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Abstract

Increasing demand for renewable sources requires more cost-effective solutions to

mitigate the cost of maintenance and produce more energy. Preventive maintenance

is the most normally adopted scheme in industry for maintenance but despite

being well accepted has severe limitations. Its inability to intelligently schedule

maintenance at the right time and prevent unexpected breakdowns are the main

downsides of this approach and consequently leads to several problems such as

unnecessary maintenances. This strategy does not justify the additional costs and

thereby represents a negative aspect for renewable energy resource companies that

try to generate cost-competitive energy. These challenges are progressively leading

towards the predictive maintenance approach to overcome these aforementioned

issues. Wind Turbine Gearbox Bearings have received a lot of attention due to the

high incidence failure rates provoked by the harsh operational and environmental

conditions. Current techniques only reach a level one of diagnostics commonly

known as the Novelty Detection stage and normally requires the expertise of a skilled

operator to interpret data and infer damage from it. A data-driven approach by

using Machine Learning methods has been used to tackle the damage detection

and location stage in bearing components. The damage location was performed by

using non-destructive methods such as the Acoustic Emission technique — these

measurements were used as features to locate damage around the bearing component

once the damage was detected. The implementation of this stages also led to the

exploration of damage generation due to overload defects and proposed a methodology

to simulate these defects in bearings — the study of this concept was implemented

in a scaled-down experiment where damage detection and localisation was performed.

Due to the importance of the implementation of a damage location stage, damage

in AE sensors was also explored in this work. Features extracted from impedance

curves allowed to train Machine Learning methods to trigger a novelty when a

bonding scenario occurred. This ultimately allowed the identification of unhealthy

sensors in the network that could potentially generate spurious results in the damage

predictions stage.
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CHAPTER 1

Introduction

1.1 Wind energy: Trend and challenges

The trend of shifting from fossil fuels to renewable energy sources has been pro-

gressively growing, this is due to many concerns such as high oil prices and global

warming and has led to greater investigations of new alternative sources. Wind power

has become the most commercially available alternative to generate electricity. In a

local context, the United Kingdom reported an operational capacity of 20.13 GW

in 2018 where a contribution of 7.9 GW came mainly from offshore wind turbines.

This represents a power supply to around 4.5 million homes annually and expected

to generate over 10% of the electricity by 2020 [3].

The increase in wind power capacity has imposed various challenges in terms of

design and maintenance; specifically for offshore wind turbines. Placing wind turbines

off-shore gives the advantage of high-speed winds and consequently an increasing

amount of power per unit installed. This comes as a trade-off, as subjecting them

to harsh conditions, such as severe transient loads, high humidity, salt water and

higher loads and mixed lubrication regimes, eventually affects the gearbox of the

wind turbine. This component is one of the most crucial parts of the wind turbine,

and it is responsible for transmitting the low rotational speed of the main shaft to

the high-speed shaft coupled to the electric generator. Therefore, a failure in this

component has a negative impact on the power generation capabilities of the wind

farm and the costs associated with maintenance.
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A further understanding of the failure incidence has raised concerns among the

governmental institutions such as the U.S. Department of Energy and the National

Renewable Energy Laboratory (NREL) where collected information of the most

common failure rates showed that 76–80% of turbine gearbox failures were generated

by bearings [4, 5].

Additionally, gearboxes have a life expectancy of around 20 years according to the

standard DIN ISO 281 [6] but, due to the aforementioned operational conditions,

the life expectancy in the planetary bearings is reduced to 2–11 years [5, 7]. This

results in a knock-on effect in the maintenance costs as gearbox replacement will

normally cost around £300k [8].

In general, it has been reported that the maintenance and operational cost of 750kW

wind turbines accounts for 25–30% of the overall energy generation cost and 75%–

90% of the investment costs [9, 10], therefore, there is a great necessity to mitigate

unexpected failures and improve their efficiency and reliability in order to make wind

power a feasible alternative to fossil fuels.

1.2 The wind turbine gearbox

The gearbox is one of the most important components in the wind turbine as its

main function is to transmit the load and increase the rotational speed from the

input shaft to the output shaft connected to the generator. Figure 1.2.1(a) shows

the position of the gearbox in the wind turbine where the rotor is attached to the

input shaft of the gearbox. Figure 1.2.1(b) shows the gearbox assembly where the

rotational speed from the rotor is transmitted to the input shaft with a speed range

between 15–20 RPMs, this rotational speed increases to 1500–1800 RPMs by means

of a series of planetary gears and intermediate gears [11, 12].
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Figure 1.2.1: (a) Wind turbine components and (b) gearbox with a single epicyclic

gear stage [1].

1.2.1 Failure modes

Gearboxes are normally subject to harsh conditions. Off-shore wind turbines are a

clear example in that they are subjected to severe transient conditions, overloads,

corrosion and high speed winds. This ultimately affects the overall life of the gearbox

components. Thus, it is not surprising that around 40–50% of wind turbine failures

are as a result of general failures in the gearbox [13] due to extreme operational

conditions. This leads to failure modes that are predominantly due to fatigue of

components, wear, fracture and insufficient lubrication. Moreover, the most common

failures are observed on bearings, where an estimated 76%–80% of the gearbox failure

correspond to such failures [4, 5]. A taxonomy of the most common bearing failures

can be found in the ISO 15243 [14]. This can be summarised as shown in Figure

1.2.2.
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Figure 1.2.2: Bearing failure modes according to ISO 15243.

1.2.2 Life rating and Rolling Contact Fatigue

Rolling Contact Fatigue (RCF) is the main predominant failure mode in bearings

where its occurrence only happens under certain circumstances such as correct

mounting, lubrication and absence of overload events [15]. The effects of high cyclic

shear stresses beneath the contact subsurface initiate the formation and growth of

cracks until imminent failure occurs in the component. This led to the development

of mathematical models that estimate this life expectancy by obtaining an estimate

of the number of revolutions or operating hours under specific operational conditions.

One of the most well-known models is a statistical expression based on the Lundberg

and Palmgren’s theory [16] known as the “L10 life” and states the life rating where

90% of the bearings will survive under a particular operational condition. This life

rating can be calculated according to ISO 281 as [17]:

L10 =
(C
P

)p
(1.2.1)

where the term C is the dynamic load rating [kN], P is the equivalent dynamic load

[kN] and p is the load-life exponent that depends on the type of bearing (p = 3 for

ball bearings and p = 10/3 for roller bearings).

In the context of Wind Turbine Gear Box (WTGB) bearings, well-controlled condi-

tions are generally difficult to attain, leading to misalignment issues, poor mounting

conditions during assembly or even after a scheduled maintenance might happen.

Sometimes insufficient lubrication becomes a problem and frequent overload events

might occur due to transient events in these harsh operational conditions. It is
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enough to say that these factors will eventually lead to a premature failure that is

not attributed to RCF, thereby making it more difficult to predict a life expectancy

that is generally less than the life calculated under the RCF assumption. Premature

failures have often been associated with the formation of White Etching Areas

(WEAs) in the subsurface of the bearing rings. Such features have been reported for

two decades [5, 18] and have been the motive to study its formation as described in

the next section.

1.2.3 White Etching Areas and White Etching Cracks

Unfortunately, life expectancy in WTGB bearings is significantly less than the life

predicted by the L10 model and some literature suggests a life expectancy of around

2–11 years [19, 20]. Further studies have attributed the premature failure to the

formation of WEAs in the subsurface of the bearings [5, 21, 22].

WEAs as its name suggests are known for its characteristic white colour resulting from

the localised microstructural change in the material matrix. WEAs also have been

described in literature as regions having a locally changed hardness in the material.

Evans [5] reported 30% increase in the hardness of the surrounding material, and

stated that the White Etching Area (WEA) microstructure has shown to be composed

of equiaxed nanoferrite grains of around 10–100nm in diameter being supersaturated

with carbon [5]. Surface failure will arise from a subsequent phenomenon as the

formation of a WEA is also accompanied with White Etching Cracks (WECs). These

microscopic cracks will grow and their complex propagation paths will form crack

networks that will lead to White Structure Flaking (WSF).

Currently a few aspects and their implication in bearing failure are partially known

but they are still a matter of debate due to their formation mechanisms not being

completely understood [5, 23]. The formation WEA has been mostly attributed to a

localised plastic deformation beneath the surface. This suggests that, once the yield

strength of the material is exceeded, a plastic region will form below the contact

zone. This plastic strain will surround some non-metallic inclusions that, under

cyclic stress, will lead to a dislocation movement and further plastic accumulation

that will consequently lead to a microstructural change [22].
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The long-term effects are well-known and damage must be expected at some point

in the component’s life. Note that the term damage is used vaguely at this point

as there is no connotation to the component usability. In a practical situation a

suboptimal operational state might be required but to the point that the safety of

the gearbox is not fully compromised. This may be achieved by the implementation

of Condition Monitoring (CM) strategies.

1.3 The MultiLife concept

The reduction in the WTGB life expectancy led the industrial sector to mitigate

the current design challenges in WTGB. A few innovations in this area have been

proposed by Ricardo plc by implementing the MultiLife™concept. This concept tries

to extend the bearing life expectancy by more than 500% and currently is installed

and commissioned on a 600kW turbine at the Barnesmore wind farm owned by

ScottishPower [24].

The MultiLife™concept evolved from the idea that bearing life can be extended by

rotating a static inner raceway during operation, the rotation will avoid further wear

progression within the critical loading zone of the bearing by relocating the defect

on a low loading zone. The concept is currently under test in a 600kW turbine in

Barnesmore operated by ScottishPower [24]. The bearing is rotated by an indexing

mechanism that actuates a series of hydraulic cylinders (3) as shown in Figure

1.3.1. The actuation is achieved by coupling the timing key (1) with a modified

inner raceway, a sprag clutch mechanism (2) is used to avoid reverse slip during the

indexing operation.
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Figure 1.3.1: Multilife Mechanism.

A wide range of indexing strategies have been investigated by Howard [11], whose

approach consisted in developing a modified life rating model based on the L10 life

model. This new model included two parameters defined as indexing period and

indexing angle, the indexing period defines the period for each indexing event and

the indexing angle defines the radial rotation for each cycle. The varying of these

parameters will result in different indexing strategies where the optimum overall life

rating can be achieved by optimising these parameters. The results of this analytical

model shown that the best optimisation strategy was achieved by applying short

indexing periods at short angle intervals leading to a five-fold increase in the bearing

life.

1.4 The predictive maintenance approach

Before continuing, it is important to define the term: damage. In this work, damage

is defined as any changes to the material or geometric properties of the struc-

ture/machine or the boundary conditions that affect the system’s performance [25].

Notice, that this term is not equivalent to the term failure, as a damaged struc-

ture/machine might operate within suboptimal conditions before reaching a level

where its functionality or operation is no longer safe or acceptable. In other words,
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an uncorrected damaged state might progress to a more severe state denominated as

failure that consequently compromises the safety of the structure/machine.

Traditional maintenance approaches such as the run-to-failure and preventive main-

tenance strategies are generally the most common methods used in industry. Even

though they partially mitigate the increasing number of unexpected breakdowns, a

more efficient method is required. The run-to-failure has a huge impact on manu-

facturing efficiency as it leads to long downtimes. This is partially solved by the

preventive maintenance approach which performs a more frequent maintenance on a

periodic basis based on the bathtub curve behaviour as seen in Figure 1.4.1. Even

though this strategy reduces the amount of unexpected break-downs, it is relatively

inefficient in terms of unnecessary maintenances and spare part costs [26]. These

issues can be addressed by adopting a more sophisticated approach known as predic-

tive maintenance.

Figure 1.4.1: Bathtub curve showing the probability of failure through time.

The main characteristic is that predictive maintenance is performed in an on-line

manner conjointly with Non-Destructive Testing (NDT) in order to determine the

machine condition. As sensors can not infer damage by themselves, a diagnosis

is based on certain features or parameters drawn from acquired data that give

information about the machine conditions. As with any other maintenance strategy,

the main goal is to allow the equipment to perform within the required operating

condition limits.
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These parameters are commonly extracted from different data signals such as vi-

bration, AE, thermal and debris analysis [27]. Thermal analysis has had a great

impact to detect/localise damage by monitor the sudden change in temperature.

The methods to measure this parameter ranges from simple thermocouples to more

sophisticated thermal imaging techniques [28]. A more complex analysis included

both thermal and vibrational data in order to improve the discrimination between

faulty and healthy states by using Principal Component Analysis (PCA) methods [29].

Debris analysis generally obtains its parameters from the data obtained from the

generated debris in machinery and oil conditions. Any change in the debris morphol-

ogy such as its size, shape and number or particles or change in the oil conditions

such as contamination and degradation can indicate wear in bearings, gears and

rotor [30, 31]. Several methods such as spectrography have shown capabilities not

only on damage detection but also for damage localisation as this technique analyses

material composition of the debris and relate it to a specific composition of the

component part. The morphological change in the debris has been successfully

monitored by ferrographic analysis but its application has been limited due to the

high costs of the equipment [32]. Chip detection has also been implemented by giving

an alarm when a certain amount of debris generates [33]. Further CM methods have

been vastly developed towards the vibration and AE analysis currently becoming as

a standard for CM applications.

Predictive maintenance can be performed systematically, and this can be understood

by means of a damage identification hierarchy structure which is the framework

for Structural Health Monitoring (SHM)/CM strategies. This framework has been

described by Rytter with four levels where each level requires information of the

previous level [34]. This hierarchy is shown in Figure 1.4.2 where Level One starts

with the determination of the presence of any damage then goes systematically

through damage location, severity and prediction of the remaining service life.
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Level 1: Determination of damage presense

Level 2: Determination of the damage location

Level 3: Quantification of the damage severity

Level 4: Prediction of the remaining service life

Figure 1.4.2: Rytter’s damage identification hierarchy.

As seen in Figure 1.4.2, damage localisation belongs to Level 2 of the hierarchy

and requires further information on whether or not damage is present. Level 3 is

commonly known as damage assessment and it predicts the damage severity after the

location stage. Level 4 also known as damage prognosis predicts the remaining life of

the structure/component. A modified version of the presented damage identification

hierarchy includes an intermediate stage between levels 2 and 3 known as damage

classification. It is important to mention that each level is dependant on and more

difficult than the previous stages, also the amount of data and cost increases for

higher levels making its implementation impractical, thus for many applications in

SHM/CM the implementation of level 1 and 2 can be deemed sufficient.

1.5 Motivation

The MultiLife™concept has been proposed as a solution that might potentially increase

the remaining life of WTGB bearings. However, despite its promise for improvement,

there is no established method to systematically use this mechanism resulting in the

need for further exploration in novelty detection and damage localisation techniques

in WTGB bearings.

So far, the life extension mechanism involves extending the life expectancy as much

as possible by constantly rotating the inner raceway at shorter intervals regardless of

any damage onset or damage position. In practical applications life expectancy is

predisposed to have fluctuations due to the variations in the material strength and

the random nature of the material inclusions, resulting in certain zones of the bearing

being stronger or weaker than others and more susceptible to suffer an early onset of
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damage than other locations. The MultiLife™concept can therefore be exploited by

optimising its rotating strategy based on the detection and location of the generated

damaged by applying CM strategies. In the context of WTGB, the implementation of

a Level 2 of diagnostics has not been fully explored, and further investigations might

be beneficial in improving the reliability of these components. The present work aims

to go towards the second level of detection by applying well-established principles of

preventive maintenance, together with Machine Learning (ML) techniques in order

to extend the life expectancy of WTGB.

1.6 Aim and objectives

The main aim of this thesis is to implement a damage detection and damage locali-

sation method for wind turbine roller bearings. The techniques will be demonstrated

on scaled experiments, in order to understand their performance and reliability. The

following objectives can be summarised as:

• Perform a hierarchical damage detection framework to target a novelty detection

and damage localisation stage in roller bearings.

• Implement a data-driven approach using machine learning methods to target

novelty detection and damage localisation in a scale-down and real-scale bearing.

• Incorporate an integrated approach for sensor self-assessment using ML tech-

niques.

• Understand additional challenges and limitations for the implementation of

this technology.

1.7 Scope of the thesis

CM of WTGB has attracted interest due to its advantages over traditional mainte-

nance strategies, even though most of the reported studies have been performed in

small-scaled bearings within an outer raceway diameter range of 35 – 140 mm [33].

11



These studies demonstrated the ability to perform damage detection in very con-

trolled environments and so far have been proven successful for damage detection

purposes. However, a damage location stage has not been extensively studied in this

field and just a few works have been developed so far but these were mainly targeted

at small-scale bearings where only damage detection was deemed necessary [35–37].

This current work tries to implement CM strategies in large scale bearings by

implementing a damage detection and location strategies. The implementation of

this approach could potentially result in helpful information for performing predictive

maintenance and therefore to extend the life of WTGB bearings. Moreover, it

should result in a reduction in downtime due to its capabilities for predicting damage

location without performing in-situ inspections. This information could also be useful

conjointly with the Multilife™concept by implementing a location-based strategy

index.

A novelty detection stage will be tackled with machine learning techniques by using

an Outlier Analysis and Linear Discriminant Analysis (LDA). The use of these

algorithms have been proven useful in the context of SHM and can be potentially

used to explore novelty detection in roller bearings. Traditional methods of novelty

detection in roller bearings involved more of a subjective analysis in terms of the

trend in the vibrational data. This clearly imposes a problem as some damage

features cannot be classified by mere human intuition, thus leaving the problem to

more sophisticated methods, such as ML techniques.

A damage localisation stage will be implemented using neural networks. The main

reason for this choice is that they have been proven powerful for classification and

regression problems which makes them suitable for CM applications. Furthermore,

this allows the localisation approach to be based on a data-driven approach which

simplifies some of the current localisation problems by rather understanding the

data characteristics. This allows building predictive models that can learn complex

data relationships and therefore mitigate the limitations of localisation on complex

geometries, influences of material anisotropy and variability in the propagation speed.

From the machine learning perspective, these features will be extracted from the

Acoustic Emission (AE) measurements. This NDT method has been widely adopted

in industry due to its capabilities to detect, locate and characterise damage.
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Additionally, due to the critical role played by sensors in this work, methods of

monitoring the sensor integrity have been included as part of an integral approach.

This is focused on monitoring the AE sensors in the network. In general the CM

framework will be applied as shown in Figure 1.7.1. This provides not only the means

of monitoring the bearing integrity but also provides a more reliable monitoring

system by including the sensor self-assessment into the CM schema.

Figure 1.7.1: The CM framework applied in this work for WTGB.

1.8 Thesis outline

Chapter 2 will introduce vibration analysis and AE methods for roller bearings. An

overview of signal processing techniques for damage detection using time-domain,

frequency-domain, time-frequency and time-scale domain discusses their application

for extracting features from these signals. Additionally, some of the novelty detection

and damage locations techniques using a ML approach are discussed in the context

of SHM/CM. Finally, as a means of incorporating the AE sensors into the CM

strategy, an introduction of sensor-self diagnosis will be included.

Chapter 3 introduces ML techniques for novelty detection such as the Outlier detection

method and the LDA. A background of neural networks for regression problems is

included. This ML method will be used for damage localisation purposes using a

dataset of Time of Arrival (TOA) features. Additionally, this chapter describes a

different approach for AE source localisation using the beamforming technique.

Chapter 4 introduces the experimental rigs used in this work. A scaled-down rig and

the MultiLife rig are described in this chapter together with their instrumentation
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and test bearing dimensions. Details about their assembly, loading mechanisms and

operational conditions will be explained in this chapter.

Chapter 5 introduces the experimental procedure for the novelty detection and

damage localisation stage for the scaled-down and MultiLife rig. A description of the

methods used to simulate the bearing damage by generating a geometrical defect and

an overload defect is also presented. This chapter introduces a method to simulate

an overload defect by using using a Finite Element Method (FEM) approach and

its validation using Neutron Bragg imaging. The feature extraction procedure for

novelty detection is discussed, together with the signal enhancement techniques used

to pre-process the vibrational signal from scaled-down and MultiLife rig.

Subsequently, the procedures to implement a damage localisation stage in roller

bearings will be explained. This chapter will detail the feature extraction and signal

processing stages to generate a TOA feature from an AE signal. Moreover, the

procedures to implement a time-delay beamforming approach are described. Finally,

an experimental stage for feature extraction for AE sensor self-assessment is detailed

in this chapter.

Chapter 6 will show the results for the novelty detection and damage localisation

stage on the scaled-down and MultiLife rig. This chapter also includes the results

for the damage detection of AE sensors.

Chapter 7 will include the conclusions, discussion and further work. Implications of

the implementations of such techniques will be discussed together with the potential

challenges encountered in a real scenario.
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CHAPTER 2

Literature review

WTGB bearings have recently received great attention in the CM field [38]. The

main reason is that these components are suffering from premature failure and high

operational and maintenance costs [10]. Preventive maintenance aims to reduce these

unexpected breakdowns by means of exploiting NDT and signal analysis methods.

This chapter will summarise the most common CM and signal processing techniques

used to monitor roller bearings.

2.1 Vibration analysis methods for roller bearings

in condition monitoring

Vibration analysis has become one of the most common and reliable approaches

in CM. It consists of measuring the machine vibrational response and monitoring

its change over time. As this change in the machine vibrational response is mainly

governed by the rotational speed, mass and geometry variations, different types of

failures and defects can be related to a specific vibrational response in machines.

The vibrational response can be measured using transducers for displacement, velocity

and acceleration. The selection of these sensors relies on the frequency range of

interest to analyse, therefore based on the frequency range of operation of the machine

and the way that damage affects the signal. Over time different methods have been

used to monitor the vibration signal, and many techniques have been explored.
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This has led to the broad classification of these approaches as time, frequency,

time-frequency/time-scale methods [26].

2.1.1 Time-domain and frequency-domain methods

Time-domain methods are generally considered the most simple analysis method as

no further processing is required for analysis. It is based on the fact that any onset

of damage or deviation of the machine form its normal behaviour can be observed in

a variation of a time-domain signal. The most basic feature used for this purpose is

the change in the amplitude levels of the signal. One problem with this approach is

that this type of analysis involves capturing a considerable amount of data with high

sampling rates, resulting in the storage of large quantities of data. This issue led to

the exploration of several different features sensitive to damage. A particular method

that has shown great success was based on processing the vibrational response and

calculating its statistical parameters over time. This process will be discussed later as

its correct definition is feature extraction in the CM field. These parameters are the

root mean square, skew and kurtosis, mean, crest factor and peak value methods [30].

Time-domain methods normally rely on a large amount of data for collection and

interpretation is not a trivial task and can require a great deal of expertise to produce a

reliable diagnostic. An alternative, and often more successful feature domain is based

on monitoring changes in the frequency domain. A great example is the use of a Fast

Fourier Transform (FFT) algorithm to extract the spectral content of time-domain

signals. The advantage of this approach is that it produces a reduced set of often

highly sensitive features that allows damage detection to be more straightforward. In

the case of bearings, the method has gained great acceptance due to its capabilities

to diagnose damage in any of its elements. This can be explained in terms of the

periodic nature of the defect interaction with the surrounding components. When

the defect interacts with a specific bearing component it releases a short duration

pulse that excites the natural frequencies of the bearing, thereby resulting in an

increase in the vibrational energy. These vibration levels provide information about

the defect presence and location on the bearing.

The damage presence in any of the bearing elements can be related to specific
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frequencies denominated characteristic damage frequencies. These frequencies can

be calculated and are based on the bearing geometry and the rotational speed, these

frequencies are defined in Table 2.1.1 [33]:

Table 2.1.1: Roller bearing defect frequencies.

Element Symbol Defect Frequency

Cage ωc
ωs

2
(1− d

D
cosα)

Ball spinning ωb
Dωs

2d
(1− d2

D2 cos2 α)

Outer raceway ωor Zωc

Inner raceway ωir Z(ωs − ωc)

Rolling element ωre 2ωb

where ωs represents the shaft rotation (rad/s), Z the number of rolling elements, D

the pitch diameter, d the diameter of the rolling element and α the contact angle as

shown on Figure 2.1.1.

Figure 2.1.1: Roller bearing parts.

Normally these defect frequencies can be detected by applying the Fourier Transform

to the vibrational signal but, in certain circumstances such as the existence of low

signal to noise ratio in the vibrational signal, it may be difficult to enhance this
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defect frequency thereby leading to the use of alternative methods to enhance or

obtain this frequency values such as the signal average, bispectrum, bicoherence,

power spectrum and enveloping techiniques [39–44].

2.1.2 Time-frequency/time-scale domain methods

Up to this point, the methods described previously are suitable for stationary signals,

i.e. signals whose statistical parameters are independent over time. For non-stationary

signals, such as continuous and transient signals, these methods are not adequate

and more sophisticated analysis tools should be used. This type of analysis involves

analysing the signal in a time-frequency domain where more detailed information

can be provided in a two-dimensional domain. The most well-known methods are:

2.1.2.1 Short-Time Fourier Transform

The method allows the segmentation of the signal into small time-window slices and

the analysis of the frequency content. The Short Time Fourier Transform (STFT)

performs a time-localised Fourier transformation on a signal y(t) using a window

function g(t− τ), where τ is the window width which is independent from the time

and frequency domain as given by the Equation 2.1.1:

STFT (τ, f) =

∫ ∞
−∞

y(t)g(t− τ) exp−2iπft dt (2.1.1)

A disadvantage of this technique is that high resolution on both frequency and time

cannot be achieved together. This means a trade-off between frequency and time

resolution as the Heisenberg uncertainty principle states in Equation 2.1.2.

∆t∆f ≥ 1

4π
(2.1.2)

In practical terms, that means that an event cannot be localised both in time and

frequency domain. This situation in terms of feature extraction will constrain the

number of features that can be obtained from a signal with a specific frequency

resolution ∆f .

18



The STFT can also be understood as the FFT of the individual segments of the

original signal multiplied by a window function, as shown in Figure 2.1.2a for a signal

defined as:

y(t) = sin(2πf1t) + sin(2πf2(t− ta))H(t− ta); (2.1.3)

where, in this case, f1 = 10Hz, f2 = 35Hz, ta = 0.5s. H(t) represents the Heaviside

function. As shown in Figure 2.1.2a, a second frequency component appears at 0.5

seconds. By using the STFT it is possible to represent this frequency component in

a specific time frame. The original signal y(t) was segmented in 5 different parts by

multiplying it with a Hanning window without overlapping each other leading to a

set of signals defined as si(t) for i = 1, 2, ..., 5. An FFT was applied to each segment

leading to the spectral frames shown in Figure 2.1.2b where it may be seen that a

second frequency component f2 appears in the third spectral frame corresponding to

0.5 seconds of the signal. Another disadvantage is that this method does not have

an inverse transformation, but for the context of damage detection, the only interest

is to build a set of features that represents unambiguous damage and undamaged

states.

(a) Time Domain (b) Frequency Frames

Figure 2.1.2: STFT applied to a time-domain signal with a Hanning window at 0%

overlap.

2.1.2.2 Wavelet Transform

The Wavelet Transform approach is a time-scale method, in contrast to the STFT.

It overcomes all the limitations of the STFT due to the addition of the scaling

and shifting parameters and the possibility of applying the inverse transform. The
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Continuous Wavelet Transform (CWT) can be defined as:

CWT (s, τ) =
1

|s| 12

∫ ∞
∞

x(t)Ψ(
t− τ
s

)dt (2.1.4)

The term Ψ refers to the complex conjugate of the wavelet function which has two

parameters, s and τ , denominated as the scaling and shifting parameter respectively.

These parameters dilate and move the wavelet function along the time domain

respectively. Additionally, the wavelet function should meet a few conditions such

as having a zero mean, a finite power and meet the admissibility criteria to be

constructed and used in the transformation. An approach in CM used the CWT to

extract features for novelty detection for roller bearings such as [45]. Their work

extracted features from the vibrational signature and used the CWT to analyse the

signal self-similarity by calculating the variance of the CWT coefficients.

2.1.2.3 Wigner-Ville Distribution

Also based on the Fourier transformation, this technique transforms the auto-

correlation function of a signal x(t) and generates contour plots of the energy

distribution on the time-frequency domain. The Wigner-Ville Distribution (WVD)

can be defined with the following equation [46]:

WVD(t, f) =

∫ ∞
−∞

x(t+
τ

2
)f ∗(t− τ

2
) exp−2iπft dt (2.1.5)

The use of the WVD has been explored as a potential feature for damage detection.

Initial exploration in this field was attempted by Forrester et al. [47] to analyse the

faults generated in a helicopter gearbox. Application in the determination of tooth

failure in gearboxes was later studied by Staszewski et al. [48]. The use of the WVD

in these studies has shown to generate enough visual patterns on the time-frequency

domain to perform pattern recognition.

2.1.3 Envelope analysis using the Hilbert Transform

An important signal processing technique involves the envelop analysis of signals.

A common reason to use the Hilbert Transform (HT) is to enhance the signal and

remove the high frequency oscillations that modulates the signal. This can be either
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be approached by using a low-pass filter or a signal enveloping technique. The later

technique can be seen as a form of low-pass filter as it leaves the “slowest” component

of the signal and removes the “fastest” that modulates the signal. Figure 2.1.3 shows

a frequency modulated signal defined as:

ymod(t) = sin(2πf1t) sin(2πf2t) (2.1.6)

where f1 and f2 represent the “slowest” and the “fastest” frequency component in the

modulated signal respectively. In this case, the calculation of the envelope removes

the faster oscillations at f2, that corresponds to the second term in Equation 2.1.6.

Figure 2.1.3: Signal demodulation using Hilbert Transform.

One of the most standard methods for this purpose involves the calculation of the

Hilbert Transform of a signal. It is important to mention that there are other classic

methods to perform envelope extraction by using RMS and peak-to-peak values

but normally leading to distorted or overly smoothed envelopes [49]. The Hilbert

Transform of a time domain signal u(t) can be defined as [44,50]:

ũ(t) =
1

π

∫ +∞

−∞

u(τ)

t− τ
dτ (2.1.7)

This integral is a linear operator and leads to a time-domain representation of the

transformed function. The transformation becomes useful for envelope analysis as

it finds the analytical representation of a signal u(t). An analytical signal can be

represented as a complex function with a real and imaginary part defined as:

ũ(t) = u(t) + û(t)j (2.1.8)

Equation 2.1.8 shows the relationship between the analytical signal ũ(t) and the

Hilbert Transform of the signal û(t). It can be seen from Equation 2.1.8, that the
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projection of the analytical signal û(t) onto the imaginary plane corresponds to the

Hilbert Transform of the function u(t). A better understanding can be attained by

representing Equation 2.1.8 in polar coordinates as:

| A(t) |=
√
u2(t) + û2(t) (2.1.9)

θ(t) = arctan

(
û(t)

u(t)

)
(2.1.10)

where the terms A(t) and θ(t) represent the envelope and the phase of the analytical

signal respectively. So far the concept of envelope analysis has been explained but

not how the Hilbert Transform can be calculated in practise. A practical approach

uses the Fourier Transform to calculate the Hilbert Transform conjointly with some

properties. This approach implies a relationship between the Fourier Transform of

the signal ũ(t) and its original form u(t). This relationship is defined as:

F{ũ(t)} = F{u(t)} (−jsgn(ω)) (2.1.11)

Equation 2.1.11 shows that the frequency domain representation of ũ(t) is equiva-

lent to apply the Fourier Transform to the real function u(t) and shift the phase

components by −π/2 and +π/2 for the positive and negative frequency components

respectively.

2.2 Acoustic Emission and signal processing

techniques

The AE phenomenon occurs due to a rapid release of energy by an alteration in the

material structure such as dislocations, crack generation and propagation. These

high-frequency elastic waves travel as discrete acoustic packets until reaching the

surface where they can be detected. This technique is widely used as a NDT to

determine damage and also used to localise damage in structures and machinery.

The primary source of AE burst during plastic deformation is attributed to the

dislocation motion in the materials and has been proven suitable to monitor these

responses [51]. This effect was systematically studied by Josef Kaiser in 1950 were

different types of materials were loaded and their response recorded. This experiment

led him to discover what is known as the Kaiser effect [52] which describes the
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occurrence and absence patterns of AE events when a material undergoes cycling

loading conditions.

A basic visualisation of an AE burst can be seen as a particular event inside the mate-

rial which releases a sudden burst of energy leading to a transient stress response that

propagates accordingly to the geometry of the specimen (non-bounded or bounded

media) where the pulse is generated, thereby allowing the generation of different

wave modes. As the waves propagate through the media, surface displacements can

be captured using piezo-electric transducers that convert the displacement response

into a voltage response.

Regular AE sensors are mainly composed with a Lead Zirconate Titanate (PZT)

patch as shown in Figure 2.2.1. This patch is normally enclosed in a metallic case

together with a damper and additional signal condition circuitry. As the sensor is

supposed to be reused, a wear plate is attached to the PZT element, thus allowing

the safe removal of the sensor. The attachment between the wear plate and the

structure is normally performed with an adhesive bonding that also acts as a coupling

mechanism.

Figure 2.2.1: Diagram of an AE sensor bonded to a component.
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Several features in the AE signals can be utilised for SHM/CM purposes. In

roller bearings, a localised defect type can be expected due to RCF and traditional

vibration methods may be unsuitable due to lower frequency bands tending to become

contaminated with noise coming from different parts of the machine [53]. In such

cases, AE can be utilised to monitor material degradation and as a tool to monitor

faults such as subsurface cracks generated due to RCF. For this reason, the AE

method has been successfully utilised to detect and localise defects on roller bearings

as considered in previous studies [54–57].

2.2.1 AE signal features

Similarly, features can be extracted for AE signals. These features, as shown in Figure

2.2.2, describe the time-domain signal characteristics by using signal parameters.

The most important features used so far in CM are described in Table 2.2.1.

Table 2.2.1: AE time domain features.

Parameters Description Units

Amplitude Represents the maximum (positive or negative) peak [V/dB]

RMS A root mean square from the voltage [V]

response of the signal

Energy Rectified AE response and integrated over time [aJ]

Ring Down Counts The number of times the signal crosses –

a predefined threshold

Events The moment when the AE is generated –

ASL The average signal level [V/dB]

AE duration Describes the time length or duration of the AE burst [s]

Signal Envelope Curve outlining the signal’s extreme values [V]
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Figure 2.2.2: Time-domain AE features.

2.2.2 The dispersive behaviour of Lamb waves

The AE belongs to the transient signal class type and, in the case of wave propagation

on plates or thin structures, will lead to the formation of multiple propagation modes.

This will affect two aspects of AE source localisation; first, a threshold approach

will find an onset independently of the propagation mode, therefore, making TOA

estimation inaccurate and second, the multiple dispersive modes propagate at different

speeds as will be shown later. As opposed to bulk waves, such as longitudinal and

transverse waves, where a constant propagation speed can be considered, wave

propagation on structures commonly occurs in bounded media that leads to variable

speed propagation constants. A model of this dispersive behaviour is described by

Lamb’s equation as [58]:

tan(qh)

tan(ph)
= − 4k2pq

(q2 + k2)2

±1

(2.2.1)

where the exponent ±1 will be +1 for a symmetric mode and -1 for an anti-symmetric

mode respectively. The term k which is a function of the angular frequency ω is

defined as:

k =
ω

Cp(ω)
(2.2.2)
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The term Cp(ω) represents the phase velocity and is also a function of the angular

frequency. The group velocity Cg(f) can be obtained from the phase velocity Cp(f)

using the following relationship:

Cg(f) = Cp(f)2
(
Cp(f)− f dCp(f)

df

)−1
(2.2.3)

Equations 2.2.2 and 2.2.3 show a dependence of the frequency value and show that

the wave propagation speed in bounded media is not unique, and it is governed by a

complex relationship. Figure 2.2.3 shows the numerical solution of Equation 2.2.1

for the zero-order symmetric and anti-symmetric modes for a 17 mm Aluminium

plate, a longitudinal CL and transverse CS wave propagation of 6300 and 3130 m/s

were used to solve this equation. As seen, the fastest propagation speed occurs at

frequencies lower than 300kHz then they abruptly change and stabilise at 2923 m/s

for a Poisson’s ratio ν of 0.35. This limit is known in literature as the Rayleigh wave

speed and can be approximated as [59]:

CR ≈ CS

(
0.862 + 1.14ν

1 + ν

)
(2.2.4)

Figure 2.2.3: Zero-order symmetric and anti-symmetric modes for an aluminium

plate of 17mm thickness.

26



It is important to mention that an infinite number of propagation modes exist in a

bounded media, but contrary to the zero-order modes, these modes do not appear at

all the frequencies. Additionally, zero-order modes contain a great portion of the

signal energy, this characteristic makes them suitable for analysis and to estimate

TOA features.

2.2.3 A time-frequency approach for AE signal processing

Frequency domain provides information about the characteristic defect frequencies.

This can also be extended to a time-frequency domain where a particular defect

frequency can be localised in the time domain by analysing a set of AE pulses. AE

bursts have been subjected to studies involving time-frequency decomposition using

the CWT approach. The application of this method has shown great value in SHM

when it was used to identify propagation modes in structures via the use of the

Gabor wavelet [60]. This method states that the CWT of a function of two harmonic

waves using the Gabor wavelet allows to identify the frequency component ωc by

finding the maximum values at the parameters a and b of:

| CWT (x, a, b) |=
√

2a | ψ̂(aωc) | (1 + cos (2∆kx− 2∆ωb))0.5 (2.2.5)

where ψ̂, ∆ω and ∆k represent the complex conjugate of the Gabor wavelet ψ,

the frequency and the wavenumber difference of two harmonic waves respectively.

This approach has also shown capabilities for localising damage in simple structures

such as plates by identifying the dispersive modes contained in the AE burst. The

technique is also known as Single Sensor Modal Analysis (SSMA) and allows the

localisation of an AE source using only one single sensor by identifying the time

difference between the zero-order symmetric and antisymmetric modes [61]. This is

shown in Figure 2.2.4 where the zero-order symmetric S0 and antisymmetric mode

A0 are visible using a time-frequency representation on a simulated burst using a

Pencil Lead Break (PLB) technique known as Hsu-Nielsen source [62].
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Figure 2.2.4: A Wavelet Transform on AE signal obtained from a PLB excitation on

a 5 mm Alumimun plate. A zero-order symmetric S0 and antisymmetric A0 mode

can be seen on time and time-frequency domain.

2.2.4 AE analysis for roller bearings

The use of AE to monitor roller bearings has been extensively studied and this

has demonstrated its capability for detecting damage with results comparable to

vibration analysis [63,64]. This method has also demonstrated great capabilities to

detect damage in bearings from sensors installed at a larger distance. Li et al. [65]

showed that AE signals had a higher Signal-to-Noise ratio (SNR) than vibration

signals. Defect frequencies were detected at distances greater than 0.3 meters away

from the bearing rig using AE sensors.

In theory, AE can be used in a similar way to a vibrational signal as the defect

frequency associated with a specific bearing component is modulated in the signal

content, allowing the detection of the defect characteristic frequency. These fre-

quencies are determined with the equations described in Table 2.1.1. For the data

obtained from a roller bearing shown in Figure 2.2.5, each burst is spaced every 66µs

which is equivalent to 15Hz. This AE data was obtained from a bearing rotating

at 100 RPM and a seeded defect on the inner raceway. The inner raceway defect

28



frequency was calculated using the equations in Table 2.1.1 giving a value of 14.65

Hz very close to the burst occurrence frequency. In real AE data some variations

are expected to occur due to mechanical clearances and roller slipping. Furthermore,

secondary AE bursts may also appear due to loose components or friction between

surfaces.

Figure 2.2.5: AE bursts from a bearing in a 1 second interval, the data shows 15

bursts that correspond to an inner raceway defect frequency of 15 Hz at 100RPM.

Even though the defect frequency can be extracted from a raw AE signal, in some

cases an excessive amount of noise can difficult the identification of the defect

components in the frequency domain. In this case, the characteristic defect frequency

in Figure 2.2.5 was estimated by low-pass filtering the signal before applying an FFT

algorithm. Another approach is to use the Hilbert Transform to generate an envelope

of the signal and post process it using the Fast Fourier Transform to determine the

periodicity of the AE events [44, 50, 66]. Even though it is possible to obtain the

characteristic defect from the AE signal, one disadvantage arises from the relatively

high sampling frequency required to record the signal therefore making this method

unsuitable for long term monitoring purposes due to the large amount of data to be

stored and processed.
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2.3 A machine learning approach for damage

detection for roller bearings

It is necessary to address an important aspect of this work, namely, damage detec-

tion. A damage localisation stage cannot be performed systematically without first

performing a damage detection stage. This first stage in CM involves answering

the question of whether or not a machine has potential damage or not. Sometimes

damage detection can be achieved by mere intuition such as observables cracks

on a structure/component but, in practical applications, this will often fail and

more robust methods must be used by analysing features obtained from signals

that are sensitive to a particular failure mode such as the vibration and AE signals.

Novelty detection is based on collecting these features and comparing them with

baseline features in order to detect any statistically significant deviation from normal

behaviour. Even though this task may appear trivial, in real conditions there is no

single normal behaviour. Features used to build a baseline may contain very different

patterns that all still represent normal conditions.

CM in WTGB has been widely studied in terms of trends of statistical parameters

and signal features of vibration and AE signals as described in early sections. Even

though the variation of these parameters has proven useful for industrial applications,

the condition is mostly based on the interpretation of these features using engineering

judgement. These parameters, in order to be useful for a pattern recognition

algorithm, are combined together as a feature vector and may be represented in

a feature space. A representation of features in a two-dimensional space is shown

in Figure 2.3.1 for visualisation purposes. A normal condition denoted as NC1 is

graphically represented as blue dots in a two-dimensional feature whereas damage

conditions DC1, DC2 and DC3 are represented as red dots. The main aim of any

fault detection procedure is to correctly recognise the machine condition based

on these features. Clearly, this simple representation can be classified by mere

observation/intuition by a human operator but in reality the feature space can be

defined with an arbitrary dimension thus limiting intuitive discrimination between

different conditions. This is why a machine learning approach is useful to perform a

reliable fault detection in CM.
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Figure 2.3.1: A two-dimensional feature space where a normal condition NC and

damage features DC1, DC2, DC3 are graphically represented.

Earlier works in this field of damage detection in roller bearings have been conducted

by Li [67] where the fault detection scheme was performed using short-time signal

processing techniques such as the short-time energy function, the short-time average

zero-crossing rate and median smoothing. The classification algorithm was based on

calculating a discriminant function that separates the data between a faulted and

unfaulted condition. Rojas et al. [68] applied Support-Vector Machines (SVM) to

detect damage on bearings where spectral lines and statistical data were used as

features for the classification algorithm. PCA based techniques were also reported

being used for rotative machinery, He et al. [69] proposed using PCA as a feature

reduction technique in order to allow to build a reduced dimension damage sensitive

feature. Pirra et al. [70] used PCA in order to remove the environmental effects on

the bearing damage prediction. The onset of damage was determined by defining a

Novelty Index in terms of the residual error of the compressed signal. Neural networks

were also successfully implemented, Kateris et al. [71] used statistic parameters such

as (skewness, kurtosis, etc) and additionally included a line integral feature altogether

with an Multilayer Perceptron (MLP). Their results showed that a good level of

classification accuracy was achieved around 99%. Ziaja et al. [72] used a time-

frequency approach to extract the damage features by using the Wavelet Transform

approach conjointly with fractal signal processing techniques. These features were

used to train a novelty detector based on an Auto-associative Neural Network (AANN)

together with a novelty index. A more detailed review of machine learning techniques

has been discussed in terms of applicability for SHM/CM [73].
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In general all these methods mentioned above share the same schema, that is the

damage detection stage normally follows the same workflow as described in Figure

2.3.2. Commonly the two main approaches adopted for damage detection are either

analysing the vibrational or AE signals and use the statistical signal parameters as

described in early section. These signals can be filtered or enhanced before extracting

the features.

Figure 2.3.2: General damage detection schema.

The extracted features are ultimately used as a training/test set in the classification

algorithm where the last step commonly involves stages such as overfitting and

performance assessment.

Despite detecting damage, most of these techniques were used under relatively

controlled conditions such as in the case of small scale bearings. Additionally, larger

defects compared with the bearing size do not reflect the real conditions in a full

scale bearing such as the case of a WTGB. Time and frequency domain features

have seen difficult to analyse when an early onset of damage occurs, thus only being

noticed when the damage progresses to a considerable extent [72,74]. Additionally,

mechanical noise expected on WTGB plays a crucial role in damage detection as

it makes the patterns difficult to classify. This leads to an exploration of different

methods that allow classifying the data in more realistic conditions.
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2.4 Damage localisation using AE

In this section an introduction to the AE localisation techniques is presented. This

section aims to provide the different state of art approaches and efforts to circumvent

most of the challenges involving AE source localisation. It is important to notice

that several methods have recently been successfully implemented in the field of

SHM and can potentially be used in CM applications. Moreover, a review of the

methods used for localising defects on bearings is presented in this section.

2.4.1 Damage localisation in structures

The next issue to be addressed is the location of the damage. An interesting aspect of

this problem is that it has received a lot of attention in the field of SHM whilst current

information about localisation techniques applied to roller bearings is relatively scarce.

The problem of localisation in SHM has been extensively developed and it should

be possible to use the same concepts to monitor specific components in rotative

machinery by treating these components as structures subjected to quasi-static

conditions.

Starting with the most simple and well-known localisation technique is the linear

localisation method [75]. It consists of an arrangement of two sensors separated by

a distance D as shown in Figure 2.4.1. The AE source position x is located along

a single dimension by measuring the TOA difference ∆t12 between sensors 1 and 2

and multiplying it with the propagation speed C defined as:

x = C∆t12 (2.4.1)

This will probably be the most simple method found in literature [75] which has a

limited set of applications due to one-dimensional source localisation capabilities.
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Figure 2.4.1: Linear AE localisation using two sensors.

Geometrical methods consist in localising the AE source by using trigonometrical

relationships between a hypothetical source and the sensors surrounding it by measur-

ing the time difference between sensors, the first scenario described using Equation

2.4.1 can be extended to AE source localisation on a two-dimensional plane using

polar coordinates as [76]:

R =
1

2

D2 −∆t212C
2

∆t12C +D cos θ
(2.4.2)

where θ represents the angle and R represents the radial distance from the source to

the reference sensor 1 as shown in Figure 2.4.2.

Figure 2.4.2: Linear AE localisation using polar coordinates.

The only problem with this approach is that localising a source in a 2-dimensional

plane will require at least a third sensor in order to eliminate the angle variable,

as Equation 2.4.2 requires the angle information to give the radial distance to the

source. This will lead to the implementation of triangulation techniques where at

least three sensors are used to attempt AE source localisation.

The first attempt to localise AE source with triangulation techniques can be found in

the analytical approach developed by Tobias [77] whose work proposed an analytical
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treatment for the 2-dimensional localisation problem by calculating the AE source

using the TOA difference between each sensor. The source position was given based

upon the solution of a set of circle equations shown as:

x2 + y2 = r2 (2.4.3)

(x− x1)2 + (y − y1)2 = (r + δ1)
2 (2.4.4)

(x− x2)2 + (y − y2)2 = (r + δ2)
2 (2.4.5)

where the source position is defined in a plane by the coordinates x, y, the sensor

position xi, yi and the term r + δi can be understood as the radial distance from the

ith sensor to the source as shown in Figure 2.4.3.

Figure 2.4.3: AE source triangulation using Tobias approach.

The advantage of this analytical method is that it yields an exact solution of the

AE source by directly evaluating the derived expressions but has been shown to be

susceptible to give multiple solutions and therefore a fourth sensor should be included

to improve the ambiguity of the results. The method was also shown to be effective

by localising sources within the area covered by the sensors whereas regions close to

the sensors shown areas of ambiguity. This work was extended later by Asty [78]

to include AE source localisation in spherical surfaces highlighting the same issues

with ambiguity in the source location. A similar approach was developed by Barat

et al. [79] where an analytical approach was developed for cylinders.

Axinte et al. [80] implemented an analytical triangulation technique to localise sources

of uneven events such as discontinuities, plucking and smearing in machining. Their
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localisation approach consisted of a set of spherical equations that were numerically

solved by obtaining the TOA differences at each sensor. The source was obtained

by the intersection of these spheres similar to the geometrical method proposed

by Tobias [77] using circle equations. This technique showed potential to localise

uneven defects on workpiece defects and its concepts allow the extension of AE

source localisation into a 3-dimensional scenario.

Jingpin et al. [61] performed an AE source localisation approach by exploiting the

dispersive characteristic of guided waves using AE modal analysis. Their localisa-

tion approach involved decomposing the AE signal using the Wavelet Transform

and obtaining the TOA of the arrival of the dominant modes as tl, tk and their

corresponding group velocities C l
g, C

k
g at specific frequencies f1, f2 as:

d =
tl1(f1)− tk2(f2)

C l−1
g (f1)− Ck−1

g (f2)
(2.4.6)

This method is able to calculate the distance d from the AE source to the sensor but is

restrained to a narrow set of practical applications as it does not give the orientation

information of the AE source. Despite the simplicity of the analytical methods and

ability to give relatively accurate results, the geometrical models mentioned above

involve assumptions such as a constant propagation speed and isotropic properties.

Kundu et al. [81] tried to overcome this issue by stating its localisation approach as

an optimisation problem of the form:

min
x,y

E(x, y) = min
x,y

f(x, y, x1, y1, x2, y2, ..., ..., xN , yN , t1, t2, ..., tN) (2.4.7)

where the objective function E was defined in terms of the AE source positions x, y,

the sensor positions xi,yi and the term ti defines the TOA at each sensor. In order

to account for anisotropy, the propagation speed C was defined in terms of the wave

propagation direction as:

C(θ) = C0(1 + 1× 10−3 | θ |) (2.4.8)

where θ is the direction of wave propagation and C0 is the propagation in the

horizontal direction. The anisotropy was modelled by assuming a 1% increase on the

wave propagation speed for every 10◦ increment in cold-rolled steel. This technique

showed superior performance compared with a standard triangulation technique

under of the isotropic assumption and also shown agreement with the anisotropic
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assumption. This objective function was later modified to overcome some singularities

during the optimisation and tested with a graphite-epoxy composite plate [82]. The

same technique was implemented by Kundu et al. [83] to localise AE sources on

a stiffened anisotropic plate. Kundu et al. [84] developed a localisation technique

based on an array of six sensors arranged in two clusters of three sensors, as the aim

was to implement this technique to anisotropic plates the wave propagation speed

was expressed in terms of the TOA terms as:

C(∆tij,∆tji) =
d√

∆t2ij + ∆t2ji

(2.4.9)

where d represents the distance between the sensors in the cluster. The position of

the sensor was obtained by solving this set of equations defined as:

tan θa =
ya − y
xa − x

=
∆tai
∆taj

; i 6= j (2.4.10)

tan θb =
yb − y
xb − x

=
∆tbk
∆tbl

; k 6= l (2.4.11)

where the position of the source was calculated in terms of the angles formed between

the origins of the two clusters a and b. These equations were calculated using the

TOA between the sensor in the origin of the cluster (a and b) and the surrounding

sensors (i, j and k, l). The results showed good agreement with the impact locations

on the plate on both isotropic and anisotropic conditions. Aljets et al. [85] used an

array of three sensors on a Carbon Fibre Reinforced Plastic (CFRP) panel to localise

the AE source orientation respect to the array with their approach consisting of an

iterative algorithm that exploited the dispersive characteristics of Lamb waves.

McLaskey et al. [86] proposed the beamforming technique to monitor large concrete

structures by using an array of 4–8 AE sensors on a simulated bridge ramp of

0.3× 4× 5 meters. McLaskey et al. [86] shown that the method localised the AE

events within a tolerance of 14◦ degrees showing its applicability to localise sources

even at larger distances up to 4 metres where severe signal attenuation is expected

due to the large size of the structure.
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2.4.2 Damage localisation in complex geometries

Until now, the localisation techniques mentioned above were implemented in relatively

simple geometries where the waves can be assumed to propagate in a straight line

and where there are no discontinuities in the propagation media such as holes, voids,

etc. The problem of complex geometries arises as the analytical formulation becomes

difficult due to the complex wave propagation paths. Moreover, the uncertainty of

wave propagation speed values makes this type of localisation task even more difficult,

without mentioning possible anisotropic characteristics of the propagation media.

Baxter et al. [87] proposed a method where a TOA difference map was generated

for each pair of sensors. The maps worked as lookup tables that associated each

measurement to a specific position. The Delta T method can be summarised as:

1. Determine the area of interest : The area where the hypothetical AE burst can

potentially be generated is identified.

2. Construct grid : The area of interest is then discretised with a predefined spatial

resolution. The smaller the grid the better the resolution that can be obtained.

3. Conduct Hsu-Nielsen excitations : Each node on the grid is then excited using

a pencil lead break excitation on a specific location of the structure.

4. Calculate Delta T maps: The time difference between each pair of sensors is

calculated for each node in the grid.

5. Compare actual data: The data obtained from the AE sensors can be compared

with the Delta T maps recorded from the previous step.

The advantage of this method is that it can locate AE sources by just comparing the

data obtained from the maps obtained from the excited nodes. The accuracy can also

be improved by performing an interpolation procedure. The method was validated

on an aircraft component with several holes and thickness variations and also against

a triangulation method [87]. The method showed an accuracy improvement of 1.77%

against the traditional geometrical method. The main advantage of this method is

that it is completely independent of the wave speed propagation and only depends

on the initial sensor configuration, therefore the prediction will only be valid for a
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specific sensor position. The Delta T method was also applied for localising AE

sources on a composite sample subjected to a fatigue test by Eaton et al. [88]. The

method was validated using the Thermoelastic Stress Analysis (TSA) that located

the damage in an agreement with the Delta T predicted sources.

2.4.3 Damage localisation in bearings

In the context of roller bearings, damage localisation is a relatively difficult task

as it deals with many of the problems and limitations encountered in AE source

location techniques. The main reason that such tasks are challenging is due to these

mechanisms generally being geometrically more complex than structures (e.g. holes,

chamfers, etc.). Sometimes they are composed of elements with different materials

and shapes. Moreover, clearances can also disrupt the wave propagation path and

multiple components are constantly interacting with their surrounding boundaries.

The first localisation in roller bearings using AE signals was performed by Rogers [89].

That investigation attempted to localise defects in anti-friction slew bearings mounted

on slow-speed cranes. Two AE sensors were installed on the inner side of the bearing

separated by 180 degrees from each other. The AE source was localised using a linear

localisation approach by counting the number of AE bursts captured around the

bearing. In the case of a localised defect, its position was determined by an increase

of AE bursts at a particular position of the bearing. Unfortunately, in this research,

the burst distribution along the bearing resulted in a uniform distribution and was

attributed mostly to secondary AE sources generated by the interaction of different

elements around the bearing. Yoshioka and Fujiwara [35] developed a localisation

technique for a thrust bearing by using a magnetic detector and a single AE sensor.

The position of the AE source was calculated by counting the number of gears on

a retainer with the magnetic sensor. Their result showed an agreement with the

defect position after further inspection. An increase in the AE count at the predicted

position corresponded with the actual defect position on the bearing raceway. A few

aspects such as the method resolution seem to be limited by the number of teeth

on the gear retainer. It is important to mention that this method, despite being

relatively simple, was not dependent on physical properties in the material, such as

wave propagation speed.
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Elforjani and Mba [36] implemented a linear localisation approach on a slow speed

thrust bearing. The method consisted of four AE sensors mounted on the bearing

ring, and the value was analytically calculated using the time differences between

the sensors and using the wave propagation speed of the zero-order symmetric mode

obtained from the Lamb’s characteristic wave equations. Further work developed

by Eftekharnejad et al. [37] extended this work by demonstrating the technique on

high-speed thrust bearings.

2.4.4 A machine learning approach for AE source

localisation

The ML approach has been recently implemented as a solution to overcome the

problems with geometrical models, complex geometries, the dispersive nature of

waves and anisotropy in materials. Recalling from the previous geometrical model

approaches developed so far, specifically the ones that stated the localisation as an

optimisation problem in the form of Equation 2.4.7. This may be restated in another

form in which is desired that the values of the positions be found that minimise the

following expression:

min
x,y

E(x, y) =
∑
ij

(
∆tij −

| 〈x, y〉 − 〈xi, yi〉 | − | 〈x, y〉 − 〈xj, yj〉 |
C

)
(2.4.12)

where the term | 〈x, y〉 − 〈xi, yi〉 | represents the Euclidean distance between the

AE source and the sensor positions [90]. A drawback of this method is that it is

not always possible to find a global minimum thus leading to ambiguous results.

Furthermore the term C is a defined constant whereas in the case of plates the

propagation speed is dependent on the mode of propagation and its frequency. To

make the situation worse, all these methods have been proposed for simple geometries

and arriving at an analytical expression is not a trivial task. A closed-form solution

is not possible, thereby leading to iterative algorithms such as the simplex [91] or

genetic algorithm [92]. Geometrical methods are still severely constrained by model

assumptions and geometrical complexity that makes them difficult to implement in

practical applications.
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An extension of Baxter’s work [87] was performed by Hensman et al. [90]. Their

approach was based on the relationship between the TOA difference between each

sensor and the position on the structure. The main goal was to learn the inverse

relationship between the excitation points to their corresponding maps. The Delta

T approach can be seen as a mapping defined as an equation whereas assuming an

inverse relationship will lead to the mapping relation 2.4.13:

〈∆tij〉� 〈x, y〉 i 6= j (2.4.13)

Learning the relationship between these variables will result in a regression problem

in the context of machine learning. In the inverse mapping the TOA difference will

be the input vector and the position values will be the target vector. Assuming an

independent Gaussian distribution noise model for each measurement, the regression

problem can be stated as:

tn = yn + εn (2.4.14)

where the target vector can be expressed as t = (t1, t2, ..., tN)T , the model output

term y = (y(x1), y(x2), ..., y(xN))T = (y1, y2, ..., yN)T and input vector are defined

as x = (x1,x2, ...,xN)T . Their approach was to use the map generated in Equation

2.4.13 and learn this relationship by treating it as a regression problem by using

a Gaussian Process (GP) approach. For a regression problem such as described in

Equation 2.4.14, new target values t? are inferred from points x?. Using the Gaussian

Process, the joint Gaussian distribution can be represented as:

p

 t

t?

 ∼ N
0,

 C(x,x) k(x,x?)

kT (x,x?) c(x?,x?)

 (2.4.15)

where the matrix C is composed of elements Cnm = k(xn,xm) + β−1δnm. The

hyperparameter β defines the precision, δnm is the Kronecker delta function, the

elements of the vector k are defined as k(xn,x?) for n = 1, 2, ..., N and the function

k(xn,xm) represents the Kernel function that gives a measurement on how the input

vectors xn,xm are similar. In their study, a Radial Basis Function (RBF) kernel was

used, where its parameters were optimised by a cross-validation procedure.
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The distribution of the predicted values t? can be defined as a conditional distribution

of t as:

p (t? | x?,x,y) = N
(
µt?|t,Σt?|t

)
(2.4.16)

µt?|t = kTC−1t (2.4.17)

Σt?|t = c− kTC−1k (2.4.18)

Their localisation approach was validated on a perforated plate where clearly the

waves will propagate in complex directions. In comparison with conventional node

excitation using the H-N sources, each node was automatically excited using a high-

intensity laser. Once trained, the model from their experimental mapping resulted

in a localisation error of 8mm showing a relatively high localisation accuracy.

Al-Jumaili et al. [93], in an attempt to implement the Delta T method, automatically

used a classification approach to build the training data by applying an unsupervised

clustering algorithm. Hierarchical clustering was used to group events based on a

correlation coefficient. Their algorithm was summarised as follows:

1. Assign an AE event to its own cluster.

2. Compute the distance between clusters.

3. Reduce the number of clusters by merging similar ones.

4. Repeat steps 2 and 3 until all items are in one single cluster.

The localisation stage was performed by minimising an error function similar to the

one described in Equation 2.4.12 by replacing the analytical time difference with the

map generated by the Delta T method as:

min
x,y

E(x, y) =
∑
ij

| ∆tij −∆tmapij (x, y) | (2.4.19)

where ∆tij represents the time difference calculated from each pair of sensors i and j

and ∆tmapij is the generated Delta T map. Even though this method is not fully a

machine learning approach, it reduces the source localisation task from 8 hours to 18

seconds. This was mainly due to an improvement in selecting the best data for the

training map with the data clustering approach.
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2.5 AE sensor self-assessment using a machine

learning approach

SHM/CM relies on sensor measurements to determine the condition of a structure.

These sensors are normally attached to the structure/component thereby becoming

part of it and therefore require monitoring themselves. It is well known that any sensor

malfunctioning will lead to unreliable measurements and consequently might lead to

spurious diagnosis results regardless of the novelty detection/localisation algorithm.

This issue ultimately leads to the assessment of not only the structure/machine

integrity but also the integration of the sensors’ health into the diagnostic scheme.

In the AE signals, progressive damage of the sensor might lead to changes in the

AE signal features. Sensor debonding is a relatively common issue that affects

the acquired response from the structure/machine. These changes are not only a

concern for low-level detection stages but for subsequent levels such as the case of

the localisation stage.

2.5.1 Sensor self-diagnosis

In SHM/CM, the processing chain for a single sensor may be summarised as shown

in Figure 2.5.1 [73]. The processing chain shows a number of steps between the

sensor and the decision stage. Evidently, any disruption between the sensing stage

and the decision stage can lead to a decision fault and thus to undesirable outcomes

such as false alarms or damage in the structure/machine going undetected. This,

in the worst-case scenario, can potentially lead to a catastrophic event if no further

action is implemented.
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Sensor

Pre-Processing

Feature Extraction

Post-Processing

Pattern Recognition

Decision

Figure 2.5.1: Single sensor processing chain.

In a practical situation, the sensors might also be considered as part of the structure

or mechanism that they are attached and therefore requiring the sensor to be

monitored together with the structure/machine. This can be achieved by including

a robust health monitoring system that provides sensor validation capabilities to

detect damage on the sensors and isolates them from the network [94]. The scheme,

despite promoting an integral monitoring system, has not received enough attention

in SHM applications, resulting in a wide research gap in this topic [95].

Sensor validation was initially considered in the field of control and chemical en-

gineering by using models and sensor redundancy techniques. Friswell et al. [95]

proposed two different approaches to the sensor validation problem by exploiting

data redundancy on a cantilever beam. Their data redundancy approach was based

on the assumption that the number of sensors used on a simulated cantilever beam

was higher than the number of excited modes. They also proposed the use of modal

participation factors and the subspace response of the system in order to discriminate

between working and faulty sensors. Kerschen [96], on the other hand, proposed

using PCA to identify, isolate and reconstruct a faulty sensor on a clamped beam.

Recent interest in Electromechanical Impedance (EMI) techniques used in SHM

has resulted in sensor validation techniques in PZT elements [97]. The interest

in this topic was principally due to the influences of the brittle behaviour of PZT

elements and the effects of bonding degradation. Saint-Pierre [98] used Mason’s [99]

one-dimensional electromechanical model to understand bonding conditions in PZT

elements. Giurgiutiu [100] showed that the imaginary part of the impedance can give
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a good indication of debonding on PZT patches attached to structures. Their work

showed that free vibration resonance during free conditions and its reduction during

completely bonded conditions are unambiguous features for debonding detection.

Overly [101] proposed the tracking of the imaginary impedance part and was able to

iteratively detect faulty sensors in a PZT network. Their work also investigated PZT

breakage and temperature variation. An algorithm for sensor damage detection was

based on monitoring the imaginary part of the admittance signal and measure their

respective standard deviations. An unhealthy sensor was recognised by identifying

the sensor that contributed the most to the reduction of the standard deviation in

the sensor network. The method identified the faulty sensors but it was constrained

by the assumption that the network contained only half unhealthy patches.

2.5.2 Bonding influences on AE signals

Emerging NDT techniques have mainly used Lamb waves to perform structural

assessment due to its damage sensitivity characteristics. The reliability of these

measurements led to further investigations on the sensor integrity and the effect of

bonding degradation [100,101]. This certainly has an effect on signals propagating in

a bounded media such as the case of AE signals, thus affecting their signal features

and consequently the diagnostics obtained from these features. Recent studies have

shown that bonding and sensor breakage have an effect on the AE signal. Giulia et

al. [102] experimentally found a change in the amplitude, phase and energy loss of

the piezoelectric voltage response. Park et al. [103] studied the effect of bonding on

PZT sensors and its effects on Lamb waves at different propagation stages on a plate.

Their results showed a clear change in the signal magnitudes and TOA between

different bonding scenarios. Sathyanarayana et al. [104] proposed a methodology

to detect different type of sensor debonding based on Time of Flight (TOF) and

Maximum Amplitude Spectra (MAS) features. This has a direct implication for the

methods used for damage localisation. Altered AE parameters such as changes in

the amplitude and signal distortion can lead to erroneous signal features and TOA

measurements and ultimately affecting the reliability of the localisation approach.

Figure 2.5.2 shows the bonding effects on the AE signal. Influences in the time-

domain features seem to decrease the signal amplitude and distort the signal. The
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same result also seems to occur in the frequency domain. Three identical sensors

equidistantly separated by 565mm were excited with a PLB source in between them

on a 5 mm Aluminium plate. The result show a significant change in the measured

signal at different debonding levels. Figure 2.5.2 shows an increase in the magnitude

at a peak close to the resonance frequency of the PZT when the amount of debonding

increases. Additionally, at different bonding levels, the signal’s features, such as

amplitude and resonance frequency change. A reduction in the bonding surface

seems to detrimentally affect the AE signal by reducing its amplitude, shifting and

increasing the resonance peaks. On the other hand, perfectly bonded sensors have a

similar response both in time and frequency domain where no noticeable peak occurs

close to the PZT patch resonance frequency.

Figure 2.5.2: (a) AE signals on time domain and (b) frequency domain.

A time-domain signal together with its Continuous Wavelet Transform CWT is

shown in Figure 2.5.3, 2.5.4 and 2.5.5. These figures show that, in the case of

completely bonded scenarios a clear distinction of the arriving modes can be seen in

the time-frequency plot. Moreover, the time-frequency signature show a similarity in

terms of the coefficients obtained in the CWT, whereas the partially bonded PZT

patch shows an unclear and dissimilar signal both in time and time-frequency domain.

Additionally, a severe distortion on the time domain signal seems to occur compared

with the completely bonded cases. One should also mention the low output signal

levels obtained on the partially bonded sensor.
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Figure 2.5.3: (a) Completely bonded sensor 1 time and (b) time-frequency plot shows

a distinguishable zero-order symmetric and antisymmetric mode.

Figure 2.5.4: (a) Completely bonded sensor 2 time and (b) time-frequency plot.
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Figure 2.5.5: (a) 25% debonded sensor time and (b) time-frequency plot. Low level

amplitudes in the signal obtained on the time and time-frequency representation.

2.5.3 Admittance features for damage detection

Impedance measurements have been exploited to obtain features that are sensitive

to both structural and sensor damage. A one-dimensional PZT admittance model

initially developed by Lian et al. [135] shows the relationship between the measured

electrical admittance Y (jω) with the patch impedance Zp and structural impedance

Zs. That means that the measured electrical admittance from the raw signal Y (jω)

will contain two parts: a part that is sensitive to structural damage and patch

damage. The derived relationship can be described in terms of the PZT properties

(electrical and geometrical) as:

Y (jω) = jω
wl

tc

(
εT33(1− jδ)− d231Y E

p +
Zp(ω)

Zp(ω) + Zs(ω)
d231Y

E
(tan(kl)

kl

))
(2.5.1)

where the parameters ω, I, V , w, l in Equation 2.5.1 represent the angular frequency

of the current in [rad/s], the electrical current [A], voltage [V], width [m] and length

[m] of the PZT patch respectively. The term k and Ŷ E
p represent the wave number

and the dynamic Young’s modulus are defined as:

k = ω

√
ρ

Ŷ E
p

Ŷ E = Y E(1 + ηj) η =
1

Qm

(2.5.2)
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The terms ρ, η and Qm represents the density, the mechanical loss factor and the

mechanical quality factor of the PZT patch respectively. Equation 2.5.1 can be

separated into real (conductance) and imaginary parts (susceptance) as:

Y (jω) = G(ω) +B(ω)j (2.5.3)

From Equation 2.5.3, two PZT bonding conditions can be derived; a completely

detached and perfectly attached scenarios. The first scenario assumes that there is

no structure attached to the PZT patch; meaning Zs = 0. So, the impedance curve

for a completely detached PZT can be defined as:

Yfree(jω) =
I(jω)

V (jω)
= jω

wl

tc

(
εT33(1− jδ)

)
(2.5.4)

Redefining Equation 2.5.4 in terms of the real and imaginary parts leads to the

following equation:

Yfree(jω) = Gfree(ω) +Bfree(ω)j (2.5.5)

Replacing the term ω by 2πf in Equation 2.5.4 gives:

Gfree(f) = −2πwl

tc
εT33f Bfree(f) =

2πwl

tc
δf (2.5.6)

The completely attached scenario will assume that the PZT path is perfectly bonded

to the structure represented as an infinite mechanical impedance. If Zs(ω) =∞, the

right term of Equation 2.5.1 will be zero giving Equation 2.5.7:

Ybonded(jω) =
I(jω)

V (jω)
= jω

wl

tc

(
εT33(1− jδ)− d231Y E

p

)
(2.5.7)

where Ybonded(jω) can be written in the form:

Ybonded(jω) = Gbonded(ω) +Bbonded(ω)j (2.5.8)

and where the real and imaginary terms are defined as:

Gbonded(f) = −2πwlδ

tc
f − d231ηY E Bbonded(f) =

2πwlεT33
tc

f − d231Y E (2.5.9)

The mechanical representation of the one-dimensional model can be represented

as a PZT patch coupled with a structure with mechanical impedance Zs with an

equivalent mass-spring-damper system represented on Figure 2.5.6. The system

parameters m, Ks and Cs represent the mass, stiffness and damping parameters of

the structure respectively.

49



Figure 2.5.6: A one-dimensional impedance model of a PZT patch attached to a

structure and exciting the structure with a force F .

Equations 2.5.5 and 2.5.7 represent a characteristic feature in the model shown in

Figure 2.5.6. The change in both conditions leads to a change in the susceptance

curve as shown in Figure 2.5.7. The curves were obtained using the properties of the

PIC181 PZT element as shown in Table 2.5.1 and show a shift on the slope value

from the bonded to completely detached scenario.

Figure 2.5.7: Free and bonded PZT susceptance features obtained from analytical

curves. A change in the slope values indicates two different bonding conditions.

50



Table 2.5.1: PIC181 electro-mechanical properties.

Properties Symbol Values

Dielectric constant εT33 1.062× 10−8

Dielectric loss δ 3× 10−3

Piezoelectric constant [C/N] d31 −120× 10−12

Young’s Modulus [GPa] Y E
p 84.7

Mechanical loss factor η 5× 10−4

Mechanical quality factor Qm 2000

Resonance frequency [kHz] fr 227

Radius [m] r 5× 10−3

Thickness [m] tc 0.5× 10−3

The one-dimensional model discussed in this section describes two different scenarios

where free and perfectly bonded conditions occur. This shows two features that

permit distinguishing between these two extreme conditions and thus allow them

for being processed for novelty detection. This can also be extended to damage

progression, as in reality, a wide range of debonding levels can occur due to bond

degradation and fatigue. This may lead to an understanding of how the electrical

impedance responds to certain structural impedance values produced by progressive

debonding.

2.6 Chapter summary

• Damage detection methods based on vibration and AE measurements have been

widely implemented in rotary machines. Their damage detection capabilities

are well-known in industry and made them suitable for monitoring WTGB.

Vibration measurements have been the standard technique for bearing damage

diagnosis and have been shown to be robust for incipient damage detection in

the bearing components.

• AE signals can provide an additional level of diagnostics, by providing infor-

mation about the damage location. This can be achieved by extracting the
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relevant set of features and exploiting them using networks of AE emission

sensors. An AE sensor network can be exploited for WTGB by understanding

the response of the sensors to different damage location scenarios.

• Novel damage detection strategies try to replace the human intervention on

deciding whether damage had been occurred. This processes involves using

sophisticated techniques that automatise this process by analysing features

sensitive to the damage stage of the equipment.

• Regardless of the method implied for damage detection, special care on the

features type is required for the correct pattern classification. Moreover, this

also requires careful consideration of the features and their pre-processing, this

ultimately performed for damage detection enhancing purposes.

• Damage localisation in structures is benefitting from sophisticated techniques

that overcome the challenges of using AE signals. Analytical methods have

initially been proposed to localise AE sources in simple structures and have im-

proved to include anisotropy in materials. Current limitations, such as complex

geometries found in practical scenarios and complex wave behaviours, requires

analytical models that can truly capture the physics of wave propagation. Such

challenges make this approach very difficult, if not impossible to implement

and a different approach must be proposed.

• The sensor condition has shown to influence the AE signal characteristics,

therefore, affecting the signal extraction features from such signals. Impedance

features have shown to be a sensitive feature for bonding degradation and

might provide a reliable tool for sensor-self assessment purposes.

• A machine learning approach may solve the challenges mentioned before to

some extent but it will require a deep understanding regarding how to train

and implement these techniques.
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CHAPTER 3

Theory and background

This chapter will provide the background for the techniques used for damage detection

and localisation. An introduction to outlier analysis and LDA for novelty detection

is detailed. Additionally, a review of Neural Network (NN) for regression is included.

This will explain the application of NN for building a regressive model for damage

localisation. Aspects will be discussed regarding their implementation, training and

model order selection techniques. Finally, an implementation of beamforming as a

method for damage localisation in structures is detailed in this chapter.

3.1 Outlier detection

In terms of a statistical definition, an outlier can be defined as a data point that

appears inconsistent to the rest of the data and presumably being generated by

another mechanism [105]. The outlier can be detected by obtaining a discordancy

measure (also known as z-score) where in the case of univariate data is defined as:

zζ =
| xζ − x̄ |

σ
(3.1.1)

The variable xζ represents the data that will be classified or not as an outlier and

the x̄ and σ are the mean and the standard deviation respectively. These two

last parameters can be calculated with the outlier or not, if these parameters are

calculated without the outlier then the outlier procedure can be defined as exclusive

analysis, conversely it will be defined as inclusive analysis.
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For the case of a multivariate scenario the discordancy measure takes the form of

the squared Mahalanobis distance defined as:

Dζ = (Xζ − X̄)TΣ−1(Xζ − X̄) (3.1.2)

where Xζ represents the vector for the potential outlier, X̄ the mean vector and Σ the

covariance matrix. As in the case of the univariate form, an inclusive and exclusive

analysis can be perform in the same manner as described above. Both versions of

the method can be understood as ways to describe the distance of each observation

from a specific distribution mean value in terms of standard deviations. In order to

visualise this, Figure 3.1.1 shows a univariate Gaussian Normal distribution where

deviations from the mean x̄ are designated in multiples of the standard deviations σ.

Figure 3.1.1: The Gaussian Normal distribution and the z-score in terms of standard

deviations.

An important aspect is that to classify an observation as an outlier or not, a value

must be defined. In some cases, a threshold value can be visually estimated and

may allow an unambiguous classification for each observation. The following section

will discuss a systematic approach to set a threshold level by using a Monte Carlo

simulation approach.

3.1.1 Threshold determination

A Monte Carlo simulation based method described in [40, 106] has been used to

determine the threshold between the normal and faulty data. The process is defined

as follows:
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1. A random observation matrix with K rows and D columns in generated where

K and D represent the number of observations and the dimensions respectively.

Each element of the observation matrix is sampled from a normal Gaussian

distribution.

2. The Mahalanobis distance is calculated for each observation and the largest

distance is stored in an array.

3. A large number of trials are required, thereby the process is repeated until the

the critical values for 5 and 1% tests are found in the array with the largest

Mahalanobis distances.

3.2 Linear Discriminant Analysis (LDA)

An introduction to outlier detection has shown a method to detect outlier points

from a reference condition by calculating the Mahalanobis distance. Even though a

threshold limit is set as in this case with a Monte Carlo approach, the decision of

whether or not the measurement is an outlier does not take into account the whole

data distribution. In other words, outlier analysis focusses on assigning a single data

point as a potential outlier without considering the entire distribution of potential

outliers. For instance, it is better to set a boundary between two different conditions

and set a decision based on the changes in the data distributions. Another aspect to

take into consideration is the amount of overlapping generated between datasets that

significantly reduces the ability to distinguish between different conditions. In some

cases, the information relating to different conditions might be hidden in certain

regions of the multidimensional space. Moreover, this information might be hidden

in a subset of this multidimensional space and thereby not evident for certain data

representations. This situation leads to the exploration of two problems: the multiple

data representations and their separability characteristics.

LDA [107] is a feature reduction/classification method that allows the separation of

two or more classes by exploiting feature reduction capabilities. The main concept

is that, in order to achieve an optimal separation, the data clusters are projected

onto a lower dimensional space that maximises the data separation and displays
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the lowest variances for each data class. This has some similarity to Principal

Component Analysis (PCA) [108] where the feature dimensions are also reduced

but in the directions that the variance is maximised. In general, both techniques

seek for a linear combination that better explains the data. Figure 3.2.1 shows two

different representations defined as LDA1 and LDA2 of the same classes C1 and

C2 where the values of d1 and d2 represent the distance between the means. The

representation at LDA1 shows a higher variance and overlapping between classes

than the representation at LDA2 where a minimal variance and larger distance is

achieved.

Figure 3.2.1: Linear Discriminant Analysis between two different classes.

In this two dimensional example, a feature reduction is taking place as both dis-

tributions are projected onto a one-dimensional space. As mentioned before, the

method tries to find a linear combination that best separates two classes. This linear

combination can be defined as:

y(x) = wTx + ω0 (3.2.1)

where w, w0, y(x) and x are a set of weights, the bias, an hyperplane and the

feature vector respectively. The separation is based on finding a set of weights w

that maximises the ratio between class variance Σb and minimises the within class

variance Σw as shown in Equation 3.2.2. This form is also known as Canonical

Discriminant Analysis (CLA).

w? = arg max
| wTΣbw |
| wTΣww |

(3.2.2)
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where Σb and Σw represent the variance between and within classes and can be

calculated using Equations 3.2.3 and 3.2.4 respectively.

Σb =
∑
k

(µk − µ) (µk − µ)T (3.2.3)

Σw =
∑
k

∑
i∈k

(xi − µk) (xi − µk)
T (3.2.4)

where the terms µ, µk and xi represent the global mean of the whole data, the mean

for each class k and the observations vectors for each corresponding class respectively.

For the purpose of classification, a discriminant function can be derived by using

Bayes’ theorem. Thus Equation 3.2.1 can be defined as:

y(x) = (x− µk)
T Σ−1w (x− µk) + log | Σw | (3.2.5)

Equations 3.2.2, 3.2.3 and 3.2.5 can lead to view LDA as a feature reduction technique

and a classification method. In reality, finding the set of weights to find a projection

hyperplane will be equivalent to find the discriminant function that works as the

decision boundary between classes as shown in Figure 3.2.2. The hyperplane that

separates both classes is represented perpendicular to the weight vector. In the

case of a two-dimensional feature space the projection reduces the two-dimensional

representation into a one-dimensional space.

Figure 3.2.2: Linear Discriminant feature reduction where the normal (NC) and

damage conditions (DC) are projected on the hyperplane.
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3.3 Background to neural networks for regression

problems

The use of NN has been widely studied for regression problems and their capabilities

have been extensively recognised in the ML field. The use of NN for such problems

relies on their capabilities for performing regression and classification problems. They

exploit features of real data that regular linear methods fail to do and where also

the curse of dimensionality becomes a problem. This makes NN a good approach

to practical applications [109]. Even though they seem to learn any type of data

relationships, special caution should be taken at different stages to provide meaningful

features, correct training and more specifically, avoid overtraining. The following

sections will treat these points to assure the correct use of NN for this type of

problem.

3.3.1 The Multilayer Perceptron (MLP)

A special type of network architecture defined as the MLP is defined as a set of three

layers denominated as the input, the hidden and the output layer as shown in Figure

3.3.1. Even though more simple network architectures exist, such as the case of a

single-layer perceptron, their applicability to regression problems have been limited.

It has been shown that, the single layer perceptron can only represent a limited set

of functions, it is necessary to include an additional layer in the network to allow a

more generalised representation [109]. The capability of representing any continuous

function is normally referenced as the the universal approximation theorem [109] and

basically states that a feed-forward network with a hidden layer that contains a finite

number of units (neurons) can approximate to arbitrary accuracy, any continuous

function. Therefore, an MLP network can be taken to be a universal approximator.

Even though this theorem constrains the number of layers in the network, it does

not mention the number of hidden units required. This will be discussed later on in

the model order selection procedure.
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Figure 3.3.1: The multilayer perceptron architecture.

From Figure 3.3.1, each output yk of the MLP can be represented as a function of the

weights of the first and second layer wji and wkj with each corresponding activation

function f and g as:

yk = g
( K∑
j=0

wkjf
( D∑
i=0

wjixi

))
(3.3.1)

where xi are each individual input, wji and wkj are weights in the first and second

layer respectively. Notice that Equation 3.3.1 does not include the bias terms b(1)0 and

b
(2)
0 explicitly in the summation term, it rather assumes the terms wj0x0 = b

(1)
0 × 1

and wk0a
(2)
k0 = b

(2)
0 × 1. The terms a(1)j and a

(2)
k are the output of the activation

function in the first and second layer and can be written as a linear combination of

the weights of each layer as:

a
(1)
j =

D∑
i=0

wjixi =
D∑
i=1

wjixi + b
(1)
0 (3.3.2)

a
(2)
k =

K∑
i=0

wkjzj =
K∑
i=1

wkjzj + b
(2)
0 (3.3.3)

where the term zj represents the activation function f evaluated at a(1)j as:

zj = f
(
a
(1)
j

)
(3.3.4)

The activation functions f and g have the property that they are continuous and

differentiable. Normally the activation function f takes the form of a sigmoid function

as:

f(aj) =
1

1 + exp(−aj)
(3.3.5)
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This requirement for such non-linear activation functions is due the need of it being

capable of representing any continuous mapping. Generally, for the output layer, g is

defined as a linear activation function only for regression problems in order to avoid

limiting the output of the sigmoid activation function.

3.3.2 The error function and data modelling

The main task of the NN is to learn from the relationship between the input and

output data. This process does not realistically resemble the biological learning

mechanism with the ANN, mechanism rather being achieved by the minimisation of

an error function derived from the principle of maximum likelihood. For a set of N

data samples composed of the input vector x and its target vector t, the maximum

likelihood is defined as:

L =
N∏
n

= p (xn, tn) (3.3.6)

The term p(x, t) gives important information of the data generation and it is modelled

with the NN. This input-target joint distribution can be represented as p(x, t) = p(t |

x)p(x) for the sake of prediction of a new vector t given an input vector x. Rather

than modelling the joint probability the conditional probability p(t | x) is modelled

instead. Until this point, no assumption regarding the conditional density p(t | x)

have been made. This general concept allows a more generalised way of applying

NN for more complex data distributions and in fact specifies a general framework to

deal with this particular situation [109, 110]. In this thesis, it is believed that the

data does not follow a complex distribution and for instance a Gaussian assumption

is made as shown in Equation 3.3.7.

p(tk | x) =
1√

2πσ2
exp

(
−(yk (x,w)− tk)2

2σ2

)
(3.3.7)

Equation 3.3.7 describes the likelihood function of the target variable t where yk

and tk represents the kth network output and target variable respectively. The error

function is defined as the minimisation of the negative logarithm of the likelihood

function as described on Equation 3.3.6. That finally leads to the sum-of-squares

error expression given in Equation 3.3.8. The minimisation of this error function

basically seeks for the set of weights w that minimises this error function.

E =
1

2

N∑
n

K∑
k

| yk(w,xn)− tnk |2 (3.3.8)
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This error function can be modified in order to improve the networks capability

for generalisation and avoid overfitting. An additional aspect that involves the

optimisation of Equation 3.3.8 leads to add a regularisation term if the Levenberg-

Marquard method is used to optimise this function. The idea behind this approach

is to keep relatively small iteration steps during the optimisation process whilst keep

the relatively small error values.

So far, the learning process has been defined as an optimisation problem and no

mention of any specific algorithm has been made. Even though multiple optimisation

algorithms may be used for this problem, it was decided that the Levenberg-Marquardt

method can be adopted due to its computational efficiency characteristics.

3.3.3 The Levenberg-Marquardt optimisation algorithm

The learning process in a NN involves minimising an error function through op-

timisation. Althought this step can be performed with a vast number of general

purpose algorithms such as gradient descent and conjugate gradient based methods,

their limitations has been extensively discussed in literature [109]. For the case of

regression problems, the training involves the minimisation of the sum-of-squares

error function and thus requires the calculation of the Hessian matrix. This can be

performed efficiently if certain assumptions are made in terms of the linearity of

the solution. An initial approach involves the linearisation of Equation 3.3.8 and

redefining it in terms of a Taylor series approximation as:

E =
1

2

N∑
n

(εn)2 =
1

2
| ε(wτ ) + Z(wτ+1 −wτ ) |2 (3.3.9)

where ε and τ represent the error of the nth pattern and the step increment respec-

tively, the elements of the matrix Z can be defined as:

Zni =
∂εn

∂wi
(3.3.10)

Equation 3.3.10 represents the error derivative with respect to the network weights,

this derivative is calculated using the back-propagation method discussed later. The

minimisation of the error function defined in Equation 3.3.9 with respect to the

weights wτ+1 leads to the expression:

wτ+1 = wτ −H−1ZT ε(wτ ) (3.3.11)
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Equation 3.3.11 shows an iterative procedure to calculate the vector of weights w. In

practical applications, where a considerable number of network weights are used, the

speed at where the Hessian matrix is evaluated becomes an important issue during

the training stage. This can be improved by approximating the Hessian matrix H as:

H ≈ ZTZ (3.3.12)

The expression in Equation 3.3.12 refers to the Levenberg-Marquardt approximation

and it is valid for an infinite dataset. This simplifies the calculation of the Hessian

matrix by reducing the number of calculations. Another practical aspect encountered

during the implementation of Equations 3.3.11 and 3.3.12 deals with the non-linear

behaviour of the error surface. This can be a potential problem if the step size τ

becomes sufficiently large during the iterations and thus the linear approximation in

Equation 3.3.9 becomes no longer valid. This issue is normally solved by adding a

regularisation term to keep the weight value relatively small, thereby Equation 3.3.11

is modified as:

wτ+1 = wτ + (H + λI)−1 ZT ε(wτ ) (3.3.13)

where λ and I represents the regularisation parameter and the identity matrix

respectively. The importance of this algorithm relies on its efficient way of computing

the Hessian matrix and is considered the fastest of similar optimisation algorithms.

It is important to mention that, in contrast to other optimisation algorithms used

for training, the Levenberg-Marquardt algorithm specifically optimises the sum-of-

squares error function defined in Equation 3.3.9.

3.3.4 Error back-propagation

In order to implement this algorithm, some quantities must be calculated, such

as of the error derivatives shown in Equation 3.3.10. This is done by using the

back-propagation method which is extensively discussed in [109]. The learning

process involves finding a set of weights w that minimise Equation 3.3.8. This

is achieved by calculating the error between a target set t and network output y

and back-propagating it to calculate another set of weights that minimise the error

function. This process involves calculating the derivative of the error function with

respect to the weights, an efficient method for performing this calculations is known
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as the back-propagation algorithm. The derivative of the error function with respect

to the weights is defined as:

∂E

∂wij
=
∂E

∂aj

∂aj
∂wij

= δj
∂aj
∂wij

= δjzi (3.3.14)

where the difference between the target values and the network output is defined as:

δk = yk − tk (3.3.15)

The derivative of the Error function with respect to the activation functions aj can

be calculated as:

δj =
∑
k

∂E

∂ak

∂ak
∂aj

= h′(aj)
∑
k

wkjδk (3.3.16)

Now that all the error derivatives equations are known, the back-propagation method

can be iteratively executed as:

1. Apply an input vector x to the network and obtain all the activation values aj

and zj of the hidden units using Equations 3.3.3 and 3.3.4.

2. Evaluate the function δk for all the output units using Equation 3.3.15.

3. Perform the back-propagation by calculating the values of δj using Equation

3.3.16.

4. Calculate the error derivative with respect to the weights using Equation 3.3.14.

3.3.5 The dataset

Even though training a NN with data initially sounds trivial, special care must be

given. The main purpose of a dataset is not to provide the means of allowing the NN

to exactly learn each point but to learn the underlying relationship that generates

these outputs. Initially, these weights need to be adjusted according to the data

provided to the NN but further issues such as overfitting and defining the number of

hidden units known as hyper-parameters in the network must be addressed. This is

generally addressed by the common practise of splitting the dataset into three sets

defined as:
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• Training set: This dataset will be used for training, in other words it will

be used to modify the weights of the network. It is important to notice that,

for most of the optimisation algorithms, the error of the NN will decrease

monotonically as the number of iterations increase, clearly this will eventually

will lead to overfitting problems which can be avoided by using a validation set.

• Validation set: An additional data set is required to determine the network

hyperparameters such as the number of hidden units and to prevent the NN

from overfitting issues. The error calculated using this dataset is known as the

validation error and normally prevents the NN from overfitting by stopping

the training process once the validation error starts to increase.

• Test set: The test set provides an independent test set that allows to test the

network performance.

3.3.6 The size of the dataset

An important aspect to consider during the implementation of a NN deals with

the size of the dataset; This ultimately having an effect on the NN generalisation

capabilities. The concept of generalisation can be understood as equivalent to fitting

a a polynomial curve for NN, a further explanation will be discussed later. This

situation leads to the question of how many patterns are required in order to avoid

overfitting problems. Fortunately, this topic has been addressed by Baum and

Haussler [111], whose work suggested a lower and upper bound defined as:

Pl = W (3.3.17)

Pu = 10W (3.3.18)

where Pl, Pu andW represents the lower, the upper bound and the number of weights

in the NN respectively, where the number of weights in a MLP can be calculated as:

W = (I + 1)J + (J + 1)K (3.3.19)

where I, J , and K represents the number of inputs, the number of hidden units and

the number of outputs respectively.
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3.3.7 Overfitting and model order selection

As the main goal of NN is not to learn the exact representation of the data but rather

understand its data generator. In a practical situation, a NN that can correctly

predict previously unseen input values is desirable. This generalisation issue addresses

the following contrasting scenarios: a NN with little complexity unable to correctly

predict due to its inflexibility or a high complexity network that overfits the noise in

the data.

As initially said, the number of layers can be fixed by means of the universal

approximation theorem but the optimal number of hidden units remains unspecified.

More complex models such as NN with a higher amount of hidden units can lead to

overfitting whereas models with a low amount of hidden units can lead to models

incapable of representing the data relationship.

The problem can be understood as a trade-off between the bias and variance of a

model. If one assumes there is a dataset denoted as D, where ED[.] defines the

expected value of the whole dataset, y(x) the network outputs and 〈t | x〉 the optimal

network output. The expectation of the ensemble average can be defined as:

ED[((y(x)− 〈t | x〉)2] = {ED[y(x)]− 〈t | x〉}2 + ED[{y(x)− ED[y(x)]}2] (3.3.20)

Equation 3.3.20 can be defined in terms of the bias and the variance as:

(bias)2 =
1

2

∫
{ED[y(x)]− 〈t | x〉}2p(x)dx (3.3.21)

(variance) =
1

2

∫
ED[{y(x)− ED[y(x)]}2]p(x)dx (3.3.22)

In order to provide an example of two extreme situations where the bias and variance

play a role in model order selection, the two output scenarios shown in Figure 3.3.2

will be considered. Assume a smooth function h(x), where the optimal network

output can be defined as 〈t | x〉 = h(x). If a fixed output y(x) is generated, the

term ED[y(x)] = y(x) and therefore the variance term defined in Equation 3.3.22

will become zero. In the opposite case, if the network interpolates perfectly between

each point, the bias term in Equation 3.3.21 will be zero as ED[y(x)] = h(x) but it

will give a large of error as it includes the noise term.
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Figure 3.3.2: A fixed function yb(x) (blue) and a function that perfectly interpolates

yv(x) (red) each data point (blue circles) obtained from the underlying function h(x)

(dashed curve).

The optimisation of the complexity of a NN is commonly performed by a cross-

validation method or a regularisation technique. A cross-validation technique nor-

mally selects the model that has the best performance on a new data set whilst

a regularisation approach involves adding an additional multiplicative term in the

error function that penalises large weight values. The most common regularisation

methods are the L1 and L2 (also known as weight decay) regularisation terms defined

by Equation 3.3.23 and 3.3.24 as:

ΩL1 =
1

2

∑
i

w2
i (3.3.23)

ΩL1 =
1

2

∑
i

wi (3.3.24)

In real applications some issues such as the amount of data available become a

problem as it may not allow the inclusion of an independent validation set in order

to evaluate the performance of different models. A K-Fold cross-validation technique

deals with this issue by systematically portioning the data.
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3.3.8 K-Fold cross-validation method

The main advantage of using the K-Fold cross-validation method is that a high

proportion of the data can be used for training in situations where the data are scarce

or limited. The K-Fold method for cross-validation consists of splitting the data

into a training and a test set with the latter set being used to select the appropriate

model complexity. More specifically, the entire data will be partitioned into S groups

allowing the remaining (S − 1)/S proportion of the data to be used for training

purposes. Each model will be run S times and a model can be selected based on

the predictive performance obtained from the test set. As illustrated in Figure 3.3.3,

the data are partitioned into S = 5 groups. 80% can then be used for training and

validation whereas the remaining 20% for the neural network performance testing.

Figure 3.3.3: Data partition for K-Fold cross validation.

In order to summarise the method, the following pseudo-code showed in Figure 3.3.4

was implemented in order to cross-validate the models. The procedure described in

Figure 3.3.4 specifies a range of NN models by defining a lower and an upper bound

of hidden units defined as Jl and Ju respectively. A main loop initialises each NN

with random weights during each iteration. The initialised NN is trained using the

remaining S − 1 training sets whilst retaining the corresponding test set k. The

procedure continues the training process until the validation error eminval reaches its

minima. The lowest validation error eminval is stored in an array defined as eopt[k].

This process continues until all models are trained in the first loop. At the end, a set

of candidates networks are selected and the test error evaluated using the test set.
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Algorithm 1 K-Fold Cross-validation
1: procedure 10-Fold

2: Jl = set lower bound for hidden units

3: Ju = set the upper bound for hidden units

4: for j = Jl; i ≤ Ju; j = j + 1 do

5: initialise random weights

6: for k = 1; k ≤ 10; k = k + 1 do

7: Train MLP

8: Stop training when validation error eminval reaches its minima

9: if eminval < eopt[k] then

10: eopt[k] = eminval

11: for k = 1; k ≤ 10; k = k + 1 do

12: Evaluate test error for each optimal network

Figure 3.3.4: Algorithm implemented for K-Fold cross validation.

3.4 Time-Delay and Sum Beamforming

So far, analytical and ML methods explored the use of TOA features for damage

localisation. Although the extraction of this feature is relatively straightforward

when a clear AE onset is visible, this can become difficult when there is a relatively

low signal-to-noise level and high attenuation in the signal. Meaning that generating

a TOA map becomes impractical in this scenario and might result in ambiguous TOA

features. Time-Delay beamforming uses the delay generated between the signals

as the main feature to localise sources, this technique is based on the summation

of the signals obtained in an array of N sensors, assuming that the signals can be

represented as delayed copies of the same event. The beamformer output is defined

as [112]:

g(t, ~r) =
N∑
i=1

xi(t− τi(~r)) (3.4.1)
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where xi represents the signal of each sensor delayed by an amount τi, this delay

value can be calculated analytically and will depend on the position of the steering

vector ~r. The source position is obtained from the beamformer power defined as:

E{g(t, ~r)} =

∫ T2

T1

| g(t, ~r) |2 dt (3.4.2)

where the beamformer output is integrated within a time window defined between

bounds T1 and T2. This expression is integrated over each point of the spatial domain

defined by the steering vector and will result in a set of interference patterns where

regions of high intensities can be interpreted as possible source positions. The method

can be summarised in this following steps:

1. Identify the region of interest.

2. Discretise the geometry and calculate a time delay

3. The original signals are delayed with the values obtained from the previous

step.

4. The signals are summed up in order to generate constructive or destructive

interference patterns.

Even though, this method does not rely on the TOA feature, it does rely on the

shape of the waves and the generated interference patterns. The main concept of

Time-Delay and Sum beamforming involves the analysis of the interference patterns

produced by the summation of the amplitude responses of the delayed signals. This

can be seen as shown in Figure 3.4.1 where the each signal is delayed and then

summed up in order to produce the beamformer output Ep(t) and then processed

using Equation 3.4.2 to produce the interference patterns.
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Figure 3.4.1: Beamforming technique using a set of three sensors showing a construc-

tive interference pattern.

3.4.1 Near-Field and Far-Field and Time-Delay calculation

In order to accurately calculate the time delays, an assumption regarding the nature

of the front wave during the propagation must be considered. This can be intuitively

seen to be relative to the size of the application. Planar wave propagation can be

viewed as a spherical wave with an infinite radius and might be suitable for describing

AE sources at relatively large distances. Figure 3.4.2 shows the two assumptions

where τp and τs represent the delay for the Far-Field and Near-Field assumptions

respectively.
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Figure 3.4.2: Far-Field and Near-Field assumptions.

Although this assumption is not trivial, there are a few empirical relationships that

define a criteria for Near-Field such as [113]:

r ≤ 2fL2

C
(3.4.3)

where L, r, f and C represent the array length, the radius of the wave front, the

wave frequency and the wave propagation speed respectively. Finally, the time delays

τp and τs can be calculated as:

τp =
d sin θ

C
(3.4.4)

τs =
| ~r | − | ~r0 |

C
(3.4.5)

where d, θ, r and r0 represent the distance between the sensor array, the angle, the

vector of each wave front and the vector of the wave front at the reference sensor.

3.5 Chapter summary

• An introduction to outlier analysis and LDA has been included in this chapter,

this consequently will allow the use of these algorithms to perform novelty

detection. Although, both methods might be used for the same purpose of

damage detection, there is a great difference between the way both methods

71



deal with outliers. Outlier analysis does not consider the entire distribution

of outliers whereas LDA considers the entire data distribution. Additionally,

outlier analysis requires determining a threshold as the method by itself does

not discriminate between a normal and abnormal condition. An introduction to

a Monte Carlo simulation approach has been included as a method to calculate

a threshold value based on the dimensions and size of the feature vectors.

• LDA has several advantages compared with outlier analysis, as it tries to opti-

mise an hyperplane that best separates different conditions using a discriminant

function. Therefore, no threshold assumption is required to be done to classify

a set of measurements as potential anomalies or not.

• An introduction to NN explained the training process and the steps required

to produce models that avoid overfitting. The importance of a model order

selection using the K-Fold cross-validation method has been explained and its

implementation for NN.

• Moreover, a method using the beamforming method has been included in this

chapter. Although this method is not a ML approach, it exploits a different

type of features that might allow to localise AE sources. Additionally, it

is important to mention that this method works under certain localisation

conditions, as so far, complex wave propagation paths were not considered.
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CHAPTER 4

Test rigs

In this chapter, an introduction to the test rigs used for novelty detection and damage

localisation is presented. Description of the scaled-down rig and the MultiLife rig are

also introduced at each section to provide details about their working mechanism

and instrumentation.

4.1 Scaled-down rig

This rig was originally designed to study the life span expectation on roller bearings

by measuring the dynamic strain using X-ray and Neutron Diffraction techniques.

This required that the main experiment was performed in the ISIS Neutron and

Muon facilities where limited access to the rig and special precautions during the

sensor installation were imposed during the experimental stage. The advantage of

this rig is its relatively few and simple mechanisms that result in less contamination

by secondary noise sources. Therefore, this characteristic made it suitable for an

initial investigation into damage localisation. An image of the testing rig is shown in

Figure 4.1.1 where the main elements of the loading frame are shown. Figure 4.1.1

also shows the location of the test bearing installed on the main shaft.
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Figure 4.1.1: Scaled-down rig with a zoomed area of the loading mechanism.

This rig was developed to run at a single angular velocity via an electrical motor

attached by a belt-pulley transmission. The load applied on the rig was controlled

by a threaded bar and a nut, this mechanism allows a constant radial load with

fluctuations limited by creep in the material, which in this case, can be considered

negligible at room temperature. The load can be increased and decreased by rotating

a nut, this consequently rotates the support beam around a revolute joint and pushes

the loading mechanism. The load was monitored by using a load cell attached to the

revolute joint of the loading frame. In order to apply a concentrated load, a curved

support mechanism was situated in the middle of the support beam. This ensures

that the load applied to the bearing remains aligned with the bearing centre axis.

Figure 4.1.2 shows the test bearing position in the scaled-down rig. The test bearing

is mounted on the main shaft that is supported by two support bearings mounted at

both sides of the shaft. This configuration makes the bearing replacing relatively

simple as it requires to lift the loading mechanism and remove the housing of the

support bearings.
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Figure 4.1.2: Scaled-down rig schematic, detail A and B show the NU1010ECP

bearing position in the main shaft.

As mentioned before, this rig represents a scaled-down representation of the real

size bearing used in WTGB. The bearing used in this test was the NU1010ECP

manufactured by SKF and was selected as it geometrically resembles large scale

roller bearing used for wind turbine applications. This also allowed the simulation

of similar contact conditions to those observed in WTGBs. The dimensions of the

NU1010ECP are shown in Table 4.1.1.
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Table 4.1.1: Bearing dimensions for the scaled-down rig (NU1010 ECP) and the

Multilife rig (NU 2244 ECP).

Parameters Symbol NU 1010 ECP NU 2244 ECP

Outer raceway diameter: D 80mm 400mm

Inner raceway diameter: d 57.5mm 259mm

Roller number: Nb 20 15

Roller diameter: Dr 8mm 54mm

4.2 MultiLife rig

The MultiLife™Rig was designed by Ricardo UK Ltd to replicate the real conditions

on a WTGB bearing and also to prove and validate the indexing mechanism concept.

As described before, the main reason for this concept is to increase the remaining

life in roller bearings by allowing the periodical rotation of the inner raceway away

from the maximum contact load thereby allowing different contact points along the

inner raceway during the bearing operation.

The rig as shown in Figure 4.2.1 is built similarly to the scaled-down rig discussed

previously. It is composed of two arms (7) actuated by a hydraulic cylinder (8) that

allows the application of a radially concentrated load on the test bearing (3) up to

1500kN. The rotation of the outer raceway is achieved by a pair of pulleys (2) with a

reduction stage of 2.9:1 and a 7.5kW electric motor. The load is measured by a pair

of load cells (6) installed as shear pins in the loading arms (7) at both ends of the

stationary shaft (5). This allows controlling the radial load via a closed-loop control

system. An inner-sleeve mechanism (4) is installed in between the test bearing (3)

and the main shaft (5). This configuration allows monitoring the defects generated

on the inner raceway of the test bearing using AE sensors. As this rig recreates

the bearings located in the WTGB, the inner raceway is kept fixed. Therefore, a

secondary roller bearing (1) is required to allow the rotation of the outer raceway of

the test bearing (3). Additionally, this rig provides a temperature regulation system

that comprises a radiator and a pump. This allows the oil temperature to remain
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stable at 65◦C and shut down at temperatures over 90◦C. This rig uses a Castrol

Hyspin VG 32 oil with a kinematic viscosity of 10cSt and it is recirculated around

the test bearing during operation.

Figure 4.2.1: (a) MultiLife rig and (b) schematic of the internal components.

4.3 Instrumentation

4.3.1 Scaled-down rig

The rig was instrumented with AE and tri-axial acceleration sensors as shown in

Figure 4.3.1a. A set of three AE sensors were attached to the loading frame of the

rig as it was the closest structure near the bearing and allowed direct measurement

of the AE signal. The acceleration sensor was installed on the same mechanism in

order to measure the acceleration in all three axes. The acceleration sensor used

for the experiment was the PCB 356B21 that allows a frequency range in the y and

z-axis up to 10kHz and up to 7kHz for the x-axis.
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(a) Fatigue rig instrumentation (b) Sensor position schematic

Figure 4.3.1: Accelerometer and AE sensor position on scaled-down rig.

The AE sensors used on this rig were the Mistras NANO30D which are suitable for

mid-range applications at around 125–175kHz. These are similar to the NANO30

used in the MultiLife rig, with the main difference being the differential configuration

as a method for the noise cancelling in the NANO30D model. The sensors were

attached using a thin layer of cyanoacrylate on the top surface of the loading structure

as shown in Figure 4.3.1a.

The AE signals were amplified to 40dB using Mistras 2/4/6 amplifiers. This am-

plification level was found to be the lowest value to amplify the signal during the

experimental stage. This amplification value was selected based on the AE signal

amplitude, a 20dB value generated signals with low signal-to-noise ratio whereas 60dB

generated high clipping in the signals. The position of the sensors was chosen based

on accessibility and proximity to the component of interest. This was to provide a

clearer signal for further analysis and to allow fewer interruptions of the wave path

propagation due to voids and interfaces on the mechanism. A fluoride-based grease

was used as a coupling media in order to reduce the reflection coefficient between the

outer raceway–loading mechanism interface due to air gaps and avoid inducing noise

during the neutron diffraction experiment (neutron scattering, due to the presence

of hydrogen in regular grease).
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The acquisition system as shown in Figure 4.3.2b consisted of a computer, an

oscilloscope, a NI cDAQ 9184 acquisition card with the NI cDAQ 9234 and cDAQ9223

modules for the AE and acceleration sensors respectively and a 28V power supply for

the AE amplifiers. The AE signal was captured using a sampling rate of 1MHz which

can be deemed acceptable, as a high portion of the energy content of AE signals

occurs within a frequency range of 50kHz to 2MHz [114]. The vibrational signal was

recorded using a sampling frequency of 51.2kHz, this allows a broad frequency range

that contains all the defect frequencies of interest. The AE sensor amplification

and accelerometer connections are detailed in Figure 4.3.3. The data was captured

using a LabVIEW interface that allowed the data to be saved and monitored online.

Due to the restrictions and radiation security requirements, the rig was contained

in a security chamber as shown in Figure 4.3.2a. This required the installation of 4

metres of BNC cables at each sensor output to allow the acquisition system to stay

outside the neutron chamber.

(a) Fatigue rig inside neutron chamber (b) Acquisition system

Figure 4.3.2: (a) Rig inside measuring chamber, (b) Acquisition set-up.
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Figure 4.3.3: Amplification values and acquisition set-up.

4.3.2 MultiLife rig

The MultiLife rig had the PCB 356B21 accelerometer installed on the top of the

rig at 12 o’clock with the y-axis collinear to the vertical axis of the rig. The data

acquisition system is the same one described earlier for the scaled-down rig. The AE

sensors were installed on a static sleeve mechanism as shown in Figure 4.3.4a. This

component is fixed and is located between the inner shaft and the inner raceway of

the bearing. A set of three AE sensors were attached using a spring mechanism that

keeps a metallic coupling surface attached to the inner surface of the inner raceway

and is separated at 120 degrees from each other as shown in Figure 4.3.5. The sleeve

mechanism uses three NANO30 FO82 sensors with similar characteristics as the

NANO30D. The signals were amplified by a set of three Mistras 2/4/6 standard

AE amplifiers. The sensor amplification set-up was the same as the scaled-down rig

set-up and the data were captured using the same equipment as specified previously.
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(a) AE sensor output (b) Assebled sleeve and inner raceway

Figure 4.3.4: Sleeve mechanism for sensors attachment.

Figure 4.3.5: Installed AE sensors in the sleeve mechanism.

4.4 Chapter summary

• An introduction to the rigs used in this work was presented in this chapter.

Although the MultiLife rig is more complex than the scaled-down rig in terms

of size and surrounding elements, the working principle is the same as both

rigs permit the application of a radial load on the test bearing and actuate it

via an electric motor.

• Due to the simplicity of the scaled-down rig, the number of components involved

is low, therefore, it allows the test bearing to be changed in less than 20 min,

whereas the MultiLife rig requires at least 6 hours.
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• A description of the sensors installed on the rigs was also presented. These

configurations were used to perform novelty detection and damage localisation

during operation. Moreover, the position of these sensors remained fixed once

installed as any change in the current position might potentially induce different

features.
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CHAPTER 5

Experimental procedures

In this chapter the experimental procedures for novelty detection and damage

localisation is presented. This chapter will explain the features sensitive to the

damage position and their processing from the raw AE signals. Details about the

signal preprocessing for both levels of detection are described together with the

features used to define a machine/sensor baseline data. Additionally, some technical

aspects are discussed such as sensor placement, TOA extraction techniques and most

importantly a method to encode the features to allow the implementation of these

features in a NN algorithm.

5.1 Seeding of a late onset of damage

As a means to provide a clear and realistic damage signature, a late onset of damage

was simulated by machining a geometrically induced defect on the bearing surface.

This defect simulates the surface damage caused by the progression of RCF, which

ultimately leads to a progressive material loss in the bearing. Ideally, RCF is

generated at highly localised stressed volumes beneath the contact area and with a

width of up to 1000µm [115]. Certainly, once surface damage occurs, it might further

extend, as depending on the loading conditions it might lead to higher damage sizes

and consequently higher amounts of material loss. Additionally, further damage

progression might lead to a distributed defect type around the contact area. In

this work, a localised damaged type with a size of less than 1000µm has been used
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to provide a clear vibrational and acoustic emission signature by assuring that the

excitation is generated by a single source. Certainly, a more advanced damage extent

might generate a more complex signature due to the interaction of multiple excitation

points [116]. A range of 100–300 µm has been selected for the NU 1010 ECP and the

NU 2244 ECP bearing respectively, as such values are within the expected ranges for

RCF damage initiation and are representative for an early surface damage initiation.

Additionally, it has been shown that a defect size with a similar range has generated

a clear vibrational and AE response for a NU 2244 ECP using defects within that

range [11,117]. For the NU 1010 ECP, a defect of 100 µm has been selected, as in

contrast with the NU 2244 ECP, the former is 5 times smaller and given that it will

be subjected to a high rotational speed of 927 RPM, a defect around that size might

produce an unclear AE signal.

The main reason is to detect, and later localise the defect. A localised damage was

simulated on the surface of the bearing by inducing a small geometrical variation on

the bearing surface. This was performed by using an Electrical Discharge Machining

(EDM) procedure as this method allows the introduction of small defects of which

normal machining tools are not capable. For the scaled-down experiment, an EDM

notch of 100µm× 1.75mm depth was machined on the surface of the bearing. The

EDM notch was machined using a circular profile wire of ∅100µm. This would allow

a controlled defect to interact with the rollers and generate repetitive AE bursts

during each interaction with the rollers by simulating a late onset of damage on the

bearing surface. Figure 5.1.1 shows the defect schematic on the outer raceway of the

NU1010 ECP, the machined bearing is shown in Figure 5.1.2.
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Figure 5.1.1: EDM notch schematic for the NU1010ECP used in the scaled-down rig,

detail A shows the notch dimensions.

Figure 5.1.2: EDM notch on NU1010ECP.

A 300µm× 600µm EDM notch was also introduced on the surface of the NU 2244

roller bearing for the MultiLife rig using a circular profile wire of ∅300µm. A

schematic of the bearing defect is shown in Figure 5.1.3. A measurement of the

defect using a profilometer across the mid-section of the bearing is shown in Figure

5.1.4.
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Figure 5.1.3: EDM notch schematic for the NU2424ECP used in the Multilife rig,

detail A shows the notch dimensions.

Figure 5.1.4: EDM notch on NU2244 measured on the mid-section.

Additionally, this work also allowed the testing of a new bearing defect concept

by seeding a subsurface plastic deformation beneath the surface of the bearing

whereas an EDM notch only simulates a very late damage state. This concept

was implemented to simulated damage due to overload events mostly generated by

transients and sudden load peaks, this being the main reasons for bearing lifetime

reduction. As this defect intends to accelerate damage in roller bearings, it led to the

design of a defect based on the severity of the induced damage. This quantification

led to the definition of the defect size based on the amount of plastic deformation

under the bearing surface. The design involved developing a FEM model where the

amount of plastic deformation was validated using Neutron transmission imaging.
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As a result, the implementation of this methodology showed good agreement with

the level of damaged induced in the subsurface of the bearing [2]. The methodology

for this concept is described in the following section.

5.2 Seeding of an overload defect

So far, most of the damage detection and localisation methods on roller bearings

have been tested with a late damage onset without considering a method that allows

to represent more realistic damage. This section is a study of bearing damage due to

overload events and provides a means to further apply this technique and test the

robustness of damage detection and localisation stages by reducing the life expectancy

of the bearing. The study highlights the development of a model that predicts the

plastic deformation beneath the surface; thus allowing the control of the damage

extension by systematically increasing the plastic deformation. It is important

to mention that this work was the result of a collaborative study that focused on

measuring the plastic deformation generated during overload events on roller bearings,

these deformations were measured by using non-destructive techniques and used to

understand the effects of overload events in the remaining life in bearings [2]. The

results obtained from the model were validated with his experimental data using

Neutron Bragg Imaging techniques in the ISIS Neutron and Muon Source facilities.

Overload events have been associated with a reduction in the life expectancy of

bearings due to sudden transient events. It is well-known that accumulation of

plastic strain beneath the surface will lead to a premature failure in bearings. Even

though current models such as the L10 model take into account RCF as the main

failure mode in bearings, the effects of overloading leads this model to overestimate

the life expectancy. Currently, the methods for determining the evolution of plastic

deformation are relatively limited thereby restricting the development of reliable

models that predict plastic deformation. The current study develops a FEM of

a scaled-down bearing where progression of the plastic zone is validated using

Neutron Bragg Imaging. This method allows the generation of a 2-D map of the

broadening parameter that has been shown to be an indicative of plastic deformation

in materials [118–120].
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5.2.1 Finite Element Model

A FEM of the NU1010ECP bearing was developed using the FEM package Abaqus

6.14-1. The model tried to simulate the elastic-plastic behaviour governed by the

distortion energy hypothesis. The model simulates the bearing overload using the

Fixed Bearing Loading Frame (FBLF) shown in Figure 5.2.1 by predicting the contact

stresses in the contact region between the roller and the outer raceway. In order to

reduce the computational time, the model was simplified by assuming symmetry on

both x and θ axis as showed in Figure 5.2.2. This allowed the modelling of only

one-quarter of the bearing and consequently, the reduction of the number of elements

in the model.

Figure 5.2.1: Loading frame with NU1010 ECP installed in a 40kN Instron tensile

machine.
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Figure 5.2.2: Boundary conditions in FE model.

Contact stresses are generated in relatively small and localised volumes and normally

exhibit high gradients in the subsurface of the component in contact. The analysis of

such problems requires a large number of elements that result in a high computational

effort. This situation can be mitigated by using a dense mesh of the area of interest

while keeping a coarse mesh on the rest of the component. In this case, a small

volume in the bearing of 1.5 × 0.8 × 5 mm was refined in the contact zone and

isolated in order to represent the gauge volume measurement. This allowed the

analysis of the yield zone and the stress profiles and comparison with experimental

data. The model was simulated by neglecting the elastic deformation on the surfaces

of the loading frame, allowing them to be modelled as rigid bodies. The material

stress-strain curves and properties of the AISI 52100 are shown in Figure 5.2.3 and

Table 5.2.1 respectively [121].
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Figure 5.2.3: AISI 52100 Engineering stress-strain curve.

Table 5.2.1: NU1010ECP material properties.

Property Symbol Value

Density [kg/m3]: ρ 7827

Young’s Modulus [GPa]: E 201.33

Poisson’s ratio: ν 0.3

Yield Stress [MPa]: σY 1410.17

The solid components were modelled using quadratic elements of second order

(C3D20R) whereas the rigid bodies were modelled with bilinear rigid quadrilateral

elements (R3D4). The use of quadratic hexahedral elements have been used in this

problem in order to accurately capture the high gradient stresses generated in the

contact zone. The contact zone was refined using 20µm× 20µm elements where the

elements of the roller where twice that size. This refinement allowed a high resolution

on the stresses generated beneath the contact and allowed extracting the values

from the elements using with the same resolution used in the experiments. The

surface of the roller was considered as a master surface in order to avoid penetrations.

This stems from the assumption that the roller surface is relatively hard compared

with the outer raceway. The contact constraint enforcement used a linear penalty

method with a default stiffness factor of 10, at this value contact penetrations will

not have significant influences in the results [122]. The overload simulation assumed

quasi-static conditions and was executed in the ABAQUS/Standard solver. This

required including parameters such as the density of the material even though the
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inertial effects are going to be neglected and solving convergence issues during contact

initialisation problems in load-controlled models.

5.2.2 Elastic and Plastic Analysis

During the overload simulation, two different regions are expected to occur: an

elastic and a plastic behaviour. Theoretically, the minimum load that generates

plastic deformation and its generated contact pressure can be calculated by assuming

Hertzian contact by using Equations 5.2.1 and 5.2.2 [123]. It is important to mention

that, beyond these limits, the Hertzian assumption is no longer valid as elastic

behaviour is no longer expected.

F Y =
LπR?

E?
(pY )2 (5.2.1)

pY = 1.67σY (5.2.2)

where the terms L, E?,R? are the contact length, the equivalent Young’s modulus

and the equivalent radius respectively. As both roller and outer raceway are assumed

to be manufactured using the same material, the equivalent Young’s Modulus can be

defined as:

E? =
E

2(1− ν2)
(5.2.3)

R? =

(
1

R1

+
1

R2

)−1
(5.2.4)

These limits were assessed using both analytical forms and the FEM resulted in the

predictions shown in Table 5.2.2. These results show good agreement in terms of the

elastic limit. Beyond that, the plastic evolution, as shown in Figure 5.2.4, cannot be

described analytically and therefore needs to be validated experimentally.
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Table 5.2.2: Elastic limits calculation using Hertzian contact theory and Finite

Element.

FEM Analytical solution Absolute error [%]

pY [MPa] 2894.92 2805.6 3.18

F Y [N] 9894.92 9285 3.90

In order to produce a quantitative measure of the induced damage, the elements

that reached the plastic region described by the Von Mises criteria were flagged in

the model. Figure 5.2.4 shows the evolution of the plastic zone beneath a contact

point. As the results show, the plastic zone begins just below the surface at 10.3

kN and progressively expands until it reaches the surface of the contact at 34kN.

Notice that only the right half of the contours are shown in 5.2.4 as these results are

expected to be symmetric due to geometry and load symmetry conditions.

Figure 5.2.4: Overload zone in the outer raceway using FE Model, the constant

contours shows the area of the plastic formation at different loads.
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5.2.3 Validation using Neutron Bragg Imaging

Even though the method described in this section is beyond the scope of this thesis,

as this was mainly the work developed by Anthony Reid, the details can be found

in [2]. The main goal was to monitor different plastic deformation amounts using

an indicative parameter for plastic deformation defined as broadening parameter

σ [124]. Figure 5.2.5 shows the Bragg edge where the shift in edge position λ and

broadening of the parameter σ are associated with the elastic and plastic deformation

respectively. The measurements were performed on the ENGIN-X instrument that

features an array of detectors for each pixel, therefore generating a map of σ values

in the area of interest.

Figure 5.2.5: Transmission spectra where the σ1 and σ2 parameters correspond to an

unloaded and loaded scenario respectively.

A 50kN Instron tensile machine was placed inside the instrumentation chamber

to allow measuring a map for an unloaded and loaded state. In order to allow a

concentrated load to be transferred on to the contact zone of the bearing, a fixed

raceway loading frame (FRLF), as shown in Figure 5.2.1, was conjointly designed.

This allowed the installation of a unique roller on the shaft that allowed it to press

against the outer raceway installed inside the main frame.

In order to perform a comparison between the experimental data and the FEM, three

different loads beyond the elastic limit were selected. In this case, maps at loads of
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15kN, 25kN and 34kN were measured and compared against the model as shown in

Figure 5.2.6. Even though there is considerable agreement between the experimental

data and the model, there are still a few discrepancies, notably at the volumes

outside the contact region. The main reasons are mostly speculative as there were

not enough samples to provide repeatable data, thereby attributed to experimental

error or changes in microstructure due to overload or during manufacturing.

Figure 5.2.6: Finite Element vs Sigma parameter. The Finite Element solution was

compared with the experimental data where the blue and red zone represent the

elastic and the plastic region [2].
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5.2.4 Observations on fatigue life

A pristine bearing was overloaded with 34kN which was chosen to be the most severe

loading condition in both experimental and model predictions. This bearing was later

on tested in a fatigue machine with a cyclic load at 15Hz with a load of Fmax = 10 kN.

This load was based on the elastic limit of the bearing as calculated using Equation

5.2.1. The lower limit Fmin was selected to have a relatively low value giving a load

ratio Fmax/Fmin of 1× 10−3. After 5 million cycles which is equivalent to 2.78× 105

revolutions the bearing showed an evident crack that propagated from the contact

area and reached the outer surface of the outer raceway. Considering a dynamic load

rating C of 46.8kN and a radial load P of 36kN obtained from Stribeck’s relation

defined as [125]:

Fr =
5P

Z
= Fmax (5.2.5)

where Fr and Z represent the maximum load at the bearing contact zone and the

number of roller in the bearing respectively. For a pristine bearing the L10 prediction

model gives a life estimation of 2.39× 106 revolutions, therefore this resulted in a life

reduction of 88.36% due to the induced overload. Figure 5.2.7 shows a cross-sectional

view of the bearing with a shear stress profile being plotted along the contact depth.

A band of white etching area that coincides with the higher range of shear stress in

the subsurface (-1600–1700 Mpa) at 300µm may be observed. Further investigation

using the SEM microscope suggested a crack initiation from the subsurface to the

contact area.
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Figure 5.2.7: Shear stress profile (left) and cross-sectional area of the bearing with a

20X magnification (right), courtesy of Anthony Reid.

5.3 Data processing and feature extraction for

novelty detection

Sensors by themselves cannot measure damage but rather damage may be inferred

from the data they acquire. In this section, the data processing and feature selection

process for the scaled-down and MultiLife rig will be explained. This is one of

the most important aspects of novelty detection as the features selected should be

sensitive to damage conditions. In this thesis, vibrational data was used as it has

been shown to be the most robust method of determining damage in bearings through

the analysis of defect frequency components in the frequency domain.

The processing stage can be represented as a series of levels as described in Figure

5.3.1 where the raw signal is refined into features that can be used for damage

detection purposes. This refinement, might involve a domain transformation, as the

domain used to extract this features can bring a significant impact on the novelty

detector performance. A good example can be seen with time domain features and

frequency domain features, where normally frequency domain features give more

information than time domain features for less data. The data processing stages
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described in Figure 5.3.1 requires measuring a raw signal from a sensor. Even though

the raw signal might show apparent features, in practise, further signal processing

might be required due to potential noise and data redundancy encountered in the raw

signal. The preprocessing stage comprises two tasks: data cleansing and dimensional

reduction. The data cleansing stage removes the noise, spikes, and outliers whereas

the dimensional reduction removes the data redundancy by transforming the data

into a set of sensitive features. Consequently, these features are assembled into

patterns representing normal and damage conditions and ultimately used in the

novelty detector.

Raw acceleration data

Pre-Processing

Build feature

Apply novelty detector

Figure 5.3.1: Data processing stages.

5.3.1 Data pre-processing

In this case, the time domain acceleration signal obtained in the direction of the

applied radial load was pre-processed using a low-pass filter and a Hilbert transform

approach in order to enhance the signal. The HT was used in the Multilife rig to

accentuate the periodicity of the peaks at the characteristic defect frequency due

to the low amplitude response at the frequency range of interest. Previous use of

low-pass filtering methods resulted in relatively ambiguous features whereas the use

of the HT showed to improve them. This has been highlighted in many studies in

CM applications for WTGB and have suggested the use of envelope analysis for

demodulation purposes [44,126].

Figure 5.3.2 shows the signal preprocessing steps for feature extraction. The features

were extracted by using a STFT method, this method allows the analysis of the signal

in the time-frequency domain by performing a homogeneous segmentation of the

signal in a finite time interval. Although this sounds practical, additional precautions
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have to be taken into account before processing the signal. In a practical context, the

use of a raw vibrational signal might have a detrimental effect on the features due to

noise, additionally, the effect of sampling a signal within a finite time interval in order

to produce features might induce frequency leakage issues in the spectral signatures.

This ultimately has a “smearing” effect on the spectral signature, therefore, having a

negative impact on the novelty detection algorithm. Even though multiple options for

windowing are available, a Hanning window was selected based on its capabilities to

reduce the frequency leakage and accurate frequency resolution [127]. The condition

is therefore obtained from the spectral content of the signal and any defect on the

bearing should generate a spectral signature that shows the corresponding peak at

the characteristic defect frequency.

Figure 5.3.2: Step by step approach for feature extraction: (1) Raw signal sampling,

(2) Signal enhancement, (3) Signal segmentation, (4) Windowing, (5) STFT of signal

segment and (6) Feature assembly.
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5.3.2 Feature selection

Defects in bearings have been widely studied in terms of their vibrational signature

and this approach provides information of the presence of defects in their components.

This is the traditional method to perform CM based on changes in the vibrational

data. As in the case for bearings, any presence of damage in the inner raceway

will be represented as the spectra data shown in Figure 5.3.3 where a component

associated with an inner raceway damage onset appears in the vibration signature.

Figure 5.3.3: Two different spectral signatures from a baseline and damaged condition.

A feature vector can be obtained by selecting the frequency components that spans

the characteristic defect frequency components. This will finally lead to feature

vectors that represents the undamaged and damaged states as shown in Figure 5.3.4.

The appearance of this peak at that characteristic frequency is related to the periodic

interaction between the defect and the rollers. The use of these set of features

allows to monitor changes at the frequency components that are related to a specific

characteristic frequencies that can be calculated using the equations described on

Table 2.1.1.
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Figure 5.3.4: Feature vector for fatigue rig where a characteristic outer raceway

defect frequency appears at 135 Hz.

The novelty detection stage was performed by monitoring the amplitude features

obtained from the STFT where a baseline and damage state were obtained by using a

bearing under pristine and damaged conditions. This set of data was later encoded as

a feature vector with a frequency resolution specified on Table 5.3.1. These frequency

resolutions are allowed to have a minimum time resolution of 79µs as calculated

from Equation 2.1.2. In order to provide a meaningful feature vector the frequency

range of the feature was defined as a range that contains the characteristic defect

frequency. The feature vector used in this work was defined as:

x = (x0, x1, ..., xD)T (5.3.1)

where the elements of this vector will correspond to the equally spaced frequency

components and the dimension of the vector will be determined by the number of

frequency components D.

Table 5.3.1: Summary pre-processing stage.

Parameters Scaled-down rig Multilife rig

Bearing model: NU1010 ECP NU2244

Signal processing: Low-pass filtering Hilbert-Transform

Frequency range: 25–150Hz 1–20Hz

Frequency resolution: 6 Hz 1 Hz

Feature dimension: 20 20

Number of samples per condition: 954 1590
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5.3.3 Scaled-down rig features

This rig was only designed to run at a specific rotational speed of 927RPM. This

speed was defined according to the specifications of the experiment performed in

parallel as it was the speed required to accelerate the bearing failure. This allowed

the calculation of the outer raceway defect frequency component as 135.7Hz. These

features were obtained after filtering the vibrational signal with a low-pass filter

which removed the noise at higher frequencies. The filter parameters are shown in

Table 5.3.2

Table 5.3.2: Low-Pass filter parameters.

fs[Hz] fpass[Hz] fstop[Hz] A1[dB] A2[dB]

51200 200 210 1 40

where fs, fpass, fstop, A1, A2 represent the sampling frequency, the band-pass fre-

quency, the band-stop frequency, the ripple attenuation level and the attenuation

level respectively.

As may be seen in Figure 5.3.5, there is a clear distinction between the damaged and

undamaged state in the spectrogram. A high narrow peak component appears around

the expected frequency of 135Hz showing a periodic defect interaction between the

rollers and the outer raceway defect. Several other frequency components are also

visible such as the shaft rotation frequency fs shown as a dashed white line in

Figure 5.3.5. Both set of damage features have shown to be consistent over time

and remained easily distinguishable. Additionally, a peak at 50Hz appears in the

features, this can potentially suggest a variation induced by the support bearings

installed on both ends of the shaft.
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Figure 5.3.5: STFT data within 0 to 200Hz. Image on the left shows spectrum from

a clean bearing and on the right from a defected outer raceway.

The dimensions shown in Table 4.1.1 allow the calculation of the Ball Pass Frequency

in the inner (BPFI) and outer (BPFO) raceway using Equations 2.1.1. The resulting

frequencies are shown in Table 5.3.3.

Table 5.3.3: Bearing damage characteristic frequencies values.

Element Symbol

Bearings

Speed [RPM]

NU 1010 ECP NU 2244 ECP

927 20 40 60 80 100

Inner raceway fBPFI [Hz] 173.37 2.93 5.86 8.79 11.72 14.66

Outer raceway fBPFO [Hz] 135.63 2.07 4.14 6.21 8.275 10.34

5.3.4 Run-to-Failure test on scaled-down rig

Until now, the novelty detection was performed by using a geometrically seeded

defect on the bearing surface and a priori knowledge of the defect existence was

available. In a real situation, this information will not be available, otherwise, a

novelty detection stage would not be necessary. The objective of this experiment

was to use the vibrational data in order to predict damage onset on an overloaded

bearing. The experiments were performed in parallel with the neutron diffraction

experiments as they allowed to monitor the test bearing condition during the test.
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A neutron diffraction experiment tried to understand the strain evolution after

overload events in bearings by recreating an overload defect as previously explained

and measure the dynamic strain generated in the contact area of the bearing during

operation. A 40kN radial load on the shaft of the bearing subjected the bearing

to fatigue by periodically cycling the stresses generated on the contact zone during

each roller pass. This value was found to be the minimum load in order to initiate a

plastic deformation in the subsurface of the material.

As there was a limited time frame to perform the experiments, a rotational speed of

927 RPM was selected to increase the probability of an early failure. Consequently,

for a pristine bearing loaded at the elastic load limit at 40kN, and with a dynamic

load rating C of 46.8kN, the L10 model predicts a life estimation of 1.68 million cycles.

This represents a life estimation of 30hrs at a rotational speed of 927 RPM. In terms

of the speed magnitude and its comparison with a real WTGB, such magnitudes are

not uncommon to be found, as healthy gearboxes normally reach up to 1800RPMs

in the high-speed shaft connected to the generator [12]. Therefore, this speed can be

deemed acceptable as it falls within the expected range of operation in a WTGB.

Moreover, this speed was kept fixed for all the test conditions, as it allows consistency

in the vibrational response of the bearing.

The measurements were performed in parallel with the neutron diffraction experiment

and provided means to estimate a damage onset during the test. For this test the

data obtained for the baseline were entirely used as the test set and taken as the

reference of the normal condition state. The experiment consisted of continuously

measuring the vibrational signature of the bearing and recording AE signals for

further damage localisation.

Clearly, this long term measurement experiment led to some restrictions in the

amount of data for recording; Especially with AE, as the storage capacity was

limited by the sampling frequency of 1MHz in this case. This resulted in storing the

vibrational and AE data in intervals of 15 minutes for two consecutive days.
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5.3.5 Multilife rig features

In contrast to the scaled-down rig, a defect was machined on the bearing inner raceway

of the Multilife rig, as previously described; This is mainly because this component

remains stationary and it is constantly subjected to localised fatigue points whereas

the outer raceway constantly changes its orientation and thus redistributes the

contact points around the loading zone.

Additionally, three different damage angles were selected in order to represent the

damage scenarios around the loading zone. The angles selected were along the bearing

loading zone at 0◦,+45◦ and −45◦ as shown in Figure 5.3.6(a). The procedure was

performed by using the same bearing rotated at the angles mentioned before. Figure

5.3.6 shows the mounting procedure of the inner raceway into the MultiLife rig.

The bearing was oriented taking as a reference a zero degree reference notch machined

on the sleeve component. Due to size and weight limitations, the bearing replacement

cannot be done without lifting equipment. A 5-tonne crane was used to perform the

manoeuvre as shown in Figure 5.3.6(b).

Figure 5.3.6: (a) EDM notch at −45◦ and (b) Mounting of the inner raceway into

MultiLife rig.
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Even though the installation might induce certain randomness in the results, efforts

were made to reduce such variations by following an installation procedure and

keeping them consistent for each bearing replacement. Additionally, the MultiLife

rig has mechanical features that allows the self alignment of different components by

means of alignment pins and guides thereby resulting in the reduction of variation

during each installation process. The bearing installation process can be described

as the following steps:

1. Remove/Install the power supply and sensors around the rig.

2. Remove/Install the guards.

3. Remove/Install hydraulic hoses.

4. Remove/Install the main belts.

5. Remove/Install the loading arms and hydraulic jack.

6. Remove/Install the main shaft using a 5-tonne crane.

7. Remove/Install the cover to access the main bearing.

8. Remove/Install the main bearing using a bearing extractor mounted in a

5-tonne crane.

9. Remove/Rotate bearing in the sleeve.

10. Assemble the rig following the reverse order.

Baseline data was obtained from the clean bearing at 20, 40, 60, 80 and 100 RPMs as

shown in Figure 5.3.7. The details shown were mainly due to the shifting of the shaft

and ball spin frequency components. A radial load of 10kN, which is 78.5 times less

than the dynamic load rating, was maintained constant during the experiments by

using a hydraulic jack installed in the rig. This load was maintained at a relatively

low value in order to avoid any significant deflection of the inner raceway and to

avoid any damage progression.
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Figure 5.3.7: Baseline data at different rotational speeds. The white and the red

dashed line represent the shaft speed frequency and ball pass frequency component

fs and fb.

The features obtained in the MultiLife rig were rather more difficult to obtain, due

to the subtle defect iteration between the inner raceway and the rollers and due to

the highly modulated signal as showed in Figure 5.3.8. These features, as mentioned

before, were enhanced during the pre-processing by obtaining the envelope of the

acceleration signal and finally processed by applying the STFT.

Figure 5.3.8: Weak features obtained after filtering the signal obtained at different

rotational speeds.

The damage feature was obtained by replacing the undamaged bearing in the

MultiLife rig and taking the acceleration measurements in the vertical axis, collinear

with the applied radial load.
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The features are shown in Figure 5.3.9 where higher amplitude peaks appear at the

corresponding defect frequency in the inner raceway. The white and the red dashed

line represents the theoretical shaft and inner raceway frequency calculated from

Table 2.1.1.

Figure 5.3.9: Damage features generated by EDM notch at 0 degrees and at different

rotational speeds. The white dashed line indicates the inner raceway defect frequency

fBPFI .

In summary, the features obtained for both rigs have been processed as described

in Table 5.3.1. Additionally, to test the localisation capabilities a set of different

damage conditions were simulated as shown in Table 5.3.4.

Table 5.3.4: Damage conditions and operational conditions on scaled-down and

MultiLife rig.

Scaled-down rig MultiLife rig

Speed [RPM] Defect Angle Speed [RPM] Defect Angle

Notch 1 0◦ Notch 1 0◦

927 Notch 2 11◦

20 to 100 RPMs

in 20 RPMs

interval

Notch 2 −45◦

Overload 0◦ Notch 3 +45◦

Damage conditions 3 Damage conditions 15

Normal conditions 1 Normal conditions 5

107



5.4 Data processing and feature extraction for

damage localisation

Similarly to the damage detection stage, it is important to select features that capture

the relationship between and input and output data. In this case, TOA features

have been shown to provide a useful information for damage localisation using AE

signals. A few technical aspects in the generation of such maps will be explained in

the following section together with some signal processing methods to process these

features. Finally, a method to encode the output variables for the algorithm will be

explained.

5.4.1 Time of Arrival determination of AE signals

The time of arrival or onset estimation of AE signals is one of the most common

requirements of AE processing. This information is normally used to count the

signal burst or use the time of arrival estimation for localisation techniques such

as traditional triangulation methods. A few approaches are commonly used for

this purpose such as the traditional First Threshold Cross method and the more

sophisticated AIC pickers.

5.4.1.1 First Threshold Cross method

This is one of the simplest methods to estimate the onset of wave arrival, and can

simply be defined as a threshold value above the noise level. The main disadvantage

of this method is related to the selection of the threshold level as it can arbitrarily

set or calculated based on the background noise characteristics. Higher threshold

levels have the effect of delaying the time of arrival by selecting an onset far away or

in the extreme case not selecting any onset as the threshold level is higher than the

AE signal.
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Figure 5.4.1: Three different threshold levels at 6σ, 20σ and 100σ above noise level on

AE signal. The TOA estimations are represented as TOA6σ, TOA20σ and TOA100σ

respectively.

On the other hand, low threshold levels can lead to premature onset times and

false burst detection. An example is shown in Figure 5.4.1 where three different

threshold levels were calculated based on the background noise standard deviation σ

at 6σ, 20σ and 100σ. These three threshold values gave three different onset time

around 0.434ms, 0.476ms and 0.531ms respectively selecting different wave modes

that propagate at different velocities. This problem may be partially overcome by

using a parameterless onset estimator method described below.

5.4.1.2 Akaike-Information-Criterion (AIC) picker

The AIC picker is based on the method used for model selection [128] and works on

the assumption that a signal can be divided into two different stationary processes

separated by a specific time. The stationarity condition implies that the mean and

variance do not change over time. This method has been used for detecting the first

arrival of seismic data [129] and, in the field of SHM, to detect the wave’s first arrival

in AE data [90, 130]. The AIC equation for the purpose of AE onset detection is

defined as:

AIC[t] = t log10[σ{y[1 : t]}] + (N − t− 1) log10(σ{y[i+ 1 : N ]}) (5.4.1)

where t, σ, y, and N are the time, the variance, the signal and the sample size. The

time onset is the value where this function is minimised and is estimated as:
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to = arg min{AIC[t]} (5.4.2)

The method separates the signal in two parts; the uncorrelated noise before to and

the AE signal after. The method applied on a AE signal excited by the Pencil

Lead Break (PLB) method estimated its onset at 0.421ms as shown in Figure 5.4.2.

The advantage of using this method over a traditional threshold method is that an

accurate onset of arrival can be calculated without specifying a threshold value. A

trade-off in using the AIC method is that it is highly dependent on the time window

size. Multiple local minima can be generated due to inappropriate window length

but normally this can be solved by providing an estimation of where the onset should

be in the time series data.

Figure 5.4.2: AIC function on AE signal, the minima obtained from the AIC function

represents the AE signal onset.

5.4.2 Considerations for AE sensor placement

Despite it appearing to be theoretically possible to generate a mapping of the form

described in Equation 2.4.13, there are a few technical difficulties that impose a

constraint on the equipment and the sensor arrangement to ensure that unambiguous

and valid mappings may be obtained.

1. Sampling frequency and sensor spacing

The lowest time difference or the highest TOA difference resolution that can
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be obtained is the inverse of the sampling frequency, which means that there

will exist a minimum distance requirement between sensors. As in the case

of a C = 5000m/s and a Ts = f−1s = 1 × 10−6s then the minimum distance

will be around 5mm. This also has an impact on the accuracy of estimating a

source using this approach as it will limit the location resolution. For the above

values, it will limit the ability to locate a defect with a resolution of 5mm. In

the context of roller bearings, this limit will be enough to localise damage, as

the extent of the loaded zone where any incipient damage is prone to occur due

to RCF normally occurs within a loaded zone of around 40◦ [117]. Therefore,

in terms of damage relocation using the MultiLife rig, this resolution will be

enough for this purpose.

2. Sensor placement

There are multiple scenarios where ambiguous mappings can be generated.

Figure 5.4.3 shows a scenario where a 2-D localisation is performed by placing

the sensors S1 and S2 on the same axis thus allowing a plane of symmetry.

This will lead to two different possible position solutions P1 and P2. The same

occurs for a case where source localisation is performed in a 3-D scenario where

sources P1 and P2 are outside the plane region. This is due to the two AE

sources generating the same TOA difference at both positions. As mentioned

before, the MLP has the properties of a universal approximator and training it

with such a data set will violate the condition of approximating a continuous

mapping.

Figure 5.4.3: A few scenarios where a wrong TOAD map can be built, both mappings

will lead to multiple solutions in a 2-D and 3-D space.
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3. Sensor condition and bonding condition Faulty sensors can give wrong

and inconsistent measurements and the use of coupling gels can lead to in-

consistent and non-repeatable measurements. In practise, it is difficult to

attain repeatable bonding conditions. This can be partially solved by using

semi-permanent bonding mechanisms such as glues. Several considerations

should be taken into account such as partial or complete debonding might

occur thus leading to inconsistent measurements.

5.4.3 Data input/output encoding

At first glance, it seems that a NN will learn any data mapping relationship by

presenting it regardless of any correct treatment of the input features. An important

aspect of NN applications is that the way the data are encoded during the learning

stage will have an impact on the data generalisation capabilities. At this stage,

finding better ways to present data in order to improve generalisation can become a

non-trivial task as this step involves additional methods to properly present data to

the NN. This step normally involves the treatment of categorical variables, continuous

variables and periodic variables.

The importance of choosing a suitable manner to encode input/outputs can be seen

as finding better ways to allow the NN to interpolate. Normally this can be seen as

finding surfaces that fit the input/output data into a more smooth representation.

That means that data with similar characteristics are represented as close as possible

in the input/output space, whereas data with different characteristics should be

widely separated. A particular case is when a periodic variable such as time, the day

of the week or, as in the current situation, the TOA mapping for a circular geometry

is needed to be encoded. A common problem with such variables is that the highest

and lowest values of the input/output range are conceptually adjacent. This problem

occurs when a mapping defined on Equation 5.4.3 is built.
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〈∆tij〉� 〈θ〉 i 6= j (5.4.3)

The problem arises at the lowest and highest values of the angle variable θ. For a

physical localisation perspective these two positions are the same but for regression

purposes these two values are relatively distant. That means that similar values of

∆tij are generated at values of 0◦ and 360◦. Clearly, from the regression perspective,

rather far away values of ∆tij are expected and thus a better way is required to

encode this periodic behaviour on the output data. Even though this problem has

not been discussed before for AE localisation, a general treatment has been discussed

at length in literature [108,131,132] for a different type of problems. The advice is

for a data transformation defined in Equations 5.4.4 and 5.4.5:

θn → 〈sin θn, cos θn〉 (5.4.4)

〈sin θn, cos θn〉 → arctan

(
sin θn
cos θn

)
(5.4.5)

This finally leads to restating the mapping in Equation 5.4.3 as:

〈∆tij〉� 〈sin θn, cos θn〉 i 6= j (5.4.6)

This encoding allows the representation of a one-dimensional feature into a two-

dimensional variable that allows an unambiguous and smooth representation of the

angular data. Geometrically, this encoding can be seen as the polar transformation

of the angle variable to a Cartesian coordinate system in a unitary circle as shown

in Figure 5.4.4. Notice that with this representation each angle value will have a

unique pair of 〈x, y〉 values around the circle circumference.
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Figure 5.4.4: Data encoding of periodic variables using a unitary circle.

Another problem with these types of variables is the difficulty of determining the

statistical parameters such as the mean and standard deviation. This is mainly

due to a dependence of a specific reference around the circumference, this can be

circumvented by defining the circular mean, variance and standard deviation as given

in Equations 5.4.7, 5.4.8 and 5.4.9:

〈x̄, ȳ〉 = 〈 1

N

N∑
n

cos θn,
1

N

N∑
n

sin θn〉 (5.4.7)

S = 1−R = 1− 1

N


(

N∑
i

xi

)2

+

(
N∑
i

yi

)2


0.5

(5.4.8)

s =
√
−2 logR (5.4.9)

Additionally, from the perspective of a localisation algorithm, it is necessary to

quantify the accuracy of the defect localisation. Later on, these expressions will be

used to express the localisation accuracy in terms of the circular mean and standard

deviations.

5.4.4 Feature extraction for damage localisation using AE

This section will explain the experimental method used to obtain the damage

localisation features. The process of generating a map of TOA is shown in Figure

5.4.5. In order to generate a map of TOA, the geometry of interest is discretised

and excited using a PLB source. Each point Pi generates an artificial source that

represents a potential damage location. The signals measured from each point are
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later processed and extracted using the AIC method and finally a feature vector is

built for each excitation point.

Figure 5.4.5: Feature extraction procedure. The nodes are excited at the correspond-

ing positions, then the TOA values are extracted from the recorded signals and

finally a feature vector is constructed.

5.4.5 Time of Arrival extraction for scaled-down rig

In the case of the scaled-down rig, the set of measurements were obtained by

dismantling the bearing upper support as shown in Figure 5.4.6. This was performed

because the defect initiation was expected to occur in the outer raceway. The

maximum contact stresses generated at the outer raceway occurred at fixed positions

rather than being periodically redistributed during each bearing rotation as in the

case of the inner raceway, thereby subjecting the outer raceway to a more severe

fatigue scenario.
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Figure 5.4.6: Excitation points on the scaled-down rig. A set of three AE sensors

were installed on the top of the supporting structure.

The internal walls of the outer raceway were discretised into 10 different angles

identified as P1, ..., P10 where a set of 30 measurements per angle were performed

around the internal walls of the bearing. These will simulate the effect of the defect

interaction between the rollers and the outer raceway every time the rollers pass

through the defect.

The excitations on the inner side of the outer raceway were performed by breaking

a 3mm long 0.5mm HB pencil lead (PLB), also known as Hsu-Nielsen source [62].

This source generates a highly repeatable excitation similar to the AE signals and

consists of breaking a brittle pencil lead on the surface of the structure [88]. The

excitations were performed on the positions identified in Table 5.4.1 with the mean

and variance of these measurements contained in Table 5.4.2.

Table 5.4.1: Excited positions around the test bearing.

ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Angle [degrees] 0 11 45 90 135 180 225 270 315 326
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Table 5.4.2: Mean and standard deviation of the generated map.

ID Angle [θ] ∆t̄12[µs] ∆t̄13[µs] ∆t̄23[µs] σ12[µs] σ13[µs] σ23[µs]

P1 0◦ 6.30 5.13 -1.17 0.95 1.04 0.53

P2 11◦ 5.37 -1.93 -7.30 1.13 1.28 0.98

P3 45◦ 4.13 -8.73 -12.86 0.77 1.23 1.04

P4 90◦ 6.53 -7.10 -13.63 1.07 1.52 1.35

P5 135◦ 6.83 -7.13 -13.97 0.79 1.04 1.09

P6 180◦ 8.90 5.77 -3.13 1.69 1.52 1.16

P7 225◦ 7.13 14.60 7.47 0.82 1.25 1.19

P8 270◦ 7.00 16.13 9.13 1.23 1.16 1.43

P9 315◦ 8.53 17.00 8.47 1.36 0.87 1.04

P10 326◦ 8.66 10.07 1.40 1.09 1.01 1.19

The interface between the outer raceway and the upper bearing support used a

fluoride-based grease as a couplant. This allowed the reduction of any potential air

gaps between the contact interface that tend to increase the reflection coefficient

and consequently impact the AE signal transmission. Additionally, a layer of

cyanoacrylate was locally applied at the ends of the interface to keep the bearing

fixed during the PLB excitations.

Figure 5.4.7 shows the ∆tij values obtained for each pair of sensors. The measurements

obtained show a periodic pattern that seems to repeat every 360◦ degrees and give

unambiguous values for each angular position. This is expected as the points are

excited in a circular shape. These values can be used to map a single and unique

position in the bearing; Even though the previous statement is true for a human

operator, further preprocessing must be performed in order to make this data suitable

for a machine learning algorithm. This data set was later encoded using Equations

5.4.4 and 5.4.5 in order to obtained a more suitable feature vector. Figure 5.4.7

also shows that a relatively small variance was found in the measurements at each

position but a relatively weak feature in between sensors 1 and 2 can impose some

difficulties in terms of training an algorithm for regression purposes.
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Figure 5.4.7: Time of Arrival Difference in NU1010.

This weak feature arose due to the relatively short distance between sensors 1 and

2 and the variance in the measurements thus generating a relatively noisy feature.

Ideally, it is always desirable to obtain a clear feature but, in real applications, this

might be constrained due to issues such as the small size of the components being

monitored.

A set of 300 observations in total were processed as shown in Figure 5.4.7. In order

to provide a balanced dataset, 30 observations at each point were split into 12 points

for training, 12 for validation and 6 for testing. This will allow the same number of

observations per class (excited points) giving a total of 120 observations for training,

120 for validation and 60 for testing. As in this case the number of training samples

is 120 patterns a range of models between 2 to 20 hidden units were defined based

using Equations 3.3.17 and 3.3.17 using an observation to weight ratio from 1 to 10.

These models were later cross-validated using the 10-Fold method.

5.4.6 Time of Arrival extraction for MultiLife rig

The MultiLife rig runs using NU2244 ECP bearings which are regularly used in

WTGB applications. AE sensors were installed inside the bearing inner raceway

and separated by 120◦. In order to perform the training map, the whole mechanism

was dismantled resulting in the inner sleeve and the bearing being isolated from the
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main component. This dismantling procedure was performed in the Lea Lab in the

University of Sheffield and required at least two skilled persons to operate the crane

and removing the security doors, the loading mechanism, the hoses, radiator and

covers. This procedure normally took on average one day and was performed every

time access was required to change the defect orientation as will be explained later

in this chapter. A pristine bearing was placed in the inner sleeve and engaged with

the AE sensors inside it.

The bearing was discretised by dividing its circumference in 20 segments of 18◦ at

3 different circumferences with a separation of 27mm. The measurements at the

midsection are defined as h = 0 as shown in Figure 5.4.8. This discretisation gave

a total of 60 nodes around the bearing surface. The nodes were developed using a

drawing software and then printed on a paper. The nodes printed on the paper were

carefully cut using a scalpel to leave a small hole for marking by attaching it to the

bearing surface. In order to assign a reference frame, the nodes at 0◦ were aligned

with the sleeve reference notch as seen in Figure 5.4.8.

Figure 5.4.8: Excitation nodes at the surface of the NU2244.

The signal from the AE sensors were amplified at 40dB using the Mistras pre-

amplifiers connected to a 28VDC power supply as shown in Figure 5.4.9. This

allowed the capture of a visible signal within a range of 5V. The data were captured

with a PicoScope 6000 at a sampling frequency of 2.5MHz by using a rising edge

threshold of 0.5V.
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The artificial AE signals were obtained by exciting each node 100 times using a

3mm length 0.5HB pencil lead giving a total of 6000 measurements. The data

were previously examined in situ in order to ensure that the bursts captured were

consistent. This step allowed the processing of the AE bursts automatically during

the time extraction procedure.

Figure 5.4.9: Experimental set-up for map acquisition procedure. The set-up consisted

of an acquisition card, amplifier, AE sensors and a computer.

The signal was processed using a Matlab script that implemented the AIC picker with

a fixed window of 500 samples. The data were later identified with each corresponding

ID that mapped each position around the surface of the bearing. This time onset

information was later used to calculate the TOA difference map by obtaining the

time difference between each sensor. As the convention of the Delta T method the

features were designated as: ∆t12,∆t13 and ∆t23 finally resulting in the map shown

in Figure 5.4.10.
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Figure 5.4.10: Time of Arrival Difference observations for each pair of sensors in

MultiLife rig.

The data were finally arranged in terms of their corresponding angle and circumference

as shown in Figure 5.4.11. This pattern clearly shows a sinusoidal behaviour along

the angle values where the 360 degrees position matches with the 0 degrees angular

position.

Figure 5.4.11: Time of Arrival Difference in NU2244 at midsection.
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The data for the +27mm and -27mm are shown in Figure 5.4.12 and 5.4.13, the time

difference measured follow the same behaviour and distribution.

Figure 5.4.12: Time of Arrival Difference in NU2244 Set 1.

Figure 5.4.13: Time of Arrival Difference in NU2244 set 3.

Even though there is a sufficiently large amount of data obtained from the MultiLife

rig with 100 observations (per class) for each excited point, cross-validation of the

NN models was performed in order to keep the majority of the points for training

purposes. In such cases, the K-Fold cross-validation method is suitable for small test

sets around or less than 20% and allows to select a model with the best generalisation

performance from the available dataset [108]. The 6000 observations were split into
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a set of 2700 observations for training purposes, 2700 for validation purposes and

600 points for testing. This resulted in 45 points per class for training purposes, 45

for validation and 10 for testing purposes. Considering that 2700 points are used

for training this allows the assessment of networks from 45 to 450 hidden units by

calculating the upper and lower limits using Equations 3.3.17 and 3.3.18.

5.4.7 Defect bursts extraction and signal selection criteria

Unlike the case where the data set used for training was obtained using a simple

data acquisition interface and PLB excitations, the data recorded from the EDM and

overload defects were processed using an interface designed using MATLAB 2017.

This allowed the selection of small portions of the original signal and extraction of

the TOA from the three channels which were then saved in a separate file for later

processing. This allowed to keep the AE bursts in a relatively small file that contains

each single burst captured in a window size of 1000 samples.

In real life applications, the AE signal recorded will be contain by noise. As the aim

is to reduce the bursts obtained from secondary sources and obtain a clear signal to

process the TOA values the following selection criteria were followed:

• Periodicity: Bursts are filtered based on their periodicity as the main interest

is to solely capture the bursts obtained from the interaction between the rollers

and the defect. This assumes that periodic events that match the defect

frequency are generated by the defect in the bearing component. On the other

hand, aperiodic events are assumed to be generated from a different source so

therefore are not selected for feature extraction.

• Non-overlapped events: Even though some sources can show periodicity,

some of them are slightly contaminated by noise generated by secondary

sources. This can be seen as two different bursts overlapping each other and

thus providing an unclear onset.
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• Moderate Signal-Noise ratio: Background noise sometimes hides the AE

burst and, in extreme cases, buries the whole AE burst. In such cases, this

makes the wave onset estimation difficult as this generates ambiguous onset

estimations.

During the data analysis using the EDM notch, it was possible to categorise the

following burst types. Figure 5.4.14 shows three types of burst. The first shows a

clipped signal with undistinguishable onset. The second burst is a signal with a low

SNR and the third burst with a clear onset. In order to mitigate the error induced

in the onset estimation, only bursts such as the last one were selected for extracting

TOA values.

Figure 5.4.14: Bursts examples obtained in the scaled-down rig using an EDM notch.

5.4.8 Post-processing of localisation predictions

Unlike in more simple structures, the localisation of AE sources in bearings becomes

more challenging due to secondary sources and the noisy environment. Even though

this can be mitigated to some extent under well-controlled conditions, it is almost

impossible to avoid completely.

Additionally, severe noise contamination in AE signals can also affect the time onset

selection. These effects may be observed by generating an analytical model of the

burst and systematically contaminate the signal with Gaussian noise. The signal

was modelled using the same approach in some studies [117,133] where the impact

response is modelled as y(t) = exp(−Bt) cos(2πfrt) and contaminated with Gaussian
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noise. The terms B represent the damping coefficient and fr the dominant resonant

frequency. Figure 5.4.15 shows the variations of onset calculations. Clearly, the onset

determination for the signal with a signal to noise ratio of 5 becomes challenging

due to the multiple minima obtained in the AIC function.

Figure 5.4.15: Effects of noise on AIC picker on AE data contaminated with two

different Gaussian noise levels.

As discussed before, noise can lead to variations in the onset calculations using

the AIC method. A highly contaminated signal might lead to inaccurate TOA

measurements. This high variance in the input data might even lead the NN to

extrapolate and thus reducing the reliability of the prediction. In order to overcome

this issue, the data of the predicted outputs from the NN will be treated as a

distribution.

Figure 5.4.16 shows a NN prediction on an EDM notch at +45 degrees using sets

of 25 different measurement for each histogram. As may be seen at each empirical

distribution, the parameters such as the mean and the circular standard deviation

remained constant independently of the set of measurements. This leads to the

assumption that the parameters of the distributions remain constant over time thus

leading to stationarity in the data.
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Figure 5.4.16: EDM damage prediction at +45 degrees using a NN with 4 different

sets of 25 measurements.

5.5 Time-Delay and Sum Beamforming approach

for damage localisation

5.5.1 Scanning at contact interface

The test was performed in the scaled-down rig and considered the problems as a

two-dimension localisation problem. The problem was simplified by assuming a

homogeneous propagation media with a constant propagation speed at a specific

frequency value. The use of this approach requires the information of the sensor

positions, the geometry of the component and the propagation speed. Figure

5.5.1 shows the positions of each AE sensors and the reference frame used for this

localisation approach.
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Figure 5.5.1: Bearing interface dimensions.

The localisation region is constrained in the contact interface within the θ1 and θ2

as shown in Figure 5.5.1. The maximum value of the beamformer output, defined

as Ep(θ), gives an indication of the main defect source. The angular position was

transformed into a Cartesian system using Equations 5.5.1:

xk = +R cos θk − dy0

yk = −R sin θk − dx0
(5.5.1)

The propagation speed of the zero-order symmetric mode for a 17 mm thick aluminium

plate was calculated using the numerical solution of Equation 2.2.3 and by assuming

the values of the longitudinal and shear wave propagation speed of 6300 and 3130 m/s

respectively [134]. Although the material was known beforehand, this information

is not always available, and consequently, it might lead to localisation inaccuracies

such as the underestimation or overestimation of the defect position from the sensors.

This may result in errors of the same magnitudes as the percentage values of the

speed variation.

5.5.2 Time-Delay calculation

In this case, due to the size of the application and wave speed propagation, it is

not deemed acceptable to consider a planar wave propagation. In this case, for an
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array of 155 mm length, a wave speed propagation of 5500 m/s and a frequency of

30kHz, using Equation 3.4.3 the radial distance will be r = 26cm. Considering that

at least any hypothetical AE source will be well below that region, the Near-Field

assumption will be adequate to describe the wave front behaviour by describing the

steering vector as:

| ~rki |=
√

(xk − xi)2 + (yk − yi)2 (5.5.2)

where xi, yi,xk, yk represent the sensor position and the source location respectively.

The delays can be calculated as:

τki =
| ~rki | − | ~ro |

C
(5.5.3)

Equation 5.5.3 can be understood as the delay that will take a spherical wave to reach

a point specified by the vector ~ro, to the source ~rki. The indices k and i represent the

nodes in the discretised geometry and the sensors. Figure 3.4.2 shows a planar and

spherical wave propagation arriving at an array of sensors separated by a distance d.

5.5.3 Signal processing

In this example, bounded media represents a challenge in terms of the infinite

dispersive modes generated by transient waves. This problem leads to multiple

propagation speeds to be considered in the frequency domain. The approach in this

work was to narrow-filter the signal using a band-pass filter with a central frequency

of ten times the bandwidth and calculate its corresponding propagation speed for

the zero-order propagation mode Cs0(30kHz) ≈ 5500m/s. The filter specifications

can be found in Table 5.5.1.

Table 5.5.1: Narrow filter parameters.

Parameters Values

Central frequency fc 30 kHz

Bandwidth B 3 kHz

Magnitude A 80 dB

Equations 5.5.2 and 5.5.3 were used into Equation 3.4.1 in order to produce the

beamformer output described as Equation 3.4.2. The beamforming power is calcu-

lated along the contact area and produces the graphs shown in Figure 5.5.2. This
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figure shows interference patterns produced by exciting the outer raceway at -45,-

11,0,+11,+45 degrees using the PLB method. The maximum peaks at each pattern

represents the location of the AE source defined by:

θ = argmax{Ep} θ1 ≤ θ ≤ θ2 (5.5.4)

Figure 5.5.2: Beamformer output at contact interface for PLB excitations.

5.6 Data processing and feature extraction for AE

sensor self-assessment

5.6.1 Experimental impedance measurement device

The admittance curves were measured using an external device that excited the

PZT patch and measured the current passing through it. The resultant electrical

admittance Y (jω) was obtained by calculating the ratio of the component’s voltage

V (jω) with the current I(jω) passing through it as::

Y (jω) =
I(jω)

V (jω)
= Z−1(jω) (5.6.1)

The inverse of Equation 5.6.1 gives the impedance term Z(jω) as it is the reciprocal

term for admittance Y (jω). Notice that the terms of current and voltage in Equation

5.6.1 are represented in the frequency domain.
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As the voltage and current signals are measured in the time domain, the following

relationship allows a domain transformation as:

Y (jω) =
I(jω)

V (jω)
=
F{Ip(t)}
F{Vp(t)}

= − 1

RsG

F{Vs(t)}
F{Vp(t)}

(5.6.2)

Equation 5.6.2 shows that the voltage and current functions are transformed into

the frequency domain using the continuous Fourier Transform F{.}. The terms Rs,

and G represent the PZT resistance and a gain term. Both terms can be seen as

a linear amplifier that allows the measurement of the weak current signal from the

PZT patch. As in the case for sampled signals the discrete form of Equation 5.6.2

can be represented as:

Y [jω] = − 1

RsG

FFT [Vs[t]]

FFT [Vp[t]]
(5.6.3)

where FFT [.] refers to the Fast Fourier Transform algorithm. The measurement de-

vice built for this purpose was based on the work developed by Peairs et al. [136]. They

proposed using a low-cost impedance measurement device for impedance monitoring

of structures. Despite being relatively simple to build and relatively inexpensive,

the device demonstrated a remarkably comparable performance with a commercial

HP4194A impedance analyser. A schematic of the impedance measurement device is

shown in Figure 5.6.1.

Figure 5.6.1: Impedance measurement circuit used to monitor the impedance values

of a PZT patch.

The only modifications performed on the circuit were the addition of two variable

resistors to allow a variable gain in the circuit. This was added to amplify the signal’s
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output at the amplification stage as mentioned before. The gain values are defined

by the ratio of two resistance values defined as:

G = −R2

R1

(5.6.4)

It is important to mention that the measured impedance curves are still an approx-

imation to the real impedance curves. This is mainly due to the relatively small

resistance values in PZT patches. In order to overcome this, the electric current

through the PZT patch is measured from a sensing resistance Rs that also works as

a limiting resistance to avoid overloading the patch. Thus, for relatively small values

of Rs, the patch current Ip(jω) should approximate the measured value Is(jω) as:

Ip(jω) ≈ Is(jω) (5.6.5)

A resistance value of 200Ω was used in the impedance circuit as a previous work

reported that values less than 200Ω can approximate the current flowing through

the PZT patch [136]. Thus, the voltage across the patch Vp(jω) is relatively close to

the input voltage Vin(jω) as:

Vin(jω) ≈ Vp(jω) (5.6.6)

This card has two ports, an input and an output port. The input port ACPowerSupply

was used for the excitation signal and the output port for the measured patch voltage.

An additional port was used to connect the PZT patch terminals. The gain values

R1 and R2 are set using linear variable potentiometers connected on an LM741CN

operational amplifier with a bandwidth of 1MHz. The parameters used in the card

are shown in Table 5.6.1. The selection of the gain values was performed based on

the minimum levels achieved to magnify the measured signal.

Table 5.6.1: Impedance measurement card parameters.

Parameters Values

Gain: G 5.34

R1[Ω] 14.56× 103

R2[Ω] 77.74× 103

Rs[Ω] 200
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5.6.2 Experimental set-up

A 5 mm Aluminium plate was used as a fixed structure. A set of sensors were

installed using different bonding conditions as early described. A Picoscope 6000 was

used to excite the PZT using an external output. The measurements were recorded

using the analogue input channels at 2 MHz. The PZT sensors were connected using

the differential configuration so only the voltage changes and current were measured

in between the patch terminals. Figure 5.6.2 shows the measurement set up used in

this experiment together with the connections of the impedance card to the patch

and the acquisition system.

Figure 5.6.2: Acquisition device and set-up for impedance measurements.

5.6.3 Impedance measurement

The Electrical Impedance (EI) was actively measured by exciting the PZT patch

with a linear chirp function as shown in Equation 5.6.7, 5.6.8 and Figure 5.6.3. This

will allow a fast estimation of the frequency response of the system by sweeping a

sine wave within a specific frequency range. Table 5.6.2 shows the parameters used

in Equation 5.6.7 to excite the PZT element.

Vin(t) = V0 sin
(
2π
(
0.5ct2 + f1t

))
(5.6.7)
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c =
f2 − f1
T

(5.6.8)

The maximum excitation frequency was based on the hardware design limitations as

the signal generator and the operational amplifier were only allowed to work around 1

Mhz. Figure 5.6.3 and 5.6.4 show a time domain and a time-frequency representation

on the chirp function respectively. Notice the linear frequency component variation

along time of the chirp signal with respect to time.

Figure 5.6.3: Chirp signal used to excite the PZT elements.

Table 5.6.2: Chirp excitation signal parameters.

Parameters Symbol Values

Amplitude V0 1 V

Wave type Vin(t) Sine

Start frequency f1 1× 103 Hz

Stop frequency f2 1× 106 Hz

Frequency Increment ∆f 100 Hz

Time increment ∆t 0.5× 10−6 s

Sweep time T 5× 10−3 s
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Figure 5.6.4: SFTF of the excitation signal using a Chirp function, sweeping from 0

to 1 MHz.

Different debonding levels were simulated by controlling the amount of bonding area.

This was achieved by controlling the amount of area bonded between the sensor and

the PZT surface with a 0.2 mm thin paper mask in between as shown in Figure

5.6.5. In a practical application, this value depends on the viscosity of the adhesive

and in the case of cyanoacrylate, a layer thickness of 0.2 mm is the maximum value

achievable [137]. Therefore, providing a consistent thickness for a fully bonded

and partially bonded scenario. Additionally, an assumption that debonding will

be generated symmetrically as shown in Figure 5.6.6 was made. Even though this

condition is difficult to achieve in a real scenario, the analytical impedance model

described on Equation 2.5.2 is defined in terms of an effective force at the bonded

interface, therefore deeming this assumption acceptable for arbitrary bonding areas.

Figure 5.6.5: Paper mask used to simulate different debonding conditions.
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Figure 5.6.6: PZT bonding scenarios. The blue and grey area represent the bonded

and debonded area respetively.

The blue and grey areas represent the bonded and unbonded areas respectively. The

bonding was achieved by using cyanoacrylate over the bonded area and allowing it to

cure for 15 minutes to avoid any changes in the impedance measurements over time.

In order to quantify the amount of debonding, the damage metrics were defined in

terms of percentage of detached area Ad as:

DS[%] =
Ad
Ab
∗ 100 =

π(R2 − rb2)
πrb2

∗ 100 =
(R2 − rb2)

rb2
∗ 100 (5.6.9)

where rb represents the radius of the bonded section Ab and R represents the PZT

patch radius. Four different damage sizes were defined as shown in Table 5.6.3 by

gradually increasing the radius of the hole in the paper mask.

Table 5.6.3: Debonding at different levels.

Damage size [%] Area [mm2] Radius [mm]

0 78.54 5

25 58.90 4.33

50 39.15 3.53

75 19.63 2.50
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5.6.4 Admittance features

As expected from the analytical expressions, the linear part of the experimental

admittance curves behave similarly to the behaviour described with the 1-dimensional

model discussed early. Figure 5.6.7 shows a shifting on the slope towards the maximum

limit expected in the free condition. Even though it does not seem to monotonically

increase with the damage progression, the feature shows two distinguishable features

whether a completely detached and bonded scenario occurs.

Figure 5.6.7: Linear admittance curves at different damage progression.

Interesting features have been seen in the absolute value of the impedance curves as

shown in Figure 5.6.8. An apparent shift on the resonance frequencies occurs, as the

curves show a tendency to shift the resonance frequency to the left as the debonding

progresses. Under a completely free condition the experimental resonance frequency

of the radial mode is 228kHz which coincides with the data provided by the PZT

manufacturer. Similarly this occurs for the conductance and susceptance features

shown Figure 5.6.9 and 5.6.10.
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Figure 5.6.8: Absolute value of impedance curves on semi-logarithmic scale.

Figure 5.6.9: Conductance curves at different damage progression.
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Figure 5.6.10: Susceptance curves at different damage progression.

A set of 32 measurements were acquired of each of the bonding scenarios. The

measurements were later reduced to a four-dimensional feature vector that contained

the susceptance values at 10, 20, 30 and 40 kHz. These values were selected as they

were contained in the linear part of the impedance curve. No advantage of increasing

the dimension of the feature vector in order to track the slope variations is expected

with higher dimensions.

5.7 Chapter summary

• A procedure to simulate a late onset of damage and overload damage was

described in this chapter. This section provided a methodology to simulate

an overload defect using a FEM, the results obtained from the plastic area

generated during the overload showed a great agreement with the experiments.

Moreover, a significant reduction in the remaining life was possible, this agrees

with the fact that overload events have a detrimental effect on WTGB.

• A process to extract the features and assemble the feature vector using vibra-

tional data was explained. Although the features were selected and processed

similarly for the scale-down, further signal enhancement on the MultiLife rig

was required. This resulted in unambiguous features that are suitable for

damage detection purposes.
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• A feature extraction process using AE signals was performed in order to

obtained a TOA map. Similarly to the unambiguity requirement for novelty

detection, a unique map for TOA was desired. Additionally, a data encoding

procedure was used to represent periodic variables as a means to avoid the

introduction of ambiguous mappings. This stems from the requirement that

smooth functions are required for NNs to learn the data relationship.

• An approach using beamforming exploited a different AE feature, a delay

between waves is obtained and used to generate an interference pattern from

the AE waves. Although this is not a ML method, the use of this feature

might be useful where relative noise levels are encountered, and an accurate

TOA estimation might not be deemed possible. The procedure required to

use analytical methods to calculate the time-delays associated with an area of

interest and also required to make assumptions on the behaviour of the wave

propagation.

• A sensor self-assessment section described the use of impedance measurements

to provide information about bonding degradation in AE sensors. These

features were extracted by exciting a PZT with an external device and pre-

processing the signals using the FFT. It was shown that this approach led to

distinguishable features between a healthy and damaged conditions. Moreover,

it was shown that this behaviour occurred as predicted by the linear impedance

model described in this section. This ultimately, explaining the physical relation

between bonding and slope variation.
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CHAPTER 6

Results and discussions

6.1 Novelty detection

In this section the results of the damage detection stage using outlier analysis and

LDA are shown for the scaled-down and MultiLife rig.

6.1.1 Outlier detection results for scaled-down rig

The results of the outlier detection in the fatigue rig can be seen in Figure 6.1.1. A

threshold level of 99% was implemented and this gave a total of 0% of false positives

for both training and test set whereas a significant amount of true negatives were

generated. A general observation arises from observing the mean values of each

damage condition, despite showing a high degree of overlap between the normal and

faulty condition it is possible to discern a deviation from the normal condition.
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Figure 6.1.1: Mahalanobis distance for training set (Blue), test set (Black), EDM

notch at 0◦ (Red), EDM at 11◦ (Green) and overload failure (Cyan) at a 99%

threshold value.

This overlapping will impose difficulties to estimate a threshold level that efficiently

separates the undamaged and the damage state. Any decrease in the threshold

level will lead to eventually increase the number of false positives from the normal

condition. The percentage of False Positives (FP) and False Negatives (FN) are

shown in Table 6.1.1 where the two different threshold levels were estimated using

the Monte Carlo method.

Table 6.1.1: Outlier false positives and negatives at different threshold levels for the

scaled-down rig.

Threshold

level [%]

Training Test Notch 1 Notch 2 Overload

FP [%] FP [%] FN [%] FN [%] FN [%]

99 0 0 87.94 76.10 100

90 0 0.34 80.50 66.98 100

6.1.2 Outlier detection in a run-to-failure test

Figure 6.1.2 shows the Mahalanobis distance during the time the experiment lasted.

As shown with the EDM defects, it was possible to distinguish between two different

states by analysing the trend in the Mahalanobis distance.
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Figure 6.1.2: Run-to-failure Mahalanobis distance.

A slight change in the mean of the Mahalanobis distance at around 18:00 of the

second day of the experiment shown a potential deviation from the normal condition.

This was also supported by a small amount of surface damage from the edge of the

outer raceway as shown in Figure 6.1.3a and 6.1.3b. Additionally, it is possible to

notice a gap at 15:00 and 17:45, these gaps occurred due to the rig stalling and

consequently requiring to change the support bearings and the electric motor. This

resulted from the long term usage and excessive demand for these components during

the test.

(a) Surface Damage (b) Profilometer measurements

Figure 6.1.3: (a) Surface damage at one of edges the outer raceway inside the red

dashed circle and (b) Profilometer measurements at the contact zone.
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6.1.3 Outlier detection results for MultiLife rig

An estimation of the covariance matrix was obtained from 70% of the data, thus

1113 samples were used for training and the remaining 477 for testing purposes. An

individual covariance matrix was calculated for 5 different speed conditions. The

results obtained are shown in Figure 6.1.2 with a 99% threshold.

Figure 6.1.4: Outlier detection in MultiLife rig at a 99% threshold level.
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Table 6.1.2 shows the number of False Positives and False Negatives at a 99%

threshold level at different shaft speeds and defects.

Table 6.1.2: Percentage of False Positives (FP) and False Negative (FN) from the test

set at different damage scenarios in MultiLife rig using the Mahalanobis Distance

and a 99% threshold level.

RPMs
Notch 1 Notch 2 Notch 3

FP [%] FN [%] FP [%] FN [%] FP [%] FN [%]

20 2.1 99.7 2.1 96.2 2.1 99.62

40 0.21 65.03 0.21 25.16 0.21 56.79

60 0 87.23 0 72.51 0 69.31

80 0 75.35 0 1.7 0 49.37

100 0.21 62.77 0.21 42.89 0.21 81.76

The use of the Squared Mahalanobis Distance (SMD) shows to learn the normal

condition data as the percentage of False Positives values stay relatively low at 2.1%,

this is consistent with different rotational speeds. A difficulty in classifying the

majority of the damage data have been encounter as in general, a value above 25.16%

of False Negatives has been found. The worst prediction occurred at 20 RPM where a

total of 99.62% of the damage data was classified as undamaged data. In a practical

sense, an underperformance was expected at low rotational speeds as at these ranges

the vibrational amplitudes at the characteristic defect frequency will remain relatively

low. This ultimately leading to data that shows similar characteristics to the baseline

data.

6.1.4 LDA results for scaled-down rig

As a means to understand the classification capabilities of the method, a standard

procedure of dividing the data set into a training and test set was performed. The

set of weights were determined from the training set which compromised 70% of the

data corresponding to the normal and damaged state for both rigs. The data were

projected onto a lower-dimensional space as shown in Figure 6.1.5. The data were
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separated by the linear boundary corresponding to zero, i.e. where the discriminant

function y(x) = 0.

Figure 6.1.5: Class separation between damaged and undamaged states in the

scaled-down rig at 927RPMs.

The faulty condition in the scaled-down rig was successfully separated for the

different damage conditions as shown in Figure 6.1.5. This shows that there is

a significant separation between the baseline and the different damage conditions.

Additionally, these separations seem to occur regardless of the defect orientation as

there is no significant difference between the defect localised at 0◦ and 11◦ degrees.

Comparing the data with the outlier detection method shown that the percentage

of misclassification in significantly reduced as shown in Table 6.1.3. Moreover, the

damage obtained in the run-to-failure test has shown a great separation between the

normal and damaged state. This could potentially be due to the high dissimilarity

between the baseline data and the damage features in the reduced dimensional space.

Table 6.1.3: Percentage of False Positives (FP) and False Negative (FN) from the

test set at different damage scenarios in scaled-down rig using LDA.

RPMs
Notch 1 Notch 2 Overload

FP [%] FN [%] FP [%] FN [%] FP [%] FN [%]

927 1.75 1.40 4.55 10.84 1.05 0.00

145



6.1.5 LDA results for MultiLife rig

The data obtained in the MultiLife rig shown a similar behaviour at lower shaft

speeds as seen in Figure 6.1.6. Clearly the data from the faulty conditions and

the normal condition have similar distribution parameters at a lower-dimensional

projection, thereby making it difficult to differentiate between a normal and damaged

state at this speed. This has to do with the lower vibration levels obtained at the

defect frequency, as the defect interaction has a low excitation level at that speed.

Figure 6.1.6: Class separation between damage and undamaged states at 20 RPM in

MultiLife rig.

This is clearly shown after a threshold of 40RPMs is reached as shown in Figure

6.1.7. Even though both conditions seem to slightly overlap, a distinction between

normal and damage conditions is evident. This behaviour also occurs at 60, 80 and

100RPMs as shown in Figure 6.1.8, 6.1.9 and 6.1.10. These conditions showed a

trend in reducing the number of false positives and false negatives at higher shaft

speeds as shown in Table 6.1.4.
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Figure 6.1.7: Class separation between damage and undamaged states at 40 RPM in

MultiLife rig.

Figure 6.1.8: LDA results in MultiLife rig at 60 RPM.

Figure 6.1.9: LDA results in MultiLife rig at 80 RPM.
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Figure 6.1.10: LDA results in MultiLife rig at 100 RPM.

Table 6.1.4: Percentage of False Positives (FP) and False Negative (FN) from the

test set at different damage scenarios in MultiLife rig using LDA.

RPMs
Notch 1 Notch 2 Notch 3

FP [%] FN [%] FP [%] FN [%] FP [%] FN [%]

20 38.99 16.35 39.62 32.08 29.14 27.46

40 4.19 22.64 0.42 13.63 3.14 18.87

60 6.29 12.37 3.35 13.21 3.56 14.26

80 1.89 7.34 0.00 4.40 1.47 9.64

100 2.52 9.85 0.84 6.08 3.35 28.51

6.2 Damage localisation

The previous section addressed whether the damage was present in bearings and

allowed the discrimination between damaged and undamaged states. In this section,

the results for the damage localisation stage for the scaled-down and MultiLife

rig using a NN approach will be shown. Finally, the results for the beamforming

approach will be shown for the scaled-down rig.
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6.2.1 Damage localisation in scaled-down rig

The validation errors from different NN models were calculated based on the sum-of-

squares error expression defined in Equation 3.3.8, which calculates the difference

between the target value and the value predicted by the neural network. These

errors are associated with a specific dataset, such as the training, validation and test

dataset. In this case, for model selection purpose, a validation error is calculated

from a validation dataset which has not been previously seen by the network during

the training phase.

A model for each fold was selected based on the lowest validation error obtained,

this can be seen as the point where an inflexion point occurs and no benefit occurs

through increasing the complexity of the model. Figure 6.2.1 shows the validation

error for the 4th fold where the minimum validation error occurred in a NN with 8

hidden units.

Figure 6.2.1: Cross-validation error results for the scaled-down rig for the 4th fold.

As shown in Figure 6.2.2, the optimal networks were found to be the ones with a

range of 7 to 19 hidden units. These networks were then assessed using the test set

showing that the best performance was obtained with a network of 17 hidden units

giving a test error of 0.127. This resulted in the following selected models for each

fold as shown in Figure 6.2.2. The lowest model was the NN with 8 units giving a

test error and validation error of 0.106 and 0.135 respectively.
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Figure 6.2.2: Validation error for candidate models for each fold, where the model

with 8 units showed the best validations performance.

The resulting optimal network predictions using the test set obtained from the PLB

are shown in Figure 6.2.3. The resulting predictions using the test set which has not

been previously seen by the NN during the training or validation stage show a linear

relationship between the predicted and target values. Therefore, this shows that the

predictions are correlated with the target values.

Figure 6.2.3: Test set predictions around bearing circumference.

Figure 6.2.4 shows the results from introducing the EDM notch at 0 and 11 degrees

and the overload generated on the bearing outer raceway. These results were obtained

from 100 observations from the notch and overload experiment. These bursts were

processed similarly as the bursts used for training purposes aided with the interface
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built-in Matlab as previously shown. Although, there is a high variance in the angle

prediction, the post-processing of the 100 observations led to the expected defect

positions by using the average of the NN predictions.

Figure 6.2.4: (a) Predictions using EDM defects at 0 and 11 degrees and overload

defect at 0 degrees. (b) Error distribution from NN predictions.

6.2.2 Damage localisation in MultiLife rig

The cross-validation process required the assessment of 4600 different NN models in

total (460 models × 10 Folds) and thus being relatively computational expensive.

The results from the cross validations are shown in Figure 6.2.5.

Figure 6.2.5: Cross-validation error results for the MultiLife rig for the 2nd fold.
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The results from the cross-validation shown that there is not a significant error

reduction after using a network of 237 units as it shown a test and a validation

error of 1.22× 10−3 and 1.54× 10−2 respectively in Figure 6.2.6. Moreover after

that value, the validation error tends to increase as it shows to be an inflection point

where more and less complex models showed to underperform.

Figure 6.2.6: Validation error for candidate models for each fold, where the model

with 237 units showed the best test performance.

The optimised network with 237 hidden units has been evaluated using a test set

that has not been previously seen by the NN for the training and validation stage.

The result in Figure 6.2.7 shows a source localisation error of 3% where a linear

relationship between the predictions and the target values can be observed.

Figure 6.2.7: Test set predictions around bearing circumference.
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The optimal network among the candidate networks was identified and used to

process the bursts extracted from the EDM notch. Figure 6.2.8 shows the bursts

predictions for each damage position at 0, -45 and +45 degrees.

Figure 6.2.8: (a) Prediction angular position and error distribution. (b) Error

distribution from NN predictions.

6.2.3 Damage localisation results for scaled-down rig using

time-delay and sum beamforming approach

The controlled PLB excitations at 0◦ showed the best accuracy attained with the

method with a relatively small variance. A trend can be seen in the variance when

the localisation is attempted at zones far away from the contact zone of the bearing.

Burst localised at +45◦ and −45◦ shown sometimes a degradation on the constructive

patterns allowing the formation of multiple maxima points. This effect might be

attributed to the small delay variations measured between sensors 1 and 2. As

explained before, the direction of the steering vector depends on the magnitude of

the delay calculated between sensors. In this case, these small variations might lead

to abrupt changes in the vector orientation which ultimately affects the beamformer

constructive patterns.
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The localisation of an EDM notch defect was also possible along the contact zone,

even though the achieved accuracy was not comparable to the one obtained using

the PLB test, having a resulted in a minimum error of 9.4◦ degrees.

Table 6.2.1: Beamforming localisation results.

Test Angle [θ] Mean [θ̄] STD[θ] Error [∆θ]

−45◦ −0.47◦ −11.65◦ 44.53◦

−11.25◦ −9.33◦ +1.4◦ 1.92◦

PLB +0◦ −1.07◦ +0.83◦ 0.83◦

+11.25◦ +2.67◦ +2.68◦ 8.58◦

+45◦ +32.6◦ +16.62◦ 12.4◦

EDM +0◦ +15.13◦ +21.60◦ 15.13◦

+11.25◦ +9.4◦ +26.3◦ 1.85◦

Overload +0◦ +20.47◦ +45.2◦ 20.47◦

6.3 AE sensors self-assessment

A similar approach using the spectral data for performing the novelty detection in

bearings was applied here. The features obtained were relatively clean in terms of

noise. The baseline dataset was taken to be the condition where the sensors are

completely attached to the structure whereas the test dataset consisted of all the

different debonding levels at 25, 50, 75 and 100. The last data set consisted of a

completely free PZT patch.

An Outlier detection approach using the Squared Mahalanobis Distance (SMD) was

used to calculate any onset of failure on the PZT sensors patch. A covariance matrix

was built based on the unfaulty sensors data and then used to calculate the distance

of the entire data set (non-faulty and faulty features). Figure 6.3.1 shows the results

of the Mahalanobis Distance for each set.

154



A Monte Carlo simulation with 1000 iterations was performed to obtain the threshold

value of 99% for 26 training observations, which shown to separate the faulty sensors

from the healthy ones.

Figure 6.3.1: Outlier detection results for different debonding conditions at a 99%

threshold. A 100% of the test set T was correctly classified whereas different

debonding leves where detected as a novelty.

Figure 6.3.2 shows the results of applying LDA to the previously described dataset.

As was expected, a high degree of separation was attained using this method. It may

be seen that no false positives or false negatives occurred in this case. The method

was able to classify the debonding condition at 25% as a damaged condition and

seems to correctly classify further debonding progression as demonstrated for the

completely detached condition.
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Figure 6.3.2: LDA results for different debonding conditions.

6.4 Discussions

6.4.1 Novelty detection

Two methods have been implemented in this chapter in order to detect damage in

roller bearings. A set of time-frequency features have been shown useful as a pattern

for differentiating between normal and damage condition states. Both methods

were tested using the same feature extraction techniques in order to make a fair

comparison and have been proven useful in terms of scalability on a real sized bearing.

Considering that the real scale bearing had a higher ratio of bearing-to-defect size

and lower shaft speeds compared with the scaled-down bearing, the selected features

have been proven useful for damage detection at an early damage onset.
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Outlier detection has been shown relatively useful for damage detection using spectral

features. Even though a severe overlapping in the Mahalanobis distance occurred,

it allowed the distinction between different states. On the other hand, Linear

Discriminant Analysis showed great accuracy as it reached the lowest rate of 1.75%

and 0% of false positives in the scaled-down and MultiLife rig respectively. LDA

showed a higher percentage of detecting novelty on the overloaded bearing as 100%

of the damage condition was correctly classified, whereas outlier detection obtained

a 100% misclassification rate.

A run-to-failure test showed that it was possible to perform outlier detection using the

SMD as a deviation measurement from an undamaged condition. This experiment

required to simulate an overload defect using a FEM approach to reduce the bearing

life expectancy, although this required a very sophisticated technique for validation,

the results can be obtained within reasonable conditions in terms of the number of

measurements and material conditions. These issues are acknowledged by the main

author in [2].

It is important to mention that the results obtained from the outlier analysis are

highly dependant on the threshold level used and for instance on the method used

for estimation. This leaves an open criterion of where the threshold level must be in

order to reduce the false positives and negatives. In the case of LDA the criterion is

slightly more straightforward as it comes more naturally to estimate a boundary for

both states from the training data.

Additionally, outlier detection is designed to classify a single point as being an

outlier or not, without considering the other test data points. This is achieved

by reducing the multidimensional feature vector into a one-dimensional scalar and

calculating a Novelty Index without taking into account the structure of the whole

observation points. It is important to mention that so far there is an assumption on

the data distribution as both methods mainly rely on that the data follows a Gaussian

distribution. In practise this assumption might fail, more specifically in the case of

LDA as there is no necessity why each class should have the same distribution. As a

consequence any deviation from this assumption might lead to underperformance

during the classification.
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A different approach might be considering a few aspects of the distributions analysed

by assuming where the most information content is contained. In this case, the

assumption was in the distance between classes such as the case of the LDA approach

but other valid assumptions might consider that the information is contained in data

variance such as the case of PCA.

The application of LDA has great potential for separating features when there

are relatively small variations in the data such as in this case. This method, in

contrast with the SMD, managed to find the best representation that maximises the

distribution separation between the damage and undamaged state.

LDA also suffers from overfitting issues. This can be seen when optimising the set of

weights in order to determine the hyper-plane that best separates the data. Normally

this happens when there is a relatively small number of data points. In such cases,

when optimising the set of weights, they may become highly dependant on a specific

training set. That is not the case when the number of patterns N is higher than the

number of dimensions D used in the feature vector as in this problem. If this is an

issue a regularised version of LDA might be advisable [138].

Outlier detection can be useful in a situation where the data can be described using a

Gaussian Normal distribution. In the case of the scaled-down experiment the feature

vector was obtained from one operational conditional where the rotational speed

remained relatively constant. This is generally not the case in the practical scenario

as normally gearboxes are expected to work at different ranges of speeds that lead to

multiple baseline features as shown in Figure 5.3.7.

This can be partially simulated using the MultiLife rig as it allowed the operational

speed to be changed between five different values. Intuitively, it is expected that the

data from the pristine condition vary accordingly to the rotational speed of the shaft

fs and the ball-spin frequency fb. The data would no longer follow the Gaussian

distribution assumption required to perform outlier detection as the covariance

matrix calculated from the training data does not fairly represent the data obtained

at different operational conditions. One commonly expected behaviour of performing

outlier analysis in this situation is the prevalence of triggering false positives alarms

even on data obtained from the baseline condition as shown in Figure 6.4.1.
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Figure 6.4.1: Outlier detection using each baseline feature, blue dots represent the

training sample, green dots represent the test samples and the red dots the damage

condition at each rotational speed.

The covariance matrix was estimated from 300 samples for each normal condition

giving a total of 1500 samples, a total of 450 samples were reserved for the testing

set which contains a total of 90 samples for each case of the normal condition. The

threshold level was estimated using the Monte Carlo approach for the total number

of observations. The results of Figure 6.4.1 show the Mahalanobis distance obtained

for the training, testing and faulty data condition. The faulty data condition was

obtained from a defected bearing at a 0◦ at a rotational shaft speed of 20, 40, 60,

80, 100 RPMs. Even though a vast majority of the 20 and 40 RPMs baseline

test data was classified as being undamaged, high-speed ranges were completely

triggered as false positives due to data being completely different in terms of their

statistical parameters. These problem has been known as variation of environmental

and operational conditions and has been extensively studied in the field of SHM.

Several approaches have been used to tackle this issue by normalising the data for

different conditions and desensitise features to these variations [40]. Clearly, special

precautions on data assumptions have to be made in order to improve the robustness

of the novelty detection stage.
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6.4.2 Damage localisation

The machine learning approach using NN for localisation of AE sources was suc-

cessfully implemented in both scaled and real size bearings. The principal aims of

this method allowed the localisation of defects on complex geometries regardless of

propagation speed. These effects were rather captured from the characteristics of the

data obtained from a training map and allowed the localisation of simulated defects

on bearings.

This chapter allowed the two main problems in the CM localisation stage to be

overcome. First, it allowed the localisation of damage in complex structures and

second, it allowed localisation without a priori knowledge of the propagation speed

in media. These two problems are the most challenging in SHM/CM and, so far,

they seemed to be better dealt with a machine learning approach. Additionally, the

implementation of this method is not only limited to WTGB, as it can potentially

target more sophisticated applications such as wind turbine blades, bridges, aircraft

and any other structure/machine that comprises complex geometrical features and

unknown material composition.

It was found that the MLP was able to perform under certain conditions. Mostly

attributed to the noise dependence of the input data. The scaled-down rig initially

showed the possibility of implementing the method in real scale components but

a trade-off between the data variance and separability was shown to be the main

problem for relatively small components. This situation did not occur with the real

scale component which showed greater separation between features.

This chapter used the NN approach and treated the localisation task as a regression

problem in terms of a machine learning approach which overcomes many of the

analytical and standard triangulation techniques. Nonetheless, it is important

to mention that there is a variety of regression methods available that have not

been implemented yet for this type of problems. Gaussian Processes is a potential

method that might be useful for this applications as it was well implemented for AE

localisation before in structures [90].

160



So far, only time-domain features such as the TOA, have been used in this chapter

for the feature selection stage. Unfortunately, they have shown to be greatly affected

by noise in certain situations where there is excessive background noise. However, the

AIC picker used in this work dealt with this problem to some extent as a great effort

in selecting the AE signals was spent during pre-processing. In certain situations

where a low signal-to-noise ratio is unavoidable, onset estimation might be challenged

as the method might not discriminate between the background noise and the actual

AE burst. This situation allows the exploration of several pre-processing techniques

that might help to improve this situation. Filtering techniques and the use of time-

frequency features to determine the time onset such as the CWT might be a further

topic for research.

It was shown that it is possible to localise a late onset of damage by using an EDM

notch. Alternatively, it was not completely obvious for an early damage onset such

as seen using an overloaded bearing in the scaled-down rig. The main reason for this

is because features such as TOA are highly sensitive to noise in the weak bursts that

were generated by an early interaction between the defect and the rollers. Despite

this, it is still possible to obtain a prediction but its reliability may be questionable as

the NN will be required to extrapolate. This is clearly a problem and the reliability

of the prediction will be dependent upon how great the extrapolation is. This is

certainly not deemed acceptable as NN are poor at extrapolation.

Additionally, it was still plausible to generate a map by performing excitations around

the component of interest, thus leading to highly accurate predictions using the

test measurements for each bearing by using data with the same characteristics. In

reality the TOA generated from the defects studied here had a slightly different

characteristic in terms of their distribution mainly due to noise levels. A possible

solution could be to train the NN with corrupted data adding noise systematically.

This has been previously been shown to give an improvement in NN generalisation

capabilities [131]. In this case, TOA information across the bearing of the full-sized

rig has been included, as a means for accounting for these variations in the TOA

features.

An interesting method recently used in AE such as the Beamforming method seemed

to allow the localisation of defects on bearings to some extent. The main advantage
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of this method is its capability to localise sources by using a different time-domain

feature such as the wave delay. This approach will normally require less sophisticated

methods to pre-process the signal such as the AIC approach. By using the signal

interference patterns, the localisation is achieved by analysing the peaks formed from

the constructive/destructive interference patterns. A drawback of this method is that

it relies on a constant wave speed propagation and it needs a priori-knowledge of the

structure. Therefore, this requires consideration of the geometry of the propagation

media and its propagation speed in the material. This method is also constrained by

the assumption of an interrupted wave propagation path resulting in it only being

able to localise sources in simple geometries. Moreover, this does not account for

media that is composed of multiple materials. In this case, the bearing support was

manufactured using only one material thus simplifying this localisation approach.

6.4.3 AE sensors self-assessment

The novelty detection methods used in this chapter have shown to correctly distinguish

between healthy and faulty sensors. Moreover, it seems that using the linear part of

the susceptance features has been shown to be highly sensitive to different debonding

extents. Both the SMD and LDA method have shown a clear separation between

healthy and faulty data.

Even though the method has been applied successfully to identify faulty sensors,

several issues might arise. A baseline dataset must be known a priori and this also

assumes that the bonding was performed consistently for the entire sensor network.

Moreover, the type of bonding used can also influence the response features.

Whilst both methods seemed to be useful for a novelty detection application they

were less successful at representing the debonding progression. The Mahalanobis

distance seemed to be unaffected by the increasing debonding level even though a

slight increase in the completely free condition was seen in the results. This does not

suggest any relationship between the amount of debonding induced as they do not

increase monotonically as the debonding progresses.

A similar observation occurred with LDA, as there was no clear relation between

the different debonding levels. The best separation occurred at the completely free
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scenario as occurred with the SMD. A better representation was observed on the

non-linear part of the impedance curves showing a correlation for different debonding

levels. This could be further exploited for the prediction of damage progression.

Additionally, this debonding effect seems to have affected the susceptance values,

but it is important to state that other conditions might give a similar deviation from

the baseline data. Sensor breakage has been shown to have a similar effect on the

susceptance curves [101].

Additionally, the quality of the soldering of these components might affect the

admittance curves. Figure 6.4.2 shows consistent measurements for completely

bonded sensors whereas the sensor with 50% debonding shows multiple peaks and

a highly distorted curve. The sensor with 50% debonding was damaged due to

a low-quality soldering technique. This behaviour might occur in situations were

soldering operations were performed close to the depolarisation temperature and

thereby damaging the sensor during installation. This clearly suggests that special

precautions are needed to be taken into account during the installation.

Figure 6.4.2: Depolarisation effect during soldering. A sensor with 50% debonding

showed a distorted admittance curve due to depolarisation effects.
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CHAPTER 7

Conclusions and further work

This work presented a machine learning approach for CM of WTGB by using

vibrational and AE data. The main aspect of this work dealt with a well-established

hierarchical approach for SHM/CM where each level of diagnosis was sequentially

targeted. Moreover, features were selected from the relevant signals, where vibrational

data was more relevant for of incipient damage detection whilst AE allowed the

subsequent targeting of the damage location stage.

Several other topics were also considered in this work. The structural integrity

of sensors in particular AE sensors was investigated and a means of assessing

healthy and faulty sensors was suggested. Finally, an exploratory investigation into

a methodology for quantifying overload damage on bearings was conducted. In

summary, the following main conclusions can be drawn from the following chapters:

In Chapter 2, a review of current techniques suggested a vast number of signal

processing methods for extracting features from vibration signals. Vibrational

methods have been proven to be robust for monitoring bearings, in particular.

Traditional methods have been proven as a standard for detecting damage via a

qualified operator with previous expertise. As mentioned in Chapter 2, sometimes

these features are beyond the normal operator intuition and better tools must be

developed for this purpose, thus leading towards Machine Learning methods. In

literature, novelty detection has been an extensively discussed topic, more specifically

in terms of roller bearing applications. On the other hand, damage localisation has

had less attention, as detection of damage normally leads to an immediate bearing
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replacement. The low cost of small bearings is the main justifying reason for only one

level of diagnostics. Moreover, the higher the level of diagnostics required, the more

complex the problem becomes. This situation can be potentially useful for other

types of applications such as WTGB where the costs justify the implementation of

the second level of diagnostics. This stage conjointly with some recent advancements

in the WTGB field such as the MultiLife concept can be potentially be integrated

in the near feature to reduce the downtime and unexpected breakdowns. Moreover,

this can potentially increase the life-span of such components.

In Chapter 3, an introduction to novelty detection using the Outlier detection and

LDA method has been explained. The advantage of using Outlier detection resides

that only a healthy condition of the structure/machine is needed to represent a

healthy condition of the structure/machine. This allows calculating the deviation of

the measured conditions from the healthy data distribution. Although this approach

is practical in many situations where the data can be easily separated, LDA takes to

maximise this separation by exploiting features from the healthy and damaged state.

This has an advantage over Outlier detection as a threshold is set by a discriminant

function whereas an additional technique is needed for outlier analysis.

Additionally, a background for NN has been included in Chapter 3. The main reason

for using this approach was to exploit the localisation by means of understanding the

data structure rather than implementing a physics-based model. As is well-known,

this is the data-driven approach in SHM/CM. This approach overcomes two difficult

problems that analytical models might not solve: Localisation under (1) an unknown

propagation speed and (2) in a complex geometry. This chapter provided the main

steps to implement the method in this work for regression problems. The background

provided information on the MLP architecture, how to define the NN size in terms

of the number of hidden units and a method to avoid overfitting by using the K-

fold cross-validation method. Finally, the beamforming localisation method was

introduced. Although not a ML method, beamforming uses a different set of wave

features that were worth exploring.

A methodology for simulating the damage produced by an overload event was

explored in Chapter 5. A Finite Element model was developed to investigate the

damage progression at different loading events and showed a high level of agreement
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with the experimental measurements using Neutron Bragg imaging. A fatigue test

performed showed a reduction in the remaining life of the bearing, even though it

was a clear fracture in this controlled experiment. The run-to-failure test performed

on Chapter 5 showed a severed surface failure. This was also seen on the SMD as

it showed a potential deviation from a normal state during the bearing operation.

Despite providing a means for predicting the plastic deformation in bearings, it

provides a systematic method for inducing controlled defects. This in practise allows

the premature reduction in the bearing life in specific locations of the bearing and

reduces the test times. Additionally, the use of Neutron Bragg imaging has been

shown useful in detecting plastic deformation in bearings. This allowed a non-

destructive approach to qualitatively describe the damage due to overload events.

Even though the capabilities for predicting the damage extent have been shown,

further investigation with more experimental data needs to be performed in the

future. This will provide more reliable correlations between damage size and the

remaining life in roller bearings and consequently lead to the damage prognosis stage

in CM.

Chapter 5 presented a ML approach using vibrational signals, this chapter showed the

signal processing steps used to produce unambiguous features. These were enhanced

by using a low-pass filter or a Hilbert Transform approach and then extracted using

the STFT method. Additionally, Chapter 5 presented the features extracted for the

localisation stage, this features represented as TOA values were preprocessed and

encoded in order to provide a suitable and unique data representation to the NN.

Additionally, an integral approach was implemented in Chapter 5 where the AE

sensors were considered as part of the CM scheme. Debonding not only distort the

AE signal in the time domain but also the frequency content of the signal, ultimately

leading to the deterioration of the information captured by the AE sensors. A

similar methodology used for novelty detection was implemented to detect faulty

PZT patches. The use of susceptance curves was shown to be sensitive to bonding

degradation.

The features obtained for different bonding conditions were shown to overlap con-

siderably when using the linear part of the susceptance curve. Further analysis

of the experimental data showed that the resonance peaks seem to be correlated
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with the damage level. Considering that novelty indicating possible debonding will

immediately lead to a sensor replacement/re-installation, a damage localisation as-

sessment stage is deemed unnecessary. Additionally, this can be solved by exploiting

the redundancy of the sensor network in such situation.

In Chapter 6, the SMD was used as a measure of any deviations from a normal

state of the rotary machine. Even though it was possible to identify cases where the

bearing behaviour deviated from the normal condition, several overlaps occurred. It

showed that using this method to detect a novelty might lead to several false positives

when the outlier data is not significantly distant from the baseline distribution. Two

aspects are important to notice in this method: (1) It does not exploit any other

characteristic of the multi-dimensional feature as it reduces the features to a one

dimensional regardless of its data separability and (2) it does not consider the

measurements as a whole data distribution.

These questions lead to the exploration of a method that can not only exploit the

novelty detection capability but also consider the entire data structure. LDA was

shown to answer both questions by maximising the data separability and treating the

data as a whole distribution. A significant separation was obtained using this method

and allowed clear diagnostic differences between a normal state and a damaged one.

One limitation that seemed to affect both methods was that neither was able to

detect novelty at lower rotational speeds. In practise, this would not be an issue,

as gearboxes will normally deal with speeds at least 10 times higher than 20 RPMs.

Beyond that point novelty detection was capable with both methods.

AE technology was exploited for obtaining meaningful feature maps and, from the

experiments, was shown to provide unambiguous features for damage localisation.

Even though the generated maps can be used directly as in the case of the Delta-T

method to localise damage by manually interpreting the Time-of-Arrival (TOA) data.

The use of a Neural Network NN removes the operator’s influence and naturally

interpolates the data. It is important to note that this point depends on how

cautiously the NN has been trained and the ambiguity of the features.

Even though it was initially expected that greater accuracy would be obtained

on the scaled-down rig, the TOA features obtained from the defects were highly
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contaminated with noise. This led to the overlapping of the features thereby reducing

the accuracy during the predictions. The effect of localising defects on smaller

parts becomes a challenge due to the requirement of better time resolution for such

applications. The localisation on the full-sized bearing did not suffer from this issue

as the noise variance was relatively lower. This allowed a clear distinction between

each observation as less overlapping occurred between features.

In practise, secondary AE sources become a problem when implemented in such

types of mechanisms where effects of dropping rollers and secondary components

occur, thus pre-selection of the AE must be conducted. in this case, a criterion was

implemented based on the periodicity of the generated bursts. This led to select

the AE bursts that were generated at the characteristic defect frequency of the

bearing and filter those generated at random times. In a real scenario there is no

such behaviour, transient wind speeds might induce variations and thus making it

difficult to filter such events.

The use of a NN normally requires a large number of data features in order to

generalise over a training sample. This also represents a limitation on the model size,

as discussed in Chapter 3. Using such techniques requires not only the consideration

of sample size but also the consideration of additional steps such as cross-validation.

Special attention to the features should be taken into account by attempting to avoid

ambiguous features that might lead to spurious results. These maps can be shown

to provide a unique mapping for each location point. Moreover this can be shown

even after the data transformation. The reason why this step is important is that a

continuous map must be used to train a NN. The initial features arranged in terms

of each angular position were unambiguous but they were not a continuous map.

This led to post-process these features and transform them in order to allow them to

remove these singularities.

An additional approach was implemented in this thesis as it exploited other types of

features on the AE signal. As seen before, the use of TOA maps can be susceptible

to noise contamination and can lead to ambiguous results. An alternative approach

used the shape of the waveform rather than the arrival onset, thereby resulting in

reasonable predictions. The negative aspect is the number of assumptions needed to
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be made. Propagation speed must be assumed and, additionally, localisation cannot

be performed on complex geometries.

The use of the SMD and LDA have been shown to be useful for novelty detection

and capable of diagnosing sensors with at least 25% debonding. This shows the

sensitivity of the susceptance curves as features for debonding.

The linear part of the susceptance curves was shown to be useful for novelty detection

as they successfully allowed the provision of unambiguous features for bonding degra-

dation. Further tracking can potentially be performed by analysing the resonance

peaks at the impedance curve; but this in practise seems less feasible. The main

reason is that, after any onset of bonding degradation the first level of detection

might be sufficient to highlight the issue and to take corrective action.

This work highlights the need to take great care during AE sensor installation. If in

practise any of these methods are expected to be implemented, further steps such

as ensuring that the sensors are completely attached to the surface in a consistent

manner using the same type and amount of adhesive should be performed.

Bonding effects seem to be more noticeable at the resonance frequencies and the

amplitudes of the admittance curve. Even though they are shown to be unambiguous

features for damage, their use is not expected to improve the novelty detection

performance.

7.1 Further work

A few challenges were encountered in this thesis leaving a few issues to be further

addressed. The novelty detection performed in Chapter 6 answered whether or

not damage occurred on bearings but under a few specific conditions. Vibrational

data required pre-processing of the signal, in the form of signal enhancement via

Hilbert Transform to identify defect frequencies. The main issue occurred due to

severe overlapping of the features but this was partially solved by using LDA which

managed to separate both states.
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The main issue could be due to the time-frequency resolution limitations of the

Short-Time Fourier Transform (STFT) as it is well-known in signal processing.

Further exploration of the Continuous Wavelet Transform (CWT) might be useful

as it overcomes this time-frequency resolution problem. A feature vector using the

coefficients of the CWT of the vibrational signal might solve this problem as this

method does not have the time-frequency limitations observed in the STFT. This

allows the exploration of different signal processing techniques to allow unambiguous

features for novelty detection.

Novelty detection using SMD was performed through a priori knowledge of the

rotational speed of the defect frequencies beforehand. In a real scenario this rotational

speed might not even be constant due to the transient behaviour of the wind. An

exploration of data normalisation methods might allow the building of more robust

baseline conditions in order to perform novelty detection. These methods have been

successfully used before to tackle the Environmental and Operational Variations in

the SHM context.

The damage localisation chapter showed a way to use NN by systematically following

best practises. This required the use of a relatively large data set for training,

validating and testing which in this case took several days to obtain. This leads to

two different issues for further exploration, either regression techniques that are able

to use smaller datasets could be explored or automatic methods for generating the

TOA maps could be investigated. The latter can have a great impact on reducing

the time spent in building the maps. Even though PLB have shown to generate very

repetitive excitations other methods such as laser-based methods have been used to

extract these maps automatically by exploiting the thermo-elastic effect [90].

A few aspects of using TOA maps can be considered for further exploration. Even

though the features were processed using an accurate technique for determining the

AE wave onset, they are sensitive to noise to some extent. As seen in the prediction

it is rather difficult to rely on only one measurement and thus the whole distribution

might be more useful in this case. Due to this issue, a few questions regarding other

types of features that might be less sensitive to noise might arise such as the shape

of the AE burst in time and frequency domain.
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Additionally, this might lead to assess the use of narrow-filtering techniques as in

the time-delay beamformer section to isolate a specific propagation mode.

It is important to notice that the TOA features were obtained from the raw time-

domain signal by the assumption that the fastest propagation mode will be captured

first. This information was clearly obtained from the time-domain but it does not

restricts to build a map based on the arrival of each of the frequency components

of the AE signal. A time-frequency approach using the CWT coefficients has been

thought by building a map based on the first arrival at a specific frequency.

The use of beamforming allowed the exploration of a different set of features that

exploited the signal waveform by forming constructive interference patterns around

hypothetical locations. As this method was implemented in a fairly simple structure,

it lacks the flexibility to be implemented for more complex structures. Further

exploration into methods of overcoming this issue would be of interest.

The novelty detection using the SMD and LDA was shown to be successful in the

detecting debonding on PZT patches. A particular problem with that approach is

its inability to perform the task in an online manner. The ideal situation would

allow the on-demand measurement of an AE signal signature and monitoring any

signature changes. This might be performed by using a repetitive excitation such as

a PLB on a reference point and monitoring of the signal features.

The model used to predict the damage progression was shown to generally agree

with the experimental data. This does not predict remaining life by itself but, rather

allows it to be systematically used for controlling the overload size. This certainly

opens a new set of investigations where more experimental data must be obtained.

Due to limitations of the measurement time and due to the rather probabilistic

failure rates enough experiments were not able to be performed in this work. By

allowing further experimental testing it may be possible to correlate the damage

sizes to the failure rates in bearings.

Even though the techniques presented in this work have shown damage detection and

location capabilities, it is important to mention that their implementation in a real

WTGB requires further improvements in their robustness. It should be clarified that

so far all the diagnosis stages were performed under well-controlled circumstances. In
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reality, a priori knowledge of the defect is available, multiple operational conditions

might be encountered, moreover, a unique baseline condition might be unavailable.

Additionally, the techniques showed here assumed a unique defect instance. In

practise, this is rarely the case as there is nothing that can prevent multiple random

defect generation around the bearing component and thereby detection and location

should allow this possibility. As seen in Chapter 5 damage location was performed

based on an a priori knowledge of that certain bursts were generated at a given

damage characteristic frequency, thereby filtered from the random pulses generated

from the AE signals. Despite being a relatively well-controlled environment it was

almost impossible to eliminate these random events and required a certain level of

guessing during the filtering. Comparing this situation with what can be potentially

be encountered in a real scenario can lead to a difficult task and might trouble the

interpretation of the localisation prediction.

So far these methods have been tested in one specific component and no knowledge of

whether or not the data obtained for training the damage detection and localisation

will work in different WTGB. In reality, multiple WTGB will be encounter in a Wind

Turbine Farm and it might need to be considered that variations might be encounter.

This again deals with the robustness of the damage detection and location methods

and it is an issue that needs to be studied before implementing it. Despite these

challenges, it has been shown that the approaches followed in this thesis allowed to

target the first and second levels of diagnostics together with an integrated approach

to monitor the AE sensors. This work performed a systematic approach using machine

learning and allowed to understand the challenges during the implementation of

these techniques in WTGB.

As shown in the results in Chapter 6, it is possible to perform damage detection on

PZT sensors using susceptance curves as features. So, damage can be detected and

further actions such as replacing the sensor or bonding it again can be taken. Further

questions such as the extent of damage might arise. From the features obtained from

the linear part of the susceptance curve seems difficult to answer. An analysis of

the resonance frequency seems to show a consistent feature to understand damage

progression and also seems to be an unambiguous feature for novelty detection.
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Another possible area for investigation is to study the effects of temperature. It

is well known that each piezo-electric component has a temperature limit (Curie

Temperature). This temperature limits the operational temperature of the PZT

sensor as the sudden depolarisation of the PZT patch will lead to distorted impedance

curves leading to inaccurate measurements. The depolarisation effect seems to have

an effect on the admittance curves and thus allowing to detect damage in such

situations.
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