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Abstract

The investigation into three types of dielectric resonators for use in base-station

filtering applications is presented.

The triple-mode cubic TEg;5 resonator is shown to have good performance for
high @Q applications. Its suitability for realising conventional narrowband selective
bandpass filter responses is proved. The effect on the response of spurious inter-
cavity couplings through irises is studied. The triple-mode cubic TEg;s resonator
is also used for the realisation of a novel type of filter, the even-odd hybrid mode
reflection filter, which eliminates the need for cross-couplings for any symmetrical
frequency response. The insensitivity of the new type of filter to most spurious

couplings is shown in the case of a sixth degree elliptic filter. The drawbacks of this

type of filter are also described.

The new dual-mode conductor-loaded dielectric resonator is presented. An ex-
act model of the resonator is necessary for an accurate study of this resonator. The
axial mode-matching technique is used. The relative numbers of modes to use in
each section of the model for optimum convergence primarily depend on the mode
type and the relative diameters of the dielectric cylinder and the metal disc. The
convergence of the resonant frequencies is good. That of the quality factors is slower
but still provide useful approximate results. These convergences are affected respec-
tively by large electric and magnetic field amplitudes in singularity regions. The
resonant frequency and Q, of the fundamental mode are primarily dependent on

the diameter and height of the dielectric cylinder respectively. 'The resonator geom-

etry is optimised for @, and spurious separation at 900 MHz and trade-ofls between
the two criteria are quantified. The resonator is found to be particularly suited for

medium () applications, i.e. between 4000 and 7000.

The third resonator, the dielectric-loaded TEq;; resonator, is shown to be well

suited for applications around 2 GHz and requiring Q.’s of a few thousands. The



Abstract 11

optimum cavity cross-section dimensions for maximum ), /volume are almost con-
stant over a wide range of cavity diameters. The trade-off between @, and spurious
separation is explained. Coupling bandwidth limitations in the case of off-line cav-

ities are found to be solvable by using off-centred resonators. 80 MHz wide filters,

optimised for ease of manufacturing, are built.
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Chapter 1

Introduction

1.1 Applications for RF filtering in cellular base stations

RF filtering plays an important part in cellular base station systems. It is employed
at different stages of the base station front end and often needs to meet very de-
manding specifications driven by the extremely rapid development of the mobile

telecommunication market. Several examples of RF filtering in a base station are

described below.

Example 1

A first example is the diplexer present in the front end of each sector of a base sta-
tion as shown in Fig. 1.1. This diplexer provides the isolation between transmit and
receive signals sharing the same antenna. The high power transmit signal, typically
greater than 20 W, must be prevented from overloading the receiver. This requires

the Rx filter to have high attenuation levels over the transmit frequency band. The

antenna

diplexer (NA

———————— -1 e Tt
down
conversion

up
3 conversion
muiticarrier PA
or power combiner
+ several PAs

Figure 1.1: Block diagram of a base station front end
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Tx filter also has stringent requirements on its stopband attenuation as it has to
prevent out-of-band harmonics generated by the power amplifier being transmit-
ted. In addition, it has to suppress the noise generated by the power amplifier in
the receive band, which would otherwise affect the sensitivity of the receiver. The
diplexer should also generate very low passive intermodulation (6], as intermodula-
tion products of the signals in the transmit band could fall into the receive band
and cause interference. Finally, both filters must have low insertion loss. Extra
loss created by the filter in the transmit band would need to be compensated for
by a bigger, more expensive power amplifier and decrease the efficiency of the base
station. On the receive side, insertion loss decreases the sensitivity of the receiver.
Typical insertion loss specifications differ, depending on the surface area covered by
the base station. Although all base stations are required to be small to comply with
planning restrictions, low power base stations covering small cells have extreme size
limitations. Small cells are usually created in urban areas in order to increase the
network’s capacity and the base station will need to be easily deployed, for example,
on the side of buildings. As a result, their insertion loss specification can be relaxed
as the need for size reduction outweighs the need for efficiency and sensitivity. Ta-

ble 1.1 and Fig. 1.2 show typical specifications and the spectral mask of the receive
branch for a PCS front end diplexer.

w77 77

o 7
-90 - /

1830 1850 1910 1920 1930 Frequency (MHz)

\

Figure 1.2: Spectral mask of receive branch of PCS diplexer
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Table 1.1: Typical specification for a PCS base-station diplexer

Receive Transmit
(1850-1910 MHz) (1930-1990 MHz)
Insertion loss (dB) < 0.9 < 0.9 (1932-1988 MHz)

< 1.0 (1930-1932 MHz)
< 1.0 (1988-1990 MHz)
<04 < 0.3 (1932-1988 MHz)
< 0.5 (1930-1932 MHz)
< 0.5 (1988-1990 MHz)
> 18
—90 at 1910 MHz
—16 at 1920 MHz
—~16 at 2000MHz

Insertion loss variation (dB)

Return loss (dB)
Rejection (dB)

—29 at 1830 MHz
—12 at 1920 MHz
-90 at 1930 MHz
Group delay distortion (ns) < 20 <20

in 5 MHz band i

Intermodulation (dBm)
(two +44.3 dBm tones in Tx)

Peak power handling (dBm)

Example 2

If a base station’s range is limited by its receive power, the receive signal might have
to be amplified close to the antenna at the top of the mast. This stops its signal to
noise ratio from being degraded by the loss of the cable which runs down the mast,
which is typically several decibels. Fig. 1.3 shows the block diagram of a tower top
low noise amplifier. The Rx and Tx signals are split and recombined on each side
of the amplifier by diplexers. The loss, rejection and intermodulation requirements
of these diplexers are similar to those given in Table 1.1. The rejection specification

should also be adequate to ensure that the amplifier is prevented from oscillating.
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Figure 1.3: Block diagram of the tower top low noise amplifier

Example 3

RF filtering is also present in the feedforward amplifiers [7], which are used as
multicarrier power amplifiers in base stations. The signals typically need amplifying
by 50 dB while keeping the intermodulation levels 50 to 60 dB below the main
signal average power. Feedforward amplifiers are also used for single carrier signals
when the modulation used is not constant envelope, as for example with IS95 and
WCDMA. The typical layout of a feedforward amplifier is shown in Fig. 1.4. Non
linearities in the main amplifier generate distortion. This distortion is isolated from
the main signal by adding a portion of the amplified signal out of phase with some of
the undistorted input signal. The distortion is then amplified and re-injected out of
phase into the output signal to leave only the wanted amplified signal. Delay filters

are needed in each loop of the feedforward cancellation process to mimic the delays

of the main and the error amplifiers. These delays, between 10 and 30 ns, are due
to the physical length of the signal path and the narrowband matching circuits of

the amplifiers. The main requirements for these filters are a flat amplitude and a

main amplifier delay filter

up conversion > - :___to fiiplefer

error amplifier

delay filter

Figure 1.4: Block diagram of a feed forward amplifier
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linear phase (i.e. flat group delay). Phase deviations of less than & 1° over the full
system bandwidth (e.g. 60 MHz for PCS and UMTS systems) are usually needed.
The insertion loss of the second loop filter, situated straight after the main amplifier

is critical and is usually less than a few tenths of a dB.

Example 4

Multicarrier amplifiers such as feedforward amplifiers are not always able to meet the
system specifications on distortion levels. As a result, power combiners, combining
the outputs of single carrier power amplifiers are used, mainly for the GSM and
PCN systems, where spurious levels of more than 70 dB below the main signal are
required. Fig. 1.5 shows how several carriers are combined by means of narrowband
filters centred on each carrier frequency. The manifold ensures that, at the common
junction, all other branches present an open circuit to the signal coming from one
of the power amplifiers. The filters need to be narrow band, each wide enough only
for one carrier. They also must be low loss. Typical values are 1 dB insertion loss
at the centre frequency for each carrier. However, these filters are usually realised
using single resonators as each of them often has to be automatically tuned to the
changing centre frequency of its input signal. These requirements are conflicting
as will be discussed in the next section and very demanding in terms of resonator
performance. Two section filters are sometimes used for manually tuned CDMA
combiners, as the need to reconfigure the frequency plan of the network is not as

great. Table 1.2 summarises the requirements for a GSM power combiner.

from single camrler PA C /-'—\
f4
from single carrier PA C /-I—\ to diplexer

from single carrier PA _@_ /T\

Figure 1.5: Block diagram of a power combiner



Chapter 1 6 Section 1.2

Table 1.2: Specifications for a GSM power combiner filter

Example 5

A final application for filtering within the base station is best described by Fig. 1.6.,
representing the frequency allocations of two operators of the American AMPS sys-

tem. It is possible that mobiles of operator A could be transmitting at maximum

power while physically located close to a base station of operator B. This operator

then needs to be able to get the signals from these mobiles attenuated before they
reach its receiver as they could cause intermodulation products in its receive band.
This is achieved by a very selective notch filter which rejects the 1.5 MHz of operator

A inserted within its band. Table 1.3 summarises the specifications for the notch

filter.

Operator A Operator B

Operator A Operator B I

- ]

824 MHz
835 MHz
845 MHz
846.5 MHz
849 MHz

Figure 1.6: Frequency allocations for two operators in the AMPS band

1.2 Overview of filter design

The first step of filter design consists of synthesising a low-pass prototype network.
This is a lumped or distributed reciprocal lossless and passive two-port nctwork

operating from a 1 ) generator into a R €2 load as shown in Fig. 1.7.
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Table 1.3: Specifications for the operator B notch filter

Frequency (MHz) | Insertion loss relative to passband (dB)

845 -1.5
845.2 —-20.0
846.3 -20.0
846.5 -1.5

1Q i

linear

lossless
passive
reciprocal
two-port

RS)

Figure 1.7: Low-pass prototype

Let us consider a network with a transmission coeflicient Syo(p), which is a
bounded real function. If the network is passive and lossless, its reflection coeflicient,

S11(p), also a bounded real function, can be deduced from the unitary condition:
1811 (Gw)? + |Sr2(jw)|* = 1 (1.1)

Z(p), the input impedance of the network then follows from the bilinear trans-

formation

Z(p) = .].'_#_'_S.}l@_). (1.2)

and is a positive real function. As demonstrated by Darlington, this means that the
two-port network considered here can be synthesised as a lossless passive reciprocal
network terminated by a non-negative resistor [8]. T