
Efficient Edge-Cloud Resource Management

for Latency-Sensitive Applications

by

Jaber Faraj J Almutairi

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

School of Computing

April 2020

- ii -

Declaration

The candidate confirms that the work submitted is his own, except where work

which has formed part of jointly-authored publications has been included. The

contribution of the candidate and the other authors to this work has been

explicitly indicated below. The candidate confirms that appropriate credit has

been given within the thesis where reference has been made to the work of

others.

- McKee, D. W., Clement, S. J., Almutairi, J., & Xu, J. (2017, March).

Massive-scale automation in cyber-physical systems: vision & challenges. In

2017 IEEE 13th International Symposium on Autonomous Decentralized

System (ISADS) (pp. 5-11). IEEE. My contribution in this jointly authored

publication was to understand Edge Computing Environment. I literature

review about Edge computing and Internet of things applications. The content

of this paper is included throughout the thesis and mainly in Chapter 2.

- McKee, D. W., Clement, S. J., Almutairi, J., & Xu, J. (2018). Survey of

advances and challenges in intelligent autonomy for distributed cyber-

physical systems. CAAI Transactions on Intelligence Technology, 3(2), 75-82.

My contribution in this jointly authored publication was to list and identify

current research issues and challenges in Edge computing area. This was

one of the first steps toward doing my PhD. The content of this paper is

included throughout the thesis and mainly in Chapter 2.

- Almutairi, Jaber, and Jie Xu. "Investigation on Workload Variations in an

Edge Computing Environment." 35th UK Performance Engineering

Workshop. Newcastle University, 2018. This paper is the candidate’s own

- iii -

work. It was reviewed by the co-author Prof. Jie Xu. The content of this paper

is included throughout the thesis and mainly in Chapter 3.

© 2020 The University of Leeds and Jaber Faraj J Almutairi

- iv -

Dedication

To my father, Abo Jaber, who is always inspirational throughout my life.

His unlimited support and encouragement helped me a lot to reach the level

where I am now.

To my mother, who is like a candle that consumes itself to light the way

for us, with love and passion. Without your prayers and assistance, I would

not have reached my goals.

To my wife and my kids Sarah and Faisal. It is because of your patience,

love and support, I kept upholding to my aims.

- v -

Acknowledgements

First and foremost, all praise and thanks to Allah The Almighty for His

graces and guidance for giving me the strength, well-being and ability to

undertake some of the most important work and experience in my life.

My deep thanks go to my Supervisors Prof. Jie Xu and Dr. Paul

Townend for their guidance, support and advice throughout my studies at the

University of Leeds. Additionally, I would like to thank my thesis examiners

Prof. Karim Djemame, Dr. Graham Morgan and Dr. Zheng Wang for their

excellent comments and feedback when examining this Thesis.

I would also like to thank the DSS group members for the great

meetings and seminars we used to enjoy almost every week. Also, my thanks

go to people in the School of Computing, I have always been proud of being

one of its members.

Finally, I would never have the chance to study in the UK without the

financial aid of my sponsor, Taibah University and the government of the

Kingdom of Saudi Arabia. I hope to be able to repay part of the debt by

transferring knowledge and promoting research in Saudi Arabia.

- vi -

Abstract

Internet of Things (IoT) is quickly evolving into a disruptive technology in

recent years. For enhancing customer experience and accelerating job

execution, IoT task offloading enables mobile end devices to release heavy

computation and storage to the resource-rich nodes in collaborative Edges or

Clouds. Resource management at the Edge-Cloud environment is

challenging because it deals with several complex factors (e.g. different

characteristics of IoT applications and heterogeneity of resources). Thus,

efficient resource management will play an essential role in providing real-

time or near real-time use for IoT applications. However, how different service

architecture and offloading strategies quantitatively impact the end-to-end

service time performance of IoT applications is still far from known particularly

given a dynamic and unpredictable assortment of interconnected virtual and

physical devices.

This PhD thesis has investigated and modelled the delay within the Edge-

Cloud environment as well as providing a detailed analysis of the main factors

of service latency. Moreover, proposing a new task offloading approach for

latency-sensitivity applications using fuzzy logic, where a decision is made as

to whether we can offload the task to Local Edge, other Collaborative Edge or

the Cloud depending on the current parameters of both application

characteristics and the resources within the Edge-Cloud Environment. The

proposed approach was compared against existing related works using a

simulation tool, and it was evaluated in the domain of the edge-cloud

- vii -

environment where it was found to improve the overall service time for

latency-sensitive applications, effectively utilising the edge-cloud resources.

- viii -

List of Abbreviations

IoT Internet of Things

AR Augmented Reality

QoS Quality of Service

CPU Central Processing Unit

VM Virtual Machine

PC Personal Computer

MCC Mobile Cloud Computing

IoE Internet of Everythings

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

GPS Global Positioning System

LAN Local Area Network

WAN Wide Area Network

MAN Metropolitan Area Network

WLAN Wireless Local Area Network

RAN Radio Access Network

VR Virtual Reality

CSV Comma-Separated Values

MI Million Instructions

CCTV Closed-Circuit television

EC Edge Controller

MIPS Million Instructions Per Second

- ix -

MAPE Monitor, Analyse, Plan and Execute

GPU Graphics Processing Unit

FPGA Field-Programmable Gate Array

- x -

Table of Contents

Dedication ... iv

Acknowledgements ... v

Abstract ... vi

List of Abbreviations .. viii

Table of Contents .. x

List of Tables .. xiii

List of Figures... xiv

Chapter 1. Introduction ... 1

1.1 Motivation .. 1

1.2 Aims and Objectives ... 3

1.3 Methodology .. 5

1.4 Main Contributions .. 9

1.5 Thesis Overview .. 10

Chapter 2. Challenges and Existing Work in Edge-Cloud

Systems 13

2.1 Overview ... 13

2.2 Cloud Computing .. 14

2.2.1 Definition ... 14

2.2.2 Characteristics .. 14

2.2.3 Service Types ... 15

2.2.4 Deployment Types .. 16

2.2.5 Mobile Cloud Computing ... 17

2.2.6 Limitations ... 18

2.3 Edge Computing ... 20

2.3.1 Definition ... 20

2.3.2 Architecture ... 22

2.3.3 Related Computing Paradigms ... 24

2.3.3.1 Cloudlets/Micro-Cloud ... 24

2.3.3.2 Fog Computing: .. 25

2.3.4 Mobile Edge Computing: ... 27

2.4 Internet of things ... 30

2.4.1.1 Characteristics .. 30

- xi -

2.4.1.2 Enabling technologies ... 31

2.5 Scheduling offloading tasks in Edge-Cloud Environments 33

2.5.1 Task offloading based on Application Characteristics 34

2.5.1.1 Computation and Communication Demands......... 34

2.5.1.2 Latency Sensitivity .. 36

2.5.2 Task offloading Based on Edge-Cloud Resources 37

2.5.2.1 Resource Utilization .. 37

2.5.2.2 Resource Heterogeneity 37

2.5.3 Overall Discussion .. 38

2.6 Open Challenges .. 41

2.7 EdgeCloudSim .. 43

2.8 Summary ... 48

Chapter 3. Investigating and Modelling Edge-Cloud

Environments .. 50

3.1 Overview ... 50

3.2 Modelling Edge-Cloud Environments .. 50

3.2.1 System Overview .. 50

3.2.1.1 Edge Controller: .. 53

3.2.1.2 Application Manager: .. 54

3.2.1.3 Infrastructure Manager: ... 54

3.2.1.4 Monitoring: .. 55

3.2.1.5 Planner:... 55

3.3 Latency-Sensitive Applications .. 55

3.4 Edge-Cloud Latency Models ... 57

3.4.1 Latency to Local Edge ... 59

3.4.2 Latency to Local Edge with the Cloud 60

3.4.3 Latency to multiple edge nodes with the Cloud 61

3.5 Early Experiments ... 63

3.6 Results and Main Findings .. 65

3.7 Summary ... 67

Chapter 4. Detail Analysis of the Main Factors of Service

Latency 69

4.1 Overview ... 69

4.2 Factors of Service Latency .. 69

4.3 Application Characteristics (Computational and

Communication) .. 72

- xii -

4.3.1 Computational Resource Heterogeneity 74

4.4 Implementation .. 75

4.4.1 Experimental Investigation .. 76

4.4.2 Results .. 77

4.5 General Discussion ... 82

4.6 Summary ... 83

Chapter 5. New Approach to Task Offloading in an Edge-Cloud

Environment .. 85

5.1 Overview ... 85

5.2 Tasks Scheduling Approach with Minimum Latency 85

5.2.1 Fuzzy Logic System .. 89

5.2.2 Task Selection Phase Based on The Resource Type 96

5.3 Implementation .. 98

5.4 Experiments and Evaluation .. 100

5.4.1 Simulation Setup ... 100

5.5 Results .. 103

5.6 Discussion ... 111

5.7 Summary ... 112

Chapter 6. Conclusion and Future Work ... 114

6.1 Research Summary .. 114

6.2 Research Contributions ... 117

6.3 Overall Research Evaluation ... 118

6.4 Research Limitations and Future Work 119

List of References ... 122

- xiii -

List of Tables

Table 2. 1: Cloud Computing vs Edge Computing 21

Table 2. 2: Comparison of Cloudlets, Fog Computing and Mobile Edge

Computing. .. 28

Table 2. 3: Comparison of individual papers addressing computation

offloading decisions ... 40

Table 3. 1: Latency-Sensitive Applications .. 56

Table 3. 2: Summary of Notations ... 58

Table 3. 3: key parameters of the simulation environment 64

Table 4. 1: Configurations of VMs ... 76

Table 4. 2: key parameters of the simulation environment 77

Table 5. 1: Fuzzy rules base ... 93

Table 5. 2: Simulation key parameters .. 101

Table 5. 3: Configurations of VMs ... 101

Table 5. 4: Application characteristics ... 102

- xiv -

List of Figures

Figure 2. 1: Cloud Computing services model and examples [14] 15

Figure 2. 2: Mobile Cloud Computing Architecture 18

Figure 2. 3: Advantages of Edge Computing ... 22

Figure 2. 4: Layers of Edge computing.. 23

Figure 2. 5: Architecture of Cloudlet [47] ... 25

Figure 2. 6: High Level Architecture of Fog Computing [51] 27

Figure 2. 7: Architecture of mobile edge Computing [58] 28

Figure 2. 8: Characteristics of Internet of things .. 31

Figure 2. 9: main components of EdgeCloudSim .. 47

Figure 3. 1: An overview of Edge-Cloud system ... 53

Figure 3. 2: Latency to local edge ... 60

Figure 3. 3: Latency to Local Edge with the Cloud 61

Figure3. 4: Latency to multiple edge nodes with the Cloud 63

Figure 3. 5: End-to-end service time for three offloading scenarios 65

Figure 3. 6: Network time for three offloading scenarios 66

Figure 3. 7: Processing time for three offloading scenarios 67

Figure 4. 1: Main factors of service latency ... 71

Figure 4. 2: Tasks' variation (computation and communication).................. 72

Figure 4. 3: Computation time for resource heterogeneity 74

Figure 4. 4: The impact of computation demand ... 78

Figure 4. 5: The impact of communication demand..................................... 79

Figure 4. 6: The impact of two different VMs ... 80

Figure 4. 7: Server Utilisation of two different VMs...................................... 81

Figure 5. 1: The proposed approach of scheduling offloading tasks 88

Figure 5. 2: Process of the proposed fuzzy logic system 90

Figure 5. 3: Memberships functions of the proposed fuzzy logic system..... 92

Figure 5. 4: The output membership function of the fuzzy logic system 95

Figure 5. 5: Task selection phase.. 97

Figure 5. 6: A snapshot of the simulation results for one scenario 103

Figure 5. 7: The service time of the proposed approach with other related

approaches ... 105

file:///C:/Users/jaber/Documents/Final%20Thesis/All_Final_Thesis.docx%23_Toc38929486
file:///C:/Users/jaber/Documents/Final%20Thesis/All_Final_Thesis.docx%23_Toc38929487
file:///C:/Users/jaber/Documents/Final%20Thesis/All_Final_Thesis.docx%23_Toc38929488
file:///C:/Users/jaber/Documents/Final%20Thesis/All_Final_Thesis.docx%23_Toc38929495
file:///C:/Users/jaber/Documents/Final%20Thesis/All_Final_Thesis.docx%23_Toc38929498
file:///C:/Users/jaber/Documents/Final%20Thesis/All_Final_Thesis.docx%23_Toc38929499
file:///C:/Users/jaber/Documents/Final%20Thesis/All_Final_Thesis.docx%23_Toc38930581

- xv -

Figure 5. 8:The network time of the proposed approach with other

related approaches ... 106

Figure 5. 9: The processing time of the proposed approach with other

related approaches ... 106

Figure 5. 10: Percentage of failed tasks of the proposed approach with

other related approaches Part 1 .. 108

Figure 5. 11: Percentage of failed tasks of the proposed approach with

other related approaches Part 2 .. 108

Figure 5. 12: Edge server utilisation of the proposed approach with other

related approaches Part 1 ... 110

Figure 5. 13: Edge server utilisation of the proposed approach with other

related approaches Part 2 ... 110

- 1 -

Chapter 1. Introduction

1.1 Motivation

Nowadays, IT sector has developed at a massive rate: with more than 50

billion devices will be connected to the internet in the coming years [1] which

known as the internet of things (IoT) era [2]; with a tremendous amount of

streaming data gathered by IoT devices, needs to be transferred, processed,

and stored; with various applications domains such as autonomous vehicles,

Augmented Reality (AR), online video games, smart city Industry 4.0 etc.

Hence, this immense growth requires platforms to support the increased

amount of IoT devices as well as organise and process the produced data

since IoT devices are limited in term of power and computational capabilities,

i.e. CPU and memory [3]. This primarily affects the adoption of compute-

intensive applications such as (AR), Online Gaming and processing of video

streaming [4].

Cloud Computing is one of the main factors to support this growth by enables

on-demand access to a massive pool of computation resources for services

process and data analytics [5]. However, since the Cloud is far away form IoT

devices, also there is an enormous amount of generated data needs to be

transferred and processed in a real-time manner. Consequently, applications

that require low-latency, real-time interaction and high Quality of Service

(QoS) suffer from the Cloud due to network delay [6]. Further, data is

increasingly produced at the edge of the network, hence, it would be more

- 2 -

efficient to also process the data at the edge level because cloud computing

is not always practical for data processing when the data is produced at the

edge and require processing in a real-time manner.

Therefore, the concept of Edge computing has appeared to complement

Cloud services. It basically refers to an intermediate layer with computation

capabilities between the Cloud and closer to IoT devices to fill latency gaps.

Edge computing provides the opportunity to serve better streaming services,

which is both latency-sensitive and bandwidth-intensive such as Google

Stadia and Netflix. It allows avoiding the Uploading /download of massive files

as well as the pre-processing of offloading tasks, which contribute to

minimising the overall service time.

Although Edge computing is a promising enabler for latency-sensitive

applications because of the closeness to IoT devices. Computational

resources in edge computing similar to cloud computing which consist of a

pool of servers that operated and managed virtually as well as hosted at the

edge of the network. Efficient Edge-Cloud resource management for latency-

sensitive applications is essential to fully utilise the capabilities of Edge nodes

[7]. However, latency-sensitive applications have various changing

characteristics, such as computational demand and communication demand.

Consequently, the latency depends on the scheduling policy of applications

offloading tasks as well as where the jobs will be placed. Therefore, Edge-

Cloud resource management should consider these characteristics in order to

meet the requirements of latency-sensitive applications. On the other hand,

another challenge for improving the utilisation the edge-cloud resources and

reducing the dependency of the cloud, which will help to reduce the overall

cost.

- 3 -

A number of studies have been conducted on edge cloud resource

management to achieve improvements in the overall service time for IoT

applications. A few studies have a particular focus on latency-sensitive

applications, and others have focused on resource utilisation and energy

efficiency as the main objectives. Hence, there is a need for holistic and

efficient resource management that considers characteristics of offloading IoT

applications' tasks (computation, communication and latency), as well as

resource parameters, such as resource utilisation and resource heterogeneity

in order to meet the required service time for the applications and utilising

Edge-Cloud resources efficiently.

Thus, it is essential to conduct in-depth research to investigate the latency

within the edge-cloud system, the impact of computation and communication

demands and resource heterogeneity to provide a better understanding of the

problem and facilitate the development of an approach that aims to improve

both applications’ QoS and edge-cloud system performance.

1.2 Aims and Objectives

Offloading tasks of IoT latency-sensitive applications have diverse demands

in terms of computation and communication; for example, some tasks require

intense computation and a small amount of transferred data, while others do

not. Thus, varying demands will affect the offloading decision as well as the

overall service time. In addition, the host server in the edge plays an essential

role in the processing service time (i.e., offloading a task to an overloaded

edge server will incur long latency). This research has two aims: one is to

improve the overall service time of latency-sensitive applications considering

- 4 -

the varying of computational and communication demands, and the other is

to utilise edge-cloud resources with a consideration of resource heterogeneity.

These aims require an in-depth analysis and investigation. Thus, the following

research questions need to be addressed:

• Q1: How can the latency of the service time based on the offloading

site in the edge-cloud environments be modelled, and what will be the

impact on computation and communication time?

• Q2: How does the task variation in terms of computation demands and

communication demands affect the offloading decision, and what is the

impact on the overall service time for latency-sensitive applications?

• Q3: How does the resource heterogeneity in edge-cloud environments

affect the offloading decision, and what is the impact on the overall

service time for latency-sensitive applications?

• Q4: How do different offloading strategies quantitatively influence the

end-to-end service time performance of IoT applications and services?

Specifically, the main objectives of this study are:

1- Exploring the scheduling of tasks offloading issues and challenges in

the edge-cloud paradigm. Task offloading mechanisms of latency-

sensitive applications has been an active research area, especially with

the trade-off of application QoS, such as service time and resource

utilisation. Therefore, it is necessary to have an in-depth understanding

of the current issues in order to propose an approach that can be used

to address these issues.

- 5 -

2- Investigating the parameters that influence the overall service time in

edge-cloud environments. It is necessary to investigate the impact of

the location of the offloaded tasks, as well as the effect of task variation

of latency-sensitive applications in terms of the requirements of

computation and communication and the impact of resource

heterogeneity in edge-cloud environments and how it affects overall

service time.

3- Developing a dedicated approach for offloading tasks to handle the

requirements of latency-sensitive IoT applications and efficiently

utilising the resources in edge-cloud environments in order to minimise

the overall service time. Currently, there are a number of offloading

algorithms in edge-cloud environments, but they are mainly focussed

on either applications’ characteristics or edge-cloud resource

utilisation. Thus, there is a need for an approach that has a

consideration of both, which is the objective of this work.

1.3 Methodology

Resource management in edge computing is a complicated process as it

involves managing a diversity of resources, such as edge nodes and the

central cloud, to achieve the computational requirements of end devices. It

should consider the constraints in terms of computational capacity and

network bandwidth of any type of resources as well as the demands of end-

device applications. Therefore, there are three scientific research methods

used to research the edge computing environment that demonstrate and

- 6 -

investigate latency-sensitive IoT applications with their intensive data,

resources in edge nodes and the cloud.

a. Direct Experiments

In the context of this research, this approach can be described as conducting

a direct experiment that implements an edge computing environment to

validate a hypothesis or implement an idea for real-ward examples, which can

increase result reliability and accuracy. However, this approach is generally

time-consuming and involves several constraints, such as resource

accessibility and availability. Moreover, in edge computing environments,

setting up a testbed that provides virtualised resources (computational and

network) can be quite expensive[8] [9] and may present challenges for

conducting repeatable and scalable experiments for a comprehensive

performance analysis [10].

b. Mathematical Modelling

This method can be defined as formulating the system or the environment

using mathematical models subject to a set of assumptions to provide a more

comprehensive understanding of a system’s components. The outcomes of

this method can be validated through direct experiments or reliable simulator

tools.

c. Simulation

Simulation is another scientific method that can be used to test a hypothesis

or provide a solution. With simulator tools, experiments can be conducted in

reasonable time and support the repeatability for required modifications. Due

- 7 -

to the heterogeneity of resources and the variety of IoT applications, simulator

tools are commonly used in the area of edge computing [10].

In this research, both mathematical modelling and simulation methods are

used. Mathematical modelling is used to formulate latency models in

offloading decisions in edge-cloud environments, and EdgeCloudSim [11] is

used as an edge-cloud simulator that can fit with the context of the study (more

details presented in section 2.7).

In general, a simulation-based method can be used in scientific research when

one of the following conditions is met [12]:

1- A complete environment to conduct the research does not exist.

2- The process of a direct experiment is complex because it involves

systems with many influencing parameters, many dependency factors,

and a huge amount of data, thus tending to make the experiment

intricate and unmanageable.

3- The research requires a long time frame. The simulation-based method

can compress the time frame so that the research can be conducted

within the required time, for example, by accelerating the analysis

process.

4- The configurations and setups of a direct experiment are difficult and

time-consuming. Thus, the experiment is not repeatable or reusable.

A simulation-based method can be used for several research purposes such

as evaluation, comparison, sensitivity analysis and optimization [12]:

1- Evaluation: examining the proposed approach with specific criteria

- 8 -

2- Comparison: allowing the researchers to compare their methods with

those of other competitors in the same field

3- Sensitivity analysis: determining the impact of several factors on

system performance

4- Optimization: identifying the trade-offs between the combination of

parameters and its effect on the system performance

In this research, the simulation tool was selected to avoid significant research

challenges in the area of edge computing resource management. There are

two main reasons why the simulation tool was used in this research. First,

similar to with research in cloud computing, service providers do not allow third

parties to access their infrastructure to get the necessary data for research

purposes [13]. Second, setting up a real Edge-Cloud testbed is both costly,

and time-consuming [14]. Therefore, most of the related studies in the field

are simulation-based and/or theoretical.

Several issues should be considered in order to select the appropriate

simulation tools and validate the proposed approach and its results. This will

help to overcome and mitigate the general limitations of the simulation-based

method. These issues are the following:

1- The selection of the appropriate simulator tool: According to [], the first

step is to search for the simulator tools that have the necessary

functionalities to deliver the research aims and objectives. Other

criteria, such as (the required HW to run the simulation, the efficiency

of generated logs files, the cost of simulation and assistance

availability), could also be used to select the simulation tool [15]. In this

- 9 -

research, we reviewed a collection of the existing tools (e.g. IfogSim,

IoTSim, and FogNetSim++), comparing their main focuses.

EdgeCloudSim was the most appropriate for the purpose of this

research. More details are in section 2.7.

2- The selection of simulation parameters: In a simulation-based method,

the generated result depends on the selected parameters, and

therefore, any wrong parameters could lead to incorrect results. In this

research, we selected the parameters based on related research in

both application demands (e.g. computational and communications)

and edge-cloud resources (e.g. VM configuration). Additionally, a

sensitivity analysis was conducted to investigate the impact of the

application parameters.

3- The validation of the generated results: In order to avoid any anomalies

from the simulation results, each simulation was run five times, and a

statistical analysis was conducted to take the mean values. Then, some

of the results obtained were compared with the general findings from

other research. For example, some of the generated results were

consistent with other researchers' results from direct experiments.

1.4 Main Contributions

The main contributions of this work can be summarised as follows:

• Presenting a model that can show the impact of different tasks'

offloading scenarios for time-sensitive applications in terms of end-to-

end service times. It provides in-depth analyses of the offloading

- 10 -

latency models that consider computation and communication as key

parameters with respect to offloading to the local edge node, other

edge nodes or the cloud.

• Quantifying the impact of the variations of the offloading tasks and the

performance of different computational resources within the edge-

cloud system. Different computation and communication demands of

offloading tasks, as well as different VMs, have been modelled in the

simulation tool, which has helped to quantify the impact of computation

and communication demands of offloading tasks.

• Proposed a new approach that adopts the fuzzy logic algorithm which

considers application characteristics (e.g., CPU demand, network

demand and delay sensitivity) as well as resource utilisation and

resource heterogeneity in order to minimise the overall time of latency-

sensitive applications.

1.5 Thesis Overview

The remaining chapters of this thesis are organised as follows:

• Chapter 2 presents an overview of the fundamental concepts of the

subject of scheduling offloading tasks un the edge-cloud system.

Firstly, the core concepts of cloud computing with more details on its

definition, architecture, deployment models and the idea of mobile

cloud computing as an extended model for cloud computing will be

presented. Secondly, the core concepts of the transformation to the

edge computing and its models will be discussed. These presented the

- 11 -

idea of edge computing and explain the different terms such as fog

computing, mobile edge computing, etc., with a comparison between

them. Also, the concept of the internet of things (IoT) and its

applications are described. After that, the concept of offloading tasks is

introduced and discussed with the context of edge computing. This is

followed by positioning the work in the related literature, focusing on

the scheduling offloading tasks issues and resource management in

Edge-Cloud system. A reviewing with related works that focus on

application characteristics is presented. Also, the related works that

consider parameters of edge cloud resources such as resource

utilisation and resource heterogeneity is provided. Finally, research

open challenges and simulation tools are presented.

• Chapter 3 presents the overview of the edge-cloud system architecture

that supports scheduling offloading tasks of IoT applications, as well as

the explanation of the required components and their interactions within

the system architecture. Furthermore, it presents the offloading latency

models that consider computation and communication as crucial

parameters with respect to offloading to the local edge node, other

edge nodes or the cloud. Chapter 3 concludes by discussing early

experiments conducted on EdgeCloudSim to investigate and evaluate

the latency models of each offloading scheme.

• Chapter 4 presents and discusses the main factors of service latency

that will be considered in the proposed approach for edge-cloud

resource management. Since the demand for computation and

communication tasks vary in IoT applications, this chapter aims to

validate the impact of these factors on the overall application latency.

- 12 -

Moreover, Edge-Cloud environment consists of heterogeneity of

computing resources; thus, selecting the appropriate resources to

process the offloading tasks play a critical role to improve the overall

service time. Therefore, a number of simulation experiments were set

up to evaluate the influence of these factors.

• Chapter 5 proposes a new approach for task offloading in edge-cloud

systems in order to minimise the overall service time for latency-

sensitive applications. The approach adopts the fuzzy logic algorithm

that considers application characteristics (e.g., CPU demand, network

demand and delay sensitivity) as well as resource utilisation. A number

of simulation experiments have been conducted in order to evaluate

the proposed approach with other related work.

• Chapter 6 presents a summary of the work and contributions

presented in this thesis. Moreover, discuss an overall evaluation of

thesis objectives and provides some of the potential topics for future

work that could further enhance this research.

- 13 -

Chapter 2. Challenges and Existing Work in

Edge-Cloud Systems

2.1 Overview

This chapter describes the essential background concepts of this research -

i.e. improving the overall service time performance for latency-sensitive

applications as well as manage the resource efficiently in Edge-Cloud

environments. It starts by presenting the basic background of Cloud

Computing and Mobile Cloud computing with a detailed description of its

definition, system architecture, services types and deployment, as shown in

Section 2.2. The following section presents the development of Cloud

Computing paradigm by the concepts of Edge computing with a detailed

description of its, definition, models and related technologies. Finally, the

concepts of offloading tasks are presented with the state-of-the-art methods

that aim to efficiently manage the resource of the Edge-Cloud and enhance

the overall service time. It concludes with a description of the research

method.

- 14 -

2.2 Cloud Computing

2.2.1 Definition

Cloud computing is a computing model that has characteristics to support the

services of IoT and applications of Big Data. It is defined as “A model for

enabling convenient, on-demand network access to a shared pool of

configurable computing resources (e.g. networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with

minimal management, effort or service provider interaction. This cloud model

promotes availability and is composed of five essential characteristics, three

service models, and four deployment models”[5].

2.2.2 Characteristics

Gong et al. (2010) introduced the main characteristics of cloud computing,

being on-demand self-service, broad network access, resource pooling, rapid

elasticity and measured service [16].

1. On-demand self-service: Cloud computing allows consumers to

provide the service to them without human interaction at any time.

2. Broad network access: Services are available over the network and

accessed through standard mechanisms that support a variety of

platforms, such as mobile phones, PCs, etc. This is called a service-

oriented architecture model that permits the components of the cloud

to be available over the network as a service.

3. Resource pooling: Variety of resources that can serve many

consumers with different demands at the same time.

- 15 -

4. Rapid elasticity: Customers may expand their usage as much as they

choose. It seems to the customers that the services are unlimited, and

they can receive any quantity at any time.

5. Measured services: All services in the cloud, such as storage and

processing data, are measured automatically.

2.2.3 Service Types

Cloud computing has three service models software as a service (SaaS),

platform as a service (PaaS) model and infrastructure as a service (IaaS) [17],

see figure 2.1.

Figure 2. 1: Cloud Computing services model and examples [18]

1. Software as a service (SaaS): The provider of cloud computing

services allows the customer to use applications in the cloud, such as

Microsoft Word Online. The applications work with heterogeneous

- 16 -

platforms. The customers do not have the right to manage the cloud

infrastructure, such as the server, storage or network.

2. Platform as a service (PaaS): The provider of the cloud computing

services permits consumers to create their applications using

programming languages, libraries, services and tools supported by the

provider. The customers do not have the rights to manage the cloud

infrastructure, such as the server, storage or network.

3. Infrastructure as a service (IaaS): The provider of the cloud service

allows the customers to have control in their own deployed

applications, storage and operating system. The customers do not

have the right to manage the cloud infrastructure, such as a server,

storage or network, but may have limited control of types of network

components.

2.2.4 Deployment Types

According to [16], cloud computing has four deployment models - private

cloud, community cloud, public cloud and hybrid cloud.

1. Private cloud: The cloud resources are used only by one customer. It

could be managed by the same company or a third party.

2. Community cloud: Same as private cloud, but the customer could be

a community or a group of people having the same area of interest.

3. Public cloud: The cloud resources are used within the general public.

4. Hybrid cloud: The cloud resources could use two or more deployment

models. For example, the storage could be in the private cloud, and the

computation could take place in the public cloud.

- 17 -

2.2.5 Mobile Cloud Computing

The improvement of cloud computing technology and mobile services have

led to the idea of mobile cloud computing (MCC), which aims to move the

computational services from mobile users devises to the cloud. This will allow

a small mobile device to use the huge capabilities in the cloud. Previous

studies mostly defined MCC as

 “An infrastructure where both the data storage and data processing happen

outside of the mobile device. Mobile cloud applications move the computing

power and data storage away from mobile phones and into the cloud, bringing

applications and MC to not just smartphone users but a much broader range

of mobile subscribers” [19].

These devices connect to the cloud with wireless connections, and there will

be partitioning and offloading of the computational services [20].

The architecture of MCC consists of three major technologies: mobile

computing, the internet and cloud computing [21]. Figure 2.2 [20] shows that

a mobile device connects to the mobile network through either a base

transceiver, access point or satellite. Thus, mobile devices can connect to the

cloud via the internet and use cloud services from a cloud service provider

[19].

- 18 -

Figure 2. 2: Mobile Cloud Computing Architecture [16].

MCC is generally assumed to play a role in the utilisation of cloud computing

resources by allowing mobile users to use them [22]. MCC has contributed to

improving mobile computing by providing the following advantages: mobile

users have a massive amount of resources, the integration and scalability of

mobile applications become more accessible and on-demand services [19].

There are several types of MCC applications. Mobile learning is one example.

Educational content can be delivered to students by combining mobile

computing and cloud computing. Mobile learning used media such as video,

audio, or chat to provide an environment for learning [23]. Another example is

mobile gaming, which has increased recently because of the improvement of

interactive video gaming [24].

2.2.6 Limitations

Studies have consistently shown that cloud computing does not deal well with

latency-sensitive applications such as self-driving cars, health-care

applications and video gaming [25]. Moreover, cloud computing might not be

considered an efficient computing model for applications that require mobility

- 19 -

support and location awareness. Such applications have sharply increased

and will continue to increase the cloud’s load [26]. Since the cloud is far from

the user, the delay of transferring a huge amount of data, such as video with

high resolution, to be processed to the cloud and then back to the edge device

is not efficient [27]. Moreover, a challenging critical issue is that cloud

computing has full responsibility from the cloud to the end devices [28]. Such

responsibility might contribute to the increased use of energy because of

transmitting data over multiple hubs from the end devices to the cloud as well

as performing all the computations in the cloud [29].

Despite the success of MCC in improving mobile computing, however, the

network becomes overheated because the cloud is far away from the mobile

user, and this leads to long latency [30]. Thus, some sensitive applications

cannot work effectively with the cloud [31]. To conclude, moving a massive

amount of data from end devices to the cloud and vice versa is costly in terms

of time and energy. Also, it could be infeasible due to the growth of data size

and the number of connected devices. Therefore, recent studies have

introduced a system model that aims to overcome these challenges, which

will be discussed in the next section.

- 20 -

2.3 Edge Computing

This section details the literature of edge computing, its definitions and

characteristics. It also provides a comparison between the edge and the cloud,

discusses the importance of the edge, presents some of the current edge

computing models. Cloud computing, mobile computing and mobile cloud

computing are revolutionary technologies, but they require hosting the

services only in the cloud, which is maybe impossible for some applications.

Thus, a new approach has arisen called edge computing.

2.3.1 Definition

Several papers[32][33][34] state that edge computing is a term that aims to

push computational services from the centralized data centre/cloud to the

edge of the network to reduce latency and provide real-time interaction as well

as supporting the massive growth of connected devices to the internet.

OpenEdge Computing defines edge computing as computation provided by

small data centres located closer to IoT devices at the edge of the network.

Furthermore, provide all the cloud service (i.e. compute and storage) in a

virtualized manner [33]. Cloud and edge complement each other and have

nearly the same functionality to provide computing services. Yet, there are

some differences such as location, support mobility, heterogeneity and

scalability to accommodate a vast number of connected devices [28] (table

2.1 summarise the differences).

- 21 -

Table 2. 1: Cloud Computing vs Edge Computing

Features Cloud Computing Edge Computing

Computational Capacity High Medium to low

Latency High Low

Mobility supported Limited Supported

Location of servers Within the internet Close to end

devices

Number of servers High Few

Geographical

distribution

Centralized Decentralized

Suitable for applications

require

Intensive

computational and

delay-tolerant.

Latency-sensitive,

mobility and high

QoS.

Edge computing has several advantages that will improve the process of

distributed systems. First, it reduces the load in the cloud, which in turn will

reduce the latency and produce faster response times because it reduces the

movement of data from end device to the core of the cloud [27]. Moreover,

according to recent studies [35], edge computing could reduce the energy

consumption of the cloud up to 40%, which is a significant motivation due to

current concerns about energy consumption [36].

- 22 -

Also, edge computing provides a vast amount of resources to IoT devices.

Thus, IoT devices become smarter by processing complex tasks in a short

time. It is difficult for such devices to handle these tasks by their own because

of their limitations, such as computational power [37]. Moreover, regarding the

massive increase in the number of devices connected to the internet, edge

computing provides scalability to support these devices and deal with their

requests closer to them [35]. Not only that, many current applications demand

mobile support such as connected vehicles, transport applications and health-

care applications [38].

Figure 2. 3: Advantages of Edge Computing

2.3.2 Architecture

Edge computing consists of several edge nodes that are distributed

geographically. These edge nodes follow the same concept as cloud

computing but in a smaller size, where each node has its computational

power, storage, and network. Several studies have called them micro clouds

[39][40] or micro data centres [41][42].

- 23 -

In an edge computing environment, there are three main layers (see figure

2.4). The lowest layer contains smart end devices which have limited

computational power. Devices in this layer have their functions (e.g. health-

care devices, self-driving cars, sensors and smartphones). These devices are

connected to the middle layer, which has edge nodes. Edge nodes are close

to the end device and provide the required computational resources to the end

devices on demand. Edge nodes aim to reduce the latency of IoT applications

and dependability to the cloud.

Moreover, edge nodes have limited computational power that may be required

to collaborate with either the cloud or other edge nodes. The cloud has

enormous computational resources, but it is far away from the end devices,

which causes network delays. In an edge computing environment, the cloud

manages edge nodes and help if the edge nodes require more computational

support or applications that are not supported in the edge node.

Figure 2. 4: Layers of Edge computing [42].

- 24 -

2.3.3 Related Computing Paradigms

Edge computing is a model that complements the responsibility of the cloud

[43]. Therefore, mobile edge computing, fog computing and cloudlet are

models that have nearly the same concept [44][45]. Table 2.2 compares these

technologies in terms of architecture and suitable applications [46]. The

resources of edge computing can be owned by cloud providers or any other

vendor such as mobile network providers, university campuses or coffee

shops [47]. This section will discuss why there is a need for edge computing

and describe these technologies in depth.

2.3.3.1 Cloudlets/Micro-Cloud

Cloudlet, which proposed by Carnegie Mellon University, is another model of

Edge computing. Satyanarayanan defines cloudlets as “a trusted, resource-

rich computer or cluster of computers that’s well-connected to the Internet and

available for use by nearby mobile devices” [48]. Thus, it is a small cloud that

aims to help sensitive applications of users’ mobiles, such as gaming, GPS

routing, and internet banking [25]. The idea of cloudlets or micro-clouds arose

to push computations from centralized cloud systems closer to the end-users’

mobile, to avoid the high latency of an offloading approach because these

clouds are located far from the end devices [30] [45].

The architecture of cloudlets has three levels (see Figure 2.5). The lowest

level is the users’ devices that are connected to the cloudlet. The middle level

is between users’ devices and the cloud. Thus, users are not required to

communicate with the cloud directly, which is far away. Cloudlets can

communicate with the centralized cloud for configuration and provisioning

- 25 -

[49]. Mobile users can connect to cloudlets through wireless LAN [48].

Compared to the central cloud, a cloudlet is smaller, closer to end-users, and

saves power and costs [50]. Thus, it will help mobile applications reduce

overall latency and improve Quality of Service (QoS) [51].

Figure 2. 5: Architecture of Cloudlet [52]

Although the concept of cloudlets is succeeded to support and reduce

communication latency, the model is not considered scalable in resource

provisioning and services. Moreover, it can only be accessed by Wi-Fi, which

causes a limitation to support other devices that are close to a Wi-Fi area but

are not covered [53].

2.3.3.2 Fog Computing:

Fog computing is an extended model of cloud computing—“the cloud close to

the ground”—to serve the edge of the network. It distributes computing

- 26 -

resources such as processing units, storage, and networks in the area

between the cloud and end devices and has the same techniques in the cloud,

such as virtualization and multi-tenancy [54]. Fog computing provides better

services to applications and services that do not work effectively with the

cloud. These applications have different attributes (e.g. mobility support and

real-time interaction), thus require different approaches to work with [55].

Many applications can benefit at least in part from fog computing, including

video conferencing, online gaming and AR/VR applications.

The architecture of fog computing consists of four primary levels: data centre

cloud, the core of the network, edge node and smart thing IoT [55] (see Figure

2.6). The intermediate layer, the edge node, plays an essential role in

supporting the cloud to reduce a load of computing, storing and networking

and provides the services to end-users with high QoS. These edge servers

are virtualized and can be accessed by connected devices through wired or

wireless connections. The edge server connects to the cloud to collaborate

with some services [56].

- 27 -

Figure 2. 6: High Level Architecture of Fog Computing [51]

As described earlier, fog computing supports various type of applications,

particularly those applications that require real-time analysis and interaction

[57]. Thus, the majority of IoT applications are supported by fog computing

(e.g. smart home, health care, smart factories, agriculture, etc.) [58].

2.3.4 Mobile Edge Computing:

Mobile Edge Computing and also known as Multi-access edge computing, is

defined by European Telecommunications Standards Institute (ETSI) as a

technology that

“provides an IT service environment and cloud-computing capabilities at the

edge of the mobile network, within the Radio Access Network (RAN) and in

close proximity to mobile subscribers”[59].

As previously stated, the requirements of mobile applications are changing,

and new network technologies have appeared, such as 5G. Thus, redesigning

the network or the way they provide services is essential [60]. For example,

video streaming in the area of smart cities requires a prober network to carry

a massive amount of data. Also, the edge server deals with these data near

the source [50]. One main difference between mobile edge computing and fog

computing is that the former can provide services to connected users without

communicating with the cloud in some applications [61].

Previous papers [53][62] list some main characteristics of mobile edge

computing. The location of the edge server can be accessed within the range

of Radio Access Network (RAN) to provide real-time interaction (see figure

2.7). These edge servers are distributed geographically to support large-scale

- 28 -

systems. Thus, mobile edge computing has been recognized to be the base

for latency-sensitive applications (e.g. video streaming), also provide the

support for IoT mobility and location awareness (e.g. smart vehicle).

Figure 2. 7: Architecture of mobile edge Computing [63]

Table 2. 2: Comparison of Cloudlets, Fog Computing and Mobile Edge

Computing.

 Cloudlets/

Micro-Cloud

Fog Computing Mobile Edge

Computing

Location Within the area Between Edge of

Network and the

cloud

Radio Network /

Base station.

Proximity Single Hop Single or several

Hops

Single Hop

- 29 -

Devices Server Router, Access

points, Server

Servers in the

base station

Accessibility Wi-Fi Wi-Fi, Mobile

Network, etc.

Mobile Network

Application Suitable for

mobile

applications that

require low

latency.

IoT Suitable for

applications that

require mobility

support such as a

self-driving car.

Based on the characteristics stated in the previous subsections, Table 2.2

presents a comparison of the three computing paradigms. The site

deployment of Cloudlet and MEC can be at the first single hop, for example,

Cloudlet can be located indoor within (e.g. a shopping centre, hospital, etc.)

and the MEC server can be embedded into the telecom's base station [64]. In

contrast, the deployment of Fog computing can be anywhere between the IoT

devices and the cloud. The concept of Fog computing is used widely in the

applications of smart cities, smart grids, etc.[54]. MEC is used usually in the

area of applications that require mobility such as autonomous vehicles and

supporting communications of a vehicle to vehicle (V2V) as well as vehicles

to Infrastructure (V2I) [65][66]. From the research perspective, all of the above

terms have the same concepts, which push the computational service to the

end of the network, but in the industrial side, each vendor (e.g. Cisco, Juniper)

argues that their devices (e.g. routers and switches) are the perfect platforms

to host Edge-Cloud capabilities. On the other hand, telecom companies argue

- 30 -

that their base stations and 4G/5G will be hosting the Edge-Cloud capabilities

[67].

2.4 Internet of things

There are several definitions and concepts that stand behind IoT. For

example, IoT (Internet of Things), IoE (Internet of Everything), and CoT

(Cloud of Things) are referring to the same concept. IoT produces a set of new

applications for the next wave of the ICT sector. Edge computing has been

proposed to deal with the huge change in the area of the distributed system.

Recently, the number of devices that are connected to the internet (IoT) has

increased massively, and some studies predict that in the upcoming three

years, more than 50 billion devices will be connected to the internet [68][69].

This called Internet of things IoT, which is generally can be defined as:

“scenarios where network connectivity and computing capability extends to

objects, sensors and everyday items not normally considered computers,

allowing these devices to generate, exchange and consume data with minimal

human intervention”[70].

2.4.1.1 Characteristics

In terms of characteristics, Figure 2.8 presented the fundamental of IoT

characteristics. IoT devices are heterogeneous in terms of hardware, network

technologies and platforms. Each IoT device has a unique address and can

communicate with others, generate and process data. Also, it can be designed

to do any functions as well as integrate with any technology.

- 31 -

Figure 2. 8: Characteristics of Internet of things

2.4.1.2 Enabling technologies

The key enabling technologies of IoT can be classified as follows: embedded

system, network technologies, Big Data analytics and Cloud Computing

services. First, The embedded system can be defined as a sensor, processor

or connectivity antenna in any everyday object. Second, enabling

technologies in the network includes communication protocols, network

hardware and type of network such as 5G [71]. Third, the developing systems

of Big Data analytics (e.g. Hadoop and Spark) [68]. Finally, Cloud Computing

- 32 -

and extended models such as Edge computing for computation and storage

services [51].

- 33 -

2.5 Scheduling offloading tasks in Edge-Cloud

Environments

Computation offloading is not a new paradigm; it is widely used in the area of

cloud computing. Offloading transfers computations from the resource-limited

mobile device to resource-rich cloud nodes in order to improve the execution

performance of mobile applications and the holistic power efficiency. User

devices are evenly located at the edge of the network. They could offload

computation to Edge and Cloud nodes via WLAN network or 4/5G networks.

Broadly, if a single Edge node is insufficient to deal with the surging workloads,

other Edge nodes or Cloud nodes are ready for assisting such application.

Basically, it is a solution to support IoT applications by transferring heavy

computation tasks to powerful servers in the edge-cloud system. It is a

technique used to overcome the limitations of IoT devices in terms of

computation power (e.g. CPU, memory, etc.) and insufficient battery. It is one

of the most important enabling techniques of IoT because it allows performing

a sophisticated computational more than their capacity [72]. The decisions of

computational offloading in the context of IoT can be summarised as follows.

First, whether the IoT device decides to offload a computational task or not.

In this case, several factors could be considered, such as the required

computational power and transferred data. Second, if there is a need for

offloading, does partial offloading or full offloading. Partial offloading refers to

the part of the tasks will process locally at the IoT device and other parts in

the Edge-Cloud servers. Factors such as tasks dependency and tasks priority

can be considered in this case. Full offloading means the whole application

processed remotely in the Edge-Cloud servers [63].

- 34 -

In terms of the objectives of computation offloading in the context of Edge

Computing, it can be classified into two categories, objectives that focus on

application characteristics and objectives that focus on Edge-Cloud

resources. Several studies exist in the literature aim to reduce service latency,

minimize energy consumption, maximize total revenue, minimize mandatory

cost and maximize resource utilization. In fact, scheduling offloading tasks is

a challenging issue in the Edge Computing paradigm since it should consider

several trade-offs form application requirements (e.g. reduce latency) and

system requirements (e.g. maximize resource utilization). Thus, developing

appropriate and efficient resource management which can meet the

requirements of both application and system is attracting many researchers in

the filed [73][74][75][76].

In the following subsections, some of the studies conducted on task offloading

in edge computing to reduce the latency and maximise resource utilization will

be discussed.

2.5.1 Task offloading based on Application Characteristics

With the increase of IoT applications, scheduling offloaded tasks that focused

on application characteristics is considered significantly important, as

highlighted in [77][4][78]. The section below presents the existing literature on

task offloading is extensive and focuses mainly on application characteristics:

computation, communication and latency-sensitivity.

2.5.1.1 Computation and Communication Demands

There are many ongoing research projects focusing on the tasks computation

and communication demands of IoT applications. For example, Wang et al.

[79] proposed an online approximation algorithm that main objective to

- 35 -

balance the load and minimizing resource utilization to enhance application

performance. This work considers computational and communications

attributes, however, it does not consider the service latency as well as their

solution for homogenous resources. Rodrigues et al. [80], presented a hyper

method for minimising service latency and reduce power consumption. This

method aims to reduce the communication delay and computational delay by

migrating the VM to the unloaded server. The authors investigate the impact

of tasks computational and communication demands. They evaluate their

approach under realistic conditions by mathematical modelling. However,

their method does not consider the application delay constraints as well as the

offloading to the cloud. Deng et al. [81], proposed an approximate approach

for minimising network latency and power consumption by allocating workload

between fog and cloud. However, this approach does not optimise the trade-

off between all mentioned objectives (e.g. computational delay and resource

utilisation).

Zeng et al. [82] designed a strategy for task offloading that aims to minimize

the completion time. In their work, both computation time and transmission

time are considered. The authors investigate the impact of other factors such

as I/O interrupt requests and storage activities. However, this work does not

consider delay-constraints applications and resource heterogeneity. Fan et al.

[83] designed an allocation scheme aim to minimise service latency for IoT

applications. Their algorithm takes account of both computation delay and

communication delay. The authors investigate the impact of the overloaded

VM on processing time and evaluate their work with different types of

applications. However, the proposed method does not show the effectiveness

- 36 -

of the heterogeneity of the VMs in terms of service time does not consider the

latency-sensitive application.

2.5.1.2 Latency Sensitivity

In terms of application latency-sensitivity, a number of studies are conducted

in order to enhance the overall service time in Edge-Cloud environment. For

example, Mahmud et al. [77] proposed a Latency-Aware policy that aims to

meet the required deadlines for offloading tasks. Further, it considers the

resource utilization at the edge level. This approach considering task

dependency as well as the computational and communication requirements.

However, resource heterogeneity dose not addressed in their research. Azizi

et al. [84] designed a priority-based service placement policy that prioritises

tasks with deadlines; thus, nearest deadlines scheduled first. Also, their work

considers both computational and communication demands. However, their

evaluation dose not addressed when the system has multi IoT devices as well

as resource utilisation. Sonmez et al. [85] presented an approach for task

offloading that targeting latency-sensitive applications. This approach based

on fuzzy logic, which focused on delay as an important factor along with

computational and communication demands. However, this approach does

not consider resource heterogeneity.

This section has presented the literature of offloading tasks that consider

mainly application characteristics and has argued that The next part of this

chapter will present the studies that focused on resource utilisation or

heterogeneity as the main objectives.

- 37 -

2.5.2 Task offloading Based on Edge-Cloud Resources

2.5.2.1 Resource Utilization

Scheduling offloading tasks based on resource utilisation or resource

heterogeneity has received considerable critical attention from many

researchers. For example, Nan et al. [86] developed an online optimisation

algorithm for offloading tasks that aim to minimise the cost of renting cloud

services by utilising resources at the edge based on Lyapunov technique.

Further, their algorithm guarantees the edge service availability and ensure to

process the task with the required time. However, this algorithm does not

consider the impact of computational and communication demands for

latency-sensitive applications. Xu et al. [42] proposed a model for resource

allocation that aims to maximise resource utilisation and reduce task

execution latency. The authors aim to reduce the dependability on the cloud,

thus reduce cloud cost. However, this work only considers resource utilisation

and does not refer to resource heterogeneity. In addition, application

uploading and downloading data are not addressed in this work, which plays

a significant role in overall service time. Li and Wang [87] introduced a

placement approach that aims to reduce Edge nodes energy consumption and

maximise resource utilisation. They evaluated the proposed algorithm through

applied numerical analysis on Shanghai Telecom dataset. However, their

work does not provide any information regarding the application

characteristics (e.g. computation, communication and delay-sensitivity).

2.5.2.2 Resource Heterogeneity

Considering resource heterogeneity in the Edge-Cloud environment for the

offloading decision play a critical role to enhance service time performance. A

- 38 -

number of studies have investigated the impact of resource heterogeneity on

the service time. For example, Scoca et al. [88], proposed a scour-based

algorithm for scheduling offloading tasks that considers both computation and

communication parameters. Furthermore, their algorithm considers a

heterogeneous VMs and sort heavy tasks to be allocated to the more powerful

VM. However, their algorithm does not consider server utilisation as key

parameters could affect the performance of service time. Roy et al. [89]

proposed a strategy for task allocation that allocating different application

tasks to an appropriate edge server by considering the resource

heterogeneity. This approach aims to reduce the execution latency as well as

balance the load between edge nodes. However, this approach does not

consider task communication time. Taneja et al. [90] proposed a resource-

aware placement for IoT offloading tasks. Their approach ranks the resources

at the edge with their capabilities and then assign tasks to the suitable server

based on the task’s requirements (e.g. CPU, Ram and bandwidth). However,

this method focused on improving application service time performance, but

without explicitly considering application latency-sensitivity.

2.5.3 Overall Discussion

The effective mechanisms for scheduling offloading tasks can contribute to

minimizing the overall service time of IoT latency-sensitive applications and

maximize resource utilization in the Edge-Cloud environment. With the

dynamicity of IoT workload demands, Edge-Cloud service providers should

strike a balance between utilising Edge-Cloud resources and satisfying QoS

objectives of IoT applications. Consequently, efficient resource management

- 39 -

mechanisms can be beneficial to enhance both resource utilisation and

supporting the latency-sensitive application requirements in term of service

time.

 The above section has reviewed the existing related work on offloading tasks

that are focusing mainly on application parameters such as computation

demands, communication demands and latency-sensitivity in Edge-Cloud

environments. As discussed earlier, the related works in [80][82][83] consider

application parameters in order to minimise the service time. However, these

works lack to consider the impact of resource parameters such as server

utilisation and VMs heterogeneity.

On the other hand, section 2.6.2, presented the work in [79][88][90] which

considered the resource utilisation and resource heterogeneity as key

objectives in the process of scheduling offloading tasks in the Edge-Cloud

environment. Although, some related works such as [81][87][89] have

considered application requirements (i.e. computation or communication) but,

without explicitly considering the latency-sensitivity of IoT applications.

Hence, there is still a need for efficient resource management that takes into

account characteristics of offloading IoT applications' tasks (competition,

communication and latency), as well as resource parameters such as

resource utilization and resource heterogeneity in order to meet the required

service time for the application and utilising Edge-Cloud resources.

The following Table 2.3 provides a comparison summary of the similar related

work on scheduling offloading tasks that consider both application

characteristics and resource parameters in Edge-Cloud environment.

- 40 -

Table 2. 3: Comparison of individual papers addressing computation

offloading decisions

Criteria

by

Objective

Application characteristics

considerations

Edge-Cloud resources

considerations Evaluation

method Compute network delay Resource

utilization

Resource

type

of

devices

[79] Minimizing

resource

utilization

Considered Considered Not

considered

Considered Homogeneous - Simulation

[80] Minimizing

service

latency

Considered Considered Not

considered

Considered Homogeneous Single Mathematical

[81] Minimizing

network

latency

Not

considered

Considered Not

considered

Considered Homogeneous - Simulation

[88] Minimizing

service

latency

Considered Considered Not

considered

Not

considered

Heterogenous Multi Simulation

[86] Minimizing

cost

Not

considered

Not

considered

Considered Considered Homogeneous Multi Simulation

[89] Minimizing

execution

time

Considered Not

considered

Not

considered

Not

considered

Heterogenous Single Direct

experiment

[82] Minimizing

completion

time

Considered Considered Not

considered

Not

considered

Homogeneous Multi Simulation

[77] Minimizing

service

latency

Considered Considered Considered Considered Homogeneous Multi Simulation

[84] Minimizing

service

latency

Considered Considered Considered Not

considered

Homogeneous Single Simulation

- 41 -

[85] Minimizing

service

latency

Considered Considered Considered considered Homogeneous Multi Simulation

[90] Minimizing

service

Time

Maximise

resource

utilization

Considered Considered Not

considered

Considered Heterogenous Multi Simulation

[83] Minimizing

service

Time

Considered Considered Not

considered

Not

considered

Homogeneous Multi Simulation

[42] Maximise

resource

utilization

Considered Not

considered

Considered Considered Homogeneous - Simulation

[87] Maximise

Energy

Maximise

resource

utilization

Not

considered

Not

considered

Not

considered

Considered Homogeneous Multi Data-Driven

Analysis

2.6 Open Challenges

As far as offloading tasks is concerned, several open challenges require

numerous efforts to address. This section will present open challenges of

offloading tasks in Edge-Cloud environments.

• Task dependency: There are lacks of the studies addressing the

problem of offloading tasks because they do not consider the

dependency of the tasks. To be more precise, allocating tasks that are

- 42 -

dependent on the results of other tasks to different resources in the

edge-cloud could lead to poor QoS for IoT applications. It requires to

study the application components and how there interact with each

other. Considering this factor could lead to enhance both the overall

system performance and satisfy application QoS.

• Applications require a high degree of mobility: Offloading tasks of

applications that require mobility support such as a self-driving car,

crewless aircraft vehicles, and mobile devices, is an open challenge.

For example, processing tasks of application users while moving from

covered area to other covered are could lead to high network latency

or process failure [4]. Although there are several researchers tackling

this issue, however, it is still challenging.

• Workload prediction: IoT tasks dynamically change; thus, each task’s

procedure may have different execution time. Also, IoT devices are

mobile, the number of devices may increase in some area; thus, the

workload will be increased for the connected edge node. Hence, the

amount of IoT workload will change dynamically over the edge-cloud

system, which could lead to service performance degradation.

Therefore, there is a need for workload predication, which can help to

satisfy application QoS and maintain the performance of the Edge-

Cloud system.

This thesis will be focused on the impact of different computational and

communication demands as well as resource utilisation and heterogeneity at

the edge level. The process of scheduling offloading tasks that consider the

- 43 -

previous parameters is an open challenge and attracting many researchers in

the field.

2.7 EdgeCloudSim

Quantifying and analysing the performance of applications that running in real

Edge-Cloud environment are challenging because of three main issues: (i) IoT

applications have varying needs in terms of computational and

communications, (ii) it widely geographically distributed as well as demanding

mobility support and (iii) resources heterogeneity across (Edge and Cloud).

Consequently, it would be costly and time-consuming to conduct a number of

experiments across a large-scale Edge-Cloud environment.

An alternative method which more feasible and has been widely used by

researchers in this area is the simulation. Simulation tools make it possible to

investigate and evaluate research’s hypotheses or provide novel solutions in

a controlled platform that allows to conduct experiments and get results in a

timely manner. It could help to reduce the time and cost of experiments

repeatability and collecting results which pave the ways before deploying the

solutions in a real environment. Furthermore, it provides an evaluation on the

heterogeneous of IoT applications' workloads and Edge-Cloud resources

which be rare by direct experiments due to cost, time and technical expertise.

Several studies [91][14] have stated that edge-cloud simulation tools are

recommended to have the following features: (1) support cloud services, such

as the scheduling and provisioning of VM; (2) support network functionalities,

- 44 -

such as a modelling network in each layer (LAN, MAN, and WAN); (3) support

applications services (i.e. computational and communication demands, delay

sensitivity, etc.); and (4) support edge services, such as the mobility of IoT

devices and managing edge nodes.

In general, there are several issues should be considered in order to select

the appropriate simulation tools and validate the proposed approach and its

results. This will help to overcome and mitigate the general limitations of the

simulation-based method. These issues are the following:

The selection of the appropriate simulator tool: According to [], the first step is

to search for the simulator tools that have the necessary functionalities to

deliver the research aims and objectives. Other criteria, such as (the required

HW to run the simulation, the efficiency of generated logs files, the cost of

simulation and assistance availability), could also be used to select the

simulation tool [15]. In this research, we reviewed a collection of the existing

tools (e.g. IfogSim, IoTSim, and FogNetSim++), comparing their main

focuses. EdgeCloudSim was the most appropriate for the purpose of this

research. More details are in section 2.7.

The selection of simulation parameters: In a simulation-based method, the

generated result depends on the selected parameters, and therefore, any

wrong parameters could lead to incorrect results. In this research, we selected

the parameters based on related research in both application demands (e.g.

computational and communications) and edge-cloud resources (e.g. VM

configuration). Additionally, a sensitivity analysis was conducted to investigate

the impact of the application parameters.

The validation of the generated results: In order to avoid any anomalies from

the simulation results, each simulation was run five times, and a statistical

- 45 -

analysis was conducted to take the mean values. Then, some of the results

obtained were compared with the general findings from other research. For

example, some of the generated results were consistent with other

researchers' results from direct experiments.

There are a number of simulation tools that suggested in the literature such

as IfogSim [92], EdgeCloudSim[11], IoTSim and FogNetSim++[93]. Each one

of these tools has a special focus and characteristics.

• IfogSim: is a java-based tool that relies on a well-known cloud simulator

CloudSim[94] and provides a multi-layered architecture from IoT to the

Cloud. However, the network load has been neglected and does not

support the mobility of IoT devices.

• EdgeCloudSim also based on CloudSim and it covers mostly all the

aspect of the edge computing environment, which include resources in

both computation and communication level. Additionally, supporting

the mobility of IoT devices[95].

• IoTSim: focuses on the processing of Big Data for IoT applications. It

is an extension of CloudSim with the following extra layers: Storage

Layer, Big Data Processing Layer and Application Layer. It also

modelled the MapReduce approach for IoT applications.

• FogNetSim++: is relies on OmNeT++[96] simulator. The main focus on

network modelling of fog network and provides the ability to implement

scheduling algorithms of fog networks and hand-over of IoT device.

Moreover, supporting mobility.

- 46 -

Comparing with the above simulators, EdgeCloudSim could be appropriate for

this research more than the others for the following reasons:

• Service time: The main purpose of this research is to investigate and

evaluate the performance of IoT application in edge computing

environment through the overall service time, which consists of

processing delay and network latency. In this research, service time

refers to the time for each task that will be handled in the edge

computing environment from sending the request to receive the result.

EdgeClouSim is different from other simulators such as iFogSim in this

context because iFogSim is ignoring the network load by assuming a

fixed delay for any network link, which it could not mimic the actual

environment.

• Application characteristics: In the perspective of Edge-cloud provider,

IoT applications have three main features; it is distributed over large

geographic areas, mobility and scalability. Scalability refers to the

number of IoT in a specific area could increase or decrease for any

reasons.

• Architecture: Edge Computing has different architectures such as;

standalone edge node, edge-cloud which mean the IoT tasks will be

offloaded to edge or cloud servers and several edge nodes running

with each other in coordination with the cloud. EdgeCloudSim support

simulating these architectures[95].

- 47 -

Figure 2. 9: main components of EdgeCloudSim [11]

Additionally, EdgeCloudSim considering the main three aspects of the edge

computing environment; Firstly, Computational modelling which covers;

Datacenter model, VM provisioning and task execution. Secondly, Network

modelling which covers; link properties, delay model data transfer size and

network capacity. Thirdly, Edge Specific Modelling which considers; Edge

system design, mobility, offloading decision and Edge Orchestration. It also

consists of the following five main components [11] as shown in figure 2.9 and

for further information:

1- Core Simulation module: is responsible for loading and running edge

computing scenarios based on configuration files which consist of

application characteristics, datacentre specifications and simulation

settings. Additionally, providing logs of implemented scenarios in a

comma-separated value (CSV) format.

- 48 -

2- Network module: is responsible for handling the transmission delay for

transferring data in WLAN, MAN and WAN. This considers both

uploading data from IoT devices and downloading data to IoT devices.

3- Edge orchestrator module: is act as a decision-maker for managing

computational resources on the edge layer. For example, terminating

the edge VM and decide to offload a task to edge servers or the cloud.

4- Mobility module: in charge of updating the locations of IoT devices

during the simulation experiment based on the mobility model. This

allows IoT devices to move from edge area to other edge areas.

5- Load Generator module: is responsible for generating IoT tasks based

on Application configurations. For example, specify the amount of data

for upload/download for each task as well as the amount of required

computational power.

2.8 Summary

This chapter has presented an overview of the fundamental concepts of the

subject of scheduling offloading tasks in the edge-cloud system. It started with

the core concepts of cloud computing with more details on its definition,

architecture, deployment models and the idea of mobile cloud computing as

an extended model for cloud computing. Then the core concepts of the

transformation to the edge computing and its models are introduced. These

presented the idea of edge computing and explain the different terms, such

as fog computing, mobile edge computing, etc. This is followed by positioning

the work in the related literature, focusing on the scheduling offloading tasks

issues and resource management in Edge-Cloud system. A reviewing with

- 49 -

related works that focus on application characteristics is presented. Finally,

research open challenges and simulation tools are presented.

- 50 -

Chapter 3. Investigating and Modelling Edge-

Cloud Environments

3.1 Overview

In this chapter, Section 3.2 presents the overview of Edge-Cloud system

architecture that supports scheduling offloading tasks of IoT application,

followed by the explanation of the required components and their interactions

within the system architecture. Section 3.3 presents offloading latency models

that consider computational and communication as key parameters with

respect to offloading to the local edge node, other edge nodes or the Cloud.

This chapter concludes by discussing early experiments conducted on

EdgeCloudSim to investigate the latency models of each offloading scheme

as presented in Sections 3.4 and 3.5.

3.2 Modelling Edge-Cloud Environments

3.2.1 System Overview

As illustrated in figure 3.1, the Edge-Cloud system from bottom to the top

consists of three layers: IoT devices, multiple edge computing nodes and the

cloud. The IoT level is composed of a group of connected devices (e.g.

smartphones, self-driving cars, smart CCTV, etc.); these devices have

different applications where each application has several tasks (e.g. smart

- 51 -

CCTV [97] application consists of movement dedication, face recognition etc.).

These services can be deployed and executed in different computing

resources (connected edge node, other edge nodes or cloud), where the

infrastructure manager and service providers decide where to run these

services.

In our system, at edge level, each edge computing node is a micro datacentre

with a virtualised environment. Moreover, it has been placed close to the

connected IoT devices at the base station or Wi-Fi access point. These edge

nodes have been distributed geographically and could be owned by the same

cloud provider or other brokers [98]. It has limited computational resources

compared to the resources in the Cloud. Each edge node has a node manager

that can manage computational resources and application services that run

on. All the edge nodes have connected to the edge controller.

The offloading tasks can be achieved when the IoT devices decide to process

the task remotely in Edge-Cloud environments. Applications running on IoT

devices can send their offloadable tasks that can be processed by the edge-

cloud system through their associated edge node. We assume that each IoT

application is deployed in a VM in the edge node and the cloud. IoT devices

offload tasks which belong to a predefined set of applications, these tasks are

varied in term of the computational requirement (task length) and

communication demand (amount of transferred data). It is assumed that tasks

are already offloaded from the IoT devices, and each task is independent;

thus, the dependency between the tasks is not addressed in this study. The

locations of IoT devices are important for the service time performance

because it is assumed that each location is covered by a dedicated wireless

- 52 -

access point with edge node and the IoT devices connect to the related WLAN

when they move to the covered location.

The associated edge can process IoT tasks and also can be processed

collaboratively with other edge nodes or the cloud, based on Edge

Orchestrator decisions. For example, if an IoT application is located in an edge

node faraway from its connected edge, its data traffic has to be routed to it via

a longer path in the edge-cloud system. In the Cloud level, a massive amount

of resources that enable IoT applications’ tasks to be processed and stored.

The proposed architecture is just a possible implementation of other

architectures in the literature such as [54][42][69], an example of these

architectures represented in Figure 2.4. The main difference in the proposed

architecture is the introduced layer between the edge nodes and the cloud.

This layer responsible for managing and assign offloading tasks to the edge

nodes —more details in the following subsections.

- 53 -

Figure3. 1: An overview of Edge-Cloud system

3.2.1.1 Edge Controller:

Our edge Controller designed similar to [75][99][100], some studies called

edge orchestrator, which is a centralized component that responsible for

planning, deploying and managing application services in the edge-cloud

system. EC communicate with to other components in the architecture to know

the status of resources in the system (e.g. available and used), the number of

- 54 -

IoT devices, their applications’ tasks and where IoT tasks have been allocated

(e.g. edge or cloud). EC consists of the following components: Application

manager, Infrastructure manager, Monitoring and Planner. The location of

Edge Controller can be deployed in any layer between edge and Cloud. For

example, in [101], EC act as an independent entity in the edge layer that

mange all the edge nodes in its control. It is also responsible for scheduling

the offloading tasks in order to satisfy applications’ users and Edge-Cloud

System requirements. The EC is synchronising its data with the centralised

Cloud because if there is any failure, other edge nodes can take EC

responsibility from the Cloud [102][103].

3.2.1.2 Application Manager:

The application manager is responsible for managing applications running in

the edge-cloud system. This includes requirements of applications tasks, such

as the amount of data to be transferred, the amount of computational

requirement (e.g. required CPU) and the latency constraints. Moreover, the

number of application users for each edge node.

3.2.1.3 Infrastructure Manager:

The role of the infrastructure manager is to be in charge of the physical

resources in the entire edge-cloud system. For instance, processors,

networking and the connected IoT devices for all edge nodes. As mentioned

above, edge-cloud is a virtualized environment; thus, this component

responsible for virtual machines as well. In this research, this component

provides the EC with the utilization level of VM.

- 55 -

3.2.1.4 Monitoring:

The main responsibility of this component is to monitoring application tasks

(e.g. computational delay and communication delay) and computational

resources (e.g. CPU utilization) usage during the execution of applications’

tasks in the edge-cloud system. Furthermore, detecting the tasks failures due

to network issues or shortage of computational resources.

3.2.1.5 Planner:

The main role of this component is to propose the scheduling policy of the

offloading tasks in the edge-cloud system and the location where they will be

placed (e.g. local edge, other edges or the cloud). In this research, the

proposed approach for offloading tasks in Chapter 5 will work on this

component and will pass its results to EC for execution.

3.3 Latency-Sensitive Applications

Applications that have high sensitivity of any delays accrue in communication

or computation during the interaction with the Edge-Cloud system. For

instance, IoT device sends data to the point that processing is complete at the

edge node or the cloud in the back end of the network, and the subsequent

communications are produced by the network in response to receive the

results. There are many examples of latency-sensitive applications, and the

acceptable service time varies depending on the application type which

affected by the amount of transferred data and the required computation

volume [104]. For example, self-driving cars consist of several services, in

[105] classified these services in categories based on their latency-sensitivity,

quality constraints and workload profile (required communication and

- 56 -

computation). First, critical applications, which must be processed in the car's

computational resources, for instance, autonomous driving and road safety

applications. Second, high-priority applications, which can be offloaded but

with minimum latency, such as image aided navigation, parking navigation

system and traffic control. Third, low-priority applications, which can be

offloaded and not vital as high-priority applications, e.g. Infotainment,

multimedia, and speech processing. Table 3.1 presents more examples of

latency-sensitive applications in different technology sectors [104].

Table 3. 1: Latency-Sensitive Applications

Industry Applications

Industrial automation

Industrial Control

Robot Control

Process Control

Healthcare Industry

Remote Diagnosis

Emergency Response

Remote Surgery

Entertainment Industry
Immersive Entertainment

Online Gaming

Transport Industry

Driver Assistance Applications

Autonomous Driving

Traffic Management

Manufacturing Industry Motion Control

- 57 -

Remote Control

AR and VR Applications

3.4 Edge-Cloud Latency Models

Investigating and modelling the various offloading decisions for IoT tasks can

increase the quality of service, which has attracted the attention of many

researchers in the field. With the increasing of IoT devices, the amount of

produced data, the need for an autonomous system that requires a real-time

interaction as well as the lake of support from the central cloud due to network

issues, service time has been considered as one of the most important factors

to be handled in edge computing [106][81][107].

One of the main characteristics of Edge computing is to reduce the latency

level. And it has been proved through literature that using Edge computing will

enhance applications performance in term of overall service time comparing

to traditional cloud system [108][109][110]. However, different offloading

decisions within the edge-cloud system can lead to various service time due

to the computational resources and communications types. The current real-

world applications measure the latency between the telecommunication

service provider and the cloud services[111]. Also, a few existing works

compare the latency between offloading to the edge or the cloud. Yet, what

about the latency between multiple edge nodes that work collectively to

process the offloading tasks. Consequently, investigating the latency of Edge-

Cloud system is an essential step towards developing an effective scheduling

policy due to the following reasons. First, task allocation in Edge-Cloud system

- 58 -

is not only two choices, e.g. either at IoT device or in the cloud, but could be

on any edge nodes. Moreover, edge nodes connected in a loosely-coupled

way on heterogeneous wireless networks (i.e. WLAN, MAN and WAN),

making the process of resource management and the offloading decision

more sophisticated. Second, given that task processing is allocated among

multiple edge nodes working collectively and the cloud, it is challenging to

make an optimal offloading decision.

Therefore, we introduce the latency model to investigate the delay of each

offloading scenarios. This section will be exploring the effect of computational

and communication for each offloading scenarios. These are: (1) offloading to

the local edge, (2) offloading to the local edge with the cloud and (3) offloading

to the local edge, other available edge nodes and the cloud. The list of

parameters and their notations is shown in Table 3.2.

Table 3. 2: Summary of Notations

Symbol Meaning

𝑡𝑡𝑒_𝑢𝑝 Transmission Time between the IoT to the Edge node for

uploading

𝑡𝑡𝑒_𝑑𝑜𝑤𝑛 Transmission Time between the IoT to the Edge node for

Downloading

𝑡𝑐𝑒 Computation time in the edge node

𝑡𝑡𝑐_𝑢𝑝 Transmission Time between the Edge node to the Cloud for

uploading

𝑡𝑡𝑐_𝑑𝑜𝑤𝑛 Transmission Time between the Edge node to the Cloud for

Downloading

- 59 -

𝑡𝑐𝑐 Computation time in the Cloud

𝑡𝑡𝑒𝑜_𝑢𝑝 Transmission Time between the Edge node to other nearby

edge nodes for uploading

𝑡𝑡𝑒𝑜_𝑑𝑜𝑤𝑛 Transmission Time between the Edge node to other nearby

edge nodes for Downloading

𝑡𝑐𝑒𝑜 Computation time in the other nearby edge node

3.4.1 Latency to Local Edge

This is known as One-Level offloading system which is basically offloading to

“Cloudlet” or “Local Edge”. It aims to provide a micro-data centre that supports

IoT devices within a specific area such as a coffee shop, mall centre, Airport,

etc. [112][113]. Thus, IoT devices can offload their tasks to be processed. This

offloading scheme provides ultra-low latency due to the avoidance of network

backhaul delays.

As shown in Figure 3.2, IoT devices send their offloading tasks through the

wireless network, and then the tasks will be processed by the edge node and

finally send the results to IoT devices. The end-to-end service time composed

of two delays, network delay and computational delay. The network delay

consists of the time of sending the data to edge and the time to receive the

output from the edge to the IoT device. The computation time is the time from

arriving the task to the edge node until the processing has completed.

Therefore, the end-to-end service time latency is the sum of communication

delay and computational delay [80], which can be calculated as follows:

𝐿𝐿𝑜𝑐𝑎𝑙_𝑒𝑑𝑔𝑒 = 𝑡𝑡𝑒_𝑢𝑝 + 𝑡𝑐𝑒+ 𝑡𝑡𝑒_𝑑𝑜𝑤𝑛

- 60 -

3.4.2 Latency to Local Edge with the Cloud

In this offloading scheme, rather than relying on only one edge node, The IoT

tasks can be processed collaboratively between the connected edge node and

the cloud servers. This will combine the benefits of both Cloud and Edge

computing, where the cloud has a massive amount of computation resources,

and the edge have lower communication time [114]. In this scheme, the edge

can do part of the processing such as pre-processing, and the rest of the tasks

will be processed in the cloud.

As illustrated in Figure 3.3, IoT sends the computation tasks to the connected

edge and then part of these tasks forwarded to the Cloud. Once the cloud

finishes the computation, it will send the result to the edge, and the edge will

send it to the IoT devices. This scheme consists of Communication time (e.g.

Figure3. 2: Latency to local edge

- 61 -

time between the IoT device to the edge node and the time between edge

nodes to the cloud) and computation time (e.g. processing time in the edge

and processing time in the cloud). Thus, the end-to-end service time can be

calculated as follows:

𝐿𝐿_𝐶 = 𝑡𝑡𝑒_𝑢𝑝 + 𝑡𝑐𝑒 + 𝑡𝑡𝑐_𝑢𝑝 + 𝑡𝑐𝑐 + 𝑡𝑡𝑐_𝑑𝑜𝑤𝑛 + 𝑡𝑡𝑒_𝑑𝑜𝑤𝑛

3.4.3 Latency to multiple edge nodes with the Cloud

This is known as a three-level offloading scheme [115] that aims to utilise more

resources at the edge layer and support the IoT devices in order to reduce the

overall service time. It adds another level by considering other available

computation resources in the edge layer. Basically, it distributes IoT tasks over

Figure3. 3: Latency to Local Edge with the Cloud

- 62 -

three levels; connected edge, another available edge nodes and the cloud.

The edge orchestrator controllers all edge servers by Wireless Local Area

Network (WLAN) or Metropolitan Area Network (MAN) which have low latency

compared to Wild Area Network (WAN).

As illustrated in figure 3.4, IoT sends the computation tasks to the connected

edge and then part of these tasks transferred to other available resources in

the edge level through the Edge orchestrator and the rest to the cloud. This

will help to decrease the dependency of cloud processing as well as increase

the utilisation of computing resources at the edge [110]. This scheme consists

of Communication time (e.g. time between the IoT device to the edge node,

the time between edge node to other collaborative edge node and the time

between edge nodes to the cloud) and computation time (e.g. processing time

in the edge, processing time in other collaborative edge node and processing

time in the cloud). Thus, the end-to-end service time can be calculated as

follows:

𝐿𝑡ℎ𝑟𝑒𝑒−𝑜𝑓𝑓 = [𝑡𝑡𝑒𝑢𝑝
+ 𝑡𝑐𝑒 + 𝑡𝑡𝑒𝑜𝑢𝑝

+ 𝑡𝑐𝑒𝑜 + 𝑡𝑡𝑐𝑢𝑝
+ 𝑡𝑐𝑐 + 𝑡𝑡𝑐𝑑𝑜𝑤𝑛

+ 𝑡𝑡𝑒𝑜𝑑𝑜𝑤𝑛

+ 𝑡𝑡𝑒𝑑𝑜𝑤𝑛
]

- 63 -

3.5 Early Experiments

In order to obtain an early investigation of the different offloading scenarios,

and its influence on overall service time, a number of simulation experiments

have been conducted on EdgeCloudSim. EdgeCloudSim provides sufficient

models to represent some specific situations. For example, the service time

model is designed to represent the several kinds of delay taking place in the

WLAN, MAN, and WAN, mobile devices and even the delay of processing in

the CPUs of VMs. Thus, experiments of this chapter are practically finished

within this simulation to investigate and evaluate the performance of IoT

workloads over the three different offloading scenarios. All the experiments

Figure3. 4: Latency to multiple edge nodes with the Cloud

- 64 -

are repeated five times, and the statistical analysis is conducted to consider

the mean values of the results to avoid any anomalies from the simulation

results. We assume that we have three edge nodes connected to the cloud.

Each edge node has two servers, and each of them has four VMs. The number

of edge nodes does not matter in the context of this research as long it more

than two, because one of our aims to investigate the latency between two

edge nodes. The cloud contains an unlimited number of computational

resources. We got inspiration from other related works such as [80][85] to

design the experiments and its parameters (e.g. number of IoT devices, Edge

nodes and the amount of transferred data for each offloading tasks). Table 3.3

represents the key parameters of the simulation environment. The warm-up

period is used to allow the system to evolve to a condition more representative

of steady-state before getting the simulation output. Number of iterations are

used to avoid any anomalies from the simulation results.

Table 3. 3: key parameters of the simulation environment

Key parameters Values

Simulation Time 30 minutes

Warm-up Period 3 minutes

Number of Iterations 5

Number of IoT devices 100-1000

Number of Edge Nodes 3

Number of VM per edge server 8

Number of VM in the Cloud ∞

- 65 -

Average Data Size for Upload/Download

(KB)

500/500

3.6 Results and Main Findings

The conducted experiments show the results of three different offloading

scenarios, offloading to Local Edge (i.e. cloudlet), offloading to Local Edge

with the Cloud and offloading to multiple edge nodes with the cloud. The aim

of these experiments is to investigate and evaluate the processing delays,

network delays and end-to-end service delays of the three offloading

scenarios. This will increase our understanding of the offloading decision in

the Edge-Cloud system in order to design Edge-Cloud resource management.

Figure3. 5: End-to-end service time for three offloading scenarios

0

0.05

0.1

0.15

0.2

0.25

0.3

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

TI
M

E
(S

)

IOT DEVICES

END-TO-END SERVICE TIME

One-off

Two-off

Three-off

- 66 -

Figure 3.5 presented the overall service time of the three offloading scenarios.

Offloading to one-level is has the lowest service time. This result is consistent

with work in [116][80], their explanation of this result because of the avoidance

of major latency between the end device and the Cloud. Two-offloading levels

have lower service time performance than the three-offloading. This shows

the overall service time will never be truly minimised unless the network time

is considered in the offloading process. However, these results may be

somewhat limited by the number of IoT devices and the system load.

Figure3. 6: Network time for three offloading scenarios

The conducted experiments have shown a significant difference in network

time between one level offloading and the others (two-level and three-levels).

As mentioned earlier, this is due to the avoidance of WAN and MAN delays.

Two offloading levels lower than the three offloading levels because of the

further communications between edge nodes.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

TI
M

E
(S

)

IOT DEVICES

NETWORK TIME

One-off

Two-off

Three-off

- 67 -

In term of processing time, as depicted in figure 3.7, offloading to the edge,

and the cloud has the lowest service time comparing to others. The reason is

that the local edge has limited computational resources; thus if the number of

IoT increase it, the processing delays will increase due to limited capacity. On

the other hand, offloading to multiple edge nodes with the cloud has the

highest processing time. However, the result of processing time was not very

encouraging, but in the next chapter, more investigation will be held on the

impact of the parameter of processing time (computational demand).

Figure3. 7: Processing time for three offloading scenarios

3.7 Summary

This Chapter has presented the Edge-Cloud system architecture that supports

scheduling offloading tasks of IoT application, followed by the explanation of

the required components and their interactions within the system architecture.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

Ti
m

e
(s

)

IoT devices

PROCESSING TIME

One-off

Two-off

Three-off

- 68 -

Moreover, A number of simulation experiments have been conducted in order

to investigate the latency of three different offloading schemes. In the next

chapter, the factors of latency will be presented and discussed in detail.

- 69 -

Chapter 4. Detail Analysis of the Main Factors

of Service Latency

4.1 Overview

This chapter presents the main factors of service latency that will consider the

proposed approach for Edge-Cloud resource management. Since the demand

for computation and communication tasks vary in IoT applications, this chapter

aims to validate the impact of these factors on the overall application latency.

Moreover, Edge-Cloud environment consists of heterogeneity of computing

resources; thus, selecting the appropriate resources to process the offloading

tasks play a critical role to improve the overall service time. Therefore, a

number of simulation experiments were set-up to evaluate the effect of these

factors.

4.2 Factors of Service Latency

It is advantageous to understand and investigate the precise operational

scenarios and factors that affect the overall service time for IoT applications.

This is crucial in order to focus technical and developmental efforts toward

proposing efficient resource management for Edge-Cloud system. Section 3.4

presented the architectural service delay models in the Edge-Cloud system,

which based on the location of the offloaded task (e.g. edge, other

- 70 -

collaborative edge or cloud). This Chapter details the main factors that affect

the overall service time of latency-sensitive applications and should be

considered by the resource manager.

There are several factors, from the application perspective affecting the

decision of offloading. For example, for latency-sensitive application could

lead to a significant delay in computation and communication. In the following

some of these main factors:

1- Application characteristics: this refers to when there are some

tasks that are working jointly together, such as Direct Acyclic

Graph (DAG). In this case, if the resource manager offloads the

tasks in different locations, then it will lead to increase the

communication time [117][118]. Therefore, considering the

impact of task dependency could improve the application QoS.

2- Application tasks' variation: in general, any IoT application

consists of several tasks, and tasks are varied in their

functionality; thus, their demands will be different in term of the

required CPU or the amount of transferred data. Consequently,

it has a significant effect on where to offload the task, which will

affect the service time.

3- Types of computational resources: Edge-Cloud resources

consist of heterogeneity resources, either with different

hardware capabilities or different hardware architecture (e.g.

GPU and FPGA). Therefore, the resource manager needs to

have an effective approach to manage these resources and

assign the tasks to the most appropriate hardware to get the

best performance out of these resources.

- 71 -

4- Users mobility: Since some IoT applications require mobility

support, thus it might occur when the task offloaded to a local

edge node while the IoT device moves to another area that

covered by another edge node. Consequently, it could lead to a

significant degradation in service time performance [52].

In this work, we particularly target the impact of task's variation in term of

computational and communication demands of IoT latency-sensitive

applications as well as the offloading to the heterogeneity of computational

resources, as presented in figure 4.1.

Main Factors of
Service Latency

Application
compution

demand

Application
network
demand

Heterogeneity
of

Computational
Resources

Figure 4. 1: Main factors of service latency

- 72 -

4.3 Application Characteristics (Computational and

Communication)

Tasks of IoT applications can be characterised by its needs for computational

resources, (i.e. CPU and RAM) as well as communication needs (e.g.

uploading and downloading data). IoT offloaded tasks usually vary the degree

of resource reliance between light and heavy. Namely, it ranges from low

computation, and communication demands such as health-care

applications[119] to high computation and communication demand such as

online video gaming [120]. As depicted in figure 4.2, some tasks require more

computation time due to the intensive processing, and others require more

network time due to transfer a massive amount of data. Thus, it could affect

the process of offloading tasks in order to minimise the overall service time.

Figure 4. 2: Tasks' variation (computation and communication)

- 73 -

Tasks of IoT latency-sensitive applications, that require higher computational

demands prefer to be processed in the cloud since the edge resources are

limited, but this also depends on the request of the transferred data. Tasks

that require to move a large amount of data needs to be processed in the edge

to avoid the long latency in the network backhaul.

Basically, the task completion time consists of three essential components,

i.e. computation time, network time and where the task is scheduled (e.g.

which server type). The server can be located on the local edge, other nearby

edge nodes close to IoT devices or belong to the cloud.

The computation time of the IoT task depends on the number of instructions

(e.g. MI) that need to be executed and the processing speed of the hosted

resources (e.g. VM). The number of instructions represents the computational

volume of an IoT task. As mentioned above, IoT tasks can range from a small

number of code instructions to a high number, which depends on the IoT

application.

This factor alongside with network conditions specifies where to offload the

tasks. For example, it is not logical to offload the tasks with a massive amount

of data to the cloud, whereas the edge resources are available, because it will

increase the overall service time. However, these two factors come together;

thus, we need to understand and investigate the impact of each of them in an

independent way. The network time of IoT task depends on the amount of

data to be uploaded and downloaded as well as the transmission latency

between the sender and the receiver. In our case between the sender will be

the IoT devices and the receiver cloud be (local edge, other collaborative

edges or the cloud). Moreover, for each task, the amount of transferred data

can vary based on the IoT application.

- 74 -

4.3.1 Computational Resource Heterogeneity

In term of computational resources, both IoT devices and edge servers are

heterogeneous. Consequently, for latency-sensitive applications,

underestimating the computational resource needed for executing the task in

order to minimise the overall service time [73]. Due to resource heterogeneity,

this means there are some servers that are better than others in term of

capabilities, which can handle the offloading tasks faster as presented in

figure 4.3. Whereas, the amount of required computational is varying for each

task. Thus, heavy tasks required a powerful machine to process their jobs

faster.

Figure 4. 3: Computation time for resource heterogeneity

Therefore, a performance method to measure the end-to-end IoT service

effectiveness, taking both computational and communication demands of

- 75 -

offloading tasks into account are needed, in order to answer the following

questions:

• How different applications parameters, including computation and

communication demands, impact on the overall service time?

• How different computational resources (e.g. different VM capabilities)

impact on the overall service time?

4.4 Implementation

In order to understand and investigate the impact of computational and

communication demand of IoT tasks as well as the impact of different

computational resource capabilities. A number of simulation experiments

have been conducted on the EdgeCloudSim (see section 2.6) to mimic Edge-

Cloud System. These experiments use different IoT tasks with ranges of

computational and communication demands (e.g. different tasks length in MI

with different amount of uploading and downloading data in MB).

Characterisation of Virtual Machines

In order to investigate the impact of resource heterogeneity, two different VMs

on EdgeCloudSim have been considered. Table 4.1 shows the configurations

- 76 -

of the VMs that were considered in the experiments. This based on

Rackspace, which provides a wide range of VM types [151] and other works

in [88][121] are used as a reference for the VMs configurations. The first type

of VM has two cores Intel Xen CPU, and the second type of VM has four cores

Intel Xen CPU.

Table 4. 1: Configurations of VMs

 CPU core MIPS RAM (GB) Storage

(GB)

VM type 1 2 10000 2000 50000

VM type 2 4 20000 4000 100000

4.4.1 Experimental Investigation

The overall aim of the experiments is to investigate and understand the impact

of the change in the computational and communication demands of the IoT

tasks as well as the effectiveness of resource heterogeneity in term of the

overall end to end service time. Several simulation experiments have been

conducted using different IoT offloaded tasks. The simulation key parameters

are represented in table 4.2, which contain the number of IoT devices, the

number of edge nodes and number of VMs. To mimic various applications that

might be encountered in practice, we define the configuration of tasks varying

communication bandwidth demand from 0.25MB to 1MB as an increased step

of 0.25MB and doubling computation demand starting from 500 MIPS to 4000

MIPS. These numbers have been used in similar related work in the literature

- 77 -

to represent offloaded tasks [80]. Also, we did a sensitive analysis of the

selected parameters similar to the work in [122]. First, we maintain tasks

communication as a constant parameter and vary the task's computational

demand to study the impact of the computational demand. Then, increased

the communication demand while the computational demand is constant to

investigate the communication demand. The impact of computational demand

and communication demands are presented in Figure 4.4 and Figure 4.5,

respectively. Moreover, we run the same IoT workload with two different VMs,

as presented in table 4.1.

Table 4. 2: key parameters of the simulation environment

Parameters Values

Simulation Time 30 minutes

Warm-up Period 3 minutes

Number of Iterations 5

Number of IoT devices 100-1000

Number of Edge Nodes 3

Number of VM per edge server 8

4.4.2 Results

This section investigates and analyses how the size of the demanded

resources (CPU and network) of IoT tasks influence the overall service time

under various IoT devices. In order to measure the computational demands,

- 78 -

we fixed the amount of communication demand and tried different types of

task computational and vice versa for the task communication demand.

Furthermore, validates the service time performance and utilisation for two

different VMs.

Figure 4.4 shows the average service time for offloading tasks with different

computational demand (e.g. 500 MIPS, 1K MIPS, 2K MIPS and 4K MIPS)

under a different number of IoT devices. As depicted in figure 4.4, no matter

how many IoT devices, the average service time of IoT applications shows a

Figure 4. 4: The impact of computation demand

- 79 -

corresponding increase along with the increment of its CPU requirements, and

the fewer end devices, the more obvious fluctuation. For example, the end to

end service time of 4K MIPS task is about four times of task with 500 MIPS

when the number of mobile end devices equals to 100, but only nearly two

times when the number is 700. Intuitively, the reason is that computation

resources are severely limited, and when the demand for CPU increases, the

time of waiting and processing in CPU will also rise correspondingly. However,

once the number of tasks increases to a certain value, the conflict of CPU

resource (means Clock Cycles) will increase slowly as it’s near to the

maximum of CPU capacity.

Figure 4.5, shows the average service time for offloading tasks with different

communication demand (e.g. 0.25 MB, 0.5 MB, 0.75 MB and 1 MB) under a

Figure 4. 5: The impact of communication demand

- 80 -

different number of IoT devices. As shown in figure 4.4, when the bandwidth

demand of task varies, the service time only slightly increases due that the

network bandwidth is not a critical limit for IoT tasks in current experiments. In

other words, network resource or performance is notably sufficient to handle

nearly all IoT tasks. Notice, when the number of end devices is close to 700,

the increment becomes obvious and efficient assignment of network

resources will play a meaningful role in end to end service time.

Figure 4. 6: The impact of two different VMs

As the VMs are heterogeneous in terms of size, they consequently have

different processing time for IoT offloaded tasks, which fairly corresponds to

their size. In the beginning, in figure 4.6, when the number of IoT devices 100,

The average service time of IoT offloaded tasks processed in VM type 1 is

0

0.5

1

1.5

2

2.5

3

3.5

4

100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

)

Number of Devices

Service Time

VM Type 1

VM Type 2

- 81 -

double comparing the service time in VM type 2. Further, the conducted

experiments had revealed that a huge increase in service time when the

number of IoT increased for the VM with low capabilities while the VM type 2

handling the increased of IoT devices effectively.

Figure 4. 7: Server Utilisation of two different VMs

As the VMs are heterogeneous, the average utilisation of VMs is consequently

different. As shown in figure 4.7, when the number of IoT devices small at 100

devices, both VM type 1 and VM type 2 have the same utilisation level.

However, when the number of IoT devices increased around 1000 IoT device,

the average server utilisation of a VM type 1 is about twice bigger than a VM

type 2. The reason is that VM type 2 has more capability than VM type 1, thus

can process more IoT offloaded tasks with an acceptable level of utilisation.

Possible explanations that we can discover it when we are comparing the two

results presented in Figure 4.6 and Figure 4.7, there is a correlation between

0

5

10

15

20

25

30

35

40

45

50

100 200 300 400 500 600 700 800 900 1000

V
M

 U
ti

liz
at

io
n

 %

Number of Devices

Edge Server Utilisation

VM Type 1

VM Type 2

- 82 -

the processing time of the edge server and the utilisation level. Because the

trends of both of them have the same level of increase for both VM type 1 and

VM Type 2, this effect might be due to the rise of computational load and the

IoT devices that sharing the same resources. Also, it possible if we increase

the load for VM Type 2, that we get the same results of VM type 1.

4.5 General Discussion

We outline some findings according to our simulation-based evaluation which

can be employed in improving the efficiency of task offloading and achieving

well-balanced resource management in the Edge-Cloud environment. The

conducted experiments on EdgeCloudSim have shown the impact of tasks

computational demand and communication demand as well as how it affects

the overall service time for IoT application. Some studies [123] emphasise that

the central cloud could overwhelm the network delay due to its tremendous

resources. One the other hand, other studies [124] show that the increased

network demand could lead to an exponential delay for some applications.

Based on our simulation results, we show that network time has a significant

impact on the overall service time, thus considering this parameter could lead

to an improvement in performance. In current experiments, the impact of

computational demand affected the overall service time more than the

communication demand. For example, when the number of IoT devices

equalled 700, the service time increase by around 0.2 seconds when the

amount of computational demand increased from 500 MIPS to 1000 MIPS. In

contrast, when the amount of communication demand increased from 0.25

- 83 -

MB to 0.5 MB, the overall service time increased by 0.03 second. These

results seem to be consistent with other research [125] which found when the

Edge-Cloud becomes overloaded, there will be degradation in execution

performance due to resources contention and sharing.

Furthermore, the experiments have shown that the measured overall service

time for the two types of VMs have a clear impact on the performance when

the system load is increased. In accordance with the present results, previous

studies on resource heterogeneity have demonstrated that VM diversity

results in application performance variation. Based on experimental results

conducted on Amazon EC2 large VM can enhance the service time

performance up to 40%, and for some specific applications could reach 60%

[126]. Moreover, when the server utilisation increased, the overall service time

is sharply increased. This finding was also reported by [127] when the amount

of computational workload increased, server utilisation will be increased and

the service time performance will be affected. This result is expected and the

main motivation of this simulation is to demonstrate the necessity of

considering the resource utilisation level in the process of scheduling

offloading tasks in order to minimise the overall service time.

4.6 Summary

This chapter has presented and illustrated the impact on the performance of

IoT applications under different requested resource (CPU and network)

changes and examines the effectiveness while varying the number of IoT

- 84 -

devices. Furthermore, the impact of resource heterogeneity and server

utilisation on the performance IoT application service time.

- 85 -

Chapter 5. New Approach to Task Offloading

in an Edge-Cloud Environment

5.1 Overview

In this chapter, a new approach for task offloading in edge-cloud systems is

proposed in order to minimise the overall service time for latency-sensitive

applications. The approach adopts the fuzzy logic algorithm that considers

application characteristics (e.g. CPU demand, network demand and delay

sensitivity) as well as resource utilisation and resource heterogeneity, as

presented in section 5.2. A number of simulation experiments evaluating the

proposed approach in relation to other related works are then presented in

sections 5.3 and 5.4.

5.2 Tasks Scheduling Approach with Minimum Latency

In the Edge-Cloud environment, IoT devices produce a stream of incoming

offloading tasks that differ in term of their computation and network demand.

Generally, task scheduling is used to enhance several performance

parameters, which include minimising the overall delay in the processing of

offloaded tasks. The companied Edge and Cloud environments consist of a

set of heterogeneity resources (e.g. different computation resource

capabilities). Therefore, a realistic model of scheduling offloading tasks in

Edge-Cloud system consists of several parameters, which can be organised

into two main categories: infrastructure characteristics and application

- 86 -

characteristics. Infrastructure characteristics include resource heterogeneity

which could lead to select the appropriate resource for a specific task; also,

the utilisation level of edge server and the network conditions. For example,

CPU utilisation could vary depending on the assigned task and depending on

whether the number of IoT devices increases in a shared network. This could

lead to fluctuations in network bandwidth. On the other hand, IoT application

tasks include characteristics such as computation demand, required transfer

data for uploading and downloading, and the needed deadline to complete

tasks.

From the previous explanation, the problem might be seen as a classic multi-

constraint optimisation which can be modelled and solved mathematically.

However, the edge-cloud environment changes dynamically and

unpredictably. For instance, the number of IoT devices could be increased or

decreased in a specific area due to IoT mobility, which has an impact on the

load of the edge node and the shared network. Also, the incoming tasks are

not known in advance, which requires a system to handle them in real time.

Therefore, due to the dynamic change in the demands on IoT applications and

in the status of edge-cloud resources, it is difficult to get accurate

mathematical models [128] because of uncertainty and vagueness [129].

Several research efforts have addressed the latency challenges in the edge-

cloud environment. Researchers in [130][131][77] have considered the

computational and communication parameters in order to enhance the overall

latency. Besides, several studies [78][132][4] have investigated the impact of

resource heterogeneity in the edge-cloud environment and its role in

enhancing the end-to-end service time. Also, a considerable amount of

literature [133][134][135] has been published on load balancing and server

- 87 -

utilisation in edge-cloud systems in an effort to avoid overloaded edge nodes

which affect application service time. Overall, these studies highlight the need

for an approach that considers the above parameters in term of application

characteristics (computational, communications and latency), resource

heterogeneity and resource utilisation in order to reduce overall latency and

enhance resource utilisation.

This is known as a dynamic multi-objective optimisation problem, where there

is more than one objective and the parameters are dynamic in nature and can

vary over time [136]. Most of the studies in the edge-cloud area are designed

to meet a specific scenario or for a particular application, which makes them

less adaptive and scalable [106]. Also, the complexity and the amount of time

needed for solving this problem should be considered, since the resources at

the edge involve computational constraints. Thus, solving this problem with

traditional methods at the edge nodes could add extra overhead, which affects

the ability to meet stringent service requirements in latency-sensitive

applications [136].

Therefore, fuzzy logic is considered to be among the most feasible solutions

for a multi-objective optimisation problem when the activity of multiple

parameters is significant. Fuzzy logic can be easily adapted to the dynamicity

of computational resources and application parameters as well as providing

scalability within the context of the system. It also averts the computational

complexity and can provide decisions very quickly [137]. Consequently, fuzzy

logic has been adopted in this research to determine where to offload the tasks

based on application and system parameters. Many researchers in the field

of the distributed systems use fuzzy logic to deal with the challenges caused

by vagueness, uncertainty and the dynamicity of the environment [138]. The

- 88 -

concept of fuzzy logic is to abstract the problem complexity to a level that can

be understood. It can handle system uncertainty by dealing with many input

and output variables and can represent the problem with simple if-then rules.

To the best of our knowledge, this is one of the early attempts to design and

implement such a system with regards to application’s demands, edge-cloud

resource utilisation and resource heterogeneity by adopting Fuzzy logic. The

main objectives are to reduce the overall service time and to utilise the Edge-

Cloud resources efficiently.

Figure 5. 1: The proposed approach of scheduling offloading tasks

The proposed approach supports the resource manager in the Edge-Cloud

system regarding scheduling the offloading tasks in order to minimise the

overall service time and improve the efficiency of edge-cloud resources. As

- 89 -

shown in Figure 5.1, the approach can be described using the MAPE method

(monitoring, analysing, planning and executing) to assign the tasks to

appropriate resources and monitoring the system performance periodically.

The proposed approach will work in the EC, which presented in Figure 3.1 in

Chapter 3. EC is an independent entity in the edge layer that mange all the

edge nodes and also responsible for receiving/scheduling the offloading tasks

in order to satisfy applications’ users and Edge-Cloud System requirements.

Therefore, after the edge-cloud system receiving the offloading tasks, the

system gets the required information from monitoring data such server

utilisation and then pass this information to the fuzzy logic system in the

analysing and planning phase. Then the tasks will be scheduled to the

appropriate resources based on algorithm 2.

5.2.1 Fuzzy Logic System

In this stage, the proposed approach will get the information of the offloading

tasks and server utilisation in order to determine the appropriate location of

the offloading tasks as depicted in figure 5.2. The following is a brief

description of the process of the fuzzy logic system.

- 90 -

Figure 5. 2: Process of the proposed fuzzy logic system

1- Fuzzy input variables: In this step, we specify the necessary inputs

for the fuzzy system. The required inputs are VM utilisation at the edge,

task length, the amount of data to be transferred for each task and

delay sensitivity. All these variables are represented as a linguistic

variable: Low, Medium and High as depicted in figure 5.2. These

categories represent the dynamic changing over Edge-Cloud

infrastructure and the characteristics of applications’ offloaded tasks.

a) VM utilisation: This parameter indicates the current utilisation

level of the VM hosted by the local edge server. Thus, we can

know how much resource space is available on that VM. If it is

highly utilised, then offloading to other edge servers or the cloud

could be the solution, depending on the task characteristics in

term of computational, communication and latency sensitivity.

b) Task length: this parameter represents the computational

demand of the task; it measures by Million instruction per

Second (MIPS). As the edge has a limited computational

resource, heavy tasks might be appropriate to offloaded to the

cloud and vice versa. However, we cannot take this parameter

without considering others such as VM utilisation,

communication demand and delay sensitivity.

c) Network Demand: This parameter represents the required

communication of the tasks for both uploading and downloading.

It is an important measure for the offloading decision to consider

where to offload the task to (local edge, other edge or cloud).

- 91 -

For example, tasks of Augmented Reality applications that

require video streaming must upload the request, then do some

processing (e.g. 3D rendering, image processing, etc.), and then

receive the results as a video stream. This requires transferring

a high amount of data for uploading and downloading, which

takes a significant amount of the total service time.

d) Delay sensitivity of the task: This parameter refers to the

sensitivity of the tasks to accept the delay due to computation

delay or communication delay. For example, some application

has some urgent tasks that require ultra-low latency and some

tasks that can accept some higher level of latency. This

parameter could help task scheduler to assign the tasks to an

appropriate server within the Edge-Cloud system.

2- Fuzzification: In the fuzzification stage, fuzzifier will take all the

required values as numerical input from system infrastructure

monitoring and incoming tasks. Then, assign each value to its

predefined linguistic variables in the membership functions (e.g. Low,

Medium and High). After that, fuzzy variables are combined and

evaluates in the Fuzzy rules base to take the decision and produce the

output in the defuzzification stage.

a) Fuzzy membership functions: The fuzzy membership function is

used to quantify the linguistic term for each fuzzy variable. In this

research, we have four functions and each function has three

variables: Average VM utilisation (Low, Medium, High), Task

length (Low, Medium, High), network bandwidth (Low, Medium,

High) and Delay sensitivity (Low, Medium, High). The values of

- 92 -

each fuzzy variables are determined empirically based on a

number of experiments similar to researches on[139] [85].

Figure 5.3 shows the four membership functions.

b) Fuzzy rules base: A fuzzy rules base is composed of a set of

fuzzy rules that similar to the reasoning process of human. It is

a simple if-then rule that covers all the possible situations of the

application characteristics and system conditions. These rules

play critical rules to define the overall system performance. An

example of the rules, if task length is high AND Network demand

is low AND VM utilisation is high AND the delay sensitivity is

Figure 5. 3: Memberships functions of the proposed fuzzy logic system

- 93 -

high THEN offloaded the task to the cloud. The output will be

used in the defuzzification stage. Table 5.1 gives results

examples of the system fuzzy rules. The main aim is to provide

low latency for IoT applications by reducing the data movement

from IoT device to the cloud and avoiding the overloaded node,

which will affect the end to end service time.

Table 5. 1: Fuzzy rules base

Input variables

Output

Decision

Task length

(MIPS)

network

Demand (Mbps)

VM

utilisation

Delay

sensitivity

Low Low Low Low Local Edge

Low Low Low Medium Local Edge

Low Low Medium High Local Edge

Low Low Medium Low Local Edge

Low Medium High Medium Local Edge

Low Medium High High Local Edge

Low Medium Low Low Local Edge

Low Medium Low Medium Local Edge

Medium High Medium High Other Edge

Medium High Medium Low Other Edge

Medium High High Medium Other Edge

Medium High High High Other Edge

Medium Low Low Low Local Edge

Medium Low Low Medium Other Edge

Medium Low Medium High Other Edge

Medium Low Medium Low Other Edge

High Medium High Medium Cloud

High Medium High High Cloud

- 94 -

High Medium Low Low Other Edge

High Medium Low Medium Other Edge

High High Medium High Cloud

High High Medium Low Cloud

High High High Medium Cloud

High High High High Cloud

3- Defuzzification: Defuzzification is the process to convert the fuzzy

rules output to a specific value based on the output membership

function. There are a range of ways to produce the output membership

function in the fuzzy logic system and these examples of the often-used

method (e.g. Maximum, Mean of Maximum and centroid). This work

adopts the maximum approach because our membership function has

one maximum at a time. Figure 5.4 represents the output membership

function of the fuzzy logic system. For example, if the output

fuzzification process is 38, then 𝜇𝐿𝑜𝑐𝑎𝑙 𝐸𝑑𝑔𝑒 is 0.1 and 𝜇𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝐸𝑑𝑔𝑒

is 0.4, the defuzzification process will take the maximum, and the task

will be offloaded to the other collaborative edge node.

- 95 -

Figure 5. 4: The output membership function of the fuzzy logic system

Algorithm 1 present the process of the proposed fuzzy logic system and the

possible outputs. It gets all the required inputs from the offloading tasks of

multi-user (e.g. CPU length, network, and delay) as well as Edge-Cloud

resources (e.g. VM utilisation). Line 3 calls the fuzzy logic function and pass

the needed parameters, as described above. Then the offloading task is

allocated based on the output of the fuzzy logic system to one of the edge

nodes or the cloud.

- 96 -

The overall time complexity of Algorithm 1 is O(t) where t denotes the number

of elements in T. The step of sending the required information to the fuzzy

logic system for each task requires O(t) time. According to the fuzzy inference

logic, one of the three different output of fuzzy sets can be allocated to each

task; thus, the time complexity of proposed fuzzy logic is O(n).

5.2.2 Task Selection Phase Based on The Resource Type

As shown in Figure 5.5, the incoming tasks inter to the fuzzy logic system.

Then after the proposed fuzzy logic system, decide the target layer to offload

the task, task scheduling algorithm will assign the tasks to the appropriate

computational resources within Local Edge or Collaborative edge based on

the information from Infrastructure monitoring. This process runs on the edge

controller, which described in Chapter 3. We assume that each Edge node

has a heterogeneity of computational resources. The details of the algorithm

2 are described below.

- 97 -

Figure 5. 5: Task selection phase

All the application tasks are submitted to the edge control node in the target

layer. Firstly, the algorithm will sort all the tasks in descending order based on

their CPU requirements; thus, heavy tasks comes first (Line 1). Secondly, sort

all the computational resources (VMs) in descending order based on their

CPU capabilities; thus, the most powerful VMs comes first (Line 2). After that,

the algorithm will assign each application tasks to computational resources. It

will start with heavy tasks to be assigned to the powerful VMs (Line 3-11). This

ensures that heavy tasks have the priority to be assigned to a powerful VM,

thus will produce less processing time.

- 98 -

Algorithm 2 aims to schedule the tasks of each application to the target

computational resources in the edge node; therefore, the time complexity can

be analysed as follow. The first steps are to sorting the tasks and resources

based on their computational demand and capacity respectively. The worst-

case time complexity of the sorting is O(n2). The second step is to allocate

each task T for all applications A to computational resources R. The big O

notation of the nested loop is O(n*n), the first loop for all the applications and

the second loop for all the tasks. As a consequence, the overall time

complexity of task scheduling algorithm is O(n2).

5.3 Implementation

The task offloading approach based on a fuzzy logic system that aims to

enhance the end-to-end service time by considering both tasks requirements

and resources of Edge-Cloud system has been introduced. In order to

evaluate this approach, several experiments have been conducted for the

proposed approach and compare it with other competitors’ solutions. The

process starts with generating tasks of different IoT applications, then

scheduling tasks in the Edge-Cloud system based on the scheduling

algorithms. Details of IoT tasks and the environment of the experiments will

be presented in the following sections.

Approaches that dealt with offloading tasks by using fuzzy logic are limited in

the area of edge computing. Therefore, we evaluate the proposed approach

with the following algorithms. First is a utilisation-based approach, which

- 99 -

makes decisions on offloading tasks based on the server utilisation level, by

selecting the least-load machine for offloaded tasks. The aim of this approach

is utilising edge resource and make load balancing. This approach has been

adopted in a number of studies due to the simplicity of its logic and the

feasibility of its implementation [140][141]. It is well suitable for the common

situation, in which the number of applications and the execution time of tasks

is both moderate. However, it doesn’t consider task communication demand

and application delay sensitivity. Second, Flroes [142] proposed a task

offloading approach based on fuzzy logic for IoT applications. This approach

aims to decide whether to offload to the cloud or perform the tasks in end

devices at the edge layer. However, this approach neglected the utilisation of

the Edge-Cloud resources, which could cause an overloaded VM, thus could

lead to significant latency. Finally, Snomes [85] proposed tasks offloading

approach that consider both applications tasks requirements and resource

utilisation by using a fuzzy logic system. However, this approach focused on

homogeneous resources, whereas the Edge-Cloud system is composed of

resources heterogeneity. Moreover, their solution decides whether to offload

to the Local Edge or the Cloud, whereas our proposed approach considers

the heterogeneity of resources as well as the available resources in other

nearby edge nodes. All of these approaches have been implemented in the

simulation tool in order to evaluate it with the proposed approach.

- 100 -

5.4 Experiments and Evaluation

A number of experiments have been conducted on the EdgeCloudSim.

EdgeCloudSim has been used because it provides the vital functionality of

Edge-Cloud environment such as support offloading, users mobility etc.

Section 2.6 provides more details on EdgeCloudSim and its components. The

aim of the experiments is to show that the proposed fuzzy logic approach for

minimizing end-to-end service time is capable of considering both applications

requirements (e.g. computational, network and delay) and the dynamicity of

the edge cloud system in terms of resource utilisation. Moreover, the intention

is to evaluate the proposed approach by comparing to other approaches in

the field.

5.4.1 Simulation Setup

In the Edge-Cloud environment, there are a number of IoT/ mobile devices

that have a number of applications. These applications consist of different

tasks which require to be processed in the Edge-Cloud resources. Edge

nodes are distributed closer to end devices, and we assume each edge node

cover a specific area. IoT devices connect to the nearest edge node through

WLAN and then can send the offloaded tasks. We assume that each node

has a node manager and all edge nodes are managed by the edge controller

described in Chapter 3. In our experiments, we assume that we have three

edge nodes and a variable number of IoT devices, from 200 to 2000,

dispersed and mobile between the three nodes. Table 5.2 represents the key

parameters of our simulations.

- 101 -

Table 5. 2: Simulation key parameters

Parameters Values

Simulation Time 30 minutes

Warm-up Period 3 minutes

Number of Iterations 5

Number of IoT devices 200-2000

Number of Edge Nodes 3

Number of VM per edge server 8

Number of VM in Cloud Not limited

Probability of selecting location Equal

We assume that we have heterogeneity of VMs on each edge node. Table

5.3 shows the configurations of the VMs that were considered in the

experiments. Rackspace, which provides a wide range of VM types [151] and

other works in [88][121] are used as a reference for the VMs configurations.

Two types of VMs are used in this thesis with different capabilities to supports

the end devices with computational resources.

Table 5. 3: Configurations of VMs

VM type CPU cores MIPS Storage

Medium VM 2 vCPUs 10000 50000

Large VM 4 vCPUs 20000 100000

- 102 -

IoT applications generate different offloading tasks in term of CPU and

network load. To evaluate our approach, we need different applications with

different computational and communication demands. Several research

studies generate random tasks in their experiments [80][143]. Table 5.4

summarised the main characteristics of the four applications that are used in

this experiment, similar to [85][88]. Task Length refers to require CPU

resources for the task in Million instructions(MI) unit. Uploading and

downloading data determines the amount of data to send/receive for each task

from the IoT device to the Edge-Cloud system. Delay sensitivity refers to the

acceptance level of delay sensitivity.

Table 5. 4: Application characteristics

Apps Task length

(MI)

Uploading

Data (KB)

Downloading

Data (KB)

Delay

Sensitivity

Augmented

Reality

9000 1500 25 0.9

Health Care 3000 20 1250 0.7

Compute

Intensive

45000 2500 200 0.1

Infotainment 15000 25 1000 0.3

Figure 5.6 shows a snapshot of the simulation results for one scenario. Each

scenario takes one approach (e.g. Utilisation_Based) with a specific number

of devices. We did five iterations for each scenario and took the medium in

order to avoid errors. Next section will present the collected results and

discussion.

- 103 -

Figure 5. 6: A snapshot of the simulation results for one scenario

5.5 Results

This section presents the quantitative evaluation of the proposed approach

compared to other related works’ algorithms (e.g. utilisation-based, Sonmez

and Flores). The simulation results consist of the average service time,

average processing delay, average network delay, average tasks failure and

average VM utilisation. The service time of each task will depend on the

location of processing, which can be one of the following: 1) Local Edge, the

overall service time consist of WLAN time and processing time. 2)

Collaborative Edge, the overall service time will be WLAN/MAN time and

processing time. 3) Cloud, the overall time consist of WLAN/MAN/WAN time

and processing time in the cloud. After that, we take the average for all tasks

in each scenario see the following equation.

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒 =
∑ 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 + ∑ 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠

- 104 -

The main performance metric is the service time since the end-to-end service

time of an offloading task is most significant for IoT latency-sensitive

application. The average service time of our approach with other related works

algorithms is shown in figure 5.6. It composed of processing time and network

time. The purpose of Experiments was to enhance the resources

management in Edge-Cloud system in order to reduce latency for IoT

applications. As shown in figure 5.6, the proposed approach and other related

algorithms have nearly the same performance when the system unloaded.

Yet, when the number of IoT devices increases, the number of offloaded task

increase, the service time of the proposed approach remain steady compared

to others. The chart shows that there has been a sharp rise in Flores algorithm

after the number of IoT devices increased more than 1400. The

Utilisation_based and Sonmez algorithms nearly have the same performance.

Figure 5.8 compares the average network time of all algorithms. It can be seen

that all the algorithms have the same time when the system stable, but after it

becomes overloaded, they differ. It is obvious that the proposed approach

does not have the lowest network time. The utilisation-based approach

provides the lowest network time comparing to other approaches.

- 105 -

Figure 5. 7: The service time of the proposed approach with other related

approaches

Prior studies [28][106] have noted the importance of considering the

heterogeneity of resources in the process of task scheduling to reduce the

latency. Meeting this demand enables the proposed approach to achieve a

better performance than the others. The proposed approach considers the VM

utilisation in the offloading decision; thus, the task might be sent to the cloud,

which could increase the network time. The observed difference between the

proposed approach and Flores in network time might be explained in this way:

Flores offloads the task to the edge whenever possible without considering

whether the resource is overloaded. This led to an increase in the processing

time, but the proposed approach takes consideration of VM utilisation in order

to avoid processing delay due to overloaded VM.

0

2

4

6

8

10

12

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

Ti
m

e
(S

)

Number of IoT device

SERVICE TIME

UTILIZATION_BASED Sonmez

Flores Prposed Approach

- 106 -

Figure 5. 8:The network time of the proposed approach with other related

approaches

Figure 5. 9: The processing time of the proposed approach with other related

approaches

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

Ti
m

e(
s)

Number of IoT devices

NETWORK TIME

UTILIZATION_BASED Sonmez Flores Prposed

0

2

4

6

8

10

12

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

Ti
m

e(
s)

Number of IoT devices

PROCESSING TIME

UTILIZATION_BASED Sonmez Flores Prposed Approach

- 107 -

Based on EdgeCloudSim, tasks can fail due to various reasons such as the

lake of computational resources in VM (e.g. overloaded VM) and congested

network. Therefore, it is an important performance metric that should consider

in order to evaluate the offloading approach. The results of task failures can

be divided into two parts, when the system stable and when the system

overloaded. For the first part, as shown in figure 5.10, all the algorithms have

nearly the same performance; around 0.5% of tasks will fail. The proposed

approach has the lowest percentage because it considers the required

amount of data to be uploaded and downloaded. On the other hand, as shown

in figure 5.11, when the system load is high, it can be seen that by far, the

lowest task failure average is for the proposed approach. Interestingly, there

were slight differences between Utilisation_based and Flores for all number

of IoT devices. When the system load is low, most of tasks failures due to

network issues such as losses of the packet [6] but when the system

overloaded failures can happen because of the lack of computation (e.g.

unsuccessful completion task) as well as network issues. The proposed

approach was the lowest because it assigns the heavy tasks to the powerful

VM as well as considering the other factors (e.g. VM utilisation, network

demand and delay sensitivity).

- 108 -

Figure 5. 10: Percentage of failed tasks of the proposed approach with other

related approaches Part 1

Figure 5. 11: Percentage of failed tasks of the proposed approach with other

related approaches Part 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200 400 600 800 1000

p
er

ce
n

ta
ge

 o
f

fa
ile

d
 ta

sk
s

(%
)

Number of IoT devices

Failed Task

Utilization_based Flores Sonmez Proposed

0

5

10

15

20

25

30

1200 1400 1600 1800 2000

p
e

rc
en

ta
ge

 o
f

fa
ile

d
 ta

sk
s

(%
)

Number of IoT devices

Failed Tasks

Utilization_based Flores Sonmez Proposed

- 109 -

The results obtained from the preliminary analysis of the average VM

utilisation at edge servers are presented in figure 5.12. It represents when the

system server IoT devices up to 1000. It can be seen that the utilisation level

of al the approaches at 200 devices are similar, and then change when the

number of devices increased. The proposed approach is keeping the

utilisation level relatively low comparing to other approaches when the number

of devices increased. All the other approaches have nearly the same level for

all scenarios. On the other hand, as shown in figure 5.13, when the system

load is high, the proposed approach was the lowest compared to other

algorithms because it trades utilisation for reduced service time. Also, it can

be seen that Sonmez and the proposed approach were relatively similar and

lower than the others. Flores was the highest and we can link that with results

of failed tasks because it assigns the tasks to a highly utilised overloaded VM.

Moreover, the proposed approach succeeded to avoid to reach the

exponential deterioration when the computational resources reach their limit

comparing to other existing approaches. When the resources reach their limit,

this will increase the overall service time and the task failure due to insufficient

computational resources.

- 110 -

Figure 5. 12: Edge server utilisation of the proposed approach with other

related approaches Part 1

Figure 5. 13: Edge server utilisation of the proposed approach with other

related approaches Part 2

0

2

4

6

8

10

12

14

16

18

200 400 600 800 1000

A
ve

ra
ge

 E
d

ge
 V

M
 u

ti
lis

at
io

n
%

Number of IoT devices

Edge VM utilisation

Utilization_based Flores Sonmez Proposed

0

20

40

60

80

100

120

1200 1400 1600 1800 2000A
ve

ra
ge

 E
d

ge
 V

M
 u

ti
lis

at
io

n
 %

Number of IoT devices

Edge VM utilisation

Utilization_based Flores Sonmez Proposed

- 111 -

5.6 Discussion

The proposed approach was compared against existing related works using a

simulation tool EdgeCloudSim, and it was evaluated in the domain of the

edge-cloud environment where it was found to improve the overall service

time and task failure for latency-sensitive applications as well as effectively

utilising the edge-cloud resources.

The obtained results from the simulation tool can be useful and justifiable in

the context of the area of this thesis for two reasons:

1- This research aims to evaluate the impact of computational and

communication demands of latency-sensitive applications as well as

the effectiveness of offloading strategies in order to minimise the

overall service time and improve resource utilisation. EdgeCloudSim

provides the ability to address this aim. More details are available in

Section 2.6.

2- Several published studies [88][144][85][145][146] that have the same

interest in the field used EdgeCloudSim to implement and evaluate

their works. This lead to increase the trust of the obtained simulation

results.

However, EdgeCloudSim has some limitation. According to [147]

EdgeCloudSim uses a single server queuing model to calculate the

communication delay. This considers as not represented the all available

network technologies and could be limited the obtained results. Moreover, It

does not support the VM migration between Edge-Cloud resources, which

could help to reduce the latency, improve the utilisation and task failures.

- 112 -

On the other hand, there are also a few limitations on the proposed approach.

In this research, we assume that we know the required parameters (e.g. task

length, the amount of transferred data for uploading and downloading data) in

advance which might not always be accurate due to the impact of some other

factors. For example, task length is not the only parameters that detriment the

CPU time, other parameters such as retrieving data from memory and I/O

could affect the CPU time. Additionally, the network time of transferred data

affected by other factors such as network congestion. Therefore, methods

such as Reinforcement Learning could be useful to measure the effectiveness

of the offloading decision by observing each action and train the system to

have accurate decisions.

In addition, this work trades utilisation for reduced overall service time; thus,

it could lead to wastage in both computation power and resources at the edge

level. Other energy efficiency techniques (e.g. VM migration, scaling

horizontally/vertically etc.) might be used in the future to overcome this issue

and strike a balance between satisfying the demands of applications and

utilising the Edge/Cloud computational resources efficiently.

5.7 Summary

This chapter has presented and evaluated a new approach for task offloading

in the Edge-Cloud Systems. This approach considering applications

characteristics (e.g. CPU, network and delay) as well as the dynamicity of

resource utilisation. Moreover, it considers different types of computational

resources which represent the real-world scenario. The results show that the

proposed approach works effectively with task offloading more than other

- 113 -

related approaches in term of overall service time and resource utilisation. It

can also reduce the overall task failures due to issues in both network and

computational resources.

- 114 -

Chapter 6. Conclusion and Future Work

In this chapter, the summary of the conducted research is presented in section

6.1. The main contributions of the research are followed in section 6.2. Section

6.3 provides an overall evaluation of the research in terms of research

objectives in chapter 1. Finally, some future work directions in the area of

offloading tasks and resource management of edge computing are presented

in section 6.4

6.1 Research Summary

The work in this thesis is focussed on investigating and exploring service

delays and the main factors of latency in the edge-cloud system for Latency-

sensitive applications. The research is centred on providing an approach to

consider all the related parameters from both applications characteristics and

the edge-cloud resources in order to minimise the overall service time. The

proposed approach is used to minimise the service time of latency-sensitive

application and enhance the resource utilisation in the edge cloud system. To

the best of our knowledge, this is one of the early attempts to characterize

such a system with respect to application’s demands (computational and

communication), edge-cloud resource utilisation and resource heterogeneity

by adopting Fuzzy logic. The results of this study show that the overall service

time will never be truly minimised unless the network time is considered in the

offloading process. Also, in our findings, the impact of computational demand

affected the overall service time more than the communication demand,

especially when there is a high increase in the end devices. Moreover,

- 115 -

selecting the appropriate resources from a pool of heterogeneous resources

could enhance the service time performance and resource utilisation more

than double and 40% respectively. In the following a summary of each thesis

chapters.

• Chapter 2 presents an overview of the fundamental concepts of the

subject of scheduling offloading tasks in the edge-cloud system. It

starts with the core concepts of cloud computing with more details on

its definition, architecture, deployment models and the idea of mobile

cloud computing as an extended model for cloud computing. Then the

core concepts of the transformation to the edge computing and its

models are introduced. These presented the idea of edge computing

and explain the different terms such as fog computing, mobile edge

computing, etc., with a comparison between them. Also, the concept of

the internet of things (IoT) and its applications are described. After that,

the concept of offloading tasks is introduced and discussed with the

context of edge computing. This is followed by positioning the work in

the related literature, focusing on the scheduling offloading tasks issues

and resource management in Edge-Cloud system. A reviewing with

related works that focus on application characteristics is presented.

Also, the related works that consider parameters of edge cloud

resources such as resource utilisation and resource heterogeneity is

provided. Finally, research open challenges and simulation tools are

presented.

• Chapter 3 presents the overview of the edge-cloud system architecture

that supports scheduling offloading tasks of IoT applications, as well as

the explanation of the required components and their interactions within

- 116 -

the system architecture. Furthermore, it presents the offloading latency

models that consider computation and communication as crucial

parameters with respect to offloading to the local edge node, other

edge nodes or the cloud. Chapter 3 concludes by discussing early

experiments conducted on EdgeCloudSim to investigate and evaluate

the latency models of three different offloading scenarios.

• Chapter 4 presents and discusses the main factors of service latency

that will be considered in the proposed approach for edge-cloud

resource management. Since the demand for computation and

communication tasks vary in IoT applications, this chapter aims to

validate the impact of these factors on the overall application latency.

Moreover, Edge-Cloud environment consists of heterogeneity of

computing resources; thus, selecting the appropriate resources to

process the offloading tasks play a critical role to improve the overall

service time. Therefore, a number of simulation experiments were set

up to evaluate the influence of these factors.

• Chapter 5 proposes a new approach for task offloading in edge-cloud

systems in order to minimise the overall service time for latency-

sensitive applications. The approach adopts the fuzzy logic algorithm

that considers application characteristics (i.e. CPU demand, network

demand and delay sensitivity) as well as resource utilisation. A number

of simulation experiments have been conducted in order to evaluate

the proposed approach with other related work.

- 117 -

6.2 Research Contributions

The main contributions of this work can be summarised as follows:

• An investigation on services latency of different tasks' offloading

scenarios in the Edge-Cloud environment in order to enhance the end

to end service time of latency-sensitive applications. It provides in-

depth analyses of the offloading latency models that consider

computation and communication as key parameters with respect to

offloading to the local edge node, other edge nodes or the cloud. The

service latency of the three different offloading scenarios is modelled

in order to address the first research question (Q.1). The obtained

results in Chapter 3 show that the effectiveness of offloading to the

local edge and other edge-cloud resources.

• Quantifying the impact of the variations of the offloading tasks and the

performance of different computational resources within the edge-

cloud system. The details analysis of the main factors that affect the

overall service time is presented in chapter 4 to address research

questions (Q.2 and Q.3). Different computation and communication

demands of offloading tasks, as well as different VMs, have been

modelled in the simulation tool, which has helped to quantify the impact

of computation and communication demands of offloading tasks. The

results presented in Chapter 4 show that the variation of tasks'

demands and VM capabilities have a significant influence on the overall

service time.

• Proposed a new approach that adopts the fuzzy logic algorithm to

considers application characteristics (e.g., CPU demand, network

- 118 -

demand and delay sensitivity) as well as resource utilisation and

resource heterogeneity in order to minimise the overall service time of

latency-sensitive applications. Different approaches to schedule

offloading tasks are simulated in order to evaluate the proposed

approach and to address the research question (Q.4). The obtained

results show that the scheduling algorithms of offloading tasks that not

considering application characteristics and system behaviour could

lead to service time degradation for latency-sensitive applications.

6.3 Overall Research Evaluation

The research objectives of this thesis were discussed In Chapter 1. The

section below describes the success of this thesis in achieving these

objectives.

• It explored the issues related to scheduling of task offloading in the

edge-cloud paradigm. This thesis has reviewed, in Chapter 2, a number

of related works that focused on offloading tasks in edge-cloud

environments. These have been classified into two main objectives,

related works that considering application characteristics and other

works that considering resources parameters.

• Investigating the parameters that influence the overall service time in

edge-cloud environments. This thesis has presented in Chapter 3 and

4, a number of parameters that has a major effect on the overall service

time. The impact of different latency models has been discussed in

Chapter 3. Also, the variation of offloading tasks and different

computational resources are discussed in Chapter 4.

- 119 -

• Developing a dedicated approach for offloading tasks to handle the

requirements of latency-sensitive IoT applications and efficiently

utilising the resources in edge-cloud environments in order to minimise

the overall service time. Chapter 5 of this thesis has presented the

proposed approach for scheduling offloading tasks in order to reduce

the overall service time and improve the resource utilisation. It also

presented an evaluation with other related approaches through

simulation experiments.

6.4 Research Limitations and Future Work

There are a number of future directions with which the work in this thesis could

be enhanced. And also, there are several promising directions are related to

this work and need to be addressed as highlighted below.

• The proposed approach in chapter 5 considers two types of VMs as the

computational resources in the Edge-Cloud environment. Therefore,

the approach could be extended to consider more computational

resources such as different GPUs and FPGAs since there are many

applications for AR/VR and video gaming that requiring intensive

computational in order to process their tasks.

• This work handles the scheduling process of independent tasks;

however, task dependency plays an essential factor to affect the

decision of scheduling tasks. Thus, this work can be extended to

consider tasks dependency in the process of scheduling offloading

tasks. Tasks dependency and the intercommunication between tasks

- 120 -

can be represented as DAG, which can be modelled within the

proposed approach to enhance the overall service time of latency-

sensitive applications.

• Another complement work that will enhance the work presented in this

thesis is to predict the behaviour of latency-sensitive applications. The

prediction can be in several area such as predicting the volume of

incoming tasks, predicting the users' mobility which could help to

determine their locations. Therefore, it would help the resource

manager to prepare the required resources in advance and avoided

any performance degradation. This extension would be useful when

scheduling offloading tasks in order to minimise the overall service

time.

• An extensive and rigorous evaluation of simulation-based results can

be done through two main methods. The first method is to implement

edge-cloud providers’ infrastructure in the real world. To the best of our

knowledge, there are only two providers delivering edge services:

Amazon lambda and IoT Azure. Unfortunately, measuring all the

needed parameters is not allowed on their platforms, but perhaps this

will change in the future. The second method is to use two or more

simulations to validate the simulation results and compare different

tools that use the area. Part of this research can be conducted with

more than one simulator tool. For example, the impact of the

communication demands and computational demands can be

implemented in EdgeCloudSim and IfogSim. However, due to

limitations in time, this is not included in this research and can be in

future works.

- 121 -

Reinforcement Learning could be a useful method compared to Fuzzy logic to

measure the effectiveness of the offloading decision by observing each action

and train the system to have accurate decisions. It is a part of machine

learning and aims to characterise the learning problem rather than the learning

methods. It has been used widely in the area of resource management of

Cloud Computing.

- 122 -

List of References

[1] D. Evans, “The internet of things: How the next evolution of the internet

is changing everything,” CISCO white Pap., 2011.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things

(IoT): A vision, architectural elements, and future directions,” Futur.

Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013, doi:

10.1016/j.future.2013.01.010.

[3] A. Yousefpour et al., “All one needs to know about fog computing and

related edge computing paradigms: A complete survey,” J. Syst. Archit.,

vol. 98, no. February, pp. 289–330, 2019, doi:

10.1016/j.sysarc.2019.02.009.

[4] S. Shekhar and A. Gokhale, “Dynamic Resource Management Across

Cloud-Edge Resources for Performance-Sensitive Applications,” Proc.

17th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput., pp. 707–710,

2017, doi: 10.1109/CCGRID.2017.120.

[5] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” 2011.

[6] Y. Sahni, J. Cao, S. Zhang, and L. Yang, “Edge Mesh: A New Paradigm

to Enable Distributed Intelligence in Internet of Things,” IEEE Access,

pp. 16441–16458, 2017, doi: 10.1109/ACCESS.2017.2739804.

[7] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application

Management in Fog Computing Environments : A Taxonomy , Review

and Future Directions,” vol. 1, no. 1, 2020.

[8] A. Gluhak et al., “A Survey on Facilities for Experimental Internet of

Things Research,” IEEE Commun. Mag., vol. 49, no. 11, pp. 58–67,

- 123 -

2014, doi: 10.1109/MCOM.2011.6069710.

[9] A. C. Baktir, C. Sonmez, C. Ersoy, A. Ozgovde, and B. Varghese,

“Addressing the Challenges in Federating Edge Resources,” in Fog and

Edge Computing: Principles and Paradigms, R. Buyya and N. Srirama,

Eds. Wiley STM, 2019, pp. 25–49.

[10] G. D’Angelo, S. Ferretti, and V. Ghini, “Modeling the internet of things:

A simulation perspective,” Proc. - 2017 Int. Conf. High Perform. Comput.

Simulation, HPCS 2017, pp. 18–27, 2017, doi: 10.1109/HPCS.2017.13.

[11] C. Sonmez and A. Ozgovde, “EdgeCloudSim : An environment for

performance evaluation of edge computing systems,” Trans. Emerg.

Telecommun. Technol., no. May, pp. 1–17, 2018, doi: 10.1002/ett.3493.

[12] R. E. Shannon, “Simulation modeling & methodology,” Proc. - Winter

Simul. Conf., vol. Part F1308, pp. 9–15, 1976, doi:

10.1145/1102766.1102770.

[13] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of

scalable cloud computing environments and the cloudsim toolkit:

Challenges and opportunities,” Proc. 2009 Int. Conf. High Perform.

Comput. Simulation, HPCS 2009, pp. 1–11, 2009, doi:

10.1109/HPCSIM.2009.5192685.

[14] S. Svorobej et al., “Simulating fog and edge computing scenarios: An

overview and research challenges,” Futur. Internet, vol. 11, no. 3, pp.

1–15, 2019, doi: 10.3390/fi11030055.

[15] A. Azadeh, S. N. Shirkouhi, and K. Rezaie, “A robust decision-making

methodology for evaluation and selection of simulation software

package,” Int. J. Adv. Manuf. Technol., vol. 47, no. 1–4, pp. 381–393,

2010, doi: 10.1007/s00170-009-2205-6.

- 124 -

[16] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, “The characteristics

of cloud computing,” Proc. Int. Conf. Parallel Process. Work., pp. 275–

279, 2010, doi: 10.1109/ICPPW.2010.45.

[17] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and

challenges,” Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, pp. 27–33,

2010, doi: 10.1109/AINA.2010.187.

[18] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-

art and research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp.

7–18, 2010, doi: 10.1007/s13174-010-0007-6.

[19] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud

computing: architecture, applications, and approaches,” Wirel.

Commun. Mob. Comput., pp. 1587–1611, 2013, doi: 10.1002/wcm.

[20] A. N. Khan, M. L. Mat Kiah, S. U. Khan, and S. A. Madani, “Towards

secure mobile cloud computing: A survey,” Futur. Gener. Comput. Syst.,

vol. 29, no. 5, pp. 1278–1299, 2013, doi: 10.1016/j.future.2012.08.003.

[21] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware

cloudlet-based mobile cloud computing model for green computing,” J.

Netw. Comput. Appl., vol. 59, pp. 46–54, 2016, doi:

10.1016/j.jnca.2015.05.016.

[22] D. Kovachev, Y. Cao, and R. Klamma, “Mobile Cloud Computing : A

Comparison of Application Models,” Inf. Syst. J., vol. abs/1107.4, no. 4,

pp. 14–23, 2011, doi: 10.1007/s11042-012-1100-6.

[23] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and N.

Venkatasubramanian, “Mobile cloud computing: A survey, state of art

and future directions,” Mob. Networks Appl., vol. 19, no. 2, pp. 133–143,

2014, doi: 10.1007/s11036-013-0477-4.

- 125 -

[24] Y. Xu and S. Mao, “A survey of mobile cloud computing for rich media

applications,” IEEE Wirel. Commun., no. June, pp. 46–53, 2013.

[25] Y. Jararweh, A. Doulat, O. Alqudah, E. Ahmed, M. Al-Ayyoub, and E.

Benkhelifa, “The future of mobile cloud computing: Integrating cloudlets

and Mobile Edge Computing,” 2016 23rd Int. Conf. Telecommun. ICT

2016, pp. 1–5, 2016, doi: 10.1109/ICT.2016.7500486.

[26] X. He, Z. Ren, C. Shi, and J. Fang, “A Novel Load Balancing Strategy

of Software-Defined Cloud / Fog Networking in the Internet of Vehicles,”

China Commun., vol. 13, pp. 140–149, 2016, doi:

10.1109/CC.2016.7833468.

[27] M. Firdhous, O. Ghazali, and S. Hassan, “Fog Computing: Will it be the

Future of Cloud Computing?,” Third Int. Conf. Informatics Appl., pp. 8–

15, 2014, doi: 10.13140/2.1.3216.7684.

[28] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile

cloud computing: Taxonomy and open challenges,” IEEE Commun.

Surv. Tutorials, vol. 16, no. 1, pp. 369–392, 2014, doi:

10.1109/SURV.2013.050113.00090.

[29] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog

computing may help to save energy in cloud computing,” IEEE J. Sel.

Areas Commun., vol. 34, no. 5, pp. 1728–1739, 2016, doi:

10.1109/JSAC.2016.2545559.

[30] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:

Bringing the cloud to the mobile user,” MCS’12 - Proc. 3rd ACM Work.

Mob. Cloud Comput. Serv., pp. 29–35, 2012, doi:

10.1145/2307849.2307858.

[31] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision

- 126 -

and Challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,

2016, doi: 10.1109/JIOT.2016.2579198.

[32] P. G. Lopez et al., “Edge-centric computing: Vision and challenges,”

Comput. Commun. Rev., vol. 45, no. 5, pp. 37–42, 2015, doi:

10.1145/2831347.2831354.

[33] M. Satyanarayanan, “The Emergence of Edge Computing,” IEEE

Comput. Soc., no. June, 2017.

[34] R. Want, B. N. Schilit, and S. Jenson, “Enabling the Internet of Things,”

IEEE Comput. Soc., vol. 48, no. 1, pp. 28–35, 2015, doi: 10.1007/978-

3-319-51482-6.

[35] W. Shi and S. Dustdar, “The promise of Edge Computing,” IEEE

Comput. Soc., no. 0018, 2016.

[36] K. Djemame, R. Kavanagh, and D. Armstrong, “Energy Efficiency

Support through Intra-Layer Cloud Stack Adaptation.,” in 13th

International Conference on Economics of Grids, Clouds, Systems and

Services (GECON 2016), 2017.

[37] T. Yaofeng, D. Zhenjiang, and Y. Hongzhang, “Key Technologies and

Application of Edge Computing,” ZTE Commun., vol. 15, no. 1–2, pp.

26–34, 2017, doi: 10.3969/j.

[38] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How Can Edge Computing

Benefit from Software-Defined Networking: A Survey, Use Cases, and

Future Directions,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp.

2359–2391, 2017, doi: 10.1109/COMST.2017.2717482.

[39] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and E. Riviere,

“On using micro-clouds to deliver the fog,” IEEE Internet Comput., vol.

21, no. 2, pp. 8–15, 2017, doi: 10.1109/MIC.2017.35.

- 127 -

[40] S. Wang, K. Chan, R. Urgaonkar, T. He, and K. K. Leung, “Emulation-

based study of dynamic service placement in mobile micro-clouds,”

Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2015-Decem, pp. 1046–

1051, 2015, doi: 10.1109/MILCOM.2015.7357583.

[41] I. Petri, O. Rana, J. Bignell, and N. Auluck, “Incentivising Resource

Sharing in Edge Computing Applications,” Econ. Grids, Clouds, Syst.

Serv. GECON, vol. 10537, 2017, doi: doi.org/10.1007/978-3-319-

68066-8_16.

[42] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-Aware

Resource Allocation for Edge Computing,” Proc. - 2017 IEEE 1st Int.

Conf. Edge Comput. EDGE 2017, pp. 47–54, 2017, doi:

10.1109/IEEE.EDGE.2017.15.

[43] R. Deng, R. Lu, C. Lai, and T. H. Luan, “Towards power consumption-

delay tradeoff by workload allocation in cloud-fog computing,” IEEE Int.

Conf. Commun. - Mob. Wirel. Netw. Symp., vol. 2015-Septe, pp. 3909–

3914, 2015, doi: 10.1109/ICC.2015.7248934.

[44] W. Hu et al., “Quantifying the impact of edge computing on mobile

applications,” Proc. 7th ACM SIGOPS Asia-Pacific Work. Syst. APSys

2016, 2016, doi: 10.1145/2967360.2967369.

[45] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S.

Nikolopoulos, “Challenges and Opportunities in Edge Computing,” IEEE

Int. Conf. Smart Cloud, pp. 20–26, 2016, doi:

10.1109/SmartCloud.2016.18.

[46] K. Dolui and S. K. Datta, “Comparison of edge computing

implementations: Fog computing, cloudlet and mobile edge computing,”

2017 Glob. Internet Things Summit, pp. 1–6, 2017, doi:

- 128 -

10.1109/GIOTS.2017.8016213.

[47] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,

applications and issues,” Proc. Int. Symp. Mob. Ad Hoc Netw. Comput.,

vol. 2015-June, pp. 37–42, 2015, doi: 10.1145/2757384.2757397.

[48] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The case for

VM-based cloudlets in mobile computing,” IEEE pervasive Comput., vol.

8, no. 4, pp. 14–23, 2009, doi: 10.7748/ns.3.51.55.s67.

[49] A. Bahtovski and M. Gusev, “Cloudlet challenges,” in 24 International

Symposium on Intelligent Manufacturing and Automation, 2014, vol. 69,

pp. 704–711, doi: 10.1016/j.proeng.2014.03.045.

[50] A. Sathiaseelan, A. Lertsinsrubtave, A. Jagan, P. Baskaran, and J.

Crowcroft, “Cloudrone: Micro clouds in the sky,” DroNet 2016 - Proc.

2nd Work. Micro Aer. Veh. Networks, Syst. Appl. Civ. Use, co-located

with MobiSys 2016, pp. 41–44, 2016, doi: 10.1145/2935620.2935625.

[51] B. Varghese and R. Buyya, “Next generation cloud computing: New

trends and research directions,” Futur. Gener. Comput. Syst., vol. 79,

pp. 849–861, 2018, doi: 10.1016/j.future.2017.09.020.

[52] K. Ha et al., “Adaptive VM Handoff Across Cloudlets,” Tech. Report-

CMU-CS-15-113, no. June, pp. 1–25, 2015.

[53] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey on

Mobile Edge Computing: The Communication Perspective,” IEEE

Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017, doi:

10.1109/COMST.2017.2745201.

[54] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” MCC’12 - Proc. 1st ACM Mob. Cloud

Comput. Work., pp. 13–15, 2012, doi: 10.1145/2342509.2342513.

- 129 -

[55] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A

Platform for Internet of Things and Analytics,” in Big Data and Internet

of Things: A Roadmap for Smart Environments, vol. 546, no. January,

Springer, Cham, 2014, pp. 169–186.

[56] T. H. Luan, L. Gao, Z. Li, Y. Xiang, and L. Sun, “Fog Computing:

Focusing on Mobile Users at the Edge,” eprint arXiv:1502.01815, pp. 1–

11, 2015, doi: 10.1016/j.jnca.2015.02.002.

[57] I. Stojmenovic and S. Wen, “The Fog computing paradigm: Scenarios

and security issues,” 2014 Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS

2014, vol. 2, pp. 1–8, 2014, doi: 10.15439/2014F503.

[58] A. Al-fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“Internet of Things : A Survey on Enabling Technologies, Protocols, and

Applications,” IEEE Commun. Surv. TUTORIALS, vol. 17, no. 4, pp.

2347–2376, 2015.

[59] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile Edge

Computing A key technology towards 5G,” ETSI White Pap., no. 11,

2015.

[60] E. Ahmed and M. H. Rehmani, “Mobile Edge Computing: Opportunities,

solutions, and challenges,” Futur. Gener. Comput. Syst., vol. 70, pp. 59–

63, 2016, doi: 10.1016/j.future.2016.09.015.

[61] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A Taxonomy,

Survey and Future Directions,” Springer, Singapore, 2018, pp. 103–

130.

[62] M. Al-ayyoub, Y. Jararweh, A. Doulat, O. Alqudah, E. Ahmed, and M.

Al-ayyoub, “The Future of Mobile Cloud Computing : Integrating

Cloudlets and Mobile Edge Computing,” 2016 23rd Int. Conf.

- 130 -

Telecommun., no. May, pp. 760–764, 2016, doi:

10.1109/ICT.2016.7500486.

[63] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on

Architecture and Computation Offloading,” IEEE Commun. Surv.

Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017, doi:

10.1109/COMST.2017.2682318.

[64] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, Fog et

al.: A survey and analysis of security threats and challenges,” Futur.

Gener. Comput. Syst., vol. 78, pp. 680–698, 2018, doi:

10.1016/j.future.2016.11.009.

[65] C. M. Huang, M. S. Chiang, D. T. Dao, W. L. Su, S. Xu, and H. Zhou,

“V2V Data Offloading for Cellular Network Based on the Software

Defined Network (SDN) Inside Mobile Edge Computing (MEC)

Architecture,” IEEE Access, vol. 6, pp. 17741–17755, 2018, doi:

10.1109/ACCESS.2018.2820679.

[66] M. Emara, M. C. Filippou, and D. Sabella, “MEC-Assisted End-to-End

Latency Evaluations for C-V2X Communications,” 2018 Eur. Conf.

Networks Commun. EuCNC 2018, pp. 157–161, 2018, doi:

10.1109/EuCNC.2018.8442825.

[67] G. I. Klas, “Fog Computing and Mobile Edge Cloud Gain Momentum

Open Fog Consortium, ETSI MEC and Cloudlets,” White Pap., pp. 1–

14, 2015.

[68] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a Service

and Big Data,” Proc. Int. Conf. Adv. Cloud Comput., pp. 21–29, 2012,

doi: arXiv:1301.0159.

[69] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog:

- 131 -

Towards a comprehensive definition of fog computing,” Comput.

Commun. Rev., vol. 44, no. 5, pp. 27–32, 2014, doi:

10.1145/2677046.2677052.

[70] K. Rose, S. Eldridge, and C. Lyman, “The internet of things: an

overview,” Internet Soc., no. October, p. 53, 2015, doi:

10.1017/CBO9781107415324.004.

[71] A. Čolaković and M. Hadžialić, “Internet of Things (IoT): A review of

enabling technologies, challenges, and open research issues,” Comput.

Networks, vol. 144, pp. 17–39, 2018, doi:

10.1016/j.comnet.2018.07.017.

[72] C. Jiang, X. Cheng, H. Gao, X. Zhou, and J. Wan, “Toward Computation

Offloading in Edge Computing: A Survey,” IEEE Access, vol. 7, pp.

131543–131558, 2019, doi: 10.1109/ACCESS.2019.2938660.

[73] X. Lyu et al., “Selective Offloading in Mobile Edge Computing for the

Green Internet of Things,” IEEE Netw., vol. 32, no. 1, pp. 54–60, 2018,

doi: 10.1109/MNET.2018.1700101.

[74] T. Q. Dinh, S. Member, J. Tang, Q. D. La, T. Q. S. Quek, and S.

Member, “Offloading in Mobile Edge Computing : Task Allocation and

Computational Frequency Scaling,” IEEE Trans. Commun., vol. 65, no.

8, pp. 3571–3584, 2017.

[75] H. Flores et al., “Large-scale offloading in the Internet of Things,” 2017

IEEE Int. Conf. Pervasive Comput. Commun. Work. PerCom Work.

2017, pp. 479–484, 2017, doi: 10.1109/PERCOMW.2017.7917610.

[76] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, and D. Soudris,

“Computation Offloading Management and Resource Allocation for

Low-power IoT Edge Devices,” in IEEE 3rd World Forum on Internet of

- 132 -

Things (WF-IoT), 2016, pp. 7–12.

[77] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware

application module management for fog computing environments,”

ACM Trans. Internet Technol., vol. 19, no. 1, 2018, doi:

10.1145/3186592.

[78] W. Tärneberg et al., “Dynamic application placement in the Mobile

Cloud Network,” Futur. Gener. Comput. Syst., vol. 70, pp. 163–177,

2017, doi: 10.1016/j.future.2016.06.021.

[79] S. Wang, M. Zafer, and K. K. Leung, “Online Placement of Multi-

Component Applications in Edge Computing Environments,” IEEE

Access, vol. 5, pp. 2514–2533, 2017, doi:

10.1109/ACCESS.2017.2665971.

[80] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid Method

for Minimizing Service Delay in Edge Cloud Computing Through VM

Migration and Transmission Power Control,” IEEE Trans. Comput., vol.

66, no. 5, pp. 810–819, 2017, doi: 10.1109/TC.2016.2620469.

[81] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload

Allocation in Fog-Cloud Computing Toward Balanced Delay and Power

Consumption,” IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,

2016, doi: 10.1109/JIOT.2016.2565516.

[82] D. Zeng, L. Gu, S. Guo, and Z. Cheng, “Joint optimization of task

scheduling and image placement in fog computing supported software-

defined embedded system,” IEEE Trans., vol. 65, no. 12, pp. 3702–

3712, 2016.

[83] Q. Fan and N. Ansari, “Application Aware Workload Allocation for Edge

Computing-Based IoT,” IEEE Internet Things J., vol. 5, no. 3, pp. 2146–

- 133 -

2153, 2018, doi: 10.1109/JIOT.2018.2826006.

[84] S. Azizi, “A priority-based service placement policy for Fog-Cloud

computing systems,” vol. 7, no. 4, pp. 521–534, 2019.

[85] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy workload orchestration

for edge computing,” IEEE Trans. Netw. Serv. Manag., vol. 16, no. 2,

pp. 769–782, 2019, doi: 10.1109/TNSM.2019.2901346.

[86] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, and A. Y. Zomaya,

“Cost-effective processing for Delay-sensitive applications in Cloud of

Things systems,” Proc. - 2016 IEEE 15th Int. Symp. Netw. Comput.

Appl. NCA 2016, pp. 162–169, 2016, doi: 10.1109/NCA.2016.7778612.

[87] Y. Li and S. Wang, “An energy-aware edge server placement algorithm

in mobile edge computing,” Proc. - 2018 IEEE Int. Conf. Edge Comput.

EDGE 2018 - Part 2018 IEEE World Congr. Serv., pp. 66–73, 2018, doi:

10.1109/EDGE.2018.00016.

[88] V. Scoca, A. Aral, I. Brandic, R. De Nicola, and R. B. Uriarte,

“Scheduling Latency-Sensitive Applications in Edge Computing,” in 8TH

Intrnathonal conference on cloud computing and services science,

2018.

[89] D. G. Roy, D. De, A. Mukherjee, and R. Buyya, “Application-aware

cloudlet selection for computation offloading in multi-cloudlet

environment,” J. Supercomput., vol. 73, no. 4, pp. 1672–1690, 2017,

doi: 10.1007/s11227-016-1872-y.

[90] M. Taneja and A. Davy, “Resource aware placement of IoT application

modules in Fog-Cloud Computing Paradigm,” Proc. IM 2017 - 2017

IFIP/IEEE Int. Symp. Integr. Netw. Serv. Manag., pp. 1222–1228, 2017,

doi: 10.23919/INM.2017.7987464.

- 134 -

[91] K. Alwasel et al., “IoTSim-SDWAN: A simulation framework for

interconnecting distributed datacenters over Software-Defined Wide

Area Network (SD-WAN),” J. Parallel Distrib. Comput., vol. 143, pp. 17–

35, 2020, doi: 10.1016/j.jpdc.2020.04.006.

[92] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A

toolkit for modeling and simulation of resource management techniques

in the Internet of Things, Edge and Fog computing environments,”

Softw. - Pract. Exp., vol. 47, no. 9, pp. 1275–1296, 2017, doi:

10.1002/spe.2509.

[93] T. Qayyum, A. W. Malik, M. A. Khan, O. Khalid, and S. U. Khan,

“FogNetSim++: A Toolkit for Modeling and Simulation of Distributed Fog

Environment,” IEEE Access, vol. 14, no. 8, pp. 1–1, 2018, doi:

10.1109/ACCESS.2018.2877696.

[94] C. Rodrigo, R. Ranjan, and R. Buyya, “CloudSim: a toolkit formodeling

and simulation of cloud computing environments and evaluation of

resource provisioning algorithms Rodrigo,” Softw. - Pract. Exp., vol. 39,

no. 7, pp. 701–736, 2009, doi: 10.1002/spe.

[95] A. Yousefpour et al., “All one needs to know about fog computing and

related edge computing paradigms: A complete survey,” J. Syst. Archit.,

vol. 98, no. December 2018, pp. 289–330, 2019, doi:

10.1016/j.sysarc.2019.02.009.

[96] A. Varga, “OMNeT++,” Model. tools Netw. Simul., pp. 35–59, 2010.

[97] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,

“On Multi-Access Edge Computing: A Survey of the Emerging 5G

Network Edge Architecture & Orchestration,” IEEE Commun. Surv.

Tutorials, vol. PP, no. 99, pp. 1–1, 2017, doi:

- 135 -

10.1109/COMST.2017.2705720.

[98] N. Choi, D. Kim, S. Lee, and Y. Yi, “Fog Operating System for User-

Oriented IoT Services : Challenges and Research Directions,” IEEE

Commun. Mag., no. August, pp. 2–9, 2017.

[99] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, and S. Cretti, “Foggy:

A Platform for Workload Orchestration in a Fog Computing

Environment,” Proc. Int. Conf. Cloud Comput. Technol. Sci. CloudCom,

vol. 2017-Decem, pp. 231–234, 2017, doi: 10.1109/CloudCom.2017.62.

[100] A. Hegyi, H. Flinck, I. Ketyko, P. Kuure, C. Nemes, and L. Pinter,

“Application orchestration in mobile edge cloud : Placing of IoT

applications to the edge,” IEEE 1st Int. Work. Found. Appl. Self-

Systems, FAS-W 2016, pp. 230–235, 2016, doi: 10.1109/FAS-

W.2016.56.

[101] K. Imagane, K. Kanai, J. Katto, T. Tsuda, and H. Nakazato,

“Performance evaluations of multimedia service function chaining in

edge clouds,” CCNC 2018 - 2018 15th IEEE Annu. Consum. Commun.

Netw. Conf., vol. 2018-Janua, pp. 1–4, 2018, doi:

10.1109/CCNC.2018.8319249.

[102] A. Carrega, M. Repetto, and A. Zafeiropoulos, “A Middleware for Mobile

Edge Computing,” IEEE Cloud Comput., vol. 4, no. 4, p. 12, 2017.

[103] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge

computing potential in making cities smarter,” IEEE Commun. Mag., vol.

55, no. 3, pp. 38–43, 2017, doi: 10.1109/MCOM.2017.1600249CM.

[104] “New services & applications with 5G ultra-reliable low latency

communications,” Americas 5G, vol. 16, no. 0, p. 60, 2018.

[105] R. A. Dziyauddin, D. Niyato, N. C. Luong, M. A. M. Izhar, M. Hadhari,

- 136 -

and S. Daud, “Computation Offloading and Content Caching Delivery in

Vehicular Edge Computing: A Survey,” pp. 1–29, 2019.

[106] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality

of Experience (QoE)-aware placement of applications in Fog computing

environments,” J. Parallel Distrib. Comput., vol. 132, pp. 190–203, 2019,

doi: 10.1016/j.jpdc.2018.03.004.

[107] X. Sun and N. Ansari, “Latency Aware Workload Offloading in the

Cloudlet Network,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1481–1484,

2017, doi: 10.1109/LCOMM.2017.2690678.

[108] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino,

“Scalability and Performance Evaluation of Edge Cloud Systems for

Latency Constrained Applications,” in Third ACM/IEEE Symposium on

Edge Computing, 2018, no. October, doi: 10.1109/SEC.2018.00028.

[109] S. Shekhar, A. Chhokra, A. Bhattacharjee, G. Aupy, and A. Gokhale,

“INDICES: Exploiting Edge Resources for Performance-aware Cloud-

hosted Services,” 1st IEEE/ACM Int. Conf. Fog Edge Comput.

(ICFEC)(to Appear. Madrid, Spain, 2017, doi: 10.1109/ICFEC.2017.16.

[110] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the Suitability of

Fog Computing in the Context of Internet of Things,” IEEE Trans. Cloud

Comput., vol. 7161, no. c, pp. 1–1, 2015, doi:

10.1109/TCC.2015.2485206.

[111] K. Sasaki, S. Makido, and A. Nakao, “Vehicle Control System for

Cooperative Driving Coordinated Multi -Layered Edge Servers,” Proc.

2018 IEEE 7th Int. Conf. Cloud Networking, CloudNet 2018, 2018, doi:

10.1109/CloudNet.2018.8549396.

[112] Y. Gao, W. Hu, K. Ha, B. Amos, P. Pillai, and M. Satyanarayanan, “Are

- 137 -

Cloudlets Necessary?,” no. October. School Comput. Sci., Carnegie

Mellon Univ., Pittsburgh, PA, USA, Tech. Rep, 2015.

[113] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The case for

VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,

vol. 8, no. 4, pp. 14–23, 2009, doi: 10.1109/MPRV.2009.82.

[114] H. Wu, Y. Sun, and K. Wolter, “Energy-Efficient Decision Making for

Mobile Cloud Offloading,” IEEE Trans. Cloud Comput., vol. 7161, no. c,

2018, doi: 10.1109/TCC.2018.2789446.

[115] C. Li, J. Tang, H. Tang, and Y. Luo, “Collaborative cache allocation and

task scheduling for data-intensive applications in edge computing

environment,” Futur. Gener. Comput. Syst., vol. 95, pp. 249–264, 2019,

doi: 10.1016/j.future.2019.01.007.

[116] W. Hu et al., “Quantifying the Impact of Edge Computing on Mobile

Applications,” Proc. 7th ACM SIGOPS Asia-Pacific Work. Syst. - APSys

’16, pp. 1–8, 2016, doi: 10.1145/2967360.2967369.

[117] G. L. Stavrinides and H. D. Karatza, “A hybrid approach to scheduling

real-time IoT workflows in fog and cloud environments,” Multimed. Tools

Appl., pp. 24639–24655, 2018, doi: 10.1007/s11042-018-7051-9.

[118] E. Renart, J. Diaz-montes, and M. Parashar, “Data-driven Stream

Processing at the Edge,” in IEEE 1st International Conference on Fog

and Edge Computing (ICFEC), 2017, pp. 1–10, doi:

10.1109/ICFEC.2017.18.

[119] A. H. Sodhro, Z. Luo, A. K. Sangaiah, and S. W. Baik, “Mobile edge

computing based QoS optimization in medical healthcare applications,”

Int. J. Inf. Manage., vol. 45, pp. 308–318, 2019, doi:

10.1016/j.ijinfomgt.2018.08.004.

- 138 -

[120] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “A hybrid edge-cloud

architecture for reducing on-demand gaming latency,” Multimed. Syst.,

vol. 20, no. 5, pp. 503–519, 2014, doi: 10.1007/s00530-014-0367-z.

[121] M. Aldossary and K. Djemame, “Performance and energy-based cost

prediction of virtual machines auto-scaling in clouds,” Proc. - 44th

Euromicro Conf. Softw. Eng. Adv. Appl. SEAA 2018, pp. 502–509,

2018, doi: 10.1109/SEAA.2018.00086.

[122] Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, “QoS Prediction

for Service Recommendation with Deep Feature Learning in Edge

Computing Environment,” Mob. Networks Appl., vol. 25, no. 2, pp. 391–

401, 2020, doi: 10.1007/s11036-019-01241-7.

[123] H. Tan, Z. Han, X. Y. Li, and F. C. M. Lau, “Online job dispatching and

scheduling in edge-clouds,” in Proceedings - IEEE INFOCOM, 2017,

doi: 10.1109/INFOCOM.2017.8057116.

[124] R. Beraldi, A. Mtibaa, and H. Alnuweiri, “Cooperative load balancing

scheme for edge computing resources,” in 2017 2nd International

Conference on Fog and Mobile Edge Computing, FMEC 2017, 2017,

pp. 94–100, doi: 10.1109/FMEC.2017.7946414.

[125] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective

Optimization for Computation Offloading in Fog Computing,” in IEEE

Symposium on Computers and Communications (ISCC), 2017, vol. 5,

no. 1, pp. 283–294, doi: 10.1109/JIOT.2017.2780236.

[126] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui, “Exploiting

hardware heterogeneity within the same instance type of Amazon EC2,”

in 4th Workshop on Hot Topics in Cloud Computing, HotCloud 2012,

2012, pp. 4–8.

- 139 -

[127] T. Tran and D. Pompili, “Joint Task Offloading and Resource Allocation

for Multi-Server Mobile-Edge Computing Networks,” IEEE Trans. Veh.

Technol., vol. 68, no. 1, pp. 856–868, 2019, doi:

10.1109/ICC.2019.8761239.

[128] D. Zhou, F. Chao, C. M. Lin, L. Yang, M. Shi, and C. Zhou, “Integration

of fuzzy CMAC and BELC networks for uncertain nonlinear system

control,” IEEE Int. Conf. Fuzzy Syst., 2017, doi: 10.1109/FUZZ-

IEEE.2017.8015410.

[129] L. Abdullah, “Fuzzy Multi Criteria Decision Making and its Applications:

A Brief Review of Category,” Procedia - Soc. Behav. Sci., vol. 97, no.

November 2013, pp. 131–136, 2013, doi:

10.1016/j.sbspro.2013.10.213.

[130] X. Wei, C. Tang, J. Fan, and S. Subramaniam, “Joint Optimization of

Energy Consumption and Delay in Cloud-to-Thing Continuum,” IEEE

Internet Things J., vol. 6, no. 2, pp. 1–1, 2019, doi:

10.1109/JIOT.2019.2906287.

[131] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-User Computation

Partitioning for Latency Sensitive Mobile Cloud Applications,” IEEE

Trans. Comput., vol. 64, no. 8, pp. 2253–2266, 2015, doi:

10.1109/TC.2014.2366735.

[132] A. Mukherjee, D. De, and D. Roy, “A Power and Latency Aware Cloudlet

Selection Strategy for Multi-Cloudlet Environment,” IEEE Trans. Cloud

Comput., vol. 7161, no. c, pp. 1–1, 2016, doi:

10.1109/TCC.2016.2586061.

[133] S. Sharma and H. Saini, “A novel four-tier architecture for delay aware

scheduling and load balancing in fog environment,” Sustain. Comput.

- 140 -

Informatics Syst., vol. 24, p. 100355, 2019, doi:

10.1016/j.suscom.2019.100355.

[134] X. Xu et al., “Dynamic Resource Allocation for Load Balancing in Fog

Environment,” Wirel. Commun. Mob. Comput., vol. 2018, 2018, doi:

10.1155/2018/6421607.

[135] B. Yang, W. K. Chai, G. Pavlou, and K. V. Katsaros, “Seamless Support

of Low Latency Mobile Applications with NFV-Enabled Mobile Edge-

Cloud,” Proc. - 2016 5th IEEE Int. Conf. Cloud Networking, CloudNet

2016, pp. 136–141, 2016, doi: 10.1109/CloudNet.2016.21.

[136] M. Helbig, K. Deb, and A. Engelbrecht, “Key challenges and future

directions of dynamic multi-objective optimisation,” 2016 IEEE Congr.

Evol. Comput. CEC 2016, pp. 1256–1261, 2016, doi:

10.1109/CEC.2016.7743931.

[137] A. Ansari and A. A. Bakar, “A Comparative Study of Three Artificial

Intelligence Techniques: Genetic Algorithm, Neural Network, and Fuzzy

Logic, on Scheduling Problem,” Proc. - 2014 4th Int. Conf. Artif. Intell.

with Appl. Eng. Technol. ICAIET 2014, pp. 31–36, 2015, doi:

10.1109/ICAIET.2014.15.

[138] X. Kong, C. Lin, Y. Jiang, W. Yan, and X. Chu, “Efficient dynamic task

scheduling in virtualized data centers with fuzzy prediction,” J. Netw.

Comput. Appl., vol. 34, no. 4, pp. 1068–1077, 2011, doi:

10.1016/j.jnca.2010.06.001.

[139] F. Basic, A. Aral, and I. Brandic, “Fuzzy handoff control in edge

offloading,” Proc. - 2019 IEEE Int. Conf. Fog Comput. ICFC 2019, pp.

87–96, 2019, doi: 10.1109/ICFC.2019.00020.

[140] L. Ramaswamy, A. Iyengar, and J. Chen, “Cooperative data placement

- 141 -

and replication in edge cache networks,” 2006 Int. Conf. Collab.

Comput. Networking, Appl. Work. Collab., 2006, doi:

10.1109/COLCOM.2006.361850.

[141] L. Mao, Y. Li, G. Peng, X. Xu, and W. Lin, “A multi-resource task

scheduling algorithm for energy-performance trade-offs in green

clouds,” Sustain. Comput. Informatics Syst., vol. 19, no. January, pp.

233–241, 2018, doi: 10.1016/j.suscom.2018.05.003.

[142] H. Flores and S. N. Srirama, “Adaptive code offloading for mobile cloud

applications: Exploiting fuzzy sets and evidence-based learning,” MCS

2013 - Proc. 4th ACM Work. Mob. Cloud Comput. Serv., pp. 9–16, 2013,

doi: 10.1145/2482981.2482984.

[143] C. Sonmez, “Performance Evaluation of Single-Tier and Two-Tier

Cloudlet Assisted Applications,” 2017 IEEE Int. Conf. Commun. Work.

(ICC Work., pp. 302–307, 2017, doi: 10.1109/ICCW.2017.7962674.

[144] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, “A Double

Deep Q-Learning Model for Energy-Efficient Edge Scheduling,” IEEE

Trans. Serv. Comput., vol. 12, no. 5, pp. 739–749, 2019, doi:

10.1109/TSC.2018.2867482.

[145] M. D. Hossain et al., “Collaborative Task Offloading for Overloaded

Mobile Edge Computing in Small-Cell Networks,” Int. Conf. Inf. Netw.,

vol. 2020-Janua, pp. 717–722, 2020, doi:

10.1109/ICOIN48656.2020.9016452.

[146] A. Kovalenko, R. F. Hussain, O. Semiari, and M. A. Salehi, “Robust

resource allocation using edge computing for vehicle to infrastructure

(v2i) networks,” 2019 IEEE 3rd Int. Conf. Fog Edge Comput. ICFEC

2019 - Proc., 2019, doi: 10.1109/CFEC.2019.8733151.

- 142 -

[147] D. Perez Abreu, K. Velasquez, M. Curado, and E. Monteiro, “A

comparative analysis of simulators for the Cloud to Fog continuum,”

Simul. Model. Pract. Theory, vol. 101, no. October 2019, p. 102029,

2020, doi: 10.1016/j.simpat.2019.102029.

