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Abstract

There is great interest in superdeformation in light nuclei, A < 40 region, in particular

alpha-conjugate nuclei in the sd-shell. Enhanced collectivity for such light systems opens

new opportunities to test nuclear-structure theories. Antisymmetrized molecular dynam-

ics, large-scale shell model and beyond mean-field calculations which predict superdeformed

structures in these regions can be validated and tuned with the aid of experimental ev-

idence of superdeformed bands in light nuclei. A Jπ = 6+ state at 12.865 MeV in 28Si

with a measured B(E2) value of more than 25 W.u for the transition to the 10.946-MeV

Jπ = 4+ state is indicative of a highly collective transition and has been thought to form

part of a candidate SD band. Measurements of in-band electromagnetic transitions are

required to fully describe this proposed SD band. The CAGRA campaign is a combination

of small-angle inelastic scattering with high resolution γ-ray spectroscopy. This method

preferentially populates low-spin and isoscalar natural parity states. A 12 Clover + 4

LaBr3 array was used in coincidence with the high resolution Grand Raiden spectrometer

to momentum analyse inelastically scattered α-particles. The experiment was performed at

the Research Center for Nuclear Physics (RNCP) of Osaka University, Japan. This thesis

will focus on the experimental challenges, analysis and results of the 28Si(α, α′) reaction

at 9.1◦ with Eα
beam = 130 MeV impinged on a natSi target. The first upper limits of the

in-band γ-ray transition strength of 6.08 W.u from the Jπ = 4+ to Jπ = 2+ of the proposed

superdeformed band in 28Si has been measured. This has the potential to constrain future

theoretical predictions of superdeformation in 28Si.
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Chapter 1

Introduction

The shape evolution of the nucleus illuminates some of the most enigmatic and fundamental

properties of nuclear structure. Evidence of the most exotic shapes and vibrations in nuclei

have contributed major advancements to nuclear theory. Superdeformation in nuclei is

a prime example of the consequences of complex many-body-nucleon interactions. This

research aims to study potentially one of the most deformed nuclear states known in nuclear

physics. There is growing theoretical interest in 28Si because of its unique location on the

nuclear chart, residing in the middle of the sd-shell.

28Si has a rich and varied deformation landscape with confirmed shape coexistence

(Sheline et al., 1982). It is oblately deformed (disk shaped) in its ground-state, through

excitation it is known to undergo multiple shape evolutions. It can undergo quadrupole

(rugby ball shaped) and octupole deformations (Zalmstra et al., 1991). There is also

a β-vibration built upon the Jπ=2+
1 state of the ground-state band, further reflecting

its complex dynamics (Sheline et al., 1982). A third shape has been proposed in high

spin states with triaxial deformation (Sheline et al., 1982). Superdeformation has been

theoretically predicted in this region and if experimentally confirmed, could have profound

consequences on our understanding of nuclear clustering phenomena in nuclei.
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Introduction

Figure 1.1: The Ikeda diagram which shows a simple picture of nuclear nuclear clustering.
As excitation energy increases the clustering degrees of freedom increase (Freer et al., 1995).
The linear chain of α-particles is now widely discarded but the lower degrees of freedom
are still predicted in current theoretical models.

There is a tendency for nature to form clustered structures. From astrophysics, through

the formation of galaxies (thousands of lights years) to the clustering of atoms in chemistry

(Å), creating molecules. Probing to even smaller lengths scales (fm) the same phenomena

occurs within the atomic nucleus. This is most famously described by the Ikeda diagram.

Figure 1.1 illustrates a very simple picture, neglecting its true quantum nature, of how

the clustering degrees of freedom emerge with excitation energy. For example in 12C,

where approximately 7.27 MeV is required to separate it into a 3 α-particle (4He) cluster

system. Therefore, excitation energy is required to overcome this mass energy difference

and separate the nucleus into smaller constituents. This is the reason cluster structures are

expected to form close to and above the break-up threshold of the cluster state. Evidence
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Introduction

of this was found through the Hoyle state (Chernykh et al., 2007). This state is formed

through the triple α process in the initial stages of stellar nucleosynthesis. Firstly, two α

particles fuse together, to form an unstable intermediate 8Be, a third α particle is captured

through a 7.65 MeV resonance in 12C, forming a 3α cluster state (Chernykh et al., 2007).

This has profound implications on the existence of human life. Without this cluster state

we could not explain the natural abundance of 12C, which forms the basis of all living

matter.

The Ikeda diagram also shows the possible cluster states in 28Si, with a 24Mg + α

cluster emerging around 9.78 MeV. At much higher energy, a 7α cluster state becomes

energetically possible. A recent experiment has observed a 7α disassembly resonance in

28Si at very high excitation via a 28Si + 12C fusion reaction (Cao & Kim, 2018). Figure 1.2

shows the calculated excitation energy against quadrupole moment (Staszczak & Wong,

2014). For 28Si some toroidal shapes were predicted to be possible. This could reflect the

Ikeda picture, with a 7α cluster structure, however now in a closed ring formation.

It’s clear that there is an interesting and natural connection between superdeformation

in nuclei and nuclear clustering phenomena. It is therefore important to review our current

understanding of superdeformation and the relevant models which can be used to explain

them.
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Superdeformation in Nuclei Introduction

Figure 1.2: HFB calculation of predicted toroidal shapes in different nuclei (Staszczak &
Wong, 2014).

1.1 Superdeformation in Nuclei

The first experimental observation of superdeformation in nuclei was certainly an unex-

pected discovery for the physics community. It was commended publicly in Physics Today

by D. Kleppner being on par with the discovery of buckyballs and the supernovae 1987A

observation around the same period (D.Kleppner, 1991). One of the major milestones

leading up to their discovery was the addition of a shell-correction energy to the Nilsson
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Superdeformation in Nuclei Introduction

model, called the Strutinsky method (Strutinsky, 1967). Striking predictions from this

model included a second minimum in the potential energy surface at large deformation.

This double-humped structure was observed by Flerov et.al. in the search for heavy ele-

ments in the 60’s (Flerov & Ter-Akopian, 1987). During the first production of 260Rf, γ

decays were still detected up to 15 ms after synthesis. This could be only explained by

the Strutinsky model. Here, 260Rf was produced in a meta-stable state within a second

minimum of the potential energy surface. To reduce its energy, it could either quantum-

mechanically tunnel through the barrier to the normally deformed band, explaining the

increased γ-decay lifetime, or fission. The first superdeformed rotational band was not dis-

covered until 1986 (Twin et al., 1986). Here, states up to 60h̄ in 152Dy were seen with 19

transitions equally spaced from 602 to 1449 keV, known as the picket fence. The measured

moment of inertia of 85 ± 2 h̄2 MeV−1 corresponded to that of a superdeformed band with

β ≈ 0.6.

This discovery was influential on the commissioning of many γ-ray spectrometers such

as Gammasphere, Euroball and later GRETINA and AGATA. With these arrays, many

superdeformed bands have been discovered around the mass regions 40, 60, 80, 130, 150,

190 and 240.

This grouping can be explained through a simple deformed harmonic oscillator potential

model, as seen in Figure 1.3. Large shell gaps are preserved for a 2:1 ratio of the major to

minor axis in β-deformed nuclei and additionally new energy degeneracies are formed. Typ-

ical ratios of 1.5:1 to 2:1 are then broadly characterised as superdeformed. There has been

no experimental evidence of hyperdeformation, ratios up to 3:1. However, recent SU(3)

theoretical models have predicted such phenomena in light nuclei. Here, shape isomers are

formed with a third minimum in the potential energy surface with hyperdeformation (Cseh

et al., 2019).
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Figure 1.3: Deformed harmonic oscillator potential energy levels. New energy level degen-
eracies are formed as the nucleus is deformed. The blue circles represent level degeneracies
for spherical nuclei, red for superdeformed and green are for hyperdeformed. Adapted from
(Freer et al., 1995).

In heavy nuclei, such as 152Dy, the SD bands can be explained through the Strutinsky

method. However, in lighter nuclei this has had limited success. The search for superde-

formation in lighter nuclei, particularly in sd-shell nuclei, is of great interest to nuclear

theory. Many theories have been applied in this region with rich and varied predictions of

the emergence of superdeformation. Nuclei in the sd-shell region serve as a unique testing

18



Superdeformation in Nuclei Introduction

ground for exploring mean fields in coexistence with clustering degrees of freedom. These

nuclei have shown strong affinity to form α, 12C and 16O cluster states (Chiba et al., 2017).

The most recently discovered SD band in lighter nuclei was in 42Ca through a Coulomb

excitation study (Hadyńska-Klȩk et al., 2016). That study, was performed at Laboratori

Nazionali di Legnaro using a 170-MeV 42Ca beam impinged on a 208Pb and 197Au target.

The electromagnetic transitions following the subsequent Coulomb excitation were then

measured with AGATA (Akkoyun et al., 2012). A superdeformed and slightly triaxial

sideband built on the Jπ=0+
2 state was found to have a β = 0.43(2) and γ = 13(+5

−6)◦

(Hadyńska-Klȩk et al., 2016). However, this method is unavailable to probe superdefor-

mation in 28Si, since the band head for the proposed SD band lies at 9.7 MeV. Coulomb

excitation would not permit a single step excitation to this energy within the Cline’s safe

energy criterion (Zielińska & Gaffney, 2016).

The lightest superdeformed band was found in the, N=Z nucleus, 36Ar, through the

24Mg(20Ne,2α)36Ar reaction (Svensson et al., 2000). High-spin states were populated up

to Jπ = 16+ and connected to states down to low-spin, as seen on the left of Figure 1.4

on the simplified level scheme. They used the spherical shell model and cranked Nilsson-

Strutinsky calculations to determine β ≈ 0.45. The insert shows the comparison between

the experiment and shell model calculation. Almost pure rotational behaviour is seen up

to 10h̄, where backbending starts to occur.
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Figure 1.4: Simplified level scheme, detailing the superdeformed band in 36Ar, the lightest
system to undergo superdeformation (Svensson et al., 2000).
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1.2 Predictions of Superdeformation 28Si

The first theoretical models used to predict SD in light nuclei were based on the

anisotropic harmonic oscillator model (Cseh & Scheid, 1992). This takes the 1-D simple

harmonic oscillator potential into 3-D. The deformation is assumed to be ellipsoidal with

a1:a2:a3=ω1:ω2:ω3, where ai is the axis length and ωi is the oscillator quanta frequency

in ith direction. The potential is then formed from the sum of the standard harmonic

oscillator potential for each axis:

V =
1

2
m

3∑
i=1

ω2
i x

2
i , (1.1)

then the predicted single particle energies are given by:

E(n1, n2, n3) = h̄
3∑
i=1

ωi(ni +
1

2
). (1.2)

These form the basis of the Harvey’s and Wildermuth’s descriptions. The former relates

highly deformed states to the clustering degrees of freedom, while the latter connects the

cluster model to a shell model basis. Applying these, Cseh et al predicted 24Mg + α, 20Ne

+ 2α and 16O + 3α alpha cluster structures with 2:1:1 deformation ratios (Cseh & Scheid,

1992).
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Antisymmetrized molecular dynamics (AMD) is one of the main and most recent nu-

clear models to describe nuclear clustering. This approach has been applied to a diverse

range of nuclear structure phenomena, molecular resonances, α-condensation and heavy-

ion collision and many more as illustrated in Figure 1.5. AMD brings together coexistence

between clustering and the mean-field. Its main approach is to express the wavefunction

through a sum of independently localised Gaussian wave packets, each one representing

either a single nucleon or cluster structure.

deformationdeveloped
clusters

shell structure
cluster breaking

neutron−rich

halo, skin

nn correlation

weakly bound systems

shell evolution

molecular orbitals

(GR, PR)
collective modes

cluster decay

numbermass

matter

excitation energy / temperature

molecular resonance

multifragmentation in heavy ion collision

threshold decay

alpha condensation

liquid−gas
phase transition

Figure 1.5: Illustration of the diverse clustering phenomena in nuclei depending on isospin
and excitation energy. There is an emergence of clustering degrees of freedom with exci-
tation energy which is in competition with mean-field effects, at lower excitation energies.
AMD calculations unify both mean-field and clustering effects into one complete frame-
work. (Kanada-En’yo et al., 2012).

A recent calculation performed on 28Si by Taniguchi et al used a deformed-basis AMD

model including multi-configuration mixing. They also constrained the quadrupole defor-

mation parameter, β, and distance, d, between possible clusters (Taniguchi et al., 2009).

They also studied excited states in 28Si by applying energy variation to both β and d.

This method has proven successful in other light superdeformed nuclei. It was applied
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to superdeformation in 42Ca, where predicted B(E2) values were in good agreement with

experiment (Taniguchi et al., 2007). They reproduced the oblate band, normal-deformed

band and a SD band in 28Si. The predicted B(E2) values were also in agreement with

experiment. However, no experimental B(E2) values exist for the proposed SD band in

28Si, so this was not compared. Furthermore, they predicted the Jπ = 0+ band-head to

lie at 13.8 MeV, much higher than the best candidate which lies at 9.71 MeV (Adsley &

Jenkins, 2017).

Taniguchi et al predicted a very large deformation of β ≈ 0.8 with an angular momen-

tum of 6 h̄2 MeV for the proposed SD band in 28Si. In 2017 they made further calculations

using AMD, with the Gogny D1S effective interaction (Chiba et al., 2017). Their basis

wave functions from the AMD calculation were then used in a generator coordinate method

(GCM) calculation. From this they could calculate predicted energy levels.
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Figure 1.6: AMD calculations with predicted partial level scheme compared to experimen-
tally observed levels in 28Si (Chiba et al., 2017).
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Figure 1.6 shows the comparison between their predictions and experiment. To sum-

marise their results: An oblate minimum in a β − γ energy surface plot with mixed

20Ne + 8Be cluster configurations, this was paired with a negative-parity band, labelled

20Ne + 8Be doublet. The oblate minimum is also mixed with 24Mg + α cluster configu-

rations. This forms a group of band structures, labelled 24Mg + α(T) in Figure 1.6. The

16O + 12C cluster configuration is mixed with the prolate deformed minimum and the SD

state minimum is mixed with a 24Mg + α cluster configuration. Figure 1.7(a) shows the

energy surface plot for the Jπ= 0+ and Figure 1.7(b) shows the inversion doublet, Jπ= 1−.

The most important result was the SD minimum at (0.85,5◦) and its corresponding matter

density distribution in Figure 1.8(c).

Figure 1.7: (a) Energy surface plot for the Jπ= 0+ cases with energy minima at (β, γ)=
(0.36,46◦) corresponding to oblate deformation , prolate deformation predicted at (0.5,0◦)
and the third minimum at (0.85,5◦) is the predicted SD state. The red circles indicate the
location of each minima. (b) Minima for the Jπ= 1− inversion doublet (Chiba et al., 2017).
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Figure 1.8: Calculated intrinsic matter density distributions corresponding to minima data
points on Figure 1.7. Here, (a), (b) and (c) are for the oblate, prolate and SD minima on
Figure 1.7(a). The inversion doublets (d), (e) and (f) are from the minima in Figure 1.7(b)
(Chiba et al., 2017).

These calculations suggest very rich clustering configurations in 28Si with large crossover

with superdeformation. To get a complete picture of the motivation of this project the

experimental evidence linked to these predictions is necessary.

1.3 Previous Evidence of Superdeformation in 28Si

Pioneering research by Brenneisen et al gave the first credible argument for experimental

evidence of SD in 28Si (Brenneisen et al., 1995). This review and research on the structure of

28Si above 10 MeV is the most detailed study of its kind. Theoretical calculations predicted

the band head of the candidate SD band to lie near or above 10 MeV. Therefore, the

Brenneisen et al research was vital in identifying candidate states belonging to a possible
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SD band. Majority of the data included in Brenneisen et al. (1995) came from studying

24Mg(α, γ)28Si and 27Al(p,γ)28Si reactions. These reactions do not preferentially populate

high spin states due to the high centrifugal barrier. Instead, many of the higher spin states

have been studied using n-γ coincidence measurements through 25Mg(α,nγ) reactions, such

as that performed by Glatz et al. (1981b). Another major campaign for high spin states was

carried out by S.Kubono through studying 12C(20Ne, α) reactions (Kubono et al., 1986).

The main focus of these studies was to learn more about the shape coexistence in 28Si

between the known oblate ground-state band and the excited normally deformed band.

However, the 12C(20Ne, α) reaction populated a previously unobserved Jπ=6+ state, which

was later remeasured by Brenneisen et al through 24Mg(α, γ)28Si reactions.

Importantly for this research was the Brenneisen’s et al measurement of a 1919-keV

γ-ray transition from the Jπ = 6+ state at 12.86 MeV to a Jπ= 4+ level at 10.945 MeV with

(2J+1)Γγ > 0.37 ev. The corresponding B(E2) value for this decay was > 25 W.u. which

is indicative of strong collectively. Furthermore, it’s interesting that the most populated

state below 12 MeV was the Jπ= 4+ state at 10.945 MeV. This had an unexpected yield, 10

times greater than the first and second Jπ= 4+ states belonging to the oblate ground-state

band and the normally deformed band, respectively. Similar preference for the 10.945-

MeV state population was also seen in 24Mg(6Li,d) reaction at 73 MeV bombarding energy

(Tanabe et al., 1983).

An experiment performed with the Gammasphere γ-ray spectrometer, ANL, with the

main aim to investigate mirror symmetry in 31S with 31P was reanalysed by Jenkins et al.

(2012). The experiment had a large 28Si channel population through the 12C(20Ne,α)28Si

reaction with an initial beam energy of 32 MeV. Gammasphere includes 100 HPGe detec-

tors with Compton suppression capability. Through γ-γ coincidence analysis, the in-band

transition from the Jπ=6+ to Jπ=4+ states of the proposed SD band first seen by Bren-

neisen et al. (1995) was verified. This was achieved by gating on the out of band transition

from the Jπ= 4+ state of the SD band. The results show a γ-ray transition at 1919 keV

which corresponded to the in-band transition, as seen in Figure 1.9. This result was then

the main motivator for this thesis research. The results from the Gammasphere experiment

26



Previous Evidence of Superdeformation in 28Si Introduction

did not confirm the existence of the superdeformed band. However, it did show promising

signs. Considering, transitions from the Jπ= 4+ state of the proposed SD band to the oblate

ground-state band were subdued, with a B(E2) ≈ 0.01 W.u. In contrast, transitions to

the normally deformed prolate band seemed to be dominant, with a measured B(E2) value

of ≈ 5.0 W.u. This information shows some structural comparison between the proposed

SD band and the prolate band. This, together with the large Jπ=6+ to Jπ=4+ transition

strength, does suggest a highly deformed rotational band.

Figure 1.9: γ-γ coincidence spectrum taken from a Gammasphere experiment. Events
shown were gated on the 3565-keV transition from the 10.945-MeV, Jπ=4+, state of the
proposed SD band. Here, peaks labelled c are contaminate transitions. The insert shows
the high energy component of the spectrum where a 1919-keV transition was observed
(Jenkins et al., 2012).
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A recent and more direct research project on the proposed superdeformed band was

performed at iThemba labs, South Africa, where the band-head has been identified (Adsley

& Jenkins, 2017) using α-particle inelastic scattering at angles in the range of 0-6◦. The

excitation energy of 28Si was reconstructed using the K600 high resolution spectrometer,

this is of very similar design to that of the Grand Raiden spectrometer at Research Centre

for Nuclear Physics (RCNP), Osaka.

Figure 1.10: Focal plane spectra for the 28Si(α,α’)28Si* reaction measured at different
scattering angles (Adsley & Jenkins, 2017). This can be used to compare results from this
research to check consistency in the reaction mechanism. However, they did not perform
measurements as high as 9.1◦.
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Excitation spectra can be seen in Figure 1.10 from this experiment for varying angles.

Several Jπ= 0+ states were observed above 9 MeV. Notably, was a Jπ= 0+ state identified

at 9.71 MeV. This was confirmed by measuring the differential cross section of this state

for different scattering angles, as seen in Figure 1.11 (Adsley & Jenkins, 2017). Here, the

experimental differential cross section was compared to that calculated for a Jπ= 0+ state

by DWBA calculations. The two curves correspond to different optical potentials used,

both consistent with a Jπ= 0+ state, with the differential cross section maximum at 0◦.

Theoretical predictions from a semimicroscopic algebraic model was in good agreement

with the experimental observation (Cseh & Riczu, 2016), therefore they concluded this

was indeed the band-head of the proposed SD band.

Figure 1.11: Results of the differential cross section for the Jπ= 0+ band head of the
SD band. The two curves represent different DWBA calculations with alternative optical
model parameters both for a Jπ= 0+ state distribution (Adsley & Jenkins, 2017).
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There were no high resolution γ-ray spectroscopy capabilities available during the ex-

periment at iThemba. Therefore, any electromagnetic transitions from the new Jπ= 0+

state of the proposed SD band could not be detected. As the proposed SD band-head lies

below the α particle decay threshold (9984.14 keV) in 28Si, there should be no competition

with particle decay (Wang et al., 2012). The 10.91-MeV Jπ= 4+ state of the proposed

SD band does lie above this threshold, therefore the branching ratio for the α-breakup

will have to be taken into account. The present research did have high resolution γ-ray

spectroscopy capabilities with the CAGRA array. Additionally, α-γ branching ratios can

be calculated, as raw focal plane spectra can be compared to gated γ coincidence spectra.

If particle decay is forbidden, the state population integral measured at the focal plane

should be 1:1 with direct γ-decays from that state in coincidence with the focal plane. Un-

fortunately, the γ counts have to be efficiency corrected and this can introduce significant

error, especially when extrapolating to high γ-ray energies.
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Theory

The conventional image of a nucleus is naively spherical considering that the majority all

experimentally known nuclei in their ground states are deformed. It is only near specific

numbers of protons and neutrons where sphericity is the equilibrium shape. These form

the so called closed shell magic nuclei at N, Z = 2, 8, 20, 28, 50, 82 and for neutrons

126. This phenomena shows there is a competition between microscopic and macroscopic

effects within the nucleus. The magic numbers are a distinct example of the single particle

nature within nuclei, i.e. nucleons moving independently within a mean field potential,

in which is the basis of the independent particle model. The introduction of using mean

field potentials, such as the Woods-Saxon potential together with the contribution of the

spin-orbit interaction was enough to explain the experimentally observed stability at magic

numbers.

However, for non-magic nuclei, some notion of collectivity among all of their con-

stituents is required to explain the emergence of deformation. The Nilsson model (Nilsson

et al., 1969) and Collective Models are the main groups of models in which explain nuclear

deformation. The Nilsson model is an extension of the independent particle model, where

the Wood-Saxon is replaced with a deformed potential. The 2J+1 degeneracy of each

J state is now broken, as each sub-state no longer orbits within a spherically symmetric

potential. The extent to which the sub-states shift in energy depends on the degree of
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deformation.

A collective model treats the nucleus within a macroscopic framework. The most fa-

mous of these is the liquid drop model (Bethe & Bacher, 1936). This model ignores the

individual motion of nucleons and is analogous to molecules within a liquid drop. The

ground-state binding energies of nuclei away from magic numbers are well described by

this model. More advanced liquid drop models such as the finite-range liquid drop model

have increased precision near to magic numbers (Möller et al., 2016) - see Figure 2.1 for its

predictions compared to experiment. This model combines both microscopic and macro-

scopic approaches adding shell corrections to the liquid drop model (Möller et al., 2016).

However, these models have limited success in modelling excited states.

Nuclear cluster models have also added to our understanding of the shape of nuclei.

Here, certain nuclei can be thought to be made up of building blocks of smaller nuclei,

analogous to atomic molecules. A wide range of nuclear cluster models have been applied

to explain superdeformation in light nuclei, including 28Si.

Figure 2.1: Comparisons of 2149 experimentally measured ground-state masses and their
predicted values using the finite-range liquid drop model. This model well produces the
spikes seen around the magic number regions (Möller et al., 2016).
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2.1 Nuclear Deformation

Deformation Parameters

A complete understanding of the complex and often puzzling inner working of nuclei is a

huge undertaking for nuclear theory. However, experimentally there are a wide range of

model independent observables that can be measured or calculated to characterise nuclear

structure. These include charge density distributions, which can be measured via electron

elastic scattering (Anni et al., 1995). Fitting to data from such experiments yields the

following relation:

R = r0 A
1
3 , (2.1)

which estimates the radius, R, of a nucleus with mass number A. Both the radius and

the proportional constant, r0, can also be experimentally determined via electron elastic

scattering measurements (Suda & Wakasugi, 2005). For 28Si, this corresponds to R =

3.796 fm when r0 = 1.25 fm and assuming a constant homogeneous density of protons and

neutrons. Therefore, if the radius significantly deviates from this value, there must be

a significant underlying change in nuclear structure. The major disadvantage of electron

scattering is that it is only able to study stable nuclei in their ground states. However,

recent advancements in ion trap techniques and storage rings have opened up new possibil-

ities of electron scattering on exotic nuclei (Suda & Simon, 2017). The lifetimes of excited

states in light nuclei are in the ps to fs time scale, which is far too short for any coherent

elastic scattering methods to achieve appreciable statistics.

The nucleus is a quantum mechanical system with no classically rigid boundary or

surface. Therefore, a more appropriate measure of the charge distribution is the root-

mean-squared (rms) charge radius (Campbell et al., 2016):

〈r2〉 = 3
5
r0

2A
2
3 =

∫∞
0 ρ(~r)r2d3r∫∞
0 ρ(~r)d3r

, (2.2)

where, ρ, is the charge density function. Laser-spectroscopy is one of the main model

independent techniques to measure the rms. Here, an isotope shift is seen in atomic

33



Nuclear Deformation Theory

transition frequencies due to changes in size and mass within a particular isotopic chain

(Campbell et al., 2016). This technique is only applicable to stable nuclei or long lived

isomeric states and is unavailable for the study of short lived excited states.

Any physical system which has a charge distribution will have an associated multipole

field. In classical electromagnetism, electric fields are produced via static charge distri-

butions, whereas currents produce magnetic fields. Performing a power series expansion

on these fields forms the multipole expansion. The magnitude of each term depends on

the charge distribution. A point charge is solely described by the first order term, more

commonly known as the monopole and only exist for the electric field, as there is no ex-

perimental evidence for magnetic monopoles. The electric dipole is a linear separation of

charge and is represented by the second order term. The magnetic dipole field describes a

point charge in motion around a closed loop and the third order expansion represents the

quadrupole term. For electric fields, the quadrupole term represents four point charges in

a square lattice.

This formalism is therefore convenient to represent the spatial and current distribution

of nucleons within nuclei. A spherical symmetric charge distribution will have a vanishing

dipole moment. Any emergence of quadrupole or higher multipole terms are therefore a

unique identifier for nuclear deformation. When nuclei deform, they become elliptical and

therefore have a non-zero quadrupole moment. Classically, this term is represented by:

Q0 =

∫
(ρ(3z2 − r2)dV. (2.3)

This is a volume integral over the density distribution, ρ. Here, z is the position along

the symmetry axis as seen in Figure 2.2. It is important to stress that this can not be

experimental observed as it only quantifies deformation in the intrinsic reference frame of

the nucleus. The nucleus is always spherical in the laboratory frame of reference. However,

what can be measured is the experimental spectroscopic quadrupole moment (Campbell

et al., 2016):
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Qs =
3Ω2 − I(I + 1)

(I + 1)(2I + 3)
Q0. (2.4)

This is the quantum mechanical equivalent of Equation 2.3 but now in the laboratory

frame. Here, Ω represents the projection of the angular momentum I quantum number

onto the symmetry axis. Therefore, if Qs is experimentally measured, Q0 can be calculated.

Figure 2.2 shows how the shape of the nucleus is related to Qs with respect to the symmetry

axis. For Qs > 0 the nucleus is stretched out with respect to the symmetry axis, this is

known as prolate deformation. Qs < 0 represents oblate deformation, with the sphere

compressed with respect to the symmetry axis. Qs = 0 occurs only for spherical nuclei.

Figure 2.2: Nuclear Quadrupole deformation; Q > 0 gives prolate deformation a stretched
sphere with respect to the z symmetry axis. Q < 0 represents oblate deformation, com-
pressed sphere with respect to z symmetry axis. Q = 0 corresponds to a spherical nucleus.

Q0 is also closely linked to the β2 deformation parameter. Which is defined by:

β2 = 4
3

√
π
5

∆R
Rav

, (2.5)

Q0 = 3√
5π

ZeR2
Av<β2>(1 + 0.36<β2>), (2.6)

where ∆R is the difference in length of the semi-minor and semi-major axis of an

ellipsoid, which represents the deformed nuclear shape. Rav is the average nuclear radius

as given by Equation 2.1.
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Rotations and Vibrations of Nuclei

In the view point of nuclear matter behaving as a deformed macroscopic system. It’s a

natural progression to consider how rotations and vibrations can be used to explain aspects

of nuclear structure. Any classically rotating object will have an associated moment of

inertia given by:

ξ =
∞∑
i=0

mir
2
i =

∫
V

ρ(~r)||r||2dV. (2.7)

Therefore, depending on the matter distribution the moment of inertia will change.

The following summarises the solutions to Equation 2.7 for some example nuclear matter

distributions.

ξ = 2
5
mR2

Av (Solid Sphere), (2.8)

ξ = 2
5
mR2

Av(1 + 0.31<β2>) (Solid Ellipsoid), (2.9)

ξ = 9
8π

mR2
Av<β2> (Fluid Ellipsoid). (2.10)

As the moment of inertia is not a direct experimental observable, it’s more useful to

see how it contributes to the rotational energy of the system:

ERot = 1
2
ξω2 = 1

2
ξ(
`

ξ
)2 = h̄2

2ξ
I(I+ 1), (2.11)

where I is the total angular momentum and ω is the classical angular velocity, the factor

h̄2

2ξ
is known as the rotational energy constant, E0, which only depends on the moment of

inertia. Experimentally, it is observed that Efluid
0 > Eexp

0 > Esolid
0 , which reflects the range

of the nuclear force. Its short range does not permit interactions between all nucleons,

which would be reflective of a solid. On the other hand, pairing and nearest neighbour

interactions means nucleons are not so weakly bonded to be completely characteristic of a

pure fluid.
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Figure 2.3: This shows how the intrinsic angular momentum , J, and the rotational angular
momentum , R, are geometrically connected to the total angular momentum I. This also
shows the relationship between the laboratory frame and the intrinsic symmetry frame of
reference (Wood & Rowe, 2010).

Rotational band theory

Another one of the most successful collective models is the rotor model. This expands on

the simple description of nuclear rotations as discussed until now. This model separates

its Hamiltonian into rotational and intrinsic components (Wood & Rowe, 2010):

Ĥ = Ĥrot + Ĥint, (2.12)

here, the rotational term is given by:

Ĥrot =
h̄2

2

[
R̂2
x′

ξx′
+
R̂2
y′

ξy′
+
R̂2
z′

ξz′

]
, (2.13)

where the Euler angle coordinate system is used due to its convenience in describing

rotations. As seen in Figure 2.3 the laboratory coordinate system (xlab, ylab, zlab) is now

used to fix an intrinsic frame of reference (x’,y’,z’). Conventionally, the intrinsic frame is set

by the relative angles between z’ and each laboratory coordinate. In Equation 2.13, ξi and

Ri are now the relative moment of inertia and rotational angular momentum components
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with respect to the new intrinsic reference frame. The total intrinsic, Ĵ, and rotational, R̂,

angular momentum now forms the total angular momentum, Î = R̂ + Ĵ. The projection

of this vector onto the symmetry axis then gives the more appropriate quantum number

Ω̂. Expressing Equation 2.13 in terms of Î and Ĵ and expanding yields:

Ĥ =
h̄2

2

∑
i

[
I2
i

ξi
+

Î · Ĵ
ξi

]
+ Ĥint. (2.14)

The Hamiltonian in this form highlights that the intrinsic and rotational degrees of

freedom are coupled (Wood & Rowe, 2010). This is known as the Coriolis interaction, as

it increases in strength for stronger rotations.

For the case of prolate and oblate deformation, which have two fold symmetry along

z’, the z’ axis is then labelled as the symmetry axis. The rotational angular momentum

and moment inertia is therefore also symmetrical around z’, giving ξx′ = ξy′ & Rx′ = Ry′ .

With these exceptions, Equation 2.14 yields the following analytical eigenvalue solution:

E′ΩI =
h̄2

2

[
I(I+1)

ξx’y’

+

(
1

ξz’

− 1

ξx’y’

)
Ω2

]
. (2.15)

Therefore, for even-even nuclei where the ground-state Jπ = 0+ gives also Ω = 0. With

this, Equation 2.15 then reduces to:

E = E0 + h̄2

2ξx’y’
I(I+1). (2.16)

This is equivalent to Equation 2.11, which was derived from a very simple rotor model

but now with edition of the ground-state energy E0. However, for non-zero Ω̂ projections,

Equation 2.15 becomes:

Eα = EαΩ + h̄2

2ξα
I(I+ 1). (2.17)

Fitting to experimental data will fix EαΩ and ξα and is unique for a given band-head

with a characteristic Ω̂ projection. Symmetry laws play a huge role in characterising

rotations. The wave function describing a simple rotor is a superposition of both |ΩIM >

and |−ΩIM > states, given by:
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|ΩIM > + ε(−1)I+Ω|−ΩIM > . (2.18)

The sign of ε determines if the wave function is either symmetric, ε = +ve, or antisym-

metric, ε = −ve, via rotations about the symmetry axis. Equation 2.18 shows symmetric

solutions, with Ω = 0 and odd values of I disappearing. Therefore, only even values of I

are possible. This is reversed for the antisymmetric case, where only odd I value solutions

survive. The I(I + I) dependence in energy together with the symmetry restrictions on I

form what is called a rotational band. The rotor model powerfully predicts the low energy

structure of many even-even nuclei. The Jπ = 0+ ground-state of 28Si is well-known to be

oblately deformed (Peach et al., 2016). Therefore, a rotational band built upon this would

be restricted to

I + = 0+, 2+, 4+, 6+...1.

Another well-known rotational band in 28Si is the prolate deformed band built on the

0+
3 state (Glatz et al., 1981a) at 6696 keV, again with the same sequence of I values as the

g.s oblate band. Figure 2.4 shows the striking proportionality between excitation energy

and I(I+1), as is expected from the rotational model. The examples plotted include all of

the main experimentally observed low excitation rotational bands in 28Si. Fitting a linear

polynomial to each band and taking the gradient gives the experimentally determined

rotation energy constant.

1As stated earlier, for Jπ = 0+ you must have Ω = 0, and therefore Jπ = I+
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Figure 2.4: I(I+1) Energy dependence for the SD band, N.D band and g.s rotational bands
in 28Si.

Vibrational Bands

The vibrational model of nuclei is another very successful collective model. Here, the

nucleus is described via oscillations of the nuclear matter. The complexity of the vibrations

depends on the oscillations degree of freedom. A convenient formalism which characterises

these oscillations is given by:

R(t, θ, φ) =

(
1 +

∑
λ≥1

λ∑
µ=−λ

αλµ(t)Y λµ(θ, φ)

)
. (2.19)

R(t,θ,φ) is now the time dependent radius of the nuclear surface at a position param-

eterised by the Euler angles θ and φ. Again, R0 is the average nuclear radius given by

Equation 2.1 and αλµ are the expansion coefficients for each of the spherical harmonic

terms, Yλµ(θ, φ). Here, λ and µ are the quantum numbers which define the type of vi-
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bration. λ = 0, µ = 0 represents monopole vibrations, here the entire nuclear surface

expands and contracts, known aptly as a breathing mode. For dipole vibrations, λ = 1. A

dipole vibration with µ = 0 is simply a translation of the nucleus about its centre of mass,

which will not contribute to the internal energy of the system and therefore is a forbid-

den excitation mode. However, for µ = 1 there is a motion around the centre of mass of

two bodies. For example a distinct separation in the distribution of protons and neutrons

oscillating out of phase with respect to the centre of mass. This mode is known as the

giant dipole resonance. The next order vibration is the quadrupole, λ = 2. For the µ = 2

mode this corresponds to oscillations between prolate and oblate deformation through a

spherical intermediate stage. All of these three shapes have axial symmetry and vibrations

also maintain axial symmetry. These kind of vibrations are named β-vibrations. However,

non-zero λ = 2 components break this axial symmetry causing a degree of triaxiality. This

is known as a γ-vibration. Octupole vibrations occur for λ = 3. Here, nuclei can be seen to

form pear like shapes. For example µ = 0 would have the orientation of the pear flipping

direction through one axis in oscillations.

2.2 Electromagnetic transitions

The study of electromagnetic transitions of nuclei through γ-ray spectroscopy has been

at the forefront of nuclear structure research for more than 60 years. The development of

HPGe arrays with the addition of crystal segmentation along with algorithms to improve γ-

ray tracking capabilities have enabled spectroscopy with unparalleled combined efficiency

and energy resolution. A review by Eberth and Simpson summarises the great success

and milestones of γ-ray spectroscopy with Ge detectors over the past 60 years (Eberth &

Simpson, 2008). These steady developments consistently revealed the connection between

electromagnetism and deformation in nuclei.

From fundamental laws of electromagnetism, changes in magnetic fields produce elec-

tric fields and changes in electric fields produce magnetic fields. Therefore, the internal

structure of nuclei is strongly linked to the type of radiation that is emitted. This high-
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lights an important connection between the multipole moment, which describes the internal

structure, to electromagnetic transitions. Classically, the power radiated by any electro-

magnetic radiation depends on the amplitude of the multipole moment [m(σL)] and is

given by (Krane, 1987):

P(σL) =
2(L+1)c

ε0L[(2L + 1)!!]2

(
ω

c

)2(L+1)

[m(σL)]2, (2.20)

where σ is either E or M representing electric or magnetic radiation respectively. Here,

L, is the order of the multipole expansion and ω is the angular frequency. The nucleus

can not continuously radiate this power due to the restrictions of energy quantisation. In

a quantum mechanical description, the quantised radiation, γ-decay, is a transition from

an initial state Ψi to a final state Ψf. The multipole amplitude, m(σL), now has to be

replaced with its operator form which changes the nucleus from its initial to its final state,

i.e.

mfi(σL) =

∫
ψ∗f m(σL)ψi dv . (2.21)

This is the matrix element of the multipole operator. |m(σL) | 2 in Equation 2.20 is

then replaced with |mfi(σL)| 2. This term is known as the reduced transition probability

and is typically denoted by B(σL). It is more appropriate to quantify these transitions

through a decay rate instead of power radiated, as each photon carries away Eγ = h̄ω and

then using the reduced transition probability, yields:

λ(σL) =
2(L+1)

ε0L[(2L + 1)!!]2h̄

(
Eγ

h̄c

)2(L+1)

B(σL). (2.22)

This shows there is an energy dependence and a structural dependence to the electro-

magnetic decay rate. The energy dependence is restricted by the available phase space,

with larger energy transitions being more favourable. The nuclear structure dependence is

contained within B(σL). The degree to which the initial and final wave-functions overlap
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Table 2.1: Experimental and single particle estimates for the reduced transition probabil-
ity factor, B(σL). Here, Eγ is the γ-ray energy (MeV) and λ(σL) is the experimentally
determined decay constant (s−1)

Experimental Single Particle

L Bexp(EL) [e2fm2L] Bexp(ML) [µ2
Nfm2(L−1)] Bsp(EL) [e2fm2L] Bsp(ML) [µ2

Nfm2(L−1)]

1 λ(E1)6.289×10−16E−3
γ λ(M1)5.688×10−14E−3

γ 6.446 ×10−2A2/3 1.790
2 λ(E2)8.163×10−10E−5

γ λ(M2)7.380×10−8E−5
γ 5.940×10−2A4/3 1.650A2/3

3 λ(E3)1.752×10−3E−9
γ λ(M3)0.158E−7

γ 5.940 ×10−2A2 1.650A4/3

4 λ(E4)5.893×103E−11
γ λ(M4)5.330×105E−9

γ 6.285 ×10−2A8/3 1.746A2

will depend on the quantum numbers which define each state. In particular their total

angular momentum (J), parity (π) and isospin projection (Tz).

Inserting the values for each multipole order, L, in Equation 2.22 and rearranging

for B(σL) gives the experimentally determined reduced transition probability. These are

listed in Table 2.1 in their reduced forms, here λ(σL) is the experimentally determined

decay constant, which can be calculated from half life measurements. The most important

information contained in the reduced transition probabilities is the degree of collectivity.

This is determined by calculating the theoretical B(σL) values from a single particle tran-

sition. The magnetic, M̂L and electric, Q̂L, multipole operators are well-known for these

single particle de-excitations (Weisskopf, 1951). These depend on the spherical harmon-

ics, Ym
` (θ, φ), radius and nuclear magnetic g factor. Applying the relevant single particle

magnetic operators to Equation 2.21 yields:

B(EL) =
1

2Ji + 1

∣∣∣ < ψf|Q̂L|ψi >
∣∣∣2, (2.23)

B(ML) =
1

2Ji + 1

∣∣∣ < ψf|M̂L|ψi >
∣∣∣2, (2.24)

Table 2.1 shows the single particle estimates in their reduced forms for each multipole

order, L. These estimates only depend on the mass number, A, of the nucleus.
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Taking the ratio:

B(σL) =
Bexp(σL)

Bsp(σL)
, (2.25)

gives the transition strength in Weisskopf units (W.u.). Therefore a transition strength

of, B(σL) ≈ 1 W.u suggest only a single or very few nucleons contribute to the transition.

A B(σL) � 1 W.u. then suggests large collectivity with many nucleons contributing to

the transition, or even the entire nucleus through rotation or vibration.

2.3 Reaction Theory

Essential to any nuclear physics experiment is a complete understanding of the reaction

mechanisms involved between the incident projectile and target nuclei. The main two

classifications are direct and compound. These are distinguished by the interaction time

scales of the reacting nuclei. The widths of the observed structures in the excitation

spectrum, for example in a high resolution spectrometer is then related to the states lifetime

via the uncertainty principle:

∆E ∆t ≥ h̄

2
. (2.26)

The timescale, ∆t, is the combination of the transit time of the projectile through the

target nucleus and the time taken to rearrange any constituent nucleons within the target

nucleus. If there is a strong wavefunction overlap between the initial and final exit channel

then the interaction may only involve very few nucleons. If the interaction timescale is on

the order of the transit time of the projectile through the target, then this is considered

a direct reaction. However, a more strict definition involves the number of degrees of

freedom of motion. For example if a nucleus excites through a purely rotational state or

vibration located at the surface. This involves few degrees of freedom and is considered

direct. In terms of experimental observables, you would expect a forward focused, an-

isotropic ejectile angular distribution due to the small angular momentum transfer. For

44



Reaction Theory Theory

compound reactions you expect the opposite, as the large interaction timescale allows

multiple interactions within the nucleus. Therefore, we expect a statistical and isotropic

response in the angular distribution as thermal equilibrium is achieved.

Traditionally, compound reactions such as fusion evaporation have been used to study

SD in heavier nuclei (Lopez-Martens et al., 2016). Figure 2.5 shows how different structures

are formed. The compound nucleus is produced in a high spin and high energy state within

the entry distribution. Several light nuclei are then ejected from the hot nucleus as it tries

to reach thermal equilibrium. Most of the time the nucleus cool to the N.D bands following

the yrast line. However, it’s possible to get trapped in the second minimum, forming an

SD band.

Figure 2.5: Traditional method of populating SD bands in heavy nuclei using compound
nuclear reactions. Here, compound nuclei are formed with high energy and spin within the
entry distribution and are either trapped inside a second minimum forming a SD band or
cool straight to the N.D band (Lopez-Martens et al., 2016) .

Inelastic scattering is a prime example of a direct reaction, for example 28Si(α,α’)28Si*.

The many-body problem of the two interacting nuclei is very difficult to solve directly.
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The optical model reduces this complex problem by using an effective interacting po-

tential:

V = I + iW, (2.27)

where I is the real component of the potential and W is the imaginary. In the plane

wave description of elastic scattering, the flux of the incoming plane wave and outgoing

spherical wave is conserved. Solving the Schrödinger with only the real part, yields the

well-known Rutherford scattering cross section. However, for inelastic processes, flux has

to be attenuated from the elastic channel. This is achieved by the introduction of the

imaginary term, W, known as an optical potential. The wavefunction produced from

solving the Schrödinger equation with the optical potential can be used as a starting

point for more complicated calculations such as the Distorted-Wave Born Approximation

(DWBA) approach.

The DWBA approach introduces distortion in the waves of the nuclear + Coulomb

field to increase accuracy. The distorted potentials are normally forced to fit experimental

elastic cross sections. Codes such as DWUCK4 (zero-range) and DWUCK5 (finite range)

are widely used to solve such problems. The DWBA approach assumes a direct excitation

for inelastic processes. If there are multiple channels with connecting transitions then the

coupled-channel Born approximation should be used. Codes such as Chuck3 can solve

a set of coupled-channel equations and calculate differential cross sections for direct and

multi-step excitation.
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Figure 2.6: DWBA calculations for a Jπ = 2+ and Jπ = 4+ state produced through alpha
inelastic scattering, with Elab= 140 MeV. The differential cross section is maximum around
10◦.

The differential cross section for the excitation of 28Si to the 10944.0-keV Jπ=4+ state

was calculated with the DWBA approach. Figure 2.6 shows the results for this calculation,

with a maximum in the cross section around 10◦. However, Grand Raiden was set to an

angle of 9.1◦ due to physical restrictions of the GRAF mode set-up at RCNP. Generally,

low spin populations should peak at smaller scattering angles. Hence why this method

preferentially populates low spin states. The reaction chosen also preferentially populates

natural parity states. Through conservation of spin:

If = Iα + I28Si + ` = 0 + 0 + `, (2.28)

therefore If = `. Then by conservation of parity,

πf = παπ28Si(−1)` = π+π+(−1)`, (2.29)

therefore, πf = (−1)`. This constrains the possible states to be populated to 0+, 1−,

2+, 3− and 4+ etc. These are known as natural parity states and so other states populated

are therefore called unnatural parity states and will be significantly suppressed.
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The beam energy was chosen to ensure direct reactions. At high beam energies single-

step excitation is dominant (Tamii et al., 2009). Direct reactions are primarily surface

reactions, particularly with inelastic scattering. This then strongly populates collective

degrees of freedom, such as rotations and vibrations. All these properties made inelastic

scattering of 130s-MeV α particles at 9.1◦ to be the best choice for probing SD bands in

28Si.

2.4 Angular Correlations

The spatial distribution of γ-decay can not always be assumed to be isotropic. The angu-

lar dependence of γ-decay depends on the initial and final magnetic substate (m-state) of

the transition. If no preference for the m-state population exists or no particular nuclear

orientation is established, then the summation over all possible angular distributions will

be isotropic. However, strong applied magnetic fields, nuclear reactions and the measure-

ment of the angle between a γ-decay with respect to another in a cascade can all lead to

anisotropic angular distributions.

Strong magnetic fields can cause an unequal m-state population if cooled to extremely

low temperatures. Here, a significant population can preserve its nuclear orientation. At

higher temperature, thermal motion will break the orientation. The distribution of thermal

energies are then as described by the Boltzmann distribution. This technique requires

special conditions and was not feasible during this experiment.

Measuring relative angles between cascade γ-decays is known as angular correlation,

W(θ, ∆m`).

W(θ, 0) =
3

8π
sin2θ, (2.30)

W(θ, 1) =
3

16π
(1 + cos2θ), (2.31)

W(θ,−1) =
3

16π
(1 + cos2θ), (2.32)

where, θ is the angle between the two cascade γ-decays and ∆m` is the change in

magnetic substate. For example, a cascade decay from an unpolarised target with Ji =

0 → Jf = 1 via an intermediate J = 1 state will have this effect. The first dipole transition
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has to transfer one unit of angular momentum mi = 0→ mf = ±1 as mi = 0→ mf = 0 is

forbidden. Therefore a (1 + cos2θ) distribution will be observed relative to the first decay.

In general the distributions follows the sum of Legendre polynomials which are a function

of the multipolarity, `1 and `2 of the two photons of the form:

W(θ, `1, `2) = 1 + A2cos2 + A4cos4 + A6cos6 ...+ A2Lcos2Lθ, (2.33)

where the experimental a2L fitted coefficients can be compared to calculated values

which depend on `1 & `2.

The third method is through nuclear reactions and measuring particle-γ angular corre-

lations. More specifically for this research, α-γ angular correlations between the scattered

α-particle and subsequent γ-decay from the excited 28Si nucleus. One major simplification

to the problem occurs for α scattering at 0◦ or 180◦. This is known as the Litherland and

Furguson method II (Ferguson, 1974). As the reaction plane is defined by L̂=r̂ ∧ p̂, then

as p̂ remains parallel to the beam axis, p̂ z and by definition L̂ z = 0. This constrains the

possible m-state population to:

mmax = ISi + sα + sα′ , (2.34)

as ISi and sα = 0 then mmax = sα′ and the angular distribution becomes:

W(θ) =
∑
κ

A′′κQκPκ(cosθ). (2.35)

This is the superposition of all possible m-states. Pκ is again the associated Legendre

polynomials. Qκ is the attenuation coefficients which account for finite opening angles of

the clover detectors. Then the A′′κ coefficients are analysed the same as in Equation 2.33.

When the projectile is no longer scattered parallel or anti-parallel to the beam axis

then Litherland and Furguson method II no longer holds. This requires more sophisticated

methods and requires computation.

Angcor is the only code that has been specifically created to calculate α-γ angular

correlations for all projectile scattering angles. As an input this code requires the m-state
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population distribution. This is one of the outputs of the DWBA Chuck3 program as

discussed previously. The angular distribution can only be evaluated over one azimuthal

plane e.g. the reaction plane. There is also a symmetry in the angular distribution around

the reaction plane.

The spin and parities of the initial, intermediate and final states of the reaction process

was also needed for the angcor inputs. Information on the type γ-transition also had to be

included, particularly its energy and multipolarity with mixing ratio, δ. These parameters

will then define a unique angular distribution.

This allows the experimentally observed states spin and parity to be confirmed. This

technique is very useful for the CAGRA campaign as many of the spin and parity assign-

ments of 28Si at and above 10 MeV remain tentative.
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Experimental Set-up

3.1 CAGRA Project

The CAGRA project (Clover Array Gamma-ray spectrometer at RCNP for Advanced

Research) was a diverse and multipurpose campaign, which contained experiments to ex-

plore both nuclear structure and nuclear astrophysics. Its main aim was to combine the

high energy resolution of HPGe clover type detectors in coincidence with a high resolution

spectrometer. These were also complimented by the addition of LaBr3 scintillator detec-

tors, of which offer increased efficiency and fast timing over their HPGe counterparts. This

unique combination of detector systems allowed for new and exciting nuclear physics to be

explored.

The CAGRA campaign was a global collaboration, which included contributions from

many, universities, research labs and government institutes. Of the 12 clover detectors

used in the campaign; Argonne National Laboratory (ANL) contributed 8, the US Army

(ARL) supplied 2 and the institute of Modern Physics (IMP) gave 2. The 4 LaBr3

detectors used were from INFN sezione di Milano. The DAQ for the CAGRA array was

brought over from ANL. The rest of the equipment was supplied by the home facility,

Research Centre for Nuclear Physics (RCNP).

51



RCNP Facility Experimental Set-up

3.2 RCNP Facility

Figure 3.1: Birdseye view of the RCNP facility, in particular the location of the AVF
cyclotron and Grand Raiden.

The RCNP facility as shown in Figure 3.1 is a diverse research facility for nuclear and

particle physics. The facility has two particle accelerators; the Ring and azimuthal varying

field (AVF) cyclotrons. This twin accelerator system is connected to multiple beam lines

with dedicated detector systems. Of main interest here is the West Hall, which is where

Grand Raiden and CAGRA was situated.

3.3 Accelerator Capabilities

The AVF and RING cascade cyclotron system was used in the CAGRA campaign. The

AVF is predominately used as an injector system for the RING cyclotron. However, for

low beam energies, the AVF can be used as a dedicated accelerator. For this research, the

AVF accelerated α particles to the required total kinetic energy of 130 MeV.

K140 AVF cyclotron

This accelerator was commissioned in 1973 and uses the Azimuthally-Varying-Field (AVF)

design. Key to any successful cyclotron is the isochronism condition. Here, the time
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period of an ion must be independent of the path length taken. The ion frequency, ωrev, is

determined by:

ωrev =
q B0

m0

, (3.1)

where B0 is the magnetic field strength of the cyclotron, m0 and q is the mass and charge

respectively of the ion. Therefore, for a fixed magnetic field strength and ion frequency,

the time period is constant. An alternating electric field is applied to the ions to achieve

acceleration. This field is typically in the order of MHz. This is within the radio frequency

range of the electromagnetic spectrum and is the origin of the name given to the field

applied, known as the RF. Clearly, the RF applied, ωRF, has to be in phase with the

intrinsic ion frequency or else the ion will not be coherently accelerated. i.e ωRF = hωrev,

where h is the cyclotron harmonics. This is known as the synchronous condition.

If the speed of the ion becomes relativistic, then the mass in Equation 3.1 needs to be

scaled by γ, which is dependant on the velocity of the ion. This will break the isochronism

and synchronous condition and to overcome this, either the RF or magnetic field has

to dynamically change. The AVF achieves this by having a magnetic field gradient to

account for the changing relativistic mass. Hence, the name Azimuthally-Varying-Field.

For the RCNP AVF cyclotron, the typical magnetic field strength is 1.6 T and has 1 or 3

cyclotron harmonics available. The chosen harmonic was h = 3, this is equivalent to two

beam bunches per RF cycle. The RF frequency was 12.4 MHz, therefore the beam bunch

interval was 80.65 ns.

During this research, the average beam current of α particles on target produced by

the AVF was around 3 enA.
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3.4 Grand Raiden Spectrometer

Figure 3.2: Birdseye view of Grand Raiden Spectrometer. Highlighting relative position of
ion optics and target position.

Grand Raiden is a high-resolution magnetic spectrometer. These devices have made

significant impact on nuclear spectroscopy. Excitation functions of many reactions and

nuclei have been studied through these devices. Their main advantage over other detectors

is the ability to maintain high precision, even at high excitation energy. As level density

increases with excitation energy, high resolving power is required to resolve states in these

regions. Resolving power can be quantified as the ratio of momentum over momentum

spread, p
∆p

. Grand Raiden has achieved a resolving power of 40×103. This was achieved

with a 300-MeV proton beam, via 168Er(p,p’) inelastic scattering. The resolving power for

130-MeV α particles via 28Si(α, α’) inelastic scattering in this experiment was lower. This

was due to the lower beam energy and lighter mass of the target. The recoil momentum

of 28Si is much more significant than 168Er also the thick, 11 mg/cm2, natSi target and

lower beam energy will increase energy losses and increase momentum spread even before

reaching the spectrometer.
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Table 3.1: Specifications of Grand Raiden

Specifications Value
Ion Optics Configuration QSQDMDD
Horizontal Acceptance Angle ±20 mr
Vertical Acceptance Angle ±60 mr
Resolving Power p/∆p 37, 076
Focal Plane Tilting 45◦

Deflection Angle 162◦

Magnetic Rigidity (Max) 54 T ·m
Vertical Magnification 5.98
Horizontal Magnification -0.417

The fundamental operation of spectrometers is underpinned by the Lorentz force:

−→
F = q ·

−→
E + q

−→
V ×

−→
B . (3.2)

The momentum of an ion after interaction with the target, for example through inelastic

scattering, needs to be conserved as this is how the excitation energy is reconstructed.

From Equation 3.2, from the cross product, the force applied from a magnetic field is

always perpendicular to the ions velocity/momentum. Most spectrometers employ only

linear magnetic fields, to conserve momentum. There are spectrometers that use both

electric and magnetic fields. However, these fields are more complex and can’t be linear if

momentum is to be conserved. With no Electric field, Equation 3.2 becomes
−→
F = q

−→
V×
−→
B .

Equating to the centripetal force and rearranging yields:

−→
P

q
=
−→
B ρ, (3.3)

this is known as the magnetic rigidity. It becomes clear here that for a fixed ion of

charge, q, and fixed magnetic field strength, B, the only degrees of freedom are momentum,
−→
P , and the radius of curvature, ρ, which the ion is deflected through by. i.e. the greater

the momentum the larger the radius of curvature becomes, and vice versa. In Figure 3.2,

B represents the magnetic field strength of the dipole magnets labelled D1 and D2. For

28Si(α,α’) inelastic scattering, the more energy the α particle loses during this interaction
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the greater the excitation energy in 28Si. The momentum distribution depends on which

excited states are populated and the momentum then governs the radius of curvature of

the α particle passing through Grand Raiden. The focal plane at the end of GR as seen

in Figure 3.2 precisely tracks the positions and angles of the ions passing through it. The

degree of precision of all these characteristics then determine the overall resolving power

of the high resolution spectrometer.

Ion-optics

Figure 3.3: Illustration for ion-optics with no dispersion matching.
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Figure 3.4: Ion-optics for spatial dispersion matching condition.

Figure 3.5: Ion-optics for angular and spatial dispersion matching condition.

Each ion optical apparatus will contribute a change in phase space of the beam. The

easiest way to represent and track these changes is through matrix representation:

<final = RN ·RN−1 · ...R0 · <initial, (3.4)

where <, is a function of all the essential parameters to describe the phase space of

the beam. i.e <(x, y, θ, φ,
−→
P ). All of the initial starting point parameters of the beam are

contained in <initial. Each matrix element in Equation 3.4, RN , represents the effect of one
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magnet on the current phase space. They are sequentially applied until the final phase

space Rfinal is determined, this is known as a Transfer Map. A code named ORBIT was used

to calculate the Transfer Map and to obtain the ion-optical properties of GR. Kinematics of

the scattered ions at the target position can be reconstructed and a significant improvement

in resolution can be achieved if the ion optics of the entire beam line and spectrometer is

set-up correctly. This requires the beam line optics (pre-target) to be matched with the

spectrometer (post-target). This is known as Dispersion matching.

Dispersion occurs when the ion deviates from its central expected orbit by amount δ,

as is calculated from the Transfer map. The initial momentum and spatial distribution

will have a natural spread, these deviations will then perturbate through the ion optics,

deteriorating resolution and smearing out any angular information that could be used for

the kinematic reconstruction, Figure 3.3 illustrates this effect. If these, δ, dispersions at

the target position are not accounted for then significant spatial and angular deviations

will occur within GR, as can be seen magnified at the focal plane. Figure 3.4 shows how

choosing the right ion optics before the target to spatially separate depending on the scale

of δ removes this effect at the focal plane. More so, if the angular dispersions are accounted

for before the target, as can be seen in Figure 3.5, then the angular deviations at the focal

plane can also be removed. For GR, the ion optics is designed so that the horizontal

entrance angle to the focal plane, θFP , is proportional the horizontal scattering angle at

the target position, θtg. The y position on the focal plane is directly proportional the

vertical scattering angle at the target position, φtg. This would not be achievable without

angular and spatial dispersion matching.

Higher order solutions to the Transfer map via a Taylor expansion gives what are known

as abberations. Solving the Transfer map for these higher order terms will reveal what the

correlation between state parameters are. For example in Table 3.2 (x|θ3) quantifies the

third order correlation between θ and x. These correlations are essential in explaining the

kinematic distributions seen in the focal plane. As will be discussed further in Chapter

4.4.
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GRAF Mode

Figure 3.6: Layout of GRAF mode at RCNP.

In the standard configuration of Grand Raiden, a Faraday cup and beam stop is posi-

tioned 2 m downstream from the target, where CAGRA is located, as seen in Figure 3.6.

Therefore, the Bremsstrahlung, γ-rays and neutrons produced at the beam stop would

of reached CAGRA and contribute to an increased background. The neutrons produced

would have also damaged the clover detectors, deteriorating resolution throughout the

campaign. As can be seen in Figure 3.6, the beam dump in GRAF mode was moved 7 m

downstream.
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Table 3.2: Ion-Optics calculations from multiple programs (Terashima, 2018)

Ion Property Orbit Orbit (2nd order) GICOSYGICOSY (3nd order) Q2 SX Removed

<x|x> -0.4167 -0.4164 -0.4178 -0.4171 -0.4761 -0.4761
<x| θ> 0 0 1×10−3 0 1×10−3 1×10−3

<x| δ> 15.45 15.453 15.451 15.451 15.451 15.451
<y|y> 5.98 5.98 6.13 6.13 6.18 6.18
<y|φ> -1.66×10−3 -4.77×10−3 1×10−3 1×10−3 2×10−2 2×10−2

<x| θθ> -1.74×10−3 0 5.9×10−2 5.4×10−2 0.28 5.95
<x|φφ> 0 3.8×10−3 1.5×10−2 1.5×10−2 2.8×10−3 -0.524
<x|xθ> -0.25 -0.244 -0.24 -0.24 0.14 7.91
<x| θδ> 37.078 37.094 36.7 36.7 36.71 36.71
<x| δδ> -9.52 -9.52 -9.52 -9.52
<x| θθθ> -2.79 87.83 90.54 -3.25 0.811 3.6
<x| θφφ> 0.026 4.5 6.14 1.05 1.68 -10.42
<x| θθδ> 1.093 161.2 162.8 4.79 1.84 47.5
<x| θδδ> -0.045 -19.94 -18.9 1.12 -0.33 -0.33
<x|φφδ> 10.65 10.64 10.64 10.39 10.49 4.83
<x| δδδ> 34.25 60.26 60.26 60.26

Θx 44.98◦ 44.98◦ 44.86◦ 44.86◦ 45.02◦ 45.02◦

Θy 65.3◦ 65.45◦ 68.5◦ 68.5◦ 67.97◦ 74.06◦

Figure 3.2 shows the configuration of the focusing magnets, summarised as QSQDMDD.

The quadrupole magnets, Q, focus the beam only in one plane and defocus in the other.

The sextupole magnet, S, should be there to mitigate any dispersions and to remove (x|φ2)

aberrations. However, in GRAF mode the sextupole magnets had to removed because of

space restrictions; this had consequences in the ability to reconstruct the kinematics of the

inelastic scattering, see Chapter 4.4.
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Focal Plane Detectors

Figure 3.7: Schematic view of the Grand Raiden focal plane detectors.

The focal plane detectors track precisely the position of α particles and from this, the

angle can be reconstructed. As can be seen in Figure 3.7, the particles pass through two

Multiwire Drift Chambers, labelled MWDC1 and MWDC2. The α particles then pass

through two plastic scintillator detectors, labelled PS1 and PS2. A coincidence between

the PS1 and PS2 is required to trigger the DAQ and considered to be a true event. The

elastically scattered α particles are focused onto the Faraday Cup and beam dump, located

at the very end of the beam line.
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MWDC

The multiwire chamber is a gas filled detector, here a mixture of argon (70%) and iso-

butane (30%) was used. The gas is ionised as the α particles pass through, leaving an ion

track. The subsequent ion pairs that are formed are then collected via an applied electric

field. Two Cathode plates on either side of the MWDC apply negative bias of -5.9 keV,

which collect the positive ions. The electrons produced from the ionisation are attracted

to the anodes. The anode wires are made up of two planes. Each plane is made up of two

types of wires, sense and potential wires. The readout signals are taken from the sense

wires. The potential wires and sense wires are normally grounded to achieve a uniform

electric field. However, the potential wires were biased to -0.3 keV. This strengthens the

electric field around the sense wires and therefore increases their efficiency. However, this

worsens spatial resolution, as the uniform field is disturbed. The X plane wires, as seen

in Figure 3.8, are vertically aligned, with one in every three anode wires being a grounded

sense wire. The U plane wires are inclined at 48.2◦, here every one in two anode wires

are sense wires. In its basic application, depending on which wires are triggered, gives

an approximate trajectory. However, its spatial resolution can not be finer than the wire

spacing.

To achieve position resolution finer than the wire spacing, the time interval between

the wire signal and the PS1 trigger is measured. A LeCroy 2735DC board was used as

a preamplifier and discriminator for all of the wires in the four planes. These signals

were used as the starting trigger of a LeCroy 337 Time to Digital Converter (TDC) with

the PS1 trigger being its stopping signal. This time difference represents the drift time

of the electrons to the anodes. A track’s trajectory will then have a set of unique timing

distributions. These distributions are passed through look-up tables that convert from drift

time to drift distance. These distances then precisely trace out the α particles trajectory

to achieve sub wire spatial resolution and also gives the angle in which it entered the focal

plane.
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Figure 3.8: Overview of the MWDC configuration of sense and anode wires relative to the
cathode plane. Lower figure is of the layout of the sense wires, X plane (left) and U plane
(right).

3.5 CAGRA Array

The CAGRA array contains 12 HPGe detectors and 4 LaBr3 scintillators. The HPGe

detectors are of the clover type. Figure 3.10 shows the typical design of these detectors

showing the 4 isolated HPGe crystals, which all share one cryostat. Each clover was

reversed biased as detailed in Table 3.3. Before explaining the advantages of this design,

it’s important to describe the ways in which γ-rays interact with matter.

63



CAGRA Array Experimental Set-up

Figure 3.9: (left) Upstream view of CAGRA. (middle) Side view showing the three distinct
lab angles 45◦, 90◦ and 135◦ of the clover and LaBr3 detectors with respect to the beam
axis. (right) shows a front view, downstream of the beam.

Interaction of γ rays with matter

There are three distinct interactions of γ rays with matter, photoelectric effect, Compton

scattering and pair production. For the photoelectric effect, due to conservation of momen-

tum, a free electron can’t absorb a γ ray. However, a bound electron to an atom can then

share the momentum with the entire atom. Once absorbed the electron is ejected from

Table 3.3: Summary of CAGRA positions, HV values and shielding used.

Slot Detector Angle Distance to target (cm) Bias Voltage (V) Shielding

1. LaBr3 45◦ 16 -950 10 mm (Pb) + 4 mm (Cu)
2. LaBr3 45◦ 16 -810 10 mm (Pb) + 4 mm (Cu)
3. LaBr3 45◦ 16 -970 10 mm (Pb) + 4 mm (Cu)
4. LaBr3 45◦ 16 -814 10 mm (Pb) + 4 mm (Cu)
5. ANL clover 90◦ 20.8 +3000 2 mm (Pb) + 2 mm (Cu)
6. ANL clover 90◦ 20.8 +3000 2 mm (Pb) + 2 mm (Cu)
7. ANL clover 90◦ 20.8 +3500 2 mm (Pb) + 2 mm (Cu)
8. ANL clover 90◦ 20.8 +3000 2 mm (Pb) + 2 mm (Cu)
9. ANL clover 90◦ 20.8 +2500 2 mm (Pb) + 2 mm (Cu)
10. ANL clover 90◦ 20.8 +3500 2 mm (Pb) + 2 mm (Cu)
11. ANL clover 90◦ 20.8 +3000 2 mm (Pb) + 2 mm (Cu)
12. ANL clover 90◦ 20.8 +4000 2 mm (Pb) + 2 mm (Cu)
13. ARL clover 135◦ 20.8 +3500 2 mm (Pb) + 2 mm (Cu)
14. ARL clover 135◦ 20.8 +3000 2 mm (Pb) + 2 mm (Cu)
15. IMP clover 135◦ 20.8 +3500 4 mm (Pb) + 2 mm (Cu)
16. IMP clover 135◦ 20.8 +3500 4 mm (Pb) + 2 mm (Cu)

64



CAGRA Array Experimental Set-up

the atom with kinetic energy Ek = h ν − Eb. With Eb being the binding energy of the

electron and ν being the frequency of the γ-ray. It is this energy which is then absorbed by

the detector material, the electron loses energy in the following ways: Collisional energy

losses arise from the electromagnetic interaction of the electron with the material, this in-

teraction can ionise or excite the atoms in the material. This is the dominating energy loss

process for low energy electrons. There is also a possibility for electron nuclear scattering

and at low energies this is determined by the Rutherford cross section. Another energy

loss mechanism is due to Bremsstrahlung, here any ion which decelerates emits radiation.

However, for electrons in Ge, the energy in which this process will become dominant is for

electrons of kinetic energy above 14.1 MeV and can be neglected below 1 MeV.

Another way γ-rays interact with matter is Compton scattering. Here, instead of the

γ-ray being absorbed it is scattered. The amount of energy lost depends on the scattering

angle, and is maximum at 180◦. The kinetic energy lost by the γ-ray is given to the recoiled

electron, and this energy is deposited in the crystal. Compton scattering dominates for

intermediate γ-ray energies.

If the energy of the γ-ray is above twice the rest mass energy of an electron, then pair

production is possible. Here, the energy of the γ ray is converted into creating a electron-

positron pair. Any surplus energy above 1.022 MeV is shared between the electron-positron

pair. The electron-position pair then deposit their energy into the crystal, until they come

to rest. The positron then will annihilate with another electron and emit two 511-keV

γ-rays. If both of these γ rays are absorbed the full energy is detected. If both γ rays

escape then this is known as double escape. When only one of them are detected this

is known as single escape. Pair production dominates for higher energies. With these

three interactions, only photoelectric interactions deposits full energy. The other two

processes require multiple interactions before full energy deposition. The clover detector

was therefore designed to mitigate the losses from these two processes and increase full

energy efficiency.

As shown in Figure 3.10, Cu and Pb shielding was placed in front of each clover detector,

their thicknesses are detailed in Table 3.3. These were used to stop low energy x-rays and
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Bremsstrahlung being detected, reducing low energy noise and decreasing the trigger rates.

Pb is used as it has a high density and is relatively cheap absorber material. However,

Pb can itself can produce x-rays and so an extra layer of Cu is added to absorb these

secondaries.

Figure 3.10: Layout of a typical clover detector with the different interactions possible,
also showing the layout of the Pb and Cu shielding.

Addback

Addback is one of the ways to increase full energy photo peak efficiency. This is achieved

by summing the energy of adjacent crystals. This can be between crystals of the same or

even different clovers. For example, in the interactions detailed in Figure 3.10 the Compton

scattered γ-rays could deposit a fraction of its full energy in one crystal, then go on to

undergo further Compton scattering or photoelectric absorption. Another example could

be though pair production, here the two 511-keV annihilation γ-rays could be detected in

two opposite crystals. In all these cases the energy is shared between multiple crystals.

Therefore, if the energy can be summed, the full energy can be recovered. The reliability

66



CAGRA Array Experimental Set-up

of this technique is dependent on the multiplicity of the event, i.e. the number of crystals

that are triggered per event. This itself can be dependent on the background rate, noise

thresholds and γ yields of the reaction being studied. Increased crystal multiplicities will

make it more difficult to distinguish between these different type of events. To ensure that

events are truly correlated the time difference between triggered crystals can be taken.

only events within a pre-set time window will be then summed over energy. However, this

technique requires sufficient time resolution for it to be effective.

BGO suppression

When Compton scattering occurs and the scattered γ-ray escapes the array, this results

in an incomplete energy deposition. To reduce this effect and improve the full energy to

background ratio, BGO suppression can be implemented. Here, the clover detectors are

surrounded by BGO (Bismuth Germanate) scintillators. BGO has a large combined Z

and density, which yields a high intrinsic detection efficiency for γ-rays. Now, a Compton

scattered γ-ray has a high probability of interacting within the BGO detector after it

escapes the clover HPGe crystals. If a signal in any crystal is promptly followed by an

adjacent BGO, the event can be vetoed, as this will be seen as an incomplete energy

deposition. BGO suppression suffers the same issues as described in the description of

addback, requiring sufficient time resolution and low event multiplicities. For this set-up

all clover detectors had BGO suppression capabilities except for the IMP Clovers in slots

15 and 16.

LaBr3

Lanthanum bromide doped with cerium, LaBr3(Ce), is an inorganic scintillator and holds

some significant advantages over HPGe semiconductor detectors. Their increased efficiency

and exceptional time resolution, has allowed for new exciting research. In particular, for

particle-γ coincidence techniques, such as the STELLA campaign. This is part of the UK

FATIMA collaboration, based at the Andromède facility in Orsay, which aims to measure
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the 12C + 12C fusion cross section below the Coulomb barrier. Mixing LaBr3 and HPGe

detectors is also becoming a popular technique. For example at TRIUMF, where they

combined DANTE, a LaBr3/BaF2 scintillator array with GRIFFIN containing 16 HPGe

clover detectors. Here, the performance of γ-γ coincidence techniques can be improved by

combining the unique advantages of each detector type.

Both particle-γ and γ-γ techniques aim to reduce background contribution to measure-

ments and simultaneously tag events to reduce likelihood of chance coincidence. The rate

of random coincidence, R, is given by:

R = 2 τ r1 r2, (3.5)

where τ , is the time window between the two events and r1 and r2 are the rates of the

two uncorrelated decay quanta. Therefore, the random coincidence rate can be reduced by

decreasing τ . The fast timing from LaBr3 improves time resolution and therefore allows for

smaller time windows to be achieved. In the CAGRA array, therefore coincidence events

between two LaBr3 detectors would give the best time resolution, however at cost of energy

resolution. It can be favourable then to use Labr3 as an initial tag, then to look at events

in the clover detectors for high resolution spectroscopy.

The original design of CAGRA consisted only of clover detectors. However, the for-

ward angle detectors at 45◦ were changed to LaBr3 scintillator detectors. The estimated

background from Bremsstrahlung and neutrons was expected to be too high for the HPGe

detectors in these positions.

The differential cross section for Rutherford scattering is highest at forward angles, for

130-MeV α-particle scattering from 28Si at 45 ◦, approximately 10 MeV of kinetic energy is

lost. The stopping distance for 120-MeV α particles in aluminium is approximately 35 mm.

The Aluminium target chamber was only 3 mm thick, therefore the scattered particles will

pass through and be implanted into the shielding in front of the LaBr3 detectors. Therefore

thicker Pb and Cu shielding was needed to absorb the low energy x-rays and bremsstrahlung

produced and to make sure α particles did not reach the detectors.
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3.6 Digital Acquisition

Figure 3.11: Flow Chart of the Data acquisition set-up for CAGRA and GR, black lines
show connections to detectors, red dotted lines show the signals from detectors to acquisi-
tion hardware and blue lines show the direction of trigger signals.

The merging of three separate detector systems, Grand Raiden, Clovers and LaBr3

was very challenging. Figure 3.11 shows the complexity of the electronic set-up in a flow

diagram. The green boxes represent focal plane electronics which was in situ. The timing

for the MWDC’s was taken using CAEN V119A TDC’s triggered by coincident plastic 1

and plastic 2 hits. The signal and timing from the plastic detectors were recorded using

LeCroy FERA/TFC modules. CAGRA electronics are represented in blue. The digitizers
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and trigger modules were originally developed for GRETINA with the firmware and DAQ

repackaged from Gammasphere. This was achieved through the clover-share collaboration.

MyRIAD was also added to the GR-DAQ. This made a common timestamp between both

CAGRA and GR to synchronise the two set-ups. It also distributed the trigger from the

plastic detectors to the CAGRA digitizers. Therefore, CAGRA only took data when in

coincidence with the two plastic detectors. The GR readout was totally independent of

CAGRA. This meant Raw focal plane data could be separately analysed. The GR set-up

used trigger counters to reconstruct MWDC and scintillator events.

3.7 CAGRA Data Analysis

The GR-analyzer was the event processing and analysis framework developed by RCNP

using the PAW analysis software. The CAGRA data was processed using the GRUTinzer

analysis framework developed at NSCL. The raw events were time ordered via a data

thread from GRUTinizer. The building loop then time-correlated events between GR and

CAGRA. The next step was to unpack the data, transforming binary time to c++ objects,

which made offline and online analysis more convenient. Since GRUTinzer is built on

top of the ROOT data analysis framework, histograms and tree data could be filled both

online and offline. It also has an extensive library of utilities built over many campaigns at

ANL and NSCL. These include relativistic kinematics calculators, Doppler correction and

peak fitting routines. However, some issues did arise with joining separately analysed runs

together when utilising multi-threading capabilities. The hadd functionality in ROOT was

not compatible with the GRUTinzer data types. Therefore this script had to be re-written

for this purpose to join tree and histogram data from multiple analysed run files.
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Chapter 4

Grand Raiden Corrections

This chapter focuses on the necessary steps to transform the raw focal plane data taken at

RCNP into a high resolution excitation energy spectrum of 28Si. The time of flight (ToF)

of α particles from the AVF cyclotron to the focal plane is also an important parameter, as

this is used for particle identification (PID). The PID is essential to ensuring background

reduction in the excitation spectrum. The main sources of spectrometer background include

re-scattered α particles from the walls of the spectrometer and deutrons, in which have the

same A/q ratio as α particles.

4.1 VDC Drift Time Corrections

The multi-hit TDC as shown in Figure 3.11 records the time difference between each sense

wire signal and plastic scintillator trigger. The fastest events from the multi-hit TDC from

each sense wire was then recorded. The distribution of drift times as seen in Figure 4.1

have a characteristic feature that high TDC values, corresponding to shorter drift times

are more probable. This is an artefact due to α particles passing through the chamber

near to the anode wires, in particular at less than the critical distance for a Townsend

Avalanche to occur. As the drift velocity is accelerated in this region the drift time is

therefore shortened. The Drift times recorded by the TDC are inverted, as it was operated
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in common stop mode. Signals produced from tracks originating from the avalanche region

thus have longer time periods to wait before the stop signal from the plastic detectors.

This is with respect to signals originating in the uniform electric field region, where drift

velocities are slower and therefore have less time to wait before the common stop.

The drift time distributions were then converted to a drift length distribution. The drift

length is the distance between the track and the cathode plate in the MWDC, therefore

will be between 0 to 10 mm as illustrated in Figure 3.8 and following convention they have

been normalised between 0 and 1.

This was achieved by building a conversion look-up table between drift time and drift

distance. The final spatial distribution should be uniform as the MWDC is designed that

all distances are equally probable. To ensure a successful conversion, typically a White

Spectrum is used, here there should be no dominant peaks or continuous background that

can bias the calibration. 28Si run data was used as it met these requirements. Figure

4.2(left) shows the drift-length distribution for each wire plane before passing through the

look-up table and Figure 4.2(right) is after. The particle trajectory is reconstructed from

all of the drift distances, and thus more reliable after the calibration.
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Figure 4.1: Time distributions between each of the 4 wire planes and the plastic detectors.
They show the characteristic feature that higher TDC values, corresponding to shorter
drift times are more probable.
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Figure 4.2: Converted drift time to drift length for each wire plane. All drift distances
have been normalised between 0 to 1. The left figures show before the calibration, right
figures showing the expected flat distribution after the calibration.
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4.2 Time of Flight Corrections

The time of flight of the α particles through GR should be independent of the horizontal, X,

position and the horizontal entrance angle to the focal plane, Th. However, as described in

the previous chapter ion-optical abberations cause correlations between these parameters.

It was important to correct for these correlations to improve the ToF distribution resolution,

as it is needed for PID and LaBr3 fast timing.

The Th correlation with ToF is illustrated in Figure 4.3(a), the right insert shows

the projection onto the ToF axis. The ToF distribution is very broad with a FWHM of

11.426 ± 0.002 ns. The Th dependence was fitted by placing a gate around the strongest

distribution (state) as highlighted in red. The left insert here shows the average ToF as

a function of Th taken from this gate. A linear function was then fitted to this profile

yielding; ToFfit
th = 538.006 - (1667.79Th) (ns). The Th dependence was removed by an

arbitrary alignment:

ToFth = ToFraw(ns)− ToFfit
th + 400. (4.1)

Figure 4.3(c) shows ToFth Vs Th, here you can see clearly the Th correlation has been

removed and each Th distribution is now independent of ToF. Then the X dependence on

ToFth was plotted in Figure 4.3(b), here a linear dependence is clearly visible. Again a

graphical gate was placed around the main distribution as seen in red. The insert in this

figure is the average ToFth as a function of X position on the focal plane within this gate.

A linear fit to this profile yielded; ToFfit
X = 430.571 + (0.167X). Then the X dependence

was removed by a second arbitrary alignment:

ToFcorr = ToFth − ToFfit
X + 400(ns). (4.2)

Plotting ToFcorr against X in Figure 4.3(d) demonstrates these two parameters are no

longer correlated. The insert in this figure again shows the projection onto the ToF axis,

the ToF distribution is now narrower. After the removal of both TH and X correlations

the ToF peak FWHM was reduced to 2.192 ± 0.001 ns.
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4.3 Particle Identification

α
α

Figure 4.4: (a) Plastic 1 energy Vs ToF. (b) Plastic 2 energy Vs ToF and (c) Plastic 1
energy Vs Plastic 2 energy. The 3 main lobes are from the inelastic scattered α-particles,
labelled α. The secondary lobes are caused by deuteron contamination, labelled D.

The corrected ToF can now be used for particle identification. The correlation between

the energy loss in each plastic detectors and the corrected ToF can be seen in Figure 4.4(a)

and (b) respectively. These show the importance of the ToF corrections, as the broad

uncorrected ToF distributions would give a poor and unresolved particle ID plot.

The main lobes in these plots represent the α particles, with the secondary lobe pro-

duced from deutrons. The separation is caused from two main factors. The larger stopping

power of α particles compared to deutrons in plastic leads to more energy lost by α particles.

Their ToF is separated due to differences in their momentum distributions and magnetic

rigidity. The deutrons have larger radius of curvature within GR, therefore increasing its

ToF.

The three graphical gates shown in red was then applied for all of the following anal-

ysis, to ensure deutrons and re-scattered α particles were removed, along with any other

background.
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4.4 Kinematic Corrections

The next stage of the focal plane corrections was to remove the Th dependence from the

X position of the focal plane. Figure 4.5(a) shows the correlation of these two parameters,

in which a bowing effect is evident. This was an issue as the projection of this plot onto

the X position axis represents the excitation energy of 28Si. Here, the bowing will cause

states to overlap and so they can not be resolved, resulting in a poor resolution.

To remove this dependence a graphical cut was placed around the resolved states in the

Th Vs X plot. The insert in Figure 4.5(a) shows the average X position as a function of Th

for one example state at −200 mm. Here, the correlation between Th and X is even more

evident. A second order polynomial was fitted to this profile. Higher order polynomials

did yield improved fits to this profile. However, when applied to the rest of the data, large

deviations occurred, in particular at the extremities of Th. Therefore, the order of the

polynomials used was kept low to reduce the number of turning points. This was repeated

for all of the graphical cuts as shown in Figure 4.5.

There was a significant deviation of the polynomial coefficients as a function of X.

Therefore it was not possible to have one correction for the entire range of the focal plane

and so a multidimensional fit was required. The results of the multidimensional fit are as

shown in Table 4.1. Again the order of this fit was kept low to reduce the number of turning

points. Figure 4.5(b) shows the results of the TH Vs X plot with the multidimensional fit

corrections applied, in which the bowing effect was removed.
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Figure 4.5: (a) TH scattering angle Vs X position of the focal plane detectors with a clear
correlation, as seen in the insert. (b) The correlation was removed by making several gates
on distinct states and creating a multidimensional fit.

4.5 Excitation Spectrum

With all of the necessary focal-plane corrections complete, it was then possible to plot the

corrected X position of the focal plane with the following steps applied:

• VDC drift time to drift length calibration.

• ToF-corrected particle ID gates.

• Th dependence removed from X position.

The final focal-plane spectrum with all these corrections applied is as shown in Figure

4.6. To achieve energy calibration of this spectrum the excitation energy of known states

Table 4.1: Multidimensional fit for kinematic corrections

Coefficient X0 X1 X2 X3 X4

a 0.98 0.9971
b -9.58419 0.902 0.000629 -3.36e-6 -7.43e-9
c -3904.629 -7.158 -0.0554 3.53e-4 1.52e-6
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need to be used. The assignment of states to these peaks was not possible until coincidence

data between CAGRA and GR was applied which will be discussed in Chapter 5. This

was to ensure the correct states were assigned by using γ-spectroscopy and comparing to

the well documented adopted level schemes.
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Figure 4.6: Final full corrected focal plane spectra, showing the uncalibrated excitation
spectrum of 28Si.

To calibrate from position to excitation energy the peak position of known peaks cov-

ering a wide range of the focal plane was required. This was done by fitting multiple

Gaussians over overlapping peaks. Figure 4.7 shows the results for 6 sample peak that

were fitted. Their energies were plotted against their fitted centroids as illustrated in

Figure 4.8. A linear polynomial was fitted to all of the data points yielding:

Ex = 8.7997 + 0.0107 XCorr (4.3)
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Figure 4.7: Focal plane peak fitting procedure. Multi-Gaussian fits were applied to partially
overlapping states. The centroids of known states were then used for the focal plane
calibration. (a) Low energy states (b) Medium energy (c) Higher energy states.
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Figure 4.8: Linear calibration for the focal plane detector, converting from position to
excitation energy using 6 data points over a wide range of the focal plane.
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Figure 4.9: Calibration of focal plane spectrum, going from position in mm to excitation
energy of 28Si in MeV

Equation 4.3 was then used to construct Figure 4.9, showing the calibrated focal plane

spectrum which covered a range from 4 MeV to just over 14 MeV in excitation energy.
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Chapter 5

CAGRA Analysis

The next stage of the analysis was to analyse data taken from the Cagra array. First, all

48 clover crystals needed to be energy calibrated before any γ-ray spectroscopy could be

performed. Then, prompt timing between CAGRA and GR was characterised to ensure

events analysed were in true coincidence. Addback was then implemented to increase

efficiency of the Cagra array and its effectiveness will be detailed in this chapter. Once

all these steps have been achieved, it’s then possible to study the correlation between

excitation energy in 28Si and its subsequent coincident γ-ray emission.

5.1 Energy Calibration: Clover Crystals

This research faced a difficulty that a very broad range of γ-ray energies were expected,

that were of interest. The calibration sources used therefore needed to cover as much

of this range as possible for a reliable calibration. The three calibration sources used

were 60Co, 56Co and 152Eu with γ-ray energies ranging from 344.3 to 3548.05 keV. Table

5.1 summarises the source activities used and each run’s duration. Figure 5.1 gives the

three uncalibrated spectra for each source for one example crystal (#4). Figure 5.2 shows

the results from all 18 data points used, a quadratic polynomial was fitted which yielded

Equation 5.1.
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Table 5.1: Calibration and absolute efficiency source information.

Source Activity (kBq) Run Duration (s)
60Co 81.3 ± 0.813 1350.0
56Co 18.14 ± 0.1814 11807.0
152Eu 319.0 ± 3.19 1815.0

Energy = −1.0844 + 1.94799× Ch + 1.42294× 10−6 × Ch2 keV. (5.1)

This was repeated for all 48 crystals, in which all offsets, gains and quadratic coefficients

are listed in Table 5.2. Here, values for crystals 7 and 34 are not given because these

channels were broken during the experiment.

100 200 300 400 500 600 700 800

C
o

u
n

ts
/C

h

0

1000

2000

3000

4000

5000

6000

7000

Ch number

200 400 600 800 1000 1200 1400
0

50

100

150

200

250

3
10×

100 200 300 400 500 600 700 800
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

Ch (#)
200 400 600 800 1000 1200 1400 1600 1800

E
n

e
rg

y
 (

K
e

V
)

500

1000

1500

2000

2500

3000

3500

Figure 5.1: Calibration spectra for one example crystal 4 (left) 60Co main lines at 1173.2
& 1332.5 keV. (middle) 56Co with energies used from 847.0 to 3548.05 keV. (right) 152Eu,
lowest data point at 344.3 keV up to 1408.0 keV.
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Figure 5.2: Quadratic calibration fitting procedure for one example crystal (#4), all data
points were taken from the spectra in Figure 5.1 from 60Co, 56Co and 152Eu calibration
sources.

5.2 CAGRA Efficiency

The absolute efficiency of each clover crystal was then calculated. The same spectra were

used as for the energy calibrations, as seen in Figure 5.1. The absolute efficiency is given

by:

εAbs =
N

AIγ t
, (5.2)

where, N is total number of counts for a single data point with background subtracted.

A is the source activity and t is the duration of the source run as referenced in Table 5.1.

Iγ is the relative intensity of each γ-branch.
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A photopeak, P (E) was fitted with 8 parameters to each datapoint:

P (E) = Gauss(E0, σ,H,R) + SkewedGauss(E0, σ,H,R, β) ...

+ StepFunction(E0, σ,H, step) + Bg(offset, slope) (5.3)

Where E0, σ and H is the centroid, standard deviation and height of the Gaussian or

Skewed Gaussian. R is the relative height between the Gaussian and Skewed Gaussian.

The skewed Gaussian was needed to account for the asymmetry of the photopeaks. This is

typical for Ge detectors that have received significant neutron damage, causing low energy

tails. Here, the degree of skewness was controlled by β. If the low energy tail of a peak is

sitting on top of a Compton edge, originating from another γ-ray, this can cause sudden

step discontinuities. Therefore, a step function was also added to account for this if needed,

the magnitude of which was quantified by the step parameter. Lastly, a linear background

was applied with a slope and offset. Figure 5.3 shows an example application of this fitting

procedure on the 1173.2-keV line in 60Co with each component drawn separately.
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Figure 5.3: Example of peak fitting procedure on the 1173.2-keV transition from 60Co. The
red line shows the combination of: A Gaussian drawn in blue, a Skewed Gaussian (green)
and the magenta line shows a linear background. A step function was also included in this
fit but had no contribution. The insert shows the fit region used on a 60Co run, showing
the two main lines at 1173.2 and 1332.5 keV.

To get the background subtracted counts, the photopeak fit, P(E) was integrated over

the full range of the fit region. Then, separately the step and linear components were

both integrated and subtracted from the P(E) integral. Equation 5.2 was then used to

determine the absolute efficiency for each data point. The relative intensities for 152Eu and

56Co was taken from a recent study on γ-ray intensity determination with precise summing

corrections (Shima et al., 2016). For 60Co, values were taken from studies correcting for

summing and angular correlations of the cascade decay (Courtine et al., 2014).
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Figure 5.4: Logarithm in base 10 of absolute efficiency for one example clover detector
(#5). The blue distribution shows the 1σ confidence-interval.

Figure 5.4 shows the logarithm in base 10 of the absolute efficiency against γ-ray energy,

with data points ranging from 444.0 to 3548.05 keV. Data points below 444.0 keV were

available but were omitted due to poor efficiency fitting results. Full photopeak efficiency

is maximum around 400.0 keV for HPGe detectors, introducing a turning point. After this

turning point the absolute efficiency exponentially decreases with increasing energy. To

accurately fit the detector response a polylogarithmic function such as:

log(εAbs) =
N∑
n=0

anlog
n(En), (5.4)

is typically used to reproduce a single turning with smoother features compared to a

normal polynomial function. Here, N is the order of the polylogarithmic function. However,

this function yielded poor fit results when demanding the low energy turning point. No

87



CAGRA Efficiency CAGRA Analysis

γ-rays below 444.0 keV were observed in this experiment and this justified the turn over

region being omitted. Instead a linear function was fitted to data as seen in Figure 5.4. The

red line shows the line of best fit and the blue region is the confidence interval drawn for

1σ. As γ-ray energies of interest were significantly higher than that available from standard

calibration sources, extrapolation of efficiency at energies greater than 3548.05 keV was

necessary. The confidence interval in Figure 5.4 shows how the error grows significantly for

larger extrapolations. This had adverse consequences on the precision to which branching

ratios with high energy γ-transitions could be calculated. To obtain absolute efficiencies

for either grouped clovers or the entire CAGRA array the efficiencies were appropriately

summed.
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Table 5.2: CAGRA crystal information. N.B. crystals 7 and 34 were not in use.

Crystal Number Slot Number Offset Gain Quadratic Pole Zero
0 5 -0.0523702 2.31757 -2.13204e-7 0.8910
1 5 1.89506 2.38303 2.60466e-6 0.8906
2 5 0.793988 2.35783 8.39078e-7 0.8914
3 5 1.6807 2.29384 1.56288e-6 0.8915
4 6 -1.0844 1.94799 -1.42294e-6 0.8824
5 6 0.986484 2.30076 1.49099e-6 0.8904
6 6 0.74108 2.32272 7.87691e-7 0.8895
7 6 N/A N/A N/A N/A
8 7 0.499724 2.25393 7.1286e-7 0.9083
9 7 1.65873 2.31119 2.2385e-6 0.911
10 7 1.10912 2.24816 1.74369e-6 0.9083
11 7 1.60912 2.23243 1.34427e-6 0.911
12 8 1.17377 2.25145 1.9781e-6 0.9061
13 8 -0.706015 2.30416 -7.74857e-7 0.9044
14 8 3.32617 2.32136 3.4749e-6 0.9049
15 8 1.47564 2.23966 2.07489e-6 0.9025
16 9 1.02634 2.27052 9.58707e-7 0.8956
17 9 -4.1345 2.46437 -8.35214e-7 0.884
18 9 -2.06478 2.46787 6.66307e-7 0.8905
19 9 1.23873 2.49222 1.80155e-6 0.8918
20 10 2.57612 2.37463 5.81553e-6 0.9102
21 10 0.756875 2.33279 6.27612e-7 0.9082
22 10 1.46211 2.48059 1.91665e-6 0.8902
23 10 1.8136 2.43794 1.74887e-6 0.899
24 11 -2.16897 2.35174 -3.98001e-6 0.8925
25 11 1.64852 2.38026 4.10886e-6 0.8927
26 11 0.963456 2.4184 1.75728e-6 0.8918
27 11 2.15586 2.28635 2.92783e-6 0.8917
28 12 -0.226019 2.20489 3.04067e-7 0.9076
29 12 0.519875 2.21189 2.51964e-7 0.9105
30 12 0.641008 2.24978 1.24507e-6 0.9096
31 12 1.74911 2.24244 1.48514e-6 0.9101
32 13 4.883 2.22017 9.68839e-7 0.9111
33 13 0.114371 2.2216 6.02555e-7 0.9101
34 13 N/A N/A N/A N/A
35 13 0.787158 2.31964 1.73683e-6 0.9128
36 14 1.26719 2.25508 5.09543e-7 0.9103
37 14 -0.906536 2.24117 -4.75636e-8 0.9127
38 14 1.27347 2.28642 2.41191e-6 0.9082
39 14 -0.111823 2.30984 1.13172e-6 0.907
40 15 0.830961 2.29041 8.27326e-7 0.9106
41 15 1.43131 2.30357 5.09576e-7 0.9108
42 15 0.866554 2.2937 5.91296e-7 0.9115
43 15 1.92131 2.37581 5.55347e-6 0.9117
44 16 2.03507 2.37634 2.17294e-6 0.9115
45 16 1.46298 2.31454 1.6138e-6 0.9116
46 16 0.132266 2.44651 4.49092e-7 0.9081
47 16 0.922033 2.32033 1.43314e-6 0.9122
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5.3 Prompt Timing

The cyclotron beam bunch frequency was 12.4 MHz, i.e. a beam bunch interval of 80.645

ns. Prompt γ-rays should be in synchronisation with the cyclotron. Therefore, the time

difference between any CAGRA and GR plastic event will separate the true correlated

GR-γ coincidences from time random uncorrelated chance coincidence events.
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Figure 5.5: Prompt timing distribution between CAGRA timestamp and a coincident GR
timestamp. The prompt peak is clearly visible. The satellite peaks are random coincidences
from either time random background or beam induced events from non coincident
GR-CAGRA timestamp correlation. The red lines show the limits for the background
subtraction.

The timing of each clover crystal can differ, due to differences in length of wires or

electrical resistance for each DAQ channel. Also, the different voltages applied to each

clover detector will affect charge collection times and thus the trigger timing. Therefore,

the fitting was repeated for each crystal. The prompt timing gate width was set to 4σ

centered around each crystals centroid, ensuring 99.99 % of the prompt events were inside

of the gate but removing background.
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5.4 Clover Energy Rate Dependence

Online analysis during the experiment shown unexpected double peaking in the clover

detector γ-ray energy spectra. Further work offline attributed this to a rate dependence

in the baseline signal. Plotting γ energy vs time over a run highlights the extent of the

dependence as seen in Figure 5.6(a). Here, the energy is fluctuating with time due to a

baseline shift. The baseline Vs time, Figure 5.6(b), shows the same correlation as Figure

5.6(a). If compared to the source runs, for example 60Co, there is no evident shift in energy,

Figure 5.6(c), or baseline, Figure 5.6(d), with time. This is because the source activity

is constant over the time scale of the source run. However, the rate of the cyclotron was

changing significantly over time scale of a single run time (≈1hr), causing a rate dependent

shift in the run data.
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Figure 5.6: Rate dependent shift: (a) An in-continuous shift of the 511-keV energy, tracking
over 3000 s. (b) This figure shows the baseline over the same period of time, with the same
correlation as Figure (a). Figure (c) and (d) show the same but for the source run data,
with no fluctuation in energy.
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5.5 Kalman Filter Baseline

The comparison between source and beam runs also shows how the distribution of baseline

values broaden (even accounting for rate dependence) during beam runs due to large sta-

tistical fluctuations. Therefore, it was necessary to perform some post pulse-shape analysis

(PSA) to acquire a more reliable baseline estimate. Here, a moving average was applied

based on the Kalman filter method:

Bkal = Bkal + kalgain(Bsample −Bkal). (5.5)

The Kalman Baseline, Bkal, was given an initial starting value equal to the mean

Baseline sample. This initial estimate is updated recursively based upon the statistical

weight kalgain, known as the Kalman Gain. This was set to 0.005, which yielded the

best performance overall. However, this differs from the standard Kalman filter which

gives more weight to observables with lower uncertainty. As here only one experimental

observable was used, this was not needed. The results of the application of the filter can be

seen in Figure 5.7(b), here the width has been significantly reduced. The insert in Figure

5.7(a) shows the projection of baseline sample between 2100 and 2400 s, where the rate was

relatively constant. A Gaussian was fitted, as shown in red, yielding a FWHM of 48.155

± 0.121 Channels. The same is shown for the Kalman filtered baseline, insert in Figure

5.7(b), which gave a FWHM of 13.014 ± 0.036 Channels. The Kalman filter, therefore

significantly improved the accuracy of the baseline signal determination.
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Figure 5.7: (a) Raw baseline sample over one beam run, showing a broad distribution (b)
Baseline sample after the Kalman filter application, showing a more accurate estimate and
narrower distribution of the baseline.

5.6 Clover Energy Determination

Figure 5.8: Schematic diagram of γ-ray energy determination using the sum method. The
DAQ subtracts a pre-sum from a post-sum integral (left). The right figure shows a pole-zero
correction to account for pulse pile up. Adapted from (Weinert, 2019).

Due to memory restrictions, the entire signal trace of every event could not be stored.

Instead, only sample points of interest were stored. Figure 5.8(a) illustrates a typical raw
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signal trace from a clover crystal and demonstrates a typical pulse pile up event. The

Current TimeStamp is produced from the LED trigger point. This timestamp is then

associated with a post trigger integration region, Postsum, marked between Post Begin &

Post End. Also stored, is a Pre-rise integration region, Presum, between Pre Begin & Pre

End. The width of these integration regions was set by a Shaping Time of 350 samples i.e

3.5µs . The energy of the each event was determined from:

Energy =
(Postsum − pzPresum)

Shaping T ime
. (5.6)

This gives the difference in area between the two green regions in Figure 5.8(a). Dividing

by Shaping time simply gives the height, which is proportional to the energy of the γ-ray.

However, a Pole-Zero correction term, pz, was necessary to correct for the overestimation

of the Presum. This was being caused by pulses sitting on top of the exponential decay

of previous pulses. This parameter then scales down the Presum area as shown in blue

on Figure 5.8(b). Figure 5.9 shows the effect of the Pole-Zero parameter on the detector

resolution of crystal 46, here the FWHM of the 511-keV peak was used a standard reference.

Too high Pole-Zero values did not account for the overestimation, yielding low energy tails

in the 511 peak. Too low Pole-Zero values over-corrected, causing high energy tails. These

tails worsened energy resolution and therefore the Pole-Zero was chosen which achieved

the optimum resolution. For crystal 46 this corresponded to a value of 0.9081 achieving a

FWHM of 7.519 ± 0.122 keV, in which the tails were removed. This was repeated for all

crystals and the optimum pole-zero values for each crystal are given in Table 5.2.
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Figure 5.9: Pole-zero optimisation needed due to pulse pile up. Resulting in a much better
energy resolution.

In the case of a no pile up event, the height of the Presum should simply be at asymptotic

baseline. However, the Pole-Zero would still be applied and therefore a correcting factor:

Energy = Energy + Asym(1− pz), (5.7)

was included to compensate for this issue.

To further improve resolution, the rate dependence of the baseline had to be removed.

There were several attempts to achieve this: One method was a fitting procedure. Using

the same pulse samples marked out in Figure 5.8(a), an exponential was fitted to the decay

of each pulse. An optimum decay constant for each crystal & pre-amplifier was determined.

The fit was used to extrapolate the asymptotic baseline instead of obtaining it from the

Kalman filter procedure. The sum method was then applied using the fit to determine the
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energy. This method was independent of rate. However, this suffered from poor resolution

due to the inherent error in the fitting procedure. Another disadvantage was the increased

sorting time due to each pulse having to be fitted.

Another method tested was to fit the energy shift as a function of rate. This was

achieved by gating on different points in time corresponding to a distinct rate. The fit was

then used to shift the energy depending on the rate. This method also suffered from poor

resolution. In which was most likely due to the difficulty in fitting the true dependence of

rate on the baseline shift.

In the end an algorithm was created to track the 511-keV peak centroid position. It

was fitted every 30 seconds for every run and for each crystal. Each peaks measured

centroid shift relative to 511 keV was tabulated. Then in the sorting process depending

on the timestamp and crystal the appropriate shift was applied. This was more robust

than the other methods, being more sensitive to discontinuities and large sudden changes

in baseline. These features are evident in Figure 5.10(a), the insert is the projection onto

the energy axis and shows a triple peak caused by the rate dependence. Fitting a triple

Gaussian yielded centroids at 461.16, 475.4 and 489.12 keV. However, this is not physical

as only a single peak is expected from a unique γ-ray transition from a stationary source.

After applying the energy shifts these features were removed, in which can be seen in

Figure 5.10(b). The insert here shows that the triple peaking was removed and the energy

resolution was significantly improved to 7.304 ± 0.086 keV.
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Figure 5.10: (a) Energy Vs Time for one example crystal 45 showing a strong fluctuation
in energy determination, insert shows the projection onto the energy axis with deteriorated
energy resolution and triple peaking. (b) After the rate dependent shift correction. Insert
showing the superior energy resolution and triple peaking removed.

5.7 Doppler Energy Corrections

The energy measured by the CAGRA array is in the laboratory frame of reference. Due

to the kinematics of the inelastic scattering reaction, 28Si(α,α’)28Si*, the excited 28Si*

nucleus recoils at a significant fraction of the speed of light, β(Ex) = v(Ex)
c

. The polar

scattering angle of the alpha particle (ejectile) is fixed around 9.1◦ ± 1.5◦ due to the

opening angle of the GR spectrometer. The initial beam kinetic energy is also fixed at

130 MeV. Therefore, conservation of momentum and energy constrains the possible β and

recoil scattering angles possible, depending on the excitation energy of the recoil. As

the excitation energy is reconstructed from the focal plane, this allows β and the recoil

scattering angle to be reconstructed event by event. To convert the γ-ray energy measured
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in the laboratory frame, Elab, to the recoil rest frame, Erest, the Doppler shift must be

taken into account using:

Erest = Elab
1− β cos(θ)√

1− β2
, (5.8)

where θ is the detection angle with respect to the recoil velocity, v̂ or position vector, r̂.

These vectors were calculated from the reconstructed recoil scattering angle. The position

vector of each clover crystal, â, is known and fixed from the experimental set-up. For

addback events the crystal position corresponded to the crystal with the highest recorded

energy. The detection angle was then calculated for each γ-ray event by:

θ = arccos

(
v̂ · â
|v| |a|

)
. (5.9)

The recoil travelled through a thick 11 mg/cm2 natSi target and so significant energy

loss occurred depending on the lifetime of the state. To quantify this a simple model was

created to calculate the average time taken to slow the recoil down from an initial βi to

a final βf . Here, βf corresponded to the average velocity of the recoil after one lifetime.

This required the stopping power,dE(Ekin)
dx

, of 28Si in natSi to be known as a function of its

kinetic energy, Ekin. Which was taken from the Stopping and Range of Ions in Matter

toolkit (SRIM) (Ziegler et al., 2010). With the following assumptions:

∆E

P(Ekin)
= ∆t, (5.10)

lim
∆E→0

dE

P(Ekin)
= dt, (5.11)

P(Ekin) =
dE(Ekin)

dx
|v̂| and (5.12)

t =

∫ Ef

Ei

[
dE(Ekin)

dx

√
2Ekin

m

]−1

dE. (5.13)
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The stopping time, t, was estimated. P(Ekin) is the rate of energy loss. As no analytical

function existed for the total stopping power, the integral was numerically computed using

a cubic spline interpolation method (Lamnii et al., 2016). To estimate Ef , the data was re-

analysed for varying fractions of effective βi, ranging from 0 to 1 in steps of 0.2. A value of 1

equates to a recoil with zero energy loss, conversely, a value of 0 represents a fully stopped

recoil within the target. The analysed β with the optimum energy resolution was then

used to calculate Ef = 1
2
m(βf )

2. This was first tested on the 6877.0-keV Jπ = 3−1 → g.s.

γ-ray transition, which has a 2.74-ps lifetime. Figure 5.11 shows this transition Doppler

corrected for each fraction of β. The blue line tracks the FWHM and is minimum for βf = 0

i.e. is expected on average to be fully stopped before decaying. This is in agreement with

the stopping time model, as integrating from its initial energy, Ei = 478 keV, to its final

energy, Ef = 0 keV, yields 711.59 fs. This is approximately a quarter of the Jπ = 3−1 states

lifetime, so would be expected to be fully stopped.

Figure 5.11: 3-D representation of the β distribution for a short lived state, in particular
for the 6877.0-keV Jπ = 3−1 → g.s. γ-ray transition in which has a 2.74 ps lifetime. The
blue line tracks the FWHM and is minimum for β=0.

Next, the method was tested on a state with a relatively short lifetime. Therefore, the

2838.29-keV Jπ = 4+
1 → 2+

1 γ-ray transition with a lifetime of 53.38 fs was chosen. A βf
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Figure 5.12: 3-D representation of the β distribution for the 2838.29-keV Jπ = 4+
1 → 2+

1

γ-ray transition with a lifetime of 53.38 fs. The blue line tracks the FWHM and plateaus
around β=0.8.

value of 0.924 was required to get a slowing time equal to the lifetime of this state. This is

confirmed in Figure 5.12, where the optimum resolution starts to plateau after a β fraction

of 0.8. The Jπ = 3+
1 → 2+

1 γ-ray transition with 1.13 ps lifetime was tested and Figure

5.13 shows the beta fraction optimisation for this state, here a minimum around 0.2βi is

observed. The stopping time model for this transition yielded 0.66 ps, the discrepancy

clearly shows the weakness in this primitive model.

There is limited lifetime sensitivity for decays with intermediate lifetimes. One reason

is that this model ignores the more realistic exponential decay, since after one lifetime

63.21% on average will have already decayed. However, the stopping time model assumes

all nuclei have decayed exactly after one lifetime. Also there will have been significant

energy straggling through the stochastic collisions of the recoil with the target. Preci-

sion lifetime measurements such as Recoil Distance Doppler-Shift (Dewald et al., 2012)

and Doppler-Shift attenuation Methods (Brandolini & Ribas, 1998) would offer greater

lifetime measurement sensitivity. However, these methods require detailed Monte-Carlo

simulations to model the stochastic processes previously mentioned. Great effort also has

to be undertaken before the experiment and requires optimisation of beam parameters,
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choice of degrader material and thickness. As the aim of this experiment was not lifetime

measurements, this was not undertaken.

The sensitivity achieved is enough to acquire the magnitude of a particular states

lifetime. This turned out to be a powerful tool when assigning γ-decays to possible states.

Particularly at higher excitation where level density increased.
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Figure 5.13: Jπ = 3+
1 → 2+

1 γ-ray transition with 1.13 ps β optimisation, minimum at
β =0.2.
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5.8 Addback Implementation

The effectiveness of addback is controlled by the ability to separate true addback events

from background chance coincidences and coincidence summing. The extent of these is

largely dependent on the geometry of the detector array, the distance to target and crystal

spacing. The design of the clover detector as previously discussed is also a major factor.

One of the ways to reduce background contamination is to restrict which combinations

of clover segments contribute to addback. In particular at intermediate energies where

Compton scattering is dominant, only adjacent crystals should be used. As the segment

readout was unavailable during this campaign this was not possible to implement due to a

shortage in DAQ-channels.

Only three possible modes to operate addback were available: Adding all energies of

events from a single clover detector, adding up all event energies from a clover and its near-

est neighbours, or summing over all events in the entire clover array. To confidently choose

the best operating mode a detailed and comprehensive Monte-Carlo simulation should be

performed, for example using the Geant4 toolkit. Due to time constraints this analysis was

not performed and existing simulations of CAGRA were not available. However, similar

analysis has been performed by M.A. Schumaker and C.E. Svensson for the TIGRESS ar-

ray located at TRIUMF. They simulated γ-rays with multiplicities up to 40 with energies

between 40 to 10,000 keV. Then using the following as a Figure of Merit, ζ, to quantify

the effectiveness of each addback method:

ζ =
εabs
δEγ

P

T
, (5.14)

where εabs and δEγ are the absolute efficiency and energy resolution respectively and P
T

is the peak to total ratio. They found the optimal mode was sensitive to the multiplicity

of the addback event and its energy. For all multiplicities no addback is most effective

at low energies where photoelectric effect is dominant, as here addback only increases the

probability of adding noise or background to the full energy photopeak. At intermediate

energies the probability of Compton scattering increases and so the selective mode be-
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comes most effective. Then, at higher energies the nearest neighbour mode becomes more

favourable. This is due to the increasing probability of pair production, in which deposits

full energy over multiple combinations of Compton scattering and photoelectric absorption

interactions. This increases the chance of γ-rays escaping and entering neighbouring clover

detectors. Overall they found no improvement by summing over the entire array. Most

importantly summing over more crystals becomes less effective as multiplicity increases.

The crystal multiplicity of CAGRA for all events inside the prompt window is plotted with

its average marked in Figure 5.14. Therefore, due to the relatively high crystal multiplicity,

the possibility of summing over multiple clovers was unreliable. Also, as selective mode

was not available, the only option left was to sum over single clover detectors.

The next step was to optimise the chosen addback method, here timing is an important

parameter. The first problem here is that multiple timestamps are associated with each

addback event. Therefore, ambiguities can arise in deciding if the event truly lies within the

prompt peak. A few techniques were tested. Firstly, as the timestamps were sorted time

ordered, simply the last event was taken to be the trigger. The second method tested was

to take the average of all the timestamps that contributed to the addback event. However,

these two methods were not based on anything physical. Therefore, it was more reliable

to assume the highest single energy event within the addback conditions was the trigger.

Now, only if the timestamp of this event fell within the GR-CAGRA prompt peak was

the addback deemed a true prompt coincidence. Although, the addback algorithm was

performed for all events including outside of the prompt peak, which then could then be

used for background subtraction.
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Figure 5.14: (a) Crystal multiplicity of CAGRA, only events within the prompt peak are
included in Figure 5.5. The blue line shows the average multiplicity = 8.7 (b) Plotted ζ
vs time gate width. The blue dashed line here shows the chosen time gate for addback
algorithm.

The time difference between each γ-event was taken, then only events within a specified

time window were summed. To determined which addback time window was optimum, the

Figure of Merit from Equation 5.14 was used. Figure 5.14(b) shows the Figure of Merit

calculated from the 1173.2-keV peak in 60Co as a function of the addback time window.

There are 3 distinct regions, initially ζ increases with an increase in the time window. Then

there is a cross over region where addback becomes less probable and random coincidences

start to play an increasing role. At large time windows, ζ plateaus. In this region further

increase of the time window only increases the probability of adding random coincidences

to the addback sum. Therefore, to maximise complete addback summation but reducing

contribution from background, the optimum time window was chosen to lay inside the

midpoint of the crossover region. This was at 140 ns and is illustrated by the blue dashed

line in Figure 5.14(b).

Further characterisation of the addback performance was achieved by plotting the per-

centage increase of counts as a function of γ-ray energy. This is shown in Figure 5.15(b),
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again using data points from 60Co, 56Co and 152Eu. The trend shown in this figure is con-

sistent with the physical description in comparison with the TIGRESS simulations. The

number of crystals that contribute to each addback event, referred to here as addback fold,

was also investigated. This is plotted in Figure 5.15(a), in which shows lower addback folds

are more probable. Physically this represents the larger probability of γ rays escaping the

clover detector vs depositing its full energy over multiple interactions.
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Figure 5.15: (a) The addback fold, i.e. the number of crystals triggered per addback
event, showing that majority of addback events require the sum of only two crystals. (b)
Shows the percentage increase of counts with addback implemented compared to without.
Addback starts to become more efficient as energy increases, due to increase in Compton
scattering and pair production.
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5.9 BGO Suppression

This section details the testing and implementation results for the BGO suppression capa-

bilities of CAGRA.
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Figure 5.16: Timestamp difference between any clover crystal and its corresponding BGO
suppressor. The green region shows time random coincidences. The red region shows
the true prompt coincidence, these are events with incomplete energy deposition within a
clover detector. These events were therefore vetoed.

First, the timing between any clover crystal and its corresponding BGO was charac-

terised. This is shown in Figure 5.16, here the green region shows time random coincidences

between any clover crystal and its BGO suppressor. These events coincide with either full

energy deposition within a clover detector, or a Compton scattered event which escaped

both the clover and BGO detector. These two cases can’t be distinguished, therefore all

green events are accepted. The red region shows how the true prompt coincidence sits

on top of a time random background. Again, the two cases can’t be distinguished on an

event by event basis. Therefore, all these events were vetoed in the analysis of the BGO

suppression.
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Figure 5.17: Comparison of BGO suppression implementation. The raw and calibrated
HPGe γ-ray spectrum is drawn in magenta, BGO vetoed spectrum in red and the events
that were vetoed are in blue. The photopeak is not suppressed which is promising, however
there is limited success in suppressing the Compton distribution.

The results of the BGO suppression implementation can be seen in Figure 5.17. This

was for the Jπ=3− to Jπ=0+ ground-state decay in 28Si. This did show some promising

signs, since the first and second escape peaks are preferentially vetoed. This is shown by

the distribution in blue, which are only BGO vetoed events. The magenta distribution

represents the raw γ-ray spectra. Comparing this to the BGO suppressed distribution

in red, there is insignificant BGO suppression at the full energy photo-peak. This is the

desired response for BGO suppression. However, this is also the case for the Compton

distribution down to the first escape peak. If the BGO suppression was working as desired

these events should be suppressed. Events below the first escape peak have a significant

BGO suppression, which again shown some effectiveness of its implementation.
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These performance issues may be explained by the quality of the charge collection seen

in the BGO spectrum. Figure 5.18 shows one example spectrum from a clover detector.

The events shown in this BGO spectrum was in coincidence with prompt HPGe crystals

events of the same clover detector, i.e. events inside the BGO veto gate in Figure 5.16.

Even though the resolution of HPGe is far superior to the typical resolution of BGO

detectors, there should still be a visible spectrum. However, the results from Figure 5.18

seems to be noise or a spectrum with very bad energy resolution. The reason for this

detector behaviour is still unknown and the same response was seen for all the other BGO

crystals. For this reason the BGO suppression was unfortunately not reliable enough to

be used for the final analysis.
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Figure 5.18: Example charge spectrum from one BGO detector showing atypical response.
For this reason the BGO suppression capabilities of CAGRA was not utilised.

.
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5.10 γ-Ex Background Subtraction

The prompt CAGRA-GR coincident events sit on top of background as previously detailed

and so a background subtraction was necessary. This was achieved by producing a γ-Ex

coincidence spectra via gating either side of the prompt peak in Figure 5.5 as marked

between the red limits. The high and low background spectra were summed and scaled

down to the width of the prompt peak gate. This was then subtracted from the true

prompt γ-Ex coincidence spectrum. Figure 5.19 shows an example of the effectiveness of

this technique. This was produced by gating on the Jπ=3−1 state on the γ-Ex background

subtracted spectrum and taking the projection onto the γ-ray energy axis.
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Figure 5.19: Background subtraction: Inserts shows zoomed in spectrum at low energy
where the background has been effectively removed. The high energy insert shows minimal
background, showing background is focused to lower energy.

.
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The left insert in Figure 5.19 highlights the low energy component, here the background

has been effectively removed. The remaining peaks are all accounted for from known γ-ray

transitions. The source of the background is not fully understood. However, the most

likely sources are neutron related, either from activation of the Al reaction chamber or

reactions with the Ge inside of the clover crystals themselves. The LaBr3 also have a

significant internal activity which could have been incident on the clover detectors. All

these possibilities are from time random background events and since the effectiveness

of the background subtraction was proven, it was not necessary to fully characterise the

precise details of their origin.

From here on, any γ-ray spectrum shown will be background subtracted through this

method, unless stated otherwise.

5.11 CAGRA γ − γ Analysis

This section focuses on the results from the γ-γ analysis implementation of CAGRA. The

time ordered CAGRA events that met the γ-γ criteria were filled to a dedicated vector

associated to each successful focal plane event. The criteria were as follows:

• All events were inside the prompt peak

• Two correlated γ events can not be from the same clover

• If conditions for addback were met, the timestamp was associated with the event

with the highest energy

• Inside the excitation energy gate of interest

This allowed a symmetrical γ-γ coincidence spectra to be created. Only γ-γ events

with multiplicity of two was investigated. Figure 5.20 shows an example case gated on the

Jπ = 3−1 state in 28Si. A gate was applied to the 1778-keV Jπ =2+
1 γ-ray transition to the

g.s on one axis, events in coincidence should be from the Jπ = 3−1 to the Jπ = 2+
1 transition.

By projecting onto the opposite axis of the energy gate yields the correlated γ spectrum,
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Figure 5.20: Symmetrical γ-γ spectrum with multiplicity of two gated on the 3−1 . The
region in blue were the limits used for the background subtraction.

.

as seen in Figure 5.21(right). Before background subtraction there were significant counts

in the 1778-keV peak. This can not be in coincidence with itself and is caused by ran-

dom background correlations, therefore, a background subtraction was required. This was

achieved by placing a background gate either side of the original gate, which are drawn

in blue in Figure 5.20. The subtraction of the normalised background spectrum from the

main 1778-keV gate can be seen in Figure 5.21(left). The counts of the of the 5098.8-keV

peak which feeds the 2+
1 state decreased by 10 % and 50 % for the 1778-keV transition

after subtraction. This shows the background subtraction was preferentially subtracting

true background.

This was performed on a state with the largest statistics, order of magnitude higher
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Figure 5.21: γ-γ background subtraction gated on the Jπ = 3−1 state and then on the
1778-keV transition. Right figure shows before subtraction and left shows after. After
subtraction the 1778-keV transition was significantly subtracted where as the 5098.8-keV
was preserved.

.

than most states in the focal plane. You can see that the γ− γ spectra produced still have

relatively low statistics. It was still enough conclude the implementation was successful,

however when similar analysis was performed on other states no further information could

be required because of the significantly low statistics. Therefore, no further γ − γ analysis

was performed during this research.

5.12 LaBr3 Analysis

The timing of the LaBr3 detectors were taken via the time difference between the leading

edge trigger of the LeCroy FREA module respect to the plastic stop signal at the focal

plane. The time of flight of the α-particles from the cyclotron to the plastic detector is

dependent on the path length taken around Grand Raiden. Due to the superior timing

capabilities of the LaBr3 detectors this time dependent path is measurable and will de-

teriorate the optimum time resolution. The time difference between the rf signal of the

cyclotron and the plastic detector triggers were also recorded. This had the same system-

atic error associated with the path dependent ToF. Therefore, subtracting one from the
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other removes this systematic error. This is now essentially the time difference between

the rf signal and the LaBr3 trigger. The subtraction improved the prompt peak resolution

from FWHM = 14.2 ns to less than 2 ns.
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Figure 5.22: LaBr3 prompt timing spectrum with removed ToF component from Grand
Raiden and corrected for time walk. Here, each bin corresponds to approximately 0.1 ns.
The fitted FWHM yielded a prompt time resolution of 1.278±0.01 ns.

.
Next, the time walk corrections had to be implemented. The time taken to reach the

maximum pulse height is time independent. Therefore, since leading edge timing uses a

fixed trigger point, the timing is dependent on the γ-ray energy or pulse height. This also

has an added effect of smearing out the prompt timing resolution. This can be removed

simply by fitting the time-energy dependence, then shifting the timing on an event by event

basis depending on the energy detected. An exponential fit was applied and implemented

into the sort code.

All of this analysis was achieved by gating on a tight window on γ-ray energy from the

1778-keV transition, which reduced the contribution of time random events. Figure 5.22
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shows the prompt timing after all of these corrections implemented and without a gate on

the γ-ray energy. This yielded a fitted FWHM = 12.78±0.10 (adc Ch). Each adc channel

corresponded to approximately 0.1 ns, therefore a time resolution of 1.278±0.01 ns was

achieved. Similar to the clover analysis this was used to create a gated LaBr3 γ-Energy Vs

Ex plot as seen in Figure 5.23.

As expected from the increased efficiency of LaBr3 compared to clover detectors there

are many clear transitions observed in the coincidence spectra. Particularly, at higher

energy compared to the clover detectors. However, what is clear is that there is a significant

non-linearity issue with the calibration.

Due to the integration method of the four LaBr3 detectors with the acquisition set-up,

which was integrated into the GR-DAQ, there were no source runs available for the energy

calibration. Instead, they were calibrated using known transition in 28Si. This also meant

that no absolute efficiency curves could be fitted.

Figure 5.23: Coincident LaBr3 (Doppler Corrected) γ-Ex spectra created by gating on the
prompt peak as seen in Figure 5.22. This spectra shows clear comparisons to the clover
coincidence spectra, although there are greater statistics for higher energy transitions due
to the increase efficiency.

Projecting Figure 5.23 onto the γ-ray energy axis and then gating on the first Jπ = 4+

state at 4.618 MeV yielded Figure 5.24. A very poor resolution was achieved, e.g. fitting
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the 2838.29-keV peak yielded a FWHM = 108.17 ± 0.55 keV. This was much greater than

that achieved by the clover detectors.

It’s clear from the energy resolution obtained, precision γ−ray spectroscopy is not

practical from these detectors. However, because of the increased efficiency and timing

of the LaBr3, clover spectra could be produced by gating on LaBr3. For example, by

placing gates on the LaBr3 prompt peak and on the 1778-keV transition then looking at

the coincident clover spectra, transitions feeding the first Jπ = 2+ should be preferentially

selected. However, this simply yielded an attenuated clover spectra. This is mostly likely

due to the large γ-multiplicity experienced during the CAGRA campaign combined with

the poor energy resolution of the LaBr3 detectors. Therefore, for these reasons no further

analysis of the LaBr3 detectors were undertaken in this research.
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Figure 5.24: LaBr3 γ-ray energy spectrum produced by gating on the first Jπ = 4+ state
at Ex= 4.618 MeV in Figure 5.23 and projecting on the y-axis. The spectrum did yield
the expected transitions from this state. However, a very poor resolution was achieved,
FWHM = 108.17 ± 0.55 keV fitted on the 2838.29-keV transition.
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Chapter 6

Results

This chapter summarises the major findings from this research, detailing all of the states in

28Si that were populated and their subsequent electromagnetic transitions. Furthermore,

all of the relevant analysis for the upper limit of the, Jπ = 4+ to the Jπ = 2+, in-band

transition strength from the proposed SD band will be discussed.

6.1 γ-Ex coincidence

Figure 6.1 shows the γ-Ex coincidence spectrum, here the γ-ray energy is with addback

and is Doppler corrected. This spectra was also background subtracted, as discussed in

the previous chapter. The red line shows transitions to the g.s, yellow to the Jπ = 2+
1 state

and black to the Jπ = 4+
1 in 28Si. By placing gates on excitation energy and projecting

onto the γ-energy axis, direct γ-decay from that state and subsequent cascades could be

studied.
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Figure 6.1: γ-Ex coincidence spectrum. The γ-ray energy is with addback and Doppler
corrected. This spectra was also background subtracted as discussed in the previous chap-
ter. The red line shows transitions to the g.s, the yellow to the 2+

1 state and black is to
the 4+

1 state in 28Si. By placing gates on excitation energy and projecting onto γ-energy,
direct γ-decay from that state and subsequent cascades could be studied.

The projection of the γ-Ex coincidence spectrum, Figure 6.1, onto the excitation energy

axis then yields a coincident focal plane spectrum, as seen in Figure 6.2. In the proceeding

analysis, each state was then identified and labelled alphabetically, as summarised in Table

6.1.
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Figure 6.2: Coincident focal plane spectrum, produced by projecting onto the excitation
axis on Figure 6.1. See Table 6.1 for information of each state labelled.

The states with known assignments to rotational bands have been summarised in Figure

6.3 (Brenneisen et al., 1995) and (Glatz et al., 1981b). Here, states labelled in blue were

directly populated and observed in this research.
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Table 6.1: All experimentally observed states, labels correspond to peaks in Figure 6.2.

Label Si-Isotope Spin Parity Ex (MeV)
a 28 4 + 4.61786
b 28 0 + 4.97992
c 30 4 + 5.27937
d 30 3 - 5.4875
e 30 4 + 5.95073
f 28 3 + 6.27620

29 7
2

- 6.19287
g 28 0 + 6.69074
h 28 3 - 6.87879

28 4 + 6.88765
i 28 2 + 7.38059

28 2 + 7.41626
j 29 (5

2
,7
2
) (-) 7.6221

k 28 2 + 7.93345
l 28 2 (+) 8.25874

m 28 6 + 8.54356
30 3 - 8.5540

n 28 1 - 8.9048
o 28 (4) (+) 9.16468
p 28 4 + 9.41717
q 28 (5) (-) 9.70234
r 28 1 - 9.9292
s 28 (3) (-) 10.1816

28 (5,3) (-) 10.1896
t 28 (3) (-) 10.9156

28 (4) (+) 10.944
u 28 (3) (-) 11.178
v 28 (6) (-) 11.576
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Figure 6.3: Observed rotational bands level scheme. The states coloured in blue were
directly observed in this research and their labels correspond to the peaks in Figure 6.2.

6.2 Ground-state & β band

The excitation of the oblate ground-state band was expected as the reaction mechanism

should preference collective rotational excitations. The first and second excited states

in 28Si, Jπ=2+
1 and Jπ=4+

1 , belong to the g.s band and will be strongly coupled to the

ground state. The Jπ=2+
1 state at 1.779 MeV was outside of the focal plane acceptance

and therefore was not observed. This was done to ensure the focal plane was completely

blind to the elastic channel, which would have destroyed the focal plane detectors. The

Jπ=4+
1 state at 4.618 MeV was just inside of the focal plane acceptance and was directly

observed.
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Figure 6.4: γ-ray spectrum for the Jπ=4+
1 state, at 4617.86 keV, belonging to the g.s oblate

rotational band. The Jπ=4+
1 to Jπ=2+

1 , at 1779.030 keV, in-band transition is well resolved.
The subsequent cascade decay from the Jπ=2+

1 to the ground-state is also seen. The single
escape are identified by s, double escape by d and contaminants are labelled c.

The γ-ray spectrum for the Jπ=4+
1 state is shown in Figure 6.4. The in-band 2838.29-

keV transition to the Jπ=2+
1 state of the oblate ground-state band can be clearly seen.

This spectrum was produced by gating on state, a, in Figure 6.2 and projecting onto

the γ-ray energy axis. Where, the in-band Jπ=4+
1 to Jπ=2+

1 transition with expected

energy of 2838.29 keV was observed at 2838.10 ± 0.02 keV. The small discrepancy is

due to the performance of the rate dependent shift correction and the Doppler correction

accuracy, as previously discussed. The fitted FWHM was 15.68 keV ( 0.56 %) which

is significantly large for this energy, but still can be easily identified and resolved. The
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subsequent cascade decay from the gated Jπ=4+
1 was also measured, which was the Jπ=2+

1

to the ground-state transition at 1778.97 keV. The Jπ = 4+ and the Jπ = 2+ have T 1
2

of

37 and 475 fs respectively. These timescales are well within the prompt time resolution of

the α-γ coincidence timing. Furthermore, the longest known half-life in 28Si is 4 ps, which

is still well within its time resolution. Therefore, in general all measured cascades were

expected to be in coincidence, if detected. The insert in Figure 6.4 shows the high energy

region of the same spectrum, where an exponentially decaying background is evident. This

demonstrates the success of the particle-γ coincident technique implementation, proving

that there is no significant background from outside of the excitation energy gate. It is also

further evidence for the effectiveness of the prompt timing background subtraction which

was used.

There was a minor contaminant observed in this spectrum from 29Si, which has 4.7%

natural abundance. The Jπ=(9
2

+
) state at 4741.1 keV was also populated within this gate.

The known transitions originating from this state of 2712.8-keV and 2028.09-keV accounted

for the two observed contaminant peaks.

6.3 Octupole Collectivity

The first and most obvious unexpected result of this experiment was the enhanced excita-

tion of octupole degrees of freedom. The two strongest peaks in Figure 6.2 both belong to

known octupole deformed rotational bands. Firstly, the peak labelled h was identified as

the band head of the Kπ=3− rotational band.
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Figure 6.5: γ-ray spectrum for the Jπ=3−1 band head of the Kπ=3−1 octupole rotational
band at 6878.79 keV. A closely lying state, Jπ=4+

2 , at 6887.65 keV was also populated.
The insert shows two overlapping transitions from each of the states to the Jπ=2+

1 state at
1779.030 keV.

Figure 6.5 shows the γ-ray spectrum for this gate. The Jπ=3−1 to g.s γ transition of

6877.0 keV was observed and was a unique identifier of the Kπ=3−1 band-head with Iγ =

100. The next most probable transition was the Jπ=3−1 to Jπ=2+
1 transition at 5098.8 keV.

However, on closer inspection it is clear that there are two overlapping transitions in this

region, as shown in the insert. This higher energy peak was assigned to a Jπ=4+
2 state

at 6887.65 keV. This state also has a γ-ray transition to the Jπ=2+
1 state. The energy

difference between the two overlapping transitions is only 8.8 keV, which is narrower than

CAGRA’s energy resolution at this energy, therefore one peak should be present. This
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can be explained by the significantly different half-lives of the two populated states. The

Jπ=3−1 state has T 1
2

= 1.9 ps and the Jπ=4+
2 has T 1

2
= 33 fs. This spectrum was not

Doppler corrected because of the long 1.9 ps half-life, as discussed in the Doppler correction

section. Therefore, the fast transition from the Jπ=4+
2 will be significantly Doppler shifted

and Doppler broadened.

The Jπ=3−1 to Jπ=2+
1 transition was also observed at 2260.7 keV, further confirming

the observation of the Kπ=3−1 band-head.

Figure 6.6: γ-ray spectrum for the Jπ=3−2 and Jπ=(5−2 ,3−3 ) states at 10181.60 and 10189.59
keV respectively. The highest energy transition shown in the right insert is a new transition
and was assigned to be from the Jπ=3−2 to Jπ=2+

1 state at 1779.030 keV. The left insert
shows a double peak fitting, yielding centroids at 3292.0 ± 0.5 and 3310.24 ± 0.28 keV.
The latter, is a known transition from the, Jπ=3−2 state, at 10189.59 keV. However, the
lower energy peak, labelled x, best matches to a new transition from the Jπ=(3−2 ) state at
10181.60 keV to the Jπ=4+

2 at 6887.65 keV in 28Si.
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Figure 6.7: Low energy γ-ray spectrum for the Jπ=3−2 and Jπ=(5−2 ,3−3 ) states at 10181.60
and 10189.59 keV respectively. The two peaks labelled x and y, in the insert, are new
transitions and were assigned to Jπ=3−2 to Jπ=2+

5 at 9381.55 keV and Jπ=3−2 to the Jπ=3+
4

at 9315.92 keV, respectively.

The next most populated state in the focal plane spectrum was the peak labelled s

in Figure 6.2. The γ-ray spectrum for this gate can be seen in Figure 6.6. The unique

5562.6-keV transition in this spectrum identified a Jπ=(3−2 ) state at 10181.60 ± 0.12 keV,

decaying to Jπ=4+
1 at 4617.86 keV. The next known transition is the 3904.8-keV Jπ=3−2

to Jπ=3+
1 , which was also identified. The last known transition is the 1016.9-keV Jπ=3−2

to Jπ=(4+
3 ) at 9164.68 keV. As can be seen from the low energy region of the spectrum,

Figure 6.7, this transition could not be identified. Even though, the tabulated branching

ratio for the 1016.9-keV transition was Iγ = 31.0 and Iγ = 10 for the 3904.8-keV transition.

CAGRA’s efficiency is greater at lower energy, therefore you expect greater statistics for

the 1016.9-keV transition, compared to the 3904.8-keV transition. This either means the
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transition was an incorrect assignment, considering that the state it decays to is still a

tentative spin assignment. The other possibility is a blind spot around this energy due to

the detector response. The latter, would have drastic consequences on the ability to detect

the in-band transition from the proposed SD band of interest.

The Jπ=(3−2 ) state was assigned to the Kπ=0− octupole rotational band. There were

observed transitions within this gate, that are currently unassigned. Firstly, the high

energy insert of Figure 6.6 shows a high energy γ-ray. The fitted centroid yielded 8408.82

± 0.23 keV. Taking into account the recoil energy:

Eγ = Mc2

(
1 −

√
1−

2Em
γ

Mc2

)
, (6.1)

where, M is the mass of 28Si and Em
γ is the measured γ-ray energy, here Eγ would be

the full energy of the γ-ray without any energy loss from the 28Si recoil. The value of Eγ

therefore corresponds to the true transition energy difference. The 8408.82-keV measured

γ-ray energy therefore corresponds to a 8410.16 ± 0.23 keV transition. The closest possible

transition to this energy was the Jπ=(3−2 ) to Jπ=2+
1 . The energy difference between the

measured and expected transition energy is 8.410.56 ± 0.12 keV. The small discrepancy

is well within the energy resolution of CAGRA at this energy. This would also be an E1

transition, which is also a strong characteristic of octupole deformation and could add

further information to the characterisation of this band.

Two more new γ-ray transitions were also identified within this gate. This is shown

in Figure 6.7, which corresponds to the low energy region of the same spectrum shown

in Figure 6.6. The insert shows a zoomed in region which clearly identifies three distinct

peaks. The lowest energy peak is simply the double escape from the 1778-keV transition

and is seen in all focal plane gates. The other two peaks are however unique to this gate.

Fitting the peaks yielded centroids at 799.48 ± 0.20 keV for peak labelled x, and 865.36

± 0.15 keV for the peak labelled y. For the x transition, the closest matching transition was

from the Jπ=(3−2 ) to the Jπ=2+
5 state at 9381.55 ± 0.12 keV. The level energy difference

here is ∆E = 800.05 ± 0.17 keV. This is very close to the measured transition energy and

126



Unnatural parity state Results

again well within the energy resolution. The transition labelled y was best matched to

Jπ=(3−2 ) to the Jπ=3+
4 state at 9315.92 ± 0.10 keV. This has a transition energy of ∆E

= 865.68 ± 0.16 keV and again very close to the measured energy. Both the new x and

y transitions would therefore be E1 transitions and again be consistent with a octupole

rotational band.

Another state which was attributed to the state s in the focal plane was a Jπ = (5−, 3−)

state at 10189.59 ± 0.20 keV attributed to the Kπ = 3− octupole rotational band. This has

only one known γ-ray transition at 3310.4 keV. This is the in-band transition to the Jπ =

3−1 at 6878.79 keV. The low energy insert in Figure 6.6 shows the zoomed in region around

this transition. It’s clear there are two peaks located in the region of interest. Fitting a

double peak to this yielded centroids at 3292.0 ± 0.5 and 3310.24 ± 0.28 keV. The higher

energy peak is consistent with the known transition energy from the Jπ = (5−, 3−) state.

The lower energy peak however is best matched to a new transition, from Jπ = (3−2 ) at

10181.60 ± 0.12 to Jπ = 4+
2 at 6887.65 ± 0.1 keV. The level energy difference here is

3293.95 ± 0.16 keV again close to the measured energy. Therefore, a further transition

can be assigned to the Jπ = (3−2 ) state, making a total of four new assignments from this

one state.

6.4 Unnatural parity state

The 28Si(α,α’)28Si* reaction should not excite unnatural parity states. However, the pop-

ulation of the Jπ=3+
1 at 6276.20 ± 0.07 keV was observed within the gate labelled f, in

Figure 6.2. The two known transitions from this state are at 4496.92 ± 0.25 keV (Jπ=3+
1 →

Jπ=2+
1 ) and 1658.2 keV (Jπ=3+

1 → Jπ=2+
1 ), in which can be identified from the spectrum

in Figure 6.8. The major contaminant in this spectrum is from the Jπ = 7−

2
state at 6192.8

keV with known transitions, labelled c in Figure 6.8.

The direct population of unnatural parity states were very unexpected from the un-

derstanding of the reaction mechanism. However, this has been observed and explained

in an analogous situation for the Jπ=3+
1 state in 24Mg (Borg et al., 1979). They used

24Mg(α,α’)24Mg* inelastic scattering at 120 MeV. They could only explain the excitation
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of the Jπ=3+
1 by a multi-step excitation coupled to the Jπ=2+

1 of the 24Mg ground-state

band. They confirmed this with coupled-channel calculations. This also required the Jπ=3+
1

state to be a member of a strong γ-band. This could be exciting if the same calculation

could be done for 28Si to see if similar characteristics emerge.
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Figure 6.8: γ-ray spectrum for the Jπ=3+
1 state at 6276.20 keV. The main transition from

this state at 4496.92 keV can be easily identified. The insert shows the other transition
from this state at 1658.2 keV. The single and double escape peaks are labelled s and d
respectively. The peaks labelled c are known transitions from contaminant Si isotopes.
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6.5 Unassigned states

The lack of tabulated, detailed γ-ray spectroscopy and increased level density at high

excitation makes it very difficult to assign some of the observed transitions to states in 28Si.

The peak labelled w, in Figure 6.2 centered around 11.8 MeV is one such an example. The

coincident γ-ray spectrum in Figure 6.9 shows distinct transitions at: 3309.607 ± 0.8092,

3379.123 ± 1.286, 5013.292 ± 0.977, 5105.487 ± 0.846, 7283.338 ± 0.514 and 7360.351 ±

1.130 keV. The 5105.487 ± 0.846-keV transition is most likely a cascade decay from the Jπ

= 4+
1 at 6887.65 keV and the 3309.607 ± 0.8092 keV transition from the Jπ=(5−, 3−) state

at 10189.59 keV. These are closest tabulated transition energies available, however it’s not

sure how these states are being fed. The double-humped structure was thought initially

to be caused by an incorrect Doppler correction. However, once the Doppler correction

was removed, 3 peaks emerged showing that these double peaks were in fact two separate

transitions.

The coincident γ-ray spectrum for the state labelled x, in Figure 6.2 was very low in

statistics. However, only two distinct peaks were visible, the 1778.97-keV and a 10704.126

± 3.766-keV transition. Therefore, this state must be preferentially decaying to the Jπ=2+
1

state, but again it’s very difficult to make an assignment.
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Figure 6.9: γ-ray spectrum for the unassigned state labelled w in Figure 6.2. Show-
ing clear transitions at shows distinct transitions at: 3309.607±0.8092, 3379.123±1.286,
5013.292±0.977, 5105.487±0.846, 7283.338±0.514 and 7360.351±1.130 keV, labelled from
a to f respectively.

6.6 Search for the SD in-band transition

The Jπ=(4+
7 ) state at 10.944 MeV was identified by gating on the peak labelled t in Figure

6.2. All of the known transitions from the Jπ=(4+
7 ) state are summarised in Table 6.2. All

of these transitions were observed and are shown in Figures 6.10-6.12 for low, intermediate

and high energy ranges respectively. There is a high photopeak and escape peak density,

particularly in the intermediate energy range. The dotted lines track each photopeaks

associated single and double escape peak for them to be more easily identified.

Other transitions, that could not be associated to the Jπ=(4+
7 ) state can be attributed

to the Jπ=(3−7 ) at 11078.52 keV. All of the direct transitions from this state are summarised

in Table 6.2
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Table 6.2: Data from ENSDF evaluated data tables on relevant electromagnetic transitions
in 28Si (Shamsuzzoha Basunia, 2013).

Exi (keV) Jπi T1/2 Eγ (keV) Iγ Jπf Exf (keV)

10944.0 (4+) 15 fs

2685.0 26 2(+) 8258.74
3527.3 42 2+ 7416.26
3562.9 21 2+ 7380.59
9161.8 100 2+ 1779.030

10994 (1,2+) - 9212 100 2+ 1779.030

11078.52 (3−) -

1696.9 20 2+ 9381.55
1762.5 34 3+ 9315.92
3661.8 49 2+ 7416.26
4801.4 83 3+ 6276.20
9296.2 100 2+ 1779.030

Figure 6.10 shows the gated spectrum at intermediate energies, the known transitions

from the proposed SD band state are all identified at this energy range. The 2881.13-keV

peak labelled, a, has the closest known matching energy from the Jπ=(4+) state at 9164.68

keV. Unfortunately, the transition energy between the 10944.0 keV state and the 9164.68

keV state is 1779.32 keV. This directly overlaps with the Jπ=2+
1 to ground state transition

and therefore would not be resolved. Therefore the origin of the 2881.13-keV peak is still

unknown.

The 3202.37 keV peak labelled, b, is most likely from the Jπ=0+ state at 4979.92 keV.

This state could be fed from the 10944.0 keV state via its cascade to the Jπ=2(+) state

at 8258.74 keV. The peak labelled c at 2236.35 keV is a contaminant transition from 30Si,

Jπ=2+
1 to the ground state.

One of the highest energy γ-ray transitions measured in this experiment was at 11007.17

± 0.65 keV, as seen in Figure 6.11, labelled x. There are no known transitions at this

energy, the best candidate is the Jπ=(1+,2+) at 10994.0 ± 2 keV. These assignments are

very tentative at this stage and require γ-γ analysis for confirmation.
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Figure 6.10: γ-ray spectrum for the proposed superdeformed band at intermediate energy
range. The transitions from the Jπ=(4+

7 ) at 10944.0 ± 2 keV of the proposed SD band are
all labelled. These can be seen at 2685.0, 3527.3 and 3562.9 keV. The insert, is a close up
around the 3527.3 and 3562.9 keV transitions showing they can be resolved. Peak labelled
a at 2881.13 keV could be from the Jπ=(3−) state at 9164.68 keV. The peak labelled b
at 3202.37 keV is most likely from the Jπ=0+ at 4979.92 keV, which has a transition at
3200.7 keV. The peak labelled c is a contaminant line from 30Si.
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Figure 6.11: γ-ray spectrum for the proposed superdeformed band at high energy. The
11007.17 ± 0.65 keV peak, labelled x, is an unknown transition. It’s most likely from the
Jπ=(1+,2+) state at 10994.0 ± 2 keV. The other visible peaks are from known transitions
from 28Si. Most importantly is the peak at around 9161.0 keV. identified as the Jπ=(4+

7 )
at 10944.0 keV to the Jπ=2+

1 state at 1779.030 keV.
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Figure 6.12: γ-ray spectrum for the proposed superdeformed band at low energy. There are
no clear transitions in the expected region around 1150 keV. The only transition visible,
labelled s, is the single escape from the Jπ=2+

1 to g.s transition.

The Jπ=(4+
7 ) was identified as the best candidate member state of the proposed SD

band. The in-band transition from the Jπ=(4+
7 ) to the Jπ=(2+) of the same proposed band

is expected at around 1150 keV. Figure 6.12 shows the low energy region of the Jπ=(4+
7 )

gate. Unfortunately, there is no clear transition around this region. This meant, no direct

calculation of the in-band transition strength could be made.
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6.7 γ-branching ratios

The procedure for the γ-decay branching ratio, BRγ calculations were as follows:

• Gate on the state of interest, as seen in Figure 6.2.

• The β used for Doppler correction depended on the lifetime as detailed in

Chapter 5.

• Project onto the γ-ray energy axis.

• Only direct transitions were then considered.

• Fit the γ peak of interest using the fitting procedure, as previously detailed during

the discussion of the CAGRA efficiency calculations to obtain the area (raw counts).

Table 6.3 is a detailed example of how the BRγ values were obtained for the Jπ=(4+
7 )

state. First the raw counts of each γ-ray transition of the state was scaled by the absolute

efficiency εabs:

Scaled Counts =
Raw Counts

εabs

, (6.2)

where εabs was calculated for the entire CAGRA array at each corresponding γ-ray

energy. The errors were calculated using the standardised propagation of errors method.

The total number of scaled counts was then calculated by summing over each branches

scaled counts, with their errors added in quadrature. This value was then used to normalise

the scaled counts of each branch, to obtain the γ-ray branching ratio, BRγ. The branching

ratio of the 9161.8-keV transition is dominant, this is consistent with the phase space

availability.
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Table 6.3: γ-ray branching ratio calculations for the Jπ=(4+
7 ) state and calculated B(E2)

and W.u values

Focal Plane Counts Gate
∑

Scaled Counts
8.877± 0.013× 106 t 1.1097±0.0021×106

γ-ray Transition Energy (keV)
Raw

Counts
εabs(%)

Scaled Counts
(103)

Scaled Counts
Focal PlaneCounts

(%)

Jπ=(4+
7 )→Jπ = 2+

1 9161.8 2853.82±53.42 0.3277±0.0047 870.97±20.58 9.811±0.232
Jπ=(4+

7 )→Jπ = 2+
2 3562.9 893.83±29.90 1.3487±0.0177 66.27±2.38 0.747±0.027

Jπ=(4+
7 )→Jπ = 2+

3 3527.3 1287.15±35.88 1.3611±0.0178 94.57±2.91 1.065±0.033
Jπ=(4+

7 )→Jπ = 2+
5 2685.0 1316.48±36.28 1.6911±0.0218 77.85±2.37 0.877±0.027

T 1
2

(fs) λ (s−1) B(E2)s.p.

Jπ=(4+
7 ) 15±10 4.62±3.08×1013 5.0505

γ-ray Transition Energy (keV) BRγ(%)
B(E2)exp/λ

(10−12)
λi (s−1)
(1012)

B(E2)exp W.u

Jπ=(4+
7 )→Jπ = 2+

1 9161.8 78.49±2.38 0.013 36.3±24.2 0.459±0.307 0.0908±0.0606
Jπ=(4+

7 )→Jπ = 2+
2 3562.9 5.97±0.24 1.42 2.76±1.84 3.924±2.621 0.7769±0.5189

Jπ=(4+
7 )→Jπ = 2+

3 3527.3 8.52±0.31 1.49 3.94±2.63 5.887±3.931 1.1657±0.7783
Jπ=(4+

7 )→Jπ = 2+
5 2685.0 7.02±0.25 5.85 3.24±2.16 18.964±12.661 3.7548±2.5069

As all of the transitions tabulated here are E2 transitions, the formula from Table 2.1

was used to calculate the B(E2)exp/λi values. The partial decay constant is required here,

this is calculated by:

λi = BRγ × λ. (6.3)

Where λ, is the decay constant for the Jπ=(4+
7 ) state, which is known but has a con-

siderably large error. The W.u values are then simply calculated as detailed in Chapter

2.

The BRγ calculations was repeated for all states observed in this research. The results of

this is summarised in a derived level scheme, Figure 6.13. The widths represent the relative

fraction of direct γ-decays in coincidence with a gated state on the focal plane spectrum.

The red lines represent new transitions and blue states were not observed directly in the

experiment.
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Angular Correlations Results

6.8 Angular Correlations

The best candidate to study the α’-γ angular correlations was the Jπ=4+
1 → 2+

1 transition

of the oblate ground-state band. The optical potential used in the DWBA calculations

to produce the m-state population distribution was taken from a study by M. Nolte et al

(1987). They derived global optical potentials parameters for α inelastic scattering above

80 MeV, see Table 6.4. The real, V(A,Z,Eα), and imaginary, W(A,Eα), were of the form:

V(A,Z,Eα) = a0 + a1A−
1
3 + a2Eα, (6.4)

W(A,Eα) = b0 + b1A
1
3 + b2Eα. (6.5)

The form factors used in the DWBA calculations also require diffuseness parameters.

Which again research by M. Nolte et al derived expressions for the real, av, and imaginary,

aw, form factor parameters of the form:

av = c0 + c1A
1
3 , (6.6)

aW = d0 + d1A
1
3 , (6.7)

The parameters from Table 6.4 were then used in these expressions to calculate the

values summarised in Table 6.5. The coupling of the Jπ=4+
1 to the Jπ=2+

1 and ground-state

were also included in the Chuck3 calculations, in which the required form factor parameters

were the same as used in Table 6.5. The produced m-state population distribution could

then be used in angcor to produce the predicted angular correlation. In this particular

case, inputs specific to a Jπ=4+
1 → 2+

1 transition were used.

Table 6.4: Fitted Optical model potential parameters (Nolte et al., 1987).

Parameter a0 (MeV) a1 (MeV) a2 b0 (MeV) b1 b2 c0 (MeV) c1 (MeV) d0 (MeV) d1 (MeV)
Value 101.1 6.051 -0.248 26.82 -1.7 0.006 0.817 -0.0085 0.602 -0.020

Table 6.5: Derived Optical model potentials and diffuseness parameters.

V (MeV) W(MeV) av aw

96.76 22.42 0.84 0.75
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Table 6.6: Polar angles and corresponding azimuthal angle as used in angcor

Polar Azimuthal Clovers
90◦ 22.5◦ 6, 7
135◦ 45.0◦ 14
90◦ 67.5◦ 5, 8
90◦ 112.5◦ 9, 12
135◦ 135.0◦ 15, 16
90◦ 157.5◦ 11

CAGRA had 8 detectors at a polar angle of 90◦ and 4 at 135◦. Due to the symmetry

of the angular distributions around the reaction plane, which was the horizontal plane in

the laboratory frame, there were only 6 unique azimuthal clover angles from 12 detectors.

Four from the 90◦ ring and two from the 135◦. These values are summarised in Table 6.6.

The azimuthal angle was defined as 0◦ in the horizontal plane on the same side as the

ejectile, i.e. on the same side as the spectrometer. Therefore, 180◦ corresponded to the

recoil direction in this plane.

To compare experimental angular correlations to theoretical predictions, angcor was

ran for each azimuthal angle and the W(θ) value was taken depending on which polar ring

it belonged to.

The results from angcor if integrated over the full solid angle will yield 4π, therefore are

internally normalised. Therefore, the experimental angular distributions were arbitrarily

scaled for comparison. Table 6.7 summarises the steps to obtain the experimental angular

correlation for the Jπ=4+
1 → Jπ=2+

1 transition. The total number of counts from each

PHID group were first scaled by:

∑
Ci∑
εi

=
Group Counts

Group εabs

, (6.8)

where,
∑

Ci and
∑
εi represent the summation over all counts and absolute efficiencies

for each clover in each PHID group. The group counts are then scaled by the group

efficiency to get the scaled group counts. The results were then scaled down by the rescale

factor to produce the W(θ)exp values. This could then be directly compared to the angor

results, W(θ)theory and are plotted in Figure 6.14.
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Figure 6.14: Experimental angular correlations compared to angcor for the Jπ=4+
1 →

2+
1 transition. The distributions are well correlated except for the clear discrepancy for

PHID=22.5◦.

The results do show promising signs and the distributions are correlated, however there

is a clear discrepancy at PHID=22.5◦. As angcor is the only program that exist that

is capable of calculating such angular distributions, there is no way currently of bench-

marking its reliability. The angular distributions will have an effect on the previously

calculated BRγ values. As the measured counts for each detector will have to be re-scaled

depending on their associated W(θ) values. Due to this discrepancy, it was chosen to not

include the angular correlations in the proceeding analysis to be discussed. Furthermore,

for the SD band there has been no detailed coupled channel calculations research. This

information is required to obtain accurate m-state population distributions for the SD band

and therefore accurate angular correlations.

140
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Table 6.7: Results from the experimental angular correlation analysis in comparison to
angcor.

Transition
γ-ray

Energy (keV)
Rescale Factor

Jπ=4+
1 → Jπ=2+

1 2838.29 1.872×10−7

PHID
Group

Counts (103)
Group εabs

(%)
Scaled Group
Counts (106)

Rescaled
W(θ)exp

Angcor
W(θ)theory

22.5◦ 6.38±0.08 0.222±0.005 2.88±0.08 0.539±0.014 1.25
45.0◦ 8.83±0.09 0.141±0.003 6.26±0.21 1.171±0.040 1.12
67.5◦ 14.95±0.12 0.236±0.005 6.22±0.16 1.186±0.030 1.25
112.5◦ 14.94±0.12 0.244±0.005 6.13±0.15 1.148±0.028 1.18
135.0◦ 28.26±0.17 0.354±0.013 4.23±0.12 0.793±0.022 0.48
147.5◦ 6.78±0.08 0.116±0.003 5.85±0.20 1.096±0.038 1.1

6.9 γ-α Branching ratios

The α-breakup threshold in 28Si is 9984.14 keV. Therefore, in principle states below this en-

ergy should have a 1:1 ratio between CAGRA and the focal plane detector, once accounting

for all necessary efficiencies:

Focal Plane

εfp
=

CAGRA

εfpεγ
, (6.9)

were εfp is the absolute efficiency of the focal plane detector. Grand Raiden data ac-

quisition was simultaneously ran in coincident and in singles mode. Therefore, in singles

mode only its own efficiency is required to get the true absolute state population. How-

ever, CAGRA was only operated in coincidence mode with the GR. Therefore, the overall

efficiency is now the product of both detector systems absolute efficiencies. As you can see

from Equation 6.9, εfp, is a common denominator and therefore overall it is independent

of εfp.

Above the α-breakup threshold, this process will start to compete with γ-decay. There-

fore it can no longer be assumed that the ratio of the focal plane to CAGRA events will be

1:1. Any decrease in counts from CAGRA can then be assumed to be due to α-breakup,

therefore the ratio of CAGRA to the focal plane can be assumed to be the γ/α branching

ratio, BRγ/α.
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Table 6.8: CAGRA to focal plane ratios for all states populated in 28Si.

Ex (keV)
∑
λi

Scaled Counts

FocalPlaneCounts
(%)

Scaled by
Weighted Av (< 9984.14 keV)

4617.86 45.87±0.61 1.06±0.12
6690.74 42.80.±0.44 0.99±0.11
7933.45 41.26±0.76 0.95±0.11
8904.8 41.71±0.58 0.96±0.11
9702.34 46.85±0.53 1.08±0.12
9929.2 42.97±0.83 0.99±0.11
10181.6 29.73±0.40 0.68±0.08
10944 12.50±0.24 0.29±0.03

11078.52 7.15±0.13 0.16±0.02

The summed counts of all γ-branches were scaled for absolute photopeak efficiency of

CAGRA, at the appropriate energy. This was then divided by the total number of counts

from that state, given by the background subtracted integral from the focal plane spectrum,

in GR singles mode as seen in Figure 4.6.

The results are summarised in Table 6.8. There is a clear discrepancy for values belong-

ing to states below the α-breakup threshold, where they are expected to be 1:1. Assuming

this is an unknown systematic error that is common to all data points, then these values

can be re-normalised.

This was achieved by calculating the weighted average of all the data points below the

threshold and re-normalising all data points by this value. The re-normalised error was

calculated by taking the standard deviation using the weighted average, then taking the

standard error, yielding 0.434±0.048. Both the raw values and re-normalised values are

plotted in Figure 6.15, the data points are summarised in Table 6.8. The re-scaled data

points below the threshold energy are all 1:1 within error.
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Figure 6.15: Raw and re-scaled BRγ/α plotted against excitation energy (MeV). Here,
BRγ/α should be 1.0 at excitation energies below the α-breakup threshold, which is at
9984.14 keV. Above the threshold, α-breakup will start to compete with γ-decay and so
BRγ/α decreases.

Both the raw and re-scaled BRγ/α values still significantly decrease after the breakup

threshold is exceeded, showing there is sensitivity to the BRγ/α.

The BRγ/α has an effect on the calculated W.u values previously discussed. The W.u

values calculated for the Jπ=(4+
7 ) state for each γ-branch in Table 6.3 have to be scaled

by BRγ/α:

W.uγ/α = W.u× BRγ/α. (6.10)

This adjustment has the effect of reducing the apparent strength of the previously

calculated transition strengths, as detailed in Table 6.9.
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Table 6.9: W.u calculations scaled by BRα/γ values for the Jπ=(4+
7 ) state

γ-ray Transition Energy (keV) W.u W.u×BRγ/α

Jπ=(4+
7 )→Jπ = 2+

1 9161.8 0.0908±0.0606 0.0261±0.0177
Jπ=(4+

7 )→Jπ = 2+
2 3562.9 0.7769±0.5189 0.2237±0.1516

Jπ=(4+
7 )→Jπ = 2+

3 3527.3 1.1657±0.7783 0.3356±0.2273
Jπ=(4+

7 )→Jπ = 2+
5 2685.0 3.7548±2.5069 1.0810±0.7321

6.10 SD In-Band transition B(E2) limit

As previously discussed, the in-band transition of the proposed SD band was not di-

rectly observed in this research. However, since this research has calculated the transition

strengths for all of the known out of band transitions and accounted for the BRγ/α ratios,

a limit can now be set on its transition strength.

This was achieved by fixing the centroid and FWHM of a Gaussian fit to the flat region

as shown in Figure 6.12. The average FWHM for this energy was then used, FWHMav =

6.93 keV. The in-band transition was expected to be at 1148.05 keV and so the centroid

was fixed to this position. The only free parameters was the area of the Gaussian and the

linear background parameters. The fit yielded 59.6±63.5 net counts above background.

The large error of course was expected from the nature of the fitting procedure. Assuming

this was now a new γ-branch addition to the Jπ=(4+
7 ) state, the same analysis was repeated

to calculate the updated W.u and W.uγ/α values, as previously detailed.
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Table 6.10: Updated transitions strength with the addition of the in-band transition esti-
mate.

BRγ B(E2)/λ λi B(E2)exp W.u W.uγ/α
0.0020±0.0023 4.09±× 10−10 9.82±12.3×10 40.18±50.55 7.96±10.01 2.29±3.79

With this addition, the transitions strengths for the known branches did not change

significantly and all remain the same, within error. This is due to the very small contribu-

tion to the overall statistics from the newly added in-band γ-branch. The results for the

transition strength of this branch are summarised in Table 6.10.

Taking the upper limit of, W.uγ/α, from its error gives 6.08 W.u for the in-band tran-

sition strength of the proposed superdeformed band in 28Si.
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Chapter 7

Conclusions & Further Work
A bespoke coupling of a Clover array to a high resolution spectrometer was met with

many experimental and engineering challenges that were overcome in the efforts of the

CAGRA campaign. It’s clear from this research that there is still a great amount to

be learnt about the structure 28Si, particularly above the α-breakup threshold. Great

effort was undertaken many years ago to calculate the widths and lifetimes of these states.

Significant contributions came from proton and α-inelastic scattering experiments, similar

to this research. However, at that time, data acquisition capabilities were inadequate to

handle α′-γ coincidences on the scale that the CAGRA campaign achieved. Furthermore,

even now the application of state-of-the-art digital acquisition is still in its infancy. The

rate dependent shift that affected CAGRA is a prime example of this. This research has

therefore contributed to its characterisation and development, the techniques developed

here can be used again in later research.

There is still a large gap in the γ-ray spectroscopy of 28Si at high excitation energy.

CAGRA has shown it’s possible and practical to study a vast number of states over a wide

range in excitation energy, using its unique set-up. However, to really obtain its full po-

tential, the coupled channel calculations need to be well understood and further research

needs to be undertaken. A surprising number of tentative spin and parity assignments

above 9.5 MeV still exist. A full description of the reaction mechanism through CC cal-

culations, along with a complete understanding of the angular correlations using angcor

could confirm these uncertainties and fill the gap in the data. This work also found new
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γ-ray transitions at high excitation, an achievement that has not been made for many

years. Again, highlighting that there is still much to learn, even at stability.

The dominance of octupole deformation excitation in this data analysis is still not fully

understood and this also supports the incentive for CC calculations to be applied. The

possibility of multi-step excitation to the first Jπ=3+ state is another aspect that could

be explored in future work. This is exciting as further experimental evidence of a possible

γ-band could be obtained, further adding to our knowledge of the nuclear structure of light

nuclei.

Superdeformation in 28Si is still clearly an open question. However, this work has now

supplied an upper limit to the transition strength of the in-band transition of the proposed

superdeformed band, at a value of 6.08 W.u. As AMD calculations are now capable of

predicting transition strengths it will be interesting to see in the future what constraints

this can place on superdeformation in 28Si.

Further experimental and theoretical work is evidently required in order to improve the

accuracy of this and subsequent research. Again, a deeper understanding of the coupled

channel calculations would allow for more accurate angular correlations. This would then

improve the accuracy of the derived BRγ values needed to calculate the transition strengths

of all the γ-branches from the proposed superdeformed band.

Experimentally, the coupled channel calculations would also increase the much needed

population yield of the proposed superdeformed band region using inelastic scattering

methods. The differential cross section predictions used for this research did not include

the coupling of states at lower excitation to the Jπ=4+ state of the proposed superdeformed

band and most significantly other member states of this band. Including these could help

maximise the much needed statistics. Firstly, by obtaining a more reliable optimum angle

to study the α-inelastic scattering. Secondly, optimising the set-up of the clover array based

on the angular correlations, to obtain more PHID data points and through positioning

detectors at angles corresponding to maxima from the improved angular correlations.

It is very unfortunate that the BGO suppression was not available during this re-

search. As the majority of states fed the first Jπ=2+ state, the 1778-keV transition to the
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ground-state was singularly the strongest observed transition. The dominating Compton

distribution from this transition overlaps directly with the expected region of the in-band

transition of interest. Without effective BGO suppression, any transition with low statis-

tics will not be resolved and will be folded into the background of the dominating Compton

distribution.

The technique used to obtain the upper limit of the in-band transition strength was

a reasonable first attempt. Nonetheless, there are more rigorous fitting procedures that

can be used, for example maximum likelihood methods which are more reliable for low

statistics analysis.

The full potential LaBr3-clover coincidence capabilities were not achieved in this re-

search. Again, much more experimental testing is required to understand how this can be

implemented more effectively. Gating on subsequent cascade transitions from the in-band

transition in the LaBr3 and looking for the direct in-band transition in the full clover ar-

ray would have significantly reduced background. This technique could have significantly

increased the probability of finding the first direct in-band transition of the proposed su-

perdeformed band.

A much needed renaissance is due for the study of light stable nuclei. Their importance

to nuclear structure theory gives a strong mandate for this change. Naturally, these were

the first investigated nuclei and much of their low excitation structure is well studied.

However, the technology required for detailed mapping of their high excitation landscape

was beyond its years. The emergence of radioactive beams then pushed the attention to

exotic nuclei and away from stability. Although, as this research has highlighted, it seems

there is still an abundance of valuable discoveries yet to be made, even at stability. The

CAGRA campaign has shown that the experimental techniques required are now possible

and available. A push for a full theoretical description of the reaction mechanism and

angular distribution used at CAGRA for 28Si will give rise to a wealth of new information.

This can be then used to validate the rich, varied and exciting nuclear model predictions

that remain untested.
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Twin, P. J., Nyakó, B. M., Nelson, A. H., et al. 1986, Phys. Rev. Lett., 57, 811. https:

//link.aps.org/doi/10.1103/PhysRevLett.57.811

Wang, M., Audi, G., Wapstra, A. H., et al. 2012, Chin.Phys.C, 36, 1603

Weinert, M. 2019, CAGRA Internal Report

Weisskopf, V. F. 1951, Phys. Rev., 83, 1073. https://link.aps.org/doi/10.1103/

PhysRev.83.1073

Wood, J., & Rowe, D. 2010, Fundamentals of nuclear models: Foundational Models, 52–55,

doi:https://doi.org/10.1142/6209

Zalmstra, J., Harakeh, M., & van Hienen, J. 1991, Nuclear Physics A, 526, 59 . http:

//www.sciencedirect.com/science/article/pii/037594749190298K

Ziegler, J. F., Ziegler, M., & Biersack, J. 2010, Nuclear Instruments and Methods in

Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 1818

153

https://link.aps.org/doi/10.1103/PhysRevLett.85.2693
http://www.sciencedirect.com/science/article/pii/0375947483906061
http://www.sciencedirect.com/science/article/pii/0375947483906061
https://link.aps.org/doi/10.1103/PhysRevC.80.044316
https://link.aps.org/doi/10.1103/PhysRevC.80.044316
https://link.aps.org/doi/10.1103/PhysRevC.76.044317
https://link.aps.org/doi/10.1103/PhysRevLett.57.811
https://link.aps.org/doi/10.1103/PhysRevLett.57.811
https://link.aps.org/doi/10.1103/PhysRev.83.1073
https://link.aps.org/doi/10.1103/PhysRev.83.1073
http://www.sciencedirect.com/science/article/pii/037594749190298K
http://www.sciencedirect.com/science/article/pii/037594749190298K


BIBLIOGRAPHY Conclusions & Further Work

, 19th International Conference on Ion Beam Analysis. http://www.sciencedirect.

com/science/article/pii/S0168583X10001862
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