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Abstract 

This thesis examines the influence of acoustic variability on automatic speaker recognition systems 

(ASRs) with three aims.  

i. To measure ASR performance under 5 commonly encountered acoustic conditions; 

ii. To contribute towards ASR system development with the provision of new research data; 

iii. To assess ASR suitability for forensic speaker comparison (FSC) application and 

investigative/pre-forensic use. 

 

The thesis begins with a literature review and explanation of relevant technical terms.  Five categories 

of research experiments then examine ASR performance, reflective of conditions influencing speech 

quantity (inhibitors) and speech quality (contaminants), acknowledging quality often influences 

quantity.  Experiments pertain to: net speech duration, signal to noise ratio (SNR), reverberation, 

frequency bandwidth and transcoding (codecs).  The ASR system is placed under scrutiny with 

examination of settings and optimum conditions (e.g. matched/unmatched test audio and speaker 

models).  Output is examined in relation to baseline performance and metrics assist in informing if 

ASRs should be applied to suboptimal audio recordings.   

 

Results indicate that modern ASRs are relatively resilient to low and moderate levels of the acoustic  

contaminants and inhibitors examined, whilst remaining sensitive to higher levels.  The thesis 

provides discussion on issues such as the complexity and fragility of the speech signal path, speaker 

variability, difficulty in measuring conditions and mitigation (thresholds and settings).  The 

application of ASRs to casework is discussed with recommendations, acknowledging the different 

modes of operation (e.g. investigative usage) and current UK limitations regarding presenting ASR 

output as evidence in criminal trials.   

 

In summary, and in the context of acoustic variability, the thesis recommends that ASRs could be 

applied to pre-forensic cases, accepting extraneous issues endure which require governance such as 

validation of method (ASR standardisation) and population data selection.  However, ASRs remain 

unsuitable for broad forensic application with many acoustic conditions causing irrecoverable speech 

data loss contributing to high error rates.   
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Accompanying Material 

Two electronic files (.gifs) are presented as supporting material, referenced in this thesis.   

i. NASH_108045162_GMM-UBMAnimation_FreqBandwidth_matched_LRPlots.gif 

ii. NASH_108045162_GMM-UBMAnimation_FreqBandwidth_matched_Zoos.gif  

 

The .gif files play in a standard web browser.  They have been checked for compatibility with 

Chrome, Safari and Firefox.  Older graphics cards/hardware may not support playback. 

 

By their nature, .gif files are lower in quality than the images they are drawn from.  Higher quality 

images (contributory frames) are included in the Appendices for reference.   
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Chapter 1  Introduction  

Chapter 1 places the research experiments conducted in this thesis into context.  The fundamentals 

of speaker comparison and automatic speaker recognition systems (ASR§s) are introduced.  The 

objectives of the research experiments are stated and the thesis outline is presented.  For the scope 

of this thesis, ASR use focuses on law enforcement/investigative application and the potential use of 

ASR evidence in criminal trials in the UK.  

 

1.1 Speaker Recognition 
This section introduces the basic principles of speaker comparison.  Further detail is also provided 

in the literature review and technical terms are explained in Chapter 3. 

 

Attributing speech to speaker is a basic human function of communication.  If speech is the only data 

available for determining identity and visual references are not available (e.g. telephone, audio 

recording) then several complex processes must take place.  For humans, and if we consider naïve 

listeners rather than experts, this process relies on familiarity and memory.  Self-identification from 

the speaker(s) may also occur within the content of the conversation (assuming that the speaker is 

being truthful).   

 

When tasking a computer with speaker recognition a complex set of technical processes must occur 

successfully to obtain a high degree of reliability.  If we first consider a simplistic example of 

comparing two speakers, using an ASR system.  Speech from both speakers will be converted from 

vibrations in the air into a digital recording.  The speech from the ‘target’ voice in the recording is 

isolated, from any other speaker, through editing (diarisation).  A feature extraction process is applied 

to the digital speech signal.  The ASR system creates a statistical model of the speaker, considered 

to be reflective of the dimensions and geometry of his/her vocal tract, from the small section of 

speech supplied and in reference to samples of population data.  Once the statistical models are 

created, complex pattern comparisons are undertaken between the model from the unknown speaker 

(often referred to as ‘test audio’ or questioned speaker) against the validated/enrolled speakers held 

in the ASR system (commonly referred to as ‘speaker models’ or known speaker samples’).  This 

calculation pertains to similarity.  Calculations are then also made in relation to the third set of 

normative data or population set to provide an estimation of typicality.  Output is then provided as a 

probability, or likelihood ratio (LR) value, which may provide support for one of two hypotheses – 

                                                
§ Throughout this thesis the term automatic/automated speaker recognition (ASR) is used.   Note that the 
acronym ASR is also frequently used to describe automatic/automated speech recognition. 
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(a) that the speech samples came from the same speaker (commonly referred to as H0, or the null 

hypothesis), or (b) that they came from different speakers (H1).  Both H0 and H1 must be tested. 

 

Throughout the processes conducted, the operator of the ASR (or analyst/practitioner) often has a 

significant role to play such that it could be argued that they are effectively part of the system.  For 

example, the operator will select which speech should be used for comparison and may determine 

through further editing what audio data should constitute the speaker model(s).  This process will be 

applied to the questioned audio.  In changing the settings an operator(s) may also influence the 

selection of the underlying normative data (the population).   Furthermore, the operator may adapt 

the ASR based on their experience of optimising it.  This may include changing how information is 

extracted from the speech (feature extraction), how the statistical modelling is completed or aspects 

such as calibration and threshold setting.  Finally, the user is required to use their skills and 

experience to interpret the numerical LR (or log likelihood ratio) output and produce a report which 

can be understood by a non-specialist person.  

 

A fundamental requirement is to separate the measurement of the speech signal from non-speech in 

the recording and therein lies an enduring problem.  How to effectively separate the measurement of 

desirable variability (speech) whilst removing the undesirable variability of the recording and the 

end-to-end signal path, the ASR system and any additional variability or even bias that could be 

introduced by the operator.  To fully understand the operating limits of the technology we need to 

measure audio/speech quality and understand what constitutes an acceptable amount of speech data 

at a high enough quality to produce an acceptable output.  By doing so, we can decide when the 

influence of contaminants and inhibitors on ASR performance is significant enough to determine that 

ASRs cannot be meaningfully applied.  Should we ever hope to transition ASRs to court use (forensic 

application) we need to better quantify the acoustic conditions in which ASRs work accurately and 

reliably and those in which they do not.  These fundamental questions formed the motivations for 

the research conducted in this thesis. 

 

1.2 Research Aims 
This thesis examines the influence of acoustic variability on ASR performance.  Many variables 

affect the performance of an ASR system.  These fall into two broad classes: inhibitors and 

contaminants.  Five sets of research experiments are conducted examining the significance of speech 

quantity (inhibitors) and the technical quality of the audio recording (contaminants) on ASR 

performance.  It will also be demonstrated that inhibitors and contaminators are linked variables, i.e. 

quality affecting quantity of net speech suitable for ASR comparison.  The experiments in this thesis 

are therefore driven by three core objectives.   
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The first objective is to produce a comprehensive set of measurements pertaining to ASR 

performance under five commonly encountered acoustic conditions.  The purpose of which is to 

assist with informing casework practitioners when applying ASR systems to case data.  In addition, 

detailed metrics are provided to assist with determining the points at which acoustic degradation is 

likely to be too extensive to obtain meaningful ASR results (i.e. ASR system application would not 

be recommended).  This objective acknowledges that ASR performance varies between systems 

which use different normative data and settings on variable case data.   

 

The second objective is to examine two types of ASR systems and evaluate how performance differs 

with respect to acoustic variability.  The purpose of assessing the difference in performance is to 

assist the casework practitioner in determining which types of ASR systems may demonstrate greater 

(or lesser) resilience to acoustic variability.  It is also intended that the data from these experiments 

will be useful to casework analysts and those who design future ASR systems and/or integrate them 

across networks. 

 

The third objective is to inform discussion and provide recommendations with regards to ASR 

suitability for forensic speaker comparison (FSC) within the context of acoustic variability.  The 

purpose of this objective is to examine questions such as whether acoustic variability could prevent 

repeatable and reproducible ASR results and the extent to which generational improvements in ASR 

systems mitigate against acoustically degraded data. 

 

 

1.3 Thesis outline 
Chapter 2 provides an overview of the literature that informed the thesis, inspired the research 

questions and guided the subsequent categories of experiments conducted.  Additional literature 

reviews are provided at the beginning of each chapter pertinent to the specific subject areas.   

 

An explanation of technical terms and concepts is provided in Chapter 3 ‘From Speaker Source to 

Analytical Destination’ which follows the speech path from formation, through a typical audio path, 

culminating with the ASR system and practitioner.  

 

Chapter 4 provides a summary of the research questions.  Chapter 5 presents the methodology and 

materials common to the experiments conducted.  Chapter 6 provides a summary overview of the 

preliminary tests and baseline experiments - these assisted with informing the methodology, defining 

the research direction and the scope of the experiments.  
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Chapters 7 to 11 provide detailed documentation of the 5 categories of experiments.  These pertain 

to: speech quantity (net duration), SNR, reverberation, frequency bandwidth and transcoding or 

codec(s).  Results and observations are then presented with a summary discussion.   

 

Chapter 12 discusses all the experiments relative to the objectives of the thesis and examines the 

wider implications of acoustic variability on ASR usage.  Recommendations are offered regarding 

the integration of ASR systems into speaker comparison work including the enduring issues relating 

to transitioning ASRs into the evidential process.  Chapters 13 and 14 discuss opportunities for future 

research and conclude the thesis. 
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Chapter 2  Literature Review 

This chapter presents an overview of the literature that informed the research questions and thesis 

objectives.  It also places the ASR experiments into the wider context of forensic and investigative 

application.  Additional research reviews pertaining to each set of experiments conducted are 

presented within chapters 7 to 11. 

 

2.1 Speaker Comparison Methodologies 
In discussing either the investigative or forensic application of ASRs, definition is required as to the 

two main types of use cases.  The European Network of Forensic Science Institutes (ENFSI) presents 

the following terms and these definitions are adopted for the purpose of this thesis. 

  

Forensic: Seeking to establish facts of interest using science and technology in the context of the 

law or in a law court.  ENFSI also refers to this as the ‘evaluative mode’ (2015: p.3). 

   

Investigation: A systemic enquiry, examination, study and survey of facts, circumstances, 

situations, incidents and scenarios in order to render a conclusion.  ENFSI refers to this as the 

‘investigative mode’ (2015: p.3). 

 

Gold and French (2011) surveyed 36 practitioners from 13 countries.  In undertaking speaker 

comparison casework, five categories of methodologies were found to be used by experts.  The 

common methods of analysis were described (2011: p.296) as: 

i. AuPA.  Auditory and Phonetic Analysis.  Analysing speech through comparison of 

segmental and supra-segmental features 

ii. AcPA.  Acoustic Phonetic Analysis.  Quantifying physical parameters of the speech signal 

using analysis software. 

iii. AuPA and AcPA.  Combination of Auditory Phonetic and Acoustic Phonetic Analysis 

iv. ASRs.  Automatic Speaker Recognition system 

v. HASR.  Automatic Speaker Recognition system (i.e. with human assistance).  

 

Gold and French (2011) assessed that the methodology differed dependent on the organisation 

(research institute or university, government agency, private laboratory or individual) with 74.46% 

of organisations tending towards methodology 3.  Only 17.02% used HASR methodology (5) and no 

organisations solely applied ASRs at that time.  It was also noted that the majority of HASR users 

(33% in comparison to 16%) were found to predominantly reside in the government/law enforcement 

sector rather than universities and research institutes.  Whilst explanation is not offered it is suggested 



 20 

that the application of ASRs in investigative casework is likely due to the time-bound element and 

pressures of scale - i.e. potentially much larger quantities of speech data and very limited 

resources/time to complete detailed auditory assessments for multiple speakers.   

 

A later international survey was undertaken by Morrison et al. (2016) on behalf of Interpol.  This 

investigated the use of speaker identification, by international law enforcement agencies (LEAs) and 

received 91 responses from 69 countries (Figure 2.1).  The group reported an upward trajectory in 

terms of ASR use (referred to as ‘human supervised automatic’ and ‘fully automatic’).  

 

Figure 2.1: Morrison et al. (2016: p.94).  Summary of LEA speaker comparison methodologies 

 
 

Gold and French (2019) produced a second survey polling 39 forensic speech scientists.  They too 

reported a rise in use of ASR systems with 41.2% of respondents using ASRs in comparison to 

17.02%.  Of those ASR users, 78.6% applied acceptance criteria in regards to technical quality.  

Whilst thresholds were not standardised across practitioners, users were broadly aware that audio 

quality variability can influence speaker comparison casework and completed technical assessments 

for acceptance.  In relevance to this thesis the Gold and French (2019) survey noted acceptance 

criteria broadly defined as follows: minimum net duration for acceptability ranged from 3s to 20s, 

SNR from 10db to 25db, minimum high frequency values were 3.4kHz and 4kHz with minimum 

sample rate as 8kHz (2019: p.7).  Their survey also noted that an average of 30% of submissions 

failed ASR acceptance criteria (2019: p.7). 

 

French and Stevens (2013: p.5) pointed out that the advantages of using HASR/ASR systems include 

the reduction in subjectivity compared with other types of analysis (e.g. AuPA) in addition to the 

speed of ASR operation and the replicability of results.  ASRs can clearly provide an opportunity to 
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produce a more empirical analytical method, offering the repeatable and reproducible output criteria 

as recommended by quality control standards such as the International Organisation for 

Standardisation (e.g. ISO17025).  Furthermore, research by Campbell (2014) demonstrated that 

human assisted speaker recognition systems are starting to outperform analysts (although not expert 

practitioners) in NIST high confusability trials.  Their research showed that 14 out of 15 HASR 

comparisons were found to be correct in comparison to 11 out of 15 (for naïve listeners).  In light of 

all the research, however, it was important to note that all surveys reported that almost none of the 

practitioners relied solely on ASR output.   

 

In summary, the practitioner surveys broadly show that ASR systems are becoming more widely 

used.  This is likely due to factors such as the greater prevalence of underlying technology and the 

increase in communications methods such as voice over internet protocol (VoIP) and instant voice 

messaging (e.g. smart phone applications).  The latter of which contributes to greater quantities of 

audio data events requiring analysis for which a human alone cannot process.  In addition, ASR 

systems have been progressively improving in performance, which will be discussed in later chapters 

and this is likely building confidence and trust in output.  Finally, ASR systems offer an opportunity 

to provide more objective measurements of analysis (repeatability and reproducibility). 

 

2.2 Forensic Speaker Comparison 
In the U.K., forensic speaker comparison (FSC) refers to the process of conducting human/auditory 

analysis completed by an expert and then presented in court.  Whilst objective acoustic measurements 

may also form part of the comparison process such as formant frequency, vowel and/or consonant 

measurements or voice onset time, ASR systems are not yet incorporated into the evidential chain in 

the UK.  Broadly speaking, this is because ASR systems apply a different form of acoustic analysis, 

consisting of a feature extraction process and statistical modelling, in order to conduct a speaker 

comparison (in reference to a normative population).  A detailed explanation of how ASR systems 

work is provided in Chapter 3.   

 

Whilst certain countries do accept ASR systems into evidence, most ASR usage resides in the 

investigative domain as originally stated in Decker and Handler (1977).  Although it is important to 

note that early pattern matching systems differ considerably from later GMM-UBM systems, with 

more complex feature extraction and the addition of normative data.  In seeking to obtain explanation 

as to why ASRs are not admissible in U.K. courts, fulfilment of acceptance criteria often relates to 

the implementation of the scientific method, presentation of expected error rate and the capability 

and reliability of the expert witness.  In the U.S. three cases refer to the admission of expert testimony 

referred to as the Daubert Standard (Daubert v. Merrell Dow Pharmaceuticals, 1993).  The judge 

then determines whether those criteria are fulfilled and in U.K. courts these, similar standards, are 

clearly difficult to apply to ASR systems.  In the U.K. a recent Court of Criminal Appeal (England 
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and Wales) case tested the admissibility of results from an ASR system into evidence in R -v- Slade 

and Ors [2015], EWCA, Crim 71.  Professor Peter French and Dr. Phillip Harrison (JP French 

Associates), as U.K. expert witnesses, sought to apply ASR results in addition to auditory and 

acoustic phonetic evidence.  The ASR analysis they conducted was completed using an Agnitio 

Batvox system (2009).  The court would not accept the ASR results into evidence.  To summarise, 

the court cited the unsuitability of population dataset, the potential lack of reproducibility of results 

across different ASR systems, likelihood output pertaining to small quantities of speech data (and a 

difficulty in interpreting statistical results) as significant factors (French, 2017: p.5) which all 

required addressing and prevented admissibility.  Nonetheless, the test case was instrumental in 

questioning why ASR systems should not be used.  The case also galvanised many in the U.K. 

forensic speech community to continue to progress ASR systems, processes and methodology to 

forensic application in the future and the case also influenced the research conducted in this thesis.   

 

In a study completed by Morrison (2018b) pertaining to a 2017 case in New South Wales a similar 

conclusion was reached regarding population data and the application of a GMM-UBM ASR (open 

source).  Morrison summarises with recommendations to use speech data which accurately reflects 

the conditions of the case (2018b: p.[e]6). 

 

French and Stevens (2013: p.4) proposed that approximately 70% of the forensic casework that their 

company was tasked with was forensic speaker comparison (FSC), defined as: 

 

‘…the comparison of a voice in a criminal recording with that of a known suspect, the purpose being 

to assist the courts with determining identity or non-identity of criminal and defendant’.  (2013: p.4).   

 

Whilst this process refers to auditory speaker comparison completed by an expert practitioner (rather 

than HASR or ASR approaches) an important aspect to note is that the process itself does not 

determine identity, which remains the domain of the courts.  It is the expert who provides a view as 

to the strength of comparison for two competing hypothesis for same speaker (H0) and different 

speaker (H1).  In addition, if intending to transition ASRs to forensic application there is also an 

associated risk with potentially transferring some of the responsibility for informing the courts with 

the strength of those hypotheses away from the expert(s) and towards ASR system(s). 

 

The potential risks of transitioning ASR systems to forensic application when there are so many 

unknowns remain significant.  Eriksson recommends that ‘a forensic speech expert knows the tools 

they use inside out’ (2012: p.48).  However, this can be difficult to achieve on a complex system and 

given the high variability of speech and acoustic conditions.  Expertise also requires diversification 

across many fields (e.g. linguistics, acoustics, signal processing, phonetics, mathematics, statistics 

and IT/engineering).   
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A position statement from the International Association of Forensic Phonetics and Acoustics 

(IAFPA) challenges the use of likelihood ratio approaches where population data is not available for 

reference when conducting FSC casework (2007: p.5) and this debate extends to the significance of 

normative data when applied to ASR systems.  In the context of human conducted auditory speaker 

comparison the ‘UK position statement’ French and Harrison (2007) recommended that the term 

‘forensic speaker comparison’ should replace ‘forensic speaker identification’ (2007: p.8) as a 

likelihood ratio is preferable to a binary decision.  Prior to the position statement and in the context 

of auditory phonetic analysis Nolan (1983) had asked how reliably individuals can be recognised by 

voice at all, arguing that the plasticity of the vocal tract and variability between speakers is not fully 

known and measured.  In summary, speaker comparison clearly cannot produce a definitive 

match/non-match output yet, arguably, humans tend to expect computers and by extension ASR 

systems to produce binary decision outputs.   

 

Rose and Morrison (2009) also agreed in their response to the position statement stating that 

‘identification’ and ‘recognition’ could carry the connotation of an absolute conclusion or a posterior 

decision (2009: p.146).  On a related point, the statement and response also agree in the importance 

of distinction between the likelihood of the evidence given the hypothesis (province of the forensic 

scientist) and the likelihood of the hypothesis given the evidence (province of the court).  Further 

explanation of this is presented in chapter 3 (Bayes theorem and likelihood ratio calculations).   

 

2.3 Automatic Speaker Recognition Systems 
In an early review of automatic speaker recognition systems conducted for the institute of electrical 

and electronics engineers (IEEE), Rosenberg (1976) summarised the research and development work 

conducted to date.  Pattern matching systems were then the prevailing technology but were 

prohibitively expensive due to computing costs.  They were also predominately used by 

telecommunications companies and research universities who could afford the IT.   

 

In the U.S. the Bell telecommunication laboratories pioneered early ASR development work building 

on the enabling technical advances made earlier in the 20th century (telecommunications, radio, 

recording and analogue to digital conversion).  Early engineers who progressed speaker comparison 

from traditional auditory methodologies to pattern matching systems were Doddington (1970), 

Bricker and Pruzansky (1971) and Atal and Hanauer (1971).  The early research systems developed 

for modern telephone speaker recognition and entry control systems were further progressed by 

teams at Texas Instruments.  Rosenberg’s study (1976) made three important points which influenced 

the research questions and subsequent experiments conducted in this thesis.   
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“Factors which can loom large over the implementation of a speaker-recognition system are the 

recording environment and the conditions governing the transmission of the speech signal to the 

processor.”  Rosenberg (1976: p.479). 

 

“In the design of such systems, careful allowance should be given to the effects of background noise 

and room reverberation at the source and the reduced bandwidth, distortion, and line disturbances.”  

Rosenberg (1976: p.480). 

 

“Most evaluations have been carried out in the hothouse atmosphere of the sound booth and high-

quality recordings.  Eventually, however, one must consider whether these conditions represent a fair 

approximation to conditions that are expected in a practical application.”  Rosenberg (1976: p.479). 

 

In the late 1970s and early 1980’s the application of speaker comparison systems for law enforcement 

purposes was researched by the Phillips laboratory in Germany led by Bunge (1976).  This research, 

part government sponsored, used the AUROS (AUtomatic Recognition Of Speakers) corpora to test 

an early acoustic pattern matching system.  The AUROS database was documented as containing 

5,000 utterances (which) were the same apart from the name of the speaker given in each utterance.  

Bunge’s pattern system used a 43 channel filter bank to capture information into a classifier from the 

long-term-averaged spectra (100Hz to 6kHz) at 50 times per second.  Whilst the Mahalanobis 

classifier, developed in 1936, was relatively rudimentary in comparison to later classifiers (using 

standard deviation calculations from extracted mean values) the results from early experiments were 

extremely encouraging.  Bunge demonstrated that 2,500 utterances could be correctly verified for 

100 speakers (82 Males and 18 Females) to an accuracy of approximately 99.5% correct verification 

(using the other 2,500 for enrolment).  This impressive level of high accuracy for the time was likely 

assisted by: the use of identical utterances (in terms of content) that existed in both the input and 

database i.e. semi-text dependent application, the limited quantity of utterances per speaker (between 

10-20) and a high degree of channel matching between questioned and enrolled utterances.  Bunge’s 

early research suggested that the frequency bandwidth of the telephone channel was a factor 

hampering recognition performance (1976: p.206).  Nevertheless, the potential of ASRs to assist with 

speaker comparison in the future was noted and Bunge proposed potential use cases to assist with 

verifying the speaker identity of criminals such as ‘blackmailers and kidnappers’ (1976: p.207).   

 

In other research, Wolf (1972) demonstrated pattern classifying experiments using 6 read sentences 

from 21 male speakers aged from 22 to 42.  This also provided a rudimentary but effective speaker 

verification system with an error rate of 2% and was seen as a substantial step forward.  The early 

pattern matching programs and variations such as Doddington’s Texas Instruments system (from the 

1970s and 1980s) provided influence to Rosenberg, Lee and Soong (1990).  They produced a research 

system for AT&T/Bell speech research laboratories able to identify 100 speakers (50 male and 50 
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female) on a corpus containing 20,000 digit utterances.  The utterances were band filtered (200Hz to 

3.2kHz) and accuracy was assessed to be 7% to 8% equal error rate (EER) on a single digit test 

utterance (0.5s per digit) and less than >1% on 7 digits.  This was an impressively low error rate 

albeit on text dependent (identical digit utterance) verification.  The group cautioned that a higher 

EER% for text independent and larger vocabulary use would be expected (1972: p.269).   

 

In the 1980s and throughout the 1990s computers progressed to become faster, cheaper and therefore 

more ubiquitous.  In the early 1990’s Rose and Reynolds from MIT/Lincoln Labs used the 

improvements in statistical modelling (gaussian mixture models or GMMs) to generate speaker 

models from speech files.  Reynolds (1994) further improved on GMM speaker verification 

methodology and progressed the accuracy of systems with the inclusion of normative data, citing 

Higgins, Bahler and Porter (1991).  This was significant because systems evolved from pattern 

matching systems, determining similarity between files, to considering typicality against population 

(or normative) data.  Reynolds also incorporated likelihood ratios for presenting output and this 

effectively gave rise to the modern ASR comparison system.  Saquib et al. (2010) supported Bill 

Gates’ view from the late 1990’s that voice biometrics was becoming one of the most important IT 

innovations of the time.  Shaver and Acken (2016) produced a summary of the early advances that 

contributed to modern speaker verification systems.  This is adapted and reproduced in Figure 2.2 

(next page).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 2.2: Shaver and Acken (2016) early speaker comparison timeline (reproduced) 
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Throughout system evolution, the ideal conditions for a comparison system to operate successfully 

were also scrutinised and documented by Wolf (1972: pp.2044-2045), Nolan (1983) and Eriksson 

(2012: p.58).  These are summarised in a consolidated list (Figure 2.3) and are widely accepted as 

the fundamental requirements which underpins ASR methodology - in addition to other auditory and 

acoustic speaker comparison methods. 

 
Figure 2.3: Summary of ideal speaker comparison conditions 

 

These are widely considered as ideal conditions, however even the pioneers of early systems quickly 

realised that to fulfil all those criteria and obtain the perfect conditions was not possible at the time 

(Wolf, 1972).  The points from Figure 2.3 were applied to the experiments completed in this thesis.  

It was noted that, whilst conditions were broadly satisfied, they could not be considered completely 

'ideal’.   

 

For example, the control corpus used (DyViS) consists of males between a small age range (18-25) 

and within speaker variability was constrained by session data variety (2 types of conversational 

speech).  Neither points 2 nor 3 applied to the experiments since the control corpus did not contain 

impersonations and the recordings were completed over a short time frame for which neither long-

term variations (nor health) applied.  The recordings were recorded under controlled conditions and 

of sufficient (high) quality, such that measurements could be extracted (point 5).  Degradation was 

applied under controlled conditions (point 6), however it was noted that some recordings were 

affected by the specific transmission medium (e.g. telephony codec) and noise, although negligible, 

was not completely absent (e.g. speaker 012).  Nevertheless, since these factors were consistent in 

all baseline measurements it was determined as acceptable data for experimentation.  Finally, re point 

7, the conversations were somewhat staged in terms of content but flowed freely and were not read.  

The fake place names, used by all participants, were artificially constructed to be phonetically rich 

and varied in nature.  It is suggested that this may have assisted with balancing (phonetic) content 

across speakers which, whilst not necessarily realistic, was consistent across all speakers at baseline. 

Ideal conditions for successful speaker comparison 

1) Large between-speaker and small within-speaker variability.  W, N 
2) Be difficult to impersonate/mimic.  W, N 
3) Not be affected by the speaker's health or long-term variations in voice.  W 
4) Occur frequently and naturally in speech.  W 
5) Be easily measurable.  W ‘Measurability and Availability.  ’ N 
6) Not be affected by background noise nor depend on the specific transmission 

medium.  ‘Robustness in transmission’.  N 
7) Occur naturally and frequently in speech.  W 

W: Wolf    N: Nolan 
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ASR systems verify speaker identity through software comparison of a questioned sample and a 

known sample of speech (Campbell, 1997).  The simplified flowchart below – Figure 2.4 adapted 

from Campbell (1997) - provides explanation as to how the early ASR systems operated.   

Figure 2.4: ASR process, reproduced and adapted from Campbell (1997: p.1438) 

Whilst the underlying process has not changed significantly, reference is not made to normative data 

(Figure 2.4).  The later addition of normative data provided performance improvement by 

incorporating additional statistical distance measurements between question/test audio and 

normative data and also speaker model and normative data.  Differences between question/test audio 

and speaker model reflect similarity but the addition of normative data provides additional 

measurement as to typicality.  This methodology informs the calculations required for likelihood 

calculation (see 3.5.1). 

Research undertaken by Becker, Solewicz, Jardine and Gfroerer (2012) in applying ASRs to actual 

case data was influential to this thesis.  The group completed multiple ASR experiments using a new 

GFS1.0 corpus containing recordings of male German speakers recorded in case/forensic conditions 

(39 offenders and 21 suspects).  These were taken from the German Federal Criminal Police Office 

Bundeskriminalamt (BKA) case files.  Their study was innovative in utilising real case data where 

the correct outcome was effectively known, as far as was practicable.  The team examined the 

Key *  

Xi = Mel Frequency Cepstral Coefficients (MFCC) values 

Speaker Model(s) sometimes referred to by manufacturers as ‘voiceprint(s)’.  This is 

effectively where the Gaussian Mixture Model(s) are generated.   

Pattern Matching = comparison of statistical models i.e Gaussian Mixture Models (GMM). 

In this diagram the verified or known sample(s) is compared to the questioned speaker model. 

Zi = Probability of verification (or not).  Likelihood Ratio or Log Likelihood Ratio (LR or 

LLR) Decision = threshold set by user 

Microphone or input.  Broadly referred to as ‘test audio’, ‘questioned’ or ‘disputed sample’ 

* See also Chapter 3.
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performance of 7 ASR systems deployed in Israel, France and Germany.  The systems varied in 

architecture.  The two Israeli and one unnamed commercial systems utilised a very early i-vector 

statistical modelling architecture.  Results showed EER ranges from 9% to 12% with the i-vector 

systems marginally outperforming the GMM-UBM systems.  Whilst these scores demonstrated 

relatively good performance they were notably poorer than comparable ASR systems tested on high 

quality/test corpora.  The group also noted that ASR performance was particularly degraded for those 

recordings that used a handheld pocket audio recorder (Dictaphone) in the signal path.  Their research 

conclusions are summarised below (Figure 2.5). 

Figure 2.5: Key conclusion points reproduced from Becker et al. (2012: pp.5-6). 

The team also compared the Dictaphone material results against the non-Dictaphone results and 

suggested that the influence of frequency bandwidth and/or data compression (codec) could also 

influence ASR performance.  Their paper concluded by recommending further research to collect 

more data and the development of better guidelines as to when ASR systems should be used (or not).  

The output of their research paper therefore assisted with informing the experiments conducted in 

this thesis.  

i. Using automatic forensic voice comparison systems without any further investigation of

the recording material results in a considerable proportion of errors.

ii. The recording device properties with or without the transmission channel influence seem
to affect automatic systems severely.

iii. Because of system sensitivity to recording and transmission channels, auditory and

acoustic evaluations of the channel properties are mandatory.

iv. Automatic voice comparison systems do not account for linguistic features such as dialect,

accent, sociolect etc.  When there exists strong contrary evidence from forensic phonetics

and automatic systems, the expert has to decide which evidence is more reliable.

v. Automatic voice comparison systems are based on acoustic properties of speakers and are

generally assumed to be language independent.  However, in cases where the user does

not have a thorough knowledge of the language in question, an exclusion of errors based

on linguistic analysis is impossible.
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Chapter 3  From Speaker Source 

to Analytical Destination 

This chapter explains the technical concepts discussed throughout the thesis and is structured to 

follow a typical end-to-end process from speech production, through a typical signal path, to the 

ASR system and analyst practitioner.  It begins with the formation of speech, progressing through 

the digital recording process/signal chain and culminating with the ASR system and interpretation 

of results.   

3.1 Speech Production 

3.2 Intrinsic and extrinsic variability 

3.3 Audio recording and the signal path  

3.4 ASR systems 

3.5 ASR output (LR, LLR) and performance measurement (FAR, FRR, EER, Cllr) 

3.6 ASR use cases 

3.7  Summary  

The above topics are highly complex and a degree of simplification is therefore unavoidable.  This 

chapter is limited in scope to provide a foundation explanation of relevant terms only.  Complex or 

unusual audio capture methods are not referenced and the recording/signal path described is 

intentionally pertinent both to the corpora used in this thesis and typical of audio files generally 

presented for casework analysis (i.e. telephone and interview/room recordings).  References are also 

provided throughout for further reading.  The chapter concludes with a summary discussing the 

complexity of the end-to-end process and inherent variability therein. 

3.1 Speech Production 
Fry (1979) describes the sound waves of speech as amongst the most complex in nature.  When 

analysing, or measuring, speech sounds, it should be noted that not all are voiced (with vocal fold 

vibration in the larynx).  For example, the sounds in English /ch, f, h, k, p, s, sh, t and θ/ are formed 

unvoiced (with no such vocal fold vibration and wide opening of the glottis, i.e. the space between 

the vocal folds). Most sounds are driven by a pulmonic egressive airstream mechanism, i.e. using 

airstream modulation (i.e. tongue, lips, teeth and jaw) drawn from the lungs (pulmonic).   Some 

languages, e.g. Damin or Bantu, use other types of sound generation such as tongue-based or bi-

labial clicks and, in some Scandinavian languages, some speech sounds are made through 

pulmonic ingressive breathing (inhaling) - see also Ekland, (2007; 2015).  
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This is important because, with variability in speech sound creation, it should therefore not be 

assumed that an ASR developed and tested on one language will necessarily work to exactly the 

same efficacy on all languages – or mix of languages.  For the purposes of the experiments 

completed in this thesis all speech data, including the normative sets, are English language.   

Voiced speech has its source within the larynx, a structure formed of cartilage that encloses two 

strips of muscle known as the ‘vocal folds’.  The larynx (Figure 3.1) provides a ‘vocal 

note’ (Greene and Mathieson, 2001: p.5) and requires modification to form speech.   

Figure 3.1: Construction of the larynx.  Anterior and lateral views 
From: Opentextbc.ca 

During the act of speaking, the vocal folds (Figure 3.2) are generally in one of two main positions. 

First, they may be held apart (i.e. open position), allowing the unimpeded passage of egressive air 

from the lungs, as for the consonant sounds that one terms as ‘voiceless’.  Second, they may be held 

in loose contact, such that when the exiting air passes between them they are vibrate, producing the 

effect known as ‘voicing’, which characterises a further set of consonants and all vowels.  Voicing, 

or phonation, at the laryngeal source consists of a relatively ‘pure’ note.  Perceptually, this is referred 

to as ‘voice pitch’, and may be experienced as high or low or anywhere in between.  The opening 

and closing of the larynx is referred to as glottal pulses.  Glottal pulses are visible using external 

analysis software such as spectrograms, discussed later in this chapter. 



32 

Figure 3.2: Cross section of the vocal folds (and glottis) 
From: Opentextbc.ca 

Acoustically, voice pitch can be measured – in fact, estimated – and computed in terms of Hertz 

(Hz)**.  These are vibratory cycles of the vocal folds (per second), referred to as ‘fundamental 

frequency’, F0 or the ‘vocal note’ (Fry 1979: p.65).  While the rate of vocal fold vibration is 

constantly varying throughout the act of speaking, it can be averaged over any stretch of speech, 

providing an average F0 value.  For women and young children this tends to be higher than for men 

owing to the fact that men generally have more flaccid vocal folds that are longer, heavier and of 

greater mass.   

Research by Hahn et al. (2006: p.1104) stated that the average vocal folds, for adults, are 

approximately 10-15mm in length and 3-5mm in thickness.   Alternating between flaccid and tense 

vocal folds alters F0 and provides intonation.  With respect to auditory perception, pitch does not 

necessarily equate directly to acoustic measurements.  Nevertheless, Fry (1979) estimated that for 

male speakers the average F0 is approximately 120Hz and for women approximately 225Hz. 

Children generally have a higher average mean F0 at approximately 265Hz (Fry 1979: p.68).   

From the larynx, the vibrating air passes into the vocal tract comprising the pharynx, the oral cavity, 

and, for some sounds, the nasal cavity.  As it passes through these supralaryngeal resonating 

chambers, they act as filters, shaping its energy-frequency content.  Specifically, harmonics of the 

** Frequency is described in Hertz (Hz) named after the physicist Heinrich Hertz 1857-1894 and 
refers to the numbers of wave cycles per second. 
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F0 and the areas surrounding them are amplified or dampened according to the shape and size of the 

resonating chambers and the disposition of the articulatory organs, tongue, velum and lips (Figure 

3.3).   
 
Figure 3.3: Detailed sagittal section of the respiratory tract 
From Pearson education: slideplayer.com/slide/4876905/slide6

 
 

With vowel sounds, harmonic areas that are amplified are known as ‘formants’. Fry (1979) 

considered formants to be ‘the true resonances of the vocal tract’ (1979: p.78) and effectively the 

basic building blocks of speech.  Formants are referred to as F1, F2, F3 and F4 as they extend 

upwards in frequency from low to high and can be viewed as energy bands on spectrograms (in the 

horizontal plane).   

 

It is the formant structure of vowels that provides them with their distinctive quality and differentiates 

one vowel class from another.  However, since individual speakers have somewhat different vocal 

tract dimensions and configurations, the formant structures serve not only to distinguish, say, /i:/ 

from /u:/ from /e/ etc., but also to differentiate different speakers’ productions of those vowels from 

those of other speakers (LaRiviere, Winitz and Herriman, 1975).  Also, at the longer term, 

suprasegmental level, because speakers have different vocal tract settings, they are therefore also 

distinguishable from one another in terms of voice quality (see below). 
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3.1.1 Voice Quality 
Voice quality (VQ) is described as those characteristics that are present more or less all the time 

that a person is speaking (Abercrombie, 1967).  Voice quality is relevant to ASR analysis 

because the analytical units that ASR systems operate with, Mel Frequency Cepstral Coefficients 

(explained in 3.4.3) reflect a range of the major components of voice quality, namely those arising 

from vocal tract settings.  This was recently examined in Hughes et al. (2017b) where their 

study confirmed that speakers with common supralaryngeal VQ profiles (in the context of 100 

male speakers††) produced weaker ASR output i.e. lower true positive and higher true 

negative likelihood ratio scores.  Kreiman, Vanlancker-Sidtis and Gerratt (2003) and Pisoni and 

Remez (2004) referred to one of the first descriptions of voice quality occurring in history as early 

as the 2nd century AD by Julius Pollux. Pisoni and Remez (2004: p.347) provided a Table of those 

original descriptors and those later added by Moore and Gelfer.  This is reproduced in Table 3.4 

below and the evolution of the descriptors is clear when compared with later profile analysis 

tables, which are more objective and relate to settings (Table 3.5). 

Table 3.4: Pisoni and Remez (2004: p.347) early evolution of VQ description 

†† Dynamic Variability in Speech (DyViS) – see 5.3 
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Schemata were evolved in the 1960s by Voiers (1961; 1964) and Isshiki (Kreiman, Vanlancker-

Sidtis and Gerratt, 2003).  Honikman (1964) completed research into articulatory settings across 

several languages and incorporated specific references to the settings of the jaws, lips, and tongue 

affecting voice quality.  Laver (1980) provided a more defined set of criteria and effectively 

established modern vocal profile analysis (VPA) based on the work of Abercrombie (1967).  Laver 

evolved VPA with Mackenzie, Wirz and Hiller (1981) which progressed to form the modern VPA 

schemata used today by auditory experts.  An example of a modern, full VPA Table from 

San Segundo and Mompean (2017) is below (Table 3.5) as based on Beck (2007). 

Table 3.5: San Segundo and Mompean (2017: p.644) VPA Template 

VPA requires a trained practitioner to listen to speech and make judgments as to the vocal settings 

required to generate it.  Kreiman and Gerratt (2000) stated that voice quality analysis should be 
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considered perceptual since it is somewhat reliant on the subjective opinion of a listener rather than 

objective measurements.  Trials completed by Watt and Burns (2012) using lay listeners 

demonstrated that descriptions were often inaccurate or inconsistent, highlighting the requirement 

for trained practitioners.  Nevertheless, there is a risk of inconsistency between experienced 

practitioners who disagree (Kreiman and Gerratt, 2000).  Kreiman, Gerratt, and Ito (2007) further 

stated that accurate, replicable and valid assessments were difficult because all listeners have varying 

definitions of modal voice quality.  In addition, the methods used to assess voice quality vary i.e. 

listeners differ in their own methodologies, their personal/mental representation of the population 

and interpretation of the task in hand.  However, a significant empirical exercise and proposal for 

overcoming inter-rater variation through calibration is presented in San Segundo et al. (2018). 

 

As discussed, most speech production involves a source (the larynx) and a filter (the supralaryngeal 

vocal tract).  Assessment of voice quality is therefore broadly split in to two categories of features or 

settings, the phonatory and the supralaryngeal.  Supralaryngeal features refer to those shaped by the 

tongue, teeth, lips, nasality, jaw settings and the raising or lowering of the layrnx.  Phonatory features 

reference those voice quality settings related to the creation of speech sound in the larynx ‘the 

production of voice at the glottal opening’ (Esling 2013: p.110).  It is important to note that factors 

aside from physiology can influence voice quality.  Esling states that certain languages, for example 

Swedish, have preferred long-term voice quality settings which can influence phonatory settings such 

as creaky voice (Esling, 2013: p.124).  In addition, voice quality can also be influenced by social 

factors.  Scherer and Giles (1980) found a correlation between social background and voice quality 

with a study which found separation between higher status ‘creak’ and lower status 

‘whisper/harshness’.  Voice quality assessment is of interest to both forensic practitioners as well as 

other sectors (e.g. medical) and, as Laver stated (1980: p.2), many voice quality characteristics are 

founded in the physiology of the speaker.  A pilot study is currently underway by Gully et al. (2019) 

examining articulatory settings using MRI in closer detail.  

 

Whilst it could be argued that vocal profile analysis makes a subjective auditory assessment there 

have been links noted between vocal profile analysis completed by trained experts and acoustic 

measurements, as noted by French and Stevens (2013: p.192) and Cardoso et al. (2019).  For 

example, phonatory judgements such as creaky voice and breathy voice are related to the glottal 

pulse measurement.  Supralaryngeal settings and the raising and lowering of the larynx are likely to 

influence formant measurement as found in Laver (1979).  Stevens and French (2013) examined the 

voice quality of the 100 DyViS speakers used throughout the research experiments conducted in this 

thesis.  Their analysis adapted previous methods to assess voice quality as completed by 

Abercrombie (1967) and Laver (1979).  In summary, each speaker was scored using a subjective six-

point scale (0 to 5) for 34 vocal settings.  In the preliminary tests in this thesis, voice quality data 

was then examined in relation to the ASR output and (see chapter 6).   
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VQ features (VPA) can be extremely useful in comparing and discriminating speakers.   Indeed, in 

an international survey of forensic speech scientists Gold and French (2012) found that most 

practitioners rated it the most important feature in forensic speaker comparison testing.  However, 

completing VPA is time consuming, relies on a subject matter expert and is therefore not particularly 

practicable for applying to large volumes of speech files, for example.  Acoustic measurements 

provide the best opportunity to transition from subjective assessment to objective analysis based on 

mean values from a population.  If used by a trained operator, sympathetic to the complexity of vocal 

profile analysis, it is therefore suggested that there should be a place for semi-automated systems to 

potentially assist in this process and provide speed and scale. 

 

3.1.2 Sound Pressure Levels 
To provide context to the signal to noise ratio (SNR) experiments conducted, a brief explanation of 

amplitude and sound pressure levels follows.   

 

The volume of sound is measured in decibels (dB) and, effectively, the larger the number in decibels 

the louder the sound.  Decibels are measured on a relative and logarithmic scale and a sound that is 

more than 10 times louder is referred to as 10dB whilst a sound which is 100 times louder is referred 

to as 20dB and so on.  The sound pressure or volume of speech is important in the application of 

ASRs or auditory comparison work because speech sounds continuously vary with regard to the 

formant frequencies produced and the volume when they are formed.   

 

In research pertaining to hearing loss Fant (1959: p.4) produced a summarised graph showing male 

speech (Swedish) captured at a distance of 1m.  In plotting the frequency of formants F1, F4 and the 

fundamental frequency (F0) against sound pressure for vowel and consonant sounds (Figure 3.6) the 

variation of volume dependent on the speech sounds produced becomes apparent.  Softer and 

unvoiced sounds at a lower sound pressure level are evident and to fully capture these sounds and 

measure them effectively a high-quality audio recording at close proximity with very low 

environmental noise is required or the SNR (See 3.3.6) will likely be poor. 
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Figure 3.6: Fant (1959: p.4) Sound pressure level and vowel and consonant frequency 

3.2 Intrinsic and Extrinsic Variability 
Multiple factors influence the frequency and dynamic range of speech produced and therefore 

recorded.  This is significant because it is widely recognised that audio quality influences modern 

ASR system performance (French et al., 2009).  However, the extent to which ASR performance is 

influenced by different variables is very complex and this section therefore examines variability and 

contributory factors in detail.   

One of the fundamental requirements of speaker comparison is to separate and measure the desired 

signal (speech) from the undesired signal i.e. any other sound or noise.  These are often defined as 

intrinsic factors that relate to the speaker and the formation of speech and extrinsic factors pertaining 

to the recording environment and signal path (Reynolds, 2006).  Examples of these variables, drawn 

from experience and discussion, are broadly categorised below (Tables 3.7 and 3.8).   
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Table 3.7: Examples of intrinsic speaker variability 

Intrinsic Examples Comments 
Gender Fundamental frequency/pitch. Previously considered binary 

(M or F), gender is 
increasingly viewed as a 
spectrum. 

Age Baby, child, teen, adult, senior. 
Laryngeal maturity/degradation. 

Pitch, shimmer/jitter.  Other 
factors influencing articulators 
– e.g. loss of teeth, surgery.

Language Dialect, accent, code switching, 
slang terms and colloquialisms 

Highly complex.  Influence on 
ASR not fully understood. 

Articulation Precision of pronunciation (e.g. 
mumbling) – can influence vocal 
effort 

Can therefore influence SNR 
(of recording). 

Physiological Chronic or temporal.  Sickness, 
speech impediment, damage to 
larynx and/or articulators (teeth, 
tongue, mouth, nasal cavity). 

Congenital, temporal (cold), 
chronic, changing (damage). 

Style Formal, familiarity, mirroring, 
declamatory, conversational, 
deceptive, conspiratorial, read 
speech.  The interlocutor 
(conversational partner) can also 
influence speaking style. 

Emotion/behavioural Anxiety, anger, depression, 
boredom, crying, excitable. 

Currently in research space. 
Very difficult to effectively 
measure without significant 
baseline data. 

Vocal effort Raised/lowered volume, 
conspiratorial speech/whispering. 

Can influence SNR of 
recording unless mitigated by 
closer proximity. 

Temporal influence 
(drink/drugs) 

Slurred speech, word choice, 
prosodic rate, dynamic range. 

Intrinsic/Extrinsic 
Physical obstruction 

Balaclava, crash helmet, hand in 
front of mouth. 

Can restrict movement of 
articulators in addition to 
dynamic/frequency range. 

Duration of speech Uncooperative, monosyllabic. Multiple instances of 
monosyllabic responses into a 
speaker model can inhibit 
intra-variability. 

Physical movement Running, walking quickly, 
climbing stairs. 

Voice Quality See also physiological, social 
factors. 

See Chapter 3. 

Disfluency/Filled pauses Conversational hesitancy e.g. 
/erm, um, er/. 

Considered useful for vowel 
data/measurement. 

Repetitive filler words & 
phrases 

E.g. ‘do you know what I mean?’ Could repetitive phrases 
influence ASR output? 
Combine ASR speech to text?

Sociolinguistics Use of colloquial language, 
regional terms. 

Stress Relaxed, uptight/formal, 
argumentative. 

Behavioural/Temporal. 
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Table 3.8: Examples of extrinsic speaker variability 

Extrinsic Examples Comments 
Environmental noise Wind buffeting, rain, 

thunder, hail, even 
temperature can affect. 

Additive noise.  Often outside of any form of 
control.  Mic capture/position can mitigate, 
to some extent. 

Net speech duration 
(Chapter 7)  

Total length of speech 
extracted. (Also intrinsic 
if monosyllabic/non 
responsive). 

Truncated recording.  Proximity changes. 
Net speech is a significant factor, though 
with diminishing returns.  See also intrinsic 
category (monosyllabic, lack of 
engagement). 

Reverberation 
(Chapter 9)  

Room reflections. Can smear the speech at a sub second level.  
Mic capture/position and proximity can 
partially mitigate.  

Machine noise/SNR 
(Chapter 8) 

Vehicles, air conditioners, 
machinery/SNR. 

Additive noise.  Audio be enhanced, to some 
extent if fixed frequency/predictive. 

Media noise Television, radio, internet. Additive noise.  Extremely problematic to 
ASRs, particularly if speech over speech. 

Other speakers Background speakers, 
crowds/babble, crossed 
line. 

Additive noise.  Can influence ASR 
outcomes significantly if at a sufficient level.  
Next to impossible to remove post recording. 

Interference/electrical Mains hum, GSM 
(See Chapter 6). 

Additive noise.  Often evidenced through 
addition of harmonics (lateral plane).  Can 
significantly influence ASR outcome.   

Distortion Signal exceeding capture 
resolution/clipping, 
microphone overloading 
or popping (plosive 
energy). 

Often introduced at the recording stage, a 
compressor on the front end can partially 
mitigate.  Anti-clipping tools (post) can also 
assist, though have marginal benefit with 
unknown impact on ASR outcome. 

Digital/Analogue 
corruption (e.g. police 
interview cassettes). 

Aliasing, glitches, age of 
media/proximity to 
magnetic field/heat 
(particularly analogue). 

Additive noise.  Aliasing, sometimes 
described as a ‘ghost mirror’ of the signal in 
the lateral plane.  Jitter and shimmer in the 
analogue/tape domain (wow & flutter). 

Signal loss Drop out(s). E.g. faulty equipment, broadband packet loss 
or incorrect speech detection. 

Frequency limitation 
(Chapter 10) 

Band pass filter or loss in 
frequencies, often due to 
the capture process or 
transmission/transcoding. 

Frequency bandwidth often constrained 
deliberately to limit data (cost, efficiency). 

Proximity  Drop in SNR (Signal to 
Noise Ratio). 

Speaker(s) move.  Recording device can 
often move. Double distance = ¼ speech 
energy (inverse square rule). 

Transcoding (Codec) 
(Chapter 11) 

Data loss/‘Moth holing’ 
caused by data 
compression.    

Can introduce degradation.  ‘Lossy’ 
transcoding likely to influence ASR 
outcome.    
Codec history may not always be known 
(e.g. uploaded material to the internet). 

Bit depth/rate  Most commercial ASR systems operate at 
16bit, 8kHz (sample rate).   

AGC Automatic Gain Control. Mobile phone circuits mitigate against 
background noise not to ASR benefit. 

Microphone response Range, type, sensitivity.  Proximity, direction, shape (cardioid etc.). 
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With regards to intrinsic conditions and disfluency (Table 3.7) a study by Hughes, Woods and 

Foulkes (2016) on disfluency/filled pauses found benefit from extracting dynamic measurements 

(and nasals) from filled pauses to produce a discrimination system capable of an EER% of 4.08% 

and Cllr 0.12 (2016: p.126).  

 

Intrinsic and extrinsic variables are often linked in a complex matrix of interdependencies (see 8.4 

pertaining to SNR and the Lombard effect).  In summary, intrinsic variability is unavoidable and can 

influence amplitude/sound pressure and pitch.  Clearly a many variables cannot be influenced or 

controlled by the practitioner.  From experience, control over the recording conditions would be rare, 

especially for both known and unknown speech samples.   

 

It could be suggested that extrinsic variables introduced into the signal chain can be rectified through 

post recording processing, or audio enhancement treatments.  This will be explored in the 

experiments pertaining to SNR.   It is suggested that almost all audio enhancement (pre-ASR 

analysis) is likely to have relatively low efficacy unless pertaining to the controlled removal of known 

or predictive noise - e.g. reference cancelling (Alexander, Forth and Tunstall, 2012) or adaptive noise 

reduction (Künzel and Alexander, 2014).  This is because, it is argued, that degradation is often 

caused by (irrecoverable) data loss.  In other words, the complete obscuring of one audio signal by 

another in the same frequency domain is such that removal of one cannot reveal the other.  A simple 

analogy of this might be a photograph of a person holding a bright flashlight pointed directly at the 

camera.  Attempts to digitally remove the highest intensity light, from a photograph, would not reveal 

the image ‘behind’ the glare.  Degradation of the speech signal from extrinsic variability is common 

and unavoidable and so, as users of ASR systems, it is therefore important to understand both the 

intrinsic variability of speech and the extent to which extrinsic (acoustic) variability influences ASR 

performance. 

 

3.3 Audio Recording and The Signal Path 
This section provides a summary technical explanation as to audio capture (microphone), digital 

recording (sample rate, bit rate and depth), transcoding/data compression and frequency bandwidth.  

 

3.3.1 Audio Capture 
The microphone is the first point in the recording/transmission process and arguably one of the most 

important.  There are many types of microphone.  The carbon button, designed for early telephones 

was invented in the 1870s and is attributed to several early pioneers (Hughes, Berliner, Edison).  

Dynamic, or moving coil microphones gradually replaced these and they are arguably the most 

prevalent today.  Capacitor microphones, popular in recording studios due to their quality, were 

pioneered by Wente in 1916 and the electret was invented by Sessler and Bell in 1962.   In 
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conjunction with capacitor technology electret technology paved the way for modern MEMS 

microphones (Micro-Electro Mechanical Systems) which are commonly found in smartphones 

today.   

 

Excluding obscure types, such as laser or array systems, microphones operate under similar 

principles.  Acoustic energy, sound waves, hit a sensitive diaphragm which then vibrates.  Movement 

from the vibrating diaphragm is transferred into analogue electrical energy using either the magnet 

and coil or capacitance/electret principle and passed to the analogue to digital convertor for 

digitisation.  Increasingly the technology of microphone and convertor is combined in extremely 

small, low profile units (MEMS). 

 

When considering speech recording it is important to note the complex interactions that occur 

between the speaker(s) and microphone.  For example, an individual knowing that they are being 

recorded (or not) and their compliance with that process could influence speech output (e.g. 

whispering/shouting, conspiratorial tone, withdrawing/monosyllabic, turning away or obscuring the 

microphone, deliberately increasing distance etc.).  The angle, position, distance, response and type 

of microphone will vary the range of speech frequencies captured too.  The positioning and 

orientation of microphone and speaker(s) in a room could also influence the extent of reverberation 

and environmental noise (perhaps less applicable in telecommunications use where distance tends to 

be more stable).  Speaker and/or microphone movement could produce a speech recording either too 

quiet or loud (distortion).  Application of the wrong type of microphone could cause certain speech 

information to be absent from a recording or too poor in quality to process using an ASR system 

(Rose, 2013).  For the purpose of the experiments conducted in this thesis a controlled corpus with 

known microphone conditions was used to minimise baseline variability. 

 

3.3.2 Digital Recording and Sampling 
The electrical signal output from a microphone requires conversion or encoding into a digital format 

for transmission (e.g. telecommunications), digital recording or further computer processing such as 

editing and ASR processing. 

 

The digitisation process (analogue to digital or A/D) is largely evolutionary but widely attributed to 

Alec Harley Reeves, a British telecommunications engineer.  In 1938, Reeves designed and patented 

a pulse code modulation (PCM) coder/decoder (or codec) and provided the foundation for modern 

digital audio.  Later during World War II, the Bell Telephone Laboratories developed a system of 

digital (PCM) transmission and reception with encryption.  In 1943 this technology contributed 

towards a capability for the allied forces to provide encrypted communications between the UK and 

US (codename SIGSALY).  
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To summarise, the electrical signal output from the microphone is passed to an analogue to digital 

(A/D or ADC) convertor.  The encoder works by producing a steady stream of numerical values at a 

given rate per second known as the sampling frequency.  The values are then modified for each sub-

second sample dependent on the incoming signal.  The more samples per second (increase in sample 

rate) the more accurately the waveform is captured (Figure 3.9).  However, a trade off in terms of 

quality is the quantity of data that the process can generate.  This then has resource implications in 

terms of transmission and data storage with greater requirements for network bandwidth and 

memory. 

 
Figure 3.9:  Analogue to digital conversion and sample rate   
From: Dalemultimedia.com (+ annotation) 

 
To listen to the recorded digital signal is then passed back through a digital to analogue (D/A or 

DAC) convertor.  There it is converted to an electrical signal (speakers/headphones) and finally 

sound waves to the ear. 
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Harry Nyquist worked in the AT&T/Bell research and development laboratories from 1917 to 1954 

and he and his team pioneered much of the research conducted on digital sampling and signal 

processing.  This included research on optimum sample rates and the prevention of aliasing.  Aliasing 

occurs when the analogue input wave contains frequency content beyond the range of that which can 

be digitally converted and represented.  Nyquist stated that the sample rate should be twice the 

highest audio frequency to be digitised (Nyquist Rate).  This prevents aliasing and best represents 

the incoming analogue signal in its entirety, in digital form.   

 

Bit depth in the context of PCM is another important variable related to digital audio.  Not to be 

confused with bitrate (number of bits transmitted or processed per second) bit depth refers to the 

quantisation level of the values in the vertical aspect of the converted waveform.  Bit depth is also 

related to dynamic range which is the range of quantised values from the lowest, quietest, level audio 

signal that can be converted to the loudest.  Higher bit depths (such as 16 and 24) equate to compact 

disc and ‘studio quality’ recordings with lower bit rates (e.g. 8 to 12) used extensively in 

telecommunications, largely due to higher bit depths equating to more data.  Low bit depths can 

sound synthetic as greater quantisation of the input waveform produces a less continuous and more 

stepped digital waveform which can be audible.  There is also a higher likelihood of error and 

crude/incorrect representation of the analogue waveform and this is illustrated in Figure 3.10. 

 

Figure 3.10:  Analogue to digital conversion and bit depth 
From: Digitalsoundandmusic.com 
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3.3.3 Transcoding (Codec) 
It is necessary to first differentiate between encoding and transcoding, which are commonly 

confused.  Encoding is to convert a signal from analogue into digital.  Transcoding in the context of 

audio refers to the conversion of one digital format to another and the word codec is simply formed 

from the two words coder and decoder. 

 

There are literally hundreds of different codecs available and each can have multiple settings which 

produces near infinite combinations.  It may seem preferable for the audio community to have fewer 

codecs to provide consistency and limit variability.  Nevertheless, there are valid reasons why a 

particular codec might be used in preference over another or regarded as unsuitable or redundant.  

Codecs can have different applications (e.g. optimised for speech and/or music) and are also 

continually evolving in terms of performance.  If the digital output (codec) of one system is not 

compatible with the input of another system it may be discarded or updated.  A cheaper codec (e.g. 

open source) may be preferred to one incurring a licensing fee.  A more efficient codec that utilises 

less data may be required (i.e. cheaper for transmission and storage).  Also, a high degree of audio 

quality may be deemed of lower importance in comparison to the more simplistic provision of speech 

intelligibility, particularly when attribution is known or not required.  One example of this might be 

push-to-talk radio (PTTR) communication systems with limited users or call signs/self-identification 

where frequency bandwidth can be constrained.  With PTTR or mobile ‘phone devices the distance 

between microphone and speaker is also usually small and so a codec’s settings can be set 

accordingly – with less requirement to mitigate against poor proximity and/or ambient noise.   

 

3.3.4 Bit Rate 
Bit rate refers to the number of kilobytes (data units) per seconds.  In the context of audio recording 

and for pulse code modulated (PCM) sampled audio - bit rate is equal to the sample rate multiplied 

by the bit depth multiplied by the number of audio channels (i.e. x2 for stereo).   To provide context 

the bit rate of a standard compact disc would be 44.1kHz x 16bit x 2 = 1,411.2 kbps.  Bit rate is 

pertinent to transferring data, transcoding and audio quality and many codecs are considered ‘lossy’ 

as they effectively reduce digital information by compressing data.  Some codecs may also have an 

option to utilise a variable bit rate (VBR) - e.g. MP3 - to adhere to adaptations in network transfer 

speeds, for example.  In summary audio/speech quality (frequency bandwidth and/or digital 

rendering detail) is sacrificed when transcoding to a low bit rate. 

 

3.3.5 Spectrogram Analysis 
Speech can be viewed using spectrogram analysis as found in applications such as Izotope RX 

Advanced (iZotope.com) and Praat (fon.hum.uva.nl/praat) (see Figures 3.11 and 3.12).  

Spectrograms enable an audio analyst to examine frequency content (y axis) against time (x axis).  
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Figure 3.11 illustrates the (iZotope) spectrogram of a section of speech.  The orange colour 

intensity denotes amplitude by frequency which, by default, scales from -120db to 0db (Figure 

3.11). The horizontal orange lines shown in Fig 3.11 are the harmonics (multiples of the 

fundamental frequency). The harmonics are characteristics of the voice source (larynx), whereas 

the formants (= vocal tract resonances) are characteristics of the filter (vocal tract).  The blue 

waveform displays summed amplitude (all frequencies) in the time domain.  Izotope RX 

Advanced is commonly used for acoustic examination and includes powerful tools for altering 

audio in the frequency/time domain.  By default, the frequency scale displays using Mel (see 

3.4.3) but other scales can be selected (e.g. linear or logarithmic) which enables intricate acoustic 

examination for other types of audio events (e.g. music).  

Figure 3.11: iZotope RX Advanced spectrogram and waveform views 

Figure 3.12: Visual representations of speech in Praat, amplitude and spectrogram  

Praat is predominantly used by speech analysts and phoneticians.  The spectrograms differ in respect 

to the display and can be extensively configured.  Praat defaults with Gaussian windowing (rather 

than Hann in iZotope) and the dynamic range of Praat defaults to 0db to 100db.  Figure 3.12 from a 

section of DyViS speech. “…Peter, he’s a barber, we go for steak together…”  Formants (F1, F2, F3 

and F4) are represented by dark horizontal lines on the spectrogram.  F0, the fundamental frequency, 

is represented by the fine and feint vertical lines show the glottal pulses (spectrogram view only).  

Praat (Figure 3.12), with its adapted display settings, better represents formant data visually and is 

Waveform view.  Vertical = amplitude, Horizontal = time. 

F4 

F1 

F2 

F3 

Spectrogram view. Vertical = frequency, Horizontal = time, Dark/light = amplitude 

F0: fundamental frequency = vertical pulses 
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therefore more suitable for auditory phonetic analysis.  The main difference between the 

spectrogram shown in Fig 3.11 and Fig. 3.12 is that the former is a narrowband spectrogram 

whereas the latter is a wideband spectrogram.  Only in wideband spectrograms can the formants be 

seen clearly. The variable that determines the difference between these two kinds of spectrograms 

is the length of the analysis window.  In summary, spectrograms are essential for assessing the 

technical quality of speech recordings, analysing acoustic degradation and examining noise and 

speech in detail.  Izotope RX Advanced and Praat were used extensively throughout the 

experiments conducted to analyse speech files.   

3.3.6 Signal to Noise Ratio 
Signal to noise ratio (commonly referred to as SNR or S/N) is the strength of the desired signal in 

comparison to the unwanted - i.e. noise.  SNR is measured in decibels (dB) with 0db at the equal 

ratio of signal and noise.  Positive values are generally referred to as high SNR and negative values 

are referred to as low SNR with noise effectively beginning to obscure the desired signal.   

Measuring, or rather estimating, SNR is difficult since the ratio varies throughout the audio 

file (Beritelli et al., 2010).  Additionally, there are different ways of representing the db output too, 

such as A-weighting to account for the frequency response of the ear (Fletcher and Munson, 

1933). Debate endures as to the best way to correctly measure SNR although it is widely 

accepted that accurate estimation is a more preferable expression of the term than absolute 

measurement.  The simplest way to estimate SNR is to divide the power of the signal by the power 

of the noise.  There are several ways of measuring power including popular methods such as 

the root mean square (RMS), peak or loudest amplitude and the mean amplitude.  It is also widely 

accepted that estimation of SNR becomes less accurate when noise is high.  Martin (2001) 

developed an innovative new algorithm using a technique known as minimum statistic noise 

estimation.  This was further progressed by Kim and Stern (2008) with Waveform 

Amplitude Distribution Analysis or WADA, generally agreed to be a more robust method of 

SNR estimation when noise is high.  Kim and Stern achieved this through improving the 

discrimination of speech (over noise) and recognising that speech is predominately represented by 

a Gaussian distribution (see 3.4.5.1) in comparison to noise - which is generally not (excluding 

crowds/background speech or ‘babble’).  It is acknowledged that WADA SNR estimation 

could be prone to inaccuracies if measuring foreground speech against background babble 

which is also Gaussian in distribution. Nevertheless, as WADA SNR measurement is widely 

considered a robust method of SNR estimation and babble is not used in the experiments in this 

thesis, WADA is therefore applied in this thesis. 

3.3.7 Reverberation 
Reverberation is the reflection of sound waves summing with the original signal.  Direct sound is 

that which travels straight from source to listener (or microphone).  Non-direct sound, for example 

room reverberation, consists of reflections of the direct sound from surfaces such as the walls, ceiling, 

windows and furnishings which return back to the listener or microphone after a small delay.  
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Dependent on the temperature of the air the approximate speed of sound is 343m/s (at 20°C) and the 

difference in time, between the direct sound and the non-direct sound (to the listener), is described 

as early sound.. Reverberation is both frequency and amplitude dependent and is not limited to indoor 

spaces (e.g. mountain ranges).  The length or duration of sound reflections (total reverberation) is 

measured as the time taken for the sound to diminish in amplitude by 60db once the sound source 

ends.  This measurement is widely known as reverberation time 60 or RT60 (Schroeder, 1964).  The 

time difference between direct and early sound arrival is often just tens of milliseconds, but (along 

with RT60) assists with providing the sense of space.  

 

For the purposes of the experiments conducted in this thesis convolution reverberation is applied 

digitally.  This process utilises a system of digitally capturing the impulse response (IR) of a ‘real’ 

reverberant space and then creating a mathematical model to reconstruct that space.  This allows a 

highly controlled application of digital reverberation to the incoming signal.  The detail of how IR is 

applied to controlled data is discussed in Chapter 9. 

 

3.3.8 Frequency Bandwidth 
In the context of audio and speech recording, frequency bandwidth refers to the range of frequencies 

digitally captured.  Frequency bandwidth is related to the sample frequency such that the highest 

possible recorded frequency is equal to half the sample rate.  As discussed this is known as the 

Nyquist frequency and, by way of example, standard telephone communication is recorded at a 

sample rate of 8kHz, the highest speech frequency captured is therefore 4kHz and the frequency 

bandwidth 0-4kHz.   

 

 

3.3.9 Channel  
The term channel (sometimes referred to as ‘domain’) is used throughout the experiments to define 

and differentiate the type of recording path, such as telephony or interview (room).   Whilst outside 

the scope of the experiments conducted in this thesis, in a broader context the term channel could 

also be used to differentiate other types of speech recording - such as Voice over Internet Protocol 

(VoIP), push to talk radio communication, body borne recordings etc.  Links between channel and 

ASR performance has been previously researched.  For example, it is widely known that speech 

transmitted via the telephone channel is constrained both by frequency bandwidth and the GSM 

speech codec used to transmit/receive the signal.  Both these channel specific variables are known to 

influence formant measurements and therefore ASR performance (Künzel, 2001; Besacier et al., 

2000; Byrne and Foulkes, 2004).  In addition, Hughes et al., (2019) stated that some speakers’ 

formants are harder to measure/track than others and can vary across different channel types (2019: 

p.4).   
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Research into the effect of channel by Reynolds et al. (1995) also determined that the microphones 

used to capture telephone speech and the subsequent distortions produced influenced the accuracy of 

ASRs.  To therefore avoid the conflation of additional variables it was determined that the effect of 

channel should be heavily constrained.  Degraded baseline data from the same channel was therefore 

used in the experiments in preference to introducing cross channel variability. 

  

3.4 Automatic Speaker Recognition Systems 
This section provides additional technical explanation as to the terms relating to speaker verification 

systems.  ASR systems require three types of speech data.  These are defined as:  

i. A known sample(s) or speaker model(s) (one or multiple attributed speakers); 

ii. An unknown sample(s) or test audio file (one or multiple unknown speakers); 

iii. A data population or normative data/background model (multiple anonymous speakers).  

 

3.4.1 Speech Detection  
Setting aside data preparation (e.g. digital editing by the operator) an important process in an ASR 

system is to discriminate speech from non-speech.  This is often referred to as speech detection (SD), 

speech/activity detection (SAD) or voice activity detection (VAD) attributed to Bennyassine et al., 

(1997)‡‡.  It is important to note that speech/non-speech discrimination can occur at different points 

of the file ingest chain (e.g. pre or post feature extraction).   

 

On enrolment onto an ASR system both the speaker models and the test audio files often have speech 

detection applied to them prior to, or as part of, the feature extraction stage (3.4.3).  In OWR 

iVocalise there are settings that pertain to VAD, i.e. detection of silence at the sub-second level and 

subsequent removal - with options available to the practitioner to turn it off completely, which will 

be discussed in later chapters.  

 

Speech detection as a concept largely predates ASR system designs.  Early algorithms were 

developed at around the same time as the early pattern matching systems but were mostly used to 

assist with locating sections of speech on multiple radio channels.  An example of this was Dabbs 

and Schmidt (1972) application of speech detection in support of the NASA Apollo space missions.  

In their communications systems they had observed that the main power band of speech occurred in 

the 400Hz to 800Hz range and had a significantly higher signal to noise ratio (SNR) – i.e. F1 and 

low frequency F2.  Dabbs and Schmidt used this information to devise an algorithm to successfully 

detect speech in radio signals which were reported to have an accuracy of approximately 90%.  

Speech research was arguably well funded throughout the 1970s by the US Department of Defence 

                                                
‡‡ See also El-Maleh and Kabal (1997) for technical summary of different VAD approaches.   
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and algorithms progressed in complexity and accuracy.  Later Saunders (1996) successfully used SD 

to discriminate between music and speech on the radio and significantly influenced modern 

algorithms - utilising a combination of amplitude, power band and the Gaussian distribution of 

speech to improve discrimination.  VAD was further developed for variable-rate communications 

use by Sohn, Kim and Sung (1999).  High quality speech detection is essential to accurate ASR 

system output and is very pertinent to the experiments conducted.  In addition, speech detection can 

provide a difficult set of operating thresholds to balance.  For example, if speech detection is set too 

aggressively then the ASR may lack sufficient speech information for successful comparison 

(inhibiting).  If the speech detection thresholds are not set high enough then the ASR will attempt to 

apply modelling and comparison to non-speech sounds such as background speakers, noise or media 

such as TV or radio (contamination). 

 

3.4.2 Diarisation/Speaker Separation 
Diarisation refers to the automated and semi-automated speaker segmentation processes most often 

applied to the test audio.  Although manual editing and then speech detection (to remove silence) 

were used in the experiments in this thesis in preference to semi-automated diarisation which is 

generally regarded to be less accurate – it is nevertheless an important part of most ASR systems.  

Whilst somewhat outside the scope of this thesis - see Miro et al., 2012 for a review of diarisation 

research - diarisation is often confused with speech detection (which is also a process within 

diarisation) and so brief technical explanation follows. 

 

In summary speech is detected and separated from non-speech.  Speech is then clustered or binned 

into multiple (or single) speech files dependent on broad similarities between speakers.  These bins 

are then determined as speaker 1, 2, 3, undefined etc and concatenated ready for ASR processing.  

Many diarisation tools are command line operated.  Diarisation can be a useful data preparation 

method of audio recordings for ASR system analysis.  It can, for example, be applied at scale to 

batches of mono files (e.g. telephone conversations) to pre-process questioned speakers for ASR use.  

Diarisation is generally not recommended for application in creating known samples/speaker models.  

A higher degree of control and human interaction is important since the files are used for recognizing 

other speakers. 

 

Tranter and Reynolds (2006) provided a detailed overview of diarisation, a process which 

automatically analyses an audio recording of multiple speakers (usually 2 or more) and attributes 

portions of speech to each speaker(s).  A recent system called CLuster Estimation and Versatile 

Extraction of Regions or CLEAVER (Alexander and Forth, 2012) designed by Oxford Wave 

Research is an example of a diarisation application with an intuitive graphic interface.  This provides 

the user with control of multiple settings including the sensitivity of speaker segmentation and 

elimination of non-speech sounds (an exclusion database).  In Cleaver the user can also choose to 
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assist the process or automate ‘blind’ clustering to segment speakers accurately and in batches 

(Figure 3.13). 

Figure 3.13: An example of modern, standalone, diarisation software (Cleaver by OWR) 

Small-scale experiments with different diarisation tools were conducted during the course of this thesis 

determine if they could be utilised – particularly for the creation of speaker models.  Broadly, they 

worked extremely well, but were found to be quite reliant on high divergence between speakers (i.e. 

how dissimilar they are).  Accuracy also declined when the technical quality of the recordings was 

lower.  When applied to DyViS data, cross-speaker contamination was therefore inevitable (high 

similarity) and unwanted truncation also occurred on degraded speech, especially on softer utterances 

(e.g. lower vocal effort/SNR).  Settings were also difficult to define across multiple speakers, likely 

due to the variation in SNR.  It is suggested that, whilst diarisation tools can bring benefit of speed and 

are useful in scalable systems for large scale processing – quality is compromised.  Finally, the high 

quality and integrity of control data (validated speech samples/speaker models) is an extremely 

important aspect of a speaker recognition system.  Diarisation tools were therefore rejected for the 

purpose of the experiments conducted.  Manual editing (i.e. by hand) was found to provide much 

greater accuracy, less cross contamination and very low instances of speech sound truncation (loss of 

softer speech sounds).  Manual editing also prevented any unwanted additional variability that could 

be introduced by the diarisation process itself.   
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3.4.3 Feature Extraction and Mel Frequency 
Cepstral Coefficients 
An important step in the ASR system is to extract data from speech to produce a statistical model.  

To complete this process the software performs a feature extraction.  In computational terms the 

objective is to effectively represent the speech and the speaker in an efficient manner without using 

superfluous quantities of data.  Mel-frequency cepstral coefficients (MFCCs) are considered the most 

common, reliable and proven way to represent vocal tract resonances.  MFCCs have been in use 

since the late 1970s and are widely credited to Mermelstein (1976) and Mermelstein and Davis 

(1980), building on research completed by Bridle and Brown (1974).  MFCCs, initially designed for 

speech recognition, are effectively numerical values simplifying measurements of the digital speech 

signal to enable data processing.  To better explain MFCCs it is important to first clarify a few 

additional terms.  Stevens, Volkmann and Newman (1937) devised Mel as a frequency scale based 

on perceptual distances of pitch (the fundamental frequency).  Mel is considered a pertinent scale to 

use for speech processing (e.g. speaker recognition and speech to text) as it correlates well to human 

hearing (Figure 3.14). 

 
Figure 3.14: Mel and Hz scales 
From: Deerishi.wordpress.com/tag/mfcc

 
Cepstrum refers to values calculated from the log of the power spectrum when the results are placed 

in the time domain as opposed to the frequency domain.  Cepstrum takes the first four letters of the 

word spectrum and reverses them to reference that domain transformation.  Coefficient simply refers 

to a numerical value, a variable.   Note also that mathematical transformations are applied to the 

digital signal.  These include Fourier transformation, which takes a time-based signal and applies 

filters to measure the intensity of individual frequencies and discrete cosine transformation (DCT) 

(Ahmed, 1972; 1991) which effectively smooths the detail from the spectrum and is also commonly 

used in compression algorithms.  To perform a Mel Frequency Cepstral Coefficient (MFCC) 

extraction the following steps are taken (Figure 3.15).  
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Figure 3.15: Summary of the MFCC feature extraction process 

 
 

Figure 3.15 was drawn from explanations from Beigi (2011: p.173), Furui (2001: p.253) and Fedila, 

Bengherabi and Amrouche (2018: p.16723).  

Mel filter bank and MFCC output images: aalto.fi. 
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MFCCs are often visually represented as heatmap grids as seen in Figure 3.16 (Lode, et al., 2018: 

p.5).  A heatmap shows the values for each of the features (cepstral coefficients) in relation to time.  

In Figure 3.16, 12 features are extracted.  The number of features in the MFCC extraction is a 

setting in Vocalise, as is the number of triangular filters.  Both features and filters are later referred 

to in the preliminary tests (6.5.1).  Note that one slight disadvantage of MFCCs is that the features 

are extracted in successive frames and are independent of each other over time.  Algorithms are 

necessary to compensate for this and these effectively compute deltas and delta-deltas in the 

horizontal plain of the heatmap, i.e. differences, (usually from the mean) and longer-term 

change over frames.  This, however, is not necessarily a disadvantage from a statistical 

perspective since movement from one frame to another (in the vertical axis) is independent and 

doesn’t necessarily predict frame value (as shown in Fig. 3.16).  MFCC’s therefore enable a 

high degree of pertinent speech information to be passed to the feature extraction and statistical 

modeling stages. 

Figure 3.16: Conceptual example of MFCC values/heatmap from Lode et al. (2018: p.5) 

Note that there are many different methods of completing the feature extraction process.  Previous 

research by Memon, Lech and He (2009) explored combining feature extraction methods and noticed 

a marginal uplift in EER% on YOHO and TIMIT data when fusing MFCC and IMFCC for their 

GMM-UBM ASR.  Their study found TIMIT/GMM at 1.5% EER for  MFCC and 1.8% EER for 

IMFCC with 1.4% EER for the fused system and YOHO/GMM 1.6% EER MFCC and 1.8 EER% 

IMFCC  with 1.4% EER for the fused system.  In their conclusion Boucheron and De Leon stated 
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the best feature extraction method was proven to be a fusion of the MFCC and IMFCC method (2008: 

p.4).   Tirumalaa et al. (2017) recently provided a summary of the many different feature extraction 

methods that have been studied (to date).   

 

3.4.4 Long Term Formant Distribution 
Long term formants (LTFs) were presented by Nolan and Grigoras (2005) as a method of 

discriminating speakers using acoustic measurements of formants F1 and F2 from specific vowel 

utterances and diphthongs.  In their research, also a case study, they extracted 4 acoustic 

measurements; of the vowel /ɪ/ (as in ‘bit’) and three diphthongs; /oʊ/ .as in ‘know’, /aʊ/ as in 

‘mouth’ and /ɔɪ/ as in ‘boy’.  These were used to successfully discriminate between speakers.  This 

methodology provided the foundation of an alternative feature extraction technique and was applied 

by Becker, Jessen and Grigoras (2008) using semi-automatically extracted formant frequencies (long 

term formant values for F1, F2 and F3) on a controlled corpus containing 68 speakers.  The group 

then statistically modelled the speakers (GMM) to achieve an equal error rate (EER) of 3%.  Whilst 

performance was marginally less than MFCC feature extraction methods, this offered the potential 

for performance improvements in respect of cross channel analysis.  This was later studied by Jessen 

and Becker (2010) and then further developed by Alexander, Forth and Jessen (2013) to provide 

long-term formant distribution (LTFD) analysis which was incorporated into an ASR (Vocalise).  

Vocalise LTFD was trialled in the preliminary tests and comparable EER% rates were observed, 

with results presented in chapter 6 (preliminary tests).  

 

Extracting LTFD measurements in Vocalise is completed automatically by isolating information 

corresponding to the formants with a function call to the third-party program Praat 

(fon.hum.uva.nl/praat/).  Praat them runs a script (extractVoiceandFormantsAA.praat).  Extracting 

automated formant measurements in this way is not likely to be completely accurate (Harrison, 

2013).  Indeed, a more manual annotation technique was applied by Nolan and Grigoras (2005).  

Nevertheless, the Praat function returns estimated mean values for each formant (F1, F2, F3 and F4) 

for statistical modelling and comparison.  In summary the Vocalise LTFD method completes the 

following§§: 

i. Pitch estimation occurs, across short segments applying auto-correlation which labels 

sections as voiced or unvoiced; 

ii. First 4 formants are extracted across short voiced segments using an LPC based method; 

iii. Formant estimations are returned to Vocalise; 

iv. Formant measurements are mean normalised or mean variance normalised and delta or delta-

deltas are added (in Vocalise). 

                                                
§§ OWR, Alexander (2016) and Kelly et al. (2019). 
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It could be argued that the LTFD extraction process is very similar in nature to that of the MFCC 

process, capturing data from the audio signal in the spectral domain (acoustic).  However, although 

MFCC extraction captures more information, it could be argued that less non-speech acoustic 

information is extracted in the LTFD process.  A direct comparison study of LTFDs and MFCCs 

analysis was conducted in Gold, French and Harrison (2013) on DyViS data (task 2).  Their study, 

using a bespoke Matlab system and vowel extraction method found LTFDs to be an effective method 

of discrimination (Cllr 0.9072 and EER 5.47%).  In summary, although LTFDs offer the potential 

for improved cross-domain analysis (e.g. interview vs telephone) it was determined not to proceed 

with the use of LTFD methodology beyond the preliminary experiments in this thesis for two main 

reasons.  The prevailing feature extraction method used by almost all ASRs is MFCC and also that 

LTFD performance was simply not as good as MFCC (GMM-UBM) when using formant estimation.  

 

3.4.5 Statistical Modelling 
On completion of the MFCC (or LTFD) feature extraction process a statistical model is required to 

provide a summary representation of each speaker.  An important point to note is that the statistical 

representation is therefore limited to the speech supplied and is not a comprehensive representation 

of the speaker.  As discussed, the way in which statistical models are used has evolved from direct 

feature comparison (similar to pattern matching systems) to much more complex representations and 

the incorporation of comparative population or normative data.  This section provides a brief 

technical explanation of the two main statistical modelling processes used in the experiments 

conducted (Vocalise/Gaussian mixture models and iVocalise/i-vector).  

 

3.4.5.1 Gaussian Mixture Models 
Gaussian mixture models (GMMs) are one of the most common ways of classifying and recognising 

complex patterns through the simplification and smoothing of data.  Reynolds (1992; 1994) and 

Reynolds, Quatieri and Dunn (2000) are widely credited for applying Gaussian mixture models 

specifically to speaker verification systems.  Reynolds (1992) discovered that GMMs were found to 

be particularly good for modelling statistical variation for speakers because they are able to represent 

a large class of sample distributions.  They can therefore be used to model complex feature 

extractions from MFCC data with values relative to normative data.  GMMs, via MFCCs, effectively 

provide statistical representations reflective of the vocal tract of a speaker (from the speech provided) 

relative to the universal background model (normative data).   To provide further explanation, the 

term ‘Gaussian’ refers to the bell curve of a distribution (in this case from the MFCC output) and 

‘mixture model’ applies to the layering of a number of those Gaussians components - see Figure 3.17 

from Dulal (2014). 
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Figure 3.17: Illustration of 5 Gaussian components forming a GMM (Dulal, 2014) 
From: slideshare.net/dulalsaurab 

 
In summary, Gaussian distributions are extracted and layered together to create single statistical 

models for each speaker relative to the mean GMM for the normative set of background speakers.  

Simply put, when an unknown speaker is then compared, their feature vectors are compared against 

the GMM of the known speaker to provide the numerator of the likelihood ratio and the feature 

vectors from the unknown speaker are compared against the UBM which provides the denominator.  

This is further illustrated in Enzinger (2015: p.52).  Variances between the two speakers are measured 

(similarity) against the normative set (typicality) and this is what the likelihood ratio effectively 

equates to (see also 3.5.1).  

 

As previously stated, Gaussian mixture models do not necessarily need to be created from MFCC 

feature extraction output and could be applied to other feature extraction methods.  Also, the number 

of Gaussians that can be generated is configurable.  In preliminary tests to examine this further 

(chapter 6) it was noted that the EER fluctuated marginally depending on the number of Gaussians 

selected – likely due to the difference in data detail/statistical density. However, diminishing 

performance was noted as the Gaussians increased – as also reported in Alexander, Forth and Jessen 

(2013).  Whilst the reason for this is not entirely understood it is likely that this occurs as the 

statistical models become saturated with respect to the detail of the data extracted and inclusion of 

non-speech information occurs. 
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3.4.5.2  i-Vectors and Statistical Modelling 
The introduction and development of i-vector systems, during the course of this thesis, heavily 

influenced the experiments completed. 

 

Dehak et al. (2011) are widely credited with the application of identity vectors or i-vector statistical 

modelling to ASR systems.  I-vector modelling was developed from joint factor analysis (JFA) by 

Kenny et al. (2006) - which, in summary, completed a statistical model of both speaker and channel 

separately.   

 

I-vectors were increasingly integrated into ASR systems during the course of this thesis with a 

notable paradigm shift occurring from 2014 onwards as manufacturers of ASRs began to adopt the 

new method (e.g. Vocalise to iVocalise).  At the time, i-vectors were viewed as potentially offering 

a performance advantage over traditional GMM methods through better statistical representation.   

 

Following MFCC feature extraction, the i-vector method effectively enable both speaker and channel 

variables to be statistically represented in a much more detailed, multi-dimensional super vector 

space.  This super vector space can include, for example, the number of MFCC coefficients (often 

including delta or delta-delta calculations) multiplied by the number of gaussians.  The super vector 

can be as large as >30,000 dimensions and this undergoes a dimensionality reduction to create an i-

vector (e.g. 400 dimensions).  The development of i-vectors for speaker recognition was to provide 

additional density in statistical modelling and, therefore, more complex and specific representation 

of each speaker (from the speech provided) than GMM-UBM.   

 

To provide a brief explanation, vectors are points in space that have direction and magnitude.  I-

vectors are therefore effectively multiple positions (vectors) in multi-dimensional space that can 

represent a highly complex statistical speaker model within a probabilistic space.  The complete 

space, created from normative data, is called the ‘total variability’ or ‘total variability matrix/space’ 

TV(M) or TVS.  This compact (i)vector is effectively a probabilistic factor analysis (Baum-Welch 

algorithm) of the GMM-UBM models created from the entire training set (normative data).  Similar 

to a universal background model, in standard GMM-UBM only systems, i-vector ASR systems 

generally require a much larger combined normative dataset (population of speakers) independent to 

the comparison files.   

 

A common method for comparing i-vectors is commonly referred to as ‘probabilistic linear 

discrimination analysis’ or PLDA.  PLDA is essentially a comparison methodology, rather than a 

reference to the entire normative data set – although the term ‘PLDA session’ is often applied as 

such.  Prince and Elder’s initial study focused on facial recognition and improving discrimination 

under poor lighting conditions or when subjects used different poses and expressions.  PLDA 



 59 

develops earlier methods such as earlier Linear Discrimination Analysis (LDA) by Fukunaga (1990) 

and McLachlan (1992) - which is also utilised in iVocalise, prior to the PLDA stage.  Essentially, 

LDA then PLDA combine to further assist with maximising the between speaker variability whilst 

minimising the within speaker variability by creating a more discriminative space (with LDA 

reducing session variability).   

 

An i-vector speaker model is trained from normative data (i.e. an i-vector extractor) which is, in turn, 

trained from MFCC’s from a large set of trained recordings.  The architecture of the iVocalise i-

vector system is arranged as follows: UBM, TV, LDA and PLDA.  The combination of this approach 

provides greater discrimination (than GMM-UBM alone) and prevents, to some extent, 

contamination of non-speaker information which might influence results (i.e. channel and noise). 

 

For the purpose of this thesis and to constrain variables, since different ASRs use slightly different 

algorithms, population models and settings - all research experiments are conducted on either the 

Vocalise ASR (GMM-UBM) and/or iVocalise (i-vector/UBM, TV, LDA+PLDA) systems 

Alexander, Forth and Jessen (2013), Alexander et al. (2014) and Kelly et al. (2019a).  Full 

specifications are provided in Appendix G. 

 

3.4.6 Speaker Model or Voiceprint? 
In the context of the experiments conducted, a speaker model is a computer file that contains the 

statistical summary information of a speaker’s vocal tract as extracted from an audio file containing 

speech from the speaker.  Manufacturers often refer to these as voiceprints, which is misleading and 

application of the term ‘voiceprint’ can cause consternation amongst the forensic speech and 

analytical communities, for two main reasons.  Firstly, the term is associated with the early widely 

discredited speaker identification technique that involved holistic and impressionistic, i.e. non-

analytic, comparison of spectrograms (Kersta, 1962).  Second, the term voiceprint could imply, 

through connotation, that ASR output is similar to fingerprinting and more conclusive than it is.  As 

discussed, speech is highly variable and is neither a unique, fixed pattern mode of identification nor 

a ‘true’ biometric measurement in the sense that no direct physiological traits are measured, only 

vibrations in the airwaves.  In addition, the speaker model is generated using only a very small 

example of speech from an (often brief) audio recording and acoustic measurements refer only to 

that which can be extracted from sound waves.  Nevertheless, speech does carry substantial biometric 

information within it and individuals can be distinguished to a large extent on the basis of their speech 

patterns.  So, to summarise, the term speaker model (SM) is broadly preferred to ‘voiceprint’ and is 

therefore applied in this thesis. 
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3.4.7 Normative Data/Background Population 
Modern ASRs use a large dataset to statistically represent the population.  This is called the normative 

dataset, the universal background model (UBM) or, in an i-vector ASR system, the universal 

background model, total variability matrix, linear discrimination analysis and probabilistic linear 

discrimination analysis (UBM, TV(M)/LDA+PLDA).   

 

Normative data is required to establish statistical context by providing mean values and to inform 

the ASR system as to what speech is.  The comparison of known sample and unknown sample 

provides statistical distance data on similarity whilst the population data provides data on typicality.  

It is generated from a large quantity of speech files, usually hundreds or thousands, from different 

speakers.  Ideally, audio files are neither the questioned audio (unknown speaker) nor the speaker 

model (known speaker).  Often the normative dataset consists of multiple commercially available 

corpora and it is relatively hidden from the ASR user - although some systems do provide options to 

create your own normative sets (Vocalise and iVocalise). 

 

Rose (2013) recommended that, as forensic speech analysts, we should be prepared to obtain 

normative data for each case, although a debate regarding the selection of normative data for ASR 

speaker comparison has endured.  It is argued that selecting population data requires time, patience, 

a lot of data to select from and much consideration to accurately and evenly capture the variability 

in speech (including aspects such as language, dialect, gender, duration, channel and recording 

conditions) to reflect a population relevant to the comparison(s) conducted.   

 

In the context of GMM-UBM ASR comparison where H0 = the ‘same speaker’ hypothesis and H1= 

the ‘different speaker’ hypothesis - Reynolds, Quatieri and Dunn (2000) stated that: 

 

 ‘…while the model for H0 is well defined, (H1) is less well defined since it potentially must 

represent the entire space of possible alternatives…’ (Reynolds, Quatieri and Dunn, 2000: p.22)    

 

‘…There is no objective measure to determine the right number of speakers or amount of speech to 

use in training a UBM’. (Reynolds, Quatieri and Dunn, 2000: p.25). 

 

Others suggest that whilst the size of the normative data set is important, it may not be as significant 

for ASR application as might be first thought and that diminishing returns of EER% performance are 

evident as saturation is reached through data quantity.  Hasan and Hansen demonstrated that, by 

carefully selecting a diverse set of UBM speakers, the baseline system (GMM-UBM) performance 

could be retained using less than 30% of the original UBM speakers (Hasan and Hansen, 2011: 

p.1830) - although it is argued that this would require retesting with respect to a modern i-vector 

system.   
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ASR system designers approach the normative data problem in different ways with some 

manufacturers expecting full trust in a default dataset, which remains effectively hidden and 

unalterable by the user.  It could be argued that this provides benefit through system commonality 

(repeatability and reproducibility) and reliability of output.  Nevertheless, it can exacerbate the 

frustration that without a good understanding of the content of the normative dataset - true typicality 

cannot be measured.  It also cannot be assumed that the dataset is reflective of the comparative 

samples.  In the research domain meta-data is available (for research corpora) to assist with informing 

the normative selection and ensuring data relevance.  For an investigative analyst/forensic 

practitioner, building a bespoke normative set can seem a sizeable requirement – given the unknown 

variables in the questioned sample.  It could also prove a distraction from the case at hand and has 

resource implications with regards the time it can take to source appropriate speech files and test the 

dataset.  In addition, issues could arise regarding audio laboratories validating results across multiple 

systems.  From experience, it has been noted that ASR operators feel a strong inclination to use a 

default normative data set at the risk of depending on the manufacturer to determine how relevant 

(or not) the selection of that data is to the comparison.   

 

Whilst not a key objective of this thesis, the testing of different sizes and types of normative datasets 

formed a small part of the preliminary experiments completed in this thesis and for seeking to 

mitigate against acoustic variability (see Chapter 9).  For those purposes significant care was taken 

when selecting or adapting the normative dataset.  It is clearly indicated when the UBM is changed 

or adapted and care was taken to prevent the conflation of variables.     

 

3.5 Automatic Speaker Recognition Output and 
Performance Measurement 
As discussed, speaker comparison relies on measurements taken from sound vibrations in the air.  

The infinite degree of intrinsic and extrinsic variability has also been discussed and so measurements 

cannot be taken as absolute.  Despite this, film*** and television often confuse fact and fiction and 

use simplistic shorthand terms to drive a narrative - such as a speaker ‘match’ or a ‘hit’.  These terms 

often surface in the analysis community and should be discouraged.  This section provides an 

explanation of the terms pertaining to ASR output that are more widely accepted. 

 

3.5.1 Likelihood Ratio and Bayes’ Theorem 
Aitken and Stoney (1991: pp.20-21) suggested that there is a requirement for the output of a 

comparative process such as speaker comparison to fulfil the following criteria. 

                                                
*** The film 2001 A Space Odyssey (1968) makes an early reference to voiceprint identification. 
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i. To assess the strength of scientific evidence it is necessary to consider (at least) two 

explanations for its occurrence; 

ii. The evidence is evaluated by assessing its probability under each of the competing 

explanations. 

iii. The strength of the evidence in relation to one of the explanations is the probability of the 

evidence given that explanation, divided by the probability of the evidence given the 

alternative explanation.  

 

Given the above criteria, Bayes’ theorem for calculating probability was recommended for 

application to scientific disciplines (e.g. Aitken and Stoney, 1991; Evett, 1998).  This concept was 

further progressed by Drygajlo, Meuwly and Alexander (2003) and Drygajlo et al. for ENFSI (2015) 

for specific application in the context of speaker comparison and ASR systems.  It was also further 

explored in a study by Gonzalez-Rodriguez et al. (2204; 2006) and many of their research 

recommendations for compensating for the lack of data to improve ASR LR output estimation have 

been integrated into modern systems – e.g. Zhang and Tang (2018).  

 

The ENFSI guidelines (2015: p.4 and reproduced in 3.18) also promotes Bayes and further defines 

what should be the province of the court or the expert in the context of speaker comparison.  Note 

that prior odds information is additional data, which can be derived from sources not necessarily 

pertaining to speech or audio (2015: p.5). 

 
Figure 3.18: Bayes’ theorem from Drygajlo et al./ENFSI (2015).   

 
Likelihood ratio (LR) output from ASRs is the statistical probability of supporting either the same 

speaker hypothesis (H0) or a different speaker hypothesis (H1) and is effectively calculated from 

similarity divided by typicality.  Note that some ASR systems (e.g. OWR Vocalise) presents output 

in terms of the Log of the LR or LLR.   
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Figure 3.19 from Morrison (2009) provides a further concise and useful graphic explanation of how 

LR is calculated. 

 
Figure 3.19: Typicality, similarity and calculation of LR, from Morrison (2009) 
From: acoustics.org/pressroom/httpdocs/157th/morrison.html 

 
Further studies pertaining to LR calculations are recommended in Aitken and Stoney (1991), Evett 

(1998), Hughes (2014) and Gold (2014).   

 

Morrison, Ochoa and Thiruvaran (2012) proposed that the LR framework would be more accurate if 

the population database better supported the defence hypothesis (2012: p.62).  They argue that 

speaker comparisons submitted, by the Police for example, were more likely to contain speakers 

which sound similar (and therefore generate a same speaker hypothesis) than to generate different 

speaker hypotheses.  Their recommendation is that the selection of background and test data (e.g. 

channel and speaking style) is selected by a lay listener panel and put to a database.   Their 

experiments showed benefit in an MFCC GMM-UBM system (over a randomly generated database) 

(2012: p.75).  Whilst it is suggested that the argument to better support the defence hypothesis is 

sound, the approach could be difficult to implement with respect to time and resources given the 

permutations of channel and speaking style.  In addition, it could be prone to errors pertaining to lay 

listener assessment.  During the course of completing the experiments in this thesis it was noted that 

the specificity of the normative data was more important for GMM-UBM ASR system (performance) 

than for an i-vector system, where the requirement for normative data size was simply greater.  It 

was also noted that the variation of LR or LLR output across ASR systems/normative sets could 

undermine the confidence of results.  This problem was recently studied by Solewicz, Jessen and 

Van Der Vloed (2017) who applied a new method of score calibration to reduce the diversity in LLR 

output across 5 different ASR systems without the need for additional data. 
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Quantifying typicality forensically is ambitious due to the size of the data requirement (population).  

Research by Morrison and Enzinger (2018) examines the importance of incorporating information 

pertaining to the relevant population when calculating typicality for forensic application.  They state: 

 

‘Scores which are purely measures of similarity are not appropriate for calculating forensically 

interpretable likelihood ratios.  In addition to taking account of similarity between the questioned-

origin specimen and the known-origin sample, scores must also take account of the typicality of the 

questioned-origin specimen with respect to a sample of the relevant population specified by the 

defence hypothesis.’   Morrison and Enzinger (2018: p.1). 

 

In summary, whilst prior and posterior odds are an important aspect of Bayes’ theorem, for the 

experiments conducted in this thesis the DyViS corpora used throughout provided statistically 

simplified data.  For each of the 100 speakers every speaker model had a known test audio file (or 

multiple thereof).  Finally, it should be noted that likelihood ratios (LR) values are not particularly 

easy to understand by the courts/lay-person.  For other forensic disciplines verbal 

equivalence/interpretation of a numerical LR output is often offered by an expert to assist in 

understanding the strength of support for H0/H1.  This is further discussed in 3.5.2.  

 

3.5.2 Verbal equivalence scales 
Verbal equivalence scales were proposed for forensic application by Champod and Evett (2001) and 

applied to speaker comparison by Rose (2002).  The purpose was to design a scale to convert a 

numerical likelihood ratio (or log likelihood) score into an expression that a non-skilled person could 

better understand.  The Table below is from Rose (2002: p.61). 

 
Table 3.20: Verbal equivalence scale from Rose (2002: p.61) 

 
A more up to date and comprehensive guidance, Table 3.21, is also provided by ENFSI (2015) for 

evaluative reporting in forensic science and shows the evolution in phrasing in comparison to Table 

3.20. 
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Table 3.21: ENFSI Verbal equivalence scale (ENFSI 2015: p.17) 

 
Debate surrounds the use of verbal equivalence scales with one argument suggesting that the 

perception of verbal description can vary per individual (practitioner).  This was researched by 

Mullen, Spence, Moxey and Jamieson (2014) and later by Marquis et al. (2016).  

 

‘…results show that there are serious misunderstandings of the verbal scale. It does not achieve the 

purpose for which it was created.  The terms used are unlikely to be understood properly by lay 

people and it would appear that they are actually misunderstood.’  

Mullen, Spence, Moxey and Jamieson (2014: p.154).  
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A second issue surrounds any simplification of the verbal equivalence table if log likelihood ratio 

conversions are applied (Vocalise).  This creates the potential for cliff edge results with small 

margins to transition between descriptions (i.e. small numerical value differentiates between 

‘strongly supports’ to ‘near certainty’).  These concerns are countered by many in the community 

(e.g. Eriksson, 2012) who support a verbal scale which provides greater simplification.  Eriksson 

(2012: p.60) also references similar verbal scales used by Swedish, Finnish, French and German law 

enforcement and states that output consistency consensus could be better reached between experts 

across LEA (repeatability and reproducibility).  Nevertheless, the application of these types of verbal 

scales, including the use of phrases such as ‘near certainty’, are further discussed in chapter 12 in 

reference to the outcome from the experiments conducted. 

 

3.5.3 Likelihood Ratio and Log Likelihood Ratio 
Plots 
When measuring ASR performance LR plots can be applied to illustrate the distribution of scores for 

multiple comparisons – some of which are same speaker (H0), some different (H1), Figure 3.22. 

 
Figure 3.22: LR Plot example from ENFSI standards (2015: p.19) + additional annotation 

 

TP TN 

Threshold 

TP   TN 
(FR)  (FP)  

 

Same speaker 

Different speaker 
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Assuming a controlled corpus is used where the outcome is known there are four classes of results 

in the context of an ASR system and a sensible threshold can be identified which balances outcomes 

dependent on preference (Figure 3.22). 

i. True Positive (TP): the ASR has correctly verified the speaker (blue dotted line to the right 

of the threshold mark). 

ii. True Negative (TN): the ASR has correctly rejected the speaker (red line to the left of the 

threshold mark). 

iii. False Positive (FP): the ASR has incorrectly verified the speaker (red line to the right of the 

threshold mark under the blue dotted line) i.e. high LR score(s) for the incorrect speaker. 

iv. False Reject (FR): the ASR has incorrectly rejected the speaker (blue dotted line, to the left 

of the threshold mark under the red line) i.e. low LR score(s) for the correct speaker. 

 

TP, TN, FP and FR terms effectively relate to same speaker distribution and different speaker 

distribution in relation to the threshold.  The amount of separation between the same speaker and 

different speaker bell-curves is significant, with less overlap indicating better system performance 

and lower confusability.  Greater separation between same speaker and different speaker 

distributions also provides the opportunity for clearer threshold setting.  Conversely the closer the 

two distribution curves are the more likely it is that the system will provide incorrect output (FP, FR) 

with the setting of threshold values harder to determine with greater overlapping values.  Note also 

that the score distribution should ideally provide a bell-curve with a narrow base for the same speaker 

results, again reflecting better overall system performance (less standard deviation).  LR plots formed 

a key part of analysing the ASR output from the experiments in this thesis.  In the experiments 

presented FPs and FRs are represented as a percentage of total outcomes and termed FAR (false 

accept rate) and FRR (false reject rate).  To examine the trade-off between FP and FR, DET curves 

(and scatter plots) are also used in the field of speaker verification (Martin et al., 1997).  When FAR 

and FRR are plotted the graphed lines intersect at a point to enable the calculation of equal error rate 

(EER%).  Note that for some of the experiments conducted in this thesis the EER% is not quite zero 

despite the absence of FP and FR values.  This is because EER% refers to the measurement of an 

area (under a curve) rather than a finite point.  Whilst EER% as a performance measurement is not 

preferred by all forensic scientists (e.g. see cost of likelihood ratio (Cllr) 3.5.5) it is nevertheless 

widely used as a common way of comparing performance both within ASR systems and across ASR 

systems. 

 

3.5.4 System Accuracy and Precision  
In addition to EER% i.e. overall system performance – accuracy is also important to understand and 

specify in casework or analytical reporting.  Ideally, results from ASRs should be accompanied with 

explanation and context regarding confidence or risk that the system could produce an incorrect 

result.  For example, if a single speaker comparison is conducted a single LR value cannot represent 
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the inherent variability (of score output) that would naturally occur but which it is impossible to 

measure unless multiple comparisons are conducted (Morrison, 2010).  Simply put an operator 

cannot know where the sole LR score they obtained is positioned with respect to overall variability 

if multiple comparisons where available.  It is impossible to know whether a single score is higher 

than average, lower than average or an outlier.  This can be better explained in the context of accuracy 

and precision if we imagine that a single comparison that we conduct falls as a point within a 

distribution curve (Figure 3.23). 

 
 
Figure 3.23: Accuracy and Precision explanation 
From: Slideplayer.com/slide/7474261 

 

3.5.5 Cost of Log Likelihood Ratio 
The Cllr is a performance measurement that provides a metric of accuracy.  It is particularly useful 

for evaluating systems with similar or low EER% and comparing how accurate they perform.  

Brummer and Leeuwen (2006) state that ‘a perfect recognizer (that makes no errors) will have zero 

loss, while all others have positive loss’ (2006: p.5).  Cllr is also discussed in ENFSI standards as a 

useful measurement of accuracy: ‘The closer to value of Cllr is to zero, effectively the more accurate 

the system’ ENFSI (2015: p.26).  Cllr is a measurement related to the applied probability of error (or 

APE) and to calculate it the APE is computed for a range of priors and considered with the LR output 

of the system.  Both are plotted and the area of the difference calculated as the Cllr.  The OWR Bio-

Metrics system uses the Brummer and Leeuwen (2006) method for calculating the Cllr and this is 

used in the presentation of results for the experiments conducted in this thesis to discuss accuracy.   
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Recently, Cllr has gained popularity in validating system accuracy in conjunction with overall EER% 

performance and recommendations have been made for its incorporation into method validation (see 

Morrison, Thiruvaran and Epps, 2010; Hughes, 2014).   

 

ENFSI also provide examples as to how Cllr could be incorporated into method validation/reporting 

and offers an example for an acceptable range.    ENFSI provides an example as a possible validation 

criterion that the ‘Cllr for the method under evaluation should be smaller than 0.65.’  ENFSI (2015: 

p.29).  Cllr threshold(s) should be applied to individual systems and in consideration of calibration 

– so it should be emphasised that this is just an example, rather than a direct recommendation.  Broad 

recommendations (Hughes et al., 2019) are applied such that a Cllr of <1.00 is viewed as an 

acceptable level of accuracy – with values of Cllr >1 suggesting an ASR system may require 

adaptation of settings, or calibration, or that the audio itself is not of sufficient quality to obtain an 

accurate result.  It is suggested that the application of Cllr, as a metric, is relatively recent and most 

useful – but the guidance for Cllr acceptability requires further clarification. 

 

3.5.6 Zoo plots 
It would be convenient if all speaker models performed in a uniform way.  Unfortunately, that is not 

the case.  In analysing the baseline data (known results) on an ASR system Campbell (1997) 

described speakers as wolves or sheep dependent on tendency to false accept.  Doddington et al. 

(1998) then applied the term ‘speaker menagerie’ and increased the classifying of speakers further 

to include sheep and goats (in addition to lambs and wolves).  Doddington attributed an animal 

characteristic to each speaker as follows, loosely linking animal type to the way in which he felt they 

performed within a system.  

i. Wolves typically impersonate other speakers  

ii. Goats are difficult to identify  

iii. Lambs are easy to impersonate 

iv. Sheep describe the ‘normal’ distribution 

Dunstone and Yager (2009) expanded on this idea and introduced new classifications.  A visual 

summary of the two classification systems is presented below (Figure 3.24). 
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Figure 3.24: Dunstone and Yager (2009) and Doddington’s classification systems 

 
 

To better visualise the data and this system of classification Dunstone and Yager (2009) developed 

zoo plots (example in Figure 3.25).  Zoo plots assign speakers to either normal or non-normal 

classifications on a two-tone x, y axis grid dependent on their performance.  The x axis shows the 

mean likelihood ratio (LR) output from iVocalise or the log likelihood ratio (LLR) output from 

Vocalise for the same/matched speaker outcomes.  The y axis displays the mean LR or LLR outcomes 

for the imposter/different speaker outcomes. 

 

The dove, worm, chameleon and phantom categories are displayed in each of the four quadrants with 

normal distribution effectively forming the fifth classification in the white, central region.  For the 

OWR Bio-Metrics zoo plot software, designed in consultation with Yager, classifications are 

calculated by taking the top and bottom 25% scores for both genuine and imposter matches to 

generate each of the quartiles.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dunstone and Yager’s 
classification system: Doves, 
Phantoms, Worms, Chameleons 
and Sheep.    
 
The Doddington system: Sheep, 
Wolves, Lambs and Goats.  
Whilst the two systems are related 
through the types of 
classifications, zoo plots provide 
additional granularity for both 
imposter and genuine 
performance.  See Dunstone and 
Yager (2009: p. 168) and 
Alexander, Forth, Nash & Yager 
(2014). 
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Figure 3.25: Example zoo plot, showing categories.   

 
 

Zoo plots are increasingly applied to examine candidate performance and stability of systems in 

many forensic fields, including face and fingerprint recognition (O’Conner et al., 2013).  To 

summarise and place in the context of speaker comparison the zoo plot classifications are described 

by Dunstone and Yager (2009: p.161) as:  

 

Doves are the best performers in a system.  They produce high match scores against their speaker 

model and low match scores against the imposter models.  To the ASR system dove speakers are 

easily recognisable and effectively stand out from the other comparisons completed. 

 

Chameleons produce high match scores against their speaker model and high match scores against 

the imposter models.  To the ASR system chameleon speakers appear similar to everyone.  

 

Phantoms have low match scores against their speaker model and low match scores against the 

imposter models.  To the ASR, system phantom speakers do not appear similar to anyone. 

 

Worms are the worst performers in a system.  They produce low match scores against their speaker 

model and high match scores against imposters.  To the ASR system worm speakers are not easily 

recognisable and can be easily confused for other speakers.  

 

Normal is the only classification to appear in both zoo plots and the Doddington system (sheep).  

This is the typical distribution. 

DOVES 

CHAMELEONS WORMS 

PHANTOMS 

GMM-UBM ASR.  Baseline Test, 100 DyViS 
speakers 

Normal 

Normal 

Normal 

Normal 
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There are advantages and disadvantages to zoo plot analysis.  They provide detail as to relative 

speaker performance in terms of how well a speaker can be distinguished against the others in the 

test and against themselves.  Zoo plots can also be a useful tool for checking calibration and the 

relevance of normative data and skewed patterning was noticed during preliminary tests, particularly 

when DyViS was incorporated in the normative data (chapter 6 and Appendix D).  Alexander, Forth, 

Nash and Yager (2014) recommend that: ‘Zoo plot analysis is done as speakers are added into a 

database, to help identify commonalities of speaker groups or algorithmic weaknesses of systems.’ 

(2014: p.1). 

 

Another aspect of zoo plot analysis pertains to clustering although caution should be exercised in 

drawing definitive conclusions.  Schnitzer et al. (2013: p.1) refers to clustering as ‘hubs’ - a natural 

cause of biometric comparison systems and that hubs contribute directly towards Doddington’s 

classifications (and subsequent zoo classifications).  However, hubs are described as one symptom 

of near neighbour and average calculations for multiple similarity computations.  Schnitzer’s study 

demonstrated that the more feature dimensions that are considered the greater the exaggerated effects 

of hubs and production of outliers (Schnitzer et al., 2013: p.5).  So, whilst clusters, groups and hubs 

are important to examine, in themselves, zoo plot position cannot be fully conclusive in terms of 

causality and additional data and/or analysis is recommended to validate position and cause.  As an 

example of this, in an early preliminary test, regionally accented speech data was added to DyViS 

accented speech (see 6.5.4 and Appendix D).  In zoo plot analysis the accent speakers were observed 

to cluster in one quartile (phantoms).  However, in that instance it could not be fully determined 

whether clustering was caused by the audio channel (different recording sessions) or the accented 

speech or both.  The preliminary test and zoo plot results therefore influenced the experiments 

conducted, emphasizing the importance of constraining channel and intrinsic variability to avoid 

conflation.  Note also that further research relating to zoo plot analysis is currently underway by 

Wang, Hughes and Foulkes (2019).   
 

 

3.5.6.1 Zoo Plots and Inter/Intra Variability 
Inter-speaker variability describes the variation in speech between a speaker and other speakers.  

Intra-speaker variability describes the variation within a speaker’s speech.  By default, single data 

points are displayed.  However, Bio-Metrics can also display elliptical shapes to provide an 

indication of the degree of inter-speaker variability (distinction from other speakers) and intra-

speaker variability (within speaker consistency) – see Figure 3.26.  The additional zoo plot display 

option, for this variability, is referred to as ‘fat, thin, tall or short’ animals (Alexander et al., 2014).   
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Figure 3.26: Example of an OWR Bio-Metrics zoo plot with fat and thin animals 

 
 

An ellipse shape (in either vertical or horizontal orientation) displays the intra or inter values for each 

speaker with the size of the ellipse/circle indicating the relationship to the mean.  In summary, the 

mean of the standard deviation (for all speaker scores) becomes a circular unit of 1.   Speakers with 

values larger than 1 are then referred to as fatter and/or taller in comparison to the other speakers in 

the test.  Speakers represented by shapes smaller than the unit of 1 are referred to as thinner and/or 

shorter (Figure 3.26).   

i. Single unit circle = single unit = average (of this dataset) 

ii. Short and thin = low imposter variability scores, low genuine variability scores 

(Low inter, low intra variability) 

iii. Short and fat =  low imposter variability scores, high genuine variability scores 

(How inter, high intra variability) 

iv. Tall and thin = high imposter variability scores, low genuine variability scores 

(High inter, low intra variability) 

v. Tall and fat = high imposter variability scores, high genuine variability scores 

(High inter, high intra variability) 

The mean shape can be displayed in later versions of Bio-Metrics, as a circle, to provide a reference. 

 

When expressing data using this visual representation an observation in preliminary tests was that 

intra and inter-speaker variability was not necessarily linked to classification.  This is because the 

likelihood score and variability of that score are not linked variables (i.e. magnitude of LR and 

standard deviation from the mean) and it is therefore possible to have an animal of any width and 

height in any classification.  In summary, zoo plots can provide indication of system performance 

GMM-UBM.  Test, 100 DyViS speakers 

DOVES 

CHAMELEONS WORMS 

PHANTOMS 
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health, identify outliers and speakers that perform with similar scores (cohort groups/clusters) and 

also intra/inter speaker variability.  Zoo plots enable a practitioner to visualise ASR speaker 

performance in a far more accessible and detailed way than single performance figures such as 

EER%.  It is for those reasons that zoo plots were used extensively during the course of this thesis 

to examine ASR results.   

 

3.5.6.2 Performance Measurements (False 
Accept Rate and False Reject Rate) 

The results tables in chapters 7-11 contain the following terms, which require explanation. 

i. H0 Mean: the average LR/LLR score for the hypothesis that two speakers compared are the 

same (genuine speaker match). 

ii. H1 Mean: the average LR/LLR score for the hypothesis that two speakers compared are not 

the same (imposter match). 

iii. H0 Standard Deviation (SD): this is effectively the measure of score spread for genuine 

match results.  SD is the square root of the variance.  Variance is calculated as the average 

of the squared differences from the mean. 

iv. H1 Standard Deviation (SD): the measure of score spread for imposter match results. 

v. FAR (False Accept Rate) and FRR (False Reject Rate).  In determining system thresholds 

there is a trade-off between false accepts and false rejects.  A well performing system 

obviously has very low false accepts and very low false rejects.  In Bio-Metrics software 

(OWR), it is possible to represent this data by viewing the decision threshold on a sliding 

scale (from low to high) effectively decreasing the FAR at 0.01, 0.001 and 0.0001, which 

results in a corresponding increase in FRR.  Viewing the relationship between FAR and FRR 

to this level of detail can be extremely useful, particularly when FAR is close to zero at 0.01. 

 

3.6 Automatic Speaker Recognition Use Case Examples 
ASR systems are capable of completing hundreds of software comparisons per second.  They do not 

fatigue and can produce a standardised set of results based on a defined set of algorithms and 

parameters/settings which are repeatable.  When correctly operated and applied to high quality 

speech in sufficient quantity modern ASR systems can perform accurately (French et al., 2009).  

However, there is general agreement that accuracy can fall due to channel impairments 

(contaminants) including the effects of transmission and recording factors (French et al., 2009; 

Alexander, 2005).  Nevertheless, ASR systems are growing in popularity for assisting with dealing 

with large volumes of speech data.  This section outlines the differences between use cases as 

requirements vary significantly.  Research conducted on the different application of ASR systems 

produced the following summary (Table 3.27).     
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Table 3.27: Typical examples of ASR use cases  
Example 
Sector 

Question/use case Type of 
ASR 
analysis 

Comments 

Healthcare, 
Banking, 
Insurance or 
Call Centre 

Is this Mr Smith on the 
telephone? 
 
ASR assists with 
customer identity 
validation. 

1 to 1 
comparison. 
Relatively 
high security 
as used in 
combination 
with other 
data. 

Prior expectation of 
customer identity, often 
text dependent. 
Compliant customer. 
Repeatable process if 
verification fails 
(including enrolment 
phase). 

Law 
Enforcement 
(example 1) 

Does this recording 
contain Mr Smith? 

1 to 1 To investigative standard 
with some progression to 
evidence (auditory 
analysis underpinning). 

Law 
Enforcement 
(example 2) 

Does this recording 
contain Mr Smith or one 
of his associates? 

1 to N Non-evidential.  To 
investigative standard, 
with some progression to 
evidence likely if other 
data assists with 
verification (auditory 
analysis by expert 
witness). 

Law 
Enforcement  
(example 3) 

Do these recordings 
contain any of our 
suspects? 

N to N For investigative purposes 
with some progression to 
evidence (auditory 
analysis underpinning). 

Forensic 
Practitioner 

As for Law Enforcement 
Agencies (LEAs) 

1 to 1, 1 to N, 
N to N 

Not yet approved for 
evidential purposes in the 
UK. 

 

Differences in ASR application can determine the setting of threshold(s) based on the risk of incorrect 

outcome(s), the selection of normative data and settings pertaining to the mitigation of error.  For 

example, a text dependent ASR system for telephone banking which completes a 1 to 1 speaker 

verification (i.e. questioned audio compared to speaker model from file) may have a very high 

threshold to limit false positives.  Conversely an ASR applied in an investigative context on bulk 

data (perhaps on poorer quality audio and/or with lower net duration) may have a verification 

threshold set deliberately low to mitigate against false rejection.  False positive and false reject 

outcomes have different repercussions such as incorrect inclusion or incorrect exclusion from an 

investigation.  The trade off, of more false positive results requiring additional resources to validate 

against other data types, will be weighted against the risk of a criminal potentially evading detection.  
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3.7 Summary 
In providing an explanation of technical terms and concepts this chapter highlights the complexity 

of the end-to-end process(es) from the speaker(s) through to the ASR/practitioner and 

the considerable variability that can be encountered throughout.  For ASR systems to function to a 

high degree of accuracy throughout all these processes must occur successfully.   

Obtaining full metrics from every section of the end-to-end signal chain is not possible and, to some 

extent, this influenced the scope of the experiments conducted in this thesis.  It was determined that 

the five topics chosen - net duration, SNR, reverberation, frequency bandwidth and transcoding could 

be analysed effectively under controlled conditions and were likely to have the most significant 

extrinsic influence on ASR performance. 

Finally, a new timeline from the research completed for chapter 3, is proposed below (Figure 3.28). 



Figure 3.28: Speaker comparison timeline, evolution from 2005 to 2019

Yager 



Chapter 4  Research Questions 

The initial research question was to establish the degree to which acoustic variability influences ASR 

performance under 5 conditions.  The aim of this was to assist with informing ASR application in 

casework where a wide variety of acoustic conditions are commonly encountered.  In 

improving the understanding of ASR performance on degraded audio, a main objective was to 

reduce errors and incorrect outcomes which could potentially have implications in terms of 

material presented to court, particularly in countries where ASR output is accepted as evidence.    

A large number of experiments, including over 540 tests and creation of more than 16 million data 

points were completed, using a single research corpus (DyViS) recorded under highly 

controlled conditions to produce detailed metrics across the 5 conditions.  Maintaining data 

consistency across analysis was considered important to avoid the conflation of variables that can 

occur when applying multiple corpora recorded under different conditions.  This chapter 

provides a summary of the individual research questions addressed in each of the sets of 

experiments.  Hypotheses are presented in each of the subsequent chapters. 

Chapter 6: Preliminary Tests  

Q1: How should baseline be best established and what are the optimum ASR settings? 

Q2: Are the zoo plot classifications of speakers similar for MFCC and LTFD? 

Q3: Are zoo plot classifications affected by the technical features of the recordings, i.e. SNR and 

net speech duration, rather than just those features intrinsic to the voices themselves? 

Chapter 7: Net Duration  

Q1: How does a state of the art i-vector/UBM, TV, LDA+PLDA system perform in comparison 

to a GMM-UBM system under low net duration speech conditions? 

Q2: For the i-vector system, is performance degradation linear or are there any identifiable 

tipping points?  If so, what are the optimum net duration settings for performance and net duration 

acceptability? 

Q3: If 50 x speakers from the baseline test audio (i.e. 1m x 2 for 50 speakers) are compared with 

50 speakers from the shorter duration test audio (i.e. 20s x2 per 50 speakers) is zoo plot position 

influenced by net duration when using 1m (baseline) speaker models for all 100 speakers? 

Q4: In the very short duration results (e.g. 1-3s) is there any noticeable lexical/phoneme 

commonalities or spectrogram observations that explain zoo plot positioning for speakers who 

perform well (Doves)?  Conversely, do the very poor performing speakers (Worms, Phantoms, 

Chameleons) exhibit high lexical divergence or any notable spectrogram observations? 
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Chapter 8: Signal to Noise Ratio (SNR). 

Q1: To what extent does decreasing the SNR influence ASR performance on modern systems 

and can any tipping points be identified? 

Q2: Are speakers with lower existing SNR/poor vocal effort affected faster, in terms of 

performance degradation, as the SNR incrementally decreases?  Conversely, are speakers with high 

SNR values more resilient to the addition of noise? 

Q3: Does the addition of pink noise produce different results from the addition of white noise? 

Q4: With regard to channel matching/mismatch, is there benefit from degrading the speaker 

models in line with the test audio or should the speaker models be held at the highest possible quality? 

Q5: With regard to the degraded results, can processing plug-ins such as noise reduction and/or 

digital normalisation positively influence/restore ASR performance? 

Chapter 9: Reverberation   

Q1 How resilient are modern i-vector ASR systems to reverberation as opposed to the earlier 

GMM-UBM versions used in studies such as Castellano (1996) and Peer, Rafaely and Zigel (2008)? 

Further, how effective are session changes to an iVector ASR system, based on adapting the 

normative data (UBM, TV, LDA+PLDA), relative to one another? 

Q2 Under a given set of conditions, can we quantify the influence of reverberation on ASR 

performance?  If so, are there any direct correlations with specific reverberation measurements such 

as RT60? 

Q3 Can the influence of reverberation be mitigated through: 

• Matching conditions, i.e. RT60, for speaker model and test audio?;

• Adaptation or improvements to the normative data (i-vector/PLDA system) to

potentially restore ASR performance?

Chapter 10: Frequency Bandwidth.   

Q1 Does ASR performance noticeably improve relative to baseline when the frequency 

bandwidth is extended beyond telephony?  If so, what is the optimum frequency bandwidth for ASR 

performance? 

Q2 Does an i-vector/UBM, TV, LDA + PLDA ASR system offer significant performance 

advantages over a GMM-UBM system when the frequency bandwidth is extended? 

Q3 Many ASR systems automatically down-sample audio files as they are imported, to a 

frequency bandwidth 0-4kHz (sample rate 8kHz).  OWR Vocalise and iVocalise ASR software 

systems provide the operator with the opportunity to adjust the frequency bandwidth (minimum and 

maximum settings) for the MFCC feature extraction stage and allow the configuration of normative 

data.  Can performance advantages therefore be found in terms of matching frequency bandwidth for 

speaker models and test audio?   
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• If we applied the same channel bandwidth limitation to both the questioned audio and

speaker model, how would ASR performance vary against baseline?

• If iterative bandwidth degradation was applied to the test audio but wide band speaker

models were used, how would ASR performance vary against baseline?

Q4 If the frequency bandwidth is significantly reduced below that of standard telephony what 

implications would that have for ASR performance? 

Chapter 11: Transcoding  

Q1 How resilient are more modern i-vector/PLDA ASR systems to codec degredation in 

comparison with GMM-UBM systems? 

Q2 To what extent does ASR performance degrade when transcoding processes are applied to 

baseline data? 

Q3 How will compression codecs influence ASR performance? 

Q4 Can any operating thresholds be extrapolated relating to data compression rates which may 

assist with informing ASR use? 
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Chapter 5  Equipment and Recordings 

This chapter provides a brief overview of the equipment and research corpora which is consistent 

throughout all the experiments completed in this thesis.  Additional detail is also provided within 

each chapter to document where materials and methods differ.  

 

5.1 Software  

5.1.1 Audio Applications and Scripts 
Audio files were edited and analysed using the following software: 

i. Adobe Audition version 3.03 (2012) Adobe.com/uk/products/audition  

ii. Izotope RX Advanced, versions 3 (2012) through to 6 (2018) Izotope.com 

iii. Praat Fon.hum.uva.nl/praat.  

 

These products were primarily selected due to the ease of operation and intuitive graphic user 

interfaces (GUI).  In addition, all software was known to have undergone iterative updates over many 

years and were considered stable.  Finally, in reference to the extremely high quality of batch 

export/transcoding required, testing completed by Src.infinitewave.ca demonstrated that they were 

transparent in operation (did not further degrade or add artefacts) in comparison to other applications.   

 

The above software was also validated to ensure that artefacts or additional variables/unwanted noise 

was not added.  This was completed, for example, by analysing spectrograms to ensure the noise 

floor was not affected.  In addition, null checks were undertaken - involving alignment of audio files 

in the time domain then inverting the phase of one and summing them together to check total phase 

cancellation (i.e. silence), see https://www.soundonsound.com/techniques/phase-demystified. 

 

Care was also taken to ensure that audio file integrity was maintained throughout all the editing and 

processing stages.  Dip sample checking (approximately 10-20%) was completed, applying auditory 

and spectrogram analysis (e.g. ensuring that additional noise and/or aliasing did not occur).   

 

Using validated ground truth (or baseline) data has the benefit of knowing that, in each single 

comparison, exactly one of the speakers will match at least one of the test audio files.  The audio 

files that that formed the baseline data were edited to generate 30,000 reconcilable cross comparisons 

– by taking audio files from 100 speakers and effectively dividing them into 4 portions i.e. 1 speaker 

model (SM) and three test audio (TA) files per speaker.  This then provided 29,700 imposter 

outcomes and 300 genuine speaker scores.  Further details are provided in each of the chapters as the 



 82 

test audio varies marginally for each experiment.  The editing of SM and TA files was completed by 

hand.  Automatic and semi-automatic diarisation software was tested but not regarded as suitable for 

the experiments due to the additional variability that they added.   

 

To automatically split test files - e.g. for the net duration chapter - several Python (Python.org) batch 

scripts were created to assist with generating multiple session data from the same speaker swiftly.  

The output, from the batch processes, were dip sampled (approximately 10-20%) to ensure accuracy 

and that the process itself did not contaminate the audio files.  Awave software by FMJsoft 

(Fmjsoft.com/awaveaudio) was used to complete the codec file conversions for the preliminary tests.  

The version used was 11.1.   

 

5.1.2 Vocalise and iVocalise Software 
The Vocalise and iVocalise ASR systems (Alexander et al., 2016) by Oxford Wave Research (OWR) 

Oxfordwaveresearch.com/products/vocalise were chosen for the research conducted in this thesis.  

They are similar in architecture and performance to other commercially available ASR systems.   

 

The Vocalise, GMM-UBM, ASR software was available for the preliminary tests from 2012 

onwards, in Beta version.  The iVocalise, i-vector ASR system was available from 2015.  More 

details, specifications and versions etc. are documented in Appendix G.  These specific ASR systems 

were chosen for several reasons:  

• The options and settings available to the user are extensive and enable a high level of system 

adjustment.  This provided, for example, greater ability to analyse multiple types of ASR 

conditions and assist with determining whether the ASR can be adjusted to compensate for 

acoustic variability.  It should be noted that many options, such as compiling complex 

normative sets and adjusting feature extraction settings, are not available or not as flexible 

on all commercial systems. 

 

• Two generations of Vocalise ASR architecture (GMM-UBM and i-vector) were made 

available for assessment, providing a unique opportunity to test similar systems with 

different underlying methodologies. 

 

• OWR offered unique insight into how their systems worked.  This was evident through the 

provision of documentation, free and regular patch updates, responsive technical support and 

permission to baseline their ASR systems under difficult and complex conditions.  Other 

commercial companies were approached but were unable (or unwilling) to provide this. 
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• In the Vocalise system (GMM-UBM) the normative set (UBM) can be relatively easily 

defined/compiled by the user in comparison to other commercial systems.  Indeed, for some 

ASR systems changing the normative data is strongly discouraged in preference to a default 

set which is often of unknown compilation.  

 

• Various system options are available to the user which are not available on other ASR 

systems.  For example, in Vocalise, options were also available to the user for exploring 

different methods of feature extraction, such as long-term formant distribution (LTFD).  This 

unique feature extraction method was explored in the experiments and these are further 

explained in the relevant sections.  

 

The iVocalise ASR system uses i-vectors for statistical modelling (see 3.4.5.2).  For an i-vector 

system to work successfully the normative dataset requirement is much larger than for GMM-UBM.  

OWR provided assistance in compiling normative data for the i-vector system because a much more 

complex set of UBM, TV, LDA and PLDA enrolment is completed – using one, very large set of 

normative .wav files.  This process is referred to by OWR as a ‘session’.  Similar to Vocalise, the 

iVocalise system also allows for user configuration and parameter changes which are often 

unavailable to users of other ASR systems and these are documented in the relevant sections.   

 

Both iVocalise systems output a comma separated value (.csv) file which contains all the output data 

from the comparisons completed (e.g. successful comparisons completed and LR or LLR score 

output).  The iVocalise systems are commercially available and widely considered to be comparable 

to other state-of-the-art ASR systems in terms of performance.  This was recently tested in a set of 

studies which examined different ASR systems and further information can be found at Morrison 

and Enzinger (2019) and Kelly et al. (2019).     

 

5.1.3 Bio-Metrics Software 
The output .csv files from Vocalise and iVocalise were examined using OWR software Bio-Metrics  

2011a Oxfordwaveresearch.com/products/Bio-Metrics.  Bio-Metrics software exploits the iVocalise 

output files to provide metrics such as Cllr, EER% and can complete a wide variety of charting and 

graphing functions such as LR plot, and zoo plot to assist with system performance analysis.  Recent 

versions of Bio-Metrics (late 2018 onwards) can also complete score system fusion.   It should be 

noted that this function was not available at the time that the experiments were completed. 

 

5.2 Summary of Hardware  
Two, standard build, Apple computers (A1286 and A3198) were used throughout this thesis.  These 

were used for all audio editing, analysis and for running the Parallels VMWare software 
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Parallels.com/uk/landingpage.  Parallels is a virtual PC that provides access to Windows OS and the 

OWR suite.  A standard Dell XPS15 laptop was also used, primarily to validate that the Parallels 

software was transparent in (audio) operation.  Audio files processed using the Parallels VMWare 

system and the Dell XPS15 laptop were compared and determined to be technically identical 

(i.e. Parallels did not add artefacts or degrade the audio files).  Complete audio file integrity, in 

Parallels VMWare, was also confirmed through direct correspondence (see Appendix L). 

Beyer DT990 Pro headphones were used for listening, Europe.beyerdynamic.com/dt-990-pro.html.  

The frequency response (5Hz to 35kHz) makes them particularly suitable for monitoring and 

detailed audio analysis.  The Avid/Digidesign Mbox 3 series audio interface (USB) was used in 

preference to internal PC soundcards, which were often found to introduce small amounts of mains 

hum or noise into the headphone socket output.  The Mbox series is now discontinued but details 

can be found at: Akmedia.digidesign.com/support/docs/Mbox_Technology_Guide_70405.pdf. 

5.3 Speech Corpora 
The Dynamic Variability in Speech corpus or DyViS (Nolan and McDougall et al., 2009) features 

100 male speakers between the ages of 18 and 25.  All speakers are classified as Southern, 

Standard, British, English (SSBE).  A number of speaking tasks were undertaken by participants 

and the free speech, a simulated police interview (task 1) and a simulated telephone conversation 

(task 2), were selected as the most forensically realistic.   

The task 1 (microphone, 44.1kHz sample rate, 16bit depth) and task 2 (telephone, 8kHz sample 

rate, 16bit depth) data were selected for this thesis to reflect typical casework conditions.  The 

DyViS corpus was also selected due to the overall high quality of the recordings and the strictly 

controlled conditions in which they were created in addition to the metadata available to assist 

analysis.  It was determined that any inherent variability or small amounts of channel variation 

within the corpus would become a part of baseline ASR performance i.e. acoustic degradation 

(contaminants and inhibitors) to be applied to the baseline recordings.  This underlying 

methodology was common to all experiments conducted. 

Additional corpora were used to provide bespoke normative data where the default normative 

sets were unsuitable.  Further details are provided in the relevant chapters.  
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Chapter 6  Preliminary Testing 

This chapter summaries the preliminary tests conducted prior to the main research experiments.  The 

chapter is provided as a record to demonstrate how the methodology and scope of the subsequent 

research experiments was established and how the baseline data or ground truth, common to all the 

subsequent experiments conducted, was obtained.  At the time the preliminary tests were completed 

the iVocalise (i-vector) ASR was not yet available.   

 

6.1 Objectives 
To provide accurate output from the experiments it was determined that the baseline performance of 

systems (EER%) should be reflective of a high performing state of the art and fully optimised ASR 

system.  The preliminary tests therefore ensured that ASRs were correctly set, that the corpora and 

editing points were suitable and the selection of normative data was effective.  Objectives were 

defined as: 

i. Familiarisation with Vocalise ASR system operation;   

ii. Testing the ASR feature extraction methodologies (i.e. MFCC, LTFD) and assessing 

performance differential (if any); 

iii. Preparation of speaker models (SM) and test audio (TA) files for baseline data;   

iv. Selection and preparation of normative data; 

v. Establishing if any technical (acoustic) or intrinsic variability could be determined within 

the DyViS corpora which could influence results from further acoustic variability tests; 

vi. Gaining familiarity with Bio-Metrics software to measure performance i.e. zoo plots, LR 

plots, EER% graphing;   

vii. Completing baseline experiments under controlled conditions and adjusting ASR settings to 

inform ASR performance reflective of a state-of-the-art system; 

viii. Providing assurance in terms of validating methodology, defining research experiments and 

determining scope. 

 

6.2 Questions 
The following research questions (Q) were set with associated hypotheses (H). 

 

Q1: How should baseline be best established and what are the optimum ASR settings? 

H1: In applying current research methodology a corpus recorded under carefully controlled 

condition should be used.  SM and TA files should be carefully edited.  Known performance 

outcomes should be attained – i.e. true positive (TP), true negative (TN), false positive (FP) and false 
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negative (FN).  ASR settings should be adjusted to optimise performance and establish EER% 

performance figures for MFCC and LTFD extraction methods (referred to as ‘modes’ or ‘engines’).  

Testing will establish this. 

 

Q2: Are the zoo plot classifications of speakers similar for MFCC and LTFD? 

H2: It is hypothesised that the zoo plots are likely to show some performance variation between 

different engines as they are based on different measurements and therefore statistical speaker 

models.  However, it is not known to what extent they will vary and the difference in EER% between 

the two systems will be an important element of the preliminary tests to establish which will be more 

effective to use in the main research experiments. 

 

Q3: Are zoo plot classifications affected by the technical features of the recordings, i.e. SNR 

and net speech duration, rather than just those features intrinsic to the voices themselves? 

H3: The corpus was recorded under highly controlled and consistent conditions e.g. microphone 

gain and position, sample rate, bit depth and room.  It is therefore suggested that poorer performing 

speakers (i.e. high ASR imposter match scores and/or low genuine match scores) may not necessarily 

equate directly to technical features – since those are relatively uniform across the corpus.  

Nevertheless, outlying speakers which are classified in more extreme zoo plot positions could exhibit 

certain technical features such as those which are likely to vary across the corpus (e.g. SNR linked 

to vocal effort).  Examination of intrinsic factors, such as voice quality or the addition of accented 

data could assist with explaining zoo position causality too and so experimental tests should also be 

conducted using additional (VQ/VPA) data.  

 

6.3 Data Preparation and Materials 
The Dynamic Variability in Speech (DyViS) corpus (Nolan and McDougall et al., 2009) was selected 

for use in the experiments and permission was granted for use.  DyViS features 100 male speakers 

between the ages of 18 and 25 recorded under controlled conditions (spontaneous speech).  All 

speakers are classified as Southern, Standard, British, English (SSBE).  The task II (telephone 

channel) speech files were edited and the following audio data was removed: 

i.    The interlocutor/interviewer 

ii.    Overlapping speech, i.e. the speaking and interlocutor speaking simultaneously 

iii.    Any dial tones, beeps, GSM interference, clicks, crackles, distortion or clipping 

iv.    Signal drop outs, silent pauses   

v.    Non-speech sounds (coughs, breathing, sighs etc) 

vi.    Any rustling, movement or environmental noise 
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The maximum net quantity of speech was obtained.  This was edited into a speaker model (SM) and 

multiple test audio (TA) files per speaker from the same session to limit channel variability and 

prevent the conflation of variables.  ASR tests were conducted examining different SM lengths.  

Whilst large differences in performance were noted at the <1m SM net duration point, only a very 

negligible differential in EER% performance was noted between the 1m and 3m duration lengths.   

 

MFCC GMM-UBM.  EER 1.24%: 1m SM 

MFCC GMM-UBM.  EER 1.01%: 3m SM 

 

It was assessed that ASR performance was acceptable at 1m (SM) net duration which then provided 

enough material to provide multiple files for the TA for all speakers.  This test informed the scope 

for the chapter on net duration, to further examine sub 1m SM and TA performance. 

   

To provide sufficient speech material to inform both the SM and TA material it was therefore 

determined that edit points should be made in the following manner: 

i.    First minute of net speech = SM 

ii.    Second minute of net speech = TA 1 

iii.    Third minute of net speech = TA 2 

iv.    Remaining material (variable length files containing residual) = TA 3 

 

This process was applied to each of the 100 Speakers – i.e. SM (100) and TA files (3 x 100) were 

created.  This then provided 30,000 cross comparisons i.e. 29,700 different speaker/true negatives 

and 300 same speaker/true positives.  It was noted that intra-speaker variability could be better 

measured with multiple session audio (of the same channel conditions).  However, this option was 

unavailable within the DyViS corpus, unless introducing additional variability pertaining to sample 

rate, bit depth and codec through the addition of DyViS task 1 data (mock interview).  To maintain 

channel consistency this was therefore not completed.    

 
The OWR Vocalise system (GMM-UBM with options for MFCC and LTFD feature extraction) used 

was build 1.5.0.1190.  Symmetrical testing is an option in Vocalise and this was selected to further 

improve performance – this effectively reverses the status of SM and TA to establish mean score 

values and is useful when net duration differs (i.e. in most cases).  The OWR Bio-Metrics software 

used was build 1.4.0.597.   

6.3.1 User Mode 
Note also that Vocalise 1 included the option to import hand annotated data (e.g. formant data).  This 

is referred to as the ‘user mode’.  The user mode was not used in the experiments, to limit variables. 
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6.4 Selection of Normative Data 
The OWR Vocalise ASR provides the user the option of configuring normative data.  It is widely 

understood that normative data should not contain the same speakers as the question/test audio files 

and speaker model(s) due to result distortion.  It was determined that a bespoke normative data set 

was required.  A normative dataset was constructed specifically to reflect the demographic of the 

speakers in the trials i.e. SSBE and male aged 18-25.  The Speech Obtained in Key Environments 

(SPOKE, 2015) corpus was used for both MFCC and LTFD GMM-UBM experiments.  SPOKE 

contains approximately 200 speakers (UK English) recorded using 8 different microphone types.  

The telephone (i.e. GSM transcoded/far channel) data was selected to best reflect task 1 in DyViS 

(i.e. high channel similarity).  To ensure high normative relevance to DyVIS the speakers for the 

normative data were selected from a similar speaker demographic to the test material (SSBE, male 

and 18-25) and of similar net speech duration as the SM and TA.  The process for enrolling the 

normative data for Vocalise GMM-UBM, as defined by OWR, was followed. 

 

It was noted that to achieve an EER of 1.2% (MFCC) and 6.02% EER (LTFD) in Vocalise a 

normative set was applied which contained very low numbers of speakers (less than 100) and 

additions appeared to make no further improvements to EER%.   It was somewhat surprising that 

an EER% could be so low (and performance so high) using such a very small normative set.  

Although not conclusive in itself - this supported research on GMM-UBM normative data by Hasan 

and Hansen (2011) as noted in 3.4.7.    

 

Different normative sets were tested, for example using material from SPOKE which did not reflect 

the SM and TA, other accented data and even DyViS.  The results were often very poorly skewed 

(zoo plot) for both MFCC and LTFD engines and EER% raised significantly.  Output was deemed 

useless - confirming the importance of separation of data between UBM and test/questioned audio 

(see Appendix D).  In summary, this test demonstrated that there is a clearly a strong relationship 

between the normative data and individual speaker performance in addition to the overall system 

performance (EER%).  

 

6.4.1 Additional Data 
Stevens and French (2012) examined the voice quality of the 100 DyViS speakers in detail.  Note 

that the voice quality settings and scores established for DyViS speakers by Stevens and French 

(2012) was recently superseded by a definitive set represented in San Segundo et al. (2018).  

However, at the time of conducting these preliminary tests, the Stevens and French estimations were 

all that was available.  Stevens and French (2012) adapted previous methods to assess voice quality 

using an adjusted version of the Vocal Profile Analysis (VPA) scheme developed by John Laver 

(Laver, 1968; 1975; 1979; 1980; 1991).  Each of the speakers was scored using a subjective six-
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point scale (marked 0 to 5) for 34 vocal settings and a VQ data grid was produced.  This was used 

to provide score indicators for each speaker.  Additional grids were created for this thesis to analyse 

the distance from the mean for each VQ score (see Appendix B).   VQ data was then examined in 

relation to the MFCC and LTFD zoo plot classifications.  

6.5 Preliminary Test Results 
The results from the preliminary tests are presented with associated observations. 

6.5.1 Automatic Speaker Recognition Settings 
and Equal Error Rate Results 
As expected, both MFCC and LTFD engines performed relatively well on the baseline data. 

Optimum EER points were established on the GMM-UBM systems as 1.244% (MFCC) and 6.022% 

(LTFD) shown in bold in Table 6.1. 

Table 6.1: Summary of preliminary EER% results.  Vocalise, DyViS, telephone channel 
Feature 

Extraction 

‘Engine’ 

UBM Extraction settings 

* Number of filters (see 3.4.3)

**Default number of Gaussians is 32

EER % 

LTFD Type A SSBE UBM F1, F2, F3 Default Gaussians** 8.686 

LTFD Type A SSBE UBM F1, F2, F3, Default Gaussians** 7.483 

LTFD Type A SSBE UBM F1, F2, F3, F4 12 Gaussians 7.737 

LTFD Type A SSBE UBM F1, F2, F3, F4 24 Gaussians 6.308 

LTFD Type A SSBE 

UBM 

F1, F2, F3, F4 Default Gaussians** 6.022 

(optimum) 

MFCC Type A SSBE UBM Default Gaussians** Default with Cepstral 

Mean Subtraction (CMS) 
4.991 

MFCC Type A SSBE 

UBM 

Default Gaussians** 13 filters* 1.244 

(optimum) 

MFCC Type A SSBE UBM Default Gaussians** 12 filters* 1.8468 

MFCC Type A SSBE UBM Default Gaussians** Default plus Delta 

Delta 

7.225 

LTFD DyViS [100] Results Null: Normative data pollution N/A 

MFCC DyViS [100] Results Null: Normative data pollution N/A 
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EER% performance varied and a link between number of gaussians and formants extracted was 

noted.  A difference between LTFD and MFCC EER% performance was established and as 

predicted.  Both these observations were also independently confirmed in Jessen, Alexander and 

Forth (2014).   

 

Differences between LTFD and MFCC are likely due to the additional data captured by the MFCC 

process in comparison to formant values alone (LTFD engine).  This was referenced in Rose (2013: 

p.84) who stated ‘there is potentially more information in a cepstral than a formant comparison’.   

 

6.5.2 Cepstral and Formant System Comparison 
The OWR Vocalise ASR outputs a .csv file for analysis in OWR Bio-Metrics software.  Two 

example LR Plots are presented below showing baseline tests using the optimum settings for the 

MFCC and LTFD engines (Figure 6.2 and Figure 6.3). 

 
Figure 6.2: Bio-Metrics LR plot.  100 SM x 300 TA, MFCC GMM-UBM 
 

 
 
 
 
 
 
 
 
 
 

GMM-UBM, bespoke SSBE UBM, MFCC extraction 32 Gaussians. 1.244 % EER  

MFCC, SSBE UBM, 32 Gaussians, 13F 1.244 % EER  

 

LLR 
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Figure 6.3: Bio-Metrics LR plot.  100 SM x 300 TA, LTFD GMM-UBM 

 
 

Lower scores were observed for the LTFD engine overall and score distribution separation (between 

same speaker and different speaker comparisons) was noted to be poorer in comparison to the MFCC 

engine.   

 

6.5.3 Zoo Plot Analysis 
Using zoo plot analysis it was observed that the MFCC engine produced speakers with marginally 

more phantom and worm classifications.  This prompted the requirement, in further experiments, for 

additional metrics such as cost of likelihood ratio (Cllr) which was integrated into later versions of 

Bio-Metrics.  As expected, Doves were greater in number for the MFCC system.  Since both the 

MFCC and LTFD engines employ broadly similar extraction methods on the same data some 

commonalities in classifications were expected in terms of zoo placement.  This was demonstrated 

in the results (Tables 6.4 and 6.5) where 8% of speakers appeared in the same zoo plot quadrant for 

both MFCC and LTFD extraction engines. 
 

Table 6.4: Vocalise ASR, MFCC. EER 1.2441%: Zoo plot categories by speaker number  
Doves 012 047 008 071 038 049 020    

Chameleons   044 074  090     

Worms 025 063 107        

Phantoms  058  077 037 103 033  080 040 

 

GMM-UBM, bespoke SSBE UBM. LTFD F1, F2, F3, F4 32 Gaussians. EER 6.0219% 

 

LLR 



 92 

Speakers classified identically in both MFCC and LTFD tests are highlighted. 
 
Table 6.5: Vocalise ASR, LTFD. EER 6.0219%: Zoo plot categories by speaker number 

Doves 051 033 086  111      

Chameleons 066   015   050    

Worms 035 059         

Phantoms   042  054 053     

 

The lower overall performance of the LTFD engine in the preliminary tests, the lack of possibility 

for including it in most ASR systems and the introduction of i-vector ASR systems at the time - was 

taken as grounds for not using it in the main experiments. 

 

6.5.4 Voice Quality and Accent Data 
Voice quality data was provided, for DyViS speakers, from research conducted by Stevens and 

French (2013).  A later research paper by San Segundo et al. (2018) re-examined voice quality for 

DyViS speakers.  This was conducted in the context of inter-rater consensus for VPA where it was 

found that this was achievable within the group of three experts completing the method as outlined 

in their research.   

 

Analysis of the Stevens and French (2012) data was completed and, using their scores for VPA, new 

tables were created which re-scored speakers as to standard deviation (see Appendix B) – i.e. distant 

from mean for all 100 speakers and ‘rarity’ of a given VQ feature (within the set of 100 speakers).  

This highlighted speakers which had an above average score for any given voice quality criteria.  Zoo 

plot position was then examined in reference to VQ.  Some clustering in regards to zoo plot position 

appeared evident for a small number of VQ features (e.g. Figure 6.6 and Figure 6.7).  Additional 

examples of the zoo plots generated in relation to VQ data analysis are also provided in Appendix H.   

 

In summary the subjective nature of the underlying VQ data suggested that, whilst some potential 

correlations with zoo plot position were observed, further research was required to establish which 

criteria were contributing to position and it was determined that this was outside the scope of the 

subsequent experiments.   

 
Finally, a brief test was completed examining zoo plot position and the addition of Pakistani and 

Yorkshire accented speakers (i.e. SM and TA) with the same telephone characteristics as the SSBE 

accented DyViS data.  Clustering of accented data was observed in the zoo plot positioning.  

However, this only applied when normative data was selected using DyViS (i.e. skewed results 

negated the significance of position) see Appendix D. 



 
Figure 6.6: Zoo plot 100 SM x 300 TA, GMM-UBM MFCC.  VQ Data 1 Example 

  
  
Clustering of speakers without VQ Breathy noted (right side of zoo plot). 
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Figure 6.7: Zoo plot 100 SM x 300 TA, GMM-UBM LTFD. VQ Data 2 Example 

 
 
Clustering of speakers with VQ Lax Larynx noted (left side of zoo plot). 

Speakers with VQ Lax Larynx  
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-0.5 0.22 2.384 3.10 0.94 



6.5.5 Additional Analysis (Speaker 012)  
Since SM and TA files were extracted from the same corpus it was expected that speaker 

performance would be relatively consistent and zoo plot examination would yield little in terms of 

positioning with respect to technical quality.  However, that was not the case.  Zoo plot and 

spreadsheet analysis (Figure 6.8 and Figure 6.9) showed speaker 012 as an outlier dove by a wide 

margin (MFCC engine).  Speaker 012 scored very high genuine match LR scores and very low 

imposter match LR scores.  This position suggested that the speaker had either an extremely 

distinctive voice (to the ASR) or another variable was influencing speaker performance and zoo plot 

position.  Unusually, speaker 012 did not appear in the same quadrant for the LTFD engine as the 

MFCC engine (Vocalise GMM-UBM).   

 

Figure 6.8: Zoo plot 100 SM x 300 TA, GMM-UBM MFCC 

 
Figure 6.9: 30,000 comparisons MFCC Vocalise.  Blue line shows TP scores  

 

Elevated TP scores noted for speaker 012 

LLR 
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Further analysis was completed using a spectrogram to view frequency content (see Appendix K).  

It was noted that the recording used in both the speaker model and the test sample, from the same 

session, contained 50Hz mains hum with associated harmonics (horizontal lines, fixed frequency).  

On re-examining both speaker 012 files and the remaining 99 speakers, this noise was not present 

for any other speaker.  In understanding ASR feature extraction (MFCC engine) a plausible 

explanation for why this speaker produces very high match scores (and very low imposter scores) 

was therefore probably caused by noise not present in either the speaker model or test audio for any 

other speaker.  I.e., speaker 012 is effectively easy for the ASR to distinguish due to non-speech 

(constant) values extracted.  On adapting the zoo plot view to examine intra and inter-speaker 

variability (in relation to the mean) speaker 012 displayed as a ‘tall and thin’ speaker point (3.2.6) 

(Alexander et al., 2014) in comparison to other speakers (i.e. very high inter-variability, very low 

intra-variability).  A plausible explanation is that noise is present within the 3 test audio files and 

speaker model not found in any other file.   

 
Whilst the EER% was elevated, and performance therefore lower, the LTFD engine appeared to 

provide results more robust to the mains hum noise (speaker 012 not elevated).  This is likely due to 

formant values estimated from mean values, which are effectively tracked throughout the audio file, 

rather than a full MFCC feature extraction (i.e. speech + noise).  Speaker 012 was therefore classified 

as normal on the Zoo plot pertaining to the LTFD results.  These speaker performance characteristics 

demonstrate the risk of acoustic variability – specifically the influence of noise when using MFCC 

extraction.  It cannot always be assumed that ASR performance is based solely on the speech within 

the file.  In summary, this preliminary test analysis highlighted the importance of examining the 

technical quality of audio, applying zoo plots to inspect ASR and speaker performance and the utility 

of spectrograms to examine acoustic variability.  For completeness, speaker 012 was not deleted 

from the corpus.  However, the DyViS Type I (interview) data was preferred for subsequent 

experiments due to the extended frequency bandwidth and absence of mains hum. 

  
 

6.5.6 Signal to Noise Ratio Test Results 
Average SNR was estimated for the speaker models using a state-of-the-art commercial application.  

This software was not used in later experiments due to insufficient documentation in terms of how 

SNR was calculated and an alternative was sought (see 3.5.6 re WADA).  Nevertheless, results found 

that the speech files varied from between 17.76db to 40.56db SNR average.  This suggested that 

microphone distance/gain was not likely to have been adjusted significantly (either manually or 

automatically) to compensate for speakers with differing vocal effort.  Nevertheless, zoo plot 

examination of the files in the bottom 10% of the SNR range determined that there was likely to be 

a correlation with poor speaker performance and tendency towards left hand clustering (Figure 6.10 

and Figure 6.11) with the exception of speaker 012.  This experiment assisted with informing the 



 97 

methodology for chapter 8, in terms of applying controlled degradation using the addition of noise 

and determining more accurate approach for measuring SNR.   

6.5.7 Net Duration Test Results 
Preliminary examination of net duration for test audio file 3 (i.e. residual from editing the SM and 

first 2 TA files) provided the following zoo plots (Figure 6.10 and Figure 6.11).  Whilst, again, zoo 

position was not conclusive in itself - this preliminary test suggested speakers with lower net duration 

may tend to appear towards the lower left-hand side of the zoo plot and this was further examined in 

the main net duration experiments completed in chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 6.10: Zoo plot 100 SM x 300 TA, MFCC GMM-UBM. Net duration and SNR tests 
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Figure 6.11: Zoo plot 100 SM x 300 TA, LTFD GMM-UBM. Net duration and SNR tests 
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6.5.8 Zoo Plot Position 
The position of any speaker on a zoo plot is naturally dependent on the other speakers in that test 

(i.e. relative).  For example, removal of outliers created further outliers and a shift of region 

boundaries.  Speakers previously positioned on classification boundaries moved from normal and 

were classified as animals (and vice versa).  To examine this further in the preliminary tests, each of 

the animal groups was removed in turn and the baseline test re-run.  It was found that this then created 

a statistical wave effect as each of the average imposter match scores adjusted.  This was more 

notable in the y-axis values, due to the weighting of inter and intra speaker variation data.  For 

example, in assessing inter-speaker variability, the data is rich as scores are calculated from multiple 

cross comparisons in this test 29,700 or (99 x 3) x 100.  Data used to generate genuine match scores 

was constrained to just three genuine TA files per speaker in these tests.    

 

In the baseline data, the genuine match data was also edited from single session data and it is 

important to be mindful of this.  Whilst extracting multiple test audio from the same session has the 

advantage of reducing cross channel contamination, it would be preferable to more accurately capture 

intra-speaker variability through multiple non-contemporaneous sessions.  These could better reflect 

the variation in speech likely from effects such as mood change or fatigue, for example.  However, 

for the purposes of the main acoustic variability experiments conducted the same session data was 

preferable to limit the conflation of additional (session) variables. 

 

6.6 Responses to Questions 
The following are responses to the questions posed in 6.2. 

 

Q1: How should baseline be best established and what are the optimum ASR settings? 

A1: Various baseline tests were conducted with different ASR settings and performance (EER%) 

was measured.  The prepared test data performed well and an optimum EER% was reached that was 

assessed to be consistent with a state-of-the-art MFCC GMM-UBM systems (1.244%).    

 

Q2: Are the zoo plot classifications of speakers similar for MFCC and LTFD? 

A2: There were some similarities in terms of speaker scores/results (8% of speakers appeared in 

the same zoo plot quadrant for both MFCC and LTFD extraction engines).  However, as expected, 

the different methods of feature extraction produced variation with respect to zoo plot positions.   

 

The LTFD system was likely to be more resilient to noise in some circumstances (re speaker 012) 

although the MFCC system performed better overall (EER%).  In light of this, and because MFCC 

systems are much more widely deployed, the LTFD system was discontinued for the subsequent 

main experiments. 



 101 

 

Q3: Are zoo plot classifications affected by the technical features of the recordings, i.e. SNR 

and net speech duration, rather than just those features intrinsic to the voices themselves? 

A3: As demonstrated by the preliminary tests completed in reference to SNR and net duration 

positioning and by the behaviours of the speaker 012 files it is highly likely that performance is 

strongly influenced by the technical qualities of the recordings.  Examination of voice quality 

produced some consistencies in terms of clustering/and general zoo plot position for speakers 

scoring high with lax larynx characteristics and those referred to as ‘breathy’.  Further research is 

recommended but this tentatively demonstrated that other intrinsic factors also influence speaker 

performance in ASR systems and therefore zoo plot position.  Risk was identified in terms of 

potentially conflating variables (VQ and acoustic variability) and aspects of high intrinsic variability, 

such as the initial vocal effort of speakers should be examined in the experiments pertaining to SNR.   

 

6.7 Conclusion 
The preliminary tests guided the scope and methodology of the subsequent experiments with the 

following recommendations.   

i. Highly controlled process(es) are required to artificially degrade the baseline data under 

measurable conditions which do not introduce additional variables. 

ii. Additional research into voice quality and intrinsic speaker variability for ASR is 

recommended.  However, for present purposes it was decided that the main experiments 

should be confined to investigating acoustic variability where measurements can be 

obtained.  Subjective perceptual data, whilst informed by experts, was not used.   

iii. The pace and continuing evolution of ASRs was such that several iterations of updates were 

introduced during the preliminary testing.  Version control will be essential to ensure that 

any observations relating to performance are as a direct result of acoustic variability and not 

patch/version updates.  Experiments should be adapted to incorporate modern i-vector 

systems. 

iv. It was shown that automatic LTFD analysis could potentially be more noise resistant than 

MFCC feature extraction (e.g. mains hum and speaker 012).  On the surface, this could 

appear to offer benefits over MFCC.  Nevertheless, the overall EER% was higher in the 

LTFD results than the MFCC showing poorer overall performance.  Another potential 

option, of fusing results together from both types of systems, was stated in Jessen, Alexander 

and Forth (2014) and Gold, French and Harrison (2013).   However, directly fusing MFCC 

and LTFD methods (i.e. LR scores) was later tested and found to provide no significant 

performance benefit (Hughes et al., 2017b). 

v. Inhibitors and contaminants affected different speakers in different ways.  However, since 

baseline speaker scores and positions (zoo plots) were established and any additional 
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acoustic variability would influence those positions – it was determined that intrinsic 

variability should not be a limiting factor in proceeding to larger scale experiments 

examining ASR performance and broader acoustic influence.   
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Chapter 7  Net Duration 

7.1 Introduction 
In conjunction with quality, the quantity of speech available for comparison is a key variable to be 

considered when using automatic speaker recognition systems (ASRs).   

 

It is widely accepted that as net duration decreases ASR performance (EER%) deteriorates.  

However, it can be difficult to determine the quantity of speech required to achieve an acceptable 

level of ASR performance and confidence in outcome.  In broad terms, net duration becomes more 

significant when comparing brief audio files (<1m) for both speaker model and/or test audio.  The 

experiments conducted in this chapter therefore examine the influence of short net speech duration 

(<1m) on human assisted automatic speaker recognition systems in detail. 

 

The chapter begins with a literature review to provide context.  Three sets of experiments are then 

conducted.  All experiments use the 100x male DyViS speaker data (task 1, mock police interviews).  

The speech files were edited to create 1m speaker models with two 1m test audio files per speaker of 

defined net duration.  Baseline performance was established using both the OWR Vocalise (GMM-

UBM) and OWR iVocalise (i-vector/PLDA) ASR systems.   

 

In the first set of experiments 30 tests were completed (15 x GMM-UBM ASR and 15 x i-vector 

ASR) with net duration decreased for both the speaker models (SM) and test audio (TA) files.  These 

were decreased at 5s iterative steps, with 1s steps from the sub 5s point.  For experiment 1 the SM 

and TA files were of matched duration.  Results were compared to baseline with the objective of 

broadly comparing the performance of two types of ASR systems (GMM-UBM and i-vector/PLDA) 

and determining how resilience to very low net duration compared.  Metrics for equal error rate 

(EER%) and cost of likelihood ratio (Cllr) are presented. 

 

In the second set of experiments both the speaker models and test audio files were reduced in 5s 

iterative steps with 1s steps below 5s and a full set of cross comparisons was completed at all 

durations for both SM and TA files – i.e. 1m SM compared to TA of 1m, 55s, 50s, 45s, 40s…   then 

55s SM compared to TA of 1m, 55s, 50s, 45s etc.  This was completed using only the i-vector PLDA 

system due to file acceptance.  The objective of this experiment was to provide a highly detailed 

analysis of performance with full metrics to examine potential thresholds for optimum performance 

and minimum net duration acceptance for a modern state-of-the-art system.  Results are presented 

on 15 x 15 comparison grids for both EER% (overall ASR performance) and Cllr (accuracy).    
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The third set of experiments combined 50 x speakers with short duration (20s) test files and 50 x 

speakers with 1m x 2 test audio files.  These were then compared against the 100 x 1m (baseline) 

speaker models using only the i-vector PLDA system.  The objective of this experiment was to 

examine potential ASR performance risk (false accept rate, false reject rate) when combining 

different lengths of test files within the same set of comparisons.   

 

Results are presented with discussion.  Practical recommendations for casework and at-scale ASR 

integration are presented.  The chapter concludes with suggestions for future areas of research.  

 

7.2 Background 
From experience, audio recordings are often inherently limited in nature and circumstance can 

sometimes preclude opportunities to obtain both a long, validated, speech sample(s) for the speaker 

model (SM) and/or questioned material (TA).  Net duration can be influenced by many factors 

including channel dependency.  For example, in applications such as push to talk radio 

communication (PTTR), utterances can have a tendency to be quite brief in nature and speech 

obtained for comparison/verification can often be as little as several seconds.   

 

Since the early development of speaker recognition systems, applying ASRs to low net duration 

speech has been an enduring technical challenge.  This gave rise to one of the initial research 

questions that motivated this chapter.  Can the recent improvements in modern speaker recognition 

systems provide improved performance under very low net duration conditions or will the error rate 

always remain high?  I.e. below a certain net duration threshold there won’t be enough speech 

information to conduct an ASR comparison, but what is that point? 

 

ASR manufacturers often claim that their latest system provides greater accuracy on shorter speech 

files.  Yearly competitions are run by the National Institute of Standards and Technology called the 

Speaker Recognition Evaluations (NIST-SRE).  At the competitions, the best performing systems 

are benchmarked using very low net duration speech from standard corpora (5s and 10s) such is the 

significance to the forensic speech community in progressing the technology.  There is also an 

enduring requirement to better understand the performance of new extraction methods, statistical 

modelling algorithms and obtain representative metrics for performance on low duration speech.  The 

rate of improvement is fast.  ASR systems are continually evolving and the systems for pattern 

matching are becoming more sophisticated.  Even within the timeframe for writing this thesis the 

progress of performance improvements has been observed with the commercial availability of i-

vector systems.  During the final months of writing this thesis, new x-vector and deep neural network 

approaches (Snyder et al., 2018) have been developed which effectively apply machine learning to 

further improve performance (Kelly et al., 2019).   
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Quality and quantity of speech in the context of ASR comparison is linked, with the former often 

influencing the latter.  Examples include interference, intermittent noise, speaker to microphone 

proximity (i.e. movement), dropouts/faults, overlapping speech (with an interlocutor) or variable 

network bandwidth/transcoding.  An uncooperative speaker can also influence net duration or where 

intra speaker variability is high and/or where modal voice is not used frequently enough within the 

submitted recording(s) such as shouting, screaming, whispering, out of breath or intoxicated etc.   

 

In addition, it has also been noted from experience that intelligibility reasoning is often incorrectly 

applied to the anticipated reliability of ASR attribution.  Even when a sufficiently large quantity of 

speech is presented for comparison it may be that only a very small fraction of the recording(s) is 

assessed as technically acceptable for ASR analysis and/or passes the speech detection phase.   

 

To summarise, the central objectives for the experiments were: 

i. To measure the performance of a standard GMM-UBM ASR system and an i-vector PLDA 

ASR system under controlled conditions to complete a broad comparison on low duration 

speech performance; 

ii. To obtain comprehensive reference data for a state-of-the-art i-vector ASR system 

performance (EER%) and accuracy (Cllr) metrics to provide detailed information on 

operating and performance thresholds to assist with informing speech acceptance criteria for 

ASR use; 

iii. To examine the risks associated with combining short and long duration test/questioned 

audio within the same set of comparisons.  

 

7.3 Additional Definition of Terms 
It is important to define the term ‘short net speech duration’.  In an overview of research relating to 

net duration Poddar, Sahidullah and Saha (2015) stated: 

 

“There is no standard definition of short duration in ASR.  However, we observed that most of the 

published literature considered segments of duration 5-10 sec as short utterances for experimental 

evaluation and analysis.”  Poddar, Sahidullah and Saha (2015: p.93) 

 

The above definition is accepted for the purposes of this chapter.   

 

In further defining terms it is important to state that net duration here applies more to the quantity of 

speech successfully passing the speech detection phase, rather than the quantity of speech as edited 

by a human prior to ASR analysis.  This is because the speech passing the detection phase is 

invariably shorter.  This can be due to the speech detection phase removing certain unvoiced, or 
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lower volume, speech sounds which fall below a certain threshold (i.e. perceived by the machine as 

silence when it is not).  In addition, the speech detection algorithm completes further removal of 

between word silences (i.e. additional concatenation).  The removal of multiple sections of silence 

and low amplitude speech therefore reduces net duration overall.  For example, files edited carefully 

to 1m were notably reduced down to as low as 40s to 54s after passing through speech detection 

phase.  On iVocalise, post-processed net duration values are extracted and so these values are also 

referenced in the experiments (net duration range).   

 

Within class covariance normalisation (WCCN) is widely attributed to Hatch, Kajarekar and Stolcke 

(2006).  In WCCN multiple speech samples, usually from different sessions and/or channels, from 

the same speaker are aggregated.  This can create a richer set of speaker model data all assigned to 

the same speaker and ASR performance is improved from better separation of channel from speaker 

data.  Whilst WCCN was applied to research systems that informed the experiments, it was noted 

that it did not significantly improve results.  In addition, the experiments completed in this thesis are 

in a single channel domain.  Finally, there was the potential that WCCN could add additional and 

unknown variability.  WCCN is therefore referred in reference to the literature review but not applied 

to the experiments completed in this thesis. 

 

7.4 Literature Review 
This section places the subsequent experiments conducted into context with specific regard to ASR 

performance and net speech duration research. 

 

A very early study by Bricker and Pruzansky (1966) recorded short duration speech samples from 

10 speakers and played them back to 16 listeners.  All were known to each other at Bell Telephone 

Laboratories.  The listeners were asked to match utterances to pictures of speakers.  Their work 

confirmed research findings from Pollack, Pickett and Sumby (1954), Clarke (1965) and Voiers 

(1961;1964) that, for humans at least, duration was linked to the accuracy of identification, whilst 

appreciating that other perceptual factors also contributed (Voiers, 1961;1964).  

 

Bricker and Pruzansky (1966) demonstrated that the number of phonemes was linked to duration - 

i.e. intra speaker variability was constrained by constraining duration resulting in a loss of phonetic 

variation (i.e. speech data quantity and variety).  This in turn provided lower accuracy scores from 

the listeners.  Research such as Bricker and Pruzansky’s (1966) study demonstrated that short 

duration has a negative influence on the human perception of speaker identity.  Whilst humans rely 

on familiarity (and memory) and the subsequent experiments in this thesis focus solely on ASR 

systems and Bricker and Pruzansky (1966) offered a prophetic quote on the use of computers for 

speaker verification. 
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‘…we are in a position of wondering why the human needs information that the computer doesn't 

have in order to do as well.’   Bricker and Pruzansky (1966: p.1448).   

 

Kanagasundaram et al. (2011) compared the performance of a joint factor analysis (JFA) (Kenny et 

al., 2006) i-vector ASR systems on 2008 NISTSRE data - results are recreated in Tables 7.1 and 7.2. 

 
Table 7.1: Training and truncated test data (part I).  Kanagasundaram et al. (2011: p.2344) 
 

Utterance Length 

Training, or SM, to TA 

i-vector JFA System  

EER% 

2s to 2s 35.25 

4s to 4s 30.48 

8s to 8s 23.39 

10s to 10s 21.17 

20s to 20s 12.79 

50s to 50s 6.51 

2.5m to 2.5m 3.37 

 
 
Table 7.2: Training and truncated test data (part II).  Kanagasundaram et al. (2011: p.2344) 
 

Utterance Length 

Training, or SM, to TA 

i-vector JFA System  

EER% 

2.5m to 2s 22.48 

2.5m to 4s 17.96 

2.5m to 8s 13.43 

2.5m to 10s 12.11 

2.5m to 20s 7.67 

2.5m to 50s 4.54 

2.5m to 2.5m 3.37 

 

Their research demonstrated marginal improvements using alternative system architecture.  

Nevertheless, the benefit of longer training material (SM) was clearly evident with results indicating 

performance decline below 10s (10s speaker model to 10s test audio).  Kanagasundaram et al. (2012) 

later developed a system for improving performance under short duration conditions by training the 

PLDA on short utterances (or S-Norm) on NIST (2004/5/6) SRE data.   
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Poddar, Sahidullah and Saha (2015) produced a comprehensive overview of research relating 

specifically to speaker verification and short utterances, including a useful summary of research 

completed, up to 2015, with corresponding error rates at the 10s SM or 10s TA net duration (see 

Appendix I).  To summarise, results from the 10 different research studies showed high variability, 

with EER ranging from 21.56% to 4.29%.  These results could be explained by many factors 

including feature extraction method, the different training conditions/NIST normative data and 

system settings.  Nevertheless, their research summary provided several, broad observations that 

assisted with informing the research questions in this thesis.  For example, training data (TA) over 

10s improved equal error rates largely irrespective of other variables, raising the question - would 

this be the case on a much more modern i-vector system or would they exhibit greater tolerance at 

<10s?  Finally, it was noted that WCCN was applied to multiple tests including both the best and 

worst performing results - suggesting that WCCN was likely to have a marginal influence on 

performance.   

 

Larcher et al. (2014) studied the lack of phonetic variability as net duration decreases, using the 

ALIZE i-vector ASR toolkit on RSR2015 data (using male data only).  The RSR dataset initially 

comprised of 300 English speakers (143 female and 157 male).  The average duration of recordings 

was measured at 3.2 seconds.  They demonstrated that EER% improved by same phrase 

pronunciation (SM and TA).  In doing so, they confirmed research findings from others - citing 

Larcher et al. (2012) who also stated that the lexical content affects ASR performance.    Larcher et 

al. (2013) applied VAD which effectively removes non-speech frames prior to the statistical 

modelling process and it is suggested it was likely to have influenced results.  This is because 

different utterances at varying vocal effort could effectively cause more or less speech to pass through 

the VAD stage, dependent on threshold.  Nonetheless, the phonetic content of the utterance, i.e. what 

the speaker says, is still valid - as lower duration generally produces less phonetic variability.  Das, 

Jelil and Prasanna (2016) also found that constraining the spoken text in speaker model and test audio 

influences ASR performance.  The large reduction of variability in speech utterances, as net duration 

decreases, is clearly an important factor and becomes more significant as speech data is restricted to 

very low duration - as also found in early studies by Boise, Hebert and Heck (2004) and in Hebert 

(2008).  This research prompted questions as to zoo plot position for best and worst performing 

speakers under very short net duration conditions.  Would there be anything noticeable in the 

spectrograms pertaining to the better performing speakers at very low net duration in comparison to 

the poorest?   

 

Poddar, Sahidullah and Saha (2015 and 2018) presented two graphs which also influenced the 

experiments in this chapter (Figure 7.3 and 7.4).   The first shows the fall in EER% (i.e. better 

performance) for both GMM-UBM and i-vector/PLDA ASR systems on NIST SRE2010 data.  Note 

the training material/speaker model was fixed (2.5m approximate).  
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Figure 7.3: Poddar, Sahidullah and Saha results 2015 (GMM and i-vector/PLDA) 

 
 

The second graph (Figure 7.4) reproduces the uncertainty in (2D) i-vector point estimation as the net 

duration falls.  Low net duration effectively disperses the vector space causing poorer discrimination.   

 
Figure 7.4: Poddar, Sahidullah and Saha 2D i-vectors on low duration files (2018: p. 94) 

 
 

Sarkar, Matrouf, Bousquet, and Bonastre (2012) examined the effect of early i-vector modelling on 

short and mismatched utterance duration.  They used 2004 NIST SRE data to train (normative data) 

and 2008 NIST SRE data for speaker models and test audio.  In 5s to 5s comparisons their modified 

i-vector system achieved 15.26% to 21.63% EER with 5.32% to 11.77% EER for 10s to 10s, 

dependent on training conditions.  They concluded that a mixture of shorter and longer duration 
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training data was preferable when the questioned audio was brief.  In circumstances where the 

duration of test audio comparisons was mixed, i.e. long and short, they concluded that longer training 

data was preferable.   Somewhat counter to the research by Sarkar et al. (2012), Hasan, et al. (2013) 

noted that their early i-vector system trained on long duration utterances performed more poorly 

when presented with low duration questioned audio.  Hasan, et al. (2013) team proposed three 

methods to compensate for mismatched duration; multi-duration PLDA training, score calibration 

and multi-duration PLDA training with synthesised short duration i-vectors.  Overall, they found that 

the score calibration method was more encouraging in terms of compensating for duration mismatch, 

but they found that performance did not actually improve significantly for any of the methods 

suggested (comparative EER% figures were not provided).  Nevertheless, for the experiments in this 

chapter the PLDA (session 1) was validated, in conjunction with OWR, to ensure the inclusion of 

low duration speech.  

  
Fatima and Zheng (2012) coined the acronym SUSR (short utterance speaker recognition).  They 

proposed that background noise becomes more influential as duration decreases.  They also suggested 

that data segmentation is of greater importance at short duration since phoneme data could be lost if 

poor truncation occurs (i.e. at a higher percentage of the overall data) and it is widely known that 

(machine) speech detection and segmentation accuracy are an enduring weakness of the process.  

Fatima and Zheng (2012) also summarised by proposing six areas of research that could potentially 

improve performance in SUSR.  Interestingly, these all related to combining speaker verification 

technology with prosodic mapping methodologies, rather than PLDA amendment or score 

calibration.  Nevertheless, Chakroun, Frikha and Zouari (2018) supported this and have begun 

researching methods of potentially integrating additional speech information, for example from 

dialect detection, to improve SUSR.  

 

The European Network of Forensic Science Institutes (ENFSI) published guidelines for the 

examination of speech for speaker verification (2015) and specifically provides recommendations on 

duration in regards to forensic semi/automatic speaker recognition which they refer to as FASR and 

FSASR. 

 

‘Many FASR and FSASR methods require that the ‘net duration’ (i.e. pure speech from the relevant 

speaker, with all irrelevant information removed or disregarded) is no shorter than about 15-30 

seconds.  There is no general rule about the amount of audio material necessary and different methods 

might have different requirements.  Ultimately, the minimum net duration required for a method has 

to be established with a method validation or other tests.’  ENFSI Section 5.4.1, (2015: p.33). 

 

With the recent improvements in i-vector speaker verification systems this raised the question as to 

whether the minimum limit could be amended downwards? 

 



 111 

Bhattacharya, Alam and Kenny (2017) recently demonstrated that i-vector system performance can 

degrade when presented with very short duration recordings (<10s).    In benchmarking their i-

vector/PLDA system, primarily to test convolutional network performance (outside the scope of this 

chapter) the team used both the NIST, SRE 2010 test set and speech data from previous evaluations 

(NIST SRE 2004 to 2008) to generate speaker models and test audio files.  A portion of NIST material 

was held back to create a bespoke normative set (PLDA).  Their tests used 4,032 unique speakers 

from both genders.  The SM and TA were edited to 10s and 5s respectively.  The i-vector system 

used was not specified.  The results from both 5s to 5s tests and 10s to 10s tests produced 24.78% 

EER and 17.44% EER.  The team also observed that i-vector/PLDA systems appear vulnerable to 

performance issues (greater EER%) with extremely short audio (<5s).  A view as to why this was so 

was not presented but a plausible suggestion is that it is due to the greater dispersal of i-vectors as 

found by Poddar, Sahidullah and Saha (2018, p. 94) shown in Figure 7.4 - and simply not enough 

speech data to create a robust/accurate enough statistical model. 

 

Ma et al. (2017) supported Poddar, Sahidullah and Saha with their explanation as to why i-vector 

ASR systems do not produce significantly better performance over other types of ASR under short 

net duration conditions. 

 

‘…due to limited phonetic coverage, statistics estimated from a short duration utterance are not as 

representative of the acoustic space as those from a long utterance.  This then makes the distribution 

of i-vectors estimated from short utterances different from that of i-vectors from long utterances for 

the same speaker…’ Ma et al.  (2017: p.405).   

 

The group also illustrated the dispersal difference between long and short samples in 2D and 

highlighted the reduction of clustering (reproduced in Figure 7.5). 

 
 
Figure 7.5: Ma et al. (2017: p.405) 2D i-vectors and short/long net duration 
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7.5 Questions and Hypotheses 
From the research completed the following questions were raised.  This section presents those 

questions with associated hypotheses. 

 

Q1: How does a state of the art i-vector/UBM, TV, LDA+PLDA system perform in 

comparison to a GMM-UBM system under low net duration speech conditions? 

H1: In reference to previous research and with improvements in statistical modelling the i-vector 

PLDA system should marginally outperform the GMM-UBM system with respect to both EER% 

(discrimination performance) and Cllr (accuracy).  This should be more significant for very short 

duration utterances (under 15s) due to the improvements in statistical modelling in the i-vector/PLDA 

ASR system.   

 

Q2: For the i-vector system, is performance degradation linear or are there any identifiable 

tipping points?  If so, what are the optimum net duration settings for performance and net 

duration acceptability?  

H2:  Research by Bhattacharya, Alam and Kenny (2017) et al. demonstrated that i-vector ASR 

performance degraded as net speech duration fell below 10s for both SM and TA.  It is expected that 

this will be broadly replicated.  However, since the iVocalise system and underlying normative data 

are different to their research system, their performance figures will not be exactly reproduced.  

 

Q3:  If 50 x speakers from the baseline test audio (i.e. 1m x 2 for 50 speakers) are compared 

with 50 speakers from the shorter duration test audio (i.e. 20s x2 per 50 speakers) is zoo plot 

position influenced by net duration when using 1m (baseline) speaker models for all 100 

speakers? 

H3: It is suggested that the 50 speakers with shorter duration test audio files should cluster 

towards the lower left in the zoo plot.  Conversely, the 50 x longer duration speakers should place 

towards the upper right, producing higher true positive/match scores and lower false 

positive/imposter scores.  However, the duration of 20s was specifically chosen so as to narrow the 

differential between baseline and test conditions.  It could therefore be argued that zoo plot 

positioning may not vary significantly enough to cause noticeable separation/clustering.  

 

Q4: In the very short duration results (e.g. 1-3s) is there any noticeable lexical/phoneme 

commonalities or spectrogram observations that explain zoo plot positioning for speakers who 

perform well (Doves)?  Conversely, do the very poor performing speakers (Worms, Phantoms, 

Chameleons) exhibit high lexical divergence or any notable spectrogram observations? 

H4: In reference to previous research it is hypothesised that higher similarity between speaker 

model and test audio could improve speaker performance so this could be reflected in zoo plot 

position.  However, it could also be argued that zoo plot position may be as a result of other or 
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conflated variables.  In relation to spectrogram observations, and in line with previous research, it is 

likely that audio files for speakers who perform better at low net duration simply contain more speech 

information.  

 

7.6 Methodology 
As documented (5.3), the DyViS speech files were edited to remove silences and speech from the 

interlocutor (including overlapping speech).  The audio files were cut to length using the Twisted 

Wave batch processing application twistedwave.com/mac.  Output was dip sampled (approximately 

10%) to validate that the application was accurate and did not add artefacts. 

 

To establish baseline performance the control set was created.  The first edited minute was used to 

create a speaker model (SM) for each of the 100 speakers.  The subsequent 2 minutes generated x2 

test audio (TA) files, per speaker, at 1m for each file.  Residual speech was discarded in this chapter 

as, for some speakers, there was insufficient audio to generate a third 1m TA file. 

 

Batch processing was then applied to an exact copy of the baseline data to generate each of the test 

data sets, constraining the net duration accordingly.  Thirty test datasets were created for experiment 

1 (15 x GMM-UBM and 15 x i-vector ASR comparisons).  Net duration was decreased for both the 

speaker models (SM) and test audio (TA) files at 5s iterative steps with 1s steps <5s.   

 

For experiment 1, the SM and TA files were matched in terms of duration.  Results were compared 

to baseline.   For experiment 2 both the speaker models and test audio files were reduced in 5s 

iterative steps with 1s steps below 5s.  A full set of cross comparisons was then undertaken at all 

durations for both SM and TA files using the i-vector PLDA system.  Experiment 3 combined short 

duration (20s) test files from 50 speakers and baseline test audio files (1m) from 50 different speakers 

to compare them against 100 baseline speaker models (1m).  This experiment used the i-vector/PLDA 

system.  The OWR ASR systems used are specified in 5.1.2, 6.4 (i.e. the SPOKE UBM for the GMM-

UBM system) and Appendix G with the following adaptations. 

i. The threshold for minimum net duration acceptance was set to zero to prevent enrolment 

rejection.   

ii. Normative data for both systems did not include any of the DyViS dataset and the PLDA 

included both long and short duration speech files (as per previous research 

recommendations).  The range of net duration passing the voice activity detection (VAD) 

stage was logged for each test to provide additional detail and, in all cases, the absolute VAD 

net duration was lower than the pre-VAD values. 

Results were examined using OWR Bio-Metrics software version 1.8.0.704 (2017). 
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Note that attempts to recalibrate the system, to compensate for performance degradation, were 

consciously not taken to avoid conflating variables.  In instances where the Cllr (accuracy) is above 

1.0, but the EER% (discrimination) is low, this suggests that the ASR is operating relatively 

effectively. 

7.7 Results 
Experiment 1.  The Table below (7.6) clearly shows the performance differential between the GMM-

UBM Vocalise results (tests 1-15) and the iVocalise i-vector/PLDA results (tests 16-30).  System 

performance is represented in equal error rate (EER%) and accuracy in cost of log likelihood ratio 

(Cllr).  All files (100 speaker models and 200 test audio files) were accepted with the exception of 

test 15 where the duration was constrained to the point of files failing to pass enough audio to the 

statistical modelling phase.  Therefore, for test 15, EER% and Cllr were calculated for ‘passed’ audio 

files only (194 SM and 19,206 TA elements).   

Table 7.6: Net duration experiment 1, GMM-UBM and i-vector/PLDA results, matched 

Test 
# 

Speaker 
Model 

Duration 
(seconds) 

Test Audio 
Duration 

X2 
(seconds 
per file) 

GMM-
UBM 
EER% 

GMM-
UBM 
Cllr 

Test 
# 

i-vector
EER%

i-vector
Cllr

1 60 60 2.932 0.726 16 0.005 0.087 
2 55 55 2.998 0.697 17 0.008 0.074 
3 50 50 3.099 0.660 18 0.020 0.060 
4 45 45 3.528 0.650 19 0.018 0.042 
5 40 40 4.131 0.610 20 0.030 0.031 
6 35 35 5.020 0.564 21 0.495 0.029 
7 30 30 5.033 0.527 22 1.124 0.138 
8 25 25 6.881 0.516 23 1.477 0.381 
9 20 20 9.033 0.566 24 1.995 1.138 

10 15 15 12.212 0.810 25 3.495 3.832 
11 10 10 20.144 1.723 26 5.149 11.793 
12 5 5 38.505 5.096 27 20.391 35.198 
13 4 4 39.263 5.971 28 26.798 42.058 
14 3 3 44.084 6.042 29 33.866 49.660 

15* 2 2 45.993 5.471 30 40.549 58.526 
* Only 194 SM and 19,206 TA elements passed VAD

Figure 7.7 and Figure 7.8 show the decline in performance re net duration for both systems (EER% 

and Cllr). 
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Figure 7.7: Net duration experiment 1(a and b). EER%, i-vector and GMM-UBM 

 
     Performance tipping points identified for both systems.  

Greater resilience to low net duration conditions shown in i-vector results (discrimination and 

accuracy, Figure 7.8). 

 
Figure 7.8: Net duration experiment 1a and b. Cllr, i-vector and GMM-UBM, matched 

 
 

Experiment 2.  Tables 7.9 and Table 7.10 (next 2 pages) document the full EER% and Cllr results 

for all 225 cross comparison tests completed using the i-vector/PLDA ASR system. 
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Table 7.9: Net duration experiment 2. EER% Results.  IVocalise, i-vector system 

EER% Results 
Test Audio (seconds) 

60 55 50 45 40 35 30 25 20 15 10 5 4 3 2 

SM 
Seconds 

VAD Pass  
(net range) 

40 to 
54 

47 to 
50 

33 to 
45 

29 to 
40 

25 to 
35 

22 to 
31 

18 to 
26 

15 to 
22 

12 to 
17 8 to 13 6 to 9 1 to 4 1 to 3 0.5 to 

2 
0.5 to 

1 

60 40 to 52 0.005 0.005 0.005 0.005 0.013 0.015 0.020 0.106 0.573 0.995 0.992 4.503 6.492 10.000 17.035 
55 36 to 48 0.005 0.008 0.013 0.008 0.015 0.035 0.053 0.498 0.917 1.033 1.124 4.874 7.013 10.444 17.014 
50 32 to 44 0.010 0.008 0.020 0.018 0.025 0.078 0.121 0.518 1.479 1.515 2.018 4.864 7.588 11.018 16.360 
45 30 to 39 0.008 0.010 0.023 0.018 0.025 0.078 0.442 0.897 1.513 1.492 1.977 4.578 8.528 11.397 18.078 
40 26 to 35 0.008 0.013 0.020 0.020 0.030 0.111 0.500 0.990 1.487 1.510 2.005 4.510 7.487 11.902 18.063 
35 22 to 31 0.379 0.379 0.063 0.061 0.109 0.495 0.871 1.000 1.495 1.498 2.025 5.301 7.957 12.010 18.573 
30 19 to 26 0.078 0.399 0.379 0.429 0.498 0.540 1.124 1.412 1.505 1.985 2.518 4.869 7.518 12.485 20.243 
25 16 to 21 0.419 0.452 0.765 0.462 0.500 0.929 1.510 1.477 1.525 2.490 2.871 5.487 8.134 11.919 21.131 
20 12 to 17 0.498 0.558 0.593 0.609 0.912 1.492 1.498 2.407 1.995 3.005 3.886 7.076 9.078 14.490 21.555 
15 9 to 13 1.003 1.010 1.005 1.434 1.498 1.934 1.990 2.505 2.989 3.495 3.957 8.457 12.588 17.184 22.552 
10 5 to 8 1.503 1.604 1.884 1.692 1.990 1.998 3.025 3.490 4.559 5.520 5.149 10.995 15.490 19.619 25.174 
5 2 to 4 7.970 8.472 8.982 9.523 9.503 9.523 9.033 10.533 10.886 10.477 11.543 20.391 23.773 27.482 32.328 
4 2 to 3 9.960 10.480 11.874 12.505 12.096 11.477 12.543 12.657 12.525 13.998 15.018 23.841 26.798 27.957 33.737 
3 1 to 2 13.487 15.402 15.553 15.111 15.033 15.843 16.351 16.472 17.866 19.025 18.823 25.753 30.487 33.866 38.617 
2 0.5 to 1 23.225 24.538 25.379 23.886 23.823 23.634 24.788 24.399 25.179 26.912 27.058 33.099 36.553 38.205 40.549 

 

Colour is indicative of relative performance and does not denote acceptability criteria or threshold(s). 
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Table 7.10: Net duration experiment 2.  Cllr Results.  IVocalise, i-vector system 

Cllr Results 
Test Audio (seconds) 

60 55 50 45 40 35 30 25 20 15 10 5 4 3 2 

SM 
Seconds 

VAD 
Pass  

(net range) 

40 to 
54 

47 to 
50 

33 to 
45 

29 to 
40 

25 to 
35 

22 to 
31 

18 to 
26 

15 to 
22 

12 to 
17 8 to 13 6 to 9 1 to 4 1 to 3 0.5 to 

2 0.5 to 1 

60 40 to 52 0.087 0.081 0.073 0.065 0.056 0.048 0.039 0.027 0.067 0.222 0.401 8.098 14.376 23.529 37.862 
55 36 to 48 0.080 0.074 0.067 0.060 0.051 0.044 0.036 0.031 0.122 0.300 0.535 8.678 15.008 24.163 38.510 
50 32 to 44 0.071 0.066 0.060 0.054 0.046 0.038 0.031 0.040 0.183 0.362 0.688 9.374 15.665 24.694 38.620 
45 30 to 39 0.056 0.052 0.047 0.042 0.036 0.030 0.026 0.059 0.217 0.398 0.869 10.104 16.525 25.478 39.129 
40 26 to 35 0.046 0.043 0.039 0.035 0.031 0.025 0.033 0.091 0.251 0.426 1.071 10.755 17.200 26.193 39.591 
35 22 to 31 0.040 0.037 0.034 0.031 0.027 0.029 0.072 0.151 0.304 0.584 1.567 11.559 18.031 26.681 39.903 
30 19 to 26 0.033 0.030 0.027 0.025 0.029 0.061 0.138 0.232 0.399 0.755 2.040 12.446 19.007 27.471 40.385 
25 16 to 21 0.022 0.022 0.033 0.026 0.051 0.116 0.216 0.381 0.611 1.162 2.652 13.926 20.366 28.347 40.800 
20 12 to 17 0.062 0.086 0.128 0.135 0.160 0.274 0.467 0.746 1.138 2.010 4.173 16.215 22.481 30.043 41.835 
15 9 to 13 0.284 0.385 0.513 0.552 0.570 0.805 1.216 1.863 2.517 3.832 6.534 19.257 25.470 32.155 42.970 
10 5 to 8 2.126 2.359 2.621 2.701 2.867 3.394 3.941 4.934 5.985 8.208 11.793 24.897 30.250 35.794 45.119 
5 2 to 4 14.371 14.870 15.231 15.489 15.997 16.687 17.339 18.489 19.831 22.236 25.065 35.198 39.019 43.300 50.258 
4 2 to 3 20.920 21.466 21.730 22.005 22.572 23.134 23.801 24.701 25.868 27.927 29.919 39.052 42.058 45.883 51.556 
3 1 to 2 30.855 31.235 31.361 31.618 31.899 32.477 32.914 33.318 33.973 35.597 36.932 44.060 46.605 49.660 54.457 
2 0.5 to 1 43.712 44.030 44.022 44.154 44.252 44.553 44.860 45.025 45.388 46.189 46.397 51.255 53.104 55.236 58.526 

Colour is indicative of relative performance and does not denote acceptability criteria or threshold(s).   

Cllr scores <1 are generally considered acceptable, scores >1 indicate a system with low accuracy (Hughes et al., 2019). 
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Experiment 3.  Figures 7.11 and 7.12 present 2 zoo plots generated from the combined short (20s) and longer duration (1m) TA files compared to 1m 

SMs.  Note the clear left/right clustering. 

 
Figure 7.11: Experiment 3. IVocalise 50 speakers,1m SM,2x 1m TA comparisons circled  
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Figure 7.12: Experiment 3, IVocalise 50 speakers,1m SM,2x 20s TA comparisons circled 
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7.8 Responses to Research Questions  
Q1: How does a state of the art i-vector/UBM, TV, LDA+PLDA system perform in 

comparison to a GMM-UBM system under low net duration speech conditions? 

 

A1: As hypothesised the i-vector/PLDA system outperformed the GMM-UBM system at all test 

durations in experiment 1 for EER%.   

 

At the lowest net duration setting (0.5s to 1s for both SM and TA) the EER% for both systems 

initially appear to be broadly similar (45.99% for GMM-UBM and 40.55% for i-vector PLDA).  

However, not all comparisons passed the VAD in the GMM-UBM test and so the EER% result is 

based on less data in comparison to the i-vector system and the underlying normative data is different 

between the systems.  Nevertheless, results were also broadly consistent with previous (and recent) 

research, with some marginal improvements noted.  In summary an i-vector system is expected to 

outperform GMM-UBM, assuming correct set up/normative data etc., likely due to improvements 

in feature extraction and statistical modelling density. 

 

Q2: For the i-vector system, is performance degradation linear or are there any identifiable 

tipping points?  If so, what are the optimum net duration settings for performance and net 

duration acceptability? 

 

A2: Performance degradation was not linear.  As predicted the i-vector system was more resilient 

to performance degradation at lower net duration and demonstrated a more gradual, shallower 

decline in EER% until the 10s (tipping) point.  At the 10s point performance degraded sharply 

(effectively doubling in EER%).  Tables 7.9 and 7.10 show this performance tipping point clearly.  

These results were consistent with research by Bhattacharya, Alam and Kenny et al. (2017) and are 

likely to be a result of poorer i-vector clustering, under very short net duration conditions, caused by 

a fundamental lack of speech information and low intra-speaker variability across the speech 

sample(s) in comparison with longer duration files.   

 

For net durations of lower than 10s, performance degraded when the duration was constrained to the 

speaker model or the test audio and greater performance degradation was noted when both were 

reduced.  Despite symmetrical (SM and TA) scoring – also discussed in 6.3 - this supports the view 

that a there is a point where a lack of test audio data simply cannot be compensated for by using 

longer speaker models (or vice versa). 

 

Q3:  If 50 x speakers from the baseline test audio (i.e. 1m x 2 for 50 speakers) are compared 

with 50 speakers from the shorter duration test audio (i.e. 20s x2 per 50 speakers) is zoo plot 
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position influenced by net duration when using 1m (baseline) speaker models for all 100 

speakers? 

 

A3: Re the i-vector ASR system, whilst some speakers from the shorter duration comparisons 

performed well producing relatively high match scores and low imposter scores, there was a 

noticeable separation of results on the zoo plots (Fig 7.11 and 7.12).  Those speakers with shorter 

duration audio files (2 x 20s TA) clustered to the left, with lower genuine match scores whilst longer 

duration speakers (2 x 1m TA) clustered to the right, with higher genuine match scores.  It was noted 

that the average imposter scores appeared less affected (vertical plane of the zoo plot).  EER% 

performance of the 20s TA files (0.573%) compared relatively favourably to baseline results 

(0.005%) results.   Nonetheless, experiment 3 highlights the potential risk in combining low duration 

files with longer duration files within the same comparison set.  I.e. lower match scores are likely to 

be obtained for short duration comparisons and high(er) match scores for long duration, potentially 

making threshold setting/score separation for variable audio lengths problematic (e.g. different net 

durations for suspect/genuine and imposter files could skew overall ASR results).   

 

These results could also influence speaker model management – and it would be recommended that 

minimum and maximum net duration criteria are set to prevent uneven LR/LLR output (per speaker). 

 

Q4: In the very short duration results (e.g. 1-3s) is there any noticeable lexical/phoneme 

commonalities or spectrogram observations that explain zoo plot positioning for speakers who 

perform well (Doves)?  Conversely, do the very poor performing speakers (Worms, Phantoms, 

Chameleons) exhibit high lexical divergence or any notable spectrogram observations? 

 

A4: On examination of outlier speakers within the 3s test results, e.g. Dove 020, Chameleon 084, 

Worm 025 and Phantom 065, no immediate correlation in terms of phonetic content and position 

could be identified (Figures 7.13 and 7.14).   
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Figure 7.13: iVocalise results at 3s SM x 3s TA (x2).  100 speakers, 4 outlier speakers circled  
(1x Dove, 1x Chameleon, 1x Worm, 1x Phantom) 

 
 
 
 
 
 
 
 

Circled outliers 020, 084, 025, 065: 03s SM x 03s TA (x2) 
 

LR 
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Figure 7.14: iVocalise results at 60s SM x 60s TA (x2). 100 speakers, 4 outliers as in 7.13. 
(1x Dove, 1x Chameleon, 1x Worm, 1x Phantom) - note shift in position  

 
 

Circled outliers 020, 084, 025, 065: 60s SM x 60s TA (x2) at baseline positions 

LR 
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A full phonetic analysis was not completed as the utterances were so brief as to provide almost no useful 

speech data.  Using spectrogram analysis (Figure 7.15) to examine speaker 020 (best performing) and 025 

(worst performing), at 3s TA, there was a notable elongation of speech data (formants) for the top performing 

speaker in comparison to the poorest performing – who tended to use shorter utterances.  Simply put, there 

was more speech data.   In a long speech sample, this is likely less of an issue but in a short sample it is 

suggested that richness of data becomes more important.  However, this hypothesis is somewhat 

inconclusive given the extremely small data sample.  It is therefore suggested that, whilst phonetic 

information could potentially contribute to zoo plot position and poorer performance (as per previous 

research), other variables are likely to be conflated.  So, whilst logic and previous research suggests that 

phonetic content could be a contributory factor, further research is required. 
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Figure 7.15: Praat spectrogram view of speakers 020 (best) and 025 (worst) 3s

Speaker 020, best performing 

Speaker 025, worst performing 

Elongation of utterances (more speech data) 

Note that applying speech/voice detection (VAD) on ASR enrolment removes pauses, 
can truncate words/soft speech sounds and further decreases the net duration. 

Shorter duration utterances (less speech data) 



7.9 Discussion and Practical Recommendations 
Results from experiments showed marginal improvements in tolerance to very low net duration but 

were also broadly consistent with research outcomes from other ASR similar systems, as 

documented in the literature review.  Throughout the experiments, both ASR systems consistently 

produced lower match scores and higher imposter scores for shorter net duration comparisons 

(<40s) and were of lower accuracy (higher Cllr).   

 

For both ASR systems performance tipping points were found where performance severely 

degraded.  For the more modern i-vector/PLDA system this became evident at the sub 10s net 

duration range where the rise in EER% was appreciable (5.149% compared to 0.005% at 1m, 

baseline).  However, at the sub 5s band the EER rose considerably (20.391%) and so a non-linear 

decline in performance was observed.  This clearly has implications with respect to ASR 

comparisons and speaker model management with low net duration continuing to have a negative 

influence on ASR performance despite improvements in system architecture, feature extraction 

methods, statistical modelling (i-vectors) and the use of larger scale & bespoke normative data 

(UBM, TV, LDA+PLDA).  These experiments also further support ENFSI recommendations for 

minimum net duration thresholds (ENFSI 5.4.1).     

 

It is important to note the influence that speech detection/VAD had on further reducing net duration 

(more so than human editing alone) and, in all instances, the human edited speech files were longer 

in proportionate terms than the post-VAD files.  In terms of practical application, it would therefore 

be strongly recommended that post-VAD measurements (i.e. ASR file import reports) for net file 

duration should be documented and factored into the analysis when applying ASR systems.  With 

respect to reporting, it can also be more difficult to determine the expected performance range 

(EER% and Cllr) for the ASR system itself and this must be reflected re confidence in output 

interpretation.   

 

Whilst not directly conclusive from zoo plot positioning alone it is suggested that the lack of 

phonetic variation in extremely short duration samples (<1-10s) could be influencing performance 

at very low net duration.  However, as phonetic variation was not explicitly examined, and auditory 

analysis could not be completed, a correlation to speaker performance could not be established and 

further research in this area is recommended. 

 

It is hoped that the experiments have produced useful metrics, although these are offered only as a 

rough guide.  Also, the extrapolation of thresholds from experiment 2 should not directly inform 

threshold(s) for different ASR system.  Both previous research and the experiments completed 

support the view that performance/output can differ across ASR systems in respect to the normative 
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data, settings, calibration and audio quality – all of which can influence the ASR’s performance 

and accuracy on low net duration speech comparison.   

 

In terms of practical application, results support testing and establishing system specific settings, 

i.e. minimum acceptable duration threshold(s) to mitigate against poor performance (EER% and 

Cllr).  In addition, experiment 3 supported that comparative tests which more evenly apply net 

duration limits across both suspect and imposter files could assist with mitigating against skewing 

ASR results.  Experiments suggest that thresholds would need to be carefully established on an 

ASR system so as not to exacerbate false positives/false negatives ‡‡  on low net duration 

comparisons.   

 

The results from experiment 1 demonstrated that, in relation to Cllr (accuracy) an i-vector system 

may produce less accurate results under very low duration conditions than a GMM-UBM on similar 

length audio files, although it is argued that this is offset by much lower overall EER% performance 

on the i-vector/PLDA ASR.  This is consistent with results from Poddar, Sahidullah and Saha 

(2018), who also demonstrated a fall in accuracy (Cllr) for i-vector ASR systems on very low 

duration speech files.  A plausible explanation for this is likely due to the more precise clustering 

for the statistical modelling in the i-vector system (i.e. greater specificity).  Interestingly, Poddar, 

Sahidullah and Saha (2018) also found that EER% discrimination performance began to decline 

below 40s with a similar tipping point located at approximately <10s/<5s.  Experiment 1 results 

therefore support these findings with additional data. 

 

Results from experiments 1 and 2 also demonstrated the risk in assuming GMM-UBM and i-vector 

ASRs provide similar performance and accuracy (EER% and Cllr) as duration declines.  In practical 

terms this simply supports upgrading an ASR system, appreciating that a new or upgraded system 

should also undergo adequate performance testing, calibration and any net duration threshold 

adjustment(s) are based on objective testing (in relation to ENFSI guidelines) rather than 

manufacturers recommendations or previous ASR version settings. 

 

If an ASR system is operated through an application program interface (API) – i.e. at command 

line level - comparison queries could be completed which are not as constrained by a more visible 

net duration threshold, more easily set and reviewed by an operator via a graphical user interface 

(GUI).  Having net duration acceptance setting somewhat out of sight could be an additional risk 

factor, effectively enabling the bypassing of any recommended threshold(s) to force extremely short 

duration speaker comparison (<10s).  Experiments show that that this would not be recommended 

                                                
‡‡ Low net duration audio events may still contain valuable information for an investigation. 
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and supports the view that ASR operators should ensure speech detection and segmentation 

processes are correctly configured and net duration thresholds carefully observed – with the 

documentation of post VAD duration.   

 

Finally, further research is recommended to examine longer (than 1m) net duration comparisons to 

test if ASR performance can be further improved (e.g. 5m or 10m comparisons combined with 1m).  

It is plausible that a maximum performance saturation point will be reached with regard to statistical 

modelling and this may have been reached during experimentation.  Nevertheless, research on long 

net duration could have implications in terms of better optimising speaker models and assessing 

how long they need to be, since they can be a significant resource cost with regard to (human) 

editing and management. 
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Chapter 8  Signal to Noise Ratio  

This chapter examines the effect of Signal to Noise Ratio (SNR) on ASR performance.  In line with 

the overall objectives for the thesis the motivations for the experiments are: 

i. The production of metrics and reference material to assist with informing casework 

analysis;  

ii. To provide guidance on SNR thresholds for audio acceptance into ASR systems. 

 

The chapter begins with a literature review of relevant research to provide context.  Baseline 

performance is established for 100 x DyViS speakers (task 1, mock police interview data) on an 

OWR iVocalise i-vector ASR system using a bespoke normative set (UBM, TV, LDA+PLDA).  To 

generate new test speech files noise was added to the baseline data to effectively decrease the SNR.  

Two different types of noise (white and pink) were applied at 10 iterative steps 5db apart (-45db to 

0db).  ASR tests were then re-run for both matched conditions (similarly degraded speaker model 

and test audio) and non-matched conditions (non-degraded SM and degraded test audio).   

 

The GMM-UBM system was initially assessed, but could not be used effectively in the experiments 

conducted in this chapter.  In early tests, the rejection of audio for a significant portion of the more 

heavily degraded data was observed despite multiple adjustments to speech detection thresholds 

and settings in an attempt to mitigate.  The i-vector/PLDA ASR is therefore used throughout. 

 

Further tests were also run to apply modern adaptive noise reduction techniques and normalisation 

to the baseline data in an attempt to positively influence the SNR and raise ASR performance.   

 

Results and findings are presented.  The chapter concludes with a discussion of the influence of 

SNR and acoustic variability on ASR performance.  Practical recommendations are made to assist 

with informing speaker comparison under poor SNR conditions and the chapter concludes with 

recommendations for further areas of research.  

 

8.1 Background 
It is widely accepted that recordings with low noise relative to the speech signal are fundamental 

to accurate speaker comparison using ASRs.  Estimation of SNR can therefore assist with providing 

metrics and define the terms ‘low’ or ‘high’ noise’ in the context of ASR performance.  The 

confidence with which an ASR assessment is then made can also be better defined or, if the SNR 

is particularly low, decisions can be taken as to whether ASR analysis should be conducted at all 

with speech files rejected at the point of technical assessment.  It was noted that the ENFSI 
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guidelines for best practice (Drygajlo et al., 2015) broadly reference ‘reduced SNR’ (2015: p.33) 

but do not specify db acceptance levels. 

 

As previously discussed (3.2), SNR can be influenced by many variables at different points of the 

end-to-end signal chain.  These include, but are not limited to, the performance of the microphone, 

the bit depth and sample rate, microphone proximity/vocal effort, the quality of the recording device 

(e.g. faults/susceptibility to interference) and environmental noise.  SNR can also vary from 

moment to moment within an audio/speech event.  Since many variables determine SNR, measuring 

and establishing the influence on ASR performance can only really be extrapolated from the use of 

controlled experiments, which do not directly replicate casework conditions.  However, if it is 

possible to quantify the controlled conditions under which ASR performance deteriorates as SNR 

falls, then it should be possible to better predict how an ASR will perform under casework 

conditions.   

 

8.2 Literature Review 
Togneri and Pullella (2011) evaluated SNR variability on a GMM-UBM system with the addition 

of white noise on 64 speakers from the TIMIT database (630 x speakers, non-degraded/studio 

quality).  Their experiments introduced white noise at 5db, 10db, 20db and 30db.  They applied the 

G.712 codec and MIRS (Modified Impulse Response System) to simulate different channel 

characteristics.  Cepstral Mean Normalisation (CMN) was applied, a method for removing the 

effect of non-speech from the cepstral values at the feature extraction stage.  Note that CMN is 

similar to Cepstral Mean Subtraction (CMS) (Furui, 1981) which is integrated, by default, into 

OWR iVocalise.  Even under relatively mild degradation of SNR Togneri and Pullella demonstrated 

GMM-UBM ASR performance declined (Table 8.1 from Togneri and Pullella, 2011: p. 37).  Note 

that results are expressed in terms of percentage of correct comparisons, rather than EER%. 

 
Table 8.1: Influence of SNR on GMM ASR system.  Togneri and Pullella (2011: p.37) 

 

Results in % Accuracy 
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Evans et al. (2002) researched SNR in the context of the landline telephony domain.  The database 

they used consisted of 2,000 speakers with 1,000 speakers used for model training (normative 

data/UBM).  They demonstrated that adding 15db of car noise to the test audio from 1,000 speakers 

produced a drop in ASR performance on a GMM-UBM system (3 to 5 EER% compared to 36 

EER%).   

 

Research undertaken by Nakasone (2003) found that ASR performance on a GMM-UBM system 

began to degrade at approximately 16db SNR with a significant drop noted in score distributions at 

<14db SNR.  Nakasone also noted increasing overlaps in LR plots showing true and false 

distributions effectively drawing together and merging at around 0db, which demonstrated the 

increasing difficulties encountered in casework when setting thresholds for poorer SNR 

comparisons.  Nakasone’s research supported the hypothesis that severely degraded audio (low 

SNR) should be regarded as unsuitable for ASR analysis and (independently) assessed for auditory 

analysis suitability.   

 

Nakasone’s research was further developed in Harmse, Beck and Nakasone (2006), which 

examined SNR and net speech duration to seek compensation algorithms.   Their research 

comprised of 8 experiments under matched conditions using a bespoke corpus of fifty male 

speakers.  The group encountered a common issue in the energy detection phase (determining 

speech over noise) which progressively lost accuracy as SNR decreased.  This effectively produced 

a reduction in speech passing the ingest process, hence providing an additional motivation for their 

examining the link between SNR and net speech duration.  However, assessing both SNR and net 

duration simultaneously raises issues with respect to isolating variables.  Many experiments had 

very short and mixed duration speech samples (0.5s to 16s) which, as demonstrated in chapter 7 

(net duration), can influence ASR EER%.  Nakasone (2003) also previously demonstrated that 

using less than sixteen seconds of speech (either for test audio or speaker model) degraded ASR 

performance (3.9% EER for 16s x 16s (baseline) down to 50.8% EER for 0.5s x 0.5s).  

Nevertheless, broad tendencies were demonstrated that decreasing SNR produced corresponding 

poorer EER% performance.  The research also produced a useful regression model for score 

compensation.  In summary, the Nakasone research assisted with informing preliminary tests 

conducted in this chapter, particularly where it was determined that the speech detection phase 

required some adjustment simply to allow enough net speech to pass speech detection for the very 

low SNR speech samples.   

 

Athulya, Vinashankar and Sathidevi (2017) encountered similar EER% performance effects on a 

GMM-UBM system with speech degraded under several conditions.  They experimented with an 

alternative method of mitigating noise on speech data from the NOIZEUS corpus containing 30 

IEEE sentences for 6 speakers (3 x males and 3 x females).   They proposed the use of Gamma tone 
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filter cepstral coefficients (GFCC), which essentially model the way that the human cochlear works 

using overlapping band pass filters, as opposed to a standard MFCC feature extraction method (see 

chapter 3.4.3).  The group also suggested using speech detection/VAD to spectrally subtract non-

speech noise estimated values from speech and proposed a varying threshold scale in the VAD 

calculations.  This they proposed would assist with better determining speech against noise.  Their 

results are reproduced below (Figure 8.2).   

 
Figure 8.2: Results from Athulya, Vinashankar and Sathidevi (2017: p.5) 

 
Whilst GFCC and VAD approaches were shown to be beneficial to performance, in comparison 

with MFCCs, they conceded that the dataset was relatively small.  In addition, some of speech 

samples that were held back were used in the UBM (universal background model or normative 

data).  From the preliminary experiments completed, this was shown to skew results and produce 

artificially elevated performance in systems (3.5.6, chapter 6 and Appendix D).  This is more 

noticeable if there are relatively small quantities of normative data and the addition of the test 

corpora is then a large(r) percentage of the overall.  Nevertheless, the performance improvements 

were encouraging and this paper demonstrated a very innovative way, using different feature 

extraction methods, to improve ASR processing of low SNR speech. 

 

Li and Mak (2015; 2016) demonstrated that utterances with similar SNR clustered together in i-

vector subspace and, conversely, those with degraded SNR grouped apart.  Their research was 

based on 7,156 utterances from NIST 20015-2008 SRE degraded with (speech) babble at 6db and 



133 

15db.  They suggested that this observed shift could form the basis of performance improvements 

through the provision of bespoke normative set(s) (PLDA) to better accommodate variation in SNR. 

Figure 8.3:  Li and Mak (2016: p.5566) shift of mean i-vectors with SNR reduction 

This hypothesis is similar to the concept of within class covariance normalisation (WCCN) 

where a speaker is effectively enrolled in multiple environments (in this case varying SNR) to 

inform the system that the speaker model is the same person with any i-vector variation 

predominantly caused by channel difference, in this case SNR.  Note that other/different i-

vectors could correspond to language, codec, frequency bandwidth etc.  In the context of the 

experiments conducted in this thesis it was determined that manipulation of the normative 

data could produce an additional variable.  The normative data session (UBM, TV, LDA

+PLDA) was therefore fixed to maintain a constant as the SNR degraded.  In addition, multiple 

models per speaker (i.e. WCCN) were not created, largely due to insufficient quantities of data 

(many sessions).  

Beritelli (2008) examined the influence of background noise on SNR estimation in the context of 

speaker recognition.  He experimented with 13 noise categories, examining the influence on F1, 

F2 and F3.  Results showed that background noise has a varying influence on different formants 

and therefore vowel realisations.  Beritelli (2008) recommended further work to examine 

SNR estimation at a sub-band level and this was further explored in Beritelli, Casale, 

Grasso and Spadaccini (2010).  Their work completed a performance evaluation of several SNR 

measurement methods (manual, semi-automatic and ‘real’) highlighting some of the difficulties 

in under (or over) estimating SNR for speaker comparison and speech analysis.  Their 

research examined the 
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influence that noise (vehicle, office, crowds and construction) had on individual vowels (from 

TIMIT) and particular sensitivity was found for the diphthong /aɪ/.  This led to the group requesting 

more effective SNR estimation algorithms.  They also provided recommendations regarding the 

introduction of critical SNR thresholds for different speech sounds, although did not define them 

and it is suggested that this would be complex to implement.  

 

Al-Karawi, Al-Noori, Li and Ritchings (2015) completed research experiments on the influence of 

noise (and, independently, reverberation - see chapter 9).  The group used a Microsoft Speaker 

Recognition (MSR) tool kit to examine ASR performance.  The toolkit can use either GMM-UBM 

or i-vector but for their research they selected only GMM-UBM.  The team recorded 19 speakers 

(11 males and 8 females between 25 and 40 years old) at 16kHz sample rate.  The speech samples 

were timed at between 30 and 40 seconds.  The speech samples collected for the noise tests were 

text independent but also recorded in a different language.  It is not clear if this conflated variables 

and it was also unclear as to the description of tonal noise.  Their results are presented in % accuracy 

rather than EER% (Figure 8.5) so baseline (i.e. no noise at all – highest SNR) provided 100% 

accuracy.  The term ‘system fail down’ was not fully explained (Figure 8.5) - but it is inferred that 

this meant equivalence to chance level accuracy.  Normative data is not referred to.  The poor 

performance of the MSR system was noted and the group recommended further investigation.   

 
Table 8.4: Al-Karawi, Al-Noori, Li and Ritchings (2015: p.426) noise settings 
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Figure 8.5: Al-Karawi, Al-Noori, Li and Ritchings (2015: p.426) noise results 

  
 

Prasanna and Pradhan (2011) proposed that the VLR elements of speech are louder and have a 

higher SNR and are therefore likely to be more resilient to noise and poorer SNR recordings.  They 

experimented with extracting the vowel-like regions, or VLRs, (vowels, semi-vowels and 

diphthongs) from speech using TIMIT and NIST 2003 corpora which they artificially degraded 

using NOISEX-92 data to demonstrate an overall improvement in EER% from 18.6% to 12.7% and 

15.3% to 13.4%. 

8.2.1 Vocal Effort and Signal to Noise Ratio 
Speaking against environmental noise tends to cause the elevation of vocal effort.  This is known 

as the Lombard effect, named after Etienne Lombard (1911), who studied voice elevation in the 

context of the hard of hearing and loud background speech.  In the experiments completed in this 

thesis - artificial noise was added post recording and the Lombard effect was therefore not a 

variable.  It is conceded that a speaker raising their voice could, broadly speaking, partially restore 

the SNR and therefore ASR performance.  However, this would also introduce another variable as 

the increase in vocal effort would deviate from modal voice.  Goldenberg, Cohen and Shallom 

(2006) confirmed that Lombard effected speech degraded ASR performance (2006: p. 237).  On a 

GMM-UBM test system (2006: p. 233) they found EER% degraded by 10.1% overall (from EER 

3.8% to EER 13.9%).  They also noted that performance could be (partially) restored by 

transforming the Lombard speech by increasing the feature order – EER% 22.3% to 8.4% (p.237).   
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Jessen and Becker (2010), and Kirchhübel (2009) studied F2 and F3 values for 31 speakers.  They 

reported that the variability between Lombard and normal speech was inconsistent across speakers 

and relatively small overall.  In addition, the Lombard effect can introduce other consequences such 

as elevated first formant values and modification of voice - e.g. fundamental frequency and voice 

quality such as spectral tilt (Summers et al., 1988; Castellanos et al., 1996; Lau, 2008; Jessen, 

Köster and Gfroerer, 2005).  Kelly and Hansen (2016b) also studied the specific influence of 

Lombard on ASR’s – finding performance degraded (i-vector system).  In summary, the influence 

of the Lombard effect and associated rises vocal effort were regarded as undesirable variables for 

this set of acoustic experiments – and, as stated, are not a feature of DyViS - but should clearly be 

considered in case examination.   

 

Noise in audio recordings is often inconsistent, varying in a combination of intensity, duration and 

frequency content.  SNR measurements, particularly in the context of the experiments conducted, 

are therefore estimates.  To extract the estimated SNR, from the SM and TA files, the audio quality 

application Juicer (OWR, 2016) was used to provide consistency and batch analysis.  Juicer extracts 

various metrics relating to the technical quality of audio including Waveform Amplitude 

Distribution Analysis, or WADA SNR estimate (see 8.2.2).  This application and algorithm were 

assessed as providing less variability and bias than other methods tested.  This then enabled more 

detailed analysis of results, for example in accommodating for the natural variation in vocal effort 

between speakers and the technical quality of the recordings.   

 

8.2.2 Signal to Noise Ratio Estimation 
Kim and Stern (2008) developed Waveform Amplitude Distribution Analysis or WADA estimation 

and this was used for estimating SNR in the experiments conducted in this chapter.   

 

Essentially, WADA SNR estimation uses statistical information calculated from the amplitude 

distribution of the speech waveform.  This process is based on the assumption that (relatively) good 

quality speech has a Gamma distribution whilst background noise tends to have a Gaussian 

distribution.  Kim and Stern (2008) concede that background speech or babble can also have a 

waveform distribution closer to Gamma in nature, but for the purposes of the experiments in this 

chapter (i.e. the addition of non-babble noise and a lack of background speech) the measurement 

was considered a valid form of SNR estimation.   

 

The preliminary tests (Chapter 6) demonstrated that it was also important to recognise the strong 

connection between vocal effort and recording SNR (i.e. lower effort = lower signal).  Speakers 

who talk quietly are likely to produce a lower speech signal in relation to either the background 

noise and/or require adjustment to the microphone gain level (upwards) at the signal input.  This 

can then increase the noise level inherent in the recording.  Note also that variations in SNR can be 
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caused by head turning/movement and microphone proximity.  Even in a very well recorded, highly 

controlled corpus such as DyViS the range of WADA SNR measurements was quite wide ranging 

from 10.98db for speaker 097 to 28.19db for speaker 106 (see Table 8.13). 

 

8.3 Questions and Hypotheses 
Based on the research motivations and literature review, the following research questions were 

posed. 

 

Q1  To what extent does decreasing the SNR influence ASR performance on modern 

systems and can any tipping points be identified? 

H1 As research demonstrated, when the SNR decreases the ASR performance will decline.  A 

tipping point is likely when noise reaches a saturation point where it is of a similar dynamic range 

(or volume) to the speech.  At that point it is likely that the feature extraction stage of the process 

will be unable to distinguish between speech and noise and the EER% will be so large as to render 

the system unusable. 

 

Q2 Are speakers with lower existing SNR/poor vocal effort affected faster, in terms of 

performance degradation, as the SNR incrementally decreases?  Conversely, are speakers 

with high SNR values more resilient to the addition of noise? 

H2 Speakers who are already exhibiting low SNR/poor vocal effort are likely to be affected to 

a greater extent by the incremental addition of low levels of noise than those with higher SNR. 

 

Q3 Does the addition of pink noise produce different results from the addition of white 

noise? 

H3 Pink noise has greater energy at lower frequencies than higher frequencies (decreasing at 

3dB per octave) so it should degrade speech faster than uniformly distributed white noise when 

added in iterative steps due to the greater quantity of voiced speech at frequencies below 4kHz 

which are important for ASR discrimination.   

 

Q4 With regard to channel matching/mismatch, is there benefit from degrading the 

speaker models in line with the test audio or should the speaker models be held at the highest 

possible quality?  

H4 It is suggested that matching the conditions in both speaker models and test audio is likely 

to produce better ASR performance.  However, this might not hold true for the addition of 

significant quantities of noise.   
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Q5 With regard to the degraded results, processing plug-ins such as noise reduction 

and/or digital normalisation positively influence/restore ASR performance? 

H5 The application of processing techniques, particularly noise reduction, is generally 

regarded as degrading the speech through spectral subtraction (i.e. removing noise will also remove 

some speech).  It is therefore suggested that only the sparing use of adaptive NR techniques could 

marginally improve ASR performance for degraded data.  Digital file normalisation techniques as 

applied using software such as iZotope might also assist with performance although it is suggested 

that gains are likely to be very marginal as the signal to noise ratio will remain close to the pre-

normalisation levels.  In other words, the overall amplitude may be boosted, but noise and signal 

relatively evenly so and the difference between the speech and noise (i.e. SNR) will therefore 

broadly remain. 

 

8.4 Methodology 
The data and equipment used was as specified in chapter 5 and Appendix G with the following 

adaptations.   

i. The baseline data comprised the DyViS Task 1 interview material (100 speakers SSBE, 

male).  The net speech files were edited to generate 100 speaker models and 300 test audio 

files (1x minute SM and 2 x additional 1 minute TA files with the residual data comprising 

the third TA file).   

ii. A bespoke normative data session was created by OWR for this research experiment (i-

vector/UBM, TV, LDA+PLDA session set ‘2016A-1024-D-CMS-Large-VAD-NoDyViS-

20Apr16’).  The normative data did not contain DyViS material. 

iii. The baseline and artifically degraded data was examined using OWR iVocalise version 

2.1.0.1366. 

 

It was determined that the Togneri and Pullella (2011) method of adding noise to baseline audio 

data was a practical and measurable way of accurately degrading the SNR under uniform and 

controlled conditions.  Two different types of noise were selected in the signal generation plug in 

for iZotope RX6 Advanced Izotope.com.  These were pink noise (spectrally tilting from high 

amplitude at low frequency to lower amplitude at high frequency) and white noise (uniform 

amplitude) - see Figure 8.6.  These were applied to the DyViS speech baseline files using the batch 

facility in the iZotope application.  These steps were validated with test data (i.e. addition of zero 

db noise) to ensure that the process itself did not influence results.  The additional noise was added 

at 5db iterative steps beginning at -45db RMS and concluding at 0db RMS.  RMS, or root mean 

square, refers to the averaging of the output i.e. squaring all values, determining the mean and then 

finding the square root of the result.  
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Figure 8.6: Pink noise (left) and white noise generators, showing spectral tilt 

  
 

A total of 45 different experiments were created (Table 8.7).  Each degradation step was applied to 

baseline files (i.e. non-cumulative).  Matched/non-matched condition refers to the degradation of 

speaker model and test audio.  Results were compared with respect to the degraded and baseline 

results using OWR Bio-Metrics version (v1.8.0.704) for graphing and plotting results from the .csv 

output files – i.e. EER% (performance), Cllr (accuracy) and LR Plots.  The WADA SNR estimate 

for each audio file was extracted (OWR Juicer, version 2016a).   

 
Table 8.7: SNR Experiments detailing noise types and settings 

Experiments 
Matched refers to SM&TA 

Type Settings  

Baseline/control N/A N/A 

1-10 Matched  White noise  10 iterative steps from -45 to 0 RMS 

11-20 Matched  Pink noise 10 iterative steps from -45 to 0 RMS 

21-30 Non-matched White noise  10 iterative steps from -45 to 0 RMS 

31-40 Non-matched  Pink noise 10 iterative steps from -45 to 0 RMS 

41-43 Matched Adaptive NR -15db, -10db, -5db  

44 Matched Normalisation To 0db  

45 Matched  Spectral NR -10db 

 

For the audio enhancement experiments (41-45 inclusive) the plug-ins were selected from the 

iZotope RX6 Advanced suite (see iZotope.com).   

 

Re 41-43: Adaptive noise reduction effectively learns the profile of the unwanted noise and 

subtracts it from the signal.  It is commonly used to remove broadband or tonal noise.  The settings 

were adjusted to ‘Advanced + Extreme’ which completes a joint time frequency analysis resulting 
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in fewer artefacts, but requires greater computational resources.  The amount of noise reduction 

was varied as shown in Table 8.7.  All other settings were at the manufacturers recommended 

positions (i.e. default).   

 

Re 44: Normalisation (to 0db) digitally adjusts the gain across an audio file to a target peak level.   

 

Re 45: Spectral noise reduction is similar to Adaptive noise reduction with the adaptive mode set 

to the off position (i.e.) constant subtraction of noise.  

8.5 Results 
Results are presented in a series of Tables and graphs with findings discussed (8.6). 

 
 
Table 8.8: SNR Experiments, iVocalise, i-vector/PLDA, results (next 2 pages)



	
Match	
SM		
&		
TA	

Experiment	Type		
[VAD	off]	

Noise	
RMS	 EER	 Cllr	 Mean	H0	 Mean	H1	 H0	SD	 H1	SD	

FAR,	FRR	 FAR,	FRR	 FAR,	FRR	

100	 1,000	 10,000	
%	 %	 %	

0 P Baseline N/A 0.0051 0.11304 69.97957 -49.92858 11.94202 26.0617 0 0.01 1.33 
1 P White Noise U -45 0.0219 0.4202 73.39019 -37.25606 11.19704 25.51934 0 0 0.33 
2 P White Noise U -40 0.0741 0.96509 74.29366 -28.8285 11.11599 25.4271 0 0.33 1.69 
3 P White Noise U -35 0.3333 2.4277 75.85648 -18.0836 10.93291 25.61115 0 1.67 22.68 
4 P White Noise U -30 1.0017 5.173 77.34818 -6.755244 11.38249 25.70247 0 8.48 32.35 
5 P White Noise U -25 2.2727 7.8867 76.76415 1.362782 12.99456 25.34248 6.67 21.43 48.67 
6 P White Noise U -20 5.6987 7.9518 70.59608 1.912944 16.79232 24.89449 19.33 40.03 62 
7 P White Noise U -15 10.4916 6.0473 57.00569 -3.495239 21.33924 25.04573 34.33 55.7 75.37 
8 P White Noise U -10 17.0791 6.5383 42.66234 -3.497848 22.25974 25.69852 58 86.72 95.34 
9 P White Noise U -5 28.6667 16.407 43.70573 18.19728 20.07989 26.88199 93.67 99.33 100 

10 P White Noise U 0 45.4848 49.631 74.18795 68.6213 21.39767 22.76772 98 99.67 100 
11 P Pink Noise -45 0.0791 0.16325 71.22972 -47.90449 12.37364 26.94122 0 0.33 1 
12 P Pink Noise -40 0.33 0.29875 70.41334 -42.86844 12.58382 26.90666 0 0.67 2 
13 P Pink Noise -35 0.3519 0.66625 69.63094 -34.82043 12.6903 26.69973 0 1.67 7.01 
14 P Pink Noise -30 1.3333 1.3037 67.3966 -26.81032 13.44926 26.12793 1.33 4.55 17.69 
15 P Pink Noise -25 2.3502 1.8444 61.9313 -22.01115 15.63945 25.2174 5.67 17.43 41.01 
16 P Pink Noise -20 6.3283 2.4923 51.72892 -18.64746 18.87169 25.43313 23 46.07 72.35 
17 P Pink Noise -15 14.67 4.5616 39.49099 -11.99172 23.15419 26.35138 53.43 81.92 95.01 
18 P Pink Noise -10 22.3569 9.77 36.98571 3.19326 22.43772 26.89893 90.33 98.67 99.67 
19 P Pink Noise -5 38.9091 34.588 60.51007 46.71537 25.23389 29.43305 96.33 99.67 100 
20 P Pink Noise 0 48.2912 66.375 93.71655 92.01427 16.79043 16.85739 97.01 99.67 100 
21 O White Noise U -45 0.3182 0.01641 44.77537 -59.09192 13.93641 24.2753 0 1.33 2.67 
22 O White Noise U -40 0.6818 0.21039 28.82526 -63.46144 15.81599 23.01784 0.67 4.33 12.68 
23 O White Noise U -35 1.9731 2.313 9.250971 -68.6494 17.23731 21.67479 3.67 17.33 41.34 
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24 O White Noise U -30 4.6852 10.83 -12.29681 -74.44022 18.01885 20.38685 17.33 46.67 70.36 
25 O White Noise U -25 10.3418 24.341 -33.34525 -80.10021 18.24501 19.27641 44.56 77 88 
26 O White Noise U -20 17.5779 37.527 -51.97529 -85.22839 18.35684 18.41336 69.79 88.72 96 
27 O White Noise U -15 27.5505 49.851 -69.10854 -90.73069 19.32338 17.76649 84.67 95.33 97.33 
28 O White Noise U -10 38.2828 63.235 -87.66284 -99.98775 22.02688 18.2877 90.24 96.67 98 

29 O White Noise U -5 46.032 77.683 -107.6915 -112.6742 22.14669 17.80822 94.67 99 99 
30 O White Noise U 0 48.5152 86.51 -119.9277 -120.6014 15.55265 14.45787 98 99.33 100 
31 O Pink Noise -45 0.0471 0.02306 52.15806 -59.40495 13.35102 25.48679 0 0 1.33 
32 O Pink Noise -40 0.4125 0.04315 37.56111 -64.44209 14.87607 24.42277 0 1.33 4.33 
33 O Pink Noise -35 0.9966 0.63656 19.35217 -69.48096 16.43846 23.01376 1 5.67 17.69 
34 O Pink Noise -30 2.6296 5.5814 -1.183407 -74.57741 17.68577 21.59637 6 29.72 46.02 
35 O Pink Noise -25 6.633 17.834 -23.46654 -80.12043 19.35292 20.27662 31.33 56.33 76.67 
36 O Pink Noise -20 15.7104 34.255 -47.31786 -86.40604 21.05902 18.98656 61.26 82.78 92.68 
37 O Pink Noise -15 29.1111 50.966 -70.65434 -94.02324 22.48312 18.4728 80 91.67 96.67 
38 O Pink Noise -10 39.096 65.906 -91.36571 -102.8277 21.61867 18.33956 93.33 97 98.67 
39 O Pink Noise -5 45.9579 75.953 -105.2933 -109.1915 17.79203 17.33181 98.33 99.33 99.67 
40 O Pink Noise 0 49.4731 79.551 -110.2816 -110.7484 16.35793 16.19076 99 100 100 

41 
P 

Adaptive NR -
15db N/A 0.0051 0.22385 74.66514 -42.46545 11.3404 25.38404 0 0 0.33 

42 
P 

Adaptive NR -
10db N/A 0 0.22598 75.04484 -42.56533 11.37012 25.48847 0 0 0 

43 P Adaptive NR -5db N/A 0 0.20726 75.05668 -43.8732 11.43001 25.74486 0 0 0 

44 
P 

Normalisation to 
0db N/A 0.0017 0.15105 74.37363 -48.01534 11.68433 26.35088 0 0 0 

45 
P 

Spectral Denoise -
10db N/A 0.0135 0.35387 75.46694 -37.20133 11.35659 24.63742 0 0 0.67 



Figure 8.9: I-vector ASR. White noise matched SM and TA EER% results 

 
 
 
Figure 8.10: I-vector ASR. Pink noise matched SM and TA EER% results 
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Figure 8.11: I-vector ASR. White noise non-matched SM and TA EER% results 

 
 
 
Figure 8.12: I-vector ASR. Pink noise non-matched SM and TA EER% results 
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Table 8.13: WADA SNR Estimates for 100 x DyViS speakers, task 1 (SM, baseline) 

DyViS 
Speaker  

WADA 
SNR (db) 

DyViS 
Speaker 

WADA 
SNR (db) 

DyViS 
Speaker 

WADA 
SNR 
(db) 

DyViS 
Speaker 

WADA 
SNR (db) 

001 20.209 029 20.588 056 16.620 086 19.611 
002 19.532 030 24.545 058 21.793 087 19.656 
003 16.764 031 18.777 059 26.447 088 20.232 
004 16.371 032 23.196 060 17.843 090 19.964 
006 19.504 033 25.580 062 24.322 093 15.384 
008 19.689 034 19.032 063 22.626 094 20.783 
009 20.237 035 14.394 064 21.502 095 20.056 
010 18.056 036 19.575 065 16.242 096 18.300 
011 20.677 037 16.792 066 21.253 097 10.978 
012 21.551 038 18.159 067 14.611 099 11.825 
013 16.675 039 22.942 068 20.829 100 18.357 
015 22.397 040 15.247 069 15.868 102 21.575 
016 19.119 042 13.802 071 22.864 103 18.008 
017 17.428 043 20.825 072 19.764 105 15.977 
018 22.577 044 20.028 073 18.903 106 28.190 
019 24.581 045 20.811 074 16.170 107 17.280 
020 16.533 046 16.358 075 15.810 108 16.720 
021 21.761 047 21.261 076 23.162 111 12.852 
022 20.104 048 21.633 077 26.167 112 12.842 
023 27.001 049 21.453 078 20.337 113 18.162 
024 16.658 050 16.307 079 19.776 114 13.010 
025 18.476 051 18.780 080 20.693 115 15.127 
026 22.736 052 17.580 081 15.475 118 12.822 
027 18.467 053 20.383 084 22.488 120 14.882 
028 19.367 054 18.231 085 17.902 121 14.643 

 
Top 10% WADA SNR (highest db first) 106, 023, 059, 077, 033, 019, 030, 062, 032, 076 

Bottom 10% WADA SNR (lowest db first) 097, 099, 118, 112, 111, 114, 042, 035, 067, 121.   

 

The speakers above are circled in the zoo plots below (Figures 8.14, 15, 16 and 17).  All other 

speaker labelling has been deliberately removed to enable improved viewing across all results. 
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Figure 8.14: Zoo plot baseline results.  Lowest 10% of speakers, WADA SNR 

 
Speakers with the lowest WADA SNR ratings (Figure 8.14) were not grouped or positioned in the 

poorer performing quartiles (worms, phantoms and chameleons) in the baseline results, but 

distributed broadly in the central range.  With the addition of noise (Figure 8.15), speaker positions 

appeared to cluster towards the lower right (chameleons) indicating performance degradation. 

 
Figure 8.15: Zoo plot -20db RMS White Noise.  Lowest 10% of speakers, WADA SNR 

 

LR 

LR 
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At an approximate tipping point of -20db RMS, higher imposter scores and higher genuine scores 

were noted - with clustering towards the Chameleon quadrant.  Note also the difference in axis 

numbering to Figure 8.14, indicating overall scores, and a higher quantity of phantoms (red). 

 
Figure 8.16: Zoo plot baseline results.  Highest 10% of speakers, WADA SNR 

 
Speakers with the highest WADA SNR ratings (Figure 8.16) were not all positioned in the Dove 

quartile in the baseline results, but distributed broadly in the central range with potential clustering 

towards the right (marginally higher genuine match scores).   

 
Figure 8.17: Zoo plot -20db RMS White Noise.  Highest 10% of speakers, WADA SNR 

 

LR 

LR 
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With the addition of noise (Figure 8.17) speaker positions moved towards the lower left indicating 

performance was negatively influenced.  Note also the difference in axis numbering to Figure 8.16 

– demonstrating overall score movement. At an approximate tipping point of -20db RMS, higher 

imposter scores and higher genuine scores were noted, but the movement towards the Chameleon 

quadrant was not as noticeable as in Figures 8.14 and 8.15.  Of the overall chameleons in the 

degraded data, 50% of them were in the lowest 10% WADA SNR.  This suggests the difference in 

speaker performance is marginally dependent on the initial WADA SNR values (i.e. those speakers 

with lower initial SNR are marginally more prone to the addition of noise).   

 

8.6 Findings  
In response to the research questions (8.3). 

 

Q1 Recap To what extent does decreasing the SNR influence ASR performance on 

modern systems and can any tipping points be identified? 

A1  As predicted and in line with previous research ASR performance declined as noise 

was added and the SNR decreased and proportionate to the quantity of noise added.  For non-

matched conditions (SM and TA) performance was affected to a greater extent.  The EER% 

practically doubled for every 5db increment in noise (or 5db decrease in SNR).   For the addition 

of lower levels of noise (-45 to -30db) the effect on EER% was therefore noticeable but relatively 

small due to the doubling of a very low number.  However, performance rapidly decreased at -25db 

to -15db (approximate tipping point).  With only one exception, for which EER% was extremely 

high, Cllr (accuracy) declined on the addition of any noise.  As seen in Table 8.8, mean H0 values 

decline and H1 values rise in comparison to baseline, causing the overlap between H0 and H1 

distributions to increase.  As predicted very high levels of noise, where the speech was barely 

audible, rendered the system unusable (EER close to 50%). 

 

Q2 Recap Are speakers with lower existing SNR/poor vocal effort affected faster, in 

terms of performance degradation, as the SNR incrementally decreases?  Conversely, are 

speakers with high SNR values more resilient to the addition of noise? 

A2  Speakers with initially low WADA SNR/lower vocal effort were not noticeably 

affected faster by the incremental addition of noise than those with higher baseline WADA SNR.  

Zoo plots highlighted the top 10% and lowest 10% speakers (Figure 8.14 to 8.17 inclusive) and 

showed that there were no strong correlations with speaker performance position.  A plausible 

explanation for this could be that adjustment for this is made, to some extent, in the pre-emphasis 

phase of the MFCC extraction (3.4.3).  Nevertheless, speakers with lower initial WADA SNR did 

have a marginal tendency to move towards the lower right quartile (larger number Chameleons) as 

SNR decreased, than those with the higher initial WADA SNR.  The results are far from conclusive 



 149 

since baseline zoo plots for highest and lowest 10% did not provide definitive separation in terms 

of clustering/positioning. 

 

Q3 Recap Does the addition of pink noise produce different results from the addition of 

white noise? 

A3  As posited, pink noise degraded ASR performance faster than uniformly 

distributed white noise when added in iterative steps.  As suggested, this is likely due to the greater 

influence on the lower frequencies of speech. 

 

Q4 Recap With regard to channel matching/mismatch, is there benefit from degrading 

the speaker models in line with the test audio or should the speaker models be held at the 

highest possible quality?  

A4  Matching the speaker models to the test audio files provided the best EER% in all 

instances. 

 

Q5 Recap With regard to the degraded results, can processing plug-ins such as noise 

reduction and/or digital normalisation positively influence/restore ASR performance? 

A5  As hypothesised the sparing application of (iZotope RXAdvanced) adaptive noise 

reduction marginally improved ASR performance under matched conditions (Table 8.18) with 

performance increases noted (e.g. from 0.0051 to 0.0000 EER%).  Digital normalisation also 

assisted performance to a very small extent too (0.0051 to 0.0017 EER%).  The application of a 

much higher quality adaptive spectral noise reduction (-10db) plug in, however, provided a 

performance decrease (0.0051 to 0.135 EER%).  Cllr (accuracy) rose, very marginally, in all 

instances.   

 

Table 8.18: Summary of results from audio enhancement experiments 

Treatment EER% Cllr 

Baseline 0.0051 0.11304 
Adaptive NR -15db 0.0051 0.22385 
Adaptive NR -10db 0 0.22598 

Adaptive NR -5db 0 0.20726 

Digital Normalisation to 0db 0.0017 0.15105 

Spectral Denoise -10db 0.0135 0.35387 
 
Red = Poorer, compared to baseline 
Green = Improvement, compared to baseline 
 

Further research is required to establish the application of processing techniques as audio 

enhancement can clearly produce unpredictable results and increasing EER% performance whilst 

decreasing accuracy would also not be recommended.    
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8.7 Discussion  
Despite improvements to the underlying architecture of ASR systems (i-vectors) results broadly 

supported previous research.  The experiments demonstrated that SNR continues to have a 

significant influence on ASR performance, despite advances from GMM-UBM to i-vector 

approaches.  Thresholds and tipping points were determined.  Whilst it is conceded that these are 

specific to the i-vector ASR system used, normative data (UBM, TV, LDA+PLDA) and the SNR 

inherent in the baseline data is relatively high, it is hoped that the Tables provided assist in 

informing casework analysis and draw attention to the issues of poor SNR/vocal effort speaker 

comparison.  Note the addition of noise in Figure 8.20 in comparison to Figure 8.19 (at the default 

spectrogram dynamic range of 70db).  A plausible explanation for the degradation in performance 

is that noise simply interferes with the feature extraction process and, therefore, in the statistical 

modelling phase. 

 
 
Figure 8.19: Praat spectrogram.  Speaker 2 SM (1.875s) baseline 

 
 
Figure 8.20: Praat spectrogram.  Speaker 2 SM (1.875s) -20dbRMS white noise 

 
When examining the degraded audio files it was understandably difficult to hear speech content 

over noise greater than -25db RMS.  To some extent it was then remarkable that any meaningful 

ASR results were produced beyond -10db RMS at all.   Speech became practically inaudible and, 
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from purely a subjective perspective, the threshold for both acoustic and auditory analysis appears 

similar in scale - strongly supporting the use of quantitative technical assessment prior to ASR 

examination. 

 

Finally, future research to assess whether a forensic examiner’s EER% (i.e. auditory analysis) on 

degraded speech would generally compare more favourably against that of an ASR.   Whilst 

difficult to measure, and apply across casework analysts, research could assist in determining when 

an auditory approach should be completed in preference to ASR analysis (or vice-versa). 
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Chapter 9  Reverberation 

This chapter examines the influence of reverberation on ASR system performance.  The main 

objectives were to examine the extent of performance degradation and to inform the application of 

ASRs in comparison casework.  The chapter begins by discussing the research context and provides 

a literature review of the publications that informed methodology and the subsequent experiments 

conducted.  An overview of the research methodology is then given and an outline of the 

experiments conducted is provided.   

 

The research questions are then stated, with associated hypotheses.  Ten reverberant conditions are 

modelled in software and then applied to the baseline data.  Both matched (equivalently degraded) 

and unmatched (non-equivalently degraded) conditions are tested in the context of speaker models 

and test audio files.   

 

The data is then passed to two different ASR systems for comparison, a GMM-UBM OWR 

Vocalise system (2013) and a later i-vector (UBM, TV, LDA+PLDA) OWR iVocalise system 

(2017).  A bespoke UBM is created specifically for the experiments and a specially adapted 

iVocalise/PLDA (session 1) is utilised to ensure normative data relevance and optimise 

performance.  Variations are then also made in the normative data, for the i-vector/ system, with 

two additional bespoke UBM, TV, LDA+PLDA (sessions 2 and 3).  The experiments are re-run to 

provide further ASR performance comparisons between GMM-UBM and i-vector systems against 

the baseline results and between the three different UBM, TV, LDA+PLDA sessions.  Detailed 

analysis is then provided using biometric graphs to illustrate the influence of reverberation on ASR 

performance.  

 

The chapter concludes with discussion placing the results in the context of the initial research 

conducted and then in the wider field of FSC.  Several practical recommendations are made 

concerning handling field recordings that contain reverberant speech and future research 

recommendations are made. 

 

9.1 Introduction  
Yoshioka et al. (2012) defined reverberation as ‘the repeated sound reflections in a room (which) 

create a sequence of numerous slowly decaying copies of the original sound.’ (2012: p.116).  Whilst 

their paper focused primarily on the challenges of reverberant speech for content recognition 

purposes (i.e. speech to text and machine intelligibility) rather than speaker comparison, the 

underlying principles in room acoustics and challenges with regard to reverberation noise are very 
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similar, since almost identical feature extraction methods are employed.  Their study and the speech 

recognition Reverb Challenge (2014) assisted in guiding the research experiments in this thesis in 

addition to those relating specifically to speaker verification system reverberation research. 

 

An important and common measurement of reverberation is referred to as RT60.  This is effectively 

the length of time that it takes for a reverberant sound to reduce by 60db.  The idea of measuring 

impulse and response characteristics was pioneered by Schroeder (1964), who used filtered pistol 

shots to measure the response times in reverberant rooms.  As described in 3.3.7, direct sound 

arrives slightly before the first reflections (early sound).  The delay between the two is referred to 

as ‘pre-delay’ or the ‘initial time gap’ (Dario and Barbosa, 2012).   

 

In reverberant conditions, early (approximately 50-80ms) and late reflections (>80ms) merge with 

the direct speech signal causing a self and overlapping masking effect (Sadjadi and Hansen, 2010).  

In essence, it is these reflections combining with the direct sound that causes the speech to ‘smear’ 

in the time domain.  This is both audible, and visible in a spectrogram as presented in Yoshioka et 

al. (2012) and Sadjadi and Hansen (2010).  Four spectrograms, taken from the research conducted 

in this chapter, are presented by way of example.  Figures 9.1 to 9.4 (next 2 pages) show the 

spectrogram and waveform views of a typical DyViS speaker model utterance.  Note that all 

visualisations display the same edited extract taken from the first 3.75s of speech from DyViS 

speaker number 120 (edited). 

 
 
 
 
 
 
 
 
 



Figure 9.1: Baseline data, no reverberation applied.  DyViS Speaker 120 

 
 
 
Figure 9.2: Car reverberation applied (RT60 = 0.60).  DyViS Speaker 120 
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Figure 9.3: Living Room reverberation applied (RT60 = 0.70).  DyViS Speaker 120 

 
 
 
 
Figure 9.4: Hall reverberation applied (RT60 = 1.40).  DyViS Speaker 120 

 



The comparative images presented (Figures 9.1 to 9.4) show the degradation, or spectral smearing, 

caused by reverberation with the following observations:  

i. As the size of the room, and RT60, increases the speech degradation becomes more severe.  

Phoneme boundaries become progressively blurred.  Small pauses fill with reverberant 

noise 

ii. The glottal pulses, clearly visible in the vertical plane of the spectrogram (untreated 

baseline data, Figure 9.1) – these quickly lose definition in subsequent spectrograms. 

iii. Bilabial plosives (/p, b/), velar plosives (/k, g/) and fricatives (/s, ʃ, θ/) that are usually 

represented by relatively short, bursts of energy in the vertical plane of the spectrogram 

(e.g. Figure 9.1).  These become dispersed (in time) as RT60 rises, noticeably smeared to 

the right as RT60 further increases and then are effectively lost as they effectively merge 

with adjacent phonemes (e.g. Figure 9.3, RT60 = 0.70). 

Whilst sound travels at a relatively constant speed of approximately 343m per second, dependent 

on air temperature and humidity, reflections from close proximity and distant surfaces arrive at the 

listener or microphone at different times (see 3.3.7 re RT60, direct and early sound).  Further 

complex sound reflections arise as surfaces have different absorption/reflection properties.  This 

may involve environmental variability caused by building materials, wall surfaces, ceiling and floor 

coverings, windows, soft and hard furnishings and even any people present.  The complex influence 

of reverberation degradation on ASR performance is therefore the focus of this chapter.   

 

9.2 Literature Review  
The study of ASR system performance under reverberant conditions is well researched.  This 

section places the present research conducted in this thesis in the wider context of previous research. 

The influence of reverberation on the intelligibility of speech is also well researched, but considered 

out of scope for this thesis.   

Castellano et al. (1996) demonstrated that ASR performance degraded sharply for reverberant 

speech.  Their research sought to mitigate this through the treatment of training material (speaker 

models) with similar reverberation to the test material.  Attempting to match conditions in this way 

demonstrated a 5.45% performance decrease against baseline data, compared to a 13.7% decrease 

for unmatched conditions.   

Zhao, Wang and Wang (2014) examined the combined issues of environmental noise (referred to 

as ‘factory’ and ‘engine room’) and reverberation.  Their study took 300 random speakers from the 

NIST 2008 SRE data, degraded the audio under controlled conditions and then established ASR 

performance (GMM-UBM) against a baseline system.  The group developed a two-step approach 
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to problem solving.  The first stage attempted to remove the background noise using a deep neural 

network (DNN) classifier and binary masking.  The second stage reduced the influence of 

degradation through ‘deliberately introducing reverberant noise to speaker models in order to 

reduce the mismatch’ (2014: p.836).  This they completed by capturing real world impulse 

responses from four microphone positions to induce T60 values, rather than using DSP/plug-ins.  

The group presented results in SID accuracy % and it was found that even when degrading through 

reverberation alone performance reduced from 97.3% (anechoic set) to 77.08% (reverberant set).   

In attempting to then match reverberant conditions (speaker model and test audio), the group were 

able to restore accuracy somewhat, achieving an optimum of 86.00% for 600ms (RT60).  They 

concluded their findings by stating that training speaker models in multiple conditions of 

reverberation could improve ASR performance.  However, it could be argued that this might be 

overestimating the simplicity of reverberation, which can include complex reflections and 

frequency dampening.   

 

The Zhao group also conceded that the feature extraction process itself became more problematic 

when dealing with reverberant speech.  Feature extraction pertaining to reverberant speech was 

further examined by Ganapathy, Pelecanos and Omar  (2011) - in the similar context of speech 

recognition.  The first group demonstrated that, by extending MFCC windowing values beyond the 

values of RT60, they were able to improve performance by relative values of 20-30%.  Mitra, 

Franco and Graciarena (2013) exchanged the feature extraction method altogether - demonstrating 

a broad, if small, performance increase by using DOCC (dampened oscillator cepstral coefficients) 

in preference to MFCCs.  Shabtai, Rafaely and Zigel (2010) further examined the feature extraction 

process and the effect of reverberation on GMM ASRs.  Their research took 14 different 

environments and applied reverberation to establish the influence of temporal smearing.  They 

concluded that performance decreased as RT60 increased.  For audio that had particularly high 

RT60 values the group also recommended that cepstral mean subtraction (CMS) (Furui, 1981; 

2001) was not used by default as they found that, in some instances, CMS caused EER% to rise.  

These works further influenced the forming of research question 3b in this thesis - examining 

improvements that could be made to the feature extraction process and ASR system/UBM, TV, 

LDA+PLDA configuration. 

 

Peer, Rafaely and Zigel (2008) also demonstrated significant ASR performance degradation caused 

by reverberation.  They suggested several ways of mitigating the effect including score 

normalisation, adjusting the background model and attempting to match the acoustic conditions by 

training bespoke models.  Akula and De Leon’s study (2008) and a study by Akula, Apsingekar 

and De Leon (2009) also found that reverberation degraded ASR performance by up to 30%.  

However, by capturing the IR of the original recording environment, in which the suspect 

recordings (TA) were made, they were able to effectively remodel and then compensate for 
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conditions by applying the IR to the speaker models.  This then invoked a (replicated) channel 

match between SM and TA.  Their method successfully achieved 30%, 22% (small offices), 16% 

(lounge), 13% (conference room) relative improvement in performance (clearly dependent on room 

size).  Zieger and Omologo (2008) also successfully demonstrated that impulse responses applied 

to clean speaker models can improve performance on contaminated test audio. They applied a fused 

model methodology (clean and contaminated) to 40 speakers and demonstrated slightly smaller 

performance gains at 0.61% (average EER decrease on test audio).   

Applying reverberation to improve channel matching was a common theme in research studies and 

informed the methodology of experiments in this chapter.  However, the problem of convolution 

noise is extremely complex and clearly cannot be completely mitigated by a single adjustment.  

There are also significant practical challenges in completing an artificial channel matching process 

for forensic speaker comparison casework: 

i. Capturing an impulse response measurement from the exact location of the suspect 

recording in the same space (i.e. proximity, room/furniture). 

ii. Accurately measuring the complex reverberation settings inherent in the unknown speaker 

recording and then correctly applying the same settings to the speaker model(s) artificially 

is likely to introduce unknown variables and a system that cannot be validated. 

iii. Amendment of the normative data of the ASR (UBM, TV, PLDA) is likely required, but it 

is difficult to know as to what to amend it to. 

iv. Quantifying and recalibrating a ‘new’ system (score height, LLR thresholds, EER%, 

accuracy, precision) and then demonstrating best practice for forensic standards. 

 

Ming, Hazen, Glass and Reynolds (2007) and Garcia-Romero et al. (2012) drew attention to the 

performance difference between clean speech analysed in ASR systems, as opposed to speech from 

‘real world’ conditions.  The latter demonstrated that constructing more complex normative/PLDA 

data (see chapter 3) from capturing several multiple reverberant conditions, could improve ASR 

performance in some instances. 

 

Avila et al. (2015) were the first to publish comparisons between ASR GMM-UBM and i-vector 

systems (UBM, TV, LDA+PLDA) in relation to reverberation.  Their study researched performance 

variation under four different training conditions (matched and unmatched) across the two types of 

Microsoft Speaker Recognition (MSR) systems when reverberant noise was added (36 speakers, 

read speech).  Interestingly, the group down-sampled their speech material to 8kHz sample rate 

before completing the feature extraction stage – which could have negatively influenced EER%, 

see results in chapter 10.  Full details of the construction of UBM and UBM, TV, PLDA 

configurations were not provided.  Results from the Avila group study found that performance 

degraded for reverberant conditions.  They also found that matched RT60 conditions performed 
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optimally, for both engines and that the i-vector system generally outperformed the GMM system 

under reverberant conditions with a small anomaly for baseline conditions.  However, the 

difference in performance between the two systems was relatively small, particularly for the 4-

condition experiments.  Results obtained (Figure 9.5) showed close performance alignment for both 

systems at RT60=0.4s and RT60=0.6s (approximately 6% and 7% EER respectively).   
 
Figure 9.5: Summary of results reproduced from Avila et al. (2015: p.4) 
 

 

 
 

The Avila group recommended multi condition training data based on their 4-condition 

configuration results and improving the quantity of reverberant data in the training (and normative 

set) is a logical progression.  Nevertheless, the EER% performance is never likely to be as good as 

baseline and RT60 is a rarely quantified variable in field comparison and therefore almost 

impossible to practically or accurately reproduce.   

 

Shabtai, Rafaely and Zigel (2010) suggested that when RT60 is greater than the short-term Fourier 

transform frame size then time smearing will occur in the extracted feature vectors.  As RT60 

increases then this effect worsens and the means calculated for the statistical modelling phase 



 160 

(GMM) become much closer together.   Within this chapter a question was therefore set to explore 

whether i-vector statistical modelling ASRs would be more resilient. 

 

Al-Karawi, Al-Noori, Li and Ritchings (2015) completed research experiments on the independent 

influence of noise (see chapter 8 on SNR) and reverberation.  They used a Microsoft Speaker 

Recognition (MSR) tool kit to examine ASR performance.  The toolkit can apply either GMM-

UBM or i-vector processes.. For their research only GMM-UBM was selected.  The team recorded 

19 speakers (11 males and 8 females between 25 and 40 years old) at 16kHz sample rate (i.e. 0-

8kHz frequency bandwidth).  The speech recorded for the reverberation tests was text dependent 

and samples timed at between 30 and 40 seconds.  They simulated reverberation using Matlab at 

(RT60) = 0.1s, 0.5s, 1.0s, 1.5s and 2s and documented meta-data pertaining to the complexity of 

reverberation (table 9.6).  Their results are presented in % accuracy rather than EER (Figure 9.7).  

Baseline (i.e. clean) provided 100% accuracy.  The term ‘system fail down’ was not fully explained 

- but it is inferred that this meant chance level accuracy.  Normative data is not referred to.  The 

extremely poor performance of the MSR system was noted on the relatively small reverberation 

settings and this provided further motivation for the experiments. 

 
 
Table 9.6: Al-Karawi, Al-Noori, Li and Ritchings (2015: p.426) Reverberation settings 
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Figure 9.7: Al-Karawi, Al-Noori, Li and Ritchings (2015: p.426) Reverberation results 

 
Finally, with the increase in online videos and social media, it is likely that speech presented for 

forensic comparison could have passed through post processing plug-ins, such as reverberation.  

Websites such as Waves.com and iZotope.com, in addition to the spectral analysis of Youtube.com 

material to assess for degradation, assisted with informing the recreation of room spaces for the 

purpose of this thesis. 

 

9.3 Questions and Hypotheses 
In reference to previous research and consistent with the core objectives in this thesis three 

questions were formed with the following associated hypotheses: 

 

Q1 How resilient are modern i-vector ASR systems to reverberation as opposed to the 

earlier GMM-UBM versions used in studies such as Castellano (1996) and Peer, Rafaely and 

Zigel (2008)?  Further, how effective are session changes to an i-vector ASR system, based on 

adapting the normative data (UBM, TV, LDA+PLDA), relative to one another? 

H1  It is acknowledged that almost all ASR systems are inherently different in terms of 

configuration and settings, in addition to underlying architectural and normative session changes 

(GMM-UBM and i-vector/UBM, TV, LDA+PLDA).  Nevertheless, performance will be assessed 
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relative to baseline (non-reverberant) data and it is suggested that i-vector systems should 

outperform GMM-UBM systems.  This is due to the improvements in statistical modelling and the 

richness of the UBM, TV, LDA+PLDA normative data in comparison to GMM-UBM.  This would 

also be in line with current research findings - e.g. Avila et al. (2015) (Figure 9.5).   

 

For the second part of this question it is posited that an increase in the size, quality and relevance 

of the PLDA should initiate better ASR performance in EER%.  

 

Q2 Under a given set of conditions, can we quantify the influence of reverberation on 

ASR performance?  If so, are there any direct correlations with specific reverberation 

measurements such as RT60? 

H2 It is suggested that all reverberant conditions will have some detrimental effect on ASR 

performance but that quantifiable, direct mathematical correlations, will be difficult to extrapolate 

from limited data.  However, it is hypothesised that an increase in RT60 will broadly result in poorer 

ASR performance.  Larger rooms have longer RT60 values and a tendency towards generating 

greater complexity of reflections. 

 

Q3 Can the influence of reverberation be mitigated through: 

• Matching conditions, i.e. RT60, for speaker model and test audio?; 

• Adaptation or improvements to the normative data (i-vector/PLDA system) to 

potentially restore ASR performance?  

H3 It is suggested that rectifying steps or processes applied once speech files have been 

affected by reverberant noise will offer no or very marginal benefit.  However, experiments 

completed suggest that matching conditions could benefit performance and that amending the 

normative data (additional data) could also provide gains. 

•     Irrespective of the size of the room where the speaker models and test audio are matched 

it is likely there would be less detriment to the performance of the system than where they 

were unmatched. 

•     Improving normative data and adapting the feature extraction settings should partially 

restore performance. 

 

9.3.1 Additional Experiment 
During the process of running the experiments it was determined that speech detection (VAD) was 

likely to be influencing the results from the i-vector/UBM, TV, LDA+PLDA system for the large 

environments with high RT60.  A further experiment was run with VAD set to off in order to 

examine this in closer detail. 
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9.4 Methodology 
When discussing the treatment of baseline data with reverberation it is important to differentiate 

the application of a processing plug in to recorded audio from re-recording the baseline material in 

a treated room.  Both solutions could be regarded as artificial.  In addition, it could not be assumed 

that the baseline data is totally devoid of all reverberation, since the interviews were conducted in 

a room rather than an anechoic chamber.  It is conceded that an extremely small quantity of room 

reverberation was likely present in the baseline recordings, since avoidance would require anechoic 

recording.  Nevertheless, on closer examination of spectrograms, the interview room clearly 

provides no audible reverberation (noticeable decay or ‘tail’) and the proximity to the microphone 

is very close, having been carefully set by a recording engineer.  RT60 is estimated at almost zero 

- on the spectrogram it was unperceivable and could not be practically measured (i.e. less than .001 

seconds). Reverberation was determined as negligible and deemed to be consistent throughout all 

the baseline recordings (same room, identical recording configuration).  Therefore, ASR baseline 

performance was set for both GMM-UBM and i-vector/UBM, TV, LDA+PLDA systems from the 

recordings as supplied.   

 

Two ASR systems were used.  These were the OWR Vocalise 1 GMM-UBM system version 

1.5.0.1190 and the OWR iVocalise i-vector system version 2.4.0.1547 (see Appendix G for full 

specifications).  Bio-Metrics version 1.8.0.704 was used to chart, graph and plot performance 

results. 

 

9.4.1 Reverberation Modeling 
It was clearly not practical to re-record over 23 thousand audio files to test various different 

conditions.  It was determined that artificially modelled reverberation would be the only practical 

approach, with batch processing used to model the large quantities of files required.  The advantage 

of this approach is the relative consistency of the treatment to each file, although it could be argued 

that synthetic reverberation cannot truly match real world conditions.  A very high-quality 

convolution reverberation plug-in was chosen to accurately and consistently model the complex 

reflections and absorption at different audio frequencies and for varying values of RT-60.  Impulse 

Response Lite (IR-L) by Waves.com (2017) was selected, this being a respected industry standard.  

Additional information, provided by Waves, documented the significant lengths taken to accurately 

model the environments, including direct and early sound, through IR capture (see Appendix F).  

To broaden the library of settings, additional impulse responses were downloaded from the Waves 

website and assessed for suitability.  Very large venue settings, such as Wembley Arena and Sydney 

Opera House, were not used as they were unlikely to be encountered in forensic casework.  Settings 

were chosen to simulate more realistic casework conditions such as rooms in domestic properties 

and vehicles.  A control test was conducted with the reverberation settings at zero or ‘dry’.  This 
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was to establish baseline EER% and to ensure that the batch processing techniques, or any other 

part of the process, did not further alter the audio.  Impulse response settings are summarized in 

Table 9.8. 

 
Table 9.8: IR-L Reverberation settings selected for the experiments 

No. Reverberation setting 
(IR-L) 

Convolution 
(seconds) 

RT60 
(seconds) 

Dimensions 
(meters) 

Distance 
(meters) 

0 Control Test [Dry]  Baseline audio recordings (negligible) 
1 Living Room  1.92 0.7 6 x 4.6 3.0 
2 Small Room 2.51 0.2 9 x 16 6.0 
3 Kitchen  1.7 0.4 5 x 5.3 3.0 
4 Bathroom  1.85 0.5 2.1 x 2.5 1.0 
5 ‘Bluebird’ Cafe  1.55 0.3 12 x 9 6.0 
6 Lincoln Navigator Car  2.69 0.1 2.9 x 1.5 2.0 
7 Ford Econoline Van 150  4.66 0.6 3.9 x 1.8 3.0 
8 Bus  2.69 0.3 10 x 4.3 2.0 
9 Hall  1.85 1.4 41.1 x 17.8 13.0 
10 V Large Hall/Barbican  3.09 1.6 28.4 x 42.4 13.0 

 
The plug-in treatments were applied to the baseline data and analysis was completed (spectrogram 

and auditory).  Tiled surfaces, such as the kitchen and bathroom environments with harder surfaces, 

understandably produced more complex reflections and larger environments obviously produced 

greater values of RT60.  Conversely smaller interiors with more soft furnishings, such as the 

vehicles, provide more absorption and lower RT60.  Microphone proximity (relating to the impulse 

response modelling) was also documented within the supporting Waves documentation, as the 

complexity of reverberation reflections is influenced by distance between capture and reflective 

surfaces.  Perhaps unrealistically, there were also few people physically present, again providing 

less absorption.  Finally, the proximity of the speaker to the microphone remained constant across 

all DyViS recordings and therefore the modelled material is more consistent with scenarios 

involving static speakers than those moving around a room, for example. 

 

9.4.2 Data Preparation  
Baseline data from the task 1 interview DyViS data was created.  This consisted of 100 male 

speakers SSBE.  The files were edited to create 100 speaker models (1m per speaker) x 300 test 

audio files 1m, 1m, residual to provide 30,000 cross comparisons.  10 reverberation settings were 

applied using batch processing.  As discussed, this was completed with the Waves IR-L plug in and 

Reaper (Reaper.fm, 2017) to batch process.  10 new sets of speaker models and test audio files were 

created.  A data set without reverberation applied (referred to as ‘dry’) was set aside to validate the 

batch processing output.    
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Izotope RX6 Advanced (iZotope.com) was used to examine the consistency of output for the 10 

environments, using a combination of spectrograms and auditory analysis.   Initially the multi-way 

cross comparisons were processed through iVocalise with the same PLDA settings as the baseline 

tests.  Results were examined using OWR Bio-Metrics software (EER%, DET, LR Plot, Zoo plots), 

Excel and Izotope RX6 Advanced. 

 
Experiments set: 

i. A control test for each ASR (GMM-UBM and i-vector) on non-processed baseline audio 

files (100xSM compared to 300xTA) with all reverberation settings on bypass/dry.   

ii. Matched conditions: 10 batches of speaker models with reverberation applied (100 

speakers) compared against 10 batches of test audio files with the same reverberation 

applied (3 files per speaker) for both ASR systems. 

iii. Unmatched conditions: 10 batches of speaker models, with no reverberation applied (100 

speakers) compared against 10 batches of test audio files with varying degrees of 

reverberation applied (3 files per speaker) for both ASR systems. 

iv. Finally, two additional iVocalise sessions set (UBM, TV, LDA+PLDA) were constructed 

and trained in consultation with OWR to test the influence of normative data on i-vector 

ASR performance (please see 9.5.1).  All i-vector experiments from session 1 were re-run, 

for matched and unmatched conditions in all environments, using the additional bespoke 

UBM, TV, LDA+PLDA sets labelled ‘PLDA 2 and 3’. 

 

9.4.3 Normative Data, Gaussian Mixture Model 
System  
A bespoke UBM was created for the GMM-UBM system to account for the interview channel data.  

Eighty-nine speakers were selected from the Speech Obtained in Key Environments corpora and 

database (Alexander et al. 2015), or SPOKE, interview data.   The MFCC extraction settings were 

adapted to account for the increased frequency bandwidth representative of the DyViS interview 

data (16kHz sample rate/0-8kHz frequency bandwidth). 

 

9.4.4 Normative Data, i-vector System 
The following three UBM, TV, LDA+PLDA sessions were built specifically for this set of research 

experiments.  As part of the requirement, all normative sets did not contain any DyViS material 

and were optimised for the purpose of wide band/interview speech.   

 

This section provides a brief technical description of the contributing data and MFCC criteria used 

to create the three UBM, TV, LDA+PLDA sessions used in this chapter.  It was informed by 

technical correspondence from OWR (Dr. Anil Alexander and Dr. Finnian Kelly). 
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PLDA Session 1: SREPRISM_27k_2016C_TEL_1024DD-AnilBuild-NoDyvis.xmlsession  

The total number of speech files used in training this PLDA session is 37,960.  There are 

approximately 27,150 NIST §§  SRE files of around 3 minutes per file.  This corresponds to 

approximately 1,357 hours.  This session uses an extraction process set at 13 MFCC features, with 

deltas and delta-deltas.  

 

PLDA Session 2: MEGA_PRISM_38k_TEL_PLUS-2016C-NoDYVIS-WithoutSITW-

13DDCMS-AnilBuild.xmlsession  
This session contains the NIST SRE files as listed in PLDA1 with additional LDC*** data.  This 

provided additional speech files recorded in interview settings (i.e. small/low reverberant spaces).  

The number of additional reverberant files used and the sizes of recording spaces was not specified 

due to lack of metadata, captured at the recoding stage and so could not be supplied.. The total 

number of files used in training in both these session is 46,673 files.  The combined session contains 

approximately 37,888 files each of around 3 minutes duration.   This provides approximately 1,894 

hours of audio.  This session uses an extraction process set 13 MFCC features with only deltas.  

 

PLDA Session 3: MEGA_PRISM_38k_TEL_PLUS-2016C-NoDYVIS-WithoutSITW-

13DDCMS-AnilBuild-Mk2  
This session uses all the speech files as listed in PLDA2 and only differs in using a different feature 

extraction process (13 MFCC features in addition to delta and delta-delta features, as with PLDA1). 

9.5 Results 
Table 9.9: GMM-UBM Results.  Matched conditions 
Vocalise 1 GMM-UBM.  Matched SM and TA conditions.   
Reverb	

Type 
 

RT	

60	

EER	

%	

Cllr	 H0	

Mean	

H1	

Mean	

H0	

SD	

H1	

SD	

FAR,	

FRR	
%	per	

100	

FAR,	

FRR	
%	per	

1,000	

FAR,	

FRR	
%	per	

10,000	

Control	 N/A	 7.56 2.25 5.84 3.04 0.96 1 33.69 60.67 77.33 
L/Room 0.7	 10.08 1.29 2.8 1.5 0.51 0.55 52.22 79 88.67 
S/Room 0.2	 7.7 1.42 3.4 1.73 0.59 0.64 40.24 73 82.51 
Kitchen 0.4	 8.36 1.51 3.42 1.9 0.56 0.62 44.79 76.28 84.33 
B/room 0.5	 8.03 1.32 2.96 1.56 0.5 0.56 46.33 73.81 82.35 
Cafe 0.3	 8.36 1.38 3.24 1.66 0.57 0.63 42.33 72.1 83.33 
Car 0.1	 8.29 1.94 4.78 2.58 0.77 0.84 36.93 68.67 77.68 
Van 0.6	 5.7 1.7 4.61 2.21 0.69 0.83 28.27 58.1 71.36 
Bus 0.3	 8.66 1.52 3.59 1.92 0.61 0.66 42.67 72.67 86.01 
Hall 1.4	 9.43 1.08 2.08 1.05 0.4 0.44 51.33 74.48 92.67 
L.	Hall 1.6	 10.54 1.07 2.04 1.03 0.39 0.47 52.04 79.88 92.68 

                                                
§§ National Institute of Standards and Technology nist.gov/ Speaker Recognition Evaluation 
*** Linguistic Data Consortium ldc.upenn.edu/ 
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Table 9.10: GMM-UBM Results.  Unmatched conditions 
Vocalise 1 GMM-UBM.  Unmatched SM and TA conditions.   
Reverb	

Type 
 

RT	

60	

EER	

%	

Cllr	 H0	

Mean	

H1	

Mean	

H0	

SD	

H1	

SD	

FAR,	

FRR	
%	

FAR,	

FRR	
%	per	

1,000	

FAR,	

FRR	
%	per	

10,000	

Control	 N/A	 7.56 2.25 5.84 3.04 0.96 1 33.69 60.67 77.33 
L/Room 0.7	 12.9 0.74 1.43 0.08 0.58 0.7 68.83 90.22 98 
S/Room 0.2	 8.91 1.12 2.9 1.17 0.65 0.72 51.33 72.33 84.33 
Kitchen 0.4	 8.67 1.12 2.84 1.17 0.61 0.7 51.33 74.61 86 
B/room 0.5	 11.35 0.89 2.09 0.61 0.59 0.69 61.33 83.43 89.34 
Cafe 0.3	 9.14 1.13 2.92 1.97 0.63 0.71 50.33 74.43 85.34 
Car 0.1	 8.65 1.83 4.7 2.4 0.81 0.88 40.08 67.05 75.51 
Van 0.6	 7.78 1.6 4.33 2.04 0.8 0.87 41.56 65.1 78.67 
Bus 0.3	 9.31 1.28 3.3 1.48 0.68 0.75 48.17 72.97 82.68 
Hall 1.4	 21.4 0.76 0.2 -0.8 0.58 0.69 81 95 98.33 
L.	Hall 1.6	 27.16 1.11 -1.01 -1.92 0.68 0.86 91 96.67 98.33 
 
 
 
 
Table 9.11: I-vector/UBM, TV, LDA+PLDA results.  Matched conditions 
Matched SM and TA with bespoke PLDA session 1 

Reverb	

Type 
 

RT	

60	

EER	

%	

Cllr	 H0	

Mean	

H1	

Mean	

H0	

SD	

H1	SD	 FAR,	

FRR	
%	

FAR,	

FRR	
%	per	

1,000	

FAR,	

FRR	
%	per	

10,000	

Control N/A	 0.05 0.02 52.37 -63.27 12.31 27.46 0.00 0.10 1.00 
L/Room 0.7	 4.24 1.46 15.56 -49.17 16.76 21.10 13.57 29.10 56.01 
S/Room 0.2	 1.04 0.74 35.13 -46.24 13.39 23.35 1.33 8.00 21.01 
Kitchen 0.4	 1.01 0.12 32.59 -53.50 14.16 23.25 1.00 5.77 19.69 
B/room 0.5	 2.77 0.59 20.92 -51.54 15.49 22.26 5.70 19.80 32.57 
Cafe 0.3	 0.99 0.16 30.17 -56.69 14.25 23.64 1.00 6.15 15.00 
Car 0.1	 0.33 0.03 45.41 -57.92 13.04 25.71 0.00 1.00 3.68 
Van 0.6	 0.38 0.03 43.87 -62.33 12.89 25.64 0.00 1.00 5.67 
Bus 0.3	 1.01 0.17 28.59 -62.40 13.84 24.08 1.33 4.00 8.01 
Hall 1.4	 10.29 4.64 2.73 -46.36 18.71 20.07 38.77 61.44 78.67 
L.	Hall 1.6	 14.28 8.83 -7.83 -53.14 19.59 19.73 42.77 66.48 85.35 
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Table 9.12: I-vector/UBM, TV, LDA+PLDA results.  Unmatched conditions 
Unmatched SM & TA with bespoke PLDA session 1 

Reverb	

Type 
 

RT	

60	

EER	

%	

Cllr	 H0	

Mean	

H1	

Mean	

H0	

SD	

H1	SD	 FAR,	

FRR	
%	

FAR	

FRR	
%	per	

1,000	

FA

RF

RR	
%	per	

10,000	

Control	 N/A	 0.05 0.02	 52.37 -63.27 12.31 27.46 0.00 0.10 1.00 
L/Room 0.7	 4.36 15.39	 -20.21 -87.57 17.79 22.35 17.33 47.07 74.03 
S/Room 0.2	 1.99 5.25	 -2.23 -85.14 15.45 24.19 3.00 19.1 61.36 
Kitchen 0.4	 1.97 4.32	 1.32 -86.04 16.66 24.34 3.67 14.67 39.72 
B/room 0.5	 3.37 8.36	 -8.65 -82.47 16.24 23.28 9.06 27.26 63.79 
Cafe 0.3	 1.97 5.85	 -2.67 -88.87 17.14 24.3 4.11 15.77 41.36 
Car 0.1	 0.33 0.70	 33.57 -69.91 13.17 26.6 0.00 1.33 8.68 
Van 0.6	 0.38 0.11	 33.12 -71.68 12.85 26.25 0.00 1.67 5.00 
Bus 0.3	 1.06 2.60	 6.39 -84.39 15.51 25.05 1.33 12.33 32.36 
Hall 1.4	 6.18 19.96	 -27.23 -84.12 17.7 20.9 24.62 64.62 72.86 
L.	Hall 1.6	 7.3 24.56	 -34 -87.77 17.94 21.68 44.19 67.57 86.49 

 
 
 
Figure 9.13: Influence of reverberation on i-vector/UBM, TV, LDA+PLDA ASR 
H0 and H1 for matched and unmatched conditions, SM and TA.  
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Figure 9.14: Influence of reverberation on i-vector/UBM, TV, LDA+PLDA EER%  
I-vector EER% for matched and unmatched conditions, SM & TA.  

 
 
 
Figure 9.15: Influence of reverberation on GMM-UBM ASR EER%  
GMM-UBM for matched and unmatched conditions, SM & TA. 
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9.5.1 Observations 
In line with predictions and consistent with previous research, ASR performance decreased as the 

complexity and size of the reverberation rose (RT60).  This was consistent for both GMM-UBM 

and i-vector/UBM, TV, LDA+PLDA systems.  However, compared with the results from the 

GMM-UBM ASR the i-vector system faired more favourably and appeared to demonstrate a 

smaller performance decrease when presented with light to moderately reverberant material and 

unmatched SM and TA (Figures 9.14 and 9.15).  It should also be considered that the technical 

quality of the CTEST/SPOKE interviews (UBM) was marginally lower overall in comparison to 

DyViS and the number of speakers small (89) and normative sets for i-vector systems are 

significantly larger by design.  It could be argued that a larger UBM for the GMM system, of higher 

quality, could marginally improve performance.  Indeed, further experiments on baseline data were 

conducted on the GMM UBM system with various normative changes and settings adjusted.  

However, whilst the performance fluctuated marginally, including a marginally improved EER of 

3.018% if applying band limiting on file ingest (0-4kHz frequency bandwidth) despite many 

adjustments, the performance of the i-vector system was consistently and considerably better than 

the GMM-UBM system even given the inherent architectural differences. 

Score separation (distance between same speaker and different speaker distributions) was 

marginally improved under matched SM and TA conditions as opposed to unmatched for both 

systems.  Rooms with relatively low values of RT60 but poor absorption, such as the 

tiled bathroom, exhibited performance degradation with higher EER% than predicted.  This is 

likely due to less absorption and multiple/complex reflections i.e. highly reflected sound 

waves, not absorbed by surfaces/furniture, merging together at high speed which then 

interferes with sub-second frame measurements (of the ASR system).  Conversely, the van with 

larger RT60 values provided better EER% performance than predicted, likely due to greater 

absorption and lower complexity of reflections. 

The i-vector ASR system was much more robust than expected against reverberation degradation. 

Only marginal drops in EER% and Cllr performance were noted for the car and van modelled 

environments, for example.  This is likely due to the dampening of reflections caused by the sound 

absorbing materials inside the vehicles, such as the seat, carpets, roof linings etc.  In contrast, and 

as predicted, reverberation settings with larger RT60 times and/or longer convolution times tended 

to degrade ASR performance much more significantly.  This particularly applied to the much larger 

spaces (living room, hall and large hall). 

As predicted the matched conditions performed better than unmatched conditions (i.e. degradation 

of both speaker models and test audio files).  However, there were exceptions for the two largest 

reverberation settings (hall and large hall).  The GMM-UBM system performed marginally better 
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for those two environments (matched) and it was not known why – although one plausible 

explanation could be that broader, rather than more detailed, statistical modelling may be of benefit 

in the GMM-UBM system.  Alternatively, the quantity of non-degraded speech passing through the 

voice activity detection algorithm embedded in the feature extraction stage (VAD) in the i-vector 

system for the untreated speaker models may have been simply less.   On closer examination, it 

was observed that the quantity of net speech extracted by the VAD fell sharply for the long and 

complex reverberation treatments on the i-vector system and this was most noticeable for the 

speaker models, with some reducing to as little as 10s in duration.  Conversely, when SM and TA 

were unmatched, more speech passed through to the feature extraction for the speaker models 

resulting in subsequent performance improvements.  More research is required. 

It was also evident, from the H0, H1 graphs, that without further normalisation or calibration it 

would be extremely difficult in casework to interpret LR results based on score height alone and 

we have shown that this can be influenced by reverberation.  To examine this further, the ASR 

output was also analysed using zoo plots.  Several additional observations were noted for ASR 

scores that passed through the reverberation process when compared to the control data and an 

example is presented below (Figure 9.16 and Figure 9.17). 



Figure 9.16: Zoo plot of baseline data (i-vector/UBM, TV, LDA+PLDA1).  
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Figure 9.17: Zoo plot of Living Room results, matched conditions, i-vector, PLDA 3 

Note: the axis numbering and scales of the two figures above are different, due to the wide variation in distribution between results.

Phantoms 

Worms 

Doves 

Chameleons 

LLR
D 



Zoo plot observations 
The zoo plots clearly show ASR performance degradation of the reverberant data against baseline.    

i. Fewer Doves (speakers more easily verified by the ASR with high match sores and low non-

match scores) were noted in the reverberant data results in comparison with the baseline 

results.  This further declined relative to higher RT60 values.   

ii. Conversely, a relatively large increase of problematic speaker categories (i.e. Worms, 

Phantoms and Chameleons) was noted in the reverberant results with greater numbers 

relative to higher RT60 values. 

iii. Overall, a typical trend of plot distribution movement from upper right to lower left was 

observed with greater dispersal.    

 

For practical implementation, this equates to greater ASR speaker confusability of reverberant audio 

over non-reverberant material.  It is possible that it could be compensated for (i.e. through improving 

calibration, augmenting PLDA training data and/or threshold settings).  However, it is strongly 

recommended that experienced interpretation of output and examination of auditory phonetic content 

supports acoustic results – although it is conceded that this might not be possible either, dependent 

on the extent of the reverberation. 

 

The ASR output was also examined using LR plots.  Observations were noted for ASR scores that 

passed through the reverberation process, when compared to the baseline data.  

 

LR plot observations 

Figure 9.18: LR Plot, Baseline data, matched conditions, PLDA session 3  
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Figure 9.19: LR Plot, Living Room data, matched conditions, PLDA session 3  

 
 
Figure 9.20: LR Plot, Hall data, matched conditions, PLDA session 3  

 
The following observations were noted from the LR plots. Note the variation in axis scales re LR 

across Figures 9.18, 9.19 and 9.20.  In addition:   

i. Lower same speaker scores and higher different speaker LR scores were observed for the 

reverberant data as RT60 increased (e.g. living room and hall conditions in Figures 9.19 and 

9.20) even for optimum ASR settings (PLDA3);   
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ii. Discrimination degradation (i.e. lower same speaker and higher different speaker scores) 

occurred, broadly as RT60 values increased; 

iii. Decline noted in same speaker score height with wider spread of score distribution noted 

(broadening of bell-curve); 

iv. Same speaker and different speaker distribution curves began to merge as RT60 increased.  

This highlights the difficulties with regard to setting thresholds as greater overlapping 

between distributions occurs.   

 

9.5.2 System Accuracy Results 
The OWR Bio-Metrics software generates Cllr scores based on a standard calculation (Brummer and 

D. Van Leeuwen, 2006) and this was applied for checking system accuracy.  As discussed (chapter 

3) a lower Cllr value indicates a more accurate and precise system with Cllr <1 widely viewed as an 

acceptable level of accuracy (3.5.5).     

 

Matched and unmatched conditions produced similar EER%, but with different Cllr (Table 9.21).   
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Table 9.21: I-vector ASR tests (PLDA session 1).  Examination of Cllr 
 
Reverb	Type	

 
Matched	(SM/TA)	

or	
Unmatched	

RT60	 EER%	
	

Cllr	

Control	 - N/A	 0.05 0.02 
L/Room	 Matched	 0.7	 4.24 1.46	

L/Room		 Unmatched 0.7 4.36	 15.39	

S/Room	 Matched 0.2 1.04	 0.74	

S/Room	 Unmatched 0.2 1.99	 5.25	

Kitchen	 Matched 0.4 1.01	 0.12	
Kitchen	 Unmatched 0.4 1.97	 4.32	

B/room	 Matched 0.5 2.77	 0.59	

B/room	 Unmatched 0.5 3.37	 8.36	

Cafe	 Matched 0.3 0.99	 0.16	

Cafe	 Unmatched 0.3 1.97	 5.85	

Car	 Matched 0.1 0.33	 0.03	

Car	 Unmatched 0.1 0.33	 0.70	

Van	 Matched	 0.6 0.38	 0.03 

Van	 Unmatched 0.6 0.38	 0.11	

Bus	 Matched 0.3 1.01	 0.17 

Bus	 Unmatched 0.3 1.06	 2.60	

Hall	 Matched 1.4 10.29	 4.64	

Hall	 Unmatched 1.4 6.18	 19.96	

L.	Hall	 Matched 1.6 14.28	 8.83 

L.	Hall	 Unmatched 1.6 7.3	 24.56	

 

Under matched conditions using the i-vector/PLDA system the Cllr was consistently lower than for 

unmatched conditions.  Of course, results do not take into consideration any system calibration – 

which is unlikely to alter EER% (discrimination) but can influence Cllr (accuracy).  As previously 

stated, calibration is specifically not applied in the experiments so as not to conflate variables.   In 

the experiments completed, matched conditions likely provide a naturally calibrated system 

(assuming normative data is relevant to conditions).  It was also noted that van and car environments 

provided relatively small decreases in Cllr, demonstrating relative (accuracy) resilience to light 

reverberation.  It was also observed that in unmatched conditions Cllr values rose considerably in 

line with reverberation increase (RT60 and complexity as captured and modelled by IR).   
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Finally, it will be shown (9.5.3), that Cllr also elevated in all cases as the session/PLDA data size 

grew.  This suggests that, whilst there is some benefit in raising the quantity of material in the PLDA, 

there is a point of diminishing returns at which more data makes actually negligible further difference 

to system EER% and can actually decrease accuracy.  Further research is suggested to determine 

optimum size of normative data.  

 

9.5.3 Results from Normative Sessions 2 and 3  
As discussed, in consultation with OWR a second and third bespoke normative set (UBM, TV, 

LDA+PLDA) was constructed (see 9.4.4).  For ease of reference, the initial normative set is defined 

as PLDA version 1 and the subsequent tests are referenced as PLDA 2 and 3.  As set out in the 

research questions the objective was to test the hypothesis that improvements could be achieved 

through: 

i. Increasing the PLDA data (population size) with additional speech corpora (NIST and LDC). 

ii. Adding reverberant recordings into the normative data/PLDA.   

 

Experiments were re-run, utilising the new PLDAs (versions 2 and 3) for both matched and 

unmatched conditions.  Results are presented in Tables 9.22 to 9.26. 

 

PLDA 2 Results 
Table 9.22: Summary results from reverberation experiments PLDA2, matched 
Matched SM and TA Bespoke PLDA2 
 
Reverb	
Type 
 

EER	
%	

Cllr	 H0	
Mea
n	

H1	
Mean	

H0	
SD	

H1	
SD	

FAR,	
FRR	
%	

FAR,	
FRR	
1,000	

FAR,	
FRR	
10,000	

Living	Rm 2.97 3.09 53.22 -9.30 12.97 20.82 7.22 22.67 42.00 
Small	Rm 1.04 2.79 64.47 -11.03 10.79 21.36 1.33 4.40 30.02 
Kitchen 1.30 3.00 65.47 -9.20 11.47 20.28 1.33 5.67 15.33 
Bathroom 1.35 1.15 50.81 -19.53 11.44 21.15 1.68 7.09 21.14 
Cafe 0.38 0.66 56.80 -27.01 11.53 22.30 0.00 1.67 7.67 
Car 0.08 0.40 67.87 -36.01 12.27 24.85 0.00 0.33 3.00 
Van 0.14 0.18 65.62 -44.17 12.08 25.44 0.00 0.00 4.33 
Bus 0.31 0.35 57.29 -35.05 12.13 23.97 0.00 2.00 9.00 
Hall 11.32 3.79 39.55 -6.60 17.09 20.26 41.33 66.33 88.33 
L.	Hall 12.04 1.83 26.82 -18.78 18.09 20.05 41.56 64.98 86.67 
Control	 0.007 0.08 68.66 -55.11 12.15 27.50 0.00 0.00 0.33 

 
Green = improvement on previous PLDA EER% outcomes.  
Red = poorer than previous PLDA EER% outcomes.  
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Table 9.23: Summary results from reverberation experiments PLDA2, unmatched 
Unmatched SM and TA  
 
Reverb	
Type 
 

EER	
%	

Cllr	 H0	
Mean	

H1	
Mean	

H0	
SD	

H1	
SD	

FAR,	
FRR	
%	

FAR,	
FRR	
1,000	

FAR,	
FRR	
10,000	

Living	Rm 4.06 15.58 -21.00 -83.37 15.89 20.71 11.29 31.33 52.67 
Small	Rm 1.00 2.23 6.08 -72.06 13.68 22.42 1.00 13.33 56.36 
Kitchen 1.67 2.05 7.86 -73.67 14.42 22.26 2.33 9.55 37.68 
Bathroom 2.08 5.17 -3.14 -74.98 14.49 21.74 5.70 21.70 52.37 
Cafe 1.04 2.7 6.32 -78.54 15.45 23.15 1.67 11.77 34.33 
Car 0.05 0.04 50.68 -57.39 11.97 25.98 0.00 0.00 2.34 
Van 0.05 0.02 47.86 -62.42 12.40 26.02 0.00 0.33 5.00 
Bus 1.27 0.76 17.85 -74.46 14.59 24.43 1.67 4.67 19.34 
Hall 10.30 34.89 -48.37 -92.79 16.30 19.18 46.67 72.14 89.67 
L.	Hall 11.67 36.52 -50.63 -91.29 16.00 18.42 48.07 74.00 91.35 
Control	 0.007 0.08 68.66 -55.11 12.15 27.50 0.00 0.00 0.33 

 

PLDA 3 Results 
Table 9.24: Summary results from reverberation experiments PLDA3, matched 
Matched SM and TA 
 
Reverb	
Type 
 

EER	
%	

Cllr	 H0	
Mea
n	

H1	
Mean	

H0	
SD	

H1	
SD	

FAR,	
FRR	
%	

FAR,	
FRR	
1,000	

FAR,	
FRR	
10,000	

Living	Rm 3.68 4.70 57.42 -3.11 13.55 20.11 7.33 26.88 50.00 
Small	Rm 1.33 3.80 66.70 -6.16 10.67 20.30 1.67 4.00 22.02 
Kitchen 1.00 4.62 69.02 -3.12 11.24 19.85 1.00 5.43 15.01 
Bathroom 1.40 1.71 55.55 -15.92 12.17 21.07 2.01 9.14 24.50 
Cafe 0.67 1.22 61.31 -21.32 11.71 22.48 0.00 3.70 17.67 
Car 0.33 0.42 68.89 -34.70 12.02 24.23 0.00 0.33 1.67 
Van 0.02 0.17 65.83 -43.26 12.16 24.52 0.00 0.00 3.01 
Bus 0.34 0.65 61.37 -29.76 12.18 23.94 0.00 2.67 10.00 
Hall 11.64 3.83 38.83 -5.16 16.44 19.13 41.67 65.77 80.67 
Large	Hall 11.73 1.79 24.80 -19.70 18.18 19.42 40.85 67.43 86.69 
Control	 0.005 0.11 69.92 -49.98 11.97 26.07 0.00 0.00 1.67 

 
 
Green = further improvement on previous (PLDA 2) EER% outcomes  
Red = poorer than previous (PLDA 2) EER% outcomes  
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Table 9.25: Summary results from reverberation experiments PLDA3, unmatched 
Unmatched SM and TA, bespoke PLDA 3 
 
Reverb	
Type 
 

EER	
%	

Cllr	 H0	
Mean	

H1	
Mean	

H0	
SD	

H1	
SD	

FAR,	
FRR	
%	

FAR,	
FRR	
1,000	

FAR,	
FRR	
10,000	

Living	Rm 4.34 18.49 -25.22 -84.67 16.24 19.96 16.07 34.37 57.00 
Small	Rm 1.33 2.12 6.55 -68.57 14.00 21.78 2.00 16.10 59.02 
Kitchen 1.67 2.27 6.39 -72.02 14.26 21.74 2.13 11.92 36.01 
Bathroom 2.95 5.14 -2.60 -73.09 15.34 21.84 7.05 23.24 58.76 
Cafe 1.60 3.61 4.08 -78.26 16.43 23.24 2.33 15.20 42.68 
Car 0.03 0.05 52.55 -53.66 11.71 24.96 0.00 0.00 2.00 
Van 0.33 0.018 47.74 -60.52 12.72 25.06 0.00 0.33 2.33 
Bus 1.01 1.02 15.52 -74.47 15.22 24.15 1.00 7.33 30.33 
Hall 13.17 35.52 -49.23 -90.61 17.43 18.97 49.52 76.43 92.68 
Large	Hall 13.73 36.89 -51.14 -89.55 16.27 18.27 54.23 79.77 93.01 
Control	 0.005 0.11 69.92 -49.98 11.97 26.07 0.00 0.00 1.67 
 
In summary, performance benefit was demonstrated through improvements to the PLDA and this 

was particularly evident under matched conditions.  The addition of more data and inclusion of 

reverberant material further enhanced performance.  However, performance was not uniformly 

improved across all conditions with a single PLDA, particularly when considering Cllr (accuracy) in 

addition to EER% (Table 9.25). 

 

Table 9.26: EER% Optimal performance across PLDA sessions 1, 2 and 3 
Condition 
 

PLDA	1	
EER%	

PLDA	2	
EER%	

PLDA	3	
EER%	

Living	Room 4.24	(m)	 2.97	(m)	 3.68	(m)	

Small	Room 1.04	(m)	 1.00	(u)	 1.33(x)	

Kitchen 1.01	(m)	 1.30	(m)	 1.00	(m)	

Bathroom 2.77	(m)	 1.35	(m)	 1.44	(m)	

Cafe 0.99	(m)	 0.38	(m)	 0.67	(m)	

Car 0.33	(m)	 0.05	(u)	 0.03	(u)	

Van 0.38	(m)	 0.05	(u)	 0.02	(m)	

Bus 1.01	(m)	 0.31	(m)	 0.33	(u)	

Hall 6.18	(u)	 10.30	(u)	 11.64	(m)	

Large	Hall 7.30(u)	 11.67	(u)	 11.73	(m)	

Control	 0.05	 0.007	(x)	 0.005	(x)	
	

Best	overall	performance	in	Green.	

m = matched: u = unmatched.	

x	 =	 Denotes	 identical	 results	 obtained	 for	 both	matched	 and	 unmatched	 conditions	

(within	.001	EER%) 
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For the i-vector system tests, 66.7% of experiments excluding baseline performed better (or equal) 

under matched conditions.  UBM, TV, LDA+PLDA relevance and size had more influence on 

performance than matched/unmatched conditions alone.  However, although the baseline EER% 

consistently fell with the addition of more data this was not necessarily the case for reverberant 

material.   Results demonstrated that increasing PLDA data provided better performance overall for 

those conditions for which reverberation was low (e.g. vehicles) but not necessarily for larger 

environments, where performance actually fell in some instances.  PLDA 3 provided only a marginal 

improvement over PLDA2 in EER% in just a few conditions – likely suggesting data 

saturation/diminishing returns. 

 

9.5.4 Speech Detection Results 
As discussed (9.3.1) an additional test was run, using PLDA session 3 to determine the difference in 

results when deselecting the speech detection algorithm. 
 
Table 9.27: VAD Results.  Matched conditions, PLDA session 3, VAD Off 

Reverb	
Type	

RT	 EER	

Cllr	

H0	 H1	 H0	

H1	SD	

FAR,	 FAR,	
FRR	

FAR,	
FRR	

60	 %	 Mean	 Mean	 SD	 FRR	 1,000	 10,00
0	

          %	 %	 %	
Control		 N/A	 0.0017	 0.15	 74.35	 -48.00	 11.72	 26.34	 0.00	 0.00	 0.00	
L/Room	 0.70	 2.05	 9.73	 71.80	 9.26	 10.82	 19.40	 3.00	 10.00	 27.00	
S/Room	 0.20	 0.40	 4.52	 73.07	 -3.98	 9.76	 20.42	 0.21	 2.33	 7.34	
Kitchen	 0.40	 0.75	 6.55	 76.41	 1.91	 9.79	 20.03	 0.67	 2.33	 4.17	
B/room	 0.50	 0.66	 3.33	 66.57	 -8.04	 10.54	 20.68	 0.67	 1.67	 10.00	
Cafe	 0.30	 0.37	 1.52	 67.74	 -19.13	 10.66	 22.48	 0.00	 1.33	 4.35	
Car	 0.10	 0.31	 0.49	 73.54	 -34.28	 11.57	 24.85	 0.00	 0.67	 1.67	
Van	 0.60	 0.01	 0.21	 70.76	 -42.29	 11.45	 25.01	 0.00	 0.00	 0.33	
Bus	 0.30	 0.29	 0.95	 68.64	 -25.83	 10.89	 23.94	 0.00	 0.67	 2.34	
Hall	 1.40	 3.67	 12.3	 62.95	 15.09	 11.10	 17.02	 15.00	 38.38	 58.69	
L.	Hall	 1.60	 6.33	 5.16	 50.12	 -0.69	 13.42	 18.62	 16.67	 34.63	 69.69	
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Table 9.28: VAD Results.  Unmatched conditions, PLDA 3, VAD Off 
          

Reverb	
Type	

RT	 EER	

Cllr	

H0	 H1	 H0	
H1	
SD	

FAR,	 FAR,	
FRR	

FAR,	
FRR	

60	 %	 Mean	 Mean	 SD	 FRR	 1000	 1000
0	

          %	 %	 %	
Control		 N/A	 .0017	 0.15	 74.35	 -48.00	 11.72	 26.34	 0.00	 0.00	 0.00	
L/Room	 0.70	 3.99	 16.79	 -22.93	 -84.55	 15.21	 20.28	 10.83	 30.67	 51.68	
S/Room	 0.20	 1.32	 1.01	 13.06	 -67.70	 14.38	 22.53	 1.33	 11.94	 57.33	
Kitchen	 0.40	 1.66	 1.60	 11.10	 -70.68	 14.83	 22.29	 2.85	 9.48	 32.67	
B/room	 0.50	 2.01	 3.97	 0.56	 -74.22	 14.96	 22.21	 3.24	 19.70	 53.35	
Cafe	 0.30	 1.11	 2.38	 8.93	 -78.89	 16.63	 23.51	 2.00	 11.67	 37.00	
Car	 0.10	 0.03	 0.07	 57.87	 -52.21	 11.79	 25.40	 0.00	 0.00	 2.00	
Van	 0.60	 0.01	 0.03	 52.80	 -59.04	 12.69	 25.56	 0.00	 0.00	 2.33	
Bus	 0.30	 0.84	 0.51	 21.04	 -73.66	 14.90	 24.60	 0.33	 3.33	 22.01	
Hall	 1.40	 9.71	 35.90	 -49.77	 -93.03	 15.76	 18.69	 43.67	 76.33	 87.00	
L.	Hall	 1.60	 11.98	 36.26	 -50.26	 -90.82	 15.63	 18.54	 47.93	 79.10	 94.00	
 

Some performance benefit was demonstrated by switching VAD off.  This was evident for most 

reverberation settings with better EER% performance overall and higher accuracy (lower Cllr).  It is 

possible that this is due to the VAD threshold effectively over constraining the degraded audio.  

Further research is recommended to determine if performance (with VAD on) could be improved if 

settings were adjusted. 

 

9.6 Discussion of Results 
The research presented in this chapter has demonstrated that the influence of reverberation on ASR 

performance is both degrative and complex.  It was shown that whilst ASR system performance 

declined as predicted, with greater degradation related to the size of room and complexity of 

reflections, the reduction in EER% was shown to be relatively insignificant for relatively low values 

of RT60.   For example, baseline 0.005% EER to 0.02% EER (van matched SM/TA) or 0.03% EER 

(car unmatched SM/TA) for i-vector PLDA session 3. 

 

9.6.1 Responses to Questions 
Q1 Recap: How resilient are modern i-vector ASR systems to reverberation as opposed to 

the earlier GMM-UBM versions used in studies such as Castellano (1996) and Peer, Rafaely 

and Zigel (2008)?  Further, how effective are session changes to an i-vector ASR system, based 

on adapting the normative data (UBM, TV, LDA+PLDA), relative to one another? 

A1: As hypothesised, the i-vector system consistently outperformed GMM-UBM system and the 

EER% results are broadly in line with previous research findings e.g. Avila et al. (2015) (Table 9.5).  
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For the second part of Q1 and as predicted it has been shown that an increase to the size of the PLDA 

dataset did initiate some performance improvements for the i-vector ASR system, most specifically 

for baseline results.  However, it was also demonstrated that these gains diminish as the PLDA size 

grows, assuming technical quality is consistent.  Also, large RT60 values showed smaller 

performance gains and in certain cases a decrease with PLDA increases.  This suggests that the 

degradation of the speech signal was of a magnitude that could not be compensated for.   

 

Q2 Recap: Under a given set of conditions, can we quantify the influence of reverberation 

on ASR performance?  If so, are there any direct correlations with specific reverberation 

measurements such as RT60? 

A2: As predicted, direct mathematical correlations could not be established, due to the unknown 

variables inherent in the environment(s) that influence absorption and the complexity of reflections.  

In broad terms, environments with relatively low RT60 values and low complexity reflections/lack 

of hard surfaces (e.g. car and van) had very marginal influence on ASR performance.  In addition, 

very large values of RT60 (e.g. Hall) could provide an upper RT60 threshold for which ASRs should 

not be deployed, since results would be deemed appreciably less reliable, especially if taken into 

consideration with other factors (net speech duration, band limitation, transcoding).  This could 

suggest a potential RT60 threshold under which i-vector ASR systems are resilient enough to 

reverberation that they could be successfully integrated into a speaker verification workflow.  In 

relation to the second part of the question, large RT60 values equated to poorer ASR performance, 

as predicted.  However, the complexity of reflections and surfaces again influenced performance and 

acoustic assessment should be factored into the confidence of an ASR FSC task.   

 

Q3 Recap: Can the influence of reverberation be mitigated through: 

• Matching conditions, i.e. RT60, for speaker model and test audio?; 

• Adaptation or improvements to the normative data (i-vector/PLDA system) to 

potentially restore ASR performance?  

A3: As previous research suggested, matching conditions provided significant benefit over 

amending the normative data (assuming that the PLDA is not underspecified). 

• Irrespective of the size of the room, where the speaker models and test audio are 

matched, it is likely that there would be less detriment to the performance of the system 

than where they were unmatched. 

• It is likely that improving normative data relevance and adapting the feature extraction 

settings would partially restore performance. 
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9.6.2 Voice Activity Detection 
Under conditions with very high values for RT60 (Hall and Large Hall) results showed that it is 

likely that the speech detection (VAD) overly prevented speech data passing to the statistical 

modelling phase.  It was also noted that baseline EER% dropped (0.005% to 0.0017%) with the VAD 

set to off.  Conversely, the Cllr scores were better when VAD was applied demonstrating a trade-off 

between overall EER% performance and accuracy.  Reverberation will also likely influence delta 

and delta-delta measurements due to spectral smearing in the time domain.  Automatically editing 

speech data to remove non-speech based on a single/fixed threshold could also exacerbate incorrect 

delta measurements if not correctly applied.  To counter this, to some extent, VAD in iVocalise is 

integrated to maintain delta and delta-delta values through application in the feature space (i.e. 

MFCC).  Switching off speech detection can therefore present risk in terms of EER% and under 

casework conditions there could be other implications.  For example, if contaminant noise is present 

in recordings for both the test audio and an incorrect speaker model there could be a higher risk of a 

false verification.  Full technical assessment of the audio files by an experienced analyst would be 

strongly recommended before removing the VAD on pre-processing (i.e. to prevent non-speech 

acceptance). 

 

9.7 Recommendations  
The following section presents several practical recommendations for consideration into the 

workflow integration of ASR systems.  

 

For cars, vans or very small rooms without complex reflections and where the RT60 is low it has 

been demonstrated that the difference in EER%, Cllr (accuracy) and overall ASR performance 

degradation is relatively low in comparison with baseline performance.  Therefore, if relatively small 

quantities of reverberation are detected during technical assessment, it might not be necessary to 

discard the audio, considering it below the quality threshold for ASR assessment (on this factor 

alone).   Nevertheless, because ASR performance is degraded it supports the view that ASR analysis, 

particularly on reverberant speech, should be completed in conjunction and with the support of 

auditory phonetic comparison. 

 

Establishing an ASR acceptability threshold for reverberant audio is difficult as it is almost 

impossible to objectively measure the complex influence of reverberation.  The inherent variability 

of reverberation (proximity, surfaces and environment) also makes it difficult to provide an accurate 

compensation/calibration algorithm.  From the experiments conducted, a strong awareness as to the 

influence of reverberation and the ability to make a judgement as to the depth of ASR performance 

degradation is recommended and should form an essential aspect of the workflow.  An additional 

recommendation, if practicable, could take the form of impulse response measurements taken at the 



 185 

test audio scene with subsequent modelling tests applied to baseline systems in order to provide 

objective measurements in support of outcomes (predicted EER%, Cllr, FR/FR), although this could 

require significant investment in terms of resources. 

 

For moderate spaces and rooms with complex reflections it has been demonstrated that matching the 

test audio conditions and speaker model conditions is almost always preferable to non-matched 

conditions with reference to ASR performance.  Again, however, this is unlikely to provide a 

practicable process because of the many unknown variables from the recording environment such as 

speaker/microphone distance, position variability, dimensions and layout of interiors and 

furnishings.   

 

If recording conditions can be measured and it is practical and proportionate to do so, calculating 

impulse responses from the room or re-recording the speaker models in real time in the same 

environment over very high-quality equipment could assist with predicting the RT60 value.  

Theoretically this could be applied to speaker model(s) to replicate channel conditions.  Whilst 

research has demonstrated that this is likely to provide a performance improvement, it is close to 

impractical with additional questions arising around validation and replication of processes.  Also, 

the combined influence of the additional recording process on the speaker model could be disputed.   

 

The experiments completed have shown that large reverberant spaces have a relatively strong 

negative influence on ASR performance.  ASR results produced, under those conditions, should be 

treated with much caution and not considered in isolation.  Other factors should also be taken into 

consideration too, such as the quantity of speech that passes through VAD to enrolment for both the 

(SM and TA) and the extent of reverberant divergence between SM and TA.  

 

The experiments demonstrated that automatic speaker verification performance in vehicles can 

achieve close to baseline EER% although it must be stressed that these results are in respect solely 

to reverberation – and the vehicles simulated in these experiments were stationary, with the engine 

off.   Other noise is invariably present in vehicle recordings such as engine/gearbox noise, road 

rumble, other traffic, CD/radio, air turbulence (windows, sunroof, air conditioning), seatbelt alarms, 

indicators, electrical interference or passenger babble/overlapping speech.  As discussed earlier in 

this thesis, the proximity of the microphone, the recording equipment and any data compression 

applied to the recordings can also significantly degrade ASR performance.  Combining reverberant 

and non-reverberant test audio and speaker models would not be recommended in casework 

conditions, as this could skew results - high false positives and low true positives (false rejects).  
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9.8 Discussion and Future Research 
Returning to the spectrogram observations (Figures 9.1 to 9.4 inclusive) the question arises as to why 

speech smearing in the time domain, for longer reverberant conditions, has such as detrimental 

influence on ASR performance.  It is suggested that the sub second blending of speech sounds 

effectively sums frequency data which affects the feature extraction for frame values (usually 10ms).   

 

This hypothesis is supported by Shabtai, Rafaely and Zigel (2010) who suggest that when the RT60 

value is greater than the short time Fourier transform that the feature vectors are smeared.  They then 

suggest that this could cause the mean GMM values to become closer together (2019: p.41) i.e. 

degrading the specificity/accuracy of the statistical model.   

 

Korany (2013) suggested that the number of coefficients could be increased in the feature extraction 

stage for improving performance in reverberant conditions (2013: p.6).  Although this was not 

specifically explored in the experiments, as the Korany study was completed using a GMM-UBM 

system, it is suggested that is likely that that denser statistical modelling (i.e. i-vectors) would 

improve resilience to reverberation.   

 

Recent research by Guzewich and Zahorian (2017) investigated the application of applying machine 

learning techniques to (de)reverberate material using deep neural networks (DNNs).  They used an 

Alize (Larcher et al., 2013) i-vector ASR system  and 46,200 reverberant (40 hours) and 4,620 clean 

speech files to test a dereverberation method (2017: p.173) based on the research from Wu et al. 

(2017).  Guzewich and Zahorian (2017) could not replicate the results from the Wu team, which they 

described as ‘beyond the theoretically possible’ (2017: p.173).  Nonetheless, Guzewich and Zahorian 

improved ASR performance for low T60 times (<0.20s) and recommended increasing the FFT 

length, which provided the greatest performance benefit (EER% not stated).  They also conceded 

that a solution for reverberation might (at a pre-processing stage) might not benefit other speech 

processing (such as speech to text).  It is clearly in the early stages – however, research in machine 

learning is likely to yield further advances. 

 

Finally, a larger scale project to fully determine the difference between the influence of artificial 

reverberation and ‘real world’ reverberation on ASR performance would provide benefit.  Whilst 

technically difficult, due the large volume of recordings required, this could inform the artificial 

treatment of bulk speech data to bolster the UBM, TV, LDA and PLDA session, provide bespoke 

PLDAs or improve calibration datasets.  Further advances in machine learning could also seek to 

treat reverberant normative sessions and speaker models as multiple object classes.  The ASR could 

then effectively choose to make use of the closest applicable reverberant dataset(s) following 

machine assessment of RT60 on the incoming test audio. 
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Chapter 10 Frequency Bandwidth  

10.1  Introduction 
This chapter examines the influence of frequency bandwidth on ASR performance.  Iterative 

reductions in frequency bandwidth are applied to DyViS baseline data (task 1, mock police interview 

recordings, 44.1kHz 16bit).  ASR output is then analysed and results discussed with respect to ASR 

performance metrics (EER% and Cllr).  

 

The chapter begins by providing research context with an introduction to the difficulties pertaining 

to frequency band limited speech data and speaker recognition.  A review is provided of related 

research literature which assisted with forming the questions and establishing experiment 

methodology.  The research questions are then presented with associated hypotheses.  A description 

of the experiments follows with results presented.  Equal error results (EER%), log likelihood ratio 

(LLR) output and the cost of likelihood ratio (Cllr), or system accuracy, are examined and discussed.  

The research questions are revisited and responses provided.   

 

The chapter concludes with a wider discussion offering practical recommendations for practitioners 

using ASR systems conducting band limited speech casework and at scale (investigative use).  

Proposals are also made for future research. 

 

10.2  Context  
This section places the experiments into the wider context of current research.  The literature 

referenced in 10.2.2 assisted in advising the methodology and guiding the experiments conducted.   

 

10.2.1 Background 
The maximum frequency of standard telephony audio is constrained to a frequency bandwidth of 0-

4kHz (i.e. sample rate 8kHz).  It is broadly accepted that speech frequencies extend to above human 

hearing of approximately 16kHz to 20kHz (highest frequency) dependent on age and the individual.  

Although arguably the utility of high frequency speech sounds depreciates considerably towards the 

higher end of the frequency spectrum (>12kHz).  Telephone system design significantly pre-dated 

computers and ASR systems, so was not engineered with machine verification in mind.  As 

technology updates, the infrastructure and traditional means of communication adapt to alternative 

methods such as broadband and wi-fi.  This presents opportunities to upgrade from narrowband 

(8kHz sample rate, 0-4kHz frequency bandwidth) to wide band (16kHz sample rate, 0-8kHz 
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frequency bandwidth).  It is suggested that one benefit could be that the inclusion of more speech 

information – which is likely to improve ASR system performance.   

 

Alternatively, it could be argued that the proximity of the microphone to speaker in telephony 

channel speech is predominantly good, excluding hands free or conference calls.  Also, the majority 

of speech energy required for speaker (and indeed speech) recognition occurs well within the 

traditional, narrow telephony bandwidth and that increasing the frequency bandwidth further would 

offer only marginal ASR performance gains.  In addition, almost all commercial ASR systems have 

optimised architecture to work predominantly in the telephony channel domain as opposed to wide 

band.  It is assumed that this is due to market demand since the majority of ASR consumers tend to 

be call centres, banks and law enforcement agencies.  Many of these systems already achieve 

relatively good EER% performance, and even better performance can be obtained for text dependent 

applications such as compliant speakers using telephone banking for voice authentication (e.g. a 

customer volunteering to repeat identical utterances) or combining speaker recognition with speech 

recognition.   

 

The above argument motivated two key questions.  If the frequency bandwidth is extended beyond 

that of telephony could any additional performance gains be exploited to better inform ASR use in 

casework?  Conversely, when the frequency bandwidth is reduced to below telephony, how much 

less reliable are ASR systems with respect to performance, accuracy and precision? 

 

10.2.2 Literature Review 
The effect of frequency bandwidth on speaker verification systems has been previously researched.   

Hayakawa and Itakura (1994) produced an early study – completing research on 5 Japanese 

utterances spoken by 15 males and recorded in different sessions over a year at 32kHz (sample rate).   

The ASR system was not specified.  Their results showed that the data with the highest sample rate 

(i.e. 0-16kHz) provided the best recognition rates and that a ‘rich amount of speaker individual 

information was contained in the higher frequency band’ (1994: p.140).  Hayakawa and Itakura 

concluded with recommending more research in this area.  Misra, Ikbal and Yegnanarayana (2003) 

also demonstrated that EER% performance dropped when removing high frequency speech 

frequencies from TIMIT and NTIMIT corpus data (Jankowski et al., 1990).  Their study found that 

0-8kHz provided EER of 0.5% whilst 0-3.6kHz gave EER% of 6.1% (1990: p.309).  A study by 

Gallardo, Wagner and Möller (2012) examined ASR performance over narrow band (NB) telephone 

channels (8kHz sample rate, 0-4kHz frequency bandwidth) and wide band (WB) (16kHz sample rate, 

0-8kHz frequency bandwidth).  Their research results supported previous findings by Jokic et al. 

(2011) and Pradhan and Prasanna (2011) that wideband speech performed significantly better in 

almost all experiments.   
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Deshpande and Holambe (2011b) examined the influence of different frequency bands by adding 

NOISEX-92 data, which provides real-time recordings of noise within vehicles, to the TIMIT corpus 

and then applying band pass filters at different intervals.  They used a bespoke comparison system 

based on GMM classifiers (32 mixtures) and employed a new feature extraction method which was 

weighted towards higher frequencies (than MFCCs) called Teager Energy Operator based Cepstral 

Coefficients.  Whilst it could be argued that this is not a direct comparative study, with MFCC based 

ASRs, their study demonstrated 100% identification rates on 0-8kHz and 97.33% on 0-4kHz with 

only 54% on 0-2kHz but 94.66% on 4-8kHz (p.195), showing much promise for alternative feature 

extraction methods.  

The Pradhan and Prasanna (2011) study further demonstrated that the performance improvement was 

greater for females than males (see Table 10.1). 

Table 10.1: Results from NB and WB ASR performance.  Pradhan and Prasanna (2011) 
Narrow Band EER% Wide Band EER% 

Male baseline: 9.49 Male: 7.34 

Female baseline: 10.52 Female: 4.00 

Pradhan and Prasanna (2011) proposed that the reason for the gender performance differential was 

likely due to the higher pitch and formants of female speech than males.  This is a logical 

and plausible hypothesis.  In addition, for the third key component (universal background 

model), their normative data was carefully selected to ensure robust gender balance (17 male 

speakers and 17 female speakers with five hours speech from each group).  Pradhan and 

Prasanna (2011) also provided evidence that the performance improvement for wideband in 

comparison to narrowband speech held true in almost all instances, including relatively 

mismatched and/or noisy conditions. 

Gallardo, Wagner and Möller (2012) examined 51,200 cross comparisons from the ANDOSL 

and AusTalk databases, running the experiment multiple times through a bespoke ASR 

system to determine EER% output under 5 different conditions.  All audio files in the experiments 

were passed through the same processes to avoid channel mismatch.  The ASR system used was a 

Matlab 7.13 R2011b and OS code system, rather than a commercial off the shelf (COTS) 

product.  The group utilised open source code to perform a standard MFCC extraction with a 

GMM classifier.  For the purposes of their research, WB was categorised as 50Hz to 7kHz and NB 

as 300Hz to 3.4kHz.  A bespoke UBM was necessary and so created from speaker data 

representing the conditions of the test.  It is suggested that this is very likely to have artificially 

raised the performance of the system, due to the specificity of the normative speech data.  So, 

whilst the methodology was clearly applied under a research context, performance results would 

not transition to casework ASR analysis – where the normative data are not specifically tailored to 

the casework conditions.  Nevertheless, their results 
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demonstrated that the performance and accuracy of verification systems did increase when wideband 

(WB) speech signals were used over narrow band (NB) with 12.03 EER% for (Adaptive Multi Rate) 

AMR-WB compared to 18.53 EER% for AMR-NB demonstrating a 64.92% improvement.  

However, it could be argued that the Gallardo group’s results were also affected by additional 

variables such as transcoding (data compression).  For example, the AMR-WB had an effective bit 

rate of 23.05kbps whilst the AMR-NB was at 4.75kbps.  For secondary trials, the G.722WB (12.45% 

EER) and G.711NB (16.45% EER) tests conducted both used 64kbps bit rate, though it is possible 

that the performance differential could also be partially influenced by other codec differences 

between G.711 and G.722. 

 

Besacier and Bonastre (2000) demonstrated that, for 630 speakers, the most important frequencies 

for speaker verification systems were not evenly distributed.  Low frequency bands under 600Hz and 

high frequency bands over 2kHz were found to be more speaker specific than those in the middle 

range.  This was supported by research from Orman and Aslan (2001) examining 16kHz speech for 

462 speakers.  They also showed that certain frequency bands were more pertinent to automatic 

speaker verification systems than others, suggesting that key frequency ranges were from 0Hz to 

1kHz and 3kHz−4.5kHz acknowledging that the lower frequencies of speech do not descend to 0Hz 

(approximately >80Hz dependent on gender, age, language, health etc.).  Whilst it should be noted 

that the ASR systems in both these studies used GMM-UBM architecture rather than a more modern 

i-vector approach, this research was of particular interest with respect to the extension of frequency 

bandwidth beyond standard telephony.  

 

In reference to the research literature several key technical points were extrapolated which influenced 

the research questions and experiment methodology in this chapter. 

 

Transcoding 

As transcoding can influence frequency bandwidth, codec type and settings should be considered 

and preserved with respect the original recording(s).  In frequency bandwidth experiments it is 

important not to additional transcode so as to avoid conflating variables.  By extension, in casework 

for example, if transcoding is mandatory (e.g. audio submitted in a codec that is incompatible with 

the ASR) then the transcoding process should be factored into analysis of ASR results and 

documented.  More broadly, if transcoding is applied it should ideally be without any frequency 

bandwidth limitation and with zero data compression (i.e. lossless). 

 

Population Data 

The UBM proposed for use in this chapter was re-examined and regarded as unsuitable with regard 

to frequency bandwidth (i.e. speech frequencies not present from 4kHz to 12kHz).  A suitable UBM 

was required to reflect the wide band interview channel.  To eliminate potential contamination of 
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results, it was determined that no part of the DyViS corpus should populate any part of the normative 

set.  

 

Multiple Bandwidth Tests 

From previous research conducted it was determined that a greater number of experiments at multiple 

frequency bandwidth settings would improve the detail of results.  This might then assist in terms of 

observing smaller changes, should they occur.  For example, iterative steps of frequency range 

limitation could inform a series of LR and/or zoo plots, which might show the rate of performance 

change through inter-speaker distance movement.  It was also noted that when limiting channel 

bandwidth with a low pass filter (LPF) it should be applied in a way that does not simultaneously 

apply a high pass filter (HPF). 

 

Quality Control 

The experiments required the generation of hundreds of thousands of treated files.  Whilst it was 

impractical to check every single file, the technical quality of recordings was carefully spot checked 

(approximately 5-10%) to check for unwanted aliasing and/or artefacts or inconsistencies in the batch 

process.  

 

Net Duration 

It was noted that the speech data samples used to populate the normative data (UBM) in the Gallardo, 

Wagner and Möller (2012) research were relatively brief (5 seconds) and this was under the OWR 

and ENFSI recommended sample times for ASR analysis (approximately 20s for each of the SM and 

TA audio files).  It was determined that the use of longer speech samples (1m speaker model and 

multiple 1m test audio files) would decrease the potential influence of net duration on the experiment 

and mitigate against conflating variables. 

 

System Architecture 

From the research literature, it was hypothesised that i-vector systems were likely to be more robust 

to channel bandwidth degradation than GMM-UBM ASRs.  An experiment to test the two ASR 

systems should be conducted to examine and quantify this. 

 

Very Low Bandwidth Speech 

Little research was found on sample rate/frequency bandwidth below standard telephony channels 

and ASR performance.  An experiment could inform the extent of performance deterioration below 

the upper frequency limit of 4kHz.  To place an experiment into a practical context, a relevant 

casework example would be ASR speaker comparison conducted on speech data from push to talk 

radio (PTTR) systems (or walkie-talkies), which generally constrain frequency below an upper limit 

of 3.5kHz. 
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10.3  Questions and Hypotheses 
The experiments in this chapter were generated to address four key questions. 

 

Q1 Does ASR performance noticeably improve relative to baseline when the frequency 

bandwidth is extended beyond telephony?  If so, what is the optimum frequency bandwidth for 

ASR performance? 

H1 Wider band recordings (0Hz to 8kHz) should provide ASR performance improvements over 

constrained telephony recordings (0Hz to 4kHz) due to the greater quantity of speech data captured 

for statistical modelling.  However, as the majority of speech energy exists within the telephony 

recording range the performance increase is likely to be marginal.  It is suggested that neither GMM-

UBM nor i-vector/UBM, TV, LDA and PLDA systems will be optimised easily to work on wideband 

speech data by default – and will require adaptation.  This is because most ASR systems are 

optimised to work on narrow band telephony data with respect to feature extraction method and 

normative data composition.  In addition, speech energy diminishes in dynamic range for higher 

frequencies (8kHz to approximately 12kHz).  Also, the experiments conducted include data solely 

from male speakers (i.e. lower average frequency range) so it is suggested that any improvement in 

EER% is likely to plateau rather than continuing to improve – and results will not extrapolate directly 

to female speech. 

  

Q2 Does an i-vector/UBM, TV, LDA and PLDA ASR system offer significant performance 

advantages over a GMM-UBM system when the frequency bandwidth is extended? 

H2 Broadly speaking, i-vector/UBM, TV, LDA and PLDA ASR systems outperform GMM-

UBM systems.  Whilst the MFCC extraction process remains similar, the improvements in the 

statistical modelling process should positively influence performance for i-vector systems.   

 

Q3 Many ASR systems automatically downsample audio files as they are imported, to a 

frequency bandwidth 0-4kHz (sample rate 8kHz).  OWR Vocalise and iVocalise ASR software 

systems provide the operator with the opportunity to adjust the frequency bandwidth 

(minimum and maximum settings) for the MFCC feature extraction stage and allow the 

configuration of normative data.  Can performance advantages therefore be found in terms of 

matching frequency bandwidth for speaker models and test audio?   

• If we applied the same channel bandwidth limitation to both the questioned audio and 

speaker model, how would ASR performance vary against baseline?   

• If iterative bandwidth degradation was applied to the test audio but wide band speaker 

models were used, how would ASR performance vary against baseline? 

H3 Matching SM and TA has been shown to predominantly improve ASR performance, so 

frequency band limitation applied to both the test audio and speaker models should provide better 

ASR performance as the data is effectively complete on both sides of any comparison.  Conversely, 
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poorer performance should occur where there is variation between TA and SM with respect to 

frequency bandwidth – and this is likely to degrade further on higher divergence between SM and 

TA. 

 

Q4 If the frequency bandwidth is significantly reduced below that of standard telephony 

what implications would that have for ASR performance? 

H4 ASR Performance degradation is likely to occur as speech energy is removed from an area 

of the spectrum shown to have speaker-discriminating potential.  This is in respect of both consonants 

and vocalic segments. The vocalic information lost, below the telephony bandwidth (0 to 4kHz, 8kHz 

SR) would include F4, and, as frequency bandwidth is increasingly constrained, F3.  This would be 

consistent with research completed by Gold, French and Harrison (2013).  Potentially important 

consonantal information to be lost includes the energy loci and distributions occurring with anterior 

fricative consonants (Kavanagh, 2012).  While the MFCC feature extraction process is insensitive to 

individual segmental features, the compound effects of removing speaker discriminatory energy 

patterns are likely to result in confusion of speakers and diminished ASR system performance. In 

addition, unmatched conditions (between SM and TA) would likely increase confusion, with less 

speech energy present in one than the other.  Understanding any performance tipping points, in terms 

of higher frequency cut-offs, might assist in informing thresholds for when ASR use would not be 

recommended. 

 

10.4  Methodology  
The method as outlined in chapter 5 was observed with the following changes.   
 

10.4.1 Baseline Corpus 
Speech data from DyViS task 1 (mock interview, 44.1kHz 16bit, 100 speakers) was used to generate 

both speaker models and test audio files.  The audio files were edited as follows.  Speaker models 

were created using 1 minute of speech data with the remaining net speech divided into 3 further 

extracts for testing (i.e. 1m, 1m, residual).  When analysed using an ASR system this then produced 

30,000 cross comparisons with 300 same speaker scores and 27,000 different speaker comparisons.  

 

10.4.2 Automatic Speaker Recognition Systems and 
Additional Materials  
It was determined that the frequency band limitation should be completed in controlled, iterative 

steps.  This was to analyse performance results in detail with regard to potential zoo plot movement, 

to seek possible cliff edge effects (Q4) and to identify optimum performance conditions (Q1).   

 



 194 

Batch processing was required due to the quantity of files.  Several software solutions were identified.  

These were assessed as to suitability, practicality and output quality.  Tests were then conducted with 

particular focus on the quality of sample rate conversion.  Output was dip sampled (approximately 

10%) for aliasing or any other acoustic artefacts using spectrogram analysis.  Several applications 

were ruled out due to the potential for acoustic contamination.  Others were rejected due to poor 

workflow (e.g. number of steps required and/or processing speed). 

 

The iZotope RX6 Advanced application (Izotope.com) was shown to have an extremely high quality 

SRC output, without introducing unwanted artefacts.  The application also utilises a brick wall, high 

pass filter and was found to be extremely fast when batch processing.  From trials, the steepness of 

the high pass filter was essential in ensuring that frequencies close to the HPF cut off point were not 

affected by gain reduction or aliasing.  Any introduction of a slope at the cut-off point would diminish 

speech frequencies rather than eliminating them.   

 
An additional requirement was that batches should be converted incrementally in iterative decreasing 

steps.  To mitigate for data contamination from cumulative conversions the process was not applied 

in succession.  Each time band limitation was applied it was to the first generation audio data rather 

than to that produced by the previous step.  

 

10.4.3 Test Audio and Speaker Models 
Two batches of test data (speaker models and test audio files) were created from the DyViS task 1 

(mock interview) data.  In the first set, both the speaker models and test audio were treated 

simultaneously with respect to frequency bandwidth limitation.  The highest frequency bandwidth 

setting was 0-16kHz (i.e. sample rate of 32kHz).  This setting was deliberately chosen to exceed the 

frequency range of speech to determine if any non-speech, high frequencies captured might 

negatively affect ASR performance (e.g. neon light hum).  The lowest frequency bandwidth was set 

to 0-2.5kHz (i.e. sample rate of 5kHz).  This was chosen to simulate the type of channel occurring 

on a typical push to talk radio (PTTR) system.   

 

In the first set of data, frequency intervals were selected at 1kHz creating x11 incremental steps 

between the highest and lowest sample rates for both the speaker models and test audio (i.e. matched 

conditions).  In the second set, the speaker models were consistently held at the highest frequency 

bandwidth/sample rate and the test audio was degraded in x11, 1kHz incremental steps (i.e. 

unmatched conditions). 
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10.4.4 Normative Data  
In conjunction with the speaker model (SM) and test audio (TA) the third data set, often unseen to 

the operator, is the normative data.  The normative data informs the ASR as to what speech is and 

provides statistically mean values for all features extracted from the population used to compile it.   

 

From completing background research and compiling the research questions, the OWR ASR systems 

were further examined in respect to normative data.  It was noted that all of the underlying normative 

data, within the default ASR configurations for Vocalise, was optimised for telephony bandwidth (0-

4kHz).  It was determined that the lack of upper frequency speech data, in the normative set, could 

potentially influence experiment results and negate any benefit of extending channel bandwidth.  Put 

simply, the ASR would have no data points beyond 4kHz to inform the statistical model as to 

reference values.  The UBM created for use in other chapters was also deemed unsuitable for the 

frequency bandwidth experiments due to (GSM) transcoding and microphone proximity.  New 

reference data was therefore constructed for both GMM-UBM and i-vector/PLDA versions.   

 

For the Vocalise ASR system, the GMM-UBM was created using in domain channel audio data from 

a similar speaker demographic as DyViS (i.e. interview, male, SSBE, 18-25 years).  Files were 

carefully checked acoustically, using spectrograms.  Criteria assessed included poor signal to noise 

ratio, mains hum and other acoustic artefacts which could adversely influence results and many 

speech files were rejected.  Eighty-nine speakers, with interview speech session files, were chosen 

from the SPOKE database to use as normative data (GMM-UBM).  The feature extraction settings 

on Vocalise were then adjusted to extend the speech frequency limits, enabling wide band 

comparison. 

 

As discussed in previous chapters, the normative data for the i-vector version takes the form of a 

multiple stepped process and it is possible to train using different data for each component (UBM, 

TV and LDA+PLDA).  As the population dataset used to train the model was extremely large – 

multiple training sets for each of the models (UBM, TV and LDA+ PLDA) was not required and one 

set was used for all components.  This was consistent with advice, from OWR, stating the overall 

performance of the system benefits of using the same data to train the UBM, TV and LDA+PLDA. 

 

10.4.5 Automatic Speaker Recognition Systems 
See Appendix G for additional details.  The two systems compared were: 

i. OWR Vocalise 1, GMM-UBM system: version 1.5.0.1190 (bespoke UBM) 

ii. OWR iVocalise, i-vector/UBM, TV, LDA+PLDA system: version 2.1.0.1366  

PLDA set ‘2016A-1024-D-CMS-Large-VAD-NoDyViS-20Apr16’ 
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The TV (total variability) was set to 400 dimensions, the PLDA set to 200 dimensions and 

10 train cycles.   

Further details are provided in Appendix G.  Note that the ASR systems were adapted with bespoke 

normative sets, neither containing DyViS material.  

 

Bio-Metrics version 1.8.0.704 was used for generating performance data graphs and charts from the 

.csv output files (EER%, H0, H1, Cllr and for graphing and plotting results). 

 
 

10.4.6 Data and List of Experiments 
DyViS corpus, task 1, studio quality, mock Police interviews, 100 speakers.  Edited to produce 100 

speaker model files (SM) and 3 x 100 test audio (TA) files (29,700 TN and 300 TP).  Fifteen 

frequency band limited comparison sets created in iterative steps.  From 0-3kHz (SR 06kHz) to 0-

16kHz (SR 32kHz) inclusive. 

 

 Experiments were set as follows: 

i. Batch test 1 iVocalise i-vector/PLDA.  Matched conditions. 

Speaker models and test audio have same settings, e.g. SR06kHz SM to SR06kHz TA. 

ii. Batch test 2 iVocalise i-vector/UBM, TV, LDA+PLDA. Unmatched conditions. 

Speaker models fixed WB with variable test audio, e.g. SR32kHz SM to SR06kHz TA. 

iii. Batch test 3 Vocalise GMM-UBM.  Matched conditions. 

Speaker models match test audio band settings 

iv. Batch test 4 Vocalise GMM-UBM.  Unmatched conditions.   

 
 

10.5  Results 
See section 9.5 for additional explanation of H0 mean, H1 mean, H0 SD, H1 SD, FAR and FRR as 

referenced in the results Tables presented. 
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10.5.1 iVocalise, i-vector System Results 
Table 10.2: Matched SM and TA.  iVocalise ASR, bespoke PLDA Results 

Frequency 
Bandwidt

h 

EER% Cllr H0 
Mean 

H1 
Mean 

H0 
SD 

H1 
SD 

FAR, 
FRR 
100 
% 

FAR, 
FRR 
1,000 
% 

FAR, 
FRR 
10,00
0 
% 

0-16kHz 0.0320 0.01 49.79 -68.60 12.59 27.80 0.00 0.00 0.67 
0-15kHz 0.0556 0.01 49.36 -69.57 12.74 27.75 0.00 0.33 1.34 
0-14kHz 0.0505 0.01 48.52 -69.68 12.83 27.84 0.00 0.10 3.67 
0-13kHz 0.0741 0.01 48.27 -70.77 12.77 27.87 0.00 0.33 1.68 
0-12kHz 0.0404 0.02 53.10 -61.95 12.32 27.24 0.00 0.00 1.33 
0-11kHz 0.0269 0.02 52.09 -63.74 12.18 27.57 0.00 0.00 1.33 
0-10kHz 0.0286 0.02 51.47 -66.13 12.32 27.69 0.00 0.00 2.33 
0-9kHz 0.2559 0.02 50.75 -66.79 12.69 27.85 0.00 0.33 2.00 
0-8kHz 0.0404 0.01 49.58 -68.91 12.91 27.82 0.00 0.00 2.33 
0-7kHz 0.0707 0.01 48.55 -70.03 12.93 27.91 0.00 0.33 3.00 
0-6kHz 0.0320 0.02 52.93 -62.63 12.06 27.35 0.00 0.00 1.00 
0-5kHz 0.0320 0.01 51.05 -66.93 12.64 27.70 0.00 0.00 2.01 
0-4kHz 0.0421 0.01 48.63 -70.43 12.86 27.96 0.00 0.00 1.33 
0-3.5kHz 0.3300 0.12 51.81 -47.77 12.02 27.26 0.00 2.10 6.33 
0-3kHz 1.0067 7.25 60.55 5.64 8.22 16.74 1.00 5.72 23.67 

Optimum EER% performance in bold 
Note the poor Cllr performance (accuracy) for the 0-3kHz test, despite relatively good EER% 

Figure 10.3: Matched SM and TA, i-vector ASR, bespoke PLDA.  Mean H0, H1 
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SM fixed at 44kHz.  Variable TA. 

Frequency 
Bandwidth 

EER% Cllr H0 
Mean 

H1 
Mean 

H0 
SD 

H1 
SD 

FAR, 
FRR 
100 

FAR, 
FRR 
1,000 

FAR, 
FRR 
10,000 

0-16kHz 0.0438 0.01 49.67 -67.03 12.63 27.71 0.00 0.00 2.67 
0-15kHz 0.2525 0.01 48.68 -68.20 12.74 27.83 0.00 0.33 2.00 
0-14kHz 0.0707 0.01 48.18 -68.37 12.74 27.83 0.00 0.33 3.00 
0-13kHz 0.2593 0.01 47.78 -69.02 12.72 27.85 0.00 0.33 3.00 
0-12kHz 0.0522 0.02 52.52 -62.62 12.32 27.36 0.00 0.33 1.33 
0-11kHz 0.0455 0.02 52.40 -63.43 12.28 27.52 0.00 0.00 1.33 
0-10kHz 0.0606 0.02 51.48 -65.09 12.48 27.67 0.00 0.33 2.34 
0-9kHz 0.0673 0.02 50.82 -65.62 12.54 27.70 0.00 0.67 2.00 
0-8kHz 0.0572 0.01 49.72 -67.19 12.67 27.77 0.00 0.33 2.01 
0-7kHz 0.0724 0.01 48.04 -68.53 12.86 27.76 0.00 0.67 3.00 
0-6kHz 0.0455 0.02 52.36 -62.94 12.27 27.35 0.00 0.00 1.67 
0-5kHz 0.0606 0.02 51.25 -65.51 12.60 27.64 0.00 0.67 1.68 
0-4kHz 0.0370 0.01 49.03 -68.23 12.78 27.75 0.00 0.00 1.84 
0-3.5kHz 16.302 31.46 -43.56 -96.37 20.49 31.35 79.75 97.0 99.67 
0-3kHz 43.803 95.63 -132.57 -139.77 24.00 25.54 99.67 100 100 

Optimum EER% performance in bold 
Note poorer EER% and Cllr performance in comparison to matched conditions. 

Figure 10.5: Unmatched SM and TA, i-vector ASR, bespoke PLDA H0, H1 SD 
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Table 10.4: Unmatched SM and TA, i-vector ASR, bespoke PLDA 
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Table 10.6: Matched SM and TA.  Vocalise GMM-UBM, bespoke UBM 
Frequency 
Bandwidth 

EER
% 

Cllr H0 
Mean 

H1 
Mean 

H0 
SD 

H1 
SD 

FAR, 
FRR 
100 

FAR, 
FRR 
1,000 

FAR, 
FRR 
10,000 

0-16kHz 0.32 0.83 2.10 -1.17 0.52 0.83 0.00 1.43 8.35 
0-15kHz 0.33 0.84 2.14 -1.17 0.53 0.84 0.00 2.00 10.33 
0-14kHz 0.27 0.86 2.17 -1.21 0.53 0.86 0.00 1.43 7.67 
0-13kHz 0.31 0.87 2.26 -1.19 0.54 0.87 0.00 1.00 9.34 
0-12kHz 0.33 0.73 1.82 -1.00 0.47 0.73 0.00 2.10 11.68 
0-11kHz 0.37 0.76 1.86 -1.04 0.49 0.76 0.00 2.00 12.36 
0-10kHz 0.61 0.77 1.94 -1.06 0.50 0.77 0.00 2.67 8.35 
0-9kHz 0.67 0.79 2.02 -1.06 0.51 0.79 0.00 2.67 16.01 
0-8kHz 0.58 0.35 2.05 -1.06 0.49 0.80 0.00 3.11 9.02 
0-7kHz 0.65 0.82 2.11 -1.07 0.52 0.81 0.00 3.43 12.00 
0-6kHz 0.68 0.44 1.70 -0.74 0.49 0.63 0.67 12.61 46.69 
0-5kHz 2.66 0.45 1.41 -0.89 0.60 0.63 6.00 28.10 84.67 
0-4kHz 2.43 0.48 1.61 -0.65 0.60 0.62 4.18 22.78 61.01 
0-3.5kHz 2.67 0.50 1.75 -0.51 0.62 0.64 6.00 38.67 71.33 
0-3kHz 5.69 0.84 2.23 0.57 0.59 0.53 29.00 67.33 80.67 

Optimum EER% performance in bold 

Figure 10.7:  Matched SM and TA.  GMM-UBM bespoke UBM.  Mean H0, H1 
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10.5.2 Vocalise, Gaussian Mixture Model System 
Results 
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Frequency 
Bandwidth 

EER
% 

Cllr H0 
Mean 

H1 
Mean 

H0 
SD 

H1 
SD 

FAR, 
FRR 
100 

FAR, 
FRR 
1,000 

FAR, 
FRR 
10,000 

0-16kHz 5.66 2.41 6.35 3.28 0.89 1.01 19.67 45.63 76.02 
0-15kHz 5.93 2.41 6.34 3.28 0.90 1.02 20.76 45.05 76.33 
0-14kHz 6.16 2.39 6.33 3.25 0.91 1.05 21.00 46.66 70.69 
0-13kHz 6.28 2.36 6.27 3.20 0.92 1.05 20.33 45.48 74.01 
0-12kHz 7.69 2.42 6.16 3.30 0.95 1.02 26.00 53.88 74.68 
0-11kHz 7.76 2.42 6.20 3.29 0.97 1.05 29.53 56.43 78.01 
0-10kHz 7.31 2.39 6.19 3.25 0.98 1.05 31.15 57.22 73.00 
0-9kHz 7.34 2.30 6.07 3.13 0.97 1.05 31.70 57.67 73.02 
0-8kHz 7.10 2.19 5.85 2.95 0.96 1.03 31.67 60.00 78.33 
0-7kHz 6.68 1.97 5.48 2.61 0.93 1.01 28.74 55.43 76.03 
0-6kHz 8.00 1.85 4.91 2.43 0.89 1.85 32.12 52.55 78.17 
0-5kHz 6.24 1.36 3.96 1.65 0.78 0.74 29.26 49.77 64.70 
0-4kHz 2.18 0.90 2.84 0.76 0.54 0.56 5.67 16.99 40.01 
0-3.5kHz 2.64 0.88 2.69 0.72 0.50 0.56 6.25 19.43 41.52 
0-3kHz 5.35 1.19 3.04 1.34 0.55 0.54 18.67 44.65 66.35 

Optimum EER% performance in bold 

Figure 10.8b: Unmatched SM and TA. GMM-UBM, bespoke UBM.  Mean H0, H1 
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Table 10.8: Unmatched SM and TA.  GMM-UBM, bespoke UBM. 
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The zoo plots and a set of LR plots from the GMM-UBM system were also placed into two.gif 

animation files, submitted in support of this thesis: 

i. NASH_108045162_GMM-UBMAnimation_FreqBandwidth_matched_LRPlots.gif

ii. NASH_108045162_GMM-UBMAnimation_FreqBandwidth_matched_Zoos.gif

The zoo plot animation (fixed axis values) demonstrates the performance degradation as frequency 

bandwidth is constrained – with a noticeable shift of speaker points to the lower quadrants (poorer 

performance) at the lowest settings. 

The LR plot animation (non-fixed axis) demonstrates overall steps in ASR performance, where true 

positive and negative scores degrade with frequency bandwidth, marginally improve and then 

degrade again.  The reason for this is not known - one explanation could be that the optimum 

positioning of the MFCC filters is shifting against (fixed) formant values as frequency bandwidth is 

constrained and that there are also certain ‘sweet spots’ re the relevance of the normative data (i.e. 

8kHz sample rate files) however, further research is required.   

Five zoo plots are presented (see also Appendix E). 

10.5.3 Zoo Plots 



Figure 10.9:  Zoo plot re frequency bandwidth, 0-16kHz, SR32kHz Matched SM and TA. 

Sample rate 32kHz, frequency bandwidth 0-16kHz.  GMM-UBM 

LLR 



 203 

Figure 10.10: Zoo plot re frequency bandwidth, 0-03kHz, SR06kHz Matched SM and TA. 

 
 
 
 

Score Trajectory 

Sample rate 06kHz, frequency bandwidth 0-03kHz. GMM-UBM 

LLR 
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Figure 10.11: Zoo plot iVocalise 0-11kHz Matched SM and TA.  Dove speakers highlighted. 

LR 
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Figure 10.12: Zoo plot iVocalise 0-4kHz Matched.  Dove speakers from 0-11kHz test 

Note axis change in comparison to Figure 10.11 

Score Trajectory 

LR 
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Figure 10.13: Zoo plot iVocalise 0-3kHz Matched.  Dove speakers from 0-11kHz test 

 
 

 

Score Trajectory 

LR 



Match scores decreased and imposter scores increased as frequency bandwidth was constrained on 

both ASR systems (Figures 10.9, 10.10 and Appendix E).  This was noticeable using Zoo plot 

visualization with data points gradually moving in iterative steps, from the upper left quadrant to 

the lower right quadrant as LLRs lowered overall and score separation deteriorated.  Also visible 

(Figures 10.9 and 10.10) was the increase in the number of speakers that were difficult for the ASR 

to verify - Chameleons (pale Blue) elevated from 0 to 8 and Phantoms (Red) from 3 to 8.   

There was a fall in the number of speakers easily recognised by the system with Doves (Pink) 

reduced from 12 at the highest frequency bandwidth (0-16kHz, 30kHzSR) to 4 at the lowest (0-

3kHz, 6kHz SR) on the iVocalise (matched).  Note also the similarity in positioning for the 0-4kHz 

system and the difference in final Dove position at the lowest frequency bandwidth (iVocalise 

frequency bandwidth 0-3kHz, SR 06kHz, matched).  Figures 10.11, 12 and 13 further illustrate the 

Dove speaker positions, i.e. the best performing speakers on the optimal ASR system (iVocalise 0-

11kHz frequency bandwidth, SR 22kHz, matched).  Dove positioning (speakers 008, 006, 052, 034, 

039, 049, 020, 079, 043 and 059) shifted towards the lower left quartile overall as the frequency 

bandwidth was constrained with speakers 006, 034, 043, 052 and 079 degrading into the 

central/normal category.  Conversely speakers 003, 064 and 040 shifted into the Dove category at 

the lowest frequency bandwidth 0-3kHz, 06kHzSR from the normal position.   

10.6 Responses to Questions 
Q1 Recap Does ASR performance noticeably improve relative to baseline when the 
frequency bandwidth is extended beyond telephony?  If so, what is the optimum frequency 

bandwidth for ASR performance? 

A1 As predicted and in line with research, performance for both ASR systems improved for 

wide band speech in comparison to narrow band speech.  However, the performance 

differential was relatively marginal.  This supports the hypothesis that, whilst some 

discriminatory speech information does extend beyond the 4kHz frequency point, the majority of 

speech information (F1, F2, F3) for successful ASR discrimination occurs within the 0-4kHz 

frequency bandwidth (sample rate of 8kHz).  In line with prediction, the i-vector ASR system had 

a closer correlation of optimum settings to the bandwidth of speech under matched conditions 

(0-11kHz, SR 22kHz).   

In terms of the bespoke normative data and settings, it was difficult to assess how well the ASRs 

were optimised for wide band use and whether results could be improved on further.  

Further research is required to validate that the optimised range for iVocalise could be replicated 

on other types of ASR systems.  Many ASR systems do not have options to optimise them for 

usage beyond narrow band/telephony.   
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To restate, the experiments were carried out solely on male speech data.  It is likely that extending 

the frequency bandwidth for female/child speech data is likely to offer additional ASR performance 

benefit, assuming that the normative data reflected the demographic changes.  Further research is 

recommended.   

Q2 Recap Does an i-vector/UBM, TV, LDA+PLDA ASR system offer significant 

performance advantages over a GMM-UBM system when the frequency bandwidth is 

extended? 

A2 Yes.  As anticipated the i-vector/PLDA system outperformed the GMM-UBM system in 

all conditions across all performance metrics.  The i-vector version was also more consistent in 

output with less variability in EER% under matched conditions.  Optimum performance varied 

between the two systems under matched conditions. 

i. iVocalise,  0-11kHz, (22kHz SR) = 0.027 EER%.  0-4kHz (8kHz SR) = 0.042 EER%

ii. Vocalise,  0-11kHz (22kHz SR) = 0.27 EER%.  0-4kHz (8kHz SR) = 2.43 EER%

The accuracy (Cllr) of both systems was also examined.  The i-vector system consistently 

outperformed the GMM-UBM system under matched conditions. 

i. iVocalise, 0-11kHz, (22kHz SR) = 0.02 Cllr, 0-4kHz (8kHz SR) = 0.01 Cllr

ii. Vocalise, 0-14kHz, (28kHz SR) = 0.86 Cllr, 0-4kHz (8kHz SR) = 0.48 Cllr

As predicted, performance improvements were noted for the i-vector/PLDA system under matched 

conditions when the frequency bandwidth was extended (i-vector 0-11kHz, 22kHz SR = 0.027 

EER% vs WB GMM-UBM 0-14kHz, 28kHz SR = 0.27 EER%).  Improvements in Cllr/accuracy 

were also noted supporting the hypothesis that better underlying statistical modeling in the i-

vector ASR system enables better exploitation of acoustic data containing more information, 

better EER% performance and higher system accuracy.  Of further note, true positive likelihood 

scores rose and true negative scores fell demonstrating an improvement of score separation.  

Good score separation is important both for setting system thresholds and for assisting with 

interpreting results. 

Q3 Recap Many ASR systems automatically downsample audio files as they 

are imported, to a frequency bandwidth 0-4kHz (sample rate 8kHz).  OWR Vocalise 

and iVocalise ASR software systems provide the operator with the opportunity to 

adjust the frequency bandwidth (minimum and maximum settings) for the MFCC 

feature extraction stage and allow the configuration of normative data.  Can performance 

advantages therefore be found in terms of matching frequency bandwidth for speaker 

models and test audio?   
• If we applied the same channel bandwidth limitation to both the questioned audio and

speaker model, how would ASR performance vary against baseline?
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• If iterative bandwidth degradation was applied to the test audio but wide band 

speaker models were used, how would ASR performance vary against baseline? 

A3  As hypothesised, performance advantages were observed when matching the channel 

bandwidth of SM and TA.  Conversely, the performance noticeably deteriorated for the lowest 

frequency bandwidth comparisons for unmatched conditions in both systems.  For the i-vector 

system the performance differential between matched and unmatched conditions was more 

significant at the lowest frequency bandwidth settings.  

 

• Matched: 0-3.5kHz (SR 7kHz) = 0.33 EER% and 0-3kHz (SR 6kHz) = 1.01 EER%.    

• Unmatched: 0-3.5kHz (SR 7kHz) =16.30 EER% and 0-3kHz (SR 6kHz) = 43.8 EER% 

 

This is likely due to high divergence between SM and TA affecting statistical modelling and 

therefore comparison (i.e. loss of F4 and deterioration in F3 occurring in the TA but not in the SM).  

 

Q4 Recap If the frequency bandwidth is significantly reduced below that of standard 

telephony what implications would that have for ASR performance? 

A4 As hypothesised, reducing the frequency bandwidth below standard telephony was shown 

to degrade performance on both systems.  A tipping point was observed in both GMM-UBM and 

i-vector/PLDA systems below 0-4kHz frequency bandwidth (sample rate 8kHz) in unmatched 

conditions.  This is likely due to the degradation in F4 and some elements of (high) F3 as the 

frequency bandwidth is constrained below the 4kHz frequency point.   

 

For the i-vector system, performance improvements could be observed when extending the 

frequency bandwidth but only under matched conditions.  It was interesting to note the relatively 

high EER performance for the i-vector system on 0-3kHz frequency bandwidth data, 06kHz SR, 

obtained under matched conditions (Table 10.14).  This suggests that, to some extent performance 

can be preserved, despite the absence of speech data, if frequency bandwidth conditions are better 

matched between SM and TA.  This is likely due to the richness/density of the statistical model 

(i.e. i-vector). 

 

Table 10.14:  Comparison in low bandwidth speech, EER% (i-vector/PLDA ASR) 
I-vector/PLDA ASR (matched SM/TA) I-vector/PLDA ASR (unmatched SM/TA) 

0-3.5kHz, SR7kHz = 0.33 EER% 0-3.5kHz, SR7kHz = 16.30 EER% 

0-3kHz, SR6kHz = 1.00 EER% 0-3kHz, SR6kHz = 43.80 EER% 
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10.6.1 Summary of Results 
Experiments demonstrated that ASR system performance degraded when frequency bandwidth 

constraints were applied and that was more noticeable in unmatched conditions (SM and TA).  In 

addition, degradation accelerated as the lowest frequency bandwidth settings were reached.   

It was shown that an i-vector ASR system can provide performance and accuracy dividend over a 

GMM-UBM system and that matched conditions consistently performed better for both ASR types. 

Results confirmed that the optimum frequency bandwidth settings broadly reflected that of speech 

with 0.0269 EER% obtainable at 0-11kHz, SR 22kHz (iVocalise system under matched 

conditions).   

As stated, DyViS data features only male speakers.  Male speakers with higher F3 and F4 mean 

values are likely to be more affected by constraining the frequency bandwidth below telephony 

than those with lower F3 and F4 mean values.  Results suggest that using the same ASR, with 

frequency bandwidth set to 0-4kHz, to compare female speakers would perform marginally worse 

since their speech generally contains higher average formant (F1, F2, F3) frequencies.  Although 

also not tested - child speech would be likely to perform worse than females. 

It was also demonstrated that when extending the frequency bandwidth, on both ASR systems, 

performance benefit (EER% and Cllr) could be gained over standard telephony bandwidth.  Benefit 

was greater in the i-vector system for extended frequency bandwidth under matched conditions.   

10.7 Discussion and Practical Application 
This section discusses the broader implications of the results from the experiments and places them 

into a practical context (e.g. investigative and forensic casework).  It provides recommendations 

based on findings in reference to the thesis objectives. 

At a practical level, results support that frequency bandwidth should be examined and considered 

at the technical assessment stage, i.e. prior to ASR analysis, preventing the use of ASRs on 

unsuitable audio.  Wideband ASRs are likely to be perform better than narrowband ASRs, 

particularly with regard to female and child speech.  ASR systems should be kept up to date in 

order to benefit from advances in technology/statistical modelling.  Results also tentatively 

support the hypothesis that there currently may be little dividend in extending sample rates for 

speech recordings beyond 22kHz (solely in the context of ASR/i-vector analysis).   
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On listening to approximately 20% of the audio files (>4kHz), most of the intelligible speech was 

gone and auditory discrimination would be next to impossible.  Nevertheless, within the high 

frequency unintelligible whispers, speakers exhibited slightly different qualities and certain 

speakers sounded dissimilar. 

Channels of communication are constantly evolving and casework requirements can arise where it 

is tempting to apply ASR analysis to speech data irrespective of frequency bandwidth.  In casework 

it is conceded that matching conditions for SM and questioned audio is likely to be impossible.  

Nevertheless, where the questioned audio exceeds the frequency bandwidth of the 

speaker model(s), results support the hypothesis that it might be possible to complete a controlled 

sample rate conversion ensuring the use of a brick-wall LPF to bring greater parity to conditions.  

Whilst this is likely to be controversial, due to the unmeasurable affect that this would have on 

case data, results showed it would be more likely to improve ASR performance than on an 

unmatched comparison. 

It was observed that performance did not degrade significantly by incorporating frequencies at 

the very high end of the frequency spectrum (i.e. >12kHz).  The DyViS samples are well 

recorded and the general lack of noise in the >12kHz frequency range notable.  Therefore, 

extending the frequency bandwidth to a very high frequency would be unlikely to 

register performance degradation in the experiments.  Whilst untested, a further recommendation 

would be in applying a LPF (at approximately 12kHz) if considering upgrading a narrow band 

ASR to a wide band system, simply to avoid any non-speech noise contamination at very high 

frequencies.   

Performance differences were found between GMM-UBM and i-vector/PLDA systems. As 

the frequency bandwidth dropped to 0-3kHz, SR 6kHz the EER elevated to 5.69% on the GMM-

UBM system in comparison to 1.0067%.  Performance gains could therefore be achieved by 

upgrading an older GMM-UBM ASR to an i-vector/PLDA system, especially when 

conducting speaker comparisons on lower frequency bandwidth samples (<0-4kHz).  In 

terms of practical recommendations, the experiments again highlight the importance of 

ensuring ASR systems are up to date. 

Orman and Aslan (2001) suggested a revised filter bank that improved on the Mel scale, stating it 

equally as important to improve the feature extraction part of the process as to improve 

the modelling.  Using the animated zoo plots it was also observed that the score height generally 

fell as the band limitation increased, even when the EER% was not particularly affected.    This 

was evidenced by the overall data points moving from the top right quadrant to the lower left.  

LLR Score trends like this are important to be aware of when examining a mixture of audio 

files at different sample rates.  It is also useful for setting system thresholds to mitigate for 

relatively low true positive or high false positive scores.  It was shown that in unmatched 

conditions, where either 
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the speaker model or test/questioned audio is of a higher sample rate, applying good quality sample 

rate conversion prior to ASR ingest should realise a performance benefit in both EER% and Cllr 

for either i-vector or GMM-UBM systems.  Finally, a tipping point or cliff effect was visible 

suggesting a potential threshold for ASR application.  This was particularly evident on the GMM 

Vocalise system and occurred as the frequency bandwidth dropped below 0-4kHz, 8kHz SR. 

 

In low net duration speech samples which are also frequency bandwidth constrained, it is suggested 

that this could mean that it would become much more important as to what was said and how 

phonetically rich that data is – within that constraint. 

 

Finally, on referring back to the preliminary testing and LTFD trials, it was noted that the difference 

in EER% from extending the LTFD extraction from F1, F2, and F3 to include F4 also provided a 

small performance improvement (Table 10.15, and 6.1).  This also supports the importance of 

higher frequencies (to ASR) and clearly, the inclusion of F4, assists with performance through the 

provision of more speaker-discriminatory information. 

 

Table 10.15: Results from preliminary tests, showing influence on EER% re addition of F4 
 

Software Engine UBM Extraction settings EER % 

Vocalise LTFD Type A SSBE 

UBM 

F1, F2, F3 32Gaussians 7.483 

Vocalise LTFD Type A SSBE 

UBM 

F1, F2, F3, F4 32 Gaussians 

(optimum) 

6.022 
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Chapter 11  Transcoding 

11.1  Introduction 
This chapter examines the influence of transcoded speech files on ASR systems, completing ten 

experiments (including baseline) under controlled conditions to determine the extent to which 

different codecs can degrade ASR performance.   

 

Baseline performance tests were created from one hundred DyViS speakers in .wav PCM format 

(task 1, mock interview data).  These were edited to provide 100 speaker models (SM) and 300 test 

audio (TA) files.  Nine different codecs were then applied to the baseline data using a total of 53 

different data compression settings.    

 

The baseline and transcoded data was then examined using two different ASR systems  a GMM-

UBM and an i-vector UBM, TV, LDA+PLDA.  Experiments were completed under matched 

speaker model (SM) and test audio (TA) conditions.  From preliminary experiments and research 

completed by others, it was established that mismatched conditions would provide poorer ASR 

performance.  In addition, permutations of mismatched conditions are almost infinite.  Only 

matched conditions were therefore considered in scope.  Results were analysed with regard to the 

transcoded material and baseline/control data (non transcoded). 

 

The chapter begins with a review of related research.  Questions are then specified with associated 

hypotheses.  An outline is presented of the experiments completed and results provided.  The 

research questions are revisited and the chapter concludes with discussion, offereing several 

practical recommendations for approaching transcoded casework data using ASR systems. 

 

11.2  Background 
To store, transmit and receive speech digitally requires a coder-decoder algorithm, commonly 

referred to as a codec.   

 

The UK has seen a transition from traditional landline and mobile telecommunications channels to 

integrated telecomms and computer network systems.   With the upsurge in smartphone use, 

upgraded 4G infrastrucutre, broadband and wifi methods of communications there has also been an 

increase in the types of codecs used and numbers of transcoding steps.  Higher data transfer speeds 

ensure audio and video exchanges are fast and generally higher in quality than traditional 

narrowband methods of communication.    
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Examples include voice over in internet protocol (VoIP) events, audio material from social media 

sites or speech data from smartphone applications.  Transcoding alogorithms which were 

previously more often used in IT systems are now encountered in telecommuncations channels (e.g. 

GSM or Speex/Opus).   In addition, codecs can combine in series as speech transitions through 

telecomms and IT infrastrucutre.   As  the signal path of the speech is more often unknown, it can 

become difficult to accurately assess which codecs speech has passed through and therefore to 

analyse speech accurately.   A greater variety of codecs integrated in the signal path can degrade 

the technical quality of speech in ways which can be difficult to quantify by a forensic examiner.   

 

Some codecs are regarded as lossless whilst others employ constrained and variable bit rates in 

terms of kilobytes per second (kbps) to preserve data bandwidth.  This can cause a codec to adapt 

compression levels to changing broadband/network speeds which then produces variable data 

compression and/or frequency bandwidths.  Other types of corruption can occur too such as 

subsecond data/packet loss, buffering and glitches or interfence.   

 

The motivation behind this research was to measure and examine the extent of degradation caused 

by a selection of codecs and to determine the degree to which ASR performance was affected. 

 

11.3  Literature Review 
Previous research has examined transcoding degredation in relation to ASR performance. 

 

Polacký, Pocta and Jarina (2016a; 2016b) describe codec degradation as one of the most prominient 

issues relating to telecommunications networks.  Their experiments used the TIMIT corpus 

(Linguistic Data Consortium) to assess 5 different codecs using a GMM-UBM ASR.  The codecs 

tested were G.711.1 at 96kbps, G.729 at 32kbps, AMR-WB, EVS-WB and Speex at 27.8kbps.  The 

term wide band (WB) generally refers to codecs operating at approximately 14kHz sample rate, as 

opposed to narrow band (NB) for those operating up to 7kHz sample rate.  The results were that 

EER% rates did not fluctuate significantly from a statistical context but were consistently better for 

matched rather than mismatched conditions.  Increasing compression rates degraded performance.   

Speex and enhanced voice services (EVS), for 4G, codecs performed well although the quality 

settings for the former vary in terms of data compression rates and were not specified.  In all 

instances mismatched conditions performed poorer than matched conditions. 

 
Table 11.1: Polacký, Pocta and Jarina EER% results (2016a: p.81) 

 G.711.
1 

G.729.
1 

AMR
6.6 

AMR
8.85 

AMR
12.65 

EVS
5.9 

EVS 
8 

EVS
13.2 

Speex 

Unmatched 4.37 4.11 10.74 8.22 6.85 8.95 7.01 2.26 2.45 
Matched 4.11 3.16 3.68 3.25 3.21 3.48 3.26 2.55 2.43 
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Jarina, Polacký, Počta and Chmulík (2017) expanded on the research using TIMIT and a GMM-

UBM ASR system to examine the influence of VoIP on performance.  Their results showed that 

G.711 and EVS, at higher settings, produced consistently better ASR performance than other 

codecs tested.  However, it should be noted that the constructed UBM contained all the speakers 

from the TIMIT database which could artifically improve performance level.  

 

Silovsky, Cerva and Zdansky (2011) evaluated 11 different lossy codecs in common use at the time.  

This is reproduced below in Table 11.2 with their results presented in Table 11.3.   Codecs were 

assessed against baseline data using an unspecified GMM-UBM ASR system and a corpus of 273 

speakers in spontaneous telephone conversation to generate SM and TA.  Their experiments were 

set for ‘matched’ where SM and TA were both passed through the codec (ideal conditions) and 

‘mismatched’ with only the TA passed through the codec (non-ideal conditions). 

 

In Table 11.2 (below) the following abbreviations apply. 

• DTX/CNG.  Discontinuous Transmission with Comfort Noise Generation.  Transmission 

is switched off and noise, relevant to the background noise during silent sections of speech, 

is generated to fill otherwise ‘empty’ sections of conversation.  This provides a more fluid 

communications experience to the participants and ensures that the impression is not given 

that the call has ended. 

 

•  PLC.  Packet Loss Concealment.  If a piece of transmitted information is missing then lost 

speech frames can, for example, be replaced by repeating a portion of the waveform or 

interpolating between the succesfully transmitted sections. 

 

• VBR.  Variable Bit Rate.  Dependent on the data bandwidth available the codec bit rate 

adjusts accordingly. 

 

• MOS.  Mean Opinion Score is effectively a score (1 = poor to 5 = good) which represents 

the perceived quality of the signal after compression and/or transmission.  MOS-ic and 

MOS-ns refers to ideal conditions or network stress accordingly (as defined by ITU-T 

standards). 
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Table 11.2: Silovsky, Cerva and Zdansky codecs evaluted (2011: p.206) 

Codec		 Creator		 Supported	bitrates	
[kb/s]		 Algorithm		 DTX/CNG		 PLC		VBR		MOS-ic		 MOS-ns		

G.711	A-
law		 ITU-T		 64.0		 log.	PCM		 yes		 yes		 no		 4.45		 4.11		

G.726		 ITU-T		 16.0	/	24.0	/	32.0	/	40.0	
a		

ADPCM		 no		 no		 no		 4.3	@	32	kb/s		
3.79	
@	32	kb/s		

G.728		 ITU-T		 16.0		 LD-CELP		 no		 no		 no		 N/A		 N/A		
G.729	
annex	I		 ITU-T		 6.4	/	8.0	/	11.8		 CS-ACELP		 yes		 no		 no		 4.04	@	8	kb/s		

3.51	@	8	
kb/s		

G.723.1	
annex	A		 ITU-T		 6.3		 MPC-MLQ		 yes		 no		 no		 4.08		 3.57		

G.723.1	
annex	A		

GSM-FR		

ITU-T		

ETSI		

5.3		 ACELP		 yes		 no		 no		 3.65b		 N/A		

13.0		 RPE-LTP		 no		 no		 no		 3.5b		 N/A		

GSM-HR		ETSI		 5.6		 VSELP		 yes		 no		 no		 N/A		 N/A		

AMR		 3GPP		 4.75	/	5.15	/	5.9	/	6.7	/	
7.4	/	7.95	/	10.2	/	12.2		 ACELP		 yes		 yes		 yes		

4.15	
@	12.2	
kb/s		

3.79	
@	12.2	kb/s		

iLBC		 Global	IP	
Solutions		 13.33	/	15.2		 BI-LPC		 no		 yes		 no		

4.14	
@	15.2	
kb/s		

N/A		

Speex		 Xiph.Org	
Foundation		2.15	–	24.6		 CELP		 yes		 yes		 yes		 N/A		 N/A		

SILK		 Skype		 6.0	–	20.0		 LP		 yes		 yes		 yes		 N/A		 N/A		

A	Bitrate	40	kb/s	is	not	
intended	for	speech	
encoding	and	
transmission	

b	This	value	is	not	
relative	to	the	
reference	MOS	value	
4.45	for	the	G.711	
codec	 
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Table 11.3: Silovsky, Cerva and Zdansky results (2011: p.207) + annotation 

 
 Indicates performance improvement (relative to baseline) 

 

Silovsky, Cerva and Zdansky (2011) results demonstrated that ASR performance drops when 

applying almost all codecs and in particular Speex and/or those with relatively low kbps settings 

(e.g. G.726 16kbps).  The small EER% performance improvements were not explained, but a 

plausible explanation could relate to matched SM and TA conditions and/or the composition of the 

normative data with respect to codec.  The main purpose of their experiment was to examine 

telecommunications speech data and the specification of the untreated audio was therefore 8 bit A-

law and sampled at 8kHz.  This could explain their relatively high baseline of 7.74% EER on a 

GMM-UBM ASR.  It was noted that some speech samples were less than 10 seconds in duration 

and it is suggested that net duration was likely to have also influenced results as in chapter 7.  SILK 
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provided less degradation overall and in one instance marginaly improved against baseline results 

(-5.17% EER).  In conclusion, it was found that most codecs negatively influenced ASR 

performance with a few exceptions that could relate to closer matching of channel conditions and/or 

normative data wth respect to codec.  This paper assisted in informing the methodology for the 

experiments conducted in this chapter and added further objectives such as using wider band 

speech, with greater net duration and a more modern i-vector/UBM, TV, LDA+PLDA system.    

 

Janicki and Staroszczyk (2011) used a GMM-UBM ASR system and the TIMIT corpus of 630 

speakers to examine the effects of 6 codecs on performance.  The codecs assessed, predominately 

used in telecommunications at the time, were G.711, G.723, GSM06.10, GSM06.60, G.729 and 

Speex setting 8.  It was interesting to note that the range of codecs has diversified over recent years 

to include a much wider variety of proprietry codecs such as 3GPP, Opus and ADPCM.  Widening 

the range of codecs in use is likely to make ASR benchmarking and subsequent analysis more 

difficult since the technical influence of each codec is unknown.  One of the key objectives of the 

study was to find which codec created speaker models that were the most resiliant to mismatch 

using support vector machine classification (SVM).   The utterances in TIMIT are relatively short 

(3.2s average) suggesting that net duration was likely to have influenced results (chapter 7) but they 

were relatively higher in quality than those used in the Silovsky study at 16bit, 16kHz sample rate 

suggesting that the increase in frequency bandwidth could potentially ofset the low net duration.    

Results were expressed as percentage correct rather than EER%. 

 

Table 11.4: Janicki and Staroszczyk codec results (2011: p.296), bold=best % correct  

 
 

Janicki and Staroszczyk (2011) demonstrated that ideal/matched conditions outperformed the 

mismatched conditions.  Conversely to the Silovsky study, Janicki and Staroszczyk suggested that 

Speex provided less deterioration in performance against baseline.   Again, the difference in 

findings could be explained by codec configuration, since Speex has 15 different modes with 10 

quality settings and the full detail of the exact configuration was not provided.    
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Another interesting finding in the Janicki and Staroszczyk (2011) study was that the increase in the 

number of gaussian mixture models (i.e. improving the detail/richness in the statistical model for 

the degraded speech files over the baseline number of gaussians extracted) appeared to also benefit 

ASR performance (2011: pp.295-297). 

 

Nandan and Saha (2012) examined bit rate, noise addition and packet loss in the context of VoIP 

and mobile communication in relation to ASR performance (GMM-UBM).  They used the YOHO 

corpus (1994) which features English language speakers reading aloud two digit numbers.  It is 

recorded at 4kHz bandwidth, microphone, single channel pcm.   Nandan and Saha showed that the 

performance loss caused by GSM-AMR was important, was relatively large 2.35% to 12.2% EER 

and noise also degraded performance (2.35% EER to 11.22% EER at 20db SNR).   Nandan and 

Saha suggested that packet loss was, overall, somewhat less important to ASR performance 

although there detail is not provided as to the extent.  Nandan and Saha also make an assumption 

that ‘lowering the bit-rate does not compromise with the speaker’s ‘biometric identitfy’ (2012: p.4).  

This runs counter to the experiments completed in this thesis (chapter 11).  It is also suggested that 

net duration likely influenced their performance figures (see chapter 7).    

 

Becker, Broß  and Meier (2011) examined MP3 compression on a bespoke ASR system (GMM-

UBM) using 102 male Romanian speakers recorded at 8kHz, 16bit.  They found a significant 

deterioration in performance at very low conversion bit rates to MP3 (8kbps) although EER% in 

standard terms is not expressed.  However, they also found that compression at other rates (16kbps 

and 32kbps)  actually caused some improvement in discrimination performance for certain 

recordings, in terms of TP LLR score size and separation from FP.   The study also pointed out that 

transcoding history is often an unknown variable.    

 

In the Polacký, Pocta and Jarina (2016) study marginal degredation of ASR performance was 

described as nonsignificant (EER% ranged from 2.43% to 10.74%).  In their study, the poorest 

performing ivector system was 2% EER against a baseline of .0051%.   It could be argued that a 

system that is 98% accurate as opposed to 99.99% accurate is unimportant.   However, other factors, 

besides EER%, must be taken into consideration than simply the transcoding of high quality speech 

data from a well recorded corpus such as accuracy (Cllr) and score separation (LR/LLR).  

 

Research by Petracca, Servetti and DeMartin (2006) examined several codecs (and net duration).  

They used a GMM-UBM system to examine GSM AMR, G.729, G.723 and two other proprietry 

VoIP codecs at 10 different settings.  The dataset used consisted of 14 speakers which, it could be 

argued, is a relatively small set of data.  The TA length was varied in relation to the SM (10s, 20s 

and 30s).  The group concluded that the ‘recognition performance does not always decrease with 

the coder bit rate’ (2006, p.1396).  This is true, but to be expected, since codecs work in different 
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ways in terms of compression on different aspects and ranges of the frequency spectrum.  

Interestingly, their research also demonstrated that increasing net duration could offset ASR 

performance loss from codec compression (to some extent). 

 

Stauffer and Lawson (2009) studied the Speex codec at different settings on an unspecified GMM-

UBM ASR system using a bespoke corpus of 240 conversatons at 120 seconds long, 60 second net 

at 8kHz sample rate, 16bit.  Their study found that Speex, as long as it was applied at the highest 

quality settings, actually produced only a 1% drop in relative (A)SR performance although the low 

quality settings degraded performance by 22% (2009: p.2366).  

 

11.4  Questions and Hypotheses 
After consideration of research literature the following research questions were defined and 

hypotheses formulated. 

 

Q1 How resilient are more modern i-vector/PLDA ASR systems to codec degredation in 

comparison with GMM-UBM systems?   

H1 I-vector/PLDA systems are likely to be more resilient to the loss of speech data through 

compression than GMM-UBM systems.  This is due to the improvements in the accuracy of 

statistical modelling as well as other modifications to the feature extraction and speech detection 

phases. 

 

Q2 To what extent does ASR performance degrade when transcoding processes are 

applied to baseline data? 

H2 Since transcoding often removes data through compression and/or band limitation ASR 

performance will be degraded in all cases to varying degrees.  This is likely to be proportionate to 

the extent of the data loss and any band limiting with regard to speech frequencies (approximately 

>50Hz to 16kHz).  Effectively, greater deterioration to the speech formants will result in larger 

performance loss. 

 

Q3 How will compression codecs influence ASR performance? 

H3 Performance decreases are likely to be proportionate to the extent of the data compression 

inherent in the transcoding settings.  More compression will produce greater degradation in EER%.  

Codecs which also limit frequency bandwidth are also likely to degrade performance, as noted in 

chapter 10.  Codecs which add noise and therefore limit the net duration, which passes the speech 

detection or VAD are also likely to degrade ASR performance. 

 

Q4 Can any operating thresholds be extrapolated relating to data compression rates 

which may assist with informing ASR use?  
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H4 Measuring performance thresholds will be extremely difficult due to the very large variety 

of codecs in existence, the multiple settings that they use and the variation inherent in speech and 

recoding environments.  However, it may be possible to form some broad conclusions if there are 

codecs/settings with important deleterious effects on ASR performance under both GMM-UBM 

and i-vector systems. 

 

11.5  Methodology and Materials 
Please see chapter 5, with the following adaptations.  

Baseline data comprises 100 DyViS speakers from the task 1 interview channel in .wav PCM 

format.  This was edited to generate 100 speaker models and 300 test audio files.  These comprised 

of 1x minute SM and the remaining file divided to create 2x 1 minute TA files with residual data 

comprising the third test audio file.   

11.5.1 List of Codecs for Comparison 
Nine codecs with a total of 53 different settings were chosen for comparison. These were chosen 

to pertain to telecommunications and computer network application (Table 11.5).   

 
Table 11.5: Codec types used in experiments with settings  

Codec Type Settings Comments 

WAV 16bit. 22kHz  352kbps (Control/Baseline).  

Speex Quality 0 to 10 10 = highest quality  

MP3 CBR 8, 16, 32, 64 & 128 kbps Constant Bit Rate 

MP3 VBR 8kbps to 320kbps VBR Variable Bit Rate.  Quality 4 & 9(high) 

ADPCM 6, 8, 16, 22kHz Dialogic 

G. 711 6, 8, 16, 22kHz uLaw 

G. 711 6, 8, 16, 22kHz aLaw 

AMR 4.75, 7.4, 12.2kbps 3GPP 

Ogg Quality 0, 1, 2, 3 3 = highest quality 

Opus 6, 8, 10, 12kbps Constant Bit Rate 

M4a AAC 10%, 50%, 100%  Variable Bit Rate (% of 120kbps) 

GSM Standard (one setting) 2bit 6.10 Audio Stream (8kHz 16bit) 

 

NCH software, Switch (2017/18 version) (nchsoftware.com), was used to batch transcode the 

baseline data through 9 different codecs.  For file acceptance into Vocalise and iVocalise it was 

necessary to transcode back to 16bit PCM .wav (baseline sample rate of 16kHz was applied to 

avoid conflation of variables).  The process was validated using the Free Lossless Audio Codec 
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(xiph.org/FLAC) to ensure that the reconversion back to PCM .wav process did not influence 

results. 

 

Settings were partially determined by the options available within the conversion software and 

commonality.  Settings were deliberately weighted to favour the lower end of the codec’s operating 

thresholds as very high quality and lossless codecs (e.g. FLAC as used to validate the process) had 

no effect on performance.   Experiments were completed in order, with the lowest codec setting 

first and incrementally increased until performance was close, or matched, baseline EER% and Cllr 

(accuracy).  Both the SM and TA files were transcoded (matched conditions).  As previously stated, 

mismatched conditions provide poorer performance and were considered out of scope.   

A brief summary description of the codec types selected follows.  The decsriptions refer to the 

context of these experiments and first generation transcoding (i.e. not passed through any other 

codec).  

  

Waveform Audio File or .wav is a long established (IBM/Microsoft, 1991) lossless audio file 

format which does not apply data compression.  To that extent, wav files are ideal for generating 

baseline data.   

 

Speex Speex.org was a popular free (open source) data compression codec, last released in 

December 2016.  It has recently been somewhat superceded by Opus (below) although Speex is 

still prevalant in IT systems and networks.   

 

MP3 or MPEG3 (Moving Picture Experts Group) Mpeg.chiariglione.org is a lossy compression 

algorithm that works on psychoacoustic or perceptual principles.  In essence, if a human cannot 

perceive a frequency because it is is out of range or obscured by another (louder/more dominant) 

sound, it is reduced or removed using data compression.   

 

Dialogic  Dialogic.com/ADPCM. Adaptive Differential Pulse Code Modulation (ADPCM) is a 

data compression algorithm that essentially records the difference between samples and adapts 

according to the scale of the difference.  The data compression is applied on recording and the data 

is decompressed on playback, offering less loss over other algorithms. 

 

G.711 Itu.int/rec/T-REC-G.711/en is a telecommunications codec which was developed in 1972.  

It is a lossy alogorithm which effectively compresses and then expands the dynamic range 

(companding). 

 

AMR 3gpp.org or Adaptive Multi-Rate codec has undergone several revisions since its 

introduction in 1999.   It was designed for speech transmission and reception and is regarded as 
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lossy due to the applcation of data compression.  In addition, the codec also constrains frequency 

bandwidth to 8kHz (13bit) which is also then filtered to 200Hz-3.4kHz. 

 

Ogg is an open source file protocol Xiph.org/ogg designed to be very configurable.  The extent of 

data compression depends on the incoming file and, in the context of these experiments, a quality 

setting (NCH Switch software).   Average bit rate is then determined by the incoming file and a 

quality setting 0 (lowest) to  3 (highest). 

 

Opus Opus-codec.org/ (2012) was also designed by Xiph and combined codecs from Skype (SILK) 

and constrained energy lapsed transform (CELT) to improve the quality of speech whilst addressing 

some of the latency issues inherent in VoIP communications.   Whilst a lossy codec, it is generally 

accepted that Opus maintains clearer and more intelligible speech at lower bit rates than earlier 

generation codecs.  As a result, Opus is rapidly becoming the industry standard.   

 

M4a Mpeg.chiariglione.org/standards/mpeg-4/audio is essentially an MPEG container which holds 

only audio, rather than audio and video (as per MP4).  The audio algorithm can encode in advanced 

audio codec (AAC) or the Apple lossless audio codec (ALAC).   AAC at three different quality 

settings  was chosen, as these are commonly encountered.  They are reffered to as ‘10%’ or 12kbps, 

‘50%’ or 60kbps and ‘100%’ or 120kbps) and the data compression in this codec works in a 

perceptual way, similar to MP3. 

 

GSM Etsi.org.  GSM or Global System for Mobile communications (version 06.10) is a standard 

digital, mobile telecommunications codec that uses linear predictive coding or LPC (13bit, 8kHz 

sample rate).    

11.5.2 Automatic Speaker Recognition Systems 
The baseline and transcoded data was examined using two separate ASR systems (Appendix G): 

i. OWR Vocalise, GMM-UBM system: version 1.5.0.1190, MFCC engine, 32 Gaussians, 16 

features. 

ii. OWR iVocalise, i-vector/UBM, TV, LDA+PLDA system: version 2.1.0.1366, PLDA set 

‘2016A-1024-D-CMS-Large-VAD-NoDyViS-20Apr16’.  The TV was set to 400 

dimensions, the PLDA was set to 200 dimensions and 10 train cycles.   

 

Note that, as with all other experiments, neither normative datasets used in the experiments 

contained any DyViS corpus material, to avoid artificially elevating ASR performance results.   

 

Results were compared with respect to the transcoded material and baseline data (non transcoded).   

Bio-Metrics version 1.8.0.704 was used for graphing and plotting results from the .csv output files 
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(EER%, Cllr).  Explanations for EER, H0, H1, Cllr, FRR, FAR are provided in chapters 3, 3(3.5) 

and 9(9.5). 

 

11.6  Results  
Tables 11.6 and 11.7 below summarise the results from the i-vector/PLDA and GMM-UBM ASR 

transcoding experiments. 

 



Table 11.6: Transcoding results.  OWR iVocalise, i-vector/PLDA ASR 

                
Matched conditions  

ASR: i-vector/PLDA  

All files passed VAD            

Test		 Codec	 Settings	 EER	 EER	
qp	

%	
Change	
relative	

to	
baseline	
EER	

Cllr	 Mean	H0	 Mean	H1	 H0	SD	 H1	SD	

FAR,	
FRR	

FAR,	
FRR	 FAR,	FRR	

100	 1000	 10,000	

	 	 	

1 
Baseline 

 Control 352kbps 

22kHz (SR)  .wav 0.0051 
n 

0.00 0.113 69.980 -49.929 11.942 26.062 0.00 0.00 1.33 

2 Speex 
 Quality 0 at 16kHz 
(Low)  2.0084 q -39,280 20.984 82.348 28.601 8.758 17.451 3.33 17.84 36.35 

3 Speex  Quality 1 at 16kHz   1.2609 q -24,623 5.967 70.537 -0.284 10.762 21.028 1.33 9.67 22.36 
4 Speex  Quality 2 at 16kHz  0.6397 q -12,443 1.989 66.939 -16.706 11.888 22.709 0.33 2.33 8.68 
5 Speex  Quality 3 at 16kHz  0.6532 q -12,707 1.095 66.974 -23.820 12.081 23.146 0.33 2.33 5.00 
6 Speex  Quality 4 at 16kHz  0.3081 q -5,941 0.322 66.183 -36.587 12.560 24.298 0.00 0.67 2.33 
7 Speex  Quality 5 at 16kHz  0.0320 q -527 0.148 66.228 -45.304 12.317 25.333 0.00 0.00 0.67 
8 Speex  Quality 6 at 16kHz  0.0303 q -494 0.146 66.241 -45.502 12.344 25.344 0.00 0.00 0.67 
9 Speex  Quality 7 at 16kHz  0.0185 q -263 0.106 66.848 -48.871 12.281 25.698 0.00 0.00 1.00 

10 Speex  Quality 8 at 16kHz  0.0118 q -131 0.106 66.848 -48.876 12.291 25.698 0.00 0.00 1.00 
11 Speex  Quality 9 at 16kHz  0.0236 q -362 0.105 67.628 -49.702 12.231 25.849 0.00 0.00 1.33 

12 Speex 
 Quality 10 at 16kHz 
(High)  0.0286 q -460 0.105 67.630 -49.703 12.251 25.841 0.00 0.00 1.34 

13 MP3  CBR 8kbps  2.0892 q -40,864 13.158 71.626 15.782 10.527 18.733 3.67 19.48 39.33 
14 MP3  CBR 16kbps  0.3367 q -6,501 0.995 67.717 -28.423 11.828 25.256 0.00 1.00 9.01 
15 MP3  CBR 32kbps  0.0084 q -64 0.112 67.672 -50.363 11.948 26.125 0.00 0.00 2.00 
16 MP3  CBR 64kbps  0.0051 n 0 0.110 69.285 -49.911 12.092 25.994 0.00 0.00 1.00 
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Test	 Codec Settings EER EER	
qp 

%	
Change	
relative	

to	
baseline	
EER 

Cllr Mean	H0 Mean	H1 H0	SD H1	SD 
FAR,	
FRR	
100 

FAR,	
FRR	

1,000 

FAR,	
FRR	

10,000 

17 MP3 CBR 128kbps 0.0051 n 0 0.114 69.885 -49.949 11.985 26.079 0.00 0.00 0.67 

18 MP3 VBR 8-16kbps Quality 4 0.0051 n 0 0.108 69.288 -49.816 11.966 25.949 0.00 0.00 0.33 

19 MP3 VBR 16-32kbps Quality 4 0.0051 n 0 0.108 69.288 -49.816 11.966 25.949 0.00 0.00 0.33 

20 MP3 
VBR 8-16kbps Quality 9 

(lowest) 0.0219 q -329 0.249 67.526 -39.509 12.190 24.173 0.00 0.00 4.02 

21 
MP3 

VBR 16-32kbps Quality 9 
(lowest) 0.0185 q -263 0.247 67.453 -39.509 12.129 24.133 0.00 0.00 1.33 

22 MP3 
VBR 32-64kbps Quality 9 

(lowest) 0.0404 q -692 0.246 67.372 -39.780 12.191 24.172 0.00 0.00 6.67 

23 
MP3 

VBR 64-128kbps Quality 
9 (lowest) 0.032 q -527 0.244 67.374 -39.815 12.205 24.168 0.00 0.00 5.37 

24 MP3 
VBR 128-256kbps 
Quality 9 (lowest) 0.0522 q -923 0.275 68.205 -38.752 11.949 23.930 0.00 0.33 4 

25 
MP3 

VBR 160-320kbps 
Quality 9 (lowest) 0.0522 q -923 0.275 68.205 -38.752 11.949 23.930 0.00 0.33 4 

26 ADPCM Dialogic 6kHz 0.0825 q -1,517 20.776 90.343 28.134 7.471 17.578 0.00 0.00 6.68 

27 ADPCM Dialogic 8kHz 0.0269 q -427 0.383 68.731 -35.748 11.030 24.772 0.00 0.00 0.67 

28 ADPCM Dialogic 16kHz 0.0034 p 33 0.100 67.830 -50.532 12.169 26.310 0.00 0.00 0.00 

29 ADPCM Dialogic 22kHz 0.0034 p 
33 0.095 68.293 -51.401 12.332 26.444 0.00 0.00 0.00 

30 G.711 uLaw 6kHz 0.0488 q -857 10.525 84.909 11.156 8.636 18.701 0.00 0.00 1.33 

31 G.711 uLaw 8kHz 0.0067 q -31 0.110 68.507 -50.100 11.936 26.262 0.00 0.00 0.33 

32 G.711 uLaw 16kHz 0.0051 n 0 0.113 69.980 -49.929 11.942 26.062 0.00 0.00 1.33 

33 G.711 uLaw 22kHz 0.0051 n 0 0.104 69.521 -50.680 11.914 26.154 0.00 0.00 0.33 

34 G.711 aLaw 6kHz 0.0387 q -658 10.246 84.920 10.569 8.531 18.803 0.00 0.00 0.67 

35 G.711 aLaw 8kHz 0.0034 p 33 0.100 68.052 -50.916 11.954 26.282 0.00 0.00 0.00 

36 G.711 aLaw 16kHz 0.0051 n 0.00 0.103 69.434 -50.623 11.860 26.162 0.00 0.00 0.33 

37 G.711 aLaw 22kHz 0.0051 n 0.00 0.104 69.450 -50.626 11.880 26.137 0.00 0.00 0.68 



 227 

Test	 Codec Settings EER EER	
qp 

%	
Change	
relative	

to	
baseline	
EER 

Cllr Mean	H0 Mean	H1 H0	SD H1	SD 
FAR,	
FRR	
100	

FAR,	
FRR	

1,000 

FAR,	
FRR	

10,000 

38 AMR 3GPP AMR 4.75kbits 0.9983 q -19,474 0.670 64.771 -30.814 12.160 24.651 1.00 2.00 6.68 

39 AMR 3GPP AMR 7.4kbits 0.6667 q -12,973 0.280 64.575 -39.856 12.181 25.580 0.33 1.00 3.33 

40 AMR 3GPP AMR 12.2kbits 0.3316 q -6,402 0.168 65.770 -45.470 12.147 26.224 0.00 0.67 1.67 

41 OGG OGG Quality 0 (Lowest) 0.3047 q -5,874 0.262 70.594 -44.059 11.897 26.515 0.00 0.67 2.84 

42 OGG OGG Quality 1 0.0051 n 0 0.113 69.980 -49.929 11.942 26.062 0.00 0.00 1.33 

43 OGG OGG Quality 2 0.0067 q -31 0.126 69.310 -48.989 12.134 25.891 0.00 0.00 1.35 

44 OGG OGG Quality 3 0.0067 q -31 0.116 69.267 -49.263 12.170 25.873 0.00 0.00 1.34 

45 OPUS CBR (Hard) 6kbps 0.3300 q -6,370 1.092 69.603 -23.080 11.278 22.870 0.33 0.33 2.33 

46 OPUS CBR (Hard) 8kbps 0.0387 q -658 0.179 65.672 -42.337 12.514 24.862 0.00 0.00 1.67 

47 OPUS CBR (Hard) 10kbps 0.0168 q -229 0.153 67.154 -44.759 11.809 25.218 0.00 0.00 0.67 

48 OPUS CBR (Hard) 12kbps 0.0421 q -725 0.279 69.619 -37.120 12.439 23.696 0.00 0.00 1.00 

49 OPUS CBR (Hard) 14kbps 0.0236 q -363 0.213 69.579 -40.700 12.339 24.245 0.00 0.00 0.33 

50 OPUS CBR (Hard) 16kbps 0.0051 n 0 0.136 67.632 -46.183 12.202 25.441 0.00 0.00 1.00 

51 
M4a 

AAC VBR Quality 10% 
[12kbps VBR] 0.7323 q -14,259 6.405 73.735 -0.037 9.532 22.141 0.57 3.67 9.70 

52 M4a 
AAC VBR Quality 50% 

[60kbps VBR] 0.0236 q -362 0.139 69.245 -48.510 11.90094 26.137 0.00 0.00 2.01 

53 M4a 
AAC VBR Quality 100% 

[120kbps VBR] 0.0051 n 0 0.102 69.012 -50.382 11.86721 25.815 0.00 0.00 1.33 

54 GSM 2bit 06.10 Audio Stream 0.0051 n 0 0.371 69.669 -33.982 11.20481 23.201 0.00 0.00 0.33 
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Table 11.7: Transcoding results.  OWR Vocalise ASR, GMM-UBM  
 

Matched conditions GMM-UBM               

Test		 Codec	 Settings	 HO	|	H1	Elements	
(passing	VAD)	 EER	 EER	

qp	

%	Change	
relative	to	
baseline	
EER	

Cllr	 Mean	H0	 Mean	H1	 H0	SD	 H1	SD	

FAR,	
FRR	

FAR,	
FRR	

FAR,	
FRR	

100	 1000	 10,000	

	 	 	

1 
Baseline 

Control 352kbps 22kHz 

(SR)  .wav 
300 | 29700 

2.3889 
N/A 

0 1.013 3.017 1.008 0.553 0.555 7.00 21.88 53.33 

2 Speex Quality 0 at 16kHz (Low) 300 | 29700 16.7205 q -599 1.861 3.592 2.450 0.654 0.599 64.22 83.00 87.34 

3 Speex Quality 1 at 16kHz 300 | 29700 15.0522 q -530 0.901 1.585 0.470 0.747 0.746 48.53 82.19 92.34 

4 Speex Quality 2 at 16kHz 300 | 29700 8.2542 q -245 0.817 1.764 0.413 0.472 0.580 33.00 65.92 81.00 

5 Speex Quality 3 at 16kHz 300 | 29700 6.9949 q -192 0.806 1.990 0.432 0.504 0.613 30.62 67.33 88.67 

6 Speex Quality 4 at 16kHz 300 | 29700 5.0589 q -111 0.730 2.007 0.251 0.499 0.627 19.04 48.15 71.00 

7 Speex Quality 5 at 16kHz 300 | 29700 3.7104 q -55 0.664 1.996 0.077 0.504 0.635 11.67 32.38 57.35 

8 Speex Quality 6 at 16kHz 300 | 29700 3.0825 q -29 0.643 1.925 0.003 0.484 0.633 9.00 30.53 46.69 

9 Speex Quality 7 at 16kHz 300 | 29700 3.3569 q -40 0.641 2.036 0.021 0.511 0.644 7.39 28.26 43.33 

10 Speex Quality 8 at 16kHz 300 | 29700 3.6599 q -53 0.656 2.092 0.071 0.524 0.652 9.19 31.67 51.00 

11 Speex Quality 9 at 16kHz 300 | 29700 2.6650 q -11 0.657 2.176 0.091 0.528 0.656 7.42 28.22 45.52 

12 Speex Quality 10 at 16kHz (High) 300 | 29700 2.9209 q -22 0.667 2.198 0.120 0.533 0.662 9.67 27.82 43.68 

13 MP3 CBR 8kbps 300 | 29700 28.4933 q -1,093 4.830 7.872 6.693 1.115 0.913 81.00 94.67 97.33 

14 MP3 CBR 16kbps 300 | 29700 13.2845 q -456 1.342 3.274 1.585 0.791 0.746 57.44 81.07 89.33 

15 MP3 CBR 32kbps 300 | 29700 3.2357 q -35 0.633 1.769 -0.054 0.450 0.583 7.63 34.82 64.35 

16 MP3 CBR 64kbps 256 | 25224 3.1404 q -31 0.696 2.268 0.217 0.485 0.639 6.71 22.89 41.78 
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Test		 Codec	 Settings	 HO	|	H1	Elements	
(passing	VAD)	 EER	 EER	

qp	

%	Change	
relative	to	
baseline	
EER	

Cllr	 Mean	H0	 Mean	H1	 H0	SD	 H1	SD	

FAR,	
FRR	

FAR,	
FRR	

FAR,	
FRR	

100	 1000	 10,000	

17 MP3 CBR 128kbps 58 | 5585 4.8602 q -103 0.722 2.466 0.305 0.585 0.644 12.07 18.97 36.97 

18 MP3 VBR 8-16kbps Quality 4 300 | 29700 2.2896 p 
4 0.927 2.739 0.823 0.494 0.520 4.77 16.43 40.01 

19 MP3 VBR 16-32kbps Quality 4 292 | 28908 3.0839 q -29 0.692 2.311 0.213 0.506 0.645 5.99 23.04 42.88 

20 MP3 
VBR 8-16kbps Quality 9 

(lowest) 230 | 22702 16.5729 q -594 1.328 2.841 1.319 1.311 1.217 66.03 94.48 98.14 

21 MP3 
VBR 16-32kbps Quality 9 

(lowest) 230 | 22618 14.2988 q -499 1.317 2.885 1.371 1.145 1.075 57.67 93.91 99.02 

22 MP3 
VBR 32-64kbps Quality 9 

(lowest) 230 | 22618 15.6163 q -554 1.330 2.826 1.321 1.315 1.195 63.16 93.91 99.57 

23 MP3 
VBR 64-128kbps Quality 9 

(lowest) 230 | 22618 16.2228 q -579 1.309 2.854 1.331 1.183 1.144 60.87 93.94 98.7 

24 
MP3 

VBR 128-256kbps Quality 
9 (lowest) 

240 | 23432 
17.7948 q -645 1.430 3.095 1.615 1.160 0.991 63.31 90.00 97.5 

25 MP3 
VBR 160-320kbps Quality 

9 (lowest) 240 | 23432 15.7948 q -561 1.430 3.095 1.615 1.160 0.991 63.31 90.00 97.5 

26 ADPCM Dialogic 6kHz 300 | 29700 4.5993 q -92 1.210 2.787 1.368 0.418 0.459 13.48 34.63 51.68 

27 ADPCM Dialogic 8kHz 300 | 29700 1.3266 p 
44 0.587 1.704 -0.197 0.367 0.573 3.00 8.72 20.03 

28 ADPCM Dialogic 16kHz 300 | 29700 2.0219 p 
15 0.541 1.857 -0.339 0.491 0.688 4.00 15.14 31.34 

29 ADPCM Dialogic 22kHz 300 | 29700 2.6418 q -11 0.627 2.067 -0.013 0.488 0.664 6.00 21.33 33.39 

30 G.711 uLaw 6kHz 300 | 29700 7.9697 q -234 1.553 3.662 1.973 0.670 0.586 35.33 72.43 82.67 

31 G.711 uLaw 8kHz 300 | 29700 2.2795 p 
4.6 0.649 2.282 0.101 0.529 0.529 6.00 15.33 30.33 

32 G.711 uLaw 16kHz 300 | 29700 2.9529 q -24 0.745 2.532 0.369 0.541 0.666 7.17 23.10 45.34 

33 G.711 uLaw 22kHz 300 | 29700 3.2828 q -37 0.724 2.402 0.275 0.605 0.715 6.67 22.77 46.04 

34 G.711 aLaw 6kHz 300 | 29700 8.3064 q -248 1.564 3.681 1.991 0.681 0.592 36.57 72.88 85.69 

35 G.711 aLaw 8kHz 300 | 29700 2.5640 q -7 0.648 2.294 0.098 0.530 0.626 5.33 14.55 36.69 

36 G.711 aLaw 16kHz 300 | 29700 2.3182 p 
3 0.613 2.275 -0.018 0.543 0.689 4.69 19.67 47.34 
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Test		 Codec	 Settings	 HO	|	H1	Elements	
(passing	VAD)	 EER	 EER	

qp	

%	Change	
relative	to	
baseline	
EER	

Cllr	 Mean	H0	 Mean	H1	 H0	SD	 H1	SD	
FAR,	
FRR	
100	

FAR,	
FRR	
1,000	

FAR,	
FRR	

10,000	

37 G.711 aLaw 16kHz  300 | 29700  2.6549 q -11.13 0.715 2.412 0.282 0.517 0.658 5.33 20.33 50.01 

38 AMR 3GPP AMR 4.75kbits 300 | 29700 6.9714 q -192 1.248 2.786 1.432 0.467 0.479 25.67 51.62 69.36 

39 AMR 3GPP AMR 7.4kbits 300 | 29700 4.7441 q -99 1.141 2.886 1.242 0.487 0.544 16.73 36.33 53.00 

40 AMR 3GPP AMR 12.2kbits 300 | 29700 3.4040 q -42 1.037 2.885 1.044 2.885 0.567 10.33 26.67 38.69 

41 OGG OGG Quality 0 (Lowest) 300 | 29700 4.1044 q -72 0.697 2.215 0.198 0.590 0.653 14.90 56.22 78.67 

42 OGG OGG Quality 1 300 | 29700 2.9529 q -24 0.745 2.532 0.666 0.541 0.666 7.17 23.10 45.34 

43 OGG OGG Quality 2 300 | 29700 3.0034 q -26 0.683 2.186 0.170 0.504 0.632 8.33 33.87 63.67 

44 OGG OGG Quality 3 300 | 29700 2.9680 q -24 0.686 2.231 0.184 0.493 0.641 7.14 31.67 49.70 

45 OPUS CBR (Hard) 6kbps - Error 0 | 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

46 OPUS CBR (Hard) 8kbps 300 | 29700 7.1734 q -200 0.773 1.834 0.331 0.556 0.535 34.67 68.67 83.00 

47 OPUS CBR (Hard) 10kbps 300 | 29700 5.3283 q -123 0.726 1.992 0.244 0.578 0.577 24.88 63.87 80.33 

48 OPUS CBR (Hard) 12kbps 300 | 29700 5.5791 q -134 0.750 2.009 0.307 0.586 0.570 27.42 64.72 84.68 

49 OPUS CBR (Hard) 14kbps 300 | 29700 4.9495 q -107 0.723 2.099 0.254 0.607 0.588 22.79 60.00 80.68 

50 OPUS CBR (Hard) 16kbps 300 | 29700 4.3519 q -82 0.723 2.205 0.272 0.595 0.607 19.07 57.22 74.67 

51 M4a 
AAC VBR Quality 10% 

[12kbps VBR] Error 0 | 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

52 
M4a 

AAC VBR Quality 50% 
[60kbps VBR] 

300 | 29700 
7.7677 q -225 1.044 2.713 1.025 0.577 0.662 42.89 72.36 84.70 

53 M4a 
AAC VBR Quality 100% 

[120kbps VBR] 300 | 29700 3.3451 q -40 0.738 2.263 0.323 0.494 0.628 8.94 30.10 62.34 

54 GSM 2bit 06.10 Audio Stream 300 | 29700 2.6448 q -11 0.727 1.918 0.263 0.360 0.502 6.33 17.05 30.01 

               



Figure 11.8: MP3 EER% results i-vector/PLDA 

 
 
 

Note the tipping point between 16kbps and 8kbps on Figure 11.8, with diminishing 

EER% performance gains evident between 32kbps up through to 64kbps and no further 

benefit up to 128kbps.  

 
Figure 11.9: Speex EER% results, i-vector/PLDA  
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Figure 11.10: ADPCM EER% results i-vector/PLDA  

 
 
 
 
 
Figure 11.11: Opus EER% results i-vector/PLDA 
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Figure 11.12: G.711 EER% results i-vector/PLDA 

 
 
Note lowest EER% (on uLaw) at 6kHz (Figure 11.12), likely due to partial loss of F3. 

 
Figure 11.13: Speex EER% results GMM-UBM 
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Figure 11.14: MP3 CBR EER% results GMM-UBM 

 
 
 
Figure 11.15: Opus CBR EER% results GMM-UBM 
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Figure 11.16(i): G.711 EER% results GMM-UBM 

 
 
Note the two peaks showing poorer EER% performance for aLaw 6kHz and uLaw 6kHz 

results.  This is likely due to the degradation/loss of F3 which is less affected in the aLaw 8kHz 

and uLaw 8kHz (and higher sample rate) data. 

 
Figure 11.16(ii): ADPCM EER% results GMM-UBM 
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Figure 11.17(i): Baseline zoo plot. GMM-UBM ASR Vocalise (1 of 2) 

 
Speaker labels are switched ‘off’ to view speaker distribution rather than individual speaker performance. 
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Figure 11.17(ii): Baseline zoo plot. i-vector/PLDA ASR iVocalise (2 of 2) 

 
Note: I-vector/PLDA system produced fewer Phantoms and Chameleons (poor performing speakers) and more Doves (high performing speakers) 
in comparison to GMM-UBM.
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Figure 11.18(i): Zoo plot Speex 1 results GMM-UBM ASR System (1 of 2) 

 
Note: Many more Chameleons and Phantoms (poor performing speakers) with low scores overall, in comparison to baseline.   

General distribution indicates poor ASR performance overall.
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Figure 11.18(ii): Zoo plot, Speex 1 results, i-vector/PLDA ASR System (2 of 2) 

 
Note: Increase in Phantoms and Chameleons, less Doves, higher imposter match scores, lower genuine match scores (in comparison to baseline). 

 

PHANTOMS DOVES 

CHAMELONS WORMS 

Average genuine match score 

A
ve

ra
ge

 im
po

st
er

 m
at

ch
 sc

or
e 

LR 



 240 

Figure 11.19: Zoo plot, Dialogic ADPCM 16kHz, i-vector/PLDA ASR System 

 
Note marginal EER% performance improvement (+33% relative to baseline) and the increase of poor performing speakers (worms) with movement towards the 

lower left quartile (in comparison with 11.19(1).  Both indicative of poorer overall performance.
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Figure 11.20(i): LR Plot. Vocalise GMM-UBM MP3 CBR, 128kbps (1 of 4) 

 
 

Figure 11.20(ii): LR Plot. Vocalise GMM-UBM MP3 CBR, 32kbps (2 of 4) 

 
 
 
 
 
 
 
 
 
 

 

LR 

LR 



 242 

Figure 11.20(iii): LR Plot. Vocalise GMM-UBM MP3 CBR, 16kbps (3 of 4) 

 
 
Figure 11.20(iv): LR Plot. Vocalise GMM-UBM MP3 CBR, 08kbps (4 of 4) 

 
 

Note the convergence of true positive and true negative distributions as data compression increases, 

causing potential implications with threshold setting.  Also observed was an initial decrease of scores 

H0 and H1 LR scores and then elevation, particularly at 8kbps (see x-axis legend from Figures 

11.20(i) to 11.20(iv)).  In discussion, several practitioners also observed this (Alexander, Jessen, 

Becker, French and Harrison - personal communication and conversation, 2011 to 2013).  This is 

further discussed in 11.8. 

 

LR 
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11.7  Responses to Questions 
Q1 Recap How resilient are more modern i-vector/PLDA ASR systems to codec 

degredation in comparison with GMM-UBM systems?   

A1 As predicted, EER% and Cllr scores improved in the i-vector/PLDA ASR results when 

compared to those from the GMM-UBM system.  In addition, the i-vector system had a better 

acceptance to ingest for transcoded speech (11 tests produced errors in the GMM-UBM system 

compared with zero).  On consultation with OWR it was suggested that this was likely to small but 

important improvements made in the speech detection stage for iVocalise. 

 

Q2 Recap To what extent does ASR performance degrade when transcoding processes are 

applied to baseline data? 

A2 Both systems performed, as expected, exceptionally well on studio quality data.  As 

hypothesised since transcoding tends to remove data through compression and/or band limitation 

ASR performance degraded in varying degrees.  This was proportionate to the extent of the data 

removed with particular relevance to the speech frequency band (approximately >50Hz to 16kHz) 

and in line with those bands that pertain more to speaker discrimination (Künzel, 2001; Besacier et 

al., 2000; Byrne and Foulkes, 2004). 

 

Q3 Recap How do compression codecs differ in regard to ASR performance? 

A3 Whilst each codec type conducts data compression in different ways there were some broad 

consistencies found (see Q4).  

  

Q4 Recap Can any operating thresholds be extrapolated relating to data compression 

rates which may assist with informing ASR use?  

A4 As hypothesised, the setting of performance thresholds based on a small set of results from 

just two ASRs with a significant number of variables is not possible.  However, some consistencies 

in i-vector ASR results were found which could assist with informing or optimising wider system 

configuration: 

i. MP3 CBR degraded ASR performance below 64kbps and this effect was much more 

noticeable as compression rates decreased to 8kbps.   

ii. MP3 VBR consistently performed better at quality level 4 (8-16kbps) than quality 9 (lowest) 

on any setting and performance further decreased as kbps values increased above 64kbps. 

iii. Speex transcoding consistently degraded results at all settings and this was very noticeable 

below quality 5.  Quality 8 performed better than any other setting (EER% and Cllr) 

including the highest (10). 

iv. All AMR settings produced poor results, though all kbps rates were < or = to 12.2kbps. 

v. All Opus settings below 16kbps degraded ASR performance and the lowest setting (6 kbps) 

produced a large decrease (i.e. non-linear degradation). 
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vi. OGG quality setting 1 produced acceptable results in terms of EER% (0.0051% baseline to 

0.0067%) in comparison to quality setting ‘0’, which was shown to degrade performance to 

a much greater extent (baseline EER 0.0051% to 0.3047%). 

vii. M4a AAC 120kbps had a negligible influence on performance.  Data bandwidths of 60kbps 

produced marginal losses.  The lowest setting (12kbps) would not be recommended.  

However data rates, in relation to EER%, varied dependent on codec and so would not make 

an ideal acceptability criteria in their own right. 

viii. GSM at standard settings (8kHz) did not significantly negatively influence performance. 

ix. G. 711 and ADPCM are frequency band limiting in nature.  Performance was close to 

baseline at 16kHz with some settings marginally improving performance.  Settings of 6kHz 

and below would not be recommended. 

 

11.8  Findings 
As predicted, transcoding had a predominantly negative influence on ASR performance.  This was 

consistent for 38 out of 53 x i-vector/PLDA ASR experiments and 46 out of 53 x GMM-UBM ASR 

(i.e. 79.24% combined). 

 

For the i-vector PLDA ASRs experiments there were 12 instances where transcoding had no 

discernible effect on EER% and Cllr performance.   This performance was not reflected in the GMM-

UBM experiments (zero instances).   

 

In line with research from Silovsky, Cerva and Zdansky (2011) several codecs actually produced a 

small positive effect on ASR performance.  There were similar performance gains noted across both 

i-vector and GMM-UBM systems for Dialogic ADPCM 16kHz and 22kHz (i-vector), 8kHz (GMM-

UBM), G. 711 8kHz and 16kHz a-Law and u-Law.  The reason for this is not fully understood, but 

it is suggested that this could be due to the quantisation of digital values when transcoding (i.e. prior 

to MFCC feature extraction).  Effectively the ‘rounding up’ of digital values could enhance the 

efficacy of the statistical modelling.  Alternatively, or in addition, it could simply be that the 

normative data (or UBM) is much more densely populated with speech data that has been digitised 

using those codecs or that the feature extraction method is more effective on the output from certain 

codecs. 

 

Results showed that score height (LR or LLR output) cannot always be relied on when assessing 

certain types of transcoded data, particularly very low bit rate perceptual codecs (MP3, M4a).  High 

true negative scores were evident and this was more prevelant for the GMM-UBM system.  This 

should be factored into analysis.  Higher H1 scores were noted for transcoded data and this could 
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also impede the setting of thresholds – it would also suggest against combining certain types of 

transcoded data alongside non transcoded data. 

 

Codecs can have other options available within their settings.  For example; speech detection, gain 

control and the addition of comfort noise for filling gaps in conversational spech.   In summary, 

having an awareness of the specific technical influence for different types codecs and, ideally, the 

transcoding history will be important in determing whether ASR comparison is practical and can be 

conducted within acceptable performance boundaries.  It can also be helfpul when interpreting ASR 

results and should be incorporated into reporting. 

 

Codecs set to their highest, most severe compression rates (e.g. MP3 8kbps, Speex quality 1-4, AMR, 

Opus and M4a) had the most negative effect on EER% relative to baseline.  The difference in types 

of codec proved important with the perceptual codecs (MP3 and M4a) performing worse than all 

other codecs at their highest compression settings.  One explanation for this could be because 

perceptual codecs are generally optimised for ‘human’ listening (e.g. music) rather than specifically 

speech and machine analysis.  Perceptual codecs remove data from the acoustic signal that is not 

always perceivable (by humans) but may still be useful to the ASR system for discrimination, for 

example.  The acoustic signal is scanned much more comprehensively by the machine, effectively at 

all frequencies within the bandwidth set by the operator - noting that MFCC’s apply the Mel scale 

(which generally pertains to human hearing).  It is suggested that the effect of perceptual codecs 

would also worsen with the addition of noise prior to transcoding as the codec may effectively 

‘prioritise’ noise over speech.   

  

At lower compression settings (i.e. higher quality), the psychoacoustic codecs produced no 

discernible degradation of performance and EER% matched baseline.  Opus, optimised for speech, 

performed surprising well at 16kbps producing an EER% of 0.0051 identical to baseline (i-

vector/PLDA).  Poor performance was evident in respect to EER% relative to baseline and artificially 

raised mean H1 values were noted for the i-vector/PLDA ASR results (true negative outcomes).  A 

combination of elevated H1 and H0 values were also shown in the GMM-UBM results.  The raising 

of score distributions for GMM-UBM results was particularly apparent for experiment 13 (MP3 CBR 

8kbps) where the H0 and H1 means raised from 3.017 and 1.008 for baseline to 7.782 and 6.693.  

This could clearly have implications for casework if not compensated for. 

 

The i-vector/PLDA system outperformed the GMM-UBM ASR in all instances with regard to EER% 

which was, overall, poorer throughout.  All experiments were successfully processed for the i-

vector/PLDA ASR.  For nine GMM-UBM ASR experiments, the quantity of files passing the VAD 

file-ingest stage fell.  Statistics were therefore generated on successful file comparisons – although 

this effectively distorts the success rates for the GMM-UBM ASR.  Note that there were two 
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experiments for which all files were rejected and these were logged as system errors (GMM-UBM 

only) – this has practical implications for the technical acceptance of heavily compressed files for 

ASR comparison. 

 

11.9  Additional Tone Experiment  
Throughout the transcoding batch processed audio files were checked for technical quality.  During 

this process, files were examined in Praat using spectrograms.  As expected, the effect of data 

compression was often both visible and audible.  Watery artefacts often referred to as ‘chiming’ 

could be heard and upper speech frequencies were often heavily muted or inaudible.  These auditory 

effects would certainly appear prominent to a forensic practitioner.  These effects were often evident 

in the spectrogram too with the removal of energy at points in the frequency range, in the example 

below, removing F4 through frequency bandwidth reduction.  Figure 11.21 shows identical 

utterances from Speaker 001 transcoded using MP3, CBR, 8kbps. 

 
 
 
 
 



Figure 11.21: Influence of transcoding on formants. Baseline and transcoded MP3,8kbps,CBR 

 
Note that the examination of the waveform (amplitude) would yield only marginal between the two files in comparison to the spectrogram.  Transcoding, to 

this extent, would present issues both to a forensic practitioner and ASR analysis - producing data loss and constraining frequency bandwidth. 

 
 

Baseline: 16bit 22kHz .wav 

Transcoded: MP3 8kbps CBR 



 
It was noticed that the formants in transcoded speech also appeared to be very marginally shifted in 

the frequency domain in comparison with baseline (.wav) tone values.  This required further 

examination.   

 

A brief experiment was generated using only a set of constant test tones which very broadly simulated 

several key (mean) frequency points of speech (550Hz, 1,200Hz, 2,600Hz and 3,400Hz).  Note that 

4 distinct tones were generated, as opposed to a single tone with multiple harmonics.  The motivation 

for this method was to more closely examine the frequency shifting whilst removing the variability 

within the speech formant data, to better quantify this effect.  The 4 test tones were generated in 

iZotope RX Advanced (v.6) and were transcoded using identical settings from the main experiments.  

The two codecs examined were MP3 (set to CBR, at 8kbps) and Speex (quality setting 8).  Mean 

frequency values were estimated using Praat at 16 interval points over 1s. 

 
 
Figure 11.22: Spectrogram view of test tones pre transcoding (baseline) 

 
 

Please note the difference in y-axis scales between Figures 11.22, 11.23 and 11.24. 
 
Figure 11.23: Spectrogram view of test tones post transcoding (MP3, CBR, 8kbps) 
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Figure 11.24: Spectrogram view of test tones post transcoding (Speex, quality 8) 

 
 
 
Measurements of the test tone frequencies were extracted using Praat and these are summarised in 

the results Table 11.25 (full data in Appendix J). 

 
Table 11.25: Mean frequencies, 3 additional transcoding experiments, 4 test tones  

Codec Test tone 1 
(mean) 

Test tone 2 
(mean) 

Test tone 3 
(mean) 

Test tone 4 
(mean) 

Baseline 550Hz 1,200Hz 2,600Hz 3,400Hz 

MP3, CBR, 8kbps 540Hz 1,200Hz 2,580Hz N/A 

Speex, setting 8 563Hz 1,206Hz 2,600Hz 3,400Hz 

Green = 0 variation in reference tone 
 

Measuring formants accurately can be problematic (Harrison, 2013) however the lack of variation 

measured for several tones (MP3, tone 2, Speex tones 3 and 4) suggests that the measuring process 

itself is effective.  However, clearly the dataset is very small and results should be treated with much 

caution.  Although the differences, post transcoding, are very marginal (tone 1, Speex tone 2 and 

MP3 test tone 3) it appears that transcoding is influencing the accuracy of the tone measurements 

and this appears more noticable for lower frequencies.  It is also possible that acoustic distortion 

could be influencing the mean estimation – due to the addition of artefacts, which appear to broaden 

the frequency bandwidth of the lower tone in the MP3 example (Figure 11.23).   

 

Pure tone and speech are quite different in acoustic complexity and the effect is not likely to directly 

transition (from tones to speech).  Nonetheless, it is possible that altering data in the frequency 

domain, could confuse the automated feature extraction or measurement process with respect to 

speech information (e.g. formants).  This could help to partially explain why, in the experiments 

completed, the ideal/matched conditions generally performed better, since the acoustic changes 

Addition of noise 
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would manifest as similar for both SM and TA although this explanation does not hold if F3 is 

severely degraded/mssing.  The distortion of the frequency domain, from different types of 

transcoding, requires further research – but there are likely similarities with mobile phone 

transmission and the influence found on formant frequencies F1 and F2 (Künzel, 2001; Byrne and 

Foulkes, 2004; Jessen and Becker, 2010).   

 

With the increase in the application of ASR systems (Morrison et al., 2016; Gold and French, 2011; 

2019) in addition to the diversification in communication methods (e.g. VoIP) it is expected that we 

will continue to see a greater application of ASR's on transcoded speech.  It is hoped that the 

comprehensive new data provided in this chapter contributes to the field through providing metrics 

and elevating awareness of the influence of transcoding on ASR system performance. 

 
 

11.10 Discussion  
There are many variables relating to codecs which have been shown to influence the performance of 

ASR systems on transcoded speech.    Whilst very low bit rates (kbps) tended to degrade performance 

to a greater extent, bit rate cannot be used as a measure in itself to solely determine audio acceptence 

for ASR analysis.  The type of codec and compression settings (CBR, VBR, Quality) are clearly 

relevant too and determine the parts of the frequency spectrum that are affected (compressed or 

removed).  Codecs that limit the frequency bandwidth or prevent speech passing the speech detection 

phase (i.e. also inhibit) degraded performance and data loss was visible in spectrogram analysis 

(Figure 11.26).   
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Figure 11.26: Spectrogram examples of codec distortion and data loss.  

 

 
The data loss is predominantly in the mid to upper frequency range where discriminative speech 

content is present, influencing attribution.  Vocal tract resonances also appeared blurred (Figure 

11.26, lower spectrogram) suggesting codec distortion – which would, in turn, degrade the accuracy 

of feature extraction and increase speaker confusability. 

 

The later generation i-vector ASR outperformed the GMM-UBM system with notably better EER% 

and Cllr.   It was also more acceptant of degraded speech material, this is likely due to more accurate 

speech detection, improvements to the feature extraction process and the much larger normative 

dataset (PLDA).   As a practical recommendation ASRs should be upgraded regularly to ensure they 

are benefiting from continual advancements that are made.  This, however, may present problems 

with regards to replication of results and moves to provide more universal normative sets.  

 

Finally, psychoacoustic codecs set to low bit rates were shown to produce variable outcomes for 

score height (Figure 11.7, GMM-UBM system) including artifically elevated scores.  At worst, this 
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could cause the incorrect interpretation of a high score as a verification.  As also seen in Figure 11.20 

transcoding can cause the convergence of score distributions for true positive and true negative 

outcomes, making threshold setting more problematic, particularly if a mixture of transcoded and 

non-transcoded was compared.    
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Chapter 12  Discussion 

This chapter discusses all of the experiments completed and provides additional explanation for the 

results obtained, placing them in the context of the third objective for this thesis.  To recap, the third 

objective was to provide recommendations with regard to ASR suitability for forensic speaker 

comparison (FSC) application and investigative use based on the research and experiments 

completed and within the context of acoustic variability. 

 

12.1  Summary of Automatic Speaker Recognition 
Performance  
Overall, results showed that in almost all instances contaminants and inhibitors had a negative 

influence on ASR system performance (EER% and Cllr).  It was demonstrated that when acoustic 

degradation was most severe, ASR performance was reduced to almost chance equivalence (i.e. 

system fail).  Conversely, error rates were impressively low when degradation was light to moderate.   

 

The i-vector ASR system proved to be much more resilient to acoustic variability and, in almost all 

instances, outperformed the GMM-UBM system – often by a wide margin.  In summary, this is likely 

due to the additional detail inherent in the statistical modelling and comparison phases, generational 

advancements (e.g. small improvements to the feature extraction and VAD phases) and the use of 

much larger normative datasets which provides additional improvements in statistical comparison.  

The results above are broadly consistent with similar research studies completed both before, during 

and after the experiments completed in this thesis. 

 

12.1.1 Tipping Points and Acceptability Criteria 
Performance tipping points were identified when acoustic degradation bordered from moderate to 

severe and these were observed in both types of ASR systems.  Whilst occurring at slightly different 

points for the GMM-UBM and i-vector system, performance consistencies were found within the 5 

conditions.  In summary, tipping points were observed when: 

i. Total net duration was less than 10s for SM or TA, or the total net duration of both SM and 

TA was very unevenly distributed (e.g. 5s for SM and 55s for SM); 

ii. Noise was introduced at -20db to -15db.  This threshold will also be influenced at a speaker 

level by vocal effort/initial SNR – although pre-emphasis (MFCC) is likely to compensate 

to some extent; 

iii. Reverberation was added that was >1s (T60) and/or the reverberant reflections were very 

complex; 
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iv. Frequency bandwidth limiting (from filtering and/or transcoding) effectively deleted speech 

data below 3.5kHz (i.e. removal of areas of the speech spectrum which provide speaker 

discrimination information); 

v. Data compression rates degraded frequency bandwidth, as per point (iv), and/or loss of 

speech data occurred which limited net duration and/or kbps fell below a certain level.   

Importantly, data rate (kbps) in and of itself was not a tipping point and should not serve as 

an acceptability criteria without consideration, and in reference to, the specific codec type 

and settings (11.6). 

Note that tipping points will vary depending on ASR system, normative data, settings and data 

quality (SM, TA and normative).   

 

In reviewing the entirety of the experiments completed, the interconnectivity between the different 

forms of contaminants and inhibitors also became more apparent.  Transcoding often limited 

frequency bandwdith and net duration.  Reverberation and SNR were shown to limit net duration 

(i.e. VAD).  Reverberation and transcoding influenced and/or constrained frequency content.   

 

Finally, intrinsic speaker variability (e.g. vocal effort, voice quality and pitch) must also be factored 

into acoustic variability since they are, in many cases, linked variables and are effectively the starting 

point from which degradation can then occur.   

 

Zoo plot positioning for speakers demonstrated that speaker performance did not degrade in a 

uniform way across all speakers with regard to acoustic variability.  An example of this was shown 

where speakers with quieter voices were more likely to yield lower SNR recordings than high SNR 

and in turn perform poorer when compared on ASR systems.  Comparing low SNR recordings with 

high SNR recordings (i.e. unmatched SM and TA) was shown to be problematic and not advised.  

Joining recordings together of highly divergent acoustic quality (for either TA or SM) was not within 

the scope of the experiments but would certainly not be advised either, based on results.  Extracting 

WADA SNR values for all speaker models on enrolment would be recommended with respect to 

identifying those speakers of poor SNR and assist with managing line ups/watch lists accordingly. 

 

12.1.2 Automatic Speaker Recognition 
Performance Metrics 
Experiments have demonstrated the benefits of fully establishing the performance limits of an ASR 

system in relation to acoustic variability.  Performance limits should be quantified to inform audio 

acceptability criteria during technical assessment.  Metrics pertaining to audio quality, e.g. a full 

technical report and documentation of any process(es) applied, should be included in reporting.   A 
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baseline corpus specifically designed to assess multi-laboratory ASR performance should 

(consistently) be used in this regard and a new ‘forensic_eval_01 dataset’ (Morrison and Enzinger, 

2019) offers an opportunity to measure ASR performance, using a standard corpus created for the 

purpose. 

 

12.1.3 Opportunities for Automatic Speaker 
Recognition Improvements 
Whilst not a specfic objective of this thesis, the experiments support the following recommendations 

in terms of improving ASR performance.   In summary, these were: 

i. ‘High Definition’ speaker recognition.  Increasing the frequency bandwidth from 0-4kHz, 

8kHz SR to 0-11kHz, 22kHz SR (in conjunction with raising the MFCC/feature extraction 

bandwidth); 

ii. Impoving the matching of conditions (SM, TA); 

iii. Adapting the normative dataset to better reflect the channel conditions of the SM and TA; 

iv. Completing audio enhancement/noise reduction;  

v. Adapting ASR settings to:  

a. Ammend the feature extraction settings (MFCC/optimising numbers of features and 

filters, LTFD/ formants F1, F2, F3, F4); 

b. Amending and improving the SD/VAD phase – i.e. speech/non-speech 

discrimination 

c. Increasing/optimising the numbers of Gaussians - see preliminary tests and also 

Janicki (2012). 

 

With respect to point (iv) more research is required as results are not consistent regarding the type 

and complexity of noise.  Both ASR performance improvements and degradation can occur, as also 

found in Künzel and Alexander (2014).  In addition, where speech data has been removed by the 

codec (data compression) it cannot be replaced. 

 

There were several instances where transcoding all the SM and TA data marginally improved ASR 

performance on both GMM-UBM and i-vector systems (11.6).  As stated in (iii) a plausible 

explanation for this is that it is likely due to improved relevance of normative data (i.e. more 

normative material transcoded with the same codec as the SM/TA).  However, as the full examination 

of all normative data used was not possible to confirm this, further research is required. 

 

12.1.4 Technical Quality Assessments 
Results from the experiments support the inspection of the technical quality of recordings presented 

for casework comparison.  This is consistent with statements from Harrison and French (2010) and 



 256 

Becker et al. (2012) where recommendations are made that full technical assessments are undertaken 

as a pre-analysis process for both auditory and/or any acoustic measurements.  As stated in Becker 

et al. (2012: p.5): 

 

‘Using automatic forensic voice comparison systems without any further investigation of the 

recording material results in a considerable proportion of errors.  This proportion can be reduced if 

forensic phonetic experts are involved to judge the material as well as speaker features’.   

 

Throughout the experiments completed, spectrogram analysis proved essential for examining the 

extent of audio degradation – although it should be noted that minor degradation, which marginally 

influenced ASR performance, was not always immediately apparent.  Also, technical analysis can be 

more difficult in the context of casework in comparison to research (i.e. more complex).  

Nevertheless, spectrogram analysis should form a part of the workflow when using ASR systems.   

It is also recommended that broader technical quality assessments form an integral part of managing 

a networked ASR system (e.g. checking quality of end to end network data, particularly with respect 

to transcoding). 

 

12.1.5 Mismatched Conditions 
Channel mismatch is commonly noted as an important factor in ASR performance.  In recent 

research, Hughes et al. (2018) completed examination of DyViS performance using a bespoke LTFD 

ASR system and noted that mismatch between high quality and low quality (GSM) channel domains 

was detrimental to overall performance with a difference of 21.66% EER and Cllr 0.46.  The group 

also stated the importance of examining individual speaker performance within systems and 

recommended the application of zoo plots to examine variation in speaker performance between 

conditions (2018: p.4).   

 

Results from experiments indicate that great care is required when comparing files of dissimilar audio 

conditions within the same set of comparisons and confidence of ASR outcome should be adjusted 

accordingly.  Casework examples of this could pertain to supporting ASR imposter line ups with (as 

close as is possible) uniform conditions – important since, for instance, transcoding using different 

codecs was shown to artificially inflate or lower H0, H1 and LR score output.  It could be argued 

that score adjustment or completing a control degradation (of the higher quality recording to that of 

the lower) can mitigate for mismatched conditions.  However, in practice, difficult questions arise as 

to exactly what to calibrate to, if SM and TA are highly divergent, with respect to channel.  There 

may also be a lack of normative data which reflects conditions or it may not be possble to degrade 

sample(s) in a controlled way without knowing full file provenance/origin of the file(s).  Finally, if 

the technical quality difference between SM and TA is highly divergent (i.e. non-ideal conditions) 
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then careful consideration should be given before accepting comparison tasking using ASRs at all, 

particularly if applying an older GMM-UBM ASR system (or earlier). 

 

12.1.6 Population/Normative Data 
Much effort was placed during the data preparation phase to ensure high quality speaker models, test 

audio and normative sets were constructed.  This was completed through inspection and the redaction 

of very poor quality speech data (at an editing level for SM and TA) in addition to care taken in data 

selection for normative sets.  Whilst this had a high resource cost, very low EER and Cllr scores were 

therefore obtained for the baseline results.  The importance of audio quality, particularly relating to 

the normative set, was studied by Biswas, Rohdin and Shinoda (2015) who stated: 

 

‘The training data of a PLDA model is often collected from a large, diverse population. However, 

including irrelevant or noisy training data may deteriorate the verification performance.’   

Biswas, Rohdin and Shinoda (2015: p.32). 

 

As previously discussed (3.4.7) other research advises to the contrary and the PLDA session 

experiments completed (9.5.3) suggest that a balance is probably required.  This should reflect both 

the (degraded) conditions (of the SM and/or TA) and maintain a high quality data set overall (total 

variability) which accurately captures the intriciate speech energy patterns and diversity of a large 

population set.  With the improvements shown in i-vector/PLDA advancements, statistical modelling 

and the large increase in the size of normative/population data, there are opportunities available to 

further improve them in the context of acoustic variability – and therefore ASR performance as 

exampled in 9.5.3.  The application of different, and potentially selectable normative sets, reflecting 

different acoustic conditions, could maintain ASR performance under light to moderately degraded 

conditions.  Further research is required in the area of popualation data and the data modelling of 

conditions (see 13.2). 

 

Finally, it is recommended that the population data should either be completely accessible (and 

configurable) by a fully trained expert, or a comprehensive report provided by the manufacturer as 

to the technical quality and constitution of the data - i.e. what is in the normative data, what is the 

channel/domain and acoustic quality of that data (frequency bandwidth, SNR, reverberation times, 

net duration and codec) and details of the speakers contained therein (i.e. additional information such 

as language spoken, age, accent, gender etc.).  The purpose of this would simply be to assist the 

analyst with determining/ensuring relevance to the comparison and maintaining it througout different 

casework applications.   
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12.1.7 Operator Training and Standards 
With the near infinite variability in speech, ISO standards have not yet been specifically applied to 

ASR system use.   Decisions made by the operator such as editing or adjusting ASR settings can 

influence outcome and this also provides additional variability.  When assessing technical quality, 

decisions are also required which require operator training in acoustics and benefit from ongoing 

development (e.g through experience).  Nevertheless, there are guidelines pertaining to best practice 

in the broader context of forensics (ISO17025) and recommendations have been published by both 

ENFSI (2015), and more recently the UK Forensic Science Regulators (2017), that pertain to speech 

analysis and process management.   

 

There have also been studies to ensure that the LR framework itself is robust, validated and meets 

ISO17025, although in the context of other biometric comparison – see Meuwly, Ramos and 

Haraksim (2017: p.83).  Improving standards requires investment in people, infrastructure, training, 

accreditation, peer review/inspections, research and greater audit/control processes.   

 

The application of better standards to recording process(es), whilst difficult to implement, would 

also assist with providing output which is more suitable for ASR comparison.  Standardised audio 

quality metrics are required to objectively measure the technical attributes of speech to determine 

when ASR processing should occur and assist with assessing the degree of confidence that should 

therefore be placed in the output.   If technical quality could be standardised and measured it could 

eventually be incorporated into LR calculations although this would be extremely complicated to 

realise at a practical level.  It is argued that minimum standards of speech quality are required for 

capture and ideally these would be in line with acceptability criteria and agreed across organisations.  

Recently it has been extremely encouraging to see the Audio Engineering Society (AES) running 

regular articles and conventions drawing attention to forensic audio analysis, particularly in the 

context of audio capture, enhancement and speaker comparison/ID. 

 

Finally, process(es) for audio submission should be managed to ensure that the highest quality 

recording (i.e. at point of capture) is assessed rather than a transcoded/degraded copy and that the 

operator is empowered to determine the suitability for ASR comparison with acceptance that a high 

proportion of speech files submitted for analysis are likely to be rejected.  If ASR systems are to be 

used more extensively in the future, Morrison et al. (2016) and Gold and French (2011; 2019), then 

greater consensus pertaining to technical standards and acceptability critiera will produce more 

accurate ASR outcomes and provide greater confidence in speech technology.  
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12.2 Practical Recommendations 
As discussed over the course of this thesis, when transitioning theories derived from 

research conducted under controlled conditions to in-field application it is acknowledged that 

audio/speech files submitted for speaker comparison analysis will most likely contain similar but 

often much more complex combinations of acoustic contaminants and inhibitors.  File origin 

(provenance) and the end to end audio signal path are frequently unknown.  Nevertheless, in 

considering the conclusions drawn from each of the chapters in conjunction with research 

completed throughout the duration of this thesis practical recommendations are offered for 

consideration.   

12.2.1 Net Duration Recommendations 
The experiments demonstrated that using speaker models of significantly varying length can cause 

an ASR system to become unstable, with shorter net duration speaker models tending to produce 

more FP and FR results.   A practical recommendation to mitigate for this would be the management 

of speaker models to provide more uniform duration across the dataset, i.e. capping duration and 

non-enrolment of low duration speech samples.    

Performance tipping points were reached when the total net duration of speech compared fell to less 

than a minute with a cliff edge noted at <10s for either speaker model or the test audio on the ivector 

system (7.13).  It is recommended that minimum operating thresholds should be conservatively set 

and thresholds applied to prevent comparisons occuring on very short duration samples at all.   

As stated, net speech duration and audio quality are highly interconnected.  Varying proximity (to 

the microphone), faults, signal drop-outs and/or environmental noise (e.g. music, overlapping 

speech, babble etc.) is likely to cause lower net duration to pass the speech detection phase and 

experiments showed that switching speech detection off or lowering the SD threshold to force 

acceptance could assist – however, it is recommended that much care would be required in doing so 

to avoid non-speech contamination. 

For higher net duration (approximately 1m SA to 1m TA) experiments showed that a likely plateau 

for performance was forming, suggesting that adequate speech data was captured in the statistical 

model(s) (0.005% EER on the i-vector system).  Nevertheless, as maximum duration was not 

specifically tested in the experiments, detailed recommendations in that regard are not specifically 

made.  In addition, a counter argument might suggest that the inherent variability of speech (e.g. 

different languages spoken, mood etc.) are likely to benefit with additions to a speaker model (beyond 

1m).   Alternatively, another suggestion might be to create different speaker models for the same 

speaker, each totalling a fixed length (e.g. different acoustic conditions/channels and languages etc.) 

even using different/switchable normative datasets.  The area of combining data from different 
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sessions/conditions/languages etc. for the same speaker, to identify portions of the statistical model 

pertaining to those criteria/channels, is currently progresing – see sections 7.3, 13.7 and WCCN.   

 

In summary, there are many variables that can significantly reduce the quantity of viable net speech 

either being captured or passing the detection phase (VAD).  Practitioners should have a strong 

understanding of where ASR performance can be influenced by net duration and the extent to which 

performance can be degraded.  It is hoped that the new data provided will assist in providing guidance 

and it is recommended that new tables are created by the practitioner on their own ASR systems and 

redrawn as they are updated/evolve.  

 

Finally, in 2013, the net duration of speech samples was placed under scrutiny in the George 

Zimmerman trial (U.S.).  Figure 12.1 provides a summarised section of the transcript pertaining to 

net duration and the use of an ASR system.  The methodology was questioned in court by the defence 

as advised by expert witnesses G. Doddington, J.P. French and H. Nakasone.  It was determined that 

practitioners should not duplicate sections of speech to meet speech sample threshold(s) for ASR 

use.  It was also stated that net duration was only one factor that was heavily disputed and the 

enrolment of non-modal voice (in this case screams) was also strongly criticised by the defence.   

 
 
Figure 12.1: Zimmerman trial (2013) transcript summary (next page)  
From: legalinsurrection.com/2013/06/zimmerman-prosecutions-voice-expert-admits-this-is-not-
really-good-evidence/ 
Names and ASR manufacturers have been redacted.  Double line = transcription break. 

 



 261 

 



 262 

12.2.2 Signal to Noise Ratio Recommendations  
The experiments demonstrated that lowering SNR adversely influences ASR performance.   For the 

i-vector system tested a tipping point was identified at the addition of noise at -20db/-15db where 

the EER% exponentially rose.  At the addition of 0db noise, the system effectively failed with EER 

45.5% (white noise) and 48.3% (pink noise) on matched conditions.  One explanation for this is that 

at the feature extraction stage the system can effectively no longer discriminate between speech and 

noise at all so the statistical model is polluted producing high speaker confusability.   

 

Results showed that tonal (pink noise) was found to influence ASR performance to a marginally 

greater extent and this is likely due to the lower frequency content (higher noise on F1, F2, F3).  

Whilst not tested, it is suggested that it is likely that babble (e.g. background speech from non-

speakers) would degrade ASR performance further as found in Desphande and Holambe (2011a) - 

since babble is more similar to (foreground) speech than white or pink noise.  It would be strongly 

recommended that the type(s) of noise present should therefore be considered by the practitioner, 

perhaps in conjunction with (WADA) SNR estimation.   

 

Recent research by Al-Noori and Duncan (2019) examined the incorporation of training data with 

different noise profiles (babble) added to minimise the channel mismatch between SM and TA.   

Their research was conducted using a bespoke corpus of 110 speakers (55 male, 55 female) recorded 

in anechoic conditions and the addition of TIMIT data (3 different types of babble) using a GMM-

UBM ASR system.  Results showed a similar performance tipping point to the experiments 

completed in this thesis when the SNR is reduced below 15db.  Although a marginal improvement 

in EER% was obtained when degraded training data was incorporated, this was not the case for 

>20db SNR where they pointed out that ASRs tend to perform better without data augmentation.  A 

repeat of the experiments is suggested using a state of the art i-vector system to establish if the 

addition of degraded training data (e.g. speech ‘babble’) can improve ASR performance or whether 

the performance improvements observed on the GMM-UBM system tested could be achieved by 

upgrading to an i-vector system. 

 

Godin, Sadjadi and Hansen (2013) suggested certain noise reduction techniques could improve ASR 

performance – however, they found that noise reduction also degraded ASR performance and, in 

some cases by a considerable amount (2013: pp.3658-3659).  Their study also found that different 

techniques would be required for ideal/matched and non-ideal/unmatched conditions (2013: p.3659) 

as well as for GMM-UBM and i-vector ASR systems (and now likely x-vector/DNN systems).   

 

Audio enhancement, prior to ASR analysis, was also studied by Künzel and Alexander (2014).   They 

added different types of noise (e.g. music, babble, road traffic) to the speech of 10 speakers at 

different SNR settings and then analysed output using an Agnitio Batvox system both pre and post 
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audio enhancement.  The audio enhancement system used was CEDAR (Cedaraudio.com).  Künzel 

and Alexander concluded that audio enhancement, in some instances, could improve ASR 

performance (particularly in the case of music and moving vehicle).  However, they also reported 

that in three instances audio enhancement degraded ASR performance.  In other cases they assessed 

that enhancement wasn’t necessary, based on the very negligible ASR performance decrease noted 

when SNR >6db (2014: p.251).   

 

In summary – although all studies show promise, investment in research is required if audio 

enhancement techniques are not to inadvertently degrade ASR performance.  It would therefore not 

be recommended that attempts to remedy poor SNR with the use of audio plug ins pre ASR analysis 

was completed without a very high degree of technical expertise in all the relevant fields.  As 

previously discussed (12.1.1) other recommendations relating to SNR include: 

i. Avoiding the comparison of very high SNR and very low SNR recordings; 

ii. WADA SNR estimates could be obtained on enrolment to identify potential SNR issues;   

iii. SM or TA files should not be populated with very high SNR and/or very low SNR (consider 

separate speaker models for the same speaker). 

 

12.2.3 Reverberation Recommendations 
Experiments showed that even relatively small reverberant spaces (RT60 of .30s) negatively 

influenced ASR performance with EER% and Cllr (accuracy) degraded.  Larger reverberant spaces 

were more detrimental to performance with a tipping point of approximately T60 >1s, dependent on 

the complexity of reflections.   The most plausible explanation for this is that the smearing of speech 

data in the time domain affects the feature extraction stage (which operates in subsecond  frames) 

and this, in turn, decreases the detail captured in the statistical model(s).  It is therefore recommended 

that speech files are assessed by a technical specialist for reverberant noise and that reverberant and 

non-reverberant files are compared with much caution.  Combining speech data recorded with 

different reverberant conditions into the same speaker model(s) would not be recommended without 

fully understanding the influence on speaker/ASR performance.  It would also be recommended that 

any reporting resulting from comparing speech files which contain reverberant speech are adjusted 

accordingly with respect to confidence.   

 

Audio enhancement techniques, to remove reverberation, could potentially assist (Wu et al., 2017; 

Guzewich and Zahorian (2017) but more research is clearly required before recommending it as part 

of the ASR workflow.  For example, it cannot be assumed that applying a similar, simulated 

reverberation to ‘force a channel match’ would be successful.  Reverberation is extremely complex 

and further research is also required to establish how well ‘real world’ reverberation can be 

successfully modelled. 



 264 

 

12.2.4 Frequency Bandwidth Recommendations 
There are clearly many factors which should be considered when completing technical assessments 

of speech files with constrained frequency bandwidth submitted for comparison.  Experiments 

demonstrated that examination and suitability of frequency bandwidth/sample rate of normative data 

should also be completed to avoid mismatch between the SM/TA and normative data.  For 1 to N 

comparisons it is also recommended that the technical quality of all speaker models should ideally 

be uniform in terms of frequency bandwidth to prevent the skewing of results.  It is conceded that 

many ASR systems constrain the frequency bandwidth on enrolment, to assist with achieving 

uniformity.  Nevertheless, the system cannot compensate for the enrolment of files which are below 

the sample rate threshold set on the ASR (i.e. 0-3.5kHz, 07kHz SR). 

 

12.2.5 Transcoding/Codec Recommendations 
Performance tipping points were noted when lossy codecs at high data compression settings were 

used for transcoding (e.g. MP3 at <32kbps).  One explanation for this is that the loss of data prior to 

the feature extraction stage degrades the efficacy of the statistical modelling phase.  From analysis 

the performance degradation appears more noticable in the upper frequency range with formants F3 

and F4 effectively degraded and high F2 affected (for heavy data compression) for which data gaps 

were also visible in the spectrogram (Figure 11.29).  Artificially elevated scores were noted for 

certain compressed files and results from experiments supported Silovsky, Cerva and Zdansky 

(2011) that, in some cases, bulk transcoding (SM and TA) caused an ASR performance improvement.   

 

Transcoding can clearly cause variable ASR performance – and it is therefore recommended that 

speech files are carefully inspected for transcoding damage, particularly where the full provenance 

of a file is unknown.  If the codec history of a submitted file is known it is recommended that it is 

fully documented and factored into analysis.  If proceeding to comparison, using an ASR system, 

reporting should be notated/caveated accordingly with the confidence of assessment adjusted for 

transcoded files.  It is recommended that kbps, in and of itself is not applied as an acceptability 

criteria (see 12.1.3, point iv).  It is also recommended that speaker models that have passed through 

different codecs are carefully assessed before integration on the same ASR system within the same 

comparison set(s), since those speakers which are effectively damaged from data compression have 

been shown to be more prone to FP/FR outcomes.   

 

Finally, if an ASR is used on a computer network it is recommended that files are not transcoded as 

they are transferred or, if they have to be, a lossless codec is applied which is assessed by the 

ASR/speech analyst as appropriate.  It is hoped that the new data that has been collected from the 

transcoding experiments in this thesis assists with informing that process.   
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12.2.6 Control Corpora and Test Data 
Investment has been made by IAFPA, NIST/SRE, LDC and – more recently - Morrison and Enzinger 

(2019) to provide access to control corpora to test ASR systems and assist with optimisation and 

establishing baseline performance.  Whilst there are cost and data sharing implications, the 

widespread availability of corpora will allow greater consistency of measuring ASR performance, 

improve understanding of speaker performance with reference to the demographics of the corpora 

and establish baseline positions for different ASR systems.  It is therefore recommended that wider 

access to more control corpora, including degraded data, is granted to assist with calibrating systems, 

validating methodology and ensuring systems are consistent in output. 

 

12.2.7 Automatic Speaker Recognition System 
Recommendations 
ASR systems are continually evolving and this became very apparent during the course of writing 

this thesis.  Completing research experiments over a long time frame, relative to ASR development, 

(approximately 6 years) saw 12 different iterations of the ASR software including core architectural 

design changes (GMM/UBM to i-vector).  There were also 4 different versions of the iZotope editing 

software and 5 iterations of Bio-Metrics.  It was interesting to note the overall progress in ASR 

performance, with initial preliminary tests on baseline data producing EER% scores of around 6% 

reducing to 1% with the later i-vector technology experiments producing .0051% EER.   

 

Constant updates presented a risk in terms of additional variability.   To mitigate for this, when 

updates were applied, models were re-enroled and results cross validated to ensure that output was 

consistent and that patches and changes did not introduce further variability.  Overall, the perpetual 

ASR evolution emphasised the importance of regularly updating systems to maintain pace with 

evolution, however this cannot be recommended enough in terms of ASR performance.  Updating 

systems has resource implications, not only in terms of purchasing upgrades, but relating to the 

retraining of speaker models, retention of data (since re-enrolment is essential) and training costs.  It 

is therefore recommended that careful system version and data control becomes an integral part of 

the workflow.  ASR system changes should be carefully documented and changes fully tested using 

specific control corpora to measure EER% and Cllr. 

 

Finally, the constant evolution of ASR systems and infinite combinations of settings and normative 

data is likely to generate more challenges, rather than less, for proceeding ASR output to court - i.e. 

repeatability, reproducibility and consistency of EER%.  It is therefore recommended that, where 

possible, standards accommodate for rapid change and that they are frequently updated. 
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12.2.8 Performance Metrics 
From the experiments completed, recommendations are made pertaining to ASR system performance 

metrics in that they should not be solely represented by an EER% figure and that accuracy (Cllr) 

should be incorporated into reporting. It is recommended that both EER% and Cllr are measured for 

the specific ASR system and conditions.  Experiments have also demonstrated that LLR score 

separation and score height (H0 and H1) provide useful performance information and can mitigate 

against high FP, low TP instances by identifying those speakers/audio files which can  be problematic 

in an ASR system.  Finally, zoo plots, are recommended to ensure ASR systems are performing 

correctly overall and to assist with identifying outlier speakers and/or other issues regarding acoustic 

variability. 

 

12.2.9 Auditory Analysis 
In the context of acoustic variability ASRs have been shown to be an important and effective analysis 

tool but not definitive in output.  It is therefore recommended that auditory analysis, by a trained 

practitioner, should continue to independently validate ASR output – particularly in cases of high 

importance and potential transition to evidence.   

 

12.3  Should Automatic Speaker Recognition 
Transition to Forensic Use? 
In the context of acoustic variability, should ASRs be used in forensic speaker comparison (FSC) 

work and in what capacity?  How should we address the complex and enduring issues such as 

quantifying variability and selecting appropriate population data and ASR settings? 

 

The thesis has highlighted many technical difficulties in transitioning ASRs to FSC but also many 

positive aspects relating to accuracy.  In many instances, the i-vector system was shown to be 

remarkably resilient with regards to acoustic variability.   

 

An additional concern could be that an ASR system is somehow viewed as a replacement for the 

expert.  It certainly does not currently fulfil that role.  Across the international community, opinion 

is somewhat divided.  One view is that ASRs are not ready to transition to evidential use yet and that 

they should firmly reside in the investigative domain (where they are useful for exploring large data) 

and auditory phonetic analysis must underpin results.  A counter opinion would be that provisioning 

common systems, providing improvements to normative data/audio capture and developing ASR 

expertise could meet the necessary standards regarding repeatability and reproducability.  Yet all 

options require a significant investment in resources and central governance, currently lacking in the 

U.K. 
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To return to an initial aim of this thesis regarding examining the suitability of ASR use in FSC it has 

been demonstrated that acoustic variability can have a signifiant bearing on ASR reliability such that 

this effect alone could render the output unreliable for use in evidence.  However, if used in a highly 

controlled manner on audio that has been assessed by a technical expert as suitable then output could 

provide an accurate likelihood output.  ASRs are, currently, ideally suited to investigative (batch 

analysis) and pre-forensic casework where they can provide an alternative and empirical view on the 

data presented for comparison.  Although, to most experienced foresnic speaker comparison experts, 

traditional methodology would be more preferable - a workflow which combines ASR analysis with 

acoustic and phonetic analysis would be more comprehensive.   

 

Whilst there is no current UK precedence for the presentation of ASR system output either in 

conjunction with auditory analysis evidence or in isolation it is suggested that systems and 

process/workflow are not yet regulated enough to make this progression from investigative use to 

evidential use – although this is changing (ENFSI and the UK Forensic Science Regulator).    

 

In a recent study examining the wider issues surrounding the admissibility of forensic voice 

comparison testimony (in Australia), Morrison (2018: p.23) states support for ‘empirical validation 

irrespective of approach’.   In a later study Morrison and Enzinger (2019) state that whilst 

recommending that their ASR performance results are not applicable to other conditions, cases and 

systems, they encourage practitioners to support their forensic voice casework (i.e. auditory analysis) 

with emprical ASR output (2019: p.38).  These are eminently sensible recommendations and resonate 

with the experiments completed in this thesis.  It is certainly more practical to measure ASR system 

performance than a human auditory practitioner.   Unfortunately, as demonstrated, acoustic 

variability, normative data and ASR settings can produce a wide range of empircal ASR output.  The 

operator themselves are also effectively a part of the system – making decisions, selecting data and 

choosing system settings.  So, empirical validation is certainly to be aspired to but difficult to achieve. 

 

In their recent analysis of ASR systems on real forensic data, Solewicz et al. (2012: p.86) summed 

up simply that systems can be a valuable support in decision making for the forensic examiner.  Their 

findings also supported the view of the wider community that automatic speaker comparison 

technology is generally less than perfect, can require significant human assistance to be utilised in 

any meaningful forensic context and that ASRs should be used – but with caution.  In addition, 

Solewicz et al. (2012) emphasised the difference when applying laboratory standards to real forensic 

case data – which can be unrealistic due to the acoustic variability of the latter.  

 

‘The typical attributes of forensic material sometimes lead to unpredictable results that are not 

necessarily consistent among the systems investigated.’   Solewicz et al. (2012: p.90). 
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Throughout the writing of this thesis the infinite variability of speech, the inconsistency of acoustic 

conditions, the wide range of technical quality of recordings, the complexity of assembling 

population data and the wide variety of ASR systems (and settings) demonstrate how complex it will 

be to transition ASRs to forensic application.   

 

To summarise, it is intended that the research experiments completed provide useful data to assist in 

informing users about acoustic variability and assist with understanding the associated risks.  Finally, 

key issues pertaining to ASR use will endure in respect of reliability and reproducability in the 

context of: 

i. Agreement on normative data and suitability, particularly for acoustic variablity and 

mismatched conditions; 

ii. Validation of results across multiple laboratories – e.g. different systems/normative sets ASR 

make/model, underlying architecture, configuration/settings and thresholds; 

iii. Measurement pertaining to audio quality/quantity; 

iv. Agreement on acceptability criteria – which likely requires adapting to (i) and (ii); 

v. Agreement on metrics regarding ASR performance; 

vi. Explanation of LR/LLR and ASR output to non-specialists/the courts. 

 
There are, of course, other issues outside the scope of this thesis - such as the current inadmissibility 

of intercepted audio (i.e. mobile and telephony) in the UK courts, in comparison to eavesdropping 

audio. 
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Chapter 13  Future Research 

This chapter discusses opportunities for further research in reference to the experiments completed.  

13.1  Combining Acoustic Conditions 
It is recommended that research should examine the combining of acoustic variability (e.g. 

reverberation, SNR and transcoding) with the objective of determining if there are any broad 

mathematical relationships to be drawn in respect to degradation and EER% and Cllr.  It is expected 

that inhibitors and contaminants will have a cumulative effect on ASR performance when combined, 

but the sum of that effect cannot easily be predicted.  It is hypothesised that performance degradation 

is not likely to be linear and will probably introduce further cliff edge effects.  This research would 

ideally require much larger scale data modelling to better represent hundreds, if not thousands, of 

different permutations of acoustic variability.  Research could assist with assembling normative 

datasets and compensating for non-ideal/mismatch of acoustic conditions. 

 

13.2  Modeling Automatic Speaker Recognition 
System Environments 
Modelling using extremely large datasets of SM and TA and simulating permutations of ASR 

systems (and settings) under thousands of different conditions could provide more reliable estimates 

as to ASR performance.  Parsing much larger datasets of artificially degraded/modelled normative 

data could potentially produce more reliable estimates as to the degree of error in output arising from 

acoustic variability.  The data could also better inform ASR performance under complex conditions, 

assist with population data selection or guide as to the inherent variability in the ASR itself.  It could 

also produce optimum settings for analysis of very complex acoustic conditions. 

 

13.2.1 Applying Big Data for Mismatch 
Compensation  
The lack of calibration data for addressing channel mismatch is an enduring issue - also highlighted 

by Morrison, (2018b).  Aside from completing a controlled degradation of either SM or questioned 

audio (or both), one solution for better compensation with respect to mismatched conditions could 

be in the creation of recording adapted background models (RABMs).  This was originally proposed 

by Becker et al. (2010) in relation to improving performance for ASR systems on real case data (747 

recordings, from 184 speakers).  The team showed EER% benefit (from 17% to 7%) applying this 

method.  They suggest that future success would be dependent on the collection of very large volumes 
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of relevant population data and adaptation of the background dependent on the comparisons 

completed.   

 

Degrading large batches of normative data was more recently proposed by Ferràs et al. (2016) who 

demonstrated that adding a database of over 60 hours of environmental noise and 100 impulse 

responses to simulate conditions could improve the matching of conditions between SM and 

questioned audio.  Their experiment produced an improvement on a bespoke i-vector system of 

between 40% and 80% relative EER (Ferràs et al., 2016: p.530).   

 

In summary, all these methods show promise and the opportunity to develop extremely large data 

sets featuring millions or hundreds of millions of audio files, specifically to compensate for 

mismatch, should be researched.  Nevertheless, simulating accurate and complex channel conditions 

will not be without difficulty.  In addition, there are also ethical implications - see U.K. General Data 

Protection Regulations or GDPR (2018).   

 

13.3  Pre-Analysis Audio Enhancement 
As previously discussed (12.2.2) the sparing use of audio enhancement was shown to marginally 

improve ASR performance in some instances – although it also degraded ASR performance - 

consistent with Künzel and Alexander, P. (2014).   Audio enhancement prior to ASR analysis is quite 

controversial in terms of digitally altering the audio which, it could be argued, would be applying 

software to potentially change/elevate ASR LR output.  From the small scale experiments completed, 

it is hypothesised that most noise reduction techniques are unlikely to significantly improve ASR 

performance as in most cases the degradation is due to the loss of speech data, sometimes referred to 

as ‘moth holes’, which can not simply be filled (spectrogram, Figure 11.21).  In addition audio 

enhancement will introduce an additional and undesirable set of unknown (new) acoustic variability.   

 

The many approaches to audio enhancement were not within the scope of this thesis – but removal 

of predictive and variable noise such as music (reference cancelling), adaptive filtering (removal of 

noise which adjusts to the incoming signal) and the filtering of specific frequencies (low pass, high 

pass, band pass and comb filters) are generally considered the most popular techniques.  For now, 

however, audio enhancement pre-ASR analysis should firmly reside in the investigative only 

application of ASRs and further research is recommended. 

 

13.4  Feature Extraction Methods and System Fusion 
Recent research from Athulya and Sathidevi (2018) demonstrated that ASR system performance 

degradation caused by codec distortion can be partly compensated for by applying an alternate 

feature extraction method and fusing the output with output from another feature extraction method.  
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In exploring this, the authors used Power Normalized Cepstral Coefficients or PNCC and then 

applied fusion with traditional MFCC feature extraction on a GMM-UBM system.  The TIMIT 

corpus consists of 630 speaker and 80 speakers were used for testing (SM and TA) with the remainder 

used for UBM/normative purposes.    They noted a reduction in EER from 22.4% to 2.5% (optimum 

baseline 0.3165% EER) – showing much promise in this area.  Another recent study by Fedila, 

Bengherabi and Amrouche (2018) also found performance benefit from a similar approach - fusing 

a Gammatone Product-Spectrum Cepstral Coefficients GPSCC and a MFCC GMM-UBM system 

tested with TIMIT speech files degraded using the G. 722 codec (Figure 13.1).    

 
 
Table 13.1: Fedila, Bengherabi and Amrouche (2018: p.16734, Table 6)  

 
 

In the preliminary tests which experimented with LTFD measurement as an alternative feature 

extraction method it was noted that, whilst overall EER% was generally not as good as either MFCC 

GMM-UBM (or MFCC/i-vector), LTFD did appear more resilient to noise than the MFCC GMM-

UBM system.  It is suggested that this could be a specific area for further research - i.e. could there 

be benefit from fusing a new, improved LTFD extraction method with the x-vector/DNN approach?   

 

Adding other speech measurements, including those more determined by content (i.e. text 

dependent/output from speech to text to extract similar entities) could also be potentially fused 

together for further performance benefit.  In the context of the experiments completed on frequency 

bandwidth - combining inverse MFCC with the filters spaced in reverse and additional detail in the 

upper frequency band, this could also provide additional performance benefit and requires research. 

 

Schieland and Zitzelsberger (2018) also evaluated different methods of formant tracking and 

proposed that Deep Learning (DL) offered the best solution, conceding that LPC trackers were 

approximately twice as imprecise as humans, that the trackers must be adjusted for gender (2018: 

p.2847) and the large requirement for marked data (for DL).  It is recommended that these studies 

form the basis for further research to use DL formant tracking, in the context of ASR performance 

and acoustic variability.  
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Finally, the fusion of score matrices, i.e. multiple tables of results from different systems, is 

appearing within software such as OWR Bio-Metrics 2018 (Alexander et al., 2018).  This could 

effectively bring different ASR system output together more easily – utilising the best feature 

extraction and statistical modelling methodologies of multiple systems to provide additional EER% 

and Cllr benefit, particularly if common standards of ASR output are observed.  

13.4.1 Automatic Speech Recognition 
Recent research by Fujitsu (2017) on text dependent low duration utterances applied machine 

learning algorithms for both speaker verification and speech recognition.  It is not noted which corpus 

was used or the diversity of the speaker population (language, gender, age etc.).  A typical text 

dependent use case could apply to authorising voice passwords (e.g. account access for telephone 

banking) where phrase repetition could assist in offsetting low duration.  The Fujitsu approach 

showed an EER of 2.2% on utterances (<3s) on a set of 200 speakers (no further details supplied). 

This broadly supports the hypothesis that ‘what is said’ is of high significance to 

verification performance.  It is then likely that the improvements in ASR performance will occur 

i.e. when the trained utterance and questioned audio are identical.  Whilst this could work well in 

the context of banking etc. performance figures achieved in the text dependent domain obviously 

cannot be applied to forensic application.  It is also suggested that false positive rates would rise 

and EER% is not likely to remain low if increasing the candidate pool (from 200).  Whilst 

controversial, a machine learning approach like this could potentially assist with much wider 

speech to text and speaker recognition problems (e.g. large scale) – for example, applying 

machine learning re identical/similar phonemes, words or phrases which could then be extracted 

from big data (e.g. to create multiple speaker models) – this might then improve similarity of 

utterance(s) with the questioned audio.

13.5 Automated Audio Quality Measurement
Assessing acoustic variability and audio quality objectively, quickly, at scale and in a repeatable and 

reproducable manner is likely to become more important in the context of acceptability critera and 

common standards.  New techniques for extracting audio quality metrics from audio files using semi-

automatic processes requires further research.  For example, the output of audio quality 

measurements (.xml files) could be incorporated into the diarisation process to better determine 

which sections (or audio files) are suitable for ASRs (or not). 

13.6  Alternate Approaches to Speaker Model 
Generation 
An area of interest that arose during research was the concept of using WCCN to better 

separate/measure channel influence through the use of multiple speaker models recorded from 
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multiple sessions.  As previously discussed, the system is trained to know that multiple reference 

samples are from the same speaker.  Then i-vectors pertaining to speaker specific information can 

then be better separated from those that relate to channel information.  Further research is required 

in this area.   

 

13.7  X-Vector Automatic Speaker Recognition 
Systems 
As discussed, the x-vector DNN approach (Snyder et al., 2018) was developed towards the end of 

writing this thesis and ASR manufacturers have been quick to exploit the improvements in statistical 

modelling density and apply deep neural network (DNN) techniques to comparison.  Several new x-

vector ASRs have recently been launched and a beta version of xVocalise was recently used in the 

context of the multi-laboratory, forensic evaluation trials (Morrisson and Enzinger, 2019; Alexander 

and Kelly et al., 2019).  Ten different ASR systems were tested in total using a special forensic 

evaluation corpus referred to as ‘forensic_eval_01’ (Morrisson and Enzinger, 2019: p.37).   

 

In summary, it was noted that the 3 x-vector PLDA/DNN systems that were tested marginally 

outperformed their i-vector/PLDA predecessors (e.g. iVocalise 0.07 EER%, Cllr mean 0.23 and x-

Vocalise 0.05 EER%, Cllr mean 0.213).  Further research in this area will be important in terms of 

quantifying improvements between i-vector and x-vector architecture, particularly in relation to 

acoustic variability.   
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Chapter 14 Conclusion 

This thesis demonstrates the importance of acoustic variability on ASR performance through the 

investigation of five acoustic conditions.  The experiments completed contribute to the field through 

estimating the extent of ASR performance degradation, highlighting the importance of acoustic 

variability, emphasising the significance of completing full technical assessments (of recordings), 

raising awareness as to the risks surrounding acoustic variability and providing recommendations to 

mitigate.   In addition, further opportunities for research pertaining to acoustic variability and ASR 

systems were identified and presented.   

 

Specific contributions to the field were made through the provision of relevant new data.  It was 

demonstrated that: 

i. Performance tipping points were identified, these should be measured and known for a 

specific ASR. 

ii. Performance benefit can be gained by increasing the sample rate for ASR analysis to 22kHz 

SR, 0-11kHz frequency bandwidth (i.e. WB).  This assumes that other acoustic degradation 

is not present and the ASR system would require optimisation accordingly (feature extraction 

process and normative data). 

iii. ASR systems can be successfully applied to assessing speech files less than 8kHz SR, 0-

4kHz frequency bandwidth (i.e. less than NB) – but accuracy and performance is degraded 

and much care must be taken to optimise the system, calibrate/match conditions.  Reliability 

of the system and output should be measured and incorporated into reporting.   

iv. Constraining the frequency bandwidth beyond 0-3.5kHz, 07kHz SR (on male speech) was 

shown to be (likely) reaching the theoretical limit of extractable speech data for which 

accurate ASR is possible.  The experiments broadly supported the minimun high frequency 

standards as surveyed by Gold and French (2019) - see 2.1.   Female, child speech and tonal 

languages were not tested but the experiments show that constraining F3, F4 and above 

influences ASR performance and so it is likely that the frequency range would need to be 

adjusted accordingly for female and child speakers.  

v. It was consistently demonstrated that the i-vector ASR outperformed the GMM-UBM ASR.  

This is in line with other research and supports the updating of ASR systems.  

vi. The minimum acceptance criteria for net speech duration for some practitioners was noted 

as 3 seconds (Gold and French, 2019) (2.1).  From the results in chapter 7 it would be 

recommended this is too low and minimum acceptance criteria should be revised upwards 

(assuming ASR use, rather than auditory analysis).    

vii. Combining mismatched acoustic conditions within the same set of comparisons was shown 

to provide poor overall output (e.g. mixture of high/low true positives and false negatives). 
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Matched conditions, between the question and reference samples, were consistently shown 

to improve ASR performance with the exception of net duration where minimum quantities 

were identified (Tables 7.9 and 7.10).   

viii. Recommendations are made in relation to the management of speaker models including, 

where practicable, more uniform conditions to prevent the skewing of results (7.7). 

ix. Controlled degradation (forcing matched conditions), where carefully applied by a skilled 

practitioner, could restore ASR performance but caution is recommended and further 

research is required. 

x. Audio enhancement was shown to have both a positive and negative effect on ASR 

performance and should not be used without much caution.  More research is required. 

xi. Larger datasets for the population/normative data and the addition of reverberant material 

provided an ASR performance improvement when comparing material containing speech 

with reverberation. 

xii. Removal of VAD, in some instances, assisted with ASR accuracy for degraded speech files 

but should be used with much caution. 

 

As ASR systems become more widespread in their application one concern may be that the quality 

and standards surrounding their usage is diluted.  This could occur through the lack of expertise to 

technically assess audio, operate the ASR correctly and governance.  With large scale data 

enrichment services becoming available on cloud services, to commercial organisations (e.g. call 

centres/account verification) it is also highly likely that speech technology enrichment services will 

occur with even less visibility to either the end user or a system administrator.   

 

Despite the enduring development of ASRs, issues were highlighted around the implications of 

conducting ASR analysis on degraded audio and the relative immaturity and current suitability of 

ASRs to directly transition to forensic application.  Broader recommendations have been raised 

suggesting strategic requirements for investment, consensus within and across organisations as to 

systems and processes in addition to methodology and the importance of collaboration regarding 

expertise and data.  In discussing use cases it is important to differentiate the spectrum of applications 

from ‘call-centre ASR systems’ to investigative and forensic capabilities.  The latter of which clearly 

demands much higher ASR performance, standards, governance and issues surrounding channel 

mismatch (e.g. interview and telephony) – and yet the Netherlands and Germany are succeeding 

where the U.K. is not.   Nonetheless, it could be argued that audio generated to one set of standards 

might later be required for investigative/forensic use.   

 

As a result of the experiments conducted in this thesis it is hoped that attention and investment is 

also drawn to the importance of high quality audio capture and consideration of the transmission, 

reception, networking, archiving and pre-processing of audio prior to ASR analysis.  Objective 
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measurements of audio/speech quality will be difficult to find consensus on and perpetual updates to 

ASR software and normative datasets, whilst iteratively improving EER%, can exacerbate 

difficulties relating to transitioning ASR systems to forensic use.  The thesis also discussed the 

sizeable investment and consensus between multiple organisations that will be required to transition 

ASRs into any part of the forensic process.  Efforts to improve our understanding of intrinsic and 

extrinsic variability must be continued.  Large scale investment in marked data for machine learning, 

better population data (with metadata) and new research will be vital.   

 

As practitoners we should complete stringent qualititave technical assessments, apply sound forensic 

methodology, validate our results on more than one ASR system and understand/quantify the 

expected performance bandwidth of our ASR system(s).  Not forgetting, that the physiological 

dimensions of the vocal tract are not as varied across human beings in comparison to DNA, for 

example.  These are all important steps to ensuring that speaker verification using ASRs does not 

descend into an unreliable pseudo-science as the technology becomes more prevalent.   

 

In summary, there are really three simple options available pertaining to acoustic variability - to 

either adapt the ASR system and/or modify the audio files or to not proceed with ASR comparison 

on the grounds of insufficient data.   

 

If applied in a controlled way and with highly validated and robust methodologies, by fully trained 

experts, ASRs can provide an invaluable investigative tool and should certainly be applied to pre-

forensic casework.  With careful application, fully trained operators, safeguards and governance in 

place, the final recommendation of this thesis is that ASRs should eventually, one day, progress to 

evidential use in the U.K.   
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Appendices 

The following Appendices (A-J) are presented. 

Appendix A Additional results from Transcoding experiments 

Appendix B Examples of Preliminary Tests. Examples of VQ analysis method  

Appendix C  Preliminary Tests. VQ and zoo plot results and analysis 

Appendix D Preliminary Tests. Zoo plots (DyViS, Pakistani and Yorkshire accented data) 

Appendix E Zoo plot and LR plot .gif animations (individual frames/.bmp) 

Appendix F Reverberation conditions, Waves IR-L 

Appendix G  OWR Vocalise and iVocalise ASR system specifications and versions 

Appendix H Slides presented by the author at 2014 IAFPA (Zurich) 

Appendix I Poddar, Sahidullah and Saha Tables.  Net duration research to date (2015) 

Appendix J Test tone experimentation tables  

Appendix K Image from Speaker 012, spectrogram analysis 

Appendix L Response from Parallels re VM software 
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Appendix A 

Additional results from CODEC Testing (Chapter 11). 
G711 uLaw 8kHz from 22kHz 

0.0337% EER: FARR/FRR: 1, 0: 0.1, 0: 0.01, 2 

Mean of H0: 48.8036: Mean of H1: -67.15491  

Standard Deviation of H0: 12.94604 Standard Deviation of H1: 27.70791  

 

GSM 8kHz from 22kHz 

0.3418% EER: 1, 0: 0.1, 1.33: 0.01, 2.33 

Mean of H0: 50.17181: Mean of H1: -54.77997  

Standard Deviation of H0: 12.80004 Standard Deviation of H1: 26.22543 

 

Speex 32 CBR 16kHz from 22kHz 

0.0286% EER: FARR/FRR: 1, 0: 0.1, 0: 0.01, 2.33 

Mean of H0: 47.49995: Mean of H1: -66.24854  

Standard Deviation of H0: 12.50942 Standard Deviation of H1: 27.49063  

 

G711 uLaw 6kHz from 22kHz 

1.0859% EER: FARR/FRR: 1, 1.67: 0.1, 5.33: 0.01, 26.35 

Mean of H0: 58.01739 Mean of H1: 6.33455  

Standard Deviation of H0: 7.686879 Standard Deviation of H1: 15.69978  

 

G711 aLaw 6kHz from 22kHz 

0.6700% EER: FARR/FRR: 1, 0.67: 0.1, 4.85: 0.01, 20.33 

Mean of H0: 58.14906 Mean of H1: 6.154152  

Standard Deviation of H0: 7.38196 Standard Deviation of H1: 15.52763  

 

Dialogic ADPCM 8kHz from 22kHz 

0.3519% EER: FARR/FRR: 1, 0.00: 0.1, 1.33: 0.01, 3.67 

Mean of H0: 50.96175 Mean of H1: -56.17345  

Standard Deviation of H0: 12.98414 Standard Deviation of H1: 27.22046 

 

Opus 16kbps Constrained Variable from 22kHz 

0.0741% EER: FARR/FRR: 1, 0.00: 0.1, 0.33: 0.01, 1.00 

Mean of H0: 51.51166 Mean of H1: -58.62491  

Standard Deviation of H0: 12.57021 Standard Deviation of H1: 26.44784  
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Speex Quality Preset 1 from 22kHz 

1.6515% EER: FARR/FRR: 1, 2.00: 0.1, 13.48: 0.01, 30.78 

Mean of H0: 56.0914 Mean of H1: -10.46355  

Standard Deviation of H0: 10.20975 Standard Deviation of H1: 20.91397  

 

Speex Quality Preset 0 [Lowest] from 22kHz 

2.3199% EER: FARR/FRR: 1, 5.00: 0.1, 17.00: 0.01, 32.33 

Mean of H0: 73.71233 Mean of H1: 28.96915  

Standard Deviation of H0: 7.074686 Standard Deviation of H1: 15.89392 

 

Ogg Quality Preset 0 Lowest from 22kHz 

0.2845% EER: FARR/FRR: 1, 0: 0.1, 0.33: 0.01, 1.67 

Mean of H0: 48.87741 Mean of H1: -65.51038  

Standard Deviation of H0: 13.16722 Standard Deviation of H1: 27.09071  

 

AAC Average Bit Rate 16 from 22kHz 

0.3300% EER: FARR/FRR: 1, 0.00: 0.1, 0.67: 0.01, 3.67 

Mean of H0: 65.38939 Mean of H1: -4.177887  

Standard Deviation of H0: 8.312696 Standard Deviation of H1: 19.28006 

 

MP3 Average Bit Rate 8 from 22kHz 

4.3030% EER: FARR/FRR: 1, 14.33: 0.1, 37.48: 0.01 62.01 

Mean of H0: 49.51321 Mean of H1: 0.3016596  

Standard Deviation of H0: 11.00564 Standard Deviation of H1: 18.12873 
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Appendix B  

Examples of Preliminary Tests re VQ data with observations. 

Example section of a Table adapted to view VQ data from Stevens and French (2013).  The table 

developed was extremely large, so here just showing data for the first 12 speakers. The total scoring 

row refers to experimentation seeking correlates against extent of VQ, although this did not take into 

consideration the rarity of feature. 

 

Appendix B: Table 1: Example VQ Data, Stevens and French (2013) + subsequent analysis 

 
 

Table 2 shows standard deviation and ‘rarity’ of feature, based on VQ data (Stevens and French, 

2012), 22 speakers (VQ Whispery voice). 
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Appendix B: Table 2: Example VQ Data, Stevens and French (2013) and analysis  

 
 

Analysis of results revealed several speakers who had similar VQ profiles and zoo position.  Those 

speakers were not necessarily classified in one of the four quartiles, but occupied adjacent points or 

clustered.  Speakers 118 and 009 (LTFD) had extremely similar VQ properties particularly for 

features that were considered relatively distinct across the group.  These were Pharyngeal 

constriction (23% of speakers), raised larynx (22% of speakers), tense larynx (36% of speakers) and 

nasal (22% of speakers).  Speakers 033 and 051 (LTFD) had similar tense larynx scores.  Speakers 

026 and 037 (LTFD) had very similar VQ, with features considered highly distinct across the group.  

They were the only two speakers with VQ close jaw (2% of speakers) and also only two of four 

speakers scored against minimised range (4%).  Speakers 026 and 037 also scored high at +4 or +5 

for creaky voice (8% of speakers). Whilst not assigned animal classifications, these speakers 

occupied adjacent space in the normal position.  A tight cluster of x3 speakers in normal was noted 

113, 078, 034 (LTFD engine).  However, no explanations were found in terms of VQ, SNR or net 

speech.  Interestingly, these speakers were also found in close proximity on the MFCC zoo plot.  

Speakers 031 and 002 appeared similar to the ASR (both MFCC and LTFD engine, normal 

classification).  No conclusive explanation was found - although both had quite similar VQ scores, 

particularly for raised larynx (22% of speakers). 
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LTFD Summary 

Of the 100 speakers assessed, 22 speakers had the voice quality whispery.  Of those, 9 were most 

likely to produce FR by the ASR (LTFD engine).  Further research would be required to test the 

hypothesis that poor performers (as per the MFCC engine) or those more likely to produce false 

rejects (LTFD) have a tendency to produce higher scores for phonatory VQs.  For example, an 

alternative hypothesis might be that the normative data (UBM) is not correctly balanced in terms of 

those features, although that would still suggest a weak link between certain VQ criteria and zoo plot 

position. 

 
MFCC Summary 

Of the 22% of DyViS speakers were scored in the VQ category whispery with 9 of those 22 speakers 

classified as Phantoms, accounting for 90% of MFCC engine Phantoms.  The majority of worms (2 

out of 3) were marked as having the VQ whispery voice.    Conversely only 1 out of 8 Doves were 

marked as whispery and 0 chameleons.    This could suggest a possible y-axis divide around this VQ 

feature however more research would be required.  Of all DyViS speakers, 91% had a score for 

creaky voice.  Of the 9 speakers that did not have a score for creaky voice, 7 gained zoo plot 

classifications.    5 of these were classified as MFCC phantoms with 2 x normal, 1 x dove & 1 x 

chameleon.  Ten speakers did not have a score for VQ breathy voice.  Whilst strong correlation was 

initially not found in terms of classification (2 x doves and 8 x normal) – some clustering was 

observed in terms of zoo plot position, with 5 speakers forming a close pattern.  Clustering was also 

noticed for those speakers not having the VQ breathy voice (MFCC engine).  However, clustering is 

neither tight nor consistent and other factors may account for zoo plot positioning.    

 

Using Tables for analysis, speakers classified as doves initially appeared to have a greater number 

of VQ identifiers per speaker (9, 10, 11, 12, 13 features compared to 4, 5, 6, 7, 8 features).   However, 

analysis using zoo plots found a distinct lack of clustering and there was little evidence to support 

the hypothesis further.    

 

Tense larynx was a VQ feature present for 36% of speakers.  All 5 x doves appeared in the subset 

tense larynx.  However, as the tense larynx group is quite large, correlation is not conclusive.  Zoo 

analysis revealed a distinct lack of clustering and the tense larynx group, as a whole, were evenly 

distributed.  However, for the 7 speakers that scored for the VQ lax larynx (normal classification for 

all instances) a distinct cluster was observed towards the mid left side of the zoo plot.   

 

The raising or lowering of the larynx can influence pitch variation for F1 and F2 (Nolan and Grigoras, 

2005).  Others have noted links between formant measurements and the position of the larynx (Gold, 

French, Jessen et al., 2013).  As F1, F2 and F3 are measured by the ASR LTFD engine this suggests 

causality for zoo positioning in terms of VQ.  The results require further examination, but this could 



 283 

demonstrate commonalities in terms of zoo plot placement for certain laryngeal settings when using 

the LTFD engine.   

 

For 10 of the VQ criteria all 100 speakers scored zero.  For an additional 6 criteria only 4% (or less) 

of the speakers scored greater than zero.   Conversely, 2 features were present for almost all speakers.  

Analysis, in terms of zoo positioning, focused on VQ data for which groups of speakers could be 

compared well against the majority.  It is conceded that constraints in the variability of the data meant 

that not all VQ features could be analysed for zoo positioning.    

 

Initially and at a high level, links between ASR classification and VQ were not observed with random 

distribution.  Those speakers with distinct voices from VQ analysis did not directly correspond with 

doves and speakers regarded as not distinctive, by VQ, did not directly correspond with worms.   

Speakers with similar VQ profile were not often adjacent, although there were examples where they 

were.  Results were partially to be expected, since VQ is a subjective measurement using different 

metrics to MFCC or LTFD extraction.  However, further analysis of zoo plot positioning suggested 

some support to the hypothesis that VQ is linked to zoo plot position and ASR performance in some 

instances.  Ongoing research is suggested to examine the following:  

i. A suggested link between phonatory features and zoo plot positioning, but not necessarily 

classification (MFCC engine); 

ii. A suggested link between supralaryngeal features and zoo plot positioning, but not 

necessarily classification (more prominent in LTFD mode); 

iii. Other VQ features were examined for both engines and were regarded as having a low 

likelihood of influence on zoo positioning.   
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Appendix C  

Preliminary test results, VQ and ASR zoo plot analysis 

Are there correlations in terms of voice quality from both the MFCC and LTFD engine 

classifications?   

 

High-level correlations could not be found between VQ and ASR classifications.  Although some 

correlations were noted between certain aspects of voice quality and the zoo plot results for both 

engines, particularly in the classifications phantoms (MFCC) and chameleons (LTFD).  In terms of 

zoo plot positioning, clusters appeared to highlight speakers with certain supralayrngeal VQ features 

(LTFD engine).  Speakers with certain phonatory VQ features also appeared to cluster (MFCC 

engine).  Further research is required to rule out other factors. 

 

Are there any other clusters or patterns that could indicate commonalities, particularly in terms of 

voice quality properties?   

 

High-level commonalities could not be found, but in some instances certain speakers with similar 

voice quality characteristics appeared adjacent or in close proximity on the zoo plot.    A tentative 

link was observed between the MFCC engine and speakers that had certain phonatory features and 

the LTFD engine and speakers that had certain supralaryngeal features.  Zoo plots are a useful tool 

for examining overall ASR health and can assist in identify outlying speakers that can produce 

comparison issues.   Conclusively determining the exact cause of each zoo plot data position, 

however, is challenging due to the quantity of variables inherent in the data and the combination of 

factors likely to influence each plot position.  Constraints and limitations in zoo plot interpretation 

must be recognised. 

 

In the section below 19x zoo plots are presented which informed the examination of VQ (Stevens 

and French, 2013) against position in 6.5.4. 
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 VQ: Speakers with higher sibilance scores [+2 or +3] 

Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: LTFD (scale in LLR)  
UBM: CTEST 89 speakers: Interview domain 
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VQ: Speakers with lax layrnx scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: LTFD (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 
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VQ: Speakers with lax vocal tract scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: LTFD (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 
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VQ: Speakers with pharyngeal constriction scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: LTFD (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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VQ: Speakers with higher whispery scores [+2 or +3] 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: LTFD (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 
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VQ: Speakers with lowered layrnx scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: LTFD (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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VQ: Speakers without breathy scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: LTFD (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

A
ve

ra
ge

 im
po

st
er

 m
at

ch
 s

co
re

 

Average genuine match score 



 292 

 
 
 
 

VQ: Speakers with backed tongue body scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: LTFD (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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VQ: Speakers without fronted tongue body scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: LTFD (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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Zoo plot with fat & thin option selected – demonstrating inter and intra variability relative to the total (100) speakers 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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 Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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VQ: Speakers with high nasal scores [+3 and +4] 
Test material: TypeI DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 
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VQ: Speakers with nasal [scores of +3 only] 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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VQ: Speakers with lax layrnx scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise engine: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 
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VQ: Speakers with extensive range scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 
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VQ: Speakers with lowered layrnx scores 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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VQ: Speakers with sibilance scores  
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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VQ: Speakers with whispery scores [note qty of Phantoms] 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 

Average genuine match score 
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VQ: Speakers without creak 
Test material: Task I DyVIS 1m SM x 1m + 1m + Residual [29,700 imposter, 300 genuine] 
Vocalise 1 ASR: MFCC GMM-UBM (scale in LLR) 
UBM: CTEST 89 speakers: Interview domain 
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Appendix D 

Below, 8x zoo plots are presented from the preliminary experiments.  These pertain to experimentation re the addition of Pakistani and Yorkshire accented data 

to the DyViS SSBE accented data (baseline).  They are presented here as a record of the analysis completed and the conclusions reached in chapter 6. 

 

Investigation showed that accent data, different from the SSBE accented data, did indeed cluster, but that no direct correlation between zoo plot position and 

accent could be determined which couldn’t also be explained acoustic/channel differences or by the addition of DyViS to the normative data. 
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Yorkshire accented + DyVIS : VOCALISE MFCC Engine.  Note DyViS Normative set (results artificially skewed) 
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Preliminary Testing.  Yorkshire accented + DyVIS: Vocalise, LTFD Engine 

 
 
 
 

Average genuine match score 
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Preliminary Testing.  20x Pakistani accented + 100x DyVIS SSBE: Vocalise, GMM-UBM, MFCC Engine 
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20x Pakistani accented + 100x DyVIS, SSBE: Vocalise GMM-UBM, Vocalise, LTFD Engine. 
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Preliminary Testing.  20x Pakistani accented + 20x Yorkshire accented: Vocalise MFCC Engine. 
Blue squares = Pakistani accented.  Red circle = Yorkshire accented. 
Note – no clustering found. 

 
 

Average genuine match score 
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Preliminary testing, 20x Pakistani accented + 20x Yorkshire accented: Vocalise LTFD  
Blue squares = Pakistani accented.  Red circle = Yorkshire accented 
Note – no clustering found. 
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Preliminary testing, 20x Pakistani accented + 20x Yorkshire accented: Vocalise, GMM-UBM ASR system.  MFCC.    
Blue squares = Pakistani accented.  Red circle = Yorkshire accented. 
Note – no clustering found. 
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Preliminary testing, 20x Pakistani accented + 20x Yorkshire accented: DyVIS UBM.  Vocalise, GMM-UBM ASR.  MFCC. 
Blue squares = Pakistani accented.  Red circle = Yorkshire accented 
Note – no clustering found. 
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Appendix E 

.GIF file zoo plots (frames) re frequency bandwidth experiments. 

.GIFs have been generated to display the movement of speaker performance (zoo plots) and the overall system performance (LR plots) – please see 

additional material section for details.  The .gif animations are presented to demonstrate the influence of frequency bandwidth on ASR performance.   

 

The individual frames from the preliminary testing .GIF are presented below as a record.  They demonstrate: 

i. The zoo plot movement of speaker positions from the upper right to lower left position i.e. high TP and low TN transitioning to low TP and 

high TN as the frequency bandwidth was constrained; 

ii. The LR plot movement (H0 and H1 distribution) as frequency bandwidth was constrained – note the axis scale movement. 
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Sample Rate 32kHz, Frequency Bandwidth 0-16kHz 

LLR 
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Sample Rate 30kHz, Frequency Bandwidth 0-15kHz 

LLR 
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Sample Rate 28kHz, Frequency Bandwidth 0-14kHz 

LLR 
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Sample Rate 26kHz, Frequency Bandwidth 0-13kHz 

LLR 
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Sample Rate 24kHz, Frequency Bandwidth 0-12kHz 

LLR 
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Sample Rate 22kHz, Frequency Bandwidth 0-11kHz 

LLR 
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Sample Rate 20kHz, Frequency Bandwidth 0-10kHz 

LLR 
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Sample Rate 18kHz, Frequency Bandwidth 0-09kHz 

LLR 
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Sample Rate 16kHz, Frequency Bandwidth 0-08kHz 

LLR 
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Sample Rate 14kHz, Frequency Bandwidth 0-07kHz 

LLR 
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Sample Rate 12kHz, Frequency Bandwidth 0-06kHz 

LLR 
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Sample Rate 10kHz, Frequency Bandwidth 0-05kHz 

LLR 
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Sample Rate 08kHz, Frequency Bandwidth 0-04kHz 
(Standard telephony channel) 

LLR 
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Sample Rate 06kHz, Frequency Bandwidth 0-03kHz 

LLR 
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Sample Rate 05kHz, Frequency Bandwidth 0-2.5kHz 

LLR 
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 Negligible differences in LR performance observed at a system level, for higher frequency bandwidth settings. 

Individual speaker performance was affected (zoo plot position). 

Sample Rate 32kHz, Frequency Bandwidth 0-16kHz Sample Rate 30kHz, Frequency Bandwidth 0-15kHz 

Sample Rate 28kHz, Frequency Bandwidth 0-14kHz Sample Rate 26kHz, Frequency Bandwidth 0-13kHz 
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Sample Rate 24kHz, Frequency Bandwidth 0-12kHz Sample Rate 22kHz, Frequency Bandwidth 0-11kHz 

Sample Rate 20kHz, Frequency Bandwidth 0-10kHz Sample Rate 18kHz, Frequency Bandwidth 0-09kHz 
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Sample Rate 16kHz, Frequency Bandwidth 0-08kHz Sample Rate 14kHz, Frequency Bandwidth 0-7kHz 

Sample Rate 12kHz, Frequency Bandwidth 0-6kHz Sample Rate 10kHz, Frequency Bandwidth 0-5kHz 
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Significant shifts in LR performance observed at 0-7kHz and 0-6kHz (i.e. sub telephony channel) 

Sample Rate 08kHz, Frequency Bandwidth 0-04kHz Sample Rate 07kHz, Frequency Bandwidth 0-3.5kHz 

Sample Rate 06kHz, Frequency Bandwidth 0-3kHz 



Appendix F  

Waves IR-L.  Summary of reverberation settings 
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Appendix G 

ASR Default system settings 

OWR Vocalise 1.5.0.1190*  

GMM UBM System 

Default normative data unless otherwise stated. 

MFCC settings applied 32 Gaussians, 13 Features, 24 filters, delta, CMS, symmetric, 10 train 

cycles. 

*For system consistency, tests completed using previous versions of Vocalise - e.g. Beta (2012), 

1.3.0.607 (2013), 1.4.0.599 (2014), 1.4.0.651 (2014-15) and 1.5.0.1175 (2015) were either re run or 

validated on version 1.5.0.1190 (the last release of Vocalise version 1).

OWR iVocalise Version 2.5.0.1583 (2017B)** 

I-Vector UBM, TV, LDA+PLDA System (default normative data unless otherwise stated) 

MFCC Settings: 13 features, 2 deltas, 24 filters, 1,024 gaussians

Total Variability: 10 train cycles, 400 dimensions

PLDA: 200 dimensions 10 train cycles

**For system consistency, experiments completed on previous versions of iVocalise - e.g. 2.1.0.1366, 

2.4.0.1547, or (2017a) were checked using version 2.5.0.1583.    



Appendix H 

This section documents two slides that were presented at IAFPA (2014) by the author.    
 
From: Alexander, A., Forth, O., Nash, J. and Yager, N. (2014).   Zoo plots for speaker recognition with tall and fat animals.  
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Appendix H: Figure 1: OWR Vocalise LTFD.  VQ analysis. Speakers with VQ lax larynx 
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Appendix H: Figure 2: OWR Vocalise MFCC.  VQ analysis. Speakers without VQ breathy 
 



Appendix I  

Appendix I: Table 1: Poddar, Sahidullah and Saha Tables (2015).   
Summary of net duration research to 2015 and key (below) 
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Poddar, Sahidullah and Saha (2015) Key. 

Ref 45: Kanagasundaram, A., Vogt, R., Dean, D.B., Sridharan, S., Mason, M.W.: ‘I- 
 vector based speaker recognition on short utterances’, Interspeech, 2011, pp.2341–
2344   

Ref 7: Mandasari, M.I., McLaren, M., van Leeuwen, D.A.: ‘Evaluation of i-vector 
speaker recognition systems for forensic application.’, Interspeech, 2011, pp.21–24  

Ref 80: Kanagasundaram, A., Vogt, R.J., Dean, D.B., Sridharan, S.: ‘PLDA based 
speaker recognition on short utterances’, Proc Odyssey, 2012 

Ref 51:  Sarkar, A.K., Matrouf, D., Bousquet, P.M., Bonastre, J.F.: ‘Study of the 
effect of i-vector modeling on short and mismatch utterance duration for speaker  
verification.’, Interspeech, 2012 

Ref 46:  Hautamäki, V., Cheng, Y.C., Rajan, P., Lee, C.H.: ‘Minimax i-vector 
extractor for  short duration speaker verification.’, Interspeech, 2013, pp.3708–3712 

Ref 90:  Kanagasundaram, A., Dean, D., Sridharan, S.: ‘Improving PLDA speaker 
verification with limited development data’, Proc ICASSP, 2014, pp.1665–1669  

Ref 92: Hong, Q., Li, L., Li, M., Huang, L., Wan, L., Zhang, J.: ‘Modified-prior 
PLDA and score calibration for duration mismatch compensation in speaker 
recognition system.’, Interspeech, 2015, pp.1037–1041  

Ref 40:  Poddar, A., Sahidullah, M., Saha, G.: ‘Performance comparison of speaker 
recognition systems in presence of duration variability.’,Proc IEEE INDICON, 
2015, pp.1–6 

Ref 94:  Das, R.K., Jelil, S., Prasanna, S.M.: ‘Significance of constraining text in 
limited data text-independent speaker verification’, Proc SPCOM, 2016, pp.1–5  

Ref 95: Mamodiya, S., Kumar, L., Das, R.K., Prasanna, S.M.: ‘Exploring acoustic 
factor analysis for limited test data speaker verification’, Proc TENCON, 2016, 
pp.1397–1401 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Appendix J 

Additional experiment re Chapter 11.  Test tone tables x3. 
 
Appendix J: Table 1: Mean test tone frequencies (Praat, baseline) 

Tone 1 Tone 2 Tone 3 Tone 4 
546.60059 1202.388516 2598.977815 3318.984447 

546.797115 1202.451478 2599.016631 3325.704933 
546.878872 1202.477724 2599.033655 3328.553715 
546.733221 1202.431067 2599.004172 3323.500019 
546.520082 1202.362632 2598.96199 3316.288651 
546.297263 1202.291804 2598.917013 3308.900544 
546.129906 1202.23773 2598.882992 3303.479487 
546.066561 1202.217015 2598.869952 3301.422002 
546.094571 1202.226449 2598.876853 3302.331065 
546.313633 1202.296846 2598.920203 3309.445764 
546.807269 1202.454838 2599.019287 3326.036962 
547.466224 1202.663153 2599.151369 3349.779744 
548.368012 1202.943726 2599.331311 3384.694425 
549.455919 1203.27593 2599.547196 3400.898613 
550.989765 1203.728033 2599.84265 3400.410311 
552.720663 1204.211736 2600.165063 3400.495909 

 
Appendix J: Table 2: Mean test tone frequencies (Praat, .mp3 CBR 8kbps) 

Tone1 Tone 2 Tone 3 
 

Tone 4 
540.705545 1200.714588 2580.75331 Removed 
540.320115 1200.572588 2579.979998  
540.19131 1200.41268 2580.000793  

540.353264 1200.534735 2580.146547  
540.273517 1200.645247 2580.380521  
540.465987 1200.526304 2580.27643  
540.545455 1200.395059 2580.382642  
540.271766 1200.572892 2580.353637  
540.645923 1200.751397 2580.333727  
541.518586 1201.024833 2580.752848  
540.165862 1200.730631 2580.200643  
540.79301 1200.442974 2580.837912  

540.438248 1200.674219 2580.33718  
540.881064 1200.635909 2580.246591  
540.24833 1200.742071 2580.433598  

541.295054 1200.902367 2580.468051  
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Appendix J: Table 3: Mean test tone frequencies (Praat, Speex ‘8’) 

Test Tone 1 Test Tone 2 Test Tone 3 Test Tone 4 
563.538229 1207.048712 2599.832934 3400.124593 
564.292315 1206.44798 2602.39524 3400.663633 
563.525377 1207.23385 2598.743349 3400.563523 
564.606012 1207.527922 2600.9558 3400.948435 
565.771174 1208.138565 2601.056791 3400.061066 

563.88503 1206.852521 2601.21012 3401.504476 
565.105173 1206.458962 2601.564089 3400.846961 
563.311372 1207.891123 2601.775288 3401.158583 
565.492157 1207.56348 2601.065877 3400.417626 

564.97023 1207.401238 2601.252136 3400.493404 
562.829164 1207.44742 2600.574466 3400.612519 
563.074696 1206.327041 2601.436151 3399.241884 
563.342912 1205.834619 2600.941448 3399.430941 

561.05416 1207.680018 2600.563622 3400.751288 
561.901265 1205.745303 2602.069995 3400.263697 
562.036373 1205.13095 2599.480283 3400.498226 
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Appendix K 

Spectrogram of speaker 012, DyViS – demonstrating noise (mains hum). 
 
Appendix K: Figure 1: iZotope RX Spectrogram.  DyViS Speaker 012, task 2 
 

 
 

Horizontal lines = Lateral noise. 
50Hz fundamental frequency 
with associated harmonics. 
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Appendix L 

Parallels (Support Ticket) #2713244 18:47 23/2/20 
 
John, 
 
Thank you for contacting Parallels Support.  This email is in reference to the query about 
audio files in Parallels Desktop. 
 
We would like to inform you that, Parallels Desktop provides sound output for the guest 
operating system by emulating a virtual sound device inside your virtual machine.  On the 
host operating system side, Parallels Desktop uses sound in a similar manner to any other 
application it will not affect or corrupt the audio files stored under a guest operating 
system. 
 
Parallels Desktop uses a special type of the virtualization: a hardware-assisted full 
hardware virtualization that relies on the Intel VT-X technology and allows simulating the 
whole computer with both its hardware and software.  Please refer to the ‘blog below for 
further information about audio settings in Parallels Desktop*. 
 
https://www.parallels.com/blogs/parallels-sound-troubleshooting/. 
 
If you require any further assistance, please reply to this email. 
Thank you 
Angamuthu Mahadevan 
Parallels Technical Support 
 
*Please note that this ‘blog refers predominantly to sound playback between the virtual and 
host OS. 
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Abbreviations  

AES   Audio Engineering Society 

AMR   Adaptive Multi-Rate 

ASR   Automatic/Automated Speaker Recognition  

ASV   Automatic/Automated Speaker Verification 

BPF   Band Pass Filter 

CLEAVER Cluster Estimation And Versatile Extraction of Regions (OWR).  Speaker 

segmentation/diarisation application. 

Cllr   Cost of Log Likelihood Ratio 

CODEC CODing and/or DECoding algorithm, usually for audio or video 

COTS   Commercial Off The Shelf 

CSV   Comma Separated Values  

CTEST   ‘Contest’ database of recordings (see also SPOKE) 

DET   Detection Error Trade off 

DL   Deep Learning 

DNN   Deep Neural Networks 

DOCC   Damped Oscillator Cepstral Coefficients 

DSP   Digital Signal Processing 

DyViS   Dynamic Variability in Speech (Cambridge speech corpus) 

EEG   Equal Error Graph 

EER   Equal Error Rate  

F0, F1, F2, F3, F4…  Formants, numbered from fundamental frequency (F0) upwards 

FAR   False Accept Rate 

FFT   Fast Fourier Transform 

FNR   False Negative Rate 

FPR   False Positive Rate 

FRR   False Reject Rate 

FSC   Forensic Speaker Comparison 

FSS   Forensic Speech Science 

GMM   Gaussian Mixture Model 

GSM   Global System for Mobile communications 

GT   Ground Truth 

GUI   Graphic User Interface 

HASR   Human Assisted Speaker Recognition 

HPF   High Pass Filter 

IAFPA International Association of Forensic Phonetics and Acoustics 
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IR Impulse Response 

ISCA International Speech and Communication Association 

IVOCALISE Voice Comparison & Analysis of the Likelihood of Speech Evidence (i-

vector version). 

LDA Linear Discriminant Analysis 

LEA   Law Enforcement Agency 

LPF   Low Pass Filter 

(L)LR   (Log) Likelihood Ratio 

LTFD   Long Term Formant Distribution 

MCD   Mel Cepstral Dynamics 

MFCC   Mel Frequency Cepstral Coefficients 

MIRS   Modified Impulse Response System 

MSR   Microsoft Speaker Recognition (released 2013) 

NB   Narrow Band telephony data 0-4kHz (8kHz SR) 

NIST National Institute of Standards and Technology (U.S.) 

OS   Open Source 

OWR   Oxford Wave Research  

PDF   Probability Density Function (also LR Plot) 

PLDA   Probabilistic Linear Discriminant Analysis 

PTTR Push To Talk Radio  

(‘walkie-talkies’ commonly used by LEAs/security/military) 

ROC   Receiver Operating Characteristic 

RT60 Reverb Time 60db (time for a reverberant sound to drop by 60db) 

SAD   Speech Activity Detection (see also SD and VAD) 

SD   Standard Deviation 

SD   Speech Detection (see also VAD and SAD) 

SM   Speaker Model (see also ‘Voice Print’) 

SNR   Signal to Noise Ratio 

SPARSE Selective Processing of Annotated Regions of Speech Efficiently 

SPEEX   An open source codec 

SPOKE Speech Obtained in Key Environments.  Speech corpora (HO/OWR GUI & 

Database) 

SR Sample Rate 

SRC    Sample Rate Conversion 

SRE   Speaker Recognition Evaluation (NIST data set) 

SSBE   Standard Southern British English 

SWB   Super Wide Band, type of telephony data (50Hz to 14kHz) 

T60   See RT60 
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TA   Test Audio 

TN   True Negative 

TP   True Positive 

TV(M)   Total Variability (Matrix) 

UBM   Universal Background Model (normative data) 

VAD   Voice Activity Detection (see also SD and SAD) 

VOCALISE Voice Comparison & Analysis of the Likelihood of Speech Evidence.  

Version 1, GMM-UBM.   See also iVocalise. 

VOT   Voice Onset Time 

VP   Voice Print (see also Speaker Model) 

VPA(S)   Vocal Profile Analysis (Scheme) 

VQ   Voice Quality 

VLR   Vowel Like Region(s) 

VTL   Vocal Tract Length 

WAV   Waveform, audio file format 

(S)WB   (Super) Wide Band (greater than narrow band, 0-4kHz, 8kHz SR).   

XML   Extensible Mark-up Language 
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“Better to be despised for too anxious apprehensions 

than ruined by too confident security” 
Edmund Burke, British Philosopher 

(1723-1792) 




