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Abstract 

Internet of Things (IoT) is quickly evolving into a disruptive technology in 

recent years. For enhancing customer experience and accelerating job 

execution, IoT task offloading enables mobile end devices to release heavy 

computation and storage to the resource-rich nodes in collaborative Edges or 

Clouds. Resource management at the Edge-Cloud environment is 

challenging because it deals with several complex factors (e.g. different 

characteristics of IoT applications and heterogeneity of resources). Thus, 

efficient resource management will play an essential role in providing real-

time or near real-time use for IoT applications. However, how different service 

architecture and offloading strategies quantitatively impact the end-to-end 

service time performance of IoT applications is still far from known particularly 

given a dynamic and unpredictable assortment of interconnected virtual and 

physical devices. 

This PhD thesis has investigated and modelled the delay within the Edge-

Cloud environment as well as providing a detailed analysis of the main factors 

of service latency. Moreover, proposing a new task offloading approach for 

latency-sensitivity applications using fuzzy logic, where a decision is made as 

to whether we can offload the task to Local Edge, other Collaborative Edge or 

the Cloud depending on the current parameters of both application 

characteristics and the resources within the Edge-Cloud Environment. The 

proposed approach was compared against existing related works using a 

simulation tool, and it was evaluated in the domain of the edge-cloud 



- vii - 

environment where it was found to improve the overall service time for 

latency-sensitive applications, effectively utilising the edge-cloud resources. 
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Chapter 1. Introduction  

1.1 Motivation 

Nowadays, IT sector has developed at a massive rate: with more than 50 

billion devices will be connected to the internet in the coming years [1] which 

known as the internet of things (IoT) era [2]; with a tremendous amount of 

streaming data gathered by IoT devices, needs to be transferred, processed, 

and stored; with various applications domains such as autonomous vehicles, 

Augmented Reality (AR), online video games, smart city Industry 4.0 etc. 

Hence, this immense growth requires platforms to support the increased 

amount of IoT devices as well as organise and process the produced data 

since IoT devices are limited in term of power and computational capabilities, 

i.e. CPU and memory [3]. This primarily affects the adoption of compute-

intensive applications such as (AR), Online Gaming and processing of video 

streaming [4]. 

Cloud Computing is one of the main factors to support this growth by enables 

on-demand access to a massive pool of computation resources for services 

process and data analytics [5]. However, since the Cloud is far away form IoT 

devices, also there is an enormous amount of generated data needs to be 

transferred and processed in a real-time manner. Consequently, applications 

that require low-latency, real-time interaction and high Quality of Service 

(QoS) suffer from the Cloud due to network delay [6]. Further, data is 

increasingly produced at the edge of the network, hence, it would be more 
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efficient to also process the data at the edge level because cloud computing 

is not always practical for data processing when the data is produced at the 

edge and require processing in a real-time manner. 

Therefore, the concept of Edge computing has appeared to complement 

Cloud services. It basically refers to an intermediate layer with computation 

capabilities between the Cloud and closer to IoT devices to fill latency gaps. 

Edge computing provides the opportunity to serve better streaming services, 

which is both latency-sensitive and bandwidth-intensive such as Google 

Stadia and Netflix. It allows avoiding the Uploading /download of massive files 

as well as the pre-processing of offloading tasks, which contribute to 

minimising the overall service time. 

Although Edge computing is a promising enabler for latency-sensitive 

applications because of the closeness to IoT devices. Computational 

resources in edge computing similar to cloud computing which consist of a 

pool of servers that operated and managed virtually as well as hosted at the 

edge of the network. Efficient Edge-Cloud resource management for latency-

sensitive applications is essential to fully utilise the capabilities of Edge nodes 

[7]. However, latency-sensitive applications have various changing 

characteristics, such as computational demand and communication demand. 

Consequently, the latency depends on the scheduling policy of applications 

offloading tasks as well as where the jobs will be placed. Therefore, Edge-

Cloud resource management should consider these characteristics in order to 

meet the requirements of latency-sensitive applications. On the other hand, 

another challenge for improving the utilisation the edge-cloud resources and 

reducing the dependency of the cloud, which will help to reduce the overall 

cost. 
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A number of studies have been conducted on edge cloud resource 

management to achieve improvements in the overall service time for IoT 

applications. A few studies have a particular focus on latency-sensitive 

applications, and others have focused on resource utilisation and energy 

efficiency as the main objectives. Hence, there is a need for holistic and 

efficient resource management that considers characteristics of offloading IoT 

applications' tasks ( computation, communication and latency), as well as 

resource parameters, such as resource utilisation and resource heterogeneity 

in order to meet the required service time for the applications and utilising 

Edge-Cloud resources efficiently. 

Thus, it is essential to conduct in-depth research to investigate the latency 

within the edge-cloud system, the impact of computation and communication 

demands and resource heterogeneity to provide a better understanding of the 

problem and facilitate the development of an approach that aims to improve 

both applications’ QoS and edge-cloud system performance. 

1.2 Aims and Objectives  

Offloading tasks of IoT latency-sensitive applications have diverse demands 

in terms of computation and communication; for example, some tasks require 

intense computation and a small amount of transferred data, while others do 

not. Thus, varying demands will affect the offloading decision as well as the 

overall service time. In addition, the host server in the edge plays an essential 

role in the processing service time (i.e., offloading a task to an overloaded 

edge server will incur long latency). This research has two aims: one is to 

improve the overall service time of latency-sensitive applications considering 
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the varying of computational and communication demands, and the other is 

to utilise edge-cloud resources with a consideration of resource heterogeneity. 

 

These aims require an in-depth analysis and investigation. Thus, the following 

research questions need to be addressed: 

• Q1: How can the latency of the service time based on the offloading 

site in the edge-cloud environments be modelled, and what will be the 

impact on computation and communication time?  

• Q2: How does the task variation in terms of computation demands and 

communication demands affect the offloading decision, and what is the 

impact on the overall service time for latency-sensitive applications? 

• Q3: How does the resource heterogeneity in edge-cloud environments 

affect the offloading decision, and what is the impact on the overall 

service time for latency-sensitive applications? 

• Q4: How do different offloading strategies quantitatively influence the 

end-to-end service time performance of IoT applications and services? 

Specifically, the main objectives of this study are: 

1- Exploring the scheduling of tasks offloading issues and challenges in 

the edge-cloud paradigm.  Task offloading mechanisms of latency-

sensitive applications has been an active research area, especially with 

the trade-off of application QoS, such as service time and resource 

utilisation. Therefore, it is necessary to have an in-depth understanding 

of the current issues in order to propose an approach that can be used 

to address these issues. 
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2- Investigating the parameters that influence the overall service time in 

edge-cloud environments. It is necessary to investigate the impact of 

the location of the offloaded tasks, as well as the effect of task variation 

of latency-sensitive applications in terms of the requirements of 

computation and communication and the impact of resource 

heterogeneity in edge-cloud environments and how it affects overall 

service time. 

3- Developing a dedicated approach for offloading tasks to handle the 

requirements of latency-sensitive IoT applications and efficiently 

utilising the resources in edge-cloud environments in order to minimise 

the overall service time. Currently, there are a number of offloading 

algorithms in edge-cloud environments, but they are mainly focussed 

on either applications’ characteristics or edge-cloud resource 

utilisation. Thus, there is a need for an approach that has a 

consideration of both, which is the objective of this work. 

1.3 Methodology  

Resource management in edge computing is a complicated process as it 

involves managing a diversity of resources, such as edge nodes and the 

central cloud, to achieve the computational requirements of end devices. It 

should consider the constraints in terms of computational capacity and 

network bandwidth of any type of resources as well as the demands of end-

device applications. Therefore, there are three scientific research methods 

used to research the edge computing environment that demonstrate and 
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investigate latency-sensitive IoT applications with their intensive data, 

resources in edge nodes and the cloud. 

a. Direct Experiments 

In the context of this research, this approach can be described as conducting 

a direct experiment that implements an edge computing environment to 

validate a hypothesis or implement an idea for real-ward examples, which can 

increase result reliability and accuracy. However, this approach is generally 

time-consuming and involves several constraints, such as resource 

accessibility and availability. Moreover, in edge computing environments, 

setting up a testbed that provides virtualised resources (computational and 

network) can be quite expensive[8] [9] and may present challenges for 

conducting repeatable and scalable experiments for a comprehensive 

performance analysis [10].  

 

b. Mathematical Modelling 

This method can be defined as formulating the system or the environment 

using mathematical models subject to a set of assumptions to provide a more 

comprehensive understanding of a system’s components. The outcomes of 

this method can be validated through direct experiments or reliable simulator 

tools. 

 

c. Simulation 

Simulation is another scientific method that can be used to test a hypothesis 

or provide a solution. With simulator tools, experiments can be conducted in 

reasonable time and support the repeatability for required modifications. Due 
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to the heterogeneity of resources and the variety of IoT applications, simulator 

tools are commonly used in the area of edge computing [10].  

In this research, both mathematical modelling and simulation methods are 

used. Mathematical modelling is used to formulate latency models in 

offloading decisions in edge-cloud environments, and EdgeCloudSim [11] is 

used as an edge-cloud simulator that can fit with the context of the study (more 

details presented in section 2.7). 

In general, a simulation-based method can be used in scientific research when 

one of the following conditions is met [12]: 

1- A complete environment to conduct the research does not exist. 

2- The process of a direct experiment is complex because it involves 

systems with many influencing parameters, many dependency factors, 

and a huge amount of data, thus tending to make the experiment 

intricate and unmanageable. 

3- The research requires a long time frame. The simulation-based method 

can compress the time frame so that the research can be conducted 

within the required time, for example, by accelerating the analysis 

process. 

4- The configurations and setups of a direct experiment are difficult and 

time-consuming. Thus, the experiment is not repeatable or reusable. 

 

A simulation-based method can be used for several research purposes such 

as evaluation, comparison, sensitivity analysis and optimization [12]: 

1- Evaluation: examining the proposed approach with specific criteria  
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2- Comparison: allowing the researchers to compare their methods with 

those of other competitors in the same field  

3- Sensitivity analysis: determining the impact of several factors on 

system performance  

4- Optimization: identifying the trade-offs between the combination of 

parameters and its effect on the system performance 

 

In this research, the simulation tool was selected to avoid significant research 

challenges in the area of edge computing resource management. There are 

two main reasons why the simulation tool was used in this research. First, 

similar to with research in cloud computing, service providers do not allow third 

parties to access their infrastructure to get the necessary data for research 

purposes [13]. Second, setting up a real Edge-Cloud testbed is both costly, 

and time-consuming [14]. Therefore, most of the related studies in the field 

are simulation-based and/or theoretical. 

Several issues should be considered in order to select the appropriate 

simulation tools and validate the proposed approach and its results. This will 

help to overcome and mitigate the general limitations of the simulation-based 

method. These issues are the following: 

1- The selection of the appropriate simulator tool: According to [], the first 

step is to search for the simulator tools that have the necessary 

functionalities to deliver the research aims and objectives. Other 

criteria, such as (the required HW to run the simulation, the efficiency 

of generated logs files, the cost of simulation and assistance 

availability), could also be used to select the simulation tool [15]. In this 
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research, we reviewed a collection of the existing tools (e.g. IfogSim, 

IoTSim, and FogNetSim++), comparing their main focuses. 

EdgeCloudSim was the most appropriate for the purpose of this 

research. More details are in section 2.7. 

2- The selection of simulation parameters: In a simulation-based method, 

the generated result depends on the selected parameters, and 

therefore, any wrong parameters could lead to incorrect results. In this 

research, we selected the parameters based on related research in 

both application demands (e.g. computational and communications) 

and edge-cloud resources (e.g. VM configuration). Additionally, a 

sensitivity analysis was conducted to investigate the impact of the 

application parameters. 

3- The validation of the generated results: In order to avoid any anomalies 

from the simulation results, each simulation was run five times, and a 

statistical analysis was conducted to take the mean values. Then, some 

of the results obtained were compared with the general findings from 

other research. For example, some of the generated results were 

consistent with other researchers' results from direct experiments. 

 

1.4 Main Contributions 

The main contributions of this work can be summarised as follows: 

• Presenting a model that can show the impact of different tasks' 

offloading scenarios for time-sensitive applications in terms of end-to-

end service times. It provides in-depth analyses of the offloading 
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latency models that consider computation and communication as key 

parameters with respect to offloading to the local edge node, other 

edge nodes or the cloud. 

• Quantifying the impact of the variations of the offloading tasks and the 

performance of different computational resources within the edge-

cloud system. Different computation and communication demands of 

offloading tasks, as well as different VMs, have been modelled in the 

simulation tool, which has helped to quantify the impact of computation 

and communication demands of offloading tasks. 

• Proposed a new approach that adopts the fuzzy logic algorithm which 

considers application characteristics (e.g., CPU demand, network 

demand and delay sensitivity) as well as resource utilisation and 

resource heterogeneity in order to minimise the overall time of latency-

sensitive applications. 

1.5 Thesis Overview  

The remaining chapters of this thesis are organised as follows: 

 

• Chapter 2 presents an overview of the fundamental concepts of the 

subject of scheduling offloading tasks un the edge-cloud system. 

Firstly, the core concepts of cloud computing with more details on its 

definition, architecture, deployment models and the idea of mobile 

cloud computing as an extended model for cloud computing will be 

presented. Secondly, the core concepts of the transformation to the 

edge computing and its models will be discussed. These presented the 
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idea of edge computing and explain the different terms such as fog 

computing, mobile edge computing, etc., with a comparison between 

them. Also, the concept of the internet of things (IoT) and its 

applications are described. After that, the concept of offloading tasks is 

introduced and discussed with the context of edge computing.  This is 

followed by positioning the work in the related literature, focusing on 

the scheduling offloading tasks issues and resource management in 

Edge-Cloud system. A reviewing with related works that focus on 

application characteristics is presented. Also, the related works that 

consider parameters of edge cloud resources such as resource 

utilisation and resource heterogeneity is provided. Finally, research 

open challenges and simulation tools are presented. 

• Chapter 3 presents the overview of the edge-cloud system architecture 

that supports scheduling offloading tasks of IoT applications, as well as 

the explanation of the required components and their interactions within 

the system architecture. Furthermore, it presents the offloading latency 

models that consider computation and communication as crucial 

parameters with respect to offloading to the local edge node, other 

edge nodes or the cloud. Chapter 3 concludes by discussing early 

experiments conducted on EdgeCloudSim to investigate and evaluate 

the latency models of each offloading scheme. 

• Chapter 4 presents and discusses the main factors of service latency 

that will be considered in the proposed approach for edge-cloud 

resource management. Since the demand for computation and 

communication tasks vary in IoT applications, this chapter aims to 

validate the impact of these factors on the overall application latency. 
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Moreover, Edge-Cloud environment consists of heterogeneity of 

computing resources; thus, selecting the appropriate resources to 

process the offloading tasks play a critical role to improve the overall 

service time. Therefore, a number of simulation experiments were set 

up to evaluate the influence of these factors. 

• Chapter 5 proposes a new approach for task offloading in edge-cloud 

systems in order to minimise the overall service time for latency-

sensitive applications. The approach adopts the fuzzy logic algorithm 

that considers application characteristics (e.g., CPU demand, network 

demand and delay sensitivity) as well as resource utilisation. A number 

of simulation experiments have been conducted in order to evaluate 

the proposed approach with other related work. 

• Chapter 6 presents a summary of the work and contributions 

presented in this thesis. Moreover, discuss an overall evaluation of 

thesis objectives and provides some of the potential topics for future 

work that could further enhance this research. 
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Chapter 2. Challenges and Existing Work in 

Edge-Cloud Systems  

 

2.1 Overview 

This chapter describes the essential background concepts of this research - 

i.e. improving the overall service time performance for latency-sensitive 

applications as well as manage the resource efficiently in Edge-Cloud 

environments. It starts by presenting the basic background of Cloud 

Computing and Mobile Cloud computing with a detailed description of its 

definition, system architecture, services types and deployment, as shown in 

Section 2.2.  The following section presents the development of Cloud 

Computing paradigm by the concepts of Edge computing with a detailed 

description of its, definition, models and related technologies. Finally, the 

concepts of offloading tasks are presented with the state-of-the-art methods 

that aim to efficiently manage the resource of the Edge-Cloud and enhance 

the overall service time. It concludes with a description of the research 

method. 
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2.2 Cloud Computing 

2.2.1 Definition  

Cloud computing is a computing model that has characteristics to support the 

services of IoT and applications of Big Data. It is defined as “A model for 

enabling convenient, on-demand network access to a shared pool of 

configurable computing resources (e.g. networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with 

minimal management, effort or service provider interaction. This cloud model 

promotes availability and is composed of five essential characteristics, three 

service models, and four deployment models”[5]. 

2.2.2 Characteristics 

Gong et al. (2010) introduced the main characteristics of cloud computing, 

being on-demand self-service, broad network access, resource pooling, rapid 

elasticity and measured service [16].  

1.  On-demand self-service: Cloud computing allows consumers to 

provide the service to them without human interaction at any time.  

2. Broad network access: Services are available over the network and 

accessed through standard mechanisms that support a variety of 

platforms, such as mobile phones, PCs, etc. This is called a service-

oriented architecture model that permits the components of the cloud 

to be available over the network as a service.  

3. Resource pooling: Variety of resources that can serve many 

consumers with different demands at the same time.  
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4. Rapid elasticity: Customers may expand their usage as much as they 

choose. It seems to the customers that the services are unlimited, and 

they can receive any quantity at any time.  

5. Measured services: All services in the cloud, such as storage and 

processing data, are measured automatically.  

2.2.3 Service Types 

Cloud computing has three service models software as a service (SaaS), 

platform as a service (PaaS) model and infrastructure as a service (IaaS) [17], 

see figure 2.1. 

 

 

 

Figure 2. 1: Cloud Computing services model and examples [18] 

 
 

 
1. Software as a service (SaaS): The provider of cloud computing 

services allows the customer to use applications in the cloud, such as 

Microsoft Word Online. The applications work with heterogeneous 
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platforms. The customers do not have the right to manage the cloud 

infrastructure, such as the server, storage or network.  

2. Platform as a service (PaaS): The provider of the cloud computing 

services permits consumers to create their applications using 

programming languages, libraries, services and tools supported by the 

provider. The customers do not have the rights to manage the cloud 

infrastructure, such as the server, storage or network.  

3. Infrastructure as a service (IaaS): The provider of the cloud service 

allows the customers to have control in their own deployed 

applications, storage and operating system. The customers do not 

have the right to manage the cloud infrastructure, such as a server, 

storage or network, but may have limited control of types of network 

components.  

2.2.4 Deployment Types  

According to [16], cloud computing has four deployment models - private 

cloud, community cloud, public cloud and hybrid cloud.  

1. Private cloud: The cloud resources are used only by one customer. It 

could be managed by the same company or a third party.  

2. Community cloud: Same as private cloud, but the customer could be 

a community or a group of people having the same area of interest.  

3. Public cloud: The cloud resources are used within the general public.  

4. Hybrid cloud: The cloud resources could use two or more deployment 

models. For example, the storage could be in the private cloud, and the 

computation could take place in the public cloud.  



- 17 - 
 

2.2.5 Mobile Cloud Computing  

The improvement of cloud computing technology and mobile services have 

led to the idea of mobile cloud computing (MCC), which aims to move the 

computational services from mobile users devises to the cloud. This will allow 

a small mobile device to use the huge capabilities in the cloud.  Previous 

studies mostly defined MCC as 

  

 “An infrastructure where both the data storage and data processing happen 

outside of the mobile device. Mobile cloud applications move the computing 

power and data storage away from mobile phones and into the cloud, bringing 

applications and MC to not just smartphone users but a much broader range 

of mobile subscribers” [19].  

  

These devices connect to the cloud with wireless connections, and there will 

be partitioning and offloading of the computational services [20]. 

The architecture of MCC consists of three major technologies: mobile 

computing, the internet and cloud computing [21]. Figure 2.2 [20] shows that 

a mobile device connects to the mobile network through either a base 

transceiver, access point or satellite. Thus, mobile devices can connect to the 

cloud via the internet and use cloud services from a cloud service provider 

[19]. 
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Figure 2. 2: Mobile Cloud Computing Architecture [16]. 

 
 

MCC is generally assumed to play a role in the utilisation of cloud computing 

resources by allowing mobile users to use them [22]. MCC has contributed to 

improving mobile computing by providing the following advantages:  mobile 

users have a massive amount of resources, the integration and scalability of 

mobile applications become more accessible and on-demand services [19]. 

There are several types of MCC applications. Mobile learning is one example. 

Educational content can be delivered to students by combining mobile 

computing and cloud computing. Mobile learning used media such as video, 

audio, or chat to provide an environment for learning [23]. Another example is 

mobile gaming, which has increased recently because of the improvement of 

interactive video gaming [24]. 

 

2.2.6 Limitations 

Studies have consistently shown that cloud computing does not deal well with 

latency-sensitive applications such as self-driving cars, health-care 

applications and video gaming [25]. Moreover, cloud computing might not be 

considered an efficient computing model for applications that require mobility 
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support and location awareness. Such applications have sharply increased 

and will continue to increase the cloud’s load [26]. Since the cloud is far from 

the user, the delay of transferring a huge amount of data, such as video with 

high resolution, to be processed to the cloud and then back to the edge device 

is not efficient [27]. Moreover, a challenging critical issue is that cloud 

computing has full responsibility from the cloud to the end devices [28]. Such 

responsibility might contribute to the increased use of energy because of 

transmitting data over multiple hubs from the end devices to the cloud as well 

as performing all the computations in the cloud [29].  

Despite the success of MCC in improving mobile computing, however, the 

network becomes overheated because the cloud is far away from the mobile 

user, and this leads to long latency [30]. Thus, some sensitive applications 

cannot work effectively with the cloud [31]. To conclude, moving a massive 

amount of data from end devices to the cloud and vice versa is costly in terms 

of time and energy. Also, it could be infeasible due to the growth of data size 

and the number of connected devices. Therefore, recent studies have 

introduced a system model that aims to overcome these challenges, which 

will be discussed in the next section. 
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2.3 Edge Computing 

This section details the literature of edge computing, its definitions and 

characteristics. It also provides a comparison between the edge and the cloud, 

discusses the importance of the edge, presents some of the current edge 

computing models. Cloud computing, mobile computing and mobile cloud 

computing are revolutionary technologies, but they require hosting the 

services only in the cloud, which is maybe impossible for some applications. 

Thus, a new approach has arisen called edge computing.  

2.3.1 Definition  

 

Several papers[32][33][34] state that edge computing is a term that aims to 

push computational services from the centralized data centre/cloud to the 

edge of the network to reduce latency and provide real-time interaction as well 

as supporting the massive growth of connected devices to the internet. 

OpenEdge Computing defines edge computing as computation provided by 

small data centres located closer to IoT devices at the edge of the network. 

Furthermore, provide all the cloud service (i.e. compute and storage) in a 

virtualized manner [33]. Cloud and edge complement each other and have 

nearly the same functionality to provide computing services. Yet, there are 

some differences such as location, support mobility, heterogeneity and 

scalability to accommodate a vast number of connected devices [28] (table 

2.1 summarise the differences). 
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Table 2. 1: Cloud Computing vs Edge Computing 

Features Cloud Computing Edge Computing 

Computational Capacity High Medium to low 

Latency High Low 

Mobility supported Limited Supported 

Location of servers Within the internet Close to end 

devices 

Number  of servers High Few 

Geographical 

distribution 

Centralized Decentralized 

Suitable for applications 

require 

Intensive 

computational and 

delay-tolerant. 

Latency-sensitive, 

mobility and high 

QoS. 

 

 

 

Edge computing has several advantages that will improve the process of 

distributed systems. First, it reduces the load in the cloud, which in turn will 

reduce the latency and produce faster response times because it reduces the 

movement of data from end device to the core of the cloud [27]. Moreover,  

according to recent studies [35], edge computing could reduce the energy 

consumption of the cloud up to 40%, which is a significant motivation due to 

current concerns about energy consumption [36].  



- 22 - 
 

Also, edge computing provides a vast amount of resources to IoT devices. 

Thus, IoT devices become smarter by processing complex tasks in a short 

time. It is difficult for such devices to handle these tasks by their own because 

of their limitations, such as computational power [37]. Moreover, regarding the 

massive increase in the number of devices connected to the internet, edge 

computing provides scalability to support these devices and deal with their 

requests closer to them [35]. Not only that, many current applications demand 

mobile support such as connected vehicles, transport applications and health-

care applications  [38]. 

 

 

Figure 2. 3: Advantages of Edge Computing 

 

2.3.2 Architecture  

Edge computing consists of several edge nodes that are distributed 

geographically. These edge nodes follow the same concept as cloud 

computing but in a smaller size, where each node has its computational 

power, storage, and network. Several studies have called them micro clouds 

[39][40] or micro data centres [41][42]. 
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In an edge computing environment, there are three main layers (see figure 

2.4). The lowest layer contains smart end devices which have limited 

computational power. Devices in this layer have their functions (e.g. health-

care devices, self-driving cars, sensors and smartphones). These devices are 

connected to the middle layer, which has edge nodes. Edge nodes are close 

to the end device and provide the required computational resources to the end 

devices on demand. Edge nodes aim to reduce the latency of IoT applications 

and dependability to the cloud. 

Moreover, edge nodes have limited computational power that may be required 

to collaborate with either the cloud or other edge nodes. The cloud has 

enormous computational resources, but it is far away from the end devices, 

which causes network delays. In an edge computing environment, the cloud 

manages edge nodes and help if the edge nodes require more computational 

support or applications that are not supported in the edge node. 

 

Figure 2. 4: Layers of Edge computing [42]. 
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2.3.3 Related Computing Paradigms 

Edge computing is a model that complements the responsibility of the cloud 

[43]. Therefore, mobile edge computing, fog computing and cloudlet are 

models that have nearly the same concept [44][45]. Table 2.2 compares these 

technologies in terms of architecture and suitable applications [46]. The 

resources of edge computing can be owned by cloud providers or any other 

vendor such as mobile network providers, university campuses or coffee 

shops [47]. This section will discuss why there is a need for edge computing 

and describe these technologies in depth.  

  

2.3.3.1 Cloudlets/Micro-Cloud 

Cloudlet, which proposed by Carnegie Mellon University, is another model of 

Edge computing. Satyanarayanan defines cloudlets as “a trusted, resource-

rich computer or cluster of computers that’s well-connected to the Internet and 

available for use by nearby mobile devices” [48]. Thus, it is a small cloud that 

aims to help sensitive applications of users’ mobiles, such as gaming, GPS 

routing, and internet banking [25]. The idea of cloudlets or micro-clouds arose 

to push computations from centralized cloud systems closer to the end-users’ 

mobile, to avoid the high latency of an offloading approach because these 

clouds are located far from the end devices [30] [45].  

The architecture of cloudlets has three levels (see Figure 2.5). The lowest 

level is the users’ devices that are connected to the cloudlet. The middle level 

is between users’ devices and the cloud. Thus, users are not required to 

communicate with the cloud directly, which is far away. Cloudlets can 

communicate with the centralized cloud for configuration and provisioning 
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[49]. Mobile users can connect to cloudlets through wireless LAN [48]. 

Compared to the central cloud, a cloudlet is smaller, closer to end-users, and 

saves power and costs [50]. Thus, it will help mobile applications reduce 

overall latency and improve Quality of Service (QoS) [51]. 

  

 

Figure 2. 5: Architecture of Cloudlet [52] 

 

 

Although the concept of cloudlets is succeeded to support and reduce 

communication latency, the model is not considered scalable in resource 

provisioning and services. Moreover, it can only be accessed by Wi-Fi, which 

causes a limitation to support other devices that are close to a Wi-Fi area but 

are not covered [53]. 

2.3.3.2 Fog Computing: 

Fog computing is an extended model of cloud computing—“the cloud close to 

the ground”—to serve the edge of the network. It distributes computing 
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resources such as processing units, storage, and networks in the area 

between the cloud and end devices and has the same techniques in the cloud, 

such as virtualization and multi-tenancy [54]. Fog computing provides better 

services to applications and services that do not work effectively with the 

cloud. These applications have different attributes (e.g. mobility support and 

real-time interaction), thus require different approaches to work with [55].  

Many applications can benefit at least in part from fog computing, including 

video conferencing, online gaming and AR/VR applications. 

The architecture of fog computing consists of four primary levels: data centre 

cloud, the core of the network, edge node and smart thing IoT [55] (see Figure 

2.6). The intermediate layer, the edge node, plays an essential role in 

supporting the cloud to reduce a load of computing, storing and networking 

and provides the services to end-users with high QoS. These edge servers 

are virtualized and can be accessed by connected devices through wired or 

wireless connections. The edge server connects to the cloud to collaborate 

with some services [56]. 
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Figure 2. 6: High Level Architecture of Fog Computing [51] 

  

As described earlier, fog computing supports various type of applications, 

particularly those applications that require real-time analysis and interaction 

[57]. Thus, the majority of IoT applications are supported by fog computing 

(e.g. smart home, health care, smart factories, agriculture, etc.) [58].     

2.3.4 Mobile Edge Computing: 

Mobile Edge Computing and also known as Multi-access edge computing, is 

defined by European Telecommunications Standards Institute (ETSI) as a 

technology that  

“provides an IT service environment and cloud-computing capabilities at the 

edge of the mobile network, within the Radio Access Network (RAN) and in 

close proximity to mobile subscribers”[59]. 

As previously stated, the requirements of mobile applications are changing, 

and new network technologies have appeared, such as 5G. Thus, redesigning 

the network or the way they provide services is essential [60]. For example, 

video streaming in the area of smart cities requires a prober network to carry 

a massive amount of data. Also, the edge server deals with these data near 

the source [50]. One main difference between mobile edge computing and fog 

computing is that the former can provide services to connected users without 

communicating with the cloud in some applications [61]. 

Previous papers [53][62] list some main characteristics of mobile edge 

computing. The location of the edge server can be accessed within the range 

of Radio Access Network (RAN) to provide real-time interaction (see figure 

2.7). These edge servers are distributed geographically to support large-scale 
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systems. Thus, mobile edge computing has been recognized to be the base 

for latency-sensitive applications (e.g. video streaming), also provide the 

support for IoT mobility and location awareness (e.g. smart vehicle). 

 

Figure 2. 7: Architecture of mobile edge Computing [63] 

 

 

 

 

Table 2. 2: Comparison of Cloudlets, Fog Computing and Mobile Edge 

Computing. 

 Cloudlets/ 

Micro-Cloud 

Fog Computing Mobile Edge 

Computing 

Location Within the area Between Edge of 

Network and the 

cloud 

Radio Network / 

Base station. 

Proximity Single Hop Single or several 

Hops 

Single Hop 
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Devices Server Router, Access 

points, Server 

Servers in the 

base station 

Accessibility Wi-Fi Wi-Fi, Mobile 

Network, etc. 

Mobile Network 

Application Suitable for 

mobile 

applications that 

require low 

latency. 

IoT Suitable for 

applications that 

require mobility 

support such as a 

self-driving car. 

 

  

Based on the characteristics stated in the previous subsections, Table 2.2 

presents a comparison of the three computing paradigms. The site 

deployment of Cloudlet and MEC can be at the first single hop, for example, 

Cloudlet can be located indoor within ( e.g. a shopping centre, hospital, etc.) 

and the MEC server can be embedded into the telecom's base station [64]. In 

contrast, the deployment of Fog computing can be anywhere between the IoT 

devices and the cloud. The concept of Fog computing is used widely in the 

applications of smart cities, smart grids, etc.[54]. MEC is used usually in the 

area of applications that require mobility such as autonomous vehicles and 

supporting communications of a vehicle to vehicle (V2V) as well as vehicles 

to Infrastructure (V2I) [65][66]. From the research perspective, all of the above 

terms have the same concepts, which push the computational service to the 

end of the network, but in the industrial side, each vendor (e.g. Cisco, Juniper) 

argues that their devices (e.g. routers and switches) are the perfect platforms 

to host Edge-Cloud capabilities. On the other hand, telecom companies argue 
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that their base stations and 4G/5G will be hosting the Edge-Cloud capabilities 

[67]. 

2.4  Internet of things  

There are several definitions and concepts that stand behind IoT. For 

example, IoT (Internet of Things), IoE (Internet of Everything),  and CoT 

(Cloud of Things) are referring to the same concept. IoT produces a set of new 

applications for the next wave of the ICT sector. Edge computing has been 

proposed to deal with the huge change in the area of the distributed system. 

Recently, the number of devices that are connected to the internet (IoT) has 

increased massively, and some studies predict that in the upcoming three 

years, more than 50 billion devices will be connected to the internet [68][69]. 

This called Internet of things IoT, which is generally can be defined as:  

“scenarios where network connectivity and computing capability extends to 

objects, sensors and everyday items not normally considered computers, 

allowing these devices to generate, exchange and consume data with minimal 

human intervention”[70]. 

2.4.1.1 Characteristics 

In terms of characteristics, Figure 2.8 presented the fundamental of IoT 

characteristics. IoT devices are heterogeneous in terms of hardware, network 

technologies and platforms. Each IoT device has a unique address and can 

communicate with others, generate and process data. Also, it can be designed 

to do any functions as well as integrate with any technology. 
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Figure 2. 8: Characteristics of Internet of things 

 

 

2.4.1.2 Enabling technologies 

The key enabling technologies of IoT can be classified as follows: embedded 

system, network technologies, Big Data analytics and Cloud Computing 

services. First, The embedded system can be defined as a sensor, processor 

or connectivity antenna in any everyday object. Second, enabling 

technologies in the network includes communication protocols, network 

hardware and type of network such as 5G [71]. Third, the developing systems 

of Big Data analytics (e.g. Hadoop and Spark) [68]. Finally, Cloud Computing 
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and extended models such as Edge computing for computation and storage 

services [51].  
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2.5 Scheduling offloading tasks in Edge-Cloud 

Environments 

Computation offloading is not a new paradigm; it is widely used in the area of 

cloud computing. Offloading transfers computations from the resource-limited 

mobile device to resource-rich cloud nodes in order to improve the execution 

performance of mobile applications and the holistic power efficiency. User 

devices are evenly located at the edge of the network. They could offload 

computation to Edge and Cloud nodes via WLAN network or 4/5G networks. 

Broadly, if a single Edge node is insufficient to deal with the surging workloads, 

other Edge nodes or Cloud nodes are ready for assisting such application. 

Basically, it is a solution to support IoT applications by transferring heavy 

computation tasks to powerful servers in the edge-cloud system. It is a 

technique used to overcome the limitations of IoT devices in terms of 

computation power (e.g. CPU, memory, etc.) and insufficient battery. It is one 

of the most important enabling techniques of IoT because it allows performing 

a sophisticated computational more than their capacity [72]. The decisions of 

computational offloading in the context of IoT can be summarised as follows. 

First, whether the IoT device decides to offload a computational task or not. 

In this case, several factors could be considered, such as the required 

computational power and transferred data. Second, if there is a need for 

offloading, does partial offloading or full offloading. Partial offloading refers to 

the part of the tasks will process locally at the IoT device and other parts in 

the Edge-Cloud servers. Factors such as tasks dependency and tasks priority 

can be considered in this case. Full offloading means the whole application 

processed remotely in the Edge-Cloud servers [63].  
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In terms of the objectives of computation offloading in the context of Edge 

Computing, it can be classified into two categories, objectives that focus on 

application characteristics and objectives that focus on Edge-Cloud 

resources. Several studies exist in the literature aim to reduce service latency, 

minimize energy consumption, maximize total revenue, minimize mandatory 

cost and maximize resource utilization. In fact, scheduling offloading tasks is 

a challenging issue in the Edge Computing paradigm since it should consider 

several trade-offs form application requirements (e.g. reduce latency) and 

system requirements (e.g. maximize resource utilization). Thus, developing 

appropriate and efficient resource management which can meet the 

requirements of both application and system is attracting many researchers in 

the filed [73][74][75][76].  

In the following subsections, some of the studies conducted on task offloading 

in edge computing to reduce the latency and maximise resource utilization will 

be discussed.   

2.5.1 Task offloading based on Application Characteristics  

With the increase of IoT applications, scheduling offloaded tasks that focused 

on application characteristics is considered significantly important, as 

highlighted in [77][4][78]. The section below presents the existing literature on 

task offloading is extensive and focuses mainly on application characteristics: 

computation, communication and latency-sensitivity.   

2.5.1.1 Computation and Communication Demands 

There are many ongoing research projects focusing on the tasks computation 

and communication demands of IoT applications. For example, Wang et al. 

[79] proposed an online approximation algorithm that main objective to 



- 35 - 
 

balance the load and minimizing resource utilization to enhance application 

performance. This work considers computational and communications 

attributes, however, it does not consider the service latency as well as their 

solution for homogenous resources. Rodrigues et al. [80], presented a hyper 

method for minimising service latency and reduce power consumption. This 

method aims to reduce the communication delay and computational delay by 

migrating the VM to the unloaded server. The authors investigate the impact 

of tasks computational and communication demands. They evaluate their 

approach under realistic conditions by mathematical modelling. However, 

their method does not consider the application delay constraints as well as the 

offloading to the cloud. Deng et al. [81], proposed an approximate approach 

for minimising network latency and power consumption by allocating workload 

between fog and cloud. However, this approach does not optimise the trade-

off between all mentioned objectives (e.g. computational delay and resource 

utilisation). 

Zeng et al. [82] designed a strategy for task offloading that aims to minimize 

the completion time. In their work, both computation time and transmission 

time are considered. The authors investigate the impact of other factors such 

as I/O interrupt requests and storage activities. However, this work does not 

consider delay-constraints applications and resource heterogeneity. Fan et al. 

[83] designed an allocation scheme aim to minimise service latency for IoT 

applications. Their algorithm takes account of both computation delay and 

communication delay. The authors investigate the impact of the overloaded 

VM on processing time and evaluate their work with different types of 

applications. However, the proposed method does not show the effectiveness 
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of the heterogeneity of the VMs in terms of service time does not consider the 

latency-sensitive application. 

 

2.5.1.2 Latency Sensitivity 

In terms of application latency-sensitivity, a number of studies are conducted 

in order to enhance the overall service time in Edge-Cloud environment. For 

example, Mahmud et al. [77] proposed a Latency-Aware policy that aims to 

meet the required deadlines for offloading tasks. Further, it considers the 

resource utilization at the edge level. This approach considering task 

dependency as well as the computational and communication requirements. 

However, resource heterogeneity dose not addressed in their research. Azizi 

et al. [84] designed a priority-based service placement policy that prioritises 

tasks with deadlines; thus, nearest deadlines scheduled first. Also, their work 

considers both computational and communication demands. However, their 

evaluation dose not addressed when the system has multi IoT devices as well 

as resource utilisation. Sonmez et al. [85] presented an approach for task 

offloading that targeting latency-sensitive applications. This approach based 

on fuzzy logic, which focused on delay as an important factor along with 

computational and communication demands. However, this approach does 

not consider resource heterogeneity. 

This section has presented the literature of offloading tasks that consider 

mainly application characteristics and has argued that The next part of this 

chapter will present the studies that focused on resource utilisation or 

heterogeneity as the main objectives. 
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2.5.2 Task offloading Based on Edge-Cloud Resources  

2.5.2.1 Resource Utilization 

Scheduling offloading tasks based on resource utilisation or resource 

heterogeneity has received considerable critical attention from many 

researchers. For example, Nan et al. [86] developed an online optimisation 

algorithm for offloading tasks that aim to minimise the cost of renting cloud 

services by utilising resources at the edge based on Lyapunov technique. 

Further, their algorithm guarantees the edge service availability and ensure to 

process the task with the required time. However, this algorithm does not 

consider the impact of computational and communication demands for 

latency-sensitive applications. Xu et al. [42] proposed a model for resource 

allocation that aims to maximise resource utilisation and reduce task 

execution latency. The authors aim to reduce the dependability on the cloud, 

thus reduce cloud cost. However, this work only considers resource utilisation 

and does not refer to resource heterogeneity. In addition, application 

uploading and downloading data are not addressed in this work, which plays 

a significant role in overall service time. Li and Wang [87] introduced a 

placement approach that aims to reduce Edge nodes energy consumption and 

maximise resource utilisation. They evaluated the proposed algorithm through 

applied numerical analysis on Shanghai Telecom dataset. However, their 

work does not provide any information regarding the application 

characteristics (e.g. computation, communication and delay-sensitivity). 

2.5.2.2 Resource Heterogeneity 

Considering resource heterogeneity in the Edge-Cloud environment for the 

offloading decision play a critical role to enhance service time performance. A 
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number of studies have investigated the impact of resource heterogeneity on 

the service time. For example, Scoca et al. [88], proposed a scour-based 

algorithm for scheduling offloading tasks that considers both computation and 

communication parameters. Furthermore, their algorithm considers a 

heterogeneous VMs and sort heavy tasks to be allocated to the more powerful 

VM. However, their algorithm does not consider server utilisation as key 

parameters could affect the performance of service time. Roy et al. [89] 

proposed a strategy for task allocation that allocating different application 

tasks to an appropriate edge server by considering the resource 

heterogeneity. This approach aims to reduce the execution latency as well as 

balance the load between edge nodes. However, this approach does not 

consider task communication time. Taneja et al. [90] proposed a resource-

aware placement for IoT offloading tasks. Their approach ranks the resources 

at the edge with their capabilities and then assign tasks to the suitable server 

based on the task’s requirements (e.g. CPU, Ram and bandwidth). However, 

this method focused on improving application service time performance, but 

without explicitly considering application latency-sensitivity. 

 

2.5.3 Overall Discussion 

The effective mechanisms for scheduling offloading tasks can contribute to 

minimizing the overall service time of IoT latency-sensitive applications and 

maximize resource utilization in the Edge-Cloud environment. With the 

dynamicity of IoT workload demands, Edge-Cloud service providers should 

strike a balance between utilising Edge-Cloud resources and satisfying QoS 

objectives of IoT applications. Consequently, efficient resource management 



- 39 - 
 

mechanisms can be beneficial to enhance both resource utilisation and 

supporting the latency-sensitive application requirements in term of service 

time. 

 The above section has reviewed the existing related work on offloading tasks 

that are focusing mainly on application parameters such as computation 

demands, communication demands and latency-sensitivity in Edge-Cloud 

environments. As discussed earlier, the related works in [80][82][83]  consider 

application parameters in order to minimise the service time. However, these 

works lack to consider the impact of resource parameters such as server 

utilisation and VMs heterogeneity. 

On the other hand, section 2.6.2,  presented the work in [79][88][90] which 

considered the resource utilisation and resource heterogeneity as key 

objectives in the process of scheduling offloading tasks in the Edge-Cloud 

environment. Although, some related works such as [81][87][89] have 

considered application requirements (i.e. computation or communication) but, 

without explicitly considering the latency-sensitivity of IoT applications. 

Hence, there is still a need for efficient resource management that takes into 

account characteristics of offloading IoT applications' tasks ( competition, 

communication and latency), as well as resource parameters such as 

resource utilization and resource heterogeneity in order to meet the required 

service time for the application and utilising Edge-Cloud resources. 

The following Table 2.3 provides a comparison summary of the similar related 

work on scheduling offloading tasks that consider both application 

characteristics and resource parameters in Edge-Cloud environment. 
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Table 2. 3: Comparison of individual papers addressing computation 

offloading decisions 

Criteria 

 

 

by 

Objective 

Application characteristics 

considerations 

Edge-Cloud resources 

considerations Evaluation 

method Compute network delay Resource 

utilization 

Resource 

type 

# of 

devices 

[79] Minimizing 

resource 

utilization 

Considered Considered Not 

considered 

Considered Homogeneous - Simulation 

[80] Minimizing 

service 

latency 

Considered Considered Not 

considered 

Considered Homogeneous Single Mathematical 

[81] Minimizing 

network 

latency 

Not 

considered 

Considered Not 

considered 

Considered Homogeneous - Simulation 

[88] Minimizing 

service 

latency 

Considered Considered Not 

considered 

Not 

considered 

Heterogenous Multi Simulation 

[86] Minimizing 

cost 

Not 

considered 

Not 

considered 

Considered Considered Homogeneous Multi Simulation 

[89] Minimizing 

execution 

time 

Considered Not 

considered 

Not 

considered 

Not 

considered 

Heterogenous Single Direct 

experiment 

[82] Minimizing 

completion 

time 

Considered Considered Not 

considered 

Not 

considered 

Homogeneous Multi Simulation 

[77] Minimizing 

service 

latency 

Considered Considered Considered Considered Homogeneous Multi Simulation 

[84] Minimizing 

service 

latency 

Considered Considered Considered Not 

considered 

Homogeneous Single Simulation 
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[85] Minimizing 

service 

latency 

Considered Considered Considered considered Homogeneous Multi Simulation 

[90] Minimizing 

service 

Time 

Maximise 

resource 

utilization 

Considered Considered Not 

considered 

Considered Heterogenous Multi Simulation 

[83] Minimizing 

service 

Time 

Considered Considered Not 

considered 

Not 

considered 

Homogeneous Multi Simulation 

[42] Maximise 

resource 

utilization 

Considered Not 

considered 

Considered Considered Homogeneous - Simulation 

[87] Maximise 

Energy 

Maximise 

resource 

utilization 

Not 

considered 

Not 

considered 

Not 

considered 

Considered Homogeneous Multi Data-Driven 

Analysis 

 

 

2.6 Open Challenges 

As far as offloading tasks is concerned, several open challenges require 

numerous efforts to address. This section will present open challenges of 

offloading tasks in Edge-Cloud environments. 

• Task dependency: There are lacks of the studies addressing the 

problem of offloading tasks because they do not consider the 

dependency of the tasks. To be more precise, allocating tasks that are 
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dependent on the results of other tasks to different resources in the 

edge-cloud could lead to poor QoS for IoT applications. It requires to 

study the application components and how there interact with each 

other. Considering this factor could lead to enhance both the overall 

system performance and satisfy application QoS. 

• Applications require a high degree of mobility: Offloading tasks of 

applications that require mobility support such as a self-driving car, 

crewless aircraft vehicles, and mobile devices, is an open challenge. 

For example, processing tasks of application users while moving from 

covered area to other covered are could lead to high network latency 

or process failure [4]. Although there are several researchers tackling 

this issue, however, it is still challenging. 

• Workload prediction: IoT tasks dynamically change; thus, each task’s 

procedure may have different execution time. Also, IoT devices are 

mobile, the number of devices may increase in some area; thus, the 

workload will be increased for the connected edge node. Hence, the 

amount of IoT workload will change dynamically over the edge-cloud 

system, which could lead to service performance degradation. 

Therefore, there is a need for workload predication, which can help to 

satisfy application QoS and maintain the performance of the Edge-

Cloud system.  

This thesis will be focused on the impact of different computational and 

communication demands as well as resource utilisation and heterogeneity at 

the edge level. The process of scheduling offloading tasks that consider the 
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previous parameters is an open challenge and attracting many researchers in 

the field. 

 

2.7 EdgeCloudSim 

Quantifying and analysing the performance of applications that running in real 

Edge-Cloud environment are challenging because of three main issues: (i) IoT 

applications have varying needs in terms of computational and 

communications, (ii) it widely geographically distributed as well as demanding 

mobility support and (iii) resources heterogeneity across (Edge and Cloud). 

Consequently, it would be costly and time-consuming to conduct a number of 

experiments across a large-scale Edge-Cloud environment. 

 

An alternative method which more feasible and has been widely used by 

researchers in this area is the simulation. Simulation tools make it possible to 

investigate and evaluate research’s hypotheses or provide novel solutions in 

a controlled platform that allows to conduct experiments and get results in a 

timely manner. It could help to reduce the time and cost of experiments 

repeatability and collecting results which pave the ways before deploying the 

solutions in a real environment. Furthermore, it provides an evaluation on the 

heterogeneous of IoT applications' workloads and Edge-Cloud resources 

which be rare by direct experiments due to cost, time and technical expertise. 

Several studies [91][14] have stated that edge-cloud simulation tools are 

recommended to have the following features: (1) support cloud services, such 

as the scheduling and provisioning of VM; (2) support network functionalities, 
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such as a modelling network in each layer (LAN, MAN, and WAN); (3) support 

applications services (i.e. computational and communication demands, delay 

sensitivity, etc.); and (4) support edge services, such as the mobility of IoT 

devices and managing edge nodes.  

In general, there are several issues should be considered in order to select 

the appropriate simulation tools and validate the proposed approach and its 

results. This will help to overcome and mitigate the general limitations of the 

simulation-based method. These issues are the following: 

The selection of the appropriate simulator tool: According to [], the first step is 

to search for the simulator tools that have the necessary functionalities to 

deliver the research aims and objectives. Other criteria, such as (the required 

HW to run the simulation, the efficiency of generated logs files, the cost of 

simulation and assistance availability), could also be used to select the 

simulation tool [15]. In this research, we reviewed a collection of the existing 

tools (e.g. IfogSim, IoTSim, and FogNetSim++), comparing their main 

focuses. EdgeCloudSim was the most appropriate for the purpose of this 

research. More details are in section 2.7. 

The selection of simulation parameters: In a simulation-based method, the 

generated result depends on the selected parameters, and therefore, any 

wrong parameters could lead to incorrect results. In this research, we selected 

the parameters based on related research in both application demands (e.g. 

computational and communications) and edge-cloud resources (e.g. VM 

configuration). Additionally, a sensitivity analysis was conducted to investigate 

the impact of the application parameters. 

The validation of the generated results: In order to avoid any anomalies from 

the simulation results, each simulation was run five times, and a statistical 
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analysis was conducted to take the mean values. Then, some of the results 

obtained were compared with the general findings from other research. For 

example, some of the generated results were consistent with other 

researchers' results from direct experiments. 

 

There are a number of simulation tools that suggested in the literature such 

as IfogSim [92], EdgeCloudSim[11], IoTSim and FogNetSim++[93]. Each one 

of these tools has a special focus and characteristics.  

• IfogSim: is a java-based tool that relies on a well-known cloud simulator 

CloudSim[94] and provides a multi-layered architecture from IoT to the 

Cloud. However, the network load has been neglected and does not 

support the mobility of IoT devices.  

• EdgeCloudSim also based on CloudSim and it covers mostly all the 

aspect of the edge computing environment, which include resources in 

both computation and communication level. Additionally, supporting 

the mobility of IoT devices[95].  

• IoTSim: focuses on the processing of Big Data for IoT applications. It 

is an extension of CloudSim with the following extra layers: Storage 

Layer, Big Data Processing Layer and Application Layer. It also 

modelled the MapReduce approach for IoT applications.  

• FogNetSim++: is relies on OmNeT++[96] simulator. The main focus on 

network modelling of fog network and provides the ability to implement 

scheduling algorithms of fog networks and hand-over of IoT device. 

Moreover, supporting mobility.  
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Comparing with the above simulators, EdgeCloudSim could be appropriate for 

this research more than the others for the following reasons: 

• Service time: The main purpose of this research is to investigate and 

evaluate the performance of IoT application in edge computing 

environment through the overall service time, which consists of 

processing delay and network latency. In this research, service time 

refers to the time for each task that will be handled in the edge 

computing environment from sending the request to receive the result. 

EdgeClouSim is different from other simulators such as iFogSim in this 

context because iFogSim is ignoring the network load by assuming a 

fixed delay for any network link, which it could not mimic the actual 

environment. 

• Application characteristics: In the perspective of Edge-cloud provider, 

IoT applications have three main features; it is distributed over large 

geographic areas, mobility and scalability. Scalability refers to the 

number of IoT in a specific area could increase or decrease for any 

reasons. 

• Architecture: Edge Computing has different architectures such as; 

standalone edge node, edge-cloud which mean the IoT tasks will be 

offloaded to edge or cloud servers and several edge nodes running 

with each other in coordination with the cloud. EdgeCloudSim support 

simulating these architectures[95].  
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Figure 2. 9: main components of EdgeCloudSim [11] 

 
 

Additionally, EdgeCloudSim considering the main three aspects of the edge 

computing environment; Firstly, Computational modelling which covers; 

Datacenter model, VM provisioning and task execution. Secondly, Network 

modelling which covers; link properties, delay model data transfer size and 

network capacity. Thirdly, Edge Specific Modelling which considers; Edge 

system design, mobility, offloading decision and Edge Orchestration. It also 

consists of the following five main components [11] as shown in figure 2.9 and 

for further information: 

1- Core Simulation module: is responsible for loading and running edge 

computing scenarios based on configuration files which consist of 

application characteristics, datacentre specifications and simulation 

settings. Additionally, providing logs of implemented scenarios in a 

comma-separated value (CSV) format. 
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2- Network module: is responsible for handling the transmission delay for 

transferring data in WLAN, MAN and WAN. This considers both 

uploading data from IoT devices and downloading data to IoT devices. 

3- Edge orchestrator module: is act as a decision-maker for managing 

computational resources on the edge layer. For example, terminating 

the edge VM and decide to offload a task to edge servers or the cloud. 

4- Mobility module: in charge of updating the locations of IoT devices 

during the simulation experiment based on the mobility model. This 

allows IoT devices to move from edge area to other edge areas. 

5- Load Generator module: is responsible for generating IoT tasks based 

on Application configurations. For example, specify the amount of data 

for upload/download for each task as well as the amount of required 

computational power. 

2.8 Summary 

This chapter has presented an overview of the fundamental concepts of the 

subject of scheduling offloading tasks in the edge-cloud system. It started with 

the core concepts of cloud computing with more details on its definition, 

architecture, deployment models and the idea of mobile cloud computing as 

an extended model for cloud computing. Then the core concepts of the 

transformation to the edge computing and its models are introduced. These 

presented the idea of edge computing and explain the different terms, such 

as fog computing, mobile edge computing, etc. This is followed by positioning 

the work in the related literature, focusing on the scheduling offloading tasks 

issues and resource management in Edge-Cloud system. A reviewing with 
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related works that focus on application characteristics is presented. Finally, 

research open challenges and simulation tools are presented. 
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Chapter 3. Investigating and Modelling Edge-

Cloud Environments   

 

3.1 Overview  

In this chapter, Section 3.2 presents the overview of Edge-Cloud system 

architecture that supports scheduling offloading tasks of IoT application, 

followed by the explanation of the required components and their interactions 

within the system architecture. Section 3.3 presents offloading latency models 

that consider computational and communication as key parameters with 

respect to offloading to the local edge node, other edge nodes or the Cloud. 

This chapter concludes by discussing early experiments conducted on 

EdgeCloudSim to investigate the latency models of each offloading scheme 

as presented in Sections 3.4 and 3.5. 

3.2 Modelling Edge-Cloud Environments   

3.2.1 System Overview 

As illustrated in figure 3.1, the Edge-Cloud system from bottom to the top 

consists of three layers: IoT devices, multiple edge computing nodes and the 

cloud. The IoT level is composed of a group of connected devices (e.g. 

smartphones, self-driving cars, smart CCTV, etc.); these devices have 

different applications where each application has several tasks (e.g. smart 
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CCTV [97] application consists of movement dedication, face recognition etc.). 

These services can be deployed and executed in different computing 

resources (connected edge node, other edge nodes or cloud), where the 

infrastructure manager and service providers decide where to run these 

services. 

In our system, at edge level, each edge computing node is a micro datacentre 

with a virtualised environment. Moreover, it has been placed close to the 

connected IoT devices at the base station or Wi-Fi access point. These edge 

nodes have been distributed geographically and could be owned by the same 

cloud provider or other brokers [98]. It has limited computational resources 

compared to the resources in the Cloud. Each edge node has a node manager 

that can manage computational resources and application services that run 

on. All the edge nodes have connected to the edge controller.  

The offloading tasks can be achieved when the IoT devices decide to process 

the task remotely in Edge-Cloud environments. Applications running on IoT 

devices can send their offloadable tasks that can be processed by the edge-

cloud system through their associated edge node.  We assume that each IoT 

application is deployed in a VM in the edge node and the cloud.  IoT devices 

offload tasks which belong to a predefined set of applications, these tasks are 

varied in term of the computational requirement (task length) and 

communication demand (amount of transferred data). It is assumed that tasks 

are already offloaded from the IoT devices, and each task is independent; 

thus, the dependency between the tasks is not addressed in this study. The 

locations of IoT devices are important for the service time performance 

because it is assumed that each location is covered by a dedicated wireless 
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access point with edge node and the IoT devices connect to the related WLAN 

when they move to the covered location. 

The associated edge can process IoT tasks and also can be processed 

collaboratively with other edge nodes or the cloud, based on Edge 

Orchestrator decisions. For example, if an IoT application is located in an edge 

node faraway from its connected edge, its data traffic has to be routed to it via 

a longer path in the edge-cloud system. In the Cloud level, a massive amount 

of resources that enable IoT applications’ tasks to be processed and stored.  

The proposed architecture is just a possible implementation of other 

architectures in the literature such as [54][42][69],  an example of these 

architectures represented in Figure 2.4.  The main difference in the proposed 

architecture is the introduced layer between the edge nodes and the cloud. 

This layer responsible for managing and assign offloading tasks to the edge 

nodes —more details in the following subsections. 
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Figure3. 1: An overview of Edge-Cloud system 

 
 

3.2.1.1 Edge Controller: 

Our edge Controller designed similar to [75][99][100], some studies called 

edge orchestrator, which is a centralized component that responsible for 

planning, deploying and managing application services in the edge-cloud 

system. EC communicate with to other components in the architecture to know 

the status of resources in the system (e.g. available and used), the number of 
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IoT devices, their applications’ tasks and where IoT tasks have been allocated 

(e.g. edge or cloud). EC consists of the following components: Application 

manager, Infrastructure manager, Monitoring and Planner. The location of 

Edge Controller can be deployed in any layer between edge and Cloud. For 

example, in [101], EC act as an independent entity in the edge layer that 

mange all the edge nodes in its control. It is also responsible for scheduling 

the offloading tasks in order to satisfy applications’ users and Edge-Cloud 

System requirements. The EC is synchronising its data with the centralised 

Cloud because if there is any failure, other edge nodes can take EC 

responsibility from the Cloud [102][103]. 

3.2.1.2 Application Manager:  

The application manager is responsible for managing applications running in 

the edge-cloud system. This includes requirements of applications tasks, such 

as the amount of data to be transferred, the amount of computational 

requirement (e.g. required CPU) and the latency constraints. Moreover, the 

number of application users for each edge node. 

3.2.1.3 Infrastructure Manager: 

The role of the infrastructure manager is to be in charge of the physical 

resources in the entire edge-cloud system. For instance, processors, 

networking and the connected IoT devices for all edge nodes. As mentioned 

above, edge-cloud is a virtualized environment; thus, this component 

responsible for virtual machines as well. In this research, this component 

provides the EC with the utilization level of VM. 
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3.2.1.4 Monitoring: 

The main responsibility of this component is to monitoring application tasks 

(e.g. computational delay and communication delay) and computational 

resources (e.g. CPU utilization) usage during the execution of applications’ 

tasks in the edge-cloud system. Furthermore, detecting the tasks failures due 

to network issues or shortage of computational resources.  

3.2.1.5 Planner: 

The main role of this component is to propose the scheduling policy of the 

offloading tasks in the edge-cloud system and the location where they will be 

placed (e.g. local edge, other edges or the cloud). In this research, the 

proposed approach for offloading tasks in Chapter 5 will work on this 

component and will pass its results to EC for execution.  

3.3  Latency-Sensitive Applications  

Applications that have high sensitivity of any delays accrue in communication 

or computation during the interaction with the Edge-Cloud system. For 

instance, IoT device sends data to the point that processing is complete at the 

edge node or the cloud in the back end of the network, and the subsequent 

communications are produced by the network in response to receive the 

results. There are many examples of latency-sensitive applications, and the 

acceptable service time varies depending on the application type which 

affected by the amount of transferred data and the required computation 

volume [104]. For example, self-driving cars consist of several services, in 

[105] classified these services in categories based on their latency-sensitivity, 

quality constraints and workload profile (required communication and 
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computation). First, critical applications, which must be processed in the car's 

computational resources, for instance, autonomous driving and road safety 

applications. Second, high-priority applications, which can be offloaded but 

with minimum latency, such as image aided navigation, parking navigation 

system and traffic control. Third, low-priority applications, which can be 

offloaded and not vital as high-priority applications, e.g.  Infotainment, 

multimedia, and speech processing. Table 3.1 presents more examples of 

latency-sensitive applications in different technology sectors [104]. 

 

Table 3. 1: Latency-Sensitive Applications 

Industry Applications 

Industrial automation 

Industrial Control  

Robot Control 

Process Control 

Healthcare Industry 

Remote Diagnosis  

Emergency Response  

Remote Surgery 

Entertainment Industry 
Immersive Entertainment  

Online Gaming 

Transport Industry 

Driver Assistance Applications  

Autonomous Driving  

Traffic Management 

Manufacturing Industry Motion Control  
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Remote Control  

AR and VR Applications 

 

3.4 Edge-Cloud Latency Models  

Investigating and modelling the various offloading decisions for IoT tasks can 

increase the quality of service, which has attracted the attention of many 

researchers in the field. With the increasing of IoT devices, the amount of 

produced data, the need for an autonomous system that requires a real-time 

interaction as well as the lake of support from the central cloud due to network 

issues, service time has been considered as one of the most important factors 

to be handled in edge computing [106][81][107]. 

One of the main characteristics of Edge computing is to reduce the latency 

level. And it has been proved through literature that using Edge computing will 

enhance applications performance in term of overall service time comparing 

to traditional cloud system [108][109][110]. However, different offloading 

decisions within the edge-cloud system can lead to various service time due 

to the computational resources and communications types. The current real-

world applications measure the latency between the telecommunication 

service provider and the cloud services[111]. Also, a few existing works 

compare the latency between offloading to the edge or the cloud. Yet, what 

about the latency between multiple edge nodes that work collectively to 

process the offloading tasks. Consequently, investigating the latency of Edge-

Cloud system is an essential step towards developing an effective scheduling 

policy due to the following reasons. First, task allocation in Edge-Cloud system 
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is not only two choices, e.g. either at IoT device or in the cloud, but could be 

on any edge nodes. Moreover, edge nodes connected in a loosely-coupled 

way on heterogeneous wireless networks (i.e. WLAN, MAN and WAN), 

making the process of resource management and the offloading decision 

more sophisticated. Second, given that task processing is allocated among 

multiple edge nodes working collectively and the cloud, it is challenging to 

make an optimal offloading decision. 

Therefore, we introduce the latency model to investigate the delay of each 

offloading scenarios. This section will be exploring the effect of computational 

and communication for each offloading scenarios. These are: (1) offloading to 

the local edge, (2) offloading to the local edge with the cloud and (3) offloading 

to the local edge, other available edge nodes and the cloud. The list of 

parameters and their notations is shown in Table 3.2. 

 

Table 3. 2: Summary of Notations 

Symbol Meaning 

𝑡𝑡𝑒_𝑢𝑝 Transmission Time between the IoT to the Edge node for 

uploading 

𝑡𝑡𝑒_𝑑𝑜𝑤𝑛 Transmission Time between the IoT to the Edge node for 

Downloading 

𝑡𝑐𝑒 Computation time in the edge node 

𝑡𝑡𝑐_𝑢𝑝 Transmission Time between the Edge node to the Cloud for 

uploading 

𝑡𝑡𝑐_𝑑𝑜𝑤𝑛 Transmission Time between the Edge node to the Cloud for 

Downloading 
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𝑡𝑐𝑐 Computation time in the Cloud 

𝑡𝑡𝑒𝑜_𝑢𝑝 Transmission Time between the Edge node to other nearby 

edge nodes for uploading 

𝑡𝑡𝑒𝑜_𝑑𝑜𝑤𝑛 Transmission Time between the Edge node to other nearby 

edge nodes for Downloading 

𝑡𝑐𝑒𝑜 Computation time in the other nearby edge node 

 

 

3.4.1 Latency to Local Edge 

This is known as One-Level offloading system which is basically offloading to 

“Cloudlet” or “Local Edge”. It aims to provide a micro-data centre that supports 

IoT devices within a specific area such as a coffee shop, mall centre, Airport, 

etc. [112][113]. Thus, IoT devices can offload their tasks to be processed. This 

offloading scheme provides ultra-low latency due to the avoidance of network 

backhaul delays. 

As shown in Figure 3.2, IoT devices send their offloading tasks through the 

wireless network, and then the tasks will be processed by the edge node and 

finally send the results to IoT devices. The end-to-end service time composed 

of two delays, network delay and computational delay. The network delay 

consists of the time of sending the data to edge and the time to receive the 

output from the edge to the IoT device. The computation time is the time from 

arriving the task to the edge node until the processing has completed. 

Therefore, the end-to-end service time latency is the sum of communication 

delay and computational delay [80], which can be calculated as follows:  

𝐿𝐿𝑜𝑐𝑎𝑙_𝑒𝑑𝑔𝑒 = 𝑡𝑡𝑒_𝑢𝑝 + 𝑡𝑐𝑒+ 𝑡𝑡𝑒_𝑑𝑜𝑤𝑛 
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3.4.2 Latency to Local Edge with the Cloud 

In this offloading scheme, rather than relying on only one edge node, The IoT 

tasks can be processed collaboratively between the connected edge node and 

the cloud servers. This will combine the benefits of both Cloud and Edge 

computing, where the cloud has a massive amount of computation resources, 

and the edge have lower communication time [114]. In this scheme, the edge 

can do part of the processing such as pre-processing, and the rest of the tasks 

will be processed in the cloud.  

As illustrated in Figure 3.3, IoT sends the computation tasks to the connected 

edge and then part of these tasks forwarded to the Cloud. Once the cloud 

finishes the computation, it will send the result to the edge, and the edge will 

send it to the IoT devices. This scheme consists of Communication time (e.g. 

Figure3. 2: Latency to local edge 
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time between the IoT device to the edge node and the time between edge 

nodes to the cloud) and computation time (e.g. processing time in the edge 

and processing time in the cloud). Thus, the end-to-end service time can be 

calculated as follows:  

 

𝐿𝐿_𝐶 = 𝑡𝑡𝑒_𝑢𝑝 + 𝑡𝑐𝑒 + 𝑡𝑡𝑐_𝑢𝑝 + 𝑡𝑐𝑐 + 𝑡𝑡𝑐_𝑑𝑜𝑤𝑛 + 𝑡𝑡𝑒_𝑑𝑜𝑤𝑛  

 

 

3.4.3 Latency to multiple edge nodes with the Cloud  

This is known as a three-level offloading scheme [115] that aims to utilise more 

resources at the edge layer and support the IoT devices in order to reduce the 

overall service time. It adds another level by considering other available 

computation resources in the edge layer. Basically, it distributes IoT tasks over 

Figure3. 3: Latency to Local Edge with the Cloud 
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three levels; connected edge, another available edge nodes and the cloud. 

The edge orchestrator controllers all edge servers by Wireless Local Area 

Network (WLAN) or Metropolitan Area Network (MAN) which have low latency 

compared to Wild Area Network (WAN).  

As illustrated in figure 3.4, IoT sends the computation tasks to the connected 

edge and then part of these tasks transferred to other available resources in 

the edge level through the Edge orchestrator and the rest to the cloud. This 

will help to decrease the dependency of cloud processing as well as increase 

the utilisation of computing resources at the edge [110]. This scheme consists 

of Communication time (e.g. time between the IoT device to the edge node, 

the time between edge node to other collaborative edge node and the time 

between edge nodes to the cloud) and computation time (e.g. processing time 

in the edge, processing time in other collaborative edge node and processing 

time in the cloud). Thus, the end-to-end service time can be calculated as 

follows: 

 

𝐿𝑡ℎ𝑟𝑒𝑒−𝑜𝑓𝑓 = [𝑡𝑡𝑒𝑢𝑝
+ 𝑡𝑐𝑒 + 𝑡𝑡𝑒𝑜𝑢𝑝

+ 𝑡𝑐𝑒𝑜 + 𝑡𝑡𝑐𝑢𝑝
+ 𝑡𝑐𝑐 + 𝑡𝑡𝑐𝑑𝑜𝑤𝑛

+ 𝑡𝑡𝑒𝑜𝑑𝑜𝑤𝑛

+ 𝑡𝑡𝑒𝑑𝑜𝑤𝑛  
] 
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3.5 Early Experiments  

In order to obtain an early investigation of the different offloading scenarios, 

and its influence on overall service time, a number of simulation experiments 

have been conducted on EdgeCloudSim. EdgeCloudSim provides sufficient 

models to represent some specific situations. For example, the service time 

model is designed to represent the several kinds of delay taking place in the 

WLAN, MAN, and WAN, mobile devices and even the delay of processing in 

the CPUs of VMs. Thus, experiments of this chapter are practically finished 

within this simulation to investigate and evaluate the performance of IoT 

workloads over the three different offloading scenarios. All the experiments 

Figure3. 4: Latency to multiple edge nodes with the Cloud 
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are repeated five times, and the statistical analysis is conducted to consider 

the mean values of the results to avoid any anomalies from the simulation 

results. We assume that we have three edge nodes connected to the cloud. 

Each edge node has two servers, and each of them has four VMs. The number 

of edge nodes does not matter in the context of this research as long it more 

than two, because one of our aims to investigate the latency between two 

edge nodes. The cloud contains an unlimited number of computational 

resources. We got inspiration from other related works such as [80][85] to 

design the experiments and its parameters (e.g. number of IoT devices, Edge 

nodes and the amount of transferred data for each offloading tasks). Table 3.3 

represents the key parameters of the simulation environment. The warm-up 

period is used  to allow the system to evolve to a condition more representative 

of steady-state before getting the simulation output. Number of iterations are 

used to avoid any anomalies from the simulation results.   

Table 3. 3: key parameters of the simulation environment 

Key parameters Values 

Simulation Time 30 minutes  

Warm-up Period 3 minutes 

Number of Iterations 5 

Number of IoT devices 100-1000 

Number of Edge Nodes 3 

Number of VM per edge server 8 

Number of VM in the Cloud ∞ 
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Average Data Size for Upload/Download 

(KB) 

500/500 

 

3.6 Results and Main Findings 

The conducted experiments show the results of three different offloading 

scenarios, offloading to Local Edge (i.e. cloudlet), offloading to Local Edge 

with the Cloud and offloading to multiple edge nodes with the cloud. The aim 

of these experiments is to investigate and evaluate the processing delays, 

network delays and end-to-end service delays of the three offloading 

scenarios. This will increase our understanding of the offloading decision in 

the Edge-Cloud system in order to design Edge-Cloud resource management.  

 

 

Figure3. 5: End-to-end service time for three offloading scenarios 
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Figure 3.5 presented the overall service time of the three offloading scenarios. 

Offloading to one-level is has the lowest service time. This result is consistent 

with work in [116][80], their explanation of this result because of the avoidance 

of major latency between the end device and the Cloud. Two-offloading levels 

have lower service time performance than the three-offloading. This shows 

the overall service time will never be truly minimised unless the network time 

is considered in the offloading process. However, these results may be 

somewhat limited by the number of IoT devices and the system load.  

 

 

Figure3. 6: Network time for three offloading scenarios 

 

 

The conducted experiments have shown a significant difference in network 

time between one level offloading and the others (two-level and three-levels). 

As mentioned earlier, this is due to the avoidance of WAN and MAN delays. 
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In term of processing time, as depicted in figure 3.7, offloading to the edge, 

and the cloud has the lowest service time comparing to others. The reason is 

that the local edge has limited computational resources; thus if the number of 

IoT increase it, the processing delays will increase due to limited capacity. On 

the other hand, offloading to multiple edge nodes with the cloud has the 

highest processing time. However, the result of processing time was not very 

encouraging, but in the next chapter, more investigation will be held on the 

impact of the parameter of processing time (computational demand). 

 

 

 

Figure3. 7: Processing time for three offloading scenarios 

 

3.7 Summary  
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Moreover, A number of simulation experiments have been conducted in order 

to investigate the latency of three different offloading schemes. In the next 

chapter, the factors of latency will be presented and discussed in detail.  

  



- 69 - 
 

Chapter 4. Detail Analysis of the Main Factors 

of Service Latency 

 

4.1 Overview  

This chapter presents the main factors of service latency that will consider the 

proposed approach for Edge-Cloud resource management. Since the demand 

for computation and communication tasks vary in IoT applications, this chapter 

aims to validate the impact of these factors on the overall application latency. 

Moreover, Edge-Cloud environment consists of heterogeneity of computing 

resources; thus, selecting the appropriate resources to process the offloading 

tasks play a critical role to improve the overall service time. Therefore, a 

number of simulation experiments were set-up to evaluate the effect of these 

factors. 

4.2 Factors of Service Latency  

It is advantageous to understand and investigate the precise operational 

scenarios and factors that affect the overall service time for IoT applications. 

This is crucial in order to focus technical and developmental efforts toward 

proposing efficient resource management for Edge-Cloud system. Section 3.4 

presented the architectural service delay models in the Edge-Cloud system, 

which based on the location of the offloaded task (e.g. edge, other 
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collaborative edge or cloud). This Chapter details the main factors that affect 

the overall service time of latency-sensitive applications and should be 

considered by the resource manager.  

There are several factors, from the application perspective affecting the 

decision of offloading. For example, for latency-sensitive application could 

lead to a significant delay in computation and communication. In the following 

some of these main factors: 

1- Application characteristics: this refers to when there are some 

tasks that are working jointly together, such as Direct Acyclic 

Graph (DAG). In this case, if the resource manager offloads the 

tasks in different locations, then it will lead to increase the 

communication time [117][118]. Therefore, considering the 

impact of task dependency could improve the application QoS. 

2- Application tasks' variation: in general, any IoT application 

consists of several tasks, and tasks are varied in their 

functionality; thus, their demands will be different in term of the 

required CPU or the amount of transferred data. Consequently, 

it has a significant effect on where to offload the task, which will 

affect the service time. 

3- Types of computational resources: Edge-Cloud resources 

consist of heterogeneity resources, either with different 

hardware capabilities or different hardware architecture (e.g. 

GPU and FPGA). Therefore, the resource manager needs to 

have an effective approach to manage these resources and 

assign the tasks to the most appropriate hardware to get the 

best performance out of these resources. 
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4- Users mobility: Since some IoT applications require mobility 

support, thus it might occur when the task offloaded to a local 

edge node while the IoT device moves to another area that 

covered by another edge node. Consequently, it could lead to a 

significant degradation in service time performance [52].  

 

In this work, we particularly target the impact of task's variation in term of 

computational and communication demands of IoT latency-sensitive 

applications as well as the offloading to the heterogeneity of computational 

resources, as presented in figure 4.1.  

 

 

 

Main Factors of 
Service Latency

Application 
compution 

demand

Application 
network 
demand

Heterogeneity 
of 

Computational 
Resources

Figure 4. 1: Main factors of service latency 
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4.3 Application Characteristics (Computational and 

Communication) 

Tasks of IoT applications can be characterised by its needs for computational 

resources, (i.e. CPU and RAM) as well as communication needs (e.g. 

uploading and downloading data). IoT offloaded tasks usually vary the degree 

of resource reliance between light and heavy. Namely, it ranges from low 

computation, and communication demands such as health-care 

applications[119] to high computation and communication demand such as 

online video gaming [120]. As depicted in figure 4.2, some tasks require more 

computation time due to the intensive processing, and others require more 

network time due to transfer a massive amount of data. Thus, it could affect 

the process of offloading tasks in order to minimise the overall service time.  

 

 

 

Figure 4. 2: Tasks' variation (computation and communication) 
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Tasks of IoT latency-sensitive applications, that require higher computational 

demands prefer to be processed in the cloud since the edge resources are 

limited, but this also depends on the request of the transferred data. Tasks 

that require to move a large amount of data needs to be processed in the edge 

to avoid the long latency in the network backhaul. 

Basically, the task completion time consists of three essential components, 

i.e. computation time, network time and where the task is scheduled (e.g. 

which server type). The server can be located on the local edge, other nearby 

edge nodes close to IoT devices or belong to the cloud. 

The computation time of the IoT task depends on the number of instructions 

(e.g. MI) that need to be executed and the processing speed of the hosted 

resources (e.g. VM). The number of instructions represents the computational 

volume of an IoT task. As mentioned above, IoT tasks can range from a small 

number of code instructions to a high number, which depends on the IoT 

application.  

This factor alongside with network conditions specifies where to offload the 

tasks. For example, it is not logical to offload the tasks with a massive amount 

of data to the cloud, whereas the edge resources are available, because it will 

increase the overall service time. However, these two factors come together; 

thus, we need to understand and investigate the impact of each of them in an 

independent way. The network time of IoT task depends on the amount of 

data to be uploaded and downloaded as well as the transmission latency 

between the sender and the receiver. In our case between the sender will be 

the IoT devices and the receiver cloud be (local edge, other collaborative 

edges or the cloud). Moreover, for each task, the amount of transferred data 

can vary based on the IoT application. 
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4.3.1 Computational Resource Heterogeneity   

 

In term of computational resources, both IoT devices and edge servers are 

heterogeneous. Consequently, for latency-sensitive applications, 

underestimating the computational resource needed for executing the task in 

order to minimise the overall service time [73]. Due to resource heterogeneity, 

this means there are some servers that are better than others in term of 

capabilities, which can handle the offloading tasks faster as presented in 

figure 4.3. Whereas, the amount of required computational is varying for each 

task. Thus, heavy tasks required a powerful machine to process their jobs 

faster. 

 

 

 

Figure 4. 3: Computation time for resource heterogeneity 

 

 

Therefore, a performance method to measure the end-to-end IoT service 

effectiveness, taking both computational and communication demands of 
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offloading tasks into account are needed, in order to answer the following 

questions: 

• How different applications parameters, including computation and 

communication demands, impact on the overall service time? 

• How different computational resources (e.g. different VM capabilities) 

impact on the overall service time? 

 

4.4 Implementation 

 

In order to understand and investigate the impact of computational and 

communication demand of IoT tasks as well as the impact of different 

computational resource capabilities. A number of simulation experiments 

have been conducted on the EdgeCloudSim (see section 2.6) to mimic Edge-

Cloud System. These experiments use different IoT tasks with ranges of 

computational and communication demands (e.g. different tasks length in MI 

with different amount of uploading and downloading data in MB). 

 

 

 

Characterisation of Virtual Machines 

 

In order to investigate the impact of resource heterogeneity, two different VMs 

on EdgeCloudSim have been considered. Table 4.1 shows the configurations 
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of the VMs that were considered in the experiments. This based on 

Rackspace, which provides a wide range of VM types [151] and other works 

in [88][121] are used as a reference for the VMs configurations. The first type 

of VM has two cores Intel Xen CPU, and the second type of VM has four cores 

Intel Xen CPU.  

 

Table 4. 1: Configurations of VMs 

 CPU core MIPS RAM (GB) Storage 

(GB) 

VM type 1 2 10000 2000 50000 

VM type 2 4 20000 4000 100000 

 

 

4.4.1 Experimental Investigation  

The overall aim of the experiments is to investigate and understand the impact 

of the change in the computational and communication demands of the IoT 

tasks as well as the effectiveness of resource heterogeneity in term of the 

overall end to end service time. Several simulation experiments have been 

conducted using different IoT offloaded tasks. The simulation key parameters 

are represented in table 4.2, which contain the number of IoT devices, the 

number of edge nodes and number of VMs. To mimic various applications that 

might be encountered in practice, we define the configuration of tasks varying 

communication bandwidth demand from 0.25MB to 1MB as an increased step 

of 0.25MB and doubling computation demand starting from 500 MIPS to 4000 

MIPS. These numbers have been used in similar related work in the literature 
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to represent offloaded tasks [80]. Also, we did a sensitive analysis of the 

selected parameters similar to the work in [122]. First, we maintain tasks 

communication as a constant parameter and vary the task's computational 

demand to study the impact of the computational demand.  Then, increased 

the communication demand while the computational demand is constant to 

investigate the communication demand. The impact of computational demand 

and communication demands are presented in Figure 4.4 and Figure 4.5, 

respectively. Moreover, we run the same IoT workload with two different VMs, 

as presented in table 4.1. 

 

 

Table 4. 2: key parameters of the simulation environment 

Parameters Values 

Simulation Time 30 minutes  

Warm-up Period 3 minutes 

Number of Iterations 5 

Number of IoT devices 100-1000 

Number of Edge Nodes 3 

Number of VM per edge server 8 

 

4.4.2 Results  

This section investigates and analyses how the size of the demanded 

resources (CPU and network) of IoT tasks influence the overall service time 

under various IoT devices. In order to measure the computational demands, 
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we fixed the amount of communication demand and tried different types of 

task computational and vice versa for the task communication demand. 

Furthermore, validates the service time performance and utilisation for two 

different VMs.  

 

 

 

 

 

 

 

Figure 4.4 shows the average service time for offloading tasks with different 

computational demand (e.g. 500 MIPS, 1K MIPS, 2K MIPS and 4K MIPS) 

under a different number of IoT devices. As depicted in figure 4.4, no matter 

how many IoT devices, the average service time of IoT applications shows a 

Figure 4. 4: The impact of computation demand 
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corresponding increase along with the increment of its CPU requirements, and 

the fewer end devices, the more obvious fluctuation. For example, the end to 

end service time of 4K MIPS task is about four times of task with 500 MIPS 

when the number of mobile end devices equals to 100, but only nearly two 

times when the number is 700. Intuitively, the reason is that computation 

resources are severely limited, and when the demand for CPU increases, the 

time of waiting and processing in CPU will also rise correspondingly. However, 

once the number of tasks increases to a certain value, the conflict of CPU 

resource (means Clock Cycles) will increase slowly as it’s near to the 

maximum of CPU capacity. 

 

 

 

Figure 4.5, shows the average service time for offloading tasks with different 

communication demand (e.g. 0.25 MB, 0.5 MB, 0.75 MB and 1 MB) under a 

Figure 4. 5: The impact of communication demand 
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different number of IoT devices. As shown in figure 4.4, when the bandwidth 

demand of task varies, the service time only slightly increases due that the 

network bandwidth is not a critical limit for IoT tasks in current experiments. In 

other words, network resource or performance is notably sufficient to handle 

nearly all IoT tasks. Notice, when the number of end devices is close to 700, 

the increment becomes obvious and efficient assignment of network 

resources will play a meaningful role in end to end service time. 

 

 

 

Figure 4. 6: The impact of two different VMs 
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double comparing the service time in VM type 2. Further, the conducted 

experiments had revealed that a huge increase in service time when the 

number of IoT increased for the VM with low capabilities while the VM type 2 

handling the increased of IoT devices effectively. 

 

 

Figure 4. 7: Server Utilisation of two different VMs 

 

As the VMs are heterogeneous, the average utilisation of VMs is consequently 

different. As shown in figure 4.7, when the number of IoT devices small at 100 

devices, both VM type 1 and VM type 2 have the same utilisation level. 

However, when the number of IoT devices increased around 1000 IoT device, 

the average server utilisation of a VM type 1 is about twice bigger than a VM 

type 2. The reason is that VM type 2 has more capability than VM type 1, thus 

can process more IoT offloaded tasks with an acceptable level of utilisation.  

Possible explanations that we can discover it when we are comparing the two 

results presented in Figure 4.6 and Figure 4.7, there is a correlation between 
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the processing time of the edge server and the utilisation level. Because the 

trends of both of them have the same level of increase for both VM type 1 and 

VM Type 2, this effect might be due to the rise of computational load and the 

IoT devices that sharing the same resources. Also, it possible if we increase 

the load for VM Type 2, that we get the same results of VM type 1. 

  

 

4.5 General Discussion   

We outline some findings according to our simulation-based evaluation which 

can be employed in improving the efficiency of task offloading and achieving 

well-balanced resource management in the Edge-Cloud environment. The 

conducted experiments on EdgeCloudSim have shown the impact of tasks 

computational demand and communication demand as well as how it affects 

the overall service time for IoT application. Some studies [123] emphasise that 

the central cloud could overwhelm the network delay due to its tremendous 

resources. One the other hand, other studies [124] show that the increased 

network demand could lead to an exponential delay for some applications. 

Based on our simulation results, we show that network time has a significant 

impact on the overall service time, thus considering this parameter could lead 

to an improvement in performance. In current experiments, the impact of 

computational demand affected the overall service time more than the 

communication demand.  For example, when the number of IoT devices 

equalled 700, the service time increase by around 0.2 seconds when the 

amount of computational demand increased from 500 MIPS to 1000 MIPS. In 

contrast, when the amount of communication demand increased from 0.25 
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MB to 0.5 MB, the overall service time increased by 0.03 second. These 

results seem to be consistent with other research [125] which found when the 

Edge-Cloud becomes overloaded, there will be degradation in execution 

performance due to resources contention and sharing. 

Furthermore, the experiments have shown that the measured overall service 

time for the two types of VMs have a clear impact on the performance when 

the system load is increased. In accordance with the present results, previous 

studies on resource heterogeneity have demonstrated that VM diversity 

results in application performance variation. Based on experimental results 

conducted on Amazon EC2 large VM can enhance the service time 

performance up to 40%, and for some specific applications could reach 60% 

[126]. Moreover, when the server utilisation increased, the overall service time 

is sharply increased. This finding was also reported by [127] when the amount 

of computational workload increased, server utilisation will be increased and 

the service time performance will be affected. This result is expected and the 

main motivation of this simulation is to demonstrate the necessity of 

considering the resource utilisation level in the process of scheduling 

offloading tasks in order to minimise the overall service time. 

 

4.6 Summary  

This chapter has presented and illustrated the impact on the performance of 

IoT applications under different requested resource (CPU and network) 

changes and examines the effectiveness while varying the number of IoT 
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devices. Furthermore, the impact of resource heterogeneity and server 

utilisation on the performance IoT application service time. 
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Chapter 5. New Approach to Task Offloading 

in an Edge-Cloud Environment 

5.1 Overview 

In this chapter, a new approach for task offloading in edge-cloud systems is 

proposed in order to minimise the overall service time for latency-sensitive 

applications. The approach adopts the fuzzy logic algorithm that considers 

application characteristics (e.g. CPU demand, network demand and delay 

sensitivity) as well as resource utilisation and resource heterogeneity, as 

presented in section 5.2. A number of simulation experiments evaluating the 

proposed approach in relation to other related works are then presented in 

sections 5.3 and 5.4. 

5.2 Tasks Scheduling Approach with Minimum Latency 

In the Edge-Cloud environment, IoT devices produce a stream of incoming 

offloading tasks that differ in term of their computation and network demand. 

Generally, task scheduling is used to enhance several performance 

parameters, which include minimising the overall delay in the processing of 

offloaded tasks. The companied Edge and Cloud environments consist of a 

set of heterogeneity resources (e.g. different computation resource 

capabilities). Therefore, a realistic model of scheduling offloading tasks in 

Edge-Cloud system consists of several parameters, which can be organised 

into two main categories: infrastructure characteristics and application 
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characteristics. Infrastructure characteristics include resource heterogeneity 

which could lead to select the appropriate resource for a specific task; also, 

the utilisation level of edge server and the network conditions. For example, 

CPU utilisation could vary depending on the assigned task and depending on 

whether the number of IoT devices increases in a shared network. This could 

lead to fluctuations in network bandwidth. On the other hand, IoT application 

tasks include characteristics such as computation demand, required transfer 

data for uploading and downloading, and the needed deadline to complete 

tasks. 

From the previous explanation, the problem might be seen as a classic multi-

constraint optimisation which can be modelled and solved mathematically. 

However, the edge-cloud environment changes dynamically and 

unpredictably. For instance, the number of IoT devices could be increased or 

decreased in a specific area due to IoT mobility, which has an impact on the 

load of the edge node and the shared network. Also, the incoming tasks are 

not known in advance, which requires a system to handle them in real time. 

Therefore, due to the dynamic change in the demands on IoT applications and 

in the status of edge-cloud resources, it is difficult to get accurate 

mathematical models [128] because of uncertainty and vagueness [129]. 

Several research efforts have addressed the latency challenges in the edge-

cloud environment. Researchers in [130][131][77] have considered the 

computational and communication parameters in order to enhance the overall 

latency. Besides, several studies [78][132][4] have investigated the impact of 

resource heterogeneity in the edge-cloud environment and its role in 

enhancing the end-to-end service time. Also, a considerable amount of 

literature [133][134][135] has been published on load balancing and server 
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utilisation in edge-cloud systems in an effort to avoid overloaded edge nodes 

which affect application service time. Overall, these studies highlight the need 

for an approach that considers the above parameters in term of application 

characteristics (computational, communications and latency), resource 

heterogeneity and resource utilisation in order to reduce overall latency and 

enhance resource utilisation. 

This is known as a dynamic multi-objective optimisation problem, where there 

is more than one objective and the parameters are dynamic in nature and can 

vary over time [136]. Most of the studies in the edge-cloud area are designed 

to meet a specific scenario or for a particular application, which makes them 

less adaptive and scalable [106]. Also, the complexity and the amount of time 

needed for solving this problem should be considered, since the resources at 

the edge involve computational constraints. Thus, solving this problem with 

traditional methods at the edge nodes could add extra overhead, which affects 

the ability to meet stringent service requirements in latency-sensitive 

applications [136]. 

Therefore, fuzzy logic is considered to be among the most feasible solutions 

for a multi-objective optimisation problem when the activity of multiple 

parameters is significant. Fuzzy logic can be easily adapted to the dynamicity 

of computational resources and application parameters as well as providing 

scalability within the context of the system. It also averts the computational 

complexity and can provide decisions very quickly [137]. Consequently, fuzzy 

logic has been adopted in this research to determine where to offload the tasks 

based on application and system parameters. Many researchers in the field 

of the distributed systems use fuzzy logic to deal with the challenges caused 

by vagueness, uncertainty and the dynamicity of the environment [138]. The 
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concept of fuzzy logic is to abstract the problem complexity to a level that can 

be understood. It can handle system uncertainty by dealing with many input 

and output variables and can represent the problem with simple if-then rules. 

To the best of our knowledge, this is one of the early attempts to design and 

implement such a system with regards to application’s demands, edge-cloud 

resource utilisation and resource heterogeneity by adopting Fuzzy logic. The 

main objectives are to reduce the overall service time and to utilise the Edge-

Cloud resources efficiently. 

 

 

Figure 5. 1: The proposed approach of scheduling offloading tasks 

 
 

 

The proposed approach supports the resource manager in the Edge-Cloud 

system regarding scheduling the offloading tasks in order to minimise the 

overall service time and improve the efficiency of edge-cloud resources. As 
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shown in Figure 5.1, the approach can be described using the MAPE method 

(monitoring, analysing, planning and executing) to assign the tasks to 

appropriate resources and monitoring the system performance periodically. 

The proposed approach will work in the EC, which presented in Figure 3.1 in 

Chapter 3. EC is an independent entity in the edge layer that mange all the 

edge nodes and also responsible for receiving/scheduling the offloading tasks 

in order to satisfy applications’ users and Edge-Cloud System requirements. 

Therefore, after the edge-cloud system receiving the offloading tasks, the 

system gets the required information from monitoring data such server 

utilisation and then pass this information to the fuzzy logic system in the 

analysing and planning phase. Then the tasks will be scheduled to the 

appropriate resources based on algorithm 2. 

 

5.2.1 Fuzzy Logic System  

In this stage, the proposed approach will get the information of the offloading 

tasks and server utilisation in order to determine the appropriate location of 

the offloading tasks as depicted in figure 5.2. The following is a brief 

description of the process of the fuzzy logic system. 
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Figure 5. 2: Process of the proposed fuzzy logic system 

 

1- Fuzzy input variables: In this step, we specify the necessary inputs 

for the fuzzy system. The required inputs are VM utilisation at the edge, 

task length, the amount of data to be transferred for each task and 

delay sensitivity. All these variables are represented as a linguistic 

variable: Low, Medium and High as depicted in figure 5.2. These 

categories represent the dynamic changing over Edge-Cloud 

infrastructure and the characteristics of applications’ offloaded tasks. 

a) VM utilisation: This parameter indicates the current utilisation 

level of the VM hosted by the local edge server. Thus, we can 

know how much resource space is available on that VM. If it is 

highly utilised, then offloading to other edge servers or the cloud 

could be the solution, depending on the task characteristics in 

term of computational, communication and latency sensitivity. 

b) Task length: this parameter represents the computational 

demand of the task; it measures by Million instruction per 

Second (MIPS). As the edge has a limited computational 

resource, heavy tasks might be appropriate to offloaded to the 

cloud and vice versa. However, we cannot take this parameter 

without considering others such as VM utilisation, 

communication demand and delay sensitivity. 

c) Network Demand: This parameter represents the required 

communication of the tasks for both uploading and downloading. 

It is an important measure for the offloading decision to consider 

where to offload the task to (local edge, other edge or cloud). 
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For example, tasks of Augmented Reality applications that 

require video streaming must upload the request, then do some 

processing (e.g. 3D rendering, image processing, etc.), and then 

receive the results as a video stream. This requires transferring 

a high amount of data for uploading and downloading, which 

takes a significant amount of the total service time. 

d) Delay sensitivity of the task: This parameter refers to the 

sensitivity of the tasks to accept the delay due to computation 

delay or communication delay. For example, some application 

has some urgent tasks that require ultra-low latency and some 

tasks that can accept some higher level of latency. This 

parameter could help task scheduler to assign the tasks to an 

appropriate server within the Edge-Cloud system. 

2- Fuzzification: In the fuzzification stage, fuzzifier will take all the 

required values as numerical input from system infrastructure 

monitoring and incoming tasks. Then, assign each value to its 

predefined linguistic variables in the membership functions (e.g. Low, 

Medium and High). After that, fuzzy variables are combined and 

evaluates in the Fuzzy rules base to take the decision and produce the 

output in the defuzzification stage. 

a) Fuzzy membership functions: The fuzzy membership function is 

used to quantify the linguistic term for each fuzzy variable. In this 

research, we have four functions and each function has three 

variables: Average VM utilisation (Low, Medium, High), Task 

length (Low, Medium, High), network bandwidth (Low, Medium, 

High) and Delay sensitivity (Low, Medium, High). The values of 
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each fuzzy variables are determined empirically based on a 

number of experiments similar to researches on[139] [85]. 

Figure 5.3 shows the four membership functions. 

 

 

 

b) Fuzzy rules base: A fuzzy rules base is composed of a set of 

fuzzy rules that similar to the reasoning process of human. It is 

a simple if-then rule that covers all the possible situations of the 

application characteristics and system conditions. These rules 

play critical rules to define the overall system performance. An 

example of the rules, if task length is high AND Network demand 

is low AND VM utilisation is high AND the delay sensitivity is 

Figure 5. 3: Memberships functions of the proposed fuzzy logic system 
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high THEN offloaded the task to the cloud. The output will be 

used in the defuzzification stage. Table 5.1 gives results 

examples of the system fuzzy rules. The main aim is to provide 

low latency for IoT applications by reducing the data movement 

from IoT device to the cloud and avoiding the overloaded node, 

which will affect the end to end service time. 

 

Table 5. 1: Fuzzy rules base 

Input variables  

Output 

Decision 

Task length 

(MIPS) 

network 

Demand (Mbps) 

VM 

utilisation 

Delay 

sensitivity 

Low Low Low Low Local Edge 

Low Low Low Medium Local Edge 

Low Low Medium High Local Edge 

Low Low Medium Low Local Edge 

Low Medium High Medium Local Edge 

Low Medium High High Local Edge 

Low Medium Low Low Local Edge 

Low Medium Low Medium Local Edge 

Medium High Medium High Other Edge 

Medium High Medium Low Other Edge 

Medium High High Medium Other Edge 

Medium High High High Other Edge 

Medium Low Low Low Local Edge 

Medium Low Low Medium Other Edge 

Medium Low Medium High Other Edge 

Medium Low Medium Low Other Edge 

High Medium High Medium Cloud 

High Medium High High Cloud 
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High Medium Low Low Other Edge 

High Medium Low Medium Other Edge 

High High Medium High Cloud 

High High Medium Low Cloud 

High High High Medium Cloud 

High High High High Cloud 

 

 

 

3-  Defuzzification: Defuzzification is the process to convert the fuzzy 

rules output to a specific value based on the output membership 

function. There are a range of ways to produce the output membership 

function in the fuzzy logic system and these examples of the often-used 

method (e.g. Maximum, Mean of Maximum and centroid). This work 

adopts the maximum approach because our membership function has 

one maximum at a time. Figure 5.4 represents the output membership 

function of the fuzzy logic system. For example, if the output 

fuzzification process is 38, then 𝜇𝐿𝑜𝑐𝑎𝑙 𝐸𝑑𝑔𝑒  is 0.1 and 𝜇𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝐸𝑑𝑔𝑒 

is 0.4, the defuzzification process will take the maximum, and the task 

will be offloaded to the other collaborative edge node.  
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Figure 5. 4: The output membership function of the fuzzy logic system 

 
 

Algorithm 1 present the process of the proposed fuzzy logic system and the 

possible outputs. It gets all the required inputs from the offloading tasks of 

multi-user (e.g. CPU length, network, and delay) as well as Edge-Cloud 

resources (e.g. VM utilisation). Line 3 calls the fuzzy logic function and pass 

the needed parameters, as described above. Then the offloading task is 

allocated based on the output of the fuzzy logic system to one of the edge 

nodes or the cloud. 
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The overall time complexity of Algorithm 1 is O(t) where t denotes the number 

of elements in T. The step of sending the required information to the fuzzy 

logic system for each task requires O(t) time. According to the fuzzy inference 

logic, one of the three different output of fuzzy sets can be allocated to each 

task; thus, the time complexity of proposed fuzzy logic is O(n). 

5.2.2 Task Selection Phase Based on The Resource Type 

As shown in Figure 5.5, the incoming tasks inter to the fuzzy logic system. 

Then after the proposed fuzzy logic system, decide the target layer to offload 

the task, task scheduling algorithm will assign the tasks to the appropriate 

computational resources within Local Edge or Collaborative edge based on 

the information from Infrastructure monitoring. This process runs on the edge 

controller, which described in Chapter 3. We assume that each Edge node 

has a heterogeneity of computational resources. The details of the algorithm 

2 are described below. 
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Figure 5. 5: Task selection phase 

 

 

All the application tasks are submitted to the edge control node in the target 

layer. Firstly, the algorithm will sort all the tasks in descending order based on 

their CPU requirements; thus, heavy tasks comes first (Line 1). Secondly, sort 

all the computational resources (VMs) in descending order based on their 

CPU capabilities; thus, the most powerful VMs comes first (Line 2). After that, 

the algorithm will assign each application tasks to computational resources. It 

will start with heavy tasks to be assigned to the powerful VMs (Line 3-11). This 

ensures that heavy tasks have the priority to be assigned to a powerful VM, 

thus will produce less processing time. 
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Algorithm 2 aims to schedule the tasks of each application to the target 

computational resources in the edge node; therefore, the time complexity can 

be analysed as follow. The first steps are to sorting the tasks and resources 

based on their computational demand and capacity respectively. The worst-

case time complexity of the sorting is O(n2). The second step is to allocate 

each task T for all applications A to computational resources R. The big O 

notation of the nested loop is O(n*n), the first loop for all the applications and 

the second loop for all the tasks. As a consequence, the overall time 

complexity of task scheduling algorithm is O(n2). 

5.3 Implementation 

The task offloading approach based on a fuzzy logic system that aims to 

enhance the end-to-end service time by considering both tasks requirements 

and resources of Edge-Cloud system has been introduced. In order to 

evaluate this approach, several experiments have been conducted for the 

proposed approach and compare it with other competitors’ solutions. The 

process starts with generating tasks of different IoT applications, then 

scheduling tasks in the Edge-Cloud system based on the scheduling 

algorithms. Details of IoT tasks and the environment of the experiments will 

be presented in the following sections. 

Approaches that dealt with offloading tasks by using fuzzy logic are limited in 

the area of edge computing. Therefore, we evaluate the proposed approach 

with the following algorithms. First is a utilisation-based approach, which 
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makes decisions on offloading tasks based on the server utilisation level, by 

selecting the least-load machine for offloaded tasks. The aim of this approach 

is utilising edge resource and make load balancing. This approach has been 

adopted in a number of studies due to the simplicity of its logic and the 

feasibility of its implementation [140][141]. It is well suitable for the common 

situation, in which the number of applications and the execution time of tasks 

is both moderate. However, it doesn’t consider task communication demand 

and application delay sensitivity. Second, Flroes [142] proposed a task 

offloading approach based on fuzzy logic for IoT applications. This approach 

aims to decide whether to offload to the cloud or perform the tasks in end 

devices at the edge layer. However, this approach neglected the utilisation of 

the Edge-Cloud resources, which could cause an overloaded VM, thus could 

lead to significant latency. Finally, Snomes [85] proposed tasks offloading 

approach that consider both applications tasks requirements and resource 

utilisation by using a fuzzy logic system. However, this approach focused on 

homogeneous resources, whereas the Edge-Cloud system is composed of 

resources heterogeneity. Moreover, their solution decides whether to offload 

to the Local Edge or the Cloud, whereas our proposed approach considers 

the heterogeneity of resources as well as the available resources in other 

nearby edge nodes. All of these approaches have been implemented in the 

simulation tool in order to evaluate it with the proposed approach. 
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5.4 Experiments and Evaluation 

A number of experiments have been conducted on the EdgeCloudSim. 

EdgeCloudSim has been used because it provides the vital functionality of 

Edge-Cloud environment such as support offloading, users mobility etc. 

Section 2.6 provides more details on EdgeCloudSim and its components. The 

aim of the experiments is to show that the proposed fuzzy logic approach for 

minimizing end-to-end service time is capable of considering both applications 

requirements (e.g. computational, network and delay) and the dynamicity of 

the edge cloud system in terms of resource utilisation. Moreover, the intention 

is to evaluate the proposed approach by comparing to other approaches in 

the field. 

 

5.4.1 Simulation Setup  

In the Edge-Cloud environment, there are a number of IoT/ mobile devices 

that have a number of applications. These applications consist of different 

tasks which require to be processed in the Edge-Cloud resources. Edge 

nodes are distributed closer to end devices, and we assume each edge node 

cover a specific area. IoT devices connect to the nearest edge node through 

WLAN and then can send the offloaded tasks. We assume that each node 

has a node manager and all edge nodes are managed by the edge controller 

described in Chapter 3. In our experiments, we assume that we have three 

edge nodes and a variable number of IoT devices, from 200 to 2000, 

dispersed and mobile between the three nodes. Table 5.2 represents the key 

parameters of our simulations.  
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Table 5. 2: Simulation key parameters 

Parameters Values 

Simulation Time 30 minutes  

Warm-up Period 3 minutes 

Number of Iterations 5 

Number of IoT devices 200-2000 

Number of Edge Nodes 3 

Number of VM per edge server 8 

Number of VM in Cloud Not limited  

Probability of selecting location  Equal 

 

 

 

We assume that we have heterogeneity of VMs on each edge node.  Table 

5.3 shows the configurations of the VMs that were considered in the 

experiments. Rackspace, which provides a wide range of VM types [151] and 

other works in [88][121] are used as a reference for the VMs configurations. 

Two types of VMs are used in this thesis with different capabilities to supports 

the end devices with computational resources. 

 

Table 5. 3: Configurations of VMs 

VM type CPU cores MIPS Storage 

Medium VM 2 vCPUs 10000 50000 

Large VM 4 vCPUs 20000 100000 
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IoT applications generate different offloading tasks in term of CPU and 

network load.  To evaluate our approach, we need different applications with 

different computational and communication demands. Several research 

studies generate random tasks in their experiments [80][143]. Table 5.4 

summarised the main characteristics of the four applications that are used in 

this experiment, similar to [85][88]. Task Length refers to require CPU 

resources for the task in Million instructions(MI) unit. Uploading and 

downloading data determines the amount of data to send/receive for each task 

from the IoT device to the Edge-Cloud system. Delay sensitivity refers to the 

acceptance level of delay sensitivity.  

 

 

Table 5. 4: Application characteristics 

Apps Task length 

(MI) 

Uploading 

Data (KB) 

Downloading 

Data (KB) 

Delay 

Sensitivity 

Augmented 

Reality 

9000 1500 25 0.9 

Health Care 3000 20 1250 0.7 

Compute 

Intensive  

45000 2500 200 0.1 

Infotainment  15000 25 1000 0.3 

 

Figure 5.6 shows a snapshot of the simulation results for one scenario. Each 

scenario takes one approach (e.g. Utilisation_Based) with a specific number 

of devices. We did five iterations for each scenario and took the medium in 

order to avoid errors. Next section will present the collected results and 

discussion. 
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Figure 5. 6: A snapshot of the simulation results for one scenario 

 

5.5 Results  

This section presents the quantitative evaluation of the proposed approach 

compared to other related works’ algorithms (e.g. utilisation-based, Sonmez 

and Flores). The simulation results consist of the average service time, 

average processing delay, average network delay, average tasks failure and 

average VM utilisation. The service time of each task will depend on the 

location of processing, which can be one of the following: 1) Local Edge, the 

overall service time consist of WLAN time and processing time. 2) 

Collaborative Edge, the overall service time will be WLAN/MAN time and 

processing time. 3) Cloud, the overall time consist of WLAN/MAN/WAN time 

and processing time in the cloud. After that, we take the average for all tasks 

in each scenario see the following equation. 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒 =  
∑ 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 + ∑ 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑡𝑖𝑚𝑒  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠
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The main performance metric is the service time since the end-to-end service 

time of an offloading task is most significant for IoT latency-sensitive 

application. The average service time of our approach with other related works 

algorithms is shown in figure 5.6. It composed of processing time and network 

time. The purpose of Experiments was to enhance the resources 

management in Edge-Cloud system in order to reduce latency for IoT 

applications.  As shown in figure 5.6, the proposed approach and other related 

algorithms have nearly the same performance when the system unloaded. 

Yet, when the number of IoT devices increases, the number of offloaded task 

increase, the service time of the proposed approach remain steady compared 

to others. The chart shows that there has been a sharp rise in Flores algorithm 

after the number of IoT devices increased more than 1400. The 

Utilisation_based and Sonmez algorithms nearly have the same performance. 

Figure 5.8 compares the average network time of all algorithms. It can be seen 

that all the algorithms have the same time when the system stable, but after it 

becomes overloaded, they differ. It is obvious that the proposed approach 

does not have the lowest network time. The utilisation-based approach 

provides the lowest network time comparing to other approaches. 
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Figure 5. 7: The service time of the proposed approach with other related 

approaches 

 

 

 

Prior studies [28][106] have noted the importance of considering the 

heterogeneity of resources in the process of task scheduling to reduce the 

latency. Meeting this demand enables the proposed approach to achieve a 

better performance than the others. The proposed approach considers the VM 

utilisation in the offloading decision; thus, the task might be sent to the cloud, 

which could increase the network time. The observed difference between the 

proposed approach and Flores in network time might be explained in this way: 

Flores offloads the task to the edge whenever possible without considering 

whether the resource is overloaded. This led to an increase in the processing 

time, but the proposed approach takes consideration of VM utilisation in order 

to avoid processing delay due to overloaded VM. 
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Figure 5. 8:The network time of the proposed approach with other related 

approaches 

 
 

 

Figure 5. 9: The processing time of the proposed approach with other related 

approaches 
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Based on EdgeCloudSim, tasks can fail due to various reasons such as the 

lake of computational resources in VM (e.g. overloaded VM) and congested 

network. Therefore, it is an important performance metric that should consider 

in order to evaluate the offloading approach. The results of task failures can 

be divided into two parts, when the system stable and when the system 

overloaded. For the first part, as shown in figure 5.10, all the algorithms have 

nearly the same performance; around 0.5% of tasks will fail. The proposed 

approach has the lowest percentage because it considers the required 

amount of data to be uploaded and downloaded. On the other hand, as shown 

in figure 5.11, when the system load is high, it can be seen that by far, the 

lowest task failure average is for the proposed approach. Interestingly, there 

were slight differences between Utilisation_based and Flores for all number 

of IoT devices. When the system load is low, most of tasks failures due to 

network issues such as losses of the packet [6] but when the system 

overloaded failures can happen because of the lack of computation (e.g. 

unsuccessful completion task) as well as network issues. The proposed 

approach was the lowest because it assigns the heavy tasks to the powerful 

VM as well as considering the other factors (e.g. VM utilisation, network 

demand and delay sensitivity).  
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Figure 5. 10: Percentage of failed tasks of the proposed approach with other 

related approaches Part 1 

 

 

 

Figure 5. 11: Percentage of failed tasks of the proposed approach with other 

related approaches Part 2 
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The results obtained from the preliminary analysis of the average VM 

utilisation at edge servers are presented in figure 5.12. It represents when the 

system server IoT devices up to 1000. It can be seen that the utilisation level 

of al the approaches at 200 devices are similar, and then change when the 

number of devices increased. The proposed approach is keeping the 

utilisation level relatively low comparing to other approaches when the number 

of devices increased. All the other approaches have nearly the same level for 

all scenarios. On the other hand, as shown in figure 5.13, when the system 

load is high, the proposed approach was the lowest compared to other 

algorithms because it trades utilisation for reduced service time. Also, it can 

be seen that Sonmez and the proposed approach were relatively similar and 

lower than the others. Flores was the highest and we can link that with results 

of failed tasks because it assigns the tasks to a highly utilised overloaded VM. 

Moreover, the proposed approach succeeded to avoid to reach the 

exponential deterioration when the computational resources reach their limit 

comparing to other existing approaches. When the resources reach their limit, 

this will increase the overall service time and the task failure due to insufficient 

computational resources. 
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Figure 5. 12: Edge server utilisation of the proposed approach with other 

related approaches Part 1 

 
 

 

 

Figure 5. 13: Edge server utilisation of the proposed approach with other 

related approaches Part 2 
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5.6 Discussion 

The proposed approach was compared against existing related works using a 

simulation tool EdgeCloudSim, and it was evaluated in the domain of the 

edge-cloud environment where it was found to improve the overall service 

time and task failure for latency-sensitive applications as well as effectively 

utilising the edge-cloud resources. 

The obtained results from the simulation tool can be useful and justifiable in 

the context of the area of this thesis for two reasons: 

1- This research aims to evaluate the impact of computational and 

communication demands of latency-sensitive applications as well as 

the effectiveness of offloading strategies in order to minimise the 

overall service time and improve resource utilisation. EdgeCloudSim 

provides the ability to address this aim. More details are available in 

Section 2.6. 

2- Several published studies [88][144][85][145][146] that have the same 

interest in the field used EdgeCloudSim to implement and evaluate 

their works. This lead to increase the trust of the obtained simulation 

results. 

However, EdgeCloudSim has some limitation. According to [147] 

EdgeCloudSim uses a single server queuing model to calculate the 

communication delay. This considers as not represented the all available 

network technologies and could be limited the obtained results. Moreover, It 

does not support the VM migration between Edge-Cloud resources, which 

could help to reduce the latency, improve the utilisation and task failures. 
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On the other hand, there are also a few limitations on the proposed approach. 

In this research, we assume that we know the required parameters (e.g. task 

length, the amount of transferred data for uploading and downloading data) in 

advance which might not always be accurate due to the impact of some other 

factors. For example, task length is not the only parameters that detriment the 

CPU time, other parameters such as retrieving data from memory and I/O  

could affect the CPU time. Additionally, the network time of transferred data 

affected by other factors such as network congestion. Therefore, methods 

such as Reinforcement Learning could be useful to measure the effectiveness 

of the offloading decision by observing each action and train the system to 

have accurate decisions. 

In addition, this work trades utilisation for reduced overall service time; thus, 

it could lead to wastage in both computation power and resources at the edge 

level. Other energy efficiency techniques (e.g. VM migration, scaling 

horizontally/vertically etc.) might be used in the future to overcome this issue 

and strike a balance between satisfying the demands of applications and 

utilising the Edge/Cloud computational resources efficiently. 

5.7 Summary   

This chapter has presented and evaluated a new approach for task offloading 

in the Edge-Cloud Systems. This approach considering applications 

characteristics (e.g. CPU, network and delay) as well as the dynamicity of 

resource utilisation. Moreover, it considers different types of computational 

resources which represent the real-world scenario. The results show that the 

proposed approach works effectively with task offloading more than other 
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related approaches in term of overall service time and resource utilisation. It 

can also reduce the overall task failures due to issues in both network and 

computational resources. 
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Chapter 6. Conclusion and Future Work 

In this chapter, the summary of the conducted research is presented in section 

6.1. The main contributions of the research are followed in section 6.2. Section 

6.3 provides an overall evaluation of the research in terms of research 

objectives in chapter 1. Finally, some future work directions in the area of 

offloading tasks and resource management of edge computing are presented 

in section 6.4 

6.1 Research Summary  

The work in this thesis is focussed on investigating and exploring service 

delays and the main factors of latency in the edge-cloud system for Latency-

sensitive applications. The research is centred on providing an approach to 

consider all the related parameters from both applications characteristics and 

the edge-cloud resources in order to minimise the overall service time. The 

proposed approach is used to minimise the service time of latency-sensitive 

application and enhance the resource utilisation in the edge cloud system. To 

the best of our knowledge, this is one of the early attempts to characterize 

such a system with respect to application’s demands (computational and 

communication), edge-cloud resource utilisation and resource heterogeneity 

by adopting Fuzzy logic. The results of this study show that the overall service 

time will never be truly minimised unless the network time is considered in the 

offloading process. Also, in our findings, the impact of computational demand 

affected the overall service time more than the communication demand, 

especially when there is a high increase in the end devices. Moreover, 
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selecting the appropriate resources from a pool of heterogeneous resources 

could enhance the service time performance and resource utilisation more 

than double and 40% respectively. In the following a summary of each thesis 

chapters.       

• Chapter 2 presents an overview of the fundamental concepts of the 

subject of scheduling offloading tasks in the edge-cloud system. It 

starts with the core concepts of cloud computing with more details on 

its definition, architecture, deployment models and the idea of mobile 

cloud computing as an extended model for cloud computing. Then the 

core concepts of the transformation to the edge computing and its 

models are introduced. These presented the idea of edge computing 

and explain the different terms such as fog computing, mobile edge 

computing, etc., with a comparison between them. Also, the concept of 

the internet of things (IoT) and its applications are described. After that, 

the concept of offloading tasks is introduced and discussed with the 

context of edge computing.  This is followed by positioning the work in 

the related literature, focusing on the scheduling offloading tasks issues 

and resource management in Edge-Cloud system. A reviewing with 

related works that focus on application characteristics is presented. 

Also, the related works that consider parameters of edge cloud 

resources such as resource utilisation and resource heterogeneity is 

provided. Finally, research open challenges and simulation tools are 

presented. 

• Chapter 3 presents the overview of the edge-cloud system architecture 

that supports scheduling offloading tasks of IoT applications, as well as 

the explanation of the required components and their interactions within 
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the system architecture. Furthermore, it presents the offloading latency 

models that consider computation and communication as crucial 

parameters with respect to offloading to the local edge node, other 

edge nodes or the cloud. Chapter 3 concludes by discussing early 

experiments conducted on EdgeCloudSim to investigate and evaluate 

the latency models of three different offloading scenarios. 

• Chapter 4 presents and discusses the main factors of service latency 

that will be considered in the proposed approach for edge-cloud 

resource management. Since the demand for computation and 

communication tasks vary in IoT applications, this chapter aims to 

validate the impact of these factors on the overall application latency. 

Moreover, Edge-Cloud environment consists of heterogeneity of 

computing resources; thus, selecting the appropriate resources to 

process the offloading tasks play a critical role to improve the overall 

service time. Therefore, a number of simulation experiments were set 

up to evaluate the influence of these factors. 

• Chapter 5 proposes a new approach for task offloading in edge-cloud 

systems in order to minimise the overall service time for latency-

sensitive applications. The approach adopts the fuzzy logic algorithm 

that considers application characteristics (i.e. CPU demand, network 

demand and delay sensitivity) as well as resource utilisation. A number 

of simulation experiments have been conducted in order to evaluate 

the proposed approach with other related work.  
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6.2 Research Contributions  

The main contributions of this work can be summarised as follows: 

• An investigation on services latency of different tasks' offloading 

scenarios in the Edge-Cloud environment in order to enhance the end 

to end service time of latency-sensitive applications. It provides in-

depth analyses of the offloading latency models that consider 

computation and communication as key parameters with respect to 

offloading to the local edge node, other edge nodes or the cloud. The 

service latency of the three different offloading scenarios is modelled 

in order to address the first research question (Q.1). The obtained 

results in Chapter 3 show that the effectiveness of offloading to the 

local edge and other edge-cloud resources.  

• Quantifying the impact of the variations of the offloading tasks and the 

performance of different computational resources within the edge-

cloud system. The details analysis of the main factors that affect the 

overall service time is presented in chapter 4 to address research 

questions (Q.2 and Q.3). Different computation and communication 

demands of offloading tasks, as well as different VMs, have been 

modelled in the simulation tool, which has helped to quantify the impact 

of computation and communication demands of offloading tasks. The 

results presented in Chapter 4 show that the variation of tasks' 

demands and VM capabilities have a significant influence on the overall 

service time. 

•  Proposed a new approach that adopts the fuzzy logic algorithm to 

considers application characteristics (e.g., CPU demand, network 
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demand and delay sensitivity) as well as resource utilisation and 

resource heterogeneity in order to minimise the overall service time of 

latency-sensitive applications. Different approaches to schedule 

offloading tasks are simulated in order to evaluate the proposed 

approach and to address the research question (Q.4). The obtained 

results show that the scheduling algorithms of offloading tasks that not 

considering application characteristics and system behaviour could 

lead to service time degradation for latency-sensitive applications. 

6.3 Overall Research Evaluation  

The research objectives of this thesis were discussed In Chapter 1. The 

section below describes the success of this thesis in achieving these 

objectives. 

• It explored the issues related to scheduling of task offloading in the 

edge-cloud paradigm. This thesis has reviewed, in Chapter 2, a number 

of related works that focused on offloading tasks in edge-cloud 

environments. These have been classified into two main objectives, 

related works that considering application characteristics and other 

works that considering resources parameters. 

• Investigating the parameters that influence the overall service time in 

edge-cloud environments. This thesis has presented in Chapter 3 and 

4, a number of parameters that has a major effect on the overall service 

time. The impact of different latency models has been discussed in 

Chapter 3. Also, the variation of offloading tasks and different 

computational resources are discussed in Chapter 4. 
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• Developing a dedicated approach for offloading tasks to handle the 

requirements of latency-sensitive IoT applications and efficiently 

utilising the resources in edge-cloud environments in order to minimise 

the overall service time. Chapter 5 of this thesis has presented the 

proposed approach for scheduling offloading tasks in order to reduce 

the overall service time and improve the resource utilisation. It also 

presented an evaluation with other related approaches through 

simulation experiments. 

 

6.4 Research Limitations and Future Work   

There are a number of future directions with which the work in this thesis could 

be enhanced. And also, there are several promising directions are related to 

this work and need to be addressed as highlighted below. 

• The proposed approach in chapter 5 considers two types of VMs as the 

computational resources in the Edge-Cloud environment. Therefore, 

the approach could be extended to consider more computational 

resources such as different GPUs and FPGAs since there are many 

applications for AR/VR and video gaming that requiring intensive 

computational in order to process their tasks. 

• This work handles the scheduling process of independent tasks; 

however, task dependency plays an essential factor to affect the 

decision of scheduling tasks. Thus, this work can be extended to 

consider tasks dependency in the process of scheduling offloading 

tasks. Tasks dependency and the intercommunication between tasks 
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can be represented as DAG, which can be modelled within the 

proposed approach to enhance the overall service time of latency-

sensitive applications. 

• Another complement work that will enhance the work presented in this 

thesis is to predict the behaviour of latency-sensitive applications. The 

prediction can be in several area such as predicting the volume of 

incoming tasks, predicting the users' mobility which could help to 

determine their locations. Therefore, it would help the resource 

manager to prepare the required resources in advance and avoided 

any performance degradation. This extension would be useful when 

scheduling offloading tasks in order to minimise the overall service 

time. 

• An extensive and rigorous evaluation of simulation-based results can 

be done through two main methods. The first method is to implement 

edge-cloud providers’ infrastructure in the real world. To the best of our 

knowledge, there are only two providers delivering edge services: 

Amazon lambda and IoT Azure. Unfortunately, measuring all the 

needed parameters is not allowed on their platforms, but perhaps this 

will change in the future. The second method is to use two or more 

simulations to validate the simulation results and compare different 

tools that use the area. Part of this research can be conducted with 

more than one simulator tool. For example, the impact of the 

communication demands and computational demands can be 

implemented in EdgeCloudSim and IfogSim. However, due to 

limitations in time, this is not included in this research and can be in 

future works. 
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Reinforcement Learning could be a useful method compared to Fuzzy logic to 

measure the effectiveness of the offloading decision by observing each action 

and train the system to have accurate decisions. It is a part of machine 

learning and aims to characterise the learning problem rather than the learning 

methods. It has been used widely in the area of resource management of 

Cloud Computing. 
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