
A Novel Approach to
Mutation Operator Design for

MDE Languages

Faisal Haji M. Alhwikem

A thesis submitted in fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of York

Computer Science

December 2019

Abstract

Due to the increasing reliance on the software of systems, such as enterprise systems, a

wide array of approaches has been found to facilitate the development of software for

such systems. The growth of system complexity, however, has provoked concerns about

the quality of the software. One approach that copes with complexity is model driven

engineering that uses models containing only essential domain concepts, in order to rep-

resent complex systems. With some level of automation, models are then maintained

by programs that are prone to error, as they are man-made. In order to find errors

in programs, software engineers use mutation testing to build strong test inputs by in-

troducing faults into the tested software using mutation operators. They then study if

the introduced faults are detected by the test inputs. There have been few attempts

to design mutation operators for model driven languages, which have common meta-

modeling language models, compared with traditional programming languages. This

thesis presents an effective language-agnostic approach for mutation operator design for

the rapidly emerging model driven engineering languages by considering metamodeling

languages. The approach produces generic operators that can be instantiated to gen-

erate concrete ones for a given language model, which can be used to mutate program

models that conform to the language model. The approach and generic operators are

evaluated using empirical mutation analysis experiments over programs written in the

ATL and EOL languages. The results show that the generic operators generated from

the approach are instantiatable over ATL and EOL metamodels and have produced low

proportions of invalid and equivalent mutants that can impact negatively on any muta-

tion testing process. Also, the generic operators have produced useful mutants such as

live and not trivially detected kinds of mutants.

For my family.

v

Contents

Abstract iii

Contents xi

List of Tables xiii

List of Figures xv

List of Algorithms xv

List of Listings xix

Acknowledgements xix

Declaration of Authorship xxi

1 Introduction 1
1.1 Motivation and Research Hypothesis . 2
1.2 Research Methodology . 3
1.3 Thesis Contributions . 5
1.4 Thesis Structure . 5

2 Literature Review 7
2.1 Model Driven Engineering . 7

2.1.1 Models, metamodels and modeling languages 8
2.1.2 Model management languages . 10
2.1.3 MDE in practice . 13
2.1.4 Benefits of MDE . 17

2.2 Mutation Testing . 18
2.2.1 Software testing: concepts and characteristics 19
2.2.2 Mutation testing and structural coverage metrics 21
2.2.3 Mutation operators and mutants 22
2.2.4 Mutation operator injection . 29
2.2.5 Challenges to mutation testing . 30

2.3 Testing and Mutation Testing in MDE . 31
2.3.1 Testing in MDE . 32
2.3.2 Mutation Testing in MDE . 37

2.4 Chapter Summary . 42

vii

CONTENTS

3 Analysis and Hypothesis 43
3.1 Problem Analysis . 43
3.2 Research Hypothesis . 45
3.3 Research Objectives . 45

4 A Mutation Operator Design Approach 47
4.1 A Design Approach using a Generic Meta-metamodel 48

4.1.1 Conformance restriction . 50
4.2 Abstract Mutation Operators (AMO) . 50

4.2.1 AMO-single . 52
4.2.2 AMO-multiple . 53

4.3 Adaptation of the Approach to Ecore . 54
4.3.1 Conformance restriction . 55
4.3.2 Further restrictions for Ecore . 56
4.3.3 Adaptation of AMOs to Ecore . 57

4.4 Instantiation of AMOs . 58
4.4.1 Example: a replacement CMO for property condition 59
4.4.2 Example: an addition CMO for property statements 60
4.4.3 Example: a deletion CMO for property statements 61
4.4.4 Example: a replacement CMO for property method 62

4.5 Chapter Summary . 63

5 Epsilon Mutator (EMU) 65
5.1 Mutant Integration Layer . 66
5.2 Abstract Syntax . 67
5.3 Concrete Syntax . 68
5.4 Execution Semantics with Examples . 70

5.4.1 CMO implementation of Example 4.4.1 70
5.4.2 CMO implementation of Example 4.4.2 71
5.4.3 CMO implementation of Example 4.4.3 71
5.4.4 CMO implementation of Example 4.4.4 73

5.5 Chapter Summary . 73

6 Evaluation: Empirical Mutation Analysis 75
6.1 Experiment Questions . 76
6.2 Experimental Approach . 77
6.3 Candidate Programs . 79
6.4 Test Models . 81
6.5 Concrete Mutation Operators . 83

6.5.1 Systematic mutation operator definition process 83
6.5.2 ATL and EOL overlap mutation operators 85
6.5.3 ATL concrete mutation operators 87
6.5.4 EOL concrete mutation operators 94

6.6 Results . 103
6.6.1 Empirical results of ATL programs 103
6.6.2 Empirical results of EOL programs 110
6.6.3 Research Hypothesis Evaluation 118

viii

CONTENTS

7 Conclusion 121
7.1 Thesis Contributions . 122

7.1.1 Systematic Mutation Design . 122
7.1.2 AMOs . 122
7.1.3 Evaluation . 123

7.2 Future Work . 124
7.2.1 Further experiments and evaluations 124
7.2.2 Additional constraints . 125
7.2.3 Independent EMU syntax . 125

A Mutation Operators 127
A.1 ATL Mutation Operators . 127
A.2 EOL Mutation Operators . 138

B Test Models 143
B.1 Test Models for ATL Candidate Programs 143
B.2 Test Models for EOL Candidate Programs 147

C Mutation Analysis Results 155
C.1 ATL Complete Results . 155
C.2 EOL Complete Results . 156

Bibliography 159

ix

List of Tables

2.1 Total mutation operators for programming languages 27
2.2 Mottu et al. [96, 97] generic mutation operators 38
2.3 Khan and Hassine [100] ATL mutation operators 39
2.4 Troya et al. [101] ATL mutation operators 40
2.5 Cuadrado et al. [102] ATL mutation operators 41

4.1 A list of EDatatypes provided by Ecore 58

6.1 ATL metamodel coverage and model instances of candidate programs . . 80
6.2 EOL metamodel coverage and model instances of candidate programs . . 80
6.3 Valid and invalid mutants of mutating ATL programs (stage one) 104
6.4 Overall results of executing ATL mutants (stage two) 104
6.5 Mutation operators that only generated invalid mutants during stage one 105
6.6 Mutation operators that only generate invalid mutants during stage two . 106
6.7 Mutation operators that contributed to live mutants 107
6.8 Mutation operators that contributed to killed mutants 109
6.9 Valid and invalid mutants of mutating EOL programs (stage one) 111
6.10 Overall results of executing EOL mutants (stage two) 111
6.11 Mutation operators that contributed to invalid mutants in stage one . . . 112
6.12 Mutation operators that contributed to invalid mutants in stage two . . . 113
6.13 Mutation operators that contributed to live mutants 116
6.14 Mutation operators that contributed to killed mutants 117
6.15 Mutation operators that contributed to equivalent mutants 118

C.1 ATL mutation operators and their produced mutants 156
C.2 EOL mutation operators and their produced mutants 157

xi

List of Figures

1.1 Outline of thesis research methodology . 4

2.1 Metamodeling hierarchy and relations between models and modeling lan-
guages (from [2]) . 9

2.2 An example of abstract syntax of Listing 2.1 10
2.3 A typical MDE management task . 11
2.4 The core modeling concepts in Ecore from [15] 14
2.5 A tree-based metamodel (Ecore) of the example in Fig. 2.2 14
2.6 The architecture of Epsilon [18] . 15
2.7 Abstract syntax of EPL taken from [18] 16
2.8 Abstract syntax of EVL taken from [17] 17
2.9 Different software development phases and testing levels, from Figure 1.2

in [12] . 19
2.10 Typical mutation testing process adapted from [29] 23

3.1 Typical MDE metamodeling level and modeling levels 44

4.1 Typical MDE metamodeling hierarchy and generic meta-metamodel . . . 48
4.2 A generic metamodel . 49
4.3 AMOs and CMOs . 51
4.4 A representation of core elements of Ecore taken from [15] 55
4.5 The abstract syntax of the MiniLang metamodel 59
4.6 A fragment of an instance model of the MiniLang metamodel 4.5 used for

the instantiation example 4.4.1 . 60
4.7 A fragment of an instance model of the MiniLang metamodel 4.5 used for

the instantiation example 4.4.2 . 61
4.8 A fragment of an instance model of the MiniLang metamodel 4.5 used for

the instantiation example 4.4.3 . 62
4.9 A fragment of an instance model of MiniLang metamodel 4.5 used for the

instantiation example 4.4.4 . 62

5.1 Epsilon IModel abstraction and Mutant Integration Layer 67
5.2 The abstract syntax of EMU . 68
5.3 A fragment of the metamodel in Fig. 4.5 71
5.4 A fragment of the metamodel in Fig. 4.5 72
5.5 A fragment of the metamodel in Fig. 4.5 73
5.6 A fragment of the metamodel in Fig. 4.5 73

6.1 Stage one – mutants production process 78

xiii

LIST OF FIGURES

6.2 Stage two – mutants execution process . 79
6.3 Test models generation process . 81
6.4 ATL Metamodel – ATL module concept 88
6.5 ATL Metamodel – ATL–OCL related concepts 89
6.6 EOL Metamodel – EOL module . 95
6.7 EOL Metamodel – EOL expressions . 97
6.8 EOL Metamodel – EOL statements . 100
6.9 EOL Metamodel – EOL types . 102

B.1 Book metamodel . 143
B.2 HTML metamodel . 145
B.3 Make metamodel . 147
B.4 Table metamodel . 148
B.5 DirectedGraph metamodel . 149

xiv

List of Algorithms

1 Candidate programs selection . 81

2 Systematic process for generating concrete mutations for a metamodel . . . 84

xv

List of Listings

2.1 An example of concrete syntax . 10
2.2 An Emfatic textual view of the metamodel in Fig. 2.2 14

4.1 An example of code that is modeling in Fig. 4.6 60

5.1 EMU concrete syntax . 68
5.2 A CMO implementation for Example 4.4.1 71
5.3 A CMO implementation for Example 4.4.2 72
5.4 A CMO implementation for Example 4.4.3 73
5.5 A CMO implementation of Example 4.4.4 73

6.1 Original EOL metamodel fragment expressed using EMFatic 114
6.2 Improved EOL metamodel fragment of Listing 6.1 114

A.1 CMO-single-REP(IfStat condition) . 127
A.2 CMO-Single-REP(VariableDeclaration type) 129
A.3 CMO-multiple-DEL(Operation parameters) 134
A.4 CMO-multiple-REP(Module elements) 135
A.5 CMO-multiple-REP(MatchedRule children) 135
A.6 CMO-single-REP(Binding propertyName) 136
A.7 CMO-single-REP(BindingStat source) 136
A.8 CMO-single-REP(OclFeatureDefinition feature) 137
A.9 CMO-multiple-DEL(OperationDefinition parameters) 138
A.10 CMO-single-REP(Expression resolvedType) 138
A.11 CMO-multiple-REP(Block statements) 140
A.12 CMO-single-ADD(ModelElementType modelName) 141
A.13 CMO-single-REP(ModelElementType modelName) 142
A.14 CMO-multiple-REP(MethodCallExpression arguments) 142

B.1 EMG generator code for Book metamodel 143
B.2 EMG generator code for HTML metamodel 144
B.3 EMG generator code for Make metamodel 145
B.4 EMG generator code for Table metamodel 146
B.5 EMG generator code for DirectedGraph metamodel 147
B.6 EMG generator code for Ecore metamodel of EuGENia 149
B.7 EMG generator code for Ecore metamodel of Incremental EVL 152

xvii

Acknowledgements

First and foremost, my great gratitude goes to my supervisors Prof. Richard Paige and
Dr. Rob Alexander. Without their fruitful support, guidance and patience, this work
would never be completed. I will be forever grateful to Richard for accepting me as his
PhD student and to Rob for his valuable support, discussions and comments. I also have
to mention and thank my previous co-supervisor Dr. Louis Rose for his support and
help during my early years of my PhD. Also, my great thanks go to Prof. Fiona Polack
and Dr. Ibrahim Habli for their important assessments and valuable insights about my
work.

I must give sincere gratitude to Prof. Dimitris Kolovos, Dr. Horacio H. Rodriguez, Dr.
Antonio Garćıa-Domı́nguez and Dr. Ran Wei for their advice and support during my
studies. I am also most grateful to all my colleagues and friends in the Computer Science
Department and its visitors with whom I appreciate the various fruitful discussions and
a friendly working environment. I would like to make special mentions to Dr. Adolfo
Sanchez-Barbudo Herrera, Dr. Simos Gerasimou, Dr. Colin Paterson, Dr. Konstantinos
Barmpis and Dr. Athanasios Zolotas.

My deepest thanks go to whom I love the most, my family; and to whom I dedicate this
work. To both my mother and father for their endless loving care and encouragement
that made me who I am today, I would be lost without them. My deepest thanks also
go to my wonderful life partner, Dalal, for her unlimited love and support, and to my
dearest children for being always around me whenever I need motivation. I must give
also my great gratitude to my brothers and sisters for their encouragement.

Last but not least, I must pay great thanks to Qassim University for its financial support
to my PhD scholarship under umbrella of the Ministry of Higher Education of the
Kingdom of Saudi Arabia.

xix

Declaration of Authorship

I declare that this thesis is a presentation of original work and I am the sole author. This
work has not previously been presented for an award at this, or any other, University.
All sources are acknowledged as References.

Part of the work described in this thesis has been previously published by the author in:

• F. Alhwikem, R. Paige, L. Rose, R. Alexander. A Systematic Approach for De-
signing Mutation Operators for MDE Languages. In: Proceedings of the 13th
Workshop on Model-Driven Engineering, Verification and Validation co-located
with ACM/IEEE 19th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2016), October 3, 2016, pp. 54–59.

xxi

Chapter 1

Introduction

The use of software is ubiquitous in everyday life. It has helped us to increase productiv-
ity by reducing the amount of labor that is usually dedicated to repetitive and tedious
operations. It has also allowed us to build software systems, such as business systems,
safety systems, healthcare systems and many more.

With the increasing demands on software reliability and the quality of complex systems
(enterprise systems), however, software engineering has stepped up to provide principles
and practices that facilitate and guide the development of quality software for such
systems. Model-Driven Engineering (MDE) is a unique software engineering practice
that tries to solve issues related to complex systems by allowing software engineers to
create models that describe the systems at different levels [1]. It uses models, which
contain the essential domain concepts of a complex system, as the main artifacts for
activities, such as (semi-)automated development, process engineering, interoperability,
reverse engineering and modeling languages. Also, MDE provides the principles that
make models amenable to automated analysis, processing and management due to their
conformance to a set of formal concepts defined in metamodels. These are specification
models of a higher level of abstraction, containing the necessary modeling elements and
constraints to create and validate models.

Models are not working artifacts in themselves because of their level of abstraction and
lack of implementation details. Therefore, they are managed by MDE programs and
transformed into new types of artifact. They are queried for and modified with data,
and verified and validated with respect to particular specifications, among others. These
management tasks are facilitated by rapidly emerging MDE languages, each of which
is tailored to a specific task. As such, they are referred to as task-specific management
languages. Since anything can be represented as a model [2], languages in model driven
engineering are sometimes represented as models created with metamodeling languages.

1

Chapter 1 Introduction

Therefore, models of languages also lend themselves to automated analysis and process-
ing.

MDE programs, just like any software, are extensively researched in order to improve
their quality and reliability on a par with the constantly and rapidly evolving high
complexity software systems. One approach is to perform testing sequences by executing
programs with a set of test data and then examining their outputs with respect to the
relevant software specifications.

A testing technique that powerfully can build and assess test inputs for a piece of soft-
ware is mutation testing [3]. This involves intentionally introducing faults into the
implementation of software using mutation operators, which are predefined rules that
target specific language concepts defined in a language specification or grammar. This
produces a list of modified versions of the software that are then executed against a
test set in order to determine their adequacy in detecting the introduced faults. If any
modified version is not detected, additional tests need to be built. This will enhance
the quality of the test set in forcing the detection of the modified versions, consequently
improving confidence in the target software.

This thesis presents a novel approach that enables users (mainly test engineers) to define
mutation operators for MDE languages, which are task-specific languages for model
management, in an effective and efficient manner. Section 1.1 of this chapter touches
upon the motivation behind this thesis along with the research hypothesis. The research
methodology that was used to validate the hypothesis and fulfill its research objectives
is presented in Section 1.2. The contributions of the thesis are highlighted in Section 1.3,
followed by a presentation of its structure in Section 1.4.

1.1 Motivation and Research Hypothesis

Traditionally, computational cost has been the main challenge behind mutation testing.
This is an issue that originates in the poor design of mutation operators. Poor design
implies the definition of a set of mutation operators that, when applied, produces useless
mutants (modified versions of software that do not challenge test developers to improve
their test set). For instance, invalid mutants that do not conform to the language and
fail to execute against any test set are considered useless. Another category of useless
mutants is equivalent mutants that produce the same output as the original program
but cannot be detected. In fact, it is impossible to build test inputs that would force
their detection.

2

1.2 Research Methodology

Furthermore, poor mutation operator design undermines the definition of a good set of
operators that, when applied, produces live mutants (mutants that are not detected but
are “killable” if more tests are added). Tackling the results of poor mutation operator
design has been the object of intensive focus in traditional programming languages but
has received limited attention as regards MDE languages.

In addition to the shortcomings associated with poor mutation operator design, an
additional drawback can be found in the MDE context. Due to the rapid emergence
of MDE languages in both the industry and academia, mutation operator design has
become a tedious and unproductive task, especially since MDE languages are mostly
built on common metamodeling languages. In the literature on mutation testing, test
developers define mutation operators for a given language and then use best practices
and solutions to control them for best results; detecting or preventing the production of
equivalent mutants; and preventing invalid mutants from being produced.

The limited attention of mutation analysis in model driven engineering has received is
unfortunate, as it may be a particularly good candidate for effective mutation design.
This thesis explores this path of integrating mutation testing and mutation operator
design in an MDE context using the key principles of model driven engineering – that
everything is a model – in order to derive systematically mutation operators. In par-
ticular, for MDE languages that are built on common metamodeling languages, such
as MOF or EMF/Ecore, it is feasible to generate a set of generic mutation operators.
These can thereafter be instantiated to provide concrete mutation operators for specific
MDE language models (or metamodels).

A further aim of this thesis is to address a solution for tackling poor mutation operator
design. To this end, it will ensure that mutations are checked in order to reduce the
risk of generating useless (invalid or equivalent) mutants. In terms of valuable mutants,
this thesis will validate that live mutants (i.e. those detectable with added test inputs)
are produced with the proposed generic mutation operators. Since MDE languages are
emerging in quick succession, the tedious task of designing mutation operators for every
language separately along with solutions for poor design will be eliminated using the
generic mutation operators derived from metamodeling languages.

1.2 Research Methodology

The research methodology adopted to investigate the research hypothesis is presented
in this section and is illustrated in Figure 1.1 (research phases are represented in shaded
boxes and inputs/outputs in plain boxes). It follows a typical software development

3

Chapter 1 Introduction

engineering life cycle. In order to enhance the quality of the research, the process is
designed to be sequentially repetitive and consists of four distinct phases: beginning
with analysis through to design, implementation, evaluation and then back to analysis
in order to resolve weaknesses and improve the original proposal.

In the analysis phase, current mutation operator design approaches and model driven
engineering metamodeling concepts and principles are analyzed with the aim of propos-
ing a set of requirements for a suitable design approach for current and newly emerging
MDE languages. The requirements take into account current solutions of tackling use-
less mutants, as well as improvements to identified weaknesses. Another outcome of the
analysis phase is a proposal for an appropriate methodology and a requirement set for
fault injection (that is, mutation operator application) in the context of MDE.

(1)
Analysis

(2)
Design

(3)
Implementation

(4)
Evaluation

MDE
concepts/principles

existing mutation operator
design approaches requirements for

fault injection
in MDE

requirements
for a solution

solution for MDE

implementation
of solution

strengths and weaknesses
of

solution and processes

threats to
mutation analysis

and solutions

mutation operator injection
approaches

§2.1.1(p8)

§2.2.5(p30)

§2.2.3.1(p24)

§2.3.2(p37)

§2.2.4(p29)

Ch2(p7) Ch3(p43) Ch4(p47)

Ch5(p65)Ch6(p75)

Figure 1.1: Outline of thesis research methodology

In the design phase, the set of requirements identified in the analysis are processed
to propose a suitable mutation operator design approach for MDE languages, as per
the main research objective of the thesis. Solutions for effective mutation design are
integrated into the proposed design approach in which issues of useless mutants are
addressed. The proposed design approach is structured in such a way as to make its
adaptation and implementation amenable to test developers of MDE programs.

The implementation phase proposes an implementation of the solution of mutation op-
erator design taking into account requirements for fault injection. It is motivated by
existing practices used in traditional programming languages.

The evaluation phase applies an experiment to evaluate the proposed mutation design
approach. The outcomes of this phase include an assessment of the proposed solution
design, its strengths and its weaknesses. All outcomes are input again into the analysis
phase for an iterative and improved solution.

4

1.3 Thesis Contributions

1.3 Thesis Contributions

This thesis provides a novel mutation operator design approach for the rapidly emerging
MDE languages and its contributions are outlined as follows:

• A novel solution for a design approach to mutation operators for MDE languages.
The approach has produced a set of generic mutation operators with constraints
that reduce the likelihood of producing useless mutants (Chapter 4).

• An implementation of the proposed solution in which the generic operators can be
used to generate concrete ones for a given MDE language, which then can be used
to mutate programs of that language (Chapter 5).

• An evaluation of the approach and the generic operators by conducting an empir-
ical mutation analysis against a set of ATL and EOL programs by defining and
using a collection of concrete mutation operators for the languages (Chapter 6).

1.4 Thesis Structure

The structure of the thesis is as follows:

• Chapter 1 – Introduction: gives an overview of the thesis and subject disciplines;
the motivation for carrying out the research and formulating the hypothesis; thesis
research methodology and structure.

• Chapter 2 – Literature review: presents a field review on MDE and mutation
testing including related concepts and principles; overviews some of the benefits of
and challenges to MDE and mutation testing; surveys related work that attempts
to integrate mutation testing into an MDE context and presents its limitations.

• Chapter 3 – Analysis and hypothesis: offers a problem analysis of current mutation
operator design approaches and outlines their specific limitations; clarifies the
research hypothesis of this thesis, as well as the research objectives to test it.

• Chapter 4 – A mutation operator design approach: presents the novel solution to
the research problem outlined in Chapter 3.

• Chapter 5 – Epsilon mutator (EMU): describes an implementation of the novel
solution as a prototype language that is metamodel-agnostic and can be used to
mutate models. The prototype provides extended functionality to be used in any
metamodeling language; presents examples of using the language.

5

Chapter 1 Introduction

• Chapter 6 – Evaluation: analyzes an empirical mutation; evaluates the proposed
mutation operator design approach through the solution implementation.

• Chapter 7 – Conclusion: provides the conclusions of the thesis; presents areas for
future work.

6

Chapter 2

Literature Review

This thesis presents a novel approach for defining mutation operators for MDE lan-
guages in a systematic and efficient manner. In order to contextualize this thesis and its
objectives, a detailed review of model driven engineering and mutation testing including
related concepts, principles, tool support and challenges is presented in this chapter.
In addition, a critical discussion of current research in the area of integrating mutation
testing in an MDE context is included, focusing on the key limitations that this thesis
will try to address.

Accordingly, this chapter is organized into three main sections. Section 2.1 presents
a field review on model driven engineering and its related concepts and principles in-
cluding modeling, metamodeling and tool support. Section 2.2 provides a background
on mutation testing, its related concepts and its challenges. Finally, Section 2.3 delves
into the body of work that has so far attempted to integrate mutation testing into the
context of MDE, providing a critical analysis of its key limitations.

2.1 Model Driven Engineering

Software engineering is a discipline that provides standards, methodologies and tools to
facilitate the process of creating quality artifacts. The software development life cycle is
a software engineering methodology for building artifacts. Traditionally, software engi-
neers and developers have used models for documentation purposes during the software
development process, whereas in other engineering disciplines, models play a key role
and are used to understand complex problems by raising the level of abstraction and
hiding implementation details [4]. In the early twenty-first century, model driven engi-
neering emerged as a new software development approach treating models as primary
artifacts for many activities within the software development process.

7

Chapter 2 Literature Review

Since models, however, are abstract and contain only domain concepts, they do not
apply as working software. Hence, model driven engineering relies on automated model
management tasks to convert models into other forms of artifact to be applied at multiple
stages of the software development process. These management tasks essentially involve
model transformation from one or multiple forms of artifact to others, such as models
or texts. The stated objectives of such automated tasks are to increase productivity and
reliability [1].

The remainder of this section presents the principles and concepts of model driven en-
gineering. Section 2.1.1 provides a detailed overview of models and modeling languages,
and the relationship between them. Then, Section 2.1.2 reviews the model management
languages used in this thesis. Section 2.1.3 examines MDE in practice, including support
for tools relevant to this thesis. Finally, Section 2.1.4 presents some of the benefits of
model driven engineering.

2.1.1 Models, metamodels and modeling languages

A model is a representation of a real world phenomenon. This can be a problem, a
task, a process or a software system. In model driven engineering, the term representa-
tion can refer to either textual or graphical syntaxes and it describes a selected domain
concept of a software system under development [5]. Since models are maintained using
automated model management tasks, they must be formal and conform to a well-defined
set of syntactic and semantic notations. These sets of notations are defined in a mod-
eling language. Model conformance studies the well-formedness of models using a set
of constraints defined in a modeling language [1]. The purpose of this task is to avoid
inconsistency in models when they are maintained.

A modeling language is a specification of notations and constraints used to produce
models. Normally, modeling languages are described using models [6]. Therefore, the
term metamodel refers to a model that describes a modeling language in which specifica-
tions and constraints are defined using entities, properties and the relationships between
entities. An instance of a metamodel is a model. A model is said to conform to its meta-
model if the constraints defined in it are not violated by the model. This relationship
is similar to the one between a program and the programming language in which it is
written.

Yet, metamodels are also produced using modeling languages referred to as metamod-
eling languages. This raises the level of abstraction and modeling [1]. In model driven
engineering, the term metamodeling hierarchy is used to refer to metamodeling based
on language levels. Figure 2.1 presents the metamodeling hierarchy of the relationships

8

2.1 Model Driven Engineering

between modeling languages and models at one level, and the relationship between the
modeling languages and models of one level and those of a higher level.

Model Modeling
Language

Language
Level

meta-metamodelL3

metamodel

metamodeling
language

L2

model

modeling
language

L1

Real world

modelOf

conformsTo

conformsTo

modelOf

modelOf

crea
tedW

ith

crea
tedW

ith

Figure 2.1: Metamodeling hierarchy and relations between models and modeling
languages (from [2])

There is no specified limit to metamodeling levels. Developing abstraction models of
concepts that provide essential elements for users (mainly modelers) to implement lower
level models is sufficient. This abstraction model is referred to as a meta-metamodel,
namely a model of a metamodeling language, which can be expressed by itself [5, 1].
In practice, a well-known and commonly referenced meta-metamodel is Meta Object
Facility (MOF) [7]: a standard metamodeling language introduced by the Object Man-
agement Group.1 A number of the standards provided by OMG facilitates the adaptation
of model driven engineering and the definition of models of languages (metamodels).

All aforementioned principles of models, metamodels and modeling languages make
model driven engineering a good candidate for mutation testing, widely regarded to
build strong tests. As metamodels are encoded in common standard formats, such as
MOF, there is ample opportunity for reuse across metamodels: an analysis technique
that applies to MOF models can, in principle, be applied to any MDE language model.
Analysis techniques that are applied to metamodels can be systematic and automated.
Hence, they can be used to derive mutation operators in a straightforward manner. Mu-
tation operators are mutation rules used to inject errors into software as part of the
mutation testing technique.

1http://www.omg.org

9

http://www.omg.org

Chapter 2 Literature Review

In concluding this section, it is worth mentioning that a modeling language consists of
three elements:

• Concrete syntax: describes a specific representation of a modeling language
by using its notation. It can be a textual representation (as in programming
languages) or a graphical representation (as in Unified Modeling Language nota-
tion). An example of concrete syntax can be similar to the code below, where
ArithmeticExpression and Expression are non-terminal rules:

1 ArithmeticExpression:
2 Expression ('+'|'-'|'*'|'/') Expression
3 ;

Listing 2.1: An example of concrete syntax

• Abstract syntax: describes the structure and concepts (entities) of a language,
and their relationships. This is a similar description to a metamodel. In fact,
the term abstract syntax is used interchangeably with the term metamodel. An
abstract syntax equivalent of the concrete syntax example above is a notation
similar to the following:

Figure 2.2: An example of abstract syntax of Listing 2.1

• Semantics: defines the meaning of concepts of a language (whether in abstract
syntax or in concrete syntax).

2.1.2 Model management languages

As mentioned above, since models in model driven engineering contain only selected
domain concepts of a real problem or task, they do not qualify as working software
systems. Therefore, they are maintained for certain objectives throughout the devel-
opment life cycle. This management is achieved using languages tailored to a specific
purpose. There are specific languages for model transformation of artifact(s) to (new)
artifact(s), model validation with respect to a set of metamodel constraints (normally
used for checking semantics), model query to fetch and obtain data from models, and
many more. Although that the term task-specific languages is used to refer to these
management language [5], this thesis uses the term MDE languages to also refer to

10

2.1 Model Driven Engineering

task-specific model management languages. The typical process of an MDE language is
illustrated in Figure 2.3.

Figure 2.3: A typical MDE management task

An MDE language engine (indicated by 1) executes a given program (as indicated by
2) when the text of the program is processed by a number of elements of the engine,

for example the lexical analyzer, the parser or the compiler of the subject language. The
engine then reads the input artifacts (whether model or text) indicated by 3 and may
use input and/or output metamodels to produce output artifacts (indicated by 4).

Just like any software, MDE programs (indicated by 2 in Figure 2.3) are prone to
errors. In order to increase confidence in their quality, software engineers use a number of
techniques, such as static analysis and software testing. Since model driven engineering
lends itself for mutation testing as explained above, the particulars will be introduced
in some detail in Section 2.2.

The following sections present the model management languages that are relevant to
this thesis, namely model transformation, model validation and model verification.

2.1.2.1 Model transformation

Model transformation is considered a core model management task in MDE [1]. It is
used to transform a model, or a set of models, to other useful artifacts. There are three
types of model transformations: model-to-model, model-to-text and text-to-model. The
process of model transformation requires reading and navigating against input models.
It maps specific elements on input models in order to generate (with perhaps additional
information) new elements in output models. The process is guided by the so-called
transformation definition, which is a set of transformation rules. A transformation rule

11

Chapter 2 Literature Review

describes how a certain set of elements of the source model should be mapped to a set of
elements in the target model upon the respective metamodel. There are many languages
that allow the definition and execution of model transformation, such as the Atlas Trans-
formation Language (ATL) [8], the Epsilon Transformation Language (ETL) [5], and
Query/View/Transformation Relations and Operational (QVTr and QVTo) [9]. There
are also languages that support model-to-text transformation. Examples of such lan-
guages include Epsilon Generation Language (EGL) [5] and Acceleo 2.

2.1.2.2 Model validation and model verification

Generally, software engineers perform two main tasks in order to increase confidence
in software quality. These are validation and verification [10]. This thesis follows
Boehm [11], who considers the former as the process of building the right product
and the latter as the process of building the product right. Since the essential arti-
facts in MDE are models, the terms model validation and model verification are deemed
appropriate to refer to the verification and validation processes.

Model validation involves the checking of models with respect to their metamodel con-
straints. In other words, it is the operation that studies a model’s validity, as implied by
a set of predefined constraints as per its metamodel. The validity of models (that is, their
conformance) is important because an invalid model may trigger an implementation to
fail when it is processed by an MDE language engine, for example, when navigating to
a model element that is not structured correctly according to its metamodel constructs
and constraints.

Model verification aims at determining whether, following a model management task
(for example, model transformation), models are correct outputs as expected. Incor-
rect artifacts result from a failure in the program and its implementation [12],which
arises when a fault is executed. Faults are the result of errors committed by a software
engineer during the implementation phase of the software’s development and model ver-
ification is the process of determining these faults. In the related literature, there are
many testing approaches that have been proposed in order to detect errors committed
by programmers. Section 2.3.1 elaborates on verification and testing in model driven
engineering.

2https://eclipse.org/acceleo/

12

https://eclipse.org/acceleo/

2.1 Model Driven Engineering

2.1.3 MDE in practice

A very well-known standard that is usually discussed in MDE is Model Driven Archi-
tecture, which is a proposed guideline defined by OMG for applying MDE practices in
software development [1]. Model Driven Architecture has influenced the software indus-
try through important standards such as MOF, which is used as a meta-metamodel for
defining language models (metamodels), and XMI (XML Metadata Interchange) [13],
which is a standard format for loading, storing and exchanging models instantiated us-
ing MOF. These standards allow modelers to define metamodels and encode them in
standard formats that are amenable to systematic and automated analysis. Such auto-
mated analysis makes model driven engineering a good candidate for mutation testing,
as metamodels can be processed and analyzed in a straightforward manner in order to
define mutation operators for models conforming to the analyzed metamodels. The pro-
cess is easier than analyzing (manually) the grammar of languages within a traditional
programming context.

Furthermore, OMG standards facilitate interoperability across different modeling lan-
guages, frameworks and tools that are produced by software and language engineers for
modeling purposes. Among previously mentioned model transformation languages dis-
cussed in Section 2.1.2.1, there is a number of other tools and languages that use these
standards as well, including MoDisco for reverse engineering [14], XPand 3 for code gen-
eration and Graphical Modeling Framework (GMF) 4 for generating graphical editors
for model representation. This section presents the essential tooling support relevant to
this thesis, namely the Eclipse Modeling Framework (EMF) [15] and Epsilon [5].

2.1.3.1 Eclipse Modeling Framework (EMF)

This is a framework founded by the Eclipse Foundation5 that supports model driven
engineering and its practices. It provides a number of facilities for modeling and model
interchange [16]. EMF uses Ecore as a metamodeling language and provides an im-
plementation of the MOF2.0 standard that helps in the production and management of
models and metamodels with a range of modeling concepts, for example EClass to define
entities, EAttribute to define attributes for entities, and EReference to define associa-
tions between entities. In addition, Ecore provides data types such as EString, EFloat,
EInt etc., which are affiliated with Java data types and objects for defining properties
of entities (that is, attributes). Figure 2.4 presents the core modeling concepts of Ecore
as a metamodeling language and an implementation of MOF2.0.

3https://www.eclipse.org/modeling/m2t/?project=xpand
4http://www.eclipse.org/modeling/gmp/
5http://www.eclipse.org

13

https://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/gmp/

Chapter 2 Literature Review

EClass

name: String
abstract: Boolean

EAttribute

EDataTypeEDataType

name: String

EReference

eAttributeType

1

eSuperTypes 0..*

EStructuralFeatureEStructuralFeature

name: String
lowerBound: Integer
upperBound: Integer
changeable: Boolean
volatile: Boolean
derived: Boolean
transient: Boolean

0..*eStructuralFeatures

eReferenceType

1

Figure 2.4: The core modeling concepts in Ecore from [15]

Furthermore, EMF provides a useful functionality for constructing and building meta-
models. Modelers can define their metamodels using a tree-based editor that facilitates
the addition and deletion of modeling concepts (entities and properties, including at-
tributes and associations) from a list of predefined meta-classes (as seen in Figure 2.4).
Also, the tree-based functionality provides information fields for modeling concepts,
through which modelers can edit the values of some meta-properties in a convenient
manner. Figure 2.5 shows a tree-based view of the metamodel example discussed in
Figure. 2.2.

Figure 2.5: A tree-based metamodel (Ecore) of the example in Fig. 2.2

Another tool for defining metamodels using Ecore is the EMFatic6 text editor that relies
on EMF and allows modelers to construct metamodels using a textual syntax that is
similar to annotated Java language. Modelers can define Ecore model elements as they
would do using the tree-based editor. Listing 2.2 gives an EMFatic textual representation
of the same metamodel illustrated in Figure. 2.2.

1 @namespace(
2 uri="www.cs.york.ac.uk/epsilon/workbench/metamodels/assignment_exp", prefix="assignment_exp"
3)
4 package assignment_package;

6http://www.eclipse.org/emfatic/, http://wiki.eclipse.org/Emfatic

14

2.1 Model Driven Engineering

5
6 class AssignmentExpression {
7 attr String[1] operator;
8 val Expression[1] lhs;
9 val Expression[1] rhs;

10 }
11
12 class Expression { }

Listing 2.2: An Emfatic textual view of the metamodel in Fig. 2.2

2.1.3.2 Epsilon platform

Epsilon is a platform of integrated task specific languages for model management, in-
cluding model transformation, model merging, model validation and many more. In
order to boost interoperability across these different model management tasks, Epsilon
provides two essential components: Epsilon Model Connectivity (as illustrated in Fig-
ure 2.6), which provides a uniform interface for accessing models conforming to various
concrete modeling technologies, such as EMF, XML, CSV etc., and Epsilon Object Lan-
guage (EOL), which is briefly descripted in the following subsections along with other
languages that are related to this thesis. A full descrition of Epsilon languages can be
found in Epsilon Book [17].

Epsilon is a family of languages and tools for code generation, model-to-model transformation,
model validation, comparison, migration and refactoring that work out-of-the-box with EMF
and other types of of models.

At the core of Epsilon is the Epsilon Object Language (EOL), an imperative model-oriented
language that combines the procedural style of Javascript with the powerful model querying
capabilities of OCL.

Model Refactoring (EWL) Model comparison (ECL) Unit testing (EUnit) ...

Pattern matching (EPL) Model merging (EML) Model migration (Flock)

Model validation (EVL) Code generation (EGL) Model transformation (ETL)

↓ extend

Epsilon Object Language (EOL)

Epsilon Model Connectivity (EMC)

↑ implement

Eclipse Modeling Framework (EMF) Simulink PTC Integrity Modeller

Excel/Google Spreadsheets GraphML Schema-less XML CSV

Z (CZT) ArgoUML MongoDB CDO JSON

XSD-backed XML MySQL MetaEdit+ ...

Epsilon provides several task-specific languages, which use EOL as an expression language.
Each task-specific language provides constructs and syntax that are tailored to the specific
task. The task-specific languages provided by Epsilon are:

Epsilon Transformation Language (ETL): A rule-based model-to-model transformation
language that supports transforming many input to many output models, rule inheritance,
lazy and greedy rules, and the ability to query and modify both input and output models.
Epsilon Validation Language (EVL): A model validation language that supports both intra
and inter-model consistency checking, constraint dependency management and specifying
fixes that users can invoke to repair identified inconsistencies. EVL is integrated with
EMF/GMF and as such, EVL constraints can be evaluated from within EMF/GMF editors and
generate error markers for failed constraints.
Epsilon Generation Language (EGL): A template-based model-to-text language for
generating code, documentation and other textual artefacts from models. EGL supports
content-destination decoupling, protected regions for mixing generated with hand-written
code. EGL also provides a rule-based coordination language (EGX), that allows specific EGL
templates to be executed for a specific model element type, with the ability to guard rule
execution and specify generation target location by type/element.
Epsilon Wizard Language (EWL): A language tailored to interactive in-place model
transformations on model elements selected by the user. EWL is integrated with EMF/GMF
and as such, wizards can be executed from within EMF and GMF editors.
Epsilon Comparison Language (ECL): A rule-based language for discovering
correspondences (matches) between elements of models of diverse metamodels.
Epsilon Merging Language (EML): A rule-based language for merging models of diverse
metamodels, after first identifying their correspondences with ECL (or otherwise).
Epsilon Pattern Language (EPL): A pattern language for matching model elements based on
element relations and characteristics.
Epsilon Model Generation Language (EMG): A language for semi-automated model
generation.

Documentation

Task-Specific Languages

Related Publications

Citing this work in a scientific article?
Please consider citing one of the
related publications below instead of
this web page.

The Design of a Conceptual
Framework and Technical
Infrastructure for Model
Management Language Engineering

Languages
Epsilon Object Language
Epsilon Transformation Language
Epsilon Validation Language
Epsilon Generation Language
Epsilon Wizard Language
Epsilon Comparison Language
Epsilon Merging Language
Epsilon Pattern Language
Epsilon Model Generation
Language
Epsilon Flock

Tools

EuGENia
Exeed
ModeLink
Workflow
Human Usable Textual Notation
Concordance
EUnit

EpsilonEpsilon LiveLive DownloadDownloadGames Games Documentation Documentation Community Community Bugzilla Bugzilla Eclipse Eclipse

Figure 2.6: The architecture of Epsilon [18]

Epsilon Object Language (EOL) is an imperative expression language useful for
navigating, modifying and creating model elements. It provides a mixture of usual pro-
gramming concepts similar to JavaScript and Object Constraint Language (OCL) [19],
such as variable definitions, control flow statements (for example, if , while or for,

15

Chapter 2 Literature Review

switch), and collection querying functions also known as first order logic operations
(such as select, collect etc.). In addition, EOL support a number of various expres-
sions such as literal expression for supported built-in types, model-feature navigation
expression, common binary arthimetical, comparison, and logical expressions.

Furthermore, EOL privides a list of built-in types that extend a super type Any. These
types are primitive types (String, Boolean, etc.), Collection types (Sequence, Ordered-
Set, etc.), Map type and model element type. All these built-in types support a number
of appropritate operations including, but not limited to, isDefined(), isTypeOf() for
Any types startsWith(), toUpperCase() for String types and many more.

Epsilon Pattern Language (EPL) is another language of Epsilon platform that
provides seamless language constructs to pattern matching, which is often an initial
step in most model management operation [18]. EPL built atop of EOL for expression
and its abstract syntax is depicted in Figure 2.7.

11.2 Syntax

The syntax of EPL is an extension of the syntax of the EOL language, which – as dis-

cussed earlier – is the core language of Epsilon. As such, any references to expression
and statement block in this chapter, refer to EOL expressions and blocks of EOL statements

respectively. It is also worth noting that EOL expressions and statements can produce side-

effects on models, and therefore, it is the responsibility of the developer to decide which

expressions used in the context of EPL patterns should be side-effect free and which not.

As illustrated in Figure 11.2, EPL patterns are organised in modules. Each module

contains a number of named patterns and optionally, pre and post statement blocks that

are executed before and after the pattern matching process, and helper EOL operations.

EPL modules can import other EPL and EOL modules to facilitate reuse and modularity.

iterative : Boolean
maxLoops : Integer

EPLModule

name : String
match : Expression [0..1]
onMatch: Block [0..1]
noMatch: Block [0..1]
do: Block [0..1]

Pattern

parts : String[1..*]
negative : Boolean
type : Type
guard: Expression [0..1]
active: Expression [0..1]
optional: Expression [0..1]

Role

roles 1..*

values: Expression
Domain

domain
0..1

patterns

Operation
(from EOL)

operations0..* 0..*

StaticDomain DynamicDomain

imports
0..*

lowerBound : Integer
upperBound : Integer

Cardinality
cardinality

StatementBlock
(from EOL)

pre 0..*

post 0..*

Figure 11.2: Abstract Syntax of EPL

In its simplest form a pattern consists of a number of named and typed roles and a

match condition. For example, in lines 2-3, the PublicField pattern of Listing 11.1, defines

four roles (class, field, setter and getter). The match condition of the pattern specifies that

for a quartet to be a valid match, the field, setter and getter must all belong to the class

(lines 5-7), and that the setter and getter methods must be appropriately named2.

2To maintain the running example simple and concise, the pattern does not check aspects such as match-
ing/compatible parameter/return types in the field, setter and getter but the reader should easily be able to
envision how this would be supported through additional clauses in the match condition.

157

Figure 2.7: Abstract syntax of EPL taken from [18]

An EPL module may contain one or more pattern, pre (can be used to prepare some
elements before pattern execution) and post (can be used to check the models after
execution) blocks, and/or operations or functions. In order to do the pattern matching,
a pattern must have at least one binding role that is used to query models and to obtain
model instances. It is possible to do combination of binding roles each of which target
a specific model type. The result of the query, which are instances of model types, can
then be used to do matching action by specifying an EOL expression to match language
concept. The output of this matching can be after that manipulated by onmatch, on

16

2.1 Model Driven Engineering

which elements evaluated positively to the match expression, nomatch, on which element
evaluated negatively to the match expression), and/or do EOL blocks, which can contain
arbitrary EOL statements that can be executed on elements obtained by the binding
roles and regardless of output of the match expression.

Epsilon Validation Language (EVL) is a model validation language that can be used
to define further constraints and semantics, atop of a given metamodel, against which
the user want to evaluate models [17]. It is abstract syntax is represented in Figure 2.8.

EvlModule

Context GuardedElement EOL.Expression

Fix

Invariant
EOL.ModelElement

EOL.StatementBlock

CritiqueConstraint

contexts 0..*

0..*

pre

0..*

post

fixes

0..*

invariants

0..*

type

guard

message

check

title

do

Figure 2.8: Abstract syntax of EVL taken from [17]

The user of the language can specify a collection of invariant (whether it is a constraint
or a critique) that is defined for, or is to be evaluate against, contexts that are specific
model element types. Instances of a context can be filtered using a guard expression
to obtain a subset of instances that can be evaluated against invariants. Also, invariant
can have a check expression that to be evaluated. The user of the language can specify
a feedback message to be displayed and a collection of fixes in case the checking fails.

2.1.4 Benefits of MDE

There are many benefits to using model driven engineering, as identified in the litera-
ture. One of these is understandability [20]. Since MDE advocates raising the level of
abstraction by using models, it is argued that models are easier to be specified, under-
stood and maintained, compared with other types of artifact that do not use abstraction.
Mohagheghi et al. [21] found that the use of models facilitates comprehension among
non-technical staff. The same benefit was also reported by Hutchinson et al. [22]. The

17

Chapter 2 Literature Review

reason behind this is that by using models, where technical and implementation details
are omitted, it is easier for non-experts to understand the system and give feedback.

Furthermore, MDE practices are seen to improve productivity [23, 24]. As models are
intended to be maintained automatically, software development artifacts (for example,
models and code) are re-generated using model transformation in any desired system.
Therefore, unless the implementation of model transformations is complex and tedious,
the runtime of the development process is minimized, which can improve productivity.
Moreover, Hutchinson et al. [22] found that model driven engineering can reduce the
time necessary to respond to the change of requirements and automate code generation
by using transformation, both of which are key activities to increasing maintainability
and productivity respectively. In addition, Mohagheghi and Dehlen [25] reported that
portability can be considered as another beneficial aspect of applying MDE as a software
engineering paradigm. With tool support and by writing targeted model transformation
programs, models can be re-hosted to a new platform.

2.2 Mutation Testing

The previous section has provided some background on model driven engineering and
its related concepts and principles, in order to substantiate why this software engineer-
ing paradigm makes such a good candidate for mutation testing. In particular, one
of its founding principles, namely that everything is a model (even for an MDE lan-
guage), enables modelers to analyze metamodels automatically, in order to generate
mutation operators. This is because models must conform to predefined specifications
of constraints and notations. Since the thesis broadly focuses on mutation testing in the
context of MDE, this section covers those concepts and principles, some of which are
generally related to software testing and some specifically related to mutation testing.

Accordingly, this section is structured as follows. Section 2.2.1 reviews testing and its
related concepts and characteristics, including definitions of faults and failures in a soft-
ware context, functional and structural testing, and test cases and oracles. Section 2.2.2
provides specific background information on mutation testing, as well as a comparison
with other related testing techniques. Section 2.2.3 provides a survey on current mu-
tation operator design approaches for programming languages, and mutation operators
and their purposes. Section 2.2.4 provides a detailed overview of mutation operator
injection approaches and the available tool support. Finally, Section 2.2.5 highlights
drawbacks of mutation testing, a few of which this thesis tries to address.

18

2.2 Mutation Testing

2.2.1 Software testing: concepts and characteristics

Software testing is an essential process in the software development life cycle [10]. It
involves executing software under test with a set of inputs, and then checking the outputs
of the execution against expectations. The purpose of conducting software testing is to
raise confidence about the quality of a particular software and assess whether it conforms
to its intended specifications or not. Ideally, software testing should be involved in all
stages of software development (for example, during the requirements and specifications
phase, the design phase etc.), as each phase contributes to test design information. A
typical software testing model widely used in the literature is the v-model (illustrated
in Figure 2.9). The model shows software development phases on the left and the
corresponding testing levels on the right. Since the purpose of this thesis is to apply
mutation testing (which belongs to the implementation phase) in an MDE context, the
lowest test level (i.e. unit test) is the primary focus.

Requirements
Specifcation

System
Specifcation

System
Design

Detailed
Design

Implementation

Acceptance Test

System Test

Integration Test

Unit Test
Key:

Test design information
Product fow

Figure 2.9: Different software development phases and testing levels, from Figure 1.2
in [12]

2.2.1.1 Faults and failures

The process of testing is undertaken by test developers using a set of designed input
values. The execution results are then evaluated to reveal faults in the implementation
of the program tested. A fault (a bug or a defect) in a program usually results from
misusing the language to which the program conforms. If not resolved, a fault can lead
to the incorrect behavior of a piece of software. Incorrect behavior, with respect with
expected behavior (according to a set of program specifications), is known as software
failure. There are three conditions for noticing (observing) a failure [12], which play a
key role in the mutation testing technique, as will be discussed later on in the thesis.
The failure conditions are:

19

Chapter 2 Literature Review

• Reachability: an observable failure must be triggered by a reachable fault (or
faults). In some cases, a fault can be inaccessible based on its location at the source
code of a program. Examples of such cases include a mistaken implementation at
an unreachable statement/expression, an uncalled function/operation or resource
etc.

• Infection: an accessible fault must lead to an infected state in a program when the
fault is executed.

• Propagation: an infected state in a program must propagate to produce an unex-
pected result at the end of the execution of the program.

2.2.1.2 Functional and structural testing

The core objective of testing is to identify a set of test cases that evaluate a given
software. Traditionally, there are two approaches for test input identification: functional
testing and structural testing [12]. The former treats the tested software as a black
box (i.e. it is not necessary to know about its implementation) and identifies test
cases based on its specifications. The testing process involves the evaluation of the
software based on a comparison of the actual and expected outputs of input values. In
contrast with the functional (black box) testing approach, structural testing (also known
as white box testing) takes into account the implementation of the software, where test
developers determine which parts of the code are actually tested. This determination
is usually computed using test coverage metrics [26], which measure the reachability of
each software item (part) in the implementation. This is useful for revealing faults in a
program and increasing confidence that the implementation parts work as expected.

There are many coverage metrics (also referred to as coverage criteria) that are widely
used to conduct structural testing: statement coverage metrics, which check that every
statement in a source code is reached (at least once); condition coverage metrics, which
ensure that every Boolean condition (two Boolean expressions interconnected by a single
binary comparison operator such as >, ≥, < etc.) is reached at least once; and decision
(or branch) coverage metrics, which check that every possible decision (sequence of
conditions interconnected by logical operators like AND, OR, XOR etc.) is reached.

There is no explicit preference between these two main approaches for use during test
case determination. Each approach considers different inputs for constructing test cases.
On the one hand, black box testing is good for constructing test cases using software
requirements and specifications, because white box testing does not detect whether
an implementation of a specification is missed. On the other hand, black box testing

20

2.2 Mutation Testing

does not detect the implementation of an undesirable specification of the software (for
example, a fault at a specific part of implementation), which is something picked up
on by white box testing. Therefore, a mixture of test cases using both approaches is
recommended for test developers, who wish to perform software testing not only at
implementation level but at other testing levels as well (testing levels are illustrated in
Figure 2.9).

2.2.1.3 Test cases and oracles

A test case, as defined by Ammann and Offutt [12], contains some elements that are
essential for the complete execution and evaluation of a tested software. These elements
are:

• Input values. These are necessary for completing an execution of the software.
The test inputs can generally vary and depend on which functionality or parts of
the software a test developer wishes to evaluate.

• Expected outputs, when a particular test input is executed.

• Prefix values. These inputs ready the software to receive the input values, for
example, values to prepare the software under test to a state to be tested.

• Postfix values. These inputs are submitted to the software after the input values,
for example, values to terminate or to inspect the result of test execution.

The mechanism of checking the correctness of a particular software behavior according
to test cases is known as a test oracle [27]. A set of test cases is used to execute the
tested software and the results of the execution are evaluated (or compared) with the
expected outputs specified in the test cases. The evaluation declares whether a test case
has passed or failed. A test case is successful when the expected output is equal (or
identical) to the actual output of a given test input. Otherwise, it has failed.

2.2.2 Mutation testing and structural coverage metrics

Mutation testing (also known as mutation analysis) is a white box testing technique
used not only for identifying test cases but also for evaluating them [12]. It involves
the deliberate introduction of faults into the tested program (using mutation operators)
in order to generate faulty versions (known as mutants) of the tested program, which
are then used to evaluate the quality of a given test suite (a set of test cases). The
evaluation is conducted by examining the ability of the used test cases to detect the

21

Chapter 2 Literature Review

faulty versions [12]. If a faulty version was successfully executed and not detected by
any test case, then test developers are challenged to add more test cases to force its
detection.

There are two hypotheses behind mutation testing [28]: the competent programmer and
the coupling effect. The former accepts that a programmer is competent and, thus,
more likely to produce a program that is correct or almost correct. Hence, an incorrect
program can be corrected with a minor modification to its syntax. The latter states
that test cases, which can distinguish between programs that are marginally different,
are more sensitive to discerning programs with major differences. Both hypotheses imply
that minor modifications in programs are sufficient to reveal complex faults.

Although structural testing and mutation testing both consider the implementation of
software for identifying and evaluating test cases (functional testing is intentionally
omitted, as it applies to a different testing level), there is a main difference between the
two. Looking back at the conditions of observable failure in Section 2.2.1.1, structural
testing requires that a sufficient part of the implementation is reached by an input test,
regardless of whether that part is executed or not. In other words, structural testing
does not require an observable failure (i.e. to reach a fault); hence, there is no need for
test cases and test inputs alone are sufficient. On the contrary, an observable failure is
required in mutation testing, whereby a reachable fault is executed and propagated to
produce an incorrect output.

In fact, the literature discusses different forms of mutations, which require that a fault
is reached and executed “locally”, putting the tested program in infection state earlier
during the execution of a mutant, not waiting until it propagates to produce an odd out-
put. Such mutations are known as weak and firm mutations [12]. For the purposes and
objectives of this thesis, only classical mutations are targeted because the propagation
of faults to actual failures plays an important role in finding mutation operators that
divert wrong outputs from expected outputs for a given software of an MDE language.

2.2.3 Mutation operators and mutants

A mutant is a version of a program that has been introduced with a syntactic change
following the typical mutation process illustrated in Figure 2.10. A tested program (P) is
used to generate mutants by applying a set of mutation operators – mutation rules that
mimic errors programmers are likely to make when using a language. Each generated
mutant (P’) is executed against a set of test cases. If the mutant is detected by any test
case then it is classified as killed, and as not killed if otherwise.

22

2.2 Mutation Testing

Program
(P)

Generate
mutants

Mutation
Operators (MO)

Mutants
(P')

Run (T) on
(P)

Run (T) on
(P')

Fix (P) Correct
(P) ?

Test Cases
(T)

Improve (T) (P')
Killed?

Classify
(P')

No

Yes

Yes

No

Improve
(MO)

Figure 2.10: Typical mutation testing process adapted from [29]

Generally, mutants can be valid when they conform to the language specification (i.e.
the grammar or metamodel) and invalid when they do not (the literature uses the term
stillborn). Valid mutants can be:

• Killed mutants – As mentioned above, killed mutants are detected by at least one
test case. Generally, killed mutants, especially if they are plausible and based on
errors likely to be committed by programmers, are an indication that the used test
set is a good set. Mutation operators that generate killed mutants are considered
useful against low quality test sets.

• Trivial mutants – These are killed mutants, detectable (killable) by all test cases.
Trivial mutants do not challenge test developers in adding or enhancing their test
set and, hence, are sometimes overlooked.

• Live mutants – These are not-killed mutants, which produce the same output as
the original program but that are killable if test developers enhance their test set
by adding more test cases. Therefore, they are considered valuable from a test
developer’s perspective.

• Equivalent mutants – They are also not-killed mutants but, unlike live mutants,
cannot be killed by any test case.

As the focus of this thesis is on mutation operator design for MDE languages, the
following section provides a detailed presentation of the currently available designed
mutations and their design approaches.

23

Chapter 2 Literature Review

2.2.3.1 Mutation operators for programming languages

In mutation testing literature, a number of studies has developed mutation operators
both for general purpose and domain specific programming languages. A general purpose
language is a programming language that supports various application domains and
provides a wide range of language concepts that are not specific to a particular domain
(such as C, C# and Java). On the contrary, a domain specific language targets a
particular application domain and provides a limited range of language concepts that
are only suitable for a certain domain. The following languages have received mutation
testing attention.

Fortran was a subject language for early mutation testing experiments back in 1977 by
Budd et al. [30]. They proposed a set of 25 mutation operators for Fortran IV that were
then implemented into the PIMS mutation tool [31]. Those early studies were followed
by DeMillo et al. [32], who proposed a set of 22 mutation operators for Fortran 77,
applied into the Mothra mutation tool [33]. In both studies ([30, 32]), the mutation
design approaches were motivated by the programmers’ experience of the type of faults
expected from Fortran language users.

C has received a number of mutation definitions. Agrawal et al. in [34] proposed
77 mutation operators based on possible errors committed by programmers. These
mutation operators were implemented into the Proteum mutation tool [35] and CSaw,
which provides implementation of some of those operators [36]. Furthermore, there is
a set of eight mutation operators inspired by possible faults of format String bugs, for
example, faults that arise from misusing format string parameters of C functions that
accept String formats like printf ,fprintf etc. The operators were implemented into the
MUFORMAT mutation tool [37].

Ada has also been subject to mutation testing. Offutt et al. [38] proposed a set of
65 mutation operators drawing from their previous experience designing mutations for
Fortran 77 [32, 33] and C [34]. They argued that they had designed a complete set of
mutation operators for Ada that also considered its language specifications.

Java has been the focus of a number of research studies. Kim et al. [39] proposed an
interesting approach for defining mutation operators for Java by using HAZOP analysis
(Hazard and Operability Studies). This is a technique used to examine in a systematic
way a particular process for critical and safety purposes. Their approach used a set of

24

2.2 Mutation Testing

guide words and applied them by analyzing the deviation of the Java language constructs
and its attributes found in the Java language definitions. Furthermore, Ma et al. in [40]
proposed a set of class level mutation operators for Java that were later refined by Offutt
et al. in [41]. These class level mutation operators are related to specific features of
Object Oriented Java (such as inheritance and polymorphism). Following that, a design
of a set of method level mutations was presented in [42] that includes operators related
to arithmetic operator replacement, comparison operator replacement and many more.
In addition, extra mutation operators (mainly deletion operators) for Java were designed
in [43, 44]. All of the proposed mutation operators (in [41, 42, 43, 44]) were based on
faults originating in the misuse of Java language concepts and were implemented into
the MuJava tool. Finally, Ji et al. [45] introduced five mutation operators for exception
handling of Java language features (mainly catching blocks) by modeling likely faults of
Java programmers.

C# is a language that has received little attention. Derezińska et al. in [46] proposed
a set of 40 mutation operators that were studied in [47, 48]. In their latest study,
Derezińska and Rudnik [49] used 18 mutation operators out of those initial 40 with an
extra eight traditional mutation operators (for example, arithmetic operator replace-
ment, comparison operator replacement etc.) that were implemented in the CREAM
mutation tool [47]. All of the mutation operators were designed based on an analysis
of the C# language specification/grammar and mutation operators for Java, as defined
in [39, 40].

C++ has also been subjected to mutation testing experiments. Delgado-Pérez et al. [50]
designed 37 mutation operators for class level mutation (such as inheritance, polymor-
phism, access control of class members etc.) that have been extensively evaluated in
works such as [51, 52, 53]. The designed operators were based on common faults of
C++ programmers and were implemented in the MuCPP mutation tool. For the con-
currency feature of C++, Kusano and Wang [54] defined a total of 29 mutation operators
(with no explicit motivation or source for their operators) that were later implemented
in the CCmutator mutation tool.

SQL has received a number of mutation operator definitions. Chan et al. [55] de-
fined seven mutation operators based on the standard types of constraints in the EER
(Enhanced Entity–Relationship) model. The purpose of their study was to test the
constraints of EER and whether they were mapped properly in SQL. In addition, Tuya

25

Chapter 2 Literature Review

et al. [56] examined the syntax and semantics elements of the SQL language, and de-
fined mutation operators accordingly that were later integrated and implemented in the
SQLMutation mutation tool [57].

WS-BPEL (Web Services Business Process Execution Language), which is an exe-
cutable language for specifying business process actions based on Web Services compo-
sitions [58], has also received mutation operator definitions. Estero-Botaro et al. in [59]
designed a set of 26 mutation operators that were mainly derived from and modeled on
the faults likely to occur from the misuse of the WS-BPEL language specifications. Such
operators were reviewed and implemented in the GAmera mutation tool [60].

XSLT , which is a language for transforming an XML document into another format,
for example HTML, has also received some mutation operator definitions. Lonetti and
Marchetti [61] used a combination of approaches to design 23 mutation operators. One
approach was to design operators by adapting typical mutation operators defined for
general purpose programming languages (mainly Fortran and Java). Another approach
was to design operators by examining XSLT specifications and then modeling faults
that were likely to arise from the misuse of the language. All mutation operators were
implemented in the X-MuT mutation tool.

A summary of all design mutation operators of the aforementioned programming lan-
guages is given in Table 2.1 that also shows the types of mutations (addition, deletion
and replacement) and the number of mutations for each type.

2.2.3.2 Mutation operator design discussion

It is possible to conclude from the aforementioned definitions and mutation designs that
there are two aspects involved in mutation operator design. One aspect is the kind of
design approach that is followed and the other is the type of action or behavior of each
intended mutation operator. Regarding the first aspect, there are three distinct design
approaches. Mutation operators can be designed by (1) examining the definition/specifi-
cation of a subject language, (2) examining the error taxonomy of users of the language,
and (3) adapting from mutation operators of similar languages.

There is no obvious choice as to which mutation operator design is best, as each ap-
proach is appropriate in a particular situation. The approach that involves designing
mutation operators from a language specification is preferable for immature, emerging
languages. This consists in going through the concepts of the selected language and
generating, if applicable, mutation operators for each concept by analyzing the type of

26

2.2 Mutation Testing

Table 2.1: Total mutation operators for programming languages

Language Mutation Operator Definition Number of Mutation Operators
Addition Deletion Replacement

Fortran DeMillo et al. [32] 2 1 19

C Agrawal et al [34] - - 77
Shahriar [37] 1 2 5

Ada Offutt et al. [38] 6 1 58

Java

Kim et al. [39] 6 4 36
Ma et al. [40, 42]
Offutt et al. [41],
Deng et al. [43],
Delamaro et al. [44] 9 18 22
Ji et al. [45] 1 1 3

C# Derezińska et al. [46] 3 10 23

C++ Delgado-Pérez et al. [50] 6 11 20
Kusano and Wang [54] - 6 23

SQL Chan et al. [55] - - 7
Tuya et al. [56] 2 6 28

WS-BPEL Estero-Botaro et al. [59] - 12 14
XSLT Lonetti and Marchetti [61] 1 3 19

Total 37 75 354

errors that may occur when the concept is misused by programmers. The consequence
of using this approach may be a large mutation operator set when the complete set of
language concepts is considered, which is a reasonable outcome for new languages [12].
A large mutation operator set may be viewed as a limitation, since it leads to a large
set of mutants that may prolong the mutation testing process. This can be resolved
using mutation operator reduction techniques (mainly the selective mutation operators
approach), as discussed in Sect. 2.2.5.

The second approach of mutation operator design involves examining the error taxonomy
of the users (or programmers) of a language. Since operators are designed to mimic
faults that are likely to be produced by programmers, the error taxonomy can be an
ideal source of mutation operators. The error taxonomy of a language, however, can
sometimes also be incomplete as it only covers those language concepts that are actually
exercised or instantiated by programmers, a fact which may unintentionally lead to
overlooking crucial concepts worthy of investigation.

The third and final approach for mutation design is adapting mutation operators from
similar languages. For general purpose programming languages, this approach can be
practical as the adapted mutation operators likely require minor adjustments to the tar-
get language. For instance, the class level mutation operators for C++ and C# defined

27

Chapter 2 Literature Review

in [50, 46] respectively were copied over, with minor modifications, from Java muta-
tion operators defined in [40]. For domain specific programming languages, however,
the approach of adapting from similar languages can be sometimes impractical. This is
because concepts of a domain specific language are defined in a particular application
domain, and mutation operators for those concepts are likely not adaptable to other
application domains. Since this thesis targets MDE languages, which are mostly task
specific languages, this mutation operator design approach is impractical for defining a
complete set of mutation operators.

Regarding the type of action or behavior intended for a subject mutation operator,
the syntactic changes introduced by mutation operators mainly involve the addition,
deletion or replacement of information. Concerning deletion operators, the action of a
simple deletion is followed by most mutation operator design approaches. Examples of
deletion operators include the removal of the keyword this in object oriented classes (as
in [39, 40, 50]), the removal of else − if or else statement blocks (as in [59]), and the
removal of order-by-expression (for example, ASC and DESC) from an SQL clause (as
in [56]). A few mutation operators were found to involve complex deletions, although
from a language’s concrete syntax standpoint, complex can also be simple. Examples of
such actions include deleting a block of statements or deleting a method/function.

Concerning addition operators, these are designed to insert simple changes to a piece of
software. It is permissible for test developers to instantiate multiple language concepts
in order to introduce a complex change into an implementation of a software by a single
addition operator that will, however, break the competent programmer hypothesis. A
simple syntactic change, instantiated from a single language concept, is less likely to
undermine this hypothesis. For this reason, the addition operators of programming
languages in the reviewed literature are simplified. Examples of such operators include
inserting the continue or break keywords to looping structures (like while and for),
inserting a unary operator (‘-’) to numerical expressions or literals, inserting the keyword
this to variables of methods of object oriented classes, and many more. Although there
are no examples of complex addition operators found in the literature for programming
languages, a complex operator may involve a complete insertion of a Boolean condition
with two operands interconnected with one binary operator, or a variable declaration
with name and type.

Concerning replacement operators, the same principle discussed for addition operators
was followed by most of the replacement mutation operators reviewed in the literature.
The new values used in replacement operators are usually obtained from compatible
instances of language concepts of the same categories of the target mutated concepts.
For instance, the most frequently used mutation operator is the binary comparison

28

2.2 Mutation Testing

operator replacement (found in [39, 42, 56, 59]). It involves a replacement of a binary
comparison operator (such as >, ≥ etc.) with another binary comparison operator from
the same category. Another example is a replacement of a variable super class with
another super class in the multiple inheritance class in C++ (found in [50]), for example
A :: var1 is mutated to B :: var1 where A and B have the same type-kind. The design
of complex operators that require the instantiation of multiple language concepts was
not found in the literature because complex changes are likely to be detected by any test
case, consequently undermining the competent programmer hypothesis as with complex
addition operators.

The total number of mutation operators reviewed in Sect. 2.2.3.1 and summarized in
Table 2.1 amounts to 466 mutation operators out of which 37 are addition operators, 75
deletion operators and 354 replacement operators. It is clear that replacement operators
are the most frequently used mutations, followed by deletion and addition operators.

2.2.4 Mutation operator injection

One of the essential elements of mutation testing is the application of mutation operators
to introduce syntactic changes into a tested program. In the literature, there are two
distinct ways in which mutation operators can be injected. In the first, the source code is
used for injecting mutation operators, and in the second an intermediate representation
of the source code is used for injection. The former situation uses the string of the source
code for making changes, and produces versions of the string, each of which contains a
single modification, without needing to check whether the original or modified versions
conform (at least syntactically) to the language of the source code. Mutation tools that
apply mutation operators directly onto the source code include CSaw [36], MuClipse7

and GAmera [60].

The second method for injecting faults into a program, as mentioned above, involves
the use of intermediate representation of the tested program. The intermediate repre-
sentation can be obtained from parsing (syntactically analyzing) the source code of a
program according to a set of syntactic rules defined in the grammar of the language
to which the program conforms. Unlike the practice of injecting faults directly into the
source code of the program, the target source code is checked explicitly to ascertain
whether it is valid or not by the language compiler/interpreter or any other means of
static analysis. Thus, the risk of generating invalid mutations from unverified strings is
less in this situation compared with injecting faults directly into the source code. Ex-
amples of intermediate representations found in the literature include a parsed tree, as

7http://muclipse.sourceforge.net

29

http://muclipse.sourceforge.net

Chapter 2 Literature Review

is the case with the CREAM mutating tool in [49]), the abstract syntax tree (AST), as is
the case with MuCpp in [51] and CCmutator in [54], and the byte code after parsing and
compiling the source code of Java programs, as with the MuJava [42], PIT8 and Jumble9

mutation tools.

In an MDE context, where everything is a model [2], MDE programs can be expressed as
models and as yet another intermediate representation for mutation operator injection.
The expressed models must conform to the models of languages (that is, metamodels)
to which the subject programs conform. These expressed models can be obtained di-
rectly from the source code using text2model transformation (automation tools such as
Xtext10) or another intermediate representation like Concrete Syntax Tree (CST) (used
in the ATL transformation engine), AST (used in Epsilon transformation languages) or
any other representation using model2model transformation.

2.2.5 Challenges to mutation testing

Mutation testing suffers from two main challenges that make its adaptation unattractive
to some test developers [62]. These are the high computational cost and equivalent
mutant management. The former emerges when a large set of mutation operators is
applied, which consequently produces a large number of mutants that may require a
long execution runtime against a test set. The latter arises when intensive human effort
is required to distinguish equivalent mutants from not-killed mutants, which is time
consuming. In order to tackle these two challenges, a number of techniques has been
proposed, briefly discussed below.

2.2.5.1 Computational cost

In order to manage the problem of computational cost, test developers typically use
mutation sampling [63, 64] and/or mutation selection reduction [65].

1. Mutation sampling: a small subset of mutants is selected randomly from an entire
set of mutants to be used for mutation testing. The rate in which mutants are
sampled has been a subject of extensive research in [32, 33, 66]. The process of
random sampling, however, may require more intelligent approaches than currently
available in order to select those mutants that are important for the quality of the
mutation testing.

8http://pitest.org
9http://jumble.sourceforge.net/index.html

10Xtext is a language workbench and framework for developing domain specific languages https:
//www.eclipse.org/Xtext/

30

http://pitest.org
http://jumble.sourceforge.net/index.html
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/

2.3 Testing and Mutation Testing in MDE

2. Mutation selection: a minimum set of mutation operators is selected without sig-
nificantly compromising the effectiveness of the test. Such a reduction technique
has been widely used in [67, 68, 69, 70, 43], rendering it a more popular technique
than mutation sampling.

2.2.5.2 Equivalent mutant management

Managing useless equivalent mutants is another mutation testing challenge. There are
two main actions related to equivalent mutants: detection and prevention. As mentioned
earlier in Sect. 2.2.3, a not-killed mutant produces the same outputs as the original pro-
gram. It can refer to a live mutant when it is detected by stronger additional input
tests or to an equivalent when no input test can detect it. Since equivalent mutants
are syntactically different from the original program, human effort is usually required
to distinguish them [71], which is considered a limitation of mutation testing. Sev-
eral solutions have been proposed in the relevant literature in order to overcome this
drawback.

One solution to detect equivalent mutants is to use compiler optimization techniques
aimed at deriving heuristics by examining intermediate representations (e.g. flow graphs)
of the mutants themselves (as proposed by Baldwin and Sayward in [72]. Such a tech-
nique was implemented in the Mothra mutating tool. Another detection technique is
through execution profiles (such as execution time or memory usage), which detects se-
mantically different equivalent mutants (as applied by Ellims et al. in [36]). Yet another
technique is to use test coverage metrics as in [73].

In order to prevent equivalent mutations from being generated, a set of predefined rules
or conditions for mutation operators are used. For instance, DeMilli and Offutt [74]
proposed a technique in which mutation operators are associated with necessary input
value constraints, which are computed from data flow analysis with algebraic transfor-
mations, which prohibits their mutation testing tool (called Godzilla) from encountering
equivalent mutants. Prevention of equivalent mutants has a potential positive impact
on the overall mutation testing process, as it produces a low number of mutants that
need to be executed, hence reducing the overall processing time.

2.3 Testing and Mutation Testing in MDE

The previous section covered those concepts and principles related to testing and mu-
tation testing. It has also presented a literature review on mutation operator design

31

Chapter 2 Literature Review

approaches and injections. Of the design approaches discussed in Section 2.2.3.2, ex-
amining the definition of a language and adapting mutations from similar languages,
where applicable, seem the most appropriate for emerging domain specific languages,
like MDE languages. In terms of the most appropriate mutation operator injection
method in an MDE context, where everything can be expressed as a model, errors can
be injected to program models of MDE languages obtained directly from the source
code of an MDE program using text2model transformation or from other types of model
like CST or AST using model2model transformation. Solutions to the problems of high
computational costs and equivalent mutant management have already been addressed
above.

This section extends the discussion on the principles of testing in the context of tradi-
tional engineering paradigms (see Section 2.2) by addressing the challenges of mutation
testing in the MDE paradigm. First, it provides a review of relevant studies in the field
of testing in model driven engineering in Section 2.3.1, focusing specifically on mutation
testing in MDE in Section 2.3.2.

2.3.1 Testing in MDE

Verification is an essential practice in software development [10]. It raises confidence in
software quality with respect to its specifications. Since this thesis is also concerned with
the verification of MDE programs, this section provides an overview of testing attempts
in model driven engineering, as well as some of the related challenges.

2.3.1.1 Test input models

As discussed in Sect. 2.2.1.3, one of the essential elements related to test case definition
is test inputs. Since models are the primary artifacts in model driven engineering, test
inputs are, therefore, models conforming to metamodels. Manually creating test models
consumes valuable resources and time from the point of view of test developers. There-
fore, a number of approaches has been proposed to tackle the challenge of generating
test models with some level of input metamodel coverage in an automated manner. One
approach of metamodel coverage is the generation of all sets of test models for the entire
metamodel. Another approach is to define the metamodel coverage by considering the
tested MDE program that will use the generated models (for example, those parts of
the input models that are actually referred to by the MDE program).

Wang et al. [75] proposed the concept of an effective metamodel, which is constructed
from fragments of the input metamodel actually acted upon by a model transformation.

32

2.3 Testing and Mutation Testing in MDE

Their metamodel was constructed from certain definitions of the core MOF constructs,
for example, class, feature, inheritance and association. By using coverage criteria de-
fined by Andrews et al. [76], they generated test data from effective sources of metamod-
els that bound the input scope of model transformation. In addition, they presented a
framework (built for EMF) for generating test inputs for model transformation written
in the Tetkat transformation language.

A similar approach of using coverage criteria was proposed by Fleurey et al. [77], who
also included partition analysis of the data in [78] in order to construct test models.
More specifically, they defined a set of adequacy criteria based on the partitioning of an
input metamodel and its properties, in which a set of model fragments that has to be
covered by test models is defined by each criterion. They also developed a prototype that
computes a set of model fragments for a given metamodel that they named Meta Model
Coverage Checker (MMCC). Sen et al. [79] extended a part of this work [77] by proposing
a set of strategies for model generation along with a supported tool (named Cartier) that
synthesizes the Alloy model, which contains a set of Alloy constraints imposed by each
strategy.

Cuerra and Soeken in [80] used a contract-based specification language (PaMoMo), pro-
posed in [81], to generate test inputs and oracles for model transformation using trans-
formation requirements. The language allows users to define model transformation at
the metamodel level in terms of pre-conditions (requirements to which input models
must conform), post-condition (requirement to which output models must conform), in-
variants (requirements to which expected models must satisfy). In [80], the authors used
the precondition and invariant specifications and select a level of metamodel coverage
from the specifications to generate automatically, using SAT-solver, test input models.
The test inputs are then used to build new assertions for model transformation taking
into account new invariants and postconditions built accordingly for each test input.

Although the aforementioned proposals attempt to address model generation in an au-
tomated manner, fully automated techniques are not always needed and test developers
may value some involvement in the model generation process via parameters or con-
figurations. A partially automated approach is proposed by Rose and Poulding [82],
who used a search-based algorithm (that accepts few parameter settings) in order to
derive an optimal input profile. The profile represents a context-free grammar produced
by a set of rules (constraints) obtained from the input metamodel, and weights for the
rules that specify a probability distribution over the language defined by the grammar.
The optimal resulting profile, however, needs to be validated manually before it is used
and sampled to produce test models. Furthermore, user involvement in the process is

33

Chapter 2 Literature Review

limited to setting the search-based algorithm parameters, while involvement in selecting
the weights of probability distribution can be a preferable feature.

Another partially automated approach is facilitated by Epsilon Model Generation, ini-
tially proposed by Popoola et al. [83] and integrated later into the Epsilon Platform.
The generator allows users to provide weights that specify a profitability distribution
for selected modeling constructs (or modeling entities) that can be instantiated. It also
allows users to assign values (optionally random) for properties (modeling attributes and
associations) defined in each entity in the input metamodel. Furthermore, the generator
is very flexible in that it allows users to include random data from other types of input
models, such as CSV files, EMF models etc., to be selected during the model generation
process.

2.3.1.2 Test expected models

Finding or obtaining expected output models of MDE programs has been a challenge
for test developers. According to Mottu et al. [84], test oracles can be obtained from a
number of methods. One of these methods is finding a reference model from a previous
correct (and accepted) output of an MDE program. This method is not always true
for new MDE program implementation. Another method is to obtain expected models
from an inverse model that results from transforming (or managing with other activities)
the test output model of a transformation with an inverse transformation in order to
produce the same input model. This particular method may be considered ineffective in
some cases due to the fact that some model transformation (or management) languages
are not bi-directional. In other words, a model program may include the addition or
omission of information that may (or may not) be used for the inverse action.

Another method for defining oracles, as proposed by Mottu et al. [84], is to define them
from scratch. Defining expected models for complex domains, however, is usually con-
sidered a difficult task [85]. Models can sometimes be complex in nature and defining
them requires listing all expected properties by considering numerous concepts and re-
lationships between different entities in metamodels. In order to overcome this problem,
Finot et al. [86] suggested that a test developer may be able to predict part of the output
models of concepts that are more likely to be produced by the model transformation.
They proposed an approach that compares the actual output of model transformation
with a partially predicted model, and any differences can be filtered using unpredictable
parts of the model. One limitation of their approach is that the manual definition of a
part of a complex model (whether it involves predicted or unpredictable parts) can still
be a difficult task for large software systems.

34

2.3 Testing and Mutation Testing in MDE

Contracts are also another method found in the literature to define oracles for model
transformation testing. They can be constraints and/or a set of invariants expressed in
OCL or any other validation language. For the purpose of test oracles, Gogolla et al.
in [87] proposed a contract-based approach for model-to-model transformation testing.
Th ey specified properties for model transformation based on source models, target
models and the relationships between them using OCL validation constraints. Contracts
are demonstrated by generating automatically input models and executing them against
ATL programs. The output models are then checked against the set of contracts defined
for the model transformation using USE (UML Specification Environment).

Guerra et al. [88] used the PaMoMo in [81] for contract-based specification of transfor-
mation requirements that allows defining specifications at the metamodel level. More
specifically, it allows the definition of specifications as pre-conditions, post-conditions
and a set of invariants for model transformation. Those specifications are then trans-
lated to QVTr and executed before the transformation in order to (1) validate the source
models against pre-conditions, (2) validate relationships between the source and target
models, and (3) validate target models with respect to post-conditions.

Transformation trace is another approach to defining oracle functions discussed in the
literature. In this particular method, which mainly relates to model transformation,
the definition of expected models can be replaced by obtaining valid transformation
trace links between input and output models, as proposed by Kessentini et al. [89].
They identified, however, a limitation of the approach as it relies on the availability and
correctness of the transformation examples. This work is based on a framework proposed
by Matragkas et al. [90] that captures the transformation data of a transformation engine
in terms of a trace model that conforms to a traceability metamodel defined using the
Traceability Metamodeling Language (TML) [91]. This trace model can be used to
generate trace links, which are formed from mappings between elements of the input
models, their corresponding elements in the output models, and the transformation rule
that creates those elements in the output models. It was argued that any transformation
errors can be identified from those generated traces that do not conform to the defined
traceability metamodel or that violate the constraints imposed by it.

2.3.1.3 Model comparison

Model comparison is a task that aims to find similarities and/or differences between
models. Generally speaking, a comparison process consists of two main phases. The first
finds matches between model elements by studying their identity. A match is marked
when model elements have equal identities. The equality of identities can be found by

35

Chapter 2 Literature Review

applying matching strategies. Kolovos et al. [92] identify four matching strategies that
can be used in this context. These are:

• Static identity-based matching: this strategy relies on unique identifiers assigned
(by the underlying modeling language) to each model element in models. For or-
acle purposes, where elements of actual output artifacts receive new IDs at each
execution of an MDE program, this matching strategy would give every time un-
matched elements of the actual model with elements of the expected model. Hence,
this strategy must be avoided for testing purposes.

• Signature-based matching: this strategy relies on a combination of feature values
of model elements to conduct a comparison. Unlike identity-based matching, this
strategy can be used for oracle purposes.

• Similarity-based matching: this strategy finds similarities between model elements
based on name equivalences or property equivalences. This strategy can also be
used for oracle purposes.

• Language specific matching: this strategy relies on matching rules to define match-
ing model elements.

The second phase of the comparison is finding differences between two model element
pairs (that correspond to each other or are found to match in the matching phase). In
practice, there are four sets of actions or operations for each difference: added, deleted,
moved and updated. For example, if a model element (along with its property values)
is organized to a different part in the corresponding model, the moved keyword is noted
in the corresponding model assuming that this is the revised version.

In the related literature, a number of comparison frameworks has been developed that
provide comparison mechanisms. Kolovos [5] created a dedicated comparison rule-based
language (Epsilon Comparison Language (ECL)) that allows users to define comparison
rules to identify pairs of matching elements between a source model and a target model.
Küster and Abd-El-Razik [93] used a similar approach to compare model elements using
constraints.

For EMF models (discussed in Sect. 2.1.3.1), there are tools that facilitate model com-
parison using the aforementioned model matching strategies and differences. One such
tool, developed by SiDiff [94], involves a metamodel agnostic approach for model com-
parison. It supports EMF but it is also a configurable framework that can be adapted
to any modeling language and provide support to other model representations including

36

2.3 Testing and Mutation Testing in MDE

those in graph-like structures. Another tool is EMFCompare11 that enhances the dif-
ferent matching strategies described above with additional configurations for difference
detection between models.

2.3.2 Mutation Testing in MDE

The technique of mutation testing has been used in a model driven engineering context.
This section presents, with analysis and discussion, the current approaches to mutation
operator design, as well as attempts at performing mutation testing for MDE languages
(whether metamodels or task specific and model management languages).

To begin with, Semeráth et al. [95] designed a set of mutation operators to evaluate
automatically synthesized models of DSLs. produced using modelling tools that used for
critical complex systems engineering. The mutation operators were specific and designed
by examining target DSLs; and targeted well-formedness constraints and design rules of
two industrial case studies. However, this thesis targets MDE task-specific and model
management languages which is a different scope and contribution.

For task specific MDE languages, Mottu et al. [96, 97] proposed a set of generic mutation
operators that are applicable to model transformation. Such operators were designed by
analyzing core activities that are likely undertaken during model transformation: navi-
gation of models via relations between classes defined in input and output metamodels,
filtration of a collection of objects, and creation of output models. Based on these core
activities, they proposed a set of ten mutation operators (as given in Table 2.2). Such
operators were widely used as a fundamental set of operators in [79, 98, 99]. Although
most operators include mutations for navigation and filtering, which are core activities
in most MDE languages, these operators require to be constructed according to the
target MDE language in order to derive meaningful mutation operators, by considering
language concepts to which those operators can be applicable. Also, some of these op-
erators may require execution – especially navigation and creation operators – in order
to determine some parameters needed for their adaptation to a given MDE language
(although such requirement is not necessary in model transformation).

The ATL transformation language has been the focus of a number of research studies.
Khan and Hassine [100] proposed a set of ten mutation operators for the ATL transfor-
mation language that were derived only from examining possible errors that are likely
to emerge from programmers’ misuse of the language. This is an approach that may
lead to the overlooking of mutation operators for key language concepts when it is used
as the only source for mutation operator design. Another drawback of their attempt is

11https://www.eclipse.org/emf/compare/

37

https://www.eclipse.org/emf/compare/

Chapter 2 Literature Review

Table 2.2: Mottu et al. [96, 97] generic mutation operators

Mutation Operator Description

Navigation

Relation to same class change Replaces the navigation through one association to the
same class

Relation to another class
change Replaces navigation through an association to another

class

Relation sequence deletion Removes the last step of a navigation sequence

Relation sequence addition Adds a navigation step at the end of a navigation sequence

Filter

Collection filtering change
with perturbation Replaces an existing filter of a collection with another

filter

Collection filtering change
with deletion Removes the creation of a relation between two objects

Collection filtering change
with addition Adds a filter against a collection

Creation

Class compatible creation
replacement Replaces an object creation by the creation of another

object of a compatible type

Class association creation
deletion Removes the creation of a relation between two objects

Class association creation
addition Adds the creation of a relation between two objects

that the designed operators only work for ATL and it is probably not easy for them to
be copied over to other MDE languages. This is due to the fact that most, if not all,
MDE languages are domain specific, with each language targeting a specific application
domain. Hence, it is likely hard (or sometimes impossible) to adapt operators tailored
to a particular language concept to another domain. Also, the lack of a mechanism
through which to apply the operators against ATL programs is another limitation of
their work. The authors’ operators are given in Table 2.3.

Another work applying mutation testing is that of Troya et al. [101], who proposed an
interesting systematic approach for generating mutation operators for the ATL transfor-
mation language by examining its metamodel and applying three mutation operators,
namely addition, deletion and modification, to several specific concepts defined in the
language. Furthermore, they also proposed a technique for applying their operators us-
ing again the ATL language as a High Order Transformation to inject faults into tested
ATL programs through model transformation. There are a couple of limitations, how-
ever, that need to be addressed. The first is that the defined mutation operators are
specific to ATL and are likely not adaptable to other MDE languages (as is also the
case with [100]). A second limitation of their work is the lack of safeguards that the
produced mutants from the generated operators comply with the ATL metamodel and
its constraints. This means that constraints (at least syntactical constraints) imposed

38

2.3 Testing and Mutation Testing in MDE

Table 2.3: Khan and Hassine [100] ATL mutation operators

Mutation Operator Description

Matched to Lazy (M2L) Changes a matched rule (declarative style) to a lazy matched
rule (imperative style)

Lazy to Matched (L2M) Changes a lazy matched rule to a declarative matched rule

Delete Attribute Mapping (DAM) Removes a binding element of an out-pattern of a rule

Add Attribute Mapping (AAM) Adds a binding element to an out-pattern element of a rule

Delete Filtering Expression (DFE) Removes a Boolean filtering expression of an in-pattern ele-
ment of a rule

Add Filtering Expression (AFE) Adds a Boolean filtering expression to an in-pattern element
of a rule

Change Source Type (CST) Changes the source type of an in-pattern element of a rule to
another

Change Target Type (CST) Changes the target type of an out-pattern element of a rule to
another

Change Execution Mode (CEM) Changes the engine execution from mapping to in-place and
vice versa

Delete Return Statement (DRS) Removes a return statement of an action rule

by ATL metamodels are not checked explicitly when mutation operators are applied to
produce mutants.

A set of twenty-seven mutation operators (as listed in Table 2.5) has been compiled
by Cuadrado et al. in [102] that is more complete than what Troya et al. [101] and
Khan and Hassine [100] suggested. This is mainly derived from an examination of the
ATL metamodel. Some of the operators overlap with those proposed by [101] and [100].
The purpose of this set of twenty-seven operators was to test an ATL static analyzer
(AnATLyzer) that the authors developed for finding errors in ATL programs. The an-
alyzer examined all transformation programs found in the ATL examples repository
(also known as ATL Zoo) on https://www.eclipse.org/atl/atlTransformations/

and reported five common typing errors.

Recently, Guerra et al. [103] proposed a set of seven mutation operators (listed below)
derived from common errors of ATL programs (found in [102]). They used them, along
with other mutation operators found in [102, 96, 97, 101], to perform an empirical muta-
tion analysis over six ATL programs in order to assess the quality of the used operators.
This was achieved by synthesizing test models, which were generated using a random
generator with metamodel coverage. The synthesis was conducted by considering the
transformation program using the AnATLyzer for finding the path(s) of flow graphs to
the modified location in the mutant code and then synthesizing the test models accord-
ingly. Their design approach and mutation operators, however, are specific to ATL.

39

https://www.eclipse.org/atl/atlTransformations/

Chapter 2 Literature Review

Table 2.4: Troya et al. [101] ATL mutation operators

Mutation Operator Description

Matched Rule

Addition Adds a new matched rule

Deletion Removes a matched rule

Name Change Replaces the name of a matching rule with a new name

In-Pattern
Element

Addition Adds a new in-pattern element to a transformation rule

Deletion Removes an in-pattern element

Class Change Replaces the type of a variable with another type

Name Change Replaces the name of a variable with another name

Out-Pattern
Element

Addition Adds a new out-pattern element to a transformation rule

Deletion Removes an out-pattern element

Class Change Replaces the variable type with another type

Name Change Replaces the name of a variable with another name

Filter

Addition Adds a new Boolean filter to an in-pattern element of a rule

Deletion Removes a Boolean filter from an in-pattern element

Condition
Change

Replaces a Boolean filter of an in-pattern element

Binding

Addition Adds a new binding element to an out-pattern element

Deletion Removes a binding element from an out-pattern element

Value Change Replaces the value of a binding statement

Feature
Change

Replaces the feature to which a value of a binding statement is
assigned

Instead, this thesis focuses on developing an approach for language-agnostic mutation
design. The Guerra et al. [103] mutation operators are as follows:

• Remove binding element of compulsory feature (RBCF)
• Replace helper call parameter (RHCP)
• Remove enclosing conditional (REC)
• Navigation after optional feature (ANAOF)
• Replace feature access by subtype feature (RSF)
• Restrict rule filter (RRF)
• Delete rule (DR)

To the best of the present author’s knowledge, the only work that explores a metamodel
agnostic mutation operator design approach is by Gómez-Abajo et al. [104], who provide
a domain specific language, Wodel, for mutating models of any given metamodel. Users
of the language need to invoke one or more different mutation operators that are agnostic,
in order to perform one or multiple mutations in a single model. Although the language
also provides functionality for the user to include (optionally) OCL constraints that
are validated against the generated mutations (models), their operators do not check
explicitly the syntactic constraints imposed by the abstract syntax of the target language

40

2.3 Testing and Mutation Testing in MDE

Table 2.5: Cuadrado et al. [102] ATL mutation operators

Mutation Operator Description

Creation

Binding Adds a new binding element to an out-pattern element of a rule

Source Pattern Adds a new in-pattern element to a rule

Target Pattern Adds a new out-pattern element to a rule

Rule Inheritance Adds an inheritance relation for a matching rule

Deletion

Module Element Removes a module element (whether rule or helper)

Binding Removes a binding element of an out-pattern element

Source Pattern Removes an input-pattern element of a rule

Target Pattern Removes an out-pattern element of a rule

Rule Filter Removes a Boolean filter of an in-pattern element

Rule Inheritance Removes an inheritance relation between rules

Operation Context Removes a context (type) of an operation

Formal Parameter Removes formal parameters in operations or called rules

Argument Removes arguments in operation invocation

Parameter Removes a parameter in operation/called rules (in definition blocks)

Variable Definition Removes variable declarations in action blocks or called rules

Type
Change

Source/Target
Pattern

Replaces types of variables associated with in-pattern and out-
pattern elements with other types

Helper Type Replaces the context of a helper (type) with another type

Return Type Replaces the return type of a helper function with another

Type of
Variable/Collection

Replaces a type of variable declaration (whether ATL collection,
model or primitive type) with another type

Parameter Type
Operation

Replaces the simple parameter type in operation and called rules
with another type

Parameter Type

Name
Change

Navigation Replaces the name of a navigation feature

Binding Target Replaces the name of a feature of an out-pattern binding element

Feature Operation Replaces the name of an operation of a feature (e.g. x.optimize())

Predefined
Operator/Operation

Replaces the operator name (e.g. +, >, and) or operation name
(e.g. first, ...)

Collection Operation Replaces the name of a predefined operation of collection (e.g.
includes, ...)

Iterate Method Replaces the name of a predefined iterate method with another (e.g.
select, ...)

Helper Invocation Replaces the name of an operation and attribute helpers invocation

(for example, the cardinality of the relationships between entities that constitute the
metamodel or type compatibility).

41

Chapter 2 Literature Review

2.4 Chapter Summary

This chapter has provided a literature review of core disciplines related to this thesis and
its objectives, namely model driven engineering and mutation testing. It has covered the
essential general concepts and principles related to MDE and mutation testing that are
important for this research, the objective of which is to provide an approach for defining
mutation operators for rapidly emerging MDE languages. Models of MDE languages are
mostly (if not entirely) built on a common metamodeling language, MOF (and Ecore
as its practical implementation), which provides an opportunity to define operators for
different metamodels in a simple and efficient manner. In short, an approach could be
devised to find mutation operators for a given MDE language model that can also be
repeated or re-used to find operators for other metamodels. The conformance of MDE
models is achieved when they meet predefined specifications of notations and constraints
of MOF on a higher level in the metamodeling stack.

In regards to mutation testing, this chapter has discussed its most relevant concepts
and principles, including types of mutants and the mutation operator process. It has
also presented a survey on the currently defined mutation operators and their design
approaches in traditional engineering and MDE paradigms, as well as mutation operator
injection methods. The survey has revealed three methods of mutation operator design
of which two methods are more appropriate to be used in MDE context, namely, using a
language specification (in model driven this can be a metamodel) and adapting operators
from similar languages. In addition, the chapter has presented current limitations of
using mutation testing mainly computational cost, which can be reduced by eliminating
invalid and equivalent mutants from the mutation testing process.

Finally, this chapter has reviewed in detail approaches to mutation operator design and
mutation testing in model driven engineering. The limitations of this body of work
fall into two categories. The first is that, with the exception of [104] and [97], most
studies focus on the ATL transformation language, whereas this thesis is interested in
an approach that applies to different MDE languages. The second is that all designed
mutation operators do not implicitly check the conformance of operators to metamodels
or MDE language models before application (querying, for example, whether operators
are about to generate invalid or equivalent mutants).

The following chapter will discuss an approach that will address some of the limitations of
current approaches to mutation operator design and injection techniques that have been
discussed in this chapter, and will be dedicated to model driven engineering languages.

42

Chapter 3

Analysis and Hypothesis

The previous chapter presented a literature review of the definitions, concepts and prin-
ciples related to model driven engineering and mutation testing in order to contextualize
the objectives of this thesis. This chapter identifies the limitations of current mutation
operator design in the context of MDE languages. It also identifies the essential elements
of MDE that are useful in proposing a solution that would resolve them.

The chapter is structured as follows. Section 3.1 analyzes the problems and limitations
of current approaches to designing mutation operators for MDE languages and, then,
identifies key elements in model driven engineering that are worth exploiting to resolve
such limitations. Section 3.2 states the research hypothesis and Section 3.3 lists the
research objectives that must be fulfilled in order to verify the hypothesis.

3.1 Problem Analysis

Section 2.3 presents a number of current approaches to mutation design in the context
of MDE and their limitations. In terms of the latter, there are two in particular that
are very important: (1) the difficulty of designing mutation operators for the rapidly
emerging MDE languages that comply with their respective rules and definitions; (2)
the generation of operators that produce useless mutants (invalid or equivalent), which
usually impact negatively on the overall mutation analysis process.

Regarding the first limitation, some mutation operators exist for the ATL transformation
language but there is lack of an agnostic approach (with the exception of [104]) for
new and rapidly emerging MDE languages. In fact, this is rarely mentioned (at least
explicitly) in current approaches to design operators. In order to address this limitation,

43

Chapter 3 Analysis and Hypothesis

this thesis uses concepts of modeling and metamodeling to design a set of language-
agnostic mutation operators that comply with different MDE languages. As discussed
in Section 2.1.1, MDE languages are currently built according to the typical 3-level
metamodeling hierarchy (as illustrated in Figure 3.1) and depend on MOF (and Ecore
as a practical implementation of MOF) for defining their abstract syntax. Thus, there
are substantial opportunities for re-use across languages: an analysis technique that
applies to a target meta-metamodel (in level M3) can, in principle, be applied to models
of MDE languages (in level M2).

MOF

mma

ma

code.a

modelOf

conformsTo

conformsTo

conformsTo

Ecore

mmb

mb

code.b

modelOf

conformsTo

conformsTo

conformsTo

mmmx

mm x

mx

code.x

modelOf

conformsTo

conformsTo

conformsTo

M0

M1

M2

M3

Figure 3.1: Typical MDE metamodeling level and modeling levels

Programs of MDE languages (as discussed in Section 2.3) can be expressed as models
that conform to metamodels, which are models of MDE languages. The models of MDE
programs (at M1 level in Figure 3.1) can be mutated using mutation operators derived
from metamodels defined in M2. Metamodels in model driven engineering conform to
another type of models know as meta-metamodels (models in level M3) in the com-
mon metamodeling architecture. M3 models are usually defined using concepts such as
property and relation [2] to define a meaningful level of abstraction that can be used to
express models at a lower level (i.e. M2 models). Hence, there is an opportunity to use
M3 models and their modeling concepts to derive mutation operators that have a level
of abstraction and are applicable to different metamodels that conform to M3 models.

In addition, since M3 models usually consist of elements and constraints that meta-
models must conform to, the “abstract” mutation operators that could be derived from
M3 models must comply to the aforementioned elements and rules. This means that

44

3.2 Research Hypothesis

the elements and rules defined in meta-metamodels should form a fundamental set of
requirements that must be complied with by mutation operators.

Regarding the second limitation, solutions to the challenge of computational cost in mu-
tation testing have been proposed for traditional programming languages, as discussed
in Section 2.2.5. In particular, there are two kinds of mutants that usually contribute
to computational cost and which have received limited attention: invalid and equiva-
lent mutants. No solutions, however, have been proposed for model driven engineering
languages. In addressing this limitation, this thesis uses concepts and principles of mod-
eling and metamodeling to produce low rates of invalid and equivalent mutants in order
to achieve overall low computational cost during a mutation testing process.

3.2 Research Hypothesis

The proposed solution of a flexible and adaptable set of “abstract” mutation operators
for MDE languages can be used to investigate the following hypothesis:

Adaptable sets of mutation operators for metamodels that conform to a common meta-
metamodel can be derived from examining the common meta-metamodel. Any generated
mutation operators will be metamodel-agnostic, produce useful mutants and low propor-
tions of useless mutants.

The emboldened terms in the hypothesis above are explained as follows:

Adaptable operators are defined as operators that can be re-used across multiple MDE
languages, that when applied, produce actual mutants.

Useful mutants are valid mutants that conform to their metamodel and mutants that
test developers can use to assess their test suite. Example of such are live and
non-trivially killed mutants.

Useless mutants do not help test developers in assessing their test suite and can be
valid like equivalent mutants or invalid that do not conform to the MDE language
metamodel or to MDE language engine (invalid at (compile/parse)-time).

3.3 Research Objectives

In order to evaluate the above research hypothesis, this thesis has defined three main
objectives derived from the hypothesis itself:

45

Chapter 3 Analysis and Hypothesis

1. To propose and design a set of metamodel-agnostic (abstract) mutation operators
in order to generate a new set of mutation operators that comply to a new MDE
language. Any metamodel-agnostic mutation operators must be adaptable and
applicable to any metamodel, including any mechanism for ensuring the compliance
of mutation operators to that new metamodel and its constraints.

2. The proposed mutation operators should be instrumental in the production of:
(a) useful mutants for test developers. This thesis defines useful mutants as live

or non-trivially killed mutants. Live mutants always lead to good mutation
testing, as they challenge test developers to add more test inputs or even
enhance existing ones in order to detect such mutants. Non-trivially killed
mutants potentially lead to live mutants if they are executed against low
quality test inputs.

(b) low rates of invalid and equivalent mutants. Invalid and equivalent mutants
are considered by this thesis as useless mutants, as they (i) usually do not
challenge test developers to add more tests inputs, and (ii) prolong the overall
execution of mutation analysis.

3. The usefulness of the proposed mutation operators according to objective 2a and
objective 2b should be evaluated using an empirical mutation analysis with repre-
sentative programs and data.

46

Chapter 4

A Mutation Operator Design
Approach

Chapter 2 has reviewed some of the limitations related to a mutation operator design
in the context of MDE. In particular, it has provided an analysis of the limitations of
current mutation operator design approaches in terms of adaptability to new and rapidly
emerging MDE languages, especially in the case where there is a need for a mechanism
to verify the compliance of mutation operators to new MDE languages. The previous
chapter has suggested using models and metamodel to design mutation operators to be
able to perform mutation analysis, while using the typical metamodeling hierarchy in
model driven engineering to overcome the limitation of adaptability for MDE languages.
Accordingly, the thesis has presented a hypothesis that considers those suggestions, along
with a few research objectives to validate the research hypothesis.

This chapter proposes for the first time in Section 4.1 a generic meta-metamodel and
a mutation design approach that contribute to the design of a set of abstract mutation
operators that fulfills the objectives put forward by this thesis, taking into account some
of the key elements of MDE explained in Section 2.1 and of mutation testing as presented
in Section 2.2. Next, Section 4.2 gives a detailed description of the designed abstract
operators. Following that, in Section 4.3, an adaptation of the approach and abstract
operators to the Ecore metamodeling framework is presented, including an explanation
of how elements of the approach are addressed. Finally, examples of using the abstract
operators are given in Section 4.4 with an explanation on how they are instantiated to
produce concrete mutation operators for use in a simple metamodel example.

47

Chapter 4 A Mutation Operator Design Approach

4.1 A Design Approach using a Generic Meta-metamodel

Drawing on the typical metamodeling hierarchy in Figure 3.1 that was introduced in
Section 3.1, in order to fulfill the research hypothesis and objectives 1 and 2b (introduced
in Section 3.3), this thesis defines the concept of generic meta-metamodel. The concept
(as illustrated in Figure 4.1) is a structure that captures the commonality of a few key
modeling concepts existing in different MDE meta-metamodels. As stated above, meta-
metamodels usually exhibit a high level of abstraction using concepts, such as properties
and relations. Hence, the generic meta-metamodel refers to a collection of entities with
properties and relations between entities. The concept also defines multiple indications
for properties and relations of entities. Defining such a structure helps to find common
ground among metamodeling technologies, which consequently facilitates the design of
metamodel-agnostic mutation operators that can be flexible and adaptable to various
MDE modeling technologies.

MOF

mma

ma

code.a

modelOf

conformsTo

conformsTo

Ecore

mmb

mb

code.b

modelOf

conformsTo

conformsTo

mmmx

mm x

mx

code.x

modelOf

conformsTo

conformsTo

M0

M1

M2

M3
Generic

meta-metamodel

capturingConceptsOf

Figure 4.1: Typical MDE metamodeling hierarchy and generic meta-metamodel

A single instantiation of the mentioned generic meta-metamodel structure produces a
metamodel in which entities are instantiated along with properties (including attribute
and relations) and values. For instance, Figure 4.2 gives a metamodel of a simple
assignment statement of an example language, in which entities (such as FOLogicExp,
BooleanExp) are represented by UML class-like shapes; relations (such as conditions,
source) by directed lines between the entities; and attributes (such as iterator, name)
defined within entities.

48

4.1 A Design Approach using a Generic Meta-metamodel

Figure 4.2: A generic metamodel

If an instance model exists that conforms to the represented metamodel in Fig. 4.2, such
model can be modified (or mutated) so that the values of the properties of its entities are
modified by addition, deletion and replacement, which are a set of mutation actions that
are extracted by analyzing various mutation operators found in the mutation analysis
literature (discussed in Sect. 2.2.3). For example, modifications may include replacing
the value of the iterator property of an instance of FOLogicExp or replacing the values
of lhs and rhs properties of an instance of BooleanExp with each other. Thus, mutation
operators that facilitate the modifications of models are based on the properties of
entities in the metamodel, and if those properties and modeling concepts conform to the
generic meta-metamodel’s concepts and constraints, there is an opportunity to control
the design of mutation operators using those exact modeling concepts and constraints
of the generic meta-metamodel.

In order to address objective 2b concerning useless mutants, the thesis restricts the mod-
ification of models with respect to conformance constraints defined in their metamodel
to tackle the limitation of producing invalid mutants. Constraints are useful to ensure
that the approach produces mutation operators that, when applied, are less likely to
produce invalid mutants, which always impacts negatively on the overall performance
of mutation testing. In addition, the thesis also restricts the modification of models
with respect to equality and definition constraints, which are both not implementable at
the level of the proposed generic meta-metamodel but should, instead, be implemented
according to the underlying metamodeling technology. The former constraint is to check
the values of properties and new values to be mutated that are not equal, as this would
produce equivalent mutants. The latter aims to check the target values and values to
be mutated which are defined, for example, as values allocated in the memory or in a
resource, or using any manner of definition.

49

Chapter 4 A Mutation Operator Design Approach

4.1.1 Conformance restriction

When a model conforms to a metamodel, this means that the model complies with the
modeling concepts and their respective rules, as provided by the metamodel. Given
the previous generic meta-metamodel, a conformance restriction is identified by two
concepts: compatibility and multiplicity.

• Compatibility: the value of a property of an entity should only be allowed to
be modified with a new value from the same kind, determined from the names of
entities given in the metamodel. For example, from the metamodel in Figure 4.2,
the property lhs of an instance of BooleanExp may be involved in a replacement
of its value (which is an instance of NameExp) with another instance of NameExp.
Allowing the replacement only with an instance of a compatible entity prevents
the violation of the conformance constraints.

• Multiplicity: multiplicities of properties are determined by the lower and upper
bounds. The lower bound of a property indicates the minimum number of elements
that could be represented by a property, while the upper bound gives the maximum
number of elements in which the invariant (lowerBound ≤ upperBound) is always
true.
For example, the property lhs of a BooleanExp instance has the lower and upper
bounds of one, which means that the property always has a single value. As a
consequence, the conformance constraint allows the property to have a replacement
operator, while it does not permit it to have addition or deletion operators. This is
due to the multiplicity of one, which indicates a compulsory property. Adding more
values or deleting the only represented value are not allowed. Therefore, obtaining
mutation operators for addition and deletion for this particular property is useless,
as they generate invalid mutations that break the conformance restriction. Hence,
the multiplicity constraint plays an important role in reducing the number of
invalid mutations and, by extent, reducing the overall cost of mutation analysis.

4.2 Abstract Mutation Operators (AMO)

The users (test developers) of the design approach presented in the previous section,
need to adapt and implement the approach to its underlining metamodeling technology
and verify the aforementioned restrictions – namely, restrictions of conformance, equality
and definition to address objectives 1 and 2b – in order to generate mutation operators.
In an effort to facilitate the adoption and implementation of the approach in an efficient

50

4.2 Abstract Mutation Operators (AMO)

manner, this section presents a generic and ready-to-implement set of mutations that
incorporates the restrictions in the guise of preconditions for each operator.

The proposed set of mutations is referred to as Abstract Mutation Operators (AMOs).
They are systematically derived from the design approach by considering typical ad-
dition, deletion and replacement mutation actions. They are organized into two main
categories.

1. AMO-single: for single-valued properties with an upper bound multiplicity equal
to one.

2. AMO-multiple: for multi-valued properties with an upper bound multiplicity greater
than one.

One of the key novelties and benefits of the proposed AMOs (along with their inte-
grated preconditions) is that they can be instantiated by a user to produce concrete
mutation operators that are tailored to a given metamodel (at level M2, as illustrated
in Figure 4.3). Such operators are called Concrete Mutation Operators (CMOs) and
can be used in mutated models conforming to a given metamodel. During instantia-
tion, the preconditions of AMOs are “copied over” to the resulting concrete operators,
which should be implemented according to the target metamodeling technology and then
evaluated whenever a concrete operator is executed or triggered.

MOF

mma

ma

code.a

modelOf

conformsTo

conformsTo

Ecore

mmb

mb

code.b

modelOf

conformsTo

conformsTo

mmmx

mmx

mx

code.x

modelOf

conformsTo

conformsTo

M0

M1

M2

M3
Generic

meta-metamodel

capturingConceptsOf

AMO

CMO

motivated
by

instantiated
from

instantiated based on

mutated by

Figure 4.3: AMOs and CMOs

Including such preconditions into abstract operators reduces the anticipated difficulty of
composing the necessary constraints and restrictions (demanded by the design approach
for the purpose of mutation validations) for each property of an entity in the target
metamodel. Thus, the user of AMOs can pick a desired property of any entity defined

51

Chapter 4 A Mutation Operator Design Approach

in the metamodel and, based on its multiplicity (for example, upper bound multiplicity)
and kind, a target AMO can be determined and instantiated along with its specific
preconditions for the same property.

In order to ensure flexibility and adaptability to different metamodels, most AMOs are
designed to accept parameters. Users of such abstract operators need to provide values
(one value per operator) to a few parameters during the instantiation of the operators
into concrete operators. Although user configuration may seem as a limitation, AMOs
provide flexibility and allow users (who are usually domain experts to the system they are
testing) to decide what to mutate and with what values. It is possible to design AMOs
that would require no user involvement by making assumptions of possible values based
on the target metamodel. Such value assumptions, however, are not necessarily needed
in all modeling languages. The option of user configuration is, thus, useful.

The following subsections present all AMOs, their descriptions and the integrated pre-
conditions of each one.

4.2.1 AMO-single

This category comprises three abstract operators (addition, deletion and replacement
operators) for the properties of entities with the upper bound multiplicity of one. The
parameter target name can be replaced with any target property name that the user
wants to mutate.

• AMO-single-ADD(Property target, Object addValue): sets the value given by
addValue to the modeling property target, when the addValue contains the value
with which to be mutated.

– target.getV alue() = ∅: checks that the target property is undefined (in
other words, has no value or unset) allowing the assignment of the new value
given by addValue in which the function getValue retrieves the value that is
currently withheld by the target property. If target has a value, then the
replacement operator is more appropriate than the addition operator.

– addV alue 6= ∅: ensures that the given value by addValue is valid (i.e. is
set), as the previous condition already demands that the value of the tar-
get property is unset. This condition prevents the creation of an equivalent
mutant.

– [addV alue] = [target]: checks that the kind of addValue (as indicated by
square brackets ‘[’ and ‘]’) is the same kind of target, which points to a
modeled entity in the target metamodel.

52

4.2 Abstract Mutation Operators (AMO)

• AMO-single-DEL(Property target): removes the value that is associated with
the property target.

– target.getV alue() 6= ∅: checks that the target property is defined so as to
allow the removal of its value.

– target.lowerBound() = 0: verifies that the lower bound multiplicity of target

is equal to zero, which indicates that the target property is not a required
(i.e. optional) property and, hence, its value can be removed.

• AMO-single-REP(Property target, Object replaceValue): replaces the value
of the property target with a new value given by replaceValue.

– (target.getV alue() 6= ∅) ∧ (replaceV alue 6= ∅): checks that the value of
property target and the value given by replaceValue are both valid (in
other words, are unset) so that the replacement can take place. If the property
target has no value, however, the addition operator is more appropriate than
the replacement operator.

– [replaceV alue] = [target]: checks that the kind of replaceValue is compat-
ible with the kind of property target.

– target.getV alue() 6= replaceV alue: makes sure that the existing value of
the property target is not equal to replaceValue, in order to prevent the
generation of equivalent mutations.

4.2.2 AMO-multiple

This category of AMOs contains a set of operators that is suitable for multi-valued prop-
erties whose upper bound multiplicity is greater that one. The value that is represented
by any target property with multiplicity greater than one, is that it is a collection of
items. Thus, the AMOs in this category target a collection of multi-values by adding,
deleting or replacing an item in the collection.

• AMO-multiple-ADD(Property target, Object newItem): adds the value given
by instance newItem to the collection of items derived by the value of property
target.

– newItem 6= ∅: checks that the value of the instance newItem is defined and
valid in order to allow the addition mutation.

– [newItem] = [target]: checks that the kind of newItem and the kind of prop-
erty target are compatible (have the same entity name).

– newItem /∈ target.getV alue(): makes sure that the value of newItem is not
contained within the value of property target.

– |target.getV alue()|+1 ≤ target.upperBound(): verifies that the size of items
(indicated by the vertical bar ’|’) of the value of property target can be

53

Chapter 4 A Mutation Operator Design Approach

increased by one additional item, in such a way that the total size of items
does not exceed the value of the upper bound multiplicity.

• AMO-multiple-DEL(Property target, Object item): deletes item from the col-
lection of items given by the value of property target.

– item 6= ∅: checks that the value of the instance item is valid.
– item ∈ target.getV alue(): makes sure that the value of property target

contains the instance item.
– |target.getV alue()|−1 ≥ target.lowerBound(): verifies that the size of items

(indicated by the vertical bar ’|’) of the value of property target is greater
than or equal to the lower bound multiplicity after deleting the element item.

• AMO-multiple-REP(Property target, Object oldItem, Object newItem): re-
places the oldItem with newItem from the collection of items given by the value
of property target.

– (oldItem 6= ∅) ∧ (newItem 6= ∅): ensures that the given values of oldItem

and newItem are valid.
– oldItem ∈ target.getV alue(): verifies that the old value of oldItem (the one

to be mutated) is contained by the collection value of property target.
– newItem /∈ target.getV alue(): ensures that the value of property target

does not contain the value newItem.
– [newItem] = [target]: checks that the kind of newItem and the kind of prop-

erty target are compatible.

4.3 Adaptation of the Approach to Ecore

This section presents an adaptation of the design approach, described in Section 4.1
and based on the generic meta-metamodel to ensure flexibility and adaptability to dif-
ferent metamodeling technologies, to Ecore. As mentioned in Section 2.1.3.1, Ecore is a
metamodeling technology provided by the Eclipse Modeling Framework (EMF) and is
a well-known implementation of Meta Object Facility (MOF), which is a model driven
engineering standard for modeling and metamodeling.

By using Ecore, modelers can define new metamodels, reuse existing ones and manipulate
their instances. Since MOF and its implementation, Ecore, facilitate interoperability
between different MDE platforms and applications, Ecore can be a good metamodeling
candidate to target. Thus, providing an extension of the mutation operator design
approach to Ecore can be beneficial, as it is widely used in an MDE context and, thus,
provides ample potential for implementation than other modeling technologies.

54

4.3 Adaptation of the Approach to Ecore

Figure 4.4 presents the abstract syntax of the core modeling elements of Ecore taken
from [15]. It is represented using a graphical syntax that is similar to the UML class
diagram. The model structure mirrors the terminology that was given for the generic
meta-metamodeling structure, (introduced in Section 4.1). For instance, entities are
mapped to EClass, EDataType, properties are mapped to name, abstract, and associ-
ations are mapped to eStructuralFeatures, eSuperTypes etc.

In the following subsections, the restrictions of the proposed design approach against
the generic meta-metamodel are investigated over Ecore and its modeling concepts.
Further, an adaptation of the abstract operators (AMOs) to Ecore is proposed, followed
by a discussion on other modeling concepts of Ecore that could be used to impose more
restrictions.

EClass

name: String
abstract: Boolean

EAttribute

EDataTypeEDataType

name: String

EReference

eAttributeType

1

eSuperTypes 0..*

EStructuralFeatureEStructuralFeature

name: String
lowerBound: Integer
upperBound: Integer
changeable: Boolean
volatile: Boolean
derived: Boolean
transient: Boolean

0..*eStructuralFeatures

eReferenceType

1

Figure 4.4: A representation of core elements of Ecore taken from [15]

4.3.1 Conformance restriction

It has already been mentioned that the conformance restrictions of the proposed design
approach of mutation operators (introduced in Sect. 4.1.1) depend on two concepts:
compatibility and multiplicity. In terms of compatibility, Ecore and its underlining
technology, provide the concept of types, which are fully implemented in Java classifiers.
These correspond to entities in the generic meta-metamodeling structure. With types,
the compatibility of instances is maintained automatically by Ecore and its underlying
Java Language.

In addition, the compatibility of types is checked over the multiple inheritance of types,
allowing an instance of an entity to be compatible with more than one kind (which was
not the case for the generic meta-metamodel, discussed in Sect. 4.1.1). Thus, the original

55

Chapter 4 A Mutation Operator Design Approach

approach is extended to support the multiple inheritance of entities. In addition, Ecore
provides EDataTypes, which are affiliated to Java primitive or object types and are used
for modeling the properties (excluding end associations) of entities.

In terms of the multiplicity of properties, the lower and upper bounds constraints are
also provided by Ecore and they can be used to prevent the production of invalid mu-
tants, similar to the multiplicity restriction indicated for the generic meta-metamodel
(Sect. 4.1.1).

4.3.2 Further restrictions for Ecore

Ecore metamodeling technology offers further modeling concepts that characterize prop-
erties. These modeling concepts (along with other concepts) include changeable, derived
and transient, which can be explicitly indicated in a metamodel [15].

A changeable property value is modifiable and can be changed to a new value. By
contrast, static (i.e. not changeable) properties are not modifiable. Hence, their val-
ues cannot be mutated. Therefore, the design approach can be extended to avoid the
generation of mutation operators for static properties, as they produce invalid mutants,
which violates the conformance constraint of the metamodel expressed using the Ecore
metamodeling framework.

The values of derived properties are determined or computed from other properties.
Thus, designing mutations for such properties is unnecessary. Accordingly, the exten-
sion of the approach to Ecore can include additional restrictions disallowing the mutation
design for derived properties. As a consequence, this may reduce the number of muta-
tion operators and, as a result, the overall computational cost of performing mutation
analysis.

Lastly, the value of a transient property is excluded from the serialization of the con-
taining entity when persisting the containing model. In other words, if there is a model
that contains transient properties or association values, such values are not going to be
part of the containing model (model resource) and are simply ignored. Derived proper-
ties are good examples of properties that are sometimes indicated as transient. Thus,
the approach can be extended further to include a restriction by which the design of
operators for transient properties should not be allowed. In this case, the number of
mutation operators and the cost of mutation analysis can be reduced.

56

4.3 Adaptation of the Approach to Ecore

4.3.3 Adaptation of AMOs to Ecore

The original set of AMOs presented in 4.2.1 and 4.2.2 was designed based on conformance
and equality restrictions. AMOs can further be extended to include modeling concepts
provided by the metamodeling technology. In the following sections, an adaptation of
AMOs to Ecore is presented which covers additional modeling concepts specific to Ecore,
namely multiple inheritance and Ecore EDataTypes, both of which can be disclosed at
the metamodel level.

4.3.3.1 Inheritance

Ecore offers inheritance and multiple inheritance concepts between entities, according
to which an entity may have one or multiple super-kinds. As such, the compatibility
conditions of AMOs can be extended from a direct equality check between two kinds
using the equal character (=) to a further check to super-kinds. Multiple kinds investi-
gation are preformed by Ecore and its underlying technology so that all sub-kinds of a
relationship property are collected from the metamodel and evaluated against a mutat-
ing value. Hence, the compatibility of AMOs preconditions can be re-expressed using
‘v’ (instead of ‘=’), transforming the immediate super-kind relation as follows:

[subkind] v [super-kind]

4.3.3.2 Ecore EDatatype

Another modeling concept provided by Ecore is a set of predefined data-types that can
be associated to the properties of entities. These predefined data-types are referred to as
EDatatypes, and they can be affiliated to Java primitive or Java object types. In order
to modify the values of EDatatype properties, the set of mutation operators of single
properties AMO-single can be used to instantiate a set of specific concrete operators for
Java object types, such as java.lang.String, java.lang.Integer etc.

For primitive types, however, operators of AMO-single can be extended to include condi-
tions that would take the default values of primitive types into account. With Ecore, the
properties of primitive types can have default values, which are determined by the under-
lying technology of Ecore and Java. Those values are never unset or deleted. Therefore,
the addition operator AMO-single-ADD (which requires a no-value state for the target
property) and AMO-single-DEL (which requires a value to be contained by the target
property) do not apply for properties of primitive types. As a consequence, only the

57

Chapter 4 A Mutation Operator Design Approach

AMO-single-REP operator is applicable, since the value of the mutated property can be
modified by replacement with another value. Table 4.1 presents all available EDatatypes
in Ecore, their corresponding Java types (whether they are primitive or object types),
and their default values according to the Java Language Specification in [105]. The table
also shows the applicability of mutation for each EDatatype.

Table 4.1: A list of EDatatypes provided by Ecore

Ecore
datatype

Affiliated Java type
(primitive or object)

Default
value

Allowed mutation action

EBoolean boolean false replacement
EByte byte 0 replacement
EShort short 0 replacement
EInt int 0 replacement
ELong long 0 replacement
EFloat float 0.0f replacement
EDouble double 0.0d replacement
EChar char ‘\u0000’ replacement
EString java.lang.String null addition, deletion, replacement
EBooleanObject java.lang.Boolean null addition, deletion, replacement
EByteObject java.lang.Byte null addition, deletion, replacement
EShortObject java.lang.Short null addition, deletion, replacement
EIntegerObject java.lang.Integer null addition, deletion, replacement
ELongObject java.lang.Long null addition, deletion, replacement
EFloatObject java.lang.Float null addition, deletion, replacement
EDoubleObject java.lang.Double null addition, deletion, replacement
ECharacterObject java.lang.Character null addition, deletion, replacement
EDate java.util.Date null addition, deletion, replacement
EBigInteger java.math.BigInteger null addition, deletion, replacement
EBigDecimal java.math.BigDecimal null addition, deletion, replacement
EJavaClass java.lang.Class null addition, deletion, replacement

4.4 Instantiation of AMOs

Section 4.2 presented a set of metamodel-agnostic mutation operators (AMOs) that
are integrated with constraints to reduce the risk of generating invalid and equivalent
mutations. The AMOs can be instantiated to generate specific mutation operators for a
given metamodel. The application and instantiation of the abstract operators, however,
rely heavily on the user, who may wish to instantiate a selective set of operators against
certain modeling concepts and properties defined in the target metamodel. This section

58

4.4 Instantiation of AMOs

gives examples of how the AMOs are used and instantiated to generate concrete mutation
operators (CMOs) based on an example of a metamodel.

The metamodel used for these examples is given in Figure 4.5. It is fragment of a
metamodel of a language called MiniLang and expressed in a graphical syntax similar
to the UML class diagram. The examples generate four CMOs, two of which are valid
and the remaining two invalid. The properties targeted in the examples are property
condition of entity FOLogicExp with a replacement mutation, property statements

of entity IfStat with addition and deletion mutations, and property method of en-
tity FOLLogicExp with a replacement mutation. The AMOs that are going to be in-
stantiated, which are determined by the multiplicity of the mentioned properties, are
AMO-single-REP, AMO-multiple-ADD, AMO-multiple-DEL and AMO-single-REP respec-
tively.

Figure 4.5: The abstract syntax of the MiniLang metamodel

4.4.1 Example: a replacement CMO for property condition

This example instantiates the abstract operator AMO-single-REP against the property
condition of the modeling entity FOLogicExp. The objective is to generate an operator
that produces a valid mutant by mutating the instance model (depicted in Figure 4.6

59

Chapter 4 A Mutation Operator Design Approach

that models the piece of code in Listing 4.1) of the metamodel in Figure 4.5. The
mutation changes the Boolean value of the property condition (highlighted in red) of
a first-order logic operation folExp1 from a Boolean equal comparison operator to a
not equal comparison operator, in other words, changing from an instance of EqualsExp

to an instance of NotEqualsExp (highlighted in green) that is a new created instance
of NotEqualExp. The values of lhs and rhs of the original value of (equalExp1) are
copied over (or assigned) to the new instance notEqualExp1 (which is mutated). This
mutation imitates the misuse of an equality operator of Boolean property condition of
a first-order logic.

folExp1: FOLogicExp

method = "select"
iterator = "e1"

nExp1: LiteralExp

value = "Book.chapters"

equalExp1: EqualsExpcondition

nExp2: LiteralExp

value = "num_pages"

nExp3: LiteralExp

value = "10"

target
lhs rhs

assign1: AssignmentStat

LiteralExp

value = "chapters_col"

lhs
rhs

notEqualExp1: NotEqualsExp

to be replaced with

Figure 4.6: A fragment of an instance model of the MiniLang metamodel 4.5 used
for the instantiation example 4.4.1

1 ...
2 chapters_col = Book. chapters . select (e1 | e1. num_pages == 10);
3 ...

Listing 4.1: An example of code that is modeling in Fig. 4.6

• CMO-single-REP(Property condition, notEqualExp1): replaces the value of
condition with a new instance notEqualExp1 of the entity NotEqualsExp.

– (condition.getV alue() 6= ∅) ∧ (notEqualExp1 6= ∅): this constraint is true as both
the value of the property condition, which equals to equalExp1, and the new value
notEqualExp1 are valid (or defined).

– [notEqualExp1] v [condition]: the returned kind of instance notEqualExp1 is
EqualsExp, a sub-kind of entity Expression, which is the same kind as that of
the end association property condition. Therefore, this condition is satisfied.

– condition.getV alue() 6= notEqualExp1: this constraint is valid since the instances
equalExp1 and notEqualExp1 have different values.

4.4.2 Example: an addition CMO for property statements

This example demonstrates the instantiation of the abstract operator AMO-multiple-ADD

against the property statements of an instance of IfStat. This generates a CMO that

60

4.4 Instantiation of AMOs

produces a valid mutant by adding a return statement, assuming that the if statement
is contained or placed within an operation definition. Figure 4.7 illustrates the mutation
that occurs when the return statement retStatement instance (highlighted in green)
is added to statements. The purpose of this mutation is to ensure that statements
following the mutated if statement block are important. In other words, this particular
mutation verifies whether statements that follow the mutated condition block (the if
block) are executed.

ifStatement1Cond: EqualsExp

assign1: AssignmentStat

condition
ifStatement1: IfStat

statements

nExp1: LiteralExp

value = "counter"

nExp2: LiteralExp

value = "5"

lhs rhs

retStatement: ReturnStat

to be added to statements

Figure 4.7: A fragment of an instance model of the MiniLang metamodel 4.5 used
for the instantiation example 4.4.2

• CMO-multiple-ADD(Property statements, retStatement): adds the instance
of retStatement to the collection of statements of property statements.

– (statements.getV alue() 6= ∅) ∧ (retStatement 6= ∅): this constraint is true since
both values of statements and retStatement are valid and defined.

– [retStatement] v [statements]: the constraint is valid because the instance retState-

ment is of the same kind (Statement), as the property statements.
– retStatement /∈ statements.getV alue(): instance retStatement is not contained by

the value of property statements and, therefore, the condition is valid.
– |statements.getV alue()| + 1 ≤ statements.upperBound(): the condition is fulfilled

since, following the addition, the total size of property statement is two, which is
less than the upper bound limit of the unbounded natural (indicated by *).

4.4.3 Example: a deletion CMO for property statements

This example generates a deletion CMO by instantiating AMO-multiple-DEL for the
property statements of entity IfStat. The target model for the mutation is represented
in Figure 4.8, so that the instance assign1 (highlighted in red) contained by the property
statements of instance ifStatement1 is deleted. Since only one instance assign1 is
available, the preconditions of the generated operator will prevent the deletion of the
only instance assign1. As the lower bound of statements is one, deleting the last
element will produce an invalid mutant. The generated concrete operator is given as
follows:

• CMO-multiple-DEL(Property statements,assign1): deletes the instance assign1
from the collection of values of the property statements.

61

Chapter 4 A Mutation Operator Design Approach

ifStatement1Cond: EqualsExp

assign1: AssignmentStat

condition
ifStatement1: IfStat

statements

nExp1: LiteralExp

value = "counter"

nExp2: LiteralExp

value = "5"

lhs rhs

Figure 4.8: A fragment of an instance model of the MiniLang metamodel 4.5 used
for the instantiation example 4.4.3

– (statements.getV alue() 6= ∅)∧ (assign1 6= ∅): this condition is true since both the
values of the target property of instance ifStatement1 and assign1 are defined and
valid.

– assign1 ∈ statements.getV alue(): the condition is satisfied because the instance
assign1 is contained by the value of property statements.

– |statements.getV alue()|−1 ≥ statements.lowerBound(): this condition is violated
because, following deletion, the total size of the value of the property statements

would equal to zero, which is less than the allowed lower bound of one, as indicated
in the metamodel 4.5.

4.4.4 Example: a replacement CMO for property method

In this example, a replacement CMO for property method of entity FOLLogicExp is
instantiated to generate a CMO operator that allows the replacement of the method
name with another name. The target model to be mutated is represented in Figure 4.9.
In order to demonstrate the benefits of using the preconditions of the operator generator,
the example attempts to replace the current method name (“select”) with the same name
as follows:

folExp1: FOLogicExp

method = "select"
iterator = "e1"

nExp1: LiteralExp

value = "Book.chapters"

equalExp1: EqualsExpcondition

nExp2: LiteralExp

value = "num_pages"

nExp3: LiteralExp

value = "10"

target
lhs rhs

Figure 4.9: A fragment of an instance model of MiniLang metamodel 4.5 used for the
instantiation example 4.4.4

• CMO-single-REP(Property method, "select"): replaces the value of property
method with the string “select”.

– (method.getV alue() 6= ∅)∧ (”select” 6= ∅): this constraint is true as the both values
of the property method and the value ”select” are defined values and are not unset.

62

4.5 Chapter Summary

– [”select”] v [method]: the kind of property method is EString, which is affiliated to
java.lang.String that is same kind of ”select” value. Therefore, this condition is
satisfied.

– method.getV alue() 6= ”select”: this condition is violated because both values are
equal to ”select”. Therefore, this mutation is not allowed to prevent the production
of an equivalent mutation.

4.5 Chapter Summary

This chapter has presented a mutation operator design approach tailored to MDE lan-
guages. The approach is based on a generic metamodeling model (or meta-metamodel)
of entities with properties (including relations between entities). In addressing the ob-
jectives of this thesis, the mutation design approach has imposed restrictions onto the
process of generating mutation operators by including conformance, equality and defi-
nition constraints. The purpose is to tackle a few of the limitations of mutation design
in an MDE context (as discussed in Section 3.1). The chapter has also introduced a
set of abstract mutation operators (AMOs) derived from the design approach and its
restrictions.

The AMOs are accompanied by constraints aimed at producing low quantities of useless
mutants (i.e. invalid and equivalent mutants). Test developers, who wish to use AMOs,
can instantiate a selective set of AMOs operators upon certain modeling concepts (prop-
erties of entities) defined in a given metamodel, in order to mutate models that conform
to that metamodel. The instantiation will generate a set of concrete mutation opera-
tors that are customized for the metamodel and can be used to mutate models (and
programs) that conform to such metamodel.

The chapter has also put forward an adaptation of the approach and the AMOs to the
Ecore metamodeling language, which is a widely used practical implementation of MOF
in model driven engineering. The adaptation has addressed specific modeling concepts
of Ecore that were, in turn, used to impose more restrictions on top of what the original
design approach offers. Further, a number of instantiation examples of AMOs has been
presented over an Ecore model of a simple metamodel of a language. In the examples,
abstract operators were instantiated to produce concrete ones for selected modeling
properties, with preconditions validated against example models that conformed to the
simple metamodel.

Since the implementation of CMOs relies on the underlying modeling technology along-
side the precondition, the resulting concrete operators from AMOs are not made (by
themselves) executable to support flexibility to a user selective language. The following

63

Chapter 4 A Mutation Operator Design Approach

chapter will introduce a model mutation language that provides abstraction layers to
facilitate the implementation of CMOs and also the checking of their constraints.

64

Chapter 5

Epsilon Mutator (EMU)

Chapter 4 presented an approach for mutation operator design for MDE languages.
It also presented a set of metamodel-agnostic mutation operators (AMOs). The pro-
posed approach along with the AMOs address the objectives put forward by this thesis,
whereby AMOs are restricted and controlled by a set of preconditions of conformance,
equality and definition constraints. Users of the approach may adapt it to a desired
modeling technology, implement AMOs, and then perform validation against the pre-
conditions, whose aim is to reduce the likelihood of producing useless mutants. In order
to facilitate the instantiation of AMOs in a convenient manner, this chapter introduces
the Epsilon MUtator (EMU): a language and associated tooling for the mutation ap-
proach and AMOs users; and amenable to model mutation.

EMU is an extension of the Epsilon Pattern Language (EPL) [18] (reviewed in Sect. 2.1.3.2).
There is a number of reasons for specifically choosing EPL. The first is that it belongs to
a family of languages developed on top of the Epsilon Object Language (EOL) provided
by the Epsilon Platform, which supports various types of models. By extending EPL,
EMU (which currently only supports EMF) may be extended to support different types
of models. Section 5.1 gives an overview of such support.

Another reason for choosing EPL is that its output, and consequently that of EMU,
can be further manipulated using other Epsilon languages. In fact, Epsilon languages,
which are tailored to different model management tasks, such as model transformation,
model validation etc., have different dialects based on a common expression language
(EOL). Thus, users of EMU are more likely to be familiar with other Epsilon languages.
Hence, developing a transformation or validation program or any model management
task using the Epsilon languages to target outputs of EMU is easier than using languages
from outside the Epsilon platform.

65

Chapter 5 Epsilon Mutator (EMU)

Further, EPL has two distinct features: the first is pattern matching (which exists
in most model management languages) and the second is a set of actions performed
against the matching results of the pattern matching process. If the set of actions is
restricted to one action to allow one single mutation at a time, EPL is a good fit for
mutation application purposes. As such, EMU overrides minor EPL execution semantics
and (along checking and validating internally the precondition of AMOs as well as and
applying CMOs) allows one action to be performed that produces only one mutation per
application for a selected modeling concept (property) defined in a given metamodel.

Using EMU and the pattern matching mechanism, test developers can first navigate
through a target model of a metamodel and mutate a specific value of a property. Then,
based on the property and a target mutation action, a corresponding AMO is triggered
over all values and occurrences of the property in the model and a single mutation is
produced for each occurrence. Finally, the preconditions of the triggered operator are
validated explicitly by the engine, in order to obstruct the production of useless mutants.
In addition, the language of EMU allows test developers to specify further constraints
and conditions on top of AMOs’ preconditions for flexibility purposes and for added
control over the operators’ application. Also, since EMU is developed atop of Epsilon
platform, users of the language can further validate mutants of EMU programs with
further constraints (e.g., constraints integrated into metamodels) using OCL, EVL or
EOL.

It is important to mention that EMU is not a mutation testing framework that one
can use to build or assess test set or to produce mutation metrics such mutation score.
Instead, it is a prototype language and tooling support that can be used to mutate
models in MDE context and produce valid models for mutation testing purposes.

The remainder of this chapter presents EMU in the following order. Firstly, the Mutant
Integration Layer that enables model mutation is presented in Section 5.1. Next, the
abstract and concrete syntaxes of EMU are presented in Section 5.2 and Section 5.3
respectively. Finally, the execution semantics of EMU is presented in Section 5.4 with
explanation and examples.

5.1 Mutant Integration Layer

As mentioned previously, AMOs impose a number of preconditions in order to produce
low levels of useless mutants. The preconditions rely on three constraints: conformance,
equality and definition. In order to allow the implementation of these preconditions for
particular modeling technologies, EMU provides the Mutant Integration Layer. This

66

5.2 Abstract Syntax

extends the Epsilon Model Connectivity Layer (as illustrated in Fig. 2.6) and its core
abstraction component IModel [18], providing further abstraction components (related to
model mutation and the implementation of the preconditions) over modeling technologies
such as EMF, XML, ArgoUML etc. that allow EMU programs to manipulate models
of these modeling technologies. The abstraction components in question are IProperty
and IMutant. Their UML class diagram is depicted in Figure 5.1.

IModelIModel

name: String
alias: String[*]

allContents(): Object[*]
getAllOfKind(type: String): Object[*]
getAllOfType(type: String): Object[*]
owns(o: Object): Boolean
load(): void
store(): void
disposal(): void

IPropertyIProperty

name: String

getLowerBound(): Integer
getUpperBound(): Integer
getName(): String
getPropertyValue(): Object
isCompatibleValue(value: Object): Boolean

IMutantIMutant

getProperty(container: Object, name: String): IProperty

...

Figure 5.1: Epsilon IModel abstraction and Mutant Integration Layer

Currently, a mutation driver implementation of the above abstraction components for
EMF/Ecore based models is already provided, including support for precondition and
constraint parameters of AMOs (such as multiplicity, property and value kinds etc.).

5.2 Abstract Syntax

Figure 5.2 shows a subset of EPL abstract syntax that is only used and overridden
by EMU. An EMU module can have a number of mutation applications in terms of
patterns, each of which is associated with a number of binding roles (pattern matching
roles) that query the target models and obtain corresponding instances of the pattern
matching result. Querying the model is facilitated by an EOL expression in terms of
a domain (to specify the scope of instances of the target model) and guard (to impose
more filtering conditions and constraints) over the result of each query. The mutation
must be introduced using an EOL do block that is re-executed against every model
instance that exists in the binding roles. For example, if a model contains five greater
than comparison operators that a test developer wants to mutate, then the binding roles
should obtain five places in the model at which the mutation expressions in the do block
are repeated five times.

67

Chapter 5 Epsilon Mutator (EMU)

EMUModule

EPLModule

Pattern

name: String

Role

0..*

patterns

0..*
role

EOL.Block

EOL.Annotation EOL.Type

EOL.Expression

0..1

do

0..*

annotations

1

type

0..1 guarddomain 0..1

Figure 5.2: The abstract syntax of EMU

5.3 Concrete Syntax

The concrete syntax of EMU is given in Listing 5.1. To begin with, two mandatory
annotations (starting with the symbol @, as in lines 2 and 3) are required for each
mutation operator. The annotation @action determines the target mutation action
whether addition, deletion or replacement. The annotation @property distinguishes the
target property name (whether an entity attribute or an association property) that will
be modified.

Since the do block is an EOL block that may contain a number of EOL statements,
EMU treats the block as a black-box, and hence, the ability to know the user desire
mutation action and target property currently (when EMU extends EPL) is impossible.
Therefore, the annotations are made compulsory to guide any mutation.

In addition, since a mutation (pattern) can have multiple binding roles (used to query
and filter the target model instances), the optional annotation @role can be supplied to
determine the target role that combines a set of instances in which the property name,
which is indicated by the annotation @property, exists. In other words, if there are
multiple binding roles, each containing a distinct set of instances, that own a property
with a name equal to the mutated property name given by @property, then the optional
annotation @role is used to distinguish the target binding role in order to avoid any
ambiguous references to properties that have the same name as the target mutated
property.

1 EMUModule :
2 '@action ' ('add '|' delete '|' replace ')
3 '@property ' ID
4 ('@role ' ID)?
5 'pattern ' ID

68

5.3 Concrete Syntax

6 ROLE (',' ROLE)* ('{' DO '}')
7 ROLE:
8 ID ':' EOL.Type (DOMAIN | GUARD)*
9 DOMAIN :

10 ('in '|'from ') ':' EOL. Expression
11 GUARD :
12 'guard ' ':' EOL. Expression
13 DO:
14 'do ' '{' EOL. Block '}'

Listing 5.1: EMU concrete syntax

Upon specifying the mutation action and the target mutated property, a number of
binding roles can be provided. Binding roles are concepts that accumulate a set of model
instances obtained from querying and filtering the target model using EOL expressions
in terms of the DOMAIN and GUARD language concepts. The execution engine then
iterates through the obtained instances using the defined variable of the binding role in
line 8 (ID ‘:’ EOL.Type), executing the EOL do block at every instance.

Using a domain language concept, a scope of model instances can be specified by in (for
static query) or from (for dynamic query) keywords, as originally facilitated by EPL [18],
followed by the query using an EOL expression (in line 10). The difference between the
static and dynamic model queries of a pattern is that in the first instance the result of
evaluating the query (EOL expressions) is computed once for all executions of the do
block and the results are not accessible by other query expressions of other binding roles
of the pattern. On the contrary, the dynamic query result is re-computed whenever the
containing binding role’s values are iterated and executed. Its values are accessible by
other binding roles of the pattern.

In using the GUARD language concept, the user can impose further filtering and con-
straints over the resulting values of the role query using the keyword guard, as in line 12.
This feature allows test developers to specify additional constraints over the AMOs’
preconditions in order to increase flexibility and control over model queries.

Finally, the language concept DO allows users to specify new values to be used with
mutation operators. Since AMOs are parameterized to allow their instantiation to dif-
ferent metamodels for flexibility purposes, the EOL do block can be used to supply a
desired value to match the application of the concrete mutation operator. The supplied
value is then re-used with all occurrences of the target modeling property in the target
model.

69

Chapter 5 Epsilon Mutator (EMU)

5.4 Execution Semantics with Examples

The purpose of EMU is to facilitate the implementation of CMOs of a particular meta-
model. This section gives examples of using EMU to instantiate and implement the
CMOs illustrated in the previous instantiation examples given in Section 4.4. Further,
the execution semantics of EMU are explained. The examples were based on metamodel
Figure 4.5, which was presented in Sect. 4.4, to instantiate concrete operators for prop-
erties condition of entity FOLogicExp, statements of entity IfStat, and method of
entity FOLLogicExp.

5.4.1 CMO implementation of Example 4.4.1

In the example in Sect 4.4.1, the Listing 5.2 gives an EMU program that implements
the replacement CMO of property condition of entity FOLogicExp, which involved the
replacement of an equal comparison operator with a not-equal comparison operator of
the Boolean property condition.

The reason of this example is to demonstrate how a common mutation in programming
languages in which an equality operator is modified with replacement action by using
EMU. This mutation has preserved the left-hand-side and the right-hand-side of the
instance (equalExp1 by assigning them to the new instance notEqualExp1.

To begin with, the EOL expression in line 1 indicates that a replacement action is to
be triggered against the modeling property condition of entity FOLogicExp by the
expression in line 2 (that gives the property name) and the expression in line 4 (that
gives the modeling concept or entity that contains the property). Based on the mutation
action and property name, the EMU triggers the abstract operator AMO-single-REP and
its preconditions that will be validated by the EMU engine.

The domain of FOLogicExp instances are filtered based on the type of condition. Since
the operator replaces conditions of instances of EqualsExp to NotEqualsExp, the ex-
pression in line 6 filters the instances to be of type EqualsExp by calling first order logic
operation select on all instances, and checking their types using the isTypeOf() method,
passing the modeling entity EqualsExp as an argument. The instances are statically
obtained from the contained model at once, using the keyword in at the beginning of
line 6. In the final step, the do block is re-executed on all obtained instances in the
target model.

70

5.4 Execution Semantics with Examples

1 @action replace
2 @property condition
3 pattern condition_equal2notequal
4 instance : FOLogicExp
5 in: FOLogicExp .all. select (e|
6 e. condition . isTypeOf (EqualsExp)){
7 do {
8 // c r e a t e new Boolean o b j e c t
9 var n_equal = new NotEqualExp ();

10
11 // copy ove r l h s from o l d i n s t a n c e
12 n_equal .lhs= instance . condition .lhs;
13
14 // copy ove r r h s from o l d i n s t a n c e
15 n_equal .rhs= instance . condition .rhs;
16
17 // a s s i g n new c o n d i t i o n
18 // to t h i s FOLogicExp
19 instance . condition = n_equal ;
20 }
21 }

Listing 5.2: A CMO implementation for
Example 4.4.1 Figure 5.3: A fragment of the

metamodel in Fig. 4.5

5.4.2 CMO implementation of Example 4.4.2

The CMO example in Sect. 4.4.2 was about adding a return statement (an instance of
entity ReturnStat) to a collection of statements given by the property statements of
type IfStat.

The EMU implementation of such example is given in Listing 5.3. In the implemen-
tation, the addition mutation action is to be triggered (in line 1) against the property
statements (in line 2). Since the property is multi-valued (its upper bound is above
one and is not limited), the addition mutation involves adding a return statement to a
collection of statements.

In this example, the binding role (in line 4) does not have any domain (in or from)
keywords and, therefore, by default all instances of entity IfStat are fetched by the
engine with no domain filtration, contrary to what was presented in line 6 of Listing 5.2.

5.4.3 CMO implementation of Example 4.4.3

The demonstrated example in Sect. 4.4.3 involved the generation of a CMO that deleted a
single statement represented by the multi-valued property statements of entity IfStat.
The purpose of that example was to demonstrate the benefit of the AMOs preconditions
in which they were used to prevent the production of invalid mutant when deleting
the only single statement in that required and multi-valued property using an example
model.

71

Chapter 5 Epsilon Mutator (EMU)

1 @action add
2 @property statements
3 pattern add_return_statement_to_If
4 instance : IfStat {
5 do {
6 // c r e a t e new Retu rnSta t o b j e c t
7 var ret_stat = new ReturnStat ();
8
9 // add the new o b j e c t to the c o l l e c t i o n

10 // o f s t a t e m e n t s
11 instance . statements .add(ret_stat);
12 }
13 }

Listing 5.3: A CMO implementation for
Example 4.4.2

Figure 5.4: A fragment of the
metamodel in Fig. 4.5

The EMU implementation (Listing 5.4) of that CMO example, however, is more general
and not specific to a situation when there is only one statement. The implementation
works on any value represented by the property statements and on any model that
conforms to the MiniLang metamodel. The checking of the preconditions of the concrete
operator for the property statements is left to the EMU engine, which is going to prevent
any violation of the preconditions including the deletion of the last statement from a list
of statements.

The implementation has two binding roles. The first holds instances of IfStat (in
line 5). The role is not domain specific and, therefore, by default all instances of the
kind IfStat are collected once from the input model. The second binding role holds
instances of the kind Statement that are collected dynamically (using the keyword from)
from instances obtained from the first binding role in line 5. This means that for every
single instance of IfStat that exists in the variable instance, the second binding role
retrieves (in every iteration) the value of property statements, which is a collection of
instances of the kind Statement, and stores that value into the variable stat, as in line 7.
The instructions of the do block are re-executed on every instance that exists in variable
stat. As a consequence, in every execution, a single statement given by stat is deleted
from the collection of property statements.

Note that, since the implementation has two binding roles, the annotation @role is
necessary to indicate which binding role has the target property. In this example, the
target property is statements, which is contained in the variable instance of kind IfStat

(as in line 5).

72

5.5 Chapter Summary

1 @action delete
2 @property statements
3 @role instance
4 pattern delete_one_statement
5 instance :IfStat ,
6 stat: Statement
7 from : instance . statements {
8 do {
9 // remove a s ta tement from c o l l e c t i o n

10 // o f s t a t e m e n t s
11 instance . statements . remove (stat);
12 }
13 }

Listing 5.4: A CMO implementation for
Example 4.4.3

Figure 5.5: A fragment of the
metamodel in Fig. 4.5

5.4.4 CMO implementation of Example 4.4.4

For this EMU concrete example, the implementation of the CMO in example 4.4.4,
which targeted the property method of the entity FOLogicExp, is presented in Listing 5.5.
Although the mutation example was too specific to replace the “select” method name
with a same name, that is “select”, and deliberately produce an equivalent mutant
to demonstrate the benefit of using the preconditions of that concrete operator, this
implementation considers all values of the property method and puts a constraint (using
the keyword guard as in line 5) to prevent the production of useless mutants. The
constraint eliminates all FOLogicExp instances that have “select” as a method name.

1 @action replace
2 @property method
3 pattern replace_name_2_select
4 instance : FOLogicExp
5 guard : instance . method <> " select "
6 do {
7 // r e p l a c e method name to s e l e c t
8 instance . method = " select ";
9 }

10 }

Listing 5.5: A CMO implementation of
Example 4.4.4 Figure 5.6: A fragment of the

metamodel in Fig. 4.5

5.5 Chapter Summary

The chapter has presented EMU, a dedicated model mutation language and associated
tooling that facilitates the implementation of concrete mutation operators (CMOs). The
mutation engine of the EMU checks preconditions associated with mutation operators
in order to reduce the risk of producing invalid or equivalent mutants. Furthermore,

73

Chapter 5 Epsilon Mutator (EMU)

EMU allows users to query and filter model instances that are modified using EOL
expressions. EMU facilitates the imposition of additional constraints and conditions
on model instances on top of AMOs’ preconditions, for flexibility and efficiency. The
chapter also provided a few concrete examples of implementing mutation operators,
explaining briefly the syntax and execution semantics of EMU over a simple metamodel
example.

74

Chapter 6

Evaluation: Empirical Mutation
Analysis

This chapter describes in detail and presents the results of an experimental study in
which AMOs, the core contribution of this thesis presented in Chapter 4, were evaluated
in order to determine whether they fulfilled the objectives put forward by this thesis.
These are as follows: producing a set of metamodel-agnostic operators, useful mutants
and low proportions of useless mutants. For the preparation and carrying out of the
experiment, the experimental process for framing questions and linking them to hypoth-
esis, the approaches to obtaining results, and the elements used in the experiments have
followed the guidelines for good practice and principles described in [106].

The experiment was conducted against programs of two candidate model management
languages: the Atlas Transformation Language (ATL) and the Epsilon Object Language
(EOL), which are well known, mature languages in the MDE community. The former is
used for model transformation and the latter for model query and model update. The
selection of these two candidate languages was based on a number of reasons. To begin
with, ATL is a hybrid language (supporting declarative and imperative language instruc-
tions), while EOL is a purely imperative language. As two different language paradigms,
proving that AMOs can work for both provides initial evidence that the proposed op-
erators (AMOs) can be indeed instantiated over different types of language. Also, since
each language defines a wide range of distinct properties, there is an opportunity to
investigate whether AMOs generate useful mutants by mutating such properties, which
further provides evidence of the applicability and feasibility of AMOs.

In addition, ATL and EOL have metamodels (i.e. abstract syntaxes) expressed in EM-
F/Ecore. Using the available metamodels, the AMOs can be instantiated over modeling
concepts defined in these metamodels, which can then be used to mutate EMF-based

75

Chapter 6 Evaluation: Empirical Mutation Analysis

models that conform to the metamodels. The ATL metamodel is available as a resource
within the Eclipse ATL modeling platform, whereas the EOL metamodel is made avail-
able by [107]. Since EMU provides an integration layer (as mentioned in Section 5.1) for
EMF-based models, test developers can use the available resources of EMU or extend
them to mutate models of ATL and EOL.

Furthermore, as candidate languages, ATL and EOL receive tooling support that facil-
itates the transformation of the textual syntaxes of ATL and EOL programs to EMF
models (target model types that are possible to be mutated using EMU and its provided
mutant integration layer, and vice versa. Such transformation tooling support (mainly
text2model and model2text) is provided by the Eclipse ATL modeling platform1 and by
[107] for the ATL and EOL programs respectively.

Producing new metamodels and tooling support for text2model and model2text transfor-
mation from scratch for a given language is achievable. This thesis, however, is bounded
by time constraints that preclude the production of a new metamodel and corresponding
tool support. Therefore, using the available resources and tools (as available for ATL
and EOL) to evaluate the proof of concept of AMOs and EMU is sufficient for this thesis.

The resources of the experiment are made available online. The ATL resources can
be found at the repository https://github.com/Fhma/MT_ATL/releases/tag/rv1 and
the EOL ones can be found at https://github.com/Fhma/MT_EOL/releases/tag/rv1.

The remainder of this chapter is organized as follows. Section 6.1 presents the ex-
periment questions, which address the objectives introduced in Section 3.3. Section 6.2
describes the overall experimental approach, and Section 6.3 examines the ATL and EOL
candidate programs that were used to carry out the experiment. Section 6.5 provides
an overview of the used mutation operators, with which models of the ATL and EOL
programs were mutated. In Section 6.6, the results of the experiment are presented with
a discussion and analysis, including several observations and findings revealed during
the experiment.

6.1 Experiment Questions

In order to assess the main contribution of the thesis, namely the AMOs, and conse-
quently evaluate its hypothesis, the described experiment was conducted in order to
answer questions related to the core features of the AMOs, namely their status as meta-
model agnostic and the usefulness of the mutation operators.

1https://www.eclipse.org/atl/

76

https://github.com/Fhma/MT_ATL/releases/tag/rv1
https://github.com/Fhma/MT_EOL/releases/tag/rv1
https://www.eclipse.org/atl/

6.2 Experimental Approach

In Section 4.4, AMOs have been used to generate several concrete operators using an
example of a metamodel. In this experiment, however, AMOs were used to generate
CMOs for the ATL and EOL programming languages by examining their metamodels.
The generated operators are evaluated for their worth and ability to produce different
types of mutants such as live, killed etc.

The experiment was also conducted to evaluate whether CMOs produce useful mutants
or not. Useful mutants (as defined in research objective 2a in Section 3.3) are mutants
that help test developers to improve their test suite. One type of useful mutants is live
mutants, denoting those not killed (i.e. when they produce exactly the same output as
the original program) by any test case but which are detectable if the test developer
includes stronger test cases. Another useful type of mutant is the non-trivially killed
mutants, which are those detected by at least one test case but not all test cases. Such
mutants are potentially good because they may lead to live mutants if evaluated against
low-quality test inputs.

Finally, the experiment aims to evaluate whether AMOs preconditions prevent any use-
less mutants. Useless mutants (as already defined in research objective 2b) are those
mutants that do not help test developers to improve or enhance a given test suite by any
means. Such mutants are invalid, equivalent or trivially killed: invalid mutants break
conformance to a target language; equivalent mutants are not detectable by any test
case and are impossible to kill; trivially killed mutants are detected by all test cases and
are easy to kill.

Accordingly, the experiment questions formulated to evaluate and validate the hypoth-
esis of the thesis are as follows.

• Q1: can AMOs be instantiated over the ATL and EOL modeling concepts and do
they generate concrete mutation operators for the used languages?

• Q2: do preconditions of AMOs prevent any invalid or equivalent mutants?
• Q3: do AMOs produce useful mutants (live, non-trivially killed mutants)?

6.2 Experimental Approach

The experimental process was divided into two stages: stage one and stage two. Stage
one focused on producing mutants by executing mutation operators (discussed in Sec-
tion 6.5) against a set of non-trivial candidate programs of ATL and EOL (discussed in
Section 6.3). Stage two focused on executing valid mutants generated from stage one
against a set of non-trivial test models.

77

Chapter 6 Evaluation: Empirical Mutation Analysis

Figure 6.1: Stage one – mutants production process

In stage one, which is illustrated in Figure 6.1, a candidate program, which conformed
to either ATL or EOL, was firstly parsed and transformed into an EMF model by a
text2model transformation (as indicated by 1 in Fig. 6.1). Next, the EMU engine
(as shown in 2 in Figure 6.1) read the candidate model with the help of an MDE
metamodel and executed a set of mutation operators (written manually in EMU) against
the candidate model. The execution had produced automatically a large number of
mutant models that must conform to the same metamodel of the candidate model.
Finally, the EMF mutant models were transformed back to text (i.e. textual syntax)
using model2text transformation (as shown by 3 in Figure 6.1). The output artifacts
(mutants) were either valid when mutants conformed to the used MDE metamodel
or invalid when the conformance constraint was violated. Since invalid mutants were
considered useless, they were not loaded onto stage two of the experiment; they were
simply marked as invalid, since they would fail at any attempt towards execution.

In stage two of the experiment (as illustrated in Figure 6.2), which requires test de-
velopers to execute manually valid mutants of stage one on predefined test models, the
target MDE language engine (as indicated by 1), read the candidate program and valid
mutant and then executed them. As a consequence, two outputs were produced: one
from executing the original program and the other from executing the mutant program.
The outputs were then compared (as shown by 2) to determine killed and not-killed
mutants. If the outputs were not the same (or not equal), then a mutant was marked as
killed. If the outputs were equal, then the mutant was marked as not-killed. If there was
no output for a mutant program, for example the MDE engine failed to load or execute
the mutant against a test input, then the mutant program was marked as invalid.

The comparison process (as indicated by 2 in Figure 6.2) received expected outputs,

78

6.3 Candidate Programs

which were obtained from executing original programs on test models (as will be ex-
plained in Sect. 6.4), and actual outputs from the MDE language execution engine.
Based on the type of files, the comparison process either used EMFCompare (as was
discussed in Section 2.3.1.3) to compare the outputs in the case of models or files’ content
comparison in the case of textual artifacts.

The not-killed mutants obtained from stage two were either live or equivalent mutants.
In order to distinguish between them, further analysis was required by investigating
manually the code of each not-killed mutant to determine whether it was detectable by
first locating the mutated part of the program and then back-tracking to find inputs
and paths with which the execution can reach the mutated part. If detectable, then a
new test model was to be built to kill the mutant. If it had been killed in the new test
model, then the mutant was marked as live. If not, then the mutant was marked as
equivalent. Techniques such as detecting equivalents using compiler optimization, time
analysis, memory use, test coverage or any other side channels were not used because
ATL and EOL lack the tooling support for such techniques and, therefore, these required
supporting implementation and integration, which lies beyond the scope of this thesis.

Figure 6.2: Stage two – mutants execution process

6.3 Candidate Programs

The described mutation testing experiment was performed on representative and non-
trivial ATL and EOL programs that were collected from various resources to address re-
search objective 3. In the case of ATL, programs were collected from a publicly available
online repository of ATL programs at www.eclipse.org/atl/atlTransformations/.
This public repository contains a set of various transformation programs used inten-
sively within the MDE community (in research work such as [108, 109, 110, 101]).
In addition, a number of ATL programs has been obtained from the GitHub online

79

www.eclipse.org/atl/atlTransformations/

Chapter 6 Evaluation: Empirical Mutation Analysis

repository at https://github.com using the search functionality provided. In the case
of EOL, a set of EOL programs and examples from the Epsilon platform source code
repository, available at www.eclipse.org/epsilon/download/#sourcecode, as well as
from the GitHub repository have also been collected.

Table 6.1: ATL metamodel coverage and model instances of candidate programs

Candidate program Entities (out of 25) Model instances

Book2Publication 11 23
Make2Ant 7 25
Table2TabularHTML 16 103
TabularHTML2XML 13 102
Table2SVGPieChart 19 254

Total coverage of ATL entities 20

Total model instances 533

In order to answer the experiment questions in 6.1, a selective process (presented in
Algorithm 1) of ten candidate programs (five programs for each language) from a list
of the collected programs was conducted based on (1) the language model coverage (i.e.
the metamodel), and (2) the total number of language concepts. The intention was to
instantiate as many AMOs as possible over diverse modeling concepts defined in the ATL
or EOL metamodels and to investigate whether AMOs yield useful mutants, which pro-
vides evidence toward the feasibility of this thesis method and AMOs. Tables 6.1 and 6.2
gives the candidate programs including the metamodel coverage to each metamodel as
well as the number of model instances.

Table 6.2: EOL metamodel coverage and model instances of candidate programs

Candidate program Entities (out of 86) Model instances

ShortestPath 29 147
Formatting 36 838
EcoreHelper 38 1248
ECoreUtil 34 1591
ECore2GMF 37 1370

Total coverage of EOL entities 47

Total model instances 5194

Regarding the execution of the selected candidate programs, the ATL programs were
executed using the ATL transformation engine version 3.6.0, which was released in May
2015, whereas the EOL programs were executed using the Epsilon platform version 1.3.0,
which was released in February 2016.

80

https://github.com
www.eclipse.org/epsilon/download/#sourcecode

6.4 Test Models

Algorithm 1: Candidate programs selection
1 let P be a list of files that exist in folderinput and sorted in descending order based on metamodel

coverage and total model instances (in case of ties)
2 let R be an empty set for storing selected programs
34 let coveragebest be the coverage of the first program available in list P (i.e. P0)
5 while there is a slot for one more program do
6 if the end of P is reached then
7 traverse again list P and add programs as they appear to set R
8 continue
9 obtain the coverage of current program Pi

10 if current coverage of program Pi is greater than coveragebest then
11 update the best coverage and add current program Pi to set R

12 return R

function GetCoverage(p)
13 let E be a set of all entities defined in a metamodel
14 let Eexsit be an empty set for all entities of this program p
15 foreach instances ∈ p do
16 get all entities of instances and add them to the set Eexsit

17 return |Eexsit|/|E|
end function

6.4 Test Models

The test models that were used to test the candidate and mutated programs in stage
two (1 in Figure. 6.2) were generated semi-automatically using the Epsilon Model
Generator (EMG) [83]. EMG accepts a metamodel, since the test models are themselves
models, and a generation code, which queries the input metamodel and creates model
instances of entities and properties. The overall process of generating test models is
illustrated in Figure 6.3. The metamodels and the generation script that were used to
construct the test models are made available in Appendix B.

Figure 6.3: Test models generation process

81

Chapter 6 Evaluation: Empirical Mutation Analysis

The generation process that was followed in this experiment produces good models by
imposing a number of criteria to reduce the likelihood of threats to the validity of the
evaluation. The first criterion was that any generated test model must conform to
the used metamodels because the conformance of the models is an essential property
in MDE. Also, non-conforming test models are likely to be rejected by the underlying
modeling platform (Ecore and its underlying implementation). The conformance of test
models is performed using EOL statements and expressions.

The second criterion was that the proportion of entities in test models should be con-
sistent with the proportion of entities likely to occur in real test inputs. For example,
a real test model instance of a Table metamodel with rows and cells would likely con-
sist of more cells than rows, and more rows than tables instances. This was achieved
by giving any instantiated entity in the metamodel a (manually set) weight value; the
probability of a generated instance being of a given entity is then proportional to the
entity’s weight.

The third criterion was that the size of the input models should be consistent with the
diversity of realistic test inputs. The size of a model was specified as a configuration pa-
rameter for the model generator that was initially set to a minimum number of required
instances of entities for a valid model and then multiplied by 2x, where x was selected
randomly from the set {1, 2, 3, 4, 5}. The required entities were given priority to be con-
structed first, as they were required by other entities and properties. The properties of
each entity were initialized with random values obtained from the currently generated
model, for example, in the case of obtaining values for end association properties, and
from a list of typed values given to the model generator as an input, such as in the case
of obtaining values for the properties of primitive types.

The last criterion was that any generated testing model must successfully execute against
the candidate programs because outputs of their execution would be used as oracles when
compared with the actual outputs of the mutants of candidate programs. If the output
of a candidate program was identical to the output of its mutant, then the mutant was
marked as not killed. If, however, the candidate program produced an output model
that was different than its mutant, then the mutant was marked as killed. The verdict of
whether a mutant was detected (killed) or not detected (not killed) was determined by
a comparison process of expected outputs (obtained from executing test models against
original programs) and actual outputs (obtained from executing test models against
mutants) as indicated by 2 in Figure 6.2.

For each input metamodel of candidate programs (that is metamodels of test models), a
total of 20 test models were generated semi-automatically by considering the metamodels

82

6.5 Concrete Mutation Operators

of test models and the criteria above; and the process in Figure 6.3. The coverage of ATL
and EOL candidate programs were not considered because of tooling support limitation.

6.5 Concrete Mutation Operators

Stage one of this experiment focused on generating all possible mutants of the ATL and
EOL candidate programs by applying a set of concrete mutation operators (CMO) based
on ATL and EOL Ecore-based metamodels. In the following subsections, a description
of these CMOs is given. First, the process with which the CMOs were generated is
presented in Section 6.5.1. Next, a list of overlap mutation operators between ATL and
EOL is given in Section 6.5.2, followed by a list of specific mutation operators for ATL
and EOL in Section 6.5.3 and Section 6.5.4 respectively.

Some of the presented mutation operators have cross-references to their CMO imple-
mentations, which are made available in Appendix A. A complete implementation of
CMOs can be found online, as mentioned in the introduction to this chapter.

6.5.1 Systematic mutation operator definition process

The process used for generating CMOs was systematic by traversing all entities and
properties constructed in the ATL and EOL metamodels and manually applying addi-
tion, deletion and replacement mutation actions upon the properties of entities. This
systematic process of generating CMOs is presented in Algorithm 2.

Although that this systematic process was used as part of this evaluation, the process
is not considered as part of the method of the thesis for defining CMOs for a given
language. This is because it is entirely up to test developers to decide whether to use
the systematic process or not based on their preferences. For example, a test develop
may want to investigate the quality of her/his test suite with respect to a selective set
of properties (or language concepts) from MDE language, and hence, instantiate AMOs
only upon the selected properties. Another test developer may want to use the process
above to instantiate AMOs upon all properties defined in a metamodel and generate a
large set of concrete mutation operators, which is a process that is reasonable for new
languages according to Ammann and Offutt [12]. For this reason, the AMOs are made
independent from the process that is used to instantiate CMOs on language properties
for the thesis but was used here in the experiment.

The systematic approach took into account a general point to ensure that any produced
mutation operator yielded, where possible, valid mutants by avoiding the construction of

83

Chapter 6 Evaluation: Empirical Mutation Analysis

Algorithm 2: Systematic process for generating concrete mutations for a metamodel
1 let E be a set of all entities defined in a metamodel
2 foreach entity exists in E do
3 let MO be an empty set for collecting all mutation operators of this entity
4 inherit all mutation operators of super-entities of entity and add them to MO
5 foreach property defined in entity do
6 define mutation operators and add them to MO according to the following
7 if single-valued properties then
8 /* Instantiate AMO-Single and define */
9 operator that adds a compatible value to property

10 operator that replaces a current value of property with a new compatible one
11 operator that deletes the value of property

else
12 /* Instantiate AMO-Multiple and define */
13 operator that adds a simple and not complex value
14 operator that replaces a compatible sibling. For instance, if entities Ea and Eb both

extend entity Ec, then an instance value of Ea is replaced with a new instance value
of Eb

15 operator that deletes a selected value from a collection of values

complex addition and replacement operators. This means that when a mutation requires
a number of elements to be constructed, then it is considered a complex mutation in
this thesis and was avoided because of a number of issues.

One issue is that mutation values for association properties can require instances of en-
tities, which may themselves require properties and associations that must be initialized
first with some values. In general, mutation literal values are easier to obtain for prim-
itive type properties than for associations. Values for associations, however, become
complicated when the creation of their values depends further on new values and so on.

Another issue is what level of element creation with values should be enough for an
“appropriate” addition or replacement mutation for associations. Such issue requires
intensive investigation and lies outside the scope of this thesis, which considers simple
addition and replacement operators, mirrored from mutation operators of languages
found in the relevant literature (as discussed in Section 2.2.3). For example, continue,
break etc. statements are added to looping blocks and the value of a modeling concept
is replaced with another from the same category as the original without complex change
in the model.

The final issue related to complex addition and replacement mutations is that allowing to
have mutation values of multiple elements for a single mutation may produce vulnerable
mutants that are easy to be detected and killed. According to the competent programmer
hypothesis of mutation analysis [64], which states that an experienced programmer is
more likely to produce a program that is correct or almost correct, errors made by
programmers are small and, consequently, the norm for a mutation is to introduce a

84

6.5 Concrete Mutation Operators

single mutation. Having a mutation, however, that introduces multiple mutation values
for properties drives the mutation analysis away from its norm and makes the hypothesis
no longer applicable.

Before concluding this subsection, it is worth mentioning two issues. The first is related
to a large set of mutation operators. For new metamodels, such as EOL and ATL
(although there have been attempts to design mutation operators for many ATL language
concepts mentioned in Section 2.3.2), the aforementioned systematic process generated
a large set of mutation operators. For new languages, this process is reasonable [12], as
the process ensures that no modeling feature is overlooked or missed during the process
of operator generation. This is an issue that could have been encountered using other
operator design approaches, such as reproducing mutations from similar task-specific
MDE languages.

The second issue is related to the challenging process of implementing CMOs while
inspecting the source of programs or metamodels. The proposed mutation operator
design approach, AMOs and EMU, do not directly support the inspection of source
code and metamodels. However, the Epsilon platform and Eclipse plugin development,
which EMU relies on, offer a number of plugins that makes models (models of programs)
and metamodels query an easier task compared with looking directly at source code of
programs and metamodels. This is because that models and metamodels are structured
according to modeling concepts that are easier to navigate and query.

6.5.2 ATL and EOL overlap mutation operators

Since ATL and EOL have a small number of language concepts that are similar to general
programming language concepts, many CMOs overlap with the mutation operators of
those general programming languages mentioned in Section 2.2.3. The ATL and EOL
overlap mutation operators are related to:

1. Binary comparison replacement: this mutation has been implemented for many
general-purpose and domain-specific programming languages. The objective of such
operator is to change binary comparison operators, such as >, ≥ etc., to different
ones from the same category. For ATL and EOL, the Boolean modeling concepts
with which this mutation replacement can be applied were found in the following:

• ATL::IfStat.condition (available at A.1)
• ATL::InPattern.filter

• EOL::FOLMethodCallExpression.conditions

• EOL::ExpressionOrStatementBlock.condition

• EOL::IfStatement.condition

85

Chapter 6 Evaluation: Empirical Mutation Analysis

• EOL::WhileStatement.condition

2. Binary logical replacement: changing the logic of a Boolean expression is a common
mutation operator for a number of languages. The operator objective is to replace
logical operators, such as AND, OR, XOR etc., with others. The ATL and EOL
modeling concepts with which this mutation operator can be applied were the same
ones listed for the binary comparison replacement operator in Enumeration 1.

3. Variable name replacement: another common mutation operator found in the lit-
erature is the replacement of a variable’s name, which is normally a String type,
with another name. The purpose is to mimic errors of using wrong variable names
by language users. For ATL and EOL, the following modeling concepts allowed the
variable name replacement operator.

• ATL-OCL::VariableDeclaration.varName

• EOL::VariableDeclarationExpression.name

4. Variable type replacement: this mutation has also been implemented for a num-
ber of programming languages. The purpose is to imitate the error of misusing
variable types that are used to represent the value. For ATL and EOL, the model-
ing language concepts against which the variable type (for either primitive model)
replacement can be applied were:

• ATL-OCL::VariableDeclaration.type (available at A.2)
• ATL-OCL::CollectionType.elementType

• ATL-OCL::OclType.name

• EOL::Expression.resolvedType (available at A.10)
• EOL::NewExpression.typeName

5. Operation/function return type replacement: another common mutation operator
that is related to operations/functions with returning value is the wrong specifi-
cation of the type that is actually returned by an operation. ATL and EOL both
support operations using the following language concepts with which this operator
can be implemented.

• ATL-OCL::Operation.returnType

• EOL::OperationDefinition.returnType

6. Operation/function name replacement: inaccurate call of an operation name is a
typical mutation operator for a number of programming languages. This mutation
introduces such an error by replacing the name of a method with another name.
For the ATL and EOL languages, the following concepts allow this operator to be
applied:

• ATL-OCL::Operation.name

• EOL::MethodCallExpression.method

• EOL::FOLMethodCallExpression.method

7. Operation/function parameters/arguments deletion: the action of this operator is to

86

6.5 Concrete Mutation Operators

delete one of the parameters defined in an operation or delete one of the arguments
passed to an operation. The purpose is to mimic the error of mismatching the
number of parameters of an operation with the caller arguments. The modeling
language concepts of ATL and EOL with which this mutation operator can be
implemented were found in:

• ATL-OCL::Operation.parameters (available at A.3)
• ATL::CalledRule.parameters

• EOL::OperationDefinition.parameters (available at A.9)
• EOL::MethodCallExpression.arguments

8. Statement deletion: this mutation operator has been found in a number of mutation
analysis studies. Its purpose is to ensure that the deleted statement has a direct
effect on the outputs of a target program. For ATL and EOL, the following modeling
concepts were used to implement this mutation operator:

• ATL::ActionBlock.statements

• ATL::ForStat.statements

• ATL::IfStat.thenStatements

• ATL::IfStat.elseStatements

• EOL::Block.statements

6.5.3 ATL concrete mutation operators

As mentioned previously, ATL is a model transformation language with which output
models are created based on elements defined in input models. This is achieved by
including input pattern matching elements against the input models to produce output
pattern elements for output models. This section covers a list of CMOs for model
transformation modeling concepts of ATL, and those modeling concepts of OCL that
are directly referred to from within the ATL metamodel (as illustrated in Figures 6.4
and 6.5

In addition, since there are some mutation operators already defined for ATL in [100,
101, 102, 103], if a mutation operator exists for a particular language concept of ATL
that is also covered in this experiment and can be instantiated with AMOs, a reference to
the existing mutation operator in those research work is given. Furthermore, some of the
generic mutation operators by Mottu et al. [96] for model transformation is considered
while defining CMOs for ATL, although such operators require investigation to find
modeling concepts to which they can be applied. However, there were mutation operators
exist for model transformation and ATL in the literature that were not considered here
as this experiment follows a systematic approach (mentioned in Sect. 6.5.1) to define
simple mutations to address critical points related to competent programmer hypothesis

87

Chapter 6 Evaluation: Empirical Mutation Analysis

and to avoid generating weak mutation operators. Furthermore, the list of mutation
operators for ATL, which is about to be given below, only related to ATL concepts; and
OCL concepts that are directly referenced to from ATL metamodel.

1. Module.elements: the modification for this property included changing module
elements (for example, matching rule, lazy matching rule, called rule and helper)

Helper

Module

isRefining: Boolean

OCL.OclModel

name: String

1..*
inmodels/outModels

ModuleElementModuleElementelements

0..*

RuleRule

name: string

OutPattern

0..1

outPattern

MatchedRule

isAbstract: Boolean
isNoDefault: Boolean

LazyMatchedRule

isUnique: Boolean

CalledRule

isEntrypoint: Boolean
isEndpoint: Boolean

InPattern

0..*

children

inPattern0..1

InPatternElementInPatternElement

1..*

elements

0..1

filter

OutPatternElementOutPatternElement

1..*

elements

Binding

isAssignment: Boolean
propertyName: String

0..*

bindings

1

value

OCL.VariableDeclaration

ActionBlock

0..1

actionBlock

StatementStatement

0..*

statements

OCL.OclFeatureDefinition

1 definition

variables

0..*

OCL.Parameter

0..*

parameters

DropPattern

0..1

dropPattern

OCL.OclExpression

PatternElementPatternElement

SimpleInPatternElement SimpleOutPatternElement

metamodel

1

RuleVariableDeclaration

OclModelElement
model

1

Figure 6.4: ATL Metamodel – ATL module concept

88

6.5 Concrete Mutation Operators

through replacement and deletion mutation actions. The addition action was not ex-
amined, as it required complex mutations such as specifying a rule with input/out-
put patterns. For the replacement action, the replacement of a matching rule, which
is a standard rule that is executed once for every match in the input model, with a
lazy matching rule, which is executed upon request from within other rules, such as
matching rules or called rules, and vice versa was implemented. This replacement
operator has also been mentioned in [100]. This was to mimic the error of misus-
ing the keyword lazy at the front of a rule declaration. For the deletion action, a
simple deletion of elements of the ATL module had taken place to ensure that an
ATL module element had an effect on the outputs of a target program. This was
an operator also proposed in [102] for deleting rules and helpers and in [103] for
deleting rules. The CMOs of this property are as follows:

• CMO-multiple-REP(Module elements)

A
ct
io
nB
lo
ck

St
at
em
en
t

St
at
em
en
t

0.
.*

st
at

em
en

ts

Ex
pr
es
sio
nS
ta
t

Bi
nd
in
gS
ta
t

pr
op

er
ty

N
am

e:
 S

tri
ng

is
A

ss
ig

nm
en

t:
B

oo
le

an

If
St
at

Fo
rS
ta
t

1
ex

pr
es

si
on

1

so
ur

ce1

va
lu

e 1
co

nd
iti

on

0.
.*

th
en

St
at

s/
el

se
St

at
s

0.
.*

st
at

s

O
C
L.
Ex
pr
es
sio
n

1

co
lle

ct
io

n
1

ite
ra

to
r

O
C
L.
Ty
pe

na
m

e:
 S

tri
ng

O
C
LV
ar
ia
bl
eD
ec
la
ra
tio
n

va
rN

am
e:

 S
tri

ng
0.

.1

in
itE

xp
re

ss
io

n

0.
.1

ty
pe

O
C
L.
Fe
at
ur
eD
efi
ni
tio
n

O
C
L.
Fe
at
ur
e

O
C
L.
Fe
at
ur
e

O
C
L.
C
on
te
xt
D
efi
ni
tio
n

0.
.1

co
nt

ex
t

1fe
at

ur
e

1
co

nt
ex

t

O
C
L.
O
pe
ra
tio
n

na
m

e:
 S

tri
ng

1
in

itE
xp

re
ss

io
n

1

ty
pe

O
C
L.
A
ttr
ib
ut
e

na
m

e:
 S

tri
ng

1
re

tu
rn

Ty
pe

O
C
L.
Pa
ra
m
et
er

0.
.*

pa
ra

m
et

er
s

1

bo
dy

ty
pe0.
.1

O
C
L.
It
er
at
or

Figure 6.5: ATL Metamodel – ATL–OCL related concepts

89

Chapter 6 Evaluation: Empirical Mutation Analysis

• CMO-multiple-DEL(Module elements)

2. Module.inmodels/outmodels: the mutations designed for these modeling concepts
manipulated the input and output models of a transformation through the deletion
action. The purpose was to imitate the error of forgetting input or output models
of the ATL module. The addition and replacement operators were not considered.
The former would have no impact on the mutated programs if the added new model
had not been referred to from the mutated program. The latter would simply have
no siblings available to be replaced with (that is, another type of model). The
CMOs of these deletion operators are:

• CMO-multiple-DEL(Module inModels)
• CMO-multiple-DEL(Module outModels)

3. Module.refining: the mutation for this property was to change the execution be-
havior of the ATL engine from creation mode to refining mode, in which input
models were updated in-place. The addition and deletion actions were not consid-
ered because this modeling concept was a Boolean primitive type and always had a
default value equal to false. Hence, it did not accept any new values and its value
was never unset. Therefore, it only accepted replacement action. The CMO of this
property is CMO-single-REP(Module isRefining).

4. Rule.actionBlock: this property value, which contains declarative instructions
to the ATL engine, was modified by the deletion mutation. The purpose of this
operator was to determine whether a block had any effect on the output models.
The addition and replacement actions were not applied, as they required complex
mutations such as patterns for input and output matching and mapping elements.
The CMO of this property is CMO-single-DEL(Rule actionBlock).

5. Rule.name: this concept was modified by a replacement with another name. The
CMO is CMO-single-REP(Rule name).

6. Rule.outPattern: this modeling concept was modified by a deletion action, as
it is allowed by the ATL metamodel. The purpose was to mimic the error of
not specifying the output pattern to generate output models. The addition and
replacement actions were not considered as they required complex mutations to be
constructed, such as model variables, types and their usage to produce actual output
models. The CMO for this property is CMO-single-DEL(Rule outPattern).

7. Rule.variables: the value of this modeling concept, which was a list of declared
variables of a called rule, was modified by a deletion action in order to mimic the
error of failing to include variables in the called rule block of statements. The
addition and replacement actions were not considered, as they required complex
mutation values for variable names, types and usage in binding statements to
make a difference to the output models. The CMO of this language concept is
CMO-multiple-DEL(Rule variables).

90

6.5 Concrete Mutation Operators

8. OutPattern.elements: an out-pattern may have a number of elements that are
variable declarations used to create model instances in the output models. The mod-
ification for this language concept was made by successive deletion actions against
elements from a list of elements of out-patterns; such an action was also found in [96,
101, 102]. The addition and replacement actions were not implemented, as they
required complex mutations for model variables, types and their usage to produce
actual output elements in output models, although such mutations were proposed
in [96, 101, 102]. The CMO of this concept is CMO-multiple-DEL(OutPattern

elements).
9. OutPatternElement.bindings: an out-pattern element may have a number of

binding statements that append information onto output models. The mutation for
this concept, which was also proposed in [96, 100, 101, 102, 103], deleted one binding
statement at a time in order to ensure that bindings had an actual effect on output
models. The addition and replacement actions were not considered for this property,
as they required complex operator definitions and obtained values for concepts such
as names of targeted output model elements and values for each output element.
Addition operators alone were proposed in [96, 100, 101, 102]. The deletion CMO
of this modeling property is CMO-multiple-DEL(OutPatternElement bindings).

10. CalledRule.endpoint/entrypoint: a called rule must have either entrypoint or
endpoint keywords. If entrypoint is used at the front of a rule, the engine executes
the rule before any other rules, whereas if endpoint is the rule it is executed at
the very end of the transformation execution. The replacement modifications of
these flag values manipulated the execution behavior and mimicked the misuse of
the keywords. The addition and deletion mutation actions were not considered, as
the target modeling properties were Boolean literals and had default values. The
CMOs of these properties are:

• CMO-single-REP(CalledRule isEntrypoint)
• CMO-single-REP(CalledRule isEndpoint)

11. MatchedRule.children: rules inheritance is a feature provided by ATL. This mod-
eling property can be changed by replacement and deletion. The addition action
was not considered, as it required complex mutation values for a new matching
rule along with input/output patterns and elements. For the replacement action,
a child rule was replaced with another rule. This action was to mimic the error of
extending a wrong super (father) rule from a child rule perspective. For deletion, a
simple delete of a relation for the super-rule was applied, which was also proposed
in [102].

• CMO-multiple-REP(MatchedRule children)
• CMO-multiple-DEL(MatchedRule children)

91

Chapter 6 Evaluation: Empirical Mutation Analysis

12. MatchedRule.inPattern: a matching rule may have an input pattern matching
block that contains a number of elements for navigating input models. The deletion
action deleted an input pattern in its entirety. This was to mimic the error of
forgetting the input pattern by the language user. The addition and replacement
operators, were not applied as they required complex mutation operators. The
CMO for this property is CMO-single-DEL(MatchedRule inPattern).

13. InPattern.elements: the modification for this property was designed to delete
elements of an input pattern, which are variable declarations used to navigate input
models. This action imitated the error of forgetting an element that contributes to
output models, which was also a mutation proposed in [101, 102]. While addition
mutation operators have been proposed for this modeling concept in [101, 102], the
process for defining mutation operators in this experiment did not consider addition
and replacement actions because they required complex mutation values for variable
names, types and their usage into pattern matching against input models. The
deletion CMO for this property is CMO-multiple-DEL(InPattern elements).

14. InPattern.filter: an input pattern may have a Boolean expression (mainly bi-
nary OCL operator expressions, for example, arithmetic operators, comparison op-
erators and logical operators) that filters the instances obtained from an input
model. This modeling property was modified by a deletion action that removed
filters from input patterns in order to mimic the error of forgetting to include filters
by ATL language users. The mutation was also proposed in [100, 101, 102]. The
replacement CMO has been previously given in Enumerations 1 and 2. Although
the addition action mutation has been previously proposed in [100, 101], the ad-
dition operator was not considered here as it required complex mutations, such as
names of variables, literal values and binary operators to go between them. The
deletion CMO is CMO-single-DEL(InPattern filter).

15. MatchedRule.isAbstract: the modification for this property was a replacement
of the Boolean status of a matching rule from true to false. This was to emulate
the error of missing the keyword abstract at the front of a matching rule. Since
this property concept is a Boolean primitive type and always has a default value,
the addition and deletion actions were not applied. The CMO of this property is
CMO-single-REP(MatchedRule isAbstract).

16. LazyMatchedRule.unique: a unique lazy rule is different from a lazy rule, where
outputs generated by a unique rule for a given match of input instances are never
overridden for that particular match. If a unique lazy rule is used again for the
match, the same created output elements are used every time. This property was
changed by a replacement action against its Boolean value from true (meaning
unique lazy rule) to false (meaning standard lazy rule) and vice versa. The CMO for
this property is CMO-single-REP(LazyMatchedRule isUnique). The addition and

92

6.5 Concrete Mutation Operators

deletion operators were not generated because this property was a Boolean property
and, as such, always set. Therefore, addition and deletion were not possible.

17. Attribute.name: this property is used for representing helper attributes in ATL. It
was modified by a replacement action to mimic the error of calling attributes (just
like helper functions but with no parameters) with wrong names. This mutation
was also proposed in [102]. The addition and deletion mutations are not considered
because this property is compulsory (lower and upper bounds equal to one) and it
must have a value. The replacement CMO is CMO-single-REP(Attribute name).

18. Attribute.type: the property was modified by a replacement of its value (which is
an ATL type) with another type defined in the ATL metamodel. As this property
was characterised as mandatory in the ATL metamodel, it must have a value when it
is first constructed and only replacement mutation is allowed. Attempts at perform-
ing addition or deletion mutations would have simply produced invalid mutations
and were, therefore, avoided. The CMO of this property is CMO-single-REP(Attribute

type).
19. Binding.propertyName: this language concept was modified by a replacement of

its value with another name, which mapped to a property defined in the output
metamodel in matching rules. This operator was used against bindings of match-
ing rules. The same action of replacement mutation for the property was also
proposed in [101, 102]. Since this property is mandatory, it always had a value.
Thus, addition and deletion actions were not permitted. The replacement CMO is
CMO-single-REP(Binding propertyName).

20. BindingStat.propertyName: this property was modified by replacement of its
name, just like the one above but for binding statements of called rules. This muta-
tion was also proposed in [96, 101, 102]. The addition and deletion actions were not
applied since this concept was characterized as mandatory in the ATL metamodel.
The replacement CMO is CMO-single-REP(BindingStat propertyName).

21. BindingStat.source: this modeling concept was modified by a replacement of its
value, which is a source name, with another source. The same mutation was also
proposed in [103]. This emulated the navigation to a target property from the wrong
source of property. The CMO of this property is CMO-single-REP(BindingStat

source).
22. OclFeatureDefinition.context: the change of this language concept, which is

applied to helper functions and attributes, involved replacement and deletion ac-
tions. The addition action was not considered, as it required complex mutations.
For replacement, the mutation replaced a context (basically a type) of a model el-
ement or entity with another. The same action for the mutation was also proposed
in [102]. The replacement value was obtained from input and/or output metamod-
els, including ATL primitive types and collections. The objective was to mimic the

93

Chapter 6 Evaluation: Empirical Mutation Analysis

error of using incorrect types for context definitions. For deletion, a simple dele-
tion of the context was applied. The CMOs of replacement and deletion operators,
which were also proposed in [102], are:

• CMO-single-REP(OclFeatureDefinition context)
• CMO-single-DEL(OclFeatureDefinition context)

23. OclFeatureDefinition.feature: this modeling concept was modified by replace-
ment, in which an OCL operation was changed into an OCL attribute (attributes
are just like operations but without parameters) and vice versa. This was to imi-
tate the misuse of an appropriate feature definition of helper functions or attributes.
The addition and deletion actions were not applied, as the property feature of a
feature definition entity is characterized as a compulsory property in the ATL meta-
model. Hence, its value only accepted replacement. The CMO of this property is
CMO-single-DEL(OclFeatureDefinition feature).

24. OclModel.name: this property was modified by replacement of a model name with
another. This was to mimic the misuse of incorrect model name. The replacement
CMO of this property is CMO-single-REP(OclModel name).

25. VariableDeclaration.initExpression: this property was changed only by a dele-
tion of its value that is an initial expression of an OCL feature definition. The ob-
jective was to determine whether the initial value affected the output model. The
addition and replacement actions require literal expressions and, therefore, were not
performed. The replacement operator is CMO-single-DEL(VariableDeclaration

initExpression).
26. VariableDeclaration.type: this language concept was modified by all three mu-

tation actions (addition, deletion and replacement), all of which modified the as-
sociated type of variables. The objective was to mimic the wrong declaration of
variables by the user of the ATL language. For addition, a type from input/out-
put metamodels was assigned to a variable declaration. For the deletion mutation,
a simple deletion of the type was performed, which is a mutation also mentioned
in [102]. Both addition and deletion CMOs are given below. The replacement
operator was already discussed in Enumeration 4.

• CMO-single-ADD(VariableDeclaration type)
• CMO-single-DEL(VariableDeclaration type)

6.5.4 EOL concrete mutation operators

EOL is a pure imperative language that is mainly used to query, create and modify
models. The query functionality is facilitated by a set of methods similar to the query
methods of OCL, such as select, collect etc., whereas the modification part is enabled

94

6.5 Concrete Mutation Operators

by a set of controlling and looping statements, such as if ,for,while etc. For this experi-
ment, the metamodel of EOL used to generate concrete mutation operators is oragnized
into Figures 6.6, 6.7, 6.8 and 6.9.

Figure 6.6: EOL Metamodel – EOL module

1. AnnotationStatement.name: executable EOL annotations, which are used for op-
erations/functions, are like variables with a name and expression. The names of
these annotations were modified by a replacement action with other names to emu-
late the error of using wrong names within the operation block. Since this language
concept is mandatory, it must have a value and, hence, the addition and deletion
actions were not applied. The CMO is CMO-single-REP(AnnotationStatement

name).
2. AssignmentStatement.rhs: this property was modified by a replacement action

when the right-hand-side of an assignment statement was a Boolean. The bi-
nary operators (for example, >, ≥ etc.) and logical operators (such as and,
xor etc.) were replaced with others. Since this property was made mandatory
in the used EOL metamodel, the addition and deletion actions were not con-
sidered, as they would produce invalid mutants. The CMO of this property is
CMO-single-REP(AssignmentStatement rhs).

3. Block.statements: this modeling concept had been mutated by three modifica-
tions: addition, deletion and replacement. The deletion mutation is already given
in Enumeration 8. The addition mutation added a simple statement that did not
require complex mutation to a block of statements – adding a looping control ex-
pression, such as continue, break, breakAll to a looping structure such as while

95

Chapter 6 Evaluation: Empirical Mutation Analysis

and for. This was to mimic the error of misusing controlling statements, including
changing their behavior. The replacement mutation involved replacing the con-
trolling structure of while and if with each other, replacing continue, break and
breakAll with one another, and replacing return statements with simple statements
(that is, removing a return keyword from an expression and leaving the expression
unaffected). These actions were used to investigate the behavior of a block of state-
ments and their actual effect on output models. All the mentioned operators for
this property were mirrored from operators of traditional programming languages.

• CMO-multiple-ADD(Block statements)
• CMO-multiple-REP(Block statements)

4. CollectionExpression.contents: this concept serves to model elements of a de-
clared collection variable. The value of the property was modified by deletion,
in which one element was removed from the elements. Since the contents are
literal expressions, the addition and replacement mutation actions that required
literal values were not considered. The deletion CMO is CMO-multiple-DEL(

CollectionExpression contents).
5. EOLLibraryModule.imports: this property value was modified by sequentially

deleting import statements from a list of statements. Since this language con-
cept was literal, the addition and replacement actions were not applied because
they would involve an infinite space of values. The deletion CMO of this property
is CMO-multiple-DEL(EOLLibraryModule imports).

6. EOLLibraryModule.modelDeclarations: the mutation for this language property
was to delete the model declarations of an EOL module one at a time. The addition
and replacement actions were not considered, as they require literal string values
for model names from an infinite space of values. The CMO is CMO-multiple-DEL(

EOLLibraryModule modelDeclarations).
7. EOLLibraryModule.operations: the mutation for this property was to delete one

operation from a collection of operations defined in an EOL module. The addition
and replacement of operations were not considered, as they required complex mu-
tation values for the operation block, for example, logic expression and statements.
The deletion CMO is CMO-multiple-DEL(EOLLibraryModule operations).

8. EOLModule.block: this property was modified by deleting a block of an EOL mod-
ule. The objective of this mutation was to determine whether a block had a direct
effect on output artifacts. The addition and replacement actions were not defined,
as they required complex mutation values for a complete block that had an impact
on output artifacts. The deletion CMO is CMO-single-DEL(EOLModule block).

96

6.5
C

oncrete
M

utation
O

peratorsFigure 6.7: EOL Metamodel – EOL expressions97

Chapter 6 Evaluation: Empirical Mutation Analysis

9. Expression.inBrackets: the mutation for this property removed the brackets
from operator expressions: binary operator, logic operator and arithmetic operator
expressions. This was to imitate the error of misplacing brackets between Boolean
expressions. Since this concept was of a Boolean primitive type and had a default
value, the addition and replacement actions were not considered. The replacement
CMO is CMO-single-REP(Expression inBrackets).

10. ExpressionOrStatementBlock.block: the mutation of this property was to delete
a statement block. The addition operator and replacement operator for this prop-
erty were not considered, as they required complex mutation values. The deletion
CMO is CMO-single-DEL(ExpressionOrStatementBlock block).

11. ExpressionOrStatementBlock.condition: this property was modified by deleting
the condition of an expression. The replacement operator has been given previously
in Enumerations 1 and 2. The addition action was not applied, as it required
complex mutation, for example, values to interconnect the binary operands and
operators. The deletion CMO is CMO-single-DEL(ExpressionOrStatementBlock

condition).
12. ExpressionOrStatementBlock.expression: the mutation for this property deleted

a single expression (like statement deletion mutation). The addition and replace-
ment operators were not generated, as they required complex values to be con-
structed. The deletion CMO is CMO-single-DEL(ExpressionOrStatementBlock

expression).
13. ExpressionRange.start/end: these properties are used to model the start range

and end range of integer values given to integer variables when these are declared.
The replacement mutation for these properties modified start/end integer numbers
with another number. Since these expressions are made compulsory in the EOL
metamodel, they always had values. Hence, the addition and deletion actions were
not designed. The replacement CMOs are:

• CMO-single-REP(ExpressionRange start)
• CMO-single-REP(ExpressionRange end)

14. FeatureCallExpression.target: the mutation for this property removed the tar-
get of a feature call expression, such as methods, functions and properties. Tar-
gets can be variables or nested methods and functions. This mutation was to
emulate the error of forgetting to specify an accurate target for calling a feature
(whether method/function or property) call expression. The addition and replace-
ment actions were not considered, as they require literal values and complex con-
struction of, for example, nested methods and functions. The deletion CMO is
CMO-single-DEL(FeatureCallExpression target).

98

6.5 Concrete Mutation Operators

15. FOLMethodCallExpression.conditions: the language concept holds Boolean log-
ical expressions, such as binary comparison expressions etc. The replacement mu-
tation has already been presented in Enumeration 1. The deletion mutation deleted
Boolean conditions, one at a time, from a collection of conditions its CMO is
CMO-multiple-DEL(FOLMethodCallExpression conditions). The addition mu-
tation was not considered, as it required complex constructions like a binary oper-
ator and its left-/right-hand-side operands.

16. IfStatement.elseBody: the only available mutation for this property was a dele-
tion mutation in which a block of an else-body of an if-statement was deleted. The
objective was to determine whether the block had any effect on output models.
The addition and replacement actions were not designed, as they required com-
plex mutations for a block of statements. The deletion CMO for this property is
CMO-single-DEL(IfStatement elseBody).

17. IfStatement.elseIfBodies: this property also had only the deletion action per-
formed in which every block in a collection of statement blocks was deleted. The
addition and replacement actions were not considered, as they required complex
constructions of values. The deletion CMO is CMO-multiple-DEL(IfStatement

elseIfBodies).
18. MapExpression.keyValues: the only mutation defined for this property was a

deletion mutation operator that deleted, one at a time, a key-value pair from a
collection of pairs associated to a map variable declaration. Since the key-value
pairs are literal values, the addition and replacement actions were not considered
because literal values need to be obtained from an infinite space of values. The
deletion CMO of this concept is CMO-multiple-DEL(MapExpression keyValues).

19. MethodCallExpression.arguments: the arguments of a method were changed us-
ing three mutation actions. The deletion action has been discussed previously in
Enumeration 7. The addition mutation added an extra argument, whereas the
replacement swapped two arguments with each other. All actions were defined to
imitate calling methods with the wrong number of arguments or a different sequence
of arguments. The addition and replacement CMOs are:

• CMO-multiple-ADD(MethodCallExpression arguments)
• CMO-multiple-REP(MethodCallExpression arguments)

20. ModelElementType.modelName: the name of a model element of variable declara-
tion was changed by addition, deletion and replacement mutations. For the addition
and replacement actions, a model name obtained from input and output metamod-
els was used for the variables’ declaration of model elements. The objective of
addition and replacement was to mimic the misuse of a model element name. For
the deletion action, a simple deletion of a model name was performed to introduce
the ambiguous reference to a variable to input and output model entities. All CMOs

99

Chapter 6 Evaluation: Empirical Mutation Analysis

Figure 6.8: EOL Metamodel – EOL statements

for this property are:
• CMO-single-ADD(ModelElementType modelName)
• CMO-single-DEL(ModelElementType modelName)
• CMO-single-REP(ModelElementType modelName)

21. OperationDefinition.annotationBlock: the only mutation defined for this prop-
erty was a deletion in which an annotation block of an operation, defined before
the operation definition, was removed. An annotation block may contain state-
ments that are used in the operation main block and its statements, and the
objective was to determine whether annotation had any impact on the output

100

6.5 Concrete Mutation Operators

models. The addition and replacement operators were not considered as they re-
quire complex construction and literals. The deletion CMO for this property is
CMO-single-DEL(OperationDefinition annotationBlock).

22. OperationDefinition.body: the mutation for this property involved only the dele-
tion of a block. The addition and replacement actions were not considered, as they
require complex mutation values for statements and expressions that affected output
artifacts. The deletion CMO is CMO-single-DEL(OperationDefinition body).

23. OperationDefinition.contextType: only a replacement mutation was defined for
this property in which the context type of an operation was changed with another
type obtained from the EOL metamodel types (presented in Figure 6.9), includ-
ing primitive types. Since this language concept is made compulsory, it always
has a value and, therefore, the addition and deletion actions were not permitted.
The replacement CMO of this property is CMO-single-REP(OperationDefinition

contextType).
24. OperationDefinition.parameters: the language concept was modified by addi-

tion, in which an extra parameter was added to a list of parameters of an operation
declaration. This was to emulate the error of mismatching the number of parameters
from the caller point of view. The deletion operator has been discussed previously
in Enumeration 7. The replacement mutation was not considered, as there were
no siblings with which to be replaced. The addition CMO for this property is
CMO-multiple-ADD(OperationDefinition parameters).

25. PropertyCallExpression.extended: a model element in EOL can have extended
properties that are not supported in the metamodel to which it conforms. This is
concretely identified by the tilde character (∼) at the front of the property. The
only mutation for this property was replacement, in which the state of extended
property was put to false when it was true. The replacement CMO for this property
is CMO-multiple-REP(PropertyCallExpression extended).

26. ReturnStatement.expression: the only mutation for this property was a replace-
ment, in which a return statement of operator expressions, such as arithmetic, com-
parison and logical, was replaced by another operator from among their operands.
The replacement CMO is CMO-single-REP(ReturnStatement expression).

27. SimpleAnnotationStatement.values: this modeling concept was only modified
by a deletion mutation, in which a value from a list of values was removed one at
a time. The addition and replacement mutation actions were not applied, as they
required literal values from an infinite space of values. The deletion CMO of this
language concept is CMO-multiple-DEL(SimpleAnnotationStatement values).

101

C
hapter

6
Evaluation:

Em
piricalM

utation
A

nalysis

Figure 6.9: EOL Metamodel – EOL types

102

6.6 Results

28. SwitchCaseExpressionStatement.cases: this property models a collection of
switch cases. The only available mutation was deletion, in which a case from a list
of cases was removed. The addition and replacement mutation actions were not ap-
plied: the former required complex constructions and the latter lacked siblings with
which to be replaced. The deletion CMO for this property is CMO-multiple-DEL(

SwitchCaseExpressionStatement cases).
29. SwitchStatement.default]: the only mutation for this property, which models a

default case of a switch statement, was a deletion mutation in which a default case
was removed. The addition and replacement mutation actions were not considered
for this property, as they required complex construction. The CMO for this property
is CMO-single-DEL(SwitchStatement default).

30. VariableDeclarationExpression.create: the only mutation designed for this
property was a replacement, in which the create state (using new keyword) at the
variable declaration expression was changed from true to false. The addition and
replacement actions were not applied, as the property is Boolean and it always has
a value. Thus, adding a value or deleting an existing one were not permitted. The
replacement CMO for this property is CMO-single-REP(VariableDeclaration-

Expression create).

6.6 Results

This section presents the experimental results, which were obtained, first of all, from
generating mutants of ATL and EOL from candidate programs by executing the list
of mutation operators given in Section 6.5, and secondly by executing the generated
mutants against the test models described in Section 6.4. This section is divided into
three subsections. The first presents and discusses the results of performing mutation
analysis against ATL programs and the second does the same for EOL programs. Finally,
an overall evaluation of the research hypothesis is provided in the third section.

6.6.1 Empirical results of ATL programs

Prior to embarking on a detailed discussion of the results, this section attempts to provide
answers to the experiment questions presented previously in Section 6.1 by examining
the outcomes of stage one and stage two of the experiment. Following that, a detailed
analysis of the results is presented during which several elements of the experiment,
such as the used metamodels, the preconditions for the AMOs, and the types of mutants
(including invalid, not killed and killed) are investigated in an effort to discern how these

103

Chapter 6 Evaluation: Empirical Mutation Analysis

elements impacted on the overall results. The complete results of the ATL mutation
analysis are made available in Appendix C.1.

The results of stage one of the experiment, concerned with applying mutation operators
on selected ATL programs, are illustrated in Table 6.3. It is shown that a total of 287
mutants were prevented by the AMOs and their preconditions and marked as invalid, as
they did not conform to the ATL metamodel. This yields a positive answer to question
(Q2), which asks whether the preconditions of AMOs obstruct any invalid mutations
from being generated.

Table 6.3: Valid and invalid mutants of mutating ATL programs (stage one)

Candidate Program Valid Invalid

Book2Publication 66 15
Make2Ant 204 20
Table2TabularHTML 496 50
TabularHTML2XML 495 64
Table2SVGPieChart 2234 138

Total 3495 287

The results of stage two of the experiment, which involved executing the valid mutants
obtained from stage one against a set of test models, are given in Table 6.4. It is
shown that different types of mutant were obtained (for example, live, killed etc.). This
implies that the AMOs in fact helped to generate different types of mutations. In
particular, this thesis (as mentioned earlier) considers live and killed mutants as useful
and otherwise not worthless (namely not invalid or equivalent mutants). From a test
developer’s perspective, live mutations are useful as they are hard to detect and require
more challenging test inputs forcing their detection. In addition, killed mutations are
also important from a test developer’s point of view, as they reveal the quality of test
inputs, which is an essential objective of conducting mutation analysis. Thus, experiment
question (Q3) investigating whether AMOs help to generate different types of useful
mutants, such as live and non-trivially killed mutants, is also positively answered.

Table 6.4: Overall results of executing ATL mutants (stage two)

Killed Live Equivalent Invalid

Total 3050 80 213 128

% 87.26 2.29 6.09 4.34

Regarding the first question (Q1), it can be concluded that the results obtained from
stages one and two suggest that AMOs can indeed be instantiated over ATL and OCL
modeling concepts. The instantiation generated mutation operators that were able to

104

6.6 Results

produce various types of useful mutations. Therefore, experiment question Q1 is an-
swered positively. Hence, all research questions Q1, Q2, Q3 were answered in the
affirmative.

6.6.1.1 Invalid mutations

Generally, invalid mutants can be caused by the improper implementation of mutation
operators. In this ATL mutation analysis experiment, the list of mutation operators in
Table 6.5 generated only invalid mutations that were intercepted by the EMU engine
during the execution of stage one. The intercepted mutants had violated the AMOs
preconditions, which were implemented in the EMU engine. Such invalid mutations
indicate that the listed operators were improperly designed and need to be enhanced.

Table 6.5: Mutation operators that only generated invalid mutants during stage one

No Mutation Operator

1 CMO-M-DEL(InPattern elements)
2 CMO-M-DEL(Module inModels)
3 CMO-M-DEL(Module outModels)
4 CMO-S-DEL(Iterator type)
5 CMO-S-DEL(MatchedRule actionBlock)
6 CMO-S-REP(BindingStat propertyName)
7 CMO-S-REP(BooleanType name)
8 CMO-S-REP(IntegerType name)
9 CMO-S-REP(MapType name)
10 CMO-S-REP(OclAnyType name)
11 CMO-S-REP(RealType name)
12 CMO-S-REP(SequenceType name)
13 CMO-S-REP(StringType name)

For instance, operators 1–5 in Table 6.5 generated a set of invalid mutants that violated
the lower multiplicity bound of the element. The first three generated invalid mutants
when the operators attempted to delete the last element in the multi-valued properties
elements, inModels and outModels, which all have a lower multiplicity limit equal to
one. Thus, the operators can be re-implemented and enhanced, so that they can be
applied against properties with values greater than one by including filter expressions
to their CMO implementations. The remaining two operators also generated invalid
mutants when they attempted to delete values of optional single-valued properties type

and actionBlock at a time when there were no values to delete. In order to overcome
this, the operators can be enhanced so that filter expressions are included into their
CMO implementations making them only applicable to optional properties that actually
contain values.

105

Chapter 6 Evaluation: Empirical Mutation Analysis

Another example is operators 7–13, which generated a set of invalid mutants when they
attempted to modify the name of the OCL type by replacement. In fact, the operators
inherited a super mutation operator CMO-Single-REP(OclType name) that was initially
implemented to replace the value of property name of a model element type such as
Book, Library, with another name. For OCL built-in types such as primitive types
(String, Integer etc.) and collection types (Sequence, Set etc.), however, which extend
the entity OclType as illustrated in the ATL metamodel in Figure 6.5, the property
name is not applicable since there is no value for the property. Hence, their values
cannot be replaced, which led to invalid mutants. As such, a re-implementation of the
super mutation operator (that is, CMO-Single-REP(OclType name)) is required so that
the primitive types and collection types of OCL are excluded from the mutation process,
adding a filter that only fetches types defined in the input/output model.

In addition, invalid mutations can also be caused by an improperly constructed MDE
metamodel, which in this case is the ATL metamodel. For instance, the mutation
operator CMO-S-REP(BindingStat propertyName), which is number 6 in Table 6.5,
was designed to replace the property name of a binding statement with another name.
In the used ATL metamodel, the property propertyName of the entityBindingStat of
output pattern elements was never initialized with a value in any candidate programs
and, hence, the property never had a value. In fact, the property was made compulsory
in the used ATL metamodel, whereas it has no corresponding concept in the ATL syntax
grammar. In other words, it is impossible to find a valid ATL program that has a value
for the property name of a binding statement, as the ATL grammar does not allow that.
As a consequence, the ATL metamodel should be revised in a way that the property
propertyName of the entity BindingStat is removed from the metamodel.

Table 6.6: Mutation operators that only generate invalid mutants during stage two

No Mutation Operator

1 CMO-M-DEL(Operation parameters)
2 CMO-M-DEL(Rule variables)
3 CMO-M-DEL(CalledRule parameters)
4 CMO-S-DEL(Rule inPattern)
5 CMO-S-DEL(Rule outPattern)
6 CMO-S-DEL(VariableDeclaration initExpression)
7 CMO-S-DEL(VariableDeclaration type)

There are also many invalid mutants that were not prevented by EMU but were rather
detected by the ATL transformation engine when they were executed against the test
models. Such mutants were generated from the set of operators given in Table 6.6,
which accumulated 128 mutants out of 3,495. Unlike the first set of operators presented
in Table 6.5 that mostly require re-implementation, the second set of operators are

106

6.6 Results

worthless from a test developer’s point of view, as they do not contribute to the test
quality assessment. Hence, they can be avoided in future mutation analyses of ATL
programs.

6.6.1.2 Live mutations

In mutation analysis, live mutants are not detected (or killed) by any test input and
they always produce the same outputs as the original program. They are, however, de-
tectable mutants in the sense that a test developer, who is conducting mutation testing,
is challenged to provide more test inputs that will force such mutants to give different
outputs than the original program. The proposed AMOs have helped in generating a
few concrete mutation operators that were able to produce a total of 80 live mutants
out of the 3,495 from the used ATL programs. These concrete operators are given in
Table 6.7.

Table 6.7: Mutation operators that contributed to live mutants

No Mutation Operator Gen. Killed Equiv. Live Invalid

1 CMO-S-DEL(InPattern filter) 4 3 - 1 -
2 CMO-S-REP(InPattern filter) 14 12 - 2 -
3 CMO-S-REP(Parameter type) 15 6 - 9 -
4 CMO-S-REP(Operation returnType) 77 43 - 34 -
5 CMO-S-REP(InPatternElement type) 296 253 9 34 -

The live mutants produced by operators 1 and 2 in Table 6.7 were found by adding new
test models on top of the ones used for stage two (as part of the experimental approach
discussed in Section 6.2). The operators modified by replacement the Boolean compar-
ison expressions or logical expressions of the filters of input patterns in transformation
rules. As such, it is argued in this thesis that the operators can be considered useful, and
that they should be used for any future ATL programs mutation analysis experiments.

Furthermore, the conducted experiment of ATL programs revealed another type of live
mutants that contains faults that should have been detected by the ATL transformation
engine. More specifically, after replacing an OCL type (whether a model type or an OCL
built-in type) with another type using mutation operators 3–5 in Table 6.7, the ATL
transformation engine ignored the injections of incorrect types and continued the mu-
tants’ execution against all test models with no run-time error; an opposite action of what
the ATL engine was expected to trigger. The live mutants that should have been detected
were those generated by operator CMO-S-REP(Parameter type) when it targeted called-
rule parameters’ types, operator CMO-S-REP(Operation returnType) when it targeted

107

Chapter 6 Evaluation: Empirical Mutation Analysis

return types of operations, and operator CMO-S-REP(InPatternElement type) when it
targeted input pattern types of lazy rules.

It is possible to conclude that AMOs can be instantiated in the ATL metamodel and
generate operators that, when applied, produce not only stubborn mutants, which re-
quire more test cases, but also live mutants that reveal odd execution behaviors of the
ATL engine, which can be resolved in future releases of the ATL transformation engine.

6.6.1.3 Killed mutations

In theory, killed mutants indicate that a test suite is good enough to detect common
programmer errors. As mentioned in Section 2.2.3, there are two types of killed mutants:
trivially killed and non-trivially killed (or simply just killed) mutants. A trivial mutant
is a mutant that is easy to detect and is killable by all test inputs. On the contrary, a
non-trivial mutant is a mutant that is killed by at least one single test input but not all
test inputs. From a test developer’s point of view, a non-trivial mutant is potentially
more useful than a trivial one because a mutation operator that contributes to non-trivial
mutants may provide mutants of plausible programmer errors.

Table 6.8 presented a list of mutation operators that contributed to killed mutants; and
most of which were trivial ones. For example, some modifications of listed operators
involved replacement or deletion of blocks that usually contained multiple statements or
constructs (like the case of operators 2, 3, 5, 6, 14, 16, 18, 22, 25 and 26). Such actions
had been found impacting largely on original programs which produced, as a result,
vulnerable mutants that were detected easily by test models. The operators are sorted
in descending order based on the number of non-trivial mutations. The reason for such
sorting is to list mutation operators based on their usefulness to ATL test developers,
who wish to conduct mutation analysis and reuse these operators.

6.6.1.4 Equivalent mutations

Equivalent mutants are mutants that produce the same outputs as the original program
when executed against test inputs. Unlike live mutations, discussed in Section 6.6.1.2,
that can be detected by finding a good set of inputs, equivalent mutants can never
be killed, as no test input can be included to force their detection. In this empirical
mutation analysis of ATL programs, a total of 213 mutants out of 3,495 were classi-
fied as equivalent. There are only two main mutation operators that have contributed
to equivalent mutants: operator CMO-S-REP(MatchedRule isAbstract) and operator
CMO-S-REP(MatchedRule name). The first was designed to introduce a change to the

108

6.6 Results

Table 6.8: Mutation operators that contributed to killed mutants

No. Mutation Operator Non-trivial Trivial Equiv.
1 CMO-S-REP(RuleVariableDeclaration varName) 78 11 51
2 CMO-S-DEL(LazyMatchedRule actionBlock) 1 1 -
3 CMO-M-DEL(InPattern elements) 2 3 -
4 CMO-S-REP(CalledRule name) 1 2 1
5 CMO-M-DEL(ActionBlock statements) 3 7 -
6 CMO-M-DEL(OutPattern elements) 2 5 -
7 CMO-S-REP(IfStat condition) 2 5 -
8 CMO-S-REP(LazyMatchedRule name) 2 9 -
9 CMO-S-REP(Attribute name) 2 11 2
10 CMO-S-REP(OutPatternElement type) 136 800 8
11 CMO-S-REP(OclModelElement name) 14 88 11
12 CMO-S-REP(OclModel name) 6 42 12
13 CMO-M-DEL(SimpleOutPatternElement bindings) 14 112 4
14 CMO-M-REP(Module elements) 2 19 -
15 CMO-S-REP(Binding propertyName) 29 303 -
16 CMO-M-DEL(Module elements) 5 62 5
17 CMO-S-REP(OclFeatureDefinition feature) 2 31 4
18 CMO-S-DEL(MatchedRule outPattern) 1 16 -
19 CMO-S-REP(Attribute type) 92 - 34
20 CMO-S-REP(SequenceType elementType) 68 - 30
21 CMO-S-REP(RuleVariableDeclaration type) 21 - -
22 CMO-S-DEL(MatchedRule actionBlock) - 2 -
23 CMO-S-REP(CalledRule isEntrypoint) - 2 -
24 CMO-M-DEL(ForStat statements) - 4 -
25 CMO-M-DEL(IfStat thenStatements) - 4 -
26 CMO-S-DEL(CalledRule actionBlock) - 4 -
27 CMO-S-REP(BindingStat source) - 5 -
28 CMO-M-DEL(MatchedRule children) - 7 3
29 CMO-S-DEL(OclFeatureDefinition context) - 20 2
30 CMO-S-REP(Operation name) - 21 2
31 CMO-M-REP(MatchedRule children) - 70 3
32 CMO-S-REP(OclContextDefinition context) - 584 10

Boolean values of abstract properties of matching rules. The mutants have no effect on
output models when the matching rules themselves have no input and output pattern
elements. The second was designed to change matching rules names and also has no
effect on output models. This is because the transformation engine executes all rules in
a particular order regardless of their names.

6.6.1.5 Comparison of evaluation results with Guerra et al. [103]

As mentioned previously in Section 2.3.2, Guerra et al. [103] have recently examined a
set of ATL mutation operators defined in [100, 101, 102, 103] over six ATL programs.
Although they did not discard equivalent mutants, they distinguished four out of 55
mutation operators which produced hard-to-kill mutants, while the rest delivered easy-
to-kill ones. Regarding hard operators, the following gives a list of mutations that

109

Chapter 6 Evaluation: Empirical Mutation Analysis

contributed to hard-to-kill mutants [103], where each mutation is discussed with respect
to the ATL operators used for this experimental study.

• Helper Deletion: this operator deletes a helper function element from a transfor-
mation module. Mutation operator number 16 in Table 6.8, which deletes module
elements including helpers, has produced only killed mutants, none of which were
live, which corresponds to the terminology of Guerra et al. [103] of hard-to-kill
mutants. This can be caused by a number of reasons. One reason can be that
the initial test models used in the first run of this experiment (for example, when
executing mutants for the first time) were so good that they detected mutants
generated from the mutation operator CMO-M-DEL(Module elements). Another
reason can be that the mutated operations or called rules by the Helper Deletion
operator of Guerra et al. [103] were triggered by some of the testing inputs but
not all (for instance, the mutated places were never reached).

• ParameterDeletionMutator: this operator deletes a parameter from a list of pa-
rameters of an operation or a called rule. In this experiment, operators number 1
and 3 in Table 6.6, which correspond to this operator by Guerra et al., have con-
tributed only to invalid mutants that could not be loaded to the ATL engine. This
result differs from that reported by Guerra et al. This difference indicates that the
mutation operators, which correspond to the operator ParameterDeletionMutator,
require re-implementation.

• ParameterModificationMutator: this operator changes the type of a parameter
of an operation or a called rule with another type, for example, model types,
ATL primitive types or ATL collection types. The operator that corresponds
to this operator in this experimental implementation is CMO-S-REP(Parameter

type) in Table 6.7. The operator has produced 15 mutants out of which nine were
considered live when the mutated parameters were related to called rules only.
Section 6.6.1.2 gives more details about live mutants.

• AddNavigationAfterOptionalFeature (ANAOF): there is no corresponding opera-
tor that performs the same action as this operator since the current experiment
has only considered OCL concepts directly referred to from within ATL. The op-
erator AddNavigationAfterOptionalFeature of Guerra et al., which was applied to
an OCL concept that is not directly referred to from within ATL, lies beyond the
scope of this experiment.

6.6.2 Empirical results of EOL programs

This section presents the results of the mutation analysis of EOL programs using the
same approach followed for ATL programs. First, the experiment questions, presented

110

6.6 Results

in Section 6.1, are discussed. This is followed by a detailed examination of the results
of the experiment including an analysis of the types of mutants. The complete results
of EOL mutation analysis are made available in Appendix C.2.

In regard to Q2 that investigates whether the AMOs preconditions intercept any invalid
mutants from being generated, Table 6.9 indicates that more than a third of mutants
(around 23 percent) were intercepted by EMU, while implementing the preconditions of
AMOs. Reducing the number of invalid mutations is one of the objectives of this thesis.
This is because invalid mutations are worthless from a test developer’s point of view, as
they do not challenge a given test set and also negatively prolong the mutation analysis
execution.

Table 6.9: Valid and invalid mutants of mutating EOL programs (stage one)

Candidate Program Valid Invalid
ShortestPath 172 55
Formatting 800 207
EcoreHelper 1358 307
ECoreUtil 1553 258
ECore2GMF 1553 428

Total 5436 1255

In order to address Q3, which questions whether AMOs generate useful mutants (for
example, live and killed mutants), the obtained results of stage two of the experiment in
mutating EOL programs, as outlined in Table 6.10, shows that AMOs are indeed able
to generate useful mutants.

Table 6.10: Overall results of executing EOL mutants (stage two)

Gen. Trivial Killed Live Equiv. Invalid
Total 5436 2294 787 1126 507 722

% 42.20 14.47 20.71 9.32 13.28

From both sets of results (stage one and stage two) of mutating EOL programs, it can be
concluded that AMOs can indeed be instantiated over EOL modeling concepts defined
in the used metamodel. This answers Q1, as the instantiation of AMOs generated
operators that were able to produce different types of mutants. Hence, all research
questions presented in Section 6.1 (Q1, Q2, Q3) have been answered in the affirmative.

In the following sub-sections, a detailed discussion of the results of stages one and two of
mutating EOL programs takes place in which several elements of the experiment, such
as the used metamodels, AMOs, test inputs etc. are analyzed.

111

Chapter 6 Evaluation: Empirical Mutation Analysis

6.6.2.1 Invalid mutations

An invalid mutant can be invalid during the error injection process (i.e. when applying
a mutation operator to introduce a syntactic change) or invalid when interrupted dur-
ing execution by the language engine. Sometimes, semantically invalid mutants can be
valid syntactically for the language to which they conform. In the experiment of mu-
tating EOL candidate programs, a total of 1,255 out of 6,691 mutants (as illustrated in
Table 6.9) were classified as syntactically invalid during the mutation injection process
(stage one). As such, they were prevented from being generated by AMOs and their
preconditions. Also, a total of 722 out of 5,436 (as shown in Table 6.10) syntactically
valid mutants were semantically invalid and detected (failed to load) by the EOL engine
during the process of executing the mutants (stage two). Both sets of results show that
the AMOs and their preconditions intercepted more than half of the total of invalid
mutants, which is a positive result for AMOs and their preconditions.

Table 6.11: Mutation operators that contributed to invalid mutants in stage one

No. Mutation Operator Valid Invalid
1 CMO-S-REP(GreaterThanOperatorExpression inBrackets) - 1
2 CMO-S-REP(LessThanOperatorExpression inBrackets) - 1
3 CMO-S-REP(LessThanOrEqualToOperatorExpression inBrackets) - 1
4 CMO-S-REP(MinusOperatorExpression inBrackets) - 1
5 CMO-S-REP(OrOperatorExpression inBrackets) 4 6
6 CMO-S-REP(NotEqualsOperatorExpression inBrackets) - 5
7 CMO-S-REP(AndOperatorExpression inBrackets) 1 15
8 CMO-S-REP(NegativeOperatorExpression inBrackets) - 16
9 CMO-S-REP(NotOperatorExpression inBrackets) 2 18
10 CMO-S-REP(EqualsOperatorExpression inBrackets) 1 43
11 CMO-S-REP(PlusOperatorExpression inBrackets) 1 101
12 CMO-M-DEL(FOLMethodCallExpression conditions) - 49
13 CMO-S-ADD(ModelElementType modelName) - 84
14 CMO-S-DEL(ExpressionOrStatementBlock condition) 17 193
15 CMO-S-DEL(ExpressionOrStatementBlock expression) - 210
16 CMO-S-REP(PropertyCallExpression extended) 45 389

Regarding invalid mutants during the mutation injection process (stage one), Table 6.11
presents a set of concrete operators that mostly produces invalid mutants, which need
to be re-implemented or enhanced. In particular, all EMU implementations of the
presented concrete mutation operators need to include filters that collect model instances
with which the number of invalid mutations is reduced. For instance, the concrete
mutation operators 1–11 try to set (by replacement) the Boolean values of the property
inBrackets to negative values (that is, false). The property is used to model the
situation in which operator expressions, for example binary logical expressions, binary
comparison expressions and binary arithmetic expressions, are enclosed in parentheses.
The invalid mutations that were intercepted by EMU and AMOs preconditions, were

112

6.6 Results

encountered when the prior values of the property inBrackets were already negative.
When the operator tried to change the values to false as well, invalid mutants were
produced. Thus, the number of invalid mutants can be reduced by re-implementing the
operators, so that filters are added to restrict the application to instances that have the
property inBrackets values set to true.

Likewise, invalid mutants produced by operator CMO-M-DEL(FOLMethodCallExpression

conditions) can be reduced by including a filter. The large number of invalid mu-
tants was obtained during attempts to delete the last item of the multi-valued property
conditions (a first-order logic expression can have one or multiple conditions). In order
to reduce the number of invalid mutations, a filter that only fetches the model instances of
entity FOLMethodCallExpression that have more than one condition can be included, so
that the mutation deletion action is not performed against the only condition existing in
the collection of conditions. This enhancement would reduce the large number of invalid
mutants generated by the mutation operator CMO-M-DEL(FOLMethodCallExpression

conditions).

The aforementioned mutation operators contributed the most to invalid mutations, and
were intercepted and exposed by the EMU engine and AMOs preconditions. Such expo-
sure gives credibility to the preconditions of AMOs, as they can indicate the failed imple-
mentation of CMOs. As such, the user of AMOs, who may be interested in constructing
a mutation operator to test an important feature in the metamodel and language, will be
notified of any false implementation when a high number of invalid mutants is detected
by the EMU and the preconditions of an operator.

Table 6.12: Mutation operators that contributed to invalid mutants in stage two

No. Mutation Operator
1 CMO-S-DEL(ExpressionOrStatementBlock condition))
2 CMO-S-DEL(OperationDefinition body)
3 CMO-S-DEL(PropertyCallExpression target)

Regarding invalid mutations during the execution of the EOL mutants (stage two),
Table 6.12 presents a set of concrete operators that contributed only to invalid mutations.
The first mutation operator (CMO-S-DEL(ExpressionOrStatementBlock condition))
interestingly contributed only to invalid mutants in both stages one and two. This
indicates that the operator may not need a re-implementation but rather that the EOL
metamodel needs some adjustments related to the property condition in order to lower
the number of invalid mutants generated by that property. In fact, the modeling entity
ExpressionOrStatementBlock) needs reconstruction in a way that the high number

113

Chapter 6 Evaluation: Empirical Mutation Analysis

of invalid mutants from its properties condition and expression (and their concrete
mutation operators 14 and 15 in Table 6.11) is reduced.

Modeling entity ExpressionOrStatementBlock is mainly used to model two situations:
modeling a block of code (for example, a body of controlling statements such as if state-
ments, while statements etc.) and nested if statements else− if (as given in Listing 6.1
of the EOL metamodel fragment lines 11, 12 and 13), where the keyword val indicates an
end association between two entities by value. In the first case, the optional (lower mul-
tiplicity boundary is 0) property block in line 5 is used, whereas the optional properties
condition (line 6) and expression (line 7) are not used. In the second, (i.e. the nested
if statement), the block and condition are used, while the property expression is
not. This means that the property condition in the second situation is seen as com-
pulsory, and deleting its value definitely generates invalid mutations according to the
EOL language specifications (as proven also by the number of invalid mutations of mu-
tation operator CMO-S-DEL(ExpressionOrStatementBlock condition) in Tables 6.11
and 6.12). Thus, the modeling entity ExpressionOrStatementBlock and its usage for
nested else − if blocks in line 12 must be re-defined, so that the generation of invalid
mutants is reduced.

1 class Block {
2 val Statement[*] statements;
3 }
4 class ExpressionOrStatementBlock {
5 val Block[0..1] block;
6 val Expression[0..1] condition;
7 val Expression[0..1] expression;
8 }
9 class IfStatement extends Statement {

10 val Expression[1] condition;
11 val ExpressionOrStatementBlock[1] ifBody;
12 val ExpressionOrStatementBlock[*] elseIfBodies;
13 val ExpressionOrStatementBlock[0..1] elseBody;
14 }

Listing 6.1: Original EOL metamodel fragment expressed using EMFatic

In Listing 6.2, a few adjustments have been suggested to fix the original EOL metamodel
fragment given in Listing 6.1 and re-define the property elseIfBodies. The modeling
entity ElseIfStatement in line 1 is a replacement of the entity ExpressionOrStatement

Block, where the property condition is made compulsory with lower limit multiplicity
set to one rather than optional. This triggered a high number of invalid mutations with
the original EOL metamodel, which makes the property’s value accept a replacement
operator only, while the ability to have addition or deletion mutation operators, which
previously contributed the most to invalid mutations, is not allowed.

1 class ElseIfStatement extends Statement {

114

6.6 Results

2 val Expression[1] condition;
3 val Block[1] block;
4 }
5 class IfStatement extends Statement {
6 val Expression[1] condition;
7 val Block[1] ifBody;
8 val ElseIfStatement[*] elseIfBodies;
9 val Block[0..1] elseBody;

10 }

Listing 6.2: Improved EOL metamodel fragment of Listing 6.1

The second mutation operator CMO-S-DEL(OperationDefinition body) in Table 6.12,
which contributed only to invalid mutations, is an operator that was designed to delete
the body block of an operation or a function. Although the body of an operation is
compulsory, according to the EOL language specifications, and must be always present,
the EOL metamodel that was used for the experiment (illustrated in Figure 6.6) was
constructed in such a way that the body of an operation is specified as optional (that is,
the lower bound of the limit was set to zero) and, consequently, the deletion mutation
action became possible. Thus, when the operator was executed, it generated only invalid
mutants, which suggests a design fault in the EOL metamodel when a property that
should have been placed as compulsory is otherwise put as optional by setting the lower
bound of the target property to zero. Hence, the used metamodel should be fixed so
that the property body of entity OperationDefinition has the lower bound of one.

6.6.2.2 Live mutations

In this experiment of mutating EOL programs, the used AMOs were able to generate
a set of mutation operators that resulted in a total of 1,126 live mutants, out of 5,436
mutants (as given in Table 6.10), which were later killed by adding more challenging test
cases. The set of mutations that contributed to the mentioned live mutants are given in
Table 6.13 and they are sorted based on the percentage of live mutants produced against
the overall generated mutations. Test developers who wish to apply mutation testing to
EOL programs may use this list of mutation operators as a start for quality mutation
testing.

There are a few interesting findings in many live mutants of EOL programs. The first
finding is that many live mutants were a result of unexpected behavior of the EOL
engine when it violates the EOL specification that restricts the usage of binary com-
parison operators (for example, >, ≥, < and ≤) to only numerical literals. Instead,
the EOL engine had overlooked the usage of comparison operators with unsupported
literals, such as Strings, Booleans and Objects, when the engine was expected to yield

115

Chapter 6 Evaluation: Empirical Mutation Analysis

Table 6.13: Mutation operators that contributed to live mutants

No Mutation Operator Gen. Killed Live Equiv. Invalid
1 CMO-S-REP(AndOperatorExpression inBrackets) 1 - 1 - -
2 CMO-S-REP(OrOperatorExpression inBrackets) 4 1 2 1 -
3 CMO-S-REP(ReturnStatement expression) 62 25 28 9 -
4 CMO-M-ADD(Block statements) 145 66 62 17 -
5 CMO-S-DEL(IfStatement elseBody) 41 13 15 13 -
6 CMO-S-REP(ExpressionOrStatementBlock condition) 85 53 31 1 -
7 CMO-S-REP(PropertyCallExpression extended) 45 29 16 - -
8 CMO-S-DEL(ExpressionOrStatementBlock block) 209 92 68 32 17
9 CMO-M-REP(Block statements) 160 96 51 13 -
10 CMO-M-REP(MethodCallExpression arguments) 102 68 32 2 -
11 CMO-M-DEL(MethodCallExpression arguments) 170 117 50 3 -
12 CMO-S-REP(VariableDeclarationExpression create) 14 9 4 1 -
13 CMO-M-DEL(Block statements) 825 496 235 94 -
14 CMO-M-REP(FOLMethodCallExpression conditions) 96 60 26 10 -
15 CMO-S-REP(IfStatement condition) 230 138 62 30 -
16 CMO-S-DEL(MethodCallExpression target) 529 381 123 25 -
17 CMO-S-REP(MethodCallExpression method) 119 75 26 18 -
18 CMO-M-ADD(MethodCallExpression arguments) 581 423 125 33 -
19 CMO-S-REP(ModelElementType modelName) 205 93 32 16 64
20 CMO-S-REP(VariableDeclarationExpression name) 178 140 27 11 -
21 CMO-S-REP(AssignmentStatement rhs) 27 18 4 5 -
22 CMO-S-REP(FormalParameterExpression name) 160 126 22 12 -
23 CMO-S-DEL(ModelElementType modelName) 205 54 28 58 65
24 CMO-S-REP(OperationDefinition returnType) 97 45 12 18 22
25 CMO-M-ADD(OperationDefinition parameters) 103 76 10 17 -
26 CMO-M-DEL(EOLModule operations) 103 76 10 17 -
27 CMO-S-REP(FOLMethodCallExpression method) 212 169 19 24 -
28 CMO-S-DEL(FOLMethodCallExpression target) 49 42 3 4 -
29 CMO-M-DEL(IfStatement elseIfBodies) 17 16 1 - -
30 CMO-M-DEL(OperationDefinition parameters) 71 65 1 5 -

an unaccepted usage of operators. The mutation operators that produced those live mu-
tants are numbers 3 (22 mutants), 6 (28 mutants), 14 (18 mutants) and 15 (27 mutants)
in Table 6.13.

Another unexpected behavior of the EOL engine was spotted in a few cases when mutat-
ing returned statements of operations by replacement and addition. With replacement
in particular, on a few occasions, the EOL engine executed normally some operations
with no return statements, although the declaration of such operations indicated a re-
turn nature. Mutation operator number 3 in Table 6.13 replaced a return statement by
removing the keyword return, leaving the expression associated with it in place. Some
of the produced mutants of this operator (14 mutants in total) were executed normally
and returned a value even though there were no return keywords specified.

In very rare occasions, an addition of a return statement into an operation block that
is not intended to do any return values is another unexpected behavior of the EOL
engine. Mutation operator number 4 in Table 6.13 did such an addition mutation,

116

6.6 Results

where a return statement was added to a block (including operation blocks). When the
mutation operator was applied, it produced a couple of mutants that were not detected
by the EOL engine when executed against test models, as should be the case.

6.6.2.3 Killed mutations

Killed mutations are those mutations detected by original test cases, without the need
to add more challenging tests. The proposed AMOs were able to generate non-trivial
mutants and also trivial mutants. Those mutants amounted to 3,081 out of 5,436 of the
total mutants. Table 6.14 presents a set of mutation operators that contributed to killed
mutants and which are sorted according to their percentage of the total of non-trivially
killed mutants.

Table 6.14: Mutation operators that contributed to killed mutants

No Mutation Operator Killed Trivial Non-trivial
1 CMO-S-REP(OrOperatorExpression inBrackets) 1 - 1
2 CMO-M-DEL(IfStatement elseIfBodies) 16 4 12
3 CMO-S-REP(ExpressionOrStatementBlock condition) 53 14 39
4 CMO-S-REP(OperationDefinition contextType) 5 2 3
5 CMO-M-ADD(Block statements) 66 32 34
6 CMO-S-REP(ReturnStatement expression) 25 13 12
7 CMO-S-REP(AssignmentStatement rhs) 18 10 8
8 CMO-S-DEL(ExpressionOrStatementBlock block) 92 56 36
9 CMO-S-DEL(ModelElementType modelName) 54 33 21
10 CMO-S-DEL(IfStatement elseBody) 13 8 5
11 CMO-S-REP(PropertyCallExpression extended) 29 18 11
12 CMO-M-REP(FOLMethodCallExpression conditions) 60 38 22
13 CMO-M-DEL(Block statements) 496 335 161
14 CMO-S-REP(ModelElementType modelName) 93 69 24
15 CMO-M-REP(Block statements) 96 72 24
16 CMO-M-ADD(MethodCallExpression arguments) 423 324 99
17 CMO-S-REP(VariableDeclarationExpression name) 140 108 32
18 CMO-S-DEL(MethodCallExpression target) 381 297 84
19 CMO-S-REP(IfStatement condition) 138 109 29
20 CMO-S-REP(FOLMethodCallExpression method) 169 135 34
21 CMO-S-REP(MethodCallExpression method) 75 60 15
22 CMO-S-REP(VariableDeclarationExpression resolvedType) 10 8 2
23 CMO-S-REP(OperationDefinition returnType) 45 36 9
24 CMO-S-REP(FormalParameterExpression name) 126 101 25
25 CMO-S-DEL(FOLMethodCallExpression target) 42 34 8
26 CMO-M-DEL(MethodCallExpression arguments) 117 99 18
27 CMO-M-ADD(OperationDefinition parameters) 76 70 6
28 CMO-M-DEL(EOLModule operations) 76 70 6
29 CMO-M-REP(MethodCallExpression arguments) 68 64 4
30 CMO-M-DEL(OperationDefinition parameters) 65 62 3
31 CMO-S-REP(VariableDeclarationExpression create) 9 9 -
32 CMO-S-DEL(EOLModule block) 2 2 -
33 CMO-S-REP(PlusOperatorExpression inBrackets) 1 1 -
34 CMO-S-REP(WhileStatement condition) 1 1 -

117

Chapter 6 Evaluation: Empirical Mutation Analysis

6.6.2.4 Equivalent mutations

In this experiment, a total of 507 mutants out of 5,436 generated valid mutants has been
classified as equivalent mutants, which were not killed even when more test inputs were
added. Table 6.15 gives a list of mutation operators that only contributed to equivalent
mutants and which can be avoided for future mutation analysis of EOL programs.

Table 6.15: Mutation operators that contributed to equivalent mutants

No Mutation Operator
1 CMO-S-REP(NotOperatorExpression inBrackets)
2 CMO-S-REP(EqualsOperatorExpression inBrackets)
3 CMO-S-REP(FormalParameterExpression resolvedType)

6.6.3 Research Hypothesis Evaluation

This chapter evaluates the research hypothesis put forward by this thesis, which was
introduced in Section 3.2. The results obtained from the experiment suggest that the
proposed AMOs, which consist of preconditions and rules, have contributed to (1) the
generation of few invalid and equivalent mutants, and (2) the generation of plausible
and worthy mutants, namely live and non-trivially killed mutants. Furthermore, the
proposed AMOs are metamodel-agnostic and they have been used to generate concrete
mutation operators for the candidate languages ATL and EOL. Therefore, initial evi-
dence that AMOs can be used against a given model of a language has been presented.
The results provide sufficient confidence that the research hypothesis can be validated
and that the research objectives in Section 3.3 have been fulfilled. They are as follows.

• Propose and design a set of metamodel-agnostic mutation operators: this objective
has been satisfied with AMOs used against different metamodels during the exper-
iment. In particular, AMOs have been used for the best known model management
languages: ATL, which is used for model transformation, and EOL which is used
for model query and model manipulation. In both cases, metamodels of those
languages have been used to generate concrete mutation operators as presented in
Section 6.5.

• The proposed mutation operators should help to produce plausible mutants: the
conducted experiment of ATL and EOL programs has shown that AMOs are in-
deed capable of producing plausible mutants, such as live and non-trivially killed
mutants. For live mutants, Section 6.6.1.2 has indicated that many can be pro-
duced from ATL programs and Section 6.6.2.2 has shown that many more can be
produced from EOL programs. In both cases, those mutants are evidence that
AMOs are able to generate concrete operators that produce live mutants.

118

6.6 Results

• The proposed mutation operators should produce few invalid mutants: the abstract
mutation operators (AMOs) are integrated with preconditions that are “copied
over” to concrete ones when instantiated. Preconditions are checked by the EMU
engine, which executes the concrete mutation operators. The results show that a
number of invalid mutations had been prevented before their execution and only
a small percentage of invalid mutants had remained undetected.

• The usefulness of the proposed mutation operators should be evaluated using an
empirical mutation analysis over relevant programs. This was achieved using the
selection process presented in Section 6.3.

119

Chapter 7

Conclusion

Mutation testing is a powerful testing technique if the operator set that is used for testing
is well designed [12]. For decades, it has been used to test programs written in traditional
programming languages such as C, Java and SQL. Limited investigation into mutation
testing in model driven engineering, however, is unfortunate, as it is a particularly good
candidate for mutation testing. One of the key principles of MDE – that everything is
a model – offers the opportunity to derive mutation operators systematically, as MDE
languages are usually expressed as models built on common metamodeling languages,
such as MOF and Ecore.

The thesis has explored an efficient and effective mutation design approach for the rapidly
emerging MDE languages. In order to conduct this research, a field review on related
concepts and principles of MDE and mutation testing, as well as current approaches
for integrating mutation testing into model driven engineering and their key challenges
and limitations has been provided in Chapter 2. Chapter 3 presented an analysis of the
problem this thesis tries to address. The problem analysis identified a number of critical
limitations of previous attempts at mutation operator design for MDE languages. Based
on those, the thesis’ proposed solution for mutation design was discussed in Chapter 4.
Chapter 5 presented the Epsilon Mutator, which is the implementation of the solution
for mutating program models of MDE languages. Finally, the thesis put forward an
intensive empirical mutation analysis to evaluate the proposed mutation design solution
using Epsilon Mutator against programs written in the ATL and EOL languages.

The remainder of this chapter is divided into two main sections. Section 7.1 gives a
summary of the thesis contributions and Section 7.2 outlines opportunities for future
work.

121

Chapter 7 Conclusion

7.1 Thesis Contributions

The main contributions of this thesis are the creation of a novel systematic design
approach for mutation operators for MDE languages, the AMOs, and its evaluation
with focus on feasibility. The following sub-sections present each of these in some detail.

7.1.1 Systematic Mutation Design

The objective of the thesis was to derive an mutation operator design for the rapidly
emerging model driven engineering languages. This has been achieved by considering the
metamodeling potential of MDE, in which metamodels (models of languages) are built
on common metamodeling languages such as MOF, and the conformance constraints
defined in those metamodels. In order to make this simple and applicable to different
modeling technologies, the thesis defined a generic meta-metamodel to derive manually
and systematically a set of abstract mutation operators for model driven engineering
languages, considering addition, deletion and replacement mutation actions. An example
of using the design approach and adapting it to Ecore was performed.

7.1.2 AMOs

The proposed mutation operator design for MDE languages included the definition of
a set of abstract metamodel-agnostic mutation operators to mutate models of MDE
programs. In an effort to make those operators as effective as possible, conformance,
equality and definition constraints were integrated into the operators as preconditions.
For example, constraints related to conformance were enforced with respect to the com-
patibility and multiplicity of entities and properties defined in a metamodel. In terms
of compatibility, only values of compatible types were allowed to be used for producing
mutants. In terms of multiplicity, the lower and upper bounds of values that a prop-
erty of an entity can represent were used to control mutant production in a way that
the limit bounds were not violated when the property was mutated with values (mainly
when executing addition and deletion operators). An extension of the abstract operators
was demonstrated for the Ecore metamodeling architecture, in which further constraints
related to inheritance, multiple inheritance and data types were given.

The operators were organized into two main categories according to type and multiplicity
of properties: single-valued properties and multi-valued properties. Each category con-
tained operators for the addition, deletion and replacement of data, and each operator
had a set of suitable preconditions. Examples of instantiating the AMOs over a simple

122

7.1 Thesis Contributions

metamodel that conformed to Ecore was demonstrated to show that preconditions are
checked and verified before the operator application. In order to make the abstract op-
erators more applicable and instantiable to different metamodeling technologies, AMOs
were integrated into the EMU mutation injector, which is a prototype of a language
dedicated to model mutation, that validates preconditions internally and prevents the
generation of useless (invalid and equivalent) mutants.

7.1.3 Evaluation

In order to evaluate the proposed solution, an thorough empirical mutation analysis
was conducted over several non-trivial ATL and EOL candidate programs. The AMOs
were instantiated systematically over ATL and EOL metamodels to create concrete
mutation operators by going through all modeling concepts in the metamodels and
applying each abstract mutation operator on each concept defined in the metamodel.
The implementation of CMOs was specified as: EMU programs mutating all models
of candidate programs to produce mutants that were then executed against plausible
testing models.

The results of the evaluation showed that the proposed mutation design approach and the
AMOs were beneficial. First, the AMOs, which are the result of applying the mutation
design approach, were instantiated over ATL and EOL metamodels to create concrete
mutation operators. Many ATL concrete mutation operators targeted ATL concepts
that are already defined for ATL in the literature.

In addition, the designed concrete mutation operators were found to be effective mu-
tations that fulfilled this thesis’ objectives in terms of useful and useless mutants. For
the latter, the number of invalid mutants that were prevented from being generated was
287 out of 3,782 (around 7.6 percent) for ATL mutants, and 1,255 out of 6,691 (around
18.7 percent) for EOL mutants. Both, thus, reported low numbers of invalid mutants.
Targeting low numbers of invalid mutants has a positive impact on overall mutation
analysis since these are omitted from the execution process of mutation testing.

In regard to useful mutants, such as live and non-trivial mutants, the results of the
experiment of ATL mutants showed that 80 were found to be live and 483 to be non-
trivially killed, out of a total of 3,495. For EOL, 1,126 were found to be live and 787
were found to be non-trivially killed, out of 5,436. Both results indicate that AMOs are
able to generate concrete operators that can be useful in producing live and non-trivially
killed mutants.

123

Chapter 7 Conclusion

7.2 Future Work

This doctoral research was bounded by time constraints that did not allow the investi-
gation of some promising directions of inquiry. These future research opportunities are
explored in the following sections.

7.2.1 Further experiments and evaluations

An area of the thesis that can be extended is evaluation. Although the evaluation was
conducted thoroughly by adopting a quality process, there is still a number of elements
that can be improved upon. One of these elements is candidate programs. Since the
experiment included concrete mutation operators (provided in Section 6.5.4) for ATL and
EOL, there is always an opportunity to re-run these operators against more candidate
programs of ATL and EOL with real test models. This extension can help in more
evaluation over the used concrete operators and ultimately AMOs and their application.

The empirical mutation analysis conducted offers two areas that are open for future
improvement. One is related to invalid mutants. Operators that produce invalid mutants
may too often require re-implementation. Therefore, there is another opportunity to re-
define those mutations, and repeat the experiment mutation analysis to evaluate those
mutation operators. In addition, the experiment on ATL programs conducted here
covered OCL language concepts that are directly referred to from within ATL language
concepts. Hence, a complete coverage of OCL is another available opportunity for future
work.

A further opportunity from an experimental perspective is performing mutation testing
to mutate programs of other MDE languages. Potentially good candidates for this,
although the list is not exhaustive, are the Epsilon Validation Language (EVL) and the
Epsilon Transformation Language (ETL), as they have already constructed metamodels
[107]. This is made easier by using abstract mutation operators and EMU, which can
be used to implement any concrete mutation operators generated by AMOs.

A final experiment-related future opportunity is to perform mutation testing to models
of programs of different modeling technologies. Examples of such technologies include
HTML, XSLT, SysML, Simulink and others. Test developers who want to mutate models
of these technologies need to extend the Mutant Integration Layer (mentioned in Sec-
tion 5.1) and the Epsilon Model Connectivity Layer [18] to run EMU, which implements
AMOs and is currently intractable with models of those modeling technologies.

124

7.2 Future Work

7.2.2 Additional constraints

This thesis has used mutation operator implementations generated from abstract syn-
taxes. In fact, the mutation design solution and AMOs, along with their constraints
(presented in Section 4.1), are based on abstract syntax alone; this may be viewed as a
limitation. Since metamodels can also be integrated with constraints expressed in vali-
dation languages, such as OCL and EVL, there is an opportunity to include validation
expressions of metamodels in the process of producing mutants. This can be achieved
just prior to applying the mutation operator of a modeling concept, and by checking
whether the intended mutant does not break the validation expressions.

7.2.3 Independent EMU syntax

The objective of the current implementation of EMU is a proof of concept prototype
language dedicated to model mutation. As such, EMU is built on the Epsilon Pattern
Language with minor modifications to its execution engine. EMU uses EPL syntax
and some of its language concepts for model mutation purposes. Consequently, it lacks
independent syntax (abstract and concrete). Thus, there is the opportunity to develop a
full implementation of EMU in the future and to integrate it into the Epsilon Platform,
which consists of a family of domain specific languages for maintaining models of different
metamodeling technologies.

125

Appendix A

Mutation Operators

A.1 ATL Mutation Operators

1 o p e r a t i o n isComparisonOperator (op : S t r i n g) : Boolean{
2 if (op=”>” or op=”>=” or op=”<” or op=”<=” or op=”=” or op=”<>”)
3 r e t u r n t r u e ;
4 r e t u r n f a l s e ;
5 }
6 o p e r a t i o n i s L o g i c a l O p e r a t o r (op : S t r i n g) : Boolean{
7 if (op=” a n d ” or op=”or ” or op=”xor ”)
8 r e t u r n t r u e ;
9 r e t u r n f a l s e ;

10 }
11 // I m p l 1 : c h a n g e t h e c o m p a r i s o n c o n d i t i o n t o g t
12 @ a c t i o n r e p l a c e
13 @ p r o p e r t y c o n d i t i o n
14 p a t t e r n c h a n g e c o n d o p e r a t o r c a l l t o g t
15 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))
16 g u a r d : isComparisonOperator (i n s t a n c e . c o n d i t i o n . operationName) a n d i n s t a n c e . c o n d i t i o n .

operationName <>”>”{
17 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
18 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n . s o u r c e ;
19 c a l l e x p . arguments . addAll (i n s t a n c e . c o n d i t i o n . arguments) ;
20 c a l l e x p . operationName = ” >”;
21 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
22 }}
23 // I m p l 2 : c h a n g e t h e c o m p a r i s o n c o n d i t i o n t o g r e a t e r t h a n o r e q u a l
24 @ a c t i o n r e p l a c e
25 @ p r o p e r t y c o n d i t i o n
26 p a t t e r n c h a n g e c o n d o f o p e r a t o r c a l l e x p t o g t e
27 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))
28 g u a r d : isComparisonOperator (i n s t a n c e . c o n d i t i o n . operationName) a n d i n s t a n c e . c o n d i t i o n .

operationName <>”>=”{
29 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
30 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n . s o u r c e ;
31 c a l l e x p . arguments . addAll (i n s t a n c e . c o n d i t i o n . arguments) ;
32 c a l l e x p . operationName = ”>=”;
33 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
34 }}
35 // I m p l 3 : c h a n g e t h e c o m p a r i s o n c o n d i t i o n l e s s t h a n
36 @ a c t i o n r e p l a c e
37 @ p r o p e r t y c o n d i t i o n
38 p a t t e r n c h a n g e c o n d o f o p e r a t o r c a l l e x p t o l t
39 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))
40 g u a r d : isComparisonOperator (i n s t a n c e . c o n d i t i o n . operationName) a n d i n s t a n c e . c o n d i t i o n .

operationName <>”<”{

127

Appendix B. Mutation Operators

41 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
42 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n . s o u r c e ;
43 c a l l e x p . arguments . addAll (i n s t a n c e . c o n d i t i o n . arguments) ;
44 c a l l e x p . operationName = ” <”;
45 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
46 }}
47 // I m p l 4 : c h a n g e t h e c o m p a r i s o n c o n d i t i o n l e s s t h a n o r e q u a l
48 @ a c t i o n r e p l a c e
49 @ p r o p e r t y c o n d i t i o n
50 p a t t e r n c h a n g e c o n d o f o p e r a t o r c a l l e x p t o l t e
51 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))
52 g u a r d : isComparisonOperator (i n s t a n c e . c o n d i t i o n . operationName) a n d i n s t a n c e . c o n d i t i o n .

operationName <>”<=”{
53 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
54 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n . s o u r c e ;
55 c a l l e x p . arguments . addAll (i n s t a n c e . c o n d i t i o n . arguments) ;
56 c a l l e x p . operationName = ”<=”;
57 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
58 }}
59 // I m p l 5 : c h a n g e t h e c o m p a r i s o n c o n d i t i o n t o e q u a l
60 @ a c t i o n r e p l a c e
61 @ p r o p e r t y c o n d i t i o n
62 p a t t e r n c h a n g e c o n d o f o p e r a t o r c a l l e x p t o e q u a l
63 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))
64 g u a r d : isComparisonOperator (i n s t a n c e . c o n d i t i o n . operationName) a n d i n s t a n c e . c o n d i t i o n .

operationName <>”=”{
65 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
66 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n . s o u r c e ;
67 c a l l e x p . arguments . addAll (i n s t a n c e . c o n d i t i o n . arguments) ;
68 c a l l e x p . operationName = ”=”;
69 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
70 }}
71 // I m p l 6 : c h a n g e t h e c o m p a r i s o n c o n d i t i o n t o n o t e q u a l
72 @ a c t i o n r e p l a c e
73 @ p r o p e r t y c o n d i t i o n
74 p a t t e r n c h a n g e c o n d o f o p e r a t o r c a l l e x p t o n o t e q u a l
75 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))
76 g u a r d : isComparisonOperator (i n s t a n c e . c o n d i t i o n . operationName) a n d i n s t a n c e . c o n d i t i o n .

operationName <>”<>”{
77 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
78 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n . s o u r c e ;
79 c a l l e x p . arguments . addAll (i n s t a n c e . c o n d i t i o n . arguments) ;
80 c a l l e x p . operationName = ”<>”;
81 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
82 }}
83 // I m p l 7 : r e p l a c e t h e l o g i c a l e x p r e s s i o n t o n o t l o g i c a l
84 @ a c t i o n r e p l a c e
85 @ p r o p e r t y c o n d i t i o n
86 p a t t e r n n e g a t i v e s t a t e o f o p e r a t o r c a l l e x p u s i n g n o t
87 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d ())
88 g u a r d : n o t (i n s t a n c e . c o n d i t i o n . isTypeOf (OperatorCallExp) a n d i n s t a n c e . c o n d i t i o n . operationName =

” n o t ”){
89 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
90 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n ;
91 c a l l e x p . operationName = ” n o t ” ;
92 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
93 }}
94 // I m p l 8 : r e m o v e n o t l o g i c a l e x p r e s s i o n
95 @ a c t i o n r e p l a c e
96 @ p r o p e r t y c o n d i t i o n
97 p a t t e r n r e m o v e n o t f r o m o p e r a t o r C a l l E x p
98 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))
99 g u a r d : i n s t a n c e . c o n d i t i o n . operationName = ” n o t ”{

100 do { i n s t a n c e . c o n d i t i o n = i n s t a n c e . c o n d i t i o n . s o u r c e ;
101 }}
102 // I m p l 9 : r e p l a c e t h e l o g i c a l e x p r e s s i o n t o ” a n d ”
103 @ a c t i o n r e p l a c e
104 @ p r o p e r t y c o n d i t i o n
105 p a t t e r n c h a n g e o p e r a t i o n n a m e o f o p e r a t o r c a l l e x p t o a n d
106 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))

128

Appendix B. Mutation Operators A.1 ATL Mutation Operators

107 g u a r d : i s L o g i c a l O p e r a t o r (i n s t a n c e . c o n d i t i o n . operationName) a n d i n s t a n c e . c o n d i t i o n . operationName
<>”a n d ”{

108 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
109 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n . s o u r c e ;
110 c a l l e x p . arguments . addAll (i n s t a n c e . c o n d i t i o n . arguments) ;
111 c a l l e x p . operationName = ” a n d ” ;
112 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
113 }}
114 // I m p l 1 0 : r e p l a c e t h e l o g i c a l e x p r e s s i o n t o ” o r ” l o g i c a l
115 @ a c t i o n r e p l a c e
116 @ p r o p e r t y c o n d i t i o n
117 p a t t e r n c h a n g e o p e r a t i o n n a m e o f o p e r a t o r c a l l e x p t o o r
118 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))
119 g u a r d : i s L o g i c a l O p e r a t o r (i n s t a n c e . c o n d i t i o n . operationName) a n d i n s t a n c e . c o n d i t i o n . operationName

<>”or ”{
120 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
121 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n . s o u r c e ;
122 c a l l e x p . arguments . addAll (i n s t a n c e . c o n d i t i o n . arguments) ;
123 c a l l e x p . operationName = ” or ” ;
124 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
125 }}
126 // I m p l 1 1 : r e p l a c e t h e l o g i c a l e x p r e s s i o n t o ” x o r ” l o g i c a l
127 @ a c t i o n r e p l a c e
128 @ p r o p e r t y c o n d i t i o n
129 p a t t e r n c h a n g e o p e r a t i o n n a m e o f o p e r a t o r c a l l e x p t o x o r
130 i n s t a n c e : I f S t a t in : I f S t a t . a l l . s e l e c t (e | e . c o n d i t i o n . i s D e f i n e d () a n d e . c o n d i t i o n . isTypeOf (

OperatorCallExp))
131 g u a r d : i s L o g i c a l O p e r a t o r (i n s t a n c e . c o n d i t i o n . operationName) a n d i n s t a n c e . c o n d i t i o n . operationName

<>”xor ”{
132 do { v a r c a l l e x p = OperatorCallExp . c r e a t e I n s t a n c e () ;
133 c a l l e x p . s o u r c e = i n s t a n c e . c o n d i t i o n . s o u r c e ;
134 c a l l e x p . arguments . addAll (i n s t a n c e . c o n d i t i o n . arguments) ;
135 c a l l e x p . operationName = ” xor ” ;
136 i n s t a n c e . c o n d i t i o n = c a l l e x p ;
137 }}

Listing A.1: CMO-single-REP(IfStat condition)

1 // I m p l 1 : r e p a l c e t h e t y p e o f R u l e V a r i a b l e D e c l a r a t i o n
2 // I m p l 1 . 1 : r e p l a c e t h e t y p e o f p r i m i t i v e t y p e t o S t r i n g T y p e
3 @ a c t i o n r e p l a c e
4 @ p r o p e r t y type
5 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e 2 S t r i n g T y p e
6 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
7 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (StringType){
8 do { i n s t a n c e . type = StringType . c r e a t e I n s t a n c e () ;
9 }}

10 // I m p l 1 . 2 : r e p l a c e t h e t y p e o f p r i m i t i v e t o B o o l e a n T y p e
11 @ a c t i o n r e p l a c e
12 @ p r o p e r t y type
13 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e 2 B o o l e a n T y p e
14 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
15 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (BooleanType){
16 do { i n s t a n c e . type = BooleanType . c r e a t e I n s t a n c e () ;
17 }}
18 // I m p l 1 . 3 : r e p l a c e t h e t y p e o f p r i m i t i v e t o I n t e g e r T y p e
19 @ a c t i o n r e p l a c e
20 @ p r o p e r t y type
21 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e 2 I n t e g e r T y p e
22 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
23 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (IntegerType){
24 do { i n s t a n c e . type = IntegerType . c r e a t e I n s t a n c e () ;
25 }}
26 // I m p l 1 . 4 : r e p l a c e t h e t y p e o f p r i m i t i v e t o R e a l T y p e
27 @ a c t i o n r e p l a c e
28 @ p r o p e r t y type
29 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e 2 R e a l T y p e
30 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
31 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (RealType){

129

Appendix B. Mutation Operators

32 do { i n s t a n c e . type = RealType . c r e a t e I n s t a n c e () ;
33 }}
34 // I m p l 1 . 5 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o B a g T y p e
35 @ a c t i o n r e p l a c e
36 @ p r o p e r t y type
37 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e 2 B a g T y p e
38 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
39 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (BagType){
40 do { i n s t a n c e . type = BagType . c r e a t e I n s t a n c e () ;
41 }}
42 // I m p l 1 . 6 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o O r d e r e d S e t T y p e
43 @ a c t i o n r e p l a c e
44 @ p r o p e r t y type
45 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e 2 O r d e r e d S e t T y p e
46 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
47 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (OrderedSetType){
48 do { i n s t a n c e . type = OrderedSetType . c r e a t e I n s t a n c e () ;
49 }}
50 // I m p l 1 . 7 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o S e q u e n c e T y p e
51 @ a c t i o n r e p l a c e
52 @ p r o p e r t y type
53 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e 2 S e q u e n c e T y p e
54 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
55 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (SequenceType){
56 do { i n s t a n c e . type = SequenceType . c r e a t e I n s t a n c e () ;
57 }}
58 // I m p l 1 . 8 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o S e t T y p e
59 @ a c t i o n r e p l a c e
60 @ p r o p e r t y type
61 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e 2 S e t T y p e
62 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
63 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (SetType){
64 do { i n s t a n c e . type = SetType . c r e a t e I n s t a n c e () ;
65 }}
66 // I m p l 1 . 9 : r e p l a c e t h e t y p e t o d i f f e r e n t O c l M o d e l E l e m e n t :
67 // c h a n g e name
68 @ a c t i o n r e p l a c e
69 @ p r o p e r t y type
70 @ r o l e i n s t a n c e
71 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e c h a n g e n a m e
72 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
73 g u a r d : i n s t a n c e . type . isTypeOf (OclModelElement) ,
74 otherType : OclModelElement in : OclModelElement . a l l . s e l e c t (e | e<>i n s t a n c e . type)
75 g u a r d : i n s t a n c e . type . name<>otherType . name a n d i n s t a n c e . type . ` model ` . name = otherType . ` model ` .

name{
76 do { v a r new type = OclModelElement . c r e a t e I n s t a n c e () ;
77 new type . ` model ` = i n s t a n c e . type . ` model ` ;
78 new type . name = otherType . name ;
79 i n s t a n c e . type = new type ;
80 }}
81 // I m p l 1 . 1 0 : r e p l a c e t h e t y p e t o d i f f e r e n t O c l M o d e l E l e m e n t :
82 // c h a n g e m o d e l
83 @ a c t i o n r e p l a c e
84 @ p r o p e r t y type
85 @ r o l e i n s t a n c e
86 p a t t e r n c h a n g e r u l e V a r i a b l e D e c l a r a t i o n t y p e c h a n g e m o d e l
87 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isTypeOf (

R u l e V a r i a b l e D e c l a r a t i o n))
88 g u a r d : i n s t a n c e . type . isTypeOf (OclModelElement) ,
89 otherType : OclModelElement in : OclModelElement . a l l . s e l e c t (e | e<>i n s t a n c e . type)
90 g u a r d : i n s t a n c e . type . name = otherType . name a n d i n s t a n c e . type . ` model ` . name<>otherType . ` model ` .

name{
91 do { v a r new type = OclModelElement . c r e a t e I n s t a n c e () ;
92 new type . ` model ` = otherType . ` model ` ;
93 new type . name = i n s t a n c e . type . name ;
94 i n s t a n c e . type = new type ;
95 }}
96 // I m p l 2 : r e p a l c e t h e t y p e o f P a t t e r n E l e m e n t
97 // I m p l 2 . 1 : r e p l a c e t h e t y p e o f p r i m i t i v e t y p e t o S t r i n g T y p e
98 @ a c t i o n r e p l a c e

130

Appendix B. Mutation Operators A.1 ATL Mutation Operators

99 @ p r o p e r t y type
100 p a t t e r n change PatternElement type2Str ingType
101 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
102 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (StringType){
103 do { i n s t a n c e . type = StringType . c r e a t e I n s t a n c e () ;
104 }}
105 // I m p l 2 . 2 : r e p l a c e t h e t y p e o f p r i m i t i v e t o B o o l e a n T y p e
106 @ a c t i o n r e p l a c e
107 @ p r o p e r t y type
108 p a t t e r n change PatternElement type2BooleanType
109 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
110 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (BooleanType){
111 do { i n s t a n c e . type = BooleanType . c r e a t e I n s t a n c e () ;
112 }}
113 // I m p l 2 . 3 : r e p l a c e t h e t y p e o f p r i m i t i v e t o I n t e g e r T y p e
114 @ a c t i o n r e p l a c e
115 @ p r o p e r t y type
116 p a t t e r n change PatternElement type2IntegerType
117 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
118 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (IntegerType){
119 do { i n s t a n c e . type = IntegerType . c r e a t e I n s t a n c e () ;
120 }}
121 // I m p l 2 . 4 : r e p l a c e t h e t y p e o f p r i m i t i v e t o R e a l T y p e
122 @ a c t i o n r e p l a c e
123 @ p r o p e r t y type
124 p a t t e r n change PatternElement type2RealType
125 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
126 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (RealType){
127 do { i n s t a n c e . type = RealType . c r e a t e I n s t a n c e () ;
128 }}
129 // I m p l 2 . 5 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o B a g T y p e
130 @ a c t i o n r e p l a c e
131 @ p r o p e r t y type
132 p a t t e r n change PatternElement type2BagType
133 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
134 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (BagType){
135 do { i n s t a n c e . type = BagType . c r e a t e I n s t a n c e () ;
136 }}
137 // I m p l 2 . 6 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o O r d e r e d S e t T y p e
138 @ a c t i o n r e p l a c e
139 @ p r o p e r t y type
140 p a t t e r n change PatternElement type2OrderedSetType
141 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
142 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (OrderedSetType){
143 do { i n s t a n c e . type = OrderedSetType . c r e a t e I n s t a n c e () ;
144 }}
145 // I m p l 2 . 7 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o S e q u e n c e T y p e
146 @ a c t i o n r e p l a c e
147 @ p r o p e r t y type
148 p a t t e r n change PatternElement type2SequenceType
149 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
150 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (SequenceType){
151 do { i n s t a n c e . type = SequenceType . c r e a t e I n s t a n c e () ;
152 }}
153 // I m p l 2 . 8 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o S e t T y p e
154 @ a c t i o n r e p l a c e
155 @ p r o p e r t y type
156 p a t t e r n change PatternElement type2SetType
157 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
158 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (SetType){
159 do { i n s t a n c e . type = SetType . c r e a t e I n s t a n c e () ;
160 }}
161 // I m p l 2 . 9 : r e p l a c e t h e t y p e t o d i f f e r e n t O c l M o d e l E l e m e n t :
162 // c h a n g e name
163 @ a c t i o n r e p l a c e
164 @ p r o p e r t y type
165 @ r o l e i n s t a n c e
166 p a t t e r n change PatternElement type change name
167 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
168 g u a r d : i n s t a n c e . type . isTypeOf (OclModelElement) ,
169 otherType : OclModelElement in : OclModelElement . a l l . s e l e c t (e | e<>i n s t a n c e . type)
170 g u a r d : i n s t a n c e . type . name<>otherType . name a n d i n s t a n c e . type . ` model ` . name = otherType . ` model ` .

name{
171 do { v a r new type = OclModelElement . c r e a t e I n s t a n c e () ;
172 new type . ` model ` = i n s t a n c e . type . ` model ` ;

131

Appendix B. Mutation Operators

173 new type . name = otherType . name ;
174 i n s t a n c e . type = new type ;
175 }}
176 // I m p l 2 . 1 0 : r e p l a c e t h e t y p e t o d i f f e r e n t O c l M o d e l E l e m e n t :
177 // c h a n g e m o d e l
178 @ a c t i o n r e p l a c e
179 @ p r o p e r t y type
180 @ r o l e i n s t a n c e
181 p a t t e r n change PatternElement type change model
182 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (PatternElement))
183 g u a r d : i n s t a n c e . type . isTypeOf (OclModelElement) ,
184 otherType : OclModelElement in : OclModelElement . a l l . s e l e c t (e | e<>i n s t a n c e . type)
185 g u a r d : i n s t a n c e . type . name = otherType . name a n d i n s t a n c e . type . ` model ` . name<>otherType . ` model ` .

name{
186 do { v a r new type = OclModelElement . c r e a t e I n s t a n c e () ;
187 new type . ` model ` = otherType . ` model ` ;
188 new type . name = i n s t a n c e . type . name ;
189 i n s t a n c e . type = new type ;
190 }}
191 // I m p l 3 : r e p a l c e t h e t y p e o f P a r a m e t e r
192 // I m p l 3 . 1 : r e p l a c e t h e t y p e o f p r i m i t i v e t y p e t o S t r i n g T y p e
193 @ a c t i o n r e p l a c e
194 @ p r o p e r t y type
195 p a t t e r n change Parameter type2Str ingType
196 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
197 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (StringType){
198 do { i n s t a n c e . type = StringType . c r e a t e I n s t a n c e () ;
199 }}
200 // I m p l 3 . 2 : r e p l a c e t h e t y p e o f p r i m i t i v e t o B o o l e a n T y p e
201 @ a c t i o n r e p l a c e
202 @ p r o p e r t y type
203 p a t t e r n change Parameter type2BooleanType
204 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
205 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (BooleanType){
206 do { i n s t a n c e . type = BooleanType . c r e a t e I n s t a n c e () ;
207 }}
208 // I m p l 3 . 3 : r e p l a c e t h e t y p e o f p r i m i t i v e t o I n t e g e r T y p e
209 @ a c t i o n r e p l a c e
210 @ p r o p e r t y type
211 p a t t e r n change Parameter type2IntegerType
212 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
213 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (IntegerType){
214 do { i n s t a n c e . type = IntegerType . c r e a t e I n s t a n c e () ;
215 }}
216 // I m p l 3 . 4 : r e p l a c e t h e t y p e o f p r i m i t i v e t o R e a l T y p e
217 @ a c t i o n r e p l a c e
218 @ p r o p e r t y type
219 p a t t e r n change Parameter type2RealType
220 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
221 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e)
222 a n d n o t i n s t a n c e . type . isTypeOf (RealType){
223 do { i n s t a n c e . type = RealType . c r e a t e I n s t a n c e () ;
224 }}
225 // I m p l 3 . 5 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o B a g T y p e
226 @ a c t i o n r e p l a c e
227 @ p r o p e r t y type
228 p a t t e r n change Parameter type2BagType
229 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
230 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (BagType){
231 do { i n s t a n c e . type = BagType . c r e a t e I n s t a n c e () ;
232 }}
233 // I m p l 3 . 6 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o O r d e r e d S e t T y p e
234 @ a c t i o n r e p l a c e
235 @ p r o p e r t y type
236 p a t t e r n change Parameter type2OrderedSetType
237 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
238 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (OrderedSetType){
239 do { i n s t a n c e . type = OrderedSetType . c r e a t e I n s t a n c e () ;
240 }}
241 // I m p l 3 . 7 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o S e q u e n c e T y p e
242 @ a c t i o n r e p l a c e
243 @ p r o p e r t y type
244 p a t t e r n change Parameter type2SequenceType
245 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
246 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (SequenceType){

132

Appendix B. Mutation Operators A.1 ATL Mutation Operators

247 do { i n s t a n c e . type = SequenceType . c r e a t e I n s t a n c e () ;
248 }}
249 // I m p l 3 . 8 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o S e t T y p e
250 @ a c t i o n r e p l a c e
251 @ p r o p e r t y type
252 p a t t e r n change Parameter type2SetType
253 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
254 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (SetType){
255 do { i n s t a n c e . type = SetType . c r e a t e I n s t a n c e () ;
256 }}
257 // I m p l 3 . 9 : r e p l a c e t h e t y p e t o d i f f e r e n t O c l M o d e l E l e m e n t :
258 // c h a n g e name
259 @ a c t i o n r e p l a c e
260 @ p r o p e r t y type
261 @ r o l e i n s t a n c e
262 p a t t e r n change Parameter type change name
263 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
264 g u a r d : i n s t a n c e . type . isTypeOf (OclModelElement) ,
265 otherType : OclModelElement in : OclModelElement . a l l . s e l e c t (e | e<>i n s t a n c e . type)
266 g u a r d : i n s t a n c e . type . name<>otherType . name a n d i n s t a n c e . type . ` model ` . name = otherType . ` model ` .

name{
267 do { v a r new type = OclModelElement . c r e a t e I n s t a n c e () ;
268 new type . ` model ` = i n s t a n c e . type . ` model ` ;
269 new type . name = otherType . name ;
270 i n s t a n c e . type = new type ;
271 }}
272 // I m p l 3 . 1 0 : r e p l a c e t h e t y p e t o d i f f e r e n t O c l M o d e l E l e m e n t :
273 // c h a n g e m o d e l
274 @ a c t i o n r e p l a c e
275 @ p r o p e r t y type
276 @ r o l e i n s t a n c e
277 p a t t e r n change Parameter type change model
278 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (Parameter))
279 g u a r d : i n s t a n c e . type . isTypeOf (OclModelElement) ,
280 otherType : OclModelElement in : OclModelElement . a l l . s e l e c t (e | e<>i n s t a n c e . type)
281 g u a r d : i n s t a n c e . type . name = otherType . name a n d i n s t a n c e . type . ` model ` . name<>otherType . ` model ` .

name{
282 do { v a r new type = OclModelElement . c r e a t e I n s t a n c e () ;
283 new type . ` model ` = otherType . ` model ` ;
284 new type . name = i n s t a n c e . type . name ;
285 i n s t a n c e . type = new type ;
286 }}
287 // I m p l 4 : r e p a l c e t h e t y p e o f I t e r a t o r
288 // I m p l 4 . 1 : r e p l a c e t h e t y p e o f p r i m i t i v e t y p e t o S t r i n g T y p e
289 @ a c t i o n r e p l a c e
290 @ p r o p e r t y type
291 p a t t e r n c h a n g e I t e r a t o r t y p e 2 S t r i n g T y p e
292 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
293 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (StringType){
294 do { i n s t a n c e . type = StringType . c r e a t e I n s t a n c e () ;
295 }}
296 // I m p l 4 . 2 : r e p l a c e t h e t y p e o f p r i m i t i v e t o B o o l e a n T y p e
297 @ a c t i o n r e p l a c e
298 @ p r o p e r t y type
299 p a t t e r n c h a n g e I t e r a t o r t y p e 2 B o o l e a n T y p e
300 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
301 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (BooleanType){
302 do { i n s t a n c e . type = BooleanType . c r e a t e I n s t a n c e () ;
303 }}
304 // I m p l 4 . 3 : r e p l a c e t h e t y p e o f p r i m i t i v e t o I n t e g e r T y p e
305 @ a c t i o n r e p l a c e
306 @ p r o p e r t y type
307 p a t t e r n c h a n g e I t e r a t o r t y p e 2 I n t e g e r T y p e
308 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
309 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (IntegerType){
310 do { i n s t a n c e . type = IntegerType . c r e a t e I n s t a n c e () ;
311 }}
312 // I m p l 4 . 4 : r e p l a c e t h e t y p e o f p r i m i t i v e t o R e a l T y p e
313 @ a c t i o n r e p l a c e
314 @ p r o p e r t y type
315 p a t t e r n c h a n g e I t e r a t o r t y p e 2 R e a l T y p e
316 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
317 g u a r d : i n s t a n c e . type . isKindOf (P r i m i t i v e) a n d n o t i n s t a n c e . type . isTypeOf (RealType){
318 do { i n s t a n c e . type = RealType . c r e a t e I n s t a n c e () ;
319 }}

133

Appendix B. Mutation Operators

320 // I m p l 4 . 5 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o B a g T y p e
321 @ a c t i o n r e p l a c e
322 @ p r o p e r t y type
323 p a t t e r n c ha n g e I te r a t or t y pe 2 B ag T y pe
324 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
325 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (BagType){
326 do { i n s t a n c e . type = BagType . c r e a t e I n s t a n c e () ;
327 }}
328 // I m p l 4 . 6 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o O r d e r e d S e t T y p e
329 @ a c t i o n r e p l a c e
330 @ p r o p e r t y type
331 p a t t e r n c h a n g e I t e r a t o r t y p e 2 O r d e r e d S e t T y p e
332 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
333 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (OrderedSetType){
334 do { i n s t a n c e . type = OrderedSetType . c r e a t e I n s t a n c e () ;
335 }}
336 // I m p l 4 . 7 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o S e q u e n c e T y p e
337 @ a c t i o n r e p l a c e
338 @ p r o p e r t y type
339 p a t t e r n c h a n g e I t e r a t o r t y p e 2 S e q u e n c e T y p e
340 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
341 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (SequenceType){
342 do { i n s t a n c e . type = SequenceType . c r e a t e I n s t a n c e () ;
343 }}
344 // I m p l 4 . 8 : r e p l a c e t h e t y p e o f c o l l e c t i o n t o S e t T y p e
345 @ a c t i o n r e p l a c e
346 @ p r o p e r t y type
347 p a t t e r n c h a n g e I t e r a t o r t y p e 2 S e t T y p e
348 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
349 g u a r d : i n s t a n c e . type . isKindOf (C o l l e c t i o n T y p e) a n d n o t i n s t a n c e . type . isTypeOf (SetType){
350 do { i n s t a n c e . type = SetType . c r e a t e I n s t a n c e () ;
351 }}
352 // I m p l 4 . 9 : r e p l a c e t h e t y p e t o d i f f e r e n t O c l M o d e l E l e m e n t : c h a n g e name
353 @ a c t i o n r e p l a c e
354 @ p r o p e r t y type
355 @ r o l e i n s t a n c e
356 p a t t e r n c h a n g e I t e r a t o r t y p e c h a n g e n a m e
357 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
358 g u a r d : i n s t a n c e . type . isTypeOf (OclModelElement) ,
359 otherType : OclModelElement in : OclModelElement . a l l . s e l e c t (e | e<>i n s t a n c e . type)
360 g u a r d : i n s t a n c e . type . name<>otherType . name a n d i n s t a n c e . type . ` model ` . name = otherType . ` model ` .

name{
361 do { v a r new type = OclModelElement . c r e a t e I n s t a n c e () ;
362 new type . ` model ` = i n s t a n c e . type . ` model ` ;
363 new type . name = otherType . name ;
364 i n s t a n c e . type = new type ;
365 }}
366 // I m p l 4 . 1 0 : r e p l a c e t h e t y p e t o d i f f e r e n t O c l M o d e l E l e m e n t : c h a n g e m o d e l
367 @ a c t i o n r e p l a c e
368 @ p r o p e r t y type
369 @ r o l e i n s t a n c e
370 p a t t e r n c h a n g e I t e r a t o r t y p e c h a n g e m o d e l
371 i n s t a n c e : V a r i a b l e D e c l a r a t i o n in : V a r i a b l e D e c l a r a t i o n . a l l . s e l e c t (e | e . isKindOf (I t e r a t o r))
372 g u a r d : i n s t a n c e . type . isTypeOf (OclModelElement) ,
373 otherType : OclModelElement in : OclModelElement . a l l . s e l e c t (e | e<>i n s t a n c e . type)
374 g u a r d : i n s t a n c e . type . name = otherType . name a n d i n s t a n c e . type . ` model ` . name<>otherType . ` model ` .

name{
375 do { v a r new type = OclModelElement . c r e a t e I n s t a n c e () ;
376 new type . ` model ` = otherType . ` model ` ;
377 new type . name = i n s t a n c e . type . name ;
378 i n s t a n c e . type = new type ;
379 }}

Listing A.2: CMO-Single-REP(VariableDeclaration type)

1 // I m p l 1 . 1 : c h a n g e p a r a m e n t e r s o f O c l O p e r a t i o n : r e m o v e o n e
2 // p a r a m e n t e r a t a t i m e
3 @ a c t i o n d e l e t e
4 @ p r o p e r t y parameters
5 @ r o l e i n s t a n c e
6 p a t t e r n o p e r a t i o n r e m o v e o n e p a r a m e t e r
7 i n s t a n c e : Operation in : Operation . a l l . s e l e c t (e | e . parameters . s i z e () >=1) ,
8 param : Parameter f r o m : i n s t a n c e . parameters{
9 do { i n s t a n c e . parameters . remove (param) ;

134

Appendix B. Mutation Operators A.1 ATL Mutation Operators

10 }}

Listing A.3: CMO-multiple-DEL(Operation parameters)

1 // I m p l 1 : r e p l a c e a M a t h c e d R u l e w i t h u n i q u e L a z y M a t c h e d R u l e
2 @ a c t i o n r e p l a c e
3 @ p r o p e r t y e lements
4 @ r o l e i n s t a n c e
5 p a t t e r n m a t c h e d r u l e 2 u i q u e l a z y r u l e r e p l a c e m e n t
6 i n s t a n c e : Module ,
7 r u l e : MatchedRule f r o m : i n s t a n c e . e lements . s e l e c t (e | e . isTypeOf (MatchedRule))
8 g u a r d : (r u l e . c h i l d r e n . i s U n d e f i n e d () or r u l e . c h i l d r e n . s i z e () =0) a n d (r u l e . superRule . i s U n d e f i n e d

() or r u l e . superRule . s i z e () =0){
9 do { v a r l a z y = LazyMatchedRule . c r e a t e I n s t a n c e () ;

10 l a z y . i sUnique = t r u e ;
11 l a z y . i n P a t t e r n = r u l e . i n P a t t e r n ;
12 l a z y . outPattern = r u l e . outPattern ;
13 l a z y . a c t i o n B l o c k = r u l e . a c t i o n B l o c k ;
14 l a z y . v a r i a b l e s = r u l e . v a r i a b l e s ;
15 l a z y . name = r u l e . name ;
16 i n s t a n c e . e lements . remove (r u l e) ;
17 i n s t a n c e . e lements . add (l a z y) ;
18 }}
19 // I m p l 2 : r e p l a c e M a t c h e d R u l e w i t h n o t u n i q u e L a z y M a t c h e d R u l e
20 @ a c t i o n r e p l a c e
21 @ p r o p e r t y e lements
22 @ r o l e i n s t a n c e
23 p a t t e r n m a t c h e d r u l e 2 l a z y r u l e r e p l a c e m e n t
24 i n s t a n c e : Module ,
25 r u l e : MatchedRule f r o m : i n s t a n c e . e lements . s e l e c t (e | e . isTypeOf (MatchedRule))
26 g u a r d : (r u l e . c h i l d r e n . i s U n d e f i n e d () or r u l e . c h i l d r e n . s i z e () =0) a n d (r u l e . superRule . i s U n d e f i n e d

() or r u l e . superRule . s i z e () =0){
27 do { v a r l a z y = LazyMatchedRule . c r e a t e I n s t a n c e () ;
28 l a z y . i sUnique = f a l s e ;
29 l a z y . i n P a t t e r n = r u l e . i n P a t t e r n ;
30 l a z y . outPattern = r u l e . outPattern ;
31 l a z y . a c t i o n B l o c k = r u l e . a c t i o n B l o c k ;
32 l a z y . v a r i a b l e s = r u l e . v a r i a b l e s ;
33 l a z y . name = r u l e . name ;
34 i n s t a n c e . e lements . remove (r u l e) ;
35 i n s t a n c e . e lements . add (l a z y) ;
36 }}
37 // I m p l 3 : r e p l a c e L a z y M a t c h e d R u l e w i t h M a t c h e d R u l e
38 @ a c t i o n r e p l a c e
39 @ p r o p e r t y e lements
40 @ r o l e i n s t a n c e
41 p a t t e r n l a z y r u l e 2 m a t c h e d r u l e r e p l a c e m e n t
42 i n s t a n c e : Module ,
43 r u l e : LazyMatchedRule f r o m : i n s t a n c e . e lements . s e l e c t (e | e . isTypeOf (LazyMatchedRule))
44 g u a r d : (r u l e . c h i l d r e n . i s U n d e f i n e d () or r u l e . c h i l d r e n . s i z e =0) a n d (r u l e . superRule . i s U n d e f i n e d ()

or r u l e . superRule . s i z e =0){
45 do { v a r n e w r u l e = MatchedRule . c r e a t e I n s t a n c e () ;
46 n e w r u l e . i n P a t t e r n = r u l e . i n P a t t e r n ;
47 n e w r u l e . outPattern = r u l e . outPattern ;
48 n e w r u l e . a c t i o n B l o c k = r u l e . a c t i o n B l o c k ;
49 n e w r u l e . v a r i a b l e s = r u l e . v a r i a b l e s ;
50 n e w r u l e . name = r u l e . name ;
51 i n s t a n c e . e lements . remove (r u l e) ;
52 i n s t a n c e . e lements . add (n e w r u l e) ;
53 }}

Listing A.4: CMO-multiple-REP(Module elements)

1 @ a c t i o n r e p l a c e
2 @ p r o p e r t y c h i l d r e n
3 @ r o l e i n s t a n c e
4 p a t t e r n r e p l a c e o n e c h i l d a t a t i m e w i t h d i f f e r e n t m a t c h e d r u l e
5 i n s t a n c e : MatchedRule ,
6 c h i l d : MatchedRule f r o m : i n s t a n c e . c h i l d r e n ,
7 n e w c h i l d : MatchedRule in : MatchedRule . a l l . s e l e c t (e | (e <> i n s t a n c e) or (i n s t a n c e . c h i l d r e n .

i s D e f i n e d () a n d i n s t a n c e . c h i l d r e n . i n c l u d e s (e))){
8 do { i n s t a n c e . c h i l d r e n . remove (c h i l d) ;
9 i n s t a n c e . c h i l d r e n . add (n e w c h i l d) ;

135

Appendix B. Mutation Operators

10 }}

Listing A.5: CMO-multiple-REP(MatchedRule children)

1 // I m p l 1 : r e p l a c i n g w i t h new s t r i n g
2 @ a c t i o n r e p l a c e
3 @ p r o p e r t y propertyName
4 p a t t e r n propertyName changed to new
5 i n s t a n c e : Binding {
6 do { i n s t a n c e . propertyName = i n s t a n c e . propertyName + ” ” ;
7 }}
8 // I m p l 2 : r e p l a c i n g w i t h a n o t h e r name c o p i e d o v e r f r o m an e x i s t i n g o n e
9 @ a c t i o n r e p l a c e

10 @ p r o p e r t y propertyName
11 @ r o l e i n s t a n c e
12 p a t t e r n p r o p e r t y N a m e c o p i e d o v e r f r o m a n o t h e r b i n d i n g
13 i n s t a n c e : Binding ,
14 otherBinding : Binding f r o m : i n s t a n c e . outPatternElement . b i n d i n g s . s e l e c t (e | e <> i n s t a n c e){
15 do { i n s t a n c e . propertyName = otherBinding . propertyName ;
16 }}

Listing A.6: CMO-single-REP(Binding propertyName)

1 // I m p l . 1 : c h a n g e a s o u r c e name w i t h a n o t h e r o n e
2 @ a c t i o n r e p l a c e
3 @ p r o p e r t y s o u r c e
4 p a t t e r n r e p l a c e s o u r c e f r o m a n o t h e r o n e
5 i n s t a n c e : BindingStat in : BindingStat . a l l . s e l e c t (e | e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . isTypeOf (

Navigat ionOrAttr ibuteCal lExp)
6 a n d e . s o u r c e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . s o u r c e . isTypeOf (Navigat ionOrAttr ibuteCal lExp)){
7 do { v a r s o u r c e s = BindingStat . a l l . s e l e c t (e | e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . isTypeOf (

Navigat ionOrAttr ibuteCal lExp)
8 a n d e . s o u r c e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . s o u r c e . isTypeOf (Navigat ionOrAttr ibuteCal lExp)
9 a n d e . s o u r c e . name <> i n s t a n c e . s o u r c e . name) . c o l l e c t (e | e . s o u r c e . name) . a s S e t () ;

10 v a r new source = Navigat ionOrAttr ibuteCal lExp . c r e a t e I n s t a n c e () ;
11 new source . name = s o u r c e s . random () ;
12 new source . s o u r c e = i n s t a n c e . s o u r c e . s o u r c e ;
13 i n s t a n c e . s o u r c e = new source ;
14 }}
15 // I m p l . 2 : c h a n g e a s o u r c e t o a n o t h e r o n e o b t a i n e d f r o m c a l l e d s o u r c e
16 @ a c t i o n r e p l a c e
17 @ p r o p e r t y s o u r c e
18 p a t t e r n r e p l a c e s o u r c e o f s p e c i f i c f a t h e r s o u r c e
19 i n s t a n c e : BindingStat in : BindingStat . a l l . s e l e c t (e | e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . isTypeOf (

Navigat ionOrAttr ibuteCal lExp)
20 a n d e . s o u r c e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . s o u r c e . isTypeOf (Navigat ionOrAttr ibuteCal lExp)){
21 do { v a r s o u r c e s = BindingStat . a l l . s e l e c t (e | e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . isTypeOf (

Navigat ionOrAttr ibuteCal lExp)
22 a n d e . s o u r c e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . s o u r c e . isTypeOf (Navigat ionOrAttr ibuteCal lExp)
23 a n d e . s o u r c e . s o u r c e . name <> i n s t a n c e . s o u r c e . s o u r c e . name) . c o l l e c t (e | e . s o u r c e . s o u r c e . name) .

a s S e t () ;
24 v a r new source = Navigat ionOrAttr ibuteCal lExp . c r e a t e I n s t a n c e () ;
25 new source . name = s o u r c e s . random () ;
26 new source . s o u r c e = i n s t a n c e . s o u r c e . s o u r c e ;
27 i n s t a n c e . s o u r c e = new source ;
28 }}
29 // I m p l 3 : c h a n g e a s o u r c e t o a n o t h e r o n e b y o m i t t i n g a m i d d l e N a v i g a t i o n O r A t t r i b u t e C a l l E x p
30 @ a c t i o n r e p l a c e
31 @ p r o p e r t y s o u r c e
32 p a t t e r n r e p l a c e o m i t t i n g m i d d l e s o u r c e
33 i n s t a n c e : BindingStat in : BindingStat . a l l . s e l e c t (e | e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . isTypeOf (

Navigat ionOrAttr ibuteCal lExp)
34 a n d e . s o u r c e . s o u r c e . i s D e f i n e d () a n d e . s o u r c e . s o u r c e . isTypeOf (Navigat ionOrAttr ibuteCal lExp)){
35 do { v a r new source = Navigat ionOrAttr ibuteCal lExp . c r e a t e I n s t a n c e () ;
36 new source . name = i n s t a n c e . s o u r c e . name ;
37 new source . s o u r c e = i n s t a n c e . s o u r c e . s o u r c e . s o u r c e ;
38 i n s t a n c e . s o u r c e = new source ;
39 }}

Listing A.7: CMO-single-REP(BindingStat source)

136

Appendix B. Mutation Operators A.1 ATL Mutation Operators

1 // I m p l 1 : r e p l a c e an o p e r a t i o n w i t h a new a t t r i b u t e
2 @ a c t i o n r e p l a c e
3 @ p r o p e r t y f e a t u r e
4 p a t t e r n r e p l a c e o c l O p e r a t i o n w i t h o c l A t t r i b u t e
5 i n s t a n c e : O c l F e a t u r e D e f i n i t i o n in : O c l F e a t u r e D e f i n i t i o n . a l l . s e l e c t (e | e . f e a t u r e . isTypeOf (

Operation))
6 g u a r d : i n s t a n c e . f e a t u r e . parameters . s i z e = 0 {
7 do { v a r a t t r i b u t e = A t t r i b u t e . c r e a t e I n s t a n c e () ;
8 a t t r i b u t e . name = i n s t a n c e . f e a t u r e . name ;
9 a t t r i b u t e . i n i t E x p r e s s i o n = i n s t a n c e . f e a t u r e . body ;

10 a t t r i b u t e . type = i n s t a n c e . f e a t u r e . returnType ;
11 i n s t a n c e . f e a t u r e = a t t r i b u t e ;
12 }}
13 // I m p l 2 : r e p l a c e an a t t r i b u t e w i t h an o p e r a t i o n
14 @ a c t i o n r e p l a c e
15 @ p r o p e r t y f e a t u r e
16 p a t t e r n r e p l a c e o c l A t t r i b u t e w i t h o c l O p e r a t i o n
17 i n s t a n c e : O c l F e a t u r e D e f i n i t i o n in : O c l F e a t u r e D e f i n i t i o n . a l l . s e l e c t (e | e . f e a t u r e . isTypeOf (

A t t r i b u t e)){
18 do { v a r o p e r a t i o n = Operation . c r e a t e I n s t a n c e () ;
19 o p e r a t i o n . name = i n s t a n c e . f e a t u r e . name ;
20 o p e r a t i o n . body = i n s t a n c e . f e a t u r e . i n i t E x p r e s s i o n ;
21 o p e r a t i o n . returnType = i n s t a n c e . f e a t u r e . type ;
22 i n s t a n c e . f e a t u r e = o p e r a t i o n ;
23 }}

Listing A.8: CMO-single-REP(OclFeatureDefinition feature)

137

Appendix B. Mutation Operators

A.2 EOL Mutation Operators

1 @ a c t i o n d e l e t e
2 @ p r o p e r t y parameters
3 @ r o l e i n s t a n c e
4 p a t t e r n d e l e t e o n e p a r a m e t e r
5 i n s t a n c e : O p e r a t i o n D e f i n i t i o n ,
6 param : FormalParameterExpression f r o m : i n s t a n c e . parameters{
7 do { i n s t a n c e . parameters . remove (param) ;
8 }}

Listing A.9: CMO-multiple-DEL(OperationDefinition parameters)

1 o p e r a t i o n i s S e l f O r R e s u l t (i n s t a n c e : Any) : Boolean {
2 if (i n s t a n c e . eContainer . isTypeOf (O p e r a t i o n D e f i n i t i o n)
3 a n d (i n s t a n c e . name . name = ” s e l f ” or i n s t a n c e . name . name = ” r e s u l t ”)){
4 r e t u r n t r u e ;
5 }
6 r e t u r n f a l s e ;
7 }
8 // 1 . 0 : P r i m i t i v e t y p e s : R e a l T y p e f r o m / t o I n t e g e r T y p e
9 // 1 . 1 : R e a l T y p e f r o m / t o I n t e g e r T y p e

10 // 1 . 1 . 1 : R e a l T y p e t o I n t e g e r T y p e
11 @ a c t i o n r e p l a c e
12 @ p r o p e r t y resolvedType
13 p a t t e r n r e p l a c e R e a l T y p e I n t e g e r T y p e 1
14 i n s t a n c e : E x p r e s s i o n
15 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
16 g u a r d : i n s t a n c e . resolvedType . isTypeOf (RealType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
17 do { i n s t a n c e . resolvedType = IntegerType . c r e a t e I n s t a n c e () ;
18 }}
19 // 1 . 1 . 2 : R e a l T y p e f r o m I n t e g e r T y p e
20 @ a c t i o n r e p l a c e
21 @ p r o p e r t y resolvedType
22 p a t t e r n r e p l a c e R e a l T y p e I n t e g e r T y p e 2
23 i n s t a n c e : E x p r e s s i o n
24 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
25 g u a r d : i n s t a n c e . isKindOf (V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d i n s t a n c e . resolvedType . isTypeOf (

IntegerType) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
26 do { i n s t a n c e . resolvedType = RealType . c r e a t e I n s t a n c e () ;
27 }}
28 // 2 . 0 : C o l l e c t i o n t y p e s
29 // 2 . 1 : S e q u e n c e T y p e f r o m / t o O r d e r e d S e t T y p e
30 // 2 . 1 . 1 : S e q u e n c e T y p e t o O r d e r e d S e t T y p e
31 @ a c t i o n r e p l a c e
32 @ p r o p e r t y resolvedType
33 p a t t e r n replace SequenceType OrderedSetType 1
34 i n s t a n c e : E x p r e s s i o n
35 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
36 g u a r d : i n s t a n c e . resolvedType . isTypeOf (SequenceType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
37 do { i n s t a n c e . resolvedType = OrderedSetType . c r e a t e I n s t a n c e () ;
38 }}
39 // 2 . 1 . 2 : S e q u e n c e T y p e f r o m O r d e r e d S e t T y p e
40 @ a c t i o n r e p l a c e
41 @ p r o p e r t y resolvedType
42 p a t t e r n replace SequenceType OrderedSetType 2
43 i n s t a n c e : E x p r e s s i o n
44 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
45 g u a r d : i n s t a n c e . resolvedType . isTypeOf (OrderedSetType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
46 do { i n s t a n c e . resolvedType = SequenceType . c r e a t e I n s t a n c e () ;
47 }}
48 // 2 . 2 : S e q u e n c e T y p e f r o m / t o B a g T y p e
49 // 2 . 2 . 1 : S e q u e n c e T y p e t o B a g T y p e
50 @ a c t i o n r e p l a c e
51 @ p r o p e r t y resolvedType
52 p a t t e r n replace SequenceType BagType 1
53 i n s t a n c e : E x p r e s s i o n
54 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
55 g u a r d : i n s t a n c e . resolvedType . isTypeOf (SequenceType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){

138

Appendix B. Mutation Operators A.2 EOL Mutation Operators

56 do { i n s t a n c e . resolvedType = BagType . c r e a t e I n s t a n c e () ;
57 }}
58 // 2 . 2 . 2 : S e q u e n c e T y p e f r o m B a g T y p e
59 @ a c t i o n r e p l a c e
60 @ p r o p e r t y resolvedType
61 p a t t e r n replace SequenceType BagType 2
62 i n s t a n c e : E x p r e s s i o n
63 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
64 g u a r d : i n s t a n c e . resolvedType . isTypeOf (BagType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
65 do { i n s t a n c e . resolvedType = SequenceType . c r e a t e I n s t a n c e () ;
66 }}
67 // 2 . 3 : S e t T y p e f r o m / t o O r d e r e d S e t T y p e
68 // 2 . 3 . 1 : S e t T y p e t o O r d e r e d S e t T y p e
69 @ a c t i o n r e p l a c e
70 @ p r o p e r t y resolvedType
71 p a t t e r n replace SetType OrderedSetType 1
72 i n s t a n c e : E x p r e s s i o n
73 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
74 g u a r d : i n s t a n c e . resolvedType . isTypeOf (SetType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
75 do { i n s t a n c e . resolvedType = OrderedSetType . c r e a t e I n s t a n c e () ;
76 }}
77 // 2 . 3 . 2 : S e t T y p e f r o m O r d e r e d S e t T y p e
78 @ a c t i o n r e p l a c e
79 @ p r o p e r t y resolvedType
80 p a t t e r n replace SetType OrderedSetType 2
81 i n s t a n c e : E x p r e s s i o n
82 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
83 g u a r d : i n s t a n c e . resolvedType . isTypeOf (OrderedSetType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
84 do { i n s t a n c e . resolvedType = SetType . c r e a t e I n s t a n c e () ;
85 }}
86 // 2 . 4 : S e t T y p e f r o m / t o B a g T y p e
87 // 2 . 4 . 1 : S e t T y p e t o B a g T y p e
88 @ a c t i o n r e p l a c e
89 @ p r o p e r t y resolvedType
90 p a t t e r n replace SetType BagType 1
91 i n s t a n c e : E x p r e s s i o n
92 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
93 g u a r d : i n s t a n c e . resolvedType . isTypeOf (SetType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
94 do { i n s t a n c e . resolvedType = BagType . c r e a t e I n s t a n c e () ;
95 }}
96 // 2 . 4 . 2 : S e t T y p e f r o m B a g T y p e
97 @ a c t i o n r e p l a c e
98 @ p r o p e r t y resolvedType
99 p a t t e r n replace SetType BagType 2

100 i n s t a n c e : E x p r e s s i o n
101 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
102 g u a r d : i n s t a n c e . resolvedType . isTypeOf (BagType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
103 do { i n s t a n c e . resolvedType = SetType . c r e a t e I n s t a n c e () ;
104 }}
105 // 2 . 5 : O r d e r e d S e t T y p e f r o m / t o B a g T y p e
106 // 2 . 5 . 1 : O r d e r e d S e t T y p e t o B a g T y p e
107 @ a c t i o n r e p l a c e
108 @ p r o p e r t y resolvedType
109 p a t t e r n replace OrderedSetType BagType 1
110 i n s t a n c e : E x p r e s s i o n
111 in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
112 g u a r d : i n s t a n c e . resolvedType . isTypeOf (OrderedSetType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
113 do { i n s t a n c e . resolvedType = BagType . c r e a t e I n s t a n c e () ;
114 }}
115 // 2 . 5 . 2 : O r d e r e d S e t T y p e f r o m B a g T y p e
116 @ a c t i o n r e p l a c e
117 @ p r o p e r t y resolvedType
118 p a t t e r n replace OrderedSetType BagType 2
119 i n s t a n c e : E x p r e s s i o n in : E x p r e s s i o n . a l l . s e l e c t (e | e . resolvedType . i s D e f i n e d ())
120 g u a r d : i n s t a n c e . resolvedType . isTypeOf (BagType) a n d i n s t a n c e . isKindOf (

V a r i a b l e D e c l a r a t i o n E x p r e s s i o n) a n d n o t i s S e l f O r R e s u l t (i n s t a n c e){
121 do { i n s t a n c e . resolvedType = OrderedSetType . c r e a t e I n s t a n c e () ;

139

Appendix B. Mutation Operators

122 }}

Listing A.10: CMO-single-REP(Expression resolvedType)

1 // 1 . 0 : r e p l a c i n g i f s t a t e m e n t a n d w h i l e s t a t e m e n t
2 // 1 . 1 : r e p l a c i n g i f s t a t e m e n t w i t h a new w h i l e s t a t e m e n t
3 @ a c t i o n r e p l a c e
4 @ p r o p e r t y statements
5 @ r o l e i n s t a n c e
6 p a t t e r n r e p l a c e i f w i t h w h i l e
7 i n s t a n c e : Block ,
8 i f s t a t : I f S t a t e m e n t f r o m : i n s t a n c e . statements g u a r d : i f s t a t . e l s e I f B o d i e s . s i z e =0 a n d i f s t a t .

e lseBody=n u l l {
9 do { v a r n e w s t a t = WhileStatement . c r e a t e I n s t a n c e () ;

10 n e w s t a t . c o n d i t i o n = i f s t a t . c o n d i t i o n ;
11 n e w s t a t . body=i f s t a t . i fBody ;
12 i n s t a n c e . statements . remove (i f s t a t) ;
13 i n s t a n c e . statements . add (n e w s t a t) ;
14 }}
15 // 1 . 2 : r e p l a c i n g w h i l e s t a t e m e n t w i t h new i f s t a t e m e n t
16 @ a c t i o n r e p l a c e
17 @ p r o p e r t y statements
18 @ r o l e i n s t a n c e
19 p a t t e r n r e p l a c e w h i l e w i t h i f
20 i n s t a n c e : Block ,
21 w h i l e s t a t : WhileStatement f r o m : i n s t a n c e . statements{
22 do { v a r n e w s t a t = I f S t a t e m e n t . c r e a t e I n s t a n c e () ;
23 n e w s t a t . c o n d i t i o n = w h i l e s t a t . c o n d i t i o n ;
24 n e w s t a t . i fBody = w h i l e s t a t . body ;
25 i n s t a n c e . statements . remove (w h i l e s t a t) ;
26 i n s t a n c e . statements . add (n e w s t a t) ;
27 }}
28 // 2 . 0 : r e p l a c i n g e x p r e s s i o n s t a t e m e n t w i t h r e t u r n s t a t e m e n t
29 // 2 . 1 : r e p l a c i n g t h e l a s t e x p r e s s i o n s t a t e m e n t o f an o p e r a t i o n
30 // d e f i n i t i o n w i t h r e t u r n s t a t e m e n t
31 @ a c t i o n r e p l a c e
32 @ p r o p e r t y statements
33 p a t t e r n r e p l a c e e x p s t a t w i t h r e t u r n s t a t
34 i n s t a n c e : Block in : Block . a l l . s e l e c t (e | e . c o n t a i n e r . isTypeOf (O p e r a t i o n D e f i n i t i o n))
35 g u a r d : i n s t a n c e . statements . l a s t () . isTypeOf (Express ionStatement){
36 do { v a r n e w s t a t = ReturnStatement . c r e a t e I n s t a n c e () ;
37 v a r t a r g e t = i n s t a n c e . statements . l a s t () ;
38 n e w s t a t . e x p r e s s i o n = t a r g e t . e x p r e s s i o n ;
39 i n s t a n c e . statements . remove (t a r g e t) ;
40 i n s t a n c e . statements . add (n e w s t a t) ;
41 }}
42 // 2 . 2 r e p l a c i n g r e t u r n s t a t e m e n t w i t h e x p r e s s i o n s t a t e m e n t
43 // o f a o p e r a t i o n d e f i n i t i o n
44 @ a c t i o n r e p l a c e
45 @ p r o p e r t y statements
46 p a t t e r n r e p l a c e r e t u r n s t a t w i t h e x p s t a t
47 i n s t a n c e : Block in : Block . a l l . s e l e c t (e | e . c o n t a i n e r . isTypeOf (O p e r a t i o n D e f i n i t i o n))
48 g u a r d : i n s t a n c e . statements . l a s t () . isTypeOf (ReturnStatement){
49 do { v a r t a r g e t = i n s t a n c e . statements . l a s t () ;
50 v a r n e w s t a t = Express ionStatement . c r e a t e I n s t a n c e () ;
51 n e w s t a t . e x p r e s s i o n = t a r g e t . e x p r e s s i o n ;
52 i n s t a n c e . statements . remove (t a r g e t) ;
53 i n s t a n c e . statements . add (n e w s t a t) ;
54 }}
55 // 3 . 0 : r e p l a c i n g d e l e t e s t a t e m e n t w i t h r e t u r n s t a t e m e n t
56 @ a c t i o n r e p l a c e
57 @ p r o p e r t y statements
58 @ r o l e i n s t a n c e
59 p a t t e r n r e p l a c e d e l e t e s t a t w i t h r e t u r n s t a t
60 i n s t a n c e : Block ,
61 exp : DeleteStatement f r o m : i n s t a n c e . statements{
62 do { v a r n e w s t a t = ReturnStatement . c r e a t e I n s t a n c e () ;
63 n e w s t a t . e x p r e s s i o n = exp . e x p r e s s i o n ;
64 i n s t a n c e . statements . remove (exp) ;
65 i n s t a n c e . statements . add (n e w s t a t) ;
66 }}
67 // 5 . 0 : r e p l a c i n g c o n t i n u e s t a t e m e n t
68 // 5 . 1 : r e p l a c i n g c o n t i n u e w i t h b r e a k
69 @ a c t i o n r e p l a c e

140

Appendix B. Mutation Operators A.2 EOL Mutation Operators

70 @ p r o p e r t y statements
71 @ r o l e i n s t a n c e
72 p a t t e r n r e p l a c e c o n t i n u e w i t h b r e a k
73 i n s t a n c e : Block ,
74 exp : ContinueStatement f r o m : i n s t a n c e . statements{
75 do { v a r n e w s t a t = BreakStatement . c r e a t e I n s t a n c e () ;
76 i n s t a n c e . statements . remove (exp) ;
77 i n s t a n c e . statements . add (n e w s t a t) ;
78 }}
79 // 5 . 2 : r e p l a c i n g c o n t i n u e w i t h b r e a k a l l
80 @ a c t i o n r e p l a c e
81 @ p r o p e r t y statements
82 @ r o l e i n s t a n c e
83 p a t t e r n r e p l a c e c o n t i n u e w i t h b r e a k a l l
84 i n s t a n c e : Block ,
85 exp : ContinueStatement f r o m : i n s t a n c e . statements{
86 do { v a r n e w s t a t = BreakAllStatement . c r e a t e I n s t a n c e () ;
87 i n s t a n c e . statements . remove (exp) ;
88 i n s t a n c e . statements . add (n e w s t a t) ;
89 }}
90 // 6 . 0 : r e p l a c i n g b r e a k s t a t e m e n t
91 // 6 . 1 : r e p l a c i n g b r e a k w i t h c o n t i n u e
92 @ a c t i o n r e p l a c e
93 @ p r o p e r t y statements
94 @ r o l e i n s t a n c e
95 p a t t e r n r e p l a c e b r e a k w i t h c o n t i n u e
96 i n s t a n c e : Block ,
97 exp : BreakStatement f r o m : i n s t a n c e . statements{
98 do { v a r n e w s t a t = ContinueStatement . c r e a t e I n s t a n c e () ;
99 i n s t a n c e . statements . remove (exp) ;

100 i n s t a n c e . statements . add (n e w s t a t) ;
101 }}
102 // 6 . 2 : r e p l a c i n g b r e a k w i t h b r e a k a l l
103 @ a c t i o n r e p l a c e
104 @ p r o p e r t y statements
105 @ r o l e i n s t a n c e
106 p a t t e r n r e p l a c e b r e a k w i t h b r e a k a l l
107 i n s t a n c e : Block ,
108 exp : BreakStatement f r o m : i n s t a n c e . statements{
109 do { v a r n e w s t a t = BreakAllStatement . c r e a t e I n s t a n c e () ;
110 i n s t a n c e . statements . remove (exp) ;
111 i n s t a n c e . statements . add (n e w s t a t) ;
112 }}
113 // 7 . 0 : r e p l a c i n g b r e a k s t a t e m e n t
114 // 7 . 1 : r e p l a c i n g b r e a k a l l w i t h c o n t i n u e
115 @ a c t i o n r e p l a c e
116 @ p r o p e r t y statements
117 @ r o l e i n s t a n c e
118 p a t t e r n r e p l a c e b r e a k a l l w i t h c o n t i n u e
119 i n s t a n c e : Block ,
120 exp : BreakAllStatement f r o m : i n s t a n c e . statements{
121 do { v a r n e w s t a t = ContinueStatement . c r e a t e I n s t a n c e () ;
122 i n s t a n c e . statements . remove (exp) ;
123 i n s t a n c e . statements . add (n e w s t a t) ;
124 }}
125 // 7 . 2 : r e p l a c i n g b r e a k a l l w i t h b r e a k
126 @ a c t i o n r e p l a c e
127 @ p r o p e r t y statements
128 @ r o l e i n s t a n c e
129 p a t t e r n r e p l a c e b r e a k a l l w i t h b r e a k
130 i n s t a n c e : Block ,
131 exp : BreakAllStatement f r o m : i n s t a n c e . statements{
132 do { v a r n e w s t a t = BreakStatement . c r e a t e I n s t a n c e () ;
133 i n s t a n c e . statements . remove (exp) ;
134 i n s t a n c e . statements . add (n e w s t a t) ;
135 }}

Listing A.11: CMO-multiple-REP(Block statements)

1 @ a c t i o n add
2 @ p r o p e r t y modelName
3 p a t t e r n add model name
4 i n s t a n c e : ModelElementType in : ModelElementType . a l l . s e l e c t (e | e . modelName . i s U n d e f i n e d ()){

141

Appendix B. Mutation Operators

5 do { v a r new modeNames = ModelElementType . a l l . s e l e c t (e | e . modelName . i s D e f i n e d ())−>c o l l e c t (c | c .
modelName)−>asOrderedSet () ;

6 i n s t a n c e . modelName = new modeNames . random () ;
7 }}

Listing A.12: CMO-single-ADD(ModelElementType modelName)

1 o p e r a t i o n i s S e l f O r R e s u l t V a r (e : Any) : Boolean {
2 if (e . c o n t a i n e r . i s D e f i n e d () a n d e . c o n t a i n e r . isTypeOf (O p e r a t i o n D e f i n i t i o n)){
3 if (e . eContainer . i s D e f i n e d () a n d e . eContainer . isTypeOf (V a r i a b l e D e c l a r a t i o n E x p r e s s i o n)){
4 if (e . eContainer . name . name = ” s e l f ” or e . eContainer . name . name = ” r e s u l t ”)
5 r e t u r n t r u e ;
6 }
7 }
8 r e t u r n f a l s e ;
9 }

10 @ a c t i o n r e p l a c e
11 @ p r o p e r t y modelName
12 p a t t e r n replace model name
13 i n s t a n c e : ModelElementType
14 g u a r d : n o t i s S e l f O r R e s u l t V a r (i n s t a n c e) a n d ModelElementType . a l l . s e l e c t (e | e . modelName . i s D e f i n e d

())−>c o l l e c t (c | c . modelName) . s i z e () > 1 {
15 do { v a r new modeNames = ModelElementType . a l l . s e l e c t (e | e . modelName . i s D e f i n e d ())−>c o l l e c t (c | c .

modelName)−>asOrderedSet () ;
16 v a r chosen = new modeNames . random () ;
17 w h i l e (chosen . i s D e f i n e d () a n d i n s t a n c e . modelName . i s D e f i n e d () a n d chosen = i n s t a n c e . modelName)
18 chosen = new modeNames . random () ;
19 i n s t a n c e . modelName = chosen ;
20 }}

Listing A.13: CMO-single-REP(ModelElementType modelName)

1 @ a c t i o n r e p l a c e
2 @ p r o p e r t y arguments
3 @ r o l e i n s t a n c e
4 p a t t e r n r e p l a c e a r g u m e n t s
5 i n s t a n c e : MethodCallExpression in : MethodCallExpression . a l l . s e l e c t (e | e . arguments . s i z e () >=2) ,
6 argu1 : NameExpression f r o m : i n s t a n c e . arguments ,
7 argu2 : NameExpression f r o m : i n s t a n c e . arguments g u a r d : argu1<>argu2 {
8 do { v a r i s L a s t I n d e x = i n s t a n c e . arguments . indexOf (argu1) = i n s t a n c e . arguments . s i z e () − 1 ;
9 // r e p l a c e m e n t

10 v a r new argu = NameExpression . c r e a t e I n s t a n c e () ;
11 new argu . name = argu1 . name ;
12 i n s t a n c e . arguments . remove (argu1) ;
13 i n s t a n c e . arguments . add (new argu) ;
14 if (i s L a s t I n d e x) {
15 // l a s t i n d e x r e p l a c e m e n t s o i n v e r t l i s t
16 v a r c o l = i n s t a n c e . arguments . asSequence () . i n v e r t () ;
17 i n s t a n c e . arguments . c l e a r () ;
18 i n s t a n c e . arguments . addAll (c o l) ;
19 }
20 }}

Listing A.14: CMO-multiple-REP(MethodCallExpression arguments)

142

Appendix B

Test Models

B.1 Test Models for ATL Candidate Programs

B.1.1 Book

1 pre { v a r b num : I n t e g e r = (0 . 4 ∗ t o t a l) . c e i l i n g () ;
2 v a r c num : I n t e g e r = (0 . 6 ∗ t o t a l) . c e i l i n g () ;
3 }
4 $ i n s t a n c e s b num
5 @ l i s t b o o k s l i s t
6 o p e r a t i o n Book c r e a t e () {
7 s e l f . t i t l e = StringDB ! Row . a l l . random () . s t r i n g ;
8 }
9 $ i n s t a n c e s c num

10 @ l i s t c h a p t e r s l i s t
11 o p e r a t i o n Chapter c r e a t e () {
12 s e l f . t i t l e = StringDB ! Row . a l l . random () . s t r i n g ;
13 s e l f . nbPages = n e x t I n t e g e r (1 , 1 0) ;
14 s e l f . author = StringDB ! Row . a l l . random () . f u l l n a m e ;
15 s e l f . book = nextFromList (” b o o k s l i s t ”) ;
16 }

Listing B.1: EMG generator code for Book metamodel

Figure B.1: Book metamodel

B.1.2 HTML

143

Appendix C. Test Models

1 pre { v a r t num : I n t e g e r = (0 . 1 0 ∗ t o t a l) . c e i l i n g () ;
2 v a r r num : I n t e g e r = (0 . 5 0 ∗ t o t a l) . c e i l i n g () ;
3 v a r c num : I n t e g e r = (0 . 4 0 ∗ t o t a l) . c e i l i n g () ;
4 v a r columns = Sequence {” f u l l n a m e ” , ” s t r i n g ” , ” i d ” , ” boolean ” , ” year ” , ” t i n y i n t e g e r ” , ”

s m a l l i n t e g e r ” , ” m i d i n t e g e r ” , ” b i g i n e g e r ” , ” t i n y r e a l ” , ” s m a l l r e a l ” , ” m i d r e a l ” , ”
b i g r e a l ” , ” p e r c e n t a g e ” , ” c h a r a c t e r ” , ” c h a r a c t e r s d i g i t s 2 ” , ” c h a r a c t e r s d i g i t s 1 0 ”} ;

5 }
6 $ i n s t a n c e s t num
7 o p e r a t i o n TABLE c r e a t e () {
8 s e l f . va lue = StringDB ! Row . a l l . random () . s t r i n g ;
9 s e l f . b g c o l o r = ” white ” ;

10 s e l f . background = ” white ” ;
11 s e l f . width = n e x t I n t e g e r (1 , 1 0) . t o S t r i n g () ;
12 s e l f . c e l l s p a c i n g = n e x t I n t e g e r (0 , 2) . t o S t r i n g () ;
13 s e l f . c e l l p a d d i n g = n e x t I n t e g e r (0 , 2) . t o S t r i n g () ;
14 s e l f . border = n e x t I n t e g e r (0 , 5) . t o S t r i n g () ;
15 v a r max rows : I n t e g e r = n e x t I n t e g e r (2 , r num) ;
16 w h i l e (max rows . mod(2) <> 0) max rows = n e x t I n t e g e r (2 , r num) ;
17 v a r counter : I n t e g e r = 1 ;
18 v a r c e l l s m a x : I n t e g e r = n e x t I n t e g e r (1 , c num) ;
19 w h i l e (counter <= max rows) {
20 v a r row = TR. c r e a t e I n s t a n c e () ;
21 s e l f . t r s . add (row) ;
22 row . value = StringDB ! Row . a l l . random () . s t r i n g ;
23 row . b g c o l o r = ” white ” ;
24 row . background = ” white ” ;
25 row . v a l i g n = ” l e f t ” ;
26 row . a l i g n = ” l e f t ” ;
27 v a r c o u n t e r c e l l s = 1 ; // c r e a t e c e l l s a n d a d d them t o r o w
28 w h i l e (c o u n t e r c e l l s <= c e l l s m a x) {
29 v a r c e l l ;
30 if (counter = 1) { // f i r s t r o w = c e l l s a r e h e a d e r s a n d h e n c e m u s t b e s t r i n g s
31 c e l l = TH. c r e a t e I n s t a n c e () ;
32 c e l l . va lue = StringDB ! Row . a l l . random () . s t r i n g ;
33 } e l s e {
34 c e l l = TD. c r e a t e I n s t a n c e () ;
35 c e l l . va lue = n e x t I n t e g e r (1 , 1 0 0) . t o S t r i n g () ;
36 }
37 c e l l . b g c o l o r = ” white ” ;
38 c e l l . background = ” white ” ;
39 c e l l . c o l s p a n =0. t o S t r i n g () ;
40 c e l l . rowspan =0. t o S t r i n g () ;
41 c e l l . v a l i g n = ” l e f t ” ;
42 c e l l . a l i g n = ” l e f t ” ;
43 c e l l . width = n e x t I n t e g e r (1 , 1 0) . t o S t r i n g () ;
44 row . tds . add (c e l l) ; // a d d c e l l t o r o w
45 c o u n t e r c e l l s = c o u n t e r c e l l s + 1 ;
46 }
47 counter = counter + 1 ;
48 } }
49 post {
50 v a r body = n e w BODY; // c r e a t e a b o d y a n d a d d a l l t a b l e e l e m e n t s t o i t
51 body . value = StringDB ! Row . a l l . random () . s t r i n g ;
52 body . background = ” O x f f f f f ” ;
53 body . b g c o l o r = ”Ox00000 ” ;
54 body . t e x t = StringDB ! Row . a l l . random () . s t r i n g ;
55 body . l i n k = ”www. w e b s i t e . com/”+StringDB ! Row . a l l . random () . f i r s t n a m e ;
56 body . a l i n k = ”www. w e b s i t e . com/”+StringDB ! Row . a l l . random () . f i r s t n a m e ;
57 body . v l i n k = ”www. w e b s i t e . com/”+StringDB ! Row . a l l . random () . f i r s t n a m e ;
58 body . bodyElements . addAll (TABLE. a l l) ; // a d d a l l t a b l e s t o o n l y b o d y
59 v a r t i t l e = n e w TITLE ; // c r e a t e a h e a d t o b e a d d e d l a t e r t o h t m l
60 t i t l e . va lue = StringDB ! Row . a l l . random () . s t r i n g ;
61 v a r head = HEAD. c r e a t e I n s t a n c e () ;
62 head . value = StringDB ! Row . a l l . random () . s t r i n g ;
63 head . headElements . add (t i t l e) ;
64 v a r html = n e w HTML; // a d d h e a d a n d b o d y t o h t m l
65 html . head = head ;
66 html . body = body ;
67 }

Listing B.2: EMG generator code for HTML metamodel

144

Appendix C. Test Models B.1 Test Models for ATL Candidate Programs

Figure B.2: HTML metamodel

B.1.3 Make

1 pre { v a r r num : I n t e g e r = (0 . 2 ∗ t o t a l) . c e i l i n g () ; // r u l e s
2 v a r mr num : I n t e g e r = (0 . 1 ∗ t o t a l) . c e i l i n g () ; // m a c r o s
3 v a r s numb : I n t e g e r = (0 . 3 ∗ t o t a l) . c e i l i n g () ; // s h e l l L i n e
4 v a r r de num : I n t e g e r = (0 . 2 ∗ t o t a l) . c e i l i n g () ; // r u l e D e p
5 v a r f de num : I n t e g e r = (0 . 2 ∗ t o t a l) . c e i l i n g () ; // f i l e D e p
6 }
7 $ i n s t a n c e s s numb
8 @ l i s t s h e l l l i n e l i s t
9 o p e r a t i o n S h e l l L i n e c r e a t e () {

10 s e l f . command = StringDB ! Row . a l l . random () . command ;
11 s e l f . d i s p l a y = nextBoolean () ;
12 }
13 $ i n s t a n c e s r de num
14 @ l i s t r u l e d e p s
15 o p e r a t i o n RuleDep c r e a t e () {
16 }
17 $ i n s t a n c e s f de num
18 @ l i s t f i l e d e p s
19 o p e r a t i o n FileDep c r e a t e () {
20 s e l f . date = StringDB ! Row . a l l . random () . date ;
21 s e l f . name = StringDB ! Row . a l l . random () . s t r i n g ;
22 }
23 $ i n s t a n c e s r num
24 o p e r a t i o n Rule c r e a t e () {
25 s e l f . name = StringDB ! Row . a l l . random () . s t r i n g ;
26 v a r c o u n t r u l e ;
27 if (RuleDep . a l l . s e l e c t (e | e . b e l o g t o r u l e . i s U n d e f i n e d ()) . s i z e () >=1)

145

Appendix C. Test Models

28 c o u n t r u l e = n e x t I n t e g e r (1 , RuleDep . a l l . s e l e c t (e | e . b e l o g t o r u l e . i s U n d e f i n e d ()) . s i z e ()) ;
29 e l s e c o u n t r u l e = n e x t I n t e g e r (0 , RuleDep . a l l . s e l e c t (e | e . b e l o g t o r u l e . i s U n d e f i n e d ()) . s i z e ()) ;
30 w h i l e (c o u n t r u l e >=1) {
31 s e l f . d e p e n d e n c i e s . add (nextFromCol lect ion (RuleDep . a l l . s e l e c t (e | e . b e l o g t o r u l e . i s U n d e f i n e d ())

)) ;
32 c o u n t r u l e = c o u n t r u l e − 1 ;
33 }
34 v a r c o u n t f i l e ;
35 if (FileDep . a l l . s e l e c t (e | e . b e l o g t o r u l e . i s U n d e f i n e d ()) . s i z e () >=1)
36 c o u n t f i l e = n e x t I n t e g e r (1 , FileDep . a l l . s e l e c t (e | e . b e l o g t o r u l e . i s U n d e f i n e d ()) . s i z e ()) ;
37 e l s e c o u n t f i l e = n e x t I n t e g e r (0 , FileDep . a l l . s e l e c t (e | e . b e l o g t o r u l e . i s U n d e f i n e d ()) . s i z e ()) ;
38 w h i l e (c o u n t f i l e >=1) {
39 s e l f . d e p e n d e n c i e s . add (nextFromCol lect ion (FileDep . a l l . s e l e c t (e | e . b e l o g t o r u l e . i s U n d e f i n e d ())

)) ;
40 c o u n t f i l e = c o u n t f i l e − 1 ;
41 }
42 v a r c o u n t s h e l l s ;
43 if (S h e l l L i n e . a l l . s e l e c t (e | e . r u l e S h e l l L i n e . i s U n d e f i n e d ()) . s i z e () >=1) {
44 c o u n t s h e l l s = n e x t I n t e g e r (1 , S h e l l L i n e . a l l . s e l e c t (e | e . r u l e S h e l l L i n e . i s U n d e f i n e d ()) . s i z e ()) ;
45 w h i l e (c o u n t s h e l l s >= 1) {
46 s e l f . s h e l l L i n e s . add (nextFromCol lect ion (S h e l l L i n e . a l l . s e l e c t (e | e . r u l e S h e l l L i n e . i s U n d e f i n e d ()

))) ;
47 c o u n t s h e l l s = c o u n t s h e l l s − 1 ;
48 } } e l s e {
49 // No s h e l l l i n e a v a i l a b l e t o l i n k t o t h i s r u l e so , s e l e c t f r o m o t h e r s h e l l l i n e s o f r u l e s

t h a t h a v e m o r e t h a n o n e s h e l l l i n e
50 v a r s h e l l l i n e = Rule . a l l . s e l e c t (e | e . s h e l l L i n e s . s i z e () >= 2) . random () . s h e l l L i n e s . random () ;
51 s e l f . s h e l l L i n e s . add (s h e l l l i n e) ;
52 } }
53 $ i n s t a n c e s mr num
54 o p e r a t i o n Macro c r e a t e () {
55 s e l f . name = StringDB ! Row . a l l . random () . s t r i n g ;
56 s e l f . va lue = StringDB ! Row . a l l . random () . s t r i n g ;
57 }
58 post {
59 f o r (r in Rule . a l l) {
60 f o r (dr in r . d e p e n d e n c i e s . s e l e c t (e | e . isTypeOf (RuleDep))) {
61 v a r o t h e r r u l e s = Rule . a l l . e x c l u d i n g (r) ;
62 if (o t h e r r u l e s . s i z e () ==0) r . d e p e n d e n c i e s . remove (dr) ;
63 e l s e dr . r u l e d e p = nextFromCol lect ion (o t h e r r u l e s) ;
64 } }
65 v a r makeFi le var = n e w M a k e f i l e ;
66 makeFi le var . name = StringDB ! Row . a l l . random () . s t r i n g ;
67 v a r com = Comment . c r e a t e I n s t a n c e () ;
68 com . t e x t = StringDB ! Row . a l l . random () . s t r i n g ;
69 makeFi le var . comment = com ;
70 makeFi le var . e lements . addAll (Rule . a l l) ;
71 makeFi le var . e lements . addAll (Macro . a l l) ;
72
73 // c h e c k i n g m o d e l . C h e c k t h a t a make f i l e h a s a t l e a s t o n e e l e m e n t
74 if (makeFi le var . e lements . s i z e () ==0) t h r o w ”A m a k e f i l e must have at l e a s t one element ” ;
75 f o r (r in Rule . a l l) { // c h e c k t h a t a r u l e m u s t h a v e a t l e a s t a s h e l l l i n e
76 if (r . s h e l l L i n e s . s i z e () ==0) t h r o w ”A r u l e must have at l e a s t one s h e l l l i n e ” ;
77 // c h e c k t h a t a d e p e n d e n t r u l e m u s t p o i n t t o a n o t h e r r u l e
78 f o r (dr in r . d e p e n d e n c i e s . s e l e c t (e | e . isTypeOf (RuleDep))) {
79 if (dr . r u l e d e p . i s U n d e f i n e d ()) t h r o w ”A dependent r u l e must p o i n t to another r u l e ” ;
80 } } }

Listing B.3: EMG generator code for Make metamodel

B.1.4 Table

1 pre { v a r t num : I n t e g e r = (0 . 1 0 ∗ t o t a l) . c e i l i n g () ;
2 v a r r num : I n t e g e r = (0 . 5 0 ∗ t o t a l) . c e i l i n g () ;
3 v a r c num : I n t e g e r = (0 . 4 0 ∗ t o t a l) . c e i l i n g () ;
4 v a r columns = Sequence {” f u l l n a m e ” , ” s t r i n g ” , ” i d ” , ” boolean ” , ” year ” , ” t i n y i n t e g e r ” , ”

s m a l l i n t e g e r ” , ” m i d i n t e g e r ” , ” b i g i n e g e r ” , ” t i n y r e a l ” , ” s m a l l r e a l ” , ” m i d r e a l ” , ”
b i g r e a l ” , ” p e r c e n t a g e ” , ” c h a r a c t e r ” , ” c h a r a c t e r s d i g i t s 2 ” , ” c h a r a c t e r s d i g i t s 1 0 ”} ;

5 }
6 $ i n s t a n c e s t num
7 @ l i s t t a b l e s l i s t
8 o p e r a t i o n Table c r e a t e () {

146

Appendix C. Test Models B.2 Test Models for EOL Candidate Programs

Figure B.3: Make metamodel

9 v a r max rows : I n t e g e r = n e x t I n t e g e r (2 , r num) ;
10 w h i l e (max rows . mod(2) <> 0) max rows = n e x t I n t e g e r (2 , r num) ;
11 v a r counter : I n t e g e r = 1 ;
12 v a r c e l l s m a x : I n t e g e r = n e x t I n t e g e r (1 , c num) ;
13 w h i l e (counter <= max rows) {
14 v a r row = Table ! Row . c r e a t e I n s t a n c e () ;
15 s e l f . rows . add (row) ;
16 v a r c o u n t e r c e l l s = 1 ;
17 w h i l e (c o u n t e r c e l l s <= c e l l s m a x) {
18 v a r c e l l= C e l l . c r e a t e I n s t a n c e () ;
19 row . c e l l s . add (c e l l) ;
20 if (counter = 1) {
21 c e l l . content = StringDB ! Row . a l l . random () . s t r i n g ; // f i r s t r o w = c e l l s a r e h e a d e r s a n d

h e n c e m u s t b e s t r i n g s
22 } e l s e c e l l . content = n e x t I n t e g e r (1 , 1 0 0) . t o S t r i n g () ;
23 c o u n t e r c e l l s = c o u n t e r c e l l s + 1 ;
24 }
25 counter = counter + 1 ;
26 } }

Listing B.4: EMG generator code for Table metamodel

B.2 Test Models for EOL Candidate Programs

B.2.1 DirectedGraph

1 pre { v a r n num : I n t e g e r ;
2 v a r e num : I n t e g e r ;
3 if (t o t a l =2) {
4 n num = 2 ;
5 e num = 1 ;
6 } e l s e {
7 n num = (0 . 5 0 ∗ t o t a l) . c e i l i n g () ; // n o d e s
8 e num = (0 . 5 0 ∗ t o t a l) . c e i l i n g () ; // e d g e s
9 }

147

Appendix C. Test Models

Figure B.4: Table metamodel

10 v a r names = StringDB ! Row . a l l . c o l l e c t (e | e . f i r s t n a m e . toLowerCase ()) ;
11 }
12 $ i n s t a n c e s n num
13 @ l i s t nodes
14 o p e r a t i o n Node c r e a t e () {
15 v a r index = n e x t I n t e g e r (0 , 3 0 0) ;
16 s e l f . l a b e l = nextFromCol lect ion (names) ;
17 }
18 $ i n s t a n c e s e num
19 @ l i s t edges
20 o p e r a t i o n Edge c r e a t e () {
21 s e l f . weight = n e x t I n t e g e r (1 , 2 0 0) ;
22 v a r n1 = nextFromList (” nodes ”) ;
23 s e l f . s o u r c e = n1 ;
24 v a r n2 = nextFromList (” nodes ”) ;
25 w h i l e (n1 = n2) n2 = nextFromList (” nodes ”) ;
26 s e l f . t a r g e t = n2 ;
27 }
28
29 post {
30 // f i x t h e g r a p h a n d e n s u r e a l l n o d e s a r e c o n n e c t e d
31 v a r n o t c o n n e c t e d = Node . a l l . s e l e c t (e | e . outgoing . s i z e () = 0 a n d e . incoming . s i z e () = 0) .

asSequence () ;
32 w h i l e (Node . a l l . s e l e c t (n | n . outgoing . s i z e () = 0 a n d n . incoming . s i z e () = 0) . s i z e () >=1) {
33 f o r (n in Node . a l l . s e l e c t (n | n . outgoing . s i z e () = 0 a n d n . incoming . s i z e () = 0)) {
34 v a r c h o i c e = n e x t I n t e g e r (0 , 1) ;
35 v a r edge ;
36 if (c h o i c e = 0) n . outgoing . add (nextFromList (” edges ”)) ;
37 if (c h o i c e = 1) n . incoming . add (nextFromList (” edges ”)) ;
38 } }
39 if (Edge . a l l . s i z e () < (Node . a l l . s i z e () − 1)) t h r o w ”Number o f edges must be >= number o f (

nodes − 1) . ” ;
40 if (Node . a l l . s e l e c t (n | n . outgoing . s i z e () = 0 a n d n . incoming . s i z e () = 0) . s i z e () >=1)
41 t h r o w ”A node must be connected with at l e a s t one edge . ” ;
42 if (Edge . a l l . s e l e c t (e | e . s o u r c e . s i z e = 0 a n d n . t a r g e t . s i z e = 0) . s i z e () >=1)
43 t h r o w ”An edge must be connected with at l e a s t one node . ” ;
44 v a r g = n e w Graph ;
45 g . c o n t e n t s . addAll (GraphElement . a l l) ;
46 }

Listing B.5: EMG generator code for DirectedGraph metamodel

B.2.2 Ecore test models for EuGENia

148

Appendix C. Test Models B.2 Test Models for EOL Candidate Programs

Figure B.5: DirectedGraph metamodel

1 pre{ v a r n c l a s s e s : I n t e g e r = (0 . 4 0 ∗ t o t a l) . c e i l i n g () ;
2 v a r n a t t r i b u t e s : I n t e g e r = (0 . 2 0 ∗ t o t a l) . c e i l i n g () ;
3 v a r n v a l s : I n t e g e r = (0 . 2 0 ∗ t o t a l) . c e i l i n g () ;
4 v a r n r e f s : I n t e g e r = (0 . 2 0 ∗ t o t a l) . c e i l i n g () ;
5 v a r names : Sequence = StringDB ! Row . a l l . c o l l e c t (e | e . f i r s t n a m e . toLowerCase ()) ; // 2 9 9 n a m e s
6
7 v a r e c o r e d a t a t y p e s = n e w Sequence ;
8 e c o r e d a t a t y p e s . c l e a r () ;
9 e c o r e d a t a t y p e s . addAll (ECore ! EDataType . a l l . s e l e c t (e | e . s e r i a l i z a b l e) . e x c l u d i n g A l l (ECore !

EDataType . a l l . s e l e c t (e | e . name = ” EJavaClass ” or e . name = ” EJavaObject ”))) ;
10
11 v a r s t y l e s = n e w Sequence ;
12 s t y l e s . add (” s o l i d ”) ;
13 s t y l e s . add (” dash ”) ;
14 s t y l e s . add (” dot ”) ;
15
16 v a r f i g u r e s = n e w Sequence ;
17 f i g u r e s . add (” r e c t a n g l e ”) ;
18 f i g u r e s . add (” e l l i p s e ”) ;
19 f i g u r e s . add (” rounded ”) ;
20 f i g u r e s . add (” svg ”) ;
21 f i g u r e s . add (” polygon ”) ;
22
23 v a r d e c o r a t i o n s = n e w Sequence ;
24 d e c o r a t i o n s . add (” none ”) ;
25 d e c o r a t i o n s . add (” arrow ”) ;
26 d e c o r a t i o n s . add (” rhomb ”) ;
27 d e c o r a t i o n s . add (” f i l l e d r h o m b ”) ;
28 d e c o r a t i o n s . add (” square ”) ;
29 d e c o r a t i o n s . add (” f i l l e d s q u a r e ”) ;
30 d e c o r a t i o n s . add (” c l o s e d a r r o w ”) ;
31 d e c o r a t i o n s . add (” f i l l e d c l o s e d a r r o w ”) ;
32
33 v a r l a y o u t s = n e w Sequence ;
34 l a y o u t s . add (” f r e e ”) ;
35 l a y o u t s . add (” l i s t ”) ;
36
37 v a r s e l e c t e d n a m e s = n e w Sequence ;
38 }
39 $ i n s t a n c e s n c l a s s e s
40 @ l i s t c l a s s e s
41 o p e r a t i o n Ecore ! EClass c r e a t e () {
42 v a r name = nextFromCol lect ion (names) ;
43 w h i l e (Ecore ! EClass . a l l . e x i s t s (e | e . name = name))
44 name = nextFromCol lect ion (names) ;
45 s e l f . name = name ;
46 v a r c h o i c e : I n t e g e r = n e x t I n t e g e r (1 , 1 0) ;
47 if (c h o i c e . mod(2) =0) s e l f . a b s t r a c t = t r u e ;

149

Appendix C. Test Models

48 }
49
50 $ i n s t a n c e s n a t t r i b u t e s
51 @ l i s t a t t r i b u e s
52 o p e r a t i o n Ecore ! EAttr ibute c r e a t e () {
53 v a r c = nextFromList (” c l a s s e s ”) ;
54 c . e S t r u c t u r a l F e a t u r e s . add (s e l f) ;
55 v a r name = nextFromCol lect ion (names) ;
56 w h i l e (c . e S t r u c t u r a l F e a t u r e s . e x i s t s (e | e . name = name))
57 name = nextFromCol lect ion (names) ;
58 s e l f . name = name ;
59 s e l f . upperBound = n e x t I n t e g e r (1 , 1 0) ;
60 s e l f . lowerBound = n e x t I n t e g e r (0 , s e l f . upperBound) ;
61 s e l f . eType = nextFromCol lect ion (e c o r e d a t a t y p e s) ;
62 }
63
64 $ i n s t a n c e s n v a l s
65 @ l i s t v a l s
66 o p e r a t i o n Ecore ! EReference c r e a t e () {
67 s e l f . containment = t r u e ;
68 v a r c = nextFromList (” c l a s s e s ”) ;
69 c . e S t r u c t u r a l F e a t u r e s . add (s e l f) ;
70 v a r name = nextFromCol lect ion (names) ;
71 w h i l e (c . e S t r u c t u r a l F e a t u r e s . e x i s t s (e | e . name = name))
72 name = nextFromCol lect ion (names) ;
73 s e l f . name = name ;
74 s e l f . upperBound = n e x t I n t e g e r (1 , 1 0) ;
75 s e l f . lowerBound = n e x t I n t e g e r (0 , s e l f . upperBound) ;
76 s e l f . eType = nextFromList (” c l a s s e s ”) ;
77 }
78 $ i n s t a n c e s n r e f s
79 @ l i s t r e f s
80 o p e r a t i o n Ecore ! EReference c r e a t e () {
81 v a r c = nextFromList (” c l a s s e s ”) ;
82 c . e S t r u c t u r a l F e a t u r e s . add (s e l f) ;
83 v a r name = nextFromCol lect ion (names) ;
84 w h i l e (c . e S t r u c t u r a l F e a t u r e s . e x i s t s (e | e . name = name))
85 name = nextFromCol lect ion (names) ;
86 s e l f . name = name ;
87 s e l f . upperBound = n e x t I n t e g e r (1 , 1 0) ;
88 s e l f . lowerBound = n e x t I n t e g e r (0 , s e l f . upperBound) ;
89 s e l f . eType = nextFromList (” c l a s s e s ”) ;
90 }
91 $ i n s t a n c e s 1
92 o p e r a t i o n Ecore ! EPackage c r e a t e () {
93 s e l f . name = ” e c o r e ” ;
94 s e l f . e C l a s s i f i e r s . addAll (Ecore ! EClass . a l l) ;
95 s e l f . nsURI=”http : //www . e c l i p s e . o r g / emf / 2 0 0 2 / E c o r e ” ;
96 s e l f . n s P r e f i x =”Ecore ” ;
97 }
98 post {
99 v a r v i s i t e d = n e w Set ;

100 v a r n : I n t e g e r ;
101 // do some i n h e r i t a n c e
102 v a r c l a s s e s = Ecore ! EClass . a l l . s e l e c t (e | n o t e . a b s t r a c t a n d e . eSuperTypes . s i z e () = 0) ;
103 n = (n e x t I n t e g e r (1 , c l a s s e s . s i z e) /2) . c e i l i n g () ;
104 if (n = 0) n = 1 ;
105 w h i l e (n >= 1) {
106 v a r c = nextFromCol lect ion (c l a s s e s . e x c l u d i n g A l l (v i s i t e d)) ;
107 v i s i t e d . add (c) ;
108 c l a s s e s . remove (c) ;
109 v a r t a r g e t = nextFromCol lect ion (c l a s s e s . s e l e c t (e | e <> c or n o t e . eSuperTypes . f l a t t e n .

i n c l u d e s (c))) ;
110 if (t a r g e t . eSuperTypes . i n c l u d e s (c)) t h r o w ” Target [” +t a r g e t . name+”] i s s e l e c t e d f o r s o u r c e

[”+ c . name + ”] ” ;
111 c . eSuperTypes . add (t a r g e t) ;
112 n = n − 1 ;
113 }
114 c l a s s e s = Ecore ! EClass . a l l . s e l e c t (e | n o t e . a b s t r a c t) ;
115 v i s i t e d . c l e a r () ;
116 // do some a n n o t a t i o n s t o gmf
117 v a r anno = n e w Ecore ! EAnnotation ;
118 anno . s o u r c e = ”gmf ” ;
119 Ecore ! EPackage . a l l . f i r s t () . eAnnotations . add (anno) ;
120 v a r diagram = nextFromCol lect ion (c l a s s e s) ; // gmf . d i a g r a m

150

Appendix C. Test Models B.2 Test Models for EOL Candidate Programs

121 v i s i t e d . add (diagram) ;
122 anno = n e w Ecore ! EAnnotation ;
123 anno . s o u r c e = ”gmf . diagram ” ;
124 anno . d e t a i l s . put (” diagram . e x t e n s i o n ” ,” model ”) ;
125 anno . d e t a i l s . put (” model . e x t e n s i o n ” ,” model ”) ;
126 anno . d e t a i l s . put (” o n e f i l e ” ,””+ nextBoolean ()) ;
127 diagram . eAnnotations . add (anno) ;
128 n = n e x t I n t e g e r (1 , c l a s s e s . e x c l u d i n g A l l (v i s i t e d) . s i z e ()) ; // gmf . n o d e
129 if (n=0) n=1;
130 w h i l e (n>=1) {
131 v a r c = nextFromCol lect ion (c l a s s e s . e x c l u d i n g A l l (v i s i t e d)) ;
132 v a r f e a t u r e s = c . e S t r u c t u r a l F e a t u r e s . s e l e c t (e | e . isTypeOf (Ecore ! EAttr ibute)) ;
133 v i s i t e d . add (c) ;
134 anno = n e w Ecore ! EAnnotation ;
135 anno . s o u r c e = ”gmf . node ” ;
136 anno . d e t a i l s . put (” border . c o l o r ” , n e x t I n t e g e r (0 , 2 5 6) +”,”+ n e x t I n t e g e r (0 , 2 5 6) +”,”+ n e x t I n t e g e r

(0 , 2 5 6)) ;
137 anno . d e t a i l s . put (” border . s t y l e ” , nextFromCol lect ion (s t y l e s)) ;
138 anno . d e t a i l s . put (” border . width ” ,””+ n e x t I n t e g e r (1 , 1 0)) ;
139 anno . d e t a i l s . put (” ” , ” ”) ;
140 anno . d e t a i l s . put (” c o l o r ” , n e x t I n t e g e r (0 , 2 5 6) +”,”+ n e x t I n t e g e r (0 , 2 5 6) +”,”+ n e x t I n t e g e r (0 , 2 5 6)) ;
141 anno . d e t a i l s . put (” f i g u r e ” ,””+ nextFromCol lect ion (f i g u r e s)) ;
142 if (n o t (f e a t u r e s . s i z e () = 0)) {
143 anno . d e t a i l s . put (” l a b e l ” , nextFromCol lect ion (f e a t u r e s) . name) ;
144 anno . d e t a i l s . put (” l a b e l . c o l o r ” , n e x t I n t e g e r (0 , 2 5 6) +”,”+ n e x t I n t e g e r (0 , 2 5 6) +”,”+ n e x t I n t e g e r

(0 , 2 5 6)) ;
145 anno . d e t a i l s . put (” l a b e l . i c o n ” ,””+ nextBoolean ()) ;
146 }
147 if (anno . d e t a i l s . g et (” f i g u r e ”) = ” svg ”)
148 anno . d e t a i l s . put (” svg . u r i ” ,” p l a t f o r m : / p l u g i n /my. p l u g i n /”+ nextFromCol lect ion (names)) ;
149 if (anno . d e t a i l s . g et (” f i g u r e ”) = ” polygon ”) {
150 anno . d e t a i l s . put (” polygon . x” ,””+ n e x t I n t e g e r (1 , 1 0)) ;
151 anno . d e t a i l s . put (” polygon . y” ,””+ n e x t I n t e g e r (1 , 1 0)) ;
152 }
153 c . eAnnotations . add (anno) ;
154 n = n − 1 ;
155 }
156 // gmf l i n k t o E C l a s s a n d non−c o n t a i n m e n t E R e f e r e n c e
157 v i s i t e d . c l e a r () ;
158 v i s i t e d . add (diagram) ;
159 n = n e x t I n t e g e r (1 , c l a s s e s . s i z e ()−v i s i t e d . s i z e ()) ;
160 if (n=0) n=1;
161 w h i l e (n>=1) {
162 v a r c = nextFromCol lect ion (c l a s s e s . e x c l u d i n g A l l (v i s i t e d)) ;
163 if (c . i s U n d e f i n e d ()) b r e a k ;
164 v a r f e a t u r e s = c . e S t r u c t u r a l F e a t u r e s . s e l e c t (e | e . isTypeOf (Ecore ! EAttr ibute)) ;
165 v a r r e f e r e n c e s = c . e S t r u c t u r a l F e a t u r e s . s e l e c t (e | e . isTypeOf (Ecore ! EReference) a n d n o t e .

containment) ;
166 v i s i t e d . add (c) ;
167 v a r c h o i c e = n e x t I n t e g e r (1 , 1 0) ;
168 anno = n e w Ecore ! EAnnotation ;
169 anno . s o u r c e = ”gmf . l i n k ” ;
170 anno . d e t a i l s . put (” c o l o r ” , n e x t I n t e g e r (0 , 2 5 6) +”,”+ n e x t I n t e g e r (0 , 2 5 6) +”,”+ n e x t I n t e g e r (0 , 2 5 6)) ;
171 anno . d e t a i l s . put (” s t y l e ” , nextFromCol lect ion (s t y l e s)) ;
172
173 if (n o t (f e a t u r e s . s i z e () =0)) anno . d e t a i l s . put (” l a b e l ” , nextFromCol lect ion (f e a t u r e s) . name) ;
174 if (c h o i c e . mod(2)=0 a n d r e f e r e n c e s . s i z e () >=2) {
175 anno . d e t a i l s . put (” s o u r c e ” , nextFromCol lect ion (r e f e r e n c e s) . name) ;
176 anno . d e t a i l s . put (” t a r g e t ” , nextFromCol lect ion (r e f e r e n c e s) . name) ;
177 }
178 anno . d e t a i l s . put (” s o u r c e . d e c o r a t i o n ” , nextFromCol lect ion (d e c o r a t i o n s)) ;
179 anno . d e t a i l s . put (” t a r g e t . d e c o r a t i o n ” , nextFromCol lect ion (d e c o r a t i o n s)) ;
180 anno . d e t a i l s . put (” width ” ,””+ n e x t I n t e g e r (1 , 1 0)) ;
181 c . eAnnotations . add (anno) ;
182 n = n − 1 ;
183 }
184 // gmf . c o m p a r t m e n t
185 v a r v a l s = Ecore ! EReference . a l l . s e l e c t (e | e . containment) ;
186 v i s i t e d . c l e a r () ;
187 n = n e x t I n t e g e r (1 , (v a l s . s i z e ()−v i s i t e d . s i z e ()) /2) ;
188 if (n=0) n=1;
189 w h i l e (n>=1) {
190 v a r f = nextFromCol lect ion (v a l s . e x c l u d i n g A l l (v i s i t e d)) ;
191 v i s i t e d . add (f) ;
192 anno = n e w Ecore ! EAnnotation ;

151

Appendix C. Test Models

193 anno . s o u r c e = ”gmf . compartment ” ;
194 anno . d e t a i l s . put (” c o l l a p s i b l e ” ,””+ nextBoolean ()) ;
195 anno . d e t a i l s . put (” l a y o u t ” , nextFromCol lect ion (l a y o u t s)) ;
196 f . eAnnotations . add (anno) ;
197 n = n −1;
198 }}

Listing B.6: EMG generator code for Ecore metamodel of EuGENia

B.2.3 Ecore test models for Incremental EVL

1 pre { v a r n c l a s s e s : I n t e g e r = (0 . 3 0 ∗ t o t a l) . c e i l i n g () ;
2 v a r n a t t r i b u t e s : I n t e g e r = (0 . 3 0 ∗ t o t a l) . c e i l i n g () ;
3 v a r n v a l s : I n t e g e r = (0 . 2 0 ∗ t o t a l) . c e i l i n g () ;
4 v a r n r e f s : I n t e g e r = (0 . 2 0 ∗ t o t a l) . c e i l i n g () ;
5 v a r names : Sequence = StringDB ! Row . a l l . c o l l e c t (e | e . f i r s t n a m e . toLowerCase ()) ; // 2 9 9 n a m e s
6 v a r e c o r e d a t a t y p e s = n e w Sequence ;
7 e c o r e d a t a t y p e s . c l e a r () ;
8 e c o r e d a t a t y p e s . addAll (ECore ! EDataType . a l l . s e l e c t (e | e . s e r i a l i z a b l e) . e x c l u d i n g A l l (ECore !

EDataType . a l l . s e l e c t (e | e . name = ” EJavaClass ” or e . name = ” EJavaObject ”))) ;
9 }

10 $ i n s t a n c e s n c l a s s e s
11 @ l i s t c l a s s e s
12 o p e r a t i o n Ecore ! EClass c r e a t e () {
13 v a r name = nextFromCol lect ion (names) ;
14 w h i l e (Ecore ! EClass . a l l . e x i s t s (e | e . name = name))
15 name = nextFromCol lect ion (names) ;
16 s e l f . name = name ;
17 v a r c h o i c e : I n t e g e r = n e x t I n t e g e r (1 , 1 0) ;
18 if (c h o i c e . mod(2) =0) s e l f . a b s t r a c t = t r u e ;
19 }
20 $ i n s t a n c e s n a t t r i b u t e s
21 @ l i s t a t t r i b u e s
22 o p e r a t i o n Ecore ! EAttr ibute c r e a t e () {
23 v a r c = nextFromList (” c l a s s e s ”) ;
24 c . e S t r u c t u r a l F e a t u r e s . add (s e l f) ;
25 v a r name = nextFromCol lect ion (names) ;
26 w h i l e (c . e S t r u c t u r a l F e a t u r e s . e x i s t s (e | e . name = name)) name = nextFromCol lect ion (names) ;
27 s e l f . name = name ;
28 s e l f . upperBound = n e x t I n t e g e r (1 , 1 0) ;
29 s e l f . lowerBound = n e x t I n t e g e r (0 , s e l f . upperBound) ;
30 s e l f . eType = nextFromCol lect ion (e c o r e d a t a t y p e s) ;
31 }
32 $ i n s t a n c e s n v a l s
33 @ l i s t v a l s
34 o p e r a t i o n Ecore ! EReference c r e a t e () {
35 s e l f . containment = t r u e ;
36 v a r c = nextFromList (” c l a s s e s ”) ;
37 c . e S t r u c t u r a l F e a t u r e s . add (s e l f) ;
38 v a r name = nextFromCol lect ion (names) ;
39 w h i l e (c . e S t r u c t u r a l F e a t u r e s . e x i s t s (e | e . name = name)) name = nextFromCol lect ion (names) ;
40 s e l f . name = name ;
41 s e l f . upperBound = n e x t I n t e g e r (1 , 1 0) ;
42 s e l f . lowerBound = n e x t I n t e g e r (0 , s e l f . upperBound) ;
43 s e l f . eType = nextFromList (” c l a s s e s ”) ;
44 }
45 $ i n s t a n c e s n r e f s
46 @ l i s t r e f s
47 o p e r a t i o n Ecore ! EReference c r e a t e () {
48 v a r c = nextFromList (” c l a s s e s ”) ;
49 c . e S t r u c t u r a l F e a t u r e s . add (s e l f) ;
50 v a r name = nextFromCol lect ion (names) ;
51 w h i l e (c . e S t r u c t u r a l F e a t u r e s . e x i s t s (e | e . name = name))
52 name = nextFromCol lect ion (names) ;
53 s e l f . name = name ;
54 s e l f . upperBound = n e x t I n t e g e r (1 , 1 0) ;
55 s e l f . lowerBound = n e x t I n t e g e r (0 , s e l f . upperBound) ;
56 s e l f . eType = nextFromList (” c l a s s e s ”) ;
57 }
58 $ i n s t a n c e s 1
59 o p e r a t i o n Ecore ! EPackage c r e a t e () {
60 s e l f . name = ” e c o r e ” ;

152

Appendix C. Test Models B.2 Test Models for EOL Candidate Programs

61 s e l f . e C l a s s i f i e r s . addAll (Ecore ! EClass . a l l) ;
62 s e l f . nsURI=”http : //www . e c l i p s e . o r g / emf / 2 0 0 2 / E c o r e ” ;
63 s e l f . n s P r e f i x =”Ecore ” ;
64 }
65
66 post {
67 v a r v i s i t e d = n e w Sequence ;
68 v a r c l a s s e s = Ecore ! EClass . a l l ;
69 // do some i n h e r i t a n c e
70 v a r c l a s s e s = Ecore ! EClass . a l l . s e l e c t (e | n o t e . a b s t r a c t a n d e . eSuperTypes . s i z e () = 0) ;
71 v a r n = (n e x t I n t e g e r (1 , c l a s s e s . s i z e) /2) . c e i l i n g () ;
72 if (n = 0) n = 1 ;
73 w h i l e (n >= 1) {
74 v a r c = nextFromCol lect ion (c l a s s e s . e x c l u d i n g A l l (v i s i t e d)) ;
75 v i s i t e d . add (c) ;
76 c l a s s e s . remove (c) ;
77 v a r t a r g e t = nextFromCol lect ion (c l a s s e s . s e l e c t (e | e <> c or n o t e . eSuperTypes . f l a t t e n .

i n c l u d e s (c))) ;
78 if (t a r g e t . eSuperTypes . i n c l u d e s (c)) t h r o w ” t a r g e t [” +t a r g e t . name+”] i s s e l e c t e d f o r s o u r c e

[”+ c . name + ”] ” ;
79 c . eSuperTypes . add (t a r g e t) ;
80 n = n − 1 ;
81 }
82 c l a s s e s = Ecore ! EClass . a l l . s e l e c t (e | n o t e . a b s t r a c t) ;
83 // do some a n n o t a t i o n s
84 n = (n e x t I n t e g e r (1 , c l a s s e s . s i z e) /2) . c e i l i n g () ;
85 if (n = 0) n = 1 ;
86 v i s i t e d . c l e a r () ;
87 w h i l e (n >= 1) {
88 v a r c = nextFromCol lect ion (c l a s s e s . e x c l u d i n g A l l (v i s i t e d)) ;
89 v a r f e a t u r e s = c . e S t r u c t u r a l F e a t u r e s . s e l e c t (e | e . isTypeOf (Ecore ! EAttr ibute)) ;
90 if (f e a t u r e s . s i z e () =0) {
91 n = n − 1 ;
92 c o n t i n u e ;
93 }
94 v i s i t e d . add (c) ;
95 v a r c l a s s a n n o 1 = n e w Ecore ! EAnnotation ;
96 c l a s s a n n o 1 . s o u r c e = ” h t t p s : // e c l i p s e . o r g / e p s i l o n / i n c r e m e n t a l / O r i e n t D b I n d e x ” ;
97 c l a s s a n n o 1 . r e f e r e n c e s . add (nextFromCol lect ion (f e a t u r e s)) ;
98 c l a s s a n n o 1 . d e t a i l s . put (” type ” ,”NOTUNIQUE HASH INDEX”) ;
99 c . eAnnotations . add (c l a s s a n n o 1) ;

100 n = n−1;
101 }
102 n = (n e x t I n t e g e r (1 , c l a s s e s . s i z e) /2) . c e i l i n g () ;
103 if (n = 0) n = 1 ;
104 v i s i t e d . c l e a r () ;
105 w h i l e (n >= 1) {
106 v a r c = nextFromCol lect ion (c l a s s e s . e x c l u d i n g A l l (v i s i t e d)) ;
107 v a r f e a t u r e s = c . e S t r u c t u r a l F e a t u r e s . s e l e c t (e | e . isTypeOf (Ecore ! EReference)) ;
108 if (f e a t u r e s . s i z e () =0) {
109 n = n − 1 ;
110 c o n t i n u e ;
111 }
112 v i s i t e d . add (c) ;
113 v a r c l a s s a n n o 1 = n e w Ecore ! EAnnotation ;
114 c l a s s a n n o 1 . s o u r c e = ” h t t p s : // e c l i p s e . o r g / e p s i l o n / i n c r e m e n t a l / e q u a l s ” ;
115 c l a s s a n n o 1 . r e f e r e n c e s . add (nextFromCol lect ion (f e a t u r e s)) ;
116 c . eAnnotations . add (c l a s s a n n o 1) ;
117 n = n − 1 ;
118 }
119 v a r f e a t u r e s = Ecore ! E S t r u c t u r a l F e a t u r e . a l l ;
120 n = (n e x t I n t e g e r (1 , f e a t u r e s . s i z e) /2) . c e i l i n g () ;
121 if (n = 0) n = 1 ;
122 v i s i t e d . c l e a r () ;
123 w h i l e (n >= 1) {
124 v a r f = nextFromCol lect ion (f e a t u r e s . e x c l u d i n g A l l (v i s i t e d)) ;
125 v i s i t e d . add (f) ;
126 v a r r e f e r e n c e a n n o 1 = n e w Ecore ! EAnnotation ;
127 r e f e r e n c e a n n o 1 . s o u r c e = ” h t t p s : // e c l i p s e . o r g / e p s i l o n / i n c r e m e n t a l / G r a p h ” ;
128 r e f e r e n c e a n n o 1 . d e t a i l s . put (” edge ” ,” t r u e ”) ;
129 f . eAnnotations . add (r e f e r e n c e a n n o 1) ;
130 n = n−1;
131 }

153

Appendix C. Test Models

132 }

Listing B.7: EMG generator code for Ecore metamodel of Incremental EVL

154

Appendix C

Mutation Analysis Results

C.1 ATL Complete Results

Mutation Operator Gen. Killed Trivial Live Equiv. Invalid

CMO-S-REP(Parameter type) 15 6 - 9 - -
CMO-S-REP(Operation returnType) 77 43 - 34 - -
CMO-S-DEL(InPattern filter) 4 2 1 1 - -
CMO-S-REP(InPattern filter) 14 2 10 2 - -
CMO-S-REP(SimpleInPatternElement type) 296 89 164 34 9 -
CMO-S-REP(RuleVariableDeclaration type) 21 21 - - - -
CMO-S-REP(RuleVariableDeclaration varName) 7 7 - - - -
CMO-S-REP(Attribute type) 126 92 - - 34 -
CMO-S-REP(SequenceType elementType) 98 68 - - 30 -
CMO-S-REP(Iterator varName) 36 21 - - 15 -
CMO-S-DEL(LazyMatchedRule actionBlock) 2 1 1 - - -
CMO-S-REP(SimpleOutPatternElement varName) 61 30 11 - 20 -
CMO-S-REP(SimpleInPatternElement varName) 42 18 - - 13 11
CMO-S-REP(Parameter varName) 5 2 - - 3 -
CMO-M-DEL(ActionBlock statements) 10 3 7 - - -
CMO-S-REP(IfStat condition) 7 2 5 - - -
CMO-S-REP(CalledRule name) 4 1 2 - 1 -
CMO-S-REP(LazyMatchedRule name) 11 2 9 - - -
CMO-S-REP(SimpleOutPatternElement type) 944 136 800 - 8 -
CMO-S-REP(Attribute name) 15 2 11 - 2 -
CMO-S-REP(OclModelElement name) 113 14 88 - 11 -
CMO-M-DEL(InPattern elements) 18 2 3 - - 13
CMO-M-DEL(SimpleOutPatternElement bindings) 130 14 112 - 4 -
CMO-S-REP(OclModel name) 65 6 42 - 12 5
CMO-S-REP(Binding propertyName) 332 29 303 - - -
CMO-M-REP(Module elements) 24 2 19 - - 3
CMO-M-DEL(Module elements) 72 5 62 - 5 -
CMO-M-DEL(OutPattern elements) 36 2 5 - - 29
CMO-S-REP(OclFeatureDefinition feature) 37 2 31 - 4 -
CMO-S-DEL(MatchedRule outPattern) 19 1 16 - - 2
CMO-M-DEL(ForStat statements) 4 - 4 - - -
CMO-M-DEL(IfStat thenStatements) 4 - 4 - - -

155

Appendix D. Mutation Analysis Results

CMO-S-DEL(CalledRule actionBlock) 4 - 4 - - -
CMO-S-DEL(MatchedRule actionBlock) 2 - 2 - - -
CMO-S-REP(CalledRule isEntrypoint) 2 - 2 - - -
CMO-S-REP(OclContextDefinition context) 594 - 584 - 10 -
CMO-S-REP(Operation name) 23 - 21 - 2 -
CMO-S-DEL(OclFeatureDefinition context) 22 - 20 - 2 -
CMO-M-REP(MatchedRule children) 82 - 70 - 3 9
CMO-M-DEL(MatchedRule children) 10 - 7 - 3 -
CMO-S-REP(BindingStat source) 9 - 5 - - 4
CMO-M-DEL(CalledRule parameters) 3 - - - - 3
CMO-M-DEL(CalledRule variables) 2 - - - - 2
CMO-M-DEL(LazyMatchedRule variables) 5 - - - - 5
CMO-M-DEL(Operation parameters) 2 - - - - 2
CMO-S-DEL(CalledRule outPattern) 4 - - - - 4
CMO-S-DEL(LazyMatchedRule inPattern) 11 - - - - 11
CMO-S-DEL(LazyMatchedRule outPattern) 11 - - - - 11
CMO-S-DEL(MatchedRule inPattern) 19 - - - - 19
CMO-S-DEL(Parameter type) 5 - - - - 5
CMO-S-DEL(RuleVariableDeclaration initExpr) 7 - - - - 7
CMO-S-DEL(RuleVariableDeclaration type) 7 - - - - 7
CMO-S-REP(MatchedRule isAbstract) 3 - - - 3 -
CMO-S-REP(MatchedRule name) 19 - - - 19 -
Total 3495 625 2425 80 213 152

Table C.1: ATL mutation operators and their produced mutants

C.2 EOL Complete Results

Mutation Operator Gen. Killed Trivial Live Equiv. Invalid

CMO-S-REP(AndOperatorExpression inBrackets) 1 1
CMO-S-REP(OrOperatorExpression inBrackets) 4 1 2 1
CMO-S-REP(ReturnStatement expression) 62 12 13 28 9
CMO-M-ADD(Block statements) 145 34 32 62 17
CMO-S-DEL(IfStatement elseBody) 41 5 8 15 13
CMO-S-REP(ExpressionOrStatementBlock condition) 85 39 14 31 1
CMO-S-REP(PropertyCallExpression extended) 45 11 18 16
CMO-S-DEL(ExpressionOrStatementBlock block) 209 36 56 68 32 17
CMO-M-REP(Block statements) 160 24 72 51 13
CMO-M-REP(MethodCallExpression arguments) 102 4 64 32 2
CMO-M-DEL(MethodCallExpression arguments) 170 18 99 50 3
CMO-S-REP(VariableDeclarationExpression create) 14 9 4 1
CMO-M-DEL(Block statements) 825 161 335 235 94
CMO-M-REP(FOLMethodCallExpression conditions) 96 22 38 26 10
CMO-S-REP(IfStatement condition) 230 29 109 62 30
CMO-S-DEL(MethodCallExpression target) 529 84 297 123 25
CMO-S-REP(MethodCallExpression method) 119 15 60 26 18
CMO-M-ADD(MethodCallExpression arguments) 581 99 324 125 33
CMO-S-REP(ModelElementType modelName) 205 24 69 32 16 64
CMO-S-REP(VariableDeclarationExpression name) 178 32 108 27 11
CMO-S-REP(AssignmentStatement rhs) 27 8 10 4 5
CMO-S-REP(FormalParameterExpression name) 160 25 101 22 12
CMO-S-DEL(ModelElementType modelName) 205 21 33 28 58 65

156

Appendix D. Mutation Analysis Results C.2 EOL Complete Results

CMO-S-REP(OperationDefinition returnType) 97 9 36 12 18 22
CMO-M-ADD(OperationDefinition parameters) 103 6 70 10 17
CMO-M-DEL(EOLModule operations) 103 6 70 10 17
CMO-S-REP(FOLMethodCallExpression method) 212 34 135 19 24
CMO-S-DEL(FOLMethodCallExpression target) 49 8 34 3 4
CMO-M-DEL(IfStatement elseIfBodies) 17 12 4 1
CMO-M-DEL(OperationDefinition parameters) 71 3 62 1 5
CMO-S-REP(OperationDefinition contextType) 8 3 2 3
CMO-S-REP(VariableDeclarationExp resolvedType) 20 2 8 10
CMO-S-DEL(EOLModule block) 2 2
CMO-S-REP(PlusOperatorExpression inBrackets) 1 1
CMO-S-REP(WhileStatement condition) 1 1
CMO-S-REP(NotOperatorExpression inBrackets) 2 2
CMO-S-REP(EqualsOperatorExpression inBrackets) 1 1
CMO-S-REP(FormalParameterExpression resolvedType) 2 2
CMO-S-DEL(OperationDefinition body) 103 103
CMO-S-DEL(PropertyCallExpression target) 434 434
CMO-S-DEL(ExpressionOrStatementBlock condition) 17 17
Total 5436 787 2294 1126 507 722

Table C.2: EOL mutation operators and their produced mutants

157

Bibliography

[1] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in
Practice. Morgan and Claypool, 2012.

[2] D. Karagiannis and H. Kühn. “Invited Paper: Metamodelling Platforms”. In: Pro-
ceedings of the Third International Conference on E-Commerce and Web Tech-
nologies. Ed. by K. Bauknecht, A. M. Tjoa, and G. Quirchmayr. EC-WEB ’02.
London, UK: Springer-Verlag, 2002, pp. 182–182. url: http://dl.acm.org/

citation.cfm?id=646162.680499.

[3] J. Offutt, P. Ammann, and L. L. Liu. “Mutation Testing Implements Grammar-
Based Testing”. In: Proceedings of the Second Workshop on Mutation Analysis.
MUTATION ’06. USA: IEEE Computer Society, 2006, p. 12. isbn: 076952897X.
doi: 10.1109/MUTATION.2006.11. url: https://doi.org/10.1109/MUTATION.

2006.11.

[4] J.-M. Favre. “Foundations of Model (Driven) (Reverse) Engineering: Models -
Episode I, Stories of the Fidus Papyrus and of the Solarus”. In: Post-proceedings
Of Dagsthul Seminar On Model Driven Reverse Engineering. Germany Dagsthul,
2004.

[5] D. Kolovos. “An Extensible Platform for Specification of Integrated Languages
for Model Management”. Doctor of Philosophy. University of York, 2008.

[6] J. Bézivin. “In Search of a Basic Principle for Model Driven Engineering”. In:
Novatica/Upgrade 5 (2004).

[7] Object Management Group. OMG Meta Object Facility (MOF) Core Specification
ver. 2.0. https://www.omg.org/spec/MOF/2.0. Standard. [Online; accessed
03-March-2015]. 2006.

[8] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. “ATL: A model transformation
tool”. In: Science of Computer Programming 72.1 (2008). Special Issue on Second
issue of experimental software and toolkits (EST), pp. 31 –39. issn: 0167-6423.
doi: http : / / dx . doi . org / 10 . 1016 / j . scico . 2007 . 08 . 002. url: http :

//www.sciencedirect.com/science/article/pii/S0167642308000439.

159

http://dl.acm.org/citation.cfm?id=646162.680499
http://dl.acm.org/citation.cfm?id=646162.680499
https://doi.org/10.1109/MUTATION.2006.11
https://doi.org/10.1109/MUTATION.2006.11
https://doi.org/10.1109/MUTATION.2006.11
https://www.omg.org/spec/MOF/2.0
https://doi.org/http://dx.doi.org/10.1016/j.scico.2007.08.002
http://www.sciencedirect.com/science/article/pii/S0167642308000439
http://www.sciencedirect.com/science/article/pii/S0167642308000439

Appendix D. Mutation Analysis Results

[9] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification. http://www.omg.org/spec/QVT/1.2. Standard. [On-
line; accessed 06-Nov-2015]. 2015.

[10] I. Sommerville. Software Engineering. 9th. USA: Addison-Wesley Publishing Com-
pany, 2010. isbn: 0137035152, 9780137035151.

[11] B. W. Boehm. “Verifying and validating software requirements and design spec-
ifications”. In: IEEE Software 1.1 (1984), pp. 75–88.

[12] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge, UK:
Cambridge University Press, 2008.

[13] Object Management Group. XML Metadata Interchange (XMI). http://www.

omg.org/spec/XMI/. Standard. Version 2.5.1. [Online; accessed 06-Nov-2015].
2015.

[14] H. Bruneli‘ere, J. Cabot, G. Dup’e, and F. Madiot. “MoDisco: A model driven
reverse engineering framework”. In: Information and Software Technology 56.8
(2014), pp. 1012 –1032. issn: 0950-5849. doi: https://doi.org/10.1016/

j.infsof.2014.04.007. url: http://www.sciencedirect.com/science/

article/pii/S0950584914000883.

[15] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework 2.0. 2nd. Addison-Wesley Professional, 2009. isbn: 0321331885.

[16] D. Gasevic, D. Djuric, and V. Devedzic. Model Driven Engineering and Ontology
Development. Second. Springer, 2009.

[17] D. Kolovos, L. Rose, A. Garćıa-Domı́nguez, and R. Paige. The Epsilon Book.
2017. url: https://www.eclipse.org/epsilon/doc/book/.

[18] D. S. Kolovos and R. F. Paige. “The Epsilon Pattern Language”. In: Proceedings
of the 9th International Workshop on Modelling in Software Engineering. MISE
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 54–60. isbn: 978-1-5386-0426-7.
doi: 10.1109/MiSE.2017..8. url: https://doi.org/10.1109/MiSE.2017..8.

[19] Object Management Group. Object Constraint Language (OCL). http://www.

omg . org / spec / OCL/. Standard. Version 2.4. [Online; accessed 06-Nov-2015].
2014.

[20] D. D. Ruscio, R. Eramo, and A. Pierantonio. “Model Transformations”. In: For-
mal Methods for Model-Driven Engineering (SFM 2012). Ed. by M. Bernardo, V.
Cortellessa, and A. Pierantonio. Vol. 7320. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 91–136.

160

http://www.omg.org/spec/QVT/1.2
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
https://doi.org/https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/https://doi.org/10.1016/j.infsof.2014.04.007
http://www.sciencedirect.com/science/article/pii/S0950584914000883
http://www.sciencedirect.com/science/article/pii/S0950584914000883
https://www.eclipse.org/epsilon/doc/book/
https://doi.org/10.1109/MiSE.2017..8
https://doi.org/10.1109/MiSE.2017..8
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/

Appendix D. Mutation Analysis Results BIBLIOGRAPHY

[21] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernandez, B. Nordmoen, and M.
Fritzsche. “Where does model-driven engineering help? Experiences from three
industrial cases”. In: Software & Systems Modeling 12.3 (2013), pp. 619–639. issn:
1619-1374. doi: 10.1007/s10270-011-0219-7. url: https://doi.org/10.

1007/s10270-011-0219-7.

[22] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. “Empirical as-
sessment of MDE in industry”. In: Software Engineering (ICSE), 2011 33rd In-
ternational Conference on. 2011, pp. 471–480.

[23] T. Stahl and M. Volter. Model-Driven Software Development: Technology, Engi-
neering, Management. John Wiley and Sons Inc., 2006.

[24] T. Weigert and F. Weil. “Practical experiences in using model-driven engineering
to develop trustworthy computing systems”. In: Sensor Networks, Ubiquitous,
and Trustworthy Computing, 2006. IEEE International Conference on. Vol. 1.
IEEE Computer Society, 2006, pp. 208–217.

[25] P. Mohagheghi and V. Dehlen. “Where Is the Proof? - A Review of Experiences
from Applying MDE in Industry”. In: Model Driven Architecture – Foundations
and Applications. Ed. by I. Schieferdecker and A. Hartman. Vol. 5095. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2008, pp. 432–443.

[26] P. C. Jorgensen. Software Testing: A Craftsman’s Approach. 1st. Boca Raton,
FL, USA: CRC Press, Inc., 1995.

[27] A. P. Mathur. Foundations of Software Testing: Fundamental Algorithms and
Techniques. Pearson India, 2007.

[28] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. “Hints on Test Data Selection:
Help for the Practicing Programmer”. In: Computer 11.4 (1978), pp. 34–41.

[29] A. J. Offutt and R. H. Untch. “Mutation 2000: Uniting the Orthogonal”. In:
Mutation Testing for the New Century. Ed. by W. E. Wong. Vol. 24. The Springer
International Series on Advances in Database Systems. Springer US, 2001, pp. 34–
44.

[30] T. A. Budd and F. G. Sayward. Users Guide to the Pilot Mutation System.
Technical report 114. New Haven, Connecticut: Yale University, 1977.

[31] D. M. S. Andre. Pilot mutation system (PIMS) user’s manual. Tech. rep. GIT-
ICS-79/04. Atlanta, Georgia: Georgia Institute of Technology, 1979.

[32] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J. Offutt, and K. N. King.
“An extended overview of the Mothra software testing environment”. In: [1988]
Proceedings. Second Workshop on Software Testing, Verification, and Analysis.
1988, pp. 142–151. doi: 10.1109/WST.1988.5369.

161

https://doi.org/10.1007/s10270-011-0219-7
https://doi.org/10.1007/s10270-011-0219-7
https://doi.org/10.1007/s10270-011-0219-7
https://doi.org/10.1109/WST.1988.5369

Appendix D. Mutation Analysis Results

[33] K. King and J. Offutt. “A Fortran Language System for Mutation-Based Software
Testing”. In: Software: Practice and Experience 21.7 (1991), pp. 685–718.

[34] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W. Krauser, R. J.
Martin, A. P. Mathur, and E. Spafford. Design of mutant operators for the C
programming language. SERC-TR-41-P. Software Engineering Research Center,
Purdue University, 1989.

[35] M. E. Delamaro, J. C. Maldonado, and A. Mathur. “Proteum-A Tool for the As-
sessment of Test Adequacy for C Programs”. In: in Proceedings of the Conference
on Performability in Computing System (PCS ’96). Vol. 96. 1996, pp. 79–95.

[36] M. Ellims, D. Ince, and M. Petre. “The Csaw C Mutation Tool: Initial Results”.
In: Testing: Academic and Industrial Conference Practice and Research Tech-
niques - MUTATION, 2007. TAICPART-MUTATION 2007. 2007, pp. 185–192.

[37] H. Shahriar and M. Zulkernine. “Mutation-Based Testing of Format String Bugs”.
In: High Assurance Systems Engineering Symposium, 2008. HASE 2008. 11th
IEEE. 2008, pp. 229–238.

[38] A. J. Offutt, J. Voas, and J. Payne. Mutation operators for Ada. Tech. rep. ISSE-
TR-96-09. Information and Software Systems Engineering, George Mason Uni-
versity, 1996.

[39] S. Kim, J. A. Clark, and J. A. McDermid. “The Rigorous Generation of Java Mu-
tation Operators Using HAZOP”. In: 12th International Conference on Software
and System Engineering and their Application (ICSSEA’99). 1999.

[40] Y.-S. Ma, Y.-R. Kwon, and J. Offutt. “Inter-class mutation operators for Java”.
In: Software Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th Inter-
national Symposium on. 2002, pp. 352–363.

[41] J. Offutt, Y.-S. Ma, and Y.-R. Kwon. “The Class-level Mutants of MuJava”. In:
Proceedings of the 2006 International Workshop on Automation of Software Test.
AST ’06. New York, NY, USA: ACM, 2006, pp. 78–84.

[42] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. “MuJava: A Mutation System for Java”. In:
Proceedings of the 28th International Conference on Software Engineering. ICSE
’06. ACM, 2006, pp. 827–830.

[43] L. Deng, J. Offutt, and N. Li. “Empirical Evaluation of the Statement Dele-
tion Mutation Operator”. In: Proceedings of the 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. ICST ’13. IEEE
Computer Society, 2013, pp. 84–93.

162

Appendix D. Mutation Analysis Results BIBLIOGRAPHY

[44] M. E. Delamaro, J. Offutt, and P. Ammann. “Designing Deletion Mutation Op-
erators”. In: 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation. 2014, pp. 11–20. doi: 10.1109/ICST.2014.12.

[45] C. Ji, Z. Chen, B. Xu, and Z. Wang. “A New Mutation Analysis Method for
Testing Java Exception Handling”. In: Computer Software and Applications Con-
ference, 2009. COMPSAC ’09. 33rd Annual IEEE International. Vol. 2. 2009,
pp. 556–561.

[46] A. Derezińska. “Advanced Mutation Operators Applicable in C# Programs”. In:
Software Engineering Techniques: Design for Quality. Ed. by K. Sacha. Vol. 227.
IFIP International Federation for Information Processing. Springer US, 2006,
pp. 283–288.

[47] A. Derezińska and A. Szustek. “Tool-Supported Advanced Mutation Approach
for Verification of C# Programs”. In: Proceedings of the 2008 Third Interna-
tional Conference on Dependability of Computer Systems DepCoS-RELCOMEX.
DEPCOS-RELCOMEX ’08. IEEE Computer Society, 2008, pp. 261–268.

[48] A. Derezińska. “Classification of Advanced Mutation Operators of C# Lan-
guage”. In: Information Systems Architecture and Technology, New Develop-
ments in Web-Age Information Systems. Oficyna Wydawnicza Politechniki Wro-
clawskiej, 2010, pp. 261–271.

[49] A. Derezińska and M. Rudnik. “Quality Evaluation of Object-Oriented and Stan-
dard Mutation Operators Applied to C# Programs”. In: Objects, Models, Com-
ponents, Patterns. Springer Berlin Heidelberg, 2012, pp. 42–57.

[50] P. Delgado-Pérez, I. Medina-Bulo, J. J. Domı́nguez-Jiménez, A. Garćıa-Domı́nguez,
and F. Palomo-Lozano. “Class mutation operators for C++ object-oriented sys-
tems”. In: annals of telecommunications - annales des télécommunications 70.3
(2015), pp. 137–148. issn: 1958-9395. doi: 10.1007/s12243-014-0445-4. url:
https://doi.org/10.1007/s12243-014-0445-4.

[51] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A. Garćıa-Domı́nguez, and
J. J. Domı́nguez-Jiménez. “Assessment of class mutation operators for C with the
MuCPP mutation system”. In: Information and Software Technology 81 (2017),
pp. 169 –184. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.

2016.07.002. url: http://www.sciencedirect.com/science/article/pii/

S0950584916301161.

[52] P. Delgado-Pérez, I. Medina-Bulo, S. Segura, A. Garćıa-Domı́nguez, and J. José.
“GiGAn: Evolutionary Mutation Testing for C++ Object-oriented Systems”.
In: Proceedings of the Symposium on Applied Computing. SAC ’17. New York,

163

https://doi.org/10.1109/ICST.2014.12
https://doi.org/10.1007/s12243-014-0445-4
https://doi.org/10.1007/s12243-014-0445-4
https://doi.org/https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/https://doi.org/10.1016/j.infsof.2016.07.002
http://www.sciencedirect.com/science/article/pii/S0950584916301161
http://www.sciencedirect.com/science/article/pii/S0950584916301161

Appendix D. Mutation Analysis Results

NY, USA: ACM, 2017, pp. 1387–1392. isbn: 978-1-4503-4486-9. doi: 10.1145/

3019612.3019828. url: http://doi.acm.org/10.1145/3019612.3019828.

[53] P. Delgado-Pérez, I. Medina-Bulo, and M. Núñez. “Using Evolutionary Muta-
tion Testing to improve the quality of test suites”. In: 2017 IEEE Congress on
Evolutionary Computation (CEC). 2017, pp. 596–603. doi: 10.1109/CEC.2017.

7969365.

[54] M. Kusano and C. Wang. “CCmutator: A mutation generator for concurrency
constructs in multithreaded C/C++ applications”. In: 2013 28th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 2013, pp. 722–
725.

[55] W. Chan, S. C. Cheung, and T. H. Tse. “Fault-Based Testing of Database Ap-
plication Programs with Conceptual Data Model”. In: Proceedings of the Fifth
International Conference on Quality Software. QSIC ’05. IEEE Computer Soci-
ety, 2005, pp. 187–196.

[56] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva. “Mutating Database Queries”.
In: Information and Software Technology 49.4 (2007), pp. 398–417.

[57] J. Tuya, M. J. Suarez-Cabal, and C. de la Riva. “SQLMutation: A tool to gener-
ate mutants of SQL database queries”. In: Second Workshop on Mutation Anal-
ysis (Mutation 2006 - ISSRE Workshops 2006). 2006, pp. 1–1. doi: 10.1109/

MUTATION.2006.13.

[58] OASIS. WS-BPEL 2.0. http://docs.oasis- open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.html. [Online; accessed 01-April-2016]. 2007.

[59] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo. “Mutation Operators
for (WS-BPEL) 2.0”. In: ICSSEA 2008: Proceedings of the 21th International
Conference on Software and Systems Engineering and their Applications. 2008.

[60] J. J. Domı́nguez-Jiménez, A. Estero-Botaro, A. Garćıa-Domı́nguez, and I. Medina-
Bulo. “GAmera: An Automatic Mutant Generation System for WS-BPEL Com-
positions”. In: 2009 Seventh IEEE European Conference on Web Services. 2009,
pp. 97–106. doi: 10.1109/ECOWS.2009.18.

[61] F. Lonetti and E. Marchetti. “X-MuT: A Tool for the Generation of XSLT Mu-
tants”. In: Quality of Information and Communications Technology (QUATIC),
2010 Seventh International Conference on the. 2010, pp. 280–285.

[62] Y. Jia and M. Harman. “An Analysis and Survey of the Development of Mutation
Testing”. In: IEEE Transactions on Software Engineering 37.5 (2011), pp. 649–
678.

[63] A. Acree. “On Mutation”. PhD thesis. Georgia Inst. of Technology, 1980.

164

https://doi.org/10.1145/3019612.3019828
https://doi.org/10.1145/3019612.3019828
http://doi.acm.org/10.1145/3019612.3019828
https://doi.org/10.1109/CEC.2017.7969365
https://doi.org/10.1109/CEC.2017.7969365
https://doi.org/10.1109/MUTATION.2006.13
https://doi.org/10.1109/MUTATION.2006.13
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://doi.org/10.1109/ECOWS.2009.18

Appendix D. Mutation Analysis Results BIBLIOGRAPHY

[64] T. A. Budd. “Mutation Analysis of Program Test Data”. PhD thesis. Yale Uni-
versity, 1980.

[65] A. P. Mathur. “Performance, effectiveness, and reliability issues in software test-
ing”. In: Computer Software and Applications Conference, 1991. COMPSAC ’91.,
Proceedings of the Fifteenth Annual International. 1991, pp. 604–605.

[66] A. P. Mathur and W. E. Wong. An Empirical Comparison of Mutation and Data
Flow Based Test Adequacy Criteria. Tech. rep. Purdue Univ, 1993.

[67] A. J. Offutt, G. Rothermel, and C. Zapf. “An Experimental Evaluation of Selec-
tive Mutation”. In: Proceedings of the 15th International Conference on Software
Engineering. ICSE ’93. IEEE Computer Society Press, 1993, pp. 100–107.

[68] W. E. Wong and A. P. Mathur. “Reducing the cost of mutation testing: An
empirical study”. In: Journal of Systems and Software 31.3 (1995), pp. 185 –196.

[69] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zaof. “An experimen-
tal determination of sufficient mutant operators”. In: ACM Trans. Softw. Eng.
Methodol. 5.2 (1996), pp. 99 –118.

[70] D. Schuler and A. Zeller. “Javalanche: Efficient Mutation Testing for Java”. In:
Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering. ESEC/FSE ’09. ACM, 2009, pp. 297–298.

[71] X. Yao, M. Harman, and Y. Jia. “A Study of Equivalent and Stubborn Mutation
Operators Using Human Analysis of Equivalence”. In: Proceedings of the 36th
International Conference on Software Engineering. ICSE 2014. Hyderabad, India:
Association for Computing Machinery, 2014, 919–930. isbn: 9781450327565. doi:
10.1145/2568225.2568265.

[72] D. Baldwin and F. Sayward. Heuristics for Determining Equivalence of Program
Mutations. Tech. rep. GEORGIA INST OF TECH ATLANTA SCHOOL OF
INFORMATION and COMPUTER SCIENCE, 1979.

[73] D. Schuler and A. Zeller. “Covering and Uncovering Equivalent Mutants”. In:
Software Testing, Verification and Reliability 23.5 (2012), pp. 353–374.

[74] R. A. DeMilli and A. J. Offutt. “Constraint-based automatic test data genera-
tion”. In: IEEE Transactions on Software Engineering 17.9 (1991), pp. 900–910.
issn: 0098-5589. doi: 10.1109/32.92910.

[75] J. Wang, S.-K. Kim, and D. Carrington. “Verifying metamodel coverage of model
transformations”. In: Software Engineering Conference, 2006. Australian. 2006.

165

https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1109/32.92910

Appendix D. Mutation Analysis Results

[76] A. Andrews, R. France, S. Ghosh, and G. Craig. “Test adequacy criteria for UML
design models”. In: Software Testing, Verification and Reliability 13.2 (2003),
pp. 95–127.

[77] F. Fleurey, B. Baudry, P.-A. Muller, and Y. L. Traon. “Qualifying input test
data for model transformations”. In: Software & Systems Modeling 8.2 (2009),
pp. 185–203. issn: 1619-1374. doi: 10.1007/s10270-007-0074-8. url: https:

//doi.org/10.1007/s10270-007-0074-8.

[78] T. J. Ostrand and M. J.Balcer. “The Category-partition Method for Specifying
and Generating Fuctional Tests”. In: Commun. ACM 31.6 (1988), pp. 676–686.

[79] S. Sen, B. Baudry, and J.-M. Mottu. “Automatic Model Generation Strategies for
Model Transformation Testing”. In: Theory and Practice of Model Transforma-
tions. Ed. by R. F. Paige. Vol. 5563. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2009, pp. 148–164.

[80] E. Guerra and M. Soeken. “Specification-driven model transformation testing”.
In: Software & Systems Modeling 14.2 (2015), 623––644. doi: https://doi.org/

10.1007/s10270-013-0369-x.

[81] E. Guerra, J. de Lara, D. Kolovos, and R. Paige. “A visual specification language
for model-to-model transformations”. In: Visual Languages and Human-Centric
Computing (VL/HCC), 2010 IEEE Symposium on. 2010, pp. 119–126.

[82] L. M. Rose and S. Poulding. “Efficient probabilistic testing of model transforma-
tions using search”. In: Combining Modelling and Search-Based Software Engi-
neering (CMSBSE), 2013 1st International Workshop on. 2013, pp. 16–21.

[83] S. Popoola, D. S. Kolovos, and H. H. Rodriguez. “EMG: A Domain-Specific Trans-
formation Language for Synthetic Model Generation”. In: Theory and Practice
of Model Transformations. Ed. by P. Van Gorp and G. Engels. Cham: Springer
International Publishing, 2016, pp. 36–51. isbn: 978-3-319-42064-6.

[84] J.-M. Mottu, B. Baudry, and Y. L. Traon. “Model transformation testing: oracle
issue”. In: Software Testing Verification and Validation Workshop, 2008. ICSTW
’08. IEEE International Conference on. 2008, pp. 105–112.

[85] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. L. Traon, and J.-M. Mottu.
“Barriers to systematic model transformation testing”. In: Communications of
the ACM 53.6 (2010), pp. 139–143.

[86] O. Finot, J.-M. Mottu, G. Sunyé, and C. Attiogbé. “Partial Test Oracle in Model
Transformation Testing”. In: Theory and Practice of Model Transformations. Ed.
by K. Duddy and G. Kappel. Vol. 7909. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 189–204.

166

https://doi.org/10.1007/s10270-007-0074-8
https://doi.org/10.1007/s10270-007-0074-8
https://doi.org/10.1007/s10270-007-0074-8
https://doi.org/https://doi.org/10.1007/s10270-013-0369-x
https://doi.org/https://doi.org/10.1007/s10270-013-0369-x

Appendix D. Mutation Analysis Results BIBLIOGRAPHY

[87] M. Gogolla and A. Vallecillo. “Tractable Model Transformation Testing”. In:
Modelling Foundations and Applications. Ed. by R. B. France, J. M. Kuester, B.
Bordbar, and R. F. Paige. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 221–235.

[88] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
J. Schönböck, and W. Schwinger. “Automated verification of model transforma-
tions based on visual contracts”. In: Automated Software Engineering 20.1 (2013),
pp. 5–46.

[89] M. Kessentini, H. Sahraoui, and M. Boukadoum. “Example-based model-transformation
testing”. In: Automated Software Engineering 18.2 (2011), pp. 199–224.

[90] N. D. Matragkas, D. S. Kolovos, R. F. Paige, and A. Zolotas. “A Traceability-
Driven Approach to Model Transformation Testing”. In: Proceedings of the Second
Workshop on the Analysis of Model Transformations, (AMT 2013). Ed. by B.
Baudry, J. Dingel, L. Lucio, and H. Vangheluwe. Vol. 1077. CEUR Workshop
Proceedings. CEUR-WS.org, 2013.

[91] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes. “Engineering a
DSL for Software Traceability”. In: Software Language Engineering. Ed. by D.
Gašević, R. Lämmel, and E. V. Wyk. Vol. 5452. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2009, pp. 151–167.

[92] D. S. Kolovos, D. D. Ruscio, A. Pierantonio, and R. F. Paige. “Different models
for model matching: An analysis of approaches to support model differencing”. In:
2009 ICSE Workshop on Comparison and Versioning of Software Models. 2009,
pp. 1–6. doi: 10.1109/CVSM.2009.5071714.

[93] J. M. Küster and M. Abd-El-Razik. “Validation of Model Transformations – First
Experiences Using a White Box Approach”. In: Models in Software Engineering.
Ed. by T. Kühne. Vol. 4364. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2007, pp. 193–204.

[94] M. Schmidt and T. Gloetzner. “Constructing Difference Tools for Models Using
the SiDiff Framework”. In: Companion of the 30th International Conference on
Software Engineering. ICSE Companion ’08. New York, NY, USA: ACM, 2008,
pp. 947–948. isbn: 978-1-60558-079-1. doi: 10.1145/1370175.1370201. url:
http://doi.acm.org/10.1145/1370175.1370201.

[95] O. Semeráth, R. Farkas, G. Bergmann, and D. Varró. “Diversity of graph models
and graph generators in mutation testing”. In: International Journal on Software
Tools for Technology Transfer 22.1 (2020), 57––78. doi: https://doi.org/10.

1007/s10009-019-00530-6.

167

https://doi.org/10.1109/CVSM.2009.5071714
https://doi.org/10.1145/1370175.1370201
http://doi.acm.org/10.1145/1370175.1370201
https://doi.org/https://doi.org/10.1007/s10009-019-00530-6
https://doi.org/https://doi.org/10.1007/s10009-019-00530-6

Appendix D. Mutation Analysis Results

[96] J.-M. Mottu, B. Baudry, and Y. L. Traon. “Mutation Analysis Testing for Model
Transformations”. In: Model Driven Architecture - Foundations and Applications.
Ed. by A. Rensink and J. Warmer. Vol. 4066. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2006, pp. 376–390.

[97] J.-M. Mottu, S. Sen, M. Tisi, and J. Cabot. “Static Analysis of Model Transfor-
mations for Effective Test Generation”. In: Proceedings of the 2012 IEEE 23rd
International Symposium on Software Reliability Engineering. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 291–300.

[98] E. Guerra. “Specification-Driven Test Generation for Model Transformations”.
In: Theory and Practice of Model Transformations. Ed. by Z. Hu and J. de Lara.
Vol. 7307. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012.

[99] V. Aranega, J.-M. Mottu, A. Etien, T. Degueule, B. Baudry, and J.-L. Dekeyser.
“Towards an automation of the mutation analysis dedicated to model transfor-
mation”. In: Software Testing, Verification and Reliability 25.5-7 (2015), pp. 653–
683.

[100] Y. Khan and J. Hassine. “Mutation Operators for the Atlas Transformation Lan-
guage”. In: Software Testing, Verification and Validation Workshops (ICSTW),
2013 IEEE Sixth International Conference on. 2013, pp. 43–52.

[101] J. Troya, A. Bergmayr, L. Burgueño, and M. Wimmer. “Towards Systematic
Mutations for and with ATL Model Transformations”. In: Software Testing, Ver-
ification and Validation Workshops (ICSTW), 2015 IEEE Eighth International
Conference on. 2015, pp. 1–10.

[102] J. S. Cuadrado, E. Guerra, and J. de Lara. “Static Analysis of Model Transforma-
tions”. In: IEEE Transactions on Software Engineering 43.9 (2017), pp. 868–897.
issn: 0098-5589. doi: 10.1109/TSE.2016.2635137.

[103] J. S. Cuadrado, E. Guerra, and J. de Lara. “Towards effective mutation testing
for ATL”. In: 2019 ACM/IEEE 22th International Conference on Model Driven
Engineering Languages and Systems (MODELS). Munich, German, 2019.

[104] P. Gómez-Abajo, E. Guerra, and J. de Lara. “A domain-specific language for
model mutation and its application to the automated generation of exercises”.
In: Computer Languages, Systems & Structures 49 (2017), pp. 152 –173. issn:
1477-8424. doi: https://doi.org/10.1016/j.cl.2016.11.001. url: http:

//www.sciencedirect.com/science/article/pii/S147784241630094X.

[105] J. Gosling. The Java language specification. 2nd ed. Boston; London: Addison
Wesley, 2000.

168

https://doi.org/10.1109/TSE.2016.2635137
https://doi.org/https://doi.org/10.1016/j.cl.2016.11.001
http://www.sciencedirect.com/science/article/pii/S147784241630094X
http://www.sciencedirect.com/science/article/pii/S147784241630094X

Appendix D. Mutation Analysis Results BIBLIOGRAPHY

[106] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln. Experi-
mentation in Software Engineering. Springer Publishing Company, Incorporated,
2012. isbn: 3642290434, 9783642290435.

[107] R. Wei. “An Extensible Static Analysis Framework for Automated Analysis, Vali-
dation and Performance Improvement of Model Management Programs”. Doctor
of Philosophy. Computer Science Department, The University of York, 2016.

[108] J. Sánchez Cuadrado, E. Guerra, and J. de Lara. “Reverse Engineering of Model
Transformations for Reusability”. In: Theory and Practice of Model Transforma-
tions. Ed. by D. Di Ruscio and D. Varró. Cham: Springer International Publish-
ing, 2014, pp. 186–201.

[109] B. J. Oakes, J. Troya, L. Lúcio, and M. Wimmer. “Fully verifying transformation
contracts for declarative ATL”. In: 2015 ACM/IEEE 18th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS). 2015,
pp. 256–265. doi: 10.1109/MODELS.2015.7338256.

[110] L. Burgueño, J. Troya, M. Wimmer, and A. Vallecillo. “Static Fault Localization
in Model Transformations”. In: IEEE Trans. Software Eng. 41.5 (2015), pp. 490–
506.

169

https://doi.org/10.1109/MODELS.2015.7338256

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Listings
	Acknowledgements
	Declaration of Authorship
	1 Introduction
	1.1 Motivation and Research Hypothesis
	1.2 Research Methodology
	1.3 Thesis Contributions
	1.4 Thesis Structure

	2 Literature Review
	2.1 Model Driven Engineering
	2.2 Mutation Testing
	2.3 Testing and Mutation Testing in MDE
	2.4 Chapter Summary

	3 Analysis and Hypothesis
	3.1 Problem Analysis
	3.2 Research Hypothesis
	3.3 Research Objectives

	4 A Mutation Operator Design Approach
	4.1 A Design Approach using a Generic Meta-metamodel
	4.2 Abstract Mutation Operators (AMO)
	4.3 Adaptation of the Approach to Ecore
	4.4 Instantiation of AMOs
	4.5 Chapter Summary

	5 Epsilon Mutator (EMU)
	5.1 Mutant Integration Layer
	5.2 Abstract Syntax
	5.3 Concrete Syntax
	5.4 Execution Semantics with Examples
	5.5 Chapter Summary

	6 Evaluation: Empirical Mutation Analysis
	6.1 Experiment Questions
	6.2 Experimental Approach
	6.3 Candidate Programs
	6.4 Test Models
	6.5 Concrete Mutation Operators
	6.6 Results

	7 Conclusion
	7.1 Thesis Contributions
	7.2 Future Work

	A Mutation Operators
	A.1 ATL Mutation Operators
	A.2 EOL Mutation Operators

	B Test Models
	B.1 Test Models for ATL Candidate Programs
	B.2 Test Models for EOL Candidate Programs

	C Mutation Analysis Results
	C.1 ATL Complete Results
	C.2 EOL Complete Results

	Bibliography

