46], hypercubes [47]

and stream processors [48]. However the prominent architecture for modern on-chip

many-core systems is the Network on Chip (NoC) [49][50], an interconnection scheme

based on conventional networking where routers and channels are provided for com-
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munication between nodes. A large number of node topologies, interconnect options

and constraint optimisations are possible [16] (IEEE transactions on Computer-Aided

Design of Integrated Circuits and Systems), giving the hardware engineer a powerful

platform for implementing systems that could be adapted to meet various Dark Silicon

criteria or tolerance to ageing effects via redundancy.

This flexibility comes with its own engineering caveats however, as the large number

of parameters will require problem and system analysis to ensure that systems imple-

mented within NoCs fit their requirements and may necessitate the need for heuristical

approaches [51][52][53] to optimise the design space. This approach also suffers as

such analysis is traditionally done at design time and so cannot be adapted should

the operating conditions or properties of the chip change during operation (e.g. due

to ageing effects). Whilst it would be possible to generate either a design that can

operate over a range of operating environments or several different designs that can

be switched in/out at run time, the multi-objective optimisation required for the sys-

tem analysis tends to be computationally expensive. This would make it impossible

to undertake this analysis online at runtime and would require a extensive amount of

offline analysis; with the potential of storing a huge number of different configurations

and parameters for all possible operating conditions that the system may be expected

to work correctly for. The following sub-sections will explore this design space and

show why managing these parameters is important for effective, scalable many-core

design. Factors the influence the physical hardware implementation of a many-core

(only Network-on-Chip implementations are considered in this thesis due to their ease

of scalability) are discussed first and then the higher-level algorithmic design parame-

ters and processes.

2.3.1. Network-on-Chip

Network-on-Chip (NoC) is a modern digital design paradigm enabled by the recent

generation of high-density VLSI fabrics that supports a large number of data pro-

cessing resources, using a network to interconnect the processing resources [49][50].

Whilst taking a large amount of inspiration from traditional networking, there are some

significant design differences due to the fact that NoCs are implemented within a single
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chip. Network topology for example is more focused towards layouts that are better

suited to tiling across a die using protocols and channels that require less storage over-

head than current computer networking protocols and physical implementations. The

authors in [16] (IEEE transactions on Computer-Aided Design of Integrated Circuits

and Systems) have conducted a large survey of NoC design techniques and highlighted

problems that need attention, whilst the authors of [54] (ACM Computing Surveys)

and also in [55] summarise key design points in NoC design and discuss some exam-

ple designs. The following summaries use these papers to provide a brief explanation

of the role of each component of NoC design and tradeoffs that can be made with each

component.

NoC Packets and Routing

The majority of data transmission methods for NoCs fall into either circuit switched

or packet switched schemes. These relate to the amount of data that is moved in a

transaction and whether the routing information is located within the packet. Packet

switched networks will contain the required routing control information within the

packet and the packet can only exist at one router at a time (aside from during a trans-

mission transaction), requiring ample buffer storage to allow each router to be able

to store an entire packet. Circuit switching on the other hand reserves a path for the

packet, with the routing information typically leading the data. This requires minimal

buffering per router channel (just the routing data), but it does mean a packet can span

several routers and data channels. This clearly results in a tradeoff between amount

of memory required for buffering at each router and the amount of interference on a

routing path on the networking; indeed wormhole routing, the most common form of

circuit switched routing for NoCs, is very susceptible to deadlock [56]. The authors

of [57] claim that, generally, for larger packets in lower-load applications that circuit

switched communication should be used for NoCs; with packet switching performing

better in high-load, small packet applications. They also show the extra area cost of

packet switched routing, with their synthesised packet switched router requiring nearly

five times the area than their circuited switched router.
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NoC Routers

The router tends to be the most complex element in the NoC. Much like a conven-

tional network router its role is to connect routers to each other, connect the processing

node(s) to a router and to support the communication protocol(s) that run on top of the

NoC hardware. At the heart of the router is the switch that connects input data chan-

nels to output data channels. The router requires a control unit that uses an arbitration

policy and connection rules (sometimes encoded within a routing table) to determine

which input channels should be connected to which output channels via the switch.

As exemplified in [58], the design of the router will reflect heavily on the system in

which the NoC is to be used and the communication demands of the applications run-

ning on the NoC, especially with systems requiring support for both “guaranteed” and

best-effort traffic. The AETHEREAL NoC [59] for example supports a sophisticated

timeslot arbitration and so has a complex switch controller within its design, result-

ing in a large amount of control logic required for the router and memory resources

required for the various timeslot queues.

Data Channels

Physical wires that carry the data connect the routers to each other. This may seem

a trivial part of the NoC design, but the number, width and length of these wires can

contribute significantly to the operating envelope of the chip, with [54] suggesting that

as technologies shrink, the influence of crosstalk, power supply noise and wire ca-

pacitance will prove a real challenge to NoC interconnect, likely requiring the use of

error protection methods on the interconnections with future technologies. This prob-

lem is even more applicable to any global signals or other lengthy signals with high-

fanout due to the large number of signal repeaters on the wire, so designs suitable for

high scalability will require minimal use of such signals. High-speed serial commu-

nication has been successful in conventional networking to alleviate these problems,

although their use within NoCs is limited due to the extra area required by the fast

serialiser/deserialiser pairs [60] and the increased thermal load of the fast serial clock.

NoCs will help in this regard as the grid structure ensures that long wires will not be

needed in the design (the longest performance limiting wires will be those between



Social Insect-Inspired Adaptive Hardware 39

NoC routers) and the regular grid structure can give an efficient cross-talk and thermal

analysis as once one tile is analysed the resultant model could be tiled across the die.

2.3.2. The Many-Core Design Space

The NoC provides a means for the many-core system to communicate between indi-

vidual cores as well as interfaces external to the chip. There are more design decisions

to be taken at the application level that will affect the performance of both the NoC

and the application running on the many-core system. There are a large number of

high-level design aspects that are still open research problems such as task partition-

ing, communication partitioning and scheduling [61]. These problems depend on both

the higher-level application and the operating environment (the application could be

spread across several processing cores, several chips, or even part of a more distributed

system) but also on the interfaces and capabilities of the lower-level support compo-

nents of the embedded system.

In a many-core system these low level components are the mechanisms that support

the applications running on the cores. This includes communication between cores,

loading and execution of the software running on the cores and also the run-time man-

agement of cores (e.g. nodes being enabled, frequency scaling, configuration of hard-

ware accelerators). There is clearly scope for merging of these layers but in order to

support many different applications, an architectural divide and abstraction needs to be

made at some level in the system. As these problems are highly application specific,

use of high-level modelling is becoming popular to design the system. Tools such as

Ptolemy [62] allow high-level modelling and simulation of aspects of the tasks of a

complex embedded application before it is implemented on a hardware platform.

Given the complexity of the higher-level design aspects, they are not considered any

further so this section can focus on the challenges of the lower-level design challenges.

The experiments presented in later chapters use abstract task models where task and

communication partitioning has already been done and schedulability is not considered

an issue. For a more holistic many-core support platform these factors would need to

be addressed.
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Task Allocation

Deciding which task each node should be doing in a many-core system is a fundamen-

tal part of the multi-objective design space exploration involved in many-core system

design. The node-to-task mapping will affect many key constraints of the system de-

sign, even for homogeneous many-cores. For example, a poor mapping may result

in excessive communication overhead through longer communication paths between

nodes in the data processing flow, or increased thermal load if busy nodes are clustered

together and even limited system throughput if not enough nodes are assigned to tasks

on the critical path. Thus an ideal task allocation needs to optimise topologies with

both a physical (relative location) and a logical (application) focus. This becomes an

even harder problem once adaptation is supported within the task allocation model as

changing the task of one node will have both an upstream and downstream effect on

other nodes in the data-flow. If heuristical approaches that are used to optimise the

design space are then used in an adaptive context, a huge number of different task

mapping scenarios must be modelled which is clearly not very scalable and would be

a limiting factor as many-cores reach the size of hundreds and thousands of nodes.

The authors in [63] suggest that the problem should be split into hard-realtime and

soft-realtime allocations due to the differences in objectives and strategies for the two

problem areas. A common feature amongst many of the approaches from both types of

allocations is a database driven approach where the application needs, constraints and

other heuristics (possible measured from previous executions) are combined with the

attributes of the many-core fabric. This database is then used to generate both offline

mappings and mappings at run-time. The authors highlight this centralised approach

as effective for small many-cores, but the problem space becomes far too large when

many different applications are mapped or a large scale many-core is used. A hybrid

approach is suggested whereby offline analytical solutions computed from a reduced

design space set are combined with less rigorous run-time adaptations that then provide

a degree of management once the applications are running on the many-core.
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NoC Routing

Very closely tied in with the many-core task mapping is the allocation of NoC routing

resources between the communicating nodes. The large amount of network resources

allow many options for connecting two nodes and so methods must be in place for

determining a packet’s path through the network and also how other factors such as

traffic priority of Quality of Service (QoS) affect it. As highlighted in [54] the ideal

routing algorithm needs to take the following factors into account when deciding on

routing paths between nodes:

• The type of data switching that the NoC supports and the router and channel

level (i.e. packet switching or circuit switching).

• Whether a deterministic or adaptive routing approach is used. Deterministic

routing will use preplanned paths that can not change once the packet has left its

source, whilst adaptive routing will look up the next direction from each router’s

routing table on arrival. Hence with adaptive routing the source node does not

know which path its packet will take.

• Whether the routing algorithm always needs to select the shortest path, and if

not under which cases this should be relaxed.

• Whether the application allows “dropped” packets, in which they are destroyed

and the data lost if they do not reach their destination node by their latest arrival

time.

• Whether the routing decisions are being made in a centralised or decentralised

way. Decentralised routing decisions will need a method of interaction between

routing decisions to allow interplaying factors to be exchanged.

This is a very complex decision space and, as with the task allocation design space, it

is unlikely that a centralised decision making process will be able to scale up elegantly

to hundreds and thousands of cores.
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Fault-Tolerance

An appealing aspect of many-core systems, and a key element of very large scale

many-core, is the ease of support for node-level fault detection and mitigation. If a

node is failed then it can be swapped for a spare core within the many-core. As the

size of the many-core increases, more spare cores will be available due to core pro-

vision outstripping application demand or non-optimal task mappings leaving spare

cores across the system. Unfortunately most approaches seen so far require online

remapping and re-routing of the application requiring significant computation over-

head, however some approaches based on local redundancy have been proposed [64]

and such approaches are more likely to be scalable to large many-core systems, with

the fault tolerance being a property of the fabric that the mapping step can exploit.

2.4. Autonomic Adaptive Systems

Systems that self-organise and self-optimise have regularly been a focus of modern re-

search and can be seen as a promising way to handling the ever-increasing complexity

of systems in an efficient and scalable fashion. The field of Autonomic Computing has

emerged as an approach to manage complex systems autonomously without human in-

put. First introduced by IBM in 2001 [65] by taking inspiration from the autonomous

nervous system, a system within the human body that maintains body homeostasis

through management of many bodily functions in a way that we would consider au-

tonomous; from internal body temperature control to respiratory function and even

managing our heat rate to allow us to make “fight or flight” decisions on the spot [66].

IBM envisaged large business systems that are “capable of running themselves, adjust-

ing to varying circumstances, and preparing their resources to handle most efficiently

the workloads put on them” [65]; a brief that could easily apply to the many-core sys-

tems introduced in the previous section. Further to this and in the same paper, IBM

also suggest eight key elements for a system to be considered autonomic:

1. An autonomic system needs to “know itself” and comprise of components that

also posses a system identity
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2. An autonomic system must configure and reconfigure itself under varying and

unpredictable conditions

3. An autonomic system never settles for the status quo - it always looks for ways

to optimise its workings

4. An autonomic system must perform something akin to healing - it must be able

to recover from routine and extraordinary events that might cause some of its

parts to malfunction

5. A virtual world is no less dangerous than a physical one, so an autonomic system

must be an expert in self-protection

6. An autonomic system knows its environment and the context surrounding its

activity and acts accordingly

7. An autonomic system cannot exist in a hermetic environment

8. An autonomic system will anticipate the optimised resources needed while keep-

ing its complexity hidden

Whilst this list is intended for larger systems than a typical many-core, there is no rea-

son to exclude the possibility that the complexity of a large many-core system could

hit an equivalent size as the enterprise systems considered for these rules. Indeed,

at least six of the above points (with point 1 possibly excluded as the scalability of

large many-core systems means that it may not be possible for the whole system to

“know itself” or conversely smaller systems can be managed centrally and will not

need system-identity of the sub-components) can easily be seen to be directly relevant

to many-core systems. This idea was then consolidated further in 2003 with a follow

up paper [67], whereby this set of elements are reduced to four: self-configuration,

self-optimisation, self-healing and self-protection. This has became known as the self-

* set of goals for autonomous systems. This paper is also where engineering aspects

are starting to be considered, including how autonomic elements should be function-

ally represented via high-level specifications and how system monitoring is crucial to

achieving the self-* goals of the system. The biological metaphor is changed slightly

to that of the distributed intelligence of an ant colony. However, this change is a good

indicator as it shows the autonomous behaviour of the system is more important to the
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researchers than blindly following a biological metaphor. Finally outstanding research

challenges are suggested including:

• Behavioural abstractions: how can behaviours designed local to an autonomic

element interact with other autonomic elements to produce the higher level sys-

tem goals desired?

• How can robustness of autonomic systems be described and analysed?

• How should learning and self-optimisation be implemented in such a dynamic

environment where there is no guarantee of convergence; indeed is this actually

a desirable feature of autonomous systems?

• How should individuals in the system interact with each other and how should

the communication over the system as a whole be structured?

• Can we abstract statistical behaviour over system life and let the system feed this

into its learning processes? At what point does over-fitting of such a statistical

model actually become detrimental to correct, adaptive behaviour?

The intelligence aspect of autonomic systems is of interest as it is this part that is pro-

viding the adaptive, understanding behaviour. However it could be argued that artificial

intelligence is not yet at a stage where it can simply be given high-level information

and expect to integrate with a system. Instead the design flow for autonomic systems

consists of specialising an intelligence system to the system with the autonomy then

occuring at run time. This will be crucial for adopting autonomic systems in the near

future as hard-AI driven systems would be far too resource intensive and make the

verification of autonomous systems even more difficult. Indeed in 2004 the Defense

Advanced Research Projects Agency (DARPA) started to show an interest in IBM’s

work with the ambition of applying the concept to large-scale military command and

control systems [68]. Of key interest here was the self-healing and self-protection

elements with the following goals from [68]:

• Operate through cyber attacks and provide continued, correct and timely ser-

vices to the user

• Adapt security posture to changing threat conditions and adjust performance and
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functionality

• Always know how much reserve capability and attack margin are available

• Restore system capabilities to full functionality following an event

• Autonomously reassess success and failure of all actions before, during and after

an even

• Autonomously incorporate lessons learned into all system aspects

What can be seen here is a more system-focussed refinement of the definition of an

autonomic system for DARPA’s application. Arguably these are still high-level system

requirements and so still omit the details of how the “intelligence” should behave, but

it is easier to comprehend how these objectives could start to be engineered for their

intended application. Indeed it seems that such behavioural descriptions are an effec-

tive way of describing the requirements of an intelligent system (e.g. requirements

of system sensors, actuators, methods of analysis and learning schemes), but instead

of the typical engineering flow of iteratively refining these requirements into system

requirements, component requirements etc., our intelligence model should hook into

the system at some point to maintain adaptivity. Where this intelligence hooks in is an

important tradeoff in terms of complexity of AI model and adaptivity required across

the entire system.

A recent (2010) review of autonomic computing is found in [69] where a focus is given

on using biological inspiration to achieve the self-* properties and also some discus-

sion on system theory. It is claimed that our systems will need to move away from

being “point-correct”, with the system state determinable at any given time, to being

“process correct” where they react correctly to changing situations with predictable

impact on system performance and/or accuracy. The authors suggest that this includes

how we can describe such systems’ behaviour as a range of acceptable behaviours

given a certain task and then indicate a preference behaviour at a given instant. How-

ever they also point out that no compatible systems engineering paradigm exists for

describing this kind of system behaviour. They give the example of an autonomic

power management system that can optimise power requirements: “we must be able

to state the bounds within which the power demand will vary, its impact on response
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times, and its interaction with subsystems that may affect load or communications, as

these factors influence other choices within the management system.” However if we

are to introduce more determinism then we will still need a mechanism to be able to

guarantee that systems will still exhibit self-* properties.

So there still seems to be many challenges regarding autonomic systems; from how we

can describe and define the behaviour of the system to guaranteeing effective emergent

behaviours. This is still a relatively new research field however and so an experimental

approach is certainly justified to allow possible solutions to be discovered. Some give

and take will be required, it should not be expected that we can achieve self-adaptive

systems for free. One approach may be to “promise” a worst case performance of

the emergence behaviours. What is also clear is that there are some commonalities

between different autonomic systems: ideas applied to a 1000 spacecraft swarm [70]

are rather analogous to a 1000 core many-core or even 1000 sensors in an ubiquitous

computing system.

The embedded intelligence created in this work aims to provide a system with several

autonomous properties, online adaptation to poor initial conditions and online adap-

tation to faults for example. Criteria from this section are used when evaluating the

experiments in the context of fully autonomous systems. As only a sub-set of system

and application parameters are put in control of the embedded intelligence, the capa-

bilities of the system will be considered in the context of the goals suggested by [67],

namely: self-configuration, self-optimisation, self-healing and self-protection.

2.5. Existing Adaptive Hardware Platforms

The application of biological models to hardware platforms has been a key research

area in the field of adaptive systems and many systems are implemented on FPGA due

to their reconfiguration possibilities. Many previous approaches have suffered from

a complex translation of the biological model to the hardware platform and smaller

FPGA densities in the past were a serious limitation. However, FPGA densities have

increased dramatically over recent years allowing more logic to be dedicated to sup-

porting the biological model; suggesting that some of the previous work in this field
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may be worth re-visiting with significantly larger devices. Table 2.1 shows a summary

of recent developments in this field for systems that target a single chip or a small

number of chips that could now be possible to merge into a single device. Bio-inspired

systems that span networks or a large number of large-CPUs have not been consid-

ered as it is felt that these focus more towards management of distributed computing

systems than autonomous management of an embedded system and have access to

computing resources that are beyond scope for a large many-core on a single device

(despite the large scale of the many-core the capability of the single nodes will still be

relatively simple to achieve the scalability) and face challenges that are not applicable

to single-chip many-core systems.

Project Biological

inspiration

Year

Developed

Description

Teramac

[71]

N/A but

conclusion

highlights

need for au-

tonomously

managed

system

1997 Teramac was a large machine built out of

failed FPGA devices. Diagnostic tests de-

termined where the faults occurred and

record them in a defect database. Faulty

regions are isolated on a device basis and

designs are mapped around these faults.

Redundancy on critical inter FPGA and

memory tracks.

Bionode

[18]

Cellular,

endocrine

signalling,

hormone

systems

2004 Endocrine system inspired cellular archi-

tecture. Built structure of 30 cells (each

with Virtex-2 and C) connected in 3D-

toriod shape with simple asynchronous

interconnect between nodes. Process-

ing, communication and fault tolerance is

based on hormone production and sup-

pression. Grouping of functionally sim-

ilar cells produces organs depending on

process demand. Experimented with sim-

ple calculations and removal of nodes. No

ability to dynamically change cell func-

tion.
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Project Biological

inspiration

Year

Developed

Description

POEtic [72] Cellular

evolution,

artificial

develop-

ment

2004 Based on the biological development

principles of Phylogenesis (the evolution

of the genome), Ontogenesis (the growth

of the ogranism) and Epigenesis (the de-

velopment of a individual through its

learning systems). This is implemented

on a cellular hardware fabric of basic

functions that can be interconnected to

build more complex functions. Evolution

and artificial development is used to con-

figure routing, molecule interconnect and

molecule function to evolve the system

function. ASIC of 12 molecules was de-

veloped.

MOVE [20] Cellular,

self-

replication,

differentia-

tion

2006 Processor implemented on POEtic with a

Transport Trigger Architecture, processor

moves data from one functional unit to

another. This lends well to a cellar archi-

tecture with the functional units located

in cells. Routing is predetermined where

each cell ‘announces’ its inputs and out-

puts, then the routing layer of POEtic is

configured to build the organism’s struc-

ture. Self-replication allows the system to

be built from one cell. Replication is built

from self-inspection.

PERPLEXUS

[73]

Cellular,

self-

replication,

artificial

culture

application

2006-2009 Ubidules aimed to produce neural

friendly architectures by means of

self-contained multi-cellular organisms.

Ubichip supports this by providing

cells consisting of a 4 bit registers and

LUTs, usually configured as an ALU for

neural applications. Self-replication is

via self-inspection and a configuration

interface allows cells to be dynami-

cally reconfigured without impacting

the overall system (and without frame

limited reconfiguration). A neural robot

controller of 40 cells was implemented

on simulated platform. The project also

showed neural adaptivity as older, unused

neurons die off when perception changes

(i.e. new environment).
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Project Biological

inspiration

Year

Developed

Description

SABRE [17] Cellular,

based on

prokaryote

cells

2010 Captures the behaviours of high level

embryonic systems based on unicellular

prokaryotic organisms by creating a pro-

grammable “cell” that could perform an

arithmetic function and also contained

routing capabilities to allow cells to be

connected to form clusters and colonies

analogous to social bacteria. The routing

and cell overhead to support a 4-bit mul-

tiplier required 40 cells to implement.

DodOrg

[19]

Cellular,

Artificial

Hormone

System

2011 A hierarchical approach of: Brain (appli-

cation, consisting of tasks), Organ (map-

ping tasks to processing units (OPCs) and

Organic Processing Cell (task processor,

reconfigurable). Organ formation was via

an Artificial Hormone System to groups

tasks together to produce organs. Organic

monitoring system monitors and evalu-

ates the system performance across all

three levels including data generation and

data analysis. The AHS claimed to sup-

port self-organisation, self-configuration,

self-optimisation (at reallocation time)

and self-healing. Simulated as part of a

robot controller consisting of 6 tasks on a

2x2 OPC grid, each OPC a Virtex-2.

Table 2.1: Survey of existing adaptive hardware platforms

From Table 2.1 it is clear that most of these recent efforts have targeted cellular biolog-

ical systems. This is not without good reason as all life is built upon these fundamental

life processes. The ecosystem however is extremely complex. For example, POEtic’s

plan to combine evolution and developmental processes was extremely ambitious but

such complexity is required when developing systems modelled this close to their bio-

logical inspiration. Cellular dynamics rely heavily on chemical interactions and reac-

tions which are extremely expensive to model in hardware. It is therefore unsurprising

to see that most of these projects produced very basic functionality relative to the large

amount of hardware the model required to implement them. This is a shame as these

models would benefit highly from a large implementation and should scale well.

Therefore it is imperative that, for a bio-inspired hardware model to be successful,
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the underlying organisation method used by biology must map well to the targeted

hardware platform. Any chemical or molecular based systems will require numerical

computation for the model and so will be expensive to implement in hardware or may

suffer from not exhibiting the desired biological properties if the numerical precision

is too low.

2.6. Summary

This chapter has explored some of the challenges facing the future of electronic sys-

tems and has also illustrated how the trend of large many-core systems will require

multi-objective analysis and optimisation of a huge number of constraints. These are

traditionally tackled with offline modelling and analysis but these algorithms tend not

to scale well to the size of systems predicted by ever increasing transistor densities.

Further still, device variability means one solution cannot be applied to all devices

without sacrificing the achievable performance to build in margins for variability. The

effect of transistor ageing requires even more extensive modelling and so design anal-

ysis will become more complex and more performance will be lost to the added ageing

margins. Future systems will need to be designed not to avoid faults at all costs, but

instead embrace faults as a normal part of device life.

Thus systems will need to be designed that can swap single core performance with a

larger number of smaller cores, leverage the unused resources from Dark Silicon and

adapt to faults and variations in the filed at runtime. Many-core provides us with an

adaptable hardware platform, their adaptivity can be exploited with the use of an intel-

ligent autonomic control system “hidden” in the dark areas of the chip that manages

our design space and detects and handles variation at runtime. Autonomic computing

has given some inspiration for how the high-level behaviours of such systems could

look, however many open problems remain concerning bounding the emergence and

how such complex adaptive systems can be engineered.

The next chapter explores the autonomous adaptive biological system that this thesis

is inspired by: the social insects. Chapter 4 then discusses the many-core experiment

platform, with the design choices for some of the many-core components based on
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some of the surveys introduced in this chapter.
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Chapter 3

Large Scale Social Insect Systems
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3.1. Overview

There are many examples of large complex systems in Nature that exhibit both the

scalability and collective co-ordination that are required for large many-core systems.

From the molecular interactions of Gene Regulatory Networks driving development of

multi-cellular structures [7], to the chemical signalling between bacteria in a Protozoa

society [8] and complex systematics of clonal organisms in a Hydrozoa consisting of

many sub-organisms [9]; many of these natural systems exhibit highly-scalable devel-

opment and maintenance abilities for solving a particular set of actions for survival in

a number of challenging environments.

In this chapter the Social Insects are presented as a suitable model for enabling auto-

nomic many-core systems. The individual workers have limited memory and decision

making capabilities [6] yet when working together in colonies at huge scale exhibit

many non-centralised features that are desirable for large many-core systems includ-

ing self-organisation, self-optimisation and fault tolerance. This chapter starts by dis-

cussing the required intelligence abilities of a single colony member versus the abil-

ities of the entire colony and motivates our choice to focus on social insect colonies.

Intelligence models of distributed task allocation are then introduced as these mod-

els are crucial for determining most of an individuals behavioural decisions. Finally,

other selected behaviours of individuals and colonies that map well to the engineering

challenges of many-core systems are described.

3.2. Intelligence Capabilities of an Individual

3.2.1. Colony Size versus Individual Capabilities

The decentralised nature of social-insect colonies requires a compromise to be estab-

lished between individual complexity and inter-agent communication complexity. In

general, the more capable an individual is of understanding and interacting with their

environment, the more complex the communication methods need to be. This is in

order to support the transfer of more detailed information to their peers (with potential
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for loss of scalability), allowing an individual to make decisions with richer infor-

mation acquired from a smaller number of their peers. All social insect colonies of

differing organisms (e.g. ants, bees, termites, wasps) and each organism’s sub-species

rely heavily on joint decision making processes, although the degree of social deci-

sion making is driven by the size of the colony as much as by organism and species

differences.

The analysis in [74] shows there is a clear relationship between the intellectual ca-

pabilities and specialisation of an individual and the typical size of the colony. This

applies equally across colonies of different species of social wasps, social bees, ter-

mites and ant colonies. For small colonies (tens to hundreds of workers), individuals

exhibit highly adaptive properties in both physical form and behavioural capabilities.

Workers in small colonies have not evolved to be reproductively sterile allowing them

to produce more worker eggs if required. In some species workers can even replace

queens as the primary breeding members if the queens die or are cast out from the

colony. Genetic variation between individuals is also low which results in a lack of

“specialists” as seen in larger colonies. This leads to a more adaptive class of workers,

which is required for a smaller colony as the loss of only a handful of individuals will

have a high impact on the dynamics of the colony.

However, a more adaptive set of workers requires a higher level of worker intelligence

to ensure it is making the correct decision; the impact of an individual’s choice of role

within the small colony will have a far greater effect on the colony as a whole. This had

led to hypotheses given in the paper Individual versus Social Complexity, with partic-

ular reference to ant colonies [75] of “individuals of highly social ant species are less

complex than individuals from simple ant societies” and more generally “as social

complexity increases, there is indeed a correlated decrease in individual complexity”

[75]. This is supported by Bourke’s survey [74] where large colonies (hundreds to

millions of colony members) are considered. These colony sizes exhibit social spe-

cialisms unique to managing the large-scale of the nest, such as sterile workers and

more genetic variability between individuals. This results in some individuals being

more suited to certain tasks than others (polymorphism).

The concluding remarks of [75] complement the observations in the survery, the au-



Social Insect-Inspired Adaptive Hardware 55

thors make the following (selected and paraphrased) generalisations of large scale ant

colonies:

1. Social complexity is positively correlated with differentiation between individ-

uals. Individuals differ from each other in three main ways: polymorphism

(genetic variation), physiological specialisation (developmental variation) and

behavioural specialisation.

2. Individuals in complex societies tend to be restricted from exhibiting the full

behaviour repertoire that an individual could support (i.e. tend not to be gener-

alists).

3. Complex societies tend to have relatively little intra-colony conflict and often

tackle tasks in a highly cooperative manner, requiring working as groups and

teams.

4. Complex societies tend to be “high tempo”, comprising very active and fast

moving individuals.

5. Complex societies are highly integrated, involving a sophisticated and heteroge-

neous communication network of signals and cues.

3.2.2. Neural Complexity

Despite the variation in behavioural roles of workers due to colony type and size, it

is evident that all workers have a common set of basic behaviours that allows them to

perform basic functions such as moving, eating and interacting with their nestmates.

It is important to understand how the individual worker’s intelligence is structured to

allow us to extract the sensory handling and decision making processes we are inter-

ested in. The review paper “Are bigger brains better?” [76] explores the insect brain

in relation to larger organisms. The authors highlight that there is a direct relationship

between the body mass of an animal and its neural mass, predicting a larger brain for

larger organisms which is fairly non-surprising. However, the authors also explore

why this is the case when many complex features such as locomotion control, visual

processing and movement planning are fairly common in many organisms. They con-
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clude that most of the extra neural processing power capabilities of larger organisms

is related to the fact that larger muscles will require more complex control circuitry.

This will also increase the amount or neural mass required for ancillary functions such

as movement planning and larger fields of vision that larger organisms will possess.

And so the authors claim that, despite their relatively low neural mass to body mass,

insects are still capable of a large repertoire of complex, cognitive behaviours; the low

neural mass attributed to being highly optimised to their operating environment and

being less concerned about survival of the individual.

The paper also introduces the role of memory as a neural resource [76]. Whilst com-

parative testing of memories of vertebrates and invertebrates is a difficult task, it is

generally accepted that invertebrates have minimal amount of long-term memory. In

the case of social insects this is a small number of sensory cues used in navigation.

However the authors highlight that this is in agreement with the evolutionary neural

optimisation of the individuals as an advantage of a large memory in vertebrates is the

ability to apply remembered situations as a form of adaptivity when facing new prob-

lems, with social insect colonies this level of adaptivity is achieved via colony dynam-

ics and so the neural cost of memory has been minimised. This viewpoint is expanded

in another aspect in [77] where the energy cost of learning is also considered. By re-

ducing the amount of cognitive behaviour reliant on memories the amount of learning

required before an individual can perform the action is also reduced, saving the energy

and time that would be “wasted” undertaking the learning process. Burns and Foucaud

explore intelligence as a trade-off, and argue that, due to the extra time, energy and

neural substance required to support learning and memory, learning imposes a fitness

penalty when compared to a member where the same behaviour is purely instinctive.

Again the distinction is made between small and large brains in terms of quantitative

improvements (e.g. sensor accuracy) vs qualitative improvements (larger behaviour

repertoires). They also identify that insects can exhibit some degree of complex learn-

ing (maze traversal for example), with the suggestion that higher-order neural circuits

exist in insects that allow them to integrate sensor and memory information so that they

can adapt various learned behavioural outputs. This leads to an indication that there is

a also trade-off between energy and neuronal matter dedicated to sensor analysis and

energy and neuronal matter dedicated to higher-order decision units.
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This minimal learning approach results in most of a social insect worker’s behaviours

being innate and allows an individual to perform actions as soon as they hatch. Again,

the authors in [76] suggest that this is a key part of the high neural efficiency of social

insects but does not hinder their cognitive capabilities. They have produced a survey

of honey bee activities and found that there are 59 distinct behaviours that a honey bee

worker can perform. It is impressive to note that in similar behavioural studies with

dolphins have shown that they exhibit 123 distinct behaviours [78], despite a neural

mass 10,000 times that of a honey bee. The authors of [76] once again link this back

to evolved neural efficiency with many of the insect’s basic behaviours being created

by simple local reflex circuitry and more complex behaviours being then made up of

combinations of these simple reflex circuits by the insect’s cognitive abilities. The

authors point out that achieving this cognition is not that neurally costly as circuits

for visual categorisation, landmark learning and basic numerical abilities have been

achieved with circuits comprising 10s of neurons.

3.2.3. Hardware System Implications

In this section we have seen that (a.) large colony sizes can reduce the intellectual

requirements of each individual and (b.) intelligence pathways in insects are highly

optimised for the most computational power into minimal space but, thanks to this

high level of optimisation, this does not necessarily mean that the behavioural abilities

of an individual are very limited. This has positive implications for the hardware

system because it means that the embedded intelligence in the many-core fabric will

benefit from high node-counts. It also means that it should be possible to exhibit

more complex behaviours with a low number of embedded neural pathways, provided

that the pathways rely on minimal learning to create and maintain the circuits. It

is envisioned that most of the implemented pathways will be analogous to the many

innate behaviours of insects with a few pathways providing the cognitive aspects which

enable, disable or modify the innate behaviours of the embedded intelligence.
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3.3. Social Insect Intelligence Models for Task Alloca-

tion

3.3.1. Overview of Intelligence Models for Task Allocation

The decentralised yet highly-scalable task allocation of social insect colonies is one of

the key dynamics that needs to be captured for large scale many-core systems. Having

seen the limited cognitive capabilities of an individual, task allocation capability needs

to emerge from colony dynamics rather than from a coordinator or highly-informed

decisions by individuals. For this analysis, ant colonies have been selected as a fo-

cus point. This is because their tasks are very well defined and their communication

methods are extremely simple compared to other insects; honey bees for example use

visual cues as their communication method between individuals [79], requiring neural

pathways for image processing that would be difficult to interpret and implement as a

communication method in the hardware system.

Tasks that individual ants can undertake are either primarily internal to the nest or re-

quire leaving the nest for large amounts of time. Internal tasks include: brood rearing,

nest maintenance and expansion, removing dead and ill ants, food distribution, food

storage and processing, tending to fungus farms (some species) and queen care. Ex-

ternal tasks include foraging for food, sharing locations of food sources, patrolling the

nest and aphid farming (some species). This diverse set of tasks requires different sets

of skills and sensory inputs for many of the tasks and so switching tasks will require

a cognitive decision by an individual and the ability to decide what sensory inputs are

used. The number of individual ants performing each task is also important and needs

to be constantly within certain bounds to ensure short-term and long-term colony sur-

vival. For example, if the number of brood-rearing individuals is high enough relative

to the number of foragers (or amount of food each forager manages to bring back),

then a larger number of new ants will be created than the food coming into the nest to

maintain them and the colony may starve.

Beshers and Fewell provide a comprehensive review of different task allocation mod-

els under consideration in Models of Division of Labor in Social Insects [23]. They
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consider six classes of models: response threshold, integrated information transfer,

self-reinforcement, foraging for work, social inhibition and network task allocation

models. These schemes are represented in Figure 3.1 with illustration of which factors

are present in each model. Each model differs in what information source is used by

individuals to determine which task they should be undertaking and so a brief summary

of each model is given:

Figure 3.1: Illustration of factors influencing an individual’s choice to undertake a

particular task. Numbers on the arrows indicate effects that are included in each type

of model: 1 response thresholds; 2 information transfer; 3 self-reinforcement; 4 social

inhibition; 5 foraging for work; 6 network task allocation. This diagram shows how

no model relies on a single factor for determining the task to undertake aside from

Foraging For Work. The external and internal split is also of interest as it shows

that individual ants rely heavily on the conditions of their environment when deciding

which task to undertake. Only the self-reinforcement model relies on learnt memory

of task performance, the only other form of storage in the other models comes from

genetic memory. Figure from [23]

1. Response Threshold: In this model the assumption is made that workers are

exposed to task-specific stimuli (e.g. dirty chambers, untended larvae, hunger)

and each worker has an internal threshold the dictates whether an individual

decides to undertake a task depending on if a task stimuli exceeds this threshold,

with a default behaviour of a “rest state” i.e. doing no task. The thresholds can

vary between individuals and when a worker starts a particular task before other

workers (it may have a lower stimulus threshold) it also starts reducing the task

stimulus for other workers, providing a lot of negative feedback into the task
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allocation system.

2. Integrated Information Transfer: This is an extension to the prior threshold

model, whereby social information transfer is also integrated into the thresh-

old. Workers could inform each other information on what tasks they perceive

need to be undertaken, yielding a more step-wise distribution of task allocation

from the positive feedback nature of the social-communication.

3. Self-Reinforcement: In an attempt to model the occurrences of specialists and

generalists in the colony, experience based models have been proposed. In such

models the decision to undertake each task is considered a probability, a suc-

cessful undertaking of a task increases the probability that this task is performed

again whilst an unsuccessful task or a lack of opportunity to undertake it will re-

duce the probability of the task being performed. This results in a self-reinforced

system and by adding a notion of “forgetting” it allows specialists to revert back

to generalists should the balance of tasks in the colony change.

4. Foraging For Work: This model uses a production line analogy such that there

are a series of tasks to be done, geometrically spread. On contact with a partic-

ular task an individual will perform this task until it is no longer required (see

task stimuli in the Response Threshold model), at which point it will them roam

the nest until a new task to be done is found. This model predicts temporal

polyethism: the observation that a worker’s set of tasks will depend on their age.

Foraging for Work uses the fact that a worker’s location in the nest has a strong

correlation to the age of the worker and so the set of stimuli an individual is

exposed to will change as they age and move to different areas of the nest. For

example newly hatched workers will start their lives in the brood chambers at

the back of the nest and so will find brood tending tasks to perform. However

once this reaches a critical limit of workers then there will be a time where no

brood tasks need to be performed and they will slowly work their way to the

front of the nest as they forage for new tasks.

5. Social Inhibition: Another explanation of temporal polyethism can be obtained

by considering the effect of older workers as an inhibitor for younger workers

taking up new tasks. If a number of foragers is lost then the number of mature
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workers in the nest is reduced, resulting in less inhibition of the potential tasks a

young worker can perform and so making up for the loss of foragers. However

such a model for task allocation assumes that all tasks decisions are polyethism

and inhibition driven, which has been shown not to be the case with task stimuli.

6. Network Task Allocation Models: The final modelling method considers the in-

teractions between workers and their environment as a series of differential-

equations or network models. The resultant models show similarity to real

colonies to an extent that it can be concluded that division of labour can be

generated and maintained purely from the local information encountered by an

individual worker.

The review then compares these models with with empirical evidence and identifies

specific similarities and differences to try and determine how well each model fits to

the real emergent task allocation seen in colonies. Finally, the authors conclude that

these models should be considered “exploratory” and that in reality some hypothesies

of these models will eventually be refined and merged to produce a final “explanatory”

model (for example the merged threshold and reinforcement models in [80]). Thus it is

likely that Figure 3.1 represents the general model well with all elements in the figure

contributing some information to the task allocation process at both the colony and

individual ant level. Assuming that this is the case then stimuli from the environment

and nest mates have a key role on the decision made and so by implication the spatial

arrangement of individuals within a nest is a fundamental property of what task is

chosen; indeed this has been studied and shown in real colonies in [81].

A final consideration comes from the management of the dynamics and more recent

biological thinking suggests that these models are likely to be combined with differ-

ent systems providing inhibitory or excitatory feedback for expressing certain task

allocation behaviours. For example, the model proposed in [25] refines the original

network interaction model with learning from some individuals and feedback based

on environmental stimuli. This produced a model that is more real to the behaviours

of foragers deciding to leave the nest depending on the time of day and the humidity

and temperature of that particular day. This required modelling of the dynamics of

foragers outside of the nest depending on the environmental conditions and providing
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a distribution of nest return rate depending on the environmental conditions and what

the individual had learnt about the environment that day. The interaction model then

used this updated information to elaborate the interaction between individuals such

that individuals with a bad experience of foraging at that day or time will be less likely

to pass its information on to interacting nest-mates.

3.3.2. Hardware System Implications

The task models being related to an individual’s location and local stimuli has a di-

rect translation to the many-core system, where a node will have a different set of

task, thermal and NoC traffic stimuli depending on its location in the system and the

task currently being performed in that region of the many-core. So the embedded in-

telligence will need to be located at each node to capture the locality aspects of the

sensing and to also capture the local effects of the decision making. Stimuli sensed

from the many-core will need to include stimuli that affect the ability of an individual

node to complete a task (fulfilling the response threshold model), stimuli that signify

work that needs to be done (fulfilling the Foraging for Work model) and stimuli that

communicate what work neighbouring nodes are undertaking (fulfilling the Network

Task Allocation model). A fundamental difference between the dynamics of the many-

core and social insect colonies is that the nodes of the many-core cannot move and

so, instead of the individuals moving to exchange information as with ant colonies,

the information must move using packets sent via the NoC and the nodes will infer

information from the properties of these packets.

Figure 3.1 is a useful point to propose translation points. The internal/external split

can respectively be seen as factors that are internal to an individual node and factors

that require either direct or indirect input from either neighbouring nodes or from the

local on-chip environment. More specifically:

External:

• Location: Factors that are determined by a node’s location. This could be phys-

ical properties such as poor clock performance due to distance from a clock

source or a bad thermal environment caused by potential other items on the chip
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other than the many-core (e.g. SERDES, clock generation).

• Nestmates: Factors that are determined by other nodes in the system. This could

be application related (packets of data to process) or environment related (ther-

mal hotspots, crosstalk).

• Task needs: Factors that are determined by the ability to run the application on

a node e.g. processor capabilities, memory capabilities.

Internal:

• Genes: Settings/design of a node that give it a preference for a task (e.g. hard-

ware accelerators)

• Ontogeny: Self-optimisation towards aspects of a task (e.g. reconfigurable hard-

ware accelerators)

• Experience: Self-learning of a preference towards certain tasks by learning from

previous performance when these tasks are tried.

• Behavioural state: The current mode of the node or other limitations affecting

its ability to run tasks.

Both the response threshold and information transfer models rely directly on a stimulus-

threshold decision making intelligence i.e. when a stimulus exceeds a threshold then a

decision is made. However the experimental implementations of Foraging for Work[26]

and Network Task Allocation [24] both also use stimulus-threshold structures to make

the decisions within the models. This motivates the use of a stimulus-threshold intel-

ligence architecture for the implementation of the embedded intelligence.

3.4. Other Aspects of Social Insect Task Performance

3.4.1. Ratio of Working versus Resting Ants

A recent focus of the task allocation models of ant colonies is to understand the ob-

servation that a surprisingly high number of individuals are inactive at any one time.

Whilst there are opportunities in all of the task allocation models seen in the previous
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section for workers to be inactive, the observed number of inactive workers is ex-

tremely high. For example, in [82] the authors observed the number of active workers

performing a nest migration task in the lab. They used several colonies of the same

species of ant but split the colonies into two groups depending on their size; either a

small size (median of 57 workers) or a large size (median of 165 workers). They found

that even in the migration task (the ants moving themselves, the queen, eggs and young

brood to a new nest), a set of inactive ants did not even walk to the new nest, but had to

be carried by other workers. In large colonies the number of inactive ants that had to

be carried was averaged at 42% of the colony’s workers, but most surprising to the au-

thors was that with small colonies 69% of the workers were inactive for the migration.

The individuals that were active remained active for the entirety of the migration task

and no inactive workers switched to an inactive state; suggesting an emergence of “key

workers”. The authors claim that this could be advantageous if the energy cost to the

colony of carrying a worker versus the energy cost of worker walking is low. Thus key

individuals can learn the route and will optimally ship workers and other nest material

from the old nest to the new one using their learned trails in a more efficient manner

than all workers finding their own way once; this approach is also less risky in terms

of number of colony members getting lost during the migration and could explain why

the ratio of active workers is lower for smaller colonies (loss of a small number of

workers is more detrimental to a smaller colony).

Further work from a different team has shown that inactivity is not a side-effect of the

experiment being performed in laboratory conditions [83], and also not due to a “shift

work” organisation where one ant replaces another as it gets tired [84]. The authors

here found that an average of 45.8% of their colonies was inactive and observed that

when an ant is inactive it tends to then be more likely to be inactive at future points;

leading to the suggestion that inactivity is a task speciality of certain individuals. Ac-

tivity patterns for workers outside of the nest are driven by sunlight [6] but deeper

within the nest the work rhythm is more constant so ants continuously at rest deep in

the nest must be due to a side-effect (or feature) of the task allocation.

The same authors explored as to what causes this in two papers that examined a large

number of hypotheses [85] [86]:
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• Resting: The inactive individuals were resting having performed an action. Ob-

servations of the inactive ants showed that they rest for longer periods of time

between either performing a task or nest wanderings when compared to active

ants. Some ants never left the inactive state during the experiment (over 4 days).

• Inexperience: Younger individuals may have entered a new area (possibly due

to over-crowding of the brood chambers) where their age polyethism means that

they are not yet sensitive to any of the task stimuli in the area.

• Cost of task switching: Some tasks will have an energy cost of undertaking it,

a learning period for example. If this is costly then the more energy efficient

approach for the colony as a whole may be to only allow individuals already

trained on the task to undertake it unless need is very high (e.g. in an emer-

gency). This could be represented by a long delay period in the FFW model for

individuals not specialised to that task.

• Response threshold side-effect: If an inactive worker has a higher response

threshold to all of the available task stimuli when compared to its neighbours

then another worker is likely to take up the task before its decision threshold

is exceeded. This also suggests that inactive workers can act as a “reserve task

force”, whereby their decision threshold is only exceeded in cases of extreme

survivability.

• Workforce scaled to workload peaks, not average workload: Brood development

takes a long time and so cannot be used to adapt quickly to severe upsets in

the colony dynamics. Maintaining workers in a low metabolic state may have

evolved to be worth the energy cost for quick adaptation.

• Food storage: Ants share food by passing it to each other and can store relatively

large amounts before passing it on to a nest mate. Having a large number of spare

workers suspended in an inactive state allows them to be used as food storage

buffer. Indeed some species have evolved “larder” individuals specialised for

food storage by swelling their abdomens to share food later [6].

• Communication nodes: In a similar vein as the use of inactive workers as food

storage, inactive workers can be used to enhance colony communication. Most



66 Chapter 3. Large Scale Social Insect Systems

ant-to-ant communication is through pheromone emission during an antenna in-

teraction period. This requires two ants to interact for a small amount of time,

using inactive workers as an intermediate communication resource would allow

active workers to offload their communication interactions to in inactive workers

from a single interaction. This would also allow information to spread quicker

amongst the colony, possibly providing increased colony-wide adaptivity abili-

ties.

The authors do not conclude that any one of the above factors is the main reason for the

high-levels of inactivity in the colony, or indeed if it has a net advantage to the colony

or not. However, the simulations performed within [87] show that variable response

thresholds between individuals is a key reason for the inactivity emerging. They used

a model of random walks through nest with 75 workers and variable thresholds that

decrease depending on the time since the last task was undertaken. These experiments

found that certain ratios of worker fatigue to task stimuli resulted in emergent inactive

workers that never work as despite their stimulus thresholds dropping very low there

was always an active worker that would pick up the task first.

This area of research is currently highly active and so far no biologists have concluded

as to whether repeated inactivity is a key component of the social insect’s task allo-

cation dynamics, if it is a detrimental side-effect or indeed if it has little effect on the

behaviour of the colony.

3.4.2. Polymorphism

Polymorphism leads to size and strength differences between workers, dubbed castes,

typically induced by workers tending to the brood who feed the larva differently to

exhibit the polymorphism when they hatch and grow to adult size. This affects the

optimisation dynamics of the colony as larger workers require more food and tend to

move more slowly (and so interact with other workers less) despite being able to carry

larger objects and have better fighting abilities. Tradeoffs have to be made in terms of

the ratio of each caste and also at the task allocation stage as the allocation of workers

to tasks will need to take the worker’s caste into account.
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One observed mechanism of controlling the recruitment of caste of workers to tasks

is given in [88]. In these experiments the authors observed smaller workers carrying

a variety of prey. For small flies the smaller workers could carry the prey between

themselves, but for larger prey such as cockroaches or a bundle of flies a larger worker

would be recruited to help carry the prey. The authors observed that a stronger food

recruitment pheromone was laid in the cockroach case than as for in the fruit fly case.

Assuming this couples with a larger response threshold in the larger worker then the

larger worker will ignore the fruit fly recruitment pheromone trail but respond to the

trail laid for the cockroach. Whether this higher threshold is applied to all decision

thresholds in the larger worker or just specifically to this particular decision pathway

at some point in the larger worker’s development is not explored by the authors.

Another source of polyethism based specialism of individuals can be seen in Figure

3.1 and the task allocation model of the previous section. In the figure the learnt expe-

rience of performing a task feeds into the decision via the self-reinforcement model.

This feedback would allow workers to attempt a task and increase their chance of per-

forming it again if they deemed themselves good at it; this does imply an individual has

the ability to review their performance, but this could be as simple as a measured re-

duced task stimuli within a time period. This would promote specialists to repeat tasks

that their specialisms mean they are good at and also deter workers of a caste that is

a poor match for the task. This model would also support adaptivity as a task stim-

ulus could get to the point such that it overrides the deter inhibitor response sourced

from the worker’s experience, useful for tasks that would be better carried out by a

non-expert than not at all.

3.4.3. Hardware System Implications

The role of the distribution of active versus inactive workers will be a interesting inves-

tigation with the many-core as inactive nodes can be used for managing Dark Silicon,

network congestion and as standby spare processing capacity. The hardware will need

to support disabling and re-enabling of the nodes from the embedded intelligence.

Polymorphism also fits the many-core paradigm well as one of the key advantages of

many-core systems is the ability to attached specialist hardware accelerators to a subset
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of the nodes. This is analogous to the castes within social insect colonies, with the dif-

ferent types of hardware accelerated nodes representing the individuals size/strength

specialisation of the caste.

3.5. Hardware System Translation

As seen in the previous chapter, many-core systems and Network-on-Chips are a

promising technology for the future of high-processing power embedded systems.

Whilst the ideas and models presented in this chapter could be applied to a large

range of technologies, their potential for low-overhead implementation and their rel-

atively small operating environments (for example direct contact between individuals

rather than interacting via the environment) lends these models well to implementa-

tion in single-chip systems. To bridge the gap between biological model and hardware

system, Table 3.1 details how it is envisaged that these models can be used to solve

problems faced by large scale many-core systems.

Capability

Supported

Social Insect

Inspiration

Translation

Task Allocation Network Inter-

action Model

This model requires the individuals to move

around the colony and interact with each other.

In the hardware system it is not possible for the

nodes to move. However as this movement is to

generate information transfers with neighbours

(via the individuals’ antennae) this can be cap-

tured through the information transfer system be-

tween nodes i.e. by sending packets. This can be

refined one step further as the goal is to ascertain

what task the individual was undertaken. This

can be captured indirectly by monitoring the type

of packets emitted by an individual.
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Capability

Supported

Social Insect

Inspiration

Translation

Task Allocation Foraging For

Work

This model also requires individuals to walk

around the colony. Once their stimulus for a

task is removed and it has not reappeared within

a time period, the individual will go on a walk

and will switch task to the next task stimulus that

presents itself. The translation requires a task

stimulus to be presented to the node and a no-

tion of time to regulate for how long this stimulus

should be considered valid. The stimulus in the

many-core system is the packets that need to be

processed. Once again, the node does not need

to move to get this stimulus as it will be passing

through the node in the form of packets. A timer

can be provided from a global timing source.

Heterogeneity Polymorphism Hardware accelerators unique to a set of nodes

would allow specialism to be provided, knowl-

edge of the presence of such accelerators could

be fed into the intelligence (a genetic or ontoge-

netic input to the intelligence) or memory could

be added to the embedded intelligence which

would allow a node to self-learn good and bad

out through trial and error (this is the “experi-

ence” feedback loop from Figure 3.1).

Fault Tolerance Task allocation

Model

Individual level fault-tolerance is a key part of

the dynamics of the task allocation methods dis-

cussed. Therefore both emergent task alloca-

tion schemes described would be able to support

node-level fault tolerance without any additional

changes to the model.

Thermal Man-

agement

Worker Activity

and Resting

Thermal management will be in the form of dis-

abling nodes or reducing their activity levels.

This can be provided through an external envi-

ronmental monitor that feeds the temperature of

the node into the intelligence model. This could

feed into any of the hypothesises presented in

Section 3.4.1. Out of these hypothesises it is

likely that the resting, inexperience, cost of task

switching and response threshold side effect are

the models most implementable into the hard-

ware system.
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Capability

Supported

Social Insect

Inspiration

Translation

Quality of Ser-

vice

Worker Activity

and Resting

There is no direct translation for QoS, however

many of the objectives are tied heavily into the

resting hypothesises and so a solution would look

similar to these pathways. Higher level stimuli

would need to be added to report the status of

QoS goals. Motivation could also be taken from

the self-regulation patterns introduced in [25]

Table 3.1: Translation between Bio Inspired Model and HW Model

3.6. Summary

In this section we have seen some of the complex high-level behaviours that social

insect colonies have achieved in order to successfully survive in a vast number of dif-

ferent and ever changing environments. The colony is always striving to maintain a

balance between energy efficiency, adaptivity and survivability and many millennia

of evolution have led to a emergent system relying on decisions being made by indi-

viduals based on their immediate environments. The task allocation models we have

seen use simple response threshold structures that can readily be mapped to a embed-

ded hardware circuitry. An abstraction gap exists between the task allocation models

and the neural models but this is acceptable for our intended investigations as we are

not planning to implement an “ant-correct” neural controller for task allocation in our

many-core; in fact, as shown by the interaction network models, simpler controllers

can still provide capable adaptive behaviour. Thus, supporting the Foraging for Work

and Network Task Allocation models through stimulus-threshold decision making units

will motivate the design choices of the implementation of the embedded intelligence.

These two models will also provide the main intelligence base of our experiments,

with extra capabilities added to the model in the form of stimulus-threshold decision

circuity “bolted on” to these fundamental task allocation models.

The next two chapters describe the hardware developed for the experimental many-

core platform and also the hardware to implement these embedded intelligence models.

Chapter 6 then presents the results of running an interpretation of the models described

in this chapter on the many-core, including the capabilities of the emergent higher-level
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behaviours and how they compare to what is expected from the behaviours predicted

in this chapter.
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Chapter 4

The Centurion Many-Core System
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4.1. Overview

The previous two chapters have shown that, firstly the problem domain considered in

this thesis is intrinsically linked to the low-level hardware characteristics of a device

and secondly that the proposed biological inspiration will need to interact with the

hardware system via sensing and actuating parts of the hardware system. This chapter

describes the high-level and technical details of the custom many-core system which

is used for the experiments: the Centurion many-core system.

Centurion was primarily designed as a research platform for enabling experiments in

both large scale many-core systems on a single chip and for Network-on-Chip (NoC)

evaluation. Thus the main design goals reflected achieving the highest core count pos-

sible (for large-scale SoC research) whilst maintaining enough NoC reconfigurability

to allow different NoC algorithms and settings to be supported.

At the time of development the community lacks such a platform. Existing many-core

platforms implemented in hardware have so far tended to be on a small scale, for ex-

ample the Intel Core i9-7980XE with 18 cores [89], the Intel Xeon Phi 3110X with

61 cores and the TILE-Gx72 with 72 cores [90]. Some larger scale many-core hard-

ware platforms have emerged in recent years (e.g. GRVI Phalanx: 1680 cores [91],

Epiphany-V: 1024 cores), but such platforms have many general-purpose aspects of the

NoC removed or capabilities of the processing cores sacrificed to achieve the highest

core count possible making them too limited to be suitable for NoC research. Cen-

turion has to strike a balance between a high core count and providing representative

NoC functionality that next-generation many-core systems will require.

Centurion also needs to be suitable for FPGA implementation as a VLSI design was

not within the scope or nature of such a research focussed platform as the ability to

slightly modify the system to fulfil a research objective is a important capability. The

established soft-core processors provided by the FPGA vendors Microblaze [92] and

Nios [93] as well as the often FPGA implemented Leon3 processor [94] all have mul-

ticore processor support built into their design. However, when implementations of

multicore systems using these processors are explored, it is seen that either a large

shared interconnect or crossbar is used (Microblaze [95], Leon [96]) or a mixture of
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global interconnect and daisy chained local bridges are used (Nios [97]). The shared

interconnect and the global memory space it supports gives lots of options for node

communication protocols but is poorly scalable with lots of global signalling meaning

that the maximum speed of the interconnect will drop quickly as more nodes are added

to the system. The node-to-node daisy chaining of the Nios multicore solves the speed

requirement but does not provide the node topology or network flexibility needed for

large scale NoC research.

This chapter introduces the Centurion platform and describes the design of the com-

ponents required for the investigations into large scale NoC. Firstly, the design of the

NoC router and then the capabilities of the processing core attached to each router are

discussed. Following this, the first of two implementations of the embedded intelli-

gence capability is described (the second approach is more complex and is detailed

in Chapter 5). The design of some of the advanced hardware features of the platform

is then covered. Finally the chapter is completed with discussion of how the FPGA

design process was undertaken for this complex design and includes design metrics

such as hardware resource requirements.

4.2. Centurion Overview

The Centurion platform developed for the experiments in this thesis consists of 128

processing elements connected in a 8x16 grid and implemented on a Xilinx Virtex-6

LX760 FPGA. Each node in the many-core consists of the custom 5-port NoC router

and a Xilinx MicroBlaze Micro Controller System (MCS) [98], this arrangement is

shown in Figure 4.1.

Embedded within each router is either the Picoblaze microcontroller based intelligence

[99] or the Configurable Intelligence Array module where our biological models are

implemented in hardware. This module (described in detail in Section 4.5 and Chapter

5) has access to many of the internal signals of the router and processor, called Moni-

tors in our system. These include signals such as the task-ids of packets routed through

the router, the current clock frequency of the node and the current thermal state of the

processor. The intelligence module can also affect several aspects of the router and
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Figure 4.1: General overview of the Centurion 16x8 many-core. The 128 nodes, each

consisting of a router and attached processing element, are arranged in a grid with

cardinal connections using a Network-on-Chip (NoC) to connect the nodes together.

A larger processor, dubbed the Experiment Controller, is connected to the NoC via the

North port of four of the routers in the top row.
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processor, dubbed Knobs, for example: the current task the processor should be run-

ning, the clock frequency of the processor and the routing direction of packets through

the router.

Tying the many-core together is also a processor dedicated to running experiments

called the Experiment Controller. This is a larger AXI-based Microblaze that man-

ages the LVDS connection between the NoC and the PC used to manage experiment

data. This allows experiment parameters to be sent from the PC and experiment run-

time data to be sent from the NoC to the PC. The experiment controller can inject and

receive packets from the NoC via four NoC interfaces connected to the (otherwise un-

connected) North channel for four routers on the top row of the NoC. The experiment

controller can also access the nodes separately to the NoC via a specialist debug inter-

face. This allows experiment data to be downloaded and parameters to be set (e.g. for

fault injection) whilst the experiments are running without interfering with the NoC

traffic during experiment run time.

4.3. Router Design

The Centurion router, shown in Figure 4.2, is a five port NoC router that includes a

Router Configuration Access Port (RCAP) to allow router settings to be changed re-

motely via the NoC. It also includes several performance monitoring signals and sig-

nals for modifying the router’s behaviour, used by the intelligence model. The router

supports two packet routing modes and is wormhole routing based to reduce device

resources spent on packet buffers. A basic deadlock recovery mechanism is included

within the router to enable experiments to survive deadlock conditions, however this is

not as comprehensive as other NoC deadlock avoidance schemes as there is no design-

time analysis of routing paths and their sensitivity to deadlock. Whilst Centurion will

resolve all deadlock situations within a configurable timespan, it will affect applica-

tion performance by removing deadlocked packets from the system. These packets

can then be logged as a system performance metric or the packet can be resent from

the place of deadlock resolution.
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Figure 4.2: The Centurion 5-channel NoC router. The main ports consist of the cardi-

nal directions and an internal port connected to the processing element. A sixth-port,

the Router Configuration Access Port (RCAP), allows the router to be configured re-

motely. Up to five concurrent connections can be set up between these six ports and

independence between their input and output interfaces allows full-duplex communi-

cation across the five channels.

4.3.1. NoC Packet and Routing Modes

Centurion uses 9-bit words for communicating data between nodes, consisting of an

8-bit data word and a 1-bit flag that indicates if this word should be interpreted as a

control (‘1’) or data word (‘0’). The following words are control tokens that Centurion

supports and so have the control bit set to ‘1’:
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Table 4.1: A list of Centurion control tokens. The first seven entries are used in the

packet header and are routing instructions as described in this section. The final token

is placed at the end of the packet and marks the tail of the wormhole packet, closing

connections as it passes through the NoC.

Control Bit Data Token Description

‘1’ x80 Task Packet Header

‘1’ xC0 Route North

‘1’ xC1 Route East

‘1’ xC2 Route South

‘1’ xC3 Route West

‘1’ xC4 Route Internal

‘1’ xC5 Route to Config Port

‘1’ x7F EOP (end of packet)

Unlike state of the art NoCs, Centurion does not inherently support a range of advanced

routing capabilities such as virtual channels, flits and packet interleaving. This allows

the Centurion data packet to be very simple, Figure 4.3 shows the layout of a packet

and its two routing variations. The only essential data is a packet header (at least 1

word, this could be larger depending on routing mode used) and an EOP at the end of

the packet. These are all “control words” i.e. have their control/data flag set to ‘1’. At

the NoC level there is no limit to packet size but, as discussed in subsection 4.4.2, the

buffers on the PEs meant that a packet size limit of 2048 words was enforced for the

experiments reported in this thesis.

Centurion supports two packet switching methods: a) turn-by-turn with header dele-

tion for packets where the location of the destination node is known, and b) task-id

based with routing tables for packets that do not have a specific destination node but

instead carry data for a certain type of task. From this point forward, packets of type

a) will be dubbed System Packets and packets of type b) will be dubbed Task Pack-

ets; this distinction arising from experiments where system packets are used to set-up

the experiments and task packets are used within the experiments to carry application

data.
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EOPPayloadHeader

1 -> h  words 0 -> N  bytes
(Max size: 2048 - h -1 bytes)

1 word

a) Generic Centurion Packet

EOPPayloadN

1 -> h  direction tokens 0 -> N  bytes 
(Max size: 2048 - h -1 bytes)
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b) System Packet

EOPPayloadT

T: “11" & task id 
I0: Id byte 0
I1: Id byte 1

0 -> N  bytes 
(Max size: 2044 bytes)
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c) Task Packet

E S I
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I0 I1

Figure 4.3: Structure of valid Centurion packets: a) shows the generic structure of Cen-

turion packets, consisting of: a header (compulsory, at least one 9-bit control word),

data (0 bytes or more) and a tail marker consisting of the EOP control token. b) System

packets have deterministic routing and so the header contains a list of routing instruc-

tions. This tells the packet which path to take through the NoC, turn-by-turn. At each

node the router reads the control token at the start of the header, deletes it from the

packet and then forwards the rest of the packet on in the specified direction. Thus a

system packet must always have an “Internal” or “RCAP” routing token as its final

word in the header. c) A task packet has non-deterministic routing in that the routing

direction is looked up from the router’s routing table. With the two MSBs set of the

9-bit word (bit 8 and bit 7), this signifies the task packet and the ID of the task is en-

coded in the lower 7 bits of the word. This task ID is extracted and used to look up the

routing direction from the routing table.
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Routing System Packets

The routing of system packets is based on the header deletion routing of the Spacewire

standard [100]. A path between the source and destination are calculated by the source

node consisting of “North”, “East”, “South” and “West” tokens for each router that the

packet will visit on its journey to the destination node. At the final router an “Internal”

token is added to forward the data on to the router’s attached PE. These tokens are

then prepended to the start of the packet to form the routing header. When the packet

arrives at a router, the router will interpret the first token as its routing instruction

and will also remove it from the packet header. It then ignores the rest of the routing

instructions and these are forwarded on to the next router in the direction of the first

token; along with all other packet data on that input port until the EOP packet has been

forwarded, at which point the routing connection is closed. When the “Internal” token

is encountered first at a router then the router knows the packet is destined for this node

and the packet is forwarded on the Internal channel to the attached PE. An example of

this routing over four nodes is shown in Figure 4.4.

Routing Task Packets

Routing of task packets allows routing-table based routing of application packets. Now

the packet header is a single word: the “task packet token” using the upper two bits

of the word, and the task id is inserted into the lower 6 bits of the word; allowing for

64 unique tasks. Deadlock avoidance is required as routing tables are often randomly

initialised in the experiments. Together with dynamic task switching this may lead to

non-deterministic behaviour. The scheme Centurion employs to achieve this requires

a weak-unique identifier for each packet, which is stored in word two and three of the

packet as data words (i.e. control select bit kept ’0’). When a task packet arrives at a

router, the router uses the task id as a look-up for the router’s internal routing tables.

This look-up will return the routing direction for the packet and all of the packet’s data,

including the packet header word, is forwarded in the requested output direction until

the packets EOP token is encountered. An example of task routing over four nodes is

shown in Figure 4.5.
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Figure 4.4: Example of routing a system packet: a) The packet arrives at the West input

port and fills the three word FIFO. The first word in the header is the EAST control

token b) The router controller sets the switch up to connect the East output port to the

West input port. The EAST control token is deleted from the packet. c) The header

and data flow through the router and arrive at the West input port of node 2. d) Node 2

decodes the SOUTH control token and sets the switch up accordingly The EOP token

passes through node 1 and so the connection is to be closed down. e) The packet is

routed south, on arrival at node 4 the INTERNAL control token is encountered and a

channel is set up from North to Internal f) The EOP causes node 2 to close the channel.

Data is flowing into the node 4’s attached processing element via the Interal output

port. This continues until the EOP token is encountered.
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Figure 4.5: Example of routing a Task packet: a) The packet arrives at the West input

port and fills the three word FIFO. The first word in the header is a task packet control

token with a task ID of 2. b) The router controller looks up the task ID of 2 in the

routing table and finds that the packet should be routed south. It sets up the required

channel and does not delete the packet header word. c) The header and data flow

through the router of node 1 and arrive at the North input port of node 3. Node 3

decodes the packet header and looks up task 2 within its routing table. Its instruction

is to route task 2 packets East and so it sets up the channel. d) The EOP token passing

through Node 1 causes it to close the channel. The task 2 packet arrives at Node 4 and

its routing table entry for task 2 packets is to route the packet internally. This is how

a task packet is eventually sunk by a node. e) As the packet is routed internally on

node 4, this causes the EOP token to pass through node 3 and close the channel. f) The

task 2 packet arrives complete at the internal processing element of node 4. Note that

the task header is still complete with no tokens removed (unlike with system packet

routing).
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4.3.2. Data Channels

As seen earlier in this section, the grid layout of Centurion requires each router at a

node to have a connection to its four cardinal neighbours and also a fifth connection

to its internal processor. To minimise the resources needed for each router, virtual

channels are not supported by the design. This reduces the amount of packet buffering

required at each node to a minimum as virtual channel support would increase the

amount of input buffering by the number of virtual channels that are supported. They

would also significantly increase the complexity of the router control logic. Thus even

support for one or two virtual channels would lead to a large increase in required

hardware resources, of which it is likely that a large amount will remain unused (as it

is unlikely that an application will constantly use its virtual channel allocation across

the entire NoC). The lack of virtual channels does make deadlock a challenging issue,

thus a three word buffer for each data channel is required for the deadlock avoidance

scheme described in Section 4.3.4.

Each of the router’s five data channels support full-duplex operation and are con-

nected to either side of the five-channel switch, allowing up to five packets to be

routed concurrently. The channel interface consists of the previously seen 8-bit data

word and 1-bit control/data select, complemented by handshake signals data valid and

read enable. As seen in Figure 4.6, a word transaction requires at least three clock cy-

cles to complete giving Centurion a net max-throughput of just over 250 MBit/s.

To reduce the length of signal paths between routers for performance and to ease a

grid-style implementation footprint, the signals from the input and output ports are

registered. This register is extended to a three word FIFO on the input channels as

the “task packet” routing scheme requires both the task packet header and the two

word anti-deadlock header when making a routing decision. The input channels output

several status signals for the router controller: when a start-of-packet (SOP) token is

detected, the two words of the anti-deadlock header of the current packet and also a

timeout notify signal when a packet SOP header has been waiting in the input FIFO

for longer than a programmable threshold (required as part of the deadlock avoidance

scheme, Section 4.3.4). The output port emits one status signal: when a EOP token
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Read data [8:0]

0xAA 0xBB 0xCC
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b)

Figure 4.6: Data transmission signals for the NoC data channels. a) The signals

required to send one NoC word of 9-bits. The data byte is contained in the data

bus and the control select distinguishes between data and control tokens. The

data valid signal indicates to the remote end when the control and data signals are

valid. The remote end drives the read enable signal to indicate that it has read the

valid data.

b) An example of two words being transmitted. The values 0x1BB and 0x0CC are

transmitted to the remote end. Note that with the 0x0CC transmission the remote end

does not respond immediately to the data valid signal rising and so the data valid signal

is held high, also resulting in more than three clock cycles being required to send the

data.

is detected indicating that the packet has been sent, this is used by the router control

logic to close down the connection between input and output channels. The output

port also has an input signal that controls the output enable of the channel. This allows

the router controller to delete the header of a packet which is required for the “system

packet” routing scheme.

These signals are shown in Figure 4.7 and the general layout of input and output chan-

nels can be seen in Figure 4.8.
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a) Input FIFO

data_in
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b) Output Register

data_out
control_sel_out
data_valid_out

read_en_in

}

Packet ID
register

SOP Detect

Channel data (9 bits)
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Channel data (9 bits)
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Figure 4.7: The layout of a data channel consisting of a) an input port and b) an

output port, with the switch in between. a) The input port combines the data hand-

shaking signals with a three-word FIFO. Once this FIFO fills up with a valid control

token in the first position, the SOP Detect signal is set to indicate to the input con-

troller state machine that a new packet has arrived. This SOP signal also triggers

the loading of words 2 and 3 into the Packet ID register, storing the packet

ID in the case that this is a task packet and deadlock mitigation is required. The SOP

detect also triggers the packet timer that records the number of Deadlock timer

ticks that elapse between the SOP detection and the packet being routed to an output

port. b) shows the output register, a simple 9-bit register that holds the data until the

read enable signal is pulsed from the remote end (an input port). The Output

Enable signal can be used to skip words from transmission and is used for header

deletion when routing system packets.
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Figure 4.8: An overview of all of the data channels in the Centurion router. Note that

the RCAP is a write-only endpoint and so does not have an input port. The numbers

represent the index to the switch for each port i.e. a switch configuration of 3 → 1 will

connect the West input port to the East output port.
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4.3.3. Router Configuration Port

As seen in Figure 4.2, there is a sixth data channel on the router: the Router Config-

uration Port (RCAP). This channel only acts as a data sink (i.e. cannot output data)

and is used to set the router’s configuration registers, routing tables and to configure

the Configurable Intelligence Block. A special packet header is sent to the RCAP that

selects which register or data sink the data words following the header are loaded into.

A state machine decodes the format depending on which part of the router is being

configured. The format of these packets is shown in Figure 4.9.

The routing table is stored in the RCAP entity and top level ports provide access to the

routing table for the main router control FSM, whilst the RCAP provides a convenient

access point for programming the routing tables. The table is stored as a linear list

consisting of a task ID and a routing direction. The control FSM can then search this

table for matching tasks and fetch directions by simply providing an address. This

also allows non-primary entries for a task by simply skipping over the first or early

entries of a particular task in the routing table. Figure 4.10 shows the layout of the

table and its access points. The table is implemented using the LUTRAM available in

the Virtex-6 SLICE-M primitive and is currently 32 entries long; a larger table may

require the table moving to a block-RAM for a more efficient implementation.

Table 4.2 summarises the settings that the RCAP can set and the registers used to store

these settings.
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Figure 4.9: Structure of valid RCAP packets: (all RCAP packets start with the RCAP

control token: 0x1C5).

a) a packet that writes to a single register in the RCAP. The register address is given in

the first word and the new value in the second word.

b) a packet that write a routing table entry to the routing table. The 0x0A token signi-

fies this is a routing table packet. The first word after is the index of the routing table

that is to be written to. The next word is the new task value, followed by the routing

direction.

c) a packet that writes a configuration frame to a Configurable Intelligence Block

within the router intelligence. The packet structure contains the 0x0B token that indi-

cates an intelligence packet followed by a variable length configuration bitstream for

the CIB.

d) a packet that uploads software into the Picoblaze’s attached memory. The write

address is set to zero when the identification token (0x0B) is received and is auto-

incremented as each new instrcution is read (i.e. every three bytes). The identification

token is the same as the CIA token as both intelligence modules will not be present in

the same design.

e) a packet that writes a byte into the Picoblaze’s scratch-pad memory. This allows

parameters to be set without updating the Picoblaze’s software.
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Table 4.2: Registers stored within the RCAP and how the bits are mapped to router

behaviour. The address column relates to the address field shown of RCAP packets, as

shown in Figure 4.9

Address Bit/byte map Description

0x00 Bit 0: Node Reset Controls the reset signal on the at-

tached processing node.

Bit 1: Node Clock Enable Controls the clock enable for the node’s

clock divider.

Bit 2: Intelligence Enable Takes the CIA out of reset and enables

its outputs to the router/node.

Bit 3: Intelligence Clock Se-

lect

When set allows the intelligence to set

the clock divider value and enable sig-

nal.

0x01 Bit 4 → 0: Clock divider

Value

Division value of the 600MHz node

clock.

0x02 Bit 3 → 0: Deadlock timeout

value

Value used to determine if a packet has

deadlocked, in clock ticks of the dead-

lock clock.

Routing Table Access

0x0A Byte 0: Table address Routing table entry that is to be modi-

fied.

Byte 1: Task value New Task value for the routing table entry.

Byte 2: Routing Direction New routing direction for the routing ta-

ble entry.

Configurable Intelligence Array Access

0x0B Byte 0: CIB Id Selects the CIB that the configuration

bitstream is loaded into.

Byte 1 → (N-3): Configura-

tion bits for CIB

CIB bitstream, penultimate byte is sig-

nalled by setting the control bit.

Byte (N-2): Number of valid

bits in last byte

Dictates how many bits in the last byte

are to be shifted into the CIB.

Byte (N-1): Final configura-

tion bits for CIB

Final byte of CIB bitstream.

Picoblaze Upload Program

0x0B Byte n: program data LSB The Picoblaze instruction to write

(bytes 7:0)

Byte n: program data The Picoblaze instruction to write

(bytes 15:8)

Byte n: program data MSB The Picoblaze instruction to write

(bytes 17:16)

The Picoblaze instruction write address register is incremented per

three bytes that are written until the EOP arrives

Picoblaze Upload Byte to Scratchpad

0x0C Byte 0: address Picoblaze SPM address

Byte 1: data Value to write to Picoblaze SPM ad-

dress
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Figure 4.10: The routing table structure. Implementation of the routing table in the

FPGA’s LUTRAM gives a independent dual-port RAM that is easily used for the rout-

ing lookup table. The first port is read only and is used by the router controller for

routing table lookup operations. The second port is write only and is connected to the

RCAP FSM that decodes incoming packets. Routing table packets activate the write

enable and the task and direction are loaded in from the packet as seen in Figure 4.9.

4.3.4. Deadlock Avoidance

Wormhole routing is susceptible to deadlock [56] and must be expected as part of the

dynamic nature of the adaptive many-core experiments; as each task switch may in-

validate the routing tables. Therefore the system needs to detect and handle deadlocks

whilst also still fulfilling the large scalability requirements. Centurion should only use

techniques that rely on local information and so cannot employ deadlock techniques

that require global analysis of the entire network or constrain the routing decisions that

can be made based on routing path information (such as restricting the turns that can be

made at a certain node). For scalability, techniques that use a large amount of hardware

resources, such as the extra buffering required by virtual channels, are also not consid-

ered. The deadlock handling capability is provided by the platform in all experiments

and so any enhanced deadlock handling based on global information or information

from other nodes should be included as part of the intelligence model. This isolates

the transfer of network information so it can be controlled by the intelligence model

and not unintentionally enhanced by the capabilities of the platform. Turn-based re-

strictions for example need either knowledge of the routing path of the packet (the

destination node) or what turns have been encountered so far in the packet’s journey.

Both of these information sets (global system information, packet specific travel infor-



Social Insect-Inspired Adaptive Hardware 91

mation) will need to be integrated with the intelligence model. The social insects for

example do not have the ability to transfer global information or “chaining” specific

information from one individual to the other to reach a further individual. By only

providing a minimal deadlock handling mechanism, Centurion is suited better for re-

searching generic intelligence models. Knobs and monitors specific to deadlock could

be added (packet turn history stamping for example) if an experimental intelligence

model required it.

As previously mentioned, the input FIFOs on the router ports read and store the

weakly-unique packet ID (the second and third words in the packet header) before

passing the packet to be routed by the control logic. If this ID already exists on one of

the other ports then this means that the packet has looped around and would deadlock

if attempted to be routed in the same direction. Thus it is routed out on a different

port and so will take a different path through the network. This is repeated should the

packet return as the ID is not cleared until its tail End of Packet marker (EOP) passes

through the deadlocked ports. This means that eventually the packet is (potentially

incorrectly) routed to the internal port, ultimately relieving the deadlock but requiring

the packet to be resent by the node that temporarily accepted the packet or for the node

to perform a temporary task switch to the task of the deadlocked packet. This not only

provides a decentralised, low overhead manner of handling deadlock but also provides

several potential monitors and controls that could be used to attach a router intelli-

gence module. Figure 4.11 demonstrates this approach taken which aims to exploit

the adaptivity of Centurion.

As seen in Chapter 6, deadlocks are present in many of the experiments. Experiments

starting with random routing tables or with large numbers of task switches encounter

packets that are terminated by the deadlock mechanism. However, this is to be ex-

pected as there is not any analysis of the routing paths used in the experiments as the

self-adaptive nature of the task allocations is being explored; the number of deadlocks

is used as one representation of the efficiency of a task allocation method. It is ac-

knowledged that the simple deadlock handling combined with the task packet routing

is a poor design choice for NoC applications that are designed following traditional

design flows, however it is felt that imposing all the restrictions that such a design pro-
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cess entails could have an effect on the emergent behaviours that the experiments aim

to exhibit. In the future, design analysis based deadlock handling and avoidance could

always be added on top of Centurion’s deadlock avoidance system when the routing

tables are programmed.

West Port

North Port

East Port

A B 1

A
B

1

2 C D

Figure 4.11: Example of deadlock detection and handling, only three ports are shown

for clarity. There are two packets in the router, packet 1 is destined for a task 1 node

and has a header of 1AB; packet 2 is for task 2 and its header is 2CD. Packet 1 has

arrived at the West port and the routing table dictates that it is to be routed North.

Packet 2 has arrived on the East port and the routing table says it should be routed

back out on the East port. During packet 1’s journey it ends up being routed back to

this node and so arrives back on the North input. The routing table returns that the

packet should be routed North, but it is currently in use. This would lead to a deadlock

as the packet cannot progress, however it the ID 1AB matches in both the North and

West inputs and so the router now automatically take the second option, routing out

on the West port. This is free and so the packet is routed this way and alleviates the

deadlock. If the packet ID did not match then the packet would wait for the North

port to be free to send, until the deadlock time out time has elapsed at which point the

router will try a different direction.

A further layer of decentralised deadlock handling comes from a timeout on each input

channel. If the routing for the packet has not been set up before this timeout elapses

then the requested routing output direction is deemed deadlocked (either due to this

packet or a remote one) and the next option in the routing table for the task is taken.

Eventually this index will increase to the point where all options are exhausted and the

last option is to take an internal routing path and sink the packet internally for deadlock
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statistic measurement or further handling and retransmission.

4.3.5. Router Switch and Controller

The data pathways through the router are provided by the routing switch, which is

managed by the router controller. The switch connects the five input channels to the

five output channels (plus the RCAP channel) and allows five concurrent connections

to be set up. The switch takes five inputs, each one setting the input channel mul-

tiplexer for each output port. This connects the channel signals together required to

forward data across the router.

The settings for the switch originate from the router controller. This module contains

seven state machines: one for each input channel (N, E, S, W, I), one that manages

routing table look-up requests and the final one that handles the requests for input-to-

output channel connections. Both of the shared state machines (routing table requests,

output port requests) use a round-robin of all input channels to handle routing table

and output port requests. This architecture allows channels to manage themselves

whilst avoiding complex synchronisation issues that a non-FSM based design would

suffer from. It also supports easier extension of the complexity of the channel setup

for supporting additional knobs and monitors.
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Figure 4.12: The state diagram of the input channel FSM, there is a FSM for each of

the five input ports. Once a packet fills the input FIFO on a channel the SoP signal is

raised and the flow of the FSM depends on the type of packet detected. Request and

Acknowlege signals are used to interact with the shared Routing Request FSM and

Output Port Request FSM.

The input channel state machine is shown in Figure 4.12. The state machine flow

differs depending on if a system packet or task packet is to be routed. A system packet
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can skip the routing table lookup step and use the direction given in the first token. In

both cases the channel state machine starts by waiting for the SoP token detect signal

to go high and then decodes the input word to decide if a system packet or task packet

is to be processed. If it is a system packet then the requested direction register is set

and the header deletion output for the output register is enabled (removing the routing

instruction from the packet header as shown in the example in Figure 4.4). It then can

request the output port from the output port FSM.

In the case of a task packet, the task ID is extracted from the first token in the packet

and a request is signalled to the routing table state machine to fetch the first routing

direction from the routing table that matches this task ID. Once the routing table re-

quest is accepted and the direction returned, the state machine then checks if the input

channel of this routing direction is currently routing a packet and if so compares the

packet ID of this channel with the packet ID of the current channel. If there is a match

then routing the packet to that output would cause deadlock (as it is the same packet)

and so the state machine re-enters the routing request state but with an increased “op-

tion count” telling the router to select the second task entry in the routing table for that

task. Once an output port is selected that does not have the same packet ID then that

port is requested from the output port FSM.

Once the output port FSM reserves the requested channel for the input port then, for

both task and system packets, the input port FSM allows the switch to pass data and

waits for an EOP to be detected on the output register. When this happens it means

that the packet has passed through the router and the channel between the input port

and output port can be closed. The input port FSM signifies this by raising a signal

and waits for an acknowledge signal from the output port FSM signalling that it has

cleared the output port usage from this input port. The input port FSM can then enter

the idle state, waiting for the next packet to arrive.

The routing table request FSM and the output port FSM are shared by all of the input

channel state machines and so need some form of arbitration. As seen in Figure 4.13

and Figure 4.14, both use a round robin of all input port FSM request signals when

in the idle state to give all ports a fair chance of getting a request. When a routing

request is issued, the routing request FSM takes the task and choice offset (for deadlock
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Request Match

Round Robin
N,E,S,W,I

Task ≠ Table task in
O�set ≠ Task o�set

Figure 4.13: The state diagram for the routing request FSM. The idle state continu-

ously re-enters on the next input port request in a round-robin fashion. If the currently

selected port request is high then the further states operate on the signals from that port

and issue the acknowledge to that input port.

avoidance) from the chosen input channel FSM. It then iterates through the routing

table (via the address interface provided by the RCAP entity) until it finds a task entry

that matches the task for the input port request. If the offset is not zero then it will

keep matching tasks up until the offset count. Once it has a matching task and offset

then it loads the routing table direction output into the output direction register of the

input port, signals to the relevant input port FSM that the request was handled and then

returns to the idle state.

RR
Idle

Request Setup

EOP

Round Robin
N,E,S,W,I

Output port 

Request

Output port 
Close

Port Free

Port Busy

Figure 4.14: The state diagram for the Output Port request FSM. The idle state contin-

uously re-enters on the next input port request in a round-robin fashion. There are two

types of request, one is to open a channel between the input and output port; this may

fail due to the output port being busy. The second request is to close an output port,

in which case the channel between two previously connected ports is disabled and the

switch reconfigured to close the connection.

The output port FSM has a similar structure. There are two types of request that an

input port can issue: a request to create a connection to an output port, or a request to
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close a connection to an output port. The round robin checks the request signals for

either type of request and responds appropriately. In the case of a connection request,

it will check if the output port is currently in use by another input port. If this is the

case then the request is ignored until the round-robin revisits the port. If the port is

free then the output port marks this port as in-use by setting a bit in the output port

status register. It then returns an acknowledge signal to the relevant input port FSM

indicating that its output port request has been successful and it can move to the “in

use” state. If the request is to close a connection, then the in-use bit for the relevant

port in the output port status register is cleared and a different acknowledge signal is

sent to the requesting input port.

4.4. Processing Element Design

The processing elements (PE) in many-core systems can vary from simple hardware

accelerators to complex, high performance CPUs. All that is required is for the el-

ement to include enough interface logic to support communication with the internal

data channel of the router. However, due to the research-enabling nature of Centurion

we have three main requirements of the processing node:

1. General purpose enough to support various models of computation as deemed

by experimental need, with a configuration interface that allows easy and quick

development of application models.

2. As low hardware resource overhead as possible to allow as many nodes to be im-

plemented on the same chip as possible, to achieve Centurion’s high-scalability

requirement.

3. Performance typical of FPGA implemented processors (i.e. 50 - 200MHz, pipelined

for an instruction per clock cycle) to enable realistic and accurate modelling of

application scenarios.

These requirements suggest a simple CPU as a suitable tradeoff between resource

requirements and software flexibility. This would allow both computation models for

experiments and real world applications to be developed in software, with a shorter
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development cycle for adding new features or repairing bugs in the experiment setup.

Section 4.4.1 discusses the capabilities, development workflow and implementation of

the PE CPU. Section 4.4.2 explains how this is connected to the NoC router channel,

so that interfaces for other PEs can be developed.

4.4.1. Processing Core

The PE of Centurion consists of a Microblaze MicroController System (MCS), a hard-

ware resource optimised microcontroller version of Xilinx’s Microblaze soft core [98].

The Microblaze MCS shares the same Harvard architecture of its sister processor but

has a smaller three-stage pipeline (vs. five stages) and a simple IO peripheral bus in-

stead of an AXI compliant interface. Application code and data share the same mem-

ory space (but with separate dedicated access ports to fulfil the Harvard architecture)

and are stored using the FPGA’s Block RAM resources. The size of this memory space

can be configured in power of two’s boundaries. Supported processor peripherals in-

clude a UART, GPIOs, timers and an interrupt controller. The processor hardware is

configured using a Xilinx provided TCL tool, which will output a netlist that can be

integrated with the rest of Centurion’s HDL. Software development is fully supported

by the standard Microblaze C/C++ development flow, a MCS-specific processor defi-

nition XML file is generated by the hardware TCL tool which instructs the Xilinx SDK

to target the Microblaze MCS instead [101].

The Microblaze MCS used in Centurion is generated with the following hardware

parameters:

This results in the following hardware resource requirements for each processing core:

Figure 4.15 shows the general arrangement of the processing element. To support

the Globally-Synchronous-Locally-Asynchronous nature of Centurion, each PE re-

sides within its own clock domain and so clock domain crossing (CDC) registers are

required for each signal entering the PE that is synchronous to the NoC clock do-

main. These signals (excluding the NoC signals as these are described in the next

sub-section) are as follows and perform the following functionalities:
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Parameter Value

Memory size: 8KB

IO Bus: True

Debug Support: False

UART: False

GPO0: True

GPO0 bits: 9

GPI0: True

GPI0 bits: 32

GPI1: True

GPI1 bits: 9

Interrupt Controller: True

Number of IO Interrupts: 2

Interrupt Type: edge, edge

Interrupt Polarity: rising, rising

Table 4.3: List of parameters for generation of the Microblaze MCS using the Xilinx

TCL tool.

Resource Use

LUTs: 875

Registers: 669

Total Slices: 194

BRAM: 4

Table 4.4: Hardware resource requirements of the processing element.
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Figure 4.15: A Centurion Processing Element. The Microblaze MCS is generated from

the Xilinx TCL tool using the parameters given in Table 4.3. There are two clock do-

mains within the processing node: the MCS Clock generated from the clock divider

and the globally synchronous NoC Clock generated by the experiment controller.

The global debug signals to the left of the diagram and the Hi-Speed buffer and NoC

interface signals at the bottom of the diagram are synchronous to the NoC Clock

and so CDC synchronisation techniques are used to cross from the MCS Clock clock

domain.

Node Reset

As the reset for the processing element is controlled by a register in the router RCAP

port, this signal must be synchronised with the PE clock domain. This also helps with

timing as it allows the reset paths for the microcontroller’s sequential elements to be

registered nearer to the flip flops it sets and reduces the need for the placer to place all

of the microcontroller logic near to the RCAP register.

Real Time Clock

The Real Time Clock (RTC) is a 32-bit signal provided from outside of the many-

core (in the case of the experiments for this thesis: a fully-featured Microblaze on the

north-west corner) that provides a timing source and value that is global to all of the

PEs. This signal is also synchronous to the NoC clock and so must be registered into

the MCS clock domain. This also has the advantage of easing the routing of this high-

fanout signal (32-bits distributed all nodes), making it easier for this signal to meet
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timing requirements. The synchronised version is then connected to the MCS node’s

32-bit GPI0 port to allow the node to read the RTC value as required.

Node Debug Interface

Due to the focus of Centurion as a platform supporting NoC research, a link between

each node and the experiment control processor is seen as an essential feature for track-

ing experiment progress and debugging without consuming any of the NoC bandwidth.

It can be used by the node to output continuous status information for the experiment

controller to monitor. The experiment controller can use this interface to hook into

a single node and perform tasks such as setting experiment parameters, fetching ex-

perimental results or change the flow of an experiment dynamically via events such

as fault injection. By bypassing the NoC the influence of these data transfers on the

traffic balance of the NoC will not need to be mitigated, although this link does need

to be considered asynchronous as the intelligence in each node can change the node’s

clock frequency at any time. An overhead of software synchronisation exists to cover

this that would not be required if NoC packets were to be used (as all NoC interfaces

have asynchronous hardware FIFOs).

This link consists of two channels (one node → experiment controller, the other exper-

iment controller → node) consisting of a data byte and the necessary synchronisation

signals to perform the asynchronous clock domain crossing. On the node side these

channels are connected to the GPO0 and GPI1 ports of the Microblaze with the data

valid flag connected to the interrupt controller, as shown in Figure 4.15. To be able to

run the NoC at 100MHz the paths between the multiplexer and the nodes are registered

twice and as such the debug interface should be treated as a multi-cycle path. There is

also a direct connection on this interface to the node’s external storage buffer. On as-

sertion of the node’s Hi-Speed Download Select signal the debug output is switched to

the output of address 0 of this buffer and the FSM cycles through the buffer’s address

space for each clock cycle that Hi-Speed Download Select is held high.

For the experiment controller this arrangement is similar aside from being connected

to the AXI bus of the experiment controller processor and also including a 128-1 mul-

tiplexer that connects the signal pair of channels of the experiment controller processor
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to a node as selected by writing to this multiplexer. This multiplexer has several reg-

istered paths in it to help meet a 100MHz NoC frequency and is split into several

multiplexers to allow a register between stages in the multiplexer and help scalability.

Each row of 8 nodes has an 8-1 multiplexer to select the debug node from the row, the

output of which is registered and the lower 3 bits of the node address are used to select

the node from the row. Each registered row is then fed into a 16-1 multiplexer, using

the upper 4 bits of the node select address to finally select the node to be connected to

the debug interface. This split multiplexer design allows the debug interface to be run

at 100MHz for the 128-node setup used in this thesis.

Due to the experiment controller only being able to set the debug node select address, a

master-slave communication scheme is used whereby the nodes passively output infor-

mation on their channel to be read by the experiment controller as part of monitoring

an experiment without any formal communication between the experiment controller

and the nodes. When communication is required, the experiment controller writes the

required node to the debug node select address and then writes a command to its output

channel. This will cause the debug interrupt to be fired on the selected node whereby it

then responds to the command in the software interrupt handler. Supported commands

are currently:

1. Fetch Logs: the node uploads the contents of its experiment log to the experi-

ment controller via the debug bus and resets its log counter.

2. Fetch Logs Hi-Speed: the node sends the number of log entries stored in its

storage buffer and the experiment controller then uses this value to read this

many entries from the buffer using the Hi-Speed method (i.e. by setting Hi-

Speed Download Select high).

3. Stop Experiment: forces the node out of experiment mode and into idle mode.

4. Get TX busy: returns the status of the NoC TX interface, used for detecting

deadlock at the end of the experiment.

5. Set Node faulty: will cause the node to stop sending or receiving packets and

performing CPU operations. This simulates a node-level fault.

6. Clear Node faulty: clears the fault state set by the previous command.
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As the current clock speed of the processing node can not be known, data transfers

over this link need to perform clock-domain-crossing synchronisation. Standard three-

stage register synchronisers are used at the hardware level to capture bits across the

asynchronous clock domains but such a strategy cannot mitigate the difference in clock

speeds between the node and experiment controller. This data-rate synchronisation is

carried out in software to minimise hardware resources required at the node and to

ease design complexity. The software implementation is currently not optimised for

efficiency but as the debug link is primarily for transferring small control bytes and

status information (aside from log download via the hi-speed link, which is clocked

directly by the NoC clock), this should not cause any issues. The software synchroniser

works by requiring each value written to the debug connection to be mirrored by the

remote end, once both values match then the end sending the data knows that the word

was correctly received by the remote end and clears the valid flag. It then waits for the

remote end to also clear its valid flag, guaranteeing that the remote end knows that the

value is now no longer valid. The near end can then send the next data word. Figure

4.16 illustrates this flow for the Stop Experiment command.

This approach of software synchronisation does not meet the full potential throughput

of the NoC debug interface but is a suitable compromise as the clock frequency and

clock enable of the node could be changed at any time by the intelligence. Approaches

that do not use the valid flag as a handshake either need to enter wait cycles or will

need to use global timeslots. To use wait cycles the experiment controller will need

to write/sample data at a known rate and the node will need to constantly check what

speed it is being clocked at to ensure that it is entering the correct number of cycles

between data writing/sampling. This sample rate will need to be several times lower

than the slowest clock speed of the node (9.2MHz as described in Section 4.6.1) as the

overhead of the node checking its frequency is several cycles (at least three cycles for

an IO bus transaction, which will need to be read twice) and so this software synchro-

nisation will have a maximum transfer frequency of less than 1MHz (even if the node

is clocked at 100MHz). Timeslots using the global RTC would update the data at a

fixed time point after a global RTC transition, at which point the node could sample

the data and know that it would be valid. However, the RTC is clocked at 1µs and so

again a best case throughput of sub-1MHz could only be achieved without changing
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the hardware. Finally, for both of these schemes the intelligence resetting the node

clock enable would lead to data loss as there are no transaction acknowledgements be-

tween the node and experiment controller, whilst in the handshaking method used the

experiment controller would at least wait for a response. This could be used to detect

that the node has been turned off and the transaction can resume when the node’s clock

enable is set again.

Experiment Controller Remote Node 87

Out InNode

87 0x104

Out In

Experiment Controller Remote Node 87

Out InNode

87 0x004

Out In

0x104 0x004

a) c)

Experiment Controller Remote Node 87

Out InNode

87 0x104

Out In

Experiment Controller Remote Node 87

Out InNode

87 0x004

Out In

0x004 0x004

b) d)

0x104 0x104

0x104

0x004

Figure 4.16: Example of data synchronisation over the node debug interface.

a) as the master on this interface the experiment controller initiates the transaction by

writing the node ID of the node that it is fetching the data from to the Node ID select

register; in this case node 87. It then writes the data (0x04 in this example, the Stop

Experiment command) it is sending with the valid bit set (MSB in this example).

b) Raising the valid bit will send an interrupt to the node and the debug command

handler is entered. The node reads the debug port and extracts the command. It replies

with the same command to show that it has received the correct data.

c) Once the experiment controller receives the same value that it sent out then it knows

that the remote end has received the data correctly. It can remove the valid signal from

the output port to indicate that it is ending the transaction of this word.

d) The remote node notices the valid signal has become low and the node mirrors

this to acknowledge the end of the word transaction. Once the experiment controller

detects the valid signal going low on the remote end then it can either send the next

word or command, send data to another node or stop using the debug interface.

4.4.2. Network Interface

The NoC interface between the node and the Internal port of the NoC router consists of

a TX and RX channel and associated control logic. To decouple network delays from

the processing unit, packets are sent and received via the 2KB TX and RX buffers

(as shown in Figure 4.15). These buffers also act as asynchronous FIFOs and (coupled

with a few control signals that cross the clock domains using three stage synchronisers)

allow the TX and RX control state machines to reside in the NoC clock domain, re-
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sulting in a complete decoupling of the node clock domain and the NoC clock domain;

a Globally-Synchronous-Locally-Asynchronous paradigm.

To send a packet the node reads the NoC interface status register and waits for the

TX Busy bit to be cleared. Once it is cleared then the node is free to modify the

data in the TX buffer and so loads the packet data to be sent into the buffer starting

from address 0, including the required packet header and EOP at the end of the packet.

The node can then send the packet by writing the number of words to be sent to the

TX length register. At this point the TX FSM will take control over the buffer and

NoC interface, sets the TX Busy bit and then sends the packet word-by-word into

the Internal port on the router. Once the number of words specified in the TX length

register have been sent, then the TX FSM clears the TX Busy bit and a new packet

can be sent.

For received packets the RX state machine assumes an empty RX buffer on reset. Once

valid data starts arriving on the router’s Internal port then this data is stored in the RX

buffer from address 0. All words are stored until the EOP token is encountered, at

which point the RX FSM loads the RX length register with the length of the received

packet and sets the RX Valid bit in the NoC interface status register; signalling to the

processor that new data is available in the buffer. The RX interface is now blocked and

can not receive any new data. This allows the processor to react to the set RX Valid

bit and read the packet out of the RX buffer. Once the processor has finished with the

data in the RX buffer, it sets the RX Ack bit in the NoC control register and then clears

this bit. This signals to the RX FSM that the data in the buffer has been used and it

can now resume receiving new packets.

4.5. Embedded Intelligence Using PicoBlaze

The embedded intelligence models need low-level access to the signals of the router

to sense and change its behaviour. The decision pathways are extracted from the bi-

ological models and translated into a form that is suitable for implementation with

Centurion. Early experiments, one of which is presented in [102], used dedicated hard-

ware circuits for implementing the models. Developing and debugging these models
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became quite a challenge as they interact directly with the internals of the router con-

trol state machines; issues when developing could lead to undefined behaviours of the

router control logic. Therefore, it was decided to implement the embedded intelligence

using a programmable method, with a knobs and monitors interface standardised for

all intelligence models even if they do not make use of the signals. One of these

implementation modules is the Configurable Intelligence Array (described in the next

chapter) which allows dedicated hardware pathways to be developed with configurable

interconnects and threshold parameters. The second module is described in this section

and uses a microcontroller. The pathways are programmed using software to abstract

away from the development of dedicated hardware pathways.

The microcontroller used is a Xilinx Picoblaze microcontroller [99] which can be

embedded inside each router as the intelligence model provider. The Picoblaze can

be programmed in assembler language which gives the designer maximum flexibility

and simplicity with a small hardware footprint when translating and developing the

bio-inspired social insect-intelligence model in hardware.

The program code is uploaded by the Experiment Controller via the node’s RCAP

interface. As with the CIA, the Picoblaze has access to the internal signals of the router

and processor via the monitors and can also affect several settings and behaviours of

the router and processor through the knobs. This is shown in the general layout of

the Picoblaze system shown in Figure 4.17. To facilitate the implementation of the

response threshold models, the Picoblaze software platform provides functions for:

interfacing to convert between impulse sequences (spike trains) and binary number

representation, logical comparators that generate impulses when vector inputs match,

and threshold circuits that act as final decision makers. The intelligence models can

then be implemented by tying these functions together to produce a response-threshold

decision pathway from the monitors through to the knobs.

The knobs and monitors are accessed through the Picoblaze’s IO ports and the follow-

ing knobs and monitors are available:

Monitors:

• Routing event: This is signalled from the router controller whenever a packet
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Figure 4.17: Layout of the Picoblaze-based embedded intelligence

SOP or EOP is routed. A 32-event FIFO ensures that events are not missed

if the Picoblaze is busy at the time of the event being issued. To minimise

hardware resources for this FIFO, the distributed LUTRAM is used. Each LUT

in the SLICEM [103] primitive has a 32-bit deep RAM, the slice has four of

these LUTRAMs. Thus the 8-bit wide event FIFO can be implemented using

only two SLICEM slices.

• Ring oscillator counter: The node’s ring oscillator (Section 4.6.1) is fed into this

counter to give an indication of the node’s current temperature.

• NESW Neighbour Flags: These consist of a 1-bit signal from each neighbouring

cardinal node which can be used to communicate directly between intelligence

units or indicate a status of the neighbour intelligence.

• Routing Request in: This allows the router controller to fetch its routing direc-

tions from the Picoblaze instead of the routing table. This can be used to provide

adaptive routing via the intelligence.

• Global Timebases in: Two programmable impulse signals are provided from the

Experiment Controller to all nodes. Connected to the interrupt input, this allows
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counters and thresholds to change when a time impulse arrives.

Knobs:

• Node Clock Enable: This signal allows the clock for the Microblaze node to be

turned off and on.

• Node Clock Frequency: This sets the operating speed of the Microblaze node

(Section 4.6.2).

• Router Bypass: When set this signal instructs the router to bypass the internal

node port.

• NESW Neighbour flags: a four-bit output that is connected to each of the NESW

neighbouring Picoblazes

• Routing information out: A routing direction outputted when the router con-

troller asks for routing information from the Picoblaze instead of the routing

table

4.6. Advanced Features of the NoC

The processing element described so far in this chapter could be used to build a basic

NoC, however the embedded intelligence block proposed by our social insect-inspired

approach (as introduced in Chapter 3) allows the introduction of advanced control

options that basic many-core techniques would struggle to utilise effectively. These

are a collection of knobs and monitors that are integrated with both the router’s RCAP

and the intelligence block that is presented in the next chapter.

4.6.1. Dynamic Node Clock Rates

A key element of Dark Silicon, variability and ageing mitigation is the modification

of the characteristics of the clock driving the digital logic. For example, a hotspot on

the die could be intelligently reduced by lowering the clock frequency of processing

cores local to it. As our agent-based approach deals with intelligence embedded at

the node-level, our system will also require adaptive clocking at the node level. An
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ASIC implementation would have many options available here as clock manipulation

circuitry could be added with the node floorplan in the same fashion as other digital

circuitry. On an FPGA implementation however, the clock resources are limited and

generally not very adaptive post-configuration. Therefore the dynamic node clock rate

generator on this FPGA implementation of Centurion may seem convoluted compared

to an ASIC equivalent method of achieving this functionality. Currently the clock

speed of each node can be configured and the NoC is clocked at a fixed 100MHz clock

shared between all routers. The Block-RAM FIFO on the node’s network interface

provides the required asynchronous clock domain crossing between the NoC and the

node clock domain.

Reload Value (5 bits) Reload 
Value
Register

600MHz Clock

6-bit 
Counter

Clock enable
enable
reset

MSB (bit 6)

BUFHCE

CE

Clock Out

Figure 4.18: Design of the dynamic clock divider. The reload value is provided from

one of the router’s RCAP registers, this means the signal is far away from the clock

divider and so will not be able to meet a 600MHz timing constraint, hence the register

within the clock divider. The counter counts up until its MSB is set, at which point

a reload of the counter value from the register is triggered. This allows a 600MHz

counter to be built without the slow comparison logic that using the divider value as a

compare instead of a load would require. The MSB also enables the transmission of

the 600MHz clock through the BUFHCE FPGA element to produce the divided clock.

The dynamic node clocks are generated by dividing down a fast global reference clock

derived from a PLL within the FPGA, using a loadable count-up counter and the glitch-

less output enable function of Xilinx horizontal clock buffers [104] to perform the di-

vision. This allows the reference clock to be divided down by integers to get a desired

frequency. The counter has a 5-bit loadable value but the counter itself is 6-bits, us-

ing the MSB overflow to enable the output of the clock buffer and reset the counter

as shown in Figure 4.18. A downside of this scheme is that it provides a “decimated

clock” output that heavily skews the duty cycle, each clock “pulse” will be a single

high half-cycle of the fast reference clock with the disabled clock buffer output pro-

viding a ’0’ for the low part of the clock-cycle, an example waveform is given in the
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timing diagram in Figure 4.19. Crucially this means that the hold requirements for

all logic driven by the dynamic clock is defined by the hold requirements of the ref-

erence clock. The setup time is exempt from this rule as the divider means it is not

possible to drive the divided clock at the reference clock frequency; instead the setup

requirement is driven by what frequency the tools are set to optimise the node for, in

the experiments presented in this thesis this is set to 100MHz.

As the counter has to be clocked from the reference clock, the upper frequency that can

be used by the reference clock is limited. By using the MSB overflow to trigger the

counter reset helps in this respect by removing the slow combinatorial logic required

by a comparison circuit. A higher reference clock frequency gives more dividing op-

tions at higher frequencies and so an optimal value is application dependant. As our

nodes are synthesised for a nominal 100MHz ideally the clock divider should provide

a suitable range of frequencies around this base. By using a 600MHz reference clock

the following frequencies are possible (Table 4.5):

Div. F (MHz)

63 300

62 200

61 150

60 120

59 100

58 85.7

57 75.0

56 66.7

Div. F (MHz)

55 60.0

54 54.5

53 50.0

52 46.2

51 42.9

50 40.0

49 37.5

48 35.3

Div. F (MHz).

47 33.3

46 31.6

45 30.0

44 28.9

43 27.3

42 26.1

41 25.0

40 24.0

Div. F (MHz).

39 23.1

38 22.2

37 21.4

36 20.7

35 20.0

34 19.4

33 18.8

0 9.2

Table 4.5: A list of divider values and their associated output frequencies. Only the

top 31 values are shown due to the large number of values between a divider value of

30 and 0.

The value for the divider can be set by either writing the associated RCAP port (as

discussed in Section 4.3.3) or as an output from the intelligence module. The source

is set by writing to the Intelligence Clock Select bit in the RCAP.
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Figure 4.19: Examples of the decimated clock produced by the clock divider.

a) The clock enable signal sourced from the node’s RCAP has been cleared and so

the counter is disabled. This never enables the CE pin on the BUFHCE and no clock

transmission happens.

b) The clock enable signal is now high and the divider value register has been loaded

with a value of 0x2F (all values to 1). The counter therefore counts once which sets

the MSB and the BUFHCE is high for one clock cycle. The counter is then reloaded

to 0x2F and the BUFHCE is disabled again. This results in a divide by two and a

frequency of 300MHz is output. Note the “decimated clock” with a duty cycle of

25%.

c) The divider value register has now been loaded with a value of 0x2D. The counter

therefore counts three times before being reloaded. This results in a divide by 3 and a

frequency of 200MHz is output. The “decimated clock” duty cycle has decreased to

16.7%.

d) The divider value register has now been loaded with a value of 0x2B The counter

therefore counts five times before being reloaded. This results in a divide by 5 and a

frequency of 120MHz is output. The “decimated clock” duty cycle has decreased to

12.5%.
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4.6.2. Local Thermal Sensing

Due to the large effect of the thermal state of the die on the timing performance and

power requirements of the application, the local temperature of the node is an impor-

tant input to the adaptive many-core controller. This allows the intelligence to make

informed decisions on the running of the node (clock speed, current task, clock en-

able) that take the thermal envelope of the application node into account resulting in

a self-organisation that can thermally balance local regions to ensure the nodes do not

overheat. Unused dark silicon between nodes can be removed by balancing the ar-

rangement of nodes running tasks that make them run “hot” with nodes that may have

a lower execution speed or a cooler thermal profile, allowing maximal silicon resource

use.

This work only requires a coarse grain view of the node’s temperature and so a simple

digital thermal sensor will suffice. A Ring Oscillator was used due to its simplicity

and small hardware resource footprint. This implementation, based on [105], uses 15

buffer stages and a single inverting stage to form and maintain the oscillation as shown

in Figure 4.20. The theory of ring oscillators dictates that the frequency of operation

is defined by the total signal propagation delay through the delay elements, inverting

element and routing delay between these elements. As the temperature of the silicon

implementing these elements increases, so will the total delay of the oscillation path

and the output frequency will drop. So by reading the output frequency of the oscillator

the temperature of the die can be inferred.

The Xilinx timing model does not allow the constraining of combinatorial loops (as

the timing engine only analyses register-register paths [106]. Therefore it is difficult to

implement homogeneous ring oscillators within each node (user hard macro support

for Virtex-6 is essentially defunct due to poor support in FPGA editor). As a compro-

mise, the physical location of the delay and inverter elements are constrained to the

same shape of co-located LUTs using RLOC attributes. This gives the tools a good

chance of implementing similar routing paths as there is minimal routing outside of

hops to the switch-box and back to the same CLB. By using RLOC attributes the ring

oscillator can be placed in the same position within each node. Whilst this does not
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guarantee that they will be measuring the same parts of the node circuitry (due to the

placer placing components in different locations within each node floorplan), it does

mean that the die’s thermal state is evenly sampled reducing the chance of a very local

hotspot having an affect on neighbouring ring oscillators.
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Figure 4.20: The 16-stage Ring Oscillator used for Temperature Sensing and its LUT

implementation.

a) The oscillation can be seen from this diagram. On startup the buffers will output a

zero (defined by the FPGA LUT), causing an inversion at the inverter’s output. This

inversion will propagate through the ring of buffers until it reaches the inverter again

and is inverted, causing the oscillation.

b) The FPGA implementation using dual-output LUTs configured as buffers, aside

from the final inverting stage that is configured as an inverter. As there are four dual-

output LUTs in each Virtex-6 slice, two slices are required (marked A and B). RLOCS

are used to keep the slices adjacent and in the centre of the node’s partition. If the

slices where located apart or in different locations within the partitions then we would

see a large amount of variation between nodes.

4.7. FPGA Implementation

The 128-node Centurion developed for the experiments in this thesis has been cus-

tomised to suit the Xilinx XC6VLX760 Virtex-6 FPGA [107] and some degree of

design specialisation has been undertaken to efficiently map such a large design to the

FPGA device.

4.7.1. Node Implementation

As noted in Section 4.4, the processing element requires 4 RAMs: one 8KB for the

processing node memory, one 4KB for the attached storage memory and two 2KB
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RAMS for the NoC interface asynchronous FIFO. This can be achieved using 4 dual-

port 4KB BRAMs embedded within the Virtex-6 fabric. The router only requires a

few small RAMs (for storing the RCAP settings and routing lookup tables) and these

can be implemented within the 32-bit RAMs of the SLICE-M Virtex-6 resources. This

gives the hardware resource requirements for a single Centurion node implemented on

a Virtex-6 specified in Table 4.6:

Resource Use

LUTs: 2808

Registers: 2692

Total Slices: 734

BRAM: 4

Table 4.6: Resource Requirements of a Single Centurion Node. The tools were run

with just the Centurion node included and ran until the end of the MAP phase (re-

sources allocated and placed on the FPGA fabric). This means at least 730 slices and

four BRAMs for each node are required to be allocated when floorplanning.

These figures are important for floorplanning the design to give Centurion a realistic

ASIC physical layout, as they show how many resources need to be reserved for each

node (with some margin as it is not guaranteed that the design tools will implement

each node in the same way).

Of interest are the resources required by each sub-entity as this gives an indication of

the implementation efficiency relative to the design and can highlight problems such

as device primitives not being inferred correctly. These are shown in Table 4.7 and

suggest that the design has successfully been translated to the implementation.

It can be seen from Table 4.7 that the Configurable Intelligence Array (CIA, described

in the next chapter) has quite a high overhead requiring 37% of the total slices for

the router. However, the XC6VLX760 architecture means that the design is BRAM

limited. Thus, reducing the overhead of the CIA would not allow a larger NoC as the

CIA does not require any BRAMs.

Table 4.7 also shows the ratio of NoC resources to processing resources, with 26%

of the total slices used for the processing elements when the CIA is included or 43%

of the total slices if the CIA is excluded. Whilst this may seem a low percentage as
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the processing elements provide the application support, it is worth considering that

the MicroBlaze MCS processors used are as simple as possible to ease the implemen-

tation flow for the tools. A NoC used in a general processing application environ-

ment will require processors with features allowing higher performance (e.g. 5 stage

pipeline, hardware multiplier and dividers, 64-bit architecture, floating point accelera-

tors) which would significantly rebalance the allocation of hardware resources towards

the processing side.

Entity Slices Registers LUTs LUTRAM BRAM

Router 517 2001 1187 60 0

North FIFO 19 42 21 0 0

East FIFO 16 42 18 0 0

South FIFO 11 42 18 0 0

West FIFO 13 42 18 0 0

Internal FIFO 8 42 18 0 0

North Output Reg 9 12 6 0 0

East Output Reg 7 12 6 0 0

South Output Reg 6 12 6 0 0

West Output Reg 6 12 6 0 0

Internal Output Reg 7 12 6 0 0

RCAP 18 37 63 10 0

Router Controller 97 115 350 0 0

Switch 2 0 130 10 0

Ring Oscillator + Counter 20 55 71 2 0

Intelligence 278 1524 1150 48 0

PE 194 669 875 218 4

Microblaze MCS 150 449 635 155 2

IO Bus and NoC Interface 44 220 240 63 1

Attached Buffer 0 0 0 0 1

Global Signal Treatment 23 22 46 0 0

Table 4.7: Breakdown of Resource Requirements for a Centurion Node. Some vari-

ation between identical entities (e.g. the input FIFOs) is expected due to variation in

the tool optimisations and the degree of LUT packing and slice sharing that occurs at

a local level when the design is placed by the placer. The clock divider is not included

within the node and so no clock resources are required.

4.7.2. NoC Layout

The FPGA architecture of the xc6vlx760 is generally arranged in a vertical fashion

with programmable elements placed in columns running down the device. Primarily,

these consist of slices (programmable logic), DSP slices (programmable MAC units)
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and BRAM blocks (embedded memory). As seen in [107], the xc6vlx760 has 118,560

slices, 864 DSP slices and 1440 BRAM blocks. The Centurion node does not use

and DSP slices and so BRAMs are the limiting resource. These are placed in 10

columns across the device that are 144 blocks long. This determines the NoC layout as

exceeding more than 10 nodes will mean that BRAMs need to be routed from further

below; leading to longer paths, potential timing problems and breaking the tileable

architecture of the NoC.

It has been calculated that eight horizontal nodes provide the most efficient use of

hardware resources: a single row would result in a best-case efficiency of 91% use of

slices and 80% of BRAM resources. The NoC can also be tiled vertically, the consid-

eration here is how many resources will be required for the experiment controller. As

the experiment controller complexity increases the number of rows decreases until the

design is settled at 16 rows, providing a 16x8 NoC, or 128-node many-core, as shown

in Figure 4.1. Also shown in Figure 4.1 are the four interfaces on the North edge of

the NoC that connect the experiment controller to the NoC. Each one of these is an

independent interface to the experiment controller with its own transmit and receive

buffer; allowing packets to be inserted and removed from the NoC at x4 the throughput

of a single link. All NoC control signals on other edge nodes are pulled to logic ’0’,

ensuring that data cannot be sent off the edge of the NoC and lost or that false data can

not be inserted on the edges.

4.7.3. Experiment Controller

Whilst not strictly part of Centurion, the experiment controller plays a vital role in

using the many-core. For this thesis it is the primary connection with the external

world and so is responsible for setting up experiments, collecting results from the

nodes and communicating these results back to a PC for analysis. The debug interface

was introduced in Section 4.4.1 and the four NoC interfaces have been introduced

within this section, however there is also a large amount of support hardware connected

to this processor as seen in Figure 4.21.

The four-lane DDR LVDS interface is used to connect to an external board which in
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Figure 4.21: Architecture of the experiment controller. A selection if IP cores are

connected to the AXI interconnect, some of these are provided by Xilinx (UART,

timer, MDM debug, DMA, DDR2 MIG, interrupt controller) and the rest have been

developed for use with Centurion (the RTC, debug interface and the NoC interface) and

the LVDS interface has been developed for high-speed upload of experiment results

and application data to a lab PC.

turn connects to a host PC via a Gigabit Ethernet connection. This is the high-speed

link for uploading experimental results and so is an important factor when designing

the experiment process. Technical discussion of this interface is beyond the scope of

this chapter but the link operates at full-duplex with a total throughput of 800MBit/s

in one direction using up to 8KB data frames. The frame overhead is very small and

so, with the use of automated DMA descriptor chains, it is possible to nearly achieve

800MBit/s experimental data upload. The interface requires a 100MHz data clock for

both transmit and receive, requiring the use of regional clocking resources for capture

and re-assembly of high-speed input data.

The custom RTC IP core provides programmable real-time timing ticks to the many-

core. It has four output ticks: 1µs, 1ms and two programmable ticks variable from 1µs

to 4,294s (floored to the nearest second). These are used by the deadlock mechanism

and intelligence units of the nodes. The RTC IP also provides a global “wall time” to

all nodes which is a 32-bit count of the number of 1µs ticks that have elapsed since

reset, it is possible to reset this count from software by writing to the RTC’s 0x00

register.
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4.7.4. Clocking Structure

The main clocking concern when implementing Centurion is the dynamic clock rates

introduced in Section 4.6.1. Each of these dynamic clock scalers for each node re-

quires a gated clock buffer to decimate the clock forwarded to the node’s processor. In

the Virtex-6 the BUFHCE clocking primitive [104] can do this and is more resource

efficient than a BUFGCE as it is a local clock buffer that can only clock logic within

one clock region; unlike a BUFGCE which can drive all logic elements within the de-

vice. Indeed, the BUFHCE is used to forward global clock signals on the BUFGCE

network into the local logic.

Figure 4.22: A screenshot from the Planahead tool showing the 18 clock regions of

the xc6vlx760. Blue blocks indicate configurable logic whilst the vertical dark stripes

indicate the location of embedded BRAMs, DSPs and IO components.
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Each Virtex-6 clock region supports 12 BUFCHEs. One of these is used to forward

the global 100MHz NoC clock (distributed via a BUFG) to the NoC sequential logic,

another is used to forward the global 600MHz clock used as the reference for the node

clock divider and also drives all of the divider logic. The other 10 BUFHCEs can be

used for divided clocks for the nodes; although this is not true for all clock regions as

if the clock region includes clocked IO ports within the region (i.e. DDR output flip-

flops, used on the LVDS and DDR2 RAM interfaces). Figure 4.22 shows the layout of

the 18 clock regions within the xc6vlx760 FPGA. Without the experiment controller

or BRAM limitations, Centurion’s clocking scheme could support 180 nodes all with

uniquely controlled clock dividers.

The full scale could not be used due to the clocking requirements of the experiment

controller. Care has been taken with the IO planning to group together pins that are

clocked by the same output clock but also to maximise the amount of clocked IO

within the clock regions dedicated to the experiment controller. The experiment con-

troller takes the input clock (forwarded on an IBUFGDS primitive) and generates sev-

eral clocks for the DDR RAM controller, two clocks for the LVDS link and also the

100MHz NoC clock. This allows most clocks associated with the experiment con-

troller peripherals to be located in the clock regions in the top row. Some DDR clocks

are required in the second row and some LVDS clocks in the third row but, as there are

only four extra clocks in both cases, eight Centurion nodes are still supported in these

regions. All other clock regions consist of the NoC clock, 600MHz clock and the eight

node clocks.

Table A.1 in Appendix A gives a full overview of how the BUFHCE resources within

each clock region are allocated.

4.7.5. Floorplanning

To aid an “ASIC style” capture of properties of high density VLSI design that rely on

low-level device characteristics (e.g. thermal properties), an ASIC approach to floor-

planning the many-core is followed. Whilst the device layout model given by the tools

does not guarantee the architecture of the device, it will be a general representation due

to the timing model (i.e. two nodes floorplanned near each other will be close, even if
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the mapping between the tool and the real FPGA layout is not correct at the transistor

level). A tiled design will also aid the implementation tool as it does not have to keep

reshuffling component mappings until the timing between nodes is met.

As seen earlier, each node requires at least 734 slices and 4 4KB BRAM blocks. If

some margin is included to give the tools implementation options and a ratio that tiles

efficiently is considered then a single node resource usage requirement of 760 slices

(38 slices wide, by 20 slices high) is a good compromise to get a high node density.

This is the size of the implementation partition for each node. Figure 4.23 shows a

visualisation of the UCF AREA GROUP[104] constraint that is used to partition the

FPGA for a single node. The entire device is then floorplanned with 128 of these

760 slice blocks and an area at the top reserved for the experiment controller (the top

location was chosen due to fixed IO ports for the DDR RAM attached to the experiment

controller process). The pre-implementation partition map for the entire device is

shown in Figure 4.24. This partitioning scheme also obeys the clocking capabilities of

the device with respect to the number of BUFHCE buffers available per clock region

(12 total, with 8 nodes per clock region, the 600MHz global reference clock for the

clock dividers and the global NoC clock: 10/12 BUFHCE used per clock region).

The floor planning is achieved with physical constraints set within the UCF file. Each

node instance is extracted from the design hierarchy and assigned to an AREA GROUP,

for example for node 100:

INST "PE_gen[100].many_core_PE_inst/*" AREA_GROUP = "pblock_P_gn[100].mny_cr_P_inst";

The AREA GROUP is then constrained to the FPGA resource region requried using

the RANGE physical constraint:

AREA_GROUP "pblock_P_gn[100].mny_cr_P_inst" RANGE=SLICE_X180Y60:SLICE_X217Y79;

AREA_GROUP "pblock_P_gn[100].mny_cr_P_inst" RANGE=RAMB18_X5Y24:RAMB18_X5Y31;

AREA_GROUP "pblock_P_gn[100].mny_cr_P_inst" RANGE=RAMB36_X5Y12:RAMB36_X5Y15;

Placing and routing of other components through the AREA GROUP is then restricted:

AREA_GROUP "pblock_P_gn[100].mny_cr_P_inst" GROUP=CLOSED;

AREA_GROUP "pblock_P_gn[100].mny_cr_P_inst" PLACE=CLOSED;

Due to the 600MHz requirement for the counter within the clock dividers for each

node, these have been hand mapped to individual slices in the spare slice resources

down the centre of the device (the unused region can be seen in Figure 4.24). This
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Figure 4.23: The layout the hardware resource partition for node 0 (top left node).

Programmable slices have a blue border and have a geometery of 38 slices wide by

20 slices high to give a total of 760 slices within the partition. The four BRAM com-

ponents can be seen in the column with the purple border to the left of the partition.

The green column contains DSP slices which are currently unused in the Centurion

node. The location of BRAM columns is not heterogeneous and so some nodes have

different layouts.

also helps alleviate timing errors in the mapping phase as these are the fastest paths

for the tools to meet. These are placed using the same flow as used with the node

floorplanning:

INST "clk_div_gen[100].clk_inst/BUFHCE_inst" LOC = "BUFHCE_X1Y16";

INST "clk_div_gen[100].clk_inst/*" AREA_GROUP = "AG_clk_div_gen[100]";

AREA_GROUP "AG_clk_div_gen[100]" RANGE=SLICE_X172Y48:SLICE_X173Y49;

As can be seen in the post-implementation net mapping in Figure 4.25 (akin to viewing

the ASIC metal layers), the tools successfully generate our floorplan with a runtime

of ≈ 18 hours, using 50 concurrent MAP and PAR processes running with different

mapping strategies and starting cost tables. Further post-implementation figures of the

floorplanned design are available in Appendix B.
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Figure 4.24: All partitions of the 128-node Centurion. The single node partition seen

in Figure 4.23 is tiled 128 times to provide a floorplanning of the many-core. At the

top of the device is the hardware resources dedicated to the experiment controller,

with a small tongue down the centre to ease routing of DDR2 signals and the four

NoC interfaces.
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Figure 4.25: A post-implementation view of the hardware resources (nets in this im-

age) used by Centurion. Blue wires indicate wires related to the processing elements

(including debug signals seen in the top of the image). Yellow wires are NoC and

router signals. Green wires are signals of the Experiment Controller. Purple wires

are signals for the clock-divider circuity (but not the clock resources). It shows the

floorplanning is successful but also shows the design variation in implementation by

the FPGA tools.
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4.7.6. Hardware Resources

The results from the floorplanning give some confidence that the many-core has been

implemented in such a way that allows the experiments to be representative of a how

a future high-density many-core would behave on an ASIC. The total resource usages

figures for the top level entities is given in Table 4.8 and provides another verification

of the implementation of the design. As expected, the many-core requires the majority

of the slice and BRAM resources. The average slice resource use of the nodes is well

within the 760 that is allocated for the partition (slice packing and design optimisation

will reduce the slice usage, especially for edge nodes that have at least one interface

disabled). The BUFHCE resources are not reported as part of Xilinx’s design resource

utilisation report.

Entity Slices Registers LUTs LUTRAM BRAM

Experiment

controller

6,650 12,563 12,805 1,788 56

Centurion 91,470 341,480 331,875 28,377 512

Node average 714.61 2,667.81 2,592.77 221.7 4

Clock Dividers 391 1664 1149 0 0

Divider average 3.05 13 8.98 0 0

Total 99,343 356,323 346,931 30,174 568

Table 4.8: The total hardware resource requirements for the top-level hardware in-

stances. The node averages and clock divider averages match well within expectations

from the post-MAP resource requirements for a single node

4.7.7. Software Development

As all of the processors in the system are Microblazes, the Xilinx software develop-

ment flow can be used albeit with a few customisations to support the large core count.

The implementation flow creates a system.xml file for both the full Microblaze used

in the experiment controller and for the Microblaze MCS used in the nodes. This file

can then be used with the Xilinx SDK to generate software projects for both exper-

iment controller development and for node development. Due to the small amount

of shared code and data memory in the node (8KB) it is suggested to customise the

standard GCC start-up libraries: removing the C runtime library cleanup call found

after the call to main() in crtinit.s for example can save nearly 1KB of code. Aside
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from this the nodes can be programmed using the standard Microblaze C port, with

the following address space for the processor peripherals:

Address Size Peripheral

0x00000000 8KB Program/Data Memory

0x80000010 4B Debug Out Register

0x80000020 4B RTC In Register

0x80000024 4B Debug In Register

0xC0000000 16B NoC Control/Status Registers

0xC1000000 2KB NoC TX Buffer

0xC1000800 2KB NoC RX Buffer

0xC5000000 4KB Node Data/Log Buffer

Table 4.9: Address map of the Microblaze MCS contained on each node.

Address Size Peripheral

0x00000000 128KB Program/Data Memory

0x40600000 64KB UART

0x41200000 64KB Interrupt Controller

0x41400000 64KB MDM Debug

0x41C00000 64KB Timer

0x50000000 256M DDR2 RAM

0x60000000 20B NoC Control/Status Registers

0x61000000 4KB NoC IF0 TX/RX

0x62000000 4KB NoC IF1 TX/RX

0x63000000 4KB NoC IF2 TX/RX

0x64000000 4KB NoC IF3 TX/RX

0x76000000 16B Centurion Debug Registers

0x77000000 4KB Centurion Debug Fast Upload buffer

0x7BE00000 20B RTC

0x7E200000 64KB DMA Controller

0xC0000000 12B LVDS Control/Status Registers

0xC1000000 8KB LVDS TX Buffer

0xC2000000 8KB LVDS RX Buffer

Table 4.10: Address map of the experiment controller. The TX and RX side of each

NoC interface share an address space, writing to this address space will access the TX

buffer and reading from it will access the RX buffer.

Once the software is developed it must then be programmed onto the device. The Xil-

inx SDK flow does not natively support such a large core count and so an extra step

is required at device programming. The Xilinx provided data2mem program [101]

is used to copy the developed .elf files into the embedded block RAMs for each

node via the centurion bd.bmm file produced by the tools at the MAP process. This

.bmm file contains a list of BRAMs that make up the program/data memory space for
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each Microblaze in the system; thus there are 129 instances within this file for this

implementation of Centurion. Specific .elf files can then be loaded into the configu-

ration bitstream by the data2mem program. The bitstream is then programmed onto

the FPGA in the standard fashion using either the impact tool or via a prepared flash

device. For the experiments in this thesis, the data2mem program is configured to load

the same .elf file into all of the nodes; however this is not a requirement and any .elf

could be loaded into any node as long as it is compiled for Microblaze MCS and has a

memory requirement of under 8KB.

4.8. Summary

This chapter has described the design and implementation of the main novel design

element of the work undertaken for this thesis. Centurion provides everything that

is required for the many-core aspect of this research platform and the configurable

intelligence modules described in the next chapter will provide the hardware required

to implement the embedded bio-inspired social-insect models for control of Centurion.

The in depth description of Centurion is also crucial for understanding and exploring

the adaptive many-core behaviours that are observed in the experiments presented in

Chapters 6 and 7.
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The Configurable Intelligence Array
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5.1. Overview

The Configurable Intelligence Array (CIA) is a hardware module embedded within

each router of the Centurion system that implements the biological models described in

Chapter 3. This module interacts with sensory and actuator hardware, dubbed monitors

and knobs respectively in this thesis, and makes decisions informed by both current and

trend information collected by the monitors. The fundamental decision making part of

the intelligence is the threshold-response model. This model requires a stimulus and

a threshold that states how much the stimulus contributes to the decision. As these

experiments target a digital system the stimulus are in the form of digital impulses

and the threshold integer values. The goal of the CIA is to provide these threshold-

response units with both programmable thresholds and also programmable routing

between monitors, knobs and other threshold units. The CIA can then change the

behaviour of the attached router (and thus the packet-level dynamics of the many-core)

via the knobs.

CIA
CIU CIU
CIU CIU

CIB 0

CIU CIU
CIU CIU

CIB 1

CIU CIU
CIU CIU

CIB 2
CIU CIU
CIU CIU

CIB 3

CIU CIU
CIU CIU
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CIU CIU
CIU CIU
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CIU CIU
CIU CIU

CIB 6

CIU CIU
CIU CIU
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CIU CIU
CIU CIU

CIB 8
CIU CIU
CIU CIU

CIB 9

CIU CIU
CIU CIU

CIB 10

CIU CIU
CIU CIU

CIB 11

Monitors Knobs

Figure 5.1: The Configurable Intelligence Array (CIA). The array used in this thesis

comprises of 12 Configurable Intelligence Blocks (CIBs), which in turn contain four

Configurable Intelligence Units (CIU) each. The CIUs are the fundamental decision

units of the CIA, and the CIB manages routing connections between the CIUs to build

decision making pathways.

This chapter describes the design of the CIA, built from the: the Configurable Intelli-

gence Block (CIB) and the Configurable Intelligence Unit (CIU). Figure 5.1 shows the
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general overview of these component blocks within the CIA. The implementation used

for the experiments described in this thesis uses 12 CIB blocks arranged as a three by

four grid. Each block contains four CIUs and each CIU contains four thresholder units

which make the stimulus-response threshold decisions. This results in 48 thresholder

units available for use to implement the bio-inspired intelligence. This figure is largely

driven by spare resources available within the node partitions; indeed this chapter is

heavily focussed on hardware resource minimisation as a CIA is present within all

nodes and uses a significant percentage of the total node resources: 278 out of 711

slices ≈ 40%. This percentage overhead is high, but there are two factors that make

this figure more reasonable. Firstly, 60% of this overhead is due to the configurable

aspects (routing, programmable thresholds) of the CIA which would be removed in

a production system leaving only the decision making elements present; this is dis-

cussed in Section 5.4.2. Secondly, both the NoC router and the processing element

used in Centurion have been optimised for low hardware overhead. In a system with a

more capable NoC router and a more capable processor then these hardware resource

requirements will increase and the CIA would drop to a smaller percentage of total

node size.

5.1.1. Role of the CIA

As highlighted in Table 3.1 the translation of the biological models revolves primar-

ily on the extraction and translation of stimulus-response pathways in the biologi-

cal model. Both the Picoblaze (Section 4.5) intelligence software implementation

and the CIA hardware implementation will capture these pathways with response-

threshold decision making units. Both implementations use impulses extracted from

the router control and status signals to feed into the excitatory and inhibitory inputs of

the response-threshold units of each embedded intelligence platform. The CIA show-

cases how these signals can be taken directly from the hardware and processed in a

hardware resource and power efficient manner through slow clock speeds and simple

digital computing elements (counters, comparators, multiplexors). The CIA also al-

lows many decisions to be made in parallel as the implementation hardware being so

cheap (2 FPGA slices per threshold unit, Table 5.3), mimicking the neural structure of
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nervous systems of small creatures with specific neural pathways dedicated to specific

decisions [108].

This is a significant abstraction away from the biological models whose implementa-

tions typically requires linear systems or differential equations to capture the dynamics

of their models. However these modelling approaches require capturing many scale

and environmental aspects (physical location of an individual and nestmates, rates of

interaction, chemical signalling), some of which will be provided by the hardware

system through the fact that the experiments are not modelling the behaviour for the

use in models of social-insect colonies, but instead trying to emerge the same high-

level properties (e.g. self-organisation, task allocation). As the decision processes

of individuals at the stimulus-response level are relatively simple to define, with the

complexity coming from the scale of large number of individuals making their own

decisions, it is anticipated that the embedded intelligence not having complex decision

making capabilities (i.e. its not non-linear) should not be an issue.

5.1.2. Designing Decision Pathways with the CIA

The configurable nature of the CIA requires some strategy for implementing the de-

cision pathways. Ideally, a decision pathway or model presented by the biological

sources could be implemented by copying the neural decision pathway of the social-

insect directly into the CIA with a translation between the sensory input of the insect

to the desired CIA input monitor, and likewise for the actuators or knobs. Unfortu-

nately, neither these pathways are known in that level of neural detail yet nor is the

CIA a good representation of the neural structures of the insects. Therefore abstrac-

tions are made on both sides of the modelling, the process described being influenced

by the modelling processes in [108]. Splitting decision pathways into excitatory and

inhibitory factors is a key abstraction when looking at the social insect models and

this is reflected in the CIA. Once the excitatory and inhibitory factors are determined,

their effect on the decision can be scaled through the response-threshold mechanism

with other factors providing extra inhibitory or excitatory input; one of these factors

possibly being driven by oscillatory neural pathways or temporal chemical aspects to

add a temporal dimension to the decision. The thresholder in the CIA provides this
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scale and time-based inputs are available as either input impulses to the CIA or as a

sampling signal on monitor signals.

Once these pathways are designed they can be transferred into the CIA programmable

bitstring (details follow in each of the upcoming sections). To aid this translation, a

tool was written to allow routing and threshold parameters to be set and a CIA bitstring

generated, as shown in Figure 5.2.

This process is based on the notion of “copying” biology: transplanting decision path-

ways, translating their input and outputs and expecting the same emergent properties

to emerge directly from the hardware implementation. The natural world that biolog-

ical agents interact with, however, ia very different to the many-core applications that

the CIA will be interacting with. Therefore it is also feasible that building decision

pathways with the CIA may be more effective with other optimisation tools that are

used pre-deployment. Genetic Algorithms manipulating the CIA bitstring could be

used for finding both the routing and threshold values of a decision pathways, with a

measure of the desired emergent property (decentralised task allocation for example)

being used as the fitness function. Other numerical methods could be used to find

optimal threshold values for pre-defined decision pathways suited to a particular ap-

plication task graph or class of task graphs. Simulation of the many-core application

could also be used to determine critical knobs and monitors and then pathways could

be simulated to provide the required autonomous management behaviours. The CIA

would then implement these pathways in the deployed application. This has the ad-

vantage that the behaviour of the decision pathways would be known in the context

of the actual application and guarantees could be made about the application’s perfor-

mance. The drawback of this approach is the need to simulate the application and with

the CIA working at such a low level (directly interfacing with router control signals,

sensing local thermal effects), the simulation would need to be extremely fine grained

(at digital circuit level) at huge computation cost per deployed application, or details

abstracted away from which would loosen the behavioural guarantee benefits that a

simulation approach provides.
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Figure 5.2: A screenshot of the software created to program the decision units of the

CIA and connect them together.

5.2. Configurable Intelligence Unit

The key part of the decision making process are the threshold functions within the

intelligence models. The Configurable Intelligence Unit(CIU) contains the multi-

ple entities within the intelligence array that realise this functionality. An up-down

counter combined with a programmable comparison register provides a basic excita-

tory/inhibitory thresholder in a form that is suitable for effective digital implementa-

tion. Programmable multiplexors allow the input excitatory and inhibitory impulses to

be selected from a range of signals, the source of these signals is chosen by the higher

layers of configuration described in Sections 5.3 and 5.4. The general overview of a

CIU can be seen in Figure 5.3.

Due to the CIU being the fundamental entity of the CIA, there are extreme resource

constraints on the hardware implementation of this kind of decision pathway. A target

of four Virtex-6 slices is set as this provides a good balance between the number of

thresholders embedded in each router and the spare resources available in the partition.

Each Virtex-6 slice consists of four LUTs, eight flip-flops and extra routing resources

such as a carry chain and wide multiplexor support [103]. Each fourth slice in the

FPGA fabric is a SLICEM resource [107] and so a CIU can use one of these and still
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Figure 5.3: A Configurable Intelligence Unit (CIU). The CIU first selects the excita-

tory and inhibitory inputs and routes one of them through the prescaler shift-register

depending on the relevant configuration bit. The excitatory and inhibitory signals are

then fed into a 6-bit up/down counter. The output of this counter is compared to the

value stored in the comparison unit and an impulse issued if the counter matches this

value. The issue of the impulse will also reset the counter, as can an inhibitory impulse

if the relevant configuration bit is set.

exhibit good tiling properties. Each component of the CIU is now discussed to show

how it was implemented to meet this target slice usage.

5.2.1. Thresholder

The bit-width of counter has an obvious effect on the hardware requirements of the

thresholder. A larger counter will offer more flexibility with regards to handling fast

impulse trains as the counter will not overflow without the need to cascade thresh-

olders. It is also worth considering the performance of the counter, as faster counters

typically need more hardware resources. Due to the tight packing of the CIU in slices

it can be assumed that routing delay between LUTs and Flip-Flops will be very low

and so a slow counter can be used. There is no minimum frequency requirement for

the intelligence, but it will not be faster than the NoC as one of the sub-hypotheses

is that longer term behaviours can be managed by low performance resources embed-

ded in spare silicon. Therefore the CIU can be designed for a maximum frequency of

100MHz (the NoC clock frequency), and thus the smallest counter that can achieve

100MHz is required. The counter needs to be able to count in both directions (to

support excitatory and inhibitory impulses), have a count enable (so the count is only

affected by incoming impulses) and be resettable (to allow strong inhibitory impulses

that clear the excitatory response so far).

As discussed in this counter design for Xilinx FPGAs [109], a FPGA hardware effi-
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cient counter that fits these requirements is a prescaler based tri-bit block counter. This

counter design groups the counting stages into threes and when each triplet rolls over

the count enable for the next MSB triplet is enabled for one clock cycle. This makes

each triplet behave as a prescaler. Thus for each count enable a four input AND-gate

is required. Due to the two output LUTs in the Virtex-6, this results in two counter

flip-flops being able to share a single LUT and the final flip-flop in the trio sharing

the LUT with the triplet count enable ripple. This allows for a counter that packs ef-

ficiently into the slice LUT resources. By using two triplets, a 6-bit counter can be

implemented using only four LUTs, six flip-flops and thus a single slice as shown in

Figure 5.4. This gives an impulse threshold value of up to 64.
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Figure 5.4: LUT implementation for the CIU counter. Two output LUTs are used for

the most effective packing. The first LUT determines the next value for bits q0 and q1

of the counter by examining the count up (excitatory) and the count down (inhibitory).

In the case of a collision the inhibitory (count down) takes priority. The second LUT

generates the q2 bit in the same fashion but also takes advantage of the use of q2 to also

generate the tri-block count enable signal for the q3,q4,q5 tri block, n.b. this signal is

also driven in the case of count down roll-over. The q3 LUT uses this tri-block count

enable signal to know when to increment/decrement q3, by using the inhibitory input

to determine the direction that it should count in (if the count enable is set to ‘1’ and

the inhibitory input is set to ‘0’ then the count direction should be up). It also uses

its spare output to generate the counter reset signal based on the “reset on inhibit”

configuration bit. The value of q4 and q5 are determined in the next LUT, once again

using the tri-block count enable and inhibitory input to determine the direction of the

count. These are the only four LUTs that the counter requires and can be contained

within a single slice.

The thresholder also consists of a comparison unit of the same width. Six flip-flops

are required to hold the comparison value and 3 LUTs are used to perform the AND

operation between the stored threshold value and the current counter value. If they

match then the counter is reset and an impulse released for one clock cycle. The

comparison flip-flops are connected to the CIU configuration chain that is used to shift
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the configuration bitstring into the CIA.
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Figure 5.5: LUT implementation for the CIU thresholder. The thresholder performs a

6-bit logical XNOR between the counter output value and the threshold value stored in

configuration flip-flops. The XNOR operation is split into three parts q0,q1,q2; q4,q5

and q3. The q3 match operation also aggregates the outputs from the other sub-match

units and performs an AND operation to determine if all match units output ’1’. This

results in an impulse being raised on the impulse output, however the counter clock

enable signal is also included in the AND operation to ensure that the impulse is only

valid for a single enabled clock cycle (for when the CIA is being run at a sub-clock

frequency via the CE). The O5 outputs on the second and third LUTs show one of the

routing tricks employed to allow maximal LUT packing; a configuration chain signal

(configuration FF 9) uses the LUT to route directly to the inner FF of the slice. This

would be unavailable if the “nX” slice input is already used, in this case by another

configuration chain signal using the second FF in the sub-slice. See [103] for more

information on the routing of the X LUT bypass path.

The final part of the thresholder is an input prescaler that can divide down either the

excitatory or the inhibitory impulse trains. This extends the effective threshold value

that the thresholder emits its impulse at. It is implemented as a 32-bit shift register

loop with the value loaded in as part of the configuration chain. By loading specific

binary patterns into the shift register, power-of-two impulse frequency divisions from

1 to 32 can be emulated, for example the pattern 0101... will divide by two whilst

the pattern 0001... will divide by four. This gives the entire thresholder unit a range

of possible impulse values ranging from 1 to 2048. To save resources there is only

one shift register within the thresholder unit and whether it is applied to the excitatory

or inhibitory impulse input is determined by a control bit in the CIU bitstring. This

allows the prescaler to be implemented with three LUTs and one MUXF7 resource as

shown in Figure 5.6. Due to the use of the 32-bit shift register these resources have to

be located within a SLICEM slice [103].

This gives an overall dataflow through the CIU thresholder as shown in Figure 5.16,
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Figure 5.6: The CIU prescaler can be applied to either the excitatory or inhibitory in-

put, determined by the shift reg excitatory/inhibitory select configuration bit. The first

LUT determines which impulse controls the shift register clock enable. This moves

the shift register sequence on by one element and so provides the pre-scaling function-

ality. It also has to account for when the CIA is in configuration mode and the shift

register is part of the configuration chain and so must be shifted with the incoming

configuration data. The second output is a helper function for resetting the counter

when configuration mode is enabled (and so not related to the shift register function-

ality). The shift-register simply shifts its output back into the input when the clock

enable is high, unless it is in configuration mode in which case the configuration chain

is connected to the input of the shift register via a MUXF7 resource to save a LUT.

The final LUT selects the excitatory and inhibitory impulses to be sent to the counter.

Either the output from the excitatory/inhibitory input multiplexors are used or else the

shift register output is used, depending on the value of shift reg excitatory/inhibitory

select.
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with a total resource utilisation of 10 LUTs and 12 flip-flops.

5.2.2. Internal Routing

The second part of the CIU consists of the selection of input and output thresholder.

Eight sources of input spikes can be selected from: two of these are local connections

from the other CIU units within the CIB block (consisting of four CIUs), four are

global connections from other CIB blocks, one is a global monitor input and the final

option is a constant ‘0’ to suppress the input. These sources can be selected for both

excitatory and inhibitory inputs. Extra support for wide multiplexors are supported by

the Virtex-6 slice through the addition of multiplexors between the A/B and C/D LUTs

(as seen in [103]), meaning that only 2 LUTs are required per input mux (so four in

total). This layout and implementation using the MUXF7A/B resources are shown in

Figure 5.7.

There is also a multiplexor on the output impulse. This selects which impulse is for-

warded to the global impulse routing, allowing the CIU to be bypassed to assist global

routing; the impulse from each CIU is also routing locally to the other CIUs within

the CIB separate to this path through the multiplexor. This is implemented as simple

4-to-1 multiplexor, requiring one LUT.
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Figure 5.7: The excitatory and inhibitory input multiplexors. To achieve the most effi-

cient LUT resource usage the wide multiplexor resources of the slice are used; namely

the MUXF7 primitive. The global impulse signals are the same for both excitatory

and inhibitory inputs. The excitatory input only has two local inputs and a dedicated

monitor input, whilst the inhibitory input has three local inputs and no monitor input.

When the multiplexor address is set to “000” the select muxes will output ‘0’ to disable

all the impulse inputs.
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5.2.3. Level Output Option

A feature of natural low level decision units such as nervous systems [108] is that one

part of circuitry can disable the response of another circuit. This allows organisms

to “switch modes” through a single pathway. Indeed this is present on some of the

knobs in our system: the clock enable for example does not work by impulse and must

alternate between two steady states (on or off).

To allow for this type of thresholder in the CIA every fourth CIU in the CIB has a

slightly different structure to the other three. As detailed in Figure 5.8 this consists of

the same input and output muxes but without the shift-register prescaler attached to the

input to the counter. The extra LUT resources freed up is used to add overflow protec-

tion to the counter and to introduce another configuration mode for the CIU. Instead of

outputting an impulse when the threshold is exceeded and resetting the counter back

to zero, the comparator instead can test for values greater than the threshold and will

output a ‘1’ whenever this is the case. This constant signal is intended to be used as

a signal that will keep other units inhibited until the inhibitory input to the level CIU

drops the counter down below the threshold and the constant output is then replaced

by a ‘0’. This functionality is present in every fourth CIU within a CIB and this CIU

can also still be configured in impulse mode, just without the prescaler shift register

option available.

5.2.4. Placement and Configuration

The 6-bit thresholder and dataflow routing described in this section requires 16 Virtex-

6 LUTs for implementation. With careful attention to where each of these LUTs are

placed it is possible to implement this within the optimal 4 slices (each slice contains

four LUTs). To ease the pressure on the tools (this highly-packed logic is implemented

48 times within each node and so 6,144 times across the NoC), as well as the logic

being hand mapped to individual LUTs, the LUTs are also assigned to slices using

RLOC constraints to place the slices within a CIU. These are placed in horizontal

strips for later tiling by the CIB implementation, as seen in Figure 5.9.
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Figure 5.8: Every fourth CIU in a CIB has the option to be used in “Level output”

mode. This mode emits a constant ‘0’ or ‘1’, instead of an impulse, depending on if

the value of the counter is less than or greater than the threshold value. This allows

other parts of the intelligence to be enabled or disabled through the decision made at

the level output unit. The CIU can still support standard impulse mode, albeit without

the prescaler shift register attached. The CIU is still contained with four Virtex-6

slices.

Figure 5.9: A screen-shot from the PlanAhead software showing the implementation

of the CIU RLOC’d to four adjacent slices. In the first slice the four LUTs and two

FMUX7s of the input multiplexors can be seen. The second slice contains the shift

register logic (including another FMUX7) and counter reset logic, the third slice the

6-bit counter and the final slice the comparison and global output select logic. Config-

uration flip-flops are seen towards the right of each slice, aside from slice 3 where the

flip-flops are used for storing the counter value.
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The final aspect of the CIU to consider is the configuration of the programmable el-

ements. These are stored in spare flip-flops in the four slices, chained together into a

configuration chain and their outputs feed into the various configuration options around

the CIU. By manipulating their clock enable inputs, the outputs can be fixed once an

experimental configuration is completed. However, this adds another constraint due to

the control-set limitations of Virtex-6 (only one set of flip-flop control signals can be

present per slice) and so the counter registers, which use the global intelligence clock

enable, are packed into one slice and the other 24 flip-flops present in the CIU are used

for the configuration chain. Table 5.1 shows the bitstring of the configuration chain

for a single CIU, with the configuration input for loading the prescalar shift-register

attached to the end of the chain.

Bit Use

0 Excite Select (0)

1 Excite Select (2)

2 Excite Select (1)

3 Inhibit Select (0)

4 Inhibit Select (2)

5 Inhibit Select (1)

6 Reset on Inhibit Impulse

7 Output Impulse Select (0)

8 Threshold Value (3)

9 Output Impulse Select (1)

10 Threshold Value (0)

11 Threshold Value (1)

12 Threshold Value (2)

13 Threshold Value (4)

14 Threshold Value (5)

15 Shift Register Excite/Inhibit Select

16 → 47 Shift Register Load Pattern

Table 5.1: Bit mapping of the CIU configuration bitstring. The non-contiguous nature

of some of the select vectors is due to limitations on the flip-flop routing: some LUT

outputs are used to forward the configuration chain and so forces certain configuration

settings to lie at certain points in the configuration chain. When in configuration mode

the prescaler shift register is connected to the end of the configuration chain to allow

its divider pattern to be uploaded via the configuration chain loading process.
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5.3. Configurable Intelligence Block

Whilst the fundamental decision making process is done by a single CIU, it is the com-

bination of many such units that gives a more powerful decision making intelligence.

Connections between many (arbitrary) CIUs are required to facilitate this and the CIB

provides this by interfacing four local CIUs with global routing connections, as seen in

Figure 5.10. The hardware resources available for the routing are restricted to 4 slices

to allow maximum tessellation with the four CIUs; thus the global routing resources

are a tradeoff between routing options and the resources required.
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Figure 5.10: The Configurable Intelligence Block (CIB). Each CIB contains four CIUs

and global routing resources. There are three sources of global routing resource: 1.

the monitor hooks: global inputs from the CIA monitors, 2. the HBus: each CIB

outputs two signals that are shared amongst the other CIBs in a row and 3. the GBus:

one signal in each cardinal direction allows Manhattan-style routing of longer-distance

connections.
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5.3.1. Inter-CIB Routing

The role of the global routing is to allow impulses to flow between CIUs that are not in

the same block. Its design is based on the assumption that a CIB is used to take several

impulses in and the local connections are used to transform these into decisions, using

multiple local CIUs if required, then outputting a single impulse. Clusters of these will

form the decision making blocks for other knobs in the system, relying on very little

(one or two impulses) inter-CIB communication. Therefore configurability (routing

choices) was chosen as the focus and with a direct hook from monitor inputs to reduce

global routing resources dedicated to getting monitor inputs into the CIBs.
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Figure 5.11: A scaled up implementation of six CIBs showing the global routing struc-

tures in use. Black dots signify connection points where a bus can be driven.

Figure 5.11 shows the global routing resources available. There are three global rout-

ing resources: Horizontal bus (HBus): connections between CIBs connected on the

same horizontal plane, Global bus (GBus): a single horizontal and vertical bus in each

direction connecting CIBs vertically and Monitor hooks: direct connections between

monitors and the global input multiplexors in each CIB.
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HBus

The HBus interconnects CIBs horizontally by providing each CIB with two fixed ded-

icated lines that are connected to each CIB in the horizontal plane. The CIA used in

this thesis is three CIBs wide and so there are six HBus wires at each row in the CIA

resulting in each CIB having two HBus outputs and four HBus inputs. The output of

the six HBus lines are provided to the knob-mapping multiplexors to allow outputs

from the CIBs to control knobs within the router.

GBus

The GBus is used for communicating between the horizontal layers and supports

longer routing of signals. There are three vertical interconnects (each consisting of

a separate “Up” and “Down” bus) and four horizontal interconnects (each consisting

of an “East” and “West” bus). These are placed as a grid overlaying the locations of

the CIBs as shown in Figure 5.11 but, unlike the HBuses, each CIB does not have a

fixed dedicated connection. Instead the CIB has to be programmed to output to the

bus. At this point the bus is split, allowing multiple CIBs to reuse a single bus. For

example if a CIB is configured to output onto a “East” bus then all CIBs east of the

configured CIB receive the signal outputted by the configured CIB. CIBs west of this

CIB however are not aware of this connection and so can reuse the bus up until the

output port of the configured CIB. This is why the GBus elements are directional.

The CIBs always output onto horizontal buses and at the intersections of the horizontal

and vertical buses the buses can be configured to output onto each other. There are

limited options here however to save resources: Down buses can output onto East

buses, Up buses can output onto West buses, East buses can output onto both Up

and Down buses and finally West buses cannot drive any of the other GBuses. This

limitation was required to fit the CIB routing muxes and configuration bits into the

four slices available.

The pairs of directional buses are connected together at the edges of the CIA to provide

a useful opportunity for signals to move from one bus to the other, however care must

be taken when configuring as this can lead to combinatorial loops within the routing
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logic.

Monitor Hooks

The final route of global signal propagation reduces the amount of global routing logic

required to get monitor signals, the main source of excitatory/inhibitory impulse in-

puts, into the CIUs. Each CIB has two global monitor multiplexors that can each

select from three monitor inputs. The three monitors that can be selected from vary

between the two multiplexors and also across the different CIBs in the CIA. This pro-

vides a high variation of possible monitor input options across the CIA without using

the global routing to setup paths from the input of the CIA to the relevant CIU. This

is complementary to the monitor hooks that exist in each CIU (one CIU input is con-

nected directly to a monitor. The monitor connected, once again, varies across the CIB

and CIU).

5.3.2. Intra-CIB Routing

The CIB is responsible for managing the connections between the global routing re-

sources and the individual CIUs. As seen in Section 5.2, there are four global inputs

for use by the CIUs. The multiplexors in the CIB select a subset of the global routing

signals to be routed to these four inputs. To reduce hardware resources required, the

multiplexors take their input from different locations:

Global 0: HBus[1,0], HBus[1,1], HBus[2,0], HBus[2,1], GBus[E], GBus[W],

M[A], M[B]

Global 1: HBus[1,0], HBus[1,1], HBus[2,0], HBus[2,1], GBus[E], GBus[W],

M[A], M[B]

Global 2: HBus[1,0], HBus[1,1], HBus[2,0], HBus[2,1]

Global 3: GBus[E], GBus[W], M[A], M[B]

where M is the monitor hook interconnect and has the following choices for an monitor

index offset of 0:
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M[A]: monitor hook[0], monitor hook[1], monitor hook[2]

M[B]: monitor hook[3], monitor hook[4], monitor hook[5]

These four global inputs can then be selected by the four CIUs within the CIB. Global

0 and Global 1 both require 8-to-1 multiplexors and so require two LUTs each and the

MUXF7 primitive to multiplex between the LUTs. Global 2 and Global 3 are only

4-to-1 multiplexors and so only require a single LUT each. Likewise the monitor hook

multiplexors only require a single LUT each due to their 3-to-1 nature. This gives

a total of eight LUTs required for global input routing within a CIB, as can seen in

Figure 5.12.
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Figure 5.12: Design of the CIB input multiplexors and the resultant LUT efficient im-

plementation. Once again MUXF7 resources are used for the two wide multiplexors.

The CIB also handles routing of data from the CIUs to the global routing logic. There

are two HBus outputs that the CIB can drive and a 4-to-1 multiplexor is used for each.

The first can select the impulse output from the “Global out” port of CIU0, CIU1,

CIU2 and a ‘0’ logic level (to disable the output completely) and the second can select

from CIU1, CIU2, CIU3 and logic ‘0’. This gives complete coverage of the CIUs onto

the two dedicated HBus signals whilst only requiring two LUTs.

The CIB can also output onto the GBus. This however is limited to only the output

of CIU3. The CIB can be configured to either allow the output of the East bus to

continue to propagate down the bus or to output CIU3’s impulse onto the bus at this
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point. The same applies for the West bus and requires one 2-to-1 multiplexor each.

There is also a setting that enables the GBus’ vertical Up and Down buses to output

onto the East and West horizontal buses. Finally the corresponding setting is also

supported, but only the E bus can output onto the Up and Down buses. Six 2-to-1

multiplexors are required for this functionality requiring three LUTs. An overview of

this implementation architecture for the output routing is shown in Figure 5.13.
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Figure 5.13: Design of the CIB output multiplexors and the resultant LUT efficient

implementation. Included in this set of multiplexors is the logic to either propagate or

drive the GBuses in all cardinal directions.

This gives an overall total of 13 LUTs required for the CIB routing. An extra LUT

is used to decode the configuration chain data to enable loading of the CIB (and its

contained CIUs) by driving the Config CE signal when the configuration ID matches

the hardware ID of the CIB, this ID is generated depending on the location of the CIB

within the CIA. This results in a total resource requirement of 14 LUTs and so fitting

our implementation constraint of using a maximum of four slices (each slice contains

four LUTS).

5.3.3. Placement and Configuration

As the router can be packed into four slices, it is able to be tiled with the four CIUs

into a single 20-slice component. Once again RLOC constraints allow tight manual

packing and relative placement of CIBs, this also eases the tool’s job of finding CIU-

CIU and CIU-CIB routing connections as all units are local to each other and so long-
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distance routing resources are not required. The four slices of the placed router can

be seen in Figure 5.14, whilst a placed CIB is shown in Figure 5.15; the tiling can

clearly be seen with each CIU and the CIB placed horizontally (to ensure each CIU

can use a SLICEM resource, which are striped vertically across the device) and stacked

vertically. By applying relevant HU set attributes [110] to the CIUs and CIB routing

block within the CIB, the RLOC placer can then place the entire CIB using a single

set of co-ordinates when tiled up to the full CIA.

Figure 5.14: A PlanAhead screenshot showing the implementation of the CIB router

within the four slices required for tiling. Once again the use of two FMUX7s of the

wide input multiplexors can be seen. Also of note in the final slice is that two LUT5s

are available for future use, indeed the CIB is constrained by the configuration chain

flip-flops available (the unused flip-flops seen in this figure are not accessible due to

LUT input signal congestion using the “nX” input).

All of the configuration settings for the CIB concern the setup of the routing resources.

Table 5.2 details these settings within the bitstring. The CIA’s configuration chain is

broken up into a granularity of the information need to configure one CIB (i.e. the

smallest unit that can be configured at a time is a CIB). This allows changes to be

made to the setup of a CIB without having to re-configure the entire CIA and also

means a long, unwieldy, bug-prone bitstring doesn’t need to be manipulated! This has

two implications: 1. the configuration data for the four CIUs within a CIB is appended

to the CIB bitstring and 2. the CIB contains decode logic that only enables the clock

enables on configuration flip-flops when the “configuration ID” matches the CIB’s

pre-programmed ID. This is contained within a LUT in the routing slices.
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Figure 5.15: A PlanAhead screenshot showing the implementation floorplan of the

20-slice CIB tile. RLOC constraints allow a regular placement of the CIUs with the

routing slices: Red, Yellow, Green, Purple primitives are for CIU0, CIU1, CIU2 and

CIU 3 respectively. The orange primitives are the CIB routing primitives.
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Bit Use

0 Global Input 0 Select (2)

1 Global Input 0 Select (0)

2 Global Input 1 Select (2)

3 Output HBus 0 Select (0)

4 Output HBus 1 Select (0)

5 Global Input 1 Select (1)

6 Global Input 1 Select (0)

7 Global Input 0 Select (1)

8 Output HBus(0,0) Select (1)

9 Output CIU3 onto GBus(E) Select

10 Monitor A Select (0)

11 Output CIU3 onto GBus(W) Select

12 Monitor B Select (0)

13 Monitor A Select (1)

14 Monitor B Select (1)

15 Output HBus(0,1) Select (1)

16 Global Input 2 Select (0)

17 Global Input 2 Select (1)

18 Global Input 3 Select (0)

19 Global Input 3 Select (1)

20 GBus(D) output to GBus(E) Enable

21 GBus(U) output to GBus(W) Enable

22 GBus(E) output to GBus(U) Enable

23 GBus(E) output to GBus(D) Enable

24 → 71 CIU0 Bitstring

72 → 119 CIU1 Bitstring

120 → 167 CIU2 Bitstring

168 → 215 CIU3 Bitstring

Table 5.2: Bit mapping of the CIB configuration bitstring. As with the CIU, some

LUT outputs are used to forward the configuration chain and so some of the bits of

the select vectors are non-contiguous. The CIUs are connected to the end of the chain

with the output of the shift register in each CIU connected to the configuration chain

input of the next CIU to build the chain.
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5.4. Configurable Intelligence Array

The final requirement for the embedded intelligence is scaling up of the CIBs with the

global routing resources and the translation and integration of routing sensory signals

(monitors) and actuator signals (knobs). For the experiments in this thesis a 3x4 array

of CIBs was used with 12 monitors and five knobs.

5.4.1. Array Layout

Figure 5.16 shows the scaled-up 3x4 array of CIB units. All CIB in a row are connected

via the HBus and the East and West global buses. Rows of CIBs are connected via the

vertical Up and Down GBuses. A total of 12 CIBs are instantiated requiring 240 slices.

Ideally these would be tiled again but it proved too difficult for the tools to implement

the processing elements within their dedicated floorplan with the tiling of the entire

CIA enabled. Instead the relative placement within a CIB (the CIUs and routing slices

i.e. the tile of Figure 5.15) is maintained and the tool can then place these tiles where

it wishes within the processing element floorplan partition.

As also seen in Figure 5.16, the CIA has the role of providing the input and output

interface with the Centurion router. The monitor hooks have been seen in the previous

section and at this level they are connected to input signals via a large crossbar. Each

row of CIBs has six monitor hook inputs: M(r,0) to M(r,5) where r is the row number.

As there are four rows of CIBs, the crossbar has four 6-bit outputs. There are currently

12 monitor inputs translated into a impulse-based form and so the crossbar simply

selects one of two possible outputs for each output signal; giving each row of CIBs the

possibility of having each monitor as an input and using the internal routing logic to

route the required monitor signals from the row’s crossbar output to the required CIU.

A crossbar is also used for connecting outputs from the CIA to the router knobs. To

save on global routing resources, the CIA output is captured directly from the HBuses.

The six bits of each HBus is connected into the crossbar and the signals for the five

knobs that are currently included are routed from outputs from all of the HBuses.

These are then forwarded to the knob translation modules for integration within the
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Figure 5.16: The Configurable Intelligence Array (CIA) used for the experiments pre-

sented in this thesis. This is a 4x3 array of CIBs and so consists of 48 thresholders.

The diagram shows how the monitors and knobs are passed into and out of the array

using the large configurable crossbars. There are six unique monitor inputs per row of

CIBs (the same six monitors go to all CIBs within a row) and the knobs are selected

from the outputs of the HBuses.

Of course this functionality could be implemented within the Picoblaze or even a dedi-

cated neuromorphic processor. However the role of the CIA is to find, optimise thresh-

old values of and experiment with relevant pathways to produce the autonomous be-

haviours desired. Once these pathways are found then the routing elements of the CIA,

CIB and CIU can be removed and a highly efficient (only a counter and comparator

per thresholder) set of autonomous intelligence pathways will remain.
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router.

5.4.2. CIA Hardware Resource Requirements and Scalability

The CIA design is fully parametrisable with some design restrictions that reflect the

implementation specific to the needs of the experiments in this thesis. These restric-

tions are found in the inter-CIB routing, with widths for the HBus fixed for this design.

Redesign of the CIB router would be required to support arrays that are wider than

three CIBs with a shared HBus. However, given the information reducing nature of

many biological intelligence models (e.g. sensory fusion in the nervous system [108]),

the need to route a large number of signals further between CIBs may not necessarily

be required for more complex intelligence pathways; an expansion of the GBus’s may

be more beneficial. Larger areas would also require registers in the inter-CIB rout-

ing signals if high processing rates are required; the current critical path for 25MHz

operation comes from the length of the GBus paths.

Knobs and monitors have not been discussed yet, for this implementation a large cross

bar is used for both the monitor inputs and the knob outputs. Crossbars are not inher-

ently scalable and so in a very large array it is likely that the attachment of knobs and

monitors will need to be to a subset of nodes. This will affect how general purpose the

CIA is, but will reflect the architectures of natural decision pathways where sensory

inputs are connected to specific neural structures such as ganglia [108].

Another aspect of CIA scaling will be improving the local connectivity by expanding

the number of CIUs. The CIU design is heavily tied to the layout of the Virtex-6

LUT and this leads to the maximum number of four CIUs per CIB. Increasing the

local connectivity may allow more complex decision to be made without requiring

inter-CIB or global routing. However it is likely that this tradeoff will require some

understanding of the structure of the desired intelligence pathways to be known, maybe

relying on other design methods to approximate the intelligence pathway layouts as

introduced in Section 5.1.2.

An overview of the hardware resource requirements for each aspect of the CIB struc-

ture is given in Table 5.3. As the CIU and CIBs are already directly mapped to FPGA
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primitives, scaling up these elements will simply require multiplications of the number

of CIBs desired. The table also details the amount of hardware resources dedicated for

configuring the intelligence. As mentioned in Section 5.1.2 once a design has been

prototyped for a system with the routing structure, connectivity settings and threshold

parameters set and tested, the intelligence pathways can be extracted with the con-

figurable aspects removed. This results in a large hardware resource saving as the

configurable aspects of a CIB require 60% of the CIB’s total FPGA primitives. As

the current design of the CIA does not have any capability for self-learning, no part

of the configurable intelligence parameters can be updated once implemented and so

removing the configurable parts of the CIA will not have an effect on the underlying

flow of impulses through the configured (now fixed) datapaths and the dynamics of the

decisions made by the CIA will not change.

Component
Total

LUTs

Total

FF

Total

Slice

Config.

LUTS

Config.

FF

Config.

Slice *

Config.

Overhead

CIU (A-C) 16 23 4 7 16 2 50%

CIU (D) 16 22 4 8 15 2 50%

CIB router 16 24 4 16 24 4 100%

Total for CIB 80 115 20 24 87 12 60%

Total for CIA 960 1380 240 540 1044 144 60%

Table 5.3: Hardware Resources required by CIU, CIB and the CIA. The configura-

tion overhead is resources dedicated to impulse routing between CIUs and between

CIBs, resources for setting the behaviour of the CIU (e.g. reset on impulse, level or

impulse mode) and for storing the threshold. In a manufactured implementation, these

resources can be removed as the settings and routing architecture of the CIA can be

fixed. This offers significant savings of hardware resources. *slices estimated as sav-

ings could be more or less depending on LUT/FF packing of non-configurable design.

CIA has not been implemented with the configuration resources removed.

All of the above factors have considered enhancing the CIA functionality by expand-

ing the size or improving the CIU or inter-CIB routing. The data path could also be

expanded. The 6-bit tri-counter implemented is the most resource efficient counter for

the Virtex-6 LUT (as the DSP blocks are unavailable due to their layout on the device)

and so this determined the thresholder size. In a less resource constrained implementa-
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tion, increasing the size of this counter will not bring any immediate benefit aside from

more efficient CIU use as in the current implementation the shift register can be used as

a pre-scaler or CIUs can be chained together to form wider thresholds. The inclusion

of the level-output CIU adds benefits for designing intelligence pathways that require

parts of the decision pathway to be enabled/disabled based on another decision. There-

fore improvements on the datapath should consider improving the capability of the

thresholder. Potential expansions include thresholders whose threshold value could be

changed by other CIUs; this would enable online self-learning. Another improvement

would be to add a controllable source of randomness to the decision making element

as random elements are a large aspect of many artificial design making elements; for

example the Network Interaction model assumes random walks throughout the nest by

colony members [23]. Improved computation within the thresholder would also allow

the CIA to move away from an impulse based approach. However, this would start to

lose the power and low resource overhead (due to increased wires between CIUs and

CIBs) benefits that impulse-based decision making units provide.

5.4.3. Monitors

The sensory signals embedded within the router may require translation to be com-

patible with the intelligence array. Some of these signals are vectors that need to be

converted into impulse trains, some are slow signals originating from the node that

need converting into an impulse form. Whilst the intelligence blocks could be used

for this translation, it would unnecessarily take valuable resources away from the bio-

inspired intelligence models as there are circuits that are far more efficient at achieving

this. A toolkit of monitor translation blocks was created for this.

With many of these signals being determined by the performance and nature of the

application running on the many-core, there is a possibility that a dependency exists

between the characteristics of these signals and the performance of the decision mak-

ing units. Therefore care must be taken when using time-domain based signals, such as

time-dependent inhibitory or excitatory inputs to the CIUs. As time plays a vital role

in many NoC performance goals (application throughput, QoS, packet latency) the re-

lationship between periodic impulses and router driven signals must be understood for
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each application.

For example, a QoS decision pathway may trade off clock frequency of a node against

the number of packets moving through the router. As the number of packets seen

increases, the clock frequency of a node will be increased as the implication is that

the local area of the network is busy and so there are more tasks to undertake. A time

reference as the inhibitory input would allow the clock speed to decrease if no packets

are seen, the relationship of the decision would be the ratio of packets seen (excitatory)

to the number of periodic impulses (inhibitory). If this period is set too short then the

system will seem to be too eager to reduce the clock frequency and will result in poor

QoS as the clock frequency of the node will be kept too low. On the other hand, if this

period is set too long then the system will be quick to raise the clock frequency and

will take a long decay period to reduce it back down, leading to a waste in power by

leaving the processor at a high speed for too long.

Managing time-based periodic impulses can be done by using a CIU to divide down

the input periodic impulses, using the threshold to either set the division or allowing

an optimiser to find a good value for the threshold value. An alternative is to set

the impulse period of the periodic input at the point where it enters the CIA, this

would effect all of the decision pathways that use this period reference as an input.

Both of these approaches to tuning the period would require some system analysis

when defining monitors to the embedded intelligence, and also when defining knobs

as the translation from CIA impulse train to router actuator may require a sampling

period or other time-based translation. Expected rates of input monitors can be defined

by looking at the application design and decision pathways that rely on any periodic

impulses need to be inspected and updated to ensure that the period is suitable for the

expected frequency of occurrence of the other input monitors in the decision pathway.

Table 5.4 lists the monitors available and their translation module used for the experi-

ments carried out as part of this thesis. There are four knob outputs as listed in Table

5.5.

The monitor modules provided in the CIA knob and monitors toolbox are as follows:
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Vector to Impulse Train

Vector to 
Impulse

timebases
timebase select

impulses

intel CE

vector in

Figure 5.17: The Vector to Impulse monitor translator. An input vector is sampled and

an impulse train is generated, its frequency dependant on the value of the vector.

This module converts a vector into an impulse train with the value of the vector de-

termining the frequency of the impulse chain, shown in Figure 5.17. This is done by

using one of the four system timebases (originating from the experiment controller’s

RTC, as introduced in section 4.7) to increment a counter. The used timebase is se-

lectable by the configuration. Once the counter reaches the value of the input vector

then the counter is reset and an impulse generated. By continuing in this fashion it can

be seen that the rate that impulses are generated will be dependant on the vector value.

At this stage the output impulse is also synchronised with the intelligence clock enable

(for when the intelligence is run at a slower frequency than the clock) to ensure that

the impulse is not missed due to the clock enable being low.

Match to Impulse

 Match to 
Impulse

vector valid
impulse

intel CE

vector in

mode select
compare value

Figure 5.18: The Match to Impulse monitor translator. An input vector is sampled and

if it matches the programmable compare vector then an impulse is generated.

Another monitor conversion module working with vectors, this module compares an
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input vector to a programmable value and issues an impulse if the input value matches

the internal value. Once again the output impulse is synchronised to the intelligence

clock enable to ensure that an impulse is not missed. A data valid input means that

only valid data is compared against and is used for one of the operating modes of this

module. These operating modes are a.) match unit generates an impulse when the

input vector matches and data valid = ‘1’ (possibly leading to multiple impulses per

data valid) b.) match unit only generates an impulse once per match and data valid =

‘1’, requiring data valid = ‘0’ before the next impulse can be issued. This is shown in

Figure 5.18.

Monitor Translator Description

Packet “A” Comparison to Impulse Detects when a packet with pro-

grammable header “A” has been

routed by the router

Packet “B” Comparison to Impulse Detects when a packet with pro-

grammable header “B” has been

routed by the router

Packet “C” Comparison to Impulse Detects when a packet with pro-

grammable header “C” has been

routed by the router

Packet “D” Comparison to Impulse Detects when a packet with pro-

grammable header “D” has been

routed by the router

Packet ID “A” Comparison to Impulse Detects when a packet with pro-

grammable ID of “A” has been routed

by the router

QoS Vector to Impulse Train A quality of service metric output from

the node

Node Clock

Frequency

Vector to Impulse Train The current value of the node clock di-

vider

Node

Temperature

Vector to Impulse Train The current value of the node’s ring os-

cillator counter

Node Enable Raw Signal The current value of the node’s clock

enable signal

Node Faulty Raw Signal A signal output by the node that can be

used as a watchdog or fault detection

flag

Knob Task

Impulse

Raw Signal Output by the Impulse Array to Vector

knob when new impulse is detected

Table 5.4: List of CIA monitors and the translation units used to translate the input

from the router/node into a form that is suitable for the impulse-based intelligence.
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5.4.4. Knobs

The inverse transformation is required for the outputs from the CIA, individual and

trains of impulses need to be converted into signals usable by the router and node.

Once again the functionality can be done by the intelligence (conversion of many im-

pulses into a frequency for conversion to a vector for example) but due to the focus on

low resource usage, the following dedicated translation circuits are used:

Impulse Train to Vector

Impulse to 
Vector

timebases
timebase select

impulse
vector out

Figure 5.19: The Impulse to Vector knob translator. An impulse train is sampled and

a vector is output, its value dependant on the frequency of the incoming impulse train.

This module converts a impulse train to an output vector and is shown in Figure 5.19.

The impulse train drives an internal counter which is then sampled and reset once

the selected timebase emits a ‘1’. The counter will then start counting again and a

constant impulse frequency will result in the counter reaching the same value before

being sampled and reset, a lower frequency will result in the count being lower at the

sample point and vice versa. The sampling is used to ensure a constant value is output

whilst the counter is counting. There is no support for translating the impulses relative

to an input timebase and so any required prescaling must be done with the intelligence

blocks.

Impulse Array to Vector

The second output translation module takes several impulse outputs and constructs a

vector of the same width as the number of inputs, the signals of which are set depend-

ing on which input impulse was the last to fire. Thus only one signal can be set to ‘1’

at a time but it signifies that this signal was the last impulse to equal logic ‘1’. When a
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Impulse  Array
to Vector

impulse 0
vector out

impulse

impulse 1
impulse 2

impulse 3

Figure 5.20: The Impulse Array to Vector knob translator. An array of impulses is

sampled and when an impulse is detected on an input then the output vector is set to

reflect which impulse line was last detected. An output impulse is generated when a

change is detected.

new impulse arrives then the output vector is set and the module also emits an impulse

that can be used as a monitor input (as seen in Table 5.4) to influence other parts of the

intelligence. Figure 5.20 shows the ports of this module.

Impulse to Switch

Impulse to
Switch

mode select

impulse 0
impulse 1 signal out

Figure 5.21: The Impulse to Switch knob translator. An impulse on input impulse 0

will cause the output to set to ’1’, whilst an impulse on input impulse 0 will cause the

output to reset. A second toggle mode uses input impulse 0 to toggle the output on

arrival of a impulse.

The final output translation is designed to drive control signals within the router and

is shown in Figure 5.20. It has two modes, one that requires a single input and simply

toggles the value of the output (reset to ‘0’) when an impulse arrives on input 0. The

second mode has two inputs. It uses a rising edge on the impulse 0 input to set the

output to ‘1’ and a rising edge the on impulse 1 input to clear the output back to ‘0’.
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Knob Translator Description

Task Out Suggest Impulse Array to Vector Suggests the task that the node

should process and the router

should route internally. Im-

pulse array is four signals

wide

Clock Frequency Out Impulse Train to Vector Loads the node’s clock divider

register with this value

Node Clock Enable Impulse to Switch Sets the value of the node’s

clock enable signal

Router Bypass Internal Impulse to Switch Disables the router from al-

lowing any packets to be

routed to the node (i.e. the In-

ternal port)

Table 5.5: List of CIA Knobs and the translation units used to integrate the knobs with

the internal router/node control logic.

5.4.5. Configuration

The monitor crossbar, knob crossbar and the parameters for the translation units all

need configuring and this is done through the CIA configuration chain in the same

fashion as the CIBs. The CIB ID of 0 is reserved for the CIA configuration and so

any bitstrings sent to this CIB address will be loaded into the CIA chain. Included in

this configuration chain is also the loaded value for the intelligence clock enable clock

divider. This is a 13-bit wide count-down counter that drives the CE signal for the

translation units and also for the counter flip-flops within the thresholders in the CIUs.

This allows the intelligence to be run at a range of divided frequencies from 25MHz

(the maximum speed of the CIA circuitry) down to 12.2KHz, supporting experiments

where the intelligence is run at a significantly lower speed than the router and node it

is controlling.

Table 5.6 shows the bitstring mapping for the CIA settings.
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Bit Use

0 → 3 Monitor: Match Unit 0

4 → 7 Monitor: Match Unit 1

8 → 11 Monitor: Match Unit 2

12 → 15 Monitor: Match Unit 3

16 → 19 Monitor: Match Unit 4

20 → 21 Monitor: QoS Timebase Select

22 → 23 Monitor: Clock Frequency Timebase Select

24 → 25 Monitor: Thermal State (i.e. Ring Oscillator) Timebase Select

26 → 27 Knob: Clock Frequency Out Timebase Select

28 Knob: Node Clock Enable Mode Select

29 Reserved

30 Knob: Internal Bypass Mode Select

31 → 36 Monitor Crossbar Row 0 selects

37 → 42 Monitor Crossbar Row 1 selects

43 → 48 Monitor Crossbar Row 2 selects

49 → 54 Monitor Crossbar Row 3 selects

55 → 58 Knob Crossbar: Task Suggest (0) input select

59 → 62 Knob Crossbar: Task Suggest (1) input select

63 → 66 Knob Crossbar: Task Suggest (2) input select

67 → 70 Knob Crossbar: Task Suggest (3) input select

71 → 74 Knob Crossbar: Clock frequency input select

75 → 78 Knob Crossbar: Node Clock Enable impulse 0 select

79 → 82 Knob Crossbar: Node Clock Enable impulse 1 select

83 → 90 Reserved

91 → 94 Knob Crossbar: Router Bypass Internal impulse 0 select

95 → 98 Knob Crossbar: Router Bypass Internal impulse 1 select

96 → 112 Intelligence Clock Divider Value

Table 5.6: Bit mapping of the CIA configuration bitstring. The first set of bits are used

to configure the monitor translation modules. The second set of bits configures the

knob translation modules. The rest of the bits are used for programming the monitor

and knob crossbars, aside from the final 13 bits which determine the value of the

intelligence clock enable divider.
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5.5. Summary

The Configurable Intelligence Array described in this chapter is the second novel de-

sign contribution of this thesis. The embedded intelligence hardware allows quick

prototyping and flexible intelligence implementations for the bio-inspired social-insect

models used in the experiments presented in the next chapter. Whilst the configurable

elements of the CIA strikes a balance between configurabilty and hardware resource

usage, if the decision making parts of the intelligence are considered separately, i.e.

the thresholder, then each CIU would only require two slices to implement. Thus fixed

intelligence pathways would be extremely cheap to implement in hardware (once the

CIA has been used to prototype these intelligence pathways).

The upcoming chapters will use the Centurion many-core from Chapter 4 and, in Chap-

ter 7, combine it with circuits implemented on the CIA for the purpose of exploring

the CIA implementation of the bio-inspired models.
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Chapter 6

Social Insect Inspired Many-Core
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6.1. Overview

This chapter presents the experiments undertaken on the Centurion platform (described

in Chapter 4) for the purpose of demonstrating that the social-insect intelligence mod-

els (Chapter 3) can be translated to a form suitable for embedding within the many-core

using the PicoBlaze (Section 4.5) or the CIA (Chapter 5) and evaluating that they then

exhibit the expected emergent behaviours. The first experiment introduces the test

cases and explores the performance without any embedded intelligence. The follow-

ing experiments implement elements of the social insect models and build upon them

using the PicoBlaze. The next chapter will use these models to achieve fault tolerance

and also implement the models using the CIA.

6.2. Experimental Benchmark Applications

A many-core application, like all computing applications, can have an unbounded level

of complexity of interaction between the sub-tasks that achieve the application’s goal.

Therefore a compromise is required to capture the needs of typical many-core applica-

tions. The authors in [111] provide a set of seven task graphs that they claim represent

the main types of parallel program. The first three are general purpose shapes that the

remaining four applications are made up of and so these three base graphs will be used

in the following experiments. A fourth basic linear task graph is also used as this rep-

resents parallel applications with embarrassingly parallel sequential segments. These

four test graphs are shown in Figure 6.1.

T1 T1

T2 T2

T1 T1

T3 T3 T3

T2 T2

T3 T3

T1

T3

T2 T2

T1

T2

a) b) c)

T3

T1

T2

d)

Figure 6.1: The test task graphs. a) linear, b) in-tree, c) out-tree, d) fork-join

All experiments use the same application model settings. Packets from Task 1 nodes



164 Chapter 6. Emergent Properties of Social Insect Inspired Many-Core

are generated at a fixed rate of one every 4ms, whilst Task 2 and 3 nodes do not send

a packet out until they have received a packet with their task as the destination. All

packets are the same size and each node also has a “processing time” whereby on

receipt of a packet the node cannot send or receive any new packets whilst in this pro-

cessing phase (to simulate the task being performed). These and the other experiment

parameters are summarised in Table 6.1.

In a real-world setting, these parameters would be provided by the application running

on the many-core. In absence of a real-world application, these settings reflect what is

felt to be the outcome of a typical application architecture and design analysis process.

Specifically, the notation of a “producer task” (Task 1) producing packets at a fixed

rate reflects a periodic input source (camera, sensor, remote system). An application

analysis will ensure that the producer task does not produce more data than the con-

sumer tasks can handle (i.e. the task graph is schedulable), however too much margin

here would make the system inefficient.

A requirement for experimental use is that the experiment can be run in a short period

of time to allow for parameter sweeps, another requirement is that the data produced by

an experiment is not too large to allow a large number of parameter sweeps. Naturally,

this will depend on the setup of the experiment system and with Centurion the limiting

factor is the DDR memory in the experiment controller (256MB), the speed that the

node experiment logs (2KB) can be read by the experiment controller, the speed of

the experiment controller to PC link (800 MBit/s) and the rate that the PC application

can absorb experiment data (unknown analytically, tested through use). After some

performance testing, the critical bottleneck was determined to be the rate at which the

experiment controller can read the logs of all nodes in the worst case.

An experiment run-time of 1 second was desired. This allows a large number of ran-

dom starting conditions to be trialled (e.g. 1000 will take just over 15 minutes) and

experiments with parameter sweeps can be undertaken in a matter of hours. Given an

experiment runtime of 1 second, a maximum packet rate of 1.5ms was determined:

• The experiment log buffer at each node is 2048 bytes, each event requires 8

bytes.
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• The experiment controller requires approximately 25µs to read a whole exper-

iment log of 2048 bytes (the buffer interface is clocked at 100MHz and data is

read out on every clock cycle once set-up, see Section 4.4.1).

• As there are 128 nodes, it will take 54ms to read all of the logs of all of the

nodes. Therefore 18 full log sets can be fetched within one second, generating

4.5MB of data.

• Given 18 log flushes per experiment, a node can store 4,608 events per experi-

ment.

• Depending on the experiment, sending and receiving a packet requires roughly 4

events (packet start transmit, packet end transmit, packet received, packet meta-

data).

• Therefore, the maximum experiment packet rate is 1,152 packets per node per

second, or 147,456 total packets per experiment.

• However, this assumes a well balanced distribution of packet events. This is un-

likely, with some nodes receiving more packets (and thus sending more packets

if they are task 2 and 3 nodes) than they should. Hence the relaxation of the

packet sending rate (driven by the producer Task 1 nodes) to 4ms.

6.2.1. Experiment Settings

The initial condition parameters for the experiments in this thesis consist of the fol-

lowing initial settings loaded into Centurion:

1. Task mapping: The assignment of tasks to the nodes of the many-core. All task

graphs in these experiments use three tasks. The task mapping concerns both

the total number of each tasks (dubbed the task ratio for the experiments in this

thesis) and also the geometric assignment of tasks across the many-core nodes.

In all experiments the initial geometric mapping is done randomly (i.e. the total

set of tasks is distributed at random across the nodes). The ratio varies between

even (i.e. 1-1-1, a third of the many-core nodes per task) and skewed heavily

to one of the task: 4-2-1 in the in-tree example (where there will be 4 times as
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Table 6.1: Application Model Settings. These determine when a packet is gen-

erated for each of three tasks in the application graphs shown in Figure 6.1.

1. Ratio relates to how many instances of each task should be created for the initial

task mapping.

2. Rate determines how much time must elapse between packets being sent.

3. Packets Required defines how many packets a node needs to receive before it

can enter the “CPU processing” state.

4. CPU Time is the amount of time that a packet simulates task execution on receipt

of the correct number of packets.

5. Packet size is the length of the payload within the task packets.

6. Packets to Send determines how many packets a node sends out after finishing

the “CPU processing” phase.

Task: 1 2 3

Ratio: depends on task graph

Rate: 4ms 0 0

Packets Required: 0 1 1

CPU Time: 1ms 1ms 1ms

Packet Size: 1KB 1KB 1KB

Packets to Send: depends on task graph

many task 1 nodes as there are task 3 nodes).

2. Routing: Once the tasks are mapped to Centurion, the routing tables need to be

set up to reflect the paths between nodes. This is a non-trivial task especially

due to the adaptive nature of the social insect inspired intelligence: a mapping

generated at the start of the experiment will not be valid once a node has changed

task/failed. Therefore only two basic routing schemes will be used for these

experiments: Manhattan routing and Random routing. Manhattan routing takes

a task mapping and calculates the XY distance [112] between two nodes. The

direction that leads to the node with the target task assigned and the shortest

XY distance is chosen as the routing table direction. This is repeated three

more times for the other cardinal directions and the result will be a list of each

direction (N, E, S, W) sorted by shortest XY distance to the target task. This

is repeated for all tasks and then for all nodes. Random routing is simply a

random initialisation of the routing tables. For each task the direction list (N,

E, S, W, unless the node is at an edge of the NoC) is shuffled 1000 times and

then loaded into the routing table. This is repeated for all tasks and all nodes.

This does not give valid routing paths (unless by coincident) and so this may be
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seen as unrealistic. However due to our experimentation with decentralised task

switching, a random routing state may be the case once a series of task switches

have happened without updating the routing tables.

3. Intelligence Enable: This condition dictates if the embedded intelligence (pi-

coblaze, CIA) is used to control the knobs in the experiment.

4. Task Switch Enable: When this condition is set the node will read the task sug-

gestion from the intelligence and switch its task when a new task is suggested.

5. Intelligent Routing Enable: When this condition is set the router will fetch the

task directions from the Picoblaze instead of the routing table.

6. Fault Injection Enable: If this parameter has a non-zero value then this number

of nodes will be failed halfway through the experiment (t=500ms).

All experiment runs last 1000ms after which time the experiment logs are downloaded

from the nodes by the experiment controller (also any log buffers that fill up during

experiment runtime are fetched via the node debug link whilst the experiment is run-

ning). These are then sent over the LVDS link for storage on the PC.

6.3. Experiment 1: Performance of System without Em-

bedded Intelligence

6.3.1. Description

The purpose of this experiment is to introduce the test cases and benchmark the per-

formance of the system without any intelligence models applied. This experiment also

uses a much larger set of test initial conditions to explore the distribution of the start-

ing states the effect the has on the distributions of the performance of each experiment.

This will allow a suitable size set of test initial conditions to be used for the rest of the

experiments. The in-tree, out-tree and fork-join task graphs will be evaluated using

both Manhattan and random routing. This should verify that random routing is a dif-

ficult starting condition for the many-core despite the small number of tasks. These
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experiments will also look at the effect of the task ratio topology against the task graph,

to qualify the need for optimising not only the topology of tasks but also the ratio of

the number of each task. All intelligence models are unused for this experiment.

6.3.2. Experiment 1.1 In-Tree

The In-Tree task graph consists of a large number of Task 1 nodes, a smaller number of

Task 2 nodes (which require two Task 1 packets to be received before sending a packet

out) and an even smaller number of Task 3 packets (again which require two Task 2

packets before entering the compute state). Ideally this should benefit from a task ratio

of twice as many Task 1 “producer” nodes as Task 2 “consumer” nodes, repeated for

Task 2 “producer” for Task 3 “consumer”. Therefore a task ratio of 4:2:1 is expected

to be more productive than a 1:1:1 task ratio.

Figure 6.2 shows the results of running the four experiment cases (ratio 1-1-1: Man-

hattan routing, random routing; ratio 4-2-1: Manhattan routing, random routing) with

1000 runs each with a different initial conditions. As there is no adaptivity provided

by the intelligence the runtime of the experiment should have little effect on the per-

formance. Application throughput is the most important metric as it represents how

effective the task mapping is at getting the required data to Task 3 nodes. As expected

it is clear that there is a significant penalty when random routing is applied, with many

packets needing to be cleared by the “last resort” deadlock mechanism. There is also

a large benefit for optimising the task mapping to the task graph. Interestingly the

packet latency increases for this case, this is likely due to the many-to-one nature of

the in-tree coupled with the routing schemes not guaranteeing an equal allocation of

packets to nodes, leaving some Task 2 and Task 3 nodes being unused.
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6.3.3. Experiment 1.2 Out-Tree

The next experiment investigates the out-tree task graph. This has the same task ratio

as the in-tree graph but reversed i.e. 1:2:4. Each Task 1 “producer” node produces

two Task 2 packets, which in turn produce two Task 3 packets to be consumed by the

Task 3 nodes, resulting in 4 times as many Task 3 packets being produced for each

Task 1 packet. As there is currently no way of dealing with parallelism of packets in

the network, all packets will be sent on the same routing path to the task node with no

spreading of load to other nodes of the same task. Therefore lots of local congestion is

expected as the packets cannot be distributed further across the network from the first

node that has the correct task.

As can be seen in the results shown in Figure 6.3 the advantage of Manhattan routing

over random routing for a packet’s latency is less marked. This is evidence of the

loading effect discussed above. The minimal XY distance that Manhattan routing

promotes will mean that in certain topologies nodes will be overloaded. Due to the

blocking nature of wormhole routing this means such hotspots will delay packets in the

local neighbourhood as the node is trying to process the backlog of packets. Random

routing will promote more routing diversity, but at the cost of many deadlocked packets

as can also be seen in the plots. It is interesting to note that when the task graph

ratio is also considered this, unlike the previous experiment, does not improve the

application throughput. This is also driven by the lack of parallelism of routing paths

as the throughput is determined by the number of packets reaching Task 3 nodes, which

in turn require Task 2 nodes to receive packets. Due to the lack of routing diversity a

smaller number of Task 2 nodes are receiving packets and so a number of Task 2 nodes

are not producing any packets at all. To compound this effect, the routing paths for

Task 3 packets will also suffer from a lack of diversity so somne of the Task 3 nodes

that do receive packets will be overloaded.
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Figure 6.3: Performance metrics for Experiment 1.2
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6.3.4. Experiment 1.3 Fork-Join

The final task graph to be experimented with is the fork-join. This has an out-tree and

an in-tree phase and so it is expected that one of these sub-graphs may dominate the

other’s performance.

Figure 6.4 shows that this is the case and from the application throughput it would seem

that the Out-tree restricts the improvement that a optimal task ratio would provide.

However when the packet latency is considered it is clear that Manhattan routing has

a noticeable improvement in latency distribution. This is likely to be contributed from

the In-tree: the large number of Task 2 packets generated will need an efficient route

to Task 3 nodes for reduction which Manhattan routing will provide. Once again,

random routing produces a large number of deadlocked packets in both cases which

will severely hamper the Task 3 throughput performance.
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Figure 6.4: Performance metrics for Experiment 1.3
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6.3.5. Review

From these three experiments the relationship between random routing, deadlocks and

reduced throughput is clear. The adaptive cases will need to adapt with the random

case to have a good chance of improving on the Manhattan cases. It is also seen that

the lack of parallelism or diversity in the routing mechanism means that it is unlikely

that a near to full use of all the many-core nodes will be seen in any experiments. Fi-

nally, from the underlying distributions shown by the violin plots it can be seen that the

all distributions are centred around their medians with several large outliers responsi-

ble for when the distributions are widened. Therefore the rest of the experiments for

this thesis will use 100 runs (i.e. 100 random starting conditions) for each individual

investigation.
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6.4. Experiment 2: Adaptive Task Allocation using the

Interaction Network Intelligence Model

6.4.1. Biological Inspiration

The first emergent task allocation scheme that we experiment with is Gordon’s Inter-

action Networks Model [113][24][6]. As discussed in Section 3.3, the key aspect of

decision making within this task allocation model is the patterns of interactions be-

tween colony members. In the parallel distributed model Gordon proposes in [24],

threshold decision functions were used by each agent (member of the colony) to de-

termine which of eight states the agent should currently be fulfilling depending on

its interactions with other agents. It was found that not only did this model exhibit

several characteristics of colony dynamics, it also allowed perturbations in tasks to be

introduced and the agents in the system would then adapt their states until it would

eventually return to a normal, stable state.

When the ants interact they use their antennae to detect the chemicals that their col-

league is covered in. From this they can infer which task their colleague has been

undertaking (e.g. an ant covered in soil was probably doing nest maintenance). This

is then used to inform their choice of task with information from other interactions

and other stimuli taken into account [6]. To capture these dynamics in the many-core,

this experiment uses the arrival of packets at the router as an interpretation of the in-

teractions that the ants perform, the pattern and amount of packets arriving will infer

which tasks a node’s neighbourhood are performing. Congestion, faults and applica-

tion changes will alter these information patterns in a comparable fashion to the ant’s

information environment.

6.4.2. Experiments Overview

The aim of these experiments is to start from an initial random task mapping and

emerge a new task mapping that minimises the distances and congestion between the

three task nodes of the applications described in Section 6.2. An example of the re-
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quired transformation is shown in Figure 6.5. The experiments will also start from

random routing table entries and so will emerge a task mapping to suit this random

routing pattern. The use of random routing entries is important for large scale many-

core systems as a node changing task would make a existing routing mapping invalid

and in a decentralised system this would require difficult online analysis to keep all

routing paths updated and valid.

Task 2 Task 2 Task 2

Task 2 Task 2 Task 3

Task 3 Task 1 Task 1

Task 3 Task 1 Task 1

Task 1 Task 2 Task 3

Task 3 Task 2 Task 1

Task 1 Task 2 Task 3

Task 3 Task 2 Task 3

a) b)

Figure 6.5: The concept of the task allocation experiments used for the following

sections. Most experiments will start from a random task mapping a) and the role of

the intelligence is to emerge a more efficient mapping such as b).

The intelligence model will sense the state of local packet patterns, feed this into the

decision making threshold units and then output the suggested task to the attached Mi-

croblaze MCS processor. The processor will then switch task and use the parameters

from Table 6.1 for the new task it is undertaking. As we have seen in the previous

experiment (Section 6.2), the test task graphs provide different optimisation require-

ments and so these experiments will evaluate how the interaction model can cope with

the different packet patterns.

For the linear task graph the experiment will look at the effect of the Manhattan and

random routing schemes on the ability of the intelligence. For the rest of the task

graphs, the random routing is used and the task mapping ratio starting condition is
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modified. 100 runs for each set of stating experiment settings are used as the previous

experiment showed that the typical experiment set has a tight distribution for the 1000

runs used in that experiment.

6.4.3. Intelligence Implementation

The Picoblaze is used to implement these experiments.

Knobs and Monitors

Monitor: The router event FIFO, to detect SOPs of each task passing through the

NESW ports of the router. The I port is discounted to stop a positive feedback loop

whereby a task’s own output packets would cause a switch away from the current task.

Knob: The suggested node task. This is fed into the Microblaze node which will

change task to reflect this value.

Picoblaze Software

The flowchart in Figure 6.6 shows the flow of the assembler code written in the Pi-

coblaze to implement the interaction model. The threshold values are loaded from

the Experiment controller with a default value of 5 tasks. These are stored in the Pi-

coblaze’s scratchpad memory alongside the current count value of the threshold. When

a SOP is detected the task is extracted and the count and threshold value retrieved.

The count is increased and compared against the threshold value. If the count value is

greater than or equal to the threshold then this task is chosen, the other counters are

cleared and the task switch process starts again.
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Threshold Storage
T1: 5
T2: 10
T3: 15

SoP Count Storage
T1: 4
T2: 0
T3: 10

Experiment Start

SoP Detect?

Extract Task

Increment Counter

Evaluate threshold

Clear all counters

Task switch
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Knob: Node task

Monitor: Router event FIFO

Figure 6.6: Design of Picoblaze software for running the Network Interaction Intelli-

gence Model
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6.4.4. Experiment 2.1: Interaction Network Model - Linear Task

Graph

For the linear task graph it is expected that the difference between Manhattan and

random routing will be reduced as, due to the fact that each node has 4 neighbour-

ing nodes and has only two potential target tasks, it is likely that a target task can be

reached in a small number of hops. The intelligence should be able to adapt to this ran-

dom routing pattern relatively easily as any task switches will only affect one upstream

or downstream node at a time (as there is no parallelism).

Figure 6.7 shows the performance metrics for the linear task graph. The ability of the

intelligence model to adapt to the random routing case is clear with the reduction in the

number of deadlocked packets a clear indicator that nodes are being switched to take

up better task allocations in routing paths that are poor enough to require the deadlock

mechanism to step in a sink the packet. The total throughput is also improved from the

random case, the median is still a small way away from the Manhattan performance

so therefore the intelligence has not managed to emerge a better mapping than the

mapping heuristic. It is interesting to note that the Manhattan case is worse for the

emergent task mapping. This will be due to the limited routing path variability that

Manhattan routing will give. The paths are always to the closest node of the correct

task and so a neighbourhood of nodes will likely have similar paths for each task;

leading to little routing variability which Gordon’s model would require to disrupt the

system into more optimal task mappings.

Figures 6.8 and 6.9 show the time domain view of these metrics and the task switch

characteristics for the experiment run that produced the median throughput for each

experiment setting. From the throughput and deadlock metrics for the adaptive, ran-

dom routing case it can be seen that a very quick adaptive phase takes place and then

the system settles down. This is also seen in the adaptive, Manhattan routing case but

there appears to be less settling on the packet latency. This will be caused by hotspots

created by the lack of local routing variety that is a side effect of Manhattan routing.

The quick settling time is also seen in the task switch metrics. Of much interest here

though is the task distribution which, for the random routing adaptive case, shows the
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Figure 6.7: Performance metrics of Experiment 2.1
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system has reduced the number of task 1 nodes (for the linear task graph it is expected

that all ratios are the same, 42 nodes). As there is no Task 3 to Task 1 edge on the task

graph there is no incentive for nodes to switch to Task 1 nodes. This has the effect of

choking the maximum use of the 128 nodes to only 60 nodes as 20 Task 1 nodes can

only produce data to keep 20 Task 2 nodes and so 20 Task 3 nodes busy.
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Figure 6.8: Packet Analysis for Experiment 2.1. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.



S
o
cial

In
sect-In

sp
ired

A
d
ap

tiv
e

H
ard

w
are

1
8
3

0 50
0

10
20
30
40

No
de

s A
ct

iv
e

0 50
0

10
20
30
40

No
de

s A
ct

iv
e

0 50
0

10
20
30
40

No
de

s A
ct

iv
e

0 50
0

10
20
30
40

No
de

s A
ct

iv
e

0 500 1000

Application Throughput            

0 500 1000

0 500 1000

0 500 1000
Time (ms)        

0 50
0

2

4

Ta
sk

 S
wi

tc
he

s
0 50

0

2

4

Ta
sk

 S
wi

tc
he

s

0 50
0

2

4
Ta

sk
 S

wi
tc

he
s

0 50
0

2

4

Ta
sk

 S
wi

tc
he

s

0 500 1000

Task Switches        

0 500 1000

0 500 1000

0 500 1000
Time (ms)      

0 50
0

20
40
60

No
de

s/
Ta

sk

0 50
0

20
40
60

No
de

s/
Ta

sk

0 50
0

20
40
60

No
de

s/
Ta

sk
0 50

0
20
40
60

No
de

s/
Ta

sk

0 500 1000

Task Distribution        

0 500 1000

0 500 1000

0 500 1000
Time (ms)       

No Intel
1-1-1 Mapping
Manhatten Routing

No Intel
1-1-1 Mapping
Random Routing

Network Interaction
1-1-1 Mapping
Manhatten Routing

Network Interaction
1-1-1 Mapping
Random Routing

Network Interaction Intelligence, Linear Task Graph

Figure 6.9: Task Switching Analysis for Experiment 2.1 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.



184 Chapter 6. Emergent Properties of Social Insect Inspired Many-Core

6.4.5. Experiment 2.2: Interaction Network Model - In tree

For the in-tree case we would expect the interaction model to capture the 4:2:1 map-

ping which we saw was a more effective mapping in the previous experiment. Figure

6.10 shows the performance metrics for the in-tree with the network interaction model.

When compared to the linear model it can be seen that the starting ratio has an pos-

itive effect on the throughput but a negative effect on the number of deadlocks. The

packet latency stays similar regardless of the starting task topology ratio which may

indicate that the intelligence is reducing Task 1 nodes to provide more Task 2s for

sinking the larger number of Task 1 packets (although without parallel routing paths

this effect will be limited. When the time domain graphs (Figure 6.11 and 6.12) are

taken into account there is confirmation of this effect: the number of Task 1 nodes

are swiftly reduced from their higher starting ratio and the number of Task 2 nodes

increases rapidly, followed later by Task 3 nodes.
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Figure 6.10: Performance metrics for Experiment 2.2
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Figure 6.11: Packet Analysis for Experiment 2.2. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.12: Task Switching Analysis for Experiment 2.2 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.
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6.4.6. Experiment 2.3: Interaction Network Model - Out tree

The out-tree performance metrics shown in Figure 6.13 show that the intelligence

struggles to improve the overall topology for this task graph, as seen by the large

range in packet latencies and a high number of deadlocks. However, the reasonable

throughput median shows that there are some configurations where it does manage

to find good topologies. When the time domain data is considered (Figures 6.14 and

6.15) only a slight dropping of Task 1 nodes is seen. This is a smaller degree of task

switch for this task graph when compared to the larger number of Task 2 packets in

the previous task graph. This shows that the number of packets generated by a task

will have a large influence on the switching of the nodes to that task. This is expected

as the interaction model is based purely on the interactions occurring around the node.

This time, however, the settling time of the experiment is longer and is related to the

longer time that is has taken to remove the Task 1 nodes from the system.
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Figure 6.13: Performance metrics for Experiment 2.3
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Figure 6.14: Packet Analysis for Experiment 2.3. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.15: Task Switching Analysis for Experiment 2.3 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.
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6.4.7. Experiment 2.4: Interaction Network Model - Fork Join

With the poor throughput performance of the interaction model with both the In-tree

and Out-tree experiments, it is unlikely that Fork-Join will show any improvement as

it combines these two graphs. Indeed as can be seen in Figure 6.16 this is the case and

Figure 6.18 shows that once again Task 1 nodes are being optimised away for both the

1:1:1 case and the 1:2:4 case, the lower starting number of Task 1 nodes in the 1:2:4

mapping case means that the number of Task 1 nodes is reduced quickly and thus the

overall throughput is reduced. This is clear in Figure 6.17 whereby the number of

active nodes does not reach over 10 at any one time.
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Figure 6.16: Performance metrics for Experiment 2.4
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Figure 6.17: Packet Analysis for Experiment 2.4. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.18: Task Switching Analysis for Experiment 2.4 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.
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6.4.8. Review

The interaction model has shown some adaptivity and settles down relatively fast to

topology that are stable with respect to packet latency and the number of deadlocks.

However, the prime method of achieving this settledness seems to come from reduc-

ing the number of Task 1 nodes to a level that means the task graph is very poorly

supported. This was the case for all task graphs with a parallel element. For the linear

case the interaction network improved on random and successfully reduced deadlocks,

however the ratio of Task 1 nodes to 2 and 3 was still not satisfactory to reach the per-

formance levels of the Manhattan routed case.
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6.5. Experiment 3: Adaptive Task Allocation with the

Foraging For Work (FFW) Model

6.5.1. Biological Inspiration

The second task allocation experiments uses the Foraging For Work (FFW) model [26]

introduced in Section 3.3. The basis of Foraging For Work relies on workers being able

to wander the nest once a task stimulus expires and their next task is determined by the

nest task they encounter that exceeds its stimulus threshold. Once again this requires

implementation using stimulus response-threshold decision making units, but further

to Gordon’s model also has a time element: the period of time that elapses since the

last task was performed to a task switch is accepted. In this set of experiments we shall

refer to this as the task decay time.

6.5.2. Experiments Overview

As with the previous experiment, this set of experiments aims to adapt to a more effi-

cient task mapping of the test application from a random task mapping and a random

routing pattern (see Figure 6.5). The intelligence model will again need to sense the

state of packets moving through the router as this represents the nest walks that a

colony worker may do; albeit instead of the router moving to the packets in the case of

the current task stimulus dropping, the new packets are moving to the router.

The experiment structure takes the same form as the previous set of experiments. The

first experiment will compare the FFW intelligence with optimal mappings and ran-

dom mappings with no intelligence.

6.5.3. Intelligence Implementation

The Picoblaze is used to implement these experiments.
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Knobs and Monitors

Monitor: The router event FIFO, to detect SOPs of each task passing through the

NESW ports of the router. The I port is discounted to stop a positive feedback loop

whereby a task’s own output packets would cause a switch away from the current task.

Monitor: A fixed time reference, set here to 1ms and used with a threshold to gain

20ms as Task 1s output at a period of 4ms. This means that 5 missed packets will

open up the “forage” window whereby the intelligence can switch the node’s task to

the next packet that arrives.

Knob: The suggested node task. This is fed into the Microblaze node which will

change task to reflect this value.

Picoblaze Software

The flowchart in Figure 6.19 shows the flow of the assembler code written in the Pi-

coblaze to implement the FFW model. The timer tick happens every 1ms and the

threshold value is set to 20 to result in a 20ms expiry window. As can be seen by the

flowchart, any packet received for the correct task (same task as the node is executing)

will result in the counter being cleared and the task switch inhibited for another 20ms.

If the forage window is open then the task of the next packet to pass through the router,

regardless of its task, is extracted and set as the new task for the node.

Clear FFW timer

Experiment Start

SoP Detect?

Extract Task

Task = Current Task

N
o 

S
oP

Monitor: Router event FIFO

Yes No

FFW timer > Threshold
No

Yes

Task switch Knob: Node task

Timer Tick

Increment FFW Timer

Figure 6.19: Picoblaze software design for implementing the Foraging for Work Task

Allocation
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6.5.4. Experiment 3.1: Foraging For Work - Linear Task Graph

As with the network interaction model, for the linear task graph it is expected that the

difference between Manhattan and random routing will be reduced due to the fact that

each node has 4 neighbouring nodes and has only two potential target tasks. A poor

random routing set will result in packets not reaching their destination node in time

and so the forage window will open and the node switch to the task. If this does not

improve the situation then the node will end up switching task again and so it could be

expected that FFW will be less stable than the interaction model.

Figure 6.20 shows the performance metrics for the linear task graph. As expected the

distributions for random and Manhattan routing are quite similar. A promising reduc-

tion in packet latency is seen, however this comes with the cost of more deadlocked

packets. However when the time domain of the medians are considered in Figures 6.21

and 6.22 it can be seen that, as with the network interaction model, there is a severe

reduction in the number of nodes performing Task 1 and that the throughput of the

nodes is very poor post adaptation. The thicker line on the task distribution shows that

there is some degree of oscillation occurring between Task 2 and Task 3 nodes.
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Figure 6.20: Performance metrics for Experiment 3.1
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Figure 6.21: Packet Analysis for Experiment 3.1. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.22: Task Switching Analysis for Experiment 3.1 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.
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6.5.5. Experiment 3.2: Foraging For Work - In tree

Figure 6.23 shows that the FFW performance for the In-Tree is very similar to the

interaction model with very little difference between the 1:1:1 and 4:2:1 ratios and poor

performance when compared to the Manhattan routed models. Once again looking at

the time domain (Figure 6.24 and 6.25) shows the now familiar pattern of the Task 1

nodes dropping off and the network settling down into a very poor performance with

only a few nodes active at once. As there is no Task 3 to Task 1 packets, there is no

incentive for FFW nodes to move to the Task 1 state once the Foraging mode window

is entered. This chokes the rest of the application as the Task 1 nodes are the producer

task for the task graph. For the In-Tree, the choking of Task 1 packets has a huge

impact on the performance of the application due to the reduction nature of the task

graph: two Task 2 packets need to be emitted by Task 1 nodes for a Task 3 packet to

be emitted.
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Figure 6.23: Performance metrics for Experiment 3.2
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Figure 6.24: Packet Analysis for Experiment 3.2. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.25: Task Switching Analysis for Experiment 3.2 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.
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6.5.6. Experiment 3.3: Foraging For Work - Out tree

As is seen in Figure 6.26, FFW copes better with the Out-Tree. The starting ratio

of tasks has little effect, unlike the non-adaptive case where the hotspots generated

by Manhattan routing in the 1:2:4 case reduce the performance relative to the 1:1:1

mapping. The time domain graphs, Figure 6.27 and 6.28, show an interesting effect

for all nodes where a “ramping up” of packet latency is observed. As this is also seen

in the non-adaptive cases its presence in the FFW cases can be discounted. The settling

time during this ramp up can be seen and at less than 100ms can still be considered

fast relative to the experiment length of 1000ms. The task distribution for Task 1 nodes

drops off at this time as well as seen in all other adaptive experiments.



2
0
8

C
h
ap

te
r

6
.

E
m

er
g
en

t
P

ro
p
er

ti
es

o
f

S
o
ci

al
In

se
ct

In
sp

ir
ed

M
an

y
-C

o
re

 Ratio 1-1-1
Manhatten

 Ratio 1-2-4 
Manhatten

 Ratio 1-1-1
Random

 Ratio 1-2-4
Random

No Intelligence       Foraging For Work

0.010.10

1.00

6.00

La
te

nc
y 

(m
s)

Average Packet Latency

 Ratio 1-1-1
Manhatten

 Ratio 1-2-4 
Manhatten

 Ratio 1-1-1
Random

 Ratio 1-2-4
Random

No Intelligence       Foraging For Work

0.1

1.0

10.0

100.0

Pe
rc

en
ta

ge
 o

f D
ea

dl
oc

ke
d 

Pa
ck

et
s

Percentage of Packets Deadlocked 

 Ratio 1-1-1
Manhatten

 Ratio 1-2-4 
Manhatten

 Ratio 1-1-1
Random

 Ratio 1-2-4
Random

No Intelligence       Foraging For Work

0.1

1.0

10.0

30.0

To
ta

l T
as

k 
3 

pr
oc

es
sin

g 
tim

e 
(s

)

Application Throughput

Mapping:
Routing:

Mapping:
Routing:

Mapping:
Routing:

Foraging For Work Intelligence Performance for Out-Tree

Figure 6.26: Performance metrics for Experiment 3.3
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Figure 6.27: Packet Analysis for Experiment 3.3. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.28: Task Switching Analysis for Experiment 3.3 blue: Task 1, orange: Task 2 green: Task 3.
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6.5.7. Experiment 3.4: Foraging For Work - Fork Join

Unsurprisingly, Fork-Join sees its performance (Figure 6.29) dominated by the poor

performance of the In-tree. Packet latency is improved but a large number of deadlocks

cancels out this advantage. The time domain (Figure 6.30 and 6.31) shows that these

deadlocks are removed quickly but, as expected, at the cost of loosing Task 1 nodes

and therefore application throughput. In the 1:3:1 adaptive case a small oscillation

is present on the task distribution, which is interesting as the ratio of Task 2 and 3

is identical, suggesting that nodes may be “trading tasks” as their foraging for work

windows both open up simultaneously.
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Figure 6.29: Performance metrics for Experiment 3.4
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Figure 6.30: Packet Analysis for Experiment 3.4. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.31: Task Switching Analysis for Experiment 3.4 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.
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6.5.8. Review

These experiments show that Foraging For Work performs very similarly to the inter-

action model and suffers from the same pitfalls regarding premature settledness com-

ing from reducing the number of Task 1 nodes to a level where the task graph cannot

be sustained. This is a clear disadvantage of stimulus based embedded intelligence:

the high-level designer must ensure that there are stimuli for all cases in the system.

Despite this the performance was not disastrous as in all experiments a small number

of Task 1 nodes remained active, although this is likely to be accidental due to the

large scale of the many-core and never receiving a packet whilst the foraging for work

window is open, rather than a feature of the intelligence model.
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6.6. Experiment 4: Self-Regulation of Task 1 Nodes

6.6.1. Biological Inspiration

The removal of Task 1 nodes by both intelligence models is clearly a fundamental lim-

itation of these social-insect models. Whilst some emergent properties are apparent,

they are obscured by this issue. This experiment will look at extending these models in

the same vein as biologists have done by adding feedback loops into the original task

allocation models (i.e. in [25]). Therefore this experiment will add a self-regulation

loop that is temporal in a similar fashion to Foraging For Work. If node does not re-

ceive a packet within a given amount of time (this can be QoS or application driven)

then the task will switch to the producer task. This forces Task 1 nodes back into the

system from idle nodes and gives the two models extra stimulus to interact the model

dynamics with.

6.6.2. Experiments Overview

This experiment will extend both task graphs with the self-regulation of Task 1 nodes

and run them through the same set of application graphs used for the previous exper-

iments. When a node spends 50ms idle then the self-regulation kicks in and the node

is switched to Task 1 by the intelligence. Otherwise the task allocation uses exactly

the same Picoblaze code as the previous two experiments. The performance metrics

for the interaction model and FFW will be compared directly with their self-regulation

equivalents.

6.6.3. Intelligence Implementation

The Picoblaze is used to implement these experiments.
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Knobs and Monitors

This is the same for the models and each of their previous knobs and monitors. Both

models have an addition of:

Monitor: A fixed time reference, set here to 1ms with a threshold set to 50 to gain a

self-regulation event every 50ms.

Picoblaze Software

The flowchart in Figure 6.32 shows an abstraction of the assembler code with the

existing models attached. Every time the router sees a packet that is the same as the

active task for that node then its self-regulation is suppressed by resetting the regulation

count to zero. When the timer tick event happens this increases the count of the self-

regulation counter. Once this value exceeds its threshold (20ms) then a task switch is

ordered and the node switches to Task 1.

Clear Regulation timer

Experiment Start

SoP Detect?

Interaction Model/FFW Task = Current Task

N
o 

S
oP

Monitor: Router event FIFO

Yes

Regulation timer > Threshold
Yes

Task switch Knob: Node task = 1

Timer Tick

Increment Regulation timer

Figure 6.32: Picoblaze software design for implementing the Self-Regulation func-

tionality
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6.6.4. Experiment 4.1: Self-Regulation - Linear Task Graph

The linear task graph suffered the least from the lack of Task 1 nodes out of all the

approaches. Adding more Task 1 nodes will have a large impact on the network as the

task-graph will require a corresponding Task 2 and 3. Therefore if many nodes switch

to Task 1 at once it could be expected that the network struggles to route these packets

until some other tasks switch to Task 2 and then 3. Therefore a greater settling time is

expected.

As the results in Figure 6.33 show, it is clear that the self-regulation has significantly

improved the performance of the application throughput, the median Task 3 through-

put is around 3 times greater for FFW. It is also clear that the network interaction

starts to suffer severely from deadlocked packets, indicating that it cannot adapt to

the large changes that the self-regulation introduces fast enough. The time domain

results (Figure 6.34) confirm this observation as the number of active nodes drops,

the latency increases and the number of deadlocked packets starts to rise at the end

of the experiment. Foraging For Work on the other hand has a similar settling time

to the non-regulated case and then improves on both the active nodes and the packet

latency. The task switch characteristics (Figure 6.35) give more insight. The network

interaction model sees an inverse behaviour compared to earlier experiments where

the number of Task 1 nodes grows steadily throughout the runtime of the experiment.

Foraging For Work on the other hand manages to maintain the 1:1:1 ratio well despite

what seems to be quite an unstable network at times with up to 5 task switches per ms

happening at times later on in the experiment.
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Figure 6.33: Performance metrics for experiment 4.1
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Figure 6.34: Packet Analysis for Experiment 4.1. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.35: Task Switching Analysis for Experiment 4.1 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.
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6.6.5. Experiment 4.2: Self-Regulation - In tree

The In-Tree performance, Figure 6.36, shows a similar performance distribution to

the linear case. A large number of deadlocked packets are present with the network

interaction case leading to a large spread in application throughput. The time domain

figures (Figure 6.37 and Figure 6.38) at first seem to confirm this is the same as the

linear case, but in reality the throughput (number of active nodes) is much lower for

both cases and the rise in latency and deadlocks for the network interaction model as

the experiment progresses is not seen. The task distribution suggests why this may

be the case for the network interaction model: a large number of Task 1s is generated

once again but the corresponding number of Task 2 nodes is not the correct ratio when

compared to Task 3 (there should be twice as many). A similar issue is seen with

Foraging For Work where the ratio seems to want to trend to 1:1:1 but in reality still

has an excess of Task 2 nodes compared to Task 1 nodes.
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Figure 6.36: Performance metrics for Experiment 4.2
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Figure 6.37: Packet Analysis for Experiment 4.2. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.38: Task Switching Analysis for Experiment 4.2 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.
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6.6.6. Experiment 4.3: Self-Regulation - Out tree

The out-tree performance metrics shown in Figure 6.39 show a clear preference for

Foraging for Work. Network interaction still suffers from high deadlock but whilst

Foraging For Work does in the non self-regulating case, it manages to overcome this

when self-regulation is enabled. The time domain analysis in Figure 6.40 and Figure

6.41 show a similar pattern to the linear case but with the interaction model becoming

swamped with Task 1 nodes in less time than in the linear case. Foraging For Work

settles to a lower number of task switches (2 per ms) but still emerges a 1:1:1 ratio.

Once again this is probably due to a lack of parallel routing allowing the task allocation

to reach its full potential with adapting to the task graph.
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Figure 6.39: Performance metrics for Experiment 4.3
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Figure 6.40: Packet Analysis for Experiment 4.3. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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line) is an focus on the first 50ms of the experiment.
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6.6.7. Experiment 4.4: Self-Regulation - Fork Join

Given the differences in the In-Tree and Out-tree performance, the performance for

Fork Join will be of interest to see if one half of the task graph dominates the other.

Figure 6.42 shows a similar distribution to the previous experiments with a larger num-

ber of deadlocks for the interaction model than Foraging for Work. The application

throughput for Foraging For Work is also better and the network interaction is lacking

the spread in its performance that earlier investigations in this experiment showed.

Figures 6.43 and 6.44 show the time domain analysis for the median throughput cases.

These results are very favourable for Foraging For Work which, after a long settling

time, achieves a high performance and a non-balanced distribution that favours Task 1

and 2 (the Out-Tree) with a lower number of Task 3 nodes (which is desirable being

the reduction part of the In-Tree). Network interaction once again sees the network

being dominated by Task 1 nodes which increases its packet latency to poor levels by

the end of the experiment.
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Figure 6.42: Performance metrics for Experiment 4.4
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Figure 6.43: Packet Analysis for Experiment 4.4. The first section of each graph (dashed plot line) is an focus on the first 50ms of the experiment.
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Figure 6.44: Task Switching Analysis for Experiment 4.4 blue: Task 1, orange: Task 2 green: Task 3. The first section of each graph (dashed plot

line) is an focus on the first 50ms of the experiment.
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6.6.8. Review

It is clear that the self-regulation adds a much needed level of dynamics to the Task

1 aspects of all task graphs. It seems that the effect is too high for the network in-

teraction model. This would be interesting to experiment with by exploring the task

switch threshold of the network interaction model and also by modifying the time after

which the self-regulation task switch happens. The fact that both the self-regulation

and the Foraging For Work are temporally driven could also be a factor in their good

compatibility.

The self-regulation in this experiment uses the knowledge that Task 1 nodes are the

producer tasks and so an under representation of Task 1 nodes will hamper the achiev-

able performance. These results show that, even without tuning of the existing param-

eters in both models, this capability can improve total throughput of the system. The

increase in deadlocks for the Network Interaction model does show some network sta-

bility and so further tuning or parameters or extension of the intelligence model will be

required. Indeed this experiment shows that an approach of extracting suitable appli-

cation properties (i.e. Task 1 nodes being the producer task) to social-insect decision

pathways is feasible.

The addition of self-regulation to the models used in biology is to explore and under-

stand the relationship between the environment, individual and nestmates (in [25]).

Whilst the weather and the colony needs are obvious factors to be considered for

energy-efficient foraging, the model ties them together with very little communica-

tion overhead and allows any of the three factors to dominate the decision if needs

be; a useful quality when trading difficult and critical factors such as the survival of

the colony (at risk from starvation) or danger to the individual (when foraging in poor

weather, in a dangerous environment or when food sources are scarce). This experi-

ment has reflected on one aspect of these factors: the need of the application.

To extend this intelligence to the state of the individual then factors such as the node’s

thermal state, power budget and suitability to the task can be added as factors when

deciding to switch to Task 1. The state of the nestmates is inferred from traffic moving

through the router in a similar fashion to the Network Interaction model, knowledge
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about the application could be introduced to help an individual understand what the

pattern of network interactions mean.

6.7. Summary

This chapter has shown how two bio-inspired models are translated into a form suit-

able for hardware realisation using the Picoblaze. It has highlighted some strengths

and weaknesses of decentralised adaptive task allocation and routing within a large

scale system. It is encouraging to find that the Interaction Network model and the

Foraging For Work model can be combined and extended by other stimulus-threshold

sensory pathways to change and improve their characteristics. Despite being imple-

mented within a micro-controller, the arithmetic behind the decision pathways are very

simple.

It is clear that an adaptive or parallel routing capability would be highly advantageous

for spreading workload across the system. The router can be configured to source its

routing direction from the Picoblaze and so this could be used to provide a decision

that could differ for packets of the same task to provide this variation, at the risk of

reducing the stability of the task allocation. A complementary experiment to these

experiments with the task allocation adapting to the random routing, could be that

the routing adapts to the task allocation. This would not remove the risk of a poor

performing task allocation however, so it is likely that experiments combining both

adaptive task allocation and adaptive routing would be required.

To qualify the autonomous system attributes of the behaviours seen in this experiment,

the resultant behaviours can be considered in line with the goals seen in Section 2.4.

The four main self-* properties seen in this section are used as a criteria to gauge the

system autonomy against:

Self-Configuration: In the context of these experiments, self-configuration allows pro-

cessing to happen as (due to the random topologies) there is the chance that the initial

task and routing table allocations do not allow any processing to happen. Stability

is also a key factor of self-configuration as, if the system becomes unstable, it could

leave a working configuration. Both of the emergent task allocation models exhibit
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self-configuration through deciding on the task a node should be performing. The

resultant configuration is driven by the random setting of the routing tables, the task

graph and also by the dynamics of the task allocation itself as the allocation of tasks

to nodes will set the traffic patterns that use the routing tables. Therefore the stability

of the configuration is a key criterion of self-configuration that is applicable to emer-

gent task allocation; but may not be of importance in other task allocation schemes.

The results of Experiment 4 suggest that there is some performance variation between

starting topologies (the distribution of the Application throughput box plots) but the

time domain plots suggest that this variation could be bounded as (once the system has

settled) it seems that a performance floor can be defined that the system does not drop

below.

Self-Optimisation: this ties heavily into the behaviour seen for self-configuration. For

the Network Interaction model the self-optimisation is inherent in the way the intelli-

gence will reduce the number of routing hops: a large task packet response is taken up

by a node immediately if the stimulus is greater than its current task. This is instead

of passing it on to a neighbouring node, resulting in an optimisation where the number

of routing hops are reduced. This can be seen in the sharp reduction in deadlocks in

the time domain graphs for Network Interaction and the improvement in active nodes

as nodes clustered around task 1 nodes switch to task 2 and 3. Foraging for Work only

has motivation to optimise once a node becomes inactive enough to trigger the Forag-

ing For Work window where it will accept the next task that arrives. This will have an

optimising effect as this packet would have been forwarded on to another node if not

accepted by the inactive node. In turn, the original target node may then become less

active and so may switch to a more optimal task (again reducing the routing latency).

Self-Healing: Self-healing recovers aspects of the self-configuration in the context of

faults or parts of the device becoming derated. As these experiments did not explore

these areas, there are no self-healing behaviours exhibited.

Self-Protection: Self-protection alters system parameters to allow the system to en-

sure that the operating envelope of the device is not exceeded before faults manifest.

As these experiments did not explore this area, there are no self-protection behaviours

exhibited.

In conclusion, these experiments have shown that both the Network Interaction model
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and the Foraging for Work model can exhibit self-configuration and self-optimisation

behaviours in the realm of task allocation. It can be envisaged that similar decision

pathways could also be used for self-configuration and self-optimisation of other NoC

aspects such as the routing tables.

Chapter 7 will continue to use the intelligence models from this chapter but apply them

to a fault tolerant scenario and also implement the models on the CIA and explore how

the emergent behaviours differ to the set-ups used in this chapter.
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Chapter 7

Adaptive Many-Core Investigation



Social Insect-Inspired Adaptive Hardware 239

7.1. Overview

The previous experimental chapter focussed on the implementation and the properties

of the bio-inspired intelligence models. In this chapter these models are tested with

fault injection to show that, without any modification to the decision pathways, the

models inherently support fault tolerance. The following experiments translate the

Picoblaze implementation of the intelligence for implementation on the CIA. The final

experiment then demonstrates how the CIA can be used to implement these models

with lower power overhead to ensure that the CIA is not contributing to the challenge

of Dark Silicon.

7.2. Experiment 5: Fault Tolerance

7.2.1. Biological Inspiration

Both the Network Interaction Model and the Foraging For Work model will support

fault tolerance at the individual (i.e. node level) without any additional changes to the

model. This experiment will explore this and characterise the response time relative

to faults injected into the application. In the network interaction model, removal of

individuals of a particular role (for example by a hungry predator at the entrance to

the nest removing foragers) will cause a change in the balance of interactions that an

individual will encounter. If a hungry individual is suddenly not interacting with many

foragers then it is likely to change task to a foraging role, restoring the balance of tasks

within the nest. Foraging for work will also exhibit this dynamic, in this example the

lack of foragers will create a task stimulus for an individual to undertake foraging (due

to individual hunger) and so when the next task selection window arrives, the hunger

stimuli may override the stimuli for the task that the individual was doing at the time.
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7.2.2. Experiment Overview

In the many-core this translates to node-level faults. When these faults are injected

the local task allocation mappings that the intelligence has settled at are upset. This

propagates to disrupt the network traffic and so the inputs to the network interaction

and FFW models will suddenly change. This will cause the local task allocation to

be re-balanced, in a similar fashion to the reaction of the intelligence at the start of an

experiment as seen in the previous chapter.

This experiment explores this fault tolerance by injecting node-level faults during the

experiment runtime. As seen in Chapter 2, a likely source of faults in future sys-

tems is age-induced derating of on-die components, issues driven by device variability

and incorrect or inaccurate margins by the design tools to mitigate thermal or power-

limitation induced timing faults. This experiment injects a series of faults ranging from

2 faulty nodes to 42 faulty nodes to test the fault tolerance response of the intelligence.

Injecting a small number of faults across the running system represents a complex

systematic error in the design of the application software or in the EDA tool margin

that is bought out by a change in environment or application scenario (e.g. a stack

overflow). The cases with larger number of faults (42 nodes, 1/3 of the processors in

Centurion) represents a fault in a critical piece of the system’s hardware, such as a

failure of a global clock buffer or a hardware design error that causes the same fault

in several locations at once. Both fault cases fail their respective number of nodes at

the same time to allow the impact of the effect to identified in the results easier. In the

first fault injection this also represents the notion that the faults are caused by design

issues that only surface when a complex set of conditions are met; in the worse case

this will affect all nodes that have this design defect at once.

For this experiment the fork-join task graph will be used as this captures properties of

both In-Tree and Out-Tree. There are six fault injection scenarios, these correspond

to 0, 2, 4, 8, 16, 32 faults injected per run. Each scenario consists of 100 runs which

have different initial conditions (random task allocations, random routing tables) but

the 100 starting states are consistent across the six scenarios, so the impact of the fault

is what differs in each case. For further analysis and visualisation the cases of 5 and 42
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faults are also considered as these represent the small series of application faults and

the failure of a critical global circuitry respectively. In all runs, all of the faults will be

injected halfway through the experiment (at 500ms). This is done by the experiment

controller choosing a number of nodes at random, and then distributing a series of

debug commands at 500ms (via the node debug interface) to tell the affected nodes to

enter the faulty state. Once in the faulty state the nodes set their active task to 0 and no

longer send or receive packets. The fact that their task is set to 0 means that the router

will then forward any existing packets to them onwards in the network to be consumed

by other nodes.

7.2.3. Intelligence Implementation

The Picoblaze is used to implement these experiments. The same intelligence set-up

as for Experiment 4 is used (i.e. self-regulation enabled).

7.2.4. Experiment 5.1: Fault Injection

Quantitative results for 100 independent runs of each model without any faults are

summarised in Table 7.1 and are used as the baseline for comparison to the faulty

cases. Table 7.2 shows quantitative results for different numbers of faults injected.

The recovery time after fault injection and the performance achieved after recovery

are compared with the pre-fault case. Typical examples are shown in Figure 7.1 where

at 500ms a proportion of the nodes develop faults and fail.

The first 500ms of the graphs in Figure 7.1 show the adaptivity of both bio-inspired

approaches, Network Interaction and Foraging for Work in comparison with an imple-

mentation using a heuristic fixed routing approach (minimised Manhattan distance).

As can be seen from Figure 7.1, both approaches exhibit a settling phase as the net-

work adapts to the initially random task topology. FFW then enters a steady state

(settled) phase that is similar to the performance of the heuristic approach. The NI

model also settles into a steady state, but does not achieve the same performance as

FFW.
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Figure 7.1: Results of fault injection experiments for five faults and 42 faults (1/3

of Centurion). In both experiments the systems were started and then left to self-

optimise (the shaded area shows the settling period as the task topology adapts). After

500ms the faults are injected and the system resettles into a new task topology. This

recovers some of the performance compared to the pre-fault state by reorganising the

task topology to reflect the task graph.

The recovery phase can be seen in Figure 7.1, starting immediately after faults occur as

the intelligence adapts to the new task landscape and starts to route around the failed

nodes. Once the recovery phase has passed, the system is settled in a steady state

where it has recovered to an overall lower performance than before due to the loss of

a number of nodes. However, within the limits of reduced resources, performance has

recovered and a task structure required for data to effectively reach task 3 nodes has

been restored. Again, FFW outperforms the network-interaction model in terms of

performance recovery.
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Table 7.1: Performance reached—relative to highlighted case—after settling time

without fault injection. Shown are median (Q2) and 25th/75th percentiles (Q1/Q3)

for 100 independent, randomly initialised runs of each experiment.

Settling

Time

Relative

Performance

Q1 Q2 Q3 Q1 Q2 Q3

No Intelligence 6 6 7 96% 100% 103%

Network Interaction 12 56 58 93% 102% 108%

Foraging For Work 10 86 170 105% 114% 124%

Table 7.2: Performance reached—relative to highlighted case—after recovery time

following fault injection at 500ms. Shown are median (Q2) and 25th/75th percentiles

(Q1/Q3) for 100 independent, randomly initialised runs of each experiment.

Recovery

Time (ms)

Relative

Performance

Faults Q1 Q2 Q3 Q1 Q2 Q3

0 – – – 96% 100% 103%

2 3 3 19 95% 98% 102%

4 3 3 17 94% 96% 100%

8 3 3 5 88% 93% 98%

16 3 3 3 79% 84% 89%

N
o

In
te

ll
ig

en
ce

32 3 3 3 63% 69% 75%

0 – – – 98% 108% 117%

2 3 30 160 94% 104% 113%

4 3 30 153 92% 102% 109%

8 3 19 141 85% 97% 105%

16 3 3 76 76% 85% 92%N
et

w
o
rk

In
te

ra
ct

io
n

32 3 3 3 52% 64% 74%

0 – – – 117% 129% 141%

2 3 29 136 115% 125% 140%

4 3 36 177 112% 124% 136%

8 3 53 175 109% 118% 129%

16 3 81 276 100% 107% 122%F
o
ra

g
in

g

F
o
r

W
o
rk

32 3 3 272 81% 89% 101%
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7.2.5. Review

This experiment has shown the node-level fault recovery capabilities of the emergent

task allocation. No extra hardware resources are required for the intelligence to auto-

matically adapt to faults in this way. The recovery time in the median case is in the

order of tens of milliseconds and a large amount of system performance recovery can

be achieved; indeed even with 16 nodes failed the system manages to recover 100%

relative to the non-adaptive pre-fault throughput. The recovery is assisted by the na-

ture of the task allocation performance: it has been seen in the previous chapter that

most task allocations do not have 100% utilisation of all nodes. Therefore any Task 2

or Task 3 nodes that are not busy will find it easy to switch; especially for the Foraging

For Work as the intelligence will be looking to switch as soon as it can if the node is

idle.

In general the recovery time will depend on the nature of the application, the threshold

settings in the intelligence and the nature of the fault. In this experiment the packet

production rate is 4ms. Therefore it can be approximated that the fault recovery time

in this experiment is between 6 and 40 times the application packet period (Q2 to Q3,

ignoring Q2s of 3ms as this implies the recovered performance was not significant).

Given that the Network Interaction threshold is set to 5 SOP tokens and the Foraging

For Work expiry threshold is 20ms (5 packet period), these recovery time values fit

within the expectations of the response of the intelligence. Regardless of this recovery

time, the recovery of performance shows the reorganisation of the task allocation is

successful. A real world deployment would need further analysis of the application,

fault likelihood analysis of the operating environment and fault recovery requirements

would need to be considered to determine how these thresholds should be set.
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7.3. Experiment 6: CIA Implementation of the Interac-

tion Network Intelligence Model

7.3.1. Experiment Overview

The previous chapter demonstrated that the Network Interaction model can perform

emergent task allocation with the intelligence implemented as response-threshold mod-

els implemented in software within the Picoblaze. This experiment will use the CIA

to implement this intelligence model to understand if the structure of the CIA decision

pathways can also perform the emergent task allocation. This would allow an imple-

mentation at much lower overhead that the Picoblaze (memory, sequencer and other

microcontroller functions not required) and also allows many decision pathways to be

built in parallel.

The use of response-threshold models in the Picoblaze implementation means that the

translation to the CIA should be relatively straight-forward, each response-threshold

pathway being implemented in a CIU of the CIA. The monitors and knobs, SOP de-

tect and task out, stay the same and interact with the internal router signals in the

same fashion. The CIUs can also support the same threshold values. Therefore it is

expected that the same high-level behaviour should be emerged as with the Picoblaze

implementation.

7.3.2. Knobs and Monitors

A SOP detect is required for each task, implemented using three Match to Impulse

monitors, Figure 5.18. Each monitor is configured to match with the SOP header

for the task it monitors (i.e. data words 0x181, 0x182 and 0x183), generating a

impulse when such a header is passed through the router.

One knob is required for this experiment to output the suggested task to the Microblaze

MCS. An Impulse to Vector knob, Figure 5.20 is used for this, the output task will

reflect the index of the previous impulse issued.
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7.3.3. CIA Configuration

The layout of the CIA used for this set of experiments is shown in Figure 7.2. Three

CIUs are required, each taking input from one of the task SOP match detectors. Once

one of the units reaches its threshold the stimulus for the task it represents is deemed

high enough and it issues an impulse. This is sent via the HBus and then received by

the output knob which will update the current output task suggestion and also issue

an impulse to signify a change in the task state. This impulse is used as an inhibitory

input which resets the task stimuli counters, resetting the task allocation process. The

CIA is clocked at 25MHz which is 1/4 of the NoC clock speed, this being its maximum

speed due to the critical path through the GBus.
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Figure 7.2: The CIA needs to be configured as follows to implement the interaction

network intelligence model. The monitors consist of three match-to-impulse detectors

that generate an impulse when the SOP header of the relevant task is detected passing

through the router. The task suggestion is output by the Impulse-to-Array knob which

will latch the value of the last emitted impulse onto the task out vector. It will also

generate an output impulse when an impulse is received by the knob. The CIA requires

two CIBs and three CIUs to implement the intelligence model, as described in Section

7.3.3.
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7.3.4. Experiment 6: Interaction Network Intelligence Model

The fist experiment implements the interaction network intelligence model and com-

pares it various to non-intelligence configurations: 1) an optimal solution with optimal

routing tables, 2) a random topology with the routing tables preloaded with their di-

rection chosen based on the shortest a Manhattan distance to the node of the correct

task, 3) a random topology with random routing tables. The intelligence is tested in

two configurations, the first has a random task mapping and the same Manhattan rout-

ing metric as the non-intelligent case and the second has random routing tables and a

random task mapping.

Each configuration was loaded into the many-core and the test application run for 1

second, this is then repeated 100 times for each configuration. The random mappings

and random routings are consistent between each configuration however, ensuring that

each configuration is compared on the same set of random mappings and random rout-

ing tables. Figure 7.3 shows the distribution of the average packet latency for each of

the configurations.

As expected, the optimal mapping achieves nearly perfect performance with a median

of 17 µs and a very tight distribution around this value. This is expected for the short

packet hop between optimally mapped nodes with perfect routing paths. The random

mapping performs far worse, even with the Manhattan routing applied on the top of

the random task mapping. The random mapping combined with the nature of the

application means that it is likely that a small percentage of the nodes end up sinking

the majority of the packets. This is confirmed in Table 7.3 which shows the average

number of unique nodes that processed data during the experiment for each task for

each experiment configuration. The load balancing nature of the optimal mapping

is clear, but the extra workload sharing of offered by the intelligence could explain

why the average latency distributions are less spread for the random mapping with the

intelligence model enabled.

Table 7.4 summarises the number of critical deadlocks (i.e. required intervention from

the node) encountered by each scheme. As expected the random routing is extremely

deadlock prone as there is no coherence in the routing paths. The intelligence offers an
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Figure 7.3: This graph shows the distribution of the average packet latency of each of 100 experiment runs of the task allocation configuration

used for Experiment 6. The red lines indicate the median and the grey shadow shows the distribution of the actual average values used to create the

boxplots. The median is also give in square brackets underneath the x-axis labels. The intelligence model works well at reducing the spread of the

random mapping, random routing case.
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Configuration Task 1 Task 2 Task 3

Optimal: 40 40 40

Random + Manhattan: 16 26 20

Random + Random: 4 15 8

Intel + Manhattan: 34 41 36

Intel + Random: 44 58 49

Table 7.3: The average number of individual nodes of each experimental configuration

that contribute to the processing load of the application. The low values for the non

adaptive approaches show an example of the effect poor mappings can have on the

many-core.

improvement on this by removing two thirds of the total deadlock the happened during

the random routing configuration. As can be seen in the lower graph of Figure 7.4 a

large amount of the critical deadlock occurs during the initial phase of the experiment

where the system has not had a chance to adapt to the routing tables and so it operation

this number will be much lower (although for the first quartile the level of deadlock

stays high for most of the run, despite the mapping’s good latency otherwise).

Configuration Average Deadlocked Packets per Run

Optimal: 0

Random + Manhattan: 0

Random + Random: 7,410

Intel + Manhattan: 106

Intel + Random: 2,480

Table 7.4: Critical deadlock figures for each configuration of Experiment 6. Critical

deadlock is the case where the node has to accept a packet that is of the incorrect task

due to all router ports having timed-out waiting for the deadlock to clear.

Figures 7.4 and 7.5 give us some insight into the performance of the intelligence

model. From Figure 7.4 it can be seen that the initial poor latencies are reduced after

a small period, however the latencies do not settle completely suggesting that there

are still bad mappings introducing congestion and possibly disrupting good mappings

that have already settled. Despite this the middle graphs of Figure 7.4 show the rate of

packets moving around the system and this is fairly stable for all three quartiles despite

the less stable packet latency. This suggests that the network has settled to some extent

and the task switching dynamics of Figure 7.5 agree that, for the Q2 and Q3 graphs,

the task switching activity has dropped significantly since the dynamic start to each

experiment run. Although at ≈500 task switches per second it has not settled down to

what could be considered a steady state.
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Figure 7.4: Time domain plot of three runs from Experiment 6. All three runs are

chosen from the Random Mapping, Random Routing case and represent the Q1, Q2

and Q3 points on the distribution of run average packet latencies. The packet latency

records the latency of all packets received and a moving average over 100 packets

removes enough variation to see the longer term trend. The packets and deadlock

counters take the average number of the events over the last 100ms.
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Figure 7.5: Time domain plot of three runs from Experiment 6. As with Figure 7.4,

all three runs are chosen from the Random Mapping, Random Routing case. The top

graph shows the number of processing elements carrying out each task over time with

the following task mappings: blue: Task 1, orange: Task 2 green: Task 3. The lower

graph shows the average rate of task switches occurring every 100ms.

7.3.5. Review

This experiment has shown that the Interaction Network intelligence model can be

implemented on the CIA and has some self-organisation properties when applied to

the many-core. It can improve on packet latencies and deadlock when compared to a

random alternative, however it does not reach the capabilities of an optimal mapping.

This could be due to the role of packet counters as the monitors in this intelligence and

so the mapping will be ultimately be driven by the routing patterns, the random routing

tables may not give enough traffic diversity for the more optimal task mappings to be

encountered.
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7.4. Experiment 7: CIA Implementation of the Forag-

ing For Work (FFW) Model

7.4.1. Experiment Overview

In the same fashion as with the previous experiment, this experiment implements the

Foraging For Work intelligence model using the CIA. The CIA implementation of

FFW will allow further hardware savings than the Network Interaction model as the

FFW timer uses the Picoblaze’s interrupt handler, requiring interrupt support from the

intelligence microcontroller. This experiment will also show that the CIA is capable

of supporting time-domain driven inputs as the FFW decay tick is implemented as a

global tick signal.

As with the Network Interaction CIA implementation, the use of response-threshold

models in the FFW Picoblaze implementation lends to a straight-forward translation to

the CIU architecture. The FFW timer is prescaled by a CIU and a level thresholder is

used to disable the task switch mechanism when the FFW model is in “task assigned”

state (i.e. when the stimulus for the present task is high enough to keep the individual

working on that task). A difference with the Picoblaze implementation is an extra

monitor that indicates if the node’s Microblaze is performing a processing event for

the current task. This monitor is required as the CIA cannot understand what task the

node is currently performing, as it does not have memory capabilities, and once a task

switch is suggested the threshold counts are reset. The extra monitor takes the place

of the SOP to current task ID check that the Picoblaze undertook (as shown in Figure

6.6). Despite this change, it is expected that the same high-level behaviour can be

emerged as the Picoblaze implementation.

7.4.2. Knobs and Monitors

The same monitors as the previous experiment are used: three SOP detects using three

Match to Impulse monitor. Two additional monitors are required: the 1ms global tick

source which is used for implementation of the task decay part of this model and also



Social Insect-Inspired Adaptive Hardware 253

the Microblaze Busy flag from the local Microblaze MCS. This flag is set to ‘1’ when

the Microblaze is performing the “CPU Time” processing portion of the task model

and ‘0’ when the processor is not performing the simulation application task.

Again the same task suggestion knob is required for this experiment to output the

suggested task to the Microblaze MCS, implemented using an Impulse to Vector knob.

7.4.3. CIA Configuration

The layout of the CIA used for this set of experiments is shown in Figure 7.6. This is

very similar to the model used for the previous set of experiments, with an extension

for the task decay time. Each of the SOP match detectors are connected to an CIU,

but this time the CIU’s threshold value is set to one. This means one SOP can cause a

task switch as the impulse is immediately forwarded to the output task switch knob via

the HBus. Each CIU however has an inhibitory input that is driven by the task decay

time circuitry. This inhibitory signal will stop the passing of SOP impulses to the task

switch knob.

The task decay time is implemented in CIB5. Two CIUs are used: CIU2 is used to

scale the 1ms tick for the task decay time: raising this CIU’s threshold will result in a

larger number of ticks required for the CIU to impulse and will increase the task decay

time. It is reset by the MCS busy flag. CIU3 is configured in “Level mode”, in this

mode the CIU will not impulse but will instead output a constant ‘0’ or ‘1’ depending

on if the internal count is below or above the threshold value. As the MCS busy flag is

the excitatory input for this CIU, any task activity longer than a few microseconds on

the node (i.e. when a packet is received) will result in this CIU’s internal count rising

above the threshold to its maximum value. This will cause the CIU to output a level ‘1’

and so will inhibit the task switch mechanism implemented in CIB0, CIB1 and CIB2.

The inhibitory input to CIU3 is the scaled 1ms tick (output of CIU2) and so this will

reduce the internal count every time this tick time has elapsed. When the count drops

below the threshold value then the FFW intelligence has entered Forage mode. This

causes the CIU to output a level ‘0’ and so the inhibitory signal to CIU the task switch

mechanism in CIB0, CIB1 and CIB2 will be released and so they will suggest a new
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task depending on the next SOP impulse generated.
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Figure 7.6: The implementation of the FFW intelligence is similar to the interaction

network implementation. The three SOP detectors are still used but have their thresh-

olds set to one and so emit an impulse as soon as their respective SOP arrives. Unlike

the interaction model however their inhibitory input is controlled from another intel-

ligence circuit implemented in CIB5. This circuit uses the “MCS busy flag” from the

processing core and a scaled 1ms tick to disable the task switch mechanism when there

is enough work to do for the current task to keep the MCS active.

7.4.4. Experiment 7.1: Foraging For Work Intelligence Model

This experiment is the equivalent of Experiment 6 but for evaluating the Foraging

For Work intelligence model against the same non-intelligence configurations (opti-

mal solutions with optimal routing tables, random topologies with Manhattan distance
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routing tables and a random topology with random routing tables). Once again, the in-

telligence is tested in two configurations: the first has a random task mapping and the

same Manhattan routing metric as the non-intelligent case and the second has random

routing tables and a random task mapping.

The distribution of the run average packet latencies is presented in Figure 7.7. As

with Experiment 6, both of the adaptive approaches achieve a more optimal distri-

bution then the random mappings, although still far from the optimal mapping case

with a median latency of 638µs against 17µs for the optimal mapping. However the

FFW intelligence has managed to achieve a significantly better median latency that

the Interaction Network model (828µs) for the random mapping and random routing

tables.

By exploring these results in the time domain in Figure 7.8 the difference in adaptivity

between Q1 and Q3 is clear with Q3 seemingly settled on an average higher latency but

exhibiting more stability than Q1 and Q2. Unlike the interaction model, the number of

packets appears to fluctuate quite wildly, but with 128 cores sending data roughly every

1ms these variations are within what could be expected. The deadlock performance is

poor however at nearly twice that of the interaction model. Figure 6.9 shows the task

switching dynamics for the three distributions which is surprisingly high after a settling

period. The number of task switches is high but fairly constant, so the network could

be undergoing an oscillating effect; possibly caused by the pathways also causing the

high levels of deadlock. This higher level of deadlock is confirmed in the critical

deadlock numbers in Table 7.6. The workload figures in Table 7.5 show that not as

many nodes are be getting packets to work on when compared to the interaction model

and so there seems to be less traffic route diversity with the FFW model.

Configuration Task 1 Task 2 Task 3

Optimal: 40 40 40

Random + Manhattan: 16 26 20

Random + Random: 4 15 8

Intel + Manhattan: 24 32 27

Intel + Random: 19 33 24

Table 7.5: The average number of individual nodes of each experimental configuration

that contribute to the processing load of the application.
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Figure 7.7: The distribution of run averages for the Foraging For Work intelligence model. The model results in more spread than the interaction

model but this seems to allow it to achieve a significantly lower median and a better lower point than the random mapping case.
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Configuration Average Deadlocked Packets per Run

Optimal: 0

Random + Manhattan: 0

Random + Random: 7,390

Intel + Manhattan: 505

Intel + Random: 4,820

Table 7.6: Critical deadlock figures for each configuration of Experiment 7.
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Figure 7.8: Packet characteristics for Experiment 7. The latencies (with a moving

average of 100 packets applied) are fairly stable espeically Q3 that seems to have

settled on a higher average latency. However the number of deadlocked packets are

high (which do not count to the packet latency).
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Figure 7.9: Task switching characteristics for Experiment 7. Despite the high number

of task switches per second the task distribution seems to settle well for the three tasks,

although the shape of the plot suggests some oscillation may be taking place in all three

runs. This could suggest why the task switch rate is high but the packet latency has

managed to settle.

7.4.5. Review

Foraging For Work translates well to implementation within the CIA and many-core

context but seems to provide dynamics that are heavily unsettled, causing many task

switches and deadlocks. As with the Interaction Network models, this could be a

limitation of the random routing not providing enough diversity for the mappings to

self-organise into topologies that are more stable for FFW. The model also seems to

be prone to oscillations, although it must be noted that it seems to manage reasonably

stable packet latencies despite these oscillations and other instabilities in the topology.
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7.5. Experiment 8: Experiment Performance of Intelli-

gence Array Relative to Clock Frequency

7.5.1. Experiment Overview

An appealing aspect of the CIA is the ability to use it at low power and “hide” it in

the Dark Silicon that would be left empty as a thermal buffer. This would allow the

protective and run-time management aspects of the CIA to run with negligible power

and thermal overhead relative to the requirements for the high-performance system.

If the system has been partitioned with thermal buffers between high-performance

circuitry, then the hardware resources required by the CIA are also negligible as they

would be left unused (or dedicated to cache) as part of the Dark Silicon role. Running

the CIA at a lower frequency also reduces timing performance requirements of the

CIA, allowing longer routing paths for monitoring signals and reducing the design-

insertion overhead when synthesising a CIA into an existing design.

This experiment investigates the effectiveness of the CIA when run at a clock frequen-

cies significantly lower than the circuit it is protecting. Running the CIA at a lower

frequency will reduce the response time of the intelligence, potentially leaving the in-

telligence too little time to react to changes in the system, or “keep up”, which could

result in poor performance of the task allocation models. This approach will also re-

quire latching of information captured by monitors at full-system speed and so some

loss of information into the intelligence will occur; e.g. if a number of SOP events

occur between CIA clock cycles then these events will be reduced into only one event.

However, due to the periodic nature of the application richer sets of information can be

gathered through sampling over a longer time period. Therefore, the intelligence could

be expected to gather the same information if it is run slowly; although over a longer

time frame and likely with a sacrifice of increased settling time or slower adaptation

rates to perturbations. There is also the expectation that at a certain reduced sensory

speed the intelligence would not keep up with the effect that it has on the system when

the knobs are updated, thus it could be that at a certain frequency the intelligence

would not settle on a task allocation.
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7.5.2. Experiment 8.1: Underclocking the Intelligence to 50kHz

The maximum operating speed of the CIA is 25MHz. This is due to a long combi-

natorial path in the routing of the GBus signals which are not registered, resulting in

a critical path which is the longest possible FPGA routing path between CIU outputs

(where the signal is last registered) and the input of all CIUs in the column. Due to the

programmable input routing multiplexors in the CIUs and CIBs, this path has several

points of signal delay present. This bus could be registered in future CIA implemen-

tation to allow higher operating frequency of the embedded intelligence. The NoC

is running at a fixed 100MHz and the Microblaze is able to switch from 20MHz to

300MHz as controlled by either the intelligence or the RCAP port. Therefore the CIA

is designed with clock domain crossing circuitry on the relevant knobs and monitors.

The actual operation speed of the CIA is set by a field in the configuration chain and

can be set from 25MHz down to 50kHz. This is the range this experiment tests with

the Interaction Network intelligence and also the Foraging For Work model.

Figure 7.10 shows the results of the frequency sweep and it can be seen that the per-

formance of the Interaction Network task allocation intelligence is not affected by the

reduction in frequency, even down to 50kHz. As this model relies on task detection

impulses which are latched as part of the clock domain crossing procedure, it is likely

that reducing the clock speed will just extend the time frame required to adapt over

(i.e. decrease the adaptivity response time). Some packets will be missed (only one

packet SOP can be latched for each task at a time) but this does not appear to affect the

dynamics. The results for the Foraging For Work model is given in Figure 7.11. This

model also does not suffer from the significantly reduced clock frequency, despite the

FFW model having a time based element to it. However, the clock period at 50kHz is

20µs and so there are still 50 clock cycles per 1ms tick of the FFW inhibitory input, so

in theory 50 latched SOP impulses could still be captured by the CIA without losing

information whilst running at 50kHz.
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7.5.3. Review

This finding has great implications for using impulse-based embedded intelligence for

an on-chip monitoring application. However, further investigation will need to be un-

dertaken to understand the dynamics deeper as these are relatively simple intelligence

models requiring latched signal inputs that are not crucial if they are missed. The fact

that we can run the intelligence on the CIA at a significant lower frequency than the

application node with little impact on its ability is a good argument for placing these

embedded pathways in logic that would otherwise be wasted to Dark Silicon.

The number of SOPs that could be missed due to underclocking of the intelligence is

highly dependant on the application packet rate and how hotspots of network traffic

are distributed. The linear test application in these experiments has a packet rate of

4ms, or 250Hz. In the optimal task allocation case where a single packet is sent and

a single packet is received per node this results in an SOP event rate of 500Hz, far

beneath the lowest CIA frequency tested in this experiment of 50kHz. In non-optimal

topologies or non-linear task graphs this rate will be much higher due to hotspots

or nodes sending/receiving multiple packets; however even in this case the rate of

packets moving through the router will need around 100 times more than the optimal

case before the intelligence starts to lose information. In this application this would be

nearly impossible as it would require all packets of all nodes to pass through a single

router before information is lost. Therefore, it is likely that the CIA clock frequency

can be dropped to 5kHz before hotspots start to lose information and poor decisions

may be made.

This frequency will be unique to the application running on the system, although

packet generation rates in the millisecond range are a reasonable abstraction for appli-

cations where data processing happens on the nodes and so clocking the intelligence

in the kHz range will be applicable for many applications with packet rates up to every

10µs. This frequency is also unique to task allocation pathways: events that form the

monitors of other decision pathways may occur at a higher rate and so those pathways

would need to be clocked at a different rate to the task allocation pathways. Determina-

tion of the pathway operating frequencies would require either an application analysis
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to determine monitoring signal rates (parts of this information would be available at

the application design phase) or through use of a design optimisation or self-learning

process in the intelligence itself.
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7.6. Summary

These experiments have shown that the social insect inspired intelligence is capable of

adaptive behaviours at very low hardware overhead: each CIU has only 2 active slices

once programmable routing resources are removed. This overhead scales linearly with

each extra node and the behaviours it has shown in this chapter have coped with scal-

ing up with over one hundred many-core nodes. The fault tolerance capability does not

require any extra hardware resources within the intelligence and is capable of recover-

ing system performance over a wide range of fault injections. Limitations have been

found with the social insect model, however it is likely that these can be overcome

through some additional intelligence circuitry, albeit the required extensions are pos-

sibly not social-insect inspired. This chapter has shown how two bio-inspired models

are translated into a form suitable for hardware realisation using the CIA.

As with the previous chapter, the goals of an autonomous system can be used to qual-

ify the behaviours seen in these experiment to gauge the degree to what this system is

autonomous:

Self-Configuration: The goals achieved in the previous chapter have also been achieved

with the CIA implementation of the intelligence models. Reducing the clock frequency

of the CIA does not have a limiting effect on the self-configuration property.

Self-Optimisation: The goals achieved in the previous chapter have also been achieved

with the CIA implementation of the intelligence models. Reducing the clock frequency

of the CIA does not have a limiting effect on the self-optimisation property.

Self-Healing: The fault tolerance experiment has shown that both of the embedded

intelligence models support self-healing capabilities as an intrinsic part of the decen-

tralised task allocation. The ability of the system to recover application performance

from even a large number of faulty nodes shows that the model can use spare resources

(inactive nodes) and reconfigure active nodes to allow survival of the application.

Self-Protection: The fault model in this chapter considered random high-level faults.

Such faults are difficult to predict. A self-protection mechanism would need to monitor

wear of the nodes or global resources (such as clock-tree buffers) or other indicators of

a fault becoming likely to occur and make informed decisions on how to manage this.
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Other fault models could use chip-level sensing or long term monitoring of system

characteristics to bring information into the intelligence that can be used to pre-empt

a fault happening. This can feed into some of the decision units to stop faults before

they occur and so provide a self-protection capability to the system. The experiments

in this chapter did not offer such a capability however.

This chapter has demonstrated that self-configuration, self-optimisation and self-healing

of the task allocation can be exhibited by both of the emergent intelligence models and

that the models will still support self-configuration and self-optimisation even when

implemented directly in hardware using the CIA.
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Chapter 8

Conclusions
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This thesis has covered a wide range of topics from upcoming issues with silicon

devices, to biological models of natural complex system to low level FPGA design.

This section ties these ends together with the aim of suggesting what the future of

such systems could look like and what has been learnt about the applicability of the

social insect models to large scale many-core systems.

8.1. Summary

8.1.1. Social-Insect Inspired Adaptive Task Allocation

The experiments in Chapter 6 translate and implement two of the social-insect intel-

ligence models from Chapter 3 to run emergent task allocation on Centurion, using a

Picoblaze microcontroller to implement the intelligence models. The two intelligence

models chosen, Network Interaction and Foraging For Work, use simple response-

threshold decision models to interpret environmental stimuli and are considered to

be hardware efficient to implement. Foraging For Work has a temporal aspect to the

model whilst Network Interaction only relies on dynamics set up by neighbouring

nodes.

In the baseline experiments with no intelligence, there was a clear correlation between

using random routing settings as a starting configuration and poor application through-

put and high number of deadlocked packets. This provides a challenging problem

space for the intelligence models to operate with, but gives confidence that the intelli-

gence will work with even larger-scale systems as it does not require any analysis of

the routing or task allocation before deployment.

In the experiments, the Network Interaction model settles down to topologies that

are stable with respect to packet latency and the number of deadlocks, however the

settledness seems to come from reducing the number of Task 1 nodes (the primary

producer tasks) to a level that means the task graph is very poorly supported. In some

experiments this had the effect that the ratio of Task 1 nodes to 2 and 3 was still not

satisfactory to reach the performance levels of the Manhattan routed case. Foraging

For Work performs similarly to the interaction model and also suffers from the same
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pitfalls regarding premature settledness coming from reducing the number of Task 1

nodes to a level where the task graph cannot be sustained.

To counter this undesirable effect, an extension from the Network-Interaction biolog-

ical model is added to both models in the form of self-regulation. This forced nodes

to switch to Task 1 if they are idle for a period of time. This adds extra dynamics

that improve the task throughput of the system for all task graphs, but the performance

improvement and performance distribution is markedly better for Foraging For Work.

The fact that both the self-regulation and the Foraging For Work are both temporally

driven could also be a factor in their good compatibility.

Chapter 7 tested the fault tolerance capabilities of the bio-inspired models by injecting

a number of node-level faults and measuring the system response. No extra intelli-

gence capability (and therefore no extra hardware) was added to the bio-inspired mod-

els, demonstrating that fault tolerance is an inherent property of the emergent models.

Both models could cope with up to 8 failed nodes before performance was diminished

compared to a no-fault mapping, indeed Foraging For Work did not start to diminish

performance until 32 faults were injected. This confirms the presence of inherent fault

tolerance in the mechanisms of the bio-inspired models.

Finally, the hardware overhead of using a microcontroller for the intelligence was

reduced in Experiments 6, 7 and 8 by implementing the models using the CIA. Both the

Network Interaction Model and Foraging For Work were implemented using parallel

decision pathways located in the threshold units of the CIA. The emergence of task

allocation in both models’ behaviour was verified experimentally: both models exhibit

equivalent emergent behaviour as seen in their microcontoller implementations. This

allows a hardware efficient implementation by removing the configurable aspects of

the CIA to leave only the threshold decision units (a number of 6-bit counters).

The potential for a low power intelligence implementation was demonstrated by slow-

ing the intelligence and observing that the emergent task allocation still occurs. It was

found that even at the CIA’s slowest operating speed (50kHz) very little effect on the

quality of the emergent task allocation is seen. It is suggested that this is likely due to

the low sampling frequency required for the signals that the CIA monitors for the task

allocation intelligence (packet SOP); this signal triggers at around 1kHz for a good
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task topology.

8.1.2. Effectiveness of the Centurion Platform

The final iteration of the Centurion platform resulted in a 128 node many-core ar-

ranged in a 8 by 16 grid NoC. This core count fulfils Centurion’s goal of supporting

large-scale many-core research and allowed experimentation in hardware that would

not have been possible with any existing off-the-shelf single chip many-cores. The

low level control signals (knobs and monitors) allow the intelligence to interact with

the router control logic to successfully manage aspects of router behaviour. The exper-

iment monitoring capabilities (event logging and hi-speed retrieval) supported online

data collection whilst the experiment is running, allowing a rich set of events to be

stored for later analysis.

Some of the advanced features of Centurion such as thermal monitoring and dynamic

clock frequency scaling for each node were implemented and tested but ultimately

not used for any experiments. Accurate representations of these advanced knobs and

monitors are difficult to simulate and so with the foresight that these would not be

used could make the justification of building Centurion weaker; node-level simula-

tions could have achieved the same experimental results by marrying a NoC simu-

lator, microcontroller simulator and a microprocessor simulator together to represent

the router, intelligence and PE respectively. However, the compute power required

to support such a simulation for at least 128 nodes with the same number of initial

conditions explored on the platform (i.e. 1000 runs for the baseline experiments, 100

runs for each intelligence configuration) would have resulted in a huge amount of time

required to generate the same result set. For this reason alone the development of the

hardware platform for this work is justified.

The analysis of the experiments would have benefited from more event data, specifi-

cally from the routers as packets are routed or by adding information to the packet as

it traverses the network (e.g. path taken, degree of deadlock resolution at each router,

time spent waiting at each router). This would allow better understanding of the task

distribution, as traffic and deadlock hotspots could be identified and their impact on the
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effectiveness of the task allocation understood. This would allow metrics that are more

specific to many-core systems and NoCs to be used for determining the effectiveness

of the experiments.

8.1.3. Implementation of Decision Pathways using the CIA

The response-threshold nature of the decision making elements of the implementa-

tion of both Network Interaction and Foraging For Work lends itself well to a digital

hardware implementation. The Configurable Intelligence Array (CIA) allows these de-

cision making pathways to be prototyped in hardware by combining low hardware cost

decision threshold units (2 slices for decision making, 2 slices for programmable set-

tings) with programmable routing structures. This allows impulse-based inputs from

Centurion to be routing into decision making units and the output of these decisions

to be passed to outputs into the routing control or into other decision making units.

Both bio-inspired models were successfully implemented in the form required by the

CIA and equivalent emergent behaviour observed in the experiments. This is despite

the manual translation of the model directly into CIA decision pathways, verified with

hardware implementation without use of optimisation tools or a simulation of the path-

ways with a representative simulation of the hardware platform. Further tuning of CIA

parameters may have given better performance results through more efficient settings

for threshold units for the applications they were applied to.

8.1.4. Autonomous System Evaluation

A goal of the embedded intelligence is to self-manage the many-core without inputs

from a user or even from the application designer, the intelligence should strive to

manage the system such that it adapts to the needs of the functions running on it. This

process is on-going through the system’s deployment lifetime and aligns with self-*

aims aligned with the field of Autonomic Computing. The four main self-* properties

of autonomous system management were introduced in Section 2.4 as goals for the in-

telligence to be able to support. In nature social-insect colonies exhibit behaviours that

can fulfil aspects of all of the following goals. In this work the intelligence displayed
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self-* capabilities against the following criteria:

Self-Configuration: The ability of the intelligence to adapt to the random routing such

that the task graphs can complete a full Task 1 to Task 3 flow of data is considered

self-configuration, as without this configuration no processing would happen. This is

captured in the experiments through the measurement of Task 3 throughput and the

number of deadlocks in the system (a deadlock ultimately means a node of an incor-

rect task has sunk the packet). Both of the emergent task allocation models exhibit

self-configuration and this is also achieved with the CIA implementation of the intel-

ligence models.

Self-Optimisation: Reducing the number of routing steps a packet needs to do between

nodes provides an optimisation path on the self-configured task topology that the in-

telligence can exploit. For the Network Interaction model, the self-optimisation is in-

herent in the way the intelligence will reduce the number of routing hops. A large task

packet response is taken up by a node immediately if the stimulus is greater than its

current task. Foraging for Work only has motivation to optimise once a node becomes

inactive enough to trigger the Foraging For Work window where it will accept the next

task that arrives, the self-regulation extension is a source of disruption to the topology

such to provide this motivation to Foraging For Work. Evidence of self-optimisation

is seen in the experiments with decreasing packet latency seen at the start of the time

domain plots of most experiments.

Self-Healing: The capability of the emergent task allocation to cope with failed nodes

was demonstrated in the fault tolerance experiment. The ability of the system to self-

configure and self-optimise after the injection of faults allows application performance

to be recovered to pre-fault levels for a low number of faults and with a small loss of

performance for cases up to 32 faults.

Self-Protection: Supporting self-protection requires allocation of spare resources and

anticipation of faults occurring and mitigating before they occur. The intelligence
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models do not currently exhibit these properties. Allocation of spare resources (nodes)

does help with the self-healing case but these are an accidental by-product of the task

allocation not mapping perfectly to resources available, as opposed to a feature of the

intelligence determining that it should allocate spare resources for self-protection.

From this evidence it is suggested that autonomous task allocation can be considered

a property of both Network Interaction and Foraging For Work intelligence models

for the cases used in these experiments, however it is not claimed that they can be

applied to all types of task graphs and system applications and expect the system to

autonomously manage the task allocation. Further experimentation is required with

these models to show that they can work in the general case. This work has not found

any immediate reasons as to why a general application task graph, even larger scale

systems or different sets of application execution profiles could not be supported.

Self-protection does not have a test case as of yet. It can be seen how it could be

supported by the models by using thermal and application-based monitors to inform

decision pathways that can be designed or trained to detect likely conditions of out of

envelope use, before the system reaches the point of failure.

8.1.5. Overall Conclusions

The introduction proposed that Embedded social insect intelligence models derived

from studies of the social insects can exhibit highly-scalable adaptive behaviours suit-

able for managing complex digital electronic systems. The social insect intelligence

models presented and explored in Chapter 3 suggested a range of fundamentally high-

scalability models of intelligence at both the individual and at the colony level. This

included discussion of tradeoffs such as the cost of learning versus the cost of mem-

ory, the size and complexity of an individual versus the size and social complexity of

an interacting colony of organisms. Such tradeoffs are extremely relevant to modern

embedded artificial intelligence as single chip systems have reached a size where such

tradeoffs can start to be considered.

The following sub hypotheses were also proposed:

Models of task allocation in social insect colonies provide appropriate inspiration
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for enabling self-organising task mappings for many-core systems.

The Centurion platform has been a key resource for assessing the suitability of these

models, not only for their self-organising abilities but also for their suitability for im-

plementation. If this work was done in either a NoC simulator or more abstractly in

an multi-agent based simulation, it would be much harder to gauge the effectiveness

of these models at an embedded circuitry level. The implementation of these models,

both in the Picoblaze and the CIA has shown that they can be implemented using a

reduction to a digital form (8-bit processor ALU or 6-bit thresholder) which has ex-

tremely low hardware overhead. The experiments in Chapter 6 and 7 showed that

emergence could be achieved and so this translation can be considered successful: the

implementation was inherently highly scalable and no pre-analysis or global knowl-

edge was required when using the intelligence models. On reflection however there

are several issues with the translation these models:

• Ensuring that a full set of stimuli is covered and translated from the application

domain into the social-insect model. With more complex applications or a more

comprehensive social insect model it will be difficult to ensure that all stimuli

are covered and in a form that captures both the application need and the input

form required by the model. For example the translation of individual move-

ment in the ant colony and information transfer was successful in this model but

there will be other physical-world versus digital-world translations that will not

translatable.

• Several necessary simplifications of the many-core applications. Ants have task

repertories but they are still very small when compared to a general purpose

computing platform. Whilst the representative task graphs helped prove the con-

cept, it is likely that an application translation methodology would be needed to

take a user application and apply it to a system managed by these intelligence

models (however this is an open problem for many-core system design, even for

non-bio inspired management designs).

• Response-thresholds still have a design element as their threshold values need

relating to the application environment. In the experiments of Chapter 6 this

was mainly in the temporal domain as the FFW threshold was related to the task
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period. For general purpose applications such values will be critical and difficult

to extract, and it is likely that self-learning or other optimisation techniques will

be needed to capture the correct parameters. Although this will be a markedly

smaller problem space than the NoC design space for large NoCs.

The results from the dynamic task allocation experiments have shown that both bio-

inspired runtime management models exhibit emergent adaptive properties that are

useful in large fault cases, and hence indicate a degree of inherent scalability. Whilst

such global failure cases may be mitigated through circuit hardening or additional re-

dundancy, this fault case is also relevant for high-processing power devices that require

the parallel throughput of a many-core system but are deployed in remote application

scenarios with requirements of autonomous operation and long lifetime. As faults de-

velop in the field over the lifetime of a device the emergent task allocation can adapt

the task topology to achieve a managed degradation of system performance that may

allow a device to operate for longer in its deployed environment.

The digital translation of these decision pathways has been a key contribution. The

response-threshold units appear in many biological models and represent a very sim-

plified form of neural pathway that maps well to digital hardware fabrics, such as

FPGA, and can be used to implement the bio-inspired social insect intelligence models

presented in this paper in low-level hardware. This will provide a pathway for creating

a design methodology for a generic response-threshold based intelligence systems. It

could be a worthwhile activity to revisit the neural aspects of the hardware platforms

detailed at the end of Chapter 2 with such an FPGA efficient impulse network and see

if some older models should be resurrected on modern hardware platforms.

8.2. Further Work

8.2.1. Potential Centurion Developments

Further improvements to Centurion would provide new capabilities that the intelli-

gence models can exploit. The most pressing addition is the support of adaptive routing

and multi-cast functionality for better support of task graphs with a parallel element
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to them. An adaptive routing function is currently present in the Picoblaze version of

the intelligence: a flag can be set that allows the router FSMs to source their routing

directions from the Picoblaze instead of the RCAP tables. This knob does not exist in

the CIA version however and implementing it for the CIA may prove more challenging

due to the need to deal with the impulse outputs from the CIA. Therefore an adaptive

routing capability or multi-cast option built into the control FSMs of the router which

the CIA can manipulate the use of (i.e. likelihood of taking the parallel options for

each task) will be the most effective method of implementing this functionality. A fur-

ther step may be to replace the router control logic with a microcontroller. This could

allow more routing capabilities to be supported such as packet priority, the ability to

add to or edit packet headers as it passes through the router and the ability for the in-

telligence to source/emit packets. The Picoblaze intelligence has demonstrated how a

microcontroller can be used with a only a small hardware overhead.

Logging and debug capabilities for the routing functions would also allow a much

richer dataset to be collected for the experiments. This would allow a deeper in-

sight into how and why decisions are made by the intelligence and will make routing

hotspots much easier to locate. Centurion would also have benefited from a FPGA

board that had power monitoring capabilities of the FPGA’s power rails, as this would

allow the link between power efficiency and efficient task allocations to be explored.

This could be provided as a global monitor signal to all nodes to allow decisions based

on power capabilities to be supported.

Finally, a series of ultra-high density FPGA devices has been released since Centurion

has been developed. This would allow massive scaling-up of the platform, in the

region of 700 - 1000 nodes for some of the largest FPGA devices available now. The

smaller process technology should also allow a higher clock frequency for both the

nodes and the NoC, bringing the total compute throughput of Centurion into a region

more competitive with high-speed multi-core processors. The high-density FPGAs

would present new challenges in the form of inter-die boundaries (the FPGA is made

up of several dies and there are different performance constraints for signals crossing

die boundaries) and implementing such a large design.
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8.2.2. Further Experiments with the Social Insect Models

Several further improvements to the embedded intelligence are conceivable that would

go beyond the models presented here. The addition of adaptive and multi-cast routing

to Centurion would allow greater throughput as the intelligence can exploit the inherent

parallelism of a task graph. Whilst there is not a direct mapping of a social insect model

for this kind of adaptive routing, the stimulus-response threshold model could be used

to allow the embedded intelligence to make decisions on the destination output port

of incoming packets. Many of the models shown in Figure 3.1 feature mechanisms

for adaptive thresholds, which are not yet considered in this work and could be used

to allow the intelligence to learn which ports are better to use in an adaptive routing

application.

Further experiments that tie the operating conditions of a node to application demand

will be vital for managing the variability and thermal management of the many core

to reduce the effects of Dark Silicon. The per-node thermal monitors presented in

Chapter 4 are intended to monitor the local temperature of a node and be coupled to the

node clock frequency knobs to provide run-time thermal management. These can also

be combined with the task allocation decision pathways to make the decision space

much more rich, a node deciding to move to an idle state or run much slower will have

an impact on the workload of its peers. Social insect colonies exhibit idle colonies

members and colony members that spend their whole lifetime in a low-productivity

state and so it is likely that an suitable emergent decision model exists that can be

translated for this purpose.

8.2.3. Future Development of Decision Pathways based on the CIA

The digital counter based decision-threshold units of the CIA have shown how these

decisions can be made in a form that is hardware efficient, highly parallel and so likely

to be power efficient over a comparable processor implementation. The ability to

clock the CIA pathways much slower than the application they monitor will help re-

duce their dynamic power consumption to a point that is negligible when compared to

the application they are applied to. If a design process is developed that can remove the
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programmable aspects of the CIA pathways once an intelligence circuit is prototyped,

then this power consumption can be reduced to the point where only the counters and

the propagation of the impulses is required. These pathways could then be made even

more power efficient in an ASIC implementation by translating the pathways into asyn-

chronous decision pathways or analogue implementations based on capturing charge

with each excitatory impulse, with a controllable leakage representing the inhibitory

factors.

The design of these pathways and the choice to use digital thresholders came from

the biological social insect models. The biological models of Nervous Systems may

be a better-suited source of inspiration for system runtime management. Neural path-

ways present in Nervous Systems combine a large number of monitoring elements into

closed loop, threshold-based decision units to muscular (or otherwise) effector cells.

It is seen that many sensory cells in insects and other simple creatures create impulses

as their output and so the model should also translate well to monitoring digital hard-

ware. Given the large number of sensory cells in a typical creature, development and

growth of Nervous Systems must also exhibit power and area efficiency to suit the

environment the creature has evolved to live in. Changing the biological metaphor

may also offer a clearer route to how the pathways are designed. Exploring the effect

of genetic factors, online learning and Nervous System growth as a creature develops

may give insights that can be applied to creating a threshold-based Nervous System

for protection of complex, large scale hardware systems.
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Appendix A

Device Clock Domain Mapping

Table A.1: Clock resources used per clock region. Each clock region supports a total

of 12 global (BUFG) or local (BUFH) clocks.

Clock

Region

(L)

Type Clock name Clock

Region

(R)

Type Clock name

X0Y8 BUFG NoC clk X1Y8 BUFG NoC clk

BUFG DDR 200MHz BUFG LVDS 25MHz

BUFG DDRVP 200MHz BUFG DDR 200MHz

BUFG MDM clk BUFG DDRVP 200MHz

X0Y7 BUFG NoC clk X1Y7 BUFG NoC clk

BUFG DDR 200MHz BUFG DDR 200MHz

BUFG DDRVP 200MHz BUFG DDRVP 200MHz

BUFG clk 600MHz BUFG clk 600MHz

BUFH div clk[0] BUFH div clk[4]

BUFH div clk[1] BUFH div clk[5]

BUFH div clk[2] BUFH div clk[6]

BUFH div clk[3] BUFH div clk[7]

BUFH div clk[8] BUFH div clk[12]

BUFH div clk[9] BUFH div clk[13]

BUFH div clk[10] BUFH div clk[14]
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BUFH div clk[11] BUFH div clk[15]

X0Y6 BUFG NoC clk X1Y6 BUFG NoC clk

BUFG MDM clk BUFG LVDS 25MHz

BUFG LVDS 100MHz

BUFG clk 600MHz BUFG clk 600MHz

BUFH div clk[16] BUFH div clk[20]

BUFH div clk[17] BUFH div clk[21]

BUFH div clk[18] BUFH div clk[22]

BUFH div clk[19] BUFH div clk[23]

BUFH div clk[24] BUFH div clk[28]

BUFH div clk[25] BUFH div clk[29]

BUFH div clk[26] BUFH div clk[30]

BUFH div clk[27] BUFH div clk[31]

X0Y5 BUFG NoC clk X1Y5 BUFG NoC clk

BUFG clk 600MHz BUFG clk 600MHz

BUFH div clk[32] BUFH div clk[36]

BUFH div clk[33] BUFH div clk[37]

BUFH div clk[34] BUFH div clk[38]

BUFH div clk[35] BUFH div clk[39]

BUFH div clk[40] BUFH div clk[44]

BUFH div clk[41] BUFH div clk[45]

BUFH div clk[42] BUFH div clk[46]

BUFH div clk[43] BUFH div clk[47]

X0Y4 BUFG NoC clk X1Y4 BUFG NoC clk

BUFG clk 600MHz BUFG clk 600MHz

BUFH div clk[48] BUFH div clk[52]

BUFH div clk[49] BUFH div clk[53]

BUFH div clk[50] BUFH div clk[54]

BUFH div clk[51] BUFH div clk[55]

BUFH div clk[56] BUFH div clk[60]

BUFH div clk[57] BUFH div clk[61]

BUFH div clk[58] BUFH div clk[62]
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BUFH div clk[59] BUFH div clk[63]

X0Y3 BUFG NoC clk X1Y3 BUFG NoC clk

BUFG clk 600MHz BUFG clk 600MHz

BUFH div clk[64] BUFH div clk[68]

BUFH div clk[65] BUFH div clk[69]

BUFH div clk[66] BUFH div clk[70]

BUFH div clk[67] BUFH div clk[71]

BUFH div clk[72] BUFH div clk[76]

BUFH div clk[73] BUFH div clk[77]

BUFH div clk[74] BUFH div clk[78]

BUFH div clk[75] BUFH div clk[79]

X0Y2 BUFG NoC clk X1Y2 BUFG NoC clk

BUFG clk 600MHz BUFG clk 600MHz

BUFH div clk[80] BUFH div clk[84]

BUFH div clk[81] BUFH div clk[85]

BUFH div clk[82] BUFH div clk[86]

BUFH div clk[83] BUFH div clk[87]

BUFH div clk[88] BUFH div clk[92]

BUFH div clk[89] BUFH div clk[93]

BUFH div clk[90] BUFH div clk[94]

BUFH div clk[91] BUFH div clk[95]

X0Y1 BUFG NoC clk X1Y1 BUFG NoC clk

BUFG clk 600MHz BUFG clk 600MHz

BUFH div clk[96] BUFH div clk[100]

BUFH div clk[97] BUFH div clk[101]

BUFH div clk[98] BUFH div clk[102]

BUFH div clk[99] BUFH div clk[103]

BUFH div clk[104] BUFH div clk[108]

BUFH div clk[105] BUFH div clk[109]

BUFH div clk[106] BUFH div clk[110]

BUFH div clk[107] BUFH div clk[111]

X0Y0 BUFG NoC clk X1Y0 BUFG NoC clk
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BUFG clk 600MHz BUFG clk 600MHz

BUFH div clk[112] BUFH div clk[116]

BUFH div clk[113] BUFH div clk[117]

BUFH div clk[114] BUFH div clk[118]

BUFH div clk[115] BUFH div clk[119]

BUFH div clk[120] BUFH div clk[124]

BUFH div clk[121] BUFH div clk[125]

BUFH div clk[122] BUFH div clk[126]

BUFH div clk[123] BUFH div clk[127]
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Appendix B

Floorplanning Figures

Figure B.1 is a close up of the first three nodes in the many-core and shows how

densely packed the design is. It also shows how the tools have to fit the nodes close to

the embedded BRAM (at this location in the device, the BRAM columns for the second

and third nodes are located very close together), which is an interesting observation

when Dark Silicon based optimisations are considered. Figure B.2 shows all of the

divided clock nets for each node. It is clearly seen that the horizontal clock distribution

nets are used and that most of the nodes are mapped in a similar fashion within their

partitions. The effect of clustering of nodes around BRAM resources is also seen

stretching down the entire device.

Figure B.1: A close up of three Centurion nodes and the NoC logic. The processing

cores of each node is coloured as follows: node 0 - Yellow, node 1 - Orange and node

2 - Purple. NoC routers and logic is given in green. It shows the density of the design

and how the nodes are centred around BRAM resources, potentially increasing the

effect of processing core hot-spots.

Finally, Figure B.3a and B.3b show the node reset scheme with Figure B.3a showing

the difference between the processing node resources reset from the RCAP register
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Figure B.2: Another post-implementation view showing the BUFH sourced clock nets

that clock the processing cores of each node. The horizontal clock buffers within each

clock region can clearly be seen. All red logic seen in this diagram is clocked by

dynamic clock dividers.
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within the router and the NoC router registers reset from the global reset. Figure B.3b

shows that the fan-out of the global NoC reset has been managed through buffering of

this signal; it also shows the location of each node at the endpoint of this signal.

(a) Resets within a node. This shows the pro-

cessing node reset (green, driven from the

RCAP) and the local NoC reset buffer. Use

of a local registered version of the global re-

set help reduces the fan-out of the global sig-

nal and makes it far easier to place and route

the NoC to meet the 100MHz timing con-

straint.

(b) The global NoC reset issued from the

NoC interface on the experiment controller.

This signal could have a fanout of hundreds

of thousands of endpoints if not managed,

making timing constraints very difficult to

meet. The use of local buffering allows this

signal to only have a direct fan-out of 128

endpoints.

Figure B.3: The reset architectures for Centurion. The reset is an important signal

as with such a huge design it will have a huge fan-out and could result in nodes not

coming out of reset correctly if the reset timing is ignored.
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